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Abstract 

In recent years, machine learning approaches have important empirical successes on analysing data 

such as images, signals, texts and speeches with applications in biomedical and clinical areas.  

However, from the perspective of modelling, many machine learning methods still encounter crucial 

problems such as the lack of transparency and interpretability. Frequent Pattern Mining or Association 

Mining methods intend to solve the problem of interpretability, but they also encounter serious 

problems such as requiring exhaustive search and producing overwhelming numbers of patterns.  From 

the perspective of data analysis, they do not render high prediction accuracy particularly for data with 

low volume, rare or imbalanced groups, rare cases or biases due to subtle overlapping or entanglement 

of the statistical and functional associations at the data source level. Hence, Professor Andrew K.C. 

Wong and I have developed a novel Pattern Discovery and Disentanglement (PDD) Method to discover 

explicit patterns and unveil knowledge from relational datasets even encompassing   imbalanced 

groups, biases and anomalies. The statistically significant high-order patterns, pattern clusters and rare 

patterns are discovered in the disentangled Attribute Value Association (AVA) Spaces. They may be 

embedded in a relational dataset but overlapping or entangled with each other so that they are masked 

or obscured at the data level. The patterns discovered from the disentangled association source can be 

used for explicitly interpreting the original data, predicting the functional groups/classes and detecting 

anomalies and/or outliers. When class labels are not given, pattern/entity clustering can be more 

effectively discovered from the disentangled attribute value association (AVA) space than from the 

original records.  The objective of this Master Thesis is to develop and validate the efficacy of PDD for 

genomic and clinical data analysis using a) protein sequence data, b) public clinical records from UCI 

dataset and c) a clinical dataset obtained from the School of Public Health and Health Systems at the 

University of Waterloo. The experimental results with superior performance in unsupervised and 

supervised learning than existing methods are presented in interpretable knowledge representation 

frameworks, interlinking the AVA disentangled sources, patterns, pattern/entity clusters and individual 

entities.  In the clinical cases, it reveals the symptomatic patterns of individual patients, disease 

complexes/groups and subtle etiological sources. Hence it will have impacts in machine learning on 

genomic and clinical data with broad applications.  
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Chapter 1 
IQWURdXcWLRQ 

1.1 Background and Research Motivations 

Clinical diagnostic decisions have a direct impact on the treatment and the outcomes of patients in the 

clinical setting. As large volumes of biomedical data are being collected and becoming available for 

analysis, there is an increasing interest and need in applying machine learning (ML) methods to 

diagnose diseases, predict patient outcomes and propose therapeutic treatments from the data.  

Machine Learning and Deep Learning have important empirical successes on analysis of data such as 

images, signals, texts and speeches with outcomes akin to human cognition and discernment. Although 

they are  generally considered as a black box [1] lacking transparency to interpret why a decision is 

made, yet for these forms of visual data, users with cognition ability are able to relate the targets to the 

input data.  However, when applying to relational datasets (R) for comprehensive data analysis such as 

clinical analysis and practice, the interpretability of these methods is still a challenge [1] [2]. For 

example, the characteristics associations (or Attribute-Value Associations AVA) may overlap with 

man\ ³eiWher-or´ cases, fXrWher complicaWing the decision and interpretation in ML. That is to say, if 

the patterns inherent in the relational data, though not visualized, are succinctly related to the targets, 

existing ensemble algorithms, such as Boosted SVM, or Random Forest could produce good predictive 

results, but not if the AVAs in the different targets are entangled.  Moreover, the underlying patterns in 

support of the decision are still opaque and uninterpretable by clinicians [3].  

In addition, as noted in [2], AI today still focuses on improving accuracy, but provides little 

interpretation. It may lead to overdiagnosis in the healthy population, increasing the burden handled by 

health care systems instead of relieving it [3]. Current Explainable AI studies focus on model 

explanation, but not the interpretation of the model in clinical uses. The latter is highly desired in the 

clinical context [3].  

Hence, the challenges in applying machine learning techniques difficult ML problems still being 

encountered in clinical practice are listed as follows: 

a) lacking transparency for understanding the throughputs and outputs [2] [4];  
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b) difficulty in identifying anomalies [2] [5]; and  

c) getting biased results when the data size is small or the class distribution is severely imbalanced as 

in the case of the rare diseases [6] [7].  

These impasses have to be overcome before AI could solve some crucial data analytic problems in the 

medical area.  

1.2 Problem and Solution 

To address model¶s Wransparenc\ and inWerpreWabiliW\, Decision Tree, FreqXenW PaWWern Mining and 

Pattern Discovery were proposed. For decades, Frequent Pattern Mining [8] [9] [10] is an essential 

data mining technique to discover knowledge in the form of association rules from relational data [10]. 

However, they usually produce an overwhelming number of overlapping/redundant patterns/rules 

coming from entwined classes/groups [11]. These patterns/rules are hard to partition/summarize [11] 

[12] [13] Wo reYeal precise ³knoZledge´ inherenW in Whe soXrce enYironmenW, making inWerpreWaWion 

difficult and lowering prediction accuracy. In addition, as shown in our recent work [14] [15] [16], the 

Attribute Value Association (AVA) forming patterns of different classes/targets could be entangled due 

to multiple entwining functional characteristics, i.e. class labels, inherent in the source environments. 

Hence, the patterns discovered directly from the acquired data may have overlapping or functionally 

entwined AVAs as observed from our recent works  [14] [16]. Furthermore, existing ML approaches 

on relational data are still encountering difficult problems concerning transparency, low data volume, 

and/or imbalanced classes [2] [5]. 

Therefore, the objectives of this study are:  

1) Developing a pattern discovery approach with explainability and applying it in clinical practice;  

2) Predicting the class information for the clinical data using paWienWs¶ profile and s\mpWomaWic 

characteristic patterns; 

3) Clustering the patients according to their characteristic patterns even when class label is not 

given; 

4) Detecting the anomaly cases (e.g. the rare cases or outliers) from the clinical data using the 

above pattern discovery process. 
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Table 1 Terminology 

Terminology Brief Definition Medical Examples 

Pattern 
Entanglement 

AVAs forming patterns could pertain 
to different classes. They could be co-
occurring/overlapping among entities 
and are hard to separate for prediction 
and interpretation. They are entangled. 

Signs, symptoms, test results and 
paWienW¶s ph\sical profile from 
multiple diseases or etiological 
causes; mixed indicators from 
treatment/drug responses. 

Disentanglement 

A process to project AVAs pertaining 
to different classes/origins onto 
orthogonal disentangled spaces DS*, 
from which succinct patterns could 
form different pattern clusters and 
entity clusters. 

Patterns are related to more 
specific pathological and 
etiological causes; and, rare cases 
or anomalies could be traced back 
to their entangled origins which 
could be related to certain disease 
classes/causes. 

Deep Knowledge 

Obscured knowledge interlinking DS*, 
patterns and entities. They are not 
visualized/recognizable at the data 
level. 

The subtle causes of a disease; 
manifestation of multiple 
disorders; 
misdiagnoses/mis-prognoses, best 
treatments identified. 

PDD-Knowledge 
Base (PDD-KB) 

A unified knowledge representation 
consisting a Summary-KB and a 
Comprehensive-KB interlinking 3 
parts: Disentangled Space (DS*), 
Patterns and Entities ± to support ML 
and interpretation.  

DS*: disease causes, syndromes, 
disorders, cyberchondria; etc. 
Pattern: signs-symptoms groups, 
paWienW¶s profiles, besW WreaWmenWs. 
Entity: paWienWs¶ records 
PDDKB can link them together. 

EID-Intersection  
of an AVA 

The set of entities each containing that 
AVA. It is equivalent to frequency 
count of the AVA in R. 

Patients sharing the same group 
of indicators. 

Anomaly and 
outlier, entities 

Anomalies: patterns beyond present 
knowledge;  
Outliers: entities contain no discovered 
patterns at certain statistical threshold 
but could reveal rare patterns/clues at 
deeper levels.  
Rare Cases: entity found in classes not 
as labeled.  

Anomalies: Patients found with 
new conditions not previously 
identified. 
Outliers: Patient with no 
identified conditions of a disease 
complex. 
Rare Cases: Patients 
misdiagnosed or with 
misinformation in the records. 
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  Figure 1 Overview of PDD Applying to Clinical Data 
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Hence, the data-driven exploratory method Pattern Discovery and Disentanglement (PDD) [17] 

developed by Andrew K.C. Wong and me is adopted in this thesis  to discover robust/succinct patterns 

with statistical analysis and implicit functional clues to explain the underlying relation and augment 

scientific exploration. PDD discovers deep knowledge from relational datasets. In PDD, Deep 

knowledge refers to the subtle function/relations/associations that are masked/inconspicuous at the data 

level due to source entanglements, but can be discovered and represented in a compact and succinct 

knowledgebase which displays a much smaller set of explicit patterns linking to individual entities as 

well as the classes or underlying causes that begat those specific association patterns. PDD provides a 

new scientific perspective as it overcomes several crucial limitations of the current AI methods plagued 

by biases, imbalanced classes, rare groups, anomalies and lack of transparency. Such problems raise 

concerns in medical/clinical ML applications. Hence, the explainability addressed in PDD attempts to 

meet the clinical challenges rather than pose just a technical discourse. It intends to provide clinical 

results explainable to a clinical practitioner, understood by the patients with statistical symptomatic 

characteristic patterns in support of diagnostic and detection rare cases from imbalanced clinical data 

and so on. 

Figure 1 gives an overview of PDD applying to a clinical data setting and Table 1 provides terminology 

descriptions with medical examples.  

1.3 Organization of Thesis 

The rest of this thesis is organized as follows. 

In chapter 2, the thesis presents a summary of existing work on machine learning, especially pattern 

discovery models, for clinical data analytics. The literature survey on clinical data analysis is introduced 

in the same chapter. The advantages and drawbacks of major existing works are described. 

Chapter 3 describes the details of each step that PDD takes to tackle pattern discovery problems. From 

the displayable explicit patterns discoYered, PDD¶s result can also be used for interpretation, clustering, 

classification of disease complexes/patients and detection of rare cases.  

From Chapter 4 to Chapter 6, the results of interpretation, unsupervised learning, rare cases detection, 

and supervised learning are precisely presented. For evaluating the performance of PDD, its 

interpretation capability, clustering result and prediction results are compared with those obtained by 
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its existing counterparts in Chapter 4, Chapter 5, and Chapter 6 respectively. The experimental results 

demonstrate that the proposed algorithm is effective not only with respect to the theoretical construct 

and algorithmic robustness and efficacy, but also to its practical applicability. Especially, for some 

clinical dataset taken directly from hospitals/clinics with imbalanced classes, PDD always outperforms 

other traditional machine learning algorithms. 

