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Abstract

Distance plays a vital role in many applications of data analytics. For instance, in image
retrieval, organization, and management, one needs a proper similarity distance to measure
the perceptual similarity between any two images X and Y . Once such a similarity distance
is defined for any two images, it could be used to retrieve images in a database that are
perceptually similar to a query image according to the similarity distance in image retrieval,
and to organize images into different groups according to their mutual similarity in image
management. Likewise, in data clustering and bioinformatics, the notion of distance also
plays a dominant role.

The concept of distance between any two data objects X and Y (continuous or dis-
crete) is addressed from the perspective of Shannon information theory. Consider a coding
paradigm where X and Y are encoded into a sequence of coded bits specifying a codeword
(or method) which would, in turn, convert Y into X̂, and X into Ŷ such that both the
distortion between X and X̂ and the distortion between Y and Ŷ are less than or equal
to a prescribed threshold D. To have a universality to some extent, we consider a class C
of coding schemes within the coding paradigm. Given a class C, the information distance
RC(X, Y,D) between X and Y at the distortion level D is defined as the smallest number
of coded bits afforded by coding schemes from C. RC(X, Y,D) is shown to be indeed a
pseudo distance in some sense; it is further characterized or bounded. New information
distance is defined for all stationary sources with discrete alphabets and Independent and
Identically Distributed (IID) sources with continuous alphabets such that the distortion
level is small. For example, a pseudo distance for memoryless jointly Gaussian sources is
presented when the distortion level is small or the distortion level is less than or equal to a
special term which is a function of statistical properties of the sources, such as variances.

When C is the class of so-called separately precoded broadcast codes, it is shown that
for any Discrete Memoryless Source (DMS) X and Y , RC(X, Y,D) is equal to the maximum
of the Wyner-Ziv coding rate of X with Y as side information and the Wyner-Ziv coding
rate of Y with X as side information. In the general case where C consists of all codes
within the coding paradigm, upper and lower bounds to RC(X, Y,D) are established, and
are further shown to be tight when X and Y are IID pair source, for example memoryless
jointly Gaussian or memoryless Doubly Symmetric Binary Source (DSBS)s. The distance
RC(X, Y,D) generalizes the notion of information distance defined within the framework of
Kolmogorov complexity. In contrast to other information distances in the literature, this
information distance is also applicable to both discrete and continuous-valued data.
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Chapter 1

Introduction

1.1 Research Motivations and Problem Description

Distance plays an important role in many applications of data analytics. For example,
in image retrieval, organization, and management, it is so crucial to define a suitable
similarity distance such that the perceptual similarity between any two images X and Y
can be measured. Once such a similarity distance is defined for any two images, it could
be used to retrieve images in a database which are perceptually similar to a query image
according to the similarity distance in image retrieval [2], and to organize images into
different groups according to their mutual similarity in image management [3]. Likewise,
in data clustering and bioinformatics, the notion of distance also plays a dominant role [4].

In the literature of image retrieval [2], a typical approach to determining a perceptual
distance between two images is to first extract features from each image, then derive a
signature of each image from its respectively extracted features, and finally determine the
perceptual distance based on their respective signatures. Euclidean distance, Hausdorff
distance, Kullback-Leibler divergence, etc. have all been used as a distance between signa-
tures [2]. The variation in feature extraction, signature derivation, and distance between
signatures leads to many different image perceptual distances. In general, however, as one
moves from original images to features to signatures, the notion of distance becomes less
intuitive and is increasingly disconnected from the original images.

To reduce this issue, a different approach was taken recently in [5]. The paper [5]
first expanded each image X conceptually into a set φ(X) of images, which may contain
images perceptually similar to X, and then defined the perceptual distance between X
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and Y as the smallest average distortion per pixel between any pair of images, one from
φ(X) and the other from φ(Y ). The resulting distance is dubbed Set Mapping Induced
similarity Distance (SMID) and denoted by dφ(X, Y ). It was demonstrated in [5] that
when compared with other standard perceptual distances reported in the literature [6, 7,
8, 9, 10, 11, 12, 13], SMID indeed shows better discriminating power on image similarity.
An interesting property relevant to our discussion in this thesis is that the optimization
solution in SMID dφ(X, Y ) gives a method which converts X to Ŷ , and Y to X̂ such that

dφ(X, Y ) is equal to the average distortion per pixel between X and X̂, i.e., d(X, X̂), and

between Y and Ŷ , i.e., d(Y, Ŷ ). Nonetheless, the descriptive complexity of the conversion
method is completely ignored in SMID dφ(X, Y ).

Based on descriptive complexity, particularly Kolmogorov complexity [14], [15], the
notion of information distance was proposed in [16] for discrete data objects such as strings
over a finite alphabet. Given any two finite strings x and y, their information distance
E0(x, y) was defined in [16] to be the length of the shortest program which, when running
on a universal computer (i.e., Turing machine), will convert x into y when x is the input,
and convert y into x when y is the input. An inspiring property of E0(x, y) is its universality
[16], which says in theory E0(x, y) captures all patterns and regularities that can be utilized
computationally and are shared by x and y, and hence is the best cognitive distance one
could hope for to a certain extent. In [4] and references therein, this notion was successfully
applied to bioinformatics, music clustering, and machine translation.

However, the information distance as defined in [16] has two major issues. First, since
it is based on Kolmogorov Complexity, it is uncomputable. Second, more importantly,
it does not apply to continuous-valued data, such as images and videos. Therefore, it is
desirable to develop a notion of distance which could combine the best of both worlds: the
universality from the information distance as defined in [16], and the computability and
applicability to both discrete and continuous-valued data as in SMID dφ(X, Y ).

1.2 Research Contributions

In this thesis, we present the concept of distance between any two data objects X and Y
(abstract alphabets) from the view of Shannon information theory. We bring distortion
into the information distance E0(x, y), and descriptive complexity into SMID dφ(X, Y ).
For that reason, we formulate a new coding paradigm where X and Y are encoded into a
sequence of coded bits specifying a codeword (or method) which would, in turn, convert Y
into X̂, and X into Ŷ such that both the distortion between X and X̂ and the distortion
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between Y and Ŷ are less than or equal to a prescribed thresholdD. As we need universality
to some extent, we consider a class C of coding schemes within the coding paradigm. Given
C, the information distance RC(X, Y,D) between X and Y at the distortion level D is then
defined as the smallest number of coded bits afforded by coding schemes from C. We
then characterize and analyze the information distance RC(X, Y,D) for some classes C. In
addition to characterizing RC(X, Y,D), we are also interested in its relationship among
different sources X, Y , Z, etc. as a notion of distance.

1.3 Thesis Organization

The rest of the thesis will be organized as follows:

In chapter 2, some background knowledge will be given. First, the brief overview of
typicality and method of types, which are useful in achievability proof for the information
theory problems, will be presented. Then we will introduce the lossy compression when
side information is available at the encoder, the decoder, or both. In the last part, we will
explain the rate-distortion function when side information is available only at the decoder
(Wyner-Ziv coding) with more details.

In chapter 3, we formally formulate the new coding paradigm and define the information
distance RC(X, Y,D). Then we will analyze the distance property of RC(X, Y,D) when C
consists of all coding schemes allowed in the coding paradigm, and establish upper and
lower bounds to RC(X, Y,D), which are further shown to be tight when X and Y are
jointly Gaussian or DSBS. For the jointly Gaussian sources, we will introduce the new
pseudo distance when the distortion level is small or the prescribed threshold D is less
than or equal to a special term, which is a function of statistical properties of the sources
such as variances. Furthermore, in the last section, the pseudo distance over the set of all
real-values and IID sources will be proposed while the distortion measure is quadratic and
the distortion level D is small.

In chapter 4, we will impose some constraints on C and formulate the coding paradigm.
Then, RC(X, Y,D) will be characterized in terms of the Wyner-Ziv Coding rate of X with
Y as side information and the Wyner-Ziv Coding rate of Y with X as side information
when C consists only of all so-called separately precoded broadcast codes within the coding
paradigm. At the end, its distance property among different sources X, Y , Z, etc. will be
presented.

Finally, in the last chapter, we will make a summary of the thesis and discuss several
potential paths for future works related to these interesting topics.
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Chapter 2

Background

2.1 Overview

In this chapter, we will go over some background materials and topics related to this
research thesis. Before describing the detailed framework of new information distance
in Chapters 3 and 4, we will talk about some of the required background knowledge on
different typicality and method of types, which are important tools in proving coding
theorems, in sections 2.2 and 2.3, respectively. In section 2.4, we review and describe the
source coding with side information for the lossy case when side information or helper is
available at the encoder or the decoder.

2.2 Overview of Typicality

Typicality is an important tool to prove coding theorems in information theory. In this
section we review the definition of typicality and some basic properties ([1, 14, 17]) needed
in the latter proofs. All the logarithms are in the base 2 unless otherwise specified. We
did not go through the details of typicality proofs. More details can be found easily in [1,
Ch.3], [14, Ch.2], and [17, Ch.5, 6 ].

2.2.1 Weak Typicality

We consider an information source {Xi}ni=1 where Xi are IID with distribution p(x). We
use X to denote the generic random variable and H(X) to denote the common entropy for

4



all Xi, where H(X) <∞. Since Xi are IID, then

p(X1, X2, · · · , Xn) = p(X1)p(X2) · · · p(Xn) (2.1)

We now review an asymptotic property of p(X1, X2, · · · , Xn) called the weak Asymptotic
Equipartition Property (AEP).

Theorem 1. If X1, X2, · · · , Xn are IID ∼ p(x), then

− 1

n
log p(X1, X2, · · · , Xn) −→ H(X) (2.2)

in probability as n→∞, i.e., for any ε > 0, for n sufficiently large,

Pr{| − 1

n
log p(X1, X2, · · · , Xn)−H(X)| ≤ ε} > 1− ε.[17] (2.3)

Then we have the following definitions and theorems [1, 14, 17].

Definition 2.1. The weakly typical set A(n)
ε (X) with respect to p(x) is the set of sequences

xn = (x1, x2, · · · , xn) ∈ X n such that

| − 1

n
log p(x1, x2, · · · , xn)−H(X)| ≤ ε (2.4)

or equivalently,

2−n(H(X)+ε) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(X)−ε) (2.5)

where ε is an arbitrarily small positive real number. The sequences in A(n)
ε (X) are called

weakly ε-typical sequences.

Theorem 2. The following hold for any ε > 0:

1. Uniformity: If (x1, x2, · · · , xn) ∈ A(n)
ε (X), then

H(X)− ε ≤ − 1

n
log p(x1, x2, · · · , xn) ≤ H(X) + ε.

2. Unit probability: For n sufficiently large,

Pr{Xn ∈ A(n)
ε (X)} ≥ 1− ε.

3. Bounded size: For n sufficiently large,

(1− ε)2n(H(X)−ε) ≤ |A(n)
ε (X)| ≤ 2n(H(X)+ε).
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Remark 1. Weak typicality can be handy when we are working with abstract alphabets,
stationary, and ergodic sources because it is related to the Shannon– McMillan–Breiman
theorem. When source X = {Xi}∞i=1 is a discrete stationary ergodic, we have

− 1

n
log p(Xn)→ H(X)

where H(X) is the entropy rate of the source. At the same time, provided that the source
is continuous stationary ergodic, we will have

− 1

n
log p(Xn)→ h(X)

where h(X) is the differential entropy rate of the source [1].

2.2.2 Strong Typicality

In this subsection, a stronger notion of typicality is defined such that the empirical prob-
ability of each possible outcome is near to the real corresponding probability. Strong
typicality is more powerful than weak typicality as a tool for theorem proving in stronger
results, such as rate-distortion theory and universal coding [14]. However, strong typicality
can be used only for discrete-valued data[17].

Definition 2.2. The strongly typical set A∗(n)
ε (X) with respect to p(x) is the set of se-

quences xn = (x1, x2, · · · , xn) ∈ X n such that

1. If x ∈ X with p(x) > 0, we have

|N(x|xn)− p(x)| ≤ ε

|X |
(2.6)

2. For all x ∈ X with p(x) = 0, then N(x|xn) = 0

where ε is an arbitrarily small positive real number and N(x|xn) is the number of oc-

currences of x in the sequence xn. The sequences in A∗(n)
ε (X) are called strongly ε-typical

sequences [17].

In parallel with Theorem 2, We have The following Theorem [17], [1].
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Theorem 3. There exists η > 0 such that η → 0 as ε→ 0, and then the following hold:

1. Uniformity: If (x1, x2, · · · , xn) ∈ A∗(n)
ε (X), then

2−n(H(X)+η) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(X)−η).

2. Unit probability: For n sufficiently large,

Pr{Xn ∈ A∗(n)
ε (X)} ≥ 1− ε.

3. Bounded size: For n sufficiently large,

(1− ε)2n(H(X)−η) ≤ |A∗(n)
ε (X)| ≤ 2n(H(X)+η).

2.2.3 Robust Typicality

Robust typicality has certain advantages over its strong counterpart. The bounds have
more natural expressions, many proofs are simplified, and a single definition applies to
arbitrary collections of random variables. The crucial property distinguishing robust from
strong typicality is: If xn is robustly ε-typicality, then p(x) = 0 implies N(x|xn) = 0 [18].

Definition 2.3. The robustly typical set T (n)
ε (X) with respect to p(x) is the set of sequences

xn = (x1, x2, · · · , xn) ∈ X n such that

|N(x|xn)− p(x)| ≤ εp(x), for all x ∈ X (2.7)

where ε is an arbitrarily small positive real number and N(x|xn) is the number of occur-

rences of x in the sequence xn. The sequences in T (n)
ε (X) are called robustly ε-typical

sequences [18].

The following simple fact is a direct consequence of the definition of the robustly ε-
typical sequences[1].

Lemma 1. Typical Average Lemma. Let xn ∈ T (n)
ε (X). Then for any non-negative

function f(x) on X ,

(1− ε)E[f(X)] ≤ 1

n

n∑
i=1

f(xi) ≤ (1 + ε)E[f(X)]. (2.8)

7



In the rest of this subsection, we give robust typicality equivalents of standard strong
typicality results. The proof of all lemmas and theorems can be found in [1, Ch.2] and [18].

Theorem 4. There exists δ(ε) = εH(X) > 0 such that δ(ε) → 0 as ε → 0, and then the
following hold [1]:

1. Uniformity: If p(xn) =
∏n

i=1 pX(xi) and xn ∈ T (n)
ε (X), then

2−n(H(X)+δ(ε)) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(X)−δ(ε)).

2. Unit probability: If X1, X2, · · · , Xn are IID with Xi ∼ pX(xi), then by the Law
of Large Number (LLN),

lim
n→∞

Pr{(Xn) ∈ T (n)
ε (X)} = 1.

3. Bounded size: For n sufficiently large,

(1− ε)2n(H(X)−δ(ε)) ≤ |T (n)
ε (X)| ≤ 2n(H(X)+δ(ε)).

Theorem 4 is illustrated in Figure 2.1.

Figure 2.1: Properties of typical sequences. Here Xn ∼
∏n

i=1 pX(xi)[1].

