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Abstract 
 

INTRODUCTION: Exercise is known to improve insulin sensitivity (IS); however, its 

effectiveness may be absent or blunted in women, particularly following high intensity interval 

(HII) training. Sex differences in anaerobic metabolism during an acute bout of HII exercise 

have not yet been established and may underpin the lack of effect of HII training on IS in 

women. Furthermore, it is unclear whether the standardized HII exercise protocol induces similar 

exercise intensities in men and women which may confound the research findings. PURPOSE: 

The purpose of the proposed research was to examine whether sex influences the exercise 

response and/or anaerobic metabolism during an acute bout of high intensity interval exercise. 

METHODS: Twenty-four young, healthy, recreationally active males (n=12) and females 

(n=12) were recruited for this study. Men and women were matched according to their maximum 

aerobic capacity (VO2peak) relative to their fat-free mass (mL O2 • KgFFM-1 
• min-1). The exercise 

protocol consisted of a 5-min warm up, followed by 10 intervals of 60 sec at high intensity (90% 

HRmax), interspersed with 60 sec at low intensity (50 Watts) and ended with a 5 min cool down. 

Throughout the exercise bout, heart rate (HR) and rating of perceived exertion (RPE) using the 

Borg Scale were recorded every minute and blood lactate was recorded every 3 minutes. Muscle 

biopsies were taken from the vastus lateralis muscle before and after the exercise bout. Muscle 

samples were analyzed for protein content of metabolic enzymes [phosphorylated pyruvate 

dehydrogenase (PDH) E1α, and phosphorylated creatine kinase (CK)] and Periodic Acid Schiff 

(PAS) stained for determination of muscle glycogen utilization. Indirect calorimetry was used to 

compare indices of exercise intensity and whole-body fuel utilization between men and women 

during the exercise bout. RESULTS: Sex had no effect on HR (p=0.17) or RPE (p=0.66) 

throughout the exercise bout; however, %target HR during the high intervals was higher in 
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women (p=0.002). Women exercised at a higher relative %VO2peak during the warm up 

(p<0.0001), high intervals (p=0.011) and cooldown (p=0.005), but not during the low intervals 

(p=0.25). Women also worked at a higher wattage during the low intervals when expressed 

relative to kg lower body fat-free mass (LB FFM) (p<0.0001). During the high intervals, men 

worked at a higher absolute wattage (p<0.001) and relative wattage when expressed relative to 

kg LB FFM (p=0.02). Men also expended more energy during exercise (p=0.001) but when 

expressed relative to kg FFM, there was no difference in energy expenditure between the sexes 

(p=0.13). Sex had no effect on blood lactate throughout the exercise bout (p=0.35) however 

lactate AUC was higher in men (p=0.007). Glycogen utilization and phosphorylation status of 

PDHE1α and CK decreased in both men and women during exercise (p<0.0001, p=0.002 and 

p=0.002, respectively), with no difference between the sexes. Elevated RER values obtained 

from indirect calorimetry resulted in invalid whole-body substrate oxidation estimates. 

CONCLUSION: Markers of HEPT and glycolysis did not differ between men and women, 

however the greater lactate AUC in men suggests that men relied to a greater extent on anaerobic 

metabolism during exercise. Importantly, using the standard HII exercise protocol caused women 

to exercise at a higher %VO2peak, which was mostly likely due to the difference in the relative 

intensity of the low intervals. Future work should consider using a relative workrate during low 

intervals to better equate exercise intensity between the sexes.  
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Chapter One: Literature Review 

1.0 Introduction 

The prevalence of type 2 diabetes (T2D) is at epidemic levels worldwide and is expected to 

continue to increase in both adults and children1. In 2018, the projected prevalence of diabetes 

globally was estimated to reach 642 million people by 2040, with 90% of those cases being 

T2D2.  The main recommendation to prevent the development of T2D is adopting a healthy 

lifestyle through a combination of diet and exercise1. However, a large majority of the research 

that has investigated the effectiveness of exercise training at eliciting improvements in IS has not 

considered sex and/or only included women in their sample. The small number of studies that 

have controlled for sex have mostly involved interval training programs, and their findings 

suggest that men and women may respond differently to interval training. More specifically, 

improvements in IS seem to be blunted in women following interval training3–5.  

The link between sex differences in IS and interval training may be related to sex differences in 

anaerobic metabolism, specifically the high energy phosphate transfer (HEPT) system 

metabolites ADP and AMP. Increased concentrations of ADP and AMP in the muscle can 

activate the enzyme AMPK6. AMPK is involved in both contraction-mediated insulin-

independent and contraction-mediated insulin-dependent GLUT 4 translocation6–8. Sex 

differences in AMP production during interval exercise have not been widely examined. With 

women being able to initiate aerobic metabolism more quickly at the onset of exercise9,10 and 

relying to a greater extent on fat substrates during exercise11–20, the likelihood that sex may 

influence AMP and/or the ratio of AMP:ATP during exercise is possible.  Specifically, if women 

have a lesser reliance on the HEPT system at the onset of exercise there may be less of a 

disturbance in the AMP:ATP ratio leading to a lesser activation of AMPK. Over time, a lesser 
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activation of AMPK may result in less improvement in skeletal muscle insulin signalling and 

whole-body IS. Support for this theory comes from previous research showing that AMPK 

activation during aerobic exercise is higher in men than women21.  

The predominant form of interval training used in clinical/pre-diabetic/diabetic populations is 

HII training. Therefore, examining the effect of sex on fuel metabolism during a single bout of 

HII exercise may improve our understanding as to why IS does not improve in women following 

a period of HII training. Thus, this thesis was conducted to examine how sex influences 

anaerobic fuel utilization and metabolism during HII exercise to gain insight into possible 

explanations for the blunted improvements in IS seen in women in response to HII training.   

1.1 Fuel Utilization during Exercise 

Energy is supplied to working skeletal muscle primarily by combustion of carbohydrates (CHO) 

and fats22. The relative contribution of each substrate is influenced by both the duration and 

intensity of the activity, with higher exercise intensity increasing the reliance on CHO 

metabolism23 and longer exercise duration at a given intensity increasing the reliance on fat 

metabolism22–24. To efficiently support the energy requirements of the muscle, CHO are stored as 

glycogen in the liver and muscle22, and fat is stored as intramyocellular lipids (IMCL)22 in the 

muscle [with the majority of lipids in IMCL being triglycerides (TG)25], and as triglycerides in 

adipose tissue22,26. Protein is the third and final energy yielding substrate, but it contributes only 

a very small amount (typically 2-5%)22 to energy production during exercise as its main role is to 

help the muscle repair and recover22,26. While CHO and fat are the main contributors to energy 

production during exercise, at the onset of exercise and/or at the onset of each interval when 

oxygen is limited, anaerobic fuel metabolism is the main mechanism for generating ATP22,27. 

Anaerobic metabolism can sustain ATP production until the body has had the time to make 
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sufficient physiological vascular changes to adapt to the exercise stimulus. These vascular 

changes allow for oxygenated blood to be shunted towards the muscle to a greater extent 

compared at to the onset of exercise. The increased delivery of oxygen to the muscle will then 

allow for aerobic metabolism to become the primary mechanism of ATP production22.  

1.1.1 Order of Predominating Energy Generating Pathways Upon the Onset of Exercise 

At the onset of exercise, the muscle has a very small amount of stored ATP which is rapidly 

utilized22, necessitating other ATP-generating systems to upregulate and sustain ATP production 

during exercise. These energy-generating pathways are the HEPT system, glycolysis, and aerobic 

metabolism (fatty acid oxidation, tricarboxylic acid cycle, and electron transport chain). The 

relative contributions of each of these pathways depends on many factors including exercise 

intensity22–24,27–30, exercise duration22,23,27,28 and biological sex12,20,31,32.  

It has been well established that the three main energy generating pathways (HEPT system, 

glycolysis and aerobic metabolism) each predominate at different time points throughout a 

moderate intensity continuous (MIC) exercise bout. Figure 1 below provides a simplified 

overview of when each ATP generating pathway predominates during the first 120 seconds of a 

MIC exercise bout at ~65%VO2peak. Once steady state is reached around the 2-min mark, the 

relative contributions shown at that time point can be sustained for the remaining duration of the 

exercise bout22 (typically ~90 minutes). 
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Figure 1: Simplified overview of when each ATP generating pathway predominates during the 

first 120 seconds of a MIC exercise bout at ~65%VO2peak and the reactions that occur within in 

each system. This is subject to slight changes based on the intensity and mode of exercise as well 

as training status of the individual. 

 

1.1.2 Fuel Utilization During MIC Exercise 

Substrate utilization patterns during MIC exercise have been well established and are influenced 

by both the intensity and duration of the exercise22. At low-to-moderate exercise intensities 

(aerobic conditions), TG from adipocytes and IMCL stores are the main source of fuel22–24,27–30. 

Fat oxidation and exercise intensity are positively associated up until ~65% VO2peak after which 

fat oxidation rates plateau and decline22–24,29. Fat oxidation is limited at higher exercise 
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intensities due to lactate accumulation that can lead to inhibition of adipose tissue lipolysis33. 

Consequentially, CHO (from glucose and glycogen) utilization predominates at higher exercise 

intensities22–24,27. Additionally, as exercise intensity increases there is a concomitant increase in 

blood flow peripherally towards the muscle, and therefore a reduced blood flow to the liver23 and 

adipose tissue23. As a result, there is an increased reliance on substrates stored within skeletal 

muscle (i.e. muscle glycogen and IMCL) and a decreased reliance on substrates originating from 

the liver (i.e. glucose), adipose or other tissues23.  

Duration of exercise also plays a role in substrate utilization. At a given exercise intensity, fuel 

stores in the muscle (phosphocreatine, muscle glycogen, and IMCL) are the preferred substrate 

sources due to their proximity to the site of muscle contraction23. As exercise duration increases, 

muscle glycogen and IMCL stores diminish, eventually causing there to be a greater reliance on 

free fatty acids (FFA) derived from adipocyte lipolysis and glucose derived from hepatic 

glycogenolysis and gluconeogenesis22,23,34.  As glucose from the plasma is taken up by the 

muscle, hormones are secreted to prevent the development of hypoglycemia by maintaining 

glucose concentrations at homeostatic levels. This mechanism is known as the counterregulatory 

response and the secreted hormones (epinephrine, norepinephrine, cortisol, growth hormone, and 

glucagon) act to ensure blood glucose levels are maintained during, and post exercise35. 

Although glucose contributes significantly to ATP production during MIC exercise, given that 

FFA are more energy dense than glycogen22,26 and TG stores are substantial22,26, once a steady 

state during MIC exercise has been established, fat represents an almost limitless fuel supply to 

support exercising muscle energy demands.   
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1.1.3 Fuel Utilization and Metabolism during Interval Exercise  

Recently, interval exercise has increased in popularity as research suggests that it can elicit 

similar health benefits to MIC exercise in much less time. There are two main types of interval 

exercise: HII exercise and sprint interval (SI) exercise36. Both HII and SI exercise consist of a 

series of repeated bouts of intense exercise, interspersed with periods of rest or active recovery at 

very low intensities. More specifically, HII exercise protocols involve performing multiple, near 

maximal intensity intervals interspersed by periods of low intensity active recovery with similar 

work:recovery ratio durations36. SI exercise protocols however, involve performing multiple 

supramaximal intensity intervals of shorter duration interspersed with longer recovery 

intervals36.  The durations of HII and SI work intervals range anywhere from 8 seconds to 4 

minutes. Most SI exercise studies use work intervals of  ~20 seconds and most HII exercise 

studies use intervals of ~60 seconds37.   

1.1.3.1 Substrate Utilization and Metabolism During HII Exercise 

Like MIC exercise, the ATP required to sustain HII exercise is generated through the HEPT, 

glycolytic and aerobic metabolism systems; however, fuel utilization during HII exercise has not 

been studied as extensively as fuel utilization during MIC exercise. While more of a resistance-

type protocol, not HII exercise, one study involving 30 seconds of repeated plantar flexion 

exercise at ~30% maximal voluntary contraction with a 40-degree range of motion at a rate of 2-

3 Hz (maximal rate) was conducted38. This study is able to give insight into the time course of 

metabolic changes that occurred at the muscular level both during and post intense exericse38. 

This study found that phosphocreatine (PCr) concentration immediately decreased at the onset of 

exercise and within 20 seconds, less than 20% of original PCr content was left38. Furthermore, 

ADP, AMP and Pi also increased immediately and leveled off within 10-15 seconds, which 
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coincided with a peak in both glycolytic and glycogenolytic rates at the 15-second mark, 

suggesting exhaustion of the HEPT system, and a shift towards glucose (glycogen) utilization at 

this point38.  The progressive decrease in pH throughout the 30 seconds likely contributed to the 

slight decrease in glycogenolytic and glycolytic rates seen towards the end of the exercise due to 

inhibition of PFK22,26. Overall, it was determined that within 9 seconds of the onset of exercise, 

aerobic ATP supply reached ~85% of its maximal capacity and remained at this level for the 

remainder of the exercise38. Although this study did not include subsequent intervals, post-

exercise metabolic measures revealed that within 2 minutes of recovery, PCr concentrations were 

almost at their original levels whereas it took much longer (~8 min) for pH to return close to 

normal38. These findings outline how the HEPT system is the most active during the first 5-10 

seconds and then glycolysis takes over.   

Adequate recovery duration between intervals is essential for full PCr resynthesis for the HEPT 

system to be used to its full capacity on subsequent intervals. Recovery periods that are too short 

in duration, or too high of an intensity can impede PCr resynthesis39,40 and can hinder the HEPT 

system’s ATP contribution since the re-amination of IMP to ATP does not occur during the 

intervals41–43, but during the recovery periods only41,43. Adequate recovery periods are also 

essential for lactate clearance since shorter recovery periods are associated with a decrease in the 

amount of lactate cleared40,44,45. Therefore, during HII exercise, the duration of rest or active 

recovery periods influences the relative contribution of anaerobic and aerobic metabolism to 

ATP production.  

Importantly, the HEPT system can only supply a limited amount of ATP during each interval, 

therefore, glycogen is also significantly relied upon during HII exercise. The studies that have 

measured glycogen utilization during HII exercise have found muscle glycogen to decrease by 
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~40-50% post exercise46–48. Additionally, in animals, one group found that HII exercise 

upregulates the transcription factor Hif-1α49 which is known to increase expression of proteins 

related to glycolysis and lactate transporters50, increasing the capacity for glycogen breakdown. 

Together these findings demonstrate that muscle glycogen is heavily relied upon during HII 

exercise.  

Interestingly, the notion that fat oxidation is negligible at intensities above ~85% VO2max
51,52  (or 

~90% VO2max for runners52) was challenged by a study that found that fat oxidation during 

interval exercise at 85-95% VO2max contributed ~16% and ~33% of ATP production in untrained 

and endurance trained individuals, respectively47. Other studies involving longer work interval 

durations (i.e. 4 min) have also found that fat contributes substantially to energy production at 

intensities above 85% VO2peak
47,53.  Together, the findings of the studies discussed above suggest 

that the HEPT system, anaerobic glycolysis and aerobic (fat) metabolism all contribute 

substantially to ATP production during HII exercise.  

