
Sum-of-norms clustering: theoretical
guarantee and post-processing

by

Tao Jiang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2020

c© Tao Jiang 2020

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The work presented here was done in collaboration with my advisor Professor Stephen
Vavasis and his student Chen Wen Zhai. I was a major contributor to all the results
contained in the chapters.

iii

Abstract

Sum-of-norms clustering is a method for assigning n points in Rd to K clusters,
1 ≤ K ≤ n, using convex optimization. Recently, Panahi et al. [21] proved that sum-
of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction
that the number of samples is not too large. The first contribution of this thesis is to lift
this restriction, i.e., show that sum-of-norms clustering can recover a mixture of Gaussians
even as the number of samples tends to infinity. Our proof relies on an interesting char-
acterization of clusters computed by sum-of-norms clustering that was developed inside a
proof of the agglomeration conjecture by Chiquet et al. [8]. Because we believe this theorem
has independent interest, we restate and reprove the Chiquet et al. [8] result herein.

Multiple algorithms have been proposed to solve the sum-of-norms clustering problem:
subgradient descent by Hocking et al. [12], ADMM and ADA by Chi and Lange [6], stochas-
tic incremental algorithm by Panahi et al. [21] and semismooth Newton-CG augmented
Lagrangian method by Sun et al. [28]. All algorithms yield approximate solutions, even
though an exact solution is demanded to determine the correct cluster assignment. The
second contribution of this thesis is to close the gap between the output from existing al-
gorithms and the exact solution to the optimization problem. We present a clustering test
which identifies and certifies the correct clustering from an approximate solution yielded by
any primal-dual algorithm. The test may not succeed if the approximation is inaccurate.
However, we show the correct clustering is guaranteed to be found by a primal-dual path
following algorithm after sufficiently many iterations, provided that the model parameter
λ avoids a finite number of bad values. Numerical experiments are implemented to support
our results.

iv

Acknowledgements

I cannot express my gratitude enough to my advisor, Professor Stephen Vavasis, for his
ceaselessly guidance, support and care. He introduced me to the amazing world of contin-
uous optimization and helped me develop as a researcher. Being a brilliant mathematician
himself, he has always been incredibly humble, acknowledged my work and celebrated my
achievements. Working with Steve has been thoroughly enjoyable, and I am very grateful
for having the privilege to have done so.

I would like to dedicate this thesis to my most loving parents for their unconditional
love. They have always been supporting me to follow my passions, helping me become
someone that I am proud of and granting me confidence in living my life to the fullest.
These are the best gifts a child could ask for from her parents, and I am thankful to have
them all.

I would like to thank all my exceptional friends for their love and company. All the
laughter and tears, coffee and beers, movies and concerts, rockclimbing and hiking, dancing
and fencing have made my journey at Waterloo extremely precious and memorable.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Sum-of-norms clustering . 1