The notion of the robust typicality can be easily extended to multiple random variables.
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Definition 2.4. The robustly jointly typical set T (n)
ε (X, Y ) with respect to p(x, y) is the

set of sequences (xn, yn) ∈ X n × Yn such that

|N(x, y|xn, xn)− p(x, y)| ≤ εp(x, y) (2.9)

where ε is an arbitrarily small positive real number and N(x, y|xn, xn) is the number of

occurrences of (x, y) in the pair of sequences (xn, yn). The sequences in T (n)
ε (X, Y ) are

called robustly ε-jointly typical sequences. [18]

Remark 2. If (xn, yn) ∈ T (n)
ε (X, Y ), then xn ∈ T (n)

ε (X) and yn ∈ T (n)
ε (Y ).

Lemma 2. Conditionally Typicality Lemma. Let (X, Y ) ∼ p(x, y). Suppose that

xn ∈ T (n)
ε′ (X) and Y n ∼ p(yn|xn) =

∏n
i=1 p(Y |X)(yi|xi). Then for every ε > ε′, with the use

of LLN, we have [1]
lim
n→∞

Pr{(xn, Y n) ∈ T (n)
ε (X, Y )} = 1.

The following lemma is one of the most important lemma which is very useful in the
achievability proofs of coding problems. (see Appendixes A.1, A.2)

Lemma 3. Joint Typicality Lemma. Let (X, Y ) ∼ p(x, y) and ε > ε′. Then there
exists δ(ε) > 0 which tends to zero as ε→ 0 such that the following statements hold [1]:

1. If x̃n is an arbitrary sequence and Ỹ n ∼
∏n

i=n pY (ỹi), then

Pr{(x̃n, Ỹ n) ∈ T (n)
ε (X, Y )} ≤ 2−n(I(X;Y )−δ(ε)).

2. If xn ∈ T (n)
ε′ (X) and Ỹ n ∼

∏n
i=n pY (ỹi), then for n sufficiently large,

Pr{(xn, Ỹ n) ∈ T (n)
ε (X, Y )} ≥ 2−n(I(X;Y )+δ(ε)).

2.3 Overview of Types

The AEP in Theorem 1 focuses our attention on a small subset of typical sequences. The
method of types is an even more powerful procedure in which we consider sequences that
have the same empirical distribution [14]. The method of types evolved from notions of
strong typicality and this method was fully developed by Csiszar and Korner [19], who
derived the main theorems of information theory from this viewpoint.

Let xn = (x1, x2, · · · , xn) be a sequence from alphabet X . Suppose that like the previous
section, N(x|xn) denotes the number of occurrences of x in the sequence xn. Then we have
the following definitions and theorems [14, 19].
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Definition 2.5. Type. The type Pxn (empirical probability distribution) of a sequence xn

is the relative proportion of occurrences of X , i.e.,

Pxn(x) =
N(x|xn)

n
, ∀ x ∈ X . (2.10)

where N(x|xn) is the number of occurrences of x in the sequence xn.

Example 1. Let X = {0, 1, 2}, n = 6, and x6 = (1, 1, 2, 2, 2, 0). Then N(0|x6) = 1,
N(1|x6) = 2, and N(2|x6) = 3. Therefore, Pxn = (1

6
, 2

6
, 3

6
).

Definition 2.6. All possible types. Let Pn(X ) be the collection of all possible types of
sequences of length n on X

For example, if X = {0, 1}, the set of possible types with the sequence of length n is

Pn(X ) = {(P (0), P (1)) : (
0

n
,
n

n
), (

1

n
,
n− 1

n
), · · · , (n

n
,

0

n
)}.

Lemma 4. An upper bound for |Pn(X )|:

|Pn(X )| ≤ (n+ 1)|X |. (2.11)

Definition 2.7. A P ∈ Pn(X ) is said to be an n-type if for any x ∈ X , P (x) ∈
{0, 1

n
, 2
n
, · · · 1}.

Definition 2.8. Type class. Let P ∈ Pn(X ), the set of sequences of length n with type
P is called type class of P , denoted T nX (P ):

T nX (P ) = {xn ∈ X n : Pxn = P}. (2.12)

Theorem 5. Size of a type class. For any type P ∈ Pn(X ),

2nH(P )

(n+ 1)|X |
≤ |T nX (P )| ≤ 2nH(P ). (2.13)

2.4 Lossy Compression with Side information

When the information source is continuous valued data, it is not possible to encode the
source information symbols using finitely many bits. Therefore some information has to
be lost when digital communications are used. We say that the source coding is lossy in
this situation. It is important to mention we can also apply lossy source coding for discrete
information sources, if some information loss is tolerable. Theoretically, lossy source coding
can be studied using rate distortion theory [14].

First, a distortion measure is defined as follows:
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Definition 2.9. A distortion measure is a mapping

d : X × X̂ → R+ (2.14)

from the set of source alphabet- reproduction alphabet pairs into the set of non-negative real
numbers. The distortion d(x, x̂) is a measure of the cost of representing the symbol x by
the symbol x̂[14].

The distortion measure is defined on a symbol-to-symbol basis. We extend the definition
to sequences by using the additive distortion measure:

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i). (2.15)

Formally, a (2nR, n) lossy source code consists of

1. An encoder which assigns an index m(xn) ∈ [1 : 2nR) to each sequence xn ∈ X n, and

2. A decoder that allocate an estimate X̂n(m) ∈ X̂ n to each index m ∈ [1 : 2nR).
The set C = {x̂n(1), · · · , x̂n(b2nRc)} constitutes the codebook.

The expected distortion associated with a (2nR, n) lossy source code is defined as

E[d(Xn, X̂n)] =
∑
xn

p(xn)d(xn, x̂n(m(xn))).

A rate distortion pair (R,D) is said to be achievable if there exists a sequence of (2nR, n)-
rate distortion codes with

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D. (2.16)

The rate distortion function R(D) is the infimum of rates R such that (R,D) is achievable
[1, 14].

2.4.1 Three Simple Lossy Source Coding Cases

In this subsection, we only mention three simple lossy source coding based on the avail-
ability of side information at the encoder or the decoder. Let (X, Y ) = {(XI)} be a 2-DMS
and d(x, x̂) be a distortion measure function. Then we have these simple cases:

A. (Rate distortion) No side information at either the encoder or the decoder

11



By the lossy source coding theorem in [1, Ch.3], the rate distortion function with no
side information at either the encoder or the decoder is

R(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂). (2.17)

This case is illustrated in Figure 2.2.

EncoderXn Decoder
M X̂n

d(Xn, X̂n) ≤ D

Figure 2.2: Lossy compression system with no side information.

B. Side information available only at the encoder

One can easily show that when side information is available only at the encoder, the
rate distortion function is exactly similar to the Case A [1], i.e.,

RSI−E(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) = R(D). (2.18)

This case is shown in Figure 2.3.

EncoderXn

Y n

Decoder
M X̂n

d(Xn, X̂n) ≤ D

Figure 2.3: Lossy compression system with side information available only at the encoder.

C. (Conditional Rate Distortion) Side information available at both the
encoder and the decoder

In this case, side information Y n is available at the encoder and the decoder. By simple
extension of the proof of the lossy source coding theorem [1, Ch.3], the rate distortion
function will be a conditional version of case with no side information (Case A), i.e.,

RSI−ED(D) = RX|Y (D) = min
p(x̂|x,y):E[d(X,X̂)]≤D

I(X; X̂|Y ). (2.19)

This case also is depicted in Figure 2.4.

But what if the encoder does not have side information? In that case, the result is
different, and is the subject of the next subsection.
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EncoderXn

Y n

Decoder
M X̂n

d(Xn, X̂n) ≤ D

Figure 2.4: Lossy compression system with side information available at both the encoder
and the decoder.

2.4.2 Wyner-Ziv Coding

We did not yet consider another special case of side information availability. Suppose that
the side information sequence is available only at the decoder. This case was studied by
Wyner and Ziv in their fundamental paper from 1976 [20].

As we shown in Figure 2.5, a (2nR, n) lossy source code with side information available
at the decoder consists of

1. An encoder which maps an index m(xn) ∈ [1 : 2nR) to each sequence xn ∈ X n, and

2. A decoder that assigns an estimate X̂n(m, yn) to each received index m and side
information sequence yn.

The rate distortion function with side information available at the decoder (RWZ
X|Y ) is

the infimum of rates R such that there exists a sequence of (2nR, n)-rate distortion codes
with

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D.

Wyner-Ziv Coding is illustrated in Figure 2.5.

EncoderXn

Y n

Decoder
M X̂n

d(Xn, X̂n) ≤ D

Figure 2.5: Wyner-Ziv coding system.

Since the compressed-binning idea of the proof of Wyner-Ziv coding is helpful for us
in Chapter 4, we will show the proof of Wyner-Ziv coding with details. The following
theorem gives the rate distortion function for this specific case.
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Theorem 6. (Wyner-Ziv Theorem) [20, 1]

Let (X, Y ) be a 2-DMS and d(x, x̂) be a distortion measure. If the side information Y
is available only to the decoder, the rate-distortion function for X should be

RWZ
X|Y (D) = min

p(u|x),x̂(u,y)
(I(X;U)− I(Y ;U)) = min

p(u|x),x̂(u,y)
I(X;U |Y ) (2.20)

where the minimum is over all conditional Probability Mass Function (PMF) p(u|x) with
random variable U such that |U| ≤ |X | + 1, Y — X — U and X — (U, Y ) — X̂ form
Markov chains, and over all reconstruction functions x̂(u, y) such that E(d(X, X̂)) ≤ D.

Proof. To prove Wyner-Ziv theorem, we need to verify both Achievability and Converse
proofs:

Achievability part: We want to show that if R > RWZ
X|Y (D), then there exists a

sequence of (2nR, n) codes such that

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D.

The Wyner-Ziv coding scheme uses the compress-bin idea illustrated in Figure 2.6. To
describe X by U , We use joint typicality encoding. Since U has a correlation with Y ,
binning method can reduce their description rate. The bin index of U is transferred to
the decoder. The receiver uses joint typicality decoding with Y to recover U and then
reconstructs X̂ from U and Y . We now provide the details.

Codebook generation: Fix the conditional PMFs p(u|x) and compute p(u) accord-
ing to p(u) =

∑
x∈X p(x)p(u|x); also fix the reconstruction function x̂(u, y) such that

E[d(X, X̂)] ≤ D
1+ε

, where D is the desired distortion. Randomly and independently pro-

duce 2nR̃ sequences un(l), l ∈ [1 : 2nR̃], each according to
∏n

i=1 pU(ui). Now, partition the
set of indices l into equal-size subsets referred to as bins B(m), as follows:

B(m) = [(m− 1)2n(R̃−R) + 1 : m2n(R̃−R)], m ∈ [1 : 2nR]. (2.21)

The codebook generation is revealed to the encoder and the decoder.

Encoding: Given a source sequence xn, the encoder looks for a codeword un(l) such

that (xn, un(l)) ∈ T (n)
ε′ (X,U). If there is more than one such index, the encoder uses one

of them uniformly at random. If there is no such index, it sets randomly an index from
[1 : 2nR̃] uniformly. The encoder will send the bin index m such that l ∈ B(m).
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Figure 2.6: Wyner-Ziv coding scheme. Each bin B(m), m ∈ [1 : 2nR], consists of 2n(R̃−R)

indices [1].

Decoding: Let ε > ε′. Upon receiving m, the decoder finds the index l̂ ∈ B(m) such

that (yn, un(l̂)) ∈ T (n)
ε (Y, U). If there is a unique such codeword, the decoder outputs the

reconstruction sequence as x̂i = x̂(ui(l̂), yi) for i ∈ [1 : n]; otherwise it sets l̂ = 1 and then
compute the reconstruction sequence.

Analysis of expected distortion: Let (L,M) denote the chosen indices at the en-
coder and L̂ be the index estimate at the receiver. We define the “ Error ” event as

E = {(Un(L̂), Xn, Y n) 6∈ T (n)
ε (U,X, Y )} (2.22)

Now, consider the events

E1 = {(Un(l), Xn) 6∈ T (n)
ε′ (U,X) for all l ∈ [1 : 2nR1)},

E2 = {(Un(L), Xn, Y n) 6∈ T (n)
ε (U,X, Y )},

E3 = {(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(M), l̃ 6= L},
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Since the “Error” event happens when (Un(L), Xn, Y n) 6∈ T (n)
ε (U,X, Y ) or L̂ 6= L, by the

union of events bound, we have

P (E) ≤ P (E1) + P (Ec
1 ∩ E2) + P (E3)

We now bound each term. By the covering lemma (see Appendix A.1), P (E1) tends to zero
as n→∞ if

R̃ > I(X;U) + δ(ε′). (2.23)

Since ε > ε′, Ec
1 = {(Un(L), Xn) ∈ T (n)

ε′ (U,X)}, and Y n | {Un(L) = un, Xn = xn} ∼∏n
i=1 PY |U,X(yi|ui, xi) =

∏n
i=1 PY |X(yi|xi), by the conditional typicality lemma (Lemma 2),

P (Ec
1 ∩ E2)→ 0 as n→∞.

To bound P (E3), we first use lemma 11.1 of [1] (see Appendix A.3) to find an upper bound
as follows:

P (E3) ≤ Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)}

For each l̃ ∈ B(1), the sequence Un(l̃) ∼
∏n

i=1 PU(ui) is independent of Y n. Now, by the

packing lemma (see Appendix A.2), Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)} tends

to zero as n→∞ if R̃−R < I(Y ;U)− δ(ε). Therefore, by combining the bounds, we have
shown that P (E) tends to zero as n→∞ if

R > R̃− I(Y ;U) + δ(ε) > I(X;U)− I(Y ;U) + δ(ε) + δ(ε′) = I(X;U |Y ) + δ′(ε) (2.24)

Since in the codebook generation part, we fixed the the conditional PMFs p(u|x) as well
as functions x̂(u, y) such that E[d(X, X̂)] ≤ D

(1+ε)
, we can achieve tighter lower bound by

minimizing over p(u|x) and x̂(u, y). Therefore, we have

R > min
p(u|x),x̂(u,y): E[d(X,X̂)]≤ D

1+ε

I(X;U |Y ) + δ′(ε) = RWZ
X|Y (

D

1 + ε
) + δ′(ε) (2.25)

Now, if R > RWZ
X|Y ( D

1+ε
) + δ′(ε), then there will be no “Error” i.e., P (E)→ 0.

When there is no “Error”, (Un(L), Xn, Y n) ∈ T nε (U,X, Y ). Then by the law of total
expectation and the typical average lemma (Lemma 1), the asymptotic averaged distortion
is upper bounded as

lim sup
n→∞

E[d(Xn, X̂n)] = lim sup
n→∞

(P (E)E[d(Xn, X̂n)|E ] + P (Ec)E[d(Xn, X̂n)|Ec])

≤ lim sup
n→∞

(dmaxP (E) + P (Ec)(1 + ε)E[d(X, X̂)] ≤ (1 + ε)
D

(1 + ε)
= D
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where dmax = max(x,x̂)∈X×X̂ d(x, x̂).

