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Abstract

Functional profiling of genomes and metagenomes, as well as data mining for novel
proteins, all rely on computational methods for functional annotation of protein sequences.
Standard methods assign protein function based on detected homology to reference sequences,
but often leave behind a significant fraction of hypothetical sequences (“dark matter”)
that cannot be annotated. To maximize our ability to extract new biological insights from
newly sequenced genomes, it is critical to understand the advantages and limitations of
homology-based annotation, and explore alternative methods for inferring function. In
this thesis, I performed a comprehensive exploration of computational protein annotation,
with a focus on bacterial genomes and metagenomes. First, I applied homology-based
methods to functionally annotate and analyze original datasets including newly sequenced
Streptomyces strains, a wastewater metagenome, and microbial communities involved in
vertebrate decomposition. These studies identified genes and functions of interest including
cellulases, antibiotic resistance genes, and virulence factors. I then explored the limits of
homology-based annotation by measuring annotation coverage, the fraction of annotated
proteins in a proteome, across ∼27,000 organisms in the microbial tree of life. This study
demonstrated a wide range in annotation coverage across bacteria, from 2-86%. In addition,
it revealed multiple factors including taxonomy, genome size, and research bias, as heavy
influences on the degree to which proteomes could be annotated. To gain biological insights
into hypothetical proteins of unknown function, I analyzed 4,049 domains of unknown
function (DUFs) from Pfam. Using phylogenomic, taxonomic and metagenomic information,
I detected statistical associations between domains and biological traits. Association-based
methods uncovered environment, lineage, and/or pathogen associations in just under half
of all DUFs and highlighted new families such as DUF4765 as intriguing virulence factor
candidates. Finally, I constructed a database of “ORFan” metagenomic sequences that
cannot be annotated using standard approaches, and inferred functions for tens of thousands
of these sequences using profile-profile comparison approaches. Motif analysis and genomic
context validated these predictions, enabling the discovery of hundreds of novel candidate
metalloproteases. Protein “dark matter”, which includes a large pool of unannotated
coding sequences, is an incredible resource to find new proteins and functions of interest,
and included are suggestions on how to prioritize these sequences for future study. A
combination of homology-based and alternative annotation methods will be most effective
for broad functional profiling of genomes and metagenomes, and can push the boundaries
for functional interpretation of sequence data.
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Chapter 1

Introduction

[...] there seem to be two possible views on functional completeness: first,
that we can reliably predict functions for the majority of proteins; or
second, that there is a seemingly endless repertoire of specialized families
and we cannot predict whether we are approaching the limits of protein
function space.

Protein Function Space: Viewing the Limits or Limited by our View?
Jeroen Raes et al.254

Material in this chapter has been published as part of Lobb and Doxey (2016).177 The
published manuscript is available here:

B. Lobb and A. C. Doxey. Novel function discovery through sequence and
structural data mining. Current Opinion in Structural Biology, 38:53-61, 2016.177

https://doi.org/10.1016/j.sbi.2016.05.017

Function is an expansive and complex term that is hard to define. With regards to biology,
this can refer to a biochemical level (e.g. with residues interacting to facilitate reactions), a
molecular network (e.g. metabolic pathways within the cell), and a higher-level cellular
role (e.g. in a community or within a multi-cellular organism). The concept of function
used within this thesis is broad and includes “molecular function” as well as “biological
process”, consistent with functional ontologies19 and assessments of prediction methods.253

This functional information comes from a patchwork of purification, biochemical assays,
physiological experiments and phenotypic observations. One experiment alone cannot fully

1
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describe a protein’s role at all perceived levels. In order to build a picture of the protein’s
functional facets, multiple sources of functional information must be compared and combined.
Translation of experimentally-derived functions into usable functional terms, annotations, is
an on-going process, with 40,230 molecular function and biological process Gene Ontology
(GO) terms currently applied to proteins across many databases1. Annotations also include
other database ontologies/vocabularies, compiled notes (e.g. functional summaries from
Interpro or Uniprot), researcher-bestowed protein names (e.g. autoagglutinating adhesin),
identified domains, and protein family associations.

With the development of cheaper and faster sequencing technologies, sequence databases
have been flooded with new submissions. Since Dec. 2019, there have been over 1,000,000
new entries in Genbank alone2. In the absence of thorough experimental characterization,
a protein would be without any functional annotations without some kind of transfer of
functional information from one sequence to another. As orthologous3 proteins generally
possess the same functions, finding a protein’s homologs can provide a source for annotation
transfer. Thus, classic methods, like BLAST,8 were developed in order to efficiently find
similar sequences with a high probability of homology. However, the sequence alignments
that BLAST uses are sometimes not sensitive enough to find divergent, but still functionally
similar, protein homologs. Newer methods, discussed in this thesis, incorporate protein
family models, search iterations, and combinations of different reference databases to
achieve greater levels of annotation success. When these homology-based methods do
not find sequence matches, other annotation strategies including domain, motif, genomic
neighborhood, association, co-occurrence, and strucural analyses can be explored.

Annotation is used to gather putative functions for a sequence, analyze the functional
potential of genomes and metagenomes, and to guide future study. With a pool of
uncharacterized proteins, finding novel proteins, that have unexplored roles or locations,
is an added benefit of annotation. Data mining, or the extraction of useful, interesting
information from a dataset, is the basis for many important discoveries (e.g. proteolytic
flagellin63). With the wealth of sequence data available, in databases and through new
sequencing ventures, finding interesting novel proteins is eminently achievable. Tailored
approaches leverage known information from different sources and methods in order to
strengthen predictions. In this chapter, I will introduce some of the many different strategies
for finding proteins of interest, and discuss how this can be accomplished through different
annotation techniques.

1http://geneontology.org/stats.html for the current release v2020-06-01
21,789,213 sequences were deposited into GenBank from Dec. 2019 - Jun. 2020 (https://www.ncbi.

nlm.nih.gov/genbank/statistics/)
3Sequences that are related across a speciation event.
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1.1 Homology-based functional annotation

1.1.1 Protein sequence and homology

Homologous sequences share a common ancestor and are thus more similar to each other
than they are to other unrelated sequences. As homologs, especially orthologs4, are
generally considered to be functionally similar, this concept forms the basis for functional
annotation.160 Using sequence alignments enables one to infer homology between sequences,
by comparing their sequence similarity. In an alignment, ideally the related amino acids or
nucleotides are aligned, with gaps indicating insertions or deletions relative to their most
recent common ancestor. The alignment is then scored, to get a sense of alignment quality.
In the classic BLAST8 (basic local alignment search tool) implementation, a statistical
measure of alignment “significance” is also used, the E-value (expect value). The E-value
does not only look at the alignment itself but also the context in which the match was
found5, taking into account the chance that it is a random match and not a homologous
sequence. For example, an E-value of 1 means that one sequence match is expected by
chance in a database of the same size, with a similar alignment score. If the E-value is
low, it indicates that the two sequences have a good alignment quality and therefore, have
evidence for homology. It is important to note that low alignment quality is not a guarantee
that there is no evolutionary relationship between sequences, as the sequences may have
diverged so far that significant sequence similarity is no longer detected. BLAST is not
the only sequence-sequence search tool. There are many sequence alignment tools with
different levels of sensitivity and speed.27,66,236,263,291 These can all be used in order to find
sequences with high similarity, transferring functional information from one sequence to
another.

1.1.2 Protein and domain family profiles

Groups of related sequences with a common ancestor together form a protein family.
Multiple sequence alignments (MSAs), with multiple family members aligned, enable an
exploration of shared sequence traits between the proteins. After aligning family members,
certain positions often show up as less variable. Conserved residues in these families are
sometimes catalytic sites or ligands, like in the metalloprotease HExxH motif found in the

4Paralogs, sequences related across a gene duplication event, generally diverge to the point of shifting in
function.160,231

5The E-value incorporates the length of query sequence and the database size as well as the bit-score of
the sequence alignment.
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Peptidase M60 (PF13402) family. These residues can also be conserved due to structural
importance (e.g. disulfide bridges or binding site pockets).38,147,172 These conserved residues
are used as a functional and structural signature for the family, allowing more divergent
members to be discovered. PSSMs and HMMs6 act as models or profiles of these protein
families, using information about the amino acid distribution at each position to inform
sequence searches. Example sequence-model searches are hmmscan,64 that scan protein
sequences against models of protein and/or domain families, and PSIBLAST7 (position-
specific iterative BLAST), which builds a model of top-scoring database hits across multiple
iterative model-to-sequence searches.

Models can be built, not just from full-length proteins but also from domains. A domain
is a folded structural unit within a protein and proteins are made up of one or more of these
domain units. Domain profiles are used to find matches to building blocks of proteins (such
as catalytic or binding regions), sometimes allowing functional information transfer even in
the absence of a full protein match.75 Thus, a domain model is a powerful tool for functional
annotation, taking advantage of the evolutionary phenomenon of domain recombination as a
means of generating new functional combinations.22,163 Through sequence-profile methods,
functional annotations are transferred based on either collective information about a protein
or a domain family, with a more sensitive approach for protein classification.

1.1.3 Where are we now?

Modern sequencing technologies continue to accelerate the collection of new genes and
genomes. This sequence information has become invaluable to protein researchers, fuelling
advances in computational methods for structure and function prediction,89,119,362 analysis
of protein family evolution,26,92,192,361 and protein design.25,185 Sequence databases are
improving with regards to annotations5,34 and coverage of protein domain space.67,286

Interpro announced in 2019 that its annotation coverage had further increased to 80.9%
of the ∼125,000,000 sequences in UniProtKB.214 In addition, structural data is growing
through structural genomics initiatives,97,140 further enabling large-scale homology modelling
efforts.168,244

The accuracy of protein function prediction has improved over the years as a result of
better methods, as well as increased experimentally-based annotations.126,253 Many proteins
predicted from genomes can now be at least partially annotated166,214 through detected
homology to existing proteins (e.g., via BLAST search) or through matches to domain
databases such as CDD,183 Pfam,67 CATH,286 and FIGFAMs.210 CDD and Interpro,115

6HMMs also incorporate information about gap propensity.
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in particular, combine domain and protein models from their own and other databases
in order to have more comprehensive annotations. Focused, niche databases have also
been created for specific functions (antibiotic resistance - Comprehensive Antibiotic Resis-
tance Database;125 CARD) and organisms (http://iant.toulouse.inra.fr/S.meliloti)
which seek to collect exceptionally well-curated annotations. These predictions form the
initial landscape of functional annotations in newly sequenced genomes, upon which further
questions may be investigated.

One important and common question following functional annotation is how to pinpoint
the most functionally novel and biologically interesting predictions. This task is challenging
due to the scale at which function predictions are often made and also because of the
complexities surrounding the definition of “function”.254 As a result, expert biological
knowledge is needed to interpret predictions and identify those providing particularly novel
or unexpected biological functionality.

1.1.4 Finding homologs in unexpected places

Homology search has been described as the single most powerful tool in bioinformatics and,
for decades, has been the core strategy in protein annotation.8 Beyond its utility in finding
new members or relatives of existing families, homology search can also reveal profound
functional novelty when a homolog is found in a novel/unexpected biological setting. This
setting may be a new species or environment,54,190,264,327 or an unexpected co-occurrence
with other proteins/pathways.40,324 The discovery of bacterial rhodopsins,16,327 archaeal
ammonia monooxygenases,155,327 and, complete nitrification by Nitrospira,40,324 are all
examples of important biological phenomena predicted through sequence homology.

The discovery of complete nitrification40,324 illustrates the power of detecting unex-
pected enzyme combinations. By identifying genes encoding ammonia monooxygenase
and hydroxylamine dehydrogenase together in a single genome, two studies40,324 were able
to identify the microbial basis for the long-sought-after process of complete nitrification
(oxidation of ammonia to nitrate, “comammox”). Undersampled phyla from the tree of
life are a likely hotspot for functional novelty of this kind as their genomes have been less
explored. Indeed, analyses of hundreds of new microbial “dark matter” genomes obtained
by single-cell genome sequencing have revealed novel and unexpected metabolic features
such as archaeal sigma factors previously considered exclusive to bacteria.264 Ultimately,
even if molecular function is completely conserved in newly detected homologs, finding
homologs in unexpected biological settings can reveal novelty at the pathway to organismal
to ecological level.40,264,324,327
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1.1.5 Problems with homology-based annotation

Homology-based annotation techniques can be used to find protein novelty but there remain
serious pitfalls with these methods. Sequence similarity is not a guarantee of a full overlap of
function. As proteins diverge, their function at lower and higher levels can change (e.g. a shift
in binding affinity and/or substrate leading to a change in a protein’s cellular role). Large
protein families have subdivisions within them that can be regulated in entirely different
ways and have different functions.277,290 While proteins evolve at different rates, Tian and
Skolnick311 found that a sequence identity of 40% was enough to transfer the first three
levels7 of an Enzyme Classification (E.C.) number between sequences but for a full enzyme
classification per-family thresholds were needed for accuracy.160,277 To combat the problem
of overannotation8, databases like Pfam and CARD125 have implemented model-specific
thresholds in order to provide guidelines for higher accuracy. Without careful attention to
the way that certain residues, insertions and deletions can alter function, misclassification is
possible. A recent look at the DmdA family of peptidases,92 prone to paralogous divergence
within its family phylogeny, found overannotation of the protein using automated methods.
A more accurate model was constructed by incorporating environmental data to fill in
underepresented taxa, identifying sequences directly annotated by experimental data, and
refining the model with phylogenetic analysis.92 Once a protein is given an incorrect
functional association, that error can propagate throughout a database. For example,
during the discovery of “comammox” organisms, ammonia monooxygenase subunit A
sequences were found in the NCBI nr database misclassified as methane monooxygenases.324

Annotation errors, either due to sequence divergence or incorrect database entry, are the
reason that clear history from annotation to experimental data is so vital. This allows
researchers to trace information back to its source and assess the validity of an annotation.

Another shortcoming is that homology-based annotation methods are not able to func-
tionally annotate all query sequences. Experimental characterization of proteins is an
expensive, time-consuming task and, as an example, there are still 23% (4155) of the
domain families in Pfam v33.1 that are called domains of unknown function (DUFs). There
are also still genomic and metagenomic CDSs without database coverage. Some of these
may be pseudogenes or a result of inaccurate or fragmented assemblies. This problem is
enhanced in metagenomes where many predicted coding sequences are incomplete. High
community complexity combined with low coverage can seriously impact the annotation

7The levels of E.C. numbers are denoted by digits.
8Overannotation refers to assigning a “full” function to a new protein where it may only be loosely

related in function to its sequence match (i.e. should be found within a protein superfamily like the enolases
but not in the specific subgroup in which it was placed).
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process as short contigs lead to short CDSs. Sequencing technology, final assembly quality,
and the coding sequence prediction software can also affect the length and accuracy of
the CDSs.245,254 Shorter sequences are harder to annotate due to lower possible alignment
scores and poor database coverage. Viral sequences are also extremely underrepresented in
current databases, with viromes having some of the worst annotation coverage.4,44,245 The
majority of taxonomically classified genomes in NCBI Genome are from Proteobacteria and
Firmicutes,232 with a study in 2019 finding them overrepresented in 16S rRNA databases
compared to the estimated taxonomic diversity in other phyla.182 Lack of taxonomic
representation and protein characterization for unculturable or hard-to-culture organisms
creates limits for homology-based functional annotation. Due to the naive aspects of
homology-based functional annotation, and its inability to find accurate functional annota-
tions for underrepresented protein families and organsisms, alternate methods for extracting
functional information are an increasingly popular option.

1.2 Alternative approaches for analyzing and infer-

ring protein function

1.2.1 Detecting functional shifts in sequences

As newly identified homologs may have diverged in function with respect to their refer-
ence, finding functional shifts in sequences or families (for example through detection of
site-specific changes in evolutionary rate or amino acid preference297) is another way to
uncover function. Several studies have applied the evolutionary trace (ET) method172 to
identify conserved and likely functional sites that differ between protein subfamilies.134,266,301

Applications of these methods to families of G protein-coupled receptors have uncovered
specificity-determining residues (SDRs) that differentiate substrate affinity and speci-
ficity.134,266,301 These studies also highlight the important role of changes to allosteric
pathways in shaping the evolution of specificity.

Analyses of functional diversification have also been expanded to entire protein su-
perfamilies.26,79,111,200 An effective approach has been to map structural and functional
properties onto large-scale sequence similarity networks of enzyme superfamilies, thus
revealing broad-scale differentiation of substrate specificity and how it correlates with
sequence and structural features.26 Such approaches have revealed functional differentiation
in ligases,111 cytosolic glutathione transferases,200 dipeptide epimerases,184 and diverse
trans-polyprenyl transferases.332 In a recent study, Furnham et al.79 examined changes in
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enzymatic function within 379 protein domain superfamilies, revealing how both subtle and
large-scale changes in enzymatic machinery can lead to functional changes in chemistry
and substrate specificity.

Building on past approaches,1 databases have attempted to subdivide known protein
families into functionally distinct subfamilies. The FunFHMMer method has subdivided
6,119 CATH superfamilies into 67,598 subfamilies (FunFams) with increased functional
coherency.43,286 Similarly, the Selectome database has predicted positive selection across
thousands of vertebrate protein phylogenies, facilitating large-scale exploration of adaptive
evolution.220

While the above approaches tend to examine functional shifts over macroevolutionary
time scales, others are better suited to detecting microevolutionary positive selection on
single nucleotide polymorphism (SNP) and indel variants.330 Genome-wide scans for positive
selection for example have revealed a wide array of adaptive events in recent microbial233

and human evolution.99 Methods such as SIFT/Provean151 have been used to estimate
the functional impact of protein variants, and genome-wide screens using these methods
have uncovered bacterial protein adaptations for increased pathogenicity and antibiotic
resistance.297,315

1.2.2 Remote homology detection

While many proteins can at least find a match in popular annotation databases, anywhere
from 2-81% of genomes and up to 86% of metagenomes are frequently left without any
assigned functional information, lacking detectable homology to proteins of known function
(Figure 1.1). These are the most challenging, yet biologically intriguing, targets for
function prediction. These sequences include so-called ORFans,76,284 DUFs,123,221 and
protein “dark matter”.240 Many apparent ORFan proteins have been predicted to be
highly divergent homologs of known structural families.90,123 For these cases, remote
evolutionary relationships to known families can potentially be predicted using methods
such as HHpred,261 Protein Homology/Analogy Recognition Engine138 (PHYRE2), and
Iterative Threading Assembly Refinement345 (I-TASSER).
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Figure 1.1: Annotation coverage of genomes and metagenomes from JGI’s201 Integrated
Microbial Genomes and Metagenomes (IMG/M) database. GOLD (Genomes Online
Database) analysis project IDs are: Ga0244168, Ga0334891, Ga0334942, Ga0376466,
Ga0373948, Ga0373643, Ga0335017, Ga0325419, and Ga0326737. For the metagenomes, all
but the human stool sample were sequenced with the Illumina Novaseq (Illumina HiSeq
2500 was used for the human sample) and annotated with the IMG Annotation Pipeline
v.5.0.1-3 (v.4.16.4 used for the human sample). The number of annotated coding sequences
were divided by the number of predicted coding sequences provided to get a fraction. Figure
based on Prakash and Taylor, 2012.245

HHpred261 uses profile HMM-HMM searches to sensitively compare the conservation
profiles between families, ideally discovering shared functional or structural signatures that
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suggest an evolutionary link or convergent evolution. This tool is used for finding templates
in threading methods like PHYRE2 and I-TASSER9, which subsequently model the query
sequence onto the chosen templates and further refine the structures by incorporating
secondary structure information and using ab initio modelling on unaligned regions.138,346

Resulting models can then be compared to functionally annotated proteins to gain functional
insights, like enzyme superfamily, ontology terms, and possible ligand binding sites, from
their distantly-similar match.

Remote homology detection has been successful in elucidating the structures and possible
functions of apparent protein dark matter.123,221,240 Perdigão et al.240 surveyed the “dark
proteome” (segments of proteins that lack detectable similarity to known structures).
Surprisingly, dark matter made up almost half of the eukaryotic proteome, and again dark
proteins were found to be associated with certain functions such as secretion, disulfide-
bonding and proteolytic cleavage.

Ultimately, protein dark matter is a particularly intriguing target for future characteri-
zation efforts. Recent studies suggest that the proportion of novel folds in newly discovered
domain families may be as high as 36%.265 Identifying which DUFs are most likely to provide
new folds is thus an important goal. Developments in de novo structure prediction (e.g.,
covariation approaches112,197) have been suggested as a promising strategy to complement
experimental approaches and accelerate the identification of new structures.

If structural data is available for a protein or can be modelled (either through threading
or ab initio methods), attempts can be made to predict biochemical function directly from
structure. Structure-based function prediction is therefore a potential solution to uncovering
function for DUFs solved by structural genomics initiatives.70,360 In addition, these methods
may uncover new functionality in structures with existing annotations and predict new
protein interactions.355

1.2.3 Motifs and domain architectures

In the absence of global sequence homology, motifs and domains can be used to identify
a protein’s functional or structural pieces. These techniques can also be used to try
and support, expand, or further refine the functions determined from remote homology
(or other methods). Linear motifs10, examples of which include the PxxP (SH3 domain

9I-TASSER uses LOMETS339 to find templates which incorporates predictions from nine different tools,
including HHpred.

10Also called short linear motifs (SLiMs), these are stretches of 3-15 adjacent amino acids that are a mix
of high and loosely conserved residues.96
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binding motif) and PxY (WW domain binding motif), tend to be embedded in disordered
regions and mediate protein–protein interactions.50,226,314 “Binding motifs” like these
(together with posttranslational modification sites) are widespread in proteomes, with
repositories in the PROSITE285 and Eukaryotic Linear Motif150 (ELM) databases, and
yet are largely understudied.314 Because they are short and have a propensity to arise
independently they can also capture convergent evolution of function in unrelated proteins,
but are statistically difficult to predict without additional (e.g. structural) information.
One example application of motif predictions in function discovery is the identification of
host-like proteins in pathogenic organisms, or so-called “mimicry”.35,57,329 This feature of
many pathogen proteins has been exploited by computational methods to predict novel
virulence factors.57,241 For example, Doxey and McConkey57 predicted widespread mimicry
of human extracellular matrix proteins across a diverse range of human pathogenic bacteria,
based on detected similarities between motifs in collagen and leucine-rich repeat proteins.
The predicted mimics represent new candidate virulence factors.

Multi-domain architectures, or combinations of domains across a protein, can reveal
information about the protein itself, but also about which domains cooperate together.
Domains have been duplicated and recombined extensively throughout protein evolution.163

Experimental and computational approaches have shown that domain shuffling can signif-
icantly impact the organization of signalling networks,239,364 and new domains may also
alter protein function and enzymatic activity.63,163 This was demonstrated in a recent study
of the domains found in the flagellin hypervariable region of bacteria. A metallopeptidase
insertion between the two flagellin domains indicates an enzymatic role for flagella, making
the flagella the largest known proteolytic complex.63 Identification of novel domain combi-
nations may signify new functionality, however, predicting the functional consequences of
domain combinations is a challenging and important goal.253

1.2.4 Genomic context and inferred functional associations

In contrast to methods that identify function directly within protein sequence and structure,
function can sometimes be inferred using associated information. Functional associations
may be inferred using a wide variety of techniques including detected protein enrich-
ment in certain species or environments,57 genotype-phenotype correlations,62,173 networks
analysis,331 and analysis of neighbouring gene or domain functions (genomic or domain
context).114,288 For example, a comparison of genomes with and without a certain phe-
notype can reveal genes associated with the phenotype in question (genotype-phenotype
correlations), whereas prokaryotic genome organization (i.e. genes with similar functions or
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genes for similar pathways end up near each other42,81,145,195,271,344)11 enables high-level
function predictions based on proximity (genomic context). In addition, databases such
as STRING provide predicted interactions based on gene fusions, gene neighbourhoods,
coexpression, and gene co-occurrence.303 Since these methods use contextual information,
they can be used to infer function of completely uncharacterized sequences. Indeed, these
methods have been instrumental in historical examples of function discovery (e.g., the initial
prediction of the CRISPR/Cas system187,188).

One area in which these methods have played an important role is metagenomic enzyme
discovery.320 The human gut microbiome has become a major target for finding novel
Carbohydrate-Active enZYmes (CAZymes) due to its considerable diversity of uncharac-
terized glycan-degrading activities associated mostly with the phylum Bacteroidetes.135

To discover novel enzymes with important roles in the human gut, studies have searched
for proteins with increased relative abundance in gut metagenomes,68,225 high sequence
novelty282 and genomic context suggestive of carbohydrate metabolism.308 Taking advan-
tage of the tendency for CAZymes to be genomically clustered in operons, Terrapon et
al.308 used both genomic and domain context to automate the prediction of polysaccharide
utilization loci (PUL) in Bacteroidetes genomes (see Figure 1.2 for an example). Predicted
PULs facilitate hypothesis generation and experimental discovery of new metabolic activ-
ities.110,158 For example, Martens et al.198 identified a PUL in Bacteroides ovatus that
was transcriptionally upregulated by galactoxyloglucan, which led to the discovery of a
novel xyloglucan metabolism locus found ubiquitously in human gut metagenomes.158 The
same study also illustrates how context-based predictions can sometimes be misleading.
The study’s characterization of the “Bacteroidetes-Associated Carbohydrate-binding Often
N-terminal (BACON)” domain, a domain initially predicted to have carbohydrate-binding
activity based on its recurring association with CAZyme families,206 found no evidence of
carbohydrate-binding.158 Instead, the domain played a role in membrane anchoring and
positioning of its partner catalytic domain.

11This phenomenon is exemplified by operons, a single promoter-controlled gene cluster.
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Figure 1.2: Genomic data mining for novel CAZyme activities by integration of genomic
context with structural modelling. The genomes of human gut Bacteroides species are
an excellent resource of novel carbohydrate-active enzymes and associated proteins. For
targeted discovery of new carbohydrate metabolic functions, one approach is to first identify
general genomic regions called polysaccharide utilization loci (PULs) that contain a high
density of predicted carbohydrate-active enzymes (CAZymes).308 Second, based on gene
neighbourhood, possible CAZyme activity can be inferred for hypothetical genes found
within these loci. To provide added evidence of CAZyme activity, predicted protein
sequences can be structurally modelled and analyzed for similarity to CAZyme structures.
The three structure predictions shown above were made using PHYRE.139 Proteins satisfying
all conditions are potentially new CAZymes with novel specificities or activities.

1.3 Applications of integrative approaches to function

prediction

An important, long-standing theme in computational function prediction is the gain in
predictive accuracy from data and methodological integration.156,195,362 Greater confidence
in function prediction can also be gained from multiple lines of evidence as demonstrated in
Figure 1.2, which illustrates the use of genomic context and remote homology detection to
predict novel CAZymes. Indeed, the best performing method in the latest Critical Assess-
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ment of Functional Annotation (CAFA) challenge362 combined five component classifiers
including information about sequence properties (e.g. molecular weight, the isoelectric
point, and a measure of instability), sequence alignment scores, GO term frequency, and
domain and motif matches.352 Increased coverage of protein structure space has also lead
to an increase in data integration, as this enables a greater fraction of predicted protein
sequences to be homology modelled and analyzed using structural bioinformatics.243

Studies have seen a considerable integration of data and methods including combinations
of homology modelling, docking, sequence similarity networks, phylogenetics, genomic
context, and metabolic analysis.14,70,184,332,360,361 For example, the combination of homology
modelling and ligand-docking has allowed sequences that lack available structural data
to be virtually screened for novel activity. This approach successfully predicted pterin
deaminase activity in a protein of unknown function.70 Bastard et al.14 combined homology
modelling, docking, phylogenetic comparisons, genomic context, and metabolic analysis
with high-throughput enzymatic screening, and uncovered 14 new enzymatic activities
in the DUF849 family (now renamed as Pfam family “BKACE”). This impressive study
reveals DUFs as an important source of new enzymatic functions and also highlights the
tremendous functional diversity to be found within single enzyme families. Finally, Zhao et
al.360 combined structure-based approaches with genomic context information to predict
the substrate specificity of several enzymes in a bacterial gene cluster. The approach not
only predicted the function of an uncharacterized protein in the gene cluster, but also
identified its role within a specific catabolic pathway by integrating information from the
surrounding gene neighbourhood.

1.4 Thesis outline

As described thus far, there are a wide range of computational approaches available for
assigning and analyzing protein function from sequence information. However, with the
explosion of new sequence data from increased genome and metagenome sequencing, there
are a number of important questions concerning functional annotation which form the basis
of my thesis.

• How can new functions or biological insights be gained both by homology-based or
alternative methods of functional annotation?

• How effective are standard methods of homology-based protein annotation at anno-
tating entire genomes or metagenomes?
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• And what trends (biological or otherwise) are associated with the sequences that
homology-based methods fail to annotate?

In this thesis, I explore these questions using a combination of focused bioinformatic
studies of original sequencing datasets, as well as large-scale analyses of existing protein
databases. In Chapter 2, I begin by exploring the use of homology-based methods to
analyze newly-generated genomic and metagenomic datasets, with the goal of detecting
specific protein families/functions of interest including cellulases (2.1), antibiotic resistance
proteins (2.2) and virulence factors (2.3, Table 1.1). I also perform a data-driven study
(2.3) to detect global functional differences that occur in a time course of decomposing fish,
which provides a rich resource of new genomic and protein sequence information.

These studies indicate that homology-based annotation is only able to capture a fraction
of the total protein diversity in each dataset, which motivates my work in Chapter 3.
In Chapter 3, I apply standard homology-based methods to functionally annotate over
27,000 bacterial genomes in the Genome Taxonomy Database, measure their “annotation
completeness”, and identify major factors influencing annotation completeness.