1.3 Recovery of a mixture of Gaussians . 2

1.4 Identifying clusters from computation . 3

2 Literature Review 5

2.1 Clustering . 5

2.2 Algorithm for sum-of-norms clustering . 7

2.3 Review of recovery . 8

2.4 Review of clustering identification . 9

3 Cluster characterization 10

3.1 Cluster characterization theorem . 10

3.2 Agglomeration Conjecture . 14

3.3 Extension to other weights . 15

vi

4 Recovery of mixture of Gaussians 17

4.1 Mixture of Gaussians . 17

4.2 Main recovery theorem . 18

4.3 Proof of the main theorem . 19

4.4 Extension to multiplicative weights . 20

4.5 Computational experiments . 22

5 Clustering test and guarantee 27

5.1 Feasibility and complementary slackness 27

5.1.1 Second-order cone formulation . 27

5.1.2 Complementary slackness . 31

5.2 Clustering test . 35

5.2.1 CGR subgradients and clustering corollary 36

5.2.2 Duality gap and distinct clustering corollary 38

5.3 Properties of the central path . 39

5.3.1 Strict complementarity . 41

5.4 Test Guarantee . 45

5.4.1 Bound the CGR subgradient . 46

5.4.2 Proof of Theorem 11 . 50

5.5 Computational experiments . 51

6 Discussion 58

References 60

vii

List of Tables

4.1 Recovery for varying λ. Value λ∗ is the essentially unique value satisfying
the two inequalities of Theorem 2. 24

4.2 Recovery for varying σ. Here, σ∗ is the unique value that makes the right-
hand sides of (4.2) and (4.3) equal. 25

4.3 Recovery for varying φ. 26

viii

List of Figures

5.1 Iteration counts versus λ . 54

5.2 Rand index versus λ . 55

5.3 Labeled points with clustering at λ = 0.00395 56

ix

Chapter 1

Introduction

1.1 Motivation

Clustering is perhaps the most central problem in unsupervised machine learning and has
been studied for over 60 years [27]. The problem may be stated informally as follows.
One is given n points, a1, . . . ,an lying in Rd. One seeks to partition {1, . . . , n} into K
sets C1, . . . , CK such that the ai’s for i ∈ Cm are closer to each other than to the ai’s for
i ∈ Cm′ , m′ 6= m.

Clustering is usually formulated as a non-convex optimization problem, which is com-
binatorially hard to solve and beset by nonoptimal local minimizers. Classical methods
such as k-means and hierarchical clustering are prone to these issues. Meanwhile, issues
of hardness and suboptimality of many nonconvex optimization problems are resolved by
convex relaxation. At an affordable computational cost, convex relaxation yields a good
solution to the original problem.

1.2 Sum-of-norms clustering

Pelckmans et al. [22], Hocking et al. [12] and Lindsten et al. [17] proposed the following
convex formulation for the clustering problem:

min
x1,...,xn∈Rd

f ′(x) =
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖xi − xj‖ . (1.1)

1

This formulation is known in the literature as sum-of-norms clustering, convex clustering,
or clusterpath clustering. Let x∗1, . . . ,x

∗
n be the optimizer. (Note: (1.1) is strongly convex,

hence the optimizer exists and is unique.) The cluster assignment is given by the x∗i ’s: for
i, i′, if x∗i = x∗i′ then i, i′ are assigned to the same cluster, else they are assigned to different
clusters.

The first term of the objective function ensures x∗ is a good approximation of the
original data a, while the second term penalizes the differences x∗i − x∗i′ . As a result, the
second term tends to make x∗i equal to each other for many i. Furthermore, the tuning
parameter λ controls the number of clusters indirectly. It is apparent that for λ = 0, each
ai is assigned to a different cluster of its own (unless ai = ai′ exactly), whereas for λ
sufficiently large, the second summation drives all the xi’s to be equal (and hence there is
one big cluster consisting of all n data points).

Throughout this thesis, we assume that all norms are Euclidean, although (1.1) has also
been considered for other norms. In addition, some authors insert nonnegative weights in
front of the terms in the above summations. Most of our results, however, require all
weights identically 1, but we revisit the question of general weights in Sections 3.3 and 4.4.

1.3 Recovery of a mixture of Gaussians

Panahi et al. [21] developed several recovery theorems as well as a first-order optimization
method for solving (1.1). Other authors, e.g., Sun et al. [28] have since extended these
results. One of Panahi et al.’s results pertains to a mixture of spherical Gaussians, which is
the a generative model for producing the data a1, . . . ,an. Panahi et al. [21] proved that for
the appropriate choice of λ, sum-of-norms clustering formulation (1.1) will exactly recover
a mixture of Gaussians provided that the pairwise distance between Gaussian means are
lower bounded. The lower bound is a function depending on the number of samples, the
number of Gaussians and distribution parameters such as standard deviations.

One issue with this bound is that as the number of samples n tends to infinity, the bound
seems to indicate that distinguishing the clusters becomes increasingly difficult (i.e., the
Gaussian means have to be more distantly separated as n→∞).

The reason for this aspect of their bound is that their proof technique requires a gap
of positive width (i.e., a region of Rd containing no sample points) between {ai : i ∈ Cm}
and {ai : i ∈ Cm′} whenever m 6= m′. Clearly, such a gap cannot exist in the mixture-of-
Gaussians distribution as the number of samples tends to infinity.