In the last step, from the continuity of RWZ
X|Y (D) and RWZ

Y |X(D) in D [20], [14], taking

ε → 0 shows that any rate distortion pair (R,D) with R > RWZ
X|Y (D) is achievable, which

completes the proof of achievability.

Converse part: Suppose that R is achievable. Then there exists a sequence of codes
(2nR, n) that satisfies 2.16. We want to show that if R is achievable, then R ≥ RWZ

Y |X(D).

M denotes the compressed value of the vector Xn and X̂n represents the reconstructed
vector. For a given block of length n, we have

nR ≥ H(M)

≥ H(M |Y n)

= I(Xn;M |Y n)

= H(Xn|Y n)−H(Xn|M,Y n)

=
n∑
i=1

H(Xi|Y n, X i−1)−H(Xi|M,Y n, X i−1)

(a)

≥
n∑
i=1

H(Xi|Yi)−H(Xi|M,Y i−1, Yi, Y
n
i+1, X

i−1)

≥
n∑
i=1

H(Xi|Yi)−H(Xi|M,Y i−1, Yi, Y
n
i+1)

where (a) follows since (Xi, Yi) is independent of (Y i−1, Y n
i+1, X

i−1). Let Ui = (M,Y i−1, Y n
i+1).

This random variable satisfies two interesting properties:

• The triple (Ui, Xi, Yi) is a Markov chain i.e., Ui — Xi — Yi, because Ui has infor-
mation about Yi only through M which is a function of Xi,

• X̂i is a function f of (Ui, Yi) = (Y n,M),
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Then we have

nR ≥
n∑
i=1

H(Xi|Yi)−H(Xi|M,Y i−1, Yi, Y
n
i+1)

=
n∑
i=1

H(Xi|Yi)−H(Xi|Ui, Yi)

=
n∑
i=1

I(Xi;Ui|Yi)

(b)

≥
n∑
i=1

RWZ
X|Y (E[d(Xi, X̂i)])

(c)

≥ nRWZ
X|Y (

1

n

n∑
i=1

E[d(Xi, X̂i)])

= nRWZ
X|Y (E[d(Xn, X̂n)])

where (b) comes from the definition of RWZ
X|Y (D) = min I(X;U |Y ), and (c) follows by the

convexity of RWZ
X|Y (D) [20], [14]. Since RWZ

X|Y (D) is continuous and non-increasing in D, it
follows from the bound on distortion in 2.16 that

R ≥ lim sup
n→∞

RWZ
X|Y (E[d(Xn, X̂n)])

≥ RWZ
X|Y (lim sup

n→∞
E[d(Xn, X̂n)])

≥ RWZ
X|Y (D) (2.26)

which completes the proof of converse. Also the cardinality bound on U is proved in [1]
by the convex cover method. (Since it is not relevant to our work, We will not go through
the details.) This completes the proof of the Wyner-Ziv Theorem.

Remark 3. We can also use the random binning instead of deterministic binning. In
Theorem 6, we generate a set of random sequences; therefore, we do not need to use a
random binning. However, in [14], they used the random binning instead of deterministic
binning.

Remark 4. In Theorem 6, we used the robust typicality. For the achievability part of
Wyner-Ziv Theorem, we can also use strong or weak typicality. For example, [14] uses
strong typicality instead of robust typicality inside of the achievability part. It is important
to mention that analysis of expected distortion will be a little different while we are using
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a strong typicality. In this case, the distortion is related to the type of the random vectors
in the sense that

d(Xn, X̂n) =
1

n

n∑
i=1

d(Xi, X̂i) =
∑

(x×x̂)∈X×X̂

Pxn,x̂n(x, x̂)d(x, x̂) (2.27)

where Pxn,x̂n(x, x̂) is the joint type of (Xn, X̂n). The expression above can be understood
as the “mean” or “empirical expectation” of the distortion.

Since there is no “Error” and (Un(L), Xn, Y n) ∈ A∗(n)
ε (U,X, Y ), the joint type of

(Un(L), Xn, Y n) is close to its real PMF, then the above “mean” is close to the real expec-
tation value. More precisely

d(Xn, X̂n) =
∑

(x×x̂)∈X×X̂

Pxn,x̂n(x, x̂)d(x, x̂)

=
∑

(x×x̂)∈X×X̂

(Pxn,x̂n(x, x̂)− p(x, x̂) + p(x, x̂))d(x, x̂)

=
∑

(x×x̂)∈X×X̂

(Pxn,x̂n(x, x̂)− p(x, x̂))d(x, x̂) +
∑

(x×x̂)∈X×X̂

p(x, x̂)d(x, x̂)

≤ |X × X̂ |max
x×x̂

(d(x, x̂)|Pxn,x̂n(x, x̂)− p(x, x̂)|) + E[d(X, X̂)] (2.28)

Finally, by taking the expectation over the random codebook and then taking n → ∞ we
have

lim sup
n→∞

E[d(Xn, X̂n)]

≤ lim sup
n→∞

(|X × X̂ |max
x×x̂

(d(x, x̂)|Pxn,x̂n(x, x̂)− p(x, x̂)|) + E[E[d(X, X̂)]]) (2.29)

The first term tends to zero as n→∞, and the second one is not more than D. Therefore,

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D.

We finish this chapter by comparing the Wyner-Ziv coding with the three cases which
have been explained in subsection 2.4.1.

Remark 5. Let (X, Y ) be 2-DMS. Then the following holds:

RSI−ED(D) = RX|Y (D) ≤ RSI−D(D) = RWZ
X|Y (D) ≤ RSI−E(D) = R(D). (2.30)
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2.5 Summary

In this chapter, we gave an overview of the different typicality and method of types as useful
tools for proving the coding theorems. Then we introduced the four different lossy source
coding based on the availability of side information at the encoder or the decoder. We went
to the details of the most interesting case, when the side information is available only at
the decoder, and reviewed the compress-binning idea in achievability proof of Wyner-Ziv
Theorem.
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Chapter 3

Coding for Data Analytics: New
Information Distances

3.1 Overview

In this chapter, we will address the notion of distance between any two data objects X
and Y from the perspective of Shannon information theory. A general coding paradigm
will be introduced where X and Y are encoded into a sequence of coded bits which would,
in turn, convert Y into X̂, and X into Ŷ such that both the distortion between X and X̂
and the distortion between Y and Ŷ are less than or equal to a prescribed threshold D.
To have a universality to some extent, we consider a class C of coding schemes within the
coding paradigm. Given C, the information distance RC(X, Y,D) between X and Y at the
distortion level D is then defined as the smallest number of coded bits afforded by coding
schemes from C. We then characterize and analyze the information distance RC(X, Y,D)
for some classes C.

In Section 3.2, we formally formulate the new coding paradigm and define the infor-
mation distance RC(X, Y,D). Section 3.3 defines how to analyze the distance property of
RC(X, Y,D) when C consists of all coding schemes allowed in the coding paradigm, and
establish upper and lower bounds to RC(X, Y,D), which are further shown to be tight
when X and Y are jointly Gaussian. In Section 3.4, we will introduce the new pseudo
distance over the set of all memoryless jointly Gaussian sources when the distortion level
is small or the prescribed threshold D is less than or equal to a special term, which is a
function of the statistical properties of jointly Gaussian sources, such as variance. Finally,
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Section 3.5 defines the pseudo distance for any real-valued and IID source such that the
distortion level D has a small value.

3.2 Formal Definitions: Codes and New Information

Distances

Let A and Â be two abstract alphabets. They could be either continuous or discrete. The
sets A and Â will serve as our source alphabet and reproduction alphabet, respectively.
Let A be a σ-field of subsets of A, and let Â be a σ-field of subsets of Â. (Here we
implicitly assume that any element of Â belongs to the σ-field Â.) Let the measurable
space

(A∞,A∞) =
∞∏
k=1

(Ak,Ak)

be the infinite Cartesian product of exemplars (Ak,Ak) of the measurable space (A,A).
The measurable space (Â∞, Â∞) is defined similarly. If x = (xi) is a finite or infinite
sequence of symbols from A or Â, let xnm = (xm, xm+1, · · · , xn) and, for simplicity, write
xn1 as xn. The same conventions apply to sequences of random variables taking their values
in these sets as well. We denote the set of all n-tuples drawn from A (Â) by An (Ân).

Without loss of generality, we assume that each of data objects X, Y , Z, etc. is a
sequence of symbols from A, and its lossy version is a sequence of symbols of the same
length from Â. (Discussions and results below can be easily extended to data objects from
different alphabets.) In most cases, we model each data object as a stationary source taking
values in A. For example, X = {Xi}∞i=1 will be a stationary source with each Xi being a
random variable taking values in A, and its lossy version X̂ = {X̂i}∞i=1 will be a sequence
of random variables taking values in Â. Like the Chapter 2, let d : A × Â → [0,∞)
be a measurable function. Let {dn}∞n=1 be the single-letter fidelity criterion generated
by d, by which we mean that for each n, dn : An × Ân → [0,∞) is the map in which
dn(xn, yn) = 1

n

∑n
i=1 d(xi, yi) for any xn ∈ An and yn ∈ Ân. The distortion between Xn

and X̂n is measured by d(Xn, X̂n).

Graphically, our coding paradigm for data analytics is illustrated in Figure 3.1, where
Xn and Y n are encoded jointly into a sequence of coded bits at rate R in bits per symbol.
The coded bits specify a codeword (or method) which would, in turn, convert Xn into Ŷ n

at Decoder 1, and Y n into X̂n at Decoder 2 such that for all sufficiently large n, both
d(Xn, X̂n) and d(Y n, Ŷ n) are less than or equal to a prescribed threshold D.
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Encoder

Xn

Y n

Decoder1

Decoder2

R

Ŷ n

d(Y n, Ŷ n) ≤ D

X̂n

d(Xn, X̂n) ≤ D

Figure 3.1: Coding for data analytics.

For any R > 0 and n, let

Ω(n,R) = {1, 2, · · · , b2nRc}.

Formally, we have the following definition.

Definition 3.1. A block code Cn of order n and rate R consists of one encoding mapping

f : An ×An → Ω(n,R)

and two decoding mappings
g1 : Ω(n,R)×An → Ân

and
g2 : Ω(n,R)×An → Ân.

For any two data objects xn and yn, the encoder f encodes xn and yn into f(xn, yn)
of nR bits. On the decoding side, the encoded message f(xn, yn) then converts xn into
ŷn = g1(f(xn, yn), xn), and yn into x̂n = g2(f(xn, yn), yn).

Impose no other constraints on Cn, and let C consist of all possible block codes of order
n for all n. We want to seek the best trade-off between R and the maximum distortion
max{d(Xn, X̂n), d(Y n, Ŷ n)} attainable by C for any stationary sources X = {Xi}∞i=1 and
Y = {Yi}∞i=1 and sufficiently large n.

Definition 3.2. Given stationary sources X = {Xi}∞i=1 and Y = {Yi}∞i=1, a rate distor-
tion pair (R,D) is said to be achievable for (X, Y ) if for any ε > 0, there exists, for all
sufficiently large n, a block code Cn = (f, g1, g2) of order n and rate R + ε such that

Pr{d(Xn, X̂n) > D} < ε (3.1)
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and
Pr{d(Y n, Ŷ n) > D} < ε (3.2)

where X̂n = g2(f(Xn, Y n), Y n), and Ŷ n = g1(f(Xn, Y n), Xn).

Let R(X, Y ) denote the set of all achievable (R,D) pairs for (X, Y ). It can be verified
that R(X, Y ) is closed. Given D ≥ 0, we define the information distance between X and
Y at the distortion level D as

R(X, Y,D)
∆
= min{R : (R,D) ∈ R(X, Y )}. (3.3)

One of our purposes in this chapter is to characterize R(X, Y,D), and analyze its relation-
ship among different sources X, Y , Z, etc. as a notion of distance.

Remark 1. The diagram shown in Figure 3.1 resembles the butterfly network in network
coding [17]. As such, the coding diagram illustrated Figure 3.1 may be regarded as lossy
network coding in the context of transmission. Also related works are Wyner-Ziv coding
[20] and coding with multiple decoders with different side information considered by Kaspi
[21] and Heegard & Berger [22].

3.3 Distance Property and Bounds of R(X, Y, D)

Unless otherwise specified, in this section X, Y , Z, etc. denote arbitrary stationary sources.
We begin with the distance property of R(X, Y,D) among finite alphabets sources for a
fixed D ≥ 0.

3.3.1 Finite Alphabets

Suppose that both A and Â are finite, and

max
x∈A

min
x̂∈Â

d(x, x̂) = 0. (3.4)

For any D ≥ 0, define

H(D)
∆
= maxH(U |Û) (3.5)

where the maximum is taken over all random variables U and Û taking values in A and Â,
respectively, such that E[d(U, Û)] ≤ D, and H(U |Û) denotes the conditional entropy of U
given Û . (All information quantities in this thesis are expressed in bits, and the function
log is to base 2.)
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Corollary 1. It is easy to see that in the case where A = Â and d is the Hamming distance
measure on A,

H(D) = h(D) +D log(|A| − 1) (3.6)

for any 0 ≤ D ≤ 1/2, where h(D) = −D logD − (1−D) log(1−D), and |A| denotes the
cardinality of A if A is a finite set.

Proof. The Hamming distance measure is given by

d(u, û) =

{
0 if u = û
1 if u 6= û,

(3.7)

which results in a probability of error distortion, since E[d(U, Û)] = Pr(U 6= Û) [14]. Define
an error random variable,

E
∆
= d(U, Û) =

{
0 if U = Û

1 if U 6= Û .

Then, using the chain rule for entropies to expand H(U,H|Û) in two different ways, we
have

H(U,E|Û) = H(U |Û) +H(E|U, Û) (3.8)

= H(E|Û) +H(U |E, Û) (3.9)

Since E is a function of U and Û , the conditional entropy H(E|U, Û) is equal to zero.
H(U |E, Û) can be wrote as follows:

H(U |E, Û) = Pr(E = 0)H(U |E = 0, Û) + Pr(E = 1)H(U |E = 1, Û)

(a)
= Pr(U 6= Û)H(U |U 6= Û , Û)

where (a) follows since given E = 0, U = Û and H(U |E = 0, Û) = 0. Now, by combining
these results, we obtain

H(D) = maxH(U |Û) = max[H(E|Û) + Pr(U 6= Û)H(U |U 6= Û , Û)]

= h(D) +D log(|A| − 1)

where the maximum is taken over all random variables U and Û taking values in A, such
that E[d(U, Û)] = Pr(U 6= Û) ≤ D ≤ 1/2.
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Theorem 1. Fix D ≥ 0. Let

R∗(X, Y,D) =

{
R(X, Y,D) if X = Y
R(X, Y,D) +H(D) otherwise.

(3.10)

Then R∗(X, Y,D) is a pseudo distance over the set of all stationary sources, i.e., satisfying
the following three properties:

(1) R∗(X, Y,D) = 0 if X = Y .

(2) R∗(X, Y,D) = R∗(Y,X,D).

(3) R∗(X,Z,D) ≤ R∗(X, Y,D) +R∗(Y, Z,D).