Compared to MIC exercise, HII exercise induces greater increases in catecholamines (ACTH, 

epinephrine and norepinephrine)54, which stimulate both lipolysis55–57 and CHO58 metabolism 

during exercise. Overall fat oxidation during HII exercise however is lower, and CHO oxidation 

is higher than MIC exercise54. Indeed, a study that had participants exercise at the same intensity 

of a typical HII interval bout (~85%VO2peak) but for 30 min continuously59, found that compared 

to the group working at 65%VO2peak continuously for the same duration, FFA uptake and fat 

oxidation were lower and glucose uptake and carbohydrate oxidation were higher59. These 

findings support the notion that exercising at higher intensities results in a greater reliance on 

CHO stores. However, in humans and horses, when high intensity exercise is performed in an 

interval format overall glycogen utilization is similar to MIC exercise60–62. The similar reliance 
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on muscle glycogen during HII exercise as compared with MIC exercise is likely due to the fact 

that while the rate of glycogen breakdown and utilization is greater during HII exercise during 

the high intensity intervals, it is lower than MIC exercise during the low intensity intervals. Thus, 

over the total exercise bout, a similar amount of glycogen is used. What has been found to differ 

between the two types of exercise is the pattern of fibre-specific muscle glycogen utilization with 

greater glycogen utilization in type II than type I fibres during HII versus MIC exercise61. 

Overall, these findings indicate that during the intervals, CHO utilization is higher than MIC, 

however since CHO oxidation is so low during the recovery periods, there is no apparent 

difference in muscle glycogen utilization.  

There is only one study to my knowledge that compares SI to HII exercise63. Although it did not 

directly measure PCr or glycogen degradation, based on the fact that blood lactate increased to a 

greater extent following SI exercise compared to HII exercise we can speculate that, 

unsurprisingly, SI exercise is more anaerobic than HII exercise63. Additionally, RER was lower 

throughout the entire exercise bout during HII compared to SI exercise, which also indicates that 

there was a greater reliance on fat oxidation during HII exercise compared to SI exericse63.  

1.1.3.2 Fuel Utilization and Metabolism during SI Exercise 

During SI exercise, participants are exercising at very high intensities and therefore deplete their 

PCr stores and exhaust their HEPT system quickly. Assuming the sprint intervals last ~20 

seconds, the majority of ATP would therefore be supplied by the HEPT system, and anaerobic 

glycolysis (glycogen) would supply the rest22,26,64.  Indeed, an acute bout of SI exercise (2 to 6 

bouts of ~20-30s ‘all out sprints’ interspersed with 2-4 min active recovery) induces significant 

decreases in muscle glycogen65–68, and PCr stores65, and increases in lactate9,66–70. Furthermore, 

similar to that seen during HII exercise, SI exercise trials have found that glycogen utilization is 
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greater in type II than type I muscle fibres9,10,61. Given that type II fibres are less aerobic than 

type I fibres, and that type II fibres are recruited to a greater extent during higher intensities, it is 

not surprising that lactate increases substantially during SI exercise. Accumulation of lactate 

inhibits glycolysis by inhibiting the rate limiting enzyme of glycolysis, PFK22. Removal of 

lactate during the rest intervals is necessary to remove some of that inhibition for the subsequent 

interval. SI exercise protocols with inadequate rest interval duration (i.e. <30 sec) do not provide 

enough time for PCr regeneration71 whereas a rest interval of 2-4 min is long enough to 

regenerate most PCr stores and for glycolytic enzymes to be more readily available so that 

exercise can be performed more effectively22.  

Glycogen contributes substantially to ATP production during both MIC and SI exercise; 

however, whether one mode is more reliant on glycogen is controversial. One study found that 

glycogen utilization was similar during both MIC (30 min at 65% VO2peak ) and SI exercise (8 x 

20s at ~170% VO2peak with 10 sec of rest between intervals) in both type I and IIA fibres, despite 

significant differences in exercise intensity72. However, another study found that glycogen 

utilization was higher during MIC (50 minutes at 70% VO2peak) compared to SI exercise (6 x 

20sec ‘all out’ sprint with 120 sec recovery or 18 x 5 sec ‘all out sprint’ with 30 sec recovery)73. 

These studies differ in both their SI and MIC exercise protocols, which could likely explain the 

difference in their findings. The participants in the first study72 exercised at a higher intensity, 

the overall combined duration of the sprints was longer and only had 10s of rest before the next 

interval which all placed a greater metabolic demand on the muscle, resulting in greater 

utilization of glycogen.  Regardless, the findings from these studies indicate that glycogen can 

contribute substantially to ATP production during SI exercise despite its short duration.  
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1.2 Sex Differences in Muscle Metabolism 

The MIC exercise trials that have been conducted in women, have found that women have a 

lower respiratory exchange ratios (RER) compared to men at a given moderate exercise intensity. 

A lower RER is indicative of an greater reliance on fat oxidation20,11–19,21, which has led to 

substantial research examining the sites of increased fat and decreased CHO oxidation as well as 

the mechanisms by which this occurs. Human and animal estrogen supplementation trials have 

revealed that estrogen may contribute to this sex difference in fuel utilization during exercise. 

Estrogen supplementation has been found to increase fat oxidation during exercise and alter the 

expression, content and/or activity of key metabolic enzymes to favour fat metabolism74–82.  

1.2.1 Sex Differences in Carbohydrate Metabolism During Exercise 

Women rely less on CHO during MIC exercise as evidenced by a lower RER as compared to 

men11–20.  RER does not tell us where the exact sites of fuel oxidation are, but rather a proportion 

of whole-body CHO and fat oxidation22. However, measurement of glucose rate of appearance 

(Ra) and disappearance (Rd) in plasma and glycogen content in muscle tissue can provide 

evidence of whether the decreased reliance on CHO during exercise is the result of decreased 

liver or muscle glycogen utilization, respectively.  

 It has been consistently shown that women have a lower glucose Ra and Rd as compared with 

men during 90 minutes of MIC exercise11,13,18,83. A lower glucose Ra is indicative of a lower rate 

of hepatic glucose release. Unfortunately, since it is not possible to obtain liver biopsies from 

humans, it is unclear whether the decreased glucose Ra is due to decreased hepatic 

gluconeogenesis, hepatic glycogenolysis, or a combination of the two. However, animal studies 

have found that male rats have higher liver glycogen content84,85, and greater expression of 

gluconeogenic genes85. Furthermore, when supplemented with estrogen, liver glycogen 
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utilization was attenuated in male and oophorectomized female rats74–76. The effect of estrogen 

on hepatic glucose release has been confirmed by several studies that found that glucose Ra, Rd 

and metabolic clearance rate (MCR) was lower in men following estradiol treatment78–80.  

Regardless of whether it is a decrease in liver glycogenolysis or gluconeogenesis, the fact that 

there is less glucose entering the plasma (decreased Ra), and that the muscle itself is taking up 

less glucose from the plasma (decreased Rd) provides mechanistic support for the finding that 

liver CHO oxidation is lower in women than men during MIC exercise. To date, no study has 

investigated whether the sex difference in hepatic glucose metabolism persists during HII or SI 

exercise.   

Whether there is a sex difference in muscle glycogen utilization during MIC exercise is 

contentious as some studies suggest that there is no difference11,21,86,87, whereas others suggest 

that men have greater glycogen depletion20,88. Furthermore, SI exercise trials have also found 

both attenuation9,10 and no attenuation89 of muscle glycogen depletion in women during exercise. 

Although the male and female groups within each of these studies were equally matched, 

perhaps the differences in exercise protocols, mode and/or training status of the participants 

between the studies contributed to the discrepant findings in effect of sex on glycogen utilization 

during MIC and SI exercise. 

Inconsistencies in exercise protocols may influence whether a sex difference in metabolism is 

found. Both intensity and duration of the MIC exercise trials ranged greatly from 58%-75% 

VO2peak for 25 minutes - 3 hours11,17,20,86,88 . The studies that did not find a sex difference in 

glycogen utilization seemed to be those on the upper17 and lower11 ends of the intensity range 

(i.e. 58% VO2peak and 75% VO2peak) as well as the longest in duration86 (i.e. 3 hours). Although 

there was no difference in overall glycogen utilization during the 3-hr trial at 65% VO2peak, 
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perhaps it was that women did not use as much muscle glycogen during the first part of the 

exercise, but to sustain ATP levels for 3 hours they eventually needed to tap into their glycogen 

stores, resulting in no apparent difference in overall glycogen utilization. The idea that the timing 

of muscle glycogen utilization is different between men and women is supported by a shorter 

MIC exercise study that found men used more glycogen during just 25 minutes at ~68% 

VO2peak
88, whereas studies of longer duration11,21,86 (i.e. 90 minutes - 3 hours) tend to report no 

difference in glycogen utilization between the sexes.  

Differences in the exercise intensity at which the exercise bout is conducted could also explain 

the inconsistencies found in the literature. Peak fat oxidation occurs around 65% VO2peak
23,29, 

therefore sex differences in fat and CHO oxidation would theoretically be the most prominent at 

this intensity. MIC exercise trials above17 or below11 peak fat oxidation rates (75 and 58% 

VO2peak, respectively) did not find a sex difference in glycogen utilization but trials at this 

intensity20,88 (65% and 68% VO2peak) found that men used more glycogen during exercise. The 

differing intensities and results of these trials suggest that for a sex difference in glycogen 

utilization to be detected during MIC exercise, perhaps participants must exercise at ~65% 

VO2peak. Similarly, in SI exercise trials, the trial that did not find a sex difference in muscle 

glycogen utilzation89 involved a lower intensity (5% vs 7.5% kg•body weight), and shorter 

interval duration (20 sec vs 30 sec) than the other two studies9,10. The higher intensity and longer 

duration would suggest a greater reliance on glycogen stores and since this is not a glycogen 

depleting exercise, sex differences in glycogen utilization might be more likely to be detected. 

Overall, the protocols used in the two types of exercise studies above were inconsistent in terms 

of their duration and intensity, both of which strongly influence fuel utilization during exercise22. 
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Therefore, the differences in exercise protocols described above could be a potential factor for 

the discrepant findings in glycogen utilization during exercise.  

When comparing between trials, it is also important to consider the training status of the 

participants. All11,17,21,86,88 but one20 of the sex comparative MIC exercise trials used 

recreationally trained participants. It is the study that used trained participants that found that 

women spare muscle glycogen during exercise. Endurance trained athletes have a greater 

capacity to produce ATP aerobically, rely less on CHO stores (glycogen), and more on fat at a 

given, relative intensity compared to those less trained22. As well, training has shown to increase 

the VO2 at which peak fat oxidation occurs90. Although the duration of the one study that used 

endurance trained individuals20 was quite long (i.e. 90 minutes), training adaptations allowed the 

participants to optimize fat utilization and use glycogen more sparingly. The effect of sex 

therefore becomes more apparent in this study with highly trained athletes because they are using 

more fat and their rate of glycogen depletion is slower, making the sex difference in muscle 

glycogen utilization detectable because muscle glycogen is not depleted at the end of the exercise 

bout. For recreationally trained participants, the rate at which they utilize glycogen is higher 

since they are less efficient at using fat, resulting in more substantial glycogen depletion, making 

it harder to detect a sex difference in glycogen utilization during longer bouts of MIC exercise.  

Similarly, in the SI exercise studies, there was also a difference in the training status of 

participants between the studies. Participants in the SI exercise trial that found no difference in 

glycogen utilization were untrained89. On the other hand, the SI trials that found an effect of sex 

on muscle glycogen utilization used recreationally active participants9,10. The fact that glycogen 

sparing was found during SI, but not MIC exercise in recreationally active participants likely 

relates to the fact that since this is not a glycogen depleting bout of exercise, due to its shorter 



15 
 

duration. Together, the findings of these trials highlight the importance of considering training 

status when examining sex differences in metabolism. 

Exercise mode is another factor that can influence glycogen utilization during MIC exercise 

trials. Cycling, for example, recruits mostly lower body muscles, whereas for running (which is a 

weight-bearing exercise), there is a greater distribution of muscle fibre recruitment. Running 

therefore requires greater oxygen uptake overall to sustain ATP levels throughout the exercise 

because of the increased amount of muscle required to run. As well, most muscle biopsies are 

taken from the vastus lateralis, a muscle that is heavily relied upon during cycling whereas with 

running, the recruitment of lower body muscles are more spread out. Therefore, the vastus 

lateralis muscle during cycling may be more likely to become depleted, making a sex difference 

difficult to detect. Indeed, all of the MIC exercise trials that did not find a sex difference in 

glycogen utilization were cycling protocols11,17,86, whereas the one running protocol20 found men 

to use more glycogen during the exercise. However, the limited sample of running studies make 

it difficult to come to a full conclusion regarding effect of mode on potential sex difference in 

muscle glycogen utilization during MIC exercise.  

In addition to sex differences in muscle glycogen utilization during exercise, sex differences in 

the metabolic fate of pyruvate during SI exercise have also been found. Both SI exercise trials 

that found a sex difference in muscle glycogen utilization9,10 also found that lactate was higher 

post exercise in men than women, supportive of the hypothesis that men flux more pyruvate 

towards lactate than women9,10. These studies however only controlled for habitual physical 

activity level between the groups and did not consider the gold standard of matching based on 

maximal aerobic capacity relative to FFM (ml•O2/min/kg FFM). Therefore, we cannot rule out the 

possibility that undetected differences in training status between men and women may have 
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influenced these results. Unfortunately, lactate was not measured in the other SI study that found 

no difference in muscle glycogen utilization between the sexes89. Together, these findings 

suggest men may favour anaerobic metabolism to a greater extent during SI exercise than 

women, however more SI studies with adequate matching for sex is required before we can 

definitively determine if this is the case.  

Sex differences in other glycolytic enzymes have also been found. Hexokinase II (HKII) mRNA 

increased to a greater extent in women during SI exercise89, suggesting that women have a 

greater capacity to initiate glycolysis once glucose enters the muscle as compared with men. 

Elevated HK II protein content in women at rest has also been noted91. On the contrary, other 

studies looking at glycolytic enzyme activity at rest found that men had higher PFK92,93, pyruvate 

kinase (PK)92, glycogen phosphorylase (GP)92, lactate dehydrogenase (LDH)92,93 and HK92,93 

activity, all of which suggest that men rely to a greater extent on glycolysis and anaerobic 

metabolism, whereas women had higher β-HAD activity92, which suggests that women have a 

greater capacity for oxidative and fat metabolism. Although not all SI exercise studies show that 

men use more muscle glycogen, it is evident that sex differences in CHO metabolism do persist 

at the molecular level. Overall, women use less CHO during exercise compared to men and this 

is believed to be at least partly due to a decreased reliance on hepatic glycogen. The effect of sex 

on muscle glycogen utilization during MIC and SI exercise appears to be intensity, training 

status, and potentially mode specific, with women using either similar or lesser amounts of 

muscle glycogen than men. However, to the best of my knowledge no trial has examined 

whether sex differences in muscle glycogen utilization persist during HII exercise. 
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1.2.2 Mechanisms of Sex Differences in CHO Utilization during Exercise 

The mechanisms by which sex differences in CHO oxidation occur can in part be explained by 

differences in epinephrine. Women have lower epinephrine concentrations compared to men 

during exercise10,20,83. Epinephrine acts as a signal to promote hepatic gluconeogenesis and 

glycogenolysis22, leading to increases in glucose Ra which we know increases less in women 

during exercise11,13,18,83. Epinephrine also influences muscle glycogen utilization due to its ability 

to stimulate glycogenolysis, which could explain why some studies showed that men used more 

muscle glycogen during exercise compared to women20,88. Contrary to its ability to stimulate 

glycogen breakdown, epinephrine also stimulates whole-body lipolysis94. This effect is strongest 

at very low intensities and as exercise intensity increases to moderate and high intensities, the 

effect that epinephrine has at increasing whole-body lipolysis lessens95. Or rather, the effect that 

epinephrine has on increasing CHO contribution to energy expenditure surpasses the effect that it 

has on lipolysis, which explains why men use CHO to a greater extent during exercise.  

