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Abstract

Gaussian quantum states of light have many applications in quantum technologies.
Two of the most widely used Gaussian quantum states of light are the single- and two-
mode squeezed states. In this thesis, we propose the generation of a hybrid of these
two states, which has both properties of single- and two-mode squeezed states. We then
extend our method to the generation of multimode squeezed states which posses N -partite
entanglement.

Our states are defined using Gaussian frequency modes, and our method relies on a
nonlinear-optical process called spontaneous parametric downconversion. We shape the
joint spectral amplitude of the generated light in two ways, by spectrally engineering the
light incident on the crystal and by the engineering of the nonlinear crystal to have desired
properties. We first use our method to generate tuneable hybrid squeezed states and then
extend it to multimode squeezed states. We then investigate design considerations for the
nonlinear crystal and study the effect of fabrication errors.

The tuneable hybrid and multimode squeezed states are localized in both frequency and
time, making them ideal for a variety of quantum information protocols. We expect that
the states will be used to generalize many quantum information protocols to their multi-
mode counterparts, such as, multi-parameter quantum metrology, multi-channel quantum
imaging and multi-partite teleportation. Our work will therefore broaden the applicability
of optics for the development of quantum technologies.
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friend. Thank you for always being there whenever I had a question or needed advice. Your
guidance helped me to become a better scientist. I am grateful for all that you provided
during my M.Sc. degree, especially through the final days of preparing this thesis.

Thank you to Christine Muschik and Robert Mann for being a part of my advising
committee, and to Michal Bajcsy for reviewing this thesis and attending my defence.

I would like to thank my girlfriend Francesca and her parents, who have always treated
me as one of their own.

Finally, I would like to thank both my parents for all that they have done. They have
always allowed me the freedom to choose my own path and have supported me every step
of the way.

iv



Dedication

Dedicated to Francesca, who has stuck by me through everything.

v



Table of Contents

List of Figures ix

1 Introduction 1

2 Theory 4

2.1 Quantization of Light in a Linear Material . . . . . . . . . . . . . . . . . . 4

2.1.1 Classical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Quantizing the Classical Electromagnetic Field . . . . . . . . . . . . 5

2.1.3 Quantum States of Light . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Linear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Polarizing Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Half-Wave Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Spontaneous Parametric Down conversion . . . . . . . . . . . . . . 9

2.3.2 The Downconverted State . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 The Pump Function . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 The Phasematching Function . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 The Joint Spectral Amplitude . . . . . . . . . . . . . . . . . . . . . 12

2.4 Properties of the Phasematching Function . . . . . . . . . . . . . . . . . . 15

vi



2.4.1 Uniform Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Group Velocity Matching . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Quasi Phasematching . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Ferroelectric Poling . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Motivating a Tailored Phasematching Function . . . . . . . . . . . 19

2.5 Nonlinearity Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Amplitude of a Uniform Crystal . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Algorithm for Tailoring a Nonlinear Crystal . . . . . . . . . . . . . 21

3 Encoding Modes as Gaussian Frequency Distributions 26

3.1 Single-Mode Squeezed Vacuum States . . . . . . . . . . . . . . . . . . . . . 27

3.2 Two-Single Mode Squeezed Vacuum States . . . . . . . . . . . . . . . . . . 28

3.3 Two-Mode Squeezed Vacuum States . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Generalized Modes and Linear-Optical Transformations . . . . . . . . . . . 30

3.4.1 Extending Gaussian Frequency Distributions to Many Modes . . . . 31

3.4.2 Linear-Optical Transformations . . . . . . . . . . . . . . . . . . . . 31

4 Tunable Hybrid Squeezed States of Light 34

4.1 Pump Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Engineering the Phasematching Function . . . . . . . . . . . . . . . . . . . 38

4.3 The Joint Spectral Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Providing a Decomposition of the Joint Spectral Amplitude . . . . . . . . . 41

4.5 Eliminating the Polarization Degree of Freedom . . . . . . . . . . . . . . . 42

5 Multimode Squeezed Vacuum States 45

5.1 Generalizing the Joint Spectral Amplitude . . . . . . . . . . . . . . . . . . 46

5.2 Decomposing the Multimode Joint Spectral Amplitude . . . . . . . . . . . 46

5.3 Eliminating the Polarization Degree of Freedom for the Multimode State . 48

5.4 Generating the Joint Spectral Amplitude for Multimode Squeezed States . 49

vii



6 Design Considerations and Fabrication Errors 52

6.1 Constraints on the Target Phasematching Function . . . . . . . . . . . . . 52

6.1.1 Shape of Target Phasematching function . . . . . . . . . . . . . . . 52

6.1.2 Constraints on the Amplitude coefficients of the Target Phasematch-
ing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.3 Optimal Width of the Target Phasematching Function . . . . . . . 54

6.1.4 Sources of Error due to Oscillations of the Target Amplitude . . . . 55

6.1.5 Varying the Number of Domains . . . . . . . . . . . . . . . . . . . 56

6.2 Fabrication Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion 63

References 66

APPENDICES 72

A Phase Matching Function Constraints 73

B Example of Custom Phase Matching Function 75

B.1 Gaussian PMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



List of Figures

2.1 Schematic of a Type 2 SPDC process in a 1D wave guide. The pump photon
is downconverted into two orthogonally polarized photons denoted signal
and idler. The pump and signal photon is horizontally polarized and the
idler is vertically polarized. The process is mediated by a crystal with a χ(2)

nonlinearity and is energy and momentum conserving. . . . . . . . . . . . . 10

2.2 Schematic drawing of a JSA for a typical SPDC process. . . . . . . . . . . 13

2.3 Typical pump,PMF and JSA for a SPDC process. . . . . . . . . . . . . . . 14

2.4 PMF for a uniform nonlinear crystal with different group velocities. . . . . 18

2.5 Showing how the nonlinearity in flipped by applied a field at a localized
electrode. Figure was taken from [1]. . . . . . . . . . . . . . . . . . . . . . 19

2.6 Crystal that has been ferroelectrically poled. The different shades of grey
correspond to a nonlinearity that is either +1 or −1. This figure was taken
from [2] with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Schematic of nonlinear crystal used for calculating the nonlinearity in the
algorithm. The crystal extends from −L/2 to L/2 and is centered at z = 0.
The crystal is broken up into N pieces each with length lc such that L = Nlc
and indexed by m. In each domain the nonlinearity is either ±1, in the above
image the nonlinearity for the first three domains is +1,-1. In a real crystal
N is typically on the order of 500− 2000. . . . . . . . . . . . . . . . . . . . 23

3.1 Schematic JSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Schematic JSA for a state corresponding to two SMSV states. The different
colors represent different amplitudes. . . . . . . . . . . . . . . . . . . . . . 29

3.3 Schematic JSA for a state corresponding to a TMSV state. . . . . . . . . . 31

ix



4.1 Schematic of the JSA corresponding to a state that is both single- and
two-mode squeezed. Circles with different shading indicate different peak
amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Schematic of the JSA that would be produced by multiply a PUMP and
PMF each with three Gaussian peaks. . . . . . . . . . . . . . . . . . . . . . 36

4.3 Schematic for creating a pump pulse of light that has a frequency distribu-
tion of three gaussians. In the figure the colors red, green, blue represent
the narrow frequency pulsed light. By removing the block we can change
on the fly the input pump light. In the figure BS and M represent a beam
splitter and mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Pump frequency distribution for three Gaussian’s at the same width and
separation as the PMF in Fig. 4.6 plotted as a function of ωp and ωs, ωi.
The amplitudes coefficients for each peak are b−1 = 4, b0 = 3, b1 = 6. . . . . 37

4.5 Nonlinearity profile for a crystal with the target PMF given by Eq. (4.4). . 38

4.6 PMF as a function of ∆k and the signal and idler frequencies for a target
PMF given by Eq. (4.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 JSA, PMF and pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 JSA after filtering the horizontal and vertical frequency generation . . . . . 41

4.9 Set of transformation to eliminate the polarization degree of freedom. The
line style represents the polarization of light. P1 and P2 represent the spatial
degrees of freedom, PBS is a polarizing beam splitter, HWP is a half wave
plate, BS is a beam beam splitter and M is a mirror. Dashed and solid lines
represent H and V polarization respectively. . . . . . . . . . . . . . . . . . 43

5.1 Schmatic JSA for a PMF and PUMP made up of 2N + 1 Gaussian. Each
amplitude is centered at the frequency Ω−2N , ..,Ω0, ...,Ω2N . For simplicity
we keep the colour of each amplitude the same. . . . . . . . . . . . . . . . 47

5.2 multimode JSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Plotting the target amplitude for a Gaussian target PMF for different widths. 54

6.2 Plotting the target amplitude for a five peak Gaussian target PMF. . . . . 55

6.3 Target vs approximate amplitude for a target PMF with five Gaussian peaks.
In the zoomed in plot we see how the tracking amplitude cannot accurately
approximate the target due the oscillations being too large. . . . . . . . . . 56

x



6.4 Comparing the approximate vs target PMF while varying the number of
domains and keeping the length fixed. . . . . . . . . . . . . . . . . . . . . . 57

6.5 Comparing the PMF and amplitude for N = 1000 and N = 6000. . . . . . 58

6.6 Schematic of the main sources of error when ferroelectrically poling a crystal. 60

6.7 Comparing the approximate nonlinearity (top) to five sets of randomized
errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 Comparing the target amplitude, the approximate amplitude and five trials
of the random error nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 Comparing the target PMF, approximate PMF and the PMF from the five
random error nonlinearity profiles. . . . . . . . . . . . . . . . . . . . . . . . 62

A.1 Plotting the amplitude throughout the crystal of a Gaussian target PMF
with two different pre-factors. We can see that when we exceed the restric-
tion of the slope of the target amplitude of 2/π we can no longer approximate
the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.1 Non linearity profile for a target Gaussian PMF. . . . . . . . . . . . . . . . 76

B.2 Comparing the target amplitude to the approximate amplitude for a Gaus-
sian target PMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.3 Gaussian centered at ∆k0 compared to engineered PMF . . . . . . . . . . . 77

B.4 Plotting the JSA, PMF (lower plot) and pump (upper plot). . . . . . . . . 78

xi



Chapter 1

Introduction

Quantum light is an important ingredient in emerging quantum technologies. It can be
easily sent from one location to another, making it ideal for quantum communication [3]
and quantum cryptography [4]. It can also posses desirable quantum properties, such
as, superposition and entanglement, making it a good candidate for quantum information
processing, either as a link between other quantum systems such as ion traps [5] or used
directly for quantum computation [6]. Quantum light also has applications in imaging [7]
and metrology [8].

In quantum optics, it is typical to classify states of light as “discrete variables”, e.g.
Fock states, or “Continuous variable” such as electric field eigenstates. An interesting
class of continuous variable quantum states of light are Gaussian states, which satisfy
the condition that the Wigner function, a quantum mechanical generalization of a phase-
space probability distribution, is always positive [9]. Gaussian states can be used for
quantum information protocols with the addition of a single nonlinear process, such as,
photo detection. Many linear-optical transformations are Gaussian transformations, which
take Gaussian states to Gaussian states. These two useful properties have led to a large
theoretical toolbox which uses Gaussian states and photo detection for many continuous
variable quantum information protocols [10].

Two common Gaussian states are single- and two-mode squeezed states [11]. The
squeezing property of single-mode squeezed states makes them useful for quantum metrol-
ogy [8]. Two-mode squeezed states are entangled states of the electromagnetic field, and
can be used for quantum teleportation [3] and cryptography [4]. In this thesis we consider
two generalizations of single- and two-mode squeezed states: (i) a class of states we call
“tuneable hybrid squeezed states”, and (ii) a class of states known as “multimode squeezed
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states”.

Hybrid states may posses the best of both single- and two-mode squeezed states. Their
tuneable nature could be used to benefit quantum information protocols by having extra
parameters that can be varied during an experiment. Multimode squeezed states on the
other hand, generalize entanglement to N -partite entangled states, which can generalize
many quantum information protocols. Hybrid and multimode squeezed states can be used
for multi-parameter quantum metrology [12], multi-channel quantum imaging [13] and
multi-partite teleportation [14].

Hybrid squeezed states 1 were first described in [15], where they proposed using a beam
splitter and two single-mode squeezed states to generate a hybrid squeezed state. The state
was tuned by varying the squeezing parameters and the phase of the beam splitter. This
idea was then expanded upon to the multi mode case in 1999 by P. van Loock and Samuel
L. Braunstein [16], where they used N beam splitters and only one single-mode squeezed
state. A new method was proposed by [17], which used a continuous-wave source and
an optical parametric oscillator to compactly generate four-mode squeezed states. This
method was further generalized by [18] to generate many mode squeezed states from a
continuous wave source.