Then in Chapters 4 and 5, I explore additional methods for inferring the function of
uncharacterized proteins. In Chapter 4, I analyze all ∼17,000 protein domain families in
Pfam, including domain families of unknown function (DUFs), and develop strategies for
detecting statistical associations between these families and other biological information. In
Chapter 5, I turn my attention to uncharacterized proteins that are not even accounted for
in current databases. By analyzing human gut, marine, and soil metagenomes, I construct a
dataset of these “ORFan” proteins, that lack any detectable homology to existing reference
databases. I then apply powerful remote homology-based approaches to infer their molecular
functions, profiling the “dark” fraction that homology-based annotation leaves behind.
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Table 1.1: Summary of thesis chapters.
Group analyzed Datatype Problem Approach used
Chapter 2
2.1 Novel Streptomyces

strains
genomes find pathways of interest

and high-confidence
cellulase predictions

homology-based
metabolic pathway database
and multi-method comparison

2.2 Research farm
wastewater

metagenome uncover antibiotic-
resistance genes

homology-based
focused antibiotic resistance
database

2.3 Time-series of a
rainbow darter
necrobiome

metagenomes
and
metagenome-
assembled
genomes

profile the necrobiome and
explore any potential
pathogens

homology-based
metabolic pathway database
focused virulence factor
database

Chapter 3
Bacterial genomes across
the tree of life

genomes compare annotation
completeness throughout
bacteria

homology-based
protein and domain family
databases

Chapter 4
Uncharacterized Pfam
protein domain
families

domain fami-
lies

provide biological context
to prioritize families for
characterization

alternate
phenotype associations
with environmentally-classified
metagenomes and
with taxa and pathogen-
classified genomes

Chapter 5
ORFan sequences (lacking
detectable homology to
current databases)

metagenomes profile protein dark matter alternate
remote homology,
genomic context,
and motif analysis
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Chapter 2

Case studies of homology-based
genome and metagenome analysis

First, I aimed to examine how we can use standard homology-based annotation methods
to find novel proteins. There are numerous databases and tools for performing sequence
- sequence or sequence - model annotation methods. Using focused databases for certain
protein families or combining multiple databases and methods to lend more confidence to
predictions are strategies explored here on newly sequenced genomes, metagenomes, and
metagenome-assembled genomes (MAGs). Each of the following case studies is an example
of either a targeted or exploratory search for novel proteins of interest, with the annotation
strategies tailored for the individual circumstances.

In the first case study, collaborators isolated two Streptomyces strains from rhizosphere
soil that were able to grow on starch, xylan and cellulose. As cellulases can be used
in the production of environmentally friendly biofuels, a key goal of this study was to
learn more about the isolated organisms and about the cellulases they may be able to
produce. Phylogenetic analysis with other Streptomyces genomes and a comparison of
the genomic sequence similarity between closely matched strains allowed placement of
the newly sequenced organisms within Streptomyces. A thorough look at a metabolic
database annotation of the organisms revealed inferences about their metabolic potential,
and combining the annotations from four different methods/databases allowed a moderate
number of high-confidence cellulase predictions.

A newly sequenced wastewater metagenome was analyzed in the second case-study
for antibiotic resistance. This sample was of importance to a group of microbiologists
working in association with a research farm in South Africa. Other farms have been
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shown to be a source of antibiotic resistance, in part due to use of antibiotics for livestock.
Of interest were antibiotic resistance genes present in the microbial community, as well
as any potentially pathogenic genera present that could contain these genes. A niche
antibiotic resistance database was used to target the resistome, as its well-curated models
and stringent match threshold cut-offs result in more accurate analyses than less-focused
databases. Genes associated with tetracycline and streptomycin resistance were the most
frequent, with Thauera, a genera already associated with wastewater and sludge, dominating
the community.

Little is known about the microbial decomposition of aquatic vertebrates from a func-
tional and environmental context. In the final case study, a common North American fish
(rainbow darter) was analyzed for temporal changes in its “necrobiome”. By combining
16S rRNA gene and shotgun metagenomic sequence data from four time points, I studied
the progression of decomposers from both taxonomic and functional perspectives. Metage-
nomic analysis of metabolic pathway annotations revealed significant changes throughout
decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other
compounds. Binning of contigs confirmed a predominance of Aeromonas in the necrobiome,
including novel strains related to the human and fish pathogen Aeromonas veronii. A
virulence factor annotation database revealed that the Aeromonas bins encoded known
hemolysin toxins (e.g., aerolysin) which were particularly abundant early in the process,
potentially contributing to host cell lysis during decomposition.

2.1 Draft genome sequences of two novel cellulolytic

Streptomyces strains isolated from South African

rhizosphere soil

Material in this section has been published as part of Adegboye et al. (2018).2 The
published manuscript is available here:

M. F. Adegboye, B. Lobb, O. O. Babalola, A. C. Doxey, and K. Ma. Draft
genome sequences of two novel cellulolytic Streptomyces strains isolated from
South African rhizosphere soil. Genome Announcements, 6(26):e00632-18.
2018.2 https://doi.org/10.1128/genomeA.00632-18
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2.1.1 Introduction

Streptomyces species are known for their diverse metabolic potential, wide range of an-
tibiotic biosynthesis capabilities, and their ability to degrade unique compounds, such
as lignocellulose, keratin, xylan, pectin, cellulose, lignin, chitin, and styrene.136,167,259,272

They also produce various hydrolytic enzymes, such as amylase, lipase, esterase, gelatinase,
xylanase, and cellulases.

The cellulase family is comprised of three different types of enzymes: endoglucanase
or endo-1,4-β-D-glucanase [EC 3.2.1.4] which breaks down the internal β-1,4 glycosidic
bonds, exoglucanase or cellobiohydrolases [EC 3.2.1.91] which release two (cellobiose)86

or four (cellotetraose)365 saccharide units from the ends, and β-glucosidase [EC 3.2.1 .21]
which hydrolyzes the short oligosaccharides produced during cellulose degradation into
glucose.289 Cellulases can be used for the hydrolysis of lignocellulose to fermentable sugars
which can be used as feedstock for the production of biofuels that have been proven to be
environmentally friendly, help reduce dependence on fossil fuel, and serve as an alternative
for declining petroleum reservoirs.12 Novel cellulases with properties that will improve
industrial processes like higher catalytic efficiency or tolerance to various temperature/pH
levels are sought after.58 As many industrial cellulases have been from Trichoderma spp.
and Aspergillus spp.,359 the varied Streptomyces genus represents an opportunity for enzyme
discovery. The isolation of environmental Streptomyces species capable of lignocellulose
degradation is therefore of considerable interest.

2.1.2 Methods

Sample preparation, sequencing and assembly

Initial isolation, experimental characterization, and sample preparation done by Dr. Mobolaji
Adegboye, Dr. Olubukola Babalola, and Dr. Kesen Ma.

Streptomyces strains NWU339 and NWU49 were isolated from rhizosphere soil as
described in Adegboye et al., 2013215 and subsequently cultured using starch casein agar.
Genomic DNA (50 ng) was extracted using the Wizard genomic DNA purification kit
from the Promega Corporation. Sequencing libraries were prepared using the Nextera
DNA sample preparation kit (Illumina). Sequencing was performed on an Illumina HiSeq
platform, and genome assembly was performed using NGen v14 with Q25 trimming1. The
raw reads were deposited in the Sequence Read Archive (SRA) under the accession number

1Molecular Research LP (USA) provided sequencing and assembly services.
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SRP148117. The assemblies for Streptomyces sp. NWU339 and Streptomyces viridosporus
NWU49 were deposited in GenBank under the accession numbers QFRK00000000 and
QFXB00000000, respectively.

Annotation and phylogenetic analysis

Gene finding and genome annotation were then performed using Prokka v1.12 (databases
downloaded 26 January 2018). Parsing Prokka’s output to determine annotation cover-
age was performed as described in Methods 3.2). MetAnnotate242 with its default set
of taxonomic markers on the sequence similarity “fast mode” was used to confirm phy-
logenetic placement in March 2018. Closely related Streptomyces genomes from NCBI
(based on BLASTN results from the 16S rRNA sequences) were used for the phylogenetic
analysis. The tree was made using RAxML v8.2.12295 with the LG likelihood model
made from concatenated single-copy core protein sequences detected with Anvi’o69 (Camp-
bell et al. set30). Average nucleotide identity (ANI) was calculated with calcANI.pl v1
(available at https://github.com/Computational-conSequences/SequenceTools) using
the FastANI v1.3120 option. RAST (SEED) annotations were provided by Molecular
Research LP (USA) using default settings. Any function identified only as “hypothet-
ical protein” was removed to determine annotation coverage. For metabolic analysis,
KEGG annotations were identified with GhostKOALA133 using the “prokaryotes” set-
ting in March 2018. CAZyme annotations were obtained via the dbCAN meta server349

with default settings in March 2018. TIGRFAM annotations were determined with the
TIGRFAM database v15.0105 using a threshold of 1×10-3 with hmmscan from HMMER
v3.1b1. Pfam annotations were derived from Pfam v27.075 and applied with HMMER
v3.1b1 and Pfamscan (at ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/). COG
annotations were performed by Anvi’o v5.2 with the COG 2014 database306 files sourced
from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/.

2.1.3 Results

Two novel Streptomyces strains (NWU339 and NWU49) were isolated from the rhizosphere
of maize in North West Province, South Africa, as described previously in Adegboye et al.,
2013.215 Both strains were capable of growing on polymeric carbohydrate substrates, such
as starch, xylan, and cellulose. Sequencing and assembly of NWU339 produced 169 contigs,
resulting in a draft genome of 9,425,309 bp, with a GC content of 70.8%. Whereas, the
assembly of NWU49 produced 97 contigs, resulting in a draft genome of 8,905,076 bp, with
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a GC content of 72.3%. The genomes of NWU339 and NWU49 encode 8,776 and 8,021
protein-coding sequences, 8 and 7 rRNA genes, and 88 and 100 tRNAs, respectively.

A 16S rRNA phylogenetic tree had been constructed previously by Adegboye et al.,
2013.215 Phylogenetic analysis of taxonomic marker genes using MetAnnotate242 confirmed
NWU339 to be a novel Streptomyces strain with 97.0% 16S rRNA identity to Strepto-
myces poonensis NRRL B-2319 (809 bp alignment with NR 043852.1). Whereas, NWU49
possessed 98.4% 16S rRNA identity to Streptomyces viridosporus NBRC154142 (1167 bp
alignment with NR 112460.1). A phylogenetic tree using concatenated single-copy genes was
constructed for better resolution of the organisms’ placement within Streptomyces (Figure
2.1). This tree shows NWU49 falling within the well-supported Streptomyces viridosporus
clade, and the overall topology matches the Genome Taxonomy Database235 tree topol-
ogy for similar organisms (including NWU49 and NWU339; visible with the AnnoTree207

web interface http://annotree.uwaterloo.ca/app/#/?qtype=tax&qstring=67581). A
comparison of NWU49 to the genome of Streptomyces viridosporus ATCC 146723 using
an average nucleotide identity (ANI) calculator resulted in an ANI of 99.0% (Table 2.1),
indicating that they are likely the same species (>95%120).

2Since this article was published, Streptomyces ghanaensis NBRC15414 and ATCC 14672 have been
changed to Streptomyces viridosporus NBRC15414 and ATCC 14672 in NCBI.

3See footnote 2.
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Figure 2.1: RAxML tree with the LG likelihood model made from concatenated single-
copy core protein sequences detected with Anvi’o (Campbell et al. set30). The tree was
outgrouped with Streptomyces malaysiense. Streptomyces genomes with similar 16S rRNA
sequences were used for this tree and sourced from NCBI Genome. This tree was visualized
with iTOL.165

In order to investigate the strains’ metabolic potential, KEGG (a database with metabolic
pathway information) annotations were analyzed. Matches to enzymes forming a metabolic
pathway for benzoate degradation were detected in both organisms (including [EC 1.14.12.10]
and [EC 1.3.1.25]). NWU339 also had matches to toluene and xylene degradation enzymes.
NWU49 contained pathways for the degradation of sphingosine and trans-cinnamate and
for the biosynthesis of polyamines and trehalose. Complete predicted pathways in NWU49
also included the biosynthesis of a nine-membered core molecule for enediyne, an anticancer
metabolite.

While KEGG predicted cellulases in NWU339 and NWU49, Prokka was also used
to provide more resolution for the cellulase family predictions. According to Prokka
annotations, NWU339 contained 15 putative cellulase-related genes, including 5 predicted
subtypes of endoglucanases, 3 subtypes of exoglucanases, and 4 subtypes of beta-glucosidases.
NWU49 contained 18 putative cellulase-related genes, including 8 predicted subtypes
of endoglucanases, 3 subtypes of exoglucanases, and 4 subtypes of beta-glucosidases.
Comparing the Prokka, KEGG and additional RAST and dbCAN (with Carbohydrate-
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Active enZyme or CAZy families) annotations revealed differences in which sequences were
detected as cellulases. Only 11 of the initial Prokka-derived cellulases were consistently
identified as cellulases with the other three methods (Table 1). Some of predicted cellulases
were alternatively identified as other enzymes (such as 3-dehydroshikimate dehydratase,
chitinase, or beta-mannosidase), had annotations for homologs that have not been confirmed
to be cellulases, had annotations that are below the respective method’s standard threshold,
or had no annotation available.

Table 2.1: Average nucleotide identities for two novel Streptomyces strains. G1 is either
Streptomyces sp. NWU339 or Streptomyces viridosporus NWU49 and G2 is the other
compared Streptomyces genome. The ANI column is the average of the ANI from the two
bidirectional ANI comparions in the G1-G2 and G2-G1 columns. Every member of the
phylogenetic tree in Figure 2.1 is featured here.

G1-G2 (%) G2-G1 (%) ANI (%)
NWU49
S. viridosporus ATCC 14672 98.91 99.11 99.01
S. viridosporus T7A 99.15 99.24 99.19
S. viridosporus T7A ATCC 39115 99.22 99.22 99.17
S. viridosporus NRRL 2414 96.72 97.04 96.88
NWU339
S. sp. NBRC 110035 88.86 89.15 89.00
S. hirsutus NRRL B-2713 89.44 89.74 89.59
S. hirsutus NRRL B-3040 89.23 89.67 89.45
S. prasinus ATCC 13879 89.13 89.69 89.41
S. prasinus NRRL B-12521 88.82 89.33 89.07
S. prasinus NRRL B-2712 88.89 89.43 89.16
S. prasinopilosus CGMCC 4.3504 89.46 89.46 89.57
S. prasinopilosus NRRL B-24621 88.99 88.99 89.25
S. prasinopilosus NRRL B-2711 89.40 89.40 89.07

To get a sense of how these two genomes fare overall during annotation, I applied
some additional popular annotation methods: COG,306 TIGRFAM,105 and Pfam.75 The
annotation coverage varied dramatically depending on the method, ranging anywhere from
31 - 84%. Large sequence or domain databases that include uncharacterized proteins like
COG, Pfam, and FIGfams (RAST) “annotated” more of the sequences. Even the method
with the highest coverage, RAST, left an average of 18% of the predicted coding sequences
unannotated across the two strains.
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Figure 2.2: Annotation coverage of two novel Streptomyces strains: Streptomyces sp.
NWU339 and Streptomyces viridosporus NWU49. The fraction of proteome annotated is
determined by how many of the predicted protein coding sequences have any annotations
using the respective methods.

2.1.4 Discussion

The newly sequenced Streptomyces strains NWU339 and NWU49 expand our knowledge of
the Streptomyces genus and provide additional sources of these industrially and medically-
relevant organisms. In order to place these genomes within currently known Streptomyces
clades, 16S rRNA sequencing and other taxonomic marker genes were considered. Although
the 16S rRNA identity of NWU49 to Streptomyces poonensis NRRL B-2319 is just under what
is conservatively considered to be a species boundary (≥98.7%267,294), based on placement
within the Streptomyces viridosporus clade and >95% ANI with Streptomyces viridosporus
ATCC 14672, NWU49 should be considered a new strain of Streptomyces viridosporus.
NWU339, however, appears to not fall within any of the currently described species for
Streptomyces, ending up just outside the S. hirsutus, S. prasinus, and S. prasinopilosus
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clade.

KEGG was used to look at potential metabolic pathways to find interesting putative
metabolic activity. A few Steptomyces have been shown to degrade aromatic compounds13,15

including benzoate234 and the presence of a benzoate degradation pathway in both strains
could be of interest if experimentally corroborated. This could help reveal more about the
metabolism of the environmentally-abundant aromatic compounds outside of the facultative
anaerobes in which the processes have been most frequently studied.84,337 Also of interest
is the core enediyene biosynthesis pathway present in NWU49. Enediyene is used in cancer
treatments281 due to its high cytotoxicity. A Streptomyces-derived enediyene discovered in
2016343 was the only “naturally” discovered one since 2005,46 with actinobacteria singled-out
in bioinformatics analyses268,281 as having great potential as a source of new medically-
relevant enediyene types.

In order to identify cellulases within these organsisms, the results of four different anno-
tation methods were compared. A single, well-curated, trustworthy source of annotations
can lead to high annotation accuracy but such sources do not exist for every organism
and protein family. A comparison across different methods can provide confidence in the
predictions and better annotation coverage,98 although some manual assessment due to
differences in naming is usually required. In this case, 11 coding sequences had congruent
cellulase annotations. These sequences all have well-established cellulase homologs and are
thus, most likely to have cellulose-degrading activity. Other predicted cellulases either had
other enzymes predicted via different methods, less confident predictions (i.e. putative),
or no annotations at all. These represent either false predictions, or diverse homologs
of known cellulases that may have some cellulose-degrading ability or may have some
other glycosidase activity. Sequences with CAZY glycoside hydrolase family matches and
carbohydrate binding modules are probably divergent glycoside hydrolyases, while sequences
without are riskier to devote further experimental resources to.

Even more annotation methods were run on these two genomes to get an overview of
annotation coverage. Like other genomes seen in Figure 1.1, there was substantial variation
in the number of predicted coding sequences each method was able to assign sequence or
model matches to. This is in part because of how each database treats uncharacterized
proteins or proteins with only partial information (e.g. a biological process they have
been associated with). Some databases, like COG, include a large number of families with
no or limited information apart from which taxa they are found in. Matches to families
of uncharacterized proteins can inflate the annotation coverage. Another factor is that
domain databases (like Pfam), due to domains being protein modules, often allow for more
protein matches than when using databases of full-length proteins. The databases have
different sizes as well as types (e.g. sequence versus model) which can affect how many
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matches are found. Even with the most optimistic case, here at least 16% of the predicted
coding sequences remain unannotated. But in spite of the unannotated sequences, these
newly sequenced genomes are a source of proteins of interest, with putative benzoate and
enediyene metabolic pathways, high confidence cellulases, and uncharacterized glycoside
hydrolases to test.

2.2 Metagenomic sequencing of wastewater from a

South African research farm

Material in this section has been published as part of Lobb et al. (2018).176 The published
manuscript is available here:

B. Lobb, A. A. Adegoke, K. Ma, A. C. Doxey, and O. A. Aiyegoro. Metagenomic
sequencing of wastewater from a South African research farm. Microbiology
Resource Announcements, 7(16):e01323-18. 2018.176 https://doi.org/10.

1128/MRA.01323-18

2.2.1 Introduction

Antibiotics are used to promote growth and manage disease in livestock at the Agricultural
Research Council–Animal Production in South Africa. However, the spread of antibiotic
resistance is a pervasive concern. Waste from farm animals has been shown to spread
antibiotic-resistant bacteria, sometimes due to selective pressure found in antibiotic-dosed
livestock.83,202,363 One of a farm’s effluents, wastewater, is a documented reservoir of
antibiotic resistance genes that could transfer to human pathogens.229,341,358 Wastewater is
also known to contain animal pathogens, some of which are opportunistic and can spread
zoonoses.10,222 Sequencing of the wastewater microbiome can help identify pathogenic
species that might exist on the institute’s farm and detect antibiotic resistance genes that
may be active in these microbial communities. The goal of this study was to profile the
antibiotic resistome at the Agricultural Research Council–Animal Production site, enabling
them to make more informed decisions about antibiotic use moving forward.

26

https://doi.org/10.1128/MRA.01323-18
https://doi.org/10.1128/MRA.01323-18


2.2.2 Methods

Sample preparation, sequencing and assembly

Sample collection and preparation done by Dr. Anthony Adegoke and Dr. Olayinka Aiyegoro.

The metagenome was created from expended water taken from Agricultural Research
Council–Animal Production (ARC-AP) in Irene, South Africa. A 1-liter composite sample
was created by combining five 200-ml samples collected from different wastewater gutters
in the pig facility. The composite sample was centrifuged at 3,500 rpm for 10 min at room
temperature to separate the biomass and water. The water was filtered to trap microbes,
and DNA was extracted from the pellet on the filter paper. The DNA extraction was
done using the FastDNA Spin kit for water (MP Biomedicals, Solon, OH, USA) and the
FastPrep apparatus, according to the instructions given by the manufacturer. The DNA
was sequenced with the Illumina HiSeq platform and the Illumina HiSeq reagent v34. The
raw reads were deposited in the Sequence Read Archive (SRA) under the accession number
SRP159184. The reads were trimmed with Sickle v1.33129 and Trim Galore! v0.5.0148 and
then assembled using MEGAHIT v1.1.2,169 resulting in 58,129 contigs longer than 1 kb.
The assembly was then deposited at GenBank under the accession number QXGG00000000.
Prodigal v2.6.3 with the -p meta option116 was used next, facilitating the prediction of
612,922 coding sequences.

Taxonomic profiling

MetAnnotate242 was used to create a taxonomic profile for the metagenome using the
usearch option with its default set of taxonomic markers. An average coverage (mean per
bp across the coding sequence) for each marker gene hit was calculated using Bowtie 2
v2.3.4.2,157 SAMtools v1.9,170 and BEDtools v2.27.1.252 The relative frequency of each
genus was determined for every marker gene based on the cumulative average coverage.
Average relative frequency across each marker gene was then calculated.

Metagenome annotation

A BLASTP search using the BLAST v2.6.0+ package of the “protein homolog” model
types in the Comprehensive Antibiotic Resistance Database125 (CARD) (databases down-
loaded on 28 June 2018) using CARD’s own per-model bit score cut-off was used to find

4Sequencing services provided by Agricultural Research Council–Biotechnology Platform Laboratory.
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putative antibiotic resistance genes. Average coverage of each gene hit was calculated
as described earlier. KEGG annotations were identified with GhostKOALA133 using the
“prokaryotes” setting on 9 January 2020. TIGRFAM annotations were determined with the
TIGRFAM database v15.0105 using a threshold of 1×10-3 with hmmscan from HMMER
v3.1b1. Pfam annotations were derived from Pfam v27.075 and applied with HMMER
v3.1b1 and Pfamscan (at ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/). COG
annotations were performed by Anvi’o v5.269 with the COG 2014 database306 files sourced
from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/.

2.2.3 Results

A total of 28,540,348 read pairs with an average read length of 119 bp each were generated.
The total assembly length was 311,492,658 bp, with an N50 value of 861 bp. A profile of
the community based on taxonomic marker genes was constructed with MetAnnotate.242

The average coverage of each gene was calculated as the mean coverage per base pair across
the coding sequence. The most common genera present (based on the average coverage
across all taxonomic markers) are Thauera (19%), Oscillibacter (7%), Pseudomonas (6%),
and Prevotella (5%) (Figure 2.3a).
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Figure 2.3: Taxonomic profile and annotation coverage of a farm wastewater metagenome
from South Africa. (a) Coverage of marker genes at a genus-level for the farm wastewater
metagenome. The average coverage is the mean of the coverage per base pair across the
matched coding sequences. Most common genera are shown. (b) Annotation coverage of
the farm wastewater metagenome.

A BLASTP search of the homolog models in the Comprehensive Antibiotic Resistance
Database (CARD)125 identified 31 different antibiotic resistance genes that passed CARD’s
strict score threshold. Ten of these genes are predicted to confer tetracycline resistance, and
five genes are predicted to confer streptomycin resistance (Table 2.2). Annotation with the
KEGG database131 revealed complete pathways for tetracycline, streptomycin, aminoglyco-
side, cationic antimicrobial peptide (CAMP), vancomycin, and macrolide resistance, with
near-complete pathways for beta-lactam, erythromycin, fluoroquinolone, and lincosamide
resistance.
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Table 2.2: Antibiotic resistance associated with three or more genes in the wastewater
metagenome. The type of predicted antibiotic resistance came from CARD “parent terms”
for each gene in their database.

Predicted antibiotic
resistance

Average coverage
of associated
genes

Count of
associated
genes

tetracycline 33.49 10
minocycline 63.99 4
chlortetracycline 63.99 4
doxycycline 62.00 3
oxytetracycline 62.00 3
demeclocycline 62.00 3
streptomycin 32.77 5

Broader annotation methods were applied to get an overview of this metagenome’s
annotation coverage. KEGG, COG, Pfam, and TIGRFAMs contributed to a modest
proportion of protein coding sequences annotated, from as low as 36% up to only 56%
(Figure 2.3b). This leave almost half of all the predicted coding sequences without any
biological information, apart from the environment they were found in.

2.2.4 Discussion

The sequencing of the South African Agricultural Research Council–Animal Production
wastewater provides information on the microbial community that lives on the farm and
whether there exists the potential for any human pathogens to be present. The most
common genera found in the wastewater sample were Thauera, Oscillibacter, Pseudomonas,
and Prevotella. Thauera has been found previously in agricultural wastewater, hot springs,
a leachate treatment plant, and in sludge from ditches, water treatment plants, and
oil-refineries.204,278,279,304,347 This genus has been characterized as denitrifiers that have
the ability to degrade aromatic compounds,204,278 such as phenol,293 that can end up in
agricultural wastewater.227 A high proportion of Oscillibacter also makes sense in farm
wastewater as this genus has been found in cattle rumen, as well as being closely related
to other bacteria found in sheep, cow, and goat gut samples.161,186 Interestingly, several
cases of bacteremia in Denmark were reported to be caused by Oscillibacter ruminantium,
although all cases had risk factors for infection.302 Prevotella, a common commensal in
human gut associated with a plant-based diet,95 is exceptionally abundant in cow rumen.
One study in 2012121 found that Prevotella made up an average of 52% of the rumen
community. It is worth noting that some Prevotella are opportunistic pathogens in humans
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and have been associated with chronic inflammation in periodontal disease, rheumatoid
arthritis, and various gut disorders.159 Potential pathogens aside, this metagenome has
many links to the livestock-affected, high-nitrogen, aquatic environment that would compose
the wastewater of an Animal Production research farm.

Antibiotic resistance is a well-studied topic as antibiotics are incredibly important for
human health, as well as for livestock production. Rising levels of antibiotic resistance,
especially in hospital settings, is a global health crisis.45,125 There are whole databases
focused on microbial antibiotic resistance. However, one of the broadest is the Comprehensive
Antibiotic Resistance Database (CARD).125 A global team of collaborators have curated this
resistome database, generating a unifying Antibiotic Resistance Ontology (ARO) to guide
the annotations. Protein models where antibiotic resistance can be accurately predicted
via sequence similarity have strict alignment cut-offs and are separated from cases where
antibiotic resistance is due to mutations. This database is a great resource for screening
for antibiotic resistance in sequence data. Applying it to the research farm wastewater
sample revealed a resistome geared primarily towards tetracycline resistance with other
genes putatively providing streptomycin, minocycline, and chlortetracycline resistance,
amoungst others. Annotation with KEGG confirmed matches to genes for tetracycline
and streptomycin resistance. In a previous study by Noyes et al.,229 sequences associated
with tetracycline resistance were the most frequent in their 34 soil, manure and wastewater
samples from various livestock operations across the U.S.A. and Canada. Aminoglycoside
resistance (including streptomycin) was also fairly abundant in their detected resistomes.229

Other resistome studies have found tetracycline to be common276,310 in agricultural soil
and honey bee gut communities, speculated to be due to years of oxytetracycline use in
those environments.

Full-scale annotation was preformed on this metagenome sample to see how its annotation
coverage compares to other annotated metagenomes. To briefly reiterate, due to differences
in the way that databases create their annotation labels, database size, and database types
(e.g. sequence versus model and full-length protein versus domain), there is a range of
annotation coverage. However, even with differences in annotation coverage, only around
half of the CDSs overall have annotated functional information. As seen from Figure 1.1,
metagenomes often have a substantial proportion of their predicted CDSs that end up with
no annotations. This metagenome follows that trend with the highest annotation coverage
only reaching 56%. The problems that lead to low annotation coverage in metagenomes
(fragmented sequences and organisms that are potentially quite distant from well-studied
species) could affect the detection of antibiotic resistance, especially if there are understudied
systems present. But this work, to the standards of our current knowledge on antibiotic
resistance annotations, contributes to the growing data on human-influenced resistomes.
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2.3 Functional profiling of a fish necrobiome reveals

a decomposer succession involving toxigenic bac-

terial pathogens

Material in this section has been published as part of Lobb et al. (2020).178 The published
manuscript is available here:

B. Lobb, R. Hodgson, M. D. Lynch, M. J. Mansfield, J. Cheng, T. C. Charles,
J. D. Neufeld, P. M. Craig, and A. C. Doxey. Time series resolution of the
fish necrobiome reveals a decomposer succession involving toxigenic bacterial
pathogens. mSystems, 5(2):e00145-20. 2020.178 https://doi.org/10.1128/

mSystems.00145-20

2.3.1 Introduction

The decomposition of animal tissues is a fundamental ecological process that impacts nutrient
cycling and species composition in terrestrial and aquatic ecosystems. Vertebrate tissue
decomposition creates a unique ecological niche supporting a wide variety of specialized
decomposer species, including insects, predators, and microorganisms. These species form
an interconnected community whose combined activities lead to the decomposition of an
organism from its initial death to the complete degradation of its exterior and internal
contents.