Sex differences in muscle fibre type can also explain the observed differences in muscle 

metabolism during exercise. Men typically have a higher proportion of type II muscle fibres96. 

One study, where it was confirmed that the male group had greater proportion of type IIA muscle 

fibres found that after a 30 second cycle sprint, glycogen reduction was the same in both men 

and women in type II fibres but women used less glycogen in their type I fibres9. Similarly, in 

another study involving 3 x 30 cycle sprints, women were found to use less glycogen in their 

type I fibres but no sex differences in glycogen utilization were noted in the type II fibres10. The 

authors suggested that this could perhaps be explained by the fact that type I fibres have a greater 

proportion of β-adrenergic receptors, giving them a greater capacity to respond to epinephrine 

binding and stimulate glycogenolysis97. Therefore, since men have higher concentrations of 
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epinephrine and more β-adrenergic receptors on their type I fibres, they might be better able at 

initiating glycogenolysis, despite women having greater type I fibre content. This could 

potentially explain the sex differences in fibre type specific glycogen utilization however, this 

hypothesis is speculative and has yet to be tested. As well, type II fibres are more anaerobic in 

nature so if men have a greater proportion of type II fibres, they are therefore more likely to rely 

on their anaerobic fuel pathways compared to women9. This is supported by two SI exercise 

trials showing that blood lactate concentration during10 and post-exercise9,10 is greater in men.  

MIC18,20 (90 min at ~65% VO2peak) and HII98 (6 x 4 min intervals with 1-4 min recovery) 

exercise trials however show no effect of sex on blood lactate accumulation. Greater increases in 

blood lactate suggests a greater reliance on CHO during exercise since more glucose is fluxing 

through glycolysis (producing lactate). Since SI exercise is more intense than MIC and HII 

exercise, it would therefore recruit more type II fibres22. Since men have more type II fibres to 

begin with, and they would get recruited more during intense exercise (i.e. SI exercise), it may be 

that this sex difference only becomes apparent during supramaximal intensity exercise. Overall, 

the findings of these studies suggest that differences in muscle fibre type between men and 

women may be at least partially responsible for the observed differences in CHO metabolism 

during exercise. These findings are summarized in Table 1. 
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Table 1: Overall summary of potential mechanisms that underpin sex differences in CHO 

utilization during exercise. 

Mechanism Sex Difference Action Result Effect on CHO 

utilization 

Epinephrine ↑ 

Concentrations 

in men10,20,83 

↑ Hepatic 

Gluconeogenesis 

 

↑ Hepatic 

Glycogenolysis 

 

↑ Muscle 

Glycogenolysis  

 

 

↑ Hepatic glucose 

production 

 

↑ Hepatic glycogen 

utilization 

 

↑ Muscle glycogen 

utilization 

↑ CHO utilization 

 

 

↑ CHO utilization 

 

 

↑ CHO utilization 

Fibre Type 

Distribution 

↑ %Type II 

fibres in men96 

 

 

↑ Capacity for 

anaerobic 

metabolism 

 

↑ Capacity to 

exercise at a 

higher intensity 

 

↑ Anaerobic 

glycolysis + lactate 

production 

 

↑ Recruitment at 

high intensities 

↑ CHO utilization  

 

 

 

↑ CHO utilization  

 

β-Adrenergic 

Receptors 

↑ Expression 

in type I fibres 

in men97 

↑ Capacity for 

epinephrine to 

bind 

↑ Effects of 

epinephrine 

↑ CHO utilization 

in type I fibres 

 

1.2.3 Sex Differences in the High Energy Phosphate Transfer System 

To the best of my knowledge, no studies have examined sex differences in HEPT metabolism 

during HII exercise. However, two SI exercise trials and one MIC exercise trial have investigated 

how HEPT metabolism differs between men and women during exercise. One of the SI exercise 

studies that involved a single 30 sec all-out sprint found that neither sex nor muscle fibre type 

affected any of the HEPT system muscle metabolites that were measured (ATP, ADP, IMP, or 

PCr)9. The other SI exercise study from the same group involved 3 x 30s all-out sprints with 20 

min recovery between sprints and once again no sex differences in the change in HEPT system 

muscle metabolites (ATP, ADP. IMP, PCr or hypoxanthine) was detected in either type I or type 
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II fibres10. However, they did find that ATP was higher and IMP and inosine were lower in 

women during the third sprint in type II muscle fibres and that inosine was lower in women 

during the third sprint in type I muscle fibres10. These sex differences in metabolite concentration 

were attributed to differences that occurred during the recovery period. In both fibre types IMP 

decreased to a greater extent in women during the recovery period between sprint 1 and sprint 

210. Furthermore, in type II muscle fibres, inosine content was lower in women as compared with 

men at the start of sprint 210. Together these sex differences in metabolite clearance led to men 

having a higher concentration of inosine, IMP and a lower concentration of ATP at the onset of 

the third sprint and suggest that women have a greater ability to re-aminate IMP back to ATP.   

Unfortunately, AMP was not measured in either of the SI exercise trials that have been 

conducted thus far. Therefore, it is unclear whether AMP accumulation differs between men and 

women during SI or HII exercise. Thus, we are unable to speculate if this is a potential 

mechanism that may contribute to sex differences in IS during exercise. However, as 

demonstrated in the latter SI exercise trial10, women were better able to maintain ATP 

concentration during repeated sprints, suggesting that the AMP:ATP ratio may be better 

preserved in women and thus the potential remains that AMPK activation may be lower in 

women during SI and/or HII exercise. Taken together the findings of these two studies 

demonstrate that there are sex differences in the HEPT system during a bout of repeated sprints; 

however, further work, including examining how sex influences HEPT metabolism during HII 

exercise is required.  

While sex differences in AMP metabolism have not been examined during interval exercise, they 

have been examined during MIC exercise. Following a 90 min bout of MIC exercise at 60% 

VO2peak, both creatine (Cr) and AMP concentration and the ratio of AMP:ATP increased 
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significantly in men but not women21. Furthermore, both AMPK Thr172 and α2AMPK activity 

increased in men, but not women21. Given the role that AMPK plays in improving insulin-

independent and insulin-dependent GLUT4 translocation6,7, greater activation of AMPK in men 

may over time lead to a greater improvement in IS. This finding is important because it draws the 

link between anaerobic metabolism and a potential sex difference in improvements in IS. 

However, more trials need to corroborate these findings before we can definitively say if this is 

the case, as well as determine how this might be affected by other factors such as training status, 

exercise intensity and exercise mode. The studies discussed in this section indicate that sex 

differences in the HEPT system during exercise exist, however they may be intensity-dependant 

and/or protocol specific. More research to better understand how sex influences HEPT 

metabolism (particularly AMP) may help us to better understand the mechanisms that underlie 

sex differences in IS improvement. 

1.2.4 Sex Differences in Exercise Metabolism are Mediated by Estrogen 

Sex differences in muscle metabolism during exercise have been shown to be the result of 

estrogen (E2). The effects of estrogen supplementation on muscle metabolism during exercise 

are summarized in Table 2 at the end of this section. In humans, estrogen  supplementation has 

been found to decrease glucose Ra78–81, Rd78–80 and MCR80, indicating sparing of hepatic 

glycogen. In some of these studies however, the decrease in glucose Ra was seen without a 

change in CHO oxidation as evidenced by no change in RER79–81. Under these circumstances 

where liver glycogen is being spared, a compensatory increased reliance on muscle glycogen 

utilization during exercise is therefore expected, however no effect of E2 supplementation on 

muscle glycogen utilization has been observed12,78.  E2 supplementation did however reduce 

total resting muscle glycogen (specifically proglycogen) levels prior to exercise78. The findings 
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from estrogen supplementation trials are in line with the findings from sex comparative trials 

where sex/estrogen affect hepatic, but not skeletal muscle glycogen utilization during MIC 

exercise.   

When E2 is given to men it induces a reduction in testosterone. As such, it is important to 

determine whether it is the increase in E2 or the decrease in testosterone that is inducing the 

reduction in carbohydrate utilization during exercise. To my knowledge, only study to date has 

investigated the effect of exercise on muscle metabolism in young men under conditions of 

altered testosterone 99. In this study, muscle metabolism during exercise was examined under 

conditions of low testosterone (induced by suppressing endogenous testosterone production with 

gonadotrophin-releasing hormone antagonist), physiological testosterone (no intervention) or at 

supraphysiological testosterone levels (induced by administering testosterone through a skin 

patch)99. The findings showed that testosterone had no effect on substrate utilization during a 

bout of MIC exercise99, leading to the conclusion that it is in fact estrogen, (rather than 

testosterone) that influences substrate utilization during exercise.  

One mechanism by which estrogen is thought to influence substrate utilization is through the 

alteration of mRNA expression of certain metabolic proteins. One study that supplemented men 

with E2 (2mg/day for 8 days) investigated changes in mRNA of those proteins after 90 min of 

MIC exercise compared to placebo82. E2 increased TFP and CPT-1 mRNA expression both pre 

and post exercise82, suggestive of an increase in the capacity for fat oxidation. Lastly, the E2 

group had higher SREBP-1c and mtGPAT mRNA expression both pre and post exercise which 

are critical in the formation of IMCL. E2 however did not influence any CHO metabolism 

related genes82. Another study found that after 8 days of estrogen supplementation in men (1 

mg/day for 2 days, then 2 mg/day for 6 days), there was an increase in PGC-1α mRNA content100 
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(a key regulator in FA oxidation101). The increase in PGC-1α mRNA was thought to potentially 

be a mechanistic explanation for the increased protein content of medium chain acyl-

dehydrogenase that was also found100. Together, these findings suggest that estrogen upregulates 

the expression of genes and content of proteins that promote fat metabolism related to FA 

breakdown, β-oxidation, lipid uptake and lipid storage.  

In summary, sex differences in muscle metabolism and fuel utilization seem to be at least partly 

mediated by estrogen. Specifically, estrogen is thought to play a role in decreasing glucose Ra, 

Rd and MCR, enhancing β-oxidation capacity and lipid storage, and potentially decreasing 

glycogen utilization during a bout of exercise. The mechanism that underpins these changes is 

suggested to be mediated by upregulation of certain genes relating to these metabolic processes. 

It is important to be aware that the majority of these studies were MIC exercise trials, most of 

which used a protocol of 90 min at 65% VO2peak. It is difficult to apply these findings to other 

types of exercise that are not mainly aerobic. Future studies investigating the effects of estrogen 

on the anaerobic energy generating pathways (i.e during interval exercise) would allow us to 

identify common trends between the aerobic and anaerobic energy generating pathways, as well 

as identify any other sex differences that may have not yet been identified in the anaerobic 

systems. 
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Table 2: Summary of the effect of estrogen supplementation on muscle metabolism during 

exercise 

Study Participants Supplementation 

dose and length 

Exercise 

Protocol 

E2 supplementation: 

Devries 

(2005)78 

11 men 1mg/d for 2 days, 

then 2mg/d for 6 

days 

(mimics LP) 

90 min 

cycling at 

65% VO2peak 

-↓RER 

 

-↓ glucose Ra and Rd  

 

-No change in glycogen 

utilization  

Ruby (1997)79 6 

amenhorrheic 

females 

1mg/d for 72hr and 

144hrs 

(mimics FP) 

90 min 

treadmill 

running at 

65% VO2peak 

-↓glucose Ra and Rd during 

exercise 

 

-No change in RER 

 

-No change in glycogen 

utilization 

Carter 

(2001)80 

4 males ~3mg/d for 8 days 

(higher than LP) 

90 min 

cycling at 

60% VO2peak 

-↓ glucose Ra and Rd 

 

-No change in RER 

Tarnopolsky 

(2001)81 

11 males 100μg/d for 3.5 

days, then 200μg/d 

for 3.5 days, then 

300μg/d for 4 days 

(mimics FP) 

90 min of 

cycling at 

60% VO2peak 

-no change in muscle glycogen 

utilization 

 

-no change in RER 

 

-no change in concentration of 

plasma glucose and lactate 

 

-no change in CHO and fat 

oxidation rates 

Fu (2009)82 12 males 2mg/d for 8 days 

(mimics LP) 

90 min 

cycling at 

65% VO2peak 

-↑TFP mRNA expression 

 

-↑ CPT-1 mRNA expression  

 

-↑SREBP-1c mRNA expression  

 

-↑mtGPAT mRNA expression  

Maher (2010) 10 males100 1mg/d for 2 days, 

then 2mg/day for 6 

days 

(mimics LP) 

90 min 

cycling at 

65% VO2peak 

-↑MCAD protein content 

 

-↑PCG-1α mRNA content 

 

 

Abbreviations: CPT-1: carnitine palmitate transferase-1, FP: follicular phase, LP: luteal phase, 

MCAD: medium chain acyl-coenzyme A dehydrogenase, mtGPAT: mitochondrial Glycerol-3-

Phosphate Acyltransferase, PGC-1α: peroxisome proliferator-activated receptor-γ coactivator, 

Ra: Rate of appearance, RER: respiratory exchange ratio, Rd: Rate of disappearance, SREBP-1c: 

Sterol regulatory element-binding protein-1c, TFP: trifunctional protein. 
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Chapter Two: Rationale, Purpose, Objectives, Hypotheses 

2.0 Study Rationale 

The prevalence of T2D is increasing worldwide and it is estimated that the prevalence will reach 

200-300 million people globally by 20251. In most cases, T2D is preventable and even treatable 

with a healthy diet and exercise1. An acute bout of exercise is able to increase glucose uptake for 

up to 72 hours after the exercise bout8,102,103 . Furthermore, exercise training can increase the 

content of insulin signalling proteins104–107, enhancing insulin sensitivity5,105–107.  A new form of 

exercise that has gained popularity and is preferred by many over traditional MIC training is 

interval training. Interval training is effective at eliciting similar adaptations to MIC training (i.e. 

increased mitochondrial content, capillary density and oxidative capacity) in a much more time 

efficient manner36. However, the findings from sex-comparative interval training studies suggest 

that exercise may not be as effective at improving IS in women compared with men3–5. More 

specifically, 6 weeks of interval training (3 sessions•wk-1) improved glycemic control in men, 

but not women4,5. One of these studies also found that GLUT 4 protein content increased in both 

men and women post training, however GLUT 4 protein content was significantly higher in men 

compared with women post training4.  These findings suggest that exercise-induced 

improvements in insulin signaling are blunted in women following interval training; however, 

why this occurs is unknown.  

Sex differences in fuel utilization and metabolism during MIC exercise have been extensively 

researched and may offer insight into the potential mechanisms responsible for the blunted 

improvements in IS seen in women. MIC exercise trials consistently show that women rely to a 

lesser extent on CHO as a fuel source, as indicated by a lower RER11–20. Specifically, sex 

comparative trials have found women to have a lower glucose Ra and Rd; suggesting less of a 
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reliance on hepatic glycogenolysis and/or gluconeogenesis11,13,18,83. The effect of sex on muscle 

glycogen utilization during exercise is contentious as some20,88, but not all11,21,86,87, studies have 

found skeletal muscle glycogen utilization to be attenuated in women during exercise. If men 

rely on CHO to a greater extent during exercise, their post-exercise glucose uptake would likely 

be greater since greater muscle glycogen utilization is associated with a greater post-exercise 

glucose uptake108,109. While not studied during HII exercise, sex differences in muscle glycogen 

utilization during sprint interval have been reported9,10. Furthermore, following a bout of  MIC 

exercise where estimated muscle glycogen utilization was greater in men than women, post-

exercise glucose uptake was also higher in men for 120 minutes post exercise110. Thus, 

differences in muscle glycogen utilization during HII exercise may help explain the blunted 

effect of HII exercise on improving IS in women; however, this has yet to be examined. 