Finally, chapter 7 draws a conclusion from the clinical application addressing the notion of whether or 

not, and to what extent, the proposed method can be used for clinical practices. It also presents the 

evaluation of the current limitations of PDD in this study and suggests directions for future research.  
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Chapter 2 
LLWeUaWXUe SXUYe\ 

2.1 Machine Learning on Clinical Data Analysis 

Due to the ever-expanding digital data sources, it is an obvious trend of using artificial intelligence and 

machine learning algorithms on clinical data analysis [18]. For example, in the area of drug discovery, 

some machine learning methods are used to predict pharmaceutical properties of molecular compounds 

[19] [20]. In addition, in order to enable faster diagnoses and tracking of disease progression, pattern 

recognition and segmentation techniques are applied to medical images, such as retinal scans, pathology 

slides and body surfaces [21] [22]. Furthermore, in order to extend the applications using new predictive 

models, deep learning techniques are applied to the combined genomic and clinical data [23] [24]. 

However, the central problem of such models is that they are regarded as black-box models. And even 

if the underlying mathematical principles of such models are understood, they lack an explicit 

declarative knowledge representation. Hence, they have difficulty in generating the underlying 

explanatory structures [25]. Translating machine learning models to clinical practices needs 

esWablishing clinicians¶ WrXsW [26], which requires transparency in the algorithms and the presented 

results. As for transparency, DL is generally considered as a black box [1]. Although ML methods like 

ensemble algorithm, such as Boosted SVM (BSI) for imbalanced data, or Random Forest are good at 

prediction, their classification results are highly opaque and difficult for the clinicians to interpret [3].  

2.2 Pattern Discovery Models 

Considering transparency and interpretability, pattern mining and discovery models can provide the 

explicit detailed patterns discovered from the datasets [3]. Decision Trees and Forests, Frequent Pattern 

Mining or Pattern Discovery were proposed. For decades, Frequent Pattern Mining [9] [8] [10]  is an 

essential data mining task to discover knowledge in the form of association rules from relational data 

[10]. Most of them are based on the likelihood, the weight of evidence [10], support, confidence and/or 

statistical residuals [9] [10]. However, as revealed in our recent work, [14] [15] [16], associations 

discovered from relational data could be entangled due to multiple entwining functional characteristics 

inherent in the source environments. Hence, the patterns discovered directly from the acquired data 

may have overlapping or functionally entwined attribute values as observed from our recent works  [14] 

[16]. This notion is further validated and exemplified by our synthetic experiment in Chapter 4, 
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resulting in serious pattern overlapping/redundancy [12] [11] and uncontrollable entwinement. These 

overwhelming yet statistically legitimate patterns are difficult to partition and summarize [12] [11] [13]. 

Hence, patterns discovered by current pattern mining and discovery methods are unable to reveal and 

use the deep knowledge inherent in the data without pattern disentanglement.    

In Whe pasW decades, man\ meWhods [9] haYe been deYeloped for discoYering high-order paWWerns or 

mining freqXenW rXles [8] [10]. HoZeYer, Wheir performance is sensiWiYe Wo manXall\ seW Whresholds sXch 

as support and confidence and Whe paWWerns Whe\ discoYered Zere oYerZhelmed [11] ZiWh 

oYerlapping/redXndanW paWWerns dXe Wo Wheir combinaWorial naWXre and Whe possible enWanglemenW in Whe 

soXrce enYironmenW. OpWimal Za\s of idenWif\ing, parWiWioning and groXping paWWerns Zere lacking. 

PaWWern clXsWering [11] aWWempWs Wo groXp Whem according Wo Wheir similariW\ for beWWer YisXali]aWion and 

inWerpreWaWion. HoZeYer, Whe\ W\picall\ prodXce Woo man\ paWWern clXsWers and comple[ clXsWer 

configXraWions. AlWhoXgh oXr laWer Zork, sXch as paWWern prXning and sXmmari]aWion [11] [12], 

aWWempWed Wo prodXce more sXccincW represenWaWions Zhen similar paWWerns are clXsWered inWo groXps, 

sXch approaches sWill reqXire inWensiYe search and iW is hard Wo find effecWiYe similariW\ measXre Wo direcW 

Whe clXsWering. After a long search for better optimal methods, the key problem lies in the entanglement 

of AVA due to multiple governing functions/factors in the source environment [15]. Most of the 

previous methods cannot discriminate the subtle variations inherent in the entangled sources. SXch 

obserYaWion poses a challenge Wo cXrrenW DL/ML models since, in Whese cases, Whe inpXW-Wo-oXWpXW 

relaWionship Xpon Zhich Whe\ are based, if noW properl\ disenWangled, is noW sXccincW Wo render good 

solXWions. Hence, in Whe problem as reYealed in a recenW sWXd\, boWh Whe aboYe-menWioned approaches 

lack effecWiYe Za\s Wo disenWangle Whe sWaWisWics obWained from Whe daWa coming from sXbWle mXlWiple 

enWangled soXrces [16].  

FXrWhermore, e[isWing ML approaches are sWill encoXnWering difficXlW problems concerning Wransparenc\, 

loZ daWa YolXme, imbalance classes and presence of anomalies, biases and rare samples [2] [5]. Hence, 

PDD Zas deYeloped Wo meeW Whese challenges. 

2.3 Deep Learning and PDD 

Today, deep learning (DL) and frequent pattern mining are two commonly used methodologies for data 

analysis. Undoubtedly, DL is a powerful tool for learning complex, cognitive tasks related to vision, 

signals, speech and text where humans can cognitively relate the input to the output. By this token, 



 

 9 

successful analyses/classifications on medical scans, X-rays, retinal images, ECG, etc. have been 

reported. However, in a more general healthcare data analytics based predominantly on clinically 

recorded numeral and descriptive data, the input and output relations are not always obvious, 

particularly when the correlation of signs, symptoms, test results of a patient could be the manifestation 

of multiple diseases. Hence, this poses a challenge to DL in clinical application. Another concern is on 

transparency and assured accuracy [2] [4]. As for assured accuracy, DL usually requires a large size of 

daWa ZiWh a broad base of coYerage and e[perWs¶ sXperYision to ensure high predictive accuracy. Without 

such assurance, sometimes researchers found that simpler, cheaper and more useful data modelling 

could render better results [2]. When applying to precision medicine and discovering rare cases, DL 

still requires the strong support of prior knowledge and feature engineering [27], demanding enormous 

human effort. Furthermore, the medical community still wishes to understand how machines learn [28] 

and what sort/level of accountable knowledge they could discover and offer.  Clinicians are looking for 

an AI system which is explainable and accountable, able to discover anomalies and rare cases [2] [5] 

without sacrificing predictive accuracy. While empirical science relies on statistics, PDD renders 

deeply embedded statistical patterns [12] in scientific exploration. 
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Chapter 3 

PaWWeUQ DLVcRYeU\ aQd DLVeQWaQJOePeQW 

3.1 Methodology of Pattern Discovery and Disentanglement  

This chapter presents the PDD methodology applying to relational datasets. At the outset, the values of 

numeral attributes in R are quantized into interval values via entropy maximization [10]. The Overview 

in Figure 1 renders greater details of the algorithm. Figure 2 (A) shows how PDD accomplishes the 

proposed tasks in six enumerated steps, with definitions, algorithmic description and justification given 

for each.  

Step 1 constructs an AV-Address Table (AT) by attaching to each AV in R a list of Entity Identities 

(EID) containing that AV.  

Step 2 constructs an AVA Frequency Matrix (AVAFM) [16] by obtaining the AVA frequency of each 

AV-pair as the number of intersecting entities in the AV-pair instead of through searching R 

exhaustively. From the AVAFM, an AVA Statistical Residual Vector Space (SRV) is constructed for 

later AVA Disentanglement by converting each frequency into a statistical residual --- a statistical 

measure accounting the deviation of the observed frequency of the AVA from that if the AVs in it are 

independent.  

Step 3 disentangles the entangled AVA statistics by applying Principal Component Decomposition 

(PCD) on the SRV [15] to obtain the Principal Components (PCs) and their corresponding  Re-projected 

SRVs (RSRVs) with the same set of SRV basis vectors  [14] [15]. A PC with its corresponding RSRV 

is referred as an AVA Disentangled Space (DS).  

Since in PCD, the number of DS is as large as that of AVs, Step 4 selects only the statistically significant 

DS, denoted by DS*, if the maximum SR in its RSRV exceeds a prescribed SR threshold. In general, 

only a very small set of DSs is selected.   

In Step 5, on each DS*, the AV-Clustering Algorithm is applied to obtain one or more AV clusters 

from the AV projections captured in the PC. As an example, shown in Figure 2 (B), in the PC, only two 
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small sets of AVs associating with Plants and Mammals are obtained at the far ends, reflecting their 

contribution to the eigenvalue in the PC while their strong AVAs are captured.   

Figure 2 

(A) Schematic Overview of the PDD algorithm 
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(B) An Example of Disentanglement Space

 
 

All other AVs only with weak AVAs with other AVs are close to the center of the PC (with weak AVA 

and thus irrelevant in that DS*). The small set of strong AVAs are shown in the RSRV in green blocks.  

In Step 6, a pattern discovery algorithm is used to discover high-order statistically significant patterns 

from the AV Clusters in each DS* instead of through extensive search from R. When an AV-

cluster/sub-cluster passes the pattern statistical test, it is referred to as a pattern. With the closeness of 

AVs in the 1-Dimensional PC space and the easily tracked SR value of the AVAs in 2-Dimensional 

RSRV, the process of AV-Cluster identification and pattern confirmation is fast and effective in 

comparison with the laborious sorting and counting from the entire dataset in traditional High-Order 

Pattern Discovery (HOPD) [11] [12] [10]. The patterns discovered from an AV cluster/sub-cluster form 

a pattern group (PG)/pattern-subgroup (SubPG) respectively. The entities covered by an AV cluster 

form an entity group (EG).  