The microbial communities involved in decomposition, including bacteria derived from
the surrounding environment (e.g., water, soil) and the host (e.g., digestive tract and lungs),
are collectively referred to as the “necrobiome” (from nekrós, the Greek word for dead
body),36 or alternatively, the “thanatomicrobiome” (from Thanatos, the Greek god of
death).124 Studies of necrobiome structure and function in several model systems (e.g.,
human, cow, pig, and mouse) have revealed strong microbial succession with distinct taxo-
nomic and functional shifts linked to the phases of tissue decomposition.28,100,117,208,209,237

After cellular autolysis breaks down tissue following death, anaerobic bacteria such as
Clostridium spp. increase in relative abundance and metabolize available carbohydrates
and proteins from the body, producing organic acids and gas.33 Functional shifts occur;
these shifts include increases in catabolic pathways, carbohydrate and energy metabolism,
nitrogen cycling, and processes related to bacterial invasion. Foul-smelling compounds
associated with the process of putrefaction are also produced as by-products of fermentation
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and amino acid decomposition, including putrescine, cadaverine, and indole. Because puta-
tively pathogenic bacteria proliferate within vertebrate necrobiomes, such as Clostridium
botulinum,31 it has been proposed that bacterial toxins secreted by these bacteria may play
roles in decomposition by interfering with host cellular functions.191

Although much knowledge of necrobiome community structure and function has come
from studies of terrestrial mammals, less is known about the structure, function, and dynam-
ics of decomposition in aquatic ecosystems. Previous studies of fish carcass decomposition
demonstrate that as in terrestrial systems, both macroinvertebrates and microorganisms play
important roles as aquatic decomposers.211,246 But what metabolic activities/functions are
present in aquatic necrobiome communities and how do they change over time? Comparing
necrobiomes between two different locations in the Grand River (southwestern Ontario,
Canada), upstream and downstream of a wastewater treatment plant, allows analysis of com-
munity members and their functional potential both spatially and temporally. In this study,
I used a variety of annotation tools and methods to functional and taxonomically profile
the necrobiomes including broad metabolic database KEGG and specific database VFDB
(Virulence Factor Database). Here, studying necrobiome-associated functions provides a
unique way to better understand links to aquatic health, fish physiology, and ecosystem
dynamics.

2.3.2 Methods

Fish collection

Sample collection and preparation done by Rhiannon Hodgson and Dr. Paul Craig.

On 24 October 2016, female rainbow darters (Etheostoma caeruleum) were collected
from the Grand River (Figure 2.4), both upstream (Westmontrose [WMR]; 43◦35’08”N;
80◦28’53”W) and downstream (Economic Insurance Trail [EIT]; 43◦28’24”N; 80◦28’22”W)
of the Waterloo wastewater treatment plant (WWTP) (43◦29’16”N; 80◦30’25”W). Forty-two
fish (21 from each site) were collected using a backpack electrofisher (Smith Root, LR-20)
and euthanized quickly with a sharp blow to the head. Then each fish was placed in
an autoclaved 250-ml mason jar microcosm that contained a mixture of water and river
substrate (see Lobb et al., 2020178 for river water quality metadata and Figure 1a for an
example mason jar setup). The lids were closed, but not sealed, in order to ensure oxic
conditions that would accompany natural in-river decay events. The jars were then left
to decay in a fume hood at room temperature. Three samples containing both fish and
water/sediment from the same site were left to decompose for 1 day (24 h), 4 days, 8 days,
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and 10 days for both the WMR and EIT sites, totaling 24 fish. For additional treatments
to assess differences in water quality and aquatic microorganisms, three samples containing
fish and water/sediment from different sites (i.e., WMR fish in EIT conditions and EIT fish
in WMR conditions) were allowed to decay for 4, 8, and 10 days, totaling 18 fish. At each
time point, decay was documented (Figure 1b), and fish were removed from the replicate
jars, then rinsed with sterile water, and ground with liquid nitrogen using a clean mortar
and pestle. The powdered tissue was stored at –80◦C prior to genomic DNA extraction.

Experimental procedures and the use of animals in this study were approved by the
University of Waterloo Animal Care Committee and within Canadian Council on Animal
Care (CCAC) guidelines (AUPP 40318).

DNA extraction

DNA extraction done by Metagenom Bio Life Science Inc.

Unless noted, all chemicals and reagents were purchased from Sigma-Aldrich (Mississauga,
Ontario, Canada). For DNA extraction, 100 mg of ground tissue was added to 1.2 ml
of TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), 100 µl of 10% sodium dodecyl
sulfate (SDS), 20 µl of proteinase K, 8 µl of RNase A, and 200 µl of 5 M NaCl. This
mixture was vortexed quickly and incubated at 55◦C for 30 min. Then 160 µl of CTAB
extraction solution (2% cetrimonium bromide, 100 mM Tris, 20 mM EDTA, 1.4 M NaCl
[pH 8.0]) was added, and the samples were further incubated at 65◦C for 1.5 h. Following
this lysis incubation, 700 µl of the lysate was extracted with an equal volume of phenol and
centrifuged at 10,000 × g for 5 min. The aqueous phase was retained and twice extracted
with equal volumes of phenol-chloroform-isoamyl alcohol (25:24:1), followed each time with
centrifugation at 10,000 × g for 5 min. One volume of isopropanol was used to precipitate
aqueous phase DNA in a new ultracentrifuge tube, followed by centrifugation at 13,000 × g
for 10 min at room temperature. The resulting pellet was washed twice with 70% ethanol,
dried, and then dissolved in 50 µl of DNase- and RNase-free H2O (Sigma) at 50◦C for 15
min. The quantity and quality of DNA were determined with a SpectraDrop (Molecular
Devices) and stored at –20◦C prior to sequencing.

16S rRNA gene and metagenomic sequencing

Sequencing services provided by Metagenom Bio Life Science Inc.

Extracted DNA was amplified in triplicate using Pro341F and Pro805R universal
prokaryotic primers.305 Triplicate amplicons were pooled, gel quantified, and sequenced to
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a depth of at least 30,000 paired-end reads per sample using the MiSeq reagent kit v3 (2 ×
300 cycles; Illumina).

For metagenomic sequencing, genomic DNA (1 ng) was fragmented and individually
barcoded using the Nextera XT DNA Library Prep kit (Illumina) following the supplier’s
guidelines. Small fragments of library DNA were removed by adding 0.6 volumes of AMPure
XP beads (Beckman Coulter). After washing twice with 80% ethanol and air drying for 10
min, DNA was eluted from the beads with 10 mM Tris-HCl (pH 8.5). Purified library DNA
was quantified with the Qubit dsDNA (double-stranded DNA) HS (high-sensitivity) assay
kit, diluted to 4 nM with the Tris-HCl buffer and then pooled in an equal volume. Library
DNA was denatured with equal volumes of 0.2 N NaOH, diluted to 7 pM with hybridization
buffer HT1, and sequenced with MiSeq reagent kit v2 (2 × 250 cycles; Illumina).

All 16S rRNA gene and metagenomic sequencing data for this project were deposited
into the NCBI Short Read Archive (SRA) under BioProject accession no. PRJNA604775.

16S rRNA gene analysis

QIIME processing of 16S rRNA sequence data done by Dr. Michael Lynch.

Demultiplexed sequences were processed using DADA2 v1.4,29 managed through QIIME2
v.2017.10.21 Briefly, forward and reverse reads were truncated with decreasing quality metrics
while maintaining sequence overlap (∼250 bases). Primers were removed, and paired reads
were assembled after error modeling and correction, creating amplicon sequence variants
(ASVs). Chimeric ASVs were removed by reconstruction against more abundant parent
ASVs. The resulting ASV table was constructed for downstream analysis (see Lobb et al.,
2020178).

Taxonomy was assigned to representative sequence variants using a naive Bayesian
classifier implemented in QIIME2 with scikit-learn (v.0.19.0), trained against SILVA release
128,251 clustered at 99% identity, and trimmed to the amplified region. Assignments were
accepted above a 0.7 confidence threshold.

For ordination, a proportion matrix of ASVs were used across each sample with a
sparsity cutoff (i.e., ASV detected in at least 3 of 42 samples). The metaMDS() and envfit()
scripts from vegan package v2.4-2 in R were used to calculate ordination coordinates and
data vectors. A stress or Shepard diagram was generated with stressplot() from the vegan
package to determine the nonmetric fit.
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Metagenomic data analysis

Raw reads were processed with TrimGalore v0.5.0,148 coassembled with metaSPAdes
(SPAdes v3.12.0),230 and eukaryotic contigs were identified with Centrifuge v1.0.4141 using
their NCBI nr preindexed database (last updated 3 March 2018) and subsequently removed.
Reads were mapped with Bowtie 2 v2.3.4.3157 using default settings and binned using
CONCOCT6 with Anvi’o v5.2 (minimum 1 kb contig cutoff).69 Mean coverage data for
the metagenomic functional analyses and for the methanogen analysis were extracted from
Anvi’o69 using all contigs (no contig length cutoff).

For metagenomic and bin functional analysis, KEGG annotations were identified with
GhostKOALA.133 The average coverage for each gene (per base pair), normalized by dividing
by the average sample coverage (per base pair), was summed to give a total coverage value
for each KEGG pathway. The decostand() function from the vegan package v2.4-2 in R was
used to determine the fractional value of each pathway with respect to the total summed
coverage across all KEGG pathways detected in the sample. A Kruskall-Wallis test was
done in R to identify KEGG pathways with significantly different distributions by day
of decomposition. The decostand() function was also used to proportionally normalize
each pathway value across every sample for plotting. For the bin functional analysis, the
frequency of each KEGG orthology (KO) annotation in each MAG bin was counted. These
counts were summed for each KEGG pathway, and fractional values were calculated across
all KEGG pathways detected in the bins as before.

The VFanalyzer software from the Virulence Factor Database (VFDB)174 identified
virulence factors in the predicted coding sequences of Bin 4 using Aeromonas veronii B565
as a representative genome. The domain architecture from the Aeromonas toxin gene
set from the VFDB was also used to identify Aeromonas toxin genes in the coassembly.
Putative toxins longer than 150 amino acids were assessed with BLASTP for Aeromonas
taxonomy and gene annotation. The Aeromonas phylogenetic tree was made using RAxML
v8.2.12295 with the LG likelihood model made from concatenated single-copy core protein
sequences detected with Anvi’o69 (Campbell et al. set30).

Additional annotation methods were used as described in Sections 2.1.2 and 2.2.2.

2.3.3 Results and Discussion

Time series community profiling of fish necrobiomes

To examine the structure and temporal succession of aquatic vertebrate necrobiomes, a 16S
rRNA-based study of decomposing fish was performed at different time points and locations.
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Female rainbow darters (Etheostoma caeruleum) were collected from the Grand River in
Waterloo, Ontario, Canada, both upstream and downstream of the Waterloo wastewater
treatment plant (WWTP) (Figure 2.4). Individual fish were subjected to decomposition
with river water and sediment at room temperature for 1, 4, 8, and 10 days in sterile
containers that acted as microcosms of a natural decomposition environment. Sample 16S
rRNA gene profiles for fish decomposition microbiomes (“necrobiomes”) for these four time
points and two water/sediment sources revealed reproducible microbial communities among
independent replicates and also between environments (i.e., fish and water source; Figures
2.5 and 2). This microbial succession was apparent at the order level of taxonomy (Figure
2.5) and at the level of amplicon sequence variants (ASVs) (Figure 2), although variation
in ASV composition was evident among fish samples and environments (Figure 2).

Further discussions on the 16S rRNA profile and differences in taxa throughout the time
course and up and downstream of the WWTP are available in the original article.178

Figure 2.4: Map showing sampling locations of Grand River fish for metagenomic analysis.
The municipal wastewater treatment plant (WWTP) for the city of Waterloo, Canada, and
the two sampling locations, upstream at West Montrose (WMR) and downstream at the
Economic Insurance Trail (EIT), are displayed. Figure created by Dr. Paul Craig.
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Figure 2.5: Relative frequency of ASVs within each sample colored by taxonomic order.
Samples are sorted by decomposition time (1 day, 4 days, 8 days, and 10 days). The
fish and water/sediment origin of the samples are displayed at the bottom of the figure,
with upstream referring to the WMR site and downstream referring to the EIT site.
Low-relative-abundance taxonomic orders are grouped into “other.”

Metagenomic binning and analysis of decomposition pathways

To explore the genomes and genome-encoded metabolic/functional potential of the necro-
biomes, metagenomic sequencing was performed on one replicate for each condition (14
total). Subsequent assembly and binning resulted in four MAGs with >85% completion
and <5% redundancy. I examined the taxonomic composition of the MAGs using MetAn-
notate.242 These MAGs included two genomes affiliated with Alistipes (Rikenellaceae),
a genome annotated as Aeromonas veronii, and a Selenomonadaceae-associated genome
(Table 2.3). The bins are consistent with ASVs identified by the 16S rRNA gene sequencing,
corresponding to Acetobacteroides (Rikenellaceae), Aeromonas, and various members of
Selenomonadales (Figures 2.5 and 2). Other ASVs identified by 16S rRNA gene sequencing
were also recovered in the lower-quality MAGs (Table 2.3). One bin was affiliated with the
genus Pseudomonas, and another bin was affiliated with the family Rikenellaceae.
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Table 2.3: Bins obtained from metagenomic sequencing of fish necrobiomes. Taxonomic
affiliation is predicted by MetAnnotate.242

Completion
(%)

Redundancy
(%)

GC
(%)

Total
length
(Mb)

Gene
count

Contig
count

Taxonomic affiliation

Bin 4 98.6 0.7 60.7 3.85 3855 784 Bacteria; Proteobacteria;
Gammaproteobacteria;
Aeromonadales;
Aeromonadaceae; Aeromonas;
Aeromonas veronii

Bin 9 97.1 1.4 47.5 2.25 2216 402 Bacteria; Firmicutes;
Negativicutes;
Selenomonadales;
Selenomonadaceae

Bin 3 87.1 2.2 47.0 2.64 2467 801 Bacteria;
Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae; Alistipes

Bin 10 92.8 2.2 44.0 3.26 2882 368 Bacteria; Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae; Alistipes

Bin 7 38.8 7.9 61.4 0.78 1187 628 Bacteria; Proteobacteria;
Gammaproteobacteria;
Pseudomonadales;
Pseudomonadaceae;
Pseudomonas

Bin 2 25.2 1.4 48.2 1.71 1872 960 Bacteria; Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae

The relative abundance of Bin 4 (Aeromonas veronii) decreased throughout decomposi-
tion from an average relative abundance of 3.7 (day 1) to an average relative abundance of
0.14 (day 10; Figure 2.6a), consistent with the 16S rRNA data. Because Aeromonas has
been associated with fish gut microbiomes,91,127,216,299,319 it is possible that Bin 4 and other
Aeromonas taxa were initially derived from the fish guts and were important only for early
stage decomposition. In contrast, Bin 3 (Rikenellaceae family) may represent a late-stage
decomposer because its relative abundance increased in metagenomes from days 8 to 10 of
decomposition (average relative abundance of 3.9 on day 8 to an average relative abundance
5.1 on day 10; Figure 2.6a). In the downstream fish-upstream sediment/water set, both
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Rikenellaceae-affiliated bins (Bin 3 and Bin 10) were similar in relative abundance, implying
site-specific influences on the relative abundance of different Rikenellaceae-affiliated taxa,
consistent with 16S rRNA gene data for Acetobacteroides ASVs (Figure 2). Phylogenetic
analysis of the two Rikenellaceae-associated bins revealed that Bin 3 was more closely
related to Acetobacteroides hydrogenigenes RL-C and Bin 10 was more closely related to
Alistipes sp. strain ZOR0009 (Figure 2.6b). Bin 9 (Propionispira) was present at low (0.0
to 0.54 average on days 1 to 10; Figure 2.6a) relative abundance, close to the sample’s mean
coverage across the entire course of decomposition, consistent with the abundance patterns
seen for Selenomonadales based on 16S rRNA gene data (Figure 2.5).
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Figure 2.6: Metagenomic bin relative abundance and phylogenetic analysis of Bin 3 and
Bin 10. (a) Relative abundance of four high-quality binned genomes across each necrobiome
sample. Relative abundance was computed as mean bin coverage/mean sample coverage.
Mean coverage was calculated per base pair using Anvi’o. (b) RAxML tree using the LG
likelihood model made from concatenated single-copy core protein sequences detected with
Anvi’o69 (Campbell et al. set30). The tree outgrouped with Lentimicrobium saccharophilum.
Acetobacteroides hydrogenigenes, representatives of Alistipes strains, and all uncharacterized
Alistipes isolates were used for this tree and sourced from NCBI Genome. This tree was
visualized with iTOL.165

Using a KEGG analysis of assembled contigs and binned metagenomes, metabolic
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pathway potentials associated with the decomposition samples were examined. The resulting
functional profiles had a highly similar grouping in ordination space compared to the 16S
rRNA gene community profiles (Figure 3), whereby samples grouped primarily based on
decomposition time point (Figure 2.7). Analysis of specific KEGG pathways revealed
patterns consistent with a functional succession (Figure 2.8), mirroring the taxonomic
succession described earlier. Pollutant degradation pathways for polyaromatic hydrocarbons
such as naphthalene, styrene, and nitrotoluene showed increased relative abundances on
day 1 (13% on average) compared to subsequent time points (6.2% on average). The initial
fish bacterial community may have been enriched for microorganisms that could degrade
river water contaminants, which can originate from both anthropogenic and natural sources
and bioaccumulate in fish.39,107,203 Naphthalene degradation in polluted sediment-water
systems can be accomplished through several bacterial pathways, and bioremediation of
this toxic molecule by native organisms is currently being studied.162,313,321 Various biofilm
formation pathways were also proportionally abundant (13%) within day 1 metagenomes
(Figure 2.8), possibly reflecting skin and gut community functions originating prior to
decomposition. Degrading river water contaminants and skin and gut biofilm formation
may be functions that are more important for the bacterial communities living with their
fish host and dealing with possibly contaminated river water than for the necrobiome that
formed in the closed system after the fish’s death.
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Figure 2.8: Selected KEGG pathways displaying significant differential relative abundance
across the course of decomposition. Pathways were selected that had an unadjusted P
value of <0.03 after a Kruskall-Wallis test comparing decomposition time (1, 4, 8 , and 10
days). Shown is the log10 value of the fractional coverage of the pathway with respect to
the total coverage across all the pathways in the sample. Total pathway coverage is also
proportionally normalized across every sample. Note that some pathways are based on a
few representative genes. For example, coverage of the photosynthesis pathway is mainly
derived from genes encoding sodium ion pumps.

Glycan metabolism generally increased in coverage from early stages (2.4% on day 1)
to later stages of decomposition (10%). Glycan degradation pathways (e.g., glycosamino-
glycans) increased in coverage by days 8 and 10, which may be involved in decomposition
of fish skin and intestinal mucins. Late-stage increases in streptomycin, phenylpropanoid,
novobiocin, neomycin, kanamycin, and gentamicin biosynthesis pathways (2.4-fold change
from day 1 to 10) were also detected, implying that the remaining microorganisms by day

42



10 possess increased potential for antibiotic synthesis.

These metagenome-wide functional patterns closely matched the functional potentials
of individual Aeromonas (early stage) and Rikenellaceae (late stage) bins, when taking into
consideration their shifts in relative abundance through the time course (Figure 2.9). Genes
belonging to pollutant degradation pathways were present in the Aeromonas bin yet mostly
absent from other MAGs with lower relative abundance from days 1 and 4 metagenomes.
Likewise, biofilm formation pathway genes had a 6.2-fold-higher frequency in the Aeromonas
bin compared to the Acetobacteroides/Alistipes bins. In contrast, antibiotic biosynthesis
pathway genes had a 2.5-fold-higher frequency in the Rikenellaceae-associated bins, in
addition to multiple key glycan degradation genes. Thus, the detected shifts in functional
profiles were in part due to the hand-off microbial community dominance from Aeromonas
to Rikenellaceae. It is important to note that these apparent late-stage functional shifts
could also be important for earlier phases when Rikenellaceae initially began to increase in
relative abundance.
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Figure 2.9: Count of KEGG annotations mapping to the corresponding KEGG pathways
in Figure 2.8 across each MAG. Shown is the log10 value of the fractional frequency of the
pathway with respect to the total across all the pathways in the sample. The total pathway
coverage is also proportionally normalized across every sample.

The data suggests strong Acetobacteroides dominance in late-stage rainbow darter
necrobiomes (Figure 2.5 and 2). Because related species have been implicated in anaerobic
sugar fermentation,298 I investigated the two MAGs affiliated with these bacteria for
glycolytic enzymes. Both Bin 3 and Bin 10 possess a complete glycolysis pathway as well as
l-lactate dehydrogenase for anaerobic fermentation (Figure 2.10). Bin 3 genes also encode
pyruvate dehydrogenase, aldehyde dehydrogenase, and enzymes for conversion of d-fructose,
d-fructose-1-phosphate (d-fructose-1P), and d-mannose-6P to glycolysis precursors. Based
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on a previous analysis of decomposition pathways (51), Bin 3 and Bin 10 genes also encode
components of potential pathways for production of indole [EC 4.1.99.1], putrescine [EC
3.5.3.11], and spermidine [EC 2.5.1.6 and 2.5.1.16], in addition to histidine degradation [EC
4.3.1.3, 4.2.1.49, and 3.5.3.85].

(a)

(b)

Figure 2.10: End of the KEGG glycolysis/gluconeogenesis pathway for Rikenellaceae (a)
Bin 3 and (b) Bin 10. Green indicates the presence of a match to that enzyme. Images
were generated using KEGG.131

5This enzyme is only detected in Bin 10.
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A toxigenic strain of Aeromonas veronii is a dominant member of the necro-
biome

Because Bin 4 affiliated with A. veronii, a well-established pathogen of fish and hu-
mans,52,93,122,128,146,199,256,257 and a common inhabitant of the fish gut microbiome,91,127,216,299

I explored its phylogenetic position, functional profile, and virulence repertoire. A maximum
likelihood phylogeny of A. veronii and other related Aeromonas genomes from the NCBI
was constructed based on a concatenated alignment of conserved ribosomal marker genes
(Figure 2.11a). Within this phylogeny, Bin 4 grouped with a clade of A. veronii genomes
but as a basal lineage outgrouping all A. veronii species except AMC34.

VFanalyzer from the Virulence Factor Database (VFDB)174 was used to detect virulence
factors within Bin 4 and compare it to a reference Aeromonas strain, A. veronii B565. VFDB
focuses on experimentally-confirmed virulence factors and is a comprehensive database
of virulence factors from medically-relevant pathogens. The VFanalyzer pipeline uses
a hierarchical series of homology searches of the VFDB in order to find close matches
with stringent cut-offs before moving to more permissive methods for divergent virulence
factors.174 VFanalyzer revealed that Bin 4 contained virulence-related genes for adherence,
iron uptake, and secretion systems. Indeed, a total of 54 genes that were associated with
secretion systems were identified, compared to only 15 in A. veronii B565. In addition,
I identified 13 genes associated with endotoxin production. Like A. veronii B565, Bin 4
genes encoded hemolysin III, hemolysin HlyA, and a thermostable hemolysin gene (Figure
2.11b). I also recovered a relatively small incomplete bin (Bin 11, 0.64 Mb, 717 CDSs, 321
contigs) that correlated with Bin 4 in relative abundance. This small bin affiliated with
Aeromonas veronii and also included a gene encoding aerolysin toxin production. Based on
metagenomic mapped read coverage, the relative abundance of genes encoding Aeromonas
toxins increased on day 4 of decomposition (Figure 2.11c), indicating an enrichment in
Aeromonas strains carrying hemolytic proteins. A possible explanation for this is that lytic
toxins, including those from Aeromonas, may function in host cell lysis during decomposition
and therefore peak in relative abundance during earlier stages of decomposition. Bin 4
also possessed genomic potential for decomposition-related pathways, including histidine
degradation (contains [EC 4.3.1.3, 4.2.1.49, 3.5.2.7, and 3.5.3.8]) and the production of
putrescine [EC 4.1.1.19, 3.5.3.12, and 3.5.1.53], indole [EC 4.1.99.1], and cadaverine [EC
4.1.1.18].
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Figure 2.11: A toxigenic Aeromonas veronii-like strain is a dominant species in early
decomposition. (a) RAxML tree using the GTR+GAMMA model made from concatenated
single-copy core gene nucleotide sequences detected with Anvi’o (Campbell et al. set30). The
tree was outgrouped on Aeromonas hydrophila. Gray circles are scaled to bootstrap support
of ≥85, with the largest size representing 100. Aeromonas species outside Aeromonas veronii
are highlighted in gray. Representative Aeromonas veronii strains from the NCBI Genome
Tree report were chosen to display here (not highlighted), and only their strain name is
shown. This tree was visualized with iTOL.165 (b) Bin 4’s predicted toxin repertoire from
VFDB. (c) Relative abundance (mean gene coverage/mean sample coverage) of Aeromonas
hemolysin toxin genes. Decomposition time is shown in days.
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Overview of annotation coverage in metagenome and metagenome-assembled
genomes

A selection of popular annotation methods were used on both the necrobiome (pooled
and co-assembled) and the bins that were assembled from the necrobiome. All methods
achieved a higher annotation coverage on the bins, as opposed to the metagenome itself.
The necrobiome contains shorter fragments than the bins (as the binning procedure discards
any sequence fragments smaller than 1 kb). These shorter fragments can lead to fragmented
predicted coding sequences that are challenging to annotate. The metagenome could also
contain organisms that have low annotation coverage, due to taxonomic distance from
well-studied species or having a higher proportion of divergent/uncharacterized protein
families. Thus, the metagenome ends up with around half of its predicted coding sequences
annotated (the highest coverage reached being 58%). The MAGs had better annotation
coverage (42 - 88%) than the pooled metagenome, albeit with a larger range between the
methods with the lowest coverage versus the methods with the highest coverage. This is
most obvious for Bin 3 and Bin 10. Both of these bins have lower annotation levels for all
methods compared to Bin 4 and Bin 9. However, Prokka and KEGG have a larger drop at
16% less annotation coverage, on average, versus 11% for the other methods. This perhaps
indicates that the KEGG database and Prokka pipeline are not as well set up for the more
obscure Acetobacteroides genus and divergent Alistipes (Bin 3 and Bin 10). This clade
probably contains protein families not as well covered in KEGG, Uniprot, and HAMAP
(used in Prokka) and divergent from currently characterized proteins, possibly relating to
the reed swamp and zebrafish gut-like environments Acetobacteroides hydrogenigenes RL-C
and Alistipes sp. strain ZOR0009 (GOLD ID: Gp0042493) were found in.298 Although this
does affect all the annotation methods, just not to the same extent. As Rikenellaceae are
extremely dominant in the community on days 8 and 10 (increasing to a relative abundance
of as much as 87% in the decomposer community by the final day of sampling, Figure 2),
this probably lowers the annotation coverage (but especially with the KEGG database) in
the pooled necrobiome, being some of the harder-to-annotate organisms mentioned above.
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Figure 2.12: Annotation coverage in fish necrobiome and the four highest-quality MAGs.
Prokka was not run on the metagenome as it is designed for genomes and the gene finding
that is a part of its pipeline is not as effective on metagenomes.

2.3.4 Conclusion

Both 16S and metagenomic analysis revealed a strong succession in which initial time points
were dominated by Clostridiaceae and Aeromonas, with Rikenellaceae species appearing
by day 4 and becoming major community members by day 10. Analysis of functional
profiles inferred from the metagenomic data revealed common decomposition pathways, as
well as temporal shifts in function that mirrored taxonomic succession. Notably, pollutant
degradation pathways and biofilm formation pathways were enriched in the early stages of
decomposition and associated with Clostridiaceae and Aeromonas, and glycan metabolism
and antibiotic synthesis increased in later stages and associated with Rikenellaceae. I also
identified a toxigenic Aeromonas strain that was a dominant member of the necrobiome
community. The presence of numerous hemolytic toxin genes in this organism suggests
a potential role for toxins in the decomposition of host tissues as proposed previously.191
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Lastly, investigating the overall annotation coverage of the metagenome-assembled genomes
revealed that the two Rikenellaceae bins had a lower proportion of CDSs annotated compared
to the other bins. Their annotation coverage possibly reflects their understudied place
within the Rikenellaceae family. Further work investigating the prevalence and function of
toxigenic and non-toxigenic bacterial species in decomposer communities will be important
to explore their broader ecological roles and niches within natural ecosystems.

2.4 Summary

Homology-based annotation is the foundation of current genome and metagenome functional
analyses. Through sequence-sequence and sequence-model methods, I annotated two newly
sequenced Streptomyces strains, revealed the antibiotic resistome of a farm wastewater
sample, and explored the functional profile of a rainbow darter necrobiome. There are many
ways to annotate a dataset depending on the intended target and how high confidence
the annotations should be. Targeted annotation databases are excellent resources if the
genome/bin is part of a well-studied sub-group like Aeromonas or if the proteins you
are targeting have their own focused, heavily-curated databases like CARD or VFDB.
Multi-database comparisons can increase the number of coding sequences with functional
information and can provide validation for function transfer, as done here in the search
for cellulases. The case studies lead to the discovery of proteins of interest, from cellulase
predictions in novel Streptomyces, to toxin genes found in decomposing fish. These case
studies reinforce the concept that novelty can come from new contexts even if the protein
family is already at least partially characterized.

The other take-away from these studies is that a significant proportion (12 - 44%) of
newly sequenced genomes/metagenomes are not annotated with many current methods
and databases. Intrinsic differences between annotation methods cause variability in the
annotation coverage but all methods tested left a substantial number of predicted coding
sequences unannotated. Even worse, some taxa were more in the “dark” than others. This
raises important questions: what is the range of annotation completeness in other microbial
taxa and what are the factors that can affect annotation coverage?
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Chapter 3

Annotation completeness of bacterial
genomes

Material in this chapter has been published as part of Lobb et al. (2020).180 The published
manuscript is available here:

B. Lobb, B. J.-M. Tremblay, G. Moreno-Hagelsieb, and A. C. Doxey. An
assessment of genome annotation coverage across the bacterial tree of life.
Microbial Genomics, 6(3):e000341, 2020.180 https://doi.org/10.1099/mgen.