Another potential link between sex differences in IS and interval training may be related to sex 

differences in the anaerobic HEPT system metabolite AMP. An increase in the ratio of 

AMP:ATP in the muscle activates the enzyme AMPK6. AMPK is involved with both post-

exercise insulin-independent and insulin-dependent GLUT 4 translocation to the membrane, 

increasing glucose uptake111. Sex differences in AMP during interval exercise have not been 

examined. However, one MIC exercise study did find that men had higher levels of AMP after 

90 minutes of exercise at 60%VO2peak, along with greater AMPK Thr172 phosphorylation and 

activity of α2AMPK 
21. Additionally, a sprint interval study found that men had a lesser decrease 

in the metabolite IMP (a direct precursor to AMP) compared with women during recovery 

periods between intervals10. These findings suggest that a sex difference in HEPT metabolism 

during HII exercise is possible. Theoretically, an increased reliance on HEPT metabolism 

suggests the potential for a greater increase in AMP, which in turn could induce greater 
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activation of AMPK and eventually a greater improvement in IS; however, this remains to be 

examined. 

Many interval training trials have been designed such that participants exercise at a given relative 

intensity (i.e. 90% HRmax for HII exercise)3,107,112,113 during the high intensity intervals, but at a 

fixed intensity (i.e. 50W) for the low-intensity intervals 3,107,113. In fact, numerous sex 

comparative interval training studies have used an absolute wattage for the recovery 

periods3,4,66,89,113,114. None of those studies however have considered the fact that an absolute 

wattage during the recovery periods would result in the female participants exercising at a 

relatively higher intensity during the low-intensity recovery intervals even if men and women 

were matched appropriately for aerobic fitness. Furthermore, whether this exercise stimulus 

induced similar physiological responses to the exercise bout in men and women was not 

examined. Given that women would be working at a higher relative intensity during the low-

intensity recovery intervals this is an important consideration, particularly since two interval 

exercise trials where men and women worked at the same relative intensity during the low-

intensity recovery periods found that HR response to interval exercise may be different between 

men and women98,115. One study used a 6 x 4 min HII cycling bout at ~85-90%VO2peak and found 

that women reached a higher %HRmax during the intervals despite exercising at a slightly lower 

%VO2peak
98. Another trial that used a SI exercise bout found that on the fourth 30s treadmill 

sprint at 110% VO2peak, women were exercising at a higher %HRmax115. Thus, if women achieve 

a higher %HRmax when the recovery intensities are relatively equal, then when the recovery 

intensities are relatively higher in women, sex differences in the HR response may be even more 

pronounced. This is important because many HII exercise and training studies conducted in 

clinical populations3,107,112,113  have used an absolute workrate of 50W during the recovery 
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periods and ~90% HRmax during the intervals. Therefore, if the overall stimulus is not the same 

between men and women, this could also give us more insight into why women may not respond 

in a similar manner to men in response to HII training.   

As noted above, HII exercise and training trials typically include warm ups, low interval and 

cooldowns at a fixed wattage. Wattage allows the metabolic demand of the exercise bout to 

easily be calculated, however to control for differences in body composition between men and 

women, wattage should be expressed relative to muscle mass. It is important to note that it is not 

muscle mass, but fat-free mass that is typically measured when determining body composition. 

Whole body assessments of FFM include not only muscle mass, but organ mass as well. 

However, FFM can be expressed as whole body or regional values and since cycling 

predominately involves recruitment of lower body muscle mass it is more appropriate to express 

wattage relative to lower body fat-free mass (LB-FFM). Furthermore, since whole body 

estimates of fat-free mass include tissues other than muscle, expressing exercise workrate 

relative to lower body fat circumvents the issue related to including organ mass.  Therefore, 

during high intensity interval cycling wattage relative to LB FFM would be the most 

representative of the work done by the muscles being recruited during cycling, and furthermore, 

since a given wattage requires a standard energy output, the metabolic demand per kg of lower 

body muscle can also be determined. If the metabolic demand of the intervals is the same per kg 

of LB FFM between the sexes, then any differences in energy expenditure would reflect a sex 

difference in the metabolic pathways. Therefore, by determining if the exercise intensity of a 

standardized HII exercise bout is similar between men and women when expressed as 

wattage/LB FFM will allow us to determine if this specific protocol elicits similar exercise 

intensities between the sexes. Thus, the purpose of the research conducted in this thesis was to 
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examine whether sex influences the exercise response and/or anaerobic metabolism during an 

acute bout of HII exercise. Furthermore, we examined whether the standardized workrate of a 

typical HII exercise bout differed between men and women to infer whether differences found 

were the result of sex or different exercise intensity. 

2.1 Study Purpose 

The purpose of the proposed research was to examine whether sex influences the exercise 

response and/or anaerobic metabolism during and acute bout of high intensity interval exercise.  

2.2 Objectives 

1. To determine whether sex influences glycolytic metabolite concentrations during HII 

exercise.  

2. To determine whether sex influences HEPT system metabolite concentrations in the 

muscle during HII exercise. 

3. To identify how HII exercise influences the phosphorylation status of enzymes involved 

in anaerobic metabolism. 

4. To determine whether sex influences the phosphorylation status of enzymes involved in 

anaerobic metabolism. 

5. To examine whether the exercise response to a standardized bout of HII exercise is 

similar between men and women. 
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2.3 Study Hypotheses 

We propose the following hypotheses for this study: 

1. Men will rely on glycolysis to a greater extent than women as evidenced by a greater 

increase in muscle lactate and pyruvate and a greater decrease in muscle glycogen.  

2. Men will rely to a greater extent on the HEPT system as evidenced by a greater decrease 

in PCr and ATP, and a greater increase in Cr, ADP, AMP, IMP and Pi  

3. Phosphorylated CK and PDHE1α will decrease during HII exercise.  

4. Phosphorylated CK and phosphorylated PDHE1α will decrease to a greater extent in 

women as compared with men during HII exercise.  

5.  a) Women will work at a significantly higher %VO2peak and select a higher RPE score 

during the low intervals but not the high intervals compared with men.  

b) There will be no sex difference in the HR response to HII exercise.  
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Chapter Three: Methods 

Due to circumstances regarding the COVID-19 global pandemic, access to laboratory facilities 

were restricted for a number of months. Unfortunately, I was unable to gain access to the 

laboratory facilities to perform the intended metabolite assays. Therefore, the methods described 

in this section reflect the laboratory measures that were performed before lockdown. 

3.0 Participants 

Twenty-four young, healthy, recreationally active males (n=12) and females (n=12) were 

recruited for this study. Men and women were matched by group, according to their maximum 

aerobic capacity (VO2peak) relative to their FFM. Participants were between 18-30 years of age 

and were excluded if they had any chronic health conditions (i.e. metabolic, cardiovascular, 

respiratory or digestive disorders), were unable to complete a single exercise session, or 

regularly participated in cardiovascular or resistance training >3 or >2 times•week-1, respectively. 

Individuals who had an allergy to local anesthetic, had undergone a barium swallow or an 

infusion of a contrast agent in the 3 weeks leading up to the trial, were taking anti-coagulant or 

anti-platelet prescription medications, had a BMI >27kgm-2, or were unable to exercise as 

suggested by the Get Active Questionnaire were also excluded from the trial. Female participants 

who were pregnant, suspected that they may be pregnant, were breastfeeding, or were taking 

monophasic oral contraceptives were also excluded from the trial. Male and female participants 

with a relative VO2peak above 51 and 44 mL•kg-1·min-1, respectively, were excluded from the 

study. Each participant had the opportunity to read a detailed outline of the procedures, risks and 

benefits associated with the study. This was also verbally explained to them by the researcher 

prior to the exercise trial.  This study was reviewed and received ethics clearance from the 

University of Waterloo Research Ethics Committee (ORE# 22477). 
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3.1 Study Design 

Figure 2: General Overview of Study Design 

 

 

Figure 3: Detailed overview of the acute HII exercise protocol.  
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3.1.1 General Study Outline 

Visit 1: Informed Consent, Anthropometrics, Food and Activity Logs, VO2peak 

Participants completed a health screening questionnaire, the Get Active Questionnaire (GAQ), 

and provided written, informed consent to participate in the study. They were then given 

instructions on how to complete a 3-day food log and 7-day physical activity log. In addition to 

the exercise logs, participants were given a PiexoXTM pedometer (StepsCount, Deep River, ON, 

Canada) to record their step count on the days they logged their physical activity. 

Anthropometric measurements (i.e. height and weight), were also recorded during this visit.  

Lastly, the participants underwent a VO2peak test using a ramp protocol (start at 50W, increase by 

1W·2sec-1) on a cycle ergometer (Ergoline, Bitz, Germany) attached to a metabolic cart (Vmax, 

Vyaire Medical, Mettawa, IL, USA) to determine their relative maximum aerobic power (mL•kg-

1min-1). Participants started with a 2-minute warm up at 50W, followed by an increase of 1 Watt 

every 2 seconds. Participants were instructed to maintain a minimum speed of 60 

revolutions·min-1.  During the warm-up, a finger prick was performed using a Lactate Scout Plus 

(EKF, Penarth, England) to analyze blood lactate. Lactate measures were taken every minute 

throughout the test. A Polar Heart Rate Monitor (Polar, Lachine, QC, CA) was used to record 

HR every 30 seconds. Rating of perceived exertion (RPE) was also measured every minute based 

on the Borg Scale (6-20). The test was terminated when the participant reached volitional failure, 

or when they were unable to maintain a cadence of 60 rpm for > 3 seconds. The breath-by-breath 

data from the Vmax system was time averaged on 10-second intervals. The highest achieved 

VO2 (mL•kg-1min-1) out of each of the averaged 10 second intervals was taken as VO2peak.  
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Visit 2: DXA Scan, Familiarization 

A full body dual x-ray absorptiometry (DXA) scan was done using the Hologic Discovery W 

(Hologic, Mississauga, ON, CA). Each image was analyzed with QDR APEX software (Version 

4.5.3, Hologic, Mississauga, ON, CA) by a trained technician to obtain each participant’s body 

composition and FFM. A measurement of VO2peak relative to FFM averaged across each group 

served as a baseline characteristic to ensure similar training status between groups12.  

To familiarize each participant to the exercise trial protocol, and to ensure that they were 

exercising at the desired intensity (90% of max HR achieved during VO2peak test), they 

underwent a familiarization test on the cycle ergometer. The familiarization started with a warm-

up (50W), followed by 3-6 x 60 sec intervals at the intensity calculated to elicit the target HR 

(90% HRmax). Each interval was interspersed with 60 second of low intensity cycling at 50W. If 

target HR was not achieved by the third interval, the wattage on the bike was adjusted 

accordingly. If the target HR was not close to being achieved after 6 intervals, an additional 

familiarization session on a different day was conducted in order to determine the appropriate 

testing wattage.  

Visit 3: HII Exercise trial 

Participants came in the morning of the HII exercise trial having fasted for 12 hours (except for 

water) and having refrained from moderate-vigorous exercise for at least 72 hours. Females were 

tested during the mid-follicular phase of their menstrual cycle (days 4-9, with the first day of 

menses being day 1). Prior to beginning the exercise, they had a muscle biopsy taken from their 

vastus lateralis which was either immediately frozen in liquid nitrogen or mounted in OCT and 

frozen in liquid nitrogen for subsequent analysis. They then got on the cycle ergometer where 
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they did a 5-min warm up (50W), followed by 10 intervals of 60 sec at 90% HRmax (wattage for 

this determined during the familiarization), interspersed with 60 sec at low intensity (50W). This 

was followed by a 5 min cool down (50W). Breath samples were collected during the warm up 

(minutes 0 – 5), intervals (minutes 12 – 17) and cooldown (minutes 25-30) using a metabolic cart 

(Vmax, Vyaire Medical, Mettawa, IL, USA) to allow for determination of whole body substrate 

utilization. Within a few seconds of exercise completion, a second muscle biopsy was taken to 

the same leg, 1-2 cm above or below the first biopsy and processed as described above. Starting 

at the onset of the first interval (minute 5), HR and RPE were measured every minute, and blood 

lactate was measured every 3 minutes until the end of the final low interval (minute 24) using the 

same measurement tools as the VO2peak test. An overview of the HII exercise bout including 

when all measurements were taken can be found in Figure 3.  

3.1.2 Sample Collection 

Prior to, and immediately after the exercise bout, a muscle biopsy was performed on the vastus 

lateralis muscle using a custom suction-modified Bergstrom needle. Two muscle samples were 

taken during each biopsy. The first sample was immediately placed in liquid nitrogen to be used 

for analysis of muscle metabolites. The second muscle sample was processed (removal of any fat 

or excess tissue) and sectioned into different pieces; each placed in a different, labeled cryotube 

or mounted in OCT. The samples were then be submerged in liquid nitrogen and stored at -80oC 

for analysis of protein content of enzymes related to anaerobic metabolism. 

3.2 Analysis 

3.2.1 Western Blot Analysis 

Homogenization of muscle samples for western blot analyses was performed in ice cold 25mM 

Tris buffer [25mM Tris, 0.5% (v/v) Triton X-100, and protease/phosphatase inhibitor tablets 
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(Roche Diagnostics, Laval, QC, Canada)]. The samples were placed into pre-chilled 

homogenization Biopur Eppendorfs (Eppendorf, Mississauga, ON, Canada) where a 

homogenization buffer was then added at a ratio of 10L of buffer to 1mg of muscle. Samples 

were homogenized upon the addition of a homogenization bead (Qiagen, Toronto, ON, Canada) 

to the Eppendorf using TissueLyser II (Qiagen, Toronto, ON, Canada) and run at 20 cycles•sec-1 

for 40 seconds. To determine total protein content in the homogenized sample, the sample were 

spun in a centrifuge at 10 000G for 10 minutes at 4oC. The supernatant was transferred into 

additional pre-chilled Eppendorfs and the pellet was frozen for future analysis. A bicinchoninic 

acid (BCA) assay was used to determine total protein content.  