Proof. Properties (1) and (2) above follow immediately from the definition of R(X, Y,D)
along with Definitions 3.1 and 3.2. To prove Property (3), i.e., the triangle inequality,
we first show that random encoding mappings in the definition of block codes Cn will not
decrease the rate distortion function for any (X, Y ). Given any X, Y , and Z, we then
show that (R(X, Y,D) +R(Y, Z,D) +H(D), D) is achievable by block codes with random
encoding mappings for (X,Z). Thus,

R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D) +H(D)

from which Property (3) follows.
By using the union bound along with Definition 3.2, we have

Pr{d(Xn, X̂n) > D or d(Y n, Ŷ n) > D} ≤ Pr{d(Xn, X̂n) > D}+ Pr{d(Y n, Ŷ n) > D}
< ε+ ε = 2ε (3.11)

which is equivalent to

Pr{d(Xn, X̂n) ≤ D and d(Y n, Ŷ n) ≤ D} ≥ 1− 2ε (3.12)

Now, let W be an arbitrary random variable independent of the sources X and Y which
denote the random codebook we use at the encoder and both decoders. By the law of total
probability, one can easily rewrite 3.11 as

Pr{d(Xn, X̂n) > D or d(Y n, Ŷ n) > D}

=
∑
w∈W

Pr{d(Xn, X̂n) > D or d(Y n, Ŷ n) > D | W = w}.Pr{W = w} < 2ε (3.13)
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We know that if the weighted average of a series of numbers tends to zero, surely one or
some of these numbers will tend to zero. The summation in 3.13 is the weighted average
of a series of probability which tends to zero as ε → 0. Then there exists the specific
realization of W such that

{w∗ | Pr{d(Xn, X̂n) > D or d(Y n, Ŷ n) > D | W = w∗} → 0} 6= ∅ (3.14)

or equivalently,

{w∗ | Pr{d(Xn, X̂n) ≤ D and d(Y n, Ŷ n) ≤ D | W = w∗} → 1} 6= ∅. (3.15)

Therefore, the randomization in the definition of block codes Cn will not decrease the rate
distortion function.

To prove the second part, we first assumed that R(X, Y,D) and R(Y, Z,D) are achiev-
able by block codes with two deterministic mappings for (X, Y ) and (Y, Z), respectively.
(Figures 3.2 and 3.3)

E1

Xn

Y n

D11

D12

R(X,Y,D)

Ŷ n

Pr{d(Y n, Ŷ n) > D} < ε

X̂n

Pr{d(Xn, X̂n) > D} < ε

Figure 3.2: Deterministic mappings for achievablity of R(X, Y,D).

E2

Y n

Zn

D21

D22

R(Y, Z,D)

Ẑn

Pr{d(Zn, Ẑn) > D} < ε

ˆ̂
Y n

Pr{d(Y n,
ˆ̂
Y n) > D} < ε

Figure 3.3: Deterministic mappings for achievablity of R(Y, Z,D).
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Given any stationary sources X, Y , and Z, we then show that the pair (R(X, Y,D) +
R(Y, Z,D) + H(D), D) is achievable by block codes with random encoding mappings for
(X,Z). To achieve the aforementioned rate, we construct the random coding based on the
proposed coding diagram which is depicted in Figure 3.4.

P (Y n|Xn, Zn)

Xn

Zn

E1

E3

E2

D11

D22

D31

D32

D21

D12

Y n

R1

R2

R∗ R

R1

R2

R2 +R∗

R1 +R∗

Ŷ n

ˆ̂
Y n

R∗

R∗

R2

R1

Ỹ n ≈ Y n

˜̃Y n ≈ Y n

R2

R1

ˆ̂
Zn

d(Zn,
ˆ̂
Zn) ≤ D

ˆ̂
Xn

d(Xn,
ˆ̂
Xn) ≤ D

Figure 3.4: Proposed random coding mappings for achievability of (R(X, Y,D) +
R(Y, Z,D) +H(D), D) respect to (X,Z).

First, we create artificial Y n given two realization Xn and Zn based on P (Y n|Xn, Zn).
Then the early deterministic encoder E1 (E2, resp.), encodes (Xn, Y n) ((Y n, Zn), resp.)
to the codewords R1 (R2, resp.) which is roughly equal to R(X, Y,D) (R(Y, Z,D), resp.).

The early decoder D11 (D22, resp.) uses the rate R1 (R2, resp.) to create Ŷ n (
ˆ̂
Y n, resp.)

in such a way that Ŷ n (
ˆ̂
Y n, resp.) is in the D-ball 1 of Y n. As well, we need to construct

the random encoder E3 for the purpose of encoding Y n to the random codeword R∗ which

would ,in turn, convert Ŷ n into Ỹ n via decoder D31, and
ˆ̂
Y n into ˜̃Y n via decoder D32 such

that Ỹ n and ˜̃Y n are equal to the Y n with high probability. In the end, the early decoder

D21 (D12, resp.) along with the rates R2 (R1, resp.) build up
ˆ̂
Zn (

ˆ̂
Xn, resp.) such that

the distortion between Z and
ˆ̂
Zn (X and

ˆ̂
Xn, resp.) is less than or equal to a prescribed

threshold D.
To fully understand and characterize this important and rather surprising random coding,
we are led to the following questions:

1A distortion ball B(yn, D) centered on yn ∈ An with radius D ≥ 0 is defined by B(yn, D) = {xn ∈
An : d(xn, yn) ≤ D} [23].
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Q1. What is the coding schemes within the swapping part i.e., what is the random
encoder E3 and two decoders D31 and D32? Is R∗ equal to defined H(D) in 3.5?

Q2. Is
ˆ̂
Zn inside of the D-ball of Zn? There is the same question for another output,

ˆ̂
Xn.

For the first question, we use random binning to show the achievabiliy of R∗ such that

the probability of error, P (E) = Pr{Ỹ n 6= Y n or ˜̃Y n 6= Y n}, tends to zero for all sufficiently
large n. (Figure 3.5)

E3

D31

D32

Y n
R∗

Ỹ n

Pr{Ỹ n 6= Y n} < ε
′′

˜̃Y n

Pr{ ˜̃Y n 6= Y n} < ε
′′

Ŷ n

ˆ̂
Y n

Figure 3.5: Lossless source coding with two decoders and side information.

The following provides the details.

Codebook generation: Randomly and independently set an index m(yn) ∈ [1 : 2nR∗ ]
to each sequence yn ∈ An according to a uniform PMF over [1 : 2nR∗ ]. We refer to each
subset of sequences with the same index m as a bin B(m), m ∈ [1 : 2nR∗ ]. The bin
assignments are revealed to the encoder and both decoders.

Encoding: Upon receiving yn ∈ B(m), the encoder E3 sends the bin index m.

Decoding: Given the received index m, the decoder D31 (D32, resp.) declares Ỹ n ( ˜̃Y n,
resp.) to be the estimate of the source sequence if it is the unique sequence in B(m) which

has the distance less than or equal to D from Ŷ n (
ˆ̂
Y n, resp.); otherwise it declares an error.

Analysis of the probability of error: We bound the probability of error averaged
over bin assignments. Let M denote the random bin indices for Y n i.e., Y n ∈ B(M). It is
important to mention that M ∼ Unif [1 : 2nR

∗
] is independent of Y n. The decoders make
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an error if and only if one or more of the following events occur:

E1 = {d(Y n, Ŷ n) > D},

E2 = {d(Y n,
ˆ̂
Y n) > D},

E3 = {y′n ∈ B(M) for some y′n 6= Y n, d(y′n, Ŷ n) ≤ D and d(Y n, Ŷ n) ≤ D},

E4 = {y′′n ∈ B(M) for some y′′n 6= Y n, d(y′′n,
ˆ̂
Y n) ≤ D and d(Y n,

ˆ̂
Y n) ≤ D}.

Then, by the symmetry of codebook construction and the union of events bound, the
average probability of error is upper bounded as:

P (E) ≤ P (E1) + P (E2) + P (E3) + P (E4)

= P (E1) + P (E2) + P (E3|Y n ∈ B(1)) + P (E4|Y n ∈ B(1)) (3.16)

We now bound each term. With the assistant of two distortion conditions for the early
decoders D11 and D22 i.e.,

Pr{ d(Y n, Ŷ n) > D} < ε

and

Pr{ d(Y n,
ˆ̂
Y n) > D} < ε,

P (E1) and P (E2) tends to zero if ε→ 0 as n→∞, respectively. To bound the third term,
we have

P (E3) = P (E3|Y n ∈ B(1)) =
∑

(yn,ŷn)

Pr{(Y n, Ŷ n) = (yn, ŷn) | Y n ∈ B(1)}

.Pr{y′n ∈ B(1) for some y′n 6= yn, d(y′n ŷn) ≤ D and d(yn, ŷn) ≤ D | yn ∈ B(1), (Y n, Ŷ n) =

(yn, ŷn)}
(a)

≤
∑

(yn,ŷn)

p(yn, ŷn)
∑

y′n∈{y?n∈An : d(y?n,ŷn)≤D}
y′n 6=yn

Pr{y′n ∈ B(1)} ≤

max
ŷn∈Ân

|{y?n ∈ An : d(y?n, ŷn) ≤ D}|.2−nR∗
(b)

≤ 2nH(D)+O(logn).2−nR
∗

= 2−n(R∗−H(D))+O(logn)

(3.17)

where (a) follows since for every y′n 6= yn, the events {yn ∈ B(1)}, {y′n ∈ B(1)}, and
{(Y n, Ŷ n) = (yn, ŷn)} are mutually independent. In the inequality (b), we find an upper
bound on the cardinality of any D-ball with any center. Let s be a joint n-type in Pn(A×
Â), then

t(i) =
∑
j∈Â

s(i, j)
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defines an n-type in Pn(A) which is called the marginal n-type of s on A. Similarly, we can
define the marginal n-type r of s on Â[23]. Yang et al. [23] showed that when ŷn ∈ T n

Â
(r)

the cardinality of the restricted D-ball 2 is upper bounded as:

|B(ŷn, t, D)| ≤ 2n(maxs∈S(t,r,D)H(s)−H(r))+O(logn) (3.18)

where H(s) and H(r) denotes the entropy of the distribution s and the distribution r,
respectively

H(s) = −
∑

i∈A,j∈Â

s(i, j) log s(i, j),

H(r) = −
∑
j∈Â

r(j) log r(j), (3.19)

and

S(t, r,D) = {s ∈ Pn(A× Â) : t and r are the two marginals ofs and E[d(Y, Ŷ )] ≤ D}.

It is easy to see that in 3.18, the cardinality of B(ŷn, t, D) depends on ŷn only through the
type of ŷn i.e., ŷn ∈ T n

Â
(r). In our problem, D-ball is not restricted and the center ŷn can

be any sequence. Thus, simply summarizing the cardinalities of restricted D-balls with a
given center over all types would give us

|B(ŷn, D)| =
∑

t∈Pn(A)

|B(ŷn, t, D)| ≤ (n+ 1)|A| . 2n(maxs∈S(r,D)H(s)−H(r))+O(logn)

= 2n(maxs∈S(r,D)H(s)−H(r))+|A| log (n+1)+O(logn)

= 2n(maxs∈S(r,D)H(s)−H(r))+O(logn) (3.20)

where

S(r,D) = {s : r ∈ Pn(Â) is the marginal of s and, E[d(Y, Ŷ )] ≤ D}.

We found the first order upper bound for a given center. Finally, the upper bound for any
center (not only ŷn ∈ T n

Â
(r)) and any D-ball can be written as

|B(Ŷ n, D)| ≤ max
ŷn∈Ân

|{y?n ∈ An : d(y?n, ŷn) ≤ D}|

≤ 2n(max[H(U,Û)−H(Û)])+O(logn) = 2n(maxH(U |Û))+O(logn) (3.21)

= 2nH(D)+O(logn)

2For t ∈ Pn(A), we define the restricted D-ball as B(ŷn, t,D) = B(ŷn, D) ∩ TnA(t).
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where the maximum in 3.21 is taken over all random variables U and Û taking values in A
and Â, respectively, such that E[d(U, Û)] ≤ D. This completes the proof of the inequality
(b) in 3.17.
Careful examination on 3.17 reveals that P (E3) tends to zero as n → ∞ if R∗ > H(D).
Similarly, P (E4) tends to zero ifR∗ > H(D) for all sufficiently large n. Thus, the probability
of error averaged over bin assignments tends to zero as n→∞ if R∗ > H(D). Therefore,
there exists a sequence of bin assignments such that limn→∞ P (E) = 0. This completes the
achievability proof of the lossless source coding with two decoders and side information.
(Figure 3.5.)

To answer the second question, with the help of the deterministic coding for (Y, Z)
(Figure 3.3) and the random coding for Y n (Figure 3.5), we have

Pr{d(Zn, Ẑn) > D} < ε

and
Pr{Y n 6= Ỹ n} < ε′′,

respectively. Given the rate R2 and Ỹ n as inputs for the decoder D21, by the union bound
and the above inequalities, we can write

Pr{d(Zn, Ẑn) > D or Y n 6= Ỹ n} ≤ Pr{d(Zn, Ẑn) > D}+ Pr{Y n 6= Ỹ n} < ε+ ε′′ (3.22)

or equivalently

Pr{d(Zn, Ẑn) ≤ D and Y n = Ỹ n} ≥ 1− (ε+ ε′′) (3.23)

Now, if both ε, ε′′ → 0, then the output of the decoder D21 in proposed coding diagram
(Figure 3.4) will be inside of the D-ball of Zn which mathematically is equivalent to

Pr{d(Zn,
ˆ̂
Zn) > D} < ε+ ε′′

∆
= ε′

Similarly, the distortion between Xn and
ˆ̂
Xn is less than or equal to a prescribed threshold

D with the high probability. This completes the proof of Theorem 1.

3.3.2 Abstract Alphabets

In this subsection, both A and Â are abstract. As usual, however, we assume that the
distortion measure d and stationary sources X = {Xi}∞i=1 satisfy the following condition:

E[d(X1, x̂)] <∞ (3.24)

for some x̂ ∈ Â which means for any symbol x ∈ A, there exists a reconstruction symbol
x̂ ∈ Â such that d(x, x̂) is bounded. Then, we have the following result.
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Theorem 2. Let (X, Y ) = {(Xi, Yi)}∞i=1 be a stationary, ergodic pair with each of X and
Y satisfying 3.24. Let RX|Y (D) (RY |X(D), resp.) denote the conditional rate distortion
function of X (Y , resp.) given Y (X, resp.). Then the following holds:

max{RX|Y (D), RY |X(D)} ≤ R(X, Y,D) (3.25)

≤ inf{max{I(Y1;U |X1), I(X1;U |Y1)}+ I(X1; X̂1|Y1U)

+ I(Y1; Ŷ1|X1U) : U, X̂1, Ŷ1} (3.26)

where the infimum is taken over all random variables U , X̂1, and Ŷ1 such that E[d(X1, X̂1)] ≤
D and E[d(Y1, Ŷ1)] ≤ D, and I denotes the mutual information and conditional mutual in-
formation, as the case may be.