0.000341

Although gene-finding in bacterial genomes is relatively straightforward, the automated
assignment of gene function is still challenging, resulting in a vast quantity of hypothetical
sequences of unknown function. As seen in Figure 1.1 and the Chapter 2 case studies, a
significant proportion of newly sequenced genomes/metagenomes are unannotatable with
current methods and databases. But how prevalent are hypothetical sequences across
bacteria, what proportion of genes in different bacterial genomes remain unannotated,
and what factors affect annotation completeness? To address these questions, the genome
annotation completeness of over 27,000 bacterial genomes from the Genome Taxonomy
Database was surveyed, with a focus on annotation method, taxonomy, genome size,
’research bias’ and publication date. Annotation coverage using protein homology-based
searches varied significantly. However, taxonomy was a major factor influencing annotation
completeness, with distinct trends observed across the microbial tree (e.g. the lowest level of
completeness was found in the Patescibacteria lineage). Most lineages showed a significant
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association between genome size and annotation incompleteness, likely reflecting a greater
degree of uncharacterized sequences in ’accessory’ proteomes than in ’core’ proteomes.
Finally, research bias, as measured by publication volume, was also an important factor
influencing genome annotation completeness, with early model organisms showing high
completeness levels relative to other genomes in their own taxonomic lineages. This work
highlights the disparity in annotation coverage across the bacterial tree of life and emphasizes
a need for more experimental characterization of accessory proteomes as well as understudied
lineages.

3.1 Introduction

Genome annotation relies primarily on the detection of homology between newly identified
genes/proteins and previously annotated sequences. Although complicated by varying
definitions of “function” and “annotation”, homology-based annotation transfer has been
systematically explored, revealing success rates of upwards of 60–70% accuracy based
on assessment of GO term prediction.181,253 Studies of early model organisms, such
as Escherichia coli, Bacillus subtilis and Caulobacter crescentus, are a major source of
experimentally derived functional annotations. Therefore, it is important to note that such
limited sources can be expected to result in biases in genome annotation, with a greater
success rate in species that are phylogenetically closer to these and other commonly studies
species.98

Both sequence-to-sequence and profile-based methods are implemented in common
annotation pipelines such as Prokka,280 the Joint Genome Institute Microbial Annotation
Pipeline201 and NCBI’s Prokaryotic Genome Annotation Pipeline.104 Annotation pipelines
may also integrate a variety of methods and databases, and/or allow users to customize
options towards specific reference databases or taxonomic lineages. Commonly used reference
databases include UniProt/SwissProt, as well as the NCBI’s reference sequence (RefSeq)
database, and its non-redundant protein database. Other reference databases of protein
and/or domain families include TIGRFAMs,105 FIGfams,210 COG306 and Pfam.75

Even with sequence databases growing at an exponential rate and with ongoing expansion
of annotation information in reference databases, well-studied organisms still have significant
proportions of their CDSs functionally unannotated.118,179,240,340 When predicted protein
sequences cannot be functionally annotated, they are typically classified as “hypothetical”
proteins, or sometimes as “conserved hypothetical” proteins if they are commonly detected in
the genomes of numerous organisms.80,82 These hypothetical sequences consist of proteins of
unknown function as well as potential pseudogenes and even spurious gene predictions.48,179
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An important question in genome-wide functional annotation is to what degree a genome
(or more specifically, a proteome) can be assigned function.273,284 Interestingly, across
different bacterial species/genomes there is considerable variation in the completeness of
genome annotations reported in the literature and in databases.11,98 For example, according
to the Joint Genome Institute database, well-studied model organisms such as E. coli K12-
W3110 and Bacillus subtilis strain 168 have ∼86 and 81% of their proteome functionally
annotated, respectively.201 However, the proteome of Verrucomicrobium spinosum DSM
4136 is only 48% annotated. Ever more extreme than this is the feline parasite Mycoplasma
haemofelis, which has functional annotations for only 19% of its proteome.17,201 With such
a wide range of annotation coverage found among bacteria, this study aimed to investigate
the extent of annotation coverage across the bacterial tree of life, as well as to identify
factors related to this important property of genomes.

3.2 Methods

Genome data sources

Bacterial genomes from AnnoTree207 and their Pfam75 and KEGG132 annotations
(gtdb r86 bac genomic files.tar.gz, gtdb r86 bac pfam tophits.tar.gz, and
gtdb r86 bac ko tophits.tar.gz, respectively) were accessed from https://data.ace.uq.

edu.au/public/misc_downloads/annotree/r86/. Metadata for the downloaded genomes
were retrieved from the Genome Taxonomy Database (GTDB)235 at https://data.ace.uq.
edu.au/public/gtdb/data/releases/release86/86.1/bac120_metadata_r86.1.tsv.

Gene annotation

As described elsewhere, Pfam75 annotations were derived from Pfam v27.075 and applied
with HMMER v3.1b1 and Pfamscan (at ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/).
KEGG132 annotations were computed based on DIAMOND v0.9.2227 matches against the
UniRef100 dataset, members of which were pre-annotated with KEGG orthology (KO)
annotations. The percentage of unannotated CDSs from the Pfam and KEGG approaches
for each genome was calculated by comparing the number of CDSs in the metadata file
with the number of CDSs with Pfam or KEGG matches in the Pfam and KO “tophits” files
from AnnoTree.207

Genome annotation was also performed using Prokka v1.13.7280 with its default databases
and with the rRNA and tRNA search options turned off. Mycoplasmatales (GTDB
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taxonomic nomenclature that includes Entomoplasmatales and Mycoplasmatales from the
NCBI taxonomic nomenclature) was analysed with translation table 4, while GTDB orders
Absconditabacterales and BD1-5 (which include candidate division SR1 and ’Candidatus
Gracilibacteria’ from NCBI taxonomic nomenclature) were analysed with translation table
25. The unannotated class of CDSs were identified as those containing “hypothetical protein”
product names that also lacked Prokka database annotations. To analyse NCBI-derived
protein annotations, protein .gpff files associated with 113,424 genome IDs in the GTDB
metadata file were downloaded from NCBI’s ftp server (ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/). Any protein annotation in the “product” line of the file containing the
words “hypothetical”, “uncharacteri(s/z)ed protein” or “unknown” were counted towards
the “unannotated” fraction for that genome. The number of protein CDSs were also
counted from the .gpff files for determining the percentage of unannotated CDSs. A data
table containing the genome accession numbers and associated frequencies of annotated,
unannotated and total gene counts produced by all three annotation pipelines is available
online (https://github.com/doxeylab/genomeAnnotationCoverage).

Statistical analyses

Statistical analyses were performed using R v3.2.3. For all statistical tests, the logarithm
of genome size was used, which resulted in distributions closer to normality. The aov()
function within the R base library was used to perform analysis of variance (ANOVA) tests
and ANOVA [aov(),type=‘III’)] from the car v3.0–3 library was used to calculate analysis of
covariance (ANCOVA) tests. Each ANCOVA identified a significant effect of the covariate
GTDB taxonomic order on the annotation coverage, as well as a significant interference of
the covariate with the effect of the independent variable. Linear regression was performed
using the ggplot2 module stat smooth(method=‘lm’).

The PubMed June 6 2019 database was downloaded using Entrez Direct. ’Research bias’
represented by PubMed mentions was determined using Entrez Direct to search PubMed
for all abstracts or titles that contained a genus name (NCBI taxonomic nomenclature).

Protein lengths were derived from the predicted proteins generated by Prokka.280
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3.3 Results

Annotation analysis

In order to explore patterns of genome annotation across bacteria, 27,372 bacterial genomes
included as part of the AnnoTree database207 were analysed. AnnoTree uses a phylogenetic
tree originally derived from the GTDB235 and allows users to visualize pre-computed
functional annotations across the bacterial tree of life. Three popular approaches for
functional annotation that utilize different tools and databases were used, in addition to
externally computed NCBI annotations, which are describe later. (i) Prokka280 (v1.13.7):
predicted proteins were annotated by BLAST+ searches against databases of curated
proteins, and by hmmscan74 searches against the HAMAP HMMs library.238 (ii) KEGG:132

predicted proteins were annotated with KO numbers based on DIAMOND27 searches against
the KEGG database. (iii) Pfam:75 predicted proteins were annotated by hmmscan searches
against the Pfam-A HMM library.

Following annotation with these pipelines, for every genome, predicted CDSs were
then subdivided into two categories: (i) annotated proteins – sequences matched to either
functionally characterized or unnamed families; and (ii) unannotated proteins – sequences
without any matches. CDSs matching protein families without an annotated molecular
function were still included in the first group, since these domains may still possess limited
information that can be transferred to a new sequence.

Based on Prokka results, the mean proteome annotation coverage was 52±9% (48%
unannotated) (Figure 3.1a). This is expectedly lower than that reported for model organisms
and higher than that reported for the low-end cases described earlier. It is worth noting that
the default Prokka parameters for functional annotation are fairly strict, as only reference
proteins with experimental evidence are considered for functional assignments,280 and that
annotation coverage can potentially be increased by adding custom databases of curated
annotations. The KEGG-based annotation method produced similar results with 55±10%
mean annotation coverage (Figure 3.1a). The third approach based on Pfam domain-based
annotation produced a mean of 79±7.1% annotation coverage (Figure 3.1a), which is higher
than that of the other methods. To compare the results against externally derived functional
annotations, 113,424 previously annotated proteomes within the NCBI database were also
examined. These proteomes had a mean annotation coverage of 79.8±10% (see section 3.2,
Methods).
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Figure 3.1: Distributions of genome annotation incompleteness across GTDB bacteria and
length of annotated versus unannotated CDSs. (a) Relative frequency distribution of anno-
tation coverage based on annotation with Prokka, KEGG and Pfam. (b) Relative frequency
distribution of the length (bp) of CDSs in genomes present in AnnoTree. Annotation status
was determined with this study’s binary Prokka classification. The lowest length for both
annotated and unannotated sequences is 90 bp, due to the length threshold in Prodigal.116

Another trend that was observed was that unannotated protein sequences tended to
be shorter in length than annotated protein sequences (Figure 3.1b). Shorter proteins
can be more difficult to annotate due to poor database coverage, lower match scores
and an increased chance of being pseudogenes (one signature of pseudogenization is the
accumulation of premature stop codons, which leads to shorter CDSs).175 While it is
challenging to uncover pseudogenes at such a large scale,116,164 there was an observable
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difference in the length distribution of the unannotated sequences, consistent with an
increased proportion of pseudogenes. Despite this, a large proportion of the distribution
was indistinguishable from that of annotated sequences (Figure 3.1b).

With all annotation pipelines analysed, extreme variation in annotation incompleteness
across bacterial genomes was observed (Figure 3.1a). For example, based on protein
homology searching using Prokka, annotation incompleteness ranged from 2.3% (’Candidatus
Baumannia cicadellinicola’) to 85.5% (Mycoplasma haemofelis Ohio2). Similar values
were obtained using KEGG-based annotation, with incompleteness ranging from 3.1%
(’Candidatus Evansia muelleri’) to 87.9% (Algoriphagus boritolerans). Next, to further
explore factors influencing this variation, the relationship between annotation coverage and
various features, such as taxonomy, genome size and research bias, were examined.

Taxonomy

To study the potential taxonomic bias in genome annotations, annotation completeness
was mapped onto the bacterial phylogeny, and was partitioned according to the taxonomic
scheme defined by the GTDB (Figure 3.2). Differences in annotation coverage were visually
apparent across the tree, and a strong degree of clade-specific patterns could be observed.
This taxonomic annotation bias was supported by quantitative measurements at different
taxonomic levels (Figure 3.3). Even at the phylum level, there were observable differences
in genome annotation coverage between taxa (Figure 3.3a; ANOVA P value <2×10-16),
with greater resolution revealed at every subsequent taxonomic level (Figure 3.3b). This
taxonomic effect was consistent between Prokka (Figure 3.3a, b), KEGG (Figure 4a; ANOVA
P value <2×10-16) and Pfam (Figure 4b; ANOVA P value <2×10-16) proteome annotations.
Patescibacteria, a phylum recently formed from the highly underrepresented candidate phyla
radiation associated with smaller genomes,109,264 had the highest mean of unannotated CDSs
across all three annotation systems. Spirochaetota, a smaller phylum, and Bacteroidota,
found across many environments, also had higher unannotated proportions (54.8% mean
and 55.7% mean, respectively). Proteobacteria and Firmicutes, the phyla of the majority of
bacterial model organisms, had better annotation completeness across all three annotation
systems with mean unannotated proportions of 42.6 and 42.3%, respectively. Thus, the
taxonomic bias on genome annotation completeness may be in part due to what can be
described as research bias or model organism bias (a larger scientific community effort
towards functional characterization), which is explored further in a later section.
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Figure 3.2: Genome annotation incompleteness across the bacterial tree of life. Annotation
incompleteness has been mapped to the outer edges of the tree of life obtained from
AnnoTree,207 which was originally derived from the GTDB.235 The height of each bar
(and colour) depicts traits (annotation incompleteness and genome size), which have been
normalized separately for each metric. For annotation incompleteness, the gradient goes
from 0% (minimum) to 100% (maximum). Four metrics are shown, including annotation
incompleteness as determined using Pfam (outer ring), followed by that determined using
KEGG, that determined using Prokka and genome size (inner ring). This figure was designed
in collaboration with Benjamin Tremblay.
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Figure 3.3: Distributions of genome annotation coverage subdivided by taxonomic group.
Genomes were annotated using Prokka with default parameters (see section 3.2, Methods).
Only the most common phyla from the GTDB235 are shown. (a) Taxonomic separation by
phyla. (b) Taxonomic separation by order. Labelled orders are using GTDB taxonomic
nomenclature.

Genome size

Genome size, a trait related to taxonomy (as evident in Figure 3.2), also appeared to affect
the annotation coverage of genomes. Even without accounting for the confounding impact
of taxonomy, a relationship between genome size and genome annotation completeness was
visible (Figure 3.4a). A closer look at this phenomenon within individual phyla revealed
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an even clearer picture of this trend, where larger genomes were associated with a larger
proportion of unannotated proteins [Figure 3.4b, 5a (KEGG) and 5b (Pfam)].
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Figure 3.4: Relationship between genome size (bp) and Prokka genome annotation coverage.
The log10(genome size in bp) is binned into 10 distinct bins to better display the trend.
Square and open brackets indicate intervals that include and do not include the adjacent
number, respectively. (a) Only the most common GTDB phyla are shown. (b) The most
common GTDB phyla are displayed separately.

An interesting case demonstrating this relationship is the phylum Firmicutes. Although
at a phylum level, the effect of genome size on annotation completeness was not entirely
clear (Figure 3.4), when subdivided into lower taxonomic levels (Figure 3.5), the trend
was readily apparent. That is, different taxonomic groups within the Firmicutes possessed
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distinct distributions of genome completeness and each was also influenced by genome size.
For example, Mycoplasmatales, RF39 and RFN20 (GTDB taxonomic nomenclature235)
possess relatively small genomes, but had a high fraction of unannotated CDSs. Yet, within
these taxonomic groups, genome size positively correlated with the level of annotation
incompleteness. Thus, these cases illustrate how annotation incompleteness is driven by
multiple factors.
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Figure 3.5: Prokka genome annotation coverage of Firmicutes (GTDB taxonomy) against
genome size. Trend lines are displayed for each taxonomic order.

Consistent with these observations, an ANCOVA test controlling for the GTDB tax-
onomic order revealed a significant relationship between genome size and annotation
incompleteness for Prokka, KEGG and Pfam annotations (P value=3.6×10-5, 2.5×10-3

and 1.1×10-4, respectively). The protein annotations in the NCBI database also showed a
significant difference between taxonomic phyla (ANOVA P value <2.2×10-16; Figure 3.6a)
and a relationship with genome size (ANCOVA, while controlling for GTDB taxonomic
orders, P value=2.3×10-10; Figure 3.6b). Since the largest factor influencing genome size
variation in bacteria is the gain and loss of “accessory” genes,20,316 it can be reasoned that
this trend may reflect an increased difficulty in functional annotation of accessory genes
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versus “core” genes (see Discussion). Since genome size is also related to other factors such
as GC content, the correlation between GC content and annotation completeness was also
examined. However, this relationship was not as clear (Figure 3.7) and was non-significant
when controlling for taxonomy (ANCOVA P values of 0.6, 0.85 and 0.33 for Prokka, KEGG
and Pfam, respectively).
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Figure 3.6: Genome annotations from NCBI (a) Taxonomic separation of genome annotation
coverage by phyla using the taxonomic nomenclature from the Genome Taxonomy Database
(GTDB). Only the most common GTDB phyla are shown. (b) Relationship between genome
size and genome annotation coverage in NCBI. log10(genome size) is binned into 10 distinct
bins to better display the trend. The most common GTDB phyla are displayed.
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common GTDB phyla are displayed.

Research bias

To explore the effects of research bias on annotation coverage, the number of times each
genus was mentioned in abstracts or titles within the PubMed database was counted, and
their genome publication dates were also recorded. Here, NCBI taxonomic nomenclature
was adopted as those naming conventions are more common in literature. Genera with
over 75,000 mentions (such as Escherichia, Staphylococcus and Pseudomonas) generally
had a greater annotation coverage compared to genera that occurred less frequently in
publications [Figs 3.8a (Prokka), 3.8b (KEGG), 3.8c (Pfam)]. Similarly, genomes released
before 2003 tended to have a greater proportion of annotated CDSs [Figures 3.9a (Prokka),
3.9b (KEGG), 3.9c (Pfam)]. However, these effects were only apparent in the extreme cases
(i.e. model organisms associated with extreme publication volume). Moreover, the majority
of genera in this uppermost bracket were Proteobacteria and Firmicutes, consistent with
the earlier analysis of taxonomic influence on genome annotation coverage.
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Figure 3.8: log10(Pubmed mentions of genera in titles or abstracts) by genome annotation
coverage. The Pubmed mentions are binned into 10 distinct bins to better display the
lack of any significant trend. Only the most common phyla according to NCBI taxonomic
nomenclature are shown. (a) Prokka genome annotation; (b) KEGG genome annotation;
(c) Pfam genome annotation.
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Figure 3.9: NCBI genome release date by genome annotation coverage. The NCBI release
date has been binned into 10 distinct bins to better display the lack of any significant trend.
Only the most common phyla according to NCBI taxonomic nomenclature are shown. (a)
Prokka genome annotation; (b) KEGG genome annotation. (c) Pfam genome annotation.
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To explore this phenomenon further, the distributions of genome annotation completeness
was examined while subdividing by taxonomy, mapping only the most heavily studied taxa
onto their respective lineages. This clarified the effect of research bias since model organisms
(e.g. E. coli, Bacillus subtilis, Mycobacterium tuberculosis) stood out as being among the
best annotated genomes in their respective taxonomic groups (Figure 3.10). There were,
however, some exceptions to this phenomenon; within the Proteobacteria, a noticeable group
of organisms had annotation completeness well exceeding that of E. coli. These organisms
included endosymbionts with highly reduced genomes, such as Buchnera aphidicola, an
endosymbiont of aphids, ’Candidatus Blochmannia’ (an ant symbiont), Wigglesworthia (a
symbiont of tsetse flies) and others. This may be due to multiple factors, including an
increased proportion of core or ’essential’ functions associated with “minimal genomes” and,
thus, easier-to-annotate processes in reduced genomes of parasitic organisms,143,144,223 as
well as the close evolutionary relationship of these genomes to the heavily studied model
organism E. coli.85,219
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Figure 3.10: Influence of research bias on genome incompleteness. The top six most abundant
phyla are shown and each is further subdivided by taxonomic order. Orders appear as
distinct vertical columns. Heavily studied genomes, as measured by PubMed abstract counts
per species (>15,000), show a marked reduction in unannotated sequences (annotated with
Prokka) compared to other moderately studied genomes (500–1000) in their taxonomic
group. Other heavily studied species include Listeria monocytogenes, Staphylococcus
aureus, Streptococcus pneumoniae, Helicobacter pylori, Klebsiella pneumoniae, Haemophilus
influenzae and Pseudomonas aeruginosa. It must be noted that the terms “heavily” and
“moderately” studied organisms are relative, are associated only with the frequency of
published papers, and do not account for the true impact of publications and other work
that contribute toward functional annotation.

3.4 Discussion

As genomes shape our understanding of organism function, not only individually but also
as a community, it is important to assess our ability to annotate genomes across the tree
of life and understand the factors that influence this important property. Here, GTDB235

and AnnoTree207 were used in combination with various annotation pipelines to perform a
comprehensive assessment of genome annotation coverage across the bacterial phylogeny.
This analysis revealed extreme variation in genome annotation coverage across and within
taxonomic groups. Numerous factors appear to influence levels of annotation completeness
across bacterial genomes, including annotation method, taxonomy, genome size and research

67



bias.

Overall, the mean annotation completeness of bacterial genomes varied from ∼52% for
methods requiring high-stringency matches to reference proteins, to 79% for more sensitive
domain-based annotation methods. While domain-based annotation methods produced
the highest proportion of annotated CDSs, these estimates of annotation coverage may be
not be realistic, since the mere presence of a domain in a predicted protein sequence is
not necessarily sufficient to assign function, and consideration of domain architecture is
more informative. Also, although three annotation pipelines were performed separately,
a combination of methods would have likely resulted in greater annotation coverage, as
observed in previous studies.98 However, the goal of this study was not to optimize
annotation coverage across bacteria, but rather to assess it using standard, commonly used
pipelines.

Taxonomy was an important factor influencing genome annotation completeness. Some
of this taxonomic bias may stem from research bias, whereby genomes that are more closely
related to those of model organisms possess a greater chance of being successfully annotated
based on detectable homology. Indeed, phyla containing many model organisms were
found to have, on average, more annotated CDSs than their understudied counterparts. In
addition, within broader taxonomic groups, specific model organisms (e.g. E. coli) stood
out as outliers in terms of annotation coverage. This pattern was also demonstrated for
other highly studied species as determined based on publication volume (occurrences of
species names in PubMed abstracts and titles).

This analysis also uncovered an interesting, significant anticorrelation between genome
size and annotation coverage, which was consistently detected across a range of taxonomic
groups. Larger genomes showed lower annotation coverage, which suggests a relative lack
of annotations and functional characterization concerning accessory proteomes. Indeed
one study in 2007254 even found a “weakly significant” positive correlation between the
average genome size predicted in metagenomes and the number of novel protein families
discovered. One interpretation of this finding is that core proteomes contain more essential
and widely studied processes, resulting in increased genome annotation coverage. In contrast,
the accessory gene content within a pangenome of a species may include a more diverse
repertoire of genes,255 including those derived from prophages20 and integrated elements,
which are known to be particularly challenging for annotation.37 The dynamic accessory
genome of a species may also possess increased pseudogene content, resulting in shorter
(truncated) and potentially divergent ORFs that are harder to assign function through
homology searches. The observed difference in the length distribution of annotated versus
unannotated CDSs is consistent with this idea.
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The reduced genomes of symbionts and parasites are extreme examples of how factors
related to genome size may affect annotation completeness. In this analysis, reduced
genomes were found at both ends of the spectrum of annotation completeness. Within
the Firmicutes, for example, some parasitic genomes in the Mycoplasmatales were poorly
annotated. This may be a result of increased pseudogene content, which is thought to
accumulate in the reduced genomes of some organisms due to genetic drift.20,152,153,218

However, the reduced genomes of endosymbiotic Proteobacteria such as Buchnera aphidicola
were extremely well annotated, consistent with previous analyses,254,323 which may be due
to efficient purging of genes and pseudogenes over a longer evolutionary timescale with
retention of core processes. These core or essential functions are in turn easier to annotate
bioinformatically [for previous papers on the minimal genome concept see references by
Mushegian (1999) and Koonin (2000)143,223]. Their increased annotation completeness may
also in part benefit from their close relationship with a model organism (E. coli).

Finally, this analysis highlighted certain lineages (e.g. the Patescibacteria within the
candidate phyla radiation group) as possessing a higher level of hypothetical gene content.
This may reflect the presence of highly divergent gene families that escape the detection
limits of standard homology-based annotation, or this may be indicative of new protein
functions, metabolic activities and biological traits. To assign function to these sequences,
the use of powerful/sensitive methods for protein function prediction may be useful; these
include remote-homology detection and structure prediction approaches.19,179 Methods for
function prediction will also benefit from continual expansion of Gene Ontology1 and other
controlled vocabularies.41,312 In addition to sequence-to-function methods, a complementary
“function-to-sequence” type of approach may also be useful, where a required parts list of
functions is used to guide the search for potential gene functions.292 Finally, our ability to
assign function computationally to these and other bacterial genomes is inherently tied to
the quantity and quality of experimentally derived functional information contained within
references databases. Continued experimental characterization of understudied organisms
and hypothetical/novel gene families will be critical to widen the net of annotation coverage
and lead to more accurate genome analyses and functional insights derived from genomic
and metagenomic studies.

1704 new “biological process” and “molecular function” GO terms were added between Jun. 2019 and
Aug. 2020. Retrieved from http://geneontology.org/stats.html
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Chapter 4

Inferring biological associations for
conserved domain families

As just investigated in Chapters 2 and 3, a significant fraction of genome sequence data
is currently unannotatable with homology-based methods. For this fraction of proteins,
is there a way to use alternative non-homology based annotation methods to uncover
functional information and mine for novel proteins of interest? Many of these hypothetical
genes and proteins of unknown function have been compared and amassed into protein or
domain families, just as characterized proteins have been organized into families based on
sequence, structure and/or functional similarity. In the absence of experimental data for
these conserved but uncharacterized protein families, alternate methods for teasing out
functional information can be attempted. Detecting associations between these families and
other biological traits (such as particular environments, taxonomic lineages, and phenotypes)
has the potential to provide functional insights and give a broad range of data for researchers
interested in targeting domains for experimental characterization. Here, a comprehensive
analysis of 17,929 domain families within the Pfam database is provided, including over
4,000 domains of unknown function (DUFs), all scored based on various biological and
statistical attributes. Statistically significant associations for a substantial fraction of DUFs
and other protein families of unknown function were uncovered, providing a guide for future
experimental characterization.
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4.1 Introduction

Domains are modular units of proteins that adopt specific three-dimensional structures and
functions. Related domains can be grouped by sequence homology into domain families,
which have a common evolutionary ancestry, and adopt similar structures and functions.309

Domain families have been bioinformatically classified by databases such as CATH,287 the
NCBI Conserved Domain Database,194 Interpro,115 and Pfam.73

The Pfam database v32.0 contains a total of 17,929 domain families. These can be
further classified into “clans”, sometimes referred to as domain superfamilies. In v32.0,
22% (4049) of all domain families in Pfam are defined as “domains of unknown function”
or DUFs. DUFs can be recognized bioinformatically as sequence families in genomes but
have not been assigned function. Many DUFs are essential in bacteria94 and thus are an
important target for functional characterization.221 Beyond DUFs, additional collections of
uncharacterized protein families have been constructed, including ORFan proteins derived
from metagenomes179 and the recently generated Function Unknown Families (FunkFams)
dataset.340 DUFs and other collections of uncharacterized protein families are a fascinating
target for bioinformatic analysis, since many potentially encode novel biochemical activities
and biological functions.177 At the same time, they are extremely challenging cases for
function prediction because by nature they tend to lack detectable homology to other
families, and so cannot be assigned function by standard tools such as BLAST.

As an alternative to homology-based functional annotation methods, functional insights
into DUFs may be obtained by detecting statistical associations between DUFs and various
biological traits. By analyzing the distribution of protein families across the genomes of
different species, it is possible to uncover several types of associations. First, a protein/gene
family may show an association with a particular taxonomic lineage (in which case it may
be called a “signature” gene101), which may help place that family under a certain biological
context.142 With improved taxon sampling of genomes across the tree of life, lineage-
specificity of gene/protein families can potentially be measured at a greater resolution than
ever before.207 Second, the abundance of a protein family across different environments can
help provide functional context.68,72,154,179,317,357 Detecting protein families that associate
with certain environments has become increasingly possible through the availability of
metagenomic datasets from a growing diversity of biomes and associated environmental
metadata. For example, Ellrott et al.68 used an automated computational procedure to
identify protein families specific to the human gut microbiome, and discovered 835 sequence
families de novo in metagenomic data. Subsequent experimental characterization of some of
these protein families have revealed functions that are important for microbial physiology
in the human gut environment. Third, presence/absence of a protein family may show
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a statistical association with a certain phenotype. For example, numerous studies have
compared protein family abundance between pathogenic and non-pathogenic genomes to
detect those that may play roles in virulence.57,78,354 Recent studies have also identified
phenotypic associations for bacterial genes, including genes of unknown function, en masse
through genome-wide screens using transposon sequencing.247

In this work, several association-based methods have been applied to analyze the full set
of 17,979 domain families in Pfam, with a focus on DUFs to gain insights into their biology.
For each domain family, its distribution across available genomes and metagenomes was
examined to measure a variety of biologically relevant characteristics including: abundance,
taxonomic breadth and specificity, environmental association, and pathogen association
(Figure 4.1). By performing multiple association-based analyses, I was able to uncover
statistically significant biological associations for a large number of protein domain families.
An online database (virfams.uwaterloo.ca) is provided to allow researchers to explore
these pre-computed statistical analyses of Pfam domain families, providing biological and
statistical information to guide future experimental studies.