Once total protein content was known, samples were prepared for Western Blot analysis in a 

Laemmli buffer (0.5M Tris-HCl, glycerol, 10% SDS, 1% bromophenol blue, -mercaptoethanol, 

and ddH2O), and stored at -80oC. SDS-PAGE and Western Blot techniques were performed to 

identify the proteins of interest. 10g of protein from each sample was loaded and run on the 4-

15% Criterion TGX Stain-Free protein gels (BioRad, Hercules, CA, USA) for 45 minutes at 200 

volts.  Protein ladders (precision Plus Protein Standard, BioRad, Hercules, CA, USA) and a 

standard curve pooled from all samples was run. Using the Trans-Blot Turbo Transfer System 

(BioRad, Hercules, CA, USA), the proteins were transferred to a PVDF membrane. To ensure 

protein transfer was successful, the membranes were viewed using the Chemidoc MP (BioRad, 

Hercules, CA, USA) to confirm protein presence. Membranes were blocked for 2 hours in 5% 

bovine serum albumin (BSA) in 1X Tris-buffered saline and Tween 20 (TBST) to optimize the 

blocking (outlined in Table 1). Blocked membranes were stored overnight at 4oC in primary 

antibody (see Table 1 for specific detail regarding each protein) on shaker plate. To remove 

excess primary antibody, membranes were then washed 5 times for 3 minutes each with 1X 
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TBST. The membranes were then incubated in the appropriate secondary antibodies for 1 hour at 

room temperature at a dilution ratio of 1:10 000. To remove excess secondary antibody, 

membranes were then washed again 5 times for 3 minutes each with 1X TBST. At this point,  

Clarity ECL Western Blotting Substrates (BioRad, Hercules, CA, USA)) was added to the 

membrane and the membrane was viewed using the Chemidoc MP imaging system (BioRad, 

Hercules, CA, USA). To remove the Clarity ECL, membranes were washed again 5 times for 3 

minutes with 1X TBST. Antibodies were then stripped from the membrane by washing the 

membranes with a mild stripping buffer (Glycine, SDS, Tween20 and ddH2O at pH 2.2) two 

times for 15 minutes. Membranes were then washed with 1X PBS (Na2HPO4•7H2O, Na2H2PO4, 

NaCl and ddH2O at pH 7.2) two times for 10 minutes, then two more times for 5 minutes with 

1X TBST. Membranes were then reprobed with 1o antibody for the other protein. ImageJ 

(Version 1.51a, National Institute of Health, USA) was used to quantify the protein bands. Total 

protein content from the stain-free blot (supplementary Figure 4) was also determined using 

ImageJ (Version 1.51a, National Institute of Health, USA) allowing for the protein of interest to 

be expressed relative to total protein content. For the complete list of antibodies and their 

information, see Table 3. 

Table 3: Antibodies for western blot analysis with the specifics for blocking, primary antibody, 

and secondary antibody incubations. 

 

 

 

 

*All primary and secondary antibodies are diluted in 5% BSA with 1X TBST 

Antibody  Provider Blocking Agent 

Primary 

Antibody 

Dilution 

Secondary 

Antibody 

Dilution  

Phospho-CK Abcam 
5% BSA in 1X 

TBST 

     1:8 000        1:10 000 

Phospho-

PDHE1 
Abcam      1:3 000        1:10 000 
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3.2.2 Immunofluorescence and Histochemical Staining 

3.2.2.1 Slide Mounting 

Prior to staining, 10µm thin sections from each muscle sample were cut using a cryostat (Thermo 

Electronic, MA, USA) and mounted on glass slides. Slides were wrapped in tin foil and stored at 

-80oC until analyzed. When ready to be analyzed, slides were removed from the freezer and 

allowed to air dry for 5-10 minutes at room temperature.  

3.2.2.2 Muscle Fibre Type Determination 

Muscle fibre type was determined using myosin heavy chain immunofluorescence staining. 

100µL of blocking solution (10% goat serum, 90% 1X PBS) was added to each slide and slides 

were incubated at room temperature while shaking at 220 rpm for 1 hour. While slides were 

blocking, the 1o antibody working solution was made (see Table 3 for dilution ratios).  

The blocking solution was shaken off and the calculated amount of appropriate1o antibody was 

added immediately. The solution was then incubated overnight at room temperature while 

shaking. The next day, slides were placed back-to-back and washed for 3 x 5 minutes in a 

Columbia jar wrapped in tin foil (to protect from light) with 1X PBS. The slides were blotted 

dried, and then incubated in the appropriate 2o antibodies diluted 1:500 in blocking solution for 1 

hour at room temperature in the dark. Slides were placed back-to-back and washed again for 3 x 

5 minutes in a Columbia jar wrapped in tinfoil with 1X PBS. Slides were blotted dry and 15µL 

of Prolong was applied to each slide and mounted with a #1 coverslip. This step was performed 

in the microscope room in the dark. The corners of the coverslip were tacked down with nail 

polish and placed in a labeled, light-proof slide box. Slides were then be imaged the next day.  

The slides were imaged in the dark under the microscope (Zeiss, Oberkochen, Germany) on the 

highest intensity setting and captured using the Zen System (Zeiss, Oberkochen, Germany) 
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computer program using the ‘Image Processing’ tab for analysis. Proportion and sizes of type I, 

IIa and IIx fibres were determined.  

Table 4: Antibodies, dilution factors, volumes to be added and the immunofluorescent colour of 

each antibody for the fibre typing protocol 

MHC 
1˚ 

Antibody 

1˚ Dilution 

Factor 

2˚ 

Antibody 

2˚ Dilution 

Factor 
Colour 

I BA-F8 1:50 IgG2b 1:500 Blue 

IIa SC-71 1:600 IgG1 1:500 Green 

IIx 6H1 1:100 IgM 1:500 Red 

*All primary and secondary antibodies are diluted in blocking solution (10% goat serum, 90% 

1X PBS) 

3.2.3 Indirect Calorimetry Calculations  

Breath-by-breath indirect calorimetry information that was obtained from the metabolic cart 

during minutes 0-5 (warm up), minutes 12-17, and minutes 25-30 (cooldown) was used to 

calculate an estimate of whole-body substrate utilization.  

3.2.3.1 %CHO and Fat contribution to TEE 

An average RER from the breath data during the warm up, high intervals, low intervals, and 

cooldown was determined to calculate an estimate of %CHO and fat oxidation. Although the 

breath sample from minutes 12-17 included three low intervals and two high intervals, only two 

low intervals were used to calculate the average RER for that time period to maintain 

consistency with the high intervals.  The following modified stoichiometric equation (also used 

by Peric et al. (2016)116 and developed by Elia and Livesey (1992)117) that assumes negligible 

protein oxidation was used to estimate %CHO and fat oxidation:  
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%𝐶𝐻𝑂 =
[(5.045 ∗ 𝑅𝑄) − 3.582]

[(0.36 ∗ 𝑅𝑄) + 1.103]
 

%𝐹𝑎𝑡 = 1 −%𝐶𝐻𝑂 

3.2.3.2 Determination of Total Exercise Energy Expenditure and Absolute rates of CHO 

and Fat Oxidation 

Average oxygen intake (VO2, L/min) for warm up, high intervals, low intervals, and cooldown 

were multiplied by their duration (min) to determine oxygen consumption during each time 

period. Oxygen consumption for each time period was subsequently multiplied by 5 to determine 

the energy cost (kcal) for each measurement period. 

To determine the total grams of each substrate that was oxidized during each time period, the 

CHO and fat percentages were multiplied by the energy expenditure of their respective time 

periods and subsequently divided by either 4 (for CHO) or 9 (for fat). The total grams of each 

substrate was lastly divided by the duration (min) of each respective time period to obtain the 

rate of CHO and fat oxidation in g/min.  

3.2.4 Periodic Acid Schiff (PAS) Staining for Muscle Glycogen Determination 

Muscle samples were mounted on slides as described in section 3.2.2.1. Slides were then 

incubated in PAS Fixative (32mL EtOH, 6.0mL Chloroform, 2.0mL Glacial Acetic Acid) for 7 

min at 25oC in foil in a Columbia Jar on a shaker set at 200rpm. After that, slides were dipped 15 

times in a large beaker containing ddH2O and then incubated in periodic Acid (0.2g period acid 

powder, 40mL ddH2O) for 8 min at 25oC in foil in a Columbia jar on shaker set at 200rpm. 

Slides were then dipped another 15 times in a larger beaker containing ddH2O. Next, the slides 

were incubated in Schiff’s Reagent in an incubator for 15 min at 37oC in foil in a Columbia jar 

on a shaker set at 200rpm. Slides were then be rinsed for 10 min in ddH2O water in a Columbia 

jar while shaking at 200rpm. The samples were then serially dehydrated in Columbia jars 
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containing increasing concentrations of alcohol (80%, 90%, then 100% alcohol) for 2 minutes in 

each jar. Upon completion, slides were rinsed in Xylene for 2 minutes and mounted with 20µL 

heated Permount on a hotplate set at 100oC then removed and let to dry on number#2 coverslips. 

Slides were viewed using the Cytation 5 automated microscope (BioTek Instruments, Inc., VT, 

USA). Brightfield images were captured with the Cytation 5 built-in camera (BioTek 

Instruments, Inc., VT, USA) and serial stitched using Gen5 software (BioTek Instruments, Inc., 

VT, USA). Muscle glycogen content of each muscle fibre was analyzed by outlining each fibre 

and measuring the average greyscale value (ranging from 0 to 255; with 0 being all black and 

255 being all white) using ImageJ.  

3.3 Statistical Analyses 

A non-paired t-test was used to assess differences between the sexes in baseline characteristics, 

total energy expenditure during exercise, high intensity interval wattage, %target HR, lactate 

AUC and average RPE, HR and lactate during high and low intervals. A 2-way mixed model 

ANOVA with sex being the between variable (2 levels: male/female), and time being the within 

variable (2 levels: pre/post exercise) was used to determine the effect of sex and exercise on all 

other experimental variables.  A Tukey’s HSD test was conducted when necessary. Significance 

was set at p<0.05. 
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Chapter Four: Results 

4.1 Participant Characteristics  

Men were taller (p=0.0001, Table 5), weighed more (p=0.002, Table 5), had a lower % body fat 

(p<0.0001, Table 5) and a higher relative VO2peak (p<0.001, Table 5). However, when expressed 

relative to total body and lower body FFM, there was no difference in VO2peak between the 

groups (p=0.19 and p=0.27, respectively, Table 5). Men also had fewer type I muscle fibres than 

women (p=0.007, Table 5).  

Table 5: Participant Characteristics 

  Men Women P Value 

Age (y) 22 + 2 21 + 1 0.46 

Height (cm) 177.9 + 2.00 162.7 + 2.50 0.0001 

Weight (kg) 75.6 + 2.4 62.6 + 3.1 0.002 

BMI (kg/cm2) 23.7 + 0.8 22.9 + 0.60 0.45 

% BF 20.9 + 1.6 32.9 + 1.3 <0.0001 

VO2peak (ml O2/min/kg) 44.3 + 1.6 35.3 + 1.5 <0.001 

VO2peak (ml O2/min/kg FFM) 61.3 + 1.5 58.3 + 1.6 0.19 

VO2peak (ml O2/min/kg LB FFM) 185.4 + 10.9 172.1 + 4.2 0.27 

Daily Activity (steps/day) 8307 + 466 9679 + 856 0.22 

Fibre Type Distribution (% of total)    

           Type I 28 + 13.2 42 + 7.1 0.007 

           Type IIa 37 + 12.4 29 + 6.6 0.10 

           Type IIx 36 + 12.6 29 + 9.2 0.19 

Data are means + SEM. % BF: percent body fat, BMI: body mass index, FFM: fat free mass, LB 

FFM: lower body fat free mass.  
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Habitual dietary intake determined from 3-day food logs revealed that men consumed more 

energy (p=0.01, Table 6), which was due to a greater consumption of fat (p=0.016, Table 6) and 

protein (0.016, Table 6), but not CHO (p=0.07, Table 6). However, when protein intake was 

expressed relative to kg body weight there was no difference between the sexes (p=0.26, Table 

6). Furthermore, when expressed as a percentage of total energy intake there was no significant 

difference in CHO (p=0.42, Table 6), fat (p=0.33, Table 6), or protein (p=0.43, Table 6) intake 

between men and women.  

Table 6: Nutrient Profile 

  Men Women P Value 

Daily Energy (kcal) 2008 + 171 1477 + 78 0.01 

Protein     

            Absolute (g) 96 + 11 65 + 4 0.02 

        % of Daily Kcal 19 + 2 17 + 1 0.43 

            g/kgBW/d 1.27 + 0.2 1.07 + 0.1 0.26 

Fat    

         Absolute (g) 79 + 7 56 + 5 0.02 

         % of Daily Kcal 36 + 2 33 + 2 0.33 

Carbohydrate    

         Absolute (g) 234 + 23 186 + 11 0.07 

        % of Daily Kcal 47 + 2 50 + 2 0.43 

Data are means ± SEM. BW: body weight, d: day, g: gram.  
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Figure 4: Representative image of muscle cross section used for fibre typing. 

4.2 Measures of Intensity during HII exercise 

4.2.1 Wattage during HII exercise 

Men worked at a higher absolute wattage during exercise than women (p<0.0001, Figure 5A). 

Furthermore, when expressed relative to lower body (LB) FFM, the male group exercised at a 

higher wattage on the cycle ergometer during the high intervals compared to their female 

counterparts (p=0.02, Figure 5B). During the low intervals, when expressed relative to LB FFM, 

the female group exercised a higher relative wattage compared to their male counterparts 

(p=0.0002, Figure 5C). Additional comparisons of relative wattage can be found in 

supplementary Figure 1. 
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C 

 

Figure 5: A) Absolute wattage during high intervals, *greater than females, p<0.0001. B) 

Wattage during high intervals expressed relative to kg LB FFM, *greater than females, p=0.02. 

C) Wattage during low intervals expressed relative to kg LB FFM, *greater than males, 

p=0.0002. Data are reported as the mean ± SEM. 

4.2.2 Rating of Perceived Exertion during HII exercise 

There was no effect of sex on RPE (p=0.66, Figure 6B). RPE increased significantly during 

exercise (p<0.0001, Figure 6B) with no difference between the sexes (p=0.15, Figure 6B). There 

was no sex difference in the average RPE values during both the high and low intervals (p=0.81 

and p=0.49, respectfully, Figure 6A).  
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B 

 

Figure 6: A) Average RPE during high and low intervals. B) RPE during exercise, *greater than 

minutes 5-7, p<0.0001. Data are reported as the mean ± SEM.  

 

4.2.3 Heart rate during HII exercise 

There was no effect of sex on HR (p=0.17, Figure 7B). HR increased significantly during 

exercise (p<0.0001, Figure 7B) with a tendency for a difference between the men and women 

(p=0.06, Figure 7B). There was no sex difference in the average HR values during both the high 

and low intervals (p=0.24 and p=0.13, respectively, Figure 7A). The average %target HR during 

the high intervals, and peak HR achieved during exercise was higher in females than males 

(p=0.002, and p=0.002, respectively, Figure 7C). Interestingly, when comparing the HR response 

to the target HR, if average HR during the high-intensity intervals was used then women were 

right at target and men were below target; however, if peak HR during the high-intensity 

intervals was used, men were right at target and women were above target (Figure 7C).  
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C 

 

Figure 7: A) Average HR (bpm) during the high and low intervals. B) HR (bpm) during 

exercise, *greater than minute 5, p<0.0001. C) %Target HR based on averaged HR during high 

intervals and peak HR during HII exercise, *greater than males, p=0.002. Data are reported as 

the mean ± SEM. 

 

4.2.4 %VO2peak during HII exercise 

There was a main effect of time such that %VO2peak was higher during the high and low intervals 

compared to the warm up and cooldown (p<0.0001, Table 7). Furthermore, irrespective 

%VO2peak was higher during the cooldown than the warm up (p<0.0001, Table 7). Lastly, there 

was no difference in %VO2peak between the high and low intervals (Table 7).  