Proof. R(X, Y,D) should be at least as large as the smallest rate needed to encode Xn

at the Encoder for decoding by the Decoder 2, while ignoring the distortion condition
for Y n i.e, 3.2 at the Decoder 1. The smallest such rate is given by the conditional rate
distortion function of 2.19 [24]. Inequality 3.25 is followed by combining the above cut-set
lower bound with the converse for lossy source coding with side information at the encoder
and the decoder [25]. The proof of the upper bound for R(X, Y,D) follows directly from
Heegard and Berger’s bound [22, Th.2] and is omitted.

Remark 2. Lower bound in 3.25 is the tightest lower bound for R(X, Y,D) in the literature.
Heegard and Berger’s upper bound is less than Kimura-Uyematso’s bound [26] and is the
tightest upper bound in the literature, too. When the sources are IID, we have the closed
form expression for it based on the [26].

The following definition describes a binary source for which the conditional rate distor-
tion is tight for all distortions.

Definition 3.3. The source (X1, Y1) is said to be a DSBS with cross-over probability p if
A and Â are binary alphabets, 0 ≤ p < 1/2, and for each (x, y) ∈ (A×A) we have

pX1Y1(x, y) =

{
0.5(1− p) if x = y
0.5p otherwise.

(3.27)

Equivalently, (X1, Y1) is a DSBS if

X1 = Y1 ⊕N1

where ⊕ denotes module-two (binary) addition, Y1 is uniform on {0, 1}, and N1 is inde-
pendent of Y1 with Pr{N1 = 1} = p < 1/2 and Pr{N1 = 0} = 1− p.
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Here, we show that for a DSBS, the cut-set lower bound in 3.25 is tight.

Corollary 2. Let source (X1, Y1) be a DSBS and d be the Hamming distortion measure
over {0, 1}. Suppose that (X, Y ) = {(Xi, Yi)}∞i=1 is IID. In this case, it follows from 2 and
[24] that

R(X, Y,D) = max{RX|Y (D), RY |X(D)} = RX|Y (D) (3.28)

=

{
h(p)− h(D) if 0 ≤ D < p
0 otherwise.

(3.29)

where p is cross-over probability and h(α) = −α logα − (1 − α) log(1 − α) is the binary
entropy function (set h(0) = 0). Note that by symmetry, RX|Y (D) = RY |X(D).

Proof. We now explain a coding scheme that achieves the cut-set lower bound [24]. If
D ≥ p, then each decoder in Figure 3.1 can form its reconstruction directly from its side
information i.e., Decoder 1 decodes X̂n = Y n and Decoder 2 decodes Ŷ n = Xn. Therefore,
we have

R(X, Y,D) = max{RX|Y (D), RY |X(D)} = 0, D ≥ p.

Suppose that 0 ≤ D < p. The encoder adds (module two) the symbols of Xn and Y n:

Ni = Xi ⊕ Yi, i = 1, 2, · · · , n.

where N1, N2, · · · , Nn are IID with Pr{N = 1} = p < 1/2 and Pr{N = 0} = 1 − p. The
encoder sends a compression version N̂n of Nn to both decoders with a Hamming distortion
of D. This compression can be achieved with a rate arbitrarily close to the rate distortion
function of N , which is given by [14, Th.10.3.1]

RN(D) = h(p)− h(D), 0 ≤ D < p.

Decoder 1 reconstructs Ŷ n from N̂n and Xn by setting

Ŷi = N̂i ⊕Xi, i = 1, 2, · · · , n.

Similarly, Decoder 2 decodes X̂n from N̂n and Y n by setting

X̂i = N̂i ⊕ Yi, i = 1, 2, · · · , n.

Both constructions have the distortion D. So, the rate distortion function for a DSBS with
Hamming distance measure is

R(X, Y,D) =

{
h(p)− h(D) if 0 ≤ D < p
0 otherwise.

Note that, both conditional rate distortion functions RX|Y (D) and RY |X(D) for a DSBS
was shown in [25] which is equal to 3.29. This completes the proof of Corollary 2.
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The next corollary checks the information distance (Theorem 1) for DSBS with Ham-
ming distortion measure.

Corollary 3. Suppose that (X1, Y1), (Y1, Z1), and (X1, Z1) are DSBSs and (X, Y ) =
{(Xi, Yi)}∞i=1, (Y, Z) = {(Yi, Zi)}∞i=1, and (X,Z) = {(Xi, Zi)}∞i=1 are IID. Then with Ham-
ming distortion function over {0, 1}, R∗(X, Y,D) is a pseudo distance over the set of all
DSBSs.

Proof. To show that R∗(X, Y,D) is a pseudo distance, as usual, we have to satisfy all three
distance properties. The following provides the details.

(I) If X = Y , then immediately from the definition of R(X, Y,D) along with Definitions
3.1 and 3.2, we have

R∗(X, Y,D) = R(X,X,D) = 0

which satisfy the identity of indiscernibles property. In the other word, each decoder can
form its reconstruction directly from its side information.

(II) For the symmetry property, if X = Y ,

R∗(X, Y,D) = R∗(Y,X,D) = 0

Otherwise,

R∗(X, Y,D) = R(X, Y,D) +H(D)

(a)
= RX|Y (D) +H(D)

(b)
= RY |X(D) +H(D)

(a)
= R(Y,X,D) +H(D)

= R∗(Y,X,D)

where (a) and (b) are followed from equation 3.28 and the symmetry property of R(X|Y )
for DSBS, respectively.

(III) The triangle inequality: According to Definition 3.3, since (X1, Y1) and (Y1, Z1)
are DSBSs, and both (X, Y ) = {(Xi, Yi)}∞i=1 and (Y, Z) = {(Yi, Zi)}∞i=1 are IID, we have

X1 = Y1 ⊕N1

Y1 = Z1 ⊕N ′1.
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where N1 and N2 are independent of each other. One can immediately write

X1 = (Z1 ⊕N ′1)⊕N1 = Z1 ⊕ (N1 ⊕N ′1) = Z1 ⊕N ′′1

where N ′′1 = N1 ⊕N ′1. Now, we can analyze the triangle inequality. Consider five different
cases: (I) X = Y = Z, (II) X = Y 6= Z, (III) X 6= Y = Z, (IV) X = Z 6= Y and
(V) X 6= Y 6= Z. In Case (I), the triangle inequality happens with the equality. (Pseudo
distance over all sources will be 0.) In Cases (II), and (III), equality is also satisfied but
the pseudo distance is zero only over the sources (X, Y ) and (Y, Z), respectively. Careful
examination on Theorem 1 reveals that R∗ always is a non-negative function. Therefore,
the triangle inequality occurs in Case (IV), too. Finally, in the last case, we must show
that

R∗(X,Z,D) ≤ R∗(X, Y,D)+R∗(Y, Z,D)⇒ R(X,Z,D) ≤ R(X, Y,D)+R(Y, Z,D)+H(D)

is valid. Since the distortion measure is Hamming distance and A is a binary alphabet,
3.6 is simplified to

H(D) = h(D) +D log(|A| − 1) = h(D).

Without loss of generality, we assume that Pr{N1 = 1} = p1 ≤ Pr{N ′1 = 1} = p2 < 1/2.
By law of total probability and N ′′1 = N1 ⊕N ′1, we have

Pr{N ′′1 = 1} = Pr{N ′′1 = 1|N ′1 = 1}Pr{N ′1 = 1}+ Pr{N ′′1 = 1|N ′1 = 0}Pr{N ′1 = 0}
= Pr{N1 = 0}Pr{N ′1 = 1}+ Pr{N1 = 1}Pr{N ′1 = 0}
= (1− p1)p2 + p1(1− p2) = p1 ∗ p2

and consequently p1 ≤ p2 ≤ (p1 ∗ p2) < 1/2. Equation 3.29 gives us this fact which we
need to analyze four separate intervals for D:
1. When 0 ≤ D < min{p1, p2, (p1 ∗ p2)} = p1,

R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D) +H(D)

h(p1 ∗ p2)− h(D) ≤ h(p1)− h(D) + h(p2)− h(D) + h(D)

h(p1 ∗ p2) ≤ h(p1) + h(p2)

0 ≤ h(p1) + h(p2)− h(p1 ∗ p2)

The Figure 3.6 shows that the function f(p1, p2)
∆
= h(p1) + h(p2) − h(p1 ∗ p2) is always

non-negative, hence the triangle inequality will hold in this interval.
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Figure 3.6: f(p1, p2) for all p1, p2 < 1/2.

2. If p1 ≤ D < p2, then R(X, Y,D) = 0 and

R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D) +H(D)

h(p1 ∗ p2)− h(D) ≤ h(p2)− h(D) + h(D)

0 ≤ h(p2) + h(D)− h(p1 ∗ p2)

Since p1 ≤ D < p2 < 1/2, we have h(p1) ≤ h(D) and then

0 ≤ f(p1, p2) = h(p1) + h(p2)− h(p1 ∗ p2) ≤ h(D) + h(p2)− h(p1 ∗ p2)

Therefore, the triangle inequality is satisfied when p1 ≤ D < p2.
3. When p2 ≤ D < (p1 ∗ p2) < 1/2, then R(X, Y,D) = R(Y, Z,D) = 0 and

R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D) +H(D)

h(p1 ∗ p2)− h(D) ≤ h(D)

0 ≤ h(D) + h(D)− h(p1 ∗ p2)

like the previous interval, h(p1) ≤ h(p2) ≤ h(D) and we can write

0 ≤ f(p1, p2) = h(p1) + h(p2)− h(p1 ∗ p2) ≤ h(D) + h(D)− h(p1 ∗ p2)
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4. In the last interval i.e., (p1 ∗ p2) ≤ D < 1/2, all of the rate distortions will be zero and
the triangle inequality is converted to 0 ≤ h(D), which is always true. The proof of any
permutation of R∗(., ., D) in triangle inequality is the same as the aforementioned method.
This completes the proof of Corollary 3.

Theorem 2 yields the next corollary for jointly Gaussian sources with quadratic distor-
tion measure.

Corollary 4. Suppose that X1 and Y1 are jointly Gaussian, and (X, Y ) = {(Xi, Yi)}∞i=1 is
IID. Then with d(x, x̂) = (x − x̂)2, both the lower bound 3.25 and upper bound 3.26 are
tight, and

R(X, Y,D) =

{
1
2

log (1−ρ2)σ2

D
if 0 ≤ D < (1− ρ2)σ2

0 otherwise
(3.30)

where ρ is the correlation between X1 and Y1, and σ2 is the maximum of the variances of
X1 and Y1.

Proof. Without loss of generality, assume that EX1 = EY1 = 0, and σ2 = σ2
X ≥ σ2

Y ,
where σ2

X and σ2
Y are the variances of X1 and Y1, respectively. Consider three cases: (1)

D ≥ (1 − ρ2)σ2, (2) D < (1 − ρ2)σ2
Y , and (3) (1 − ρ2)σ2

Y ≤ D < (1 − ρ2)σ2. In Case
(1), X and Y can be estimated directly from each other. Specifically, let X̂1 = ρ σ

σY
Y1 and

Ŷ1 = ρ σ
σX
X1. The resulting X̂ and Ŷ satisfy the distortion requirement, and we do not

need any information from the encoder to decoders. Hence, R(X, Y,D) = 0.

In Case (2), let

a =
(1− ρ2)σ2 −D

(1− ρ2)σ2
and b =

(1− ρ2)σ2
Y −D

(1− ρ2)σ2
Y

.

Define
V = a(X1 +N1) and W = b(Y1 +N2) (3.31)

where N1 and N2 are zero mean Gaussian random variables with variances

D(1− ρ2)σ2

(1− ρ2)σ2 −D
and

D(1− ρ2)σ2
Y

(1− ρ2)σ2
Y −D

respectively. Furthermore, N1 and N2 are independent of each other and of both X1 and
Y1. Let

X̂1 = V + (1− a)ρ
σ

σY
Y1 and Ŷ1 = W + (1− b)ρσY

σ
X1. (3.32)
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One can verify that
E[X1 − X̂1]2 = D and E[Y1 − Ŷ1]2 = D. (3.33)

Let U = (V,W ). Observe that if we are given the values of X1 and U (Y1 and U , resp.),
then we can calculate Ŷ1 (X̂1, resp.). Given the values of (X1, U) ((Y1, U), resp.), the
random variable Ŷ1 (X̂1) will be a constant. Plugging U , X̂1, and Ŷ1 into the respective
information quantities in 3.26, we have

I(Y1; Ŷ1|X1U) = 0 (3.34)

I(X1; X̂1|Y1U) = 0 (3.35)

and

I(X1;U |Y1) = I(X1;VW |Y1)

= I(X1;V |Y1) + I(X1;W |Y1V )

= I(X1;V |Y1) (3.36)

= H(V |Y1)−H(V |Y1X1)

= H(V |Y1)−H(V |X1) (3.37)

= H(V − aρ σ
σY
Y1|Y1)−H(aN1)

= H(V − aρ σ
σY
Y1)−H(aN1) (3.38)

=
1

2
log 2πea2 [(1− ρ2)σ2]2

(1− ρ2)σ2 −D
−H(aN1) (3.39)

=
1

2
log

(1− ρ2)σ2

D
(3.40)

where 3.36 and 3.37 are due to 3.31 which implies the conditional independence of W
and (X1, V ) given Y1, and the conditional independence of V and Y1 given X1

3; and 3.38
follows from the fact that under the joint Gaussian assumption, V −aρ σ

σY
Y1 is independent

3The long chain V —X1 —Y1 —W is equivalent to the three chains V —(X1, Y1) —W , V —X1 —Y1,
and X1 —Y1 —W . Since I(W ;X1V |Y1) = I(W ;X1|Y1) + I(W ;V |X1Y1) = I(W ;V |Y1) + I(W ;X1|Y1V ),
we can easily conclude that I(W ;X1|Y1V ) = 0.
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of Y1
4. In parallel with 3.40, we have

I(Y1;U |X1) = I(Y1;VW |X1)

= I(Y1;W |X1) + I(Y1;V |X1W )

= I(Y1;W |X1)

= H(W |X1)−H(W |Y1X1)

= H(W |X1)−H(W |Y1)

= H(W − bρσY
σ
X1|X1)−H(bN2)

= H(W − bρσY
σ
X1)−H(bN2) (3.41)

=
1

2
log 2πeb2 [(1− ρ2)σ2

Y ]2

(1− ρ2)σ2
Y −D

−H(bN2) (3.42)

=
1

2
log

(1− ρ2)σ2
Y

D
. (3.43)

By combining the information quantities in 3.43, 3.40, 3.35, and 3.34 together, it follows
from 3.26 that

R(X, Y,D) ≤ 1

2
log

(1− ρ2)σ2

D
.

This, together with 3.25 and

RX|Y (D) =
1

2
log

(1− ρ2)σ2

D

implies 3.30 in Case (2).

In Case (3), Y can be estimated directly from X. Specifically, let Ŷ1 = ρσY
σ
X1. With

V and X̂1 defined as in 3.31 and 3.32, respectively, we now let U = V . Plug U , X̂1, and
Ŷ1 into the respective information quantities in 3.26. Again, 3.30 follows from a similar
argument to the above. This completes the proof of Corollary 4.