2

The first ambition of this thesis is to prove that (1.1) can recover a mixture of Gaussians
even as n→∞. This is the content of Theorem 2 in Section 4.2 and 4.3 below. Naturally,
under this hypothesis we cannot hope to correctly label all samples since, as n→∞, some
of the samples associated with one mean will be placed arbitrarily close to another mean.
Therefore, we are content in showing that (1.1) can correctly cluster the points lying within
some fixed number of standard-deviations for each mean.

Our proof technique requires a cluster characterization theorem for sum-of-norms clus-
tering derived by Chiquet et al. [8]. This result is not stated by these authors as a theorem,
but instead appears as a sequence of steps inside a larger proof in a “supplementary ma-
terial” appendix to their paper. Because we believe that this theorem is of independent
interest, we restate it below and for the sake of completeness provide the proof (which is
the same as the proof appearing in Chiquet et al.’s supplementary material). This mate-
rial appears in Chapter 3. We conclude the recovery of a mixture of Gaussians with some
experimental results in Section 4.5.

1.4 Identifying clusters from computation

To identify the correct clusters from an approximate solution, authors in practice propose
the following approximate test with an artificial tolerance, ε > 0. If the approximate so-
lution x satisfies ‖xi − xi′‖ ≤ ε, i, i′ are assigned to the same cluster. Otherwise, i, i′ are
assigned to different clusters. Hence, the value of artificial tolerance is critical. Unfortu-
nately, to the best of our knowledge, neither the value of the tolerance nor the approxi-
mate test itself has been rigorously justified. The test is not robust. Since the relation
‖xi − xi′‖ ≤ ε is not transitive, it is not clear how the test would cluster points i, j, k if
‖xi − xj‖ ≤ ε, ‖xj − xk‖ ≤ ε, and ‖xi − xk‖ > ε. The test may not be accurate. The
clusters obtained by the approximate test could deviate from the clusters corresponding to
the optimizer of (1.1). The inaccuracy may lead to the failure of known properties of sum-
of-norms clustering such as the recovery of a mixture of Gaussians as illustrated in Chapter
4 and the agglomeration property as illustrated in Section 3.2. It has been established in
Section 1.3 that for an appropriate choice of λ, (1.1) exactly recovers a mixture of Gaus-
sians. However, it is unknown if the recovery result is preserved when the approximate test
is applied. Hocking et al. [12] conjectured that sum-of-norms clustering is agglomerative
in the sense that as λ increases, clusters may fuse but never break apart. The conjecture
was proven by Chiquet, Gutierrez and Rigaill [8] with some techniques which may not be
applicable when the approximate test is implemented. Thus the agglomeration property
may no longer hold.

3

The second result of this thesis is to present our clustering test and to justify it rigor-
ously. The clustering test takes a primal and dual feasible solution for the second-order
cone formulation of sum-of-norms clustering and attempts to determine all clusters. The
test may report ‘success’ or ‘failure’. If the test reports ‘success’, all clusters are cor-
rectly identified and a certificate is produced. The test and the proof of correctness are
stated in Section 5.2. The proof heavily relies on the clustering characterization theorem
in Chapter 3. The test requires the knowledge of a primal and dual feasible solution for the
second-order cone formulation of sum-of-norms clustering, which can be constructed from
the output of any primal-dual algorithm. The second-order cone formulation and some
primal-dual algorithms are stated in Section 5.1. If a primal-dual path following algorithm
is used, the test is guaranteed to report ‘success’ after a finite number of iterations except
the test may never report ‘success’ when the λ value is at which clusters fuse to form a
larger cluster. These results are shown in Section 5.4. The proof of the theoretical guar-
antee is a result of the properties of the central path, which are stated in Section 5.3. In
Section 5.5, we present a few computational experiments to verify our test in practice.

4

Chapter 2

Literature Review

2.1 Clustering

Clustering was historically inspired by problems in anthropology and psychology [5]. It has
become one of the most important techniques in data analysis. Over the past few decades,
clustering has been adopted to solve various problems from a broad range of research areas
such as computational biology, social science and image processing.