There was a main effect of sex such that, women exercised at a higher %VO2peak during the 

warm up, high intervals and cooldown  (p=0.001, p=0.011 and p=0.005, respectively, Table 7)., 

However, %VO2peak was not significantly different between men and women during the low 

intervals (p=0.25, Table 7).  Additional comparison of %VO2peak can be found in supplementary 

Table 1.  
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Table 7: %VO2peak during warm up, high intervals, low intervals and cool down  

 Warm Up High 

Intervals 

Low Intervals Cool down P Values 

%VO2peak 

 Men 

 Women  

 

30.3 +1.5e  

42.3 + 2.4 

 

 

 

55.8 + 3.6a,b,c 

68.9 + 3.2a,b 

 

 

 

62.4 + 3.2a,b 

67.2 + 2.6a,b 

 

 

 

37.0 + 2.3a,d     

51.5 + 3.4a 

 
 

 

Time: <0.0001 

Sex: 0.008  

S x T: 0.006 

 

P Vales are presented in order of main effect of time, main effect of sex, and interaction of sex 

and time. Data are means ± SEM.  a different than warm up, p<0.0001; b different than 

cooldown, p<0.0001; c different than women, p=0.011; d different than women, p=0.005;              
e different than women, p=0.001. 

 

 

4.3 Energy Expenditure during HII exercise 

Men expended more energy overall during the exercise bout compared to women (p=0.001, 

Figure 8A). However, energy expenditure relative to kg FFM was not different between the 

sexes (p=0.13, Figure 8B). 

A 
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B 

 

Figure 8: A) Total energy expenditure (kcal) during HII exercise, *greater than females, 

p=0.001. B) Total energy expenditure (kcal) relative to kg FFM. Data are reported as the mean ± 

SEM. 

 

4.4 Metabolic Response to HII Exercise 

4.4.1 Whole-body Substation Utilization during HII Exercise 

4.4.1.1 RER during HII Exercise 

There was a main effect of time such that during the high and low intervals, RER was higher 

than both the warm up (p<0.0001, Table 8) and cooldown (p<0.0001, Table 8). Furthermore, 

during the cooldown, RER was higher than the warm up (p<0.0001, Table 8); however, there 

was no difference in RER between the high and low intervals (p=0.27, Table 8). Sex had no 

effect on RER at any time point during exercise (p=0.55, Table8), nor did sex influence the 

change in RER throughout the exercise bout (p=0.29, Table 8).  
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4.4.1.2 Whole Body CHO Oxidation during HII Exercise 

Irrespective of how it was expressed, there was a main effect of time such that CHO oxidation 

was higher during the high and low intervals compared to warm up and cooldown (p<0.0001, 

Table 8 and Table 9). Furthermore, irrespective of how it was expressed CHO oxidation was also 

higher during the warm up than the cooldown (p<0.0001, Table 8 and Table 9). Additionally, 

when expressed as rate of oxidation (g/min), absolute g oxidized, or g oxidized relative to BW or 

FFM, CHO oxidation was higher during the low intervals compared with the high intervals 

(p=0.002, p=0.002, p=0.003 and p=0.007, respectively, Table 9). However, there was no 

difference in % CHO contribution to TEE between the high and low intervals (p=0.28, Table 8). 

There was a main effect of sex such that the rate of CHO oxidation, the absolute number of 

grams of CHO oxidized and grams of CHO oxidized expressed relative to BW was higher in 

men than women. (p<0.0001, p<0.0001 and p=0.046, respectively, Table 8 and 9). There was no 

effect of sex on the % CHO contribution to TEE or grams of CHO oxidized expressed relative to 

FFM (p=0.56 and p=0.40, respectively, Table 8 and Table 9).  

 There was a significant sex x time interaction such that the rate of CHO oxidation and absolute 

grams of CHO oxidized was higher in men than women during the high intervals (p=0.001, 

Table 8 and Table 9), low intervals (p<0.0001, Table 8 and Table 9), and cooldown (p=0.001, 

Table 8 and Table 9), but not the warm up (p=0.65, Table 8 and Table 9). There was also a 

significant interaction of sex x time on the grams of CHO oxidized expressed relative to BW 

where men oxidized more CHO during the low intervals (p=0.001, Table 9) than women. There 

were no other sex x time interactions for any of the other CHO oxidation measures (Table 8 and 

Table 9). 
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Whether expressed in absolute terms or relative to BW men oxidized more CHO than women 

(p<0.0001, p=0.046, respectively, Table 11) overall during the exercise bout. However, when 

expressed relative to fat-free mass, the sex difference was eliminated (p=0.40, Table 11). 

4.4.1.3 Whole Body Fat oxidation during HII Exercise 

Irrespective of how it was expressed, there was a main effect of time (p<0.0001, Table 8 and 

Table 9) such that fat oxidation during the warm up was higher than all other time points. 

Additionally, the % fat contribution to TEE and rate of fat oxidation were higher during the 

cooldown than both the high and low intervals (p<0.0001, Table 8). Furthermore, fat oxidation 

was higher during the cooldown than the low intervals when expressed as absolute grams of fat 

oxidized (p=0.006, Table 9) or grams of fat oxidized relative to body weight (p=0.003, Table 9) 

and FFM (p=0.004, Table 9). Lastly, during the high intervals, the rate of fat oxidization, the 

absolute grams of fat oxidized and grams of fat oxidized relative to BW and FFM were higher 

than the low intervals (p=0.016, p=0.016, p=0.014 and p=0.019 respectively, Table 8 and Table 

19). There was no difference in %fat contribution to TEE between the high and low intervals 

(p=0.28, Table 8).  

There was no effect of sex or a sex x time interaction for fat oxidation during the exercise bout 

irrespective of how it was expressed. Furthermore, when totalled across the entire exercise bout 

there was no difference in the number of grams of fat oxidized expressed in absolute terms 

(p=0.94, Table 9), or relative to BW (p=0.48, Table 9) or FFM (p =0.19, Table 9). 
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Table 8: RER, %CHO and %Fat Contribution to TEE and Rate of CHO and Fat Oxidation 

(g/min) during Warm Up, High Intervals, Low Intervals and Cooldown 
 Warm Up High 

Intervals 

Low Intervals Cooldown P-Value 

RER 

 Men 

 Women   

 

0.84 + 0.2 

0.86 + 0.02 

 

0.99 + <0.01a,b 

0.97 + 0.01a,b 

 

0.99 + <0.01a,b 

0.98 + 0.01a,b 

 

0.96 + 0.01a 

0.93 + 0.01a 

 

Time:<0.0001 

Sex: 0.55 

S x T: 0.29 

% CHO 

Contribution to 

TEE 

 Men 

 Women   

 

 

49.2 + 7.8 

54.7 + 7.6 

 

 

95.4 + 1.5a,b 

91.8 + 1.9a,b 

 

 

96.8 + 1.1a,b 

93.5 + 2.1a,b 

 

  

85.9 + 3.2a 

77.0 + 3.9a 

 

 

Time: <0.0001 

Sex:0.56 

S x T: 0.31 

% Fat  

Contribution to 

TEE 

 Men 

 Women   

 

 

50.8 + 7.8 

45.3 + 7.6 

 

 

4.6 + 1.5a,b 

8.2 + 1.9a,b 

 

 

3.2 + 1.1a,b 

6.5 + 2.1a,b 

 

 

14.1 + 3.2a 

23.0 + 3.9a 

 

 

Time: <0.0001 

Sex: 0.56 

S x T: 0.31 

CHO Oxidation 

Rate (g/min) 

 Men 

 Women   

 

 

0.61 + 0.10b 

0.56 + 0.07 

 

 

2.35 + 0.14a,b,e 

1.69 + 0.10a,b,e 

 

 

2.63 + 0.13a,b,d,f 

1.69 + 0.10a,b,d,f 

 

 

1.39 + 0.09,a,e 

1.02 + 0.04a,e 

 

 

Time: <0.0001 

Sex: <0.0001  

S x T: <0.0001 

Fat Oxidation Rate 

(g/min) 

 Men 

 Women   

 

 

0.27 + 0.03 

0.22 + 0.04 

 

 

0.05 + 0.02a,b 

0.07 + 0.02a,b 

 

 

0.04 + 0.01a,b,c 

0.03 + 0.01a,b,c 

 

 

0.10 + 0.02a 

0.15 + 0.03a 

 

 

Time: <0.0001 

Sex:0.98 

S x T:0.17 

P Vales are presented in order of main effect of time, main effect of sex, and interaction of sex 

and time. Data are means ± SEM. a different than warm up, p<0.0001; b different than cooldown, 

p<0.0001; c different than high intervals, p=0.016; d different than high, p=0.002, e different than 

women, p=0.001; f different than women, p<0.0001. 
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Table 9: Absolute and Relative Grams of CHO and Fat Oxidized during Warm Up, High 

Intervals, Low Intervals, Cooldown and Total  
 Warm Up High Intervals Low  

Intervals 

Cooldown P-Value Total 

CHO (g) 

 Men 

         Women   

 

3.1 + 1.6 

2.8 + 0.3 

 

23.5 + 1.4a,e,m 

16.9 + 1.0a,e 

 

 

26.3 + 1.3a,e,k,n 

16.9 + 0.9a,e,k 

 

7.0 + 0.4a,m 

5.1 + 0.2a 

 

Time: <0.0001  

Sex: <0.0001  

S x T: <0.0001 

 

59.8 + 3.2n 

41.7 + 1.8 

 

Fat (g) 

 Men 

         Women   

 

1.3 + 0.2 

1.1 + 0.2 

 

0.5 + 0.2a 

0.7 + 0.2a 

 

0.4 + 0.1a,b,g 

0.3 + 0.1a,b,g 

 

0.5 + 0.1a 

0.7 + 0.1a 

 

Time: <0.0001  

Sex:0.94 

S x T:0.10 

 

2.8 + 0.5 

2.8 + 0.5 

g CHO/kg 

BW 

 Men 

          Women   

 

 

0.04 + 0.01 

0.05 + 0.01 

 

 

0.31 + 0.02a,e 

0.27 + 0.01a,e 

 

 

0.34 + 0.02a,e,j,m 

0.27 + 0.01a,e,j 

 

 

0.09 + <0.01a 

0.08 + 0.01a 

 

 

Time: <0.0001 

Sex: 0.046  

S x T: 0.02 

 

 

0.84 + 0.07l 

0.68 + 0.03 

 

g Fat/kg BW 

 Men 

         Women   

 

 

0.02 + 0.01 

0.02 + <0.01 

 

 

<0.01 + <0.01a 

0.01 + <0.01a 

 

 

0.01 + <0.01a,d,h 

<0.01 + <0.01a,d,h 

 

 

0.01 + <0.01a 

0.01 + <0.01a 

 

 

Time: <0.0001 

Sex: 0.49  

S x T: 0.13 

 

 

 

0.04 + <0.01 

0.04 + 0.01 

g CHO/kg 

FFM 

 Men 

          Women   

 

 

0.05 + 0.01 

0.08 + 0.01 

 

 

0.42 + 0.03a,e 

0.46 + 0.02a,e 

 

 

0.47 + 0.03a,e,i 

0.45 + 0.02a,e,i 

 

 

0.12 + 0.01a 

0.14 + 0.01a 

 

 

Time: <0.0001  

Sex: 0.40 

S x T: 0.26 

 

 

1.14 + 0.12 

1.13 + 0.05 

g Fat/kg 

FFM 

 Men 

          Women   

 

 

0.02 + <0.01 

0.03 + <0.01 

 

 

0.01 + <0.01a 

0.02 + <0.01a 

 

 

0.01 + <0.01a,c,f 

0.01 + <0.01a,c,f 

 

 

0.01 + 0.01a 

0.02 + <0.01a 

 

 

Time: <0.0001 

Sex: 0.19  

S x T:0.12 

 

 

0.05 + 0.01 

0.07 + 0.01 

P Vales are presented in order of main effect of time, main effect of sex, and interaction of sex 

and time. Data are means ± SEM. a different than warm up, p<0.0001; b different than cooldown, 

p=0.006;c different than cooldown, p=0.004; d different than cooldown, p=0.003; e different than 

cooldown, p<0.0001; f different than high, p=0.019; g different than higher p=0.016;                       
h different than high p=0.014; i different than high, p=0.007; j different than high, p=0.003;           
k different than high, p=0.002; l different than women , p=0.046; m different than women, 

p=0.001; n different than women, p<0.0001. 
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Figure 9: %CHO and %fat contribution to TEE during HII exercise. 

 

4.4.2 Muscle Glycogen Utilization during HII exercise 

Muscle glycogen concentration was similar between men and women at rest and post exercise 

(p=0.54, Figure 10A). Muscle glycogen decreased from pre to post exercise (p<0.0001, Figure 

10A) with no difference in the decrease between the sexes (p=0.63, Figure 10A).  

A 

 



57 
 

B 

 

`C 

 

Figure 10: A) Muscle glycogen utilization during HII exercise, *less than pre, p<0.0001. B) 

Representative PAS stained pre-exercise image. C) Representative PAS stained post-exercise 

image (same participant as B). 
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4.4.3 Blood Lactate Concentration during HII Exercise 

Blood lactate concentration was not significantly different between men and women at rest or 

during exercise (p=0.35, Figure 11B). Blood lactate increased significantly during exercise in 

both men and women (p<0.0001, Figure 11B) with the increase being greater in men than 

women (sex x time interaction, p=0.02, Figure 11B). Post hoc test revealed that at the end of 

warm up, blood lactate concentrations were greater in women than men (p=0.007, Figure 11B). 

There was no sex difference in peak blood lactate concentration (p=0.17, Figure 11C) or the 

average blood lactate concentration during the high and low intervals (p=0.36 and p=0.35, 

respectively, Figure 11A). When resting blood lactate levels were controlled for, blood lactate 

AUC was higher in men than women (p=0.007, Figure 11D); however, this was not found when 

resting blood lactate levels were not controlled for (p=0.32, Figure 11E). 

A 
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D 

 

E 

 

Figure 11: A) Average blood lactate concentration during high and low intervals. B) Blood 

lactate concentration during HII exercise, *greater than minute 5, p<0.0001; **greater in females 

than males, p=0.007. C) Peak blood lactate concentration. D) Blood lactate AUC with resting 

values controlled for, *p=0.007. E) Blood lactate AUC with resting values not controlled for 

(p=0.32). Data are reported as the mean ± SEM. 
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4.4.4 Change in Protein Phosphorylation Status during HII Exercise  

There was no difference in P-PDHE1α between men and women (p=0.31, Figure 12A). PDHE1α 

phosphorylation decreased during exercise (p=0.002, Figure 12A) with no difference between 

the sexes (p=0.18, Figure 12A). Western blot images for all participants for PDHE1α  can be 

found in supplementary Figure 2. 

There was no difference in P-CK between men and women (p=0.23, Figure 12B). CK 

phosphorylation decreased during exercise (p=0.002, Figure 12B) with no difference between the 

sexes (p=0.243, Figure 12B). Western blot images for all participants for P-CK can be found in 

supplementary Figure 3.  
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Figure 12: A) Phosphorylation status of pyruvate dehydrogenase E1α normalized to total protein 

content, *less than pre, p=0.002. B) Phosphorylation status of creatine kinase normalized to total 

protein content, *less than pre, p0.002. Data are reported as the mean ± SEM. 
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Chapter Five: Discussion 

5.1 Overall Summary 

We found similar decreases in muscle glycogen, phosphorylation status of glycolytic enzyme 

PDHE1α, and phosphorylation status of HEPT system enzyme CK. However, despite a similar 

decline in muscle glycogen and PDHE1α phosphorylation, lactate AUC was higher in men than 

women. Interestingly, this all occurred despite women exercising at a slightly higher relative 

%VO2peak and achieving a higher average %target HR during the high intervals. Unfortunately, 

given that steady state during exercise was not achieved due to the interval nature of the exercise 

bout leading, it is difficult to make any conclusions regarding sex differences in whole body 

substrate utilization. Overall, these findings suggest that during an acute bout of HII exercise 

with fixed intensity low intervals, men may rely on their anaerobic glycolytic pathways more 

than women, however the reliance on muscle glycogen and the HEPT system is similar.  