Careful examination reveals that the equal sign = in 3.38, 3.39, 3.41, and 3.42 can be
replaced by ≤ when X1 and Y1 are not necessarily jointly Gaussian. Therefore, the above
argument also shows that the right side of 3.30 is actually an upper bound to R(X, Y,D)
for any real-valued sources X and Y satisfying 3.24 with d(x, x̂) = (x− x̂)2, which is stated
as a corollary below.

4If two random variablesX1 and Y1 are jointly Gaussian and are uncorrelated, then they are independent
[27, Ch.6]. In this case E[(V − aρ σ

σY
Y1)Y1] = E[V − aρ σ

σY
Y1]E[Y1] = 0
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Corollary 5. Let (X, Y ) = {(Xi, Yi)}∞i=1 be a real-valued and IID source pair with each
satisfying 3.24 with d(x, x̂) = (x− x̂)2. Then

R(X, Y,D) ≤
{

1
2

log (1−ρ2)σ2

D
if 0 ≤ D < (1− ρ2)σ2

0 otherwise
(3.44)

where ρ is the correlation between X1 and Y1, and σ2 is the maximum of the variances of
X1 and Y1.

We conclude this section by pointing out that the single-letter characterization of
R(X, Y,D) remains open in general even when (X, Y ) = {(Xi, Yi)}∞i=1 is IID.

3.4 New Information Distance for Jointly Gaussian

Sources

In this section, we define R(X, Y,D) as a pseudo distance over the set of all jointly Gaussian
sources when the distortion level is small. (For example high resolution in images and
videos.) Also, we extend our distance to the case which D is less than or equal to a special
term which is a function of the statistical properties of jointly Gaussian sources. We have
the following results.

Theorem 3. Let (X1, Y1), (Y1, Z1), and (X1, Z1) be jointly Gaussian, and (X, Y ) =
{(Xi, Yi)}∞i=1, (Y, Z) = {(Yi, Zi)}∞i=1, and (X,Z) = {(Xi, Zi)}∞i=1 are IID. Fix D ≥ 0
and very small. Then with quadratic distortion measure, R(X, Y,D) is a pseudo distance
over the set of all jointly Gaussian sources i.e., satisfying the three properties of distance:

(1) R(X, Y,D) = 0 if X = Y .

(2) R(X, Y,D) = R(Y,X,D).

(3) R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D).

Proof. Identity of Indiscernibles and symmetry properties i.e., properties (1) and (2), re-
spectively, follow immediately from the definition of R(X, Y,D) along with Definitions 3.1
and 3.2. Without loss of generality, we can assume that EX1 = EY1 = EZ1 = 0, and
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σ2
X ≥ σ2

Y ≥ σ2
Z , where σ2

X , σ2
Y and σ2

Z are the variances of X1, Y1 and Z1, respectively. To
prove property (3), we have to show that

R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D)

1

2
log

(1− ρ2
XZ)σ2

X

D
≤ 1

2
log

(1− ρ2
XY )σ2

X

D
+

1

2
log

(1− ρ2
Y Z)σ2

Y

D

0 ≤ 1

2
log

(1− ρ2
XY )(1− ρ2

Y Z)σ2
Y

D(1− ρ2
XZ)

(3.45)

are valid. Provided that D is very small in comparison to the other terms of the inequality
3.45, we can say the value inside of the log (.) will be greater than 1, and then the triangle
inequality will be satisfied. More precisely, if

D ≤ (1− ρ2
XY )(1− ρ2

Y Z)σ2
Y

(1− ρ2
XZ)

∆
=D1

inequality 3.45 will be valid. For the other permutation of R(., ., D), the process is as same
as above such that we need the following conditions

D ≤ (1− ρ2
XZ)(1− ρ2

Y Z)σ2
Y

(1− ρ2
XY )

∆
=D2

D ≤ (1− ρ2
XY )(1− ρ2

XZ)σ2
Xσ

2
X

(1− ρ2
Y Z)σ2

Y

∆
=D3

which are corresponding to

R(X, Y,D) ≤ R(X,Z,D) +R(Y, Z,D)

R(Y, Z,D) ≤ R(X, Y,D) +R(X,Z,D),

Therefore, if D ≤ min{D1, D2, D3}, we can say the triangle inequality condition is satisfied.
This completes the proof of Theorem 3.

We can go further and find the information distance when D is less than or equal to
a special expression in which is a function of the statistical properties of jointly Gaussian
sources, such as variance. Then we have the following theorem.
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Theorem 4. Suppose that (X1, Y1), (Y1, Z1), and (X1, Z1) are jointly Gaussian, and
(X, Y ) = {(Xi, Yi)}∞i=1, (Y, Z) = {(Yi, Zi)}∞i=1 and (X,Z) = {(Xi, Zi)}∞i=1 are IID. Fix
0 ≤ D ≤ min{max{σ2

X , σ
2
Y },max{σ2

Y , σ
2
Z},max{σ2

X , σ
2
Z}}. Let

R∗∗(X, Y,D) =

{
R(X, Y,D) if X = Y
R(X, Y,D) + I(X1, Y1) otherwise.

(3.46)

Then R∗∗(X, Y,D) is a pseudo distance over the set of all jointly Gaussian sources with
d(x, x̂) = (x− x̂)2, i.e., satisfying the following properties:

(1) R∗∗(X, Y,D) = 0 if X = Y .

(2) R∗∗(X, Y,D) = R∗∗(Y,X,D).

(3) R∗∗(X,Z,D) ≤ R∗∗(X, Y,D) +R∗∗(Y, Z,D).

Proof. Properties (1) and (2) follow from the definition of R(X, Y,D), Definitions 3.1
and 3.2 along with the symmetry property of the mutual information. Without loss of
generality, we assume that EX = EY = EZ = 0, and σ2

X ≥ σ2
Y ≥ σ2

Z , where σ2
X , σ2

Y and
σ2
Z are the variances of X1, Y1 and Z1, respectively. To prove property (3), Consider five

different cases: (I) X = Y = Z, (II) X = Y 6= Z, (III) X 6= Y = Z, (IV) X = Z 6= Y
and (V) X 6= Y 6= Z. In cases (I), (II), and (III), the triangle inequality is satisfied with
the equality. At the same time, non-negativity of R∗∗ reveals that the triangle inequality
occurs in Case (IV). Finally, in the last case, we have to show that

R∗∗(X,Z,D) ≤ R∗∗(X, Y,D) +R∗∗(Y, Z,D)

R(X,Z,D) + I(X1;Z1) ≤ R(X, Y,D) + I(X1;Y1) +R(Y, Z,D) + I(Y1;Z1)

are valid. By Corollary 4 and mutual information for jointly Gaussian sources [14, Ch.8],
the above inequality can be simplified to

1

2
log

(1− ρ2
XZ)σ2

X

D
+

1

2
log

1

(1− ρ2
XZ)
≤ 1

2
log

(1− ρ2
XY )σ2

X

D
+

1

2
log

1

(1− ρ2
XY )

+
1

2
log

(1− ρ2
Y Z)σ2

Y

D
+

1

2
log

1

(1− ρ2
Y Z)

Then we have
1

2
log

σ2
X

D
≤ 1

2
log

σ2
X

D
+

1

2
log

σ2
Y

D
⇒ 1

2
log

σ2
Y

D

(?)

≥ 0
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The last expression is valid since

D ≤ min{max{σ2
X , σ

2
Y },max{σ2

Y , σ
2
Z},max{σ2

X , σ
2
Z}} ≤ min{σ2

Y , σ
2
X} = σ2

Y . (3.47)

For the other permutation of R∗∗(., ., D), we have two following cases:

(1) R∗∗(X, Y,D) ≤ R∗∗(X,Z,D) +R∗∗(Y, Z,D)

(2) R∗∗(Y, Z,D) ≤ R∗∗(X, Y,D) +R∗∗(X,Z,D)

Again, the first inequality follows from a similar argument as the above method. For the
second one, the process is explained as follows

R∗∗(Y, Z,D) ≤ R∗∗(X, Y,D) +R∗∗(X,Z,D)

R(Y, Z,D) + I(Y1;Z1) ≤ R(X, Y,D) + I(X1;Y1) +R(X,Z,D) + I(X1;Z1)

For jointly Gaussian sources, we have

1

2
log

(1− ρ2
Y Z)σ2

Y

D
+

1

2
log

1

(1− ρ2
Y Z)
≤ 1

2
log

(1− ρ2
XY )σ2

X

D
+

1

2
log

1

(1− ρ2
XY )

+
1

2
log

(1− ρ2
XZ)σ2

Y

D
+

1

2
log

1

(1− ρ2
XZ)

In the last step,

1

2
log

σ2
Y

D
≤ 1

2
log

σ2
X

D
+

1

2
log

σ2
X

D
⇒ 1

2
log

σ2
X

D
+

1

2
log

σ2
X

σ2
Y

(?)

≥ 0 (3.48)

The first term is non-negative because of 3.47. By our assumption (σ2
X ≥ σ2

Y ), the second
term will be greater than or equal to zero. Thus, the triangle inequality is satisfied in
this case. Furthermore, if we change the assumption (σ2

X ≥ σ2
Y ≥ σ2

Z), the results will be
remained. This completes the proof of Theorem 4.

3.5 New Information Distance for IID Sources with

Small Distortion

In this section, we define the pseudo distance for any real-valued and IID source such
that the distortion level D is small. More precisely, we analyze the distance property of
R(X, Y,D) when prescribed D is less than or equal to a special term which is a func-
tion of conditional entropy and statistical properties of given sources, such as correlation
coefficients and variances.
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Theorem 5. Suppose that (X, Y ) = {(Xi, Yi)}∞i=1, (Y, Z) = {(Yi, Zi)}∞i=1 and (X,Z) =
{(Xi, Zi)}∞i=1 are real-valued and IID pairs with each of X, Y , and Z satisfying 3.24 with
d(x, x̂) = (x − x̂)2. Then R(X, Y,D) will be a pseudo distance over the set of all IID
sources when D is small or the distortion level is less than or equal to a special term which
is a function of conditional entropy and statistical properties of given sources. R(X, Y,D)
should satisfy the following three properties:

(1) R(X, Y,D) = 0 if X = Y .

(2) R(X, Y,D) = R(Y,X,D).

(3) R(X,Z,D) ≤ R(X, Y,D) +R(Y, Z,D).

Proof. The properties of symmetry and identity of indiscernibles are obvious. The only
property which needs to analyze precisely is the triangle inequality. Since we do not have
a closed-form expression for R(X, Y,D) in general, we need to use the appropriate upper
and lower bounds to check the triangle inequality. The cut-set lower bound in 3.25 and
conditional Shannon lower bound [28] are two useful lower bounds for R(X, Y,D) specially
when D has a small value. To proof the triangle inequality, we use the following lower
bounds for R(X, Y,D) and R(Y, Z,D):

R(X, Y,D)
(a)

≥ max{RX|Y (D), RY |X(D)}
(b)

≥ max{h(X1|Y1), h(Y1|X1)}−1

2
log 2πeD (3.49)

R(Y, Z,D)
(a)

≥ max{RY |Z(D), RZ|Y (D)}
(b)

≥ max{h(Y1|Z1), h(Z1|Y1)}−1

2
log 2πeD (3.50)

where (a) follows from the cut-set lower bound for R(X, Y,D) and R(Y, Z,D) (Theorem 2)
and (b) comes from the conditional Shannon lower bound [28] 5. Inasmuch as the distortion
function is quadratic, Corollary 5 gives us a suitable upper bound for R(X,Z,D). If we
show that the sum of two conditional lower bounds for R(X, Y,D) and R(Y, Z,D) is greater
than or equal to the upper bound for R(X,Z,D), then we can conclude that the triangle
inequality will be satisfied. Without loss of generality, we can assume that σ2

X ≥ σ2
Y ≥ σ2

Z .
Now we have to show that

max{h(X1|Y1), h(Y1|X1)} − 1

2
log 2πeD + max{h(Y1|Z1), h(Z1|Y1)} − 1

2
log 2πeD

(?)

≥ 1

2
log

(1− ρ2
XZ)σ2

X

D
(3.51)

5Shannon lower bounds are usually used to prove small distortion results; for example, see [24, 29, 30, 31]
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is valid. The inequality 3.51 can be written in the following form:

max{h(X1|Y1), h(Y1|X1)}+ max{h(Y1|Z1), h(Z1|Y1)} − 1

2
log (2πe)2D(1− ρ2

XZ)σ2
X

(?)

≥ 0

(3.52)

Since D is small, the first and second terms in 3.52 are negligible in comparison to the
term which has D. More precisely, if

D ≤ 1

(2πe)2(1− ρ2
XZ)σ2

X

22(max{h(X1|Y1),h(Y1|X1)}+max{h(Y1|Z1),h(Z1|Y1)}) ∆
=D1 (3.53)

inequality 3.52 will be valid. It is so important to analyze other permutation of R(., ., D).
Same as the above procedure, we need these two conditions for satisfying the triangle
inequality

D ≤ 1

(2πe)2(1− ρ2
XY )σ2

X

22(max{h(X1|Z1),h(Z1|X1)}+max{h(Y1|Z1),h(Z1|Y1)}) ∆
=D2 (3.54)

D ≤ 1

(2πe)2(1− ρ2
Y Z)σ2

Y

22(max{h(X1|Y1),h(Y1|X1)}+max{h(X1|Z1),h(Z1|X1)}) ∆
=D3 (3.55)

which are corresponding to

R(X, Y,D) ≤ R(X,Z,D) +R(Y, Z,D)

R(Y, Z,D) ≤ R(X, Y,D) +R(X,Z,D),

respectively. Hence, if D ≤ min{D1, D2, D3}, then we can say the triangle inequality
condition is met. This completes the proof of Theorem 5.

Remark 3. Precise examination on Theorem 5 shows that we can also define R∗∗(X, Y,D)
as a pseudo distance over the set of all real-valued and IID sources.

3.6 Summary

In this chapter, we proposed a new information distance between two data objects X and
Y as a smallest number of coded bits would convert X into Ŷ , and Y into X̂ such that the
distortion between X and X̂ and the distortion between Y and Ŷ are less than or equal
to the distortion level D. This distance is totally defined when the alphabet is discrete.
We then characterized and analyzed the information distance for some popular sources.
Finally, the new information distance over the set of all real-valued and IID sources is
discussed when the distortion level has a small value.
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Chapter 4

Separately Precoded Broadcast
Coding

4.1 Overview

As discovered previously, it can be found out that Given a class C of coding schemes
within the coding paradigm, the information distance RC(X, Y,D) between X and Y at
the distortion level D is then defined as the smallest number of coded bits afforded by
coding schemes from C. When C is the class of so-called separately precoded broadcast
codes, it is shown that for any DMS pair (X, Y ) = {(Xi, Yi)}∞i=1 , RC(X, Y,D) is equal
to the maximum of the Wyner-Ziv coding rate of X with Y as side information and the
Wyner-Ziv coding rate of Y with X as side information.