4.2 Methods

Abundance and taxonomic breadth

The NCBI sequence database domain alignments were sourced from ftp://ftp.ebi.ac.

uk/pub/databases/Pfam/current_release/Pfam-A.full.ncbi (Pfam v.32.0;75 retrieved
Feb.9, 2019). The proteins that were aligned to Pfam domains and the total number of
hits were taken from this file. An environmental average of the normalized adjusted family
size for each domain (see the Environmental association section 4.2 of Methods) present
in at least 5% of the selected samples used to determine environment-association was
calculated. The taxon ID and taxonomy of proteomes with Pfam domain matches were re-
trieved from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/database_

files/pfamA_ncbi.txt.gz and ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_

release/database_files/taxonomy.txt.gz, respectively (Pfam v.32.0; retrieved Oct.16,
2018). The percentage of species each domain is present in, and the corresponding percent-
age for the Genus, Family, Order, Class, Phylum, Kingdom and Superkingdom taxonomic
levels are included on virfams.uwaterloo.ca. Spearman rank correlation between the
different abundance measures (percentage of species, environmental average, and protein
hits in NCBI) was calculated with corr in R v3.3.3.
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Environmental association

Metagenomic assemblies and raw reads were taken from public repositories (NCBI Se-
quence Read Archive: SRA045646 and SRA050230; NCBI Assembly: GCA 900245835.1,
GCA 000208365.1, GCA 900245825.1, GCA 000496495.1, GCA 002059125.1, GCA 900216645.1,
GCA 002059105.1, GCA 002059145.1, GCA 002059065.1, GCA 002059085.1, GCA 002058945.1,
GCA 002058925.1, GCA 002059005.1, GCA 002059045.1, GCA 002059025.1, GCA 002058985.1,
GCA 002058965.1, GCA 002058885.1, GCA 002058905.1, GCA 002058845.1, GCA 002058865.1,
GCA 002058825.1, GCA 900216805.1, GCA 900216795.1, GCA 900215965.1, GCA 900215875.1,
GCA 900245845.1, GCA 900216675.1, GCA 900216935.1, GCA 900291615.1, GCA 900291665.1,
GCA 900216775.1, and GCA 900216765.1; CAMERA: CAM PROJ GOS; EBI: PRJEB6337;
MGRAST: 4504797.3 and 4504798.3; http://www.bork.embl.de/~arumugam/Qin_et_al_
2010/). No samples smaller than 1,000,000 bp were used. The raw reads from the human gut
studies (Qin et al., 2012, 2014) were processed and assembled with the following procedure.
Any read that aligned to the human genome (GCA 000306695.2) with Bowtie 2 (v2.2.9)157

default settings was removed (along with its pair). Quality trimming was performed by
sickle v1.33. The reads were assembled with Megahit v1.0.6-3-gfb1e59b169 with default
settings. The raw reads from the Global Ocean Sampling study269 were not assembled as
the reads, which were sequenced with a modified form of Sanger sequencing, were already
quite long. FragGeneScan v1.30262 was used to detect CDSs in the samples. To remove
any putatively spurious CDSs, any sequence with greater than 40% repetitive sequence,
detected by segmasker from the BLAST package v2.2.28+, was removed. Annotation with
PfamScan (version updated on Feb. 28, 2017) using HMMER3 v.3.1b265 against the Pfam
database v32.0 (retrieved Oct. 16, 2018) with a threshold of 1×10-3 was performed on the
remaining sequences. The annotated region of each metagenomic sequence (aligned with
a Pfam domain) was clustered with CD-HIT v4.6.8171 to 99% similarity for each sample
within each set of domain matches. This removed redundant domain matches to give a
measure of adjusted family size of the domain families for each sample. To normalize to
sample size, the adjusted family member count was divided by the number of base pairs
in the assembly and multiplied by 1,000,000. A ratio of samples across each human gut
study analyzed was chosen to maximize regional diversity while making the sample size in
each environment more comparable. All 14 healthy samples from the Spanish cohort248

were used, and then 34, 16, and 16 healthy samples from the Danish cohort,248 the Chinese
cohort originating from Peking University Shenzhen Hospital, Shenzhen Second People’s
Hospital and Medical Research Center of Guangdong General Hospital,249 and the Chinese
cohort originating from the First Affiliated Hospital of Zhejiang University250 were randomly
selected, respectively. However, in per-domain figures all human gut samples have been
added back in for visual comparison. Domains not present in greater than 95% of the
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selected samples were excluded. Domains where at least one environment (soil, marine or
human gut) showed significant differences based on the normalized adjusted family size
were determined with the Kruskal-Wallis test. P values were adjusted with p.adjust using
the Benjamini-Hochberg model. The logarithm of the normalized adjusted family size (base
10) and the subsequent scaling across the domain hits (scale) was done in R v3.3.3 for the
heatmap. Enrichment of DUFs in the environment-associated domain sets compared to the
background frequency of DUFs in Pfam was tested using the binomial test (pbinom in R).
To determine GO term enrichment within the environment-associated domain sets, a Pfam
to GO term map was retrieved from http://geneontology.org/external2go/pfam2go (last
updated February 12, 2019). The frequency of GO terms in domains associated with one
of the three environments (soil, marine and human gut) and the frequency of GO terms
corresponding to other Pfam domains present in at least 5% of the selected samples were
compared with the hypergeometric test (phyper in R), with P values again adjusted with
the Benjamini-Hochberg model.

Lineage association

The sensitivity and precision of the Pfam domain distribution across the NCBI taxonomy
system was calculated from the Pfam files pfamA ncbi.txt and taxonomy.txt (see the
Abundance and taxonomic breadth section 4.2 in Methods). The total number of proteomes
within any one taxonomic group is based on the taxon IDs in the pfamA ncbi.txt file.
These scores were calculated for the most common taxon (presence/absence counts of a
domain hit per proteome) in each domain family at the Superkingdom, Kingdom, Phylum,
Class, Order, Family and Genus taxonomic levels. The best taxonomic level to describe
a domain’s lineage specificity was chosen based on the F1 score 4.1. In the case of a tie
between taxonomic levels, the higher level in the taxonomic hierarchy (e.g. Superkingdom)
was given preference. If the majority of proteomes that the domain was present in did
not have any classification at a certain taxonomic level, this taxonomic level would not be
considered for “best taxonomic level.” The enrichment of DUFs in extreme lineage-specific
cases was determined in the same way as with the environmental-associated domain set.

Pathogen association

354 proteomes in Pfam were designated as bacterial pathogens based on PATRIC (https:
//www.patricbrc.org)335 bacterial pathogens with metadata relating them to disease and
a manually curated set of pathogens from Dhillon et al.49 Enriched pathogenic domains were
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detected with the hypergeometric test (phyper in R) based on the number of pathogenic
proteomes in Pfam the domain is present in compared to the non-pathogenic bacterial
proteomes in Pfam the domain is present in. P values were FDR corrected with p.adjust
using the Benjamini-Hochberg model. The enrichment of DUFs in pathogen-associated
domains was calculated in the same way as with the environment-associated domain set.
The frequency of the pathogenesis GO term in domains identified as pathogen-associated and
other Pfam domains present in bacterial proteomes were compared with the hypergeometric
test (phyper in R). Eukaryotic-like domains in bacterial pathogens were identified as being
most common in eukaryotic proteomes as well as pathogen-associated (P value < 0.05) or
with hits in bacterial pathogens but without hits in non-pathogen proteomes. I expanded
past the pathogen-associated domain set in this case, to capture domains present in a low
number of proteomes (which meant they weren’t statistically significant) that seemed like
promising “mimicry” candidates.

Additional filters

All data was taken from Pfam v.32.0 (files retrieved on Oct.16, 2018). A list of Pfam fam-
ilies with PDB structures was taken from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/

current_release/database_files/pdb_pfamA_reg.txt. Domain architectures were sourced
from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/database_files/

architecture.txt. Predicted transmembrane and disordered regions in sequences with
Pfam domain alignments were retrieved from ftp://ftp.ebi.ac.uk/pub/databases/

Pfam/current_release/database_files/other_reg.txt. Overlap of predicted trans-
membrane or disordered regions with an annotated domain was evaluated by compar-
ing to ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-A.regions.

uniprot.tsv. The standard deviation for domain family percentage disorder was calculated
using std from the NumPy package v1.16.1. Domains that were prioritized for structural
feasibility had no representatives in the PDB, an average across the domain family members
of less than 10% of the domain sequence predicted to be disordered, less than 10% of their
members with a predicted transmembrane region (anywhere along the protein), and less
than 10% of their members with transmembrane-domain overlap.
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4.3 Results and Discussion

Abundance and taxonomic breadth of domain families

All 17,929 protein domain families in the Pfam 32.0 release were analyzed, including 3961
DUFs and 88 UPFs1 (from now on collectively referred to as DUFs) (Figure 4.1). To gain
insights into the abundance of DUFs and other Pfam families, three different datasets were
surveyed. I examined: NNCBI, the number of protein family members in the NCBI sequence
database; Nspecies, the percentage of species containing the domain family in the Pfam
proteome collection; and Nmeta, the number of non-redundant matches in a diverse dataset
of metagenomes (Figure 4.2). DUFs were abundant in all three datasets, present in a total
of 13,201,304 sequences (see Table 4.1 for the most abundant DUF and other Pfam families).
The abundance distributions for DUFs overlapped with that of other domains in Pfam, but
DUF families tended to be smaller in size (Figure 4.2). Despite a strong expected sampling
bias towards Proteobacteria, Actinobacteria, and Firmicutes in the NCBI database, all
three metrics correlated with one another (r = 0.86 for NNCBI vs Nspecies, r = 0.69 for NNCBI

vs Nmeta, and r = 0.71 for Nmeta vs Nspecies).

17,929 protein
domain families

4049 domains
of unknown 

function

Examine distribution of 
domain family across

species taxonomy

Compare diversity
across environmental
metagenomic datasets

Compare domain profiles
between pathogens
and non-pathogens

lineage-specificity scores environment-specificity scores pathogen-specificity scores

Figure 4.1: Overview of computational framework for DUF categorization and functional
prioritization.

1UPFs stand for uncharacterized protein families and were created separately by Swiss-Prot.
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Figure 4.2: Domain abundance distributions. Frequency histograms show the number of
NCBI proteins containing the domain, the % species in Pfam proteomes with the domain,
and the average of the normalized adjusted family size of non-redundant hits across a
diverse set of metagenomic samples. All Pfam domain families, DUFs and the other Pfam
families that are not DUFs, are represented here.

Table 4.1: Top five most abundant domains and DUFs. Families were ranked using three
different measures of abundance: number of proteins with the domain in the NCBI, percent
of species with the domain in Pfam proteomes, and the average of the normalized adjusted
family size across all environmental samples.

Proteins in
NCBI

Presence in
species (%)

Environmental
average

Average abundance
rank

Pfam domains (non-DUFs)
ABC tran 2,236,463 62.74 1579.20 2.00
HATPase C 1,136,217 62.69 618.05 4.00
Helicase C 641,004 66.24 290.12 16.33
HTH 3 449,128 62.80 313.15 22.67
Glycos transf 2 458,343 61.35 426.08 25.00
DUFs
DUF21 63,537 52.22 56.53 507.67
UPF0004 58,608 50.42 67.68 528.33
UPF0051 40,910 40.03 65.50 795.00
UPF0020 72,562 36.65 22.57 1030.67
UPF0054 25,360 52.15 33.08 1058.67

Although DUFs could be identified in only 3-6% of total open-reading frames, they make
up 22% of all protein domain families in Pfam and therefore constitute a sizeable fraction
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of the domain diversity in proteomes. In an analysis of 15,803 proteomes, DUFs were
found to make up to 16%, 9%, and 100% of unique domain families found in prokaryotes,
eukaryotes, and viruses, respectively (Figure 4.3). The abundance of DUFs and other
proteins of unknown function underscores the need to detect associations between domain
families and various biological attributes.
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Figure 4.3: The percentage of unique DUFs in each Pfam proteome compared to the total
number of unique Pfam domains in each Pfam proteome.

Environmental association

To evaluate the environment-association of Pfam and DUF families, their metagenomic
abundance across three major environments were compared: human gut, terrestrial (soil),
and marine ecosystems. A total of 392 metagenomic assemblies from global soil, marine, and
human gut samples were collected from public repositories and databases and annotated
with Pfam models. For each protein domain, its adjusted family size, the number of
unique (99% redundancy threshold) domain occurrences in each metagenome assembly,
was computed. In order to avoid sample size bias, the number of human gut samples was
reduced while maximizing their regional diversity (see 4.2, Methods). The Kruskal-Wallis
test was used to determine which domains have significantly differing adjusted family size in
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at least one of the three environments. A stringent threshold of Padj < 1×10-15 was found
to capture domains with extreme differences in adjusted family sizes between environments.
This identified a set of 4357 domains with strong environment-specificity, including 1050
in soil, 1246 in marine systems and 2061 in human gut (see heatmap in Figure 4.4a).
Interestingly, soil-associated families showed a greater tendency to occur in marine (top
right) and human gut (bottom left) environments (Figure 4.4a). Within the set of 4357
environment-associated families, there were 1056 DUFs. DUFs were slightly enriched in
soil-associated families (1.13-fold, P = 0.016) and more strongly enriched in human gut
associated families (1.20 fold, P = 1.37×10-5). However, DUFs were underrepresented
in marine-associated families (0.82 fold, P = 3.0×10-4). Example DUFs with extreme
environmental specificity are shown in Figure 4.4b and top-scoring Pfam and DUF families
are listed in Table 4.2 and 4.3.
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Figure 4.4: Detected Pfam families with strong environmental associations. (a) Abundance
heatmap of Pfam families with significant environmental-specificity scores (Padj < 1×10-15).
The adjusted family size was calculated as the logarithm of the normalized adjusted family
size (base 10), scaled across the domain values. The red lines on the right-side of the
plot denote DUF rows. (b) Selected DUF families with strong environment-specificity
scores. Plotted are the per-sample distributions of normalized adjusted family size in three
environments: human gut, marine, and soil.
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Table 4.2: Top five environment-associated domains from soil, marine, and human gut
metagenomes. Shown in the table are the normalized average adjusted family sizes of each
domain family in each environment. The list is ranked by the P value and then by the
normalized average adjusted family size of the environment the domain family is associated
with.

Padj Soil Marine Human
Gut

Soil-associated
Ycel 3.27×10-33 50.96 16.56 0.60
Virul fac BrkB 8.95×10-33 113.75 13.41 33.69
zf-HC2 9.67×10-33 72.42 1.29 17.35
DUF1501 1.10×10-32 97.85 38.51 0.00
GerE 1.22×10-32 242.00 21.89 109.79
Marine-associated
T4 neck-protein 2.13×10-33 0.07 31.79 0.03
UvsY 2.13×10-33 0.07 22.92 0.01
Gp5 OB 2.13×10-33 0.04 17.31 0.00
Phage-Gp8 2.14×10-33 0.03 43.29 0.01
DUF2237 2.14×10-33 5.61 30.92 0.01
Human gut-associated
DUF4906 2.13×10-33 0.00 0.00 23.80
DUF4925 2.13×10-33 0.00 0.04 17.62
LPD16 2.13×10-33 0.05 0.00 14.15
Cys rich VLP 2.13×10-33 0.01 0.00 10.28
Lipocalin 8 2.13×10-33 0.06 0.02 7.87

80



Table 4.3: Top five environment-associated DUFs from the soil, marine, and human gut.
Shown in the table are the average adjusted family sizes of each domain family in each
environment. The list is ranked by the P value and then by the normalized average adjusted
family size of the environment the domain family is associated with.

Padj Soil Marine Human
Gut

Soil-associated
DUF1501 1.10×10-32 97.85 38.51 0.00
DUF1800 1.35×10-32 53.35 19.41 0.00
DUF2277 1.52×10-32 7.99 0.04 0.00
DUF2382 1.94×10-32 24.83 0.00 0.01
DUF488 2.42×10-32 29.67 0.96 9.72
Marine-associated
DUF2237 2.14×10-33 5.61 30.92 0.01
DUF1330 4.54×10-33 10.95 54.19 0.08
DUF2805 7.59×10-33 0.87 27.34 0.00
DUF4815 7.90×10-33 0.55 95.72 0.09
DUF2061 1.08×10-32 0.73 15.74 0.01
Human gut-associated
DUF4906 2.13×10-33 0.00 0.00 23.80
DUF4925 2.13×10-33 0.00 0.04 17.62
DUF2023 2.14×10-33 0.02 0.03 6.55
DUF4317 2.91×10-33 0.28 0.05 25.03
DUF5119 2.91×10-33 0.07 0.03 16.50

Next, the top function enrichments for environment-specific domain families were
explored. Marine-specific protein families were enriched in GO terms related to photo-
synthesis, consistent with the higher proportion of cyanobacteria in marine environments
rather than in soil and gut environments (Table 4.4). The top function enrichments for
soil-specific protein families included transposase activity and heme binding, which was
associated with nine heme binding domains, including catalase and numerous cytochrome
enzymes. The top enriched GO terms for human-gut associated protein families included
the phosphoenolpyruvate-dependent sugar phosphotransferase system, O-glycosyl hydrolase
activity, and carbohydrate metabolic process (Table 4.4). Also among the top human-gut
specific domain families are domains with known roles in host adhesion/colonization and gut
microbial metabolism (Table 4.4). For example, DUF4906 (PF16249; ranked 1) appears to
be a homolog of the fimbrial proteins Mfa2 (PF08842) and P gingi FimA (PF06321), known
to be involved in cell adhesion. Fimbrillin C (PF15495; ranked 11) is also associated with
P gingi FimA. These domain families appear to be members of a broader superfamily of
fimbrial proteins342 in the human gut microbiome, and may be responsible for cell adhesion
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to the human gut epithelium. The identification of the carbohydrate-binding module
CBM32 (PF18344; ranked in top 10) also makes sense from the perspective of microbial
carbohydrate metabolism in the human gut. Finally, the identification of Maff2 (PF12750)
within the top 10 domains also agrees with previous literature since this protein family is
associated with tetracycline resistance cassettes that are extremely abundant in the human
gut microbiome.137

Table 4.4: GO term enrichment in environment-associated domain sets. Fold change is
within domains with a Pfam annotation in the environmental samples.

GO term Environment-
associated
domains with
GO term

Non-
environment-
associated
domains with
GO term

Fold
change

Padj

Soil-associated
transposase activity 9 2 50.4 9.85×10-6

transposition, DNA-mediated 11 3 41.1 7.95×10-7

heme binding 9 15 6.72 4.38×10-2

oxidation-reduction process 43 184 2.62 1.36×10-4

Marine-associated
cytochrome complex assembly 6 0 Inf 3.08×10-4

photosystem II reaction center 6 1 55.7 1.26×10-3

photosynthesis, light reaction 5 1 46.4 1.02×10-2

flavin adenine dinucleotide bind-
ing

9 3 27.8 6.55×10-5

photosystem I 8 3 24.7 3.19×10-4

oxidoreductase activity, acting on
the CH-CH group of donors

5 2 23.2 2.63×10-2

tricarboxylic acid cycle 5 2 23.2 2.63×10-2

nickel cation binding 5 2 23.2 2.63×10-2

photosynthesis 25 16 14.5 1.15×10-12

photosystem II 11 8 12.8 1.10×10-4

Human gut-associated
mismatch repair 8 0 Inf 3.81×10-4

mismatched DNA binding 6 0 Inf 8.88×10-3

spore germination 5 0 Inf 3.95×10-2

phosphoenolpyruvate-dependent
sugar phosphotransferase system

11 4 14.3 8.53×10-4

cobalamin biosynthetic process 9 4 11.7 1.17×10-2

hydrolase activity, hydrolyzing O-
glycosyl compounds

22 16 7.17 6.50×10-6

carbohydrate metabolic process 39 35 5.81 9.65×10-10
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Lineage association

To score Pfam families based on their lineage-specificity, a metric derived from the F1
statistic, a common measure for assessing the performance of binary classifiers, was im-
plemented. Application of this concept to a taxonomic lineage enables the F1 score to
measure the ability of the lineage to predict the occurrence of a domain family within a
taxonomic system or phylogenetic tree. The F1 score combines two terms called precision
and sensitivity (also called recall) which together give a measure of accuracy.

2 · sensitivity · precision

sensitivity + precision
(4.1)

Here, precision was used to measure the degree to which a domain family is conserved
(or retained) within members of a lineage, and sensitivity to measure the degree to which a
domain family is unique to a lineage, respectively. At a given taxonomic level, these two
terms for lineage L were computed as follows:

precision =
number of proteomes in lineage L containing the domain

number of proteomes in lineage L
· 100% (4.2)

sensitivity =
number of proteomes in lineage L containing the domain

total number of proteomes across all lineages containing the domain
· 100%

(4.3)

The combined metric becomes the lineage-specificity score of lineage L. Each protein
domain is assigned a lineage-specificity score at each taxonomic level. To facilitate interpre-
tation of the data, the highest-scoring F1 score and taxonomic level it is calculated from
were assigned to their respective domain families.

The distribution of sensitivity and precision scores for all Pfam families is shown in
Figure 4.5a. Domain families with low sensitivity or precision scores are non-lineage-specific.
For example, CRISPR Cas6 (PF10040) which is scattered across the tree of life189 has a
high sensitivity score at the Superkingdom level for Bacteria since many of the proteomes
that contain this domain are bacterial (90.19%), but has a low precision score at this
level (6.80%) since only a small fraction of bacterial proteomes possess this domain. This
produces a low F1 score of 12.65. Conversely, the domain CrgA (PF06781) is highly
lineage-specific within the Class Actinobacteria as it has both a high sensitivity (99.65%)
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and precision score (97.58%) at this level, resulting in a high F1 score of 98.61. Visualization
of their phylogenomic distributions across the bacterial tree of life (Figure 4.5a) confirms
this prediction.
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DUF4193 Class - Actinobacteria DUF1831 Order - Lactobacillales DUF3134 Phylum - Cyanobacteria

CrgA (PF06781)

CRISPR_Cas6 (PF10040)

(a)

(b)

(c)

Figure 4.5: Measuring lineage-specificity of protein domain families. (a) Precision (percent
of proteomes within a lineage containing a domain family) and sensitivity (percent of
domain family members within a lineage) metrics are plotted for all 17,772 families in the
Pfam proteome collection. For each family, the precision and sensitivity scores are plotted
for the lineage that maximizes the best combination of the two scores according to the
F1 metric. (b) Distributions of lineage-specificity scores (F1 statistic) for all DUF and
non-DUF families partitioned by taxonomic group. The phylogenomic distributions of two
families (CRISPR Cas6 and CrgA) were generated using Annotree and highlight examples
of a highly scattered and lineage-specific family, respectively. (c) Phylogenomic distributions
of top-scoring lineage-specific DUF families in bacteria and archaea. Top DUF families with
unique, non-redundant phylogenomic distributions are shown, with visualizations generated
using AnnoTree. The bacterial trees from Annotree are shown here at a genome level. The
taxonomic level and taxon that best describes the domain’s lineage specificity is listed.
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To identify straightforward examples of lineage-specific families for further analysis,
domain families with extreme levels of precision and sensitivity (both with scores ≥ 95%)
were selected. This resulted in the identification of 981 lineage-specific Pfam families
including 178 DUFs, which was not significantly different (P = 0.21) from their background
frequency in Pfam. Most of these lineage-specific families are of eukaryotic origin (649)
compared to prokaryotic origin (120). The high frequency of lineage-specific eukaryotic
domain families is also evident from the precision and sensitivity distributions (Figure
4.5b and Figure 6). Tables 2 and 4.5 list the top 20 Pfam and DUF families ranked
by lineage-specificity, respectively. Visualization of phylogenomic distributions of Pfam
domains with a high F1 score using a different taxonomic system (AnnoTree) confirmed
that this metric is indicative of high levels of phylogenetic specificity across a wide variety
of lineages (see examples in Figure 4.5c).
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Table 4.5: Top five lineage specific DUFs in Eukaryota, Archaea, Bacteria, and Viruses.
DUFs were ranked by the F1 score of their best taxonomic level and the number of proteomes
in which they are present, excluding domains present in less than 20 species.

Proteomes
with
domain

Best taxonomic
lineage

Best
sensitivity

Best
precision

F1 score

Eukaryota
DUF1191, DUF1639,
DUF3444, DUF3475,
DUF4370, DUF668

81 Streptophyta 100 100 100

DUF148, DUF2650 49 Chromadorea 100 100 100
DUF5380 21 Rhabditida 100 100 100
UPF0506 20 Platyhelminthes 100 100 100
DUF639 82 Streptophyta 98.78 100 99.39
Bacteria
DUF3208, DUF3809 26 Deinococcus-Thermus 100 100 100
DUF4193 1153 Deinococcus-Thermus 99.57 99.05 99.31
DUF4191 1145 Actinobacteria 99.83 98.62 99.22
DUF3039 1151 Actinobacteria 99.30 98.62 98.96
DUF3043 1134 Actinobacteria 99.82 97.67 98.74
Archaea
DUF2208 42 Thermoprotei 90.48 100 95.00
DUF2192 42 Thermoprotei 88.10 97.37 92.50
DUF655 377 Archaea 98.67 86.92 92.42
DUF1699 29 Methanosarcinales 89.66 92.86 91.23
DUF357 348 Archaea 99.14 80.61 88.92
Viruses
DUF816 60 Baculoviridae 100 98.36 99.17
DUF682, DUF844,
DUF884

59 Baculoviridae 100 96.72 98.33

DUF1477 38 Alphabaculovirus 94.74 100 97.30
DUF1247 37 Alphabaculovirus 94.59 97.22 95.89
DUF918 35 Alphabaculovirus 97.14 94.44 95.77

Pathogen association

Next, I sought to rank Pfam families based on their association with a phenotype of interest
(bacterial pathogenicity). First, a dataset of 354 pathogen and 7897 non-pathogen bacterial
proteomes was constructed based on the PATRIC database and metadata from Dhillon et al.
The pathogens came from a wide-range of hosts including humans, animals and plants.49 For
each Pfam domain, its statistical overrepresentation in pathogen proteomes was calculated
using a hypergeometric test (see Figure 4.6a). To account for proteome-specific duplications,
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which could bias the enrichment statistic, only binary presence/absence of the domain in a
proteome was assessed. 2007 significantly enriched (Padj < 0.05) domains (including 517
DUFs) were identified in the pathogenic set out of 11,299 domains with hits in bacterial
Pfam proteomes (Figure 4.6a). Among pathogen-associated domains, DUFs were slightly
enriched (1.16-fold change, P = 4.4×10-4). As expected, pathogenic lineages such as the
Enterobacteriaceae had the highest frequency of pathogen-associated domains per proteome
(Figure 4.7).
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Figure 4.6: Scatterplots of Pfam domain pathogen-association. (a) Pfam domain presence
in pathogen versus non-pathogen proteomes, with significant pathogen-associated patterns
shown. Only domains present in more than four pathogens were included. (b) Trends in
pathogenesis GO term annotation shown with respect to enrichment in pathogen proteomes
and a measure of lineage specificity, the F1 score. The horizontal dotted line is at log10(0.05),
showing the pathogen-association threshold. The vertical dotted line is at an F1 score of 30.
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Figure 4.7: Distribution of family level taxonomic groups within the pathogen-enriched
domain set. (a) Total instances and (b) instance rate normalized by number of pathogen
proteomes in that taxonomic family. Each plot is ordered based on frequency. DUFs are in
blue.

Also consistent with expectation, the GO term “pathogenesis” was significantly over-
represented in this set of Pfam domains (2.67-fold above background frequency in Pfam
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database, P = 1.50×10-6). Interestingly, when examining both pathogen-association and
lineage-specificity (F1 score) together, a trend for domains with the GO term “pathogenesis”
was observed. That is, domains with F1 scores <30 were 9-fold enriched in “pathogenesis”
compared to domains with higher F1 scores (Figure 4.6b). This is consistent with the idea
that many pathogen-associated protein families (i.e., virulence factors) tend to undergo
horizontal gene transfer and therefore may be less likely to exhibit high lineage-specificity.103

This also illustrates the utility of combining lineage information and pathogen-association
for virulence factor discovery.

Among the top-scoring pathogen-associated Pfam families are numerous domains from
known toxins and virulence factors (Table 4.6). For example, three of the four domains
within the botulinum neurotoxin protein (Toxin trans, Peptidase M27, Toxin R Bind N), a
protein family previously thought to be restricted to Clostridium but recently demonstrated
to be more broadly distributed,190,191,356 occur in the list of top 20 pathogen-associated
Pfam families (Table 4.6). As revealed by their lineage-specificity scores, these domains are
more broadly distributed phylogenetically than other domain families in the top 20, which
tend to have narrow lineage-specificity (e.g., Mycoplasma associated proteins). I propose
that there are likely numerous novel virulence factors to be found within the 517 detected
pathogen-associated DUFs.
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Table 4.6: Top 20 pathogen-associated domains. Families were ranked by fold change and
are present in at least five pathogens. Proteomes with domain include all proteomes in the
Pfam proteome collection (not just bacteria) and so may be larger than the sum of the
Pathogens and Background (bacterial) columns.

Pathogens Background
(bacterial)

Padj Fold
change
(bacterial)

Proteomes
with domain

DUF1410 5 1 0 111.54 6
DUF1600 5 2 0 55.77 7
DUF5378 5 2 0 55.77 7
Leader Trp 5 2 0 55.77 7
MFS Mycoplasma 25 11 0 50.70 36
DUF31 31 17 0 40.68 48
DUF5385 9 5 0 40.15 14
Lambda Kil 5 3 0 37.18 49
Staphopain pro 5 3 0 37.18 8
Toxin trans 5 3 0 37.18 9
Lipoprotein X 21 13 0 36.04 34
DUF2618 6 4 0 33.46 10
DUF2684 6 4 0 33.46 10
FinO N 6 4 0 33.46 11
Mycoplasma p37 24 16 0 33.46 40
DUF2714 22 15 0 32.72 37
Lipoprotein 10 22 15 0 32.72 37
Strep SA rep 7 5 0 31.23 15
Peptidase M27 5 4 0 27.88 10
Toxin R bind N 5 4 0 27.88 13

Eukaryotic-like domains in bacterial pathogens

Next, other ways in which the above metrics could be combined were considered to further
narrow down lists of virulence candidates for experimental characterization. One biologically
relevant combination is domains of eukaryotic origin that occur in bacteria and also appear
pathogen-associated, since these represent potential “mimicry” proteins that facilitate
modulation or disruption of host processes by microbial pathogens.57,241,296 To identify
candidate virulence factors with eukaryotic-like domains, the list of bacterial pathogen-
associated domains was intersected with the list of domains that are most common in
eukaryotes. A total of 49 domain families were identified by this analysis (Table 4.7). Among
the identified proteins are known examples of molecular mimicry by bacterial pathogens
including the RalF virulence factor of Legionella which mimics host Sec7 guanine exchange
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factors (GEFs) (PF01369), Table 4.7). Additional Legionella secreted effectors, such as a
protein family containing a eukaryotic RAS-GEF domain (PF00617), are also included in
this list. Other interesting predictions including the Latrotoxin C domain (PF15658) that
is found in Spiders but is also present in Wolbachia species, which are insecticidal toxins.
Each of these cases implies an ancestral horizontal gene transfer event from a eukaryotic
species to bacteria.