Finally, the knowledge obtained from Step 6 is combined into a unified representation framework 

referred to as the PPD Knowledge Base (PDDKB). PDDKB interlinks DS*, patterns, and all entities in 

R, in both a summarized form and also a form with comprehensive details, i.e. the complete list of 

patterns discovered by PDD. From the PDDKB, all the deep knowledge can be extracted and organized 

for the pattern discovery posterior tasks such as class prediction, entity clustering, etc. without relying 

on class information.  
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 Input and Preprocessing 

The input relational dataset is denoted as R, which is an N×M relational dataset, where N is the number 

of attributes, 𝐴1, … , 𝐴𝑁 and M the number of entities Ai, i = 1,«, M each of which is assigned with a 

unique Entity ID (EID) i. As described in Figure 3, R contains N attributes, and an attribute can take 

on either a numerical or a categorical value, so R could be a mixed-mode relational dataset with M N-

tuples of mixed-mode data (numerical / categorical). For a mixed-mode relational dataset, the numerical 

values are needed to be discretized into quantized intervals. Equal Frequency method [29] is usually 

used.  

Figure 3 An illustration of relational dataset R, EID, AV Cluster and Pattern 

 

After discretization, by treating each interval as a categorical value, R contains categorical values only. 

Let 𝑒௝𝑖 represent the ith value of the jth attribute in R.  Let Ej ൌ ሼ𝑒௝1, 𝑒௝2, … 𝑒௝𝐼ೕሽ be the set of all possible 

categorical (discrete) attribute values (AVs) of 𝐴௝, with Ij  being the total number of possible values of 

the jth attribute. Therefore, the total number of AVs across all attributes is ∑ 𝐼௝𝑁
௝=1 . the ith entity is 

denoted as 𝐴𝑖 , and the AV of the jth attribute of the ith entity as 𝐴௝
𝑖  and 𝐴௝

𝑖𝜖 𝐸௝. Figure 3 summarizes the 

notations used in this section. 

To reduce the computational complexity for Steps 2 to 6, the Entity Address Table (AT) is created. In 

the AT, for each distinct AV in R, it lists the Entity ID (EID) of the entities in R containing that AV. 
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Definition 1. The Entity Address Table AT. AT is a table with 𝑇 ൌ ∑ 𝐼௝𝑁
௝=1  slots 

corresponding to all possible distinct AVs, i.e. ⋃ 𝐸௝
𝑁
௝=1 , in 𝐑. The slot associated with an 

AV 𝑒𝑘𝑙  contains the list of EIDs 𝐿𝑘𝑙 of the entities containing 𝑒𝑘𝑙 ,  where  𝐿𝑘𝑙 ൌ

൛𝑖 ൌ 1, … , 𝑀|𝐴𝑘
𝑖 ൌ 𝑒𝑘𝑙ൟ. 

 Construct SRV 

In Step 2, a statistical method is used to construct an Attribute-Value Association Frequency Matrix 

(AVAFM) to represent the frequency of occurrences of all the AV pairs obtained from R.  

Definition 2. AVA Relative Frequency Matrix AVAFM. AVAFM is a 𝑇 ൈ 𝑇 matrix of 

AVA relative frequencies between two AVs, say 𝑒𝑛𝑖 and 𝑒𝑛ᇱ௝. The frequency entry of the 

matrix is 𝑓𝑛𝑖↔𝑛ᇱ௝  =  ห𝐿𝑛𝑖 ∩ 𝐿𝑛ᇲೕห
𝑀

. 

Through AT, AVAFM can be constructed using the cardinality of the EID Intersection (EDI-I) of the 

AV pairs, i.e., | 𝐿𝑛𝑖  𝐿𝑛ᇱ௝ | of the AVA pair, say 𝑒𝑛𝑖 and 𝑒𝑛ᇱ௝ , instead of exhaustively searching and 

counting the AVA pairs directly from R.  

Then the Adjusted Statistical Residual (SR), denoted by 𝑆𝑅𝑛𝑖↔𝑛ᇱ௝ between an AV pair 𝑒𝑛𝑖↔𝑛ᇱ௝, is used 

to measure whether an AVA frequency (say between 𝑒𝑛𝑖 and 𝑒𝑛ᇱ௝) in the FM is statistically significant 

or not from  Eqn (1).  

𝑆𝑅𝑛𝑖↔𝑛ᇱ௝  ൌ  𝑟𝑛𝑖↔𝑛ᇲೕ

ඥ𝑣𝑛𝑖↔𝑛ᇲೕ
                                                                 (1)  

where  𝑟𝑛𝑖↔𝑛ᇱ௝ represents the standardized residual of 𝑒𝑛𝑖↔𝑛ᇱ௝; 

𝑟𝑛𝑖↔𝑛ᇱ௝= 
𝑂𝑐𝑐ሺ𝑒𝑛𝑖↔𝑛ᇲೕሻ−𝐸𝑥𝑝ሺ𝑒𝑛𝑖↔𝑛ᇲೕሻ

ඥ𝐸𝑥𝑝ሺ𝑒𝑛𝑖↔𝑛ᇲೕሻ
 ; 

𝑣𝑛𝑖↔𝑛ᇱ௝represents the maximum likelihood estimate of the variance of 𝑟𝑛𝑖↔𝑛ᇱ௝and 

𝑣𝑛𝑖↔𝑛ᇱ௝ ൌ Var൫𝑟𝑛𝑖↔𝑛ᇱ௝൯ ൌ   ሺ1 − |𝐿𝑛𝑖|
𝑀

∗ ห𝐿𝑛ᇲೕห
𝑀

ሻ;  

𝑂𝑐𝑐ሺ𝑒𝑛𝑖↔𝑛ᇱ௝ሻ =  𝑓𝑛𝑖↔𝑛ᇱ௝ ∗ 𝑀 (total number of occurrences for 𝐴𝑛𝑘 ൌ 𝑒𝑛𝑖 and 𝐴𝑛ᇱ𝑙 ൌ 𝑒𝑛ᇱ௝) 

𝐸𝑥𝑝ሺ𝑒𝑛𝑖↔𝑛ᇱ௝ሻ =  
|𝐿𝑛𝑖|∗ห𝐿𝑛ᇲೕห

𝑀
 ; (expected frequency) and M is the total number of entities.  
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Thus, the Space SRV, a 𝑇 ൈ 𝑇  matrix with the entry of 𝑆𝑅𝑛𝑖↔𝑛ᇱ௝  for each AV pair 𝑒𝑛𝑖↔𝑛ᇱ௝ , is 

constructed as that reported in [16].  

 Obtain Disentangled Space (DS) 

A greater detailed exposition on how to obtain DS can be found in our previous work [15]. Firstly, the 

row vector associating with the attribute YalXe ³a” is denoted as the a-vector. To disentangle the SRV, 

the Principal Component Decomposition (PCD) is applied on the SRV to obtain a set of PCs. The 

projections of the a-vectors on each PC are then re-projected onto a new SRV referred to as its 

corresponding RSRV (using the same basis vectors). After PCD, a set of k PCs denoted as PC = 

{𝑃𝐶1, 𝑃𝐶2, … 𝑃𝐶𝑘ሽ is obtained where 𝑃𝐶𝑘  is a set of projections of the a-vectors in a one-dimensional 

space from SRV. 

Then, as the coordinates of a row AV-vector in the SRV represents the statistical weights of that AV 

associating with another AV denoted by its column vector, PCD maps the a-vectors onto different 

uncorrelated (orthogonal) PC axes. Then if the projections of the a-vectors are mapped onto a new SRV 

with the same set of basis vectors, they are the corresponding a-vectors in the RSRV revealing the 

AVAs captured by that PC in the SRV but now re-projected onto the RSRV. 

Hence, the relation (AVAs) of the a-vectors captured by that PC will then be reflected in the 

corresponding RSRV. This is the essence of the SRV disentanglement. With the same basis vectors for 

all RSRVs as those of the SRV, a unified representation framework with the same set of basis vectors 

as SRV can be used to interpret the AVAs captured in different PCs. By adopting a consistent notation, 

the subscript k in RSRVk  corresponds to that in PCk . 

 Obtain Significant Second Order AVAs.  

Since the number of DSs (PCs or RSRVs) is as large as that of AVAs and each PC is independent to 

others, to obtain only the statistically significant second-order AVAs from each DS, a DS Screening 

Algorithm is devised to select only DS (denoted by DS*) that contains statistically significant SRs in 

their RSRV for PD. The selection of DS* is a great reduction of space complexity for PD. It is much 

succinct, robust and meaningful than choosing DSs based on variance (eigenvalue) of the PCs. 

Algorithm 1 presents the pseudocode for DS Screening. 
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Algorithm 1: DS Screening 
Input: All RSRV= {𝑅𝑆𝑅𝑉1, 𝑅𝑆𝑅𝑉2, … 𝑅𝑆𝑅𝑉𝑛ሽ, each 𝑅𝑆𝑅𝑉𝑘 = {𝑅𝑆𝑅𝑛𝑖↔𝑛ᇱ௝}; sig (=1.96) 
Output: Selected DS = {𝐷𝑆1

∗, 𝐷𝑆2
∗, …}   

 
%For each 𝑅𝑆𝑅𝑉𝑘, the task can be completed in parallel multitasking setting 
 
BEGIN 
For each 𝑅𝑆𝑅𝑉𝑘 in RSRV 
     For each 𝑅𝑆𝑅𝑛𝑖↔𝑛ᇱ௝ in 𝑅𝑆𝑅𝑉𝑘 

  If 𝑅𝑆𝑅𝑛𝑖↔𝑛ᇱ௝ ൐ 𝑠𝑖𝑔         
         Add 𝑒𝑛𝑖 and 𝑒𝑛ᇱ௝ in 𝐷𝑆𝑘

∗ 
   End    

     End 
 Add 𝐷𝑆𝑘

∗ in Selected DS 
Return Selected DS. 
END 

 AV Clustering 

Once a small set of DS*s is selected, AV clusters and sub-clusters are obtained for pattern discovery 

and entity clustering in an independent and parallel multitasking setting.   

Definition 3. Attribute-Value (AV) Clustering. A process finds one or two disjoint clusters 

in each 𝐷𝑆𝑘
∗ through a linear search of AV subsets RSRV such that each subset contains 

AVs within must have a significant AVA with other AVs in it. 

Thus, AV cluster(s) are incrementally grown from PC and RSRV. Figure 2(B) exemplifies the AV-

Clustering process. The AVs are grouped in the same cluster in the PC because each of them has at 

least one statistically significant AVA (from RSRV in green shade) with another AV within the cluster. 

The pseudo code of AV Clustering in DS* is presented in Algorithm 2. 