Given n data points a1, . . . ,an in Rd and a distance measure, clustering aims to parti-
tion {1, . . . , n} into K sets C1, . . . , CK such that points in the same set are closer to each
other than those that are not.

k-means clustering is the best-known paradigm for clustering. Given the number of
clusters k, k-means clustering is formulated as the following combinatorial optimization
problem:

min
{C1,...,Ck}

k∑
i=1

∑
j∈Ci

‖aj − µi‖2 ,

where µi = arg minµ
∑

j∈Ci
‖aj − µ‖2. The formulation is equivalent to a constrained

version of nonnegative matrix factorization [9]. The problem is NP-hard to solve, and it
is NP-hard to approximate to within some accuracy [27]. The best known method for

5

k-means clustering is Lloyd’s algorithm as presented below:

Algorithm 1: Lloyd’s algorithm

Initially partition {1, . . . , n} into k random subsets C1, . . . , Ck;
Alternate the following two operations:
For m = 1, . . . , k, compute µm := 1

|Cm|
∑

i∈Cm
ai;

For m = 1, . . . , k, define CNEW
m := {i : ‖ai − µm‖ = minm′ ‖ai − µm′‖}.

At each iteration, Lloyd’s algorithm does not increase the k-means objective value [27].
At termination, Lloyd’s algorithm outputs a local minimizer, which may be suboptimal.
Moreover, there are only nontrivial bounds on the suboptimality of the output, and the
rate of convergence is yet to be established [27].

Soft k-means is the expectation-maximization (EM) approach for k-means clustering
[27]. Similar to Lloyd’s algorithm, EM approach determines clustering and updates cluster
centroids at each iteration. However, clustering and centroids are computed based on
probabilities. The EM algorithm consists of two steps. The expectation step computes
the probability over a latent variable. The maximization step finds the maximizer of the
expected log-likelihood, where the expectation is calculated according to the probability
computed in the expectation step. For the detailed comparison between EM algorithm and
Llyod algorithm, we refer the reader to [27].

Another straightforward clustering model is linkage-based clustering. The agglomera-
tive algorithm starts with the trivial clustering of n singleton points. It proceeds to merge
the nearest clusters of the current clustering [27]. The same procedure repeats until the
stopping criterion is met. Two common stopping criteria are a fixed number of clusters
and a distance upper bound [27].

The linkage-based clustering can be formulated as the following optimization problem:

min
x1,...,xn∈Rd

1

2

n∑
i=1

‖xi − ai‖2 (2.1a)

s.t
∑
i<j

1xi 6=xj
≤ t , ∀1 ≤ i < j ≤ n . (2.1b)

Similar to the k-means clustering model, this formulation is also combinatorially hard to
solve and beset by nonoptimal local minimizers. Hocking et al. [12] proposed the following

6

convex relaxation of (2.1):

min
x1,...,xn∈Rd

1

2

n∑
i=1

‖xi − ai‖2 (2.2a)

s.t
∑
i<j

‖xi − xj‖ ≤ t , ∀1 ≤ i < j ≤ n . (2.2b)

According to Hocking et al. [12], sum-of-norms clustering formulation (1.1) is also the
Lagrangian relaxation of (2.2), as restated below

min
x1,...,xn∈Rd

f ′(x) =
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖xi − xj‖ .

Pelckmans et al. [22] and Lindsten et al. [17] also proposed the same convex formulation
(1.1) of the clustering problem independently.

2.2 Algorithm for sum-of-norms clustering

Many algorithms, both primal-only and primal-dual methods, have been proposed to solve
(1.1). Two typical primal-only algorithms are the subgradient descent by Hocking et al.
[12] and the stochastic incremental algorithm by Panahi et al. [21]. At each iteration
of the subgradient descent, the algorithm computes the subgradient and the step size,
which follows either a simple decreasing scheme or a line search strategy. The stochastic
incremental algorithm is identical to an incremental proximal method in Bertsekas [2]. The
algorithm scales well with the number of data points n, even though its rate of convergence
is fairly weak according to Sun et al. [28].