5.2 Activation of HEPT and Glycolysis during HII Exercise 

5.2.1 Activation of HEPT during HII Exercise 

The phosphorylation status of the HEPT system enzyme CK was used in the present study to 

give insight into the activation of the HEPT system during an acute bout of HII exercise. 

Considering that phosphorylation of CK inhibits its activity118,119, our finding that 

phosphorylated CK decreased pre to post exercise suggests that the HEPT system was 

upregulated during exercise. The mechanism by which CK is phosphorylated however is unclear 

with previous research suggesting that there is likely that more than one mechanism responsible 

for the regulation of CK phosphorylation118,119. In one study using rat heart muscle118, protein 

kinase C (PKC) was found to phosphorylate CK. However, in another study using rabbit skeletal 

muscle119 it was found that AMPK phosphorylated CK. The latter study also suggested that 
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AMPK can be activated by a drop in PCr:Cr ratio, whereby it phosphorylates CK as a 

preservation mechanism for PCr breakdown119. This would refute our findings since we know 

that AMPK increases with exercise22, this would therefore theoretically result in an increase in P-

CK. However, if phosphorylating CK inhibits CK activity, then that would suggest the HEPT 

system is not activated during exercise (or at least not through this mechanism). In agreement 

with the present findings, another trial from our lab found P-CK to decrease after an acute bout 

of low-load, high repetition exercise120, implying that that the HEPT system is upregulated 

through dephosphorylation of CK during exercise by an unknown mechanism, or group of 

mechanisms. Future research in human skeletal muscle is needed to identify the underpinning 

mechanisms responsible for phosphorylating this enzyme and how it may be influenced by 

exercise. 

5.2.2 Activation of Glycolysis during HII Exercise 

The increase in glycolytic activation that is seen during intense exercise results in an increased 

flux of glycogen to pyruvate22,26. Pyruvate is then converted either to lactate under anaerobic 

conditions or acetyl-CoA under aerobic conditions22,26. Importantly, the contribution of pyruvate 

flux to each of these pathways is relative, and not an ‘all or none’ phenomenon22. The 

phosphorylated state of the enzyme PDHE1α inhibits the conversion of pyruvate to acetyl-

coA121. P-PDHE1α can be dephosphorylated however to remove this inhibition when oxygen 

becomes more readily available121. Our findings showed that indeed, there was a reduction in 

phosphorylated PDHE1α from pre to post exercise, suggesting an increase in aerobic metabolism 

from rest since the ability to convert pyruvate to acetyl-coA had less inhibition. Moreover, 

anaerobic metabolism also seems to be upregulated as there was an increase in blood lactate 

concentration from pre to post exercise. Blood lactate increases during MIC 
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exercise11,13,17,21,23,86,88, but to a greater extent during HII47,48,61,122 and SI9,10,65,66 exercise, 

highlighting the anaerobic aspect of interval exercise. Other exercise trials have corroborated our 

findings that phosphorylation of PDHE1α decreases during 20 minutes of knee extensor exercise 

at 65-70%Wattmax
123, during 3 hours of knee extensor exercise at 50% Wattmax

124, and during 30 

minutes of cycling at 70% Wattmax
125. The fact that both aerobic and anaerobic aspects of the 

glycolytic system are upregulated during our exercise bout would suggest that both aerobic and 

anaerobic glycolytic pathways are relied upon significantly during HII exercise.  

5.2.2.1 Glycogen Utilization during HII Exercise 

Although the exact concentration of muscle glycogen was not determined in the present study, 

we were able to obtain a relative measure of glycogen utilization using PAS staining. We found a 

significant decrease in muscle glycogen of ~34%. Acute MIC11,17,18,20,86 and interval9,10,122,46–

48,61,65,66,68,89 exercise trials have also shown that glycogen contributes significantly to energy 

expenditure during exercise. The extent of glycogen utilization during MIC exercise seems to 

plateau around 30-50% depletion11,17,18,20,86. Our findings are within this range, emphasizing the 

efficiency of interval exercise as it shows that only 10 minutes of intense exercise (interspersed 

with low intensity cycling) was able to elicit similar amounts of muscle glycogen utilization to 

90 minutes of continuous cycling at a moderate intensity (i.e ~60-65%VO2peak.). In the present 

study, the glycolytic system must have therefore been activated to a greater extent than MIC 

exercise trials during the high intervals since similar degrees of muscle glycogen degradation 

was achieved in much less time; confirming HII exercise to be more glycolytic in nature than 

MIC exercise.  

In other acute HII exercise trials, glycogen seems to be depleted by about ~40-50%46–48,61,122, 

which is slightly higher than what our study found. Most of these HII exercise studies however, 
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used protocols of  6-8 intervals that were 4-5 minutes long, with 1-2 minutes rest, at 85-100% 

aerobic capacity46–48,122. Therefore, the difference between our findings and these HII exercise 

trials is expected since the overall time spent exercising was longer and the intensity was slightly 

higher in the other HII exercise trials compared to our exercise protocol. 

Glycogen also contributes significantly to TEE  during SI exercise9,10,65,66,68, with the extent of 

overall glycogen depletion to be around ~20-30%66,68. This is slightly less than what our study 

found, and this difference could partially be attributed to the difference in work:rest ratios 

between SI and HII exercise protocols. For SI protocols, a longer rest duration provides ample 

time for the HEPT system to replenish PCr, providing a greater capacity for the muscle to use 

PCr during each sprint and resulting in less of a demand for glycogen. Some SI exercise studies 

that have measured fibre-specific muscle glycogen utilization have found that the extent of 

glycogen degradation was higher in type II than type I fibres9,10,65. Additionally, the one HII 

exercise study to my knowledge that investigated fibre-specific glycogen utilization corroborated 

these findings61. Thus, the results of the present study where muscle glycogen decreased by 

~34% indicates that our HII exercise trial relied on glycolytic systems greater than MIC exercise, 

equally to other HII exercise, and equally, or slightly more than SI exercise.   

5.3 Whole Body Substrate Oxidation during HII Exercise 

Indirect calorimetry data revealed that on average, CHO accounted for 94% of total energy 

expenditure (TEE) during the high intervals, and 95% during the low intervals; whereas fat 

contributed to 6% of TEE during the high intervals and 5% during the low intervals (assuming 

negligible protein oxidation). During the exercise bout, CHO oxidation rates averaged to be 

~2.09g/min (2.02 g/min during the high intervals and 2.16g/min during the low intervals); 

whereas for fat, the oxidation rate was~0.05g/min (0.06g/min during high intervals and 
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0.03g/min during low intervals). Importantly however, given that it takes ~2-3 minutes to reach 

steady state during exercise and the intervals in the current trial were only 1 minute in duration, 

we cannot assume that these results are valid. Indeed the finding that CHO oxidation was higher 

during the low intervals compared to the high intervals supports that these data are invalid as 

with increasing exercise intensity, there is an increased demand for CHO22. Therefore, the 

validity of the results derived from the indirect calorimetry measurements are in question and 

due to this, we unfortunately cannot make any definitive conclusions or speculations about 

whole-body substrate utilization. 

5.4 Sex differences during HII Exercise 

5.4.1 Exercise Intensity 

At an absolute level, men expended more energy throughout the exercise bout. However, when 

expressed relative to FFM, the effect of sex was eliminated. This is in accordance with the fact 

that men have a higher body mass and therefore require a greater energy output during exercise 

at the same relative intensity compared to women who have a lower body mass126.  

Given differences in body weight and body composition, sex comparative exercise trials are 

conducted such that men and women work at the same relative exercise intensity so that the fuel 

utilization pattern can be accurately compared. In the present study, which used a standardized 

HII exercise protocol, the intensity during the warm up, low intervals and cooldown was a fixed 

intensity of 50W, which resulted in women working at a higher relative intensity throughout the 

exercise bout (avg 68%VO2peak for women vs. avg 59% VO2peak for men). Additionally, when the 

workrate was expressed relative to LB FFM, in order to account for differences in leg muscle 

mass between the sexes, women worked at a higher workrate than men during the warm up, low 

intervals and cooldown (avg workrate of 4.0 Watts/LB-FFM for women vs avg workrate 2.8 
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Watts/LB-FFM for men). Furthermore, despite using the same relative workrate for the high 

intervals, when workrate was expressed relative to LB-FFM for the high intervals, workrate was 

higher in men than women (avg workrate of 9.3Watts/LB-FFM for women vs avg workrate 10.9 

Watts/LB-FFM for men). Given that men and women were exercising at different intensities 

throughout the exercise bout, the sex differences (or lack thereof) in metabolism that were found 

in the current trial are hard to interpret as they may reflect true sex differences in metabolism or 

differences due to exercise intensity. Importantly, however, is that the intent of the current trial 

was to examine how sex influenced fuel metabolism during a standardized bout of HII exercise 

since that is what is commonly used in HII training trials that have found a blunted effect of 

training on insulin sensitivity in women. Thus, the differences in metabolism observed in the 

current trial should be examined further to determine whether they may underpin the blunted 

effect of HII training on insulin sensitivity in women.    

Women exercised at a higher absolute and relative intensity during much of the exercise bout. 

When exercising at a higher intensity there is a greater reliance on CHO substrates22. Therefore, 

the higher exercise intensity at which women were working may have masked a sex difference in 

muscle glycogen utilization and we cannot necessarily say that muscle glycogen does not differ 

between men and women during HII exercise when performed at the same relative intensity. 

Additionally, since women were working at a higher relative intensity during the low intervals 

their ability to recover between intervals may have been compromised compared with men.  

Together these findings suggest that men and women may adapt differently in response to a 

period of HII training and that, since the stimulus is greater in women, women may respond 

more favourably to HII training than men. This is in contrast to what is seen in response to HII 

training as physiological and metabolic adaptations are reported to be similar between men and 
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women4,5,127,128 and women respond less favourably than men when it comes to the ability of HII 

training to improve insulin sensitivity3–5. However, perhaps men and women adapt similarly to 

HII training due to the fact that men work at a higher relative workrate during the high intensity 

intervals. Indeed, if the relative energy requirement during the high intervals is greater in men, 

then they may be using their HEPT system to a greater extent as well during those intervals 

compared with women. If this is the case, perhaps the ratio of AMP:ATP is also greater in men, 

which would result in greater activation of AMPK, which in turn may explain why insulin 

sensitivity improves to a greater extent in men than women. Furthermore, perhaps it is the 

intensity of the high intervals that drives the improvement in insulin sensitivity. Indeed, 

increased reactive oxygen species following exercise have been suggested as a mechanism by 

which training induces adaptations129,130 and reactive oxygen species generation is intensity-

dependent131. Thus, perhaps it is the difference in relative intensity between men and women 

during the high intervals that results in a blunted/absent improvement in insulin sensitivity in 

women following HII training.  

Despite men working at a higher wattage during the high intervals relative to LB FFM, women 

exercised at a significantly higher %VO2peak than men during the high intervals (women: 69% vs 

men: 55%), but not during the low intervals (women: 67% vs men: 62%,). When the high and 

low interval VO2 measures were averaged, women exercised at a higher %VO2peak (women: 68% 

vs men: 59%) than men. The apparent difference in relative exercise intensity between the sexes 

can most likely be attributed to differences in relative intensity during the low intervals since all 

participants exercised at 50W during the low intervals. To determine the %VO2peak that 50W 

elicits in each group without the influence of EPOC, the VO2 from the final two minutes of warm 

up (representing steady state at 50W) was averaged and it was found that 50W corresponded to 
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42% VO2peak in women and only 30%VO2peak in men. Therefore, it is of no surprise that the 

relative %VO2peak for women during the overall exercise was higher, since they exercised at a 

higher relative intensity during the low intervals.  

Interestingly, despite the fact that participants underwent a familiarization visit to ensure that the 

workrates they were cycling at equated to 90% HRmax (target HR), females achieved 101% of the 

target HR on average during the high intervals, whereas males only achieved 93%. When we 

look at peak HR achieved during the exercise bout however, men achieved 100% of their target 

HR whereas women overshot their target and achieved 107%. Therefore, whether men or women 

were working at the targeted HR was dependent on how we analyzed the data. Regardless, in 

both instances, women achieved a higher % target HR. This finding was unexpected since we 

assumed that the familiarization visit confirmed that the appropriate HR response would be 

achieved during the acute trial. Furthermore, although our participants were fasted for the HII 

exercise trial, and fed during the familiarization visit, being in a fed vs fasted state does not 

influence HR response to exercise3,132,133.  Our HR findings are in line with some literature, 

including one HII exercise trial that found women had a higher %HRmax on average, during 6 x 

4-min intervals, despite working at a slightly lower relative %VO2peak
98. As well, in men and 

women over the age of 60, women had higher HR values for a given submaximal workload134. 

Lastly, after only 4 x 30sec sprints at a treadmill speed set to elicit 110% VO2peak, females 

achieved a higher %HRmax than their male counterparts115. The findings from these studies 

suggest that at the same, or lower relative intensity, women reach a higher %HRmax. This 

somewhat supports our finding that women had a significantly higher relative HR than men 

during exercise, however it does not address the fact that the familiarization visit failed to bring 

this issue to light. Although our female participants were working at a higher intensity during the 
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low intervals, the findings from the two aforementioned interval studies98,115 found that women 

had higher relative HRs during the high intervals even when the recovery period intensity was 

the same between the sexes. Therefore, we cannot definitively conclude that the increased 

relative HR females experience in our trial was due to differences in intensity during the 

recovery periods. 

It was also found that although women exercised at a higher relative %VO2peak and %HRmax, 

there was no difference in RPE throughout the exercise bout. As well, average RPE during the 

high and low intervals were similar between men and women, despite women working at a 

greater relative workrate during the low intensity intervals. This lack of a sex difference in RPE 

is not surprising considering that research has suggested that at a given relative workrate, women 

select a lower RPE score135–138. 

The current trial utilized the standard HII exercise mode used in numerous HII training 

trials3,107,113. The finding that the relative intensity during this specific HII exercise protocol 

differs between men and women is important as it highlights that the training stress induced by 

this mode of training differs between men and women. The finding that the exercise intensity 

during HII exercise is higher in women than men makes it difficult to determine whether sex 

differences in metabolism during HII exercise are due to sex, exercise intensity or both. 

However, this specific HII protocol is what is used in clinical populations3,107,113 and has shown a 

lack of effect of HII training on IS improvements in women3. Thus, if differences in metabolism 

underpin the lack of effect of HII training on IS it is important to study sex differences in 

metabolism during HII exercise even if the exercise intensity differs between the sexes.  
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5.4.2 Metabolism 

5.4.1 Whole-body Substrate Oxidation 

There was no difference in RER between men and women during HII exercise. Consequentially, 

there was no difference in % contribution of substrate to TEE at the whole-body level at any time 

point. Although carbohydrates contributed 96% of TEE in males and only 93% in females when 

the high and low intervals were averaged together, this difference was not significant. However, 

when expressed absolutely (g oxidized), relative to total body mass (g/kg) or as a rate (g/min), 

men oxidized a greater amount of CHO throughout the exercise bout. When expressed relative to 

FFM however, CHO oxidation was not different between men and women. There was no sex 

difference in any measure of fat utilization during HII exercise. As previously mentioned 

however, due to the questionable validity of the indirect calorimetry measurements, we cannot 

definitively say if this is in fact the case or interpret these results any further.   