Table 4.7: List of eukaryotic-like, pathogen-associated domains identified in bacterial
genomes.

7TM GPCR Sri, BRICHOS, Choline kinase, Cystatin, Cytadhesin P30, DIT1 PvcA, DNA pol B,
DNA pol B exo1, DUF1479, DUF1726, DUF1729, DUF3827, DUF762, Dynein heavy, Ecl1, Ehrlichia rpt,
Elongin A, EMP24 GP25L, Erp C, F-box, F-box-like, GDA1 CD39, GNAT acetyltr 2, Helicase RecD,
His Phos 2, HMG CoA synt C, HMG CoA synt N, IES5, Latrotoxin C, LMP, Methyltransf 10, MRG,
MyTH4, Octapeptide, P C10, P16-Arc, PAM2, PBC, PC4, Peptidase M16 M, PhoLip ATPase C, Protea-
som PSMB, PTPlike phytase, Rad33, RasGEF, SAT, Sec7, YMF19, zf-Nse

Combining pathogen association with environment association

Identifying eukaryote-associated domains enriched in pathogens can identify general viru-
lence factors with a broad array of possible eukaryotic hosts. To further focus predictions
towards pathogen-associated protein families that are relevant to human disease (such as hu-
man enteropathogens), the list of pathogen-associated domain families was intersected with
the list of families that were significantly more diverse in the human gut microbiome than
the other environments. The top 20 of these are listed in Table 4.8. There is quite a striking
enrichment of known virulence factors in these predictions with numerous DUF families
interspersed within this list as well (Table 4.8). Families identified by this analysis include
the LcrG family (PF07216), which encode a component of the Yersinia yop operon for
secretion of virulence factors, BNR 3 (PF13859; bacterial neuraminidase), HrpB7 (PF09486;
type III secretion effector), Glyco transf 52 (PF07922) which produces lipooligosaccharide
(a pathogenicity determinant), the toxin family Thiol cytolysin (PF01289), and the vir-
ulence factor Pertactin (PF03212). DUFs within this list include DUF2492 (PF10678),
DUF1430 (PF07242), and DUF3173 (DUF3173). Based on InterPro descriptions for entries
IPR019620 and IPR006541, DUF2492 appears to be a metal binding sulfatase and may
play a role in sulfated mucin metabolism. DUF1430 appears to be a transporter and occurs
in numerous pathogens including C. difficile, Enterococcus, and S. pneumoniae. DUF3173
(PF11372) is largely restricted to Firmicutes including numerous pathogens, and appears
to be conserved near phage integrase genes. DUF families identified by this analysis are of
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particular relevance and should be prioritized for functional characterization in the context
of human gut pathogenesis.

Table 4.8: Top 20 pathogen-associated Pfam families that are also enriched in the human
gut microbiome. Families are ranked by fold change in pathogen proteomes. N = number
of proteomes with domain, Np = number of bacterial pathogen proteomes with domain,
Nnp = number of non-pathogen proteomes (bacterial) with domain.

N Np Nnp Padj Fold change in
pathogens

Human
gut-association
(Padj)

LcrG 16 7 9 1.60×10-7 17.35 1.37×10-21

DUF4948 13 3 10 4.30×10-2 6.69 7.23×10-27

Mac-1 47 10 36 2.67×10-5 6.20 4.18×10-16

Gp58 58 6 24 3.62×10-3 5.58 2.79×10-18

BNR 3 47 7 30 2.05×10-3 5.21 1.75×10-20

zinc-ribbons 6 175 32 142 5.02×10-13 5.03 4.02×10-21

HrpB7 44 8 36 1.14×10-3 4.96 1.68×10-23

Glyco transf 52 120 21 99 2.94×10-6 4.73 1.23×10-21

DUF2492 202 35 166 2.74×10-13 4.70 2.27×10-26

HDC 43 7 34 4.33×10-3 4.59 7.11×10-27

Thiol cytolysin 187 30 153 1.20×10-10 4.37 5.38×10-21

Glyco hydro 98C 32 5 27 3.25×10-2 4.13 9.11×10-19

HU-DNA bdg 58 9 49 1.97×10-3 4.10 2.27×10-23

PagP 245 37 203 5.23×10-12 4.07 1.22×10-16

CBM32 40 6 34 2.01×10-2 3.94 2.13×10-33

Pertactin 316 45 266 2.79×10-13 3.77 1.23×10-17

DUF1430 98 14 84 1.70×10-4 3.72 3.62×10-21

DUF3173 112 16 96 4.76×10-5 3.72 1.76×10-18

Glyco hydro 98M 42 6 36 2.59×10-2 3.72 1.46×10-18

MuF C 121 15 91 1.02×10-4 3.68 1.86×10-19

Feasibility for structure determination

An additional perspective that must be considered in future efforts to characterize DUFs and
other protein families is feasibility and novelty with respect to structural characterization.
For structural feasibility, difficulties are associated with proteins that have multiple domains,
transmembrane regions, and disordered regions.213 All Pfam proteins were assessed based
on these properties (collected from the Pfam database) to identify a subset that is likely
more amenable to structure determination.

Structural Novelty: A feature that is important for structural prioritization is whether
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a domain family already includes a structural representative within the PDB. 48.52% of
Pfam entries (8700 of 17929) have no structural representative in the PDB, while 81.03% of
DUFs (3281 of 4049) have no structural representative.

Domain architecture: 15.14% of Pfam entries have only single-domain architectures
(2691 of the 17772 domains that have domain architectures in Pfam) while 28.76% (1158
of the 4026 DUFs with domain architectures in Pfam) of DUFs have only single-domain
architectures (Figure 4.8). The almost two-fold increase in the frequency of single domain
architectures for DUFs may be in part due to DUFs being shorter and more difficult to
resolve in terms of domain boundaries.

Disorder: Predicted regions of disorder (IUPred) were collected from the Pfam database
and analyzed for overlap with domain regions. The average percentage of predicted
disordered residues across all domain family members along with the standard deviation
are provided on virfams.uwaterloo.ca. Most Pfam families (71.76%), including DUFs,
have very little (< 10%) to no disordered residues (Figure 4.8).

Transmembrane regions: Predicted transmembrane regions (Phobius) in Uniprot se-
quences were collected from the Pfam database. The presence/absence of predicted trans-
membrane domains anywhere in a protein sequence or a protein domain was analyzed. Both
of these metrics were expressed as the percentage of the number of domain family members
possessing these features. As expected, predictions of transmembrane regions were more
consistent for single domains than for whole proteins, as multidomain proteins may have
transmembrane domains (Figure 4.8). 13.03% of all Pfam families and 17.83% of DUFs
have a majority of family members with predicted transmembrane region-domain overlap.

By combining the structural representative, disordered residue and transmembrane
domain metrics, a set of 1398 DUF families were identified that are predicted to be highly
feasible for structure determination.
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Figure 4.8: The distributions of additional filters for determining structural characterization
feasibility in DUFs and other Pfam families. (a) Single-domain architecture frequency
in families. (b) Number of residues across the domain with predicted disorder (IUPred)
averaged across the family. (c) Frequency of one or more transmembrane regions predicted
(Phobius) anywhere in the protein members of domain families. (d) Frequency of having
any transmembrane region prediction (Phobius) that overlaps with the domain in Pfam
families.
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VirFams: an online database for statistical exploration of protein
domain families

Finally, in order to provide these analyses to the community, an online database (virfams.
uwaterloo.ca) was constructed2 which facilitates interactive exploration of all Pfam domain
families including DUFs. As an example demonstrating the use of our database, Figure
4.9a illustrates the VirFams page for Pfam family LcrG (PF07216) described earlier. A
summary panel provides an overview of LcrG’s scores according to its overall abundance,
lineage-specificity, environmental association, and pathogen-association. This family is
significantly enriched in the human gut metagenome, is significantly pathogen-associated,
is non-lineage-specific and thus distributed across taxa, and is relatively low in abundance.
VirFams also reports the top phylogenetically co-occurring Pfam domain families based
on the PhyloCorrelate algorithm3. These include a variety of type III secretion system
domains (the highest correlated domain is LcrV), which is consistent with the known role
of LcrG as a type III secretion system component.47 Also of note is Pfam domain DUF4765
(PF15962) which is detected in a putative cytotoxic necrotizing factor in Moritella viscosa
but also shows up in a single-domain architecture in known pathogens like Escherichia coli
O157:H7. In E. coli, this domain is in some predicted T3SS secreted effectors as well as other
unannotated proteins. Like LcrG, it is overrepresented in human gut metagenomes, enriched
in pathogenic organisms, distributed across three phyla, and is present in a low number
of species. This DUF represents an intriguing target for experimental characterization,
derived from the assembled association data and visualized using VirFams.

2Benjamin Tremblay designed and built the website from the domain metadata associations and the
various rankings described in this chapter, with feature development from Dr. Andrew Doxey and I.

3Unpublished work by Benjamin Tremblay, Briallen Lobb, and Dr. Andrew Doxey.
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(a)

(b)

Figure 4.9: A compiled set of screenshots from the VirFams resource for protein domains
(a) LcrG and (b) DUF4765.
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4.4 Conclusion

In this work, all 17,929 protein domain families in the Pfam v32.0 database were analyzed in
order to rank them based on several biological criteria. 1675 out of 4049 (41%) of all DUFs
had significant lineage, pathogen, and/or environment associations. These non-homology
based associations provide a biological context from which uncharacterized domain families
(DUFs) can be prioritized for future studies. In addition, by combining different scores, it
was possible to identify Pfam families with certain phenotypic or functional associations,
such as candidate virulence factors in the human gut microbiome, as well as candidates
predicted to be feasible for structure determination. While these associations are not
predictions of specific molecular function, they form a framework to support other methods
of functional inference. Here, alternative methods were successful in providing contextual
clues for conserved protein families, assisting the prioritization and discovery of novel
proteins of interest.
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Chapter 5

Metagenomic ORFan annotation

Material in this chapter has been published as part of Lobb et al. (2015).179 The published
manuscript is available here:

B. Lobb, D. A. Kurtz, G. Moreno-Hagelsieb, and A. C. Doxey. Remote homology
and the functions of metagenomic dark matter. Frontiers in Genetics, 6:234,
2015.179 https://doi.org/10.3389/fgene.2015.00234

Metagenomes have substantial problems with annotation coverage (Figures 1.1, 2.2, and
2.3), due to issues like short-fragmented reads and the presence of organisms with large
taxonomic distances from well-characterized species. In genomes, the presence of conserved
proteins of unknown function and confirmation of their expression in transcriptomics and
proteomics can validate their existence as coding sequences within an organism. These
proteins are key contributors to protein and domain families, such as the domain families
discussed in Chapter 4. But some predicted coding regions do not have any similar sequences
or other experimental data to lend weight to their existence outside of DNA. ORFans,
predicted ORFs that lack detectable homology to any proteins currently in our databases,
are highly prevalent in metagenomes. However, the extent to which ORFans encode real
proteins, the degree to which they can be annotated, and their functional contributions,
remain unclear. To gain insights into these questions, sensitive remote-homology detection
methods were applied to functionally analyze ORFans from soil, marine, and human gut
metagenome collections. I found that a considerable number of metagenomic ORFans
exhibit significant remote homology to structurally characterized proteins, providing a means
for ORFan functional profiling. The extent of detected remote homology far exceeds that
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obtained for artificial protein families. As expected for real genes, the predicted functions of
ORFans are significantly similar to the functions of their gene neighbors. Compared to the
functional profiles predicted through standard homology searches, ORFans show biologically
intriguing differences. Many ORFan-enriched functions are virus-related and tend to reflect
biological processes associated with extreme sequence diversity. Each environment also
possesses a large number of unique ORFan families and functions, including some known
to play important community roles such as gut microbial polysaccharide digestion. Lastly,
ORFans are a valuable resource for finding novel enzymes of interest, as I demonstrate
through the identification of hundreds of novel ORFan metalloproteases that all possess a
signature catalytic motif despite a lack of similarity to known proteins.

5.1 Introduction

Metagenomes are a rich resource of novel genes90 from which the metabolic and physiological
activities of entire microbial communities can potentially be inferred.106 This difficult task
relies largely on the accuracy of current methods for predicting function from sequence,
which is challenging even for single microbial genomes.338

Standard homology-based annotation methods have become the most common strat-
egy for metagenome annotation.245 Here, metagenome-derived ORFs are searched using
BLAST,7 or related tools, against reference protein databases such as the NCBI non-
redundant (nr) and Swissprot databases. Alternatively, reads can be scanned against
databases of protein domain models such as the CDD193 and Pfam,73 where each protein
family is represented by either PSSMs or HMMs. If functionally annotated hits in the
databases are detected, functions are inherited from these hits.

Both frustrating and intriguing are the many predicted genes within metagenomes (and
genomes) that cannot be readily annotated using standard homology-based methods. The
most challenging among these genes are the ORFans, genes that lack detectable homologs
in the database.284 Initially identified in some of the first genomes,61 ORFans have become
a universal feature of newly sequenced genomes and metagenomes, despite an exponential
increase in sequencing.307 Estimates of ORFan content in metagenomes vary from 25 to
85% of total genes.245 This proportion depends on numerous factors including read length,
metagenome complexity, species novelty, homology detection methods and significance
thresholds. In addition, a large fraction of metagenome-derived sequences come from
microorganisms that resist current cultivation techniques,88 which makes them dissimilar
from database sequences and hard to annotate. Prakash and Taylor245 showed that, of the
genes in the human gut microbiome, 75% could be annotated, vs. only 50–55% of genes in
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“complex metagenomes” from soil and ocean environments. Another recent study of a large
prairie soil metagenome reported that only 30–38% of predicted proteins had detectable
similarity (≥60% identity) to proteins in NCBI’s M5nr database,113 and this has dropped
as low as 15% in some extreme cases (e.g., the cow rumen virome).

Several types of alternative, non-homology-based methods may be applicable to anno-
tation of ORFan proteins. Genomic context methods, for instance, predict functions for
uncharacterized ORFs based on functions of neighboring genes since gene neighborhoods in
prokaryotes tend to possess a significant degree of functional consistency.42,81,145,195,271,344

These “guilt by association” methods have previously been applied to metagenome anno-
tation108,328 but depend on assembled contigs, which can be difficult to obtain. Another
popular class of prediction methods includes remote-homology detection approaches such
as HMM profile-profile comparison. These methods are based on the principle that distant
homologies may be apparent by comparison of conservation profiles between families, even if
they are not apparent between single sequences.270,274 The popular profile HMM-HMM com-
parison method, HHpred/HHsearch,292 is among the most sensitive methods for homology
detection and is consistently ranked among the top automatic structure prediction methods
in recent CASP (Critical Assessment of protein Structure Prediction) competitions.

To my knowledge, no studies have applied remote homology to large-scale annotation
of metagenomic ORFans, perhaps due to the considerable computation required. Thus,
the functions and origins of ORFans, which can be abundant in environmental sequences,
are unclear. Here, ORFans were identified and analyzed from three large metagenome
collections: the Great Prairie Soil Metagenome Grand Challenge (hereby referred to as just
soil), the Global Ocean Sampling (marine), and the Human Gut Microbiome (human gut),
encompassing aquatic, host-associated, and terrestrial environments. Through an analysis
of 35,307,707 total CDSs, thousands of novel ORFan protein families were identified, with
∼15% gaining an inferred functional annotation through remote homology to proteins
of known structure. The structural predictions provide insights into the functions and
evolutionary origins of ORFan proteins.

5.2 Methods

Datasets and identification of metagenomic ORFans

This ORFan identification pipeline was developed with Daniel Kurtz and he ran the initial
steps of the pipeline on the soil and marine datasets.

102



Metagenomic sequence data was retrieved from three large metagenome collections:
soil113 [MGRAST IDs 4504797.3 and 4504798.3], marine269 [http://camera.crbs.ucsd.
edu/projects/details.php?id=CAM_PROJ_GOS], and human gut248 [http://www.bork.
embl.de/~arumugam/Qin_et_al_2010/].

For coding sequence prediction, FragGeneScan v1.18262 was applied directly to the
unassembled reads from the marine dataset. Due to the short read lengths from the soil
and human gut datasets, FragGeneScan was applied to pre-assembled metagenomes from
Howe et al.113 and Qin et al.,248 respectively. Segmasker from the BLAST v2.2.28+ package
was used to identify repetitive regions in putative ORFs, and CDSs containing over 40%
repetitive sequence were discarded. To annotate CDSs with domain family homologs,
hmmsearch from HMMER v3.1b1 was used to scan the Pfam database (Pfam-A downloaded
15 May 2014), and remaining CDSs were scanned against the CDD (20 Feb. 2014 release
from NCBI) using rpsblast from the BLAST v2.2.28+ package. An E-value cut-off of
10-3 was used for both methods. CDSs without identified domain family homologs, were
clustered with CD-HIT v4.6.1 using a 60% identity threshold. Spurious coding sequence
predictions were identified as singleton clusters (those containing one sequence), clusters
whose representative (longest) sequence was shorter than 100 amino acids, and clusters
comprised entirely of sequences with 99% or greater identity to the representative sequence.
These spurious clusters were excluded from further analysis. Representative sequences of
each remaining cluster were used for BLASTP database searches (downloaded 15 May 2014
from NCBI). Clusters with either no similarity to the nr database or with a top nr BLAST
match exceeding the cutoff of E = 10-3 (used previously by Kuchibhatla et al., 2013149) were
defined as “ORFans”. MSAs of the non-spurious clusters were generated with MUSCLE
v3.8.31 (www.drive5.com/muscle), and these were further enlarged with sequences from the
nr20 database (12 Aug. 2011 release from HH-suite292) using HHblits from the HH-suite
v2.0.16 package with default settings.

Remote homology detection and FDR estimation

Profile-profile comparisons were performed using HHsearch from the HH-suite v2.0.16
package292 with the PDB70 HMM database (17 May 2014 release from HH-suite) and
default settings. For each prediction, an E-value and probability score were collected. To
determine appropriate thresholds, remote homolog detection was repeated using random,
reshuffled alignments as described below. Based on the results, a probability threshold of
80% was chosen with the E-value set at 1, equivalent to a ∼9% false discovery rate (see 5.3,
Results). To obtain an FDR estimate, the pipeline was repeated using shuffled alignments
which represent artificial sequence families that maintain compositional characteristics and
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column-specific conservation.102,196 One thousand ORFan clusters obtained by CD-HIT
were randomly selected from each metagenome, and the columns of each cluster’s MSA were
shuffled. The shuffled alignments were run through the HHblits and HHsearch algorithms
as described previously using the non-shuffled clusters.

Genomic context analysis

The coding sequence locations on contigs (for the soil and human gut datasets) and reads
(for the marine dataset) were used to define genomic neighbors and perform genomic context
analysis. The Pfam-GO mapping from InterPro115 was used to assign GO terms to ORFs.
For Pfam domain homologs, the GO terms of all significant (E < 10-3) domain matches
were included in its functional annotation. For the non-spurious CD-HIT clusters (ORFans
and clusters with homologs from the NCBI nr database), a GO term collection was assigned
to each cluster based on the top three significant remote homologs found by HHsearch,
using the PDB-GO annotation table obtained from the EBI (http://geneontology.org/
gene-associations/gene_association.goa_pdb.gz). GO terms were assigned to each
coding sequence within the CD-HIT cluster.

For each metagenome, the list of GO terms for an ORFan were compared against the list
of GO terms associated with its directly neighboring CDSs (one on either side, in the same
orientation and within 1 kb) on the same contig, and calculated the number of shared terms
(S) between both sets. This value was then summed for all ORFans within a metagenome
(m) to obtain an overall statistic (Sm) reflecting the similarity between ORFans and their
annotatable genomic neighbors. To estimate statistical significance, Sm was compared to a
null distribution computed by swapping the ORFans amongst their original locations. The
count was then calculated as above, shuffling ORFans only while maintaining the positions
of all other CDSs. Shuffling followed by the shared GO terms summation was performed
1000 times.

Analysis of overrepresented functions

To determine the frequency of GO terms in each metagenome, 10,000 CDSs with Pfam
domain hits were randomly selected from each metagenome and run through HHblits
with only one iteration and a limit of 30 sequences in the output alignment followed by
HHsearch with default settings (using the databases described previously). The functional
information for ORFan sequence clusters and the subset of Pfam domain hits was gathered
using the most confident GO term-associated HHsearch hit (using the PDB-GO map and
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only assessing significant HHsearch hits). Similar to previous studies,322,326 analyses were
restricted to sixth level GO terms in the biological process or molecular function trees since
this level was more informative (greater biological specificity) than other trimmed ontologies
such as GO Slim terms. GO term levels were calculated using the “is a” relationship, with
the starting terms (biological process and molecular function) being considered level one.
Only the longest path from the root terms was considered. The frequency of each GO term
in the Pfam and ORFan subsets and PDB70 were calculated, with zero counts converted to
a pseudocount of 1 to avoid division errors. The fold change of each GO term in the ORFan
sequence clusters over the Pfam domain hits subset was calculated and compared across
metagenomes. P values were calculated in R using the binomial test with false discovery
rate adjustment (p.adjust function) as described elsewhere.53

Analysis of environment-specific ORFan families

For each metagenome, the proportions of the total number of ORFans matching a PDB
entry as the top remote homolog was computed. Three-dimensional scatterplots were
generated with each axes representing this quantity. The binomial test was used to compute
P values with background probabilities based on the total counts observed in the other
two metagenomes. These P values were then corrected using the Bonferroni adjustment.
The same procedure was repeated based on proportions of ORFans from each metagenome
possessing GO terms (1769 total terms).

ORFan metalloprotease discovery

ORFan clusters were searched for those that: (i) possessed a top remote homolog match to a
PDB entry possessing “protease” or “peptidase” terms in any functional description category;
(ii) had a representative sequence with at least one match to a HExxH motif. ORFan
CD-HIT clusters meeting both conditions were considered putative ORFan metalloproteases
or metallopeptidases.

5.3 Results

Identification of ORFan sequences in three large metagenomes

With the goal of characterizing ORFans from diverse metagenomes, three large, publicly
available datasets were retrieved and analyzed: the Great Prairie Soil Metagenome Grand
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Challenge113 (soil dataset), Global Ocean Sampling269 (marine dataset), and Human Gut
Microbiome248 (human gut dataset). Metagenomes were selected from diverse biomes
(terrestrial, aquatic, and host-associated) since observed differences in ORFan content and
functions may be biologically relevant while commonalities may indicate general trends.

First, all genes within these metagenomes were predicted regardless of whether they could
be verified through homology to known sequences. This initial set included a staggering
number (35,307,707) of CDSs, equivalent to about 20% of the entries in the current NCBI
GenBank database. Each coding sequence was processed using the computational pipeline
described in Figure 5.1 (see Table 5.1 for statistics at each step), with the intention of
separating the ORFans from the homology-annotatable sequences. Potential ORFans were
identified as CDSs whose products lacked detectable homology to known protein domain
families (Pfam and CDD) or proteins in the NCBI database (see section 5.2, Methods).
Since these potential ORFans likely contain a mixture of real ORFan proteins and false
positives,87 additional steps were required to remove spurious ORFs. Therefore, CDSs
were clustered and any singletons,87,283 clusters with low sequence variation, and clusters
composed exclusively of short fragments (see Methods 5.2) were removed. This left 85,422
(soil), 251,857 (marine), and 146,842 (human gut) putative ORFan proteins from each
metagenome Table 5.1. By definition each ORFan within this final set is an apparent gene
coding for a protein, is a member of a sequence cluster with at least one representative of
100 amino acids or longer, and yet has no detectable homology to any known protein or
conserved domain family. All following analyses were performed on this set of ORFans.
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Figure 5.1: Pipeline for detection and functional annotation of metagenomic ORFan proteins.
Protein CDSs were predicted from assembled metagenomic contigs, and searched against
conserved domain databases. CDSs that could not be annotated by domain homology
were further clustered, and representatives were BLASTed against the NCBI nr database.
Remaining coding sequence clusters lacking detected homologs were considered ORFans,
and these were subjected to remote homology detection using HHblits and HHsearch, which
were used to perform profile-profile searches against the Protein Data Bank.
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Table 5.1: Number of CDSs and ORFans at key stages of metagenomic ORFan identification.
Soil Marine Human

Gut
Predicted CDSs 5,606,711 17,204,095 12,496,901
CDSs removed containing conserved domain
matches (Pfam and CDD)

2,480,274 4,542,071 4,674,912

Spurious (singleton, short and repetitive) CDSs
removed

2,758,146 11,458,304 6,603,567

CDSs removed with BLAST matches to nr
database

282,869 951,863 1,071,580

Candidate functional ORFans 85,422 251,857 146,842
ORFan CD-HIT clusters 33,013 73,428 32,078
Annotated (HHsuite) ORFan CDSs 21,358 38,900 13,638
Annotated (HHsuite) ORFan CD-HIT clusters 7848 10,973 3119

ORFans are shorter but compositionally similar to real proteins
from their environments

Next we examined whether the detected ORFans share compositional characteristics with
homology-annotatable CDSs (those with Pfam or CDD domain matches) from their envi-
ronments. If so, this would suggest that predicted ORFans are under similar evolutionary
pressures as real proteins and indicate potential functionality. We therefore investigated the
distributions of coding sequence length and GC content (Table 5.2) for each coding sequence
category. Biases have been observed previously for ORFans.37,348,350 Consistent with previ-
ous studies, ORFans tend to be shorter in all datasets (Table 2), and the relative abundance
of ORFans also decreases with increasing read length (Figure 5.2). Overall, the GC content
distributions of the homology-annotatable CDSs and ORFans are highly similar within but
vary considerably between metagenomes (Figure 5.3). Although the length distributions
are also affected by sequencing method, this is not the case for GC content, suggesting
that the predicted ORFans exhibit characteristics of the real (homology-annotatable) CDSs
from their environments.
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Table 5.2: Average GC content and length of domain-annotated vs. ORFan sequences from
three metagenomes.

Average GC content (%) Average CDS length (#
of nucleotides, nt) exclud-
ing any sequences under
300 nt

Soil Pfam and CDD hits 56.8 411.4
Soil ORFans 54.8 407.4
Marine Pfam and CDD hits 39.2 731.7
Marine ORFans 39.4 548.7
Human gut Pfam and CDD
hits

46.6 781.7

Human gut ORFans 43.0 525.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

lo
g(

D
en

si
ty

)

2.5 5.0 7.5 10.0 12.5

(a) Soil

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

log10(Length, aa)

2.5 5.0 7.5 10.0 12.5

(b) Marine

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2.5 5.0 7.5 10.0 12.5

(c) Human Gut

●
●

Pfam and CDD hits
ORFans

Figure 5.2: ORF length distributions for homology-annotatable versus ORFan sequences
from three metagenomes. The relative abundance of ORFans decreases with increasing
read length, which reflects the tendency for ORFans to be shorter than average proteins.
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Figure 5.3: GC content distributions for homology-annotatable versus ORFan sequences
from three metagenomes. Homology-annotatable and ORFan sequences display highly
similar GC content distributions within the same environment, but these distributions differ
significantly between environments.

Many ORFans exhibit remote homology to proteins of known
structure

Although ORFans, by definition, do not possess detectable homology to existing protein
families using standard database search techniques like BLAST or HMMER, we were
interested whether remote homology detection techniques could prove effective. We applied
profile-profile, remote homology detection using HHblits/HHsearch,261,292 which compares
the conservation profile derived from the MSA of the ORFans to those of known protein
families. These methods can often identify remote relationships between protein families,
even if individual members do not share detectable homology. To facilitate remote homology
detection, we first generated initial MSAs for each ORFan cluster, and detected remote
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homologs in the Protein Data Bank using HHblits/HHsearch. Since each ORFan cluster
contained multiple non-redundant sequences, a non-trivial MSA and profile could be
generated in each case. Thus, not only was the sequence clustering step useful in removing
spurious ORFs, but it was also essential for generating the conservation profiles used in
profile-profile comparison.

A considerable number of ORFans (73,896 sequences, 15.3%; 21,940 clusters, 15.8%) ex-
hibited significant remote homology to proteins of known structure, with some metagenomes
producing a greater fraction of annotated ORFans than others: 25.0% (soil), 15.4% (marine)
and 9.3% (human gut) of ORFan clusters (Table 5.1; ORFan sequences and annotations
available at http://doxey.uwaterloo.ca/ORFans/). This represents a new dataset of
annotated, extremely divergent metagenome-derived proteins and provides a means to
profile ORFan functions in general.

Despite thorough benchmarking of HHblits/HHsearch,261 there remains a possibility
that the predictions are false positives due to factors associated with the pipeline and
dataset. Therefore, we empirically measured a false discovery rate by repeating the entire
procedure on an artificial dataset composed of ORFan clusters with shuffled sequences
(Figure 5.4a). Specifically, 3000 random ORFan clusters were selected (1000 from each
metagenome), and their alignment columns were shuffled, thereby preserving conservation
information and compositional characteristics, while destroying potential similarity to real
proteins. Any detectable homology between these artificial protein families and the PDB
database indicates a false positive prediction. The random dataset generally produced low
HHsearch probability scores, whereas the real metagenomic ORFans resulted in a large
abundance of high-scoring predictions (Figure 5.4a). At a probability score of 80% or higher,
the HHsearch method was able to annotate 15.8% of the real ORFan clusters and only
1.4% of false sequence clusters, which is indicative of a low (∼9%) false discovery rate. This
result provides support for the quality of the remote homology predictions, and suggests
that many ORFans (15.3%) are divergent homologs of existing structural families.
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Figure 5.4: Estimated false discovery rate of ORFan remote homology detection and
functional prediction. (a) Distributions of HHsearch probability scores for ORFans from
three metagenomes, and shuffled sequences, searched against a PDB-derived HMM library.
There is an abundance of high-scoring predictions (i.e., above 80% probability) for ORFan
proteins compared to the expected (null) distribution. This separation becomes even
greater when an HHsearch E-value threshold of 1 is applied (see inset). (b) The number of
shared GO terms between functionally annotated ORFans (probability scores >80%) and
their metagenomic neighbors (see Methods 5.2) is shown for three metagenomes. The null
distributions, as estimated by randomly shuffling ORFan identities/positions, are shown
along with the z-scores relative to these distributions. The mean values for the random
distributions are: marine (486.3), soil (57.8), and human gut (494.4).