In this thesis we propose and investigate a method to generate hybrid squeezed states,
where the squeezing parameters can be tuned in real time. We then adapt our method
to multimode squeezed states. Our method uses a spontaneous parametric process with
a spectrally engineered pump and custom-engineered nonlinear crystal. What sets our
work apart from the previous work is that the modes of the field are Gaussian frequency
distributions which provides three advantages. The first advantage is that unlike the
method proposed by [16, 17, 18], the states we generate are localized in time and frequency,
allowing for high dimensional encoding that are compatible with waveguides and fiber
transmission [19]. The second advantage is unlike the localized time-frequency modes of
the Schmidt decomposition [19] which are hard to experimentally distinguish [20], our
modes are defined by Gaussian distributions at center frequencies, making them easy to
experimentally distinguish. Lastly, the states generated in [15, 16] relied on beam splitters
to generate entangled states in the spatial modes of the field, whereas ours are in the same
spatial mode which makes the experiment more stable. Our method can be scaled to many
modes and the entangled states are all simultaneously available.

This thesis is structured as follows. In Chapter 2 we develop the theory of linear-
and nonlinear-optics and detail an algorithm used to design custom-engineered nonlin-
ear crystals with specified properties. We then define modes of the electromagnetic field

1originally called “two-mode squeezed gaussons”
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as Gaussian frequency distributions and show that we can encode single- and two-mode
squeezed states with this method in Chapter 3. We then propose a method for generating
tuneable hybrid states in Chapter 4, by custom-shaping the spectral distribution of the
input light and custom-engineering of the nonlinearity profile of the crystal. In Chapter
5 we adapt this method to generate squeezed states with many modes. We then discuss
some limitations of our method and errors associated with it in Chapter 6. Finally, we
conclude the work of this thesis in Chapter 7.
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Chapter 2

Theory

In this chapter we introduce the necessary theoretical background to follow the rest of the
work in this thesis. We begin with a section on classical optics and then quantize the elec-
tromagnetic (EM) field, we then review linear-optical transformations, including polarizing
beam splitters, half-wave plates and beam splitters. We then introduce a nonlinear-optical
process, known as spontaneous parametric downconversion (SPDC), and show how it can
be used to generate various squeezed states of light. Finally, we discuss various methods
used to customize the properties of squeezed light generated via SPDC, namely, group
velocity matching, quasi phasematching, and customized nonlinearity shaping.

2.1 Quantization of Light in a Linear Material

2.1.1 Classical Optics

To quantize the EM field, we begin with the field’s classical equations of motion. This
approach closely follows the work in [21]. The derivation is quite involved, so here we only
highlight the key points. We begin with Maxwell’s equations for the displacement field
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D(r) and magnetic field B(r) in a non-magnetic material, given by

∇ ·D(r) = 0

∇ ·B(r) = 0

−iωB(r) = −∇×
(

D(r)

ε0n2(x, y;ω)

)
−iωD(r) = ∇×

(
B(r)

µ0

)
.

(2.1)

In Eq. (2.1) we assumed that the fields vary harmonically with frequency ω, that the direc-
tion of propagation is along z, and that the refractive index (n2(x, y;ω)) is only dependent
on the orthogonal directions x, y, and ω. The solutions to the differential equations in
(2.1) can be expanded in plane wave solutions along the direction of propagation. The
displacement and magnetic fields are then given by

D(r, t) =
1√
2π

∑
I

∫
dkαI(k)dIk(x, y)eikz−iωIk + c.c.

B(r, t) =
1√
2π

∑
I

∫
dkαI(k)bIk(x, y)eikz−iωIk + c.c.,

(2.2)

where the sum is over another index of the field, αI(k) are the amplitudes of each mode, r
is the location where the field is being evaluated, and dIk(x, y),bIk(x, y) characterizes the
mode profile for the displacement and magnetic field respectively. We choose a conventional
normalization for the transverse direction of the field given in [22].∫

dxdy
d∗Ik(x, y) · dIk(x, y)

εn2(x, y;ωIk)

vp(x, y;ωIk)

vg(x, y;ωIk)
= 1, (2.3)

where vp and vg are the local phase and group velocity in the medium.

2.1.2 Quantizing the Classical Electromagnetic Field

To quantize the EM field we now promote the amplitudes αI(k) into operators âI(k). In
the Schrödinger picture, the field operators are then given by

D̂(r) =
∑
I

∫
dk

√
~ωIk

2
âI(k)dIk(x, y)eikz +H.c.

B̂(r) =
∑
I

∫
dk

√
~ωIk

2
âI(k)bIk(x, y)eikz +H.c..

(2.4)
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The creation and annihilation operators then satisfy the two commutation relations

[âI(k), âI′(k
′)] = 0,

[
âI(k), â†I′(k

′)
]

= δII′δ(k − k′). (2.5)

The Hamiltonian for the EM field in a linear material is given by

Ĥ =

∫
d3x

(
Ê · dD̂ +

1

µ0

B̂ · dB̂
)
, (2.6)

after substituting in the equations for the field in (2.4) we arrive at the linear Hamiltonian
given by

ĤL =
∑
I

∫
dkωIkâ

†
I(k)âI(k). (2.7)

The operators â†I(k) and âI(k) can be used to write down interesting quantum states of
light, which we introduce in the next section.

2.1.3 Quantum States of Light

Quantum states of light are useful in many quantum information protocols such as quantum
teleportation, quantum metrology, and quantum cryptography. In this section we assume
we have a single mode of the field and therefore drop the index I and k for clarity.

We begin with coherent states of light [23]. A coherent state is described by

|α〉 = eα
∗a†−H.c. |0〉 , (2.8)

where α is a complex number that defines the phase and amplitude of the state. Coherent
states have the property that they minimize the quantum uncertainty and the field expec-
tation value oscillates sinusoidally. Coherent states are important because they are used
to model the output of a laser [24] and can be used to encode information for continuous
variable quantum computing. One way to use coherent states for quantum computation is
to encode the logical qubits as |0〉 = |α〉 and |1〉 = |−α〉 [25].

The next set of states that are often used for quantum information protocols are
squeezed states. There are many types of squeezed states [26], but we will focus on single-
mode squeezed vacuum (SMSV) and two-mode squeezed vacuum (TMSV) states.

A SMSV state is given by [23]

|smsv〉 = e
β∗
2
â†â†−H.c. |0〉 (2.9)
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where β is a complex number called the squeezing parameter that controls the amount
and phase of the squeezing. A SMSV state is classified as single-mode because there is
only one mode of the field in the exponential, it is squeezed due to it being quadratic
in creation/annihilation operators in the exponential, and a vacuum state because the
expectation value of the field is zero. Due to the squeezing property of SMSV states, they
have found applications in the field of quantum metrology [8].

TMSV states are define in a similar way given by [23]

|tmsv〉 = e
γ∗
2
â†b̂†−H.c. |0〉 , (2.10)

where again, γ is a complex number called the squeezing parameter. A TMSV state has two
modes of the field in the exponential. These two modes are typically either two orthogonal
polarizations or two spatial degrees of freedom. Similar to a SMSV state, a TMSV state
is quadratic in field operators and has a field expectation value of zero. TMSV states are
entangled states of the EM field and in the limit of infinite squeezing, the state is equal to
an Einstein-Podolsky-Rosen state [27]. Due to the entanglement of TMSV states, they are
ideal for continuous variable quantum teleportation, quantum dense coding and quantum
cryptography, all which use entanglement to there advantage [28, 29, 4].

2.2 Linear Optics

Linear optics and linear-optical transformations manipulate the degrees of freedom of quan-
tum states of light, such as polarization, phase, and spatial/temporal locations. Linear
optics includes the application of mirrors, wave plates, polarizing beam splitters and beam
splitters. In this section we discuss these linear-optical devices.

2.2.1 Polarizing Beam Splitter

A polarizing beam splitter is a linear-optical device that can separate the polarization
degree of freedom from incident light. Light incident onto a polarizing beam splitter will
be separated into two spatial modes each with an orthogonal polarization. The polarizing

7



beam splitter transformations are given by [30]

ÛPBS â
(1)
H Û †PBS = â

(1′)
H

ÛPBS â
(1)
V Û †PBS = â

(2′)
V

ÛPBS â
(2)
H Û †PBS = â

(1′)
H

ÛPBS â
(2)
V Û †PBS = â

(2′)
V ,

(2.11)

where the superscript (1) and (2) denote the spatial degree of freedom in paths 1 and 2.

2.2.2 Half-Wave Plate

A wave plate is an optical element (usually a birefringent material) that transforms the
polarization of light. In this work we will be interested in half-wave plates. If we label the
modes âH and mode âV as being horizontal and vertical polarized modes, then a half-wave
plate at an angle ϕ (where ϕ is the angle between the incident light polarization and the
fast axis of the half-wave plate) acting on these modes is given by [31],

UHWP (ϕ)aHU
†
HWP (ϕ) = cos(2ϕ)âH + i sin(2ϕ)âV

UHWP (ϕ)âVU
†
HWP (ϕ) = i sin(2ϕ)âH + cos(2ϕ)âV .

(2.12)

If we set the angle ϕ = π/4, then the half-wave plate will rotate horizontally polarized
light to vertically polarized light while also picking up a phase of π/2.

2.2.3 Beam Splitter

A beam splitter is one of the easiest ways to mix two modes of an EM field. In this thesis
we will consider two different spatial modes with different frequency distributions. We
can apply the following transformations to the above modes because the transformation is
linear. That is, we can act the transformation on each frequency independently. Consider
two modes of an EM field incident on a beam splitter, the unitary transformation of the
beam splitter on the two modes is given by [30],

UBS âU
†
BS = ĉ = tâ+ reiθ1 b̂

UBS b̂U
†
BS = d̂ = reiθ2 â+ tb̂,

(2.13)
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where t is the complex transmission and r is the complex reflection coefficients. Preserving
the commutation relations of the new modes ĉ and d̂, one finds that r and t must satisfy

|t|2 + |r|2 = 1, (2.14)

t∗reiθ1 + tr∗e−iθ2 = 0. (2.15)

In this thesis, we will only be interested in a 50:50 beam splitter, that is t = r = 1√
2
, then

θ1 + θ2 = π. Setting θ2 = θ, the beam splitter transformations are given by

â −→ UBS âU
†
BS =

1√
2

(â+ eiθb̂)

b̂ −→ UBS b̂U
†
BS =

1√
2

(−e−iθâ+ b̂).
(2.16)

2.3 Nonlinear Optics

When EM waves pass through a material they interact with the material’s atoms. The EM
field induces a polarization into the material that alters the EM field itself. A material has
a nonlinear response to EM fields when the polarization depends on higher powers of the
displacement field.

In this thesis we will focus on an nonlinear-optical process that involves the interaction
of three fields. This process is known as spontaneous parametric downconversion (SPDC).

2.3.1 Spontaneous Parametric Down conversion

SPDC is a nonlinear process when light interacts with a crystal with a second-order non-
linearity, denoted as χ(2). In a SPDC process the input photons, typically called pump
photons, are each “downconverted” into two daughter photons, called the signal and idler.
The signal and idler photons satisfy energy and momentum conservation with the pump
photon given by

ωp = ωs + ωi, kp(ωp) = ks(ωs) + ki(ωi) (2.17)

where ωj and kj(ωj) are the frequency and wave vectors. The three fields of interest are
labeled by j = p, s, i, denoting the pump, signal and idler respectively. If we simplify the
problem so that the interaction occurs in a 1D wave guide the schematic of a Type II
SPDC process is given by figure 2.1.
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Figure 2.1: Schematic of a Type 2 SPDC process in a 1D wave guide. The pump photon
is downconverted into two orthogonally polarized photons denoted signal and idler. The
pump and signal photon is horizontally polarized and the idler is vertically polarized. The
process is mediated by a crystal with a χ(2) nonlinearity and is energy and momentum
conserving.

We now provide a detailed derivation of a SPDC process, followed from the work in
[21]. We begin by expanding the polarization of the material in a power series of the
displacement operator

P̂ i(r, t) = Γij(1)(r)D̂j(r, t) + Γijk(2)D̂
j(r, t)D̂k(r, t) + ..., (2.18)

then the second-order nonlinear contribution to the Hamiltonian is given by

ĤNL = − 1

3ε0

∫
V

d3xΓijk(2)(r)D̂i(r, t)D̂j(r, t)D̂k(r, t) + .... (2.19)

We now labeling the three field operators by p,s,i and switch to the more commonly used
nonlinear tensor χ(2)(r) given by

Γijk(2)(r)→
χijk(2)(r)

ε0n2(r;ωkp)n
2(r;ωki)n

2(r;ωks)
. (2.20)

Then for a Type II downconversion process, in the rotating wave approximation, assuming
the material is in an effective 1D structure where the field doesn’t vary in the orthogonal
direction of area A, after mode expanding D̂(r, t) according to Eq. (2.4), and substituting
kj(ωj) = ωjnj(ωj)/c the nonlinear Hamiltonian in the interaction picture is

ĤI(t) =− ~
∫ ∞

0

dωpdωidωsĉV (ωp)â
†
V (ωi)â

†
H(ωs)e

i(ωs+ωi−ωp)tA(ωp, ωs, ωi)×∫ L/2

−L/2
dzg(z)ei(kp(ωp)−ki(ωi)−ks(ωs)z +H.c.,

(2.21)
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with

A(ωp, ωs, ωi) = 2χ(2)

√
ωp~ωi~ωs

~(4π)3ε0Ac3np(ωp)ns(ωs)ni(ωi)
, (2.22)

and

g(z) =
χ(2)(z)

χ(2)

. (2.23)

Where g(z) is the nonlinearity profile of the crystal with magnitude 1 and the photons are
generated in orthogonal polarizations. The physical picture to imagine is that a photon at
frequency ωp enters the nonlinear crystal at z = −L/2, it is then downconverted into two
photons at frequencies ωi and ωs which then exit the crystal at z = L/2.