In Section 4.2, we formally formulate the separately precoded broadcast coding paradigm
and define the information distance Rsb(X, Y,D). Section 4.3 defines how to analyze
RC(X, Y,D) in terms of the Wyner-Ziv coding rate of X with Y as side information and
the Wyner-Ziv coding rate of Y with X as side information when C consists only of all
so-called separately precoded broadcast codes within the coding paradigm; its distance
property among different sources is also presented.
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4.2 Formal Definitions: Codes and New Information

Distances

Like the previous chapter, Let A and Â be two abstract alphabets. The sets A and Â will
denote our source alphabet and reproduction alphabet, respectively.

Let us now impose some constraints on Cn in Definition 3.1 of Chapter 3. In particular,
we split the encoding process into two steps. At Step 1, data objects xn and yn are
separately precoded into nR1 and nR2 bits, respectively. At Step 2, the precoded bits
are then jointly encoded into nR bits. The resulting type of code is called a separately
precoded broadcast code.

For any R > 0 and n, let

Ω(n,R) = {1, 2, · · · , b2nRc}.

Formally, we have the following definition.

Definition 4.1. A separately precoded broadcast code Cn of order n and rate R with pre-
coded rates R1 and R2 consists of two separate precoding mappings

f1 : An → Ω(n,R1)

f2 : An → Ω(n,R2)

a joint encoding mapping

f : Ω(n,R1)× Ω(n,R2)→ Ω(n,R)

and two decoding mappings

g1 = (g11, g12) : Ω(n,R)×An → Ân × Ω(n,R2)

and
g2 = (g21, g22) : Ω(n,R)×An → Ân × Ω(n,R1).

Figure 4.1 illustrates the encoding and decoding processes of a separately precoded
broadcast code Cn = (f1, f2, f, g1, g2) of order n and rate R with precoded rates R1 and
R2. Xn and Y n are first separately precoded into f1(Xn) of nR1 bits and f2(Y n) of nR2 bits,
and then jointly encoded into f(f1(Xn), f2(Y n)) of nR bits. On the decoder side, the jointly
encoded message f(f1(Xn), f2(Y n)) converts: (1) Xn via Decoder 1 into an estimate Ŷ n =
g11(f(f1(Xn), f2(Y n)), Xn) of Y n and an estimate f̂2(Y n) = g12(f(f1(Xn), f2(Y n)), Xn) of
f2(Y n); and (2) Y n via Decoder 2 into an estimate X̂n = g21(f(f1(Xn), f2(Y n)), Y n) of Xn

and an estimate f̂1(Xn) = g22(f(f1(Xn), f2(Y n)), Y n) of f1(Xn).
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Figure 4.1: Illustration of a separately precoded broadcast code.

Definition 4.2. Let Csb consist of all separately precoded broadcast codes. Given stationary
sources X = {Xi}∞i=1 and Y = {Yi}∞i=1, a rate distortion pair (R,D) is said to be Csb-
achievable for (X, Y ) if for any ε > 0, there exist a finite set B ⊆ Â and, for all sufficiently
large n, a separately precoded block code Cn = (f1, f2, f, g1, g2) of order n and rate R + ε
with precoded rates R1 + ε and R2 + ε such that

Pr{d(Xn, X̂n) > D} < ε (4.1)

Pr{d(Y n, Ŷ n) > D} < ε (4.2)

Pr{f1(Xn) 6= f̂1(Xn)} < ε (4.3)

and
Pr{f2(Y n) 6= f̂2(Y n)} < ε (4.4)

where (X̂n, f̂1(Xn)) = g2(f(f1(Xn), f2(Y n)), Y n), (Ŷ n, f̂2(Y n)) = g1(f(f1(Xn), f2(Y n)), Xn),
and both X̂n and Ŷ n take values in Bn.

Let Rsb(X, Y ) denote the set of all Csb-achievable (R,D) pairs for (X, Y ). It can be
verified that Rsb(X, Y ) is closed. Given D ≥ 0, define the information distance between
X and Y at the distortion level D with respect to Csb as

Rsb(X, Y,D)
∆
= min{R : (R,D) ∈ Rsb(X, Y )}. (4.5)

As in the case of R(X, Y,D), we also aim to characterize Rsb(X, Y,D), and analyze its
relationship among different sources X, Y , Z, etc as a notion of distance.

49



4.3 Rsb(X, Y, D): Distance Property and Character-

ization

In this section, we analyze the distance property of Rsb(X, Y,D) over the set of stationary
sources X, Y , Z, etc, and characterize it in terms of Wyner-Ziv coding rates for DMS pairs
(X, Y ). Again, we begin with its distance property.

Suppose that both A and Â are finite, and the condition 3.1 is met. In parallel with
Theorem 1 in Chapter 3, we have the following result.

Theorem 1. Fix D ≥ 0. Let

R∗sb(X, Y,D) =

{
Rsb(X, Y,D) if X = Y
Rsb(X, Y,D) +H(D) otherwise.

(4.6)

Then R∗sb(X, Y,D) is a pseudo distance over the set of all stationary sources.

Remark 1. In view of the definitions of R(X, Y,D) and Rsb(X, Y,D), it follows that

R(X, Y,D) ≤ Rsb(X, Y,D). (4.7)

However, the above inequality, together with Theorem 1 in Chapter 3, does not imply
Theorem 1 directly.

An approach similar to the proof of Theorem 1 of the previous chapter can be used to
show Theorem 1. To prove the corresponding triangle inequality, we first show that allowing
random joint encoding mappings f in the definition of separately precoded broadcast codes
does not decrease the rate distortion function of all Csb-achievable pairs (R,D) for any
(X, Y ). Given any X, Y , and Z, we then show that (Rsb(X, Y,D)+Rsb(Y, Z,D)+H(D), D)
is achievable by separately precoded broadcast codes with random joint encoding mappings
f for (X,Z).

For any DMS pair (X, Y ) = {(Xi, Yi)}∞i=1, let RWZ
X|Y (D) (RWZ

Y |X(D), resp.) denote the

Wyner-Ziv coding rate of X (Y , resp.) with Y (X, resp.) as side information available at
the decoder. Then we have the following result.

Theorem 2. For any DMS pair (X, Y ) = {(Xi, Yi)}∞i=1, we have

Rsb(X, Y,D) = max{RWZ
X|Y (D), RWZ

Y |X(D)}.
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Proof. To prove this theorem, we need to verify both Achievability and Converse proof
Achievability part: We want to show that if R > max{RWZ

X|Y (D), RWZ
Y |X(D)}, then there

exist a separately precoded block code Cn = (f1, f2, f, g1, g2) of order n such that

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D

lim sup
n→∞

E[d(Y n, Ŷ n)] ≤ D.

We use joint typicality encoding to describe X and Y by U and Û , respectively. Since U
(Û , resp.) has a correlation with Y (X, resp.); however, binning can be used to reduce their
description rate. The module-2 sum of the bin indexes of U and Û is sent to the decoders.
Then, Decoder 1 recovers the index bin of Û and uses joint typicality decoding with X to
recover Û and then reconstruct Ŷ and f2(Ŷ n) from Û and X. At the same time, Decoder
2 reconstructs X̂ and f1(X̂n) by using the joint typicality with Y . We now provide the
details.

Codebook generation: We fix the conditional PMFs p(u|x), p(û|y) as well as func-
tions x̂(u, y) and ŷ(û, x) such that E[d(X, X̂)] ≤ D

1+ε
and E[d(Y, Ŷ ] ≤ D

1+ε
, respectively,

where D is the distortion level. Randomly and independently generate 2nR1 sequences
un(l), l ∈ [1 : 2nR1 ], each according to

∏n
i=1 PU(ui). Similarly, randomly and indepen-

dently generate 2nR2 sequences ûn(s), s ∈ [1 : 2nR2 ], each according to
∏n

i=1 PÛ(ûi). Now,
partition both set of indices l and s into equal-size subsets referred to as bins B(m′) and
B(m′′), as follows

B(m′) = [(m′ − 1)2n(R1−R) + 1 : m′2n(R1−R)], (4.8)

B(m′′) = [(m′′ − 1)2n(R2−R) + 1 : m′′2n(R2−R)]. (4.9)

respectively, where both m′,m′′ ∈ [1 : 2nR]. The codebook generation is revealed to
Encoder and both Decoders 1 and 2.

Precoder f1 : Upon receiving xn, Precoder f1 finds an index l such that (xn, un(l)) ∈
T (n)
ε′ (X,U). If there is more than one such index, Precoder f1 uses the smallest one. If

there is no such index, it selects randomly an index from [1 : 2nR1 ] uniformly and then
send it to Encoder.

Precoder f2 : Given yn, Precoder f2 finds an index s such that (yn, ûn(s)) ∈ T (n)
ε′ (Y, Û).

If there is more than one such index, Precoder f2 uses the smallest one. If there is no such
index, it sets randomly an index from [1 : 2nR2 ] uniformly and then send it to Encoder.

Encoder: Given indexes l and s, Encoder finds m′ and m′′ such that l ∈ B(m′) and
s ∈ B(m′′). Then it expresses each message (m′ and m′′) as a binary sequence (nR bits)

51



and broadcasts the modulo-2 sum of the two sequences (m = m′ ⊕m′′) to both Decoders
1 and 2.

Decoder 1 : Let ε > ε′. Upon receiving m, Decoder 1 recovers the massage of the
other source (m′′) by performing modulo-2 sum on the binary expression of its message
(m′) and the received sequence (m). Then it finds the unique index ŝ ∈ B(m′′) such that

(xn, ûn(ŝ)) ∈ T (n)
ε (X, Û); otherwise it sets ŝ = 1. Finally, it computes the reconstruction

sequence as ŷi = ŷ(ûi(ŝ), xi) for i ∈ [1 : n]. Decoder 1 recovers ŷn and ŝ which the binary
expression of ŝ is equal to f2(yn) with the high probability.

Decoder 2 : Let ε > ε′. Upon receiving m, Decoder 2 recovers the massage of the other
source (m′) by performing modulo-2 sum on the binary expression of its message (m′′) and
the received sequence (m). Then the decoder 2 finds the unique index l̂ ∈ B(m′) such that

(yn, un(l̂)) ∈ T (n)
ε (Y, U); otherwise it sets l̂ = 1. Finally, it computes the reconstruction

sequence as x̂i = x̂(ui(l̂), yi) for i ∈ [1 : n]. Decoder 2 recovers x̂n and l̂ which the binary
expression of l̂ is equal to f1(xn) with the high probability.

Analysis of expected distortion: Let (L, S) denote the chosen indices at Precoders
f1, f2, respectively, such that L ∈ B(M ′) and S ∈ B(M ′′). At Encoder, M shows the
modulo-2 sum of M ′ and M ′′. Furthermore, (L̂, Ŝ) be the index estimate at Decoders 2
and 1, respectively. We define the “ Error ” event as

E = E ′ ∪ E ′′ = {(Un(L̂), Xn, Y n) 6∈ T (n)
ε (U,X, Y )} ∪ {(Ûn(Ŝ), Xn, Y n) 6∈ T (n)

ε (Û ,X, Y )}
(4.10)

Now, consider the events

E1 = {(Un(l), Xn) 6∈ T (n)
ε′ (U,X) for all l ∈ [1 : 2nR1)},

E2 = {(Un(L), Xn, Y n) 6∈ T (n)
ε (U,X, Y )},

E3 = {(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(M ′), l̃ 6= L},

E4 = {(Ûn(s), Y n) 6∈ T (n)
ε′ (Û , Y ) for all s ∈ [1 : 2nR2)},

E5 = {(Ûn(S), Xn, Y n) 6∈ T (n)
ε (Û ,X, Y )},

E6 = {(Ûn(s̃), Xn) ∈ T (n)
ε (Û ,X) for some s̃ ∈ B(M ′′), s̃ 6= S}.

Since the “Error” event occurs only if (Un(L), Xn, Y n) 6∈ T (n)
ε (U,X, Y ) or L̂ 6= L, as well

as (Ûn(S), Xn, Y n) 6∈ T (n)
ε (Û ,X, Y ) or Ŝ 6= S, by the union of events bound,

P (E) ≤ P (E ′) + P (E ′′) ≤ P (E1) + P (Ec
1 ∩ E2) + P (E3) + P (E4) + P (Ec

4 ∩ E5) + P (E6).
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We now bound each term. By the covering lemma (see Appendix A.1), P (E1) and P (E4)
tends to zero as n→∞ if

R1 > I(X;U) + δ(ε′) (4.11)

R2 > I(Y ; Û) + δ(ε′) (4.12)

Since ε > ε′, Ec
1 = {(Un(L), Xn) ∈ T (n)

ε′ (U,X)}, and Y n | {Un(L) = un, Xn = xn} ∼∏n
i=1 PY |U,X(yi|ui, xi) =

∏n
i=1 PY |X(yi|xi), by the conditional typicality lemma (Lemma 2),

P (Ec
1 ∩ E2) → 0 as n → ∞. Similarly, as ε > ε′, Ec

4 = {(Ûn(S), Y n) 6∈ T (n)
ε′ (Û , Y )},

and Xn | {Ûn(S) = ûn, Y n = yn} ∼
∏n

i=1 PX|Û ,Y (xi|ûi, yi) =
∏n

i=1 PX|Y (xi|yi), by the
conditional typicality lemma (Lemma 2), P (Ec

4 ∩ E5) tends to zero as n→∞.

To bound P (E3) and P (E6), we first use lemma 11.1 of [1] (see Appendix A.3) to find
an upper bound as follows

P (E3) ≤ Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)}

P (E6) ≤ Pr{(Ûn(s̃), Xn) ∈ T (n)
ε (Û ,X) for some s̃ ∈ B(1)}

For each l̃ ∈ B(1), the sequence Un(l̃) ∼
∏n

i=1 PU(ui) is independent of Y n. Now, by the

packing lemma (see Appendix A.2), Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)} tends

to zero as n → ∞ if R1 − R < I(Y ;U) − δ(ε). Thus, by lemma 11.1 of [1] and equation
4.11, P (E3) tends to zero if

R > R1 − I(Y ;U) + δ(ε) > I(X;U)− I(Y ;U) + δ(ε) + δ(ε′) = I(X;U |Y ) + δ′(ε) (4.13)

In a similar way, for each s̃ ∈ B(1), the sequence Ûn(s̃) ∼
∏n

i=1 PÛ(ûi) is independent of

Xn. By the packing lemma, Pr{(Ûn(s̃), Xn) ∈ T (n)
ε (Û ,X) for some s̃ ∈ B(1)}tends to zero

as n → ∞ if R2 − R < I(X; Û) − δ(ε). Again, by lemma 11.1 of [1] and equation 4.12,
P (E6) tends to zero if

R > R2 − I(X; Û) + δ(ε) > I(Y ; Û)− I(X; Û) + δ(ε) + δ(ε′) = I(Y ; Û |X) + δ′(ε) (4.14)

Since in the codebook generation part, we fixed the the conditional PMFs p(u|x) and
p(û|y) as well as functions x̂(u, y) and ŷ(û, x) such that E[d(X, X̂)] ≤ D

1+ε
and E[d(Y, Ŷ )] ≤

D
1+ε

, we can reformulate equations 4.13 and 4.14 as follows

R > min
p(u|x),x̂(u,y): E[d(X,X̂)]≤ D

1+ε

I(X;U |Y ) + δ′(ε) = RWZ
X|Y (

D

1 + ε
) + δ′(ε) (4.15)
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R > min
p(û|y),ŷ(û,x): E[d(Y,Ŷ )]≤ D

1+ε

I(Y ; Û |X) + δ′(ε) = RWZ
Y |X(

D

1 + ε
) + δ′(ε) (4.16)

,respectively. Now, provided that R > max{RWZ
X|Y ( D

1+ε
), RWZ

Y |X( D
1+ε

)}+ δ′(ε), then there will

be no “Error” i.e., P (E)→ 0.