ORFan functions are consistent with those of their gene neighbor-
hood

Given that a sizeable portion of metagenomic ORFans exhibit remote homology to protein
structures, a key follow-up question concerns what functional information can be gained from
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these detected relationships. For functional annotation, the same GO terms were assigned
as those associated with their identified remote PDB homologs. To assess whether the
predicted ORFan functions are accurate and thus biologically meaningful, their functional
consistency with neighboring genes was measured, a well established phenomenon in
prokaryotes.42,81,145,195,271,344 If predicted ORFan functions are accurate, they should show
significantly elevated functional consistency compared to a random distribution (see section
5.2, Methods). Functional consistency was calculated as the number of shared GO terms
between an ORFan and its metagenomic neighbors, defined as one gene on either side of an
ORFan, in the same orientation and within a 1 kb boundary. As a statistical test, the total
number of shared GO terms for all annotated ORFans was computed and compared to an
estimated random distribution in which the ORFans were shuffled amongst their original
locations. ORFans from all three metagenomes exhibited extremely high, statistically
significant levels of functional consistency with their neighbors (Figure 5.4b). This effect
was abolished completely when the ORFans randomly swap their positions. Overall, the
significant functional congruence between ORFans and their gene neighbors suggests that
the predicted functions are of high quality and thus potentially meaningful for biological
interpretation.

Enriched functions among ORFans

An important next question concerns the predicted ORFan functions themselves, how they
compare to the homology-based functional profile inferred for the remaining metagenome,
and what insights they may provide into hidden functions of their respective environments.
To examine ORFan functions as a whole for each metagenome, ORFan functional profiles
were computed as collections of GO terms and their frequencies, as based on previous
studies.317 Separate functional profiles were also calculated for 10,000 Pfam-annotated
CDSs of each metagenome as a reference, to which ORFan functions could be compared.

These comparisons reveal that ORFans possess a distinct functional profile from that
of homology-annotatable proteins. This is evident from a clustering analysis in which the
ORFan functional profiles from the three environments group together (Figure 5.5). However,
this is also somewhat expected since ORFans from different metagenomes will be inherently
similar by virtue of lacking conserved functions present in the homology-annotated subset.
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Figure 5.5: Heatmap of the log frequency of GO function terms in the Pfam-annotated
subset and the ORFan subset. Only terms enriched (>1.25 fold) in at least one dataset are
included in the heatmap to avoid display of invariant functions.

Consistent with the unique functional profile of ORFans, numerous functions were
identified that were significantly overrepresented within the ORFans of each metagenome
(Table 5.3, Table 3). These ORFan-enriched functions include terms relating to viral
processes, carbohydrate metabolism, as well as several functions with particular relevance
to their respective metagenomes (explored in following sections). Reported functions were
also significantly enriched (all with adjusted P < 0.05) compared to the reference database
(PDB) and are thus not simply due to random matches to PDB entries.
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Table 5.3: Top five significantly enriched GO terms among ORFans in each metagenome
relative to non-ORFans and the PDB. Only four significantly-enriched terms were found
for the human gut metagenome samples.
GO term ORFan

clusters
(individ-
ual se-
quences)

Proportion
of ORFan
clusters
with GO
term

Proportion
of Pfam-
annotated
subset
with GO
term

Fold
change

Padj

against
Pfam-
annotated
subset

Padj

against
PDB70

Soil-associated
GDP-dissociation inhibitor ac-
tivity

66 (157) 1.1x10-2 6.1x10-4 18.1 7.5x10-55 1.6x10-90

Dibenzothiophene catabolic
process

35 (110) 5.9x10-3 4.9x10-4 12.0 1.7x10-22 3.7x10-55

Mitochondrial fission 28 (79) 4.7x10-3 3.7x10-4 12.8 2.2x10-18 7.1x10-40

Sequence-specific DNA
binding

162 (415) 2.7x10-2 1.3x10-2 2.1 6.4x10-14 2.1x10-49

Viral release from host cell 14 (39) 2.3x10-3 1.2x10-4 19.2 1.2x10-10 5.1x10-2

Marine-associated
Polysaccharide catabolic
process

62 (210) 7.2x10-3 4.5x10-4 16.3 1.2x10-48 8.0x10-6

L-ascorbic acid binding 89 (306) 1.0x10-2 1.8x10-3 5.8 4.7x10-35 1.0x10-74

ADP-heptose-
lipopolysaccharide
heptosyltransferase activity

35 (136) 4.1x10-3 2.2x10-4 18.4 1.6x10-28 4.0x10-88

Phosphatidylinositol alpha-
mannosyltransferase activity

26 (104) 3.0x10-3 1.1x10-4 27.3 4.9x10-25 5.6x10-42

Endonuclease activity 157 (576) 1.8x10-2 6.7x10-3 2.7 1.6x10-24 1.2x10-11

Human gut-associated
Sequence-specific DNA
binding

149 (617) 6.5x10-2 2.9x10-2 2.2 3.2x10-15 1.6x10-94

Polysaccharide catabolic
process

49 (139) 2.1x10-2 4.6x10-3 4.6 1.3x10-14 1.2x10-21

Regulation of sporulation
resulting in formation of a
cellular spore

11 (74) 4.8x10-3 5.6x10-4 8.5 2.3x10-4 4.8x10-20

Ribonuclease activity 18 (88) 7.8x10-3 2.0x10-3 3.9 3.7x10-3 1.0x10-3

The detected enrichment of viral functions is consistent with previous suggestions that
a large proportion of ORFans may be bacteriophage derived.44 Since viruses undergo
rapid rates of evolution and are relatively undersampled in genomic databases, their
proteins may also appear significantly divergent from database sequences. The results
provide strong support for this hypothesis since numerous virus-related functional terms are
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significantly enriched (adjusted P < 0.05) among the annotated ORFans (Table 5.3, Table
3). For example, the term “viral release from host cell” was among top enriched ORFan
functions in the marine (P = 1.1×10-16) and soil metagenomes (P = 1.2×10-10). Other
enriched functional terms associated with viruses include “RNA ligase”,51 “lysozyme”,71

and “phospholipase”353 (Table 5.3, Table 3).

Although enriched, we estimate that viral sequences may be a relatively small proportion
of ORFans overall, similar to previous reports.348 That is, only 4.1% (soil), 6.3% (marine)
and 5.6% (human gut) of ORFans matched viral protein structures (Table 5.4), while the
majority matched structures of bacterial origin. Interestingly, however, the proportions
of viral PDB matches are roughly four-fold higher than that observed for the homology-
annotatable proteins which ranges from 1.4 to 2.4%, which provides additional support for
an enrichment of viral functions among metagenomic ORFans.

Table 5.4: Taxonomic composition of remote PDB matches to ORFans versus homology-
annotatable CDSs from three large metagenomes.

Soil
(%)

Marine
(%)

Human
Gut (%)

Homology-annotatable CDSs
Eukaryota 15.7 16.5 9.2
Bacteria 75.5 75.0 80.5
Archaea 7.4 7.2 7.8
Viruses 1.4 1.4 2.4
ORFans
Eukaryota 17.6 18.1 14.6
Bacteria 72.4 69.7 73.6
Archaea 6.0 6.0 6.3
Viruses 4.1 6.3 5.6

Another common function overrepresented in the ORFans of all three metagenomes
relates to carbohydrate degradation or transport. This finding is consistent with the
considerable sequence and structural diversity of carbohydrate-active enzymes.32 Enriched
carbohydrate-related functions among ORFans include “polysaccharide catabolic process”
in all three metagenomes (all with P <1×10-5), “cellulase activity” (P = 6.1×10-7) in the
soil dataset and “phosphatidylinositol alpha-mannosyltransferase activity” in the marine
dataset (P = 4.9×10-25) (Table 5.3, Table 3).

Ultimately, both the clustering and enrichment analyses demonstrate that ORFan
functions do not merely mirror the functions expected from homology-annotatable proteins.
Thus, the efforts of remote homology detection have uncovered a highly divergent sequence
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space, including viral proteins and carbohydrate-active enzymes, which was not detectable
in the annotatable subset of each metagenome.

Environment-specific ORFan families and functions

Potentially more interesting than the functions generally enriched among ORFans are
the specific ORFan families and functions unique to each environment. Indeed, it has
been hypothesized that ORFans may be unique in their potential to encode ecologically
important functions.336 One explanation for this is that environment-specific functions may
be encoded in part by environment-specific genes that differ from characterized genes in
the database.

To explore this in greater detail, metagenome-specific ORFan functions were visualized
using 3D scatterplots (Figure 5.6), similar to previous three-way comparisons of metagenome
functional profiles.317 In these plots, ORFan functions that are of similar abundance in
all three metagenomes will appear close to the origin, whereas ORFan functions that are
relatively abundant in one metagenome will project outwards along that metagenome’s
axis. In addition to GO terms, the same analysis was also performed at the level of ORFan
families, as represented by the top identified remote homolog in the PDB.
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Figure 5.6: Metagenome-specific ORFan families and functions. Shown are projections of
three-dimensional scatterplots in which each axis indicates the proportion of ORFans from
a specific metagenome with a specific annotation: (a) families and (b) functions. ORFan
families are defined based on their top remote homology match in the PDB database, and
functions are defined by GO terms as described in section 5.2, Methods. Data points that
project uniquely along one axis therefore indicate metagenome-specific ORFan families
or functions, while those close to the origin indicate similar proportions among all three
metagenomes. Cases described in the text have been labeled.

This three-way comparison reveals several broad functions (Figure 5.6, right) and a
much larger number of families (Figure 5.6, left) that are significantly enriched in the
ORFans from one metagenome. The following sections highlight some interesting examples
from each environment.

Human gut-specific ORFans

Several of the most abundant human gut-specific ORFan families have predicted roles
involved in gut metabolism and host interactions. These include human gut-specific ORFan
homologs of thiaminase, an enzyme that breaks down vitamin B1, the virulence factor
internalin, and the collagen-binding domain which could play roles in gut adherence or
invasion (Figure 5.6).
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Most intriguing are the ORFans with predicted functions in “polysaccharide catabolic
process,” a function that is significantly enriched (P = 1.3×10-14, Table 5.3) in the human
gut dataset (Figure 5.6). This is of great interest in the context of the human gut microbiome
because breakdown of indigestible dietary polysaccharides is one of the fundamental roles
of intestinal bacteria.77 Among the most abundant human gut-specific ORFan families is
one with detected remote homology to PDB ID 3zmr, a crystal structure of xyloglucanase
from the common human gut organism, Bacteroidetes.158 This enzyme functions in the
gut microbial digestion of the plant-cell wall derived polysaccharide, xyloglucan (XyG),
and was only recently characterized as the first xyloglucanase enzyme in the gut microbial
community.158 The human gut-specific ORFans identified here exhibit remote homology to
the Bacteriodetes-Associated Carbohydrate-binding Often N-terminal (BACON) domain
within these enzymes, suggesting a function in gut carbohydrate metabolism.

Another human gut-specific ORFan family includes 74 ORFan proteins from 11 se-
quence clusters in the human gut metagenome collection with a predicted function in
regulation of sporulation. This was the third most enriched function (by fold) among
human gut ORFans (P = 2.3×10-4, Table 5.3) and yet was not enriched in the other two
metagenomes as illustrated in Figure 5.6. These ORFans are primarily distant homologs
of the DUF199/WHIA transcriptional regulator or the sporulation response regulator,
SPO0A. While sporulation is a general function also observed elsewhere, numerous studies
have demonstrated its particular enrichment within the human gut microbiome. This
has been attributed to the relative abundance of gut Firmicutes species, which include
many spore-forming members.318 However, specific genes and sporulation pathways may be
unique to the human gut microbiome. For instance, a recent analysis of Lachnospiraceae
genomes revealed that key sporulation-related genes are exclusive to human gut-associated
Lachnospiraceae and absent elsewhere.205 It is therefore interesting that both ORFans
and homology-annotatable proteins from the gut microbiome show this functional pattern.
This data further implicates sporulation as a particularly important function within the
human gut community, and provides motivation for further exploration of divergent gut
sporulation proteins.

Marine-specific ORFans

Several abundant marine-specific ORFan families and functions are indicated in 5.6. En-
riched functions include antibiotic biosynthesis and L-ascorbic acid (vitamin C) binding.
Interestingly, the most abundant marine-specific ORFan families show patterns consistent
with a marine environment. These include a family of ORFans with remote homology
to a cyanophage (an abundant marine virus that infects oceanic cyanobacteria) protein,

119



and another family with remote homology to PDB ID 2rg4, an uncharacterized protein
from the marine bacterium, Oceanicola granulosus. The identification of marine-specific
ORFans matching viral structures (see Figure 5.6 for another example, bacteriophage gp15)
is consistent with Yooseph et al.351 who reported a viral origin for a significant number of
divergent Global Ocean Sampling sequences.

Soil-specific ORFans

One of the most interesting soil-specific ORFan families has remote homology to dibenzoth-
iophene (DBT) desulfurization enzyme B (PDB ID 2de3 A). This is also a significantly
enriched ORFan function compared to non-ORFans from the same metagenome (P =
1.7×10-22, Table 5.3). DBT desulfurization genes have been identified in petroleum-polluted
soils where they are implicated in DBT degradation, and are of interest to the oil industry
to reduce the levels of sulfur in fuel.60

Targeted discovery of ORFan metalloproteases

Regardless of whether a particular function is overrepresented among ORFans and/or
metagenome-specific, its detection within ORFans may be valuable for its own sake to
expand its knowledge and sequence space. Indeed, metagenomes are a useful resource for
the discovery of novel families of biotechnologically and scientifically important enzymes
such as glycosyl hydrolases (Li et al., 2009) and proteases.334

To explore its potential as a resource for enzyme discovery, the annotated ORFans
were mined for novel metalloproteases. Metalloproteases are of particular biological,59,224

evolutionary55,190,260 and biotechnological3 interest. “Metallopeptidase activity” was also
a significantly enriched function among ORFans from the marine dataset (P = 1.6×10-20,
Table 3). Lastly, metalloproteases were also selected as a target function because these
enzymes possess a convenient functional motif that provides additional evidence of predicted
activity; namely, a conserved, zinc-binding, catalytic motif (HExxH). Remarkably, 257
ORFan sequence clusters possessed both this motif and significant remote homology to
protease or peptidase structures (Table 5.5). One example is highlighted in Figure 5.7, in
which a predicted ORFan family from the human gut displays significant remote homology
to the zinc-metalloprotease domain of the anthrax toxin. Although the overall sequence
similarity is quite weak, there are short regions of motif similarity and numerous residues
within the catalytic site are conserved. The 257 ORFan subfamilies represent a rich resource
of highly divergent metalloproteases that await future experimental characterization.
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Table 5.5: Predicted ORFan clusters with the HExxH motif and remote homology to
metalloprotease structures. The top three most abundant clusters by PDB match are listed.

Number of
clusters

Remote homology match (PDB entry and
description)

Soil 96 Total
10 3cqb A Peptidase M48
8 4jix A Peptidase M56
8 4in9 A Peptidase M10, Matrixin

Marine 132 Total
24 3cqb A Peptidase M48
11 4jiu A DUF45 metallopeptidase
10 4jix A Peptidase M56

Human Gut 29 Total
5 3dte A DUF955 peptidase-like domain
3 3b4r A Peptidase M50
3 2y6d A Peptidase M10
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PDB ID: 1J7N
Description: Lethal factor precursor; 

anthrax, lethal toxin, 
zinc-metalloprotease

Prob: 96.58

Score: 79.41
2x10-5

Confidence

Q 142
QC 142

TC 681
T 681

227 (228)
227 (228)

770 (776)
770 (776)

E-value:

Figure 5.7: One example of 257 predicted metalloprotease ORFan sequence clusters. This
example is a predicted metalloprotease ORFan from the human gut dataset with similarity
to the protease domain of the anthrax toxin (shown). The catalytic zinc-metalloprotease
(HExxH) catalytic motif is conserved between the query and template, however the remaining
sequence similarity is weak. In general, ORFan metalloproteases were predicted based
on detected remote homology to protein structures of known or putative proteases and
peptidases, as well as presence of the HExxH motif.

5.4 Discussion

A pipeline was developed to identify and structurally annotate ORFans from three large
and highly distinct metagenomes. A considerable fraction (15.3%) of metagenomic OR-
Fans identified from this pipeline exhibit remote but significant homology to structurally
characterized proteins. This is surprising since neither BLAST nor profile-based methods
were able to annotate them. These findings are consistent with previous structural stud-
ies that have consistently revealed ORFans to be divergent members of existing protein
families.90 For instance, a previous analysis of 248 structures of DUF families selected
from Pfam, determined that ∼2/3 are divergent members of known protein families.123
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These structural studies, together with the 15.3% of annotated ORFans presented here,
support a classic duplication-divergence model231 in which ORFan genes might arise when
one of two duplicated genes (paralogs) diverge rapidly to a point where homology becomes
undetectable.

While initially attributed to an inadequate knowledge of sequence space, pseudogenes
or prokaryotic “junk DNA”,9,212 or incorrectly annotated genes,275 there is considerable
evidence that many detected ORFans are functional.114 A functional role for many ORFans
is also supported by the many high quality functional annotations predicted by hhpred.
These annotations are themselves supported by a low estimated false discovery rate based
on non-homologous shuffled sequences, as well as the significant level of functional similarity
detected between ORFans and their neighboring genes.

The overrepresented functions among ORFans are also consistent with previous but
debated348 claims that ORFans tend to be of viral and other mobilomic origins.37,51 For
instance, one study examined 119 prokaryotic genomes for gene clusters exhibiting atypical
sequence composition and found that over 39% of ORFans were contained within these
clusters, strongly suggesting that integrative elements are a major evolutionary source of
ORFans.37 Viral and mobilomic origins of ORFans make sense from a biological perspective
given the rapid mutation rates observed in viral DNA as well as a technical one given the
relative undersampling of viral sequences in the database.

Lastly, these results agree with previous suggestions that ORFans encode environment-
specific roles,130,307 specifically through the many metagenome-specific ORFan families
and functions that were identified (Figure 5.6). Indeed, ORFans have been implicated
in taxon-specific functions336 and lineage-specific developmental or morphological adapta-
tions.23,130,307

Although annotatable ORFans may represent a relatively minor component of a
metagenome, they differ dramatically in their functional profiles from typical, homology-
annotatable proteins. Their inclusion within metagenome annotation pipelines may not
significantly alter overall estimates of metagenome functional profiles, but they are them-
selves interesting to pursue and expand our understanding of key protein functions of
interest. Ultimately, ORFan characterization through remote homology provides a glimpse
into the highly divergent, occasionally viral, and environmentally important functions they
contribute to their respective microbial communities.
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Chapter 6

Conclusion

Data mining or knowledge discovery from data, in its most fundamental
form, is to extract interesting, nontrivial, implicit, previously unknown
and potentially useful information from data.

Introduction to Data Mining in Bioinformatics
Jason T.L. Wang et al.333

Large-scale sequence and structural data has lead to a wealth of novel proteins, but how
can this data be effectively mined for new functions? Homology-based functional annotation
is the most commonly used approach, found in sequence-sequence and sequence-model based
tools. Annotations are transferred based on sequence similarity thresholds between matches.
This is an efficient way to profile a new genome or metagenome, but is based on naive
assumptions about function retention amongst similar proteins. Database matches may
also be bereft of any experimental data, leaving conserved protein families with very little
actual functional information. Even worse are the proteins that evade all homology-based
annotation attempts, being so divergent from current database sequences as to end up in
a “dark” fraction of unannotated protein sequences. While some of these unannotated
sequences may be pseudogenes, proteomics and experimental characterization of previously
unknown proteins have shown that this is not always the case. In this thesis, I have explored
ways in which annotation can be used to find proteins of interest, when homology-based
approaches succeed and when they fail, how often they fail, and what trends are associated
with this lack of annotation.
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Summary of findings

Various types of homology-based annotations were used for three case studies in Chapter 2.
Targeting protein families was sometimes done with a specific database about a certain class
of proteins if it existed, or a combination of more general methods if it did not. In order to
boost confidence in general annotation predictions, four different methods were compared
to find cellulases from two Streptomyces strains in Chapter 2.1. A more heavily curated
database, focused purely on antibiotic resistance, was used to find antibiotic resistance
proteins from a wastewater metagenome in Chapter 2.2. This focused database approach
was also used again in Chapter 2.3, after identification of a potential human and fish
pathogen from decomposing rainbow darter, to detect virulence factors within its genome.
While combining annotation methods and using niche databases is effective when targeting
certain protein families, when profiling new sequence data in a broad fashion, databases
with pathway information can be useful to piece together annotations into a metabolic
story. To this end, a metabolic pathway database was used to discover pathways of interest
in Chapters 2.1 and 2.3. Using common annotation tools, with a combination of knowledge
about the protein families in question and novel environments can lead to the discovery
of proteins worth prioritizing for future experimental study. But, as has been discussed
extensively throughout this thesis, homology-based annotation can only go so far. Protein
families have not been uniformly characterized and even though extensive efforts have
been made in model organisms like E. coli, there are taxa evolutionary quite distant from
well-studied proteomes that lack substantial annotation coverage. Annotation completeness
was thus investigated across the bacterial tree of life in Chapter 3 to see the extent of this
phenomenon. Taxonomy was indeed a noticeable differentiator in annotation completeness,
along with levels of study of the organism in question, and the organism’s genome size.
The percentage of genomic coding sequences receiving any kind of database match varied
wildly, anywhere from 2 - 86%. This “annotated” fraction can include families of conserved
proteins, well represented in databases but poorly or not at all experimentally characterized.
Prioritizing these groups for further study can involve alternative methods of deducing
functional context to incorporate the collected knowledge about these families and the
organisms they are found in, as seen in Chapter 4. Here, environment, lineage, and pathogen-
associations were used to distinguish uncharacterized protein families. The remaining “dark
matter”, left without any database matches after homology-based annotation is complete,
was explored in Chapter 5. Named “ORFans”, these sequences were shown to be associated
with divergent protein families, such as viral RNA ligases. Remote homology techniques
combined with genomic context and motif analyses revealed that some functional annotation
is possible for even these most extreme cases. Novel protein discovery can be accomplished
at all levels of functional annotation success, from easy-to-operate homology-based tools to
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combinations of alternative methods, such as metadata associations and remote homology.
Furthermore, tailoring the annotation to the situation based on available data and resources,
makes novel protein discovery a more effective prospect.

Homology-based annotation

Case studies of homology-based genome and metagenome analysis

Homology detection remains essential for many function prediction methods. In Chapter 2,
a main theme was looking at how homology-based annotation can be applied to datasets.
One strategy is using large databases to analyze the broad functional profile of a genome or
metagenome. The work in Chapter 2.1 used this approach to identify benzoate degredation
and medically-relevant enediyene biosynthesis pathways in recently-sequenced Streptomyces
strains, Streptomyces sp. NWU339 and Streptomyces viridosporus NWU49. A large database
was also used on the rainbow darter necrobiome, revealing that the shifting functional
profile reflected the microbial succession detected in the 16S rRNA data, as well as the
binning analysis. Early stages of decomposition were dominated by Clostridiaceae and
Aeromonas with associated pathways of pollutant degradation and biofilm formation also
peaking at this time. Rikenellaceae was an especially major community member in the later
stages of decomposition, the main contributors to the glycan metabolism and antibiotic
synthesis pathways that peaked at the end of the time course.

The more delicate task of targeting specific protein families is better conducted using
extensively curated niche databases or combining multiple methods to provide higher
confidence results. In order to detect cellulases in the Streptomyces genomes, four different
annotation methods were compared. Eleven sequences were predicted to be cellulases with
all four methods, other predictions possibly being erroneous or other divergent glycosyl
hydrolases. One area that some databases and thus annotation struggles with is linking
experimental information or other predictive measures with annotations. When questioning
an annotation’s validity it is sometimes nigh impossible to trace back evidence in large
databases like NCBI. This is dangerous for the propagation of the functional term originally
assigned. Substitutions and indels can affect protein function and without comparisons to
proteins with proven functions, small changes in sequence can accumulate unobserved with
annotation transfer. Comparisons across different annotation methods and using profiles to
find conserved residues can mitigate this effect, however, the only way to completely verify
an annotation is testing.

Focused databases are a way to combine years worth of study on well characterized
organisms or protein families. They have been used here in Chapters 2.2 and 2.3, to
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contribute to the growing agricultural resistome research and to add to the still small body
of work on necrobiome functional profiles. In Chapter 2.2, an antibiotic resistance database
was used to profile the resistome in a research farm wastewater metagenome. A total of 31
antibiotic resistance genes (of the type where antibiotic resistance can be determined based
on overall sequence similarity versus dependent on mutations) were uncovered in this sample.
The most common resistance type was towards tetracycline and streptomycin, having ten
and five genes associated with their resistance, respectively. Agricultural spread of antibiotic
resistance is a key area of study as antibiotics are so fundamental to our current healthcare
practices. Filling in the picture of wastewater resistomes adds to knowledge about the
sequence complexity and relative abundance of the large suite of antibiotic resistance genes.
In Chapter 2.3, a virulence factor database was used on a putatively pathogenic Aeromonas
veronii MAG discovered in the fish necrobiome. Three hemolytic sequences were found in
the bin, with another present in a smaller Aeromonas bin. Of note is that finding hemolytic
toxins in dominant members of decomposer communities furthers theories of these toxins
possibly playing a role in the decomposition process.191 If shown to be true with further
experimental study, this could broaden the known biological roles of toxins.

These, at the time, newly sequenced datasets, were also used to assess annotation
coverage. 31 - 84% of the Streptomyces predicted CDSs were annotated by a range of six
different annotation methods. The most optimistic annotation methods dropped to 56% for
the wastewater metagenome and 58% for the fish necrobiome. Metagenomes are generally
harder to annotate than genomes for reasons discussed later. One noticeable shift was
that the Rikenellaceae bins had lower annotation completeness than the Aeromonas and
Selenomonadaceae bins. These MAGs (not found to be clustered phylogenetically with the
other Alistipes of the Rikenellaceae family) may contain divergent families that are not well
studied, specific to life in their environmental habitats (swamp, zebrafish gut, and rainbow
darter necrobiome).

Annotation completeness of bacterial genomes

As seen in Chapter 2, different genomes have different levels of annotation. Model or-
ganisms such as Escherichia coli and Bacillus subtilis formed the basis for early bacterial
protein characterization and current sequence databases are biased towards human-centric
organisms, especially medically-relevant species.245,254 Now that the bacterial tree of life
is rapidly expanding with faster and cheaper sequencing technologies, a thorough evalu-
ation of annotation coverage is needed. Conducted in Chapter 3 is the largest analysis
of genome annotation coverage across the bacterial phylogeny. Just over 27,000 genomes
were annotated with Prokka, with previously calculated Pfam and KEGG annotations
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compared. Annotation incompleteness ranged from 2 - 86%, 3 - 88%, and 1 - 81% with
Prokka, KEGG, and Pfam, respectively. With a mean annotation coverage of 52±9% for
Prokka, this is almost certainly affecting functional analyses and comparisons of genomes.
So many predicted coding sequences are without easily accessible functional information.
While it is possible to achieve better annotation coverage using multiple approaches,98 one
must rely on sometimes difficult-to-use pipelines and deal with the non-standardization of
functional annotation terms. Investigating the extent to which popular annotation methods
struggle with annotation coverage in certain areas of the bacterial phylogeny is important to
spread awareness on how much “dark matter” is left behind in analyses of these organisms.

This work supported the observation that taxonomy plays a role in annotation coverage.
Taxonomic classification has a significant effect on annotation coverage where phyla with
model organisms like Proteobacteria and Firmicutes have a higher proportion of CDSs
annotated on average. Recently classified phyla such as Patescibacteria109,264 had the
lowest average annotation completeness values. In a more fine grained look at research bias,
genera such as Escherichia, Staphylococcus, and Pseudomonas (with over 75,000 mentions
in Pubmed abstracts and titles) had higher average annotation coverage than other genera
with fewer instances in Pubmed. This trend was noticeably twisted when obligate symbionts,
like Buchnera aphidicola, with reduced genomes but close evolutionary relationships with
model organisms had even higher annotation completeness. This leads into perhaps the
most striking association with annotation completeness, genome size.

Annotation completeness is significantly affected by genome size. Even within taxo-
nomic groups like phyla, orders, and genera, larger genomes trend towards lower annotation
coverage. Ranea at al.,258 found that protein families that did not scale with genome size
were associated with translation, ribosomal structure and protein biosynthesis, whereas
protein families that scaled either linearly or exponentially included proteins associated with
amino acid transport, metabolism, gene regulation, signal transduction, and replication,
recombination and repair. Moreover, many of the proteins that scaled linearly and exponen-
tially with genome size, were poorly characterized, possibly being protein families that are
not well represented in current databases and/or are undergoing higher rates of functional
diversification. As accessory gene gain and loss has been linked to genome size,20,254,316

these more divergent proteins represent a hard-to-annotate fraction that grows with genome
size, allowing an organism to be more flexible and survive in varying conditions.

Within endosymbionts and other organisms undergoing genome reduction, a loss of
accessory genes is accompanied by an increased rate of pseudogenization.20,152,153,218 A
higher proportion of pseudogenes, such as in stand-out example Mycobacterium leprae,20

also impacts how annotation coverage scales with genome size. If some of the pseudogenes
are treated as CDSs by gene prediction tools, this would potentially inflate the number of
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unannotated CDSs. The flip side of this is that small, highly reduced genomes have fewer
accessory proteins and therefore seem to be easier to annotate. It has been speculated that
as genome reduction proceeds over time, pseudogenes are largely expelled from the genome
through deletion bias, resulting in these small genomes.20,217,218 While the detection of
generally shorter pseudogene sequences can be stumbling block in annotation coverage,
even translated short sequences can pose problems for annotation. Short proteins have poor
database coverage and lower match scores during the annotation process, as well as being
harder to identify within the genome. A recent study detected the synthesis of 36 proteins
in E. coli less than 75 amino acids in length,325 highlighting an important area in protein
research moving forward.