2.3.2 The Downconverted State

In the interaction picture the states evolves according to interaction Hamiltonian given by
[32]

i~
d |ψ(t)〉
dt

= ĤI(t) |ψ(t)〉 , (2.24)

which has a formal solution of

|ψout〉 = T [e
−i
~

∫∞
−∞ dtĤI(t)] |ψin〉 , (2.25)

where T is the time-ordering operator and the states |ψin〉 and |ψout〉 are the states in
the infinite past and infinite future respectively. Since the interaction Hamiltonian does
not commute with itself at different times, we cannot in general drop the time ordering
operator. It was shown in [33], that the time ordering leads to non trivial effects but only
in the high pump power regime. For this work, we will assume low pump powers and not
worry about these time ordering effects, i.e. we drop the time-ordering operator.

Integrating the above interaction Hamiltonian with respect to t we find

|ψout〉 = exp

(
i

∫ ∞
0

dωpdωidωsĉV (ωp)â
†
V (ωi)â

†
H(ωs)δ(ωs + ωi − ωp)A(ωp, ωs, ωi)∫ L/2

−L/2
dzg(z)ei∆kz +H.c.

)
|ψin〉 ,

(2.26)

where the integral over t produced an energy conserving term δ(ωs +ωi−ωp) and we refer
to ∆k(ωp, ωi, ωs) = kp(ωp)− ki(ωi)− ks(ωs) as the phase mismatch.
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2.3.3 The Pump Function

If we take the input state to be a coherent state and the signal and idler in the vacuum
state |ψin〉 = |0s0iαp〉, then in the undepleted pump approximation (where we assume the
pump light is unchanged with the removal of a photon) we can simplify the above output
state as

|ψ〉 = exp

(
i

∫ ∞
0

dωidωspump(ωp)â
†
V (ωi)â

†
H(ωs)A(ωs, ωi)

∫ L/2

−L/2
dzg(z)ei∆k(ωs,ωi)z +H.c.

)
|0〉 ,

(2.27)
where the function pump(ωp) is the frequency distribution of the input light.

2.3.4 The Phasematching Function

We define the phasematching function (PMF) by

pmf(ωs, ωi) =

∫ L/2

−L/2
dzg(z)ei∆k(ωs,ωi)z. (2.28)

2.3.5 The Joint Spectral Amplitude

Integrating over ωp and evaluating δ(ωs + ωi − ωp) the output state is given by

|ψout〉 = exp

(
i

∫ ∞
0

dωidωspump(ωs + ωi)â
†
V (ωi)â

†
H(ωs)A(ωs, ωi)pmf(ωs, ωi) +H.c.

)
|ψin〉 .

(2.29)
We define the joint spectral amplitude (JSA) as

jsa(ωs, ωi) = A(ωs, ωi)× pump(ωs + ωi)× pmf(∆k(ωs, ωi)), (2.30)

which is the spectral distribution of the generated photons. We then extend the bounds
of integration to −∞, since there are no contributions to the integral in that region.
Therefore, for a Type II SPDC process, via a crystal with a nonlinearity profile given by
g(z), in the rotating wave and undepleted pump approximation, the output state of light
is given by

|ψ〉 = exp

(
i

∫
dωidωsjsa(ωs, ωi)â

†
H(ωi)â

†
V (ωs) +H.c.

)
|0〉 . (2.31)
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Suppose we could decompose the JSA as

jsa(ωs, ωi) = γf(ωs)g(ωi), (2.32)

where f and g are functions of a single variable.The JSA might schematically be given by
Fig. 2.2, where in this case the JSA is symmetric and f(ω) = g(ω). For the JSA in Fig.
2.2 we can define the operators

F̂ †H =

∫
dωf(ω)â†H(ω)

F̂ †V =

∫
dωg(ω)â†V (ω),

(2.33)

inputting them into Eq. (2.31) we find

|ψ〉 = eiγF̂
†
H F̂
†
V +H.c. |0〉 . (2.34)

Notice that this is exactly the TMSV state that was defined in Eq. (2.10), if the two modes
were taken to be orthogonal polarizations. Here we see that the output of a SPDC process
is a two mode squeezed state when we can decompose the JSA as in Eq. 2.32.

Figure 2.2: Schematic drawing of a JSA for a typical SPDC process.

13



For a typical SPDC process, however, the JSA might look like Fig. 2.3. In this case,
the JSA cannot be decomposed by two single functions, we instead rely on the Schmidt
decomposition [34]. For any 2D function, the Schmidt decomposition in given by

jsa(ωi, ωs) =
∑
n

√
pnun(ωs)vn(ωi), (2.35)

where for a normalized JSA, the constants pn satisfy the properties of a discrete probability
distribution and the functions un, vn satisfy∫

dωsu
∗
n(ωs)um(ωs) = δnm∫

dωiv
∗
n(ωi)vm(ωi) = δnm.

(2.36)

Figure 2.3: Typical pump,PMF and JSA for a SPDC process.
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Then defining the operators

Û †H,n =

∫
dωun(ω)â†H(ω)

V̂ †V,n =

∫
dωvn(ω)â†V (ω),

(2.37)

the output of the SPDC process in Eq. (2.31) can be written as

|ψ〉 = ei
∑
n
√
pnÛ

†
H,nV̂

†
V,n+H.c. |0〉 . (2.38)

In Eq (2.38), every mode is orthogonal to each other due to the orthogonality of the func-
tions un, vn and the orthogonality of the polarization, therefore every operator commutes.
We can then break up the sum in the exponential of Eq. (2.38) into a product state given
by

|ψ〉 =
⊗
n

ei
√
pnÛ

†
H,nV̂

†
V,n+H.c. |0〉 (2.39)

which is a product of TMSV states.

2.4 Properties of the Phasematching Function

The JSA can be customized via the pump function or the PMF. In this thesis, we assume
that methods for customizing the pump function exist, and focus on customizing the PMF.
In this section we describe some key features of the PMF. The PMF was defined as

pmf(ωs, ωi) =

∫ L/2

−L/2
dzg(z)ei∆k(ωs,ωi)z, (2.40)

where g(z) is the nonlinearity profile along the crystal and ∆k(ωs, ωi) is the phase mis-
match. In principle, one can imagine varying g(z) continuously. Such methods, however,
don’t exist for nonlinear crystals. In practice, the nonlinearity profile for a crystal can only
be g(z) = ±1 [35]. We will now consider the simplest case, where the nonlinearity profile
is constant throughout the crystal.
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2.4.1 Uniform Crystal

For a uniform crystal with a constant nonlinearity (i.e. g(z) = 1 inside the crystal) the
PMF is given by

pmf(ωs, ωi) =

∫ L/2

−L/2
dzei∆k(ωs,ωi)z

= L sinc

(
∆k(ωs, ωi)L

2

)
.

(2.41)

For a uniform crystal, the PMF peaks at ∆k = 0, which is the manifestation of momentum
conservation. We call this regime “phase match”. Expanding the phase mismatch by using
the equation kj(ωj) = ωjnj(ωj)/c where c is the speed of light in vacuum we find

∆k(ωs, ωi) = kp(ωs + ωi)− ks(ωs)− ki(ωi)

=
(ωs + ωi)np(ωs + ωi)

c
− ωsns(ωs)

c
− ωini(ωi)

c
.

(2.42)

For a Potassium Titanyl Phosphate (KTP) crystal, the refractive index n(ω) is an increas-
ing function of frequency, so the phasematching condition cannot be achieved for any set
of signal and idler frequencies [35]. To generate photons, we need to design the crystal to
be quasi-phasematched which will be the topic of Sec 2.4.3.

2.4.2 Group Velocity Matching

In Eq. (2.41) we calculated the PMF for a uniform crystal which can be plotted as a
function of ωs and ωi. In this thesis we are interested in the regime where the PMF
intersects the pump in a narrow frequency range. We can therefore Taylor expand the
phase mismatch to first order by

kj(ωj) = kj(Ωj) +
dkj(ωj − Ωj)

dωj

∣∣∣∣
Ωj

. (2.43)
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Inputting the Taylor expansions into the phase mismatch

∆k(ωs, ωi) = kp(Ωs + Ωi) +
dkp(ωs + ωi − (Ωs − Ωi))

d(ωs + ωi)

∣∣∣∣
Ωs+Ωi

− ks(Ωs)

− dks(ωs − Ωs)

dωs

∣∣∣∣
Ωs

− ki(Ωi)−
dki(ωi − Ωi)

dωi

∣∣∣∣
Ωi

= ∆k0 +
dkp(ωs + ωi − (Ωs + Ωi))

d(ωs + ωi)

∣∣∣∣
Ωs+Ωi

− dks(ωs − Ωs)

dωs

∣∣∣∣
Ωs

− ki(Ωi)−
dki(ωi − Ωi)

dωi

∣∣∣∣
Ωi

,

(2.44)

where Ωp = Ωs + Ωi and ∆k0 = kp(Ωp)− ks(Ωs)− ki(Ωi).

To evaluate kj(Ωj) we need to make use of the equation kj(ωj) = ωjnj(ωj)/c and
Sellmeier’s equation [36]. Sellmeier’s equation is an empirical relationship between the
refractive index of a material as a function of the wavelength of light in vacuum. The
relationship is given by

n(λ) =

√
A1 +

A2

λ2 − A3

− A4λ2, (2.45)

for some set of constants A1, A2, A3, A4, which depend on the material and lights polariza-
tion, they are usually quoted for λ measured in µm where λ is given by λ = 2πc/ω.

We now define dkj/dωj|Ωj = 1/vj where vj is the group velocity in the crystal for mode
j. Then defining the variable ω̄j = ωj − Ωj which lets us rewrite the phase mismatch as

∆k(ω̄s, ω̄i) = ∆k0 +

(
1

vp
− 1

vs

)
ω̄s +

(
1

vp
− 1

vi

)
ω̄i. (2.46)

The first order terms in the phase mismatch lead to rotations of the PMF by an angle θ
given by

tan θ = −
(

1

vp
− 1

vs

)
/
(

1

vp
− 1

vi

)
(2.47)

In Fig. 2.4 we plot the PMF for different group velocities. In this thesis, we will be
interested in the case where the PMF is perpendicular to the pump.

2.4.3 Quasi Phasematching

In the above section we took a nonlinear crystal with a uniform nonlinearity function set
to g(z) = +1 for the whole length of the crystal. This led to a PMF that was peaked at
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(a) PMF at an angle of θ =
22.5◦.

(b) PMF at an angle of θ =
45◦.

(c) PMF at an angle of θ =
67.5◦.

Figure 2.4: PMF for a uniform nonlinear crystal with different group velocities.

∆k = 0 but in practice for a KTP crystal, we cannot achieve phasematching at practical
frequencies. What we do instead is introduce a grating into the nonlinearity which adds
an additional momentum component to the system, effectively shifting the peak of the
phasematching function. In practice we do this by varying the nonlinearity between ±1
through the crystal periodically. For a given phase mismatch ∆k0, we can define the
oscillation period by Λ = 2π/∆k0 then by flipping the nonlinearity every Λ/2 we can shift
the peak of the PMF to ∆k0 = 2π/Λ [37].

2.4.4 Ferroelectric Poling

Ferroelectric Poling was first introduced by Yamada, M. et al. [38] in 1993. They proposed
the method to quasi-phase-match a LiNbO3 crystal. The polarization of ferroelectric mate-
rials can be permanently reversed by applying an external electric field [39]. By controlling
the field, we can change the nonlinearity of the crystal from being +1 to −1.

This method can be done locally by applying a local electrode to the material. This
allows us to change the nonlinearity within the crystal between +1 and −1 to our specifi-
cation. In the region of the electrode the nonlinearity gradually switches sign and expands
away from the electrode until the desired region is achieved. In Fig. 2.5 we show the
process of reversing the nonlinearity by applying an electrode and in Fig. 2.4.4 show a real
ferroelectrically poled crystal.
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Figure 2.5: Showing how the nonlinearity in flipped by applied a field at a localized elec-
trode. Figure was taken from [1].

Figure 2.6: Crystal that has been ferroelectrically poled. The different shades of grey
correspond to a nonlinearity that is either +1 or −1. This figure was taken from [2] with
permission.