Interior point methods are probably the most established primal-dual methods for con-
vex optimization. They are widely used by optimization solvers such as CVX. In 2011,
Lindsten et al. [17] applied CVX to solve the sum-of-norms clustering. Regrettably, Hock-
ing et al. [12] remarked that CVX does not perform well on a large data set.

ADMM and AMA are two straightforward primal-dual methods for sum-of-norms clus-
tering. They were first adopted to solve (1.1) by Chi and Lange [7]. In their paper, the
unconstrained problem (1.1) is reformulated as the following constrained problem:

min
x,y

1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖yij‖ (2.3a)

s.t xi − xj − yij = 0 , ∀1 ≤ i < j ≤ n . (2.3b)

7

The first term is strongly convex, and the second term is non-smooth and convex.
Hence, splitting is a natural strategy. Chi and Lange considered both ADMM, whose
updates on the first block of variables are derived from minimizing the augmented La-
grangian function, and AMA, whose updates on the first block of variables are derived
from minimizing the ordinary Lagrangian function. In the same paper, they also proposed
an accelerated variant of AMA, which has been proven to be more efficient than ADMM.
Nevertheless, both ADMM and AMA are prone to scalability issues.

Another well-known primal-dual algorithm is the semismooth Newton-CG augmented
Lagrangian method (SSNAL) by Sun, Toh and Yuan [28]. The algorithm consists of a
two-level nested loop. The outer loop of SSNAL is an augmented Lagrangian method
(ALM) with an increasing step size. The inner loop a semismooth Newton-CG method to
derive the primal update of ALM. To warm-start SSNAL, Sun et al. [28] implemented an
inexact ADMM to generate an initial solution. SSNAL has been proven to be efficient. In
practice, it also demonstrates high efficiency in various numerical experiments on simulated
data sets such as half moons, unbalanced Gaussians and MINST.

2.3 Review of recovery

Recently, there have been various attempts to provide recovery guarantees for sum-of-
norms clustering with uniform weights (1.1). Zhu et al. [31] showed that if a data set
is generated by two well-separated cubes, then sum-of-norms clustering recovers the two
clusters perfectly. The separation condition is rather strict: the distance between two cubes
must be larger than a threshold dependent on the number of data points and the sizes of two
cubes. Tan and Witten [29] studied the statistical properties of sum-of-norms clustering.
Recently, Panahi et al. [21] developed several recovery results that certify recovery by sum-
of-norms under rather mild conditions. Panahi et al. [21] also specialized their results for
data sets such as a mixture of Gaussians and planted partitions. Sun, Toh and Yuan [28]
extended these results to general weights: under some easy assumptions, perfect recovery
is guaranteed for sum-of-norms clustering with general weights.

A related result by Radchenko and Mukherjee [24] analyzed the special case of a mixture
of Gaussians with K = 2, d = 1 under slightly different hypotheses. Also, Mixon et al.
[19] showed that Peng and Wei’s semidefinite relaxation of clustering [23] can recover a
mixture of Gaussians as n → ∞, but this result requires nontrivial postprocessing of the
semidefinite solution to recover the clusters.

8

2.4 Review of clustering identification

To resolve the issue of inaccuracy as mentioned in Section 1.4, Hocking et al. [12] devel-
oped a two-step method based on the approximate test as described in Section 1.4. The
first step is detecting potential fusions using the approximate test. The artificial toler-
ance is chosen to be some fraction of the minimum distance between two data points,
min1≤i<i′≤n ‖ai − ai′‖. The second step is verifying potential fusions by checking if the
detected fusions improve the objective value. Friedman et al. [10] presented a similar ap-
proach to detect fusions for a fused-lasso problem with coordinate descent algorithms. The
algorithm includes a descent cycle, a fusion cycle and a smoothing cycle. The descent cycle
employs coordinate descent to solve a fused-lasso problem. When the coordinate descent
gets stuck, the algorithm enters the fusion cycle. The fusion cycle merges any adjacent
pairs if the fusion of the pair decreases the objective value. However, it only examines
the potential fusions of pairs, but it does not consider the fusions of three points or more.
When the fusion cycle fails to merge any adjacent pairs, there may still exist a fusion of
three