When there is no “Error”, (Un(L), Xn, Y n) ∈ T nε (U,X, Y ) and (Ûn(S), Xn, Y n) ∈
T nε (Û ,X, Y ). Thus, by the law of total expectation and the typical average lemma (Lemma
1), the asymptotic distortion averaged over the random codebook and encoding is upper
bounded as

lim sup
n→∞

E[d(Xn, X̂n)] ≤ lim sup
n→∞

(P (E)E[d(Xn, X̂n)|E ] + P (Ec)E[d(Xn, X̂n)|Ec])

≤ lim sup
n→∞

(dmaxP (E) + P (Ec)(1 + ε)E[d(X, X̂)] ≤ (1 + ε)
D

(1 + ε)
= D

where dmax = max(x,x̂)∈A×B d(x, x̂). With the same procedure, lim supn→∞E[d(Y n, Ŷ n)] ≤
D as n→∞ if R > max{RWZ

X|Y ( D
(1+ε)

), RWZ
Y |X( D

(1+ε)
)}+ δ′(ε).

In the last step, from the continuity of RWZ
X|Y (D) and RWZ

Y |X(D) in D [20], taking ε→ 0

shows that any rate distortion pair (R,D) withR > max{RWZ
X|Y (D), RWZ

Y |X(D)} is achievable.

The converse part: We need to show that for any block code Cn = (f1, f2, f, g1, g2)
of order n with

lim sup
n→∞

E[d(Xn, X̂n)] ≤ D (4.17)

lim sup
n→∞

E[d(Y n, Ŷ n)] ≤ D, (4.18)

we must have R ≥ max{RWZ
X|Y (D), RWZ

Y |X(D)}.

Let M denotes the chosen indices at Encoder which sends to both Decoders 1 and 2.
The key to the proof is identify Ui and Ûi. In general, X̂i is a function of (M,Y n). We
would like X̂i to be a function of (Ui, Yi), so we identify the auxiliary random variable
Ui = (M,Y i−1, Y n

i+1). Similar to the proof of the converse for Wyner-Ziv coding in [1],
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Consider

nR ≥ H(M)

≥ H(M |Y n)

= I(Xn;M |Y n)

=
n∑
i=1

I(Xi;M |Y n, X i−1)

=
n∑
i=1

H(Xi|Y n, X i−1)−H(Xi|M,Y n, X i−1)

(a)

≥
n∑
i=1

H(Xi|Yi)−H(Xi|M,Y i−1, Yi, Y
n
i+1)

=
n∑
i=1

H(Xi|Yi)−H(Xi|Ui, Yi)

=
n∑
i=1

I(Xi;Ui|Yi)

(b)

≥
n∑
i=1

RWZ
X|Y (E[d(Xi, X̂i)])

(c)

≥ nRWZ
X|Y (

1

n

n∑
i=1

E[d(Xi, X̂i)])

= nRWZ
X|Y (E[d(Xn, X̂n)])

where (a) follows since (Xi, Yi) is independent of (Y i−1, Y n
i+1, X

i−1), (b) by the definition of
RWZ
X|Y (D) = min I(X;U |Y ), and (c) follows by the convexity of RWZ

X|Y (D). Since RWZ
X|Y (D)

is continuous and non-increasing in D, it follows from the bound on distortion in 4.17 that

R ≥ lim sup
n→∞

RWZ
X|Y (E[d(Xn, X̂n)])

≥ RWZ
X|Y (lim sup

n→∞
E[d(Xn, X̂n)])

≥ RWZ
X|Y (D) (4.19)
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Similarly, Ŷi is a function of (M,Xn), so we set Ûi = (M,X i−1, Xn
i+1). Consider

nR ≥ H(M)

≥ H(M |Xn)

= I(Y n;M |Xn)

=
n∑
i=1

I(Yi;M |Xn, Y i−1)

(a)
=

n∑
i=1

I(Yi;M,X i−1, Xn
i+1, Y

i−1|Xi)

≥
n∑
i=1

I(Yi; Ûi|Xi)

≥
n∑
i=1

RWZ
Y |X(E[d(Yi, Ŷi)])

(b)

≥ nRWZ
Y |X(

1

n

n∑
i=1

E[d(Yi, Ŷi)])

where (a) follows since (Xi, Yi) is independent of (X i−1, Xn
i+1, Y

i−1) and (b) follows by the
convexity of RWZ

Y |X(D). Since RWZ
Y |X(D) is non-increasing, by assumption 4.18, we can write

R ≥ lim sup
n→∞

RWZ
Y |X(E[d(Y n, Ŷ n)])

≥ RWZ
Y |X(lim sup

n→∞
E[d(Y n, Ŷ n)])

≥ RWZ
Y |X(D) (4.20)

By combining 4.19 and 4.20, we derive

R ≥ max{RWZ
X|Y (D), RWZ

Y |X(D)}.

This completes the proof of Theorem 2.

Remark 2. We can combine two Wyner-Ziv coding with a simple linear-network code.
Encoder maps Xn to a binary sequence by a Wyner-Ziv Code [20]. This code behaves Y n

as side information at decoder 2, but it ignores Y n at Encoder. At the same time, Y n is
mapped to a binary sequence by a Wyner-Ziv code which handle Xn as side information
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at Decoder 1, but it ignores Xn at Encoder. Therefore, we can easily achieve the following
rate by the separately precoded broadcast code:

R ≥ max{RWZ
X|Y (D), RWZ

Y |X(D)}.

It is instructive to compare Rsb(X, Y,D) with R(X, Y,D). When X1 and Y1 are jointly
Gaussian, and (X, Y ) = {(Xi, Yi)}∞i=1 is IID with d(x, x̂) = (x− x̂)2, we have

Rsb(X, Y,D) = R(X, Y,D).

In general, however, it is expected that the inequality in 4.7 is strict, which is the case, for
example, when (X, Y ) is the source pair in the example of DSBS.

Since the separately precoded broadcast coding is a especial case of a coding diagram
shown in Figure 3.1, Theorems 3, 4, and 5 of Chapter 3 are holding.

4.4 Summary

In this chapter, RC(X, Y,D) is characterized in terms of the Wyner-Ziv coding rate of X
with Y as side information and the Wyner-Ziv coding rate of Y with X as side information
when (X, Y ) is a DMS pair and C consists only of so-called separately precoded broadcast
codes within the coding paradigm; its distance property among different sources is also
presented.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we have proposed a new information distance between any two data objects
X and Y which has the universality from the information distance as defined in [16],
and the computability and applicability to both discrete and continuous-valued data as in
SMID dφ(X, Y ). In other words, we bring distortion into the information distance, and
universality to the SMID. For this reason, we give a new coding paradigm such that X
and Y are compressed into a sequence of coded bits specifying a codeword which would, in
turn, convert Y into X̂, and X into Ŷ with the condition that both the distortion between
X and X̂ and the distortion between Y and Ŷ are less than or equal to a prescribed
threshold D. Since we need universality to some extent, we analyze a class C of coding
schemes within the coding paradigm. Given a class C, the information distance between
X and Y at the distortion level D is defined as the smallest number of coded bits caused
by coding schemes from C. We characterize and analyze the information distance for some
classes C. For example, when (X, Y ) = {(Xi, Yi)}∞i=1 is an IID pair, we establish upper
and lower bounds to our new information distance. For the finite alphabets, we defined a
pseudo distance and analyzed the distance properties. When the alphabets are not finite
but the prescribed threshold D is small, our new information distance is also valid and
it satisfies the triangle inequality. In the last part of this thesis, when C is the class of
separately precoded broadcast codes, the information distance is equal to the maximum
of the Wyner-Ziv coding rate of X with Y as side information and the Wyner-Ziv coding
rate of Y with X as side information.
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5.2 Future Works

In this thesis, where C consists of all codes within the coding paradigm, upper and lower
bounds to our new information distance are established and are shown to be tight in
some special cases such as jointly Gaussian and DSBS. Single letter characterization of
R(X, Y,D) remains open in general. One of our future work is finding the closed-form
solution for this multi-user information theory problem when the sources are stationary,
ergodic.

For the finite alphabets, the new information distance is completely done. When the
alphabet sources are not finite, our pseudo distance is not valid in general. We studied the
case which is IID source and the distortion level D is small (For example high-resolution
images or videos). Our plan for future work concentrates on the case in which the alphabet
is abstract and we do not have any constraint on distortion level D. One of the most
interesting future work plan is defining the information distance for stationary, totally
ergodic sources which we are working on it now.

Finally, we can analyse the applicability of the new distance measure to image clas-
sification and compare it to the current database classifications as an interesting future
work.
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Appendix A

Useful Lemmas In Information
Theory

A.1 Covering Lemma

The covering lemma generalizes the bound on the probability of the encoding error event
ε in the achievability proof of the lossy source coding theorem. The lemma will be used in
the achievability proofs of several multi-user source and channel coding theorems[1].

Lemma 1. (Covering Lemma) For any ε > 0, we can find n such that if Xn(m),

m ∈ [1 : 2nR], are independently drawn from
∏n

i=1 PX(xi) and Y n ∈ T (n)
ε′ (Y ), ε′ < ε, is

independent of each Xn(m), then

Pr{(Xn(m), Y n) ∈ T (n)
ε (X, Y ) for some m} → 1

if R > I(X;Y ) + δ(ε), where δ(ε)→ 0 as ε → 0 [32].
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Proof.

Pr{(Xn(m), Y n) /∈ T (n)
ε (X, Y ) for allm}

=
∑

yn∈T (n)

ε′ (Y )

p(yn) Pr{(Xn(m), yn) /∈ T (n)
ε (X, Y ) for allm | yn}

=
∑

yn∈T (n)

ε′ (Y )

p(yn)
2nR∏
m=1

Pr{(Xn(m), yn) /∈ T (n)
ε (X, Y )}

=
∑

yn∈T (n)

ε′ (Y )

p(yn)(Pr{(Xn(m), yn) /∈ T (n)
ε (X, Y )})2nR

≤ (1− 2−n(I(X;Y )+δ(ε)))2nR ≤ e−2n(R−I(X;Y )−δ(ε))

which tends to zero as n→ 0 if R > I(X;Y ) + δ(ε).

We can generalize the covering lemma by replacing the independence to the conditional
independence condition. Then we have the following lemma.

Lemma 2. (Conditional Covering Lemma) For any ε > 0, we can find n such that if

Xn(m), m ∈ [1 : 2nR], are independently drawn from
∏n

i=1 PX|U(xi|ui) and Y n ∈ T (n)
ε′ (Y ),

ε′ < ε, is conditionally independent of each Xn(m) given Un, then

Pr{(Xn(m), Y n, Un) ∈ T (n)
ε (X, Y, U) for some m} → 1

if R > I(X;Y |U) + δ(ε), where δ(ε)→ 0 as ε → 0 [32].

A.2 Packing Lemma

The packing lemma generalizes the bound on the probability of the decoding error event
in the achievability proof of the channel coding theorem. The lemma will be used in the
achievability proofs of many multi-user source and channel coding theorems.

Lemma 3. (Packing Lemma) For any ε > 0, we can find n such that if Xn(m),

m ∈ [1 : 2nR], are independently drawn from
∏n

i=1 PX(xi) and Y n ∈ T (n)
ε (Y ) is independent

of each Xn(m), then

Pr{(Xn(m), Y n) ∈ T (n)
ε (X, Y ) for some m} → 0

if R < I(X;Y )− δ(ε), where δ(ε)→ 0 as ε → 0 [32].
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Proof.

Pr{(Xn(m), Y n) ∈ T (n)
ε (X, Y ) for somem}

=
∑

yn∈T (n)
ε (Y )

p(yn) Pr{(Xn(m), yn) ∈ T (n)
ε (X, Y ) for somem | yn}

≤
∑

yn∈T (n)
ε (Y )

p(yn)
2nR∑
m=1

Pr{(Xn(m), yn) ∈ T (n)
ε (X, Y )}

≤
∑

yn∈T (n)
ε (Y )

p(yn)2nR.2−n(I(X;Y )−δ(ε))

≤ 2−n(I(X;Y )−R−δ(ε)))

which tends to zero as n → 0 if R < I(X;Y ) − δ(ε). This completes the proof of the
packing lemma.

We can generalize the packing lemma by replacing the independence to the conditional
independence condition. Then we have the following lemma.

Lemma 4. (Conditional Packing Lemma) For any ε > 0, we can find n such that if

Xn(m), m ∈ [1 : 2nR], are independently drawn from
∏n

i=1 PX|U(xi|ui) and Y n ∈ T (n)
ε (Y )

is conditionally independent of each Xn(m) given Un, then

Pr{(Xn(m), Y n, Un) ∈ T (n)
ε (X, Y, U) for some m} → 0

if R < I(X;Y |U)− δ(ε), where δ(ε)→ 0 as ε → 0 [32].

A.3 Proof of Lemma 11.1. of Network Information

Theory book (El-Gamal book)

Lemma 5.

Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(M ′), l̃ 6= L}

≤ Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)}[1].
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Proof. We first show that

Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(m′), l̃ 6= L |M ′ = m′}

≤ Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1) |M ′ = m′}

This holds trivially when m′ = 1. For m′ 6= 1, consider

Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(m′), l̃ 6= L |M ′ = m′}

=
∑

l∈B(m′)

p(l|m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(m′), l̃ 6= L | L = l,M ′ = m′}

(a)
=

∑
l∈B(m′)

p(l|m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(m′), l̃ 6= L | L = l}

(b)
=

∑
l∈B(m′)

p(l|m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ [1 : 2n(R1−R) − 1] | L = l}

≤
∑

l∈B(m′)

p(l|m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)| L = l}

(c)
=

∑
l∈B(m′)

p(l|m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)| L = l,M ′ = m′}

= Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1) |M ′ = m′}

where (a) and (c) follow since M is a function of L and (b) follows since given L = l, any
collection of 2n(R1−R)− 1 codewords Un(l̃) with l̃ 6= l has the same distribution. Therefore,
We have

P (E3) =
∑
m′

p(m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(m′), l̃ 6= L |M ′ = m′}

≤
∑
m′

p(m′) Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)|M ′ = m′}

= Pr{(Un(l̃), Y n) ∈ T (n)
ε (U, Y ) for some l̃ ∈ B(1)}[1].
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