To introduce AV sub-clusters in a hierarchical manner, AVs in each AV clusters could be agglomerated 

by a similarity matrix identified through the degree of the overlapping AVs between entities. It uses 

similarity measures between all AVs pairs, say 𝑒𝑛𝑖 𝑎𝑛𝑑 𝑒𝑛′௝, in one DS* denoted as sim(𝑒𝑛𝑖, 𝑒𝑛′௝)ൌ

|𝑐𝑜𝑣ሺ𝑒𝑛𝑖ሻ ∩ cov(𝑒𝑛′௝ሻ|, where cov(𝑒𝑛𝑖ሻ and cov(𝑒𝑛′௝ሻ represent the entities covered by 𝑒𝑛𝑖 and 𝑒𝑛′௝ 

respectively. With the cardinality of EID-Intersection of their coverage as a distance measure, a 

complete-linkage hierarchical clustering algorithm is applied to obtain the clusters when a threshold 

which represents the lower boundary of similarity between two clusters is met. Then, to examine the 
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deep knowledge discovered from the data (the data space), it is would like to see how entities are 

grouped based on the AVAs obtained in the disentangled space DS*. Like AV cluster, an entity cluster 

is composed of the entities containing correlated AVs in an AVA disentangled space while being 

grouped into AV clusters. 

Algorithm 2: AV Clustering 
Input: DS𝑘

∗ = {𝑒𝑘𝑙|𝑘𝜖ሾ1, 𝑁ሿ, 𝑙𝜖ሾ1, 𝐼𝑘ሿ}, 𝑅𝑆𝑅𝑉𝑘, op 
Output: 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = {𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟1,« 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛}   
 
% The selected significant AVAs are ranked by SR values 
Initial setting: add two AVs of the first AVA in 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟1 
For each significant AVA (𝑒𝑛𝑖↔𝑛ᇱ௝) in 𝑅𝑆𝑅𝑉𝑘 
 For each existed 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
  If 𝑒𝑛𝑖 ሺor 𝑒𝑛ᇱ௝  ሻ has been in 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
         add 𝑒𝑛ᇱ௝ (or 𝑒𝑛𝑖) in 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
       End 
   End    
  If 𝑒𝑛𝑖 𝑎𝑛𝑑 𝑒𝑛ᇱ௝  are not in any existed 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
  create 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘+1 
  add 𝑒𝑛𝑖 𝑎𝑛𝑑 𝑒𝑛ᇱ௝ to 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘+1 
 End 

End 
Return 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ={𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟1,« 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛}                         

 High-Order Pattern Discovery 

After obtaining AV clusters and sub-clusters in different DS*s, a pattern discovery procedure applying 

statistical pattern hypothesis test to each AV cluster/sub-cluster is developed to discover high-order 

patterns. Figure 3 gives an example of three AVs co-occurring on the same entities. If their frequency 

of co-occurrences on same entities in R exceeds the statistical threshold, they are considered as a 

statistically significant pattern (Figure 3Error! Reference source not found.) based on the theoretical 

notion proposed in [10]. 

Definition 5. High-Order Pattern.  A high-order pattern 𝑃௝  consists of a subset of AVs with size ൒ 2, 

such that the frequency of their co-occurrences on the same entities in R deviates significantly from the 

random default model, i.e. that the distribution of AVs is equi-probable and they are independent in 

their occurrences.  
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Figure 3 shows an example of a high-order pattern. In PD, Adjusted Residual for a candidate 

pattern derived from the frequency of co-occurrences of a high order AVA is used in the hypothesis 

test for determining whether the AVA is a statistically significant pattern. The SR for a pattern 𝑃௝ is 

derived as     

𝑆𝑅ሺ𝑃௝) =
𝑅൫𝑃ೕ൯

ට𝑉൫𝑃ೕ൯
                                                                     (2) 

where 𝑅൫𝑃௝൯ ൌ 𝑂𝑐𝑐൫𝑃ೕ൯−𝐸𝑥𝑝൫𝑃ೕ൯

ට𝐸𝑥𝑝൫𝑃ೕ൯
 is the standard residual or Pearson Residuals, 𝑂𝑐𝑐൫𝑃௝൯ ൌ

| ⋂ 𝐿𝑛௝𝑒𝑛ೕ𝜖𝐸𝑛 |  is the frequency of its co-occurrences on the same entities; and 𝐸𝑥𝑝൫𝑃௝൯ ൌ

M ∏ 𝑂𝑐𝑐ሺ௝ሻ
𝑀𝑒𝑛ೕ𝜖𝐸𝑛   is the expected occurrences on the same entities, and V൫𝑃௝൯ ൌ 1 − ∏ 𝑂𝑐𝑐൫𝑃ೕ൯

𝑀𝑒𝑛ೕ𝜖𝐸𝑛  

is the standard deviation of all the residuals, M is the number of tuples of R.  

In order to keep the discovered patterns non-redundant, only delta-closed patterns [13] [30] are accepted 

in the pattern discovery process. Delta-Closed Patterns represents closed patterns with delta-tolerance. 

For example, for a discovered pattern 𝑃𝑖  with the occurrence 𝐾𝑃ೕ , if no super-pattern 𝑃௝  with the 

occurance 𝐾𝑃ೕ ൒ δ ∙ 𝐾୔𝑖  (δ is the tolerance factor) can be discovered, then 𝑃𝑖  is called delta-closed 

pattern. The processes reported in [12] are adopted, which also provides the definition of sub-patterns, 

super-patterns and delta-closed patterns, for pattern pruning. 

In summary, pattern discovery in DS* is a process by growing second-order patterns 𝑃𝑖  = {𝑒𝑛𝑖, 𝑒𝑛ᇱ௝} 

identified in the RSRV of DS * into third, fourth and incrementally higher order patterns from the AV 

clusters using the adjusted residual, Eqn. (2), for pattern test. There might me more than one pattern 

identified in the AV cluster/sub-cluster. The discovered patterns within an AV cluster/sub-cluster will 

constitute a pattern cluster (PG)/pattern sub-cluster (SubPG) respectively.  

 Output: PDD Knowledge Base 

The patterns discovered by PDD in the AV clusters of a DS* naturally become pattern clusters; and the 

entity clusters generated from the AV clusters will relate the entities directly within the orthogonal 

source environment captured in the DS*. Hence, the output is an all-in-one representation referred to 
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as a unified PDD Knowledgebase (PDDKB) which links the source environment, patterns and entities 

altogether for the ease of executing various posteriori data analytic tasks and interpretation.   

If the class labels are given, the discovered patterns that are associated with class could be used for 

supervised learning using associative classification algorithms [31]. The classification accuracy is 

assessed by taking the class labels as the ground truth. If the class labels are unavailable or not given 

in R, both the pattern clusters and the entity clusters are the unsupervised outcomes of PDD. Their 

accuracy can be assessed after assigning the class labels back to the corresponding entities. As shown 

in our previous works [17] [16] [32] [14], most results from cases with or without class labels given are 

almost identical. For example, Figure 4 shows the discovered patterns from Heart Disease Dataset with 

(Figure 4(A)) or without (Figure Figure 54 (B))  class labels given in R are almost identical, except that 

one pattern, with cpt=[3 4] in SubPG2 (Figure 4(A)) of PG1 in DS1 is not in Figure 4Figure 5 (B) 

for the case with no class label given since a single event cpt=[3,4] alone is not a pattern. 

Figure 4 Discovered Patterns for Heart Disease Dataset 

(A) with class label given in R  
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(B) class label not given in R.

 

The result presented in Figure 4 gives very strong support that the patterns discovered in the DS*s by 

PDD are much more distinctly associating with the disentangled sources reflecting the inherent 

characteristics of different classes/groups. Thus, without relying on prior knowledge, PDD can interlink 

AV clusters (function association), patterns, and entities together in a PDD Knowledge Base (PDDKB) 

to enhance supervised (with class labels), unsupervised (without class labels) and semi-supervised ML. 

Since PDD works with/without class labels [14] [16], it is able to address ML in a more general setting, 

including discovering rare events/patterns in DS*s and solving the imbalanced class, bias and noisy 

problems. Due to the transparency of its process, contents of its throughput and output, PDD can reveal 

established knowledge and/or new findings inherent in the throughput/output data assisted by experts 

and/or supporting evidences and experimental verification. 

3.2 Parameter Setting 

To grow high-order patterns in a DS* from their RSRVs, two parameters are needed to be specified in 

PDD: 1) statistical significance threshold sig; and 2) delta tolerance factor 𝜹 for pruning patterns; sig 

𝑆𝑅ሺ𝑃௝) is used to assess the pattern 𝑃௝ . In statistic, setting sig to be 1.96, corresponding to the p-value 

of 0.025 [33] is a common practice. The parameter 𝛿  is the sufficient fraction for a pattern to be 

considered as being mostly covered by its super-pattern [13] [12]. The choosing of 𝛿 ൌ 0.8  is a good 

practice. The overlap is an optional parameter used to evaluate the density of pattern sub-clusters with 

[0,1]. The upper bound, 1, correspond to the patterns in the same cluster cover the same entities, while 

the lower bound, 0, corresponding to no sub-cluster are constructed. For the overlap=n (0<n<1) 

corresponds to the overlapping percentage of the entities covered by the patterns in the same SubPG, 

not larger than n ൈ 100%. The overlap is set to 0.5 as a reasonable choice.  
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3.3  Time Complexity Analysis 

The time-complexity analysis of PDD, our other recent work [15] [16] and traditional High-Order 

Pattern Discovery (HOPD) [10] [12] for their major procedures is given as below.    

1) SRV Construction: when AT is used for SRV construction, for an N x M matrix R, the time-

complexity of PDD is O(MN) compared with O(ሺMNሻ2,of our previous method [10].  

2) Decomposition: SRV is an n×n matrix where n is the number of AVs. The time complexities of 

decomposition and reprojection using PCD are O(𝑛ଷ) [34] and O(𝑛2) respectively. Hence, the total 

time complexity of obtaining DS is O(𝑛ଷ)+O(𝑛2). However, it can be reduced to O(𝑛2) [35] when 

a distributed implementation of stochastic PCD is applied.  

3) DS* Screening: the complexity of searching each SR is O(𝑛2) if there are n attribute values.  

4) Pattern discovery on each DS*: The complexity of pattern discovery is exponential [36]. However, 

PDD reduces the number of candidates dramatically from all entities in R to a very small significant 

space DS*, so the time complexity is also reduced to O(2𝑐), where c is the number of candidate 

AVs in DS*, which is very small in comparison with n.  