There are several further analyses on this dataset that could help guide future research.
Of the proteins that remained unannotated in this study, clustering them into families
and identifying those with the largest taxonomic breadth would help prioritize families
that would make a large impact on annotation coverage. A similar method looking at
the SFams database found 6,668 protein families present in more than one taxonomic
class and without any domain annotations which they labelled as “most wanted”.340 An
additional approach is to associate higher-level functional terms to the annotated proteins
and compare their proportion in genomes across the phylogeny to identify which divergent
protein groups are potentially the worst represented in low annotation coverage clades,
taking into consideration differences in functional profiles in different clades. This could point
to classes of accessory proteins that have divergent, undetected members in understudied
lineages. Mining the reservoirs of uncharacterized proteins could significantly improve
annotation coverage amongst various taxonomic groups, possibly enabling us to learn about
different methods of survival and about alternate opportunities for organisms to thrive.

Alternative approaches for analyzing and inferring protein func-
tion

Inferring biological associations for conserved domain families

With substantial proportions of genomes and metagenomes without homology-based an-
notations (discussed in Chapters 2 and 3), alternative methods are the way forward for
uncovering functional clues. How might alternate methods be used for extracting functional
information, and how much success can be gained from them? One interesting area to
focus on is protein domain families. These are groups of proteins with regions of similar
sequence conservation that are thought to fall under the same functional umbrella. Of
the 17,929 Pfam v32.0 models, 22% (4049) are domains of unknown functions (DUFs).
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Due to their presence in multiple organisms (and sometimes with proteomic data to prove
their synthesis), these are most likely real proteins with cellular roles. In order to provide
some biological context for these protein domain families, associations with environments,
lineages, and pathogens were assessed in Chapter 4. Additional information including
abundance and amenability to structural characterization was also analyzed to provide
more ways to distinguish protein families.

This work revealed 4357 protein families strongly-associated with either soil, marine or
human gut environments, 1056 of which were DUFs. Functions enriched in the environment-
associated families included heme-binding (soil), photosynthesis (marine), and carbohydrate
metabolic process (human gut). It follows that the DUFs may also have functions that are
important for survival in their respective environments. An example discussed in Chapter
4 is DUF4906 (PF16249). This domain family is significantly associated with the human
gut samples and is a part of a larger protein grouping that includes fimbriae components,
indicating this domain family may be involved in cell adhesion to the human gut epithelium.

As for pathogen association, 2007 domains, including 517 DUFs, were found to be
significantly overrepresented in a manually curated pathogen set (representative of a wide-
range of hosts). The pathogen-enriched domains included many known virulence factors and
toxins. The GO term “pathogenesis” was found to be enriched in the pathogen-associated
domains, further supporting the analysis. An interesting finding was that, after determining
the lineage-specificity of the domain families, the pathogen-enriched domains with a low
lineage-association score showed an increased density of the “pathogenesis” term. Virulence
factors are transferred via horizontal gene transfer (frequently found associated with genomic
islands24,103,228,300), potentially indicating that domains that play a role in virulence are
more broadly distributed as opposed to lineage-specific. However, as the GO terms are
manually curated this may be due to a bias about which kinds of domains are labelled with
this term.

Other ways to combine the association data include finding the intersection of bacterial
pathogen-associated domains with domains that are most common in eukaryotes. This
results in domain families that are potentially “mimicry” candidates. The concept of mimicry
is about exploiting the host’s processes with sequentially or structurally-similar proteins.
These virulence factors are important in a wide-range of pathogen pathways57,241,296 and
here is reported a list of 49 putative mimicry protein families, including five DUFs. The
association data here can also be incorporated with domain family abundance information
based on occurrences in NCBI, select metagenomes, and their taxonomic breadth in Pfam
proteomes. Additional information such as structural novelty, preference for single-domain
architectures, and the frequency of disorded and transmembrane regions are also included
for assessing the domain families for structural characterization.
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Identifying and prioritizing proteins for experimental characterization can seem daunting
with the vast expanse of protein sequences available. Even narrowing those down to a
certain set of genomes can still feel like finding a needle in a haystack if there is no or
limited accompanying functional information for a portion of the sequences. However,
computational inquiries can help guide research, sometimes adding validation to wet-lab
discoveries or justifying experimental approaches.14,360 In order to easily visualize the
data generated here, the VirFams (virfams.uwaterloo.ca) application was created. This
website allows for the exploration of Pfam domains and the rankings discussed in Chapter
4. An example previously discussed in this thesis is DUF4765 (PF15962). VirFams makes
it very straightforward to see that this domain family is overrepresented in pathogens,
enriched in human gut metagenomes, present in three phyla and found in a low number of
species, highlighting this domain as a priority for virulence factor testing. Also included
is an implementation of hmmscan that identifies which of the detected domains may be
pathogen-associated. This allows for the domain architecture as a whole to be evaluated
for potential pathogen relevance.

Untapped functional novelty lies within protein “dark matter”. The data generated and
collected here has been made publicly available in order to facilitate research into these
domain families and the attempt to identify proteins of interest, namely virulence factors.
The alternative method, metadata associations, leveraged known information and database
detection of these domain families to yield new biological contexts in which to view the
uncharacterized proteins. 41% of all DUFs in Pfam were identified as having strong lineage,
environment, and/or pathogen associations, providing more information for just under half
of the uncharacterized fraction of this database. Combining different sources of data with
expert knowledge (e.g. mimicry being an indicator of virulence) is a powerful way to find
novel proteins.

A further point about improving current annotation practices is that more research is
needed on the link between domain architecture combinations and function. As seen in
Chapter 3, Pfam “annotates” many more proteins than other annotation methods. A large
proportion of Pfam’s models are DUFs, but even DUFs end up alongside non-DUF models.
Domain shuffling is widespread and is a modular way that new proteins are generated.22,163

How far can domain architecture go in providing information on overall function as well as
functional diversification within a protein family? Recombination and shuffling of domains
also are common in toxin families, an evolutionary tactic for function diversification.56,355

It is intriguing to think of patterns in domain architecture being used to identify new toxin
families. Nevertheless, the complexity of required models and the trouble in identifying a
wide range of toxins versus non-toxins for training has been an obstacle so far.
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Metagenomic ORFan annotation

While Chapter 4 looked at conserved protein families, another group of sequences that evade
annotation are predicted CDSs which lack detectable homologs within current databases.
These ORFans are predominantly found in metagenomes where community complexity,
sequencing technology, coverage, final assembly, and coding sequence prediction software
can impact the quality and length of the resulting CDSs.245,254 As discussed above, shorter
sequences are harder to annotate. Taxonomic diversity that does not substantially overlap
with databases which are generally biased to Firmicutes, Proteobacteria and Actinobacteria
also predisposes metagneomes to low annotation coverage.245 Unlike families with database
coverage (which have information about the organisms they are found in, and sometimes
limited evidence for associations with other processes or proteins within the cell), there is
much less extraneous data that can be used for metagenomic ORFans. Here in Chapter 5, a
sensitive model-model sequence match strategy is employed. Briefly, this remote homology
method uses conserved residues from known protein families and compares it to conserved
residues in clusters of metagenomic ORFans to boost the chances of finding similar proteins.
Discussed is how effective this strategy is and how reliable these predictions may be.

Of 35,307,707 predicted coding sequences from three large metagenomic datasets (from
soil, marine, and human gut environments), 484,121 sequences were labelled “ORFans”.
These ORFans had similar GC content distributions to their respective metagenomes but
tended to be a bit shorter in length (as was expected based on previous observations).
This study revealed that remote homology was able to find significant matches for 73,896
sequences (15%) at a false discovery rate of ∼9%. To validate these predictions, a genomic
context approach was used. A comparison of the functional terms associated with ORFans
and their direct neighbors on their respective contigs found a high congruence in function,
as has been established in bacterial genomes before.42,81,145,195,271,344

The ORFans in these soil, marine, and human gut biomes were found to be enriched
with viral-associated terms like “viral release from host cell.” This viral link to unannotated
sequences has been shown previously, speculated to be due to the increased rate of evolution
that viruses undergo, and the extreme lack of database coverage of viral sequences.4,44 Other
enriched ORFan functions include dibenzothiophene catabolic process (soil), L-ascorbic
acid binding (marine), and polysaccharide catabolic process (human gut). These enriched
ORFan functions are likely being underrepresented in metagenome function profiles, and
with only 15% of the ORFans analyzed in this way, there are many more functions that are
also being excluded.

Metalloproteases were discovered in the pool of ORFan sequences as well, specifically
targeted because of their easily identifiable catalytic site motif. 257 clusters of ORFan
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sequences had both remote homology to proteases (or peptidases) and contained the HExxH
motif. These metalloproteases further reinforce the idea that this dataset is a resource for
novel protein discovery. Building up the metalloprotease families with other metagenomic
data could be a interesting way to explore and expand this protein family. Other deep dives
on protein groups have gone on to analyze the sequential differences in each subtype, and
combine knowledge about characterized versions of these sequences in order to inform new
insights about novel branches of the family.360

This is the first large-scale analyses of how remote homology can be used to uncover
functional information about ORFans. Here I’ve shown that this alternative technique does
allow researchers to gain some ground in the “dark” corners of the protein universe, albeit
in a computationally intensive way. There many functional associations reported here that
are almost certainly being under reported in metagenomic analyses. This set of detected
ORFans is a way to explore some of those functions, and a place to look for proteins of
interest. Ultimately, as seen in Chapters 4 and 5, alternative annotation methods provide
an avenue for expanding annotation coverage.

Final remarks

Modified from Lobb and Doxey (2016).177

The enormous diversity of protein sequences is both a challenge and an exciting resource
for protein function discovery. There are numerous paths to finding functional novelty in
sequence data. New functionality may be revealed not only by finding novel proteins (“dark
matter”), but also by identifying homologs of conserved function in unexpected settings
(such as in new species) and assessing associations of conserved uncharacterized families with
known biological data. Thanks to increased coverage of structure and domain space, the
accuracy of function prediction has improved and recent studies, including this thesis, are
integrating data and methods in increasingly powerful ways and on larger scales. In addition,
better annotations are making it easier to sort through genome-wide function predictions
and discover new and unexpected biological phenomena. However, improved methods for
predicting the impacts of substitutions and indels on protein function are critical to identify
and interpret biological roles and functional differentiation. Furthermore, methods are
needed to better predict the functional consequences of different domain combinations,
which are so widespread in sequence data. Finally, even when annotation coverage of
genomes and metagenomes can be lacking, advances in annotation such as remote homology
and other alternate computational methods help widen the net of annotation coverage
and lead to more protein discoveries. Developments in these areas will ultimately help to
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more sensitively identify the adaptive variations that differentiate function within known
and novel protein families, and extract functional novelty from ever-growing bioinformatic
datasets.
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Supplementary Material: Chapter 2

Supplementary Figure 1

(a)

1 day 4 days

10 days8 days

(b)

Figure 1: Decomposition setup and images of fish decay. (a) Example of the mason jars
used for decay of female rainbow darter (Etheostoma caeruleum) in a microcosm of the
Grand River. (b) Representative images of decay of female rainbow darter for enrichment
of the necrobiome at 1, 4, 8, and 10 days. Pictures taken by Dr. Paul Craig.
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Supplementary Figure 2
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Figure 2: Bubble-plot depicting the relative frequency (as a percentage) of ASVs in the fish
necrobiome at four time points. Light gray boxes indicate shared family level taxonomic
affiliation. Bubbles are displayed only if the ASV taxonomic affiliation was ≥2%. For other
ASVs, see Data Set S1A in the supplemental material of the original paper.178 Bubbles are
colored by decomposition time (days).
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Supplementary Figure 3
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Figure 3: A nonmetric multidimensional scaling (NMDS) ordination of necrobiomes based
on microbial community composition, using Bray-Curtis distances generated from ASV
frequency profiles. Stress is 0.098. Together, 99% of the variance is represented based
on the R2 value between distance in ordination space and distance in the original matrix.
Vectors with R2 values greater than 0.7 were shown on the plot. Ellipses are colored by
decomposition time (days).
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Supplementary Table 1

Table 1: High-confidence cellulase annotations for Streptomyces sp. NWU339 and Strepto-
myces viridosporus NWU49. The full list of cellulase predictions is File ??a.

RAST PROKKA KEGG dbCAN
NWU339
Contig 146
25180 27099

Endoglucanase
(EC 3.2.1.4) -
FIG00516442

Endoglucanase E1
[EC 3.2.1.4]

endoglucanase
[EC:3.2.1.4] - K01179

GH5 51

Contig 190
182065 183603

Endoglucanase
E1 precursor
(EC 3.2.1.4)
(Endo-1,4-
beta-glucanase
E1)
(Cellulase E1)
(Endocellulase
E1)
- FIG00817790

Endoglucanase E1
[EC 3.2.1.4]

endoglucanase
[EC:3.2.1.4] - K01179

GH5 1;
CBM2

Contig 7
97558 95177

Beta-
glucosidase
(EC 3.2.1.21) -
FIG00001469

Beta-glucosidase
BoGH3B [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05349

GH3

Contig 7
103396 101957

Beta-
glucosidase
(EC 3.2.1.21) -
FIG00001469

Bifunctional beta-
D-glucosidase/beta-
D-fucosidase [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05350

GH1

Contig 187
63312 61873

Beta-
glucosidase
(EC 3.2.1.21) -
FIG00001469

Bifunctional beta-
D-glucosidase/beta-
D-fucosidase [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05350

GH1

NWU49
Contig 177
236137 238065

Endoglucanase
(EC 3.2.1.4) -
FIG00516442

Endoglucanase E1
[EC 3.2.1.4]

endoglucanase
[EC:3.2.1.4] - K01179

GH5 51

Contig 162
138192 136807

Endoglucanase
celA precursor
(EC 3.2.1.4)
(Endo-14-beta-
glucanase)
(Cellulase) -
FIG01126837

Endoglucanase CelA
[EC 3.2.1.4]

endoglucanase
[EC:3.2.1.4] - K01179

GH5 2;
CBM2

Contig 126
205924 204485

Beta-
glucosidase
(EC 3.2.1.21) -
FIG00001469

Bifunctional beta-
D-glucosidase/beta-
D-fucosidase [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05350

GH1

continued on the next page
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Table A.2 - (continued from the previous page)
RAST PROKKA KEGG dbCAN

NWU49
Contig 73
88157 89596

Beta-glucosidase
(EC 3.2.1.21) -
FIG00001469

Bifunctional beta-
D-glucosidase/beta-
D-fucosidase [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05350

GH1

Contig 144
274763 272382

Beta-glucosidase
(EC 3.2.1.21) -
FIG00001469

Beta-glucosidase
BoGH3B [EC 3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05349

GH3

Contig 90
29739 27268

Beta-glucosidase
(EC 3.2.1.21) -
FIG00001469

Thermostable beta-
glucosidase B [EC
3.2.1.21]

beta-glucosidase
[EC:3.2.1.21] - K05349

GH3
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Supplementary Figure 4
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Figure 4: Taxonomic separation of genome annotation coverage by order using
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the taxonomic nomenclature from the Genome Taxonomy Database (GTDB).
Only the most common GTDB phyla are shown. (a) KEGG genome annotation.
(b) Pfam genome annotation.
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Figure 5: Effect of genome size (bp) on genome annotation coverage. log10(genome size) is
binned into 10 distinct bins to better display the trend. The most common GTDB phyla
are displayed separately. (a) KEGG genome annotation. (b) Pfam genome annotation.
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Supplementary Figure 6
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Figure 6: Lineage-specificity distributions for Pfam families. (a) Lineage-specificity scores
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using the F1 statistic combining sensitivity and precision. (b) Number of lineage-specific
domains identified in various taxonomic groups with sensitivity and precision scores ≥ 95%.
Bacteria, archaea, and viruses have no lineage-specific domains above the 95% threshold for
certain taxonomic levels because of fewer proteomes present in Pfam leading to a weaker
signal (in the case of archaea and viruses) and because of unclassified taxonomic levels
within the NCBI taxonomy system. An overrepresentation of eukaryotic lineage-specific
domains occur at the phylum level, due primarily to the Streptophyta and Chordata
clades. Chlamydia and Borreliella account for just under half the bacterial domains with
genus-level lineage specificity, while Cyanobacteria and Deinococcus-Thermus account for
around two-thirds of the phylum-level lineage specificity of the bacterial domains. The
class-level lineage specificity of the bacterial domains is primarily due to Actinobacteria.
Archaeal domain families have high class-level lineage specificity, driven primarily by the
Thermococci. The most common family-level lineage specific viral domains are found in
Baculoviridae and Poxviridae, while the genus-level domains have a more diverse origin.
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Supplementary Table 2

Table 2: Top five lineage specific domains in Eukaryota, Archaea, Bacteria, and Viruses.
Families were ranked by the F1 score of their best taxonomic level and the number of
proteomes in which they are present, excluding domains present in less than 20 species.

Proteomes
with
domain

Best taxonomic
lineage

Best
sensitivity

Best
precision

F1 score

Eukaryota
MH1 315 Metazoa 100 100 100
PDDEXK 6 95 Viridiplantae 100 100 100
DM4 12 91 Arthropoda 100 100 100
APO RNA-bind,
BES1 N, BRX N,
COBRA, DUF1191,
DUF1639, DUF3444,
DUF3475, DUF4370,
DUF668, LOB,
NAM,PH 2, PHD Oberon,
tify,VQ, WCOR413, XS,
Zein-binding,zf-UDP

81 Streptophyta 100 100 100

Moulting cycle 65 Nematoda 100 100 100
Bacteria
HP0268 93 Epsilonproteobacteria 100 100 100
LidA Long CC 28 Legionellaceae 100 100 100
DUF3208, DUF3809,
PilN bio d, Taq-exonuc

26 Deinococcus-Thermus 100 100 100

RbpA 1154 Actinobacteria 99.10 99.48 99.70
HP1451 C 92 Epsilonproteobacteria 100 98.92 99.46
Archaea
BAT 100 Halobacteria 96 100 97.96
S-layer 26 Methanosarcinales 100 92.86 96.30
DUF2208 42 Thermoprotei 90.48 100 95
FpoO 25 Methanosarcinales 100 89.29 94.34
DUF2192 42 Thermoprotei 88.10 97.37 92.5
Viruses
Baculo helicase,
Baculo p33,
Baculo VP1054,
Baculo VP39,
LEF-9

61 Baculoviridae 100 100 100

continued on the next page
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Table C.5 - (continued from the previous page)
Proteomes
with
domain

Best taxonomic
lineage

Best
sensitivity

Best
precision

F1 score

DNA pol B 3, Pox A21,
Pox E10, Pox G5,
Pox L3 FP4,
Pox LP H2,
Pox Rap94, Pox Rif,
Pox VERT large,
VirDNA-topo-I N

39 Poxviridae 100 100 100

Orbi VP4, Orbi VP5 29 Orbivirus 100 100 100
Late protein L1 222 Papillomaviridae 99.55 100 99.77
Baculo VP91 N,
LEF-4, LEF-8

62 Baculoviridae 98.39 100 99.19
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Supplementary Material: Chapter 5

Supplementary Table 3

Table 3: Enriched GO terms among ORFans from each metagenome. Two backgrounds
were used: 1) a random subset of Pfam-annotated CDSs from the same metagenome; 2)
the PDB70 database. Some GO terms that were enriched in the random Pfam-annotated
subset were not significantly enriched relative to the background database (PDB).
GO term Fold

change
ORFan
hits

PFAM
hits

Padj

against
Pfam

Padj

against
PDB70

Soil
GDP-dissociation inhibitor activity 18.11 66 5 7.47×10-55 1.58×10-90

dibenzothiophene catabolic process 12.01 35 4 1.69×10-22 3.66×10-55

mitochondrial fission 12.81 28 3 2.16×10-18 7.14×10-40

serine-type endopeptidase inhibitor activity 15.78 23 2 9.43×10-17 1.00
calcium ion binding 2.63 111 58 1.44×10-15 1.00
sequence-specific DNA binding 2.08 162 107 6.39×10-14 2.14×10-49

viral release from host cell 19.21 14 1 1.20×10-10 5.14×10-2

pectate lyase activity 4.49 36 11 6.51×10-10 1.35×10-38

cellulase activity 6.52 19 4 6.04×10-7 3.62×10-4

polysaccharide catabolic process 2.56 54 29 2.63×10-6 1.47×10-8

1-alkyl-2-acetylglycerophosphocholine
esterase activity

8.23 12 2 8.76×10-5 1.47×10-8

peptidylglycine monooxygenase activity 3.06 29 13 4.47×10-4 1.22×10-37

peptide metabolic process 2.94 30 14 6.40×10-4 8.51×10-27

oligogalacturonide lyase activity 3.20 21 9 9.62×10-3 2.25×10-39

oligosaccharyl transferase activity 2.18 35 22 4.75×10-2 5.15×10-48

transition metal ion binding 2.16 33 21 9.92×10-2 1.00
continued on the next page
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Table D.1 - (continued from the previous page)
GO term Fold

change
ORFan
hits

PFAM
hits

Padj

against
Pfam

Padj

against
PDB70

Soil
ribonuclease activity 1.93 38 27 2.69×10-1 1.35×10-4

metallopeptidase activity 1.52 84 76 3.34×10-1 2.21×10-10

lysozyme activity 3.77 11 4 3.99×10-1 1.00
cysteine-type peptidase activity 2.25 23 14 6.67×10-1 1.00
Marine
calcium ion binding 6.97 133 20 6.51×10-62 1.00
polysaccharide catabolic process 16.26 62 4 1.20×10-48 8.05×10-6

lysozyme activity 40.90 39 1 4.90×10-45 1.00
L-ascorbic acid binding 5.83 89 16 4.69×10-35 1.01×10-74

protein kinase activity 9.79 56 6 2.04×10-32 1.00
ADP-heptose-lipopolysaccharide
heptosyltransferase activity

18.35 35 2 1.63×10-28 4.01×10-88

dephosphorylation 4.45 89 21 1.43×10-26 1.00
phosphatidylinositol alpha-
mannosyltransferase activity

27.27 26 1 4.88×10-25 5.60×10-42

endonuclease activity 2.74 157 60 1.55×10-24 1.25×10-11

CDP-glycerol glycerophosphotransferase
activity

25.17 24 1 3.51×10-22 1.24×10-25

metallopeptidase activity 3.44 95 29 1.64×10-20 3.53×10-6

sequence-specific DNA binding 2.27 167 77 6.21×10-18 6.35×10-33

rRNA binding 6.03 46 8 6.62×10-18 1.00
viral release from host cell 20.98 20 1 1.10×10-16 4.96×10-2

RNA ligase (ATP) activity 20.98 20 1 1.10×10-16 1.45×10-26

phosphatase activity 4.82 46 10 2.98×10-14 1.00
pectate lyase activity 18.88 18 1 4.63×10-14 2.25×10-11

proline 3-hydroxylase activity 9.09 26 3 1.98×10-13 1.63×10-46

serine-type endopeptidase inhibitor activity 16.78 16 1 1.57×10-11 1.00
spermatogenesis 16.78 16 1 1.57×10-11 1.00
N-methyltransferase activity 16.78 16 1 1.57×10-11 5.31×10-9

mitochondrial fission 16.78 16 1 1.57×10-11 2.65×10-16

sulfate assimilation, phosphoadenylyl
sulfate reduction by phosphoadenylyl-sulfate
reductase (thioredoxin)

15.73 15 1 2.65×10-10 6.61×10-11

phospholipase activity 15.73 15 1 2.65×10-10 1.58×10-11

phosphoadenylyl-
sulfate reductase (thioredoxin) activity

15.73 15 1 2.65×10-10 1.72×10-14

peptidoglycan beta-N-
acetylmuramidase activity

14.68 14 1 4.18×10-9 6.93×10-19

phosphorelay signal transduction system 3.55 44 13 4.46×10-9 1.00
cysteine-type peptidase activity 13.63 13 1 6.17×10-8 1.00
O-methyltransferase activity 13.63 13 1 6.17×10-8 8.54×10-1

continued on the next page
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Table D.1 - (continued from the previous page)
GO term Fold

change
ORFan
hits

PFAM
hits

Padj

against
Pfam

Padj

against
PDB70

Marine
cell redox homeostasis 2.82 51 19 3.16×10-7 1.00
cholesterol binding 12.59 12 1 8.46×10-7 1.00
blood coagulation 5.51 21 4 1.44×10-6 1.00
phosphoric diester hydrolase activity 5.51 21 4 1.44×10-6 1.00
protein complex assembly 5.51 21 4 1.44×10-6 6.63×10-1

peptide metabolic process 11.54 11 1 1.07×10-5 6.74×10-4

lactone biosynthetic process 11.54 11 1 1.07×10-5 1.32×10-15

viral life cycle 10.49 10 1 1.24×10-4 1.00
triglyceride lipase activity 10.49 10 1 1.24×10-4 1.00
1-alkyl-2-acetylglycerophosphocholine
esterase activity

4.72 18 4 2.14×10-4 2.20×10-12

apoptotic process 3.15 27 9 6.72×10-4 1.00
glycerol ether metabolic process 3.67 21 6 1.19×10-3 1.00
scyllo-inosamine-4-
phosphate amidinotransferase activity

6.29 12 2 1.43×10-3 4.97×10-21

endopeptidase activity 5.77 11 2 9.16×10-3 1.00
intracellular protein transport 3.02 23 8 9.16×10-3 1.00
cytokinesis by binary fission 5.77 11 2 9.16×10-3 6.23×10-3

response to mercury ion 4.20 12 3 7.79×10-2 8.54×10-1

glycine amidinotransferase activity 3.85 11 3 3.33×10-1 5.84×10-11

Human Gut
sequence-specific DNA binding 2.21 149 260 3.25×10-15 1.63×10-94

polysaccharide catabolic process 4.61 49 41 1.35×10-14 1.16×10-21

calcium ion binding 4.27 31 28 8.64×10-8 1.00
regulation of sporulation resulting in
formation of a cellular spore

8.48 11 5 2.33×10-4 4.79×10-20

ribonuclease activity 3.85 18 18 3.68×10-3 1.02×10-3

lysozyme activity 5.50 10 7 3.64×10-2 1.00
transition metal ion binding 2.65 22 32 9.67×10-2 1.00
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Glossary

CDD Conserved Domain Database. This database is a collection of PSSM models including
their own NCBI-curated domains and other domain databases like Pfam, COG, and
TIGRFAMS.193 4, 101, 103, 106, 108

CDSs Coding sequences. A coding sequence is a DNA or RNA sequence that codes for a
protein (including the stop codon). 6, 7, 31, 46, 50, 52–57, 61, 63, 68, 73, 102–104,
106–108, 113, 116, 127–129, 132, 183

COG Clusters of Orthologous Groups. This is a database with functional categories
applied to “phylogenetically-classified” protein groups based on all-by-all sequence
comparison.306 20, 23, 25, 28, 30, 52

DUF Domain of unknown function. A domain family from the Pfam database75 that has
no or limited functional information assigned to its members. 6, 8, 10, 14, 15, 70–72,
74–79, 81, 85–88, 90, 91, 93–97, 99, 122, 129–131

GO Gene Ontology. An ontology for gene product functions that is divided into molecular
function, biological process, and cellular location classes.19 GO terms are mapped
onto many databases (e.g. Pfam, InterPro, and the PDB). 2, 52, 69, 74, 75, 81, 82,
89–91, 104, 105, 112–115, 117, 118, 130, 183

HMM Hidden Markov model. This model is a way to incorporate different types of
information (e.g. conservation of residues, insertions and deletions) in order to
probabilistically label or score a sequence. One use in bioinformatics is to represent
a protein family, to sensitively find protein sequences that should match. 4, 9, 55,
101–103, 112

KEGG Kyoto Encyclopedia of Genes and Genomes. Established in 1995 this database
contains many different facets and organizations of function, including: pathway maps,
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functional orthologs, biochemical reactions, and disease states.132 20, 22, 25, 28–31,
33, 36, 40–42, 44, 45, 48, 53, 55–58, 60–65, 127, 128, 178

MAG Metagenome-assembled genome. This is an assembly from binned metagenomes
that is ideally made up of one taxa. Bins are created by comparing the differential
coverage (across multiple samples) and sequence composition of the contigs.6 17, 36,
38, 43, 44, 48, 49, 127

MSA Multiple sequence alignment. An alignment of more than two sequences with which
conservation of residues can be analyzed. A MSA enables the study of evolutionary,
structural, and functional relationships. 3, 103, 104, 110, 111

necrobiome Microbial decomposition community. This term is from nekrós (the Greek
word for dead body) and includes microorganisms that may have come from the
surrounding environment or the host. 18, 32, 33, 36–41, 44, 48–50, 126, 127, 172–174

ORF Open reading frame. An open reading frame extends from the beginning of the start
codon to just before the stop codon in a DNA sequence, namely everything that is
ultimately translated into a protein. 68, 100–104, 106, 109, 111

ORFan A coding sequence without detectable homologs in current databases, named for
a condensed form of “orphan ORFs”. First defined in 1999 by Daniel Fischer and
David Eisenberg.76 8, 15, 71, 100–123, 125, 132, 133, 183

PDB Protein Data Bank. Established in 1971, the PDB is a repository for 3D structures
of protein, DNA, and RNA.18 75, 95, 103–105, 111–121, 183

PSSM Position-specific scoring matrix. The matrix consists of amino acid substitution
scores that change based on sequence position, taking into consideration conservation
of residues. The scoring matrix is created from a conservation profile of a multiple
sequence alignment. 4, 101

resistome Collection of antibiotic resistance genes, specifically called the antibiotic resis-
tome. 18, 26, 31, 50, 127
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