5.4.2 CHO Utilization 

Muscle glycogen utilization during HII exercise was similar between the sexes, which is in 

agreement with the findings of one SI exercise study that did not find overall muscle glycogen 

utilization to differ between the sexes89. However, two other SI exercise studies reported sex 

differences in muscle fibre-type specific glycogen utilization with women using less muscle 

glycogen in type I fibres, but no difference in muscle glycogen utilization in type II fibres9,10. 

Unfortunately these two studies did not determine whether the sex difference in type I muscle 

glycogen utilization equated to an overall effect of sex on muscle glycogen utilization; however, 

the one study noted that overall muscle glycogen utilization was ~20% lower in women10, but 

did not indicate whether this was statistically significant. Together these findings suggest that it 
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may be difficult detect sex differences in muscle glycogen utilization during interval training if 

fibre-type specific glycogen utilization is not determined.  

Despite muscle glycogen utilization being similar between men and women, lactate AUC 

(representing anaerobic glycolysis) was higher in men. This would suggest that there was a 

greater flux of the pyruvate produced during exercise towards anaerobic metabolism in men than 

women and that men used their anaerobic glycolytic systems to produce ATP more than women. 

The greater reliance on anaerobic glycolysis in men was seen without a sex difference in the 

change in phosphorylation status of PDHE1α during exercise. This would suggest that men and 

women had equal capacity to flux pyruvate towards aerobic metabolism. To my knowledge, the 

only other sex comparative HII exercise trial that measured blood lactate concentration did not 

find any sex differences in blood lactate throughout the exercise bout98. This group however, 

only analyzed blood lactate throughout the exercise bout and did not determine lactate AUC98, 

which may be better able to detect slight differences during exercise between the sexes.  

5.4.3 HEPT system 

There was no difference in the extent that phosphorylated CK decreased between the sexes 

during HII exercise. As mentioned previously, phosphorylation of CK inhibits its ability to break 

down PCr118,119. Therefore, it would make sense that P-CK would decrease during intense 

exercise to allow for less inhibition of CK and increased breakdown of PCr. Consequentially, a 

similar decrease of P-CK between the sexes suggests that the removal of CK inhibition and 

capacity for PCr breakdown was the same in men and women. If PCr breakdown was the same, 

we could speculate that the downstream HEPT system metabolite AMP would increase and 

subsequently, ATP would also decrease similarly in men and women. This supposed increase in 

AMP:ATP ratio would imply that the extent of AMPK activation, and therefore AMPK-
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dependent GLUT 4 translocation would be comparable between the groups, resulting in similar 

improvements in IS. This refutes our hypothesis and suggests that sex differences in AMPK 

activation are not responsible for the differential insulin sensitizing effect of HII exercise in men 

and women. Importantly, future studies should measure HEPT metabolites in order to confirm or 

refute this hypothesis.  

Although we did not measure if PCr was broken down similarly in men and women during HII 

exercise, two other SI exercise trials found no difference in PCr breakdown between men and 

women during the exercise bout9,10. However, one of these trial found that women accumulated 

less IMP and experienced less of a reduction of ATP compared to men during the recovery 

periods between intervals10. Unfortunately, this study did not measure AMP concentrations 

during the SI exercise bout10. However, the fact that IMP is formed directly from AMP22 would 

suggest that if women have lower concentrations of IMP, they most likely had a lower 

concentration of IMP’s precursor AMP. Thus, if the concentration in AMP during SI exercise is 

lower in women, then this could lead to a difference in AMPK activation. In support of this 

hypothesis, AMPK activation has also been shown to be lower in women during MIC exercise21. 

Therefore, future HII exercise studies need to measure AMP levels and AMPK activation to 

determine if a sex influences AMPK activation during HII exercise. This would allow for a better 

mechanistic understanding of sex differences in AMPK activation and in turn, IS improvements 

during HII exercise.  

In contrast to the finding that sex does not influence PCr utilization during SI exercise, another 

study from our lab found that Cr increased to a greater extent in men than women during an 

acute bout of low-load, high repetition resistance (LLHR)120, suggestive of a greater extent of 

PCr breakdown and reliance on HEPT metabolism. This study also found an attenuated decrease 
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of P-CK in men compared to women during the exercise bout. This second finding would 

suggest that women have a greater capacity to breakdown PCr since there is less P-CK to inhibit 

the reaction, which is in contrast to our findings. Regardless, our findings align more with those 

from SI studies9,10 indicating no sex difference in activation of the HEPT system, which could 

theoretically result in equal concentrations of downstream HEPT system metabolites ATP and 

AMP and equal activation of AMPK. However, more research into establishing and 

understanding the basic sex differences within the HEPT system during HII exercise are required 

before we can draw full conclusions as to if men and women utilize their HEPT systems equally 

during intense exercise.  

5.5 Limitations 

The main limitation of this study was that a measure of HEPT system metabolites was not 

obtained. These metabolites, specifically the ratio of AMP to ATP, are the hypothesized link 

between blunted improvements in IS in women and exercise. MIC21 and SI10 exercise studies 

have shown that men have greater increases in HEPT system metabolite concentrations, however 

no HII exercise study to date has investigated this. Unfortunately, due to time restraints and lack 

of laboratory access due to COVID-19, the originally intended muscle metabolite assays were 

unable to be seen through. A measure of HEPT system metabolite concentrations would give us 

a more definitive indication as to if the observed sex differences in IS is linked to this ATP:AMP 

ratio mechanism. 

With the intervals used in our protocol only lasting only 1 minute in duration, an exercise steady 

state was not reached, making it difficult to estimate substrate oxidation. Indeed, the RER values 

during the intervals were often greater than 1.0 (most likely due to hyperventilation resulting in 

greater volumes of CO2 being exhaled). Perhaps an additional visit where participants exercise at 
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their high intensity wattage for a duration where steady state could be reached (i.e. 5-8 min) 

would allow for a more exact determination of VO2 and RER during the high intervals. This 

would therefore allow for whole-body substrate oxidation calculations to be conducted with a 

higher degree of validity. 

The HII exercise protocol used in the current study was meant to mimic protocols used in clinical 

trials examining sex differences in improvements in IS and used an absolute workrate for the 

low-intensity intervals3,107,113. In terms of study design, having a relative recovery period 

workrate, rather than an absolute one would allow us to more accurately determine whether there 

are sex differences in metabolism during a bout of HII exercise. However, since the purpose of 

the trial was to examine whether sex differences in metabolism during HII exercise could be 

responsible for the differential effect of HII training on IS it was important to use the HII 

exercise protocol that has been used in these previous trials. Our findings raise the question of 

the validity of this protocol when determining the effect of sex. Numerous other sex comparative 

interval studies have used an absolute wattage during their recovery periods3,4,66,89,113,114 although 

this concern was never discussed. Moving forward, in order for future studies to ensure that their 

results reflect a true sex difference in metabolism, a relative recovery period would be necessary. 

The timing of our muscle biopsies could also be considered a limitation as it is unclear how the 

phosphorylation of CK and PDHE1α would change during the cooldown and thus by including 

the cooldown, we may have missed sex differences in the HEPT and glycolytic pathways. It 

would be ideal to obtain a muscle biopsy immediately after the tenth high interval, as well as 

immediately after the cooldown (as was done in this trial), in order to determine not only how the 

HII exercise bout as a whole influenced the phosphorylation status of these enzymes, but how the 

high intensity intervals influenced them as well in both sexes. 
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5.6 Future Directions 

To fully identify and understand the underpinning mechanisms responsible for sex-based 

differences in metabolism during HII exercise, additional research is needed. Future studies 

should investigate the content and activity of key proteins, metabolites and enzymes that are 

involved in the metabolic response of the muscle and fuel utilization during HII exercise. Sex 

differences at the molecular level could provide insight into which mechanism(s) may be 

contributing to differences in IS improvements. Although we hypothesized that the mechanisms 

responsible for sex differences in IS are anaerobic, investigation into the aerobic pathway would 

also be beneficial since there still is an aerobic component to HII exercise. As well, some MIC 

training trials, which are more aerobic in nature, have also found limited improvements in IS in 

women139,140, suggesting that this sex difference is not necessarily limited to primarily anaerobic 

exercise. Additionally, either comparing luteal phase to follicular phase women or 

supplementing men with estrogen, would allow for the role of estrogen in mediating fuel 

utilization during HII exercise to be further understood. Future HII exercise trials could also 

benefit from including a greater representation of females and untrained individuals in their 

sample since the majority of HII exercise studies are done in endurance trained men47,53,116,122,141–

143. Although there are still many gaps in the literature surrounding sex-based differences in the 

metabolic response to HII exercise, the present study sets the foundation for which future 

research can be conducted and compared to. 

5.7 Conclusion 

The findings from the current study differ from previous SI exercise trials in that we did not find 

an effect of sex on muscle glycogen utilization during exercise. However, these previous trials 

only found a sex difference in type I muscle glycogen utilization, not total glycogen utilization. 
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Importantly, we show that despite similar muscle glycogen utilization, men relied on anaerobic 

glycolysis to a greater extent than women (as evidenced by a greater lactate AUC), suggesting 

that more of the pyruvate produced during HII exercise was fluxed towards aerobic metabolism 

in women. However, this occurred despite no sex difference in the change in phosphorylation 

status of PDHE1α. While not completely explored, our finding that phosphorylation of CK 

changed similarly in men and women is in agreement with previous research from SI exercise 

trials finding minimal differences in HEPT metabolism between men and women. Importantly, 

these differences (or lack of differences) occurred despite women working at a higher exercise 

intensity than men, which occurred by design. Future work should consider comparing sex 

differences in metabolism during HII exercise using relative workrates during the low-intensity 

intervals to truly understand sex differences in metabolism. Overall, while limited in scope, the 

findings from our study suggest that there are sex differences in the anaerobic contribution of 

CHO, but not HEPT metabolism during HII exercise; however, further work in this area is 

needed.    
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Chapter Six: Significance of the Research 

Interval training is capable of eliciting similar improvements in aerobic capacity as MIC 

training36, despite having a larger anaerobic component.  However, the normal physiological 

response of the muscle to an acute bout of interval exercise in a healthy population has not yet 

been established. As well, interval training studies have suggested that improvements in IS may 

be blunted in women3–5. The hypothesized link between anaerobic metabolism and 

improvements in IS is the HEPT system metabolite AMP. A rise in the ratio of AMP:ATP 

activates the enzyme AMPK which can influence both insulin-independent and insulin-

dependent GLUT4 translocation6. Thus, in the present study, we wanted to determine if sex 

influences the metabolic response of the muscle and/or the anaerobic fuel utilization pattern 

during an acute bout of HII exercise. Unfortunately, due to time constraints and restricted 

laboratory access from the COVID-19 global pandemic, we were unable to determine if a sex 

influenced HEPT metabolites. We did however find that the change in phosphorylation status of 

the HEPT system enzyme CK is similar between men and women. Equal phosphorylation of CK 

suggests that the capacity for PCr breakdown during HII exercise is also the same between the 

sexes. From this finding, we could speculate that if the reliance on the HEPT system is the same, 

then the concentrations of downstream metabolite AMP may also be similar. Very few acute 

exercise trials have investigated sex differences in the HEPT system, making the finding that sex 

did not affect CK phosphorylation status novel. This result is important because it can act to 

support future research investigating sex differences in the HEPT system. Therefore, our findings 

narrow the gap in our understanding on this topic and creates a reference for future studies to be 

compared to. 
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We specifically chose the HII exercise protocol employed in this trial because it is what is 

commonly used for training trials in clinical populations3,107,113. The results obtained from this 

study can therefore be compared and applied to those previously conducted trials. This is 

important because it allows any differential response observed in a clinical population to be 

easily identified as the normal response in a healthy population has been extensively 

characterized. As well, this specific protocol is more likely to be used recreationally by the 

general population compared to SI exercise, making our findings more applicable to the general 

population of untrained, yet healthy individuals. The findings from this trial also provide 

important information on how this specific HII exercise protocol induced different exercise 

responses in men and women, likely due to using an absolute workrate of 50W for the low 

interval in both men and women, which is a higher relative workrate for the women. Going 

forward it is important to use a relative intensity during the low intervals during future HII 

exercise trials, rather than an absolute intensity to ensure that both groups are exercising at a 

similar intensity.  

The findings of the research conducted in this thesis shows that men may rely on anaerobic 

glycolysis, but not the HEPT system, to a greater extent than women during HII exercise. 

However, more extensive research is needed to substantiate and replicate the findings from the 

current study before we can definitively say that this is in fact the normal physiological response 

of the muscle to HII exercise. Additionally, ensuring that females were all tested during the mid-

follicular phase of their menstrual cycle allows us to be confident that our results are not 

confounded by elevated levels of estrogen, and represent a minimal inherent sex difference that 

exists within the muscle when estrogen levels are low. The novel findings from this study set a 

foundation for future research to be conducted so that eventually the sex differences during HII 
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exercise are well understood and hopefully provide insight into the mechanism(s) responsible for 

blunted improvements in IS in women during interval training.   
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Appendix 
A 

 

B 

 

Supplementary Figure 1: A) Relative Wattage during the high intervals expressed relative to kg 

BW, kg FFM, VO2peak and VO2peak/FFM, *greater than women, p=0.009; **greater than women, 

p<0.0001. B) Relative Wattage during the low intervals expressed relative to kg BW, kg FFM, 

VO2peak and VO2peak/FFM, *greater than women, p=0.001; **greater than women, p=0.0002; 

+greater than women, p<0.0001. 
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Supplementary Table 1: %VO2peak relative to kg FFM and LB FFM during warm up, high 

intervals, low intervals and cool down  

 Warm Up High 

Intervals 

Low Intervals Cool down P Values 

%VO2peak/kg FFM 

 Men 

 Women   

 

%VO2peak/kg LB FFM 

 Men 

 Women   

 

 

0.54 + 0.04e 

1.20 + 0.10 

 

 

1.70 + 0.22d 

3.57 + 0.34 

 

0.98 + 0.07a,b,e 

1.90 + 0.13a,b 

 

 

3.08 + 0.41a,b,d 

5.66 + 0.44a,b 

 

1.12 +0.10a,b,e 

1.86 + 0.13a,b 

 

 

3.45 + 0.35a,b,c 

5.53 + 0.44a,b 

 

0.66 + 0.05a,e     

1.44 + 0.13a 

 

 

2.09 + 0.27a,d  

4.28 + 0.42a 

 

Time: <0.0001 

Sex: <0.0001  

S x T: 0.004 

 

Time: <0.0001 

Sex: 0.001  

S x T: 0.021 

P Vales are presented in order of main effect of time, main effect of sex, and interaction of sex 

and time. Data are means ± SEM.  a different than warm up, p<0.0001; b different than 

cooldown, p<0.0001; c different than women, p=0.003; d different than women, p=0.001; e 

different than women, p<0.0001. 
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Supplementary Figure 2: Western Blot Image Blots for P-PDHE1α. Bands follow the pattern 

of female (pre, post) then male (pre, post). First 4 bands of blots A-C are standards. First 3 bands 

of blot D are standards. 5th participant in blot A and 2nd-4th participants in blot C were re-

analyzed on blot D. 
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Supplementary Figure 3: Western Blot Image Blots for P-CK. Bands follow the pattern of 

female (pre, post) then male (pre, post). First 4 bands of blots A-C are standards. First 3 bands of 

blot D are standards. 5th participant in blot A and 2nd-4th participants in blot C were re-analyzed 

on blot D. 
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Supplementary Figure 4: Stain-Free Blots (SFB) representing total protein content. SFB          

D-right used for P-CK and SFB D-left used for P-PDHE1α. 

 