In addition, the study [12] [11] shows great complexity challenges in the pattern post-analysis -- from 

fundamental concepts and algorithmic approaches, to existing data mining discipline. First, the 

computation complexity of pattern discovery is exponential O(2𝑁), and that of the pattern pruning is 

O(𝑝2) , where p depends on the number of patterns. p may be huge since the mined patterns are always 

redundant [12]. Even after pruning the mined patterns into a small number p¶, the complexity of pattern 

clustering algorithm and K-means is O(p’ଷ), Zhere p>>n and p¶>>n.  Therefore, instead of discovering, 

clustering and summarizing patterns with high complexity by traditional approaches [12] [11], PDD 

can obtain disentangled high-order patterns, PGs, SubPGs, ECs in an all-in-one step with low 

complexity. Since DS* is independent of each other, the PDD computational process can be executed 

in a parallel multitasking setting, further improving the speed of the entire process.  
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Chapter 4 

IQWeUSUeWabLOLW\ aQd BLaV AYRLdaQce CaSabLOLW\ Rf PDD 

To tackle the problem of lack of transparency existing in the current machine learning approach for 

predicWion, Whe e[perimenWal resXlW in Whis chapWer e[emplifies PDD¶s inWerpreWabiliW\ and the bias 

avoidance capability of pattern discovery. In section 4.1, a synthetic data set with implanted patterns is 

presented and the PDD result proves that the implanted patterns are discovered and can be easily used 

for pattern association interpretation. Section 4.2 presents the pattern discovery results on imbalanced 

datasets --- one on imbalanced synthetic dataset with implanted patterns and another on imbalanced 

clinical datasets. The results show that the patterns are still discovered even for the minority class due 

to the disentanglement capability of PDD.  

4.1 Pattern Discovery Result on Synthetic Dataset 

The experiment on a synthetic dataset is provided to demonstrate and validate the succinct and precise 

association interpretation capability of the PDD. The generated synthetic dataset is a 3000 x 16 matrix 

with first column as the class label and others as attributes with character values stochastically 

generated from a uniform distribution. Then the patterns generated for three different classes 𝐶1, 𝐶2, 

and 𝐶ଷ are embedded for the first ten attributes. To introduce noise and uncertainty, randomly generated 

character values are embedded in the other five attributes. To reveal attribute values and their 

association, a simple notation of AV is introduced.  The notation A1A, as an example, is used to 

represent that the attribute A1 takes on the character value A, and A3E/F to represent that the AV A3 

takes on value E or F and so forth. Some of the correlated character values on the same entities are 

generated from the embedded patterns for the first ten attributes. For the last five attributes, characters 

from ^³O´, ³P´, ³Q´` are randomly embedded. The patterns implanted in R are given in Table 2. Note 

that A1A, A2C, A3E/F are entangled (overlapping) for C1 and C2; A4H, A5M, A6A/B are entangled 

in C1 and C3; A7I, A8J, A9G/K are entangled in C2 and C3.  

Table 2 Embedded Patterns for the Synthetic Dataset 
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To indicate pattern entanglement and find out whether PDD is able to locate them in the synthetic data, 

the same sub-pattern is implanted in two different classes, indicating that the sub-pattern is common to 

and overlapping in both classes. Moreover, the sub-pattern also overlaps with other sub-patterns of the 

same or different classes. Hence, in a certain sense, patterns from different groups and even from the 

same entities are entangled. Though they are relating to different classes yet are difficult to separate, 

unless their associations with other AVs can be identified in AVA disentangled spaces.  As our 

experimental results show, without disentanglement, traditional methods, such as Apriori [9] and 

HOPD (High-Order Pattern Discovery) [10] [11], produces far too many redundant/overlapping 

patterns (Figure 5) but fails to render succinct pattern clusters associating with the implanted classes. 

The objective of this experiment is to show how these embedded patterns associating with different 

classes are entangled yet can be identified and interpreted succinctly as disentangled patterns from a 

small set of AVA clusters in the disentangled space with no/least entanglement without relying on the 

input knowledge. 

The results of Apriori [9] vary depending on the set value of support or confidence. For the threshold 

supp=20% and con=80%, it discovered 254 patterns associating with C2 and C3 but none with C1, 

since many of the C1 patterns overlap with C2 and C3 as partially shown in Figure 5(A). For 

support=10%, 4041 patterns associating with various classes were discovered. Many were associating 

ZiWh AV¶s conWaining in Whe attributes with random values (A11 to A15). When using Apriori, the 

threshold for support and confidence need to be set with class labels given. When HOPD [10], with 

significant level = 1.96 and the maximum order = 10, was applied, a large number (12,312) of patterns 

(up to order 10) were discovered. This number could be reduced by lowering the order of the patterns. 

Figure 5(B) shows the combinatorial nature of the patterns discovered. Though patterns are ranked, it 

is difficult to derive succinct interpretation. When pattern clustering [11] was applied, three pattern 

clusters were obtained (Figure 6). Three pattern clusters with 1084, 7758 and 3470 patterns were 

discovered. Each cluster contains patterns from associating with different or no class label. Each table 

shows the AV distributions of the attributes characterizing that cluster. The patterns are subsets of AV 

combinations in the cluster. The patterns were entangled in each cluster. Furthermore, both space and 

time complexity are high.   

When PDD was applied to R, a much small set of patterns were obtained from the PG/SubPG in the 

disentangled spaces without relying on class information. PDD discovered only 43 statistically 

significant patterns, and 22 of them pertaining to distinct classes (i.e. C1, C2, C3) as shown in the 
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comprehensive PDDKB (Figure 7). The implanted patterns are discovered, and the original entangled 

patterns are disentangled in the result of PDD in different DSs which can be explicitly interpreted. In 

order to show patterns discovered from the AVA disentanglement spaces and subgroups in the space, 

the Disentangle Space Unit (DSU) is introduced. As patterns are discovered from AV-clusters from 

different DS*, the SubPG1 is referred as the Pattern sub-cluster 1, PG2 as the Pattern cluster 2. Hence, 

a pattern with a triple code DSU[3 2 1] represents the pattern is in the DS3, Pattern cluster2 and Pattern 

Sub cluster1.  

In the Comprehensive PDDKB (Figure 7), the implanted patterns pertaining to C1 and C2 were found 

in PSG1 of DSU[1 1 1] in DS1 and PSG1 of DSU[2 1 1] in DS2 respectively in the AVA disentangled 

spaces. Patterns pertaining to C3 were found in both PG2 of DSU[1 2 1] and PG2 of DSU[2 2 1] 

respectively. Since PDD discovers patterns not based on classed labels, patterns pertaining to different 

classes can be found in the same DS if they share strong sub-pattern(s). For example, a pattern in DSU[2 

2 1] consisting of AVAs [A4H, A5M] pertains to C1 was discovered in the same DS* contains other 

patterns pertaining to C3. This can be interpreted that the sub-pattern A5M and A7D is actually the 

entangled sub-pattern of C1 and C3 as shown in Table 2. However, the other sub-pattern of C1 

consisting of [A3F, A4H, A5M] sharing A5M is common to a sub-pattern of C1 in DSU[1 1 1]. 

Nevertheless, each pattern, which may consist of sub-patterns found in other classes, is still associating 

with one distinct class. The pattern discovery results fully demonstrate the precise and explicit 

interpretability of PDD. Hence, in clinical application, PDD is able to discover a subset of signs-and-

symptoms shared by different disease complexes explicitly and succinctly. Furthermore, unlike cases 

in Apriori (Figure 5(A)), no pattern discovered by PDD was associating with A10-A15 since they were 

random attributes containing only noise. This also demonstrate the superior noise avoidance capability 

of PDD over other ML methods. When checking the entities clustering result, all those entities labeled 

as C1 were clustered into EG within DSU[1 1 1] and all those labeled as C2 and C3 were clustered 

within DSU[2 1 1] and DSU[1 2 1] respectively.  

Hence, this synthetic experimental result demonstrates the necessity and efficacy of the pattern 

disentanglement of PDD to relate concise/precise patterns to classes and the sources/causes as 

implanted through the experiment design. As the result shows, PDD renders a much small set of patterns 

(only 22) from the DS*s. They are succinctly and accurately associating with the implanted classes, 

while traditional methods, like Apriori [9] and HOPD [10] [11], usually produce an overwhelming 
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number of overlapping patterns with confused association due to their entanglement in the source 

environment particularly if the order of patterns specified is high. 

Figure 5  

(A) Pattern samples obtained by Apriori 

 

(B) Pattern samples discovered by traditional Pattern Discovery Approach 
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 Figure 6 Pattern Clusters Obtained by Traditional Pattern Clustering Method 

 

Figure 7 PDDKB obtained by PDD, both Summary PDDKB and Comprehensive PDDKB 

 

4.2 Pattern Discovery Bias Avoidance Result on Datasets with Imbalanced 
Classes   

 Materials 

Similarly, to validate the pattern discovery performance of PDD on imbalanced datasets, two 

imbalanced datasets are used.  

Dataset 1: Imbalanced Synthetic Dataset. The synthetic dataset 1 is stochastically generated as a 

2100 x 10 matrix with the first column as the class label and others as attributes with character values 
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from a uniform distribution. Then patterns of three different classes 𝐶1, 𝐶2, and 𝐶ଷ are embedded for 

the first 6 attributes. For example, A1A and A2C represent character values A and C for Attribute A1 

and A2. The patterns implanted in the data are summarized in Table 3. Note that A1A and A2C are 

entangled (overlapping) for C1 and C2; A3H and A4M are entangled in C1 and C3; A5B and A6J are 

entangled in C2 and C3. For the last three attributes, A7, A8 and A9, the random characters from {³O´, 

³P´, ³Q´` are inserWed to make them as noise attributes. Moreover, this synthetic Dataset is one with 

imbalanced class distribution with 1000 entities pertaining to C2 and C3 each, and 100 entities 

pertaining to C1.    

Table 3 Embedded Entangled Patterns for Dataset 4: Imbalanced Synthetic Dataset 

Classes Attribute Values are Significant Associated with Class Label 

C1 A1A, A2C, A3H, A4M/N, A5A, A6F 

C2 A1A, A2C/D, A3G, A4N, A5B, A6J 

C3 A1B, A2D, A3H, A4M, A5B, A6F/J 

Dataset 2 - Imbalanced Clinical Dataset: Thoracic Dataset: The thoracic dataset describes the 

surgical risk originally collected at Wroclaw Thoracic Surgery Centre for patients who underwent 

major lung resections for primary lung cancer in the years 2007-2011 [37]. The attributes included are 

given in Figure 8. This public dataset is provided after feature selection and elimination of missing 

values. It is composed of 470 samples with 16 pre-operative attributes after feature selection. The target 

attribute (class label) is Risk1Y. Risk1Y=T if the patient died. In this dataset, the class distribution is 

imbalanced with 70 cases being Risk1Y=T and 400 cases being Risk1Y=F.  