2.4.5 Motivating a Tailored Phasematching Function

For classical optics, we are usually interested in generating SPDC photons with the high-
est amplitude achievable. For a KTP crystal, we can maximize the amplitude by quasi
phasematching. This shifts the sinc shape PMF to the phase mismatch ∆k0 of the signal
and idler photons. Since we are evaluating the PMF at the phase mismatch the shape of
the PMF is not relevant for classical optical processes.

For quantum optical processes it turns out the shape of the PMF is very important in
determining the properties of the output signal and idler photons, for example the purity of
heralded single photons [40]. By designing nonlinear crystals, we can sacrifice some of the
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amplitude of the PMF to change the shape so we can control the properties of the output
photons. In this thesis we focus on the state of the art method of ferroelectric poling to
tailor the nonlinearity profile of a crystal.

2.5 Nonlinearity Engineering

In section 2.4.4, we described ferroelectric poling which is a method used to change the
nonlinearity of a nonlinear crystal so that the nonlinearity is either ±1 in a localized way.
The manipulation of individual domains led to a new branch of nonlinear optics which had
the purpose of designing nonlinear crystal that would correspond to PMFs with desired
properties.

The first method proposed in [2], which manipulated the nonlinearity at multiples of the
coherence lengths Λ/2 while maintaining the ratio of domains with g(z) = 1 to g(z) = −1.
The next method proposed by [41] kept each domain length to be the coherence length
but customized the ratio of the percentage of poled vs unpoled regions. Later, approaches
used simulated annealing to determine what the optimal nonlinearity profile should be
[42]. They would first calculate the PMF and then change a domain and then looked at
the output. Here we use a state-of-the-art method to track the amplitude of the PMF and
determine the exact nonlinearity profile which was first used by [43] and then expanded
upon by [44]. We will begin by revisiting the uniformly poled crystal.

2.5.1 Amplitude of a Uniform Crystal

This section makes use of the algorithm proposed in [44]. The approach we use here
is to track the amplitude of the PMF within the crystal as a function of z and flip the
nonlinearity accordingly. To track the PMF throughout the crystal we define the Amplitude
by

A(z,∆k0) =

∫ z

−L/2
dz′g(z′)ei∆k0z′ , (2.48)

which is the PMF evaluated at a given phase mismatch ∆k0 and as a function of z through-
out the crystal. If we calculate the amplitude for a uniform crystal, which is when the
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nonlinearity is constant throughout the crystal, we find

A(z,∆k0) =

∫ z

−L/2
dz′ei∆k0z′

=
2

∆k0

sin

(
∆k0

4
(2z + L)

)
ei∆k0(2z−L)/4.

(2.49)

Taking the real part and using trigonometric identities to simplify, we find

<(A(z,∆k0)) =
1

∆k0

sin

(
∆k0

4
(2z + L)

)
cos

(
∆k0

4
(2z − L)

)
=

sin (∆k0L/2)

∆k0

+
sin (∆k0z)

∆k0

.

(2.50)

The amplitude starts at zero when z = −L/2 and oscillates with a frequency of ∆k0. Again
defining Λ, the period of oscillation, by Λ = 2π/∆k0. For a uniform nonlinearity with a
phase mismatch ∆k0 6= 0, the amplitude cannot increase throughout the crystal. This is
related to section 2.4.3 where it was shown that a PMF for a uniform crystal evaluated at
a phase mismatch ∆k0 6= 0 had a significantly reduced amplitude.

The amplitude oscillates with period Λ but increase and decreases over the coherence
length given by lc = Λ/2. If we could introduce a π phase shift at every coherence length
the amplitude would constructively add throughout the crystal and increase. Adding a π
phase shift at the end of every coherence length is equivalent to switching the nonlinearity
between ±1, the crystal would then be periodically polled.

By changing the nonlinearity between ±1, we can control whether the amplitude is
increasing or decreasing. To tailor a nonlinear crystal which has a target PMF we will take
advantage of this property.

2.5.2 Algorithm for Tailoring a Nonlinear Crystal

We begin with a target PMF, this is a 1D function of the phase mismatch ∆k. In Eq.
(2.28) the PMF is related to the nonlinearity profile by the Fourier transform. We then
inverse Fourier transform the target PMF to calculate the target nonlinearity. Using the
target nonlinearity, we can calculate the target amplitude throughout the crystal. We then
break the crystal into N pieces of length lc so that L = Nlc is the length of the crystal.
The algorithm then tracks the target amplitude and flips the nonlinearity between ±1
depending on the result of a cost function in such a way that the actual crystal amplitude
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approximates the target. After this process we then have a set of values for the nonlinearity
over each coherence length. The final step is to use it to calculate the approximate PMF.

To simplify some notation we will use the function Φt(∆k), Φa(∆k), At(z) and Aa(z)
to denote the target and approximate PMF and field amplitude respectively. This method
can be summarized as:

1. Using Φt, calculate At.

2. Implement algorithm to track At and calculate ga(z).

3. Use ga(z) to calculate Φa.

For Step 1. we start with the target PMF,

Φt(∆k) =

∫ L/2

−L/2
dzgt(z)ei∆kz, (2.51)

then inverse Fourier transforming we have

gt(z) =
1

2π

∫
d(∆k)Φt(∆k)e−i∆kz, (2.52)

inputting this into the equation for the field amplitude we find

At(∆k0, z) =

∫ z

−L/2
dz′gt(z

′)ei∆k0z′

=

∫ z

−L/2
dz′
(

1

2π

∫
d(∆k)Φt(∆k)e−i∆kz

′
)
ei∆k0z′

=
1

2π

∫
d(∆k)Φt(∆k)

∫ z

−L/2
dz′ei(∆k0−∆k)z′

=
1

π

∫
d(∆k)Φt(∆k)

sin
(

∆k0−∆k
4

(2z + L)
)

∆k0 −∆k
ei(∆k0−∆k)(2z−L)/4.

(2.53)

Without loss of generality we will consider N odd. We take N odd to simplify the
calculations and simplify the way the algorithm works. If instead we choose N to be even
we would then need to consider two half domains of length lc/2 at the beginning and end
of the crystal.

We now index the crystal every coherence length to implement the algorithm to deter-
mine the nonlinearity. In Fig. 2.7 we include a schematic of how the crystal is indexed.
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Figure 2.7: Schematic of nonlinear crystal used for calculating the nonlinearity in the
algorithm. The crystal extends from −L/2 to L/2 and is centered at z = 0. The crystal
is broken up into N pieces each with length lc such that L = Nlc and indexed by m. In
each domain the nonlinearity is either ±1, in the above image the nonlinearity for the first
three domains is +1,-1. In a real crystal N is typically on the order of 500− 2000.

The position along the crystal is given by z = −L/2 + mlc for some integer m. The
nonlinearity every coherence length is determined by looking at whether the function was
increasing/decreasing in the previous domain and whether it should increase/decrease in
the next domain. We initialize the algorithm by

• if sin(Nπ/2) > 0

• if At(−L/2 + lc) > 0 then g(0) = +1

• if At(−L/2 + lc) < 0 then g(0) = −1

• if sin(Nπ/2) < 0

• if At(−L/2 + lc) > 0 then g(0) = −1

• if At(−L/2 + lc) < 0 then g(0) = +1

then for each subsequent domain we calculate the cost function C to determine the poling:

• Calculate C = At(z + lc)− Aa(z)

• if C > 0 then the field needs to increase

• if Aa(z) > Aa(z − lc) then g(z) = −g(z − lc), field was increasing flip so it
keeps increasing
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• if Aa(z) < Aa(z − lc) then g(z) = g(z − lc), field was decreasing it will
increase in the next domain

• if C < 0 then the field needs to decrease

• if Aa(z) > Aa(z − lc) then g(z) = g(z − lc), field was increasing it will
decrease in the next domain

• if Aa(z) < Aa(z − lc) then g(z) = −g(z − lc), field was decreasing flip so it
keeps decreasing

After the algorithm calculates the nonlinearity profile we can check if its correct by
plotting Aa(z) on top of At(z) for a continuous range of z values. For each z calculate
m = bz/lc +N/2c then

Aa(−L/2 +mlc ≤ z ≤ −L/2 + (m+ 1)lc) = Aa(−L/2 +mlc)+

2ga(−L/2 +mlc)
sin(∆k0(z + L/2−mlc)/2)

∆k0

ei∆k0(z−L/2+mlc)/2.
(2.54)

Finally, we use the approximate form of the nonlinearity ga(z) determined by the algo-
rithm to calculate the approximate PMF Φa(∆k),

Φa(∆k) =

∫ L/2

−L/2
dzga(z)ei∆kz

=
N−1∑
n=0

∫ −L/2+(n+1)lc

−L/2+nlc

dzga(−L/2 + nlc)e
i∆kz

= 2
sin(∆klc/2)

∆k
ei∆klc(1−N)/2

N−1∑
n=0

ga(−L/2 + nlc)e
i∆klcn.

(2.55)

Taking the real part of the approximate PMF

<(Φa(∆k)) = 2
sin(∆klc/2)

∆k

N−1∑
n=0

ga(−L/2 + nlc) cos(∆k(lcn+ lc(1−N)/2)), (2.56)

we find that <(Φa(∆k)) is symmetric function of ∆k. We include an example of tailoring
a nonlinear crystal so that the PMF is a Gaussian in Appendix A.
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Constraints on the Target Phasematching Function

When engineering a nonlinear crystal there are some constraints as to what the target PMF
can be. All nonlinear engineering methods rely on coherently adding sinusoidal waves every
coherence length. Target PMF are thus restricted to the slope of sinusoidal curve over the
length of its coherence length [35]. For the function sinx, which has a coherence length
of π, the average slope over its coherence length is given by (sin 3π/2− sin π/2)/π = 2/π.
Thus the slope of the target amplitude must not be greater than 2/π. If it is, then we
cannot design a nonlinear crystal to accurately approximate it. In Eq. (2.48) we defined
the amplitude of the PMF throughout the crystal by

At(∆k0, z) =

∫ z

−L/2
dz′gt(z

′)ei∆k0z′ , (2.57)

then taking the derivative with respect to z we find

dAt(∆k0, z)

dz
= g(z)ei∆k0z ≤ 2

π
, ∀z (2.58)

to be a valid PMF. For a more detailed example of this restriction see Appendix A

The last constraint has to do with the type of algorithm we are implementing. The
algorithm we have outlined above works by tracking the real part of the target ampli-
tude throughout the crystal and flipping the nonlinearity accordingly. Since the real and
imaginary part of the amplitude suffer a π phase shift, by flipping the nonlinearity every
coherence length the imaginary part of the amplitude is flipped at every node and thus
cannot increase but oscillates around zero. We are thus limited to choosing target PMFs
that are real. In general, the target PMF can be chosen to also be complex by modifying
the algorithm to flip the nonlinearity at fractions of the coherence length as was done
in [44]. From this point on we will only be considering real PMFs, as this is what the
algorithm we are using allows.
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Chapter 3

Encoding Modes as Gaussian
Frequency Distributions

In optics, there are various ways to define modes of light. Fundamentally, a mode is a
plane wave with wave vector k and polarization I. Under certain approximations, one can
think of k as a single frequency ω in a spatial mode of an interferometer. One can also
define other modes, such as temporal modes (used in, e.g., time-bin encoding of information
[45]) or Schmidt modes, which have the benefits of both time-bin encoding and frequency
encoding [46].

It is common to decompose the JSA via the Schmidt decomposition, provided in Eq.
(2.35). This yields a product of TMSV states, given in Eq. (2.39). These product states
are often called multimode squeezed states in the literature, since there are usually many
Schmidt modes present for a given JSA. In this thesis, we will refer to these states as
Schmidt mode product states because we reserve the term “multimode” to mean some-
thing else. Schmidt mode product states have led to advancements in continuous variable
quantum information, with the advantage of having more than one mode, one can en-
code more information in a way that minimizes loss [47]. The downside of Schmidt mode
product states for quantum information protocols is that the different modes are hard to
distinguish. To distinguish between the different Schmidt modes requires quantum pulsed
gates [20], which in practice is experimentally difficult. Here we introduce another encoding
in terms of Gaussian frequency distributions. Our modes are only approximately orthogo-
nal but the overlap is negligible. They are localized in time-frequency, which makes them
useful for quantum information protocols, and they are easier to distinguish than Schmidt
modes. While encoding information into Gaussian frequency distributions is not new, this
is the first time it has been discussed in the context of squeezed states.
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3.1 Single-Mode Squeezed Vacuum States

Suppose now that we have a JSA that is schematically given by Fig. 3.1 and that the
photons all have the same polarization. The JSA in Fig. 3.1 is centered around (ωs, ωi) =
(Ωa,Ωa). Since the JSA is symmetric and centered around the same center frequency, we
can decompose it by the same function. For this example, there is a unique decomposition
of the JSA, which is equivalent to the Schmidt decomposition, by Gaussian functions
centered at ωa with a width that matches the JSA. For a normalized Gaussian centered at
ωa defined by Ga(x), we decompose the JSA as

jsa(ωi, ωs) = γaaGa(ωs)Ga(ωi), (3.1)

then defining the operators

Â† =

∫
dωâ†(ω)Ga(ω), (3.2)

the output state (assuming the same polarization) would be given by

|ψ〉 = eiγaaÂ
†Â†+H.c. |0〉 . (3.3)

We interpret the operator Â† acting on the vacuum as creating a single photon with a
frequency distribution given by Ga(ω). With the above JSA and the decomposition we
provided, we generated a SMSV state, where the modes of the field are Gaussian frequency
distributions.

One typically has the intuition that JSAs that are elliptical functions correspond to
squeezed states. However, in our encoding of the modes as Gaussian frequency distribu-
tions, the JSA for a single-mode squeezed states is given schematically by Fig. 3.1. We
now show why we call Eq. (3.3) a “squeezed state”. We begin by noting the form of Eq.
(3.3) is almost identical to to the form of a SMSV state in [23]. We therefore conclude
that the squeezing operator has the following transformations on the creation/annihilation
operators given by

Ŝ†(γaa)ÂŜ(γaa) = cosh(2raa)Â+ ieiθaa sinh(2raa)Â
†

Ŝ†(γaa)Â
†Ŝ(γaa) = cosh(2raa)Â

† − ie−iθaa sinh(2raa)Â,
(3.4)

where we set γaa = raae
iθaa . We define the quadrature operators X̂a and Ŷa, which are the

generalized position and momentum operators of the field as

X̂a =
1√
2

(Â+ Â†)

Ŷa =
1

i
√

2
(Â− Â†).

(3.5)
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Figure 3.1: Schematic JSA

We now calculate the affect that the squeezing operator has on the quadrature operators
to be

Ŝ†(γaa)X̂aŜ(γaa) = e2θaaX̂a

Ŝ†(γaa)ŶaŜ(γaa) = e−2θaaŶa,
(3.6)

where we have set θaa = π/2. In Eq. (3.6) we see the affect that the squeezing operator
has on the quadrature operators. When plotted in phase space, the squeezing operator
deforms the vacuum error into an ellipse [23].

3.2 Two-Single Mode Squeezed Vacuum States

Defining the modes of the field as Gaussian frequency distributions has various benefits,
the first being that it is easily generalized to more than two modes. Now, suppose that we
have a JSA schematically given in Fig. 3.2. The JSA now has two contributions centered
at (ωs, ωi) = (Ωa,Ωa) and (ωs, ωi) = (Ωb,Ωb). We now apply a similar decomposition as
we did for the one-amplitude JSA in Fig. 3.1 and decompose it with Gaussians centered
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at ωa and ωb as
jsa(ωs, ωi) = γaaGa(ωs)Ga(ωi) + γbbGb(ωs)Gb(ωi), (3.7)

then we define similar operators given by

Â† =

∫
dωâ†(ω)Ga(ω)

B̂† =

∫
dωâ†(ω)Gb(ω).

(3.8)

Figure 3.2: Schematic JSA for a state corresponding to two SMSV states. The different
colors represent different amplitudes.

For two Gaussians separated by a shift, the overlap between them is given by∫
dxG(x)G(x± δx) =

1

σ
√
π
e−
−δx2

4σ2∫
dxG(x)G(x± δx)

∣∣∣∣
δx=10σ

=
1

σ
7.83× 10−12,

(3.9)

which for our purposes, is negligible. Under this assumption, the operators Â† and B̂†

satisfy the following commutation relations[
Â, Â†

]
=
[
B̂, B̂†

]
= 1,

[
Â, B̂

]
= 0, (3.10)
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which are the same as if the two modes were due to two polarizations or two spatial
locations. The state corresponding to the JSA (again assuming the same polarization) is
given by

|ψ〉 = eiγaaÂ
†Â†+iγbbB̂

†B̂†+H.c. |0〉 . (3.11)

Since each mode is orthogonal, in this case we can separate the exponential into a product
of single-mode squeezed states given by

|ψ〉 = eiγaaÂ
†Â†+iγbbB̂

†B̂†+H.c. |0〉

= eiγaaÂ
†Â†+H.c. |0〉 ⊗ eiγbbB̂†B̂†+H.c. |0〉 .

(3.12)

We have generated a state using Gaussian frequency modes similar to the product state in
Eq. (2.39) which was build up of Schmidt modes.

3.3 Two-Mode Squeezed Vacuum States

Next we consider the JSA given by Fig. 3.3. The JSA again has two amplitudes but now
located at (ωs, ωi) = (Ωa,Ωb) and (ωs, ωi) = (Ωb,Ωa). Performing a similar decomposition
of the JSA in terms of Gaussians centered at ωa and ωb as

jsa(ωs, ωi) = γabGa(ωs)Gb(ωi) + γbaGb(ωs)Ga(ωi) (3.13)

where γab corresponds to the top left amplitude and γba the bottom right amplitude. Using
the same definition of the operators Â and B̂, (assuming the same polarization) we can
write the output state as

|ψ〉 = ei(γab+γba)Â†B̂†+H.c. |0〉 . (3.14)

The state generated in Eq. (3.14) is a TMSV state where each mode is a Gaussian frequency
distribution centered at ωa or ωb.

3.4 Generalized Modes and Linear-Optical Transfor-

mations

In the above sections we showed that we can decompose the JSAs in Fig. 3.1, 3.2 and
3.3 by Gaussian frequency distributions centered at the center frequencies of the JSA. In
this section we use the intuition built up in the previous sections to extend the process
of encoding modes as Gaussian frequency distributions to many modes and then discuss
linear-optical transformations on the modes.
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Figure 3.3: Schematic JSA for a state corresponding to a TMSV state.

3.4.1 Extending Gaussian Frequency Distributions to Many Modes

Suppose we have a JSA that has amplitudes at many frequencies denoted by ωn. We
imagine decomposing the JSA in a similar way by Gaussians Gn(ω) centered at ωn. We
assume each Gn(ω) is orthogonal to Gm(ω), for every n,m. We define similar operators
for each ωn as

Â†n =

∫
dωGn(ω)â†(ω). (3.15)

Which due to the properties of Gn(ω) satisfy

[An, A
†
m] = δnm, [An, Am] = [A†n, A

†
m] = 0. (3.16)

3.4.2 Linear-Optical Transformations

In Section 2.2, we discussed linear-optical transformations that included polarizing beam
splitters, half wave plates and beam splitters. In this section we apply the three sets
of transformations to the generalized operators Â†n. The operators Â†n are made up of
Gaussian frequency distributions but because each optical transformation is linear and
frequency independent we can directly apply them to the operator.
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Polarizing Beam Splitters

In Section 2.2.1 we introduced the polarizing beam splitter transformations. The polarizing
beam splitter transformations acting on Â†n are given by

ÛPBSÂ
(1)
H,nÛ

†
PBS = Â

(1′)
H,n

ÛPBSÂ
(1)
V,nÛ

†
PBS = Â

(2′)
V,n

ÛPBSÂ
(2)
H,nÛ

†
PBS = Â

(1′)
H,n

ÛPBSÂ
(2)
V,nÛ

†
PBS = Â

(2′)
V,n ,

(3.17)

where the superscript (1) and (2) denote the spatial degree of freedom in paths 1 and 2.

Half Wave Plate

Next we consider the half wave plate transformations given in Section 2.2.2. For an angle
ϕ = π/4, the half-wave plate transformations acting on the operators Â†H,n is given by

ÛHWP (π/4)ÂH,nÛ
†
HWP (π/4) =

∫
dωGn(ω)ÛHWP (π/4)â†H(ω)Û †HWP (π/4)

=

∫
dωGn(ω)iâV (ω)

= iÂV,n.

(3.18)
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Beam Splitter

Lastly we calculate the beam splitter transformations in section 2.2.3 with θ = 0, acting
on Â†H,n as

Û †BSA
†,(1)
n ÛBS =

∫
dωGn(ω)Û †BSa

†
1(ω)ÛBS

=
1√
2

∫
dωGn(ω)(a†1(ω) + a†2(ω))

=
1√
2

(
A†,(1)
n + A†,(2)

n

)
Û †BSA

†,(2)
n ÛBS =

∫
dωGn(ω)Û †BSa

†
2(ω)ÛBS

=
1√
2

∫
dωGn(ω)(−a†1(ω) + a†2(ω))

=
1√
2

(
−A†,(1)

n + A†,(2)
n

)
.

(3.19)

We have shown how one can generate SMSV states, a product of two SMSV states
and TMSV states by the appropriate JSA and decomposing using Gaussian frequency
distributions. We then extended this process to an arbitrary number of Gaussians and
calculated the linear-optical transformations acting on the operators Â†n. In the next
chapter we will propose a method to generate a JSA which will correspond to a hybrid
squeezed state.
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Chapter 4

Tunable Hybrid Squeezed States of
Light

Hybrid approaches combine the best of both worlds. In the field of quantum optics, ex-
amples include encoding quantum information into Schmidt modes [48], which combines
the benefits of time and frequency encoding, and entangling qubits to qumodes 1 to reap
the benefit of both discrete and continuous variables. In this chapter, we introduce, and
describe the generation of hybrid squeezed states, which have features of single-mode and
two-mode squeezed vacuum states.

We define a hybrid squeezed state as follows:

|{β}〉 = e
β∗aa

2
a†a†+

β∗ab
2
a†b†+

β∗ba
2
a†b†+

β∗bb
2
b†b†−H.c |0〉 . (4.1)

By taking the constants βaa = βbb = 0 we recover the TMSV state in Eq. (2.10). Similarly,
setting βab = βba = βbb = 0 recovers the SMSV state in Eq. (2.9). Using the intuition built
up in Chaper 3, we propose that the JSA for a state that is both single- and two-mode
squeezed would schematically be given by Fig. 4.1. This JSA has four amplitudes located
at (ωa, ωa), (ωa, ωb), (ωb, ωa) and (ωb, ωb), each corresponding to a squeezing term in Eq.
(4.1) for the hybrid squeezed state.

In Chapter 2, we derived that the JSA is given by the multiplication of the pump and
the PMF. Due to the energy conservation of a SPDC process, the pump function must
strictly be on the anti diagonal. With this restriction, there is no way to generate the JSA
shown in Fig. 4.1 by multiplying a diagonal PMF with an anti diagonal pump. Any way

1Qumodes are continuous variable generalizations of qubits.
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Figure 4.1: Schematic of the JSA corresponding to a state that is both single- and two-mode
squeezed. Circles with different shading indicate different peak amplitudes.

of multiplying these two functions will result in a diamond style pattern, e.g. the JSA in
Fig. 4.2. To generate the desired JSA we will first create a JSA in a diamond pattern with
more than four amplitudes and then “delete” some while leaving the desired peaks.

We begin with a PMF and pump functions that each have three Gaussian function
separated by some amount sufficiently large enough that the overlap between them is
negligible. Multiplying these two functions together would generate a JSA schematically
shown in Fig. 4.2, which has nine amplitudes.

To generate the JSA with four amplitudes in Fig. 4.1 from the JSA in Fig. 4.2 with nine
amplitudes we must implement some form of spectral filtering to remove the amplitudes
at the locations marked with an X. Alternatively, one could suppress the generation of
these peaks by engineering a Bragg grating into the nonlinear material to induce a stop
band at the frequencies of the undesired peaks [49]. This is much more challenging but has
the benefit of removing the peaks coherently. In either case, the JSA with four amplitudes
shown in Fig. 4.1 will be left over as desired.

In the next section we describe a method for engineering a pump function that, when
combined with an engineered nonlinear crystal, can generate the desired JSA.
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Figure 4.2: Schematic of the JSA that would be produced by multiply a PUMP and PMF
each with three Gaussian peaks.

4.1 Pump Pulse Shaping

For the pump function we require three Gaussians that are the same width and separated
by the same shift, the desired pump amplitude function is given by

Ψ(ωp) = b−1G(ωp − Ωp + δωp) + b0G(ωp − Ωp) + b1G(ωp − Ωp − δωp), (4.2)

where G(x) is define by

G(x) =
1

σ
√

2π
e−

x2

2σ2 , (4.3)

where Ωp = Ωs + Ωi is the center frequency of the downconversion process, ωp = ωs + ωi
is set by the energy conservation of the interaction, b−1, b0, b1 are the amplitudes of each
contribution and δωp is the width between each Gaussian. There is a large body of work
that has explored how to spectrally engineer a pulse of light with an arbitrary frequency
distribution [50]. However, since we require only Gaussian distributions, we propose a
mechanism in Fig. 4.3 to combine three Gaussian frequency distributions. The constants
bn can be complex and can be changed in real time, by for, example, removing the blocks
in Fig. 4.3. In Fig. 4.4a we plot the pump amplitude as a function of ωp and in Fig. 4.4b
as a function of ωs, ωi.
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Figure 4.3: Schematic for creating a pump pulse of light that has a frequency distribution
of three gaussians. In the figure the colors red, green, blue represent the narrow frequency
pulsed light. By removing the block we can change on the fly the input pump light. In the
figure BS and M represent a beam splitter and mirror.

(a) Pump as a function of ωp (b) Pump as a function of ωs, ωi

Figure 4.4: Pump frequency distribution for three Gaussian’s at the same width and sep-
aration as the PMF in Fig. 4.6 plotted as a function of ωp and ωs, ωi. The amplitudes
coefficients for each peak are b−1 = 4, b0 = 3, b1 = 6.
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4.2 Engineering the Phasematching Function

We now design a nonlinear crystal to generate a PMF with three Gaussian peaks, one
centered at ∆k0 and the other two centered at ∆k0 ± δk using the algorithm described in
section 2.5.2. The target PMF is given by

Φt(∆k) = a0G(∆k −∆k0 − δk) + a1((G(∆k −∆k0 + δk) +G(∆k −∆k0 − δk)) (4.4)

where G(x) is defined by Eq. (4.3). From the discussion at the end of section 2.5.2, we take
the target PMF to be symmetric by choosing the pre-factor in front of G(∆k −∆k0 + δk)
to be the same as G(∆k −∆k0 − δk). We take the value δk = 10σ to ensure the overlap
between each Gaussian is negligible.

The constants an can, in general, be complex but due to the discussions at the end
of Section 2.5.2, the PMF is restricted to being a real function due to the algorithm we
are using to design the nonlinear crystal. We thus take the constants an to be real. Once
we specify a target PMF the constants an are fixed. We first specify a target PMF, and
calculate the nonlinearity profile that would generate the desired PMF and implement it
into a crystal. To change the constants an we would need to determine the new nonlinearity
profile and redesigning the crystal.

We now use the algorithm discussed in Section 2.5.2 to design a crystal with three
Gaussian peaks. All of the crystal properties such as the Sellmeier values, length, phase
mismatch and pump/signal/idler frequencies are given in Appendix A. Inputting the target
PMF defined in Eq. 4.4 into the algorithm produces a nonlinearity profile shown in Fig.
4.5. In Fig. 4.6 we plot the target and approximate PMF as a function of ∆k on the left
and the approximate PMF as a function of ωs, ωi on the right.

Figure 4.5: Nonlinearity profile for a crystal with the target PMF given by Eq. (4.4).
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Figure 4.6: PMF as a function of ∆k and the signal and idler frequencies for a target PMF
given by Eq. (4.4).

4.3 The Joint Spectral Amplitude

In Section 4.1 we proposed a mechanism where we could design the input pump pulse of
light to have three Gaussians peaks. We then tailored a nonlinear crystal to generate a
PMF given by Eq. (4.4), which has three Gaussian peaks and provided the nonlinearity
profile that would produce it in Section 4.2. We chose the width and shifts between the
Gaussians to be the same so that the JSA can be decomposed by Gaussians. To calculate
the JSA we multiply the PMF in Fig. 4.6 with the pump in Fig. 4.4b together which is
shown in Fig. 4.7. We interpret each amplitude of the JSA as the generation of photons
at the center signal and idler frequencies. However, since the plot is symmetric there are
six unique signal and idler frequencies. When we decompose the JSA, each amplitude will
be associated with a squeezing term in the exponential of the output state of the SPDC
process in Eq. 2.31. We therefore need to eliminate the frequency generation of five of the
amplitudes.

Spectrally Filtering the Joint Spectral Amplitude

By eliminating the horizontal and vertical frequency generation in Fig. 4.7 we would have
the desired JSA with four amplitudes. Here we present two methods which could be used
to eliminate the unwanted amplitudes.
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Figure 4.7: JSA, PMF and pump.

The simplest way to eliminate the undesired amplitudes would be to spectrally filter
the output state of light. We can implement a spectral filter in two ways. The first is to use
a prism to separate out the different modes and then block the undesired ones. The second
is to send the output light through a fiber Bragg grating filter. Both of these methods rely
on post processing of the state of light.

The second and more ideal method would be to directly engineer the Bragg grating into
the nonlinear crystal that is mediating the SPDC process. This would not be a filtering
technique but a direct suppression of the generation of light at the frequency of the strips
with the X’s in Fig. 4.2. Although this has not been accomplished in practice it was
theorized in [49].

After filtering, the JSA would be given by Fig. 4.8. We now shift the focus to decom-
posing the JSA using Gaussian frequency distributions and explicitly show that the JSA
we have developed is a hybrid squeezed state.
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Figure 4.8: JSA after filtering the horizontal and vertical frequency generation

4.4 Providing a Decomposition of the Joint Spectral

Amplitude

For amplitudes of the form in Fig. 4.8, we can specify a decomposition similar to the
decomposition in Chapter 3. We can decompose the JSA in Fig. 4.8 as

jsa(ωs, ωi) = γaaGa(ωs)Ga(ωi) + γabGa(ωs)Gb(ωi) + γbaGb(ωs)Ga(ωi) + γbbGb(ωs)Gb(ωi),
(4.5)

where Ga(ω), Gb(ω) were defined in section 3.2. In Eq. (4.5) γaa corresponds to the
lower left amplitude at (ωs, ωi) = (Ωa,Ωa), γab corresponds to the upper left amplitude
at (ωs, ωi) = (Ωa,Ωb), γba corresponds to the lower right amplitude at(ωs, ωi) = (Ωb,Ωa)
and γbb corresponds to the upper right amplitude at (ωs, ωi) = (Ωb,Ωb). It is important
to note that this decomposition, in general, is not equal to the Schmidt decomposition for
the filtered JSA in Fig. 4.8.

Using the definition of the operators Â†, B̂† in Eq. (3.8) we write the output state of
the SPDC process as

|ψ〉 = exp
(
i(γaaÂ

†
HÂ
†
V + γabÂ

†
HB̂

†
V + γbaB̂

†
HÂ
†
V + γbbB̂

†
HB̂

†
V ) +H.c.

)
|0〉 . (4.6)

Unlike in Chapter 3, where we assumed the same polarization, the operators in Eq. 4.6
have an extra degree of freedom because the output of the SPDC process generates photons
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with orthogonal polarization. In Eq. 4.6 the output of the SPDC process is in the form
of a hybrid squeezed state, it has the single-mode squeezing terms Â2, B̂2 and two-mode
squeezing terms ÂB̂, B̂Â. However, this is not the hybrid state that we desire because
there is the polarization degree of freedom. To have a real hybrid squeezed state we need
to eliminate the polarization degree of freedom which will be the subject of the next section.

4.5 Eliminating the Polarization Degree of Freedom

One way to generate TMSV states is by combining two SMSV states on a beam splitter
[15]. We would like to use a similar method, but in reverse, to eliminate the polarization
degrees of freedom. We are generating a hybrid squeezed state by interacting a pump pulse
with a nonlinear crystal in a 1D wave guide, therefore the photons that come out of the
SPDC process are assumed to be in the same spatial degree of freedom. Since the photons
are in the same spatial degree of freedom, we can not input them directly onto a beam
splitter to separate them.

To eliminate the polarization degree of freedom we will apply a sequence of linear-
optical transformations including a polarization beam splitter, half-wave plate and a beam
splitter. We begin with a polarization beam splitter after the output of the SPDC process.
A polarizing BS will separate the polarization degrees of freedom into two spatial modes.
We then apply a half-wave plate to one of the spatial modes which will flip the polarization
state to vertical. We now have two pulses of light with the same polarization in different
spatial degrees of freedom. We then direct the two pulses onto a beam splitter. A schematic
of the set of transformations is shown in Fig. 4.9.

We now apply each transformation to the state in Eq. (4.6), beginning with the polar-
izing beam splitter,

ÛPBS |ψ〉 = ÛPBSe
i(γaaÂ

†
HÂ
†
V +γabÂ

†
HB̂
†
V +γbaB̂

†
HÂ
†
V +γbbB̂

†
HB̂
†
V )+H.c. |0〉

= ei(γaaÂ
†
H,1Â

†
V,2+γabÂ

†
H,1B̂

†
V,2+γbaB̂

†
H,1Â

†
V,2+γbbB̂

†
H,1B̂

†
V,2)+H.c. |0〉 ,

(4.7)

where the subscripts denote the horizontally polarized light in path 1 and vertically po-
larized light in path 2. Next we apply a half-wave plate to the state and use the set of
transformations given in section 3.4.2 for n = a, b,

ÛHWP ÛPBS |ψ〉 = ÛHWP e
i(γaaÂ

†
H,1Â

†
V,2+γabÂ

†
H,1B̂

†
V,2+γbaB̂

†
H,1Â

†
V,2+γbbB̂

†
H,1B̂

†
V,2)+H.c. |0〉

= ei(γaaiÂ
†
V,1Â

†
V,2+γabiÂ

†
V,1B̂

†
V,2+γbaiB̂

†
V,1Â

†
V,2+γbbiB̂

†
V,1B̂

†
V,2)+H.c. |0〉

= e−(γaaÂ
†
1Â
†
2+γabÂ

†
1B̂
†
2+γbaB̂

†
1Â
†
2+γbbB̂

†
1B̂
†
2)+H.c. |0〉 ,

(4.8)
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Figure 4.9: Set of transformation to eliminate the polarization degree of freedom. The
line style represents the polarization of light. P1 and P2 represent the spatial degrees
of freedom, PBS is a polarizing beam splitter, HWP is a half wave plate, BS is a beam
beam splitter and M is a mirror. Dashed and solid lines represent H and V polarization
respectively.

where we have dropped the polarization degree of freedom since now all modes are the
same polarization. Next we apply a beam splitter to the state but first calculate the effect
that the BS transformation has on each term of the exponential. Using the transformation
in section 3.4.2 we find

Â†1Â
†
2 →

−1

2

(
Â†1Â

†
1 − Â

†
2Â
†
2

)
, (4.9)

B̂†1B̂
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2 →

−1

2

(
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†
1 − B̂

†
2B̂
†
2

)
, (4.10)
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†
1B̂
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2 + Â†2B̂

†
1 − Â
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†
2

)
, (4.11)

Â†2B̂
†
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†
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†
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†
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†
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†
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†
2

)
. (4.12)
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Then acting the BS transformations onto the state

ÛBSÛHWP ÛPBS |ψ〉

= ÛBSe
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†
1Â
†
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†
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Â†2Â
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(4.13)

we can eliminate the entangled spatial modes by setting the parameters γab = γba. If we
multiply the two equations for the PMF in Eq. (4.4) and the pump in Eq. (4.2) we find
equalities between the parameters a0, a1, b−1, b0, b1 and γaa, γba, γab, γbb. Comparing terms
we find

γaa = b1a0, γab = b0a1, γba = b0a1, γbb = b−1a0, (4.14)

the condition that γab = γba is already satisfied due to the symmetric form of Eq. (4.4).
Finally, the state after the set of transformation in Fig. 4.9 is

|ψ′〉 = exp
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Â†1Â

†
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1

2
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†
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†
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†
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†
2 +H.c.

)
|0〉 .

(4.15)

The state after the set of linear-optical transformation is two copies of the same state in
each spatial mode, where one has a π phase shift. The states are both hybrid squeezed
states in the Gaussian frequency modes Â and B̂. In Eq. (4.14) every squeezing amplitude
can be varied independently by varying the parameters b−1, b0, b1. By changing the pump in
real time we can change the value of b−1, b0, b1 and tune the state. We have thus successfully
generated a tuneable hybrid squeezed state and as an extra get two copies of the state.

Our method of generating tuneable hybrid squeezed states relies on being able to add
Gaussian distributions to the PMF and pump amplitude function and applying a set of
linear optical transformations. A natural extension to design pump amplitude functions
and PMFs with many modes to generate miltimode squeezed states of light.
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Chapter 5

Multimode Squeezed Vacuum States

Multimode squeezed states are continuous variable N -partite entangled states which gen-
eralize various quantum information protocols [51, 52]. The generation of multimode
squeezed states was first proposed in 1999 by P. van Loock and Samuel L. Braunstein
[16] which built on top of the technique of [53]. This first method used a sequence of N
beam splitters to distribute a single SMSV state to N parties. This method is cumber-
some because with many optical elements it becomes harder to stabilize interferometers
[54]. This method also relied on entanglement within the spatial modes of the field.

A new method was proposed in [17], which used an optical parametric oscillator and a
single periodically poled ferroelectric crystal to generate N mode entangled states. This
method is very compact but was limited to four modes. This method was expanded in
[18] and lead to the generation of multimode squeezed states with more than four modes.
However, both of these methods rely on continuous-wave sources to pump the optical para-
metric oscillator. A continuous-wave source is not ideal for quantum information protocols,
for which we would prefer pulsed sources. Pulsed sources are localized in frequency and
time and unbounded, allowing for high dimensional encoding that are compatible with
waveguides and fiber transmission [19].