 Experimental Result on Imbalanced Datasets 

In this analysis, PDD is applied on both imbalanced synthetic and clinical datasets (Thoracic dataset). 

First, discovered patterns obtained  through PDD, Apriori [38] (a typical frequent pattern mining 

method) and a HOPD [10] (our early work closely resembling the pattern discovery reported in [32] 

[16]) are compared. Figure 9 and Figure 10 show the pattern discovery result of PDD on the Synthetic 

and Thoracic data respectively. Figure 11 presents the comparison results of all these three methods.   

From the pattern discovery result on the synthetic data, it is observed that:  
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Figure 8 Attribute Description of Thoracic Dataset 

 

i. A small set of four AV-Clusters (Figure 9(A)) was discovered by PDD. From these clusters a 

comprehensive set of patterns (Figure 9(B)) were discovered. Each of these patterns associates 

with a distinct class or subgroup in a DS*. 

ii. PDD discovered both the summarized patterns (Figure 9(A)) and the detailed patterns (Figure 

9(B)). The summarized patterns are the unions of attribute values used for growing all 

comprehensive patterns (high-order patterns.)  

iii. Figure 11 (A) shows the comparison results of the three methods in terms of their capability of 

discovering patterns from the rare classes as well as the number of patterns each method 

discovers. PDD is able to discover the pattern associating to the implanted patterns of the rare 
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class (Table 3) from AV Cluster 1 of DS2 (Figure 9(A)) whereas HOPD failed to discover due 

to the overwhelming number (770) of overlapping and entangled patterns (Figure 11(A)) as 

disclosed. Apriori, after fine-tuning the support and confidence, discovered only a few rare 

cases (Figure 11(A)) but also a large number of patterns (946 and 962). Note that PDD 

discovered only 9 patterns which correspond with the implanted patterns/sub-patterns (Table 

3).   

Furthermore, when comparing the implanted patterns with the pattern discovery result of  PDD (Figure 

9(C)), it is observed that  all patterns (in colored bold fonts) discovered by PDD associates with correct 

classes in disentangled spaces except one in the last row of P2 as it has a sub-pattern (A2D,  A5B, A6J) 

overlapping with a sub-patterns in C3 (Figure 9(C)). However, the values of the statistical residual of 

the overlapped patterns are obviously lower than the others from both C2 and C3. These results could 

be influenced by the implanted entangled sub-patterns [A5B, A6J], which is exactly the sub-patterns in 

C2 entangled with that in C3. This explains why these patterns are all found in AV Cluster 2 of DS2.  

Figure 9(C) also shows high SR for the implanted patterns assigned with the correct classes and low 

SR for the entangled cases such as those shown in the last row of P2 and P3. In Figure 11(A), we 

observed that for both Apriori or HOPD, they discovered a large number of patterns which are most 

likely redundant and/or overlapping with one another. It is also noted that some of the discovered 

patterns are associating with class labels while some others are associating with AVs in the noise 

columns A7, A8 and A9.   

From the pattern discovery result on the Thoracic dataset, similar phenomena as described in item (i) 

to (iii) as in the case on the synthetic data if replacing Figure 9 and Figure 11(A) with Figure 10 and 

Figure 11(B) respectively. Figure 10 (A) shows four AV-Clusters, two in each AVA disentangled Space 

(DS1 and DS2). Each AV-cluster contains the union of all the patterns discovered in different subgroups 

(Figure 10(B)).  

Figure 11(B) shows the comparison results of PDD and other two methods when applying to the 

Thoracic data. First, when the number of patterns is large with considerable redundant and overlapping 

patterns, it is difficult to interpret the pattern outcomes relevant to problem.  The number of patterns 

obtained by Apriori and HOPD are huge.  Apriori only outputs patterns from dataset only if the class 

labels are given. HOPD can output all the patterns discovered among the growing set of the candidate 

patterns. Hence, the number of high order patterns are overwhelming. For a dataset R with m attributes, 
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there are an exponential number of AV combinations being considered as pattern candidates. So, the 

number of patterns outputted by HOPD is huge. Next, it should be examined whether the Apriori and 

HOPD are able to discover the patterns associated with the minority class. For Apriori, the result 

depends on the set value of the threshold, support, and confidence. When the threshold of support is 

low, more patterns are discovered which may cover those in the minority class, but the number of 

patterns is huge.    

In summary, this experimental result shows that PDD is able to discover fewer patterns with specific 

association to the classes/source-environment in support of easy/feasible interpretation. Furthermore, 

even with few patterns, it is able to represent succinct and statistical/functional characteristics of both 

classes even when the class distribution is imbalanced.  

With the capability to render a small, succinct and reliable set of patterns discovered from distinct 

sources, PDD is different from the existing model-based approach to rely on a priori knowledge and 

post processing.   

In the clinical data analysis, in order not to spend significant involvement and efforts in precise planning 

before the analysis, domain users would like to perform prediction without requiring sophisticated 

handling [3]. PDD performs good results with good interpretability without knowing priori knowledge.  

In reference [39], the authors presented the rules they discovered from the Thoracic dataset. For 

e[ample, Whe rXle ³(PRE14 = OC14) => Risk1Yr = T´ as presenWed in Whe reference [39] with the highest 

accuracy was also discovered in the result of PDD in PG1 of DS1.  The experimental results show that 

PDD is possible Wo idenWif\ cases of higher risk of paWienW¶s deaWh afWer sXrger\. In Whe resXlW of PDD, 

when the value of attribute of PRE8 to PRE11 (Figure 8) are recognized as T, patients may have the 

higher risk of death after surgery, otherwise, patients have lower risk.  
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Figure 9 PDD Pattern Discovery Result from Synthetic Dataset 

 

(A) In the First and the Second DS* two AV-clusters were discovered 

 

(B) Detailed Patterns associating with different classes were discovered from the above two AV-

Clusters. 

 

(C) Comparison beWZeen implanWed paWWerns and PDD¶s oXWpXW.  
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Figure 10 Pattern Discovery Result of Thoracic Dataset using PDD 

 

 

(A) In both First and the Second Disentangled Space, two AV Clusters corresponding to Risk1=T and 

RISK1=F were discovered  

 

(B)  Detailed Patterns discovered from the above tow AV Clusters. 
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Figure 11 Comparison Result between PDD and Traditional Pattern Discovery Approaches on 

Imbalanced Datasets 

 

 

(A) Comparison of Pattern Discovery Result on Synthetic Dataset  

 

(B) Comparison of Pattern Discovery Result on Thoracic Dataset 
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Chapter 5 

UQVXSeUYLVed LeaUQLQJ BaVed RQ PDD 

5.1 Clustering using PDD 

As mentioned in Chapter 3, the first set of output of PDD consists of the discovered AVAs and AV 

Clusters obtained from a small statistically significant set of DSs with maximum SR in their RSRV 

exceeding the threshold of statistical significance. Based on the AVs pertaining to the AV clusters, 

other outputs such as entity clusters and anomaly cases can be detected. The entity clusters can be 

obtained by maximizing the overlapping number of AVs shared by a group of entities and the AV 

clusters. The anomaly cases, which are defined as the entities not possessing AVAs pertaining to their 

labelled group (class) but to no class or other classes, can be obtained from their relation to AV Clusters 

found by PDD. 

For relational datasets in a clinical setting, an ³entity" in PDD represents a patient or a patient record. 

Thus, the Entity Clustering (EC) is the process to cluster the patients according to their characteristics 

discovered in the pattern discovery process without using class information. To state it formally,  the 

Entity Clustering (EC) process in Disentangled Spaces is a process to assign each entity in R to an AV 

Cluster in certain DS* by maximizing the number of AVs that  the entity share with the AV cluster, i.e. 

the number of AVs of that entity found in that AV cluster. Its pseudo-code is given in Algorithm 3.  

Algorithm 3: Entity Clustering 
Input:  
𝑨𝑽𝑪𝒍𝒖𝒔𝒕𝒆𝒓 ={𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟1,« 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛+1ሽ 
R ሺ𝐴𝑖 ൌ ሼ𝐴𝑛

𝑖 |𝐴𝑛
𝑖 𝜖{𝑒𝑛1, 𝑒𝑛2, … 𝑒𝑛𝐼𝑛ሽሽ 

Output: 𝐸𝐶 = { 𝐸𝐶1,« 𝐸𝐶𝑛+1} 
Procedure EntityClustering 
 
Begin 
    For each entity, 𝐴𝑖 , in R 

  For each 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
   Sharing = 𝐴𝑖 ∩ 𝐴𝑉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑘  
       End    

      Assign 𝐴𝑖 into 𝐸𝐶𝑘  by maximizing sharing 
  End 
Return 𝐸𝐶 = { 𝐸𝐶1,« 𝐸𝐶𝑛+1},  𝐸𝐶𝑘 ൌ ሼ𝐴𝑖|𝐴𝑖 ൌ ൣ𝐴1

𝑖 , … 𝐴𝑁
𝑖 ൧, 𝐴𝑛

𝑖 𝜖{𝑒𝑛1, 𝑒𝑛2, … 𝑒𝑛𝐼𝑛ሽሽ 
End 
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5.2 Materials 

To show that PDD can relate pattern/entity clusters with class/functionality, two clinical and one 

pathological datasets are used.  

Dataset 1: Heart Disease Data Set (Heart): Heart Disease [40] dataset is a health care benchmark dataset 

from UCI repository [41], which contains 270 clinical records with 13 mixed-mode attributes in two 

possible classes: Absence or Presence (of heart disease). 

Dataset 2: Breast Cancer Wisconsin Data Set (Cancer): The Breast Cancer Wisconsin dataset [42] is a 

health care benchmark dataset taken from UCI repository [41], which is a classical dataset with 682 

cases for discriminating the instances of two possible classes: Benign (distribution=65.5%) and 

Malignant (distribution=34.5%). Figure 12 shows the descriptions of the attributes in Heart Disease 

dataset and Breast Cancer dataset.  