Using the method we developed in Chapter 4 and extending it so that the pump and
PMF have many Gaussians we can generate multimode squeezed states. We would like to
create a source that is localized in time-frequency and can be used to generate a variety of
modes. We now assume we have a JSA generated from a pump and PMF with any number
of Gaussians and show that the output is a multimode squeezed state. In Section 5.4 we
plot examples of JSAs generated via the algorithm outlined in Section 2.5.2.
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5.1 Generalizing the Joint Spectral Amplitude

We begin by assuming we can generate a PMF with any number of Gaussians, with the
first centered at ∆k0 and the rest shifted to the left and right by multiples of δk. At the
end of Section 6.1.1, we discussed that the approximate PMF is a symmetric function and
thus the target PMF must also be symmetric. The target PMF is given by

Φt(∆k) =
n=N∑
n=−N

anG(∆k −∆k0 − nδk), an = a−n, (5.1)

for some set of constants an. Also assuming we can generate a pump amplitude function
with any number of Gaussians given by

Ψ(ωp) =
n=N∑
n=−N

bnG(ωp − Ωp + nδω), (5.2)

for some set of constants bn.

When we multiply the PMF and pump together, the JSA will schematically be given
by Fig. 5.1, where we have coloured each amplitude the same for simplicity. For the PMF
and pump each having NG = 2N + 1 Gaussians the JSA has N2

G amplitudes, however,
because we set the PMF to be symmetric there are M = NG(NG+1)/2 unique amplitudes,
and thus M modes.

5.2 Decomposing the Multimode Joint Spectral Am-

plitude

In Section 4.4 we decomposed the JSA in terms of Gaussian functions centered at Ωa and
Ωb. Here, we decompose the general multimode JSA in the same way where Gm(ω) is a
Gaussian centered at Ωm as

jsa(ωs, ωi) =
∑
n,m

γnmGn(ωs)Gm(ωi), (5.3)

where
γnm = a− 1

2
(n−m)b− 1

2
(n+m), (5.4)
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Figure 5.1: Schmatic JSA for a PMF and PUMP made up of 2N + 1 Gaussian. Each
amplitude is centered at the frequency Ω−2N , ..,Ω0, ...,Ω2N . For simplicity we keep the
colour of each amplitude the same.

and the sum is carried out over the restriction that

n−m = 0,±2,±4, ...,±(2N − 2),±2N, (5.5)

and the Gaussian functions Gn(ω) satisfy∫
Gn(ω)Gm(ω) ≈ δnm. (5.6)

Swapping the indices for γnm we find

γnm = a− 1
2

(n−m)b− 1
2

(n+m) = γmn, (5.7)

where we used the property an = a−n, thus the γ’s are symmetric.

Inputting the JSA in Eq. (5.3) and the definition for Â†n in Eq. (3.15) into Eq. (2.31)
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we find

|ψ〉 = exp

(
i

∫
dωidωsjsa(ωs, ωi)â

†
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†
V (ωs) +H.c.

)
|0〉
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†
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†
V (ωs) +H.c.

)
|0〉

= exp

(
i
∑
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†
n,HÂ

†
m,V +H.c.

)
|0〉 .

(5.8)

5.3 Eliminating the Polarization Degree of Freedom

for the Multimode State

In Eq. (5.8) we decomposed the JSA into a set of frequency modes with a frequency
distribution given by Gn(ω). However, similar to the hybrid squeezed state, there is still
the polarization degree of freedom. To eliminate the polarization degree of freedom we
apply the set of transformation in Fig. 4.9. We begin by applying the polarization beam
splitter to the state and label the position degree of freedom in the superscript

ÛPBS |ψ〉 = exp

(
i
∑
n,m

γnmÂ
†,(1)
n,H Â

†,(2)
m,V +H.c.

)
|0〉 . (5.9)

Next we apply the half-wave plate to the state using the transformation in section 3.4.2

ÛHWP ÛPBS |ψ〉 = exp

(
i
∑
n,m

γnmiÂ
†,(1)
n,V Â

†,(2)
m,V +H.c.

)
|0〉

= exp

(
−
∑
n,m

γnmÂ
†,(1)
n Â†,(2)

m +H.c.

)
|0〉 ,

(5.10)

where we drop the polarization degree of freedom to simplify the notation. Now we need
to eliminate the spatial degree of freedom by sending both spatial modes to the input of
a beam splitter. Applying the beam splitter transformations in section 3.4.2, the term in
the exponential is transformed by

A†,(1)
n A†,(2)

m → 1

2

(
−A†,(1)

n A†,(1)
m + A†,(1)

n A†,(2)
m − A†,(2)

n A†,(2)
m + A†,(2)

n A†,(2)
m

)
. (5.11)
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Putting it all together

|ψ′〉 = ÛBSÛHWP ÛPBS |ψ〉

= exp
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1
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(
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)
−H.c.

)
|0〉 ,

(5.12)

after exchanging indices on the second term and using the property that γnm = γmn to
eliminate the spatial degree of freedom we find

|ψ′〉 = exp
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n A†,(1)

m − A†,(2)
n A†,(2)
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(5.13)

The final state is two copies of a multimode squeezed state with M modes, where the sum
is over n,m = [−2N, 2N ] such that

n−m = 0,±2,±4, ...,±(2N − 2),±2N. (5.14)

Unlike in the two mode case where we had full tunability over each γab, γaa, γbb, in the
multmode case we loose some of the tunability. This is clear from Fig. 5.1, we see that
each diagonal from the pump multiplies all the PMF amplitudes, thus we cannot increase,
for example, the bottom center amplitude without increasing every amplitude along that
pump diagonal.

5.4 Generating the Joint Spectral Amplitude for Mul-

timode Squeezed States

We now plot various JSAs that correspond to multimode squeezed states in Fig. 5.2. The
plots were made using the nonlinearity shaping algorithm discussed in Section 2.5.2, with
various number of peaks (NG = 5, 7, 9, 17) for the pump and PMF. The JSAs plotted
correspond to multimode squeezed states defined in Eq. (5.13) with M = 6, 15, 28, 45, 153
modes.
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(a) 5x5 (b) 7x7

(c) 9x9 (d) 17x17

Figure 5.2: multimode JSA

In this chapter we proposed a method to generate multimode squeezed states by custom-
engineering a nonlinear crystal and pump amplitude function. We can generate multimode
squeezed states with many or few modes with a single PMF by changing the pump ampli-
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tude coefficients in real time. Our method uses pulsed sources and the modes are Gaussian
frequency distributions making them ideal for many quantum information protocols.
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Chapter 6

Design Considerations and
Fabrication Errors

We beging with design considerations of nonlinear crystals by examining the constraints
on the properties of the target PMF and determine optimal parameters for the amplitude
coefficients of the PMF, width of the PMF and the number of domains. Next we consider
sources of error due to the choice of the target PMF. When designing a nonlinear crystal
via ferroelectric poling which was discussed in Section 2.4.4 there are unavoidable set of
errors which we simulate and discuss.

6.1 Constraints on the Target Phasematching Func-

tion

In this section we consider the constraints on the target PMF, such as the amplitude
coefficients, the width of each Gaussian and shape of it. Next we consider a source of error
due to oscillations in the target amplitude and show that this error can be reduced by
finding the optimal number of domains.

6.1.1 Shape of Target Phasematching function

The first constraint has to do with the shape of the target PMF and whether it is symmetric
or not. In Eq. (2.55) we calculated that the real part of the approximated PMF is
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symmetric about ∆k. Any target PMF must also then be symmetric, if we are going to
accurately approximate it from a sum of symmetric functions.

6.1.2 Constraints on the Amplitude coefficients of the Target
Phasematching Function

In Section 2.5.2, we showed that the slope of the target PMF must not exceed 2/π or
else we cannot accurately approximate it with a custom poled nonlinear crystal. We now
consider what constraints this puts on the amplitude coefficients for the PMF in Eq. (5.1)
for the general PMF. We start by calculating the target nonlinearity profile using the
inverse Fourier transform as

gt(z) =
1

2π

∫
d(∆k)Φt(∆k)e−i∆kz

=
1

2π

(
a0 +

n=N∑
n=1

an(einδkz + e−inδkz)

)
e−i∆k0z

∫
d(∆k)G(∆k)e−i∆kz

=
1

2π
e−z

2σ2/2

(
a0 + 2

n=N∑
n=1

an cos(nδkz)

)
e−i∆k0z.

(6.1)

Then the target amplitude function is

At(z) =

∫ z

−L/2
dz′gt(z

′)ei∆k0z′

=
1

2π

∫ z

−L/2
dz′e−z

′2σ2/2

(
a0 + 2

n=N∑
n=1

an cos(nδkz′)

)
,

(6.2)

but we are only interested in the slope of the amplitude, so differentiating with respect to
z,

dAt(z)

dz
=

1

2π
e−z

2σ2/2

(
a0 + 2

n=N∑
n=1

an cos(nδkz)

)
, (6.3)

has a maximum when z = 0. The slope of the amplitude cannot exceed 2/π, taking the
slope at the maximum, we find the constants an must satisfy

dAt(z)

dz

∣∣∣∣
z=0

=
1

2π
(a0 + 2

n=N∑
n=1

an) ≤ 2

π

a0 + 2(a1 + a2 + ...+ aN) ≤ 4.

(6.4)
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Therefore, as we increase the number of Gaussian functions we must make the constants
an smaller to ensure that a0 + 2(a1 + a2 + ... + aN) ≤ 4. Although we need to decrease
the amplitude of the PMF when we increase the number of modes, we can compensate by
increasing the pump amplitude, the bn’s.

6.1.3 Optimal Width of the Target Phasematching Function

We now determine the optimal width of each Gaussian given a crystal of length L. For a
target PMF with a single Gaussian the target amplitude is the error function. In Fig. 6.1
we plot the target amplitude for different values of the width, σPMF = 5/L, 6/L, 7/L. We
find that by increasing the width of the Gaussian target PMF the error function “tails”
increase. In the “tail” regions the target amplitude is constant, leading the nonlinearity
profile being constant over the same region. For the choice of σPMF = 6/L, 7/L we are
not using the crystal to its full potential because the end there are regions where the
nonlinearity profile is constant. On the other hand, if we cut off the tails prematurely, we
get undesired ripples in our PMF.

(a) σ = 5/L (b) σ = 6/L (c) σ = 7/L

Figure 6.1: Plotting the target amplitude for a Gaussian target PMF for different widths.

For the target PMFs we are interested in they will all be of the form of Eq. (5.1) which
has many Gaussians displaced by some fixed amount. One might think that to increase
the number of target Gaussians in the PMF one would need a longer crystal but due to the
property of Fourier transforms this is not the case. When we take the Fourier transform
of a function with a shift we get the Fourier transform of the original function with a
phase factor, this can be seen in Eq. (6.2) for the target amplitude for the general PMF in
Eq. (5.1). In Eq. (6.2) we see that the target amplitude is the integral of an exponential
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(leading to an ampltide that has an error function form) with oscillating terms due to the
shifted parts. Thus by adding Gaussians to the PMF the target amplitude shape remains
an error function but with oscillations. Now plotting the amplitude for a PMF with five
Gaussian peaks and σPMF = 4/L, 5/L, 6/L in Fig. 6.2 we determine that the optimal value
of the width of each Gaussian is σPMF = 5/L. Thus we have determined the width of each
Gaussian and also showed that the number of Gaussians in the PMF is not limited by the
length of the crystal.

(a) σ = 4/L (b) σ = 5/L (c) σ = 6/L

Figure 6.2: Plotting the target amplitude for a five peak Gaussian target PMF.

6.1.4 Sources of Error due to Oscillations of the Target Ampli-
tude

In section 6.1.3 we detailed that for the PMFs we are interested in, the target amplitude
will have oscillations. These oscillations can be sources of error when approximating the
target PMF if the domain width is on the order of magnitude of the period of oscilla-
tion. To approximate a PMF we track the amplitude by coherently adding or subtracting
sin(∆k0z)/∆k0 waves. The approximation has errors when the oscillations of the tracking
amplitude are greater than the target amplitude. This is most easily seen in Fig. 6.3
where we show the target amplitude and tracking amplitude for a target PMF with five
Gaussians. We see that in the zoomed in region the tracking amplitude oscillations are
larger than the target. This is a source of error because in this region the nonlinearity
function is set to being constant when there are finer details.

The first solution to this source of error is to choose the constants an to be as large as
possible given the restriction that a0 + 2(a1 + a2 + ... + aN) = 4. This will increase the
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amplitude of the target oscillations to be as large as possible. This solution has a limited
benefit. For a PMF with many Gaussians, even setting the constants an to the max will
not fix the errors. To increase the accuracy of the approximation one needs to consider
a finer “resolution” to what we can track. One way to do this would be to introduce
sub-coherence length domain engineering, which was proposed by [44]. This is outside of
the scope of this thesis since it would require further modification of the algorithm. To
simulate sub-coherence domain engineering we instead vary the number of domains while
keeping the length fixed.

Figure 6.3: Target vs approximate amplitude for a target PMF with five Gaussian peaks.
In the zoomed in plot we see how the tracking amplitude cannot accurately approximate
the target due the oscillations being too large.

6.1.5 Varying the Number of Domains

In this section we vary the domains while keeping the length of the crystal fixed to deter-
mine the optimal number of domains. The length of the crystal is given by L = Nlc, where
N is the number of domains and lc is the coherence length and the length of each domain.
If we increase the number of domains we must also decrease the length of each domain
to keep the length of the crystal fixed. To determine the optimal number of domains, we
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will run the algorithm in section 2.5 for N = 500, 1000, 1500, 2000, 4000, 6000 domains. We
first take the target PMF to be three Gaussian peaks and plot the target vs approximate
PMF for different values of N in Fig. 6.4.

(a) N = 500 (b) N = 1000 (c) N = 1500

(d) N = 2000 (e) N = 4000 (f) N = 6000

Figure 6.4: Comparing the approximate vs target PMF while varying the number of do-
mains and keeping the length fixed.

In Fig. 6.4 we find that as we increase the number of domains the approximate PMF
gets closer to the target. The approximate PMF becomes more accurate because as we
increase N , we are increasing the resolution of the tracking amplitude. We show this
effect in greater detail in Fig. 6.5, where we plot the target and approximate amplitude
for a target PMF that has five Gaussian peaks and vary the number of domains over
N = 1000, 6000. In the top two plots of Fig. 6.5, we see that by increasing N we can
increase the resolution of the tracking amplitude (black) which can better approximate
the target. In the bottom two plots of Fig. 6.5 we see the difference that it makes when
approximating the target PMF.

Comparing Fig. 6.4 and 6.5 we find that the optimal value of N is when each domain
length is smaller then the period of oscillation of the target PMF.
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(a) N = 1000 (b) N = 6000

Figure 6.5: Comparing the PMF and amplitude for N = 1000 and N = 6000.

6.2 Fabrication Errors

In Section 2.4.4 we described that given a crystal, we can change the nonlinearity of a
section by ferroelectrically poling it. We change the nonliearity by applying an electrode
that applies an electric field which slowly changes the polarization to point in the oppo-
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site direction. In Section 2.5.2, we detailed an algorithm that, given a target PMF, will
produce the nonlinearity profile which generates the associated PMF that approximates
the target PMF. Putting these two parts together we are able to design and engineer a
crystal that will generate a PMF with desired properties, however, it is inevitable that
there will be imperfections during the fabrication process. In this section, we discuss the
possible imperfections that may arise during the engineering process and simulate them to
determine there effect on the final PMF.

For realistic scenarios, there are three main possible sources of error [55] shown schemat-
ically in Fig. 6.6 and given by

1. Overpoling and underpoling regions: The size of the domain generated depends on
the length of time the electrode is on and in contact with the crystal. Uncertainties
in the time can then lead to imperfections in domain sizes.

2. Randomized variations in wall positions: Since we are dealing with crystals on the
order of mm and electrodes on the order of µm there is a possibility that the electrode
itself was placed in the wrong location thus leading to slightly randomized domain
positions.

3. Missed domains when poling: This source of error can occur if some sets of electrodes
are faulty leading to a region not being flipped at all or since the domain sizes are so
small (on the order of µm) it is possible for some adjacent domains to bond together.
These both lead to a situation where a domain was wrongly poled/unpoled.

It was shown by Kelly-Massicotte in [55], that for periodic poling, imperfections due to
overpoling or underpoling did not have a large effect on the amplitude and purity of the
PMF. However, in [55] it was shown that for periodic poling, variations in domain wall
positions and missed domains had a large effect on the generated amplitude and lead to
a significant decrease as the errors were increased. With this in mind, we will focus on
implementing a randomized error to mimic missed domains.

We begin by running the algorithm to produce the nonlinearity profile for a PMF with
three Gaussian peaks. Once we generate the nonlinearity profile we will simulate error
randomly. We assign p to be the probability that a given domain is not missed and the
value 1 − p, the probability that a domain was missed and set the nonlineairty in that
domain to be +1. We then iterate through for every domain.

We compare the results by plotting the nonlinearity profile, amplitude and PMF. Choos-
ing a success rate of p = 95% we ran the process five times to get a better picture of the
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Figure 6.6: Schematic of the main sources of error when ferroelectrically poling a crystal.

randomized result. In Fig. 6.7 we plot the actual nonlinearity profile and under it, five ran-
domized errors. In Fig. 6.8 we compare the target amplitude, the approximate amplitude
and five trials of the randomized nonlinearity. Finally, in Fig. 6.9 we plot the target PMF,
approximate PMF and the PMF from the five randomized nonlinearity profiles. The ran-
domized error in the nonlinearity profile leads to a decrease of amplitude and an increase
in noise. The decreased amplitude is not a large error because we can always increase the
amplitude of the pump function. However, the more noise the PMF has the less accurate
the decomposition we provided in Chapter 3 is.
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Figure 6.7: Comparing the approximate nonlinearity (top) to five sets of randomized errors.
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Figure 6.8: Comparing the target amplitude, the approximate amplitude and five trials of
the random error nonlinearity

Figure 6.9: Comparing the target PMF, approximate PMF and the PMF from the five
random error nonlinearity profiles.
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Chapter 7

Conclusion

In this thesis we proposed a method for generating two non-standard Gaussian states of
quantum light. The first state we defined is a “tuneable hybrid squeezed state”, which
contains the properties of both single- and two-mode squeezed states. The second are
multimode squeezed states. Our states are encoded in Gaussian frequency modes, and
our method relies on customizing the joint spectral properties of light via a quantum
nonlinear-optical process called spontaneous parametric down conversion. Customizing
the joint spectral properties of the generated light requires two independent ingredients.
The first is the spectral engineering of the light incident inside the crystal. The second is
the engineering of the nonlinear crystal to have desired phasematching properties (captured
by something known as the “phasematching function”).

The phasematching function is related to the nonlinearity throughout the crystal via
the Fourier transform. To shape the phasematching function to have desired properties,
we need to engineer the nonlinearity of the crystal. While in theory, the nonlinearity is a
continuous function, for practical solid crystals, it varies between ±1. To design nonlinear
crystals we use the deterministic algorithm proposed in [44], which takes as an input,
the target phasematching function, and outputs a string of +1’s and −1’s, which is the
desired nonlinearity profile. The nonlinearity profile is then engineered into the crystal by
Ferroelectrically poling the material [38].

We analysed the limitations of the possible phasematching functions that can be gener-
ated via engineering a nonlinear crystal. We found that the phasematching function must
be symmetric, the amplitude coefficients of each Gaussian must satisfy an upper bound,
and determined that for a given crystal with length L, the number of Gaussians is not
dependent on L and the optimal width of each Gaussian is σ = 5/L.
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Next we examined some sources of error when designing a phasematching function
with desired properties. We found that if the amplitude of the phasematching function
has oscillations with a period on the same order of magnitude as the domain length, we
cannot generate the phasematching function because we cannot accurately approximate the
amplitude. We proposed that to mitigate this error we should always choose the amplitude
coefficients to satisfy their upper bound and showed that one can achieve a finer resolution
by increasing the number of domains, which is equivalent to decreasing the domain length.

Lastly, we examined possible errors associated with the fabrication of a crystal. We
introduced fabrication errors into the nonlinear material by simulating missed domains and
determined that the error does not have an affect on the amplitude of the phasematching
function but introduces noise. The noise introduced leads to errors in the decomposition
of the joint spectral amplitude by Gaussian functions.

Our method puts the modes of the electromagnetic field into Gaussian frequency dis-
tributions which provides three advantages over the previous approach in [16, 17, 18, 15].
The first advantage is that the states we generate are localized in time-frequency, allowing
for high dimensional encoding that are compatible with waveguides and fiber transmission
[19]. The second advantage is unlike the localized time-frequency modes of the Schmidt
decomposition, [19] which are hard to experimentally distinguish [20], our modes are de-
fined by Gaussian distributions at center frequencies, making them easy to experimentally
distinguish. Lastly, the states generated by [15, 16] which used beam splitters to generate
entangled states in the spatial modes of the field, whereas ours are in the same spatial
mode which makes the experiment more stable. Our method is tunable, scaleable to many
modes and the entangled states are all simultaneously available.

As a future project we would like to see a crystal designed to generate these multimode
squeezed states and verify them experimentally. One can also begin analyzing these states
for other areas of research, such as, the field of microscopy [56] and the fabrication of
microscale medical devices [57], which both use squeezed states to their advantage.

Quantum states of light can be transferred over long distances without degrading and
posses all the interesting quantum properties that we desire, such as, superposition and
entanglement. These properties make quantum states of light ideal for a variety of quantum
information protocols [58, 8, 3, 4]. Hybrid squeezed states have the advantage that they
have both properties of single- and two-mode squeezed states. Hybrid squeezed states
have more parameters that we can control, which makes them useful for approximating
non-Gaussian states via post-selection. We speculate that hybrid squeezed states would
lead to more accurate results for multi-parameter quantum metrology, since they combine
the noise-reducing properties of single-mode squeezed states with the entanglement of
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two-mode squeezed states. By providing a source for multimode squeezed states, where
the modes are localized in time-frequency, we allow the generalization of many quantum
information protocols to their multimode counterparts, such as, multi-parameter quantum
metrology [12], multi-channel quantum imaging [13] and multi-partite teleportation [14].
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Appendix A

Phase Matching Function Constraints

In section 2.5.2 we introduced two constraints, that the target PMF could not have a slope
larger than 2/π. To demonstrate this restriction we take the target PMF to be a Gaussian
centered at ∆k0 with a constant multiplier a and calculate the slope of the amplitude to
be

dAt(∆k0, z)

dz
=
a0

2π
e−z

2σ2/2 ≤ 2

π
, ∀z. (A.1)

The slope of the target amplitude is at its maximum when z = 0, so we conclude that
a0 ≤ 4. In Fig. A.1 we compare a Gaussian target PMF with two different pre-factors, one
with a max value of a0 = 4 and the other larger with a0 = 5. We find that when the PMF
has the correct pre-factor we can track the target amplitude. However, when we increase
the pre-factor above the max we see a deviation from the target to approximate amplitude.
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(a) Pre-factor of a0 = 4. (b) Pre-factor of a0 = 5.

Figure A.1: Plotting the amplitude throughout the crystal of a Gaussian target PMF with
two different pre-factors. We can see that when we exceed the restriction of the slope of
the target amplitude of 2/π we can no longer approximate the target.
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Appendix B

Example of Custom Phase Matching
Function

In this section we provide all of the physical parameters used in this thesis to design
nonlinear crystals and provide a complete example of tailoring a nonlinear crystal to have
a desired PMF

Throughout this thesis we use a Type II Potassium titanyl phosphate crystal pumped
by a center frequency Ωp = 2.53× 1015s−1 [λp = 6.75× 10−8m] which generates signal and
idler photons at center frequencies Ωs = 1.26583 × 1015s−1 [λs = 1.37 × 10−7m] and Ωi =
1.26583× 1015s−1 [λi = 1.30× 10−7m]. The signal and idler photons have orthogonal po-
larization and the signal photons have the same polarization as the pump. The Sellmier pa-
rameters for the KTP crystal are given by (A1, A2, A3, A4) = (3.0065, 0.03901, 0.04547, 0.01408)
and (B1, B2, B3, B4) = (3.3134, 0.05694, 0.05658, 0.01692) where the A’s correspond to the
pump and signal polarization and the B’s to the idler [60]. The crystal is group velocity
matched such that the PMF is always on the diagonal. The phase mismatch evaluated at
zeroth order for the center signal and idler frequencies is given by ∆k0 = 169000m−1. We
chose the length of the crystal to be typical and given by L = 2.0cm.

B.1 Gaussian PMF

We now choose a target PMF and use the algorithm described in section 2.5.2 to determine
the nonlinearity profile and calculate the PMF. In this example, the target PMF will be a
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Gaussian given by

Φt(∆k) = a0e
− (∆k−∆k0)2

2σ2 , (B.1)

which is centered at ∆k0. We take the amplitude coefficient to be the max at a0 = 4 from
the discussion in section 6.1.2 and the width to be σ = 5/L per the discussion in section
6.1.3.

The algorithm takes the target PMF and calculates the nonlinearity in Fig. B.1. We
then calculate the target amplitude from the target PMF and compare it with the approx-
imate amplitude due to the nonlinearity profile in Fig. B.1. In Fig. B.2 we plot the target
and approximate field amplitude. Lastly, we calculate the approximate PMF using Eq.
(2.54) and compare it to the target PMF in Fig. B.3, the two plots are in good agreement.

Figure B.1: Non linearity profile for a target Gaussian PMF.

We then choose the pump function to be a Gaussian with the same width. Multiplying
these two functions together gives the JS.In Fig. B.4 we plot the PMF,pump and JSA.
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Figure B.2: Comparing the target amplitude to the approximate amplitude for a Gaussian
target PMF

Figure B.3: Gaussian centered at ∆k0 compared to engineered PMF
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Figure B.4: Plotting the JSA, PMF (lower plot) and pump (upper plot).
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