Figure 12 Attributes in Heart and Cancer Datasets 
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5.3 Entity Clustering 

Although the process of clustering individuals does not require class label information, the performance 

of the clustering results can be evaluated by two statistical measures using the presumed class labels as 

ground truth. One was "accuracy" which was defined as   

𝑻𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔 𝒍𝒂𝒃𝒆𝒍𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 
𝑻𝒉𝒆 𝒕𝒐𝒕𝒂𝒍  𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔  

The accuracy reflected the quality of the discovered clusters [46]. The more commonly used measure 

was F-measure [47], which was calculated using True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN) by the equation:  

𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 ൌ  
𝟐𝑻𝑷

𝟐𝑻𝑷 + 𝑭𝑵 + 𝑭𝑷 

The result of PDD is compared with K-means. SPSS Modeler 14.1 was used for K-means clustering 

which accepted a mix-modal data types, including both categorical and numerical values in a dataset. 

 Experimental Result on Clinical Datasets 

In this section, two benchmark datasets, Heart Disease data set (Heart) and Breast Cancer data set 

(Cancer) were used for clustering. Figure 13 and Figure 14 show the comparison results of clustering 

for the Heart and the Cancer datasets respectively.  

For Heart Disease, Figure 13 shows that PDD (F-measure=0.83, Accuracy=82.87%) outperforms K-

Means on both original numerical (F-measure=0.59, Accuracy=59.26%) and discretized datasets (F-

measure=0.81, Accuracy=81.48%) in F-measure and Accuracy. For Cancer, Figure 14 shows the results 

of Accuracy and F-measure of PDD vs K-Means on the discretized datasets are closer since this dataset 

contains less noise. But the leverage is that PDD could reveal all the patterns in the Entity Clusters 

while K-Means could not. It opens the door to visualize patterns in clusters formed.  
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Figure 13 The comparison of entity clustering result of K-means (on numerical data (N) and 
discretized data (D)) and PDD on Heart Disease Dataset 

 
Figure 14 The comparison of entity clustering result of K-means (on numerical data (N) and 

discretized data (D)) and PDD on Breast Cancer Dataset. 
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5.4 Anomaly Detection 

 Experimental Result on Clinical Datasets 

To demonsWraWe PDD¶s abiliW\ Wo idenWif\ anomalies and improYe Whe classificaWion accXrac\ if Whe\ are 

idenWified and remoYed from R before Wraining and classificaWion, Whe HearW Disease daWaseW and Cancer 

daWaseW Zere Xsed firsW. 

AfWer enWiW\ clXsWering, Whe enWiWies (paWienWs) are clXsWered inWo differenW groXps. The anomal\ check can 

be condXcWed. The anomalies, Zhich are defined as Whe enWiWies noW possessing AVAs perWaining Wo Wheir 

labelled groXp (class) bXW Wo non-class or oWher classes, can be obWained from Wheir relaWion Wo Whe AV 

ClXsWers foXnd b\ PDD. The common paWWerns for PD eligibiliW\ and anomal\ cases Zere reporWed in 

Whe folloZing secWion. These anomal\ enWiWies ma\ arise from: 1) oXWliers in Whe giYen daWaseW; or 2) 

some enWiWies ma\ correspond Wo an anomal\ case or an earl\ sWage of disease alWhoXgh being labeled 

as ³healWh\´. 

As menWioned in chapWer 3, Whe PDDKB conWains sXmmari]ed PDDKB and comprehensiYe PDDKB. 

The sXmmari]ed PDDKB conWains Whree secWions. 

1) In Whe DS secWion, each DS UniW (DSU), idenWified b\ a Wriple code made Xp of Whe inde[ of Whe DS*, 

paWWern clXsWer and sXb-clXsWer, represenWs Whe disenWangled AVA soXrce from Zhich Whe paWWern is 

discoYered. For e[ample, a paWWern ZoXld associaWe ZiWh a DSU [3 2 1] if iW is discoYered in Whe sXb-

clXsWer 1 of Whe paWWern clXsWer 2 of DS3.  

2) The sXmmar\ PDDKB sXmmari]es all Whe paWWerns as a sXper-paWWern (Whe Xnion of Whe paWWerns) in 

each DSU denoWed b\ Wheir Wriple code. 

3) In Whe enWiW\ secWion, each colXmn represenWs an indiYidXal ZiWh a disWincW EID and iWs class label (if 

giYen). The nXmeral on a colXmn and a roZ represenWs Whe nXmber of paWWerns Zhich Whe enWiW\ on WhaW 

colXmn possesses in Whe specific DSU on WhaW roZ. For e[ample, in FigXre 17, Whe nXmeral 8 for enWiW\ 

E37 denoWes WhaW iW conWains 8 paWWerns in Whe DSU [1 1 2] as shoZn in Whe comprehensiYe PDDKB. 

In Whe ComprehensiYe PDDKB, all Whe paWWerns/AV-clXsWers possessed b\ an enWiW\ are lisWed on WhaW 

colXmn. Hence, PDDKB encompasses all Whe inWegraWed deep knoZledge discoYered from R. 

ComprehensiYe PDDKB also conWains Whree secWions same as Whose described in Whe sXmmari]ed 
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PDDKB e[cepW WhaW each roZ conWains jXsW a one discoYered paWWern from Whe DSU.   

In the summary section, the summary patterns summarize the AV clusters (or pattern clusters) listed in 

the DSU in the Comprehensive PDDKB. For instance, the AVs in the first row represents the union of 

all AV clusters found in the DSU in the Comprehensive PDDKB. Each of them links to a list of 

indiYidXal enWiWies (denoWed b\ µ1¶) in Whe EnWiW\ SecWion (EnWiWies) Zhere each column represents an 

entity with EID and class label (if given). In the Summary PDDKB, the numeral on each column (like 

8 associating with E37 in Figure 17) denotes the number of patterns/AV-clusters discovered from the 

DSU [1 1 2]. In the Comprehensive PDDKB, on Whe same colXmn, a nXmeral of ³1´ is displa\ed on Whe 

row containing a special AV cluster (or pattern) that the entity possesses. 

The result of anomaly detection of Heart dataset and Cancer dataset are presented in Figure  15 and 

Figure 17 respectively. As Figure 15 shows, entities E122 and E131 are rare cases since they are 

labelled as ³Absence´ bXW possess paWWerns perWaining Wo Whe ³Presence´ groXp.  

Figure 15 Summary PDDKB and Comprehensive PDDKB Obtained from Heart Dataset.  

 

For the Cancer dataset, Wo e[emplif\ PDD¶s capabiliW\ Wo discoYer paWWerns for small/rare classes and 

discriminate biases/anomalies [49], two small transition groups are inserted into the dataset -- 

Transition1 and Transition2  (with 30 samples each, 4% of the whole data). They were stochastically 

generated with transitional AVs from Benign to Malignant to mimic the early stage of cancer. Figure 
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16 gives the quantized AVs of the transition groups. The yellow and green blocks are the majority 

patterns from Benign and Malignant classes respectively. The first 682 samples were taken from the 

original data and those from 683-712 and 713-742 were taken from Transition1 and Transition2 

respectively. These small transition groups, if spotted, may help to detect the progression of cancer 

from early to late stage [50]. 

Figure 16 The inserted patterns for the rare case groups of Cancer Dataset. (Data quantization 

put each AV for each group in the same intervals.) 

 

In the PDDDB given in Figure 17, all 743 entities were included though not totally shown in the list.  

Most of them associate with correct DSU/class labels. However, PDD unveils some outliers such as 

E36 shaded in yellow. An outlier is an entity that does not possess a pattern according to a prescribed 

statistic threshold, whereas a rare case is one which possesses patterns of classes not as labeled in R 

(green shaded boxes) (Figure 17). For example, E407 and E422 were labeled as Benign but both possess 

patterns discovered as associating with Malignant with none in the Benign. Similarly, E462 was labeled 

Malignant, but possesses only patterns in the Benign. In healthcare, it is crucial if rare patients could 

be spotted earlier before therapy and treatment because they may be misdiagnosed patients or the early 

cases of the disease.  

Once the PPDKB is completed, simple algorithms can be used to accomplish various ML tasks and 

naturally allows integrated analytics, interpretation, knowledge tracking and organization to fulfil the 

goals of precise data analytics. 
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Figure 17 Summary PDDKB and Comprehensive PDDKB Obtained from Cancer Dataset. 
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Chapter 6 

SXSeUYLVed LeaUQLQJ BaVed RQ PDD 

6.1 Classification using PDD 

As discussed in Chapter 3, the patterns discovered from the entire dataset can be used for e[perWs¶ 

results interpretation. The summarized pattern is more succinct and easier to interpret. The high-order 

patterns in the comprehensive set can provide all the detailed patterns for interpretation. For supervised 

learning, to evaluate the performance of the learner, patterns discovered from the training data with 

class labels given can be used for predicting the testing data. Then, the summarized patterns associated 

with a specific class discovered from the testing data are used to predict whether the entity belongs to 

that class or not. Figure 18 provides a schematic overview of the classification process using PDD.  

Figure 18 Overview of Classification Process 

 

Let (𝑃௝, 𝐶) represents a summarized pattern 𝑃௝  associated with class label C, and 𝐸𝑖 represent the entity 

needed to be predicted. Based on the mutual information in statistical information theory, the Weight 
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of Evidence [51] [31] of all the AVs in the summarized patterns are used to determine whether the class 

label for 𝐸𝑖, 𝐶ሺ𝐸𝑖ሻ, will have more weight than that for predicting it as pertaining to other classes.   

6.2 Materials 

One of Whe noYel componenWs in Whe sXperYised learning process of PDD is Whe idenWificaWion of oXWliers 

and rare cases. DXe Wo Whe reasons for anomalies cannoW be confirmed, Whose anomal\ cases are remoYed 

before Wraining process. Since if Whe anomalies are mislabeled cases or oXWliers, Whe resXlW of predicWion 

ma\ be impacWed.  

Three clinical daWaseWs Zere Xsed Wo demonsWraWe PDD¶s abiliW\ Wo idenWif\ anomalies and improYe Whe 

classificaWion accXrac\ if Whe\ are idenWified and remoYed from R before Wraining and classificaWion. The 

firsW WZo daWaseWs HearW Disease DaWaseW and BreasW Cancer DaWaseW are described d in chapWer 5. In order 

Wo demonsWraWe Whe efficac\ of Whe performance of PDD for classif\ing imbalanced daWaseW, Whe Whoracic 

daWaseW is Xsed. 

Imbalanced Clinical Dataset: thoracic dataset. This dataset describes the surgical risk originally 

collected at Wroclaw Thoracic Surgery Centre for patients who underwent major lung resections for 

primary lung cancer in the years 2007-2011 [37]. The attributes included are given in Figure 19. This 

public dataset is provided after feature selection and elimination of missing values. It is composed of 

470 samples with 16 pre-operative attributes after feature selection. The target attribute (class label) is 

Risk1Y. Risk1Y=T if the patient died. In this dataset, the class distribution is imbalanced with 70 cases 

being Risk1Y=T and 400 cases being Risk1Y=F.  

6.3 Result 

 Experimental Result on Clinical Datasets 

In this section, the comparison of classification results between PDD and other classification methods 

are provided for two clinical datasets, Heart Disease and Breast Cancer. The comparison results on the 

imbalanced thoracic datasets are reported in the next section. In all these experiments, 80% of the 

available data for each class was selected randomly as training data and the 20% remaining was retained 

as testing data. The classification accuracy results of PDD are compared with those from support vector 

machine (SVM) and artificial neural network (ANN) [52], using the original dataset and that after the 
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outliers and rare entities are removed. The experimental runs were iterated 10 folds to calculate the 

average classification accuracy for performance assessment and comparison.  

To shoZ WhaW PDD can idenWif\ sXch disWincW rare enWiWies, for HearW Disease DaWaseW, all Whe abnormal 

enWiWies and oXWliers are remoYed Wo prodXce a clean daWaseW Zhich conWains ³Absence´ enWiWies, E1 Wo 

E130 and ³Presence´ enWiWies, E131 Wo E237. FigXre 20 shoZs Whe comparison resXlWs of classificaWion 

accXrac\ beWZeen PDD and oWher algoriWhms. AfWer Whe remoYal of anomalies, Whe classificaWion resXlWs 

Xsing differenW algoriWhms are improYed appro[imaWel\ 10%. 

Figure 19 Attribute Description of Thoracic Dataset 

 

Similarly, Figure 21 shows the classification accuracy with variance by different algorithms for Breast 

Cancer dataset. There is 2-3% and 10% improvement on these datasets respectively after removing 
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outliers and rare entities identified by PDD. Actually, it is not meaningful if the outliers and rare entities 

are taken into the training, so the accuracy should be assessed using the ground truth when these entities 

are removed from the training set. The results show the removal is able to enhance the accuracy of all 

methods. As shown in the Breast Cancer Case (Figure 21), SVM, due to is strong discriminative ability, 

has superior performance than that of ANN and PDD though only about 1% higher. When the outliers 

and rare cases are removed, though its accuracy is improved 1% yet it is 1% lag behind that achieved 

by PDD. In this study, it is shown that PDD not only possesses the throughput/output transparency and 

interpretability, but also superior in classification accuracy especially when the outliers/rare entities are 

identified and removed while at the same time out-performs others much more in the case when the 

data size for different classes is imbalanced as shown in the next section. This is important for disease 

diagnosis since outliers not having significant disease associations and mislabeled in the training dataset 

can lower the diagnostic accuracy [2] [5]. 

Figure 20 Comparison of Classification Accuracy Result between Original Dataset and Dataset 

after Removing Anomalies on Heart Disease Dataset 

 

SVM ANN PDD
Original 82.09% 82.38% 81.94%
After Removing Outliers 93.95% 92.12% 93.47%
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Figure 21 Comparison of Classification Accuracy Result between Original Dataset and Dataset 

after Removing Outliers on Breast Cancer Data Set 

 

 Experimental Result on the Imbalanced Dataset 

In this section, to validate the performance of PDD for classification on imbalanced class, the prediction 

results of diagnostic outcomes of the Thoracic dataset with imbalance class distribution are provided. 

For the imbalanced class problem, usually the targeted group is the minority group. Since the correct 

prediction of the majority classes will overwhelm that of the minority classes, the prediction 

performance should not be evaluated based on the accuracy criterion. It should be evaluated by the 

Precision and Recall of the minority class and the F1-Score which summarizes the harmonic mean of 

both the majority and the minority groups.  Thus, F1-score=0 if the number of true positive TP = 0. In 

this experiment, the average Precision, Recall and F1-Score obtained from the 20 10-fold cross-

validation of the three classification methods were obtained and shown in Figure 22. The comparison 

results showed that PDD outperformed the other two classification methods. When comparing with a 

SVM ANN PDD
Original 97.30% 96.55% 96.30%
After Removing Outliers 98.63% 99.39% 99.71%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

Cancer Dataset

Original After Removing Outliers
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recent pattern discovery method PD, PDD outperformed PD in both precision and F-measure. The 

results on the same dataset are taken from the work reported in [3]. The PD method [3] acquired lower 

precision rate than that of PDD, but a F1-Score of 0.3r0.01 which is close to that obtained by PDD  

(F1-Score=0.31r0.02). It is also noted that Decision Tree misclassified all the test cases since it did not 

discover any rule for the cases with Risk1Y=T. The experimental result on clinical data with high 

imbalanced class ratios shows that PDD does have a better interpretability and prediction performance 

for minority target. Due to the subtlety of the risk factors in the Thoracic data, though the precision and 

F1-score obtained by PDD are superior to those of the other methods, the ratios are still low. However, 

it shows that even for this type of fuzzy imbalanced data, PDD did pick up some subtle factors where 

other methods fail.    

As the pattern discovery result on imbalanced data shown in chapter 4, PDD renders superior prediction 

performance and interpretability since it produces and uses much smaller set of succinct disentangled 

patterns. All the result it obtains are statistically robust, comprehensive, displayable in succinct concise 

and precise represenWaWion for e[perWs¶ inWerpreWaWion. IW also overcomes the limitations of lack of 

transparency [4] as well as the problem of imbalanced class [2] [4] [5] [6]. As a clinical data analysis 

Wool on relaWional daWa, iW has a significanW adYanWage oYer µblack bo[¶ ML algoriWhms as Whe oXWpXWs of 

cPDD is both interpretable and transparent, the two major challenges of interpretability and 

applicability [53] confronting ML today. Hence, PDD brings data analytics to clinical experts for direct 

interpretation of the discovered results to enhance their insight and understanding with statistical and 

rational accountability.  
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Figure 22 Average Classification Result from 20-times 10-fold Cross-Validation on Thoracic 

Dataset 
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Chapter 7 

CRQcOXVLRQ 

In this study, the proposed PDD, with a novel theoretic concept and effective and efficient algorithm 

design, plays a significant role in relational data analysis, especially the clinical data analysis. It is the 

first AI system to discover patterns from AVA disentangled spaces and attain deep knowledge using 

an all-in-one interpretable integrated knowledge base obtained by the system. It represents the results 

in a unified representation interlinking the sources, patterns and entities together to enhance accuracy, 

avoid biases and render interpretability for various ML tasks. Since the results of PDD obtained are 

robust, explicit and displa\able for e[perWs¶ inWerpreWaWion, qXesWion-answering and knowledge base 

construction, it overcomes the limitations of current ML methods when confronting  bias, rare groups, 

anomalies [2] [4] [5] [6] and lack of transparency [4]. PDD is an effective and credible method to render 

empirical evidence from relational data [3].     

In data analytics, PDD discovers patterns while simultaneously assembling them into pattern/entity 

clusters to support decision-making and further knowledge exploration and organization, solving both 

supervised and unsupervised learning problems in ML. Furthermore, its use of Address Table and 

Entity ID to assist pattern discovery is a novel time-complexity reduction strategy versus exhaustive 

search in high dimensional feature spaces or manifolds [11] [10].  

In addiWion, PDD has a significanW adYanWage oYer µblackbo[¶ ML algoriWhms as iW oYercomes major 

hurdles --- interpretability, creditability and applicability --- in ML [53]. PDD outputs a statistical 

supported comprehensive and interpretable unified knowledge representation (PDDKB) containing a 

few smaller sets of distinct and explicit patterns/pattern-clusters related to different functional sources, 

interlinking patterns, source environments and individual entities for medical applications. 

In Chapter 4, PDD shows the discovered patterns in disentangled spaces based on intrinsic statistically 

significant AVAs, even for imbalanced clinical data. It does not require explicit prior knowledge, which 

is often hard to get/justified. Then, In Chapter 5, it demonstrates that patterns discovered from the 

disentangled spaces are naturally better separated to produce more accurate results in pattern/entity 

clustering instead of relying on similarities. Since these clusters are more specific and less affected by 

the class/group size or biases, PDD is apt to solve the imbalanced class [6] [54] and anomalies problem 

[2], and can even go deeper to attain precise solutions for the rare/imbalanced cases. In Chapter 6, the 
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supervised learning result shows that PDD renders robust and credible solutions with high accuracy 

and interpretability, even for the clinical practice with imbalanced targeted groups.  

PDD furnishes clinical/statistical support, linking diagnostic patterns to the etiological origins and 

individual patients with evidence explicitly displayable to medical professional, allowing the relevant 

experts or doctors to make further examination, testing, assessment and therapeutic decisions. Hence, 

it can contribute significantly to early disease prediction/diagnosis, therapeutic treatment, and prognosis 

evaluation of various conditions, particularly for depression [55], complex neuropsychiatric disorders 

such as Autism Spectrum Disorders [56] and stroke [57]. PDD can provide answers and interpretations 

to clinical questions/problems, which can be communicated to patients and/or healthcare helpers by 

physicians [2].  

As future work, from the perspective of technology, the performance of PDD can be improved in the 

following two aspects. Firstly, different strategies and levels of discretization may impact the 

interpreting and prediction results of PDD. So, more experiments will be implemented to prove which 

discretization methods will be followed, machine learning methods applied automatically, or the 

clinical suggestions. Secondly, the traditional associative classification was applied for prediction. In 

order to improve the prediction performance using discovered patterns, more advanced machine 

learning strategies, such as ensemble classification methods and boosting associative classification 

method can be applied.  

In addition, from the perspective of application, PDD can also be applied for proteomic and genetic 

medical studies. In proteomic, PDD can reveal imbalanced taxonomic classes (rare mutants) and 

subgroup characteristics of conserved functional domains, attaining accurate and explicit predictive 

analytic results without relying on prior knowledge. In addition, PDD will be extend to apply to 

unstructured data (e.g. text and sequences) [14] [58] by extracting AVAs directly from them as shown 

in our early work [59], which allow the paWienWs¶ medical records are used as input data. Moreover, for 

performance improvement, parallel computing strategy will be introduced to handle bigger data and 

further speed up the computational time.  

In conclXsion, PDD can bridge Whe µAI chasm¶² the gap between creating a scientifically sound 

algorithm and its application to real-world problems [60]. It will play an important role in empirical 

and data sciences as it brings AI closer to experts with insight and accountability, meeting the scientific, 

economic, legal and social challenges for AI in healthcare and data analytics for the years to come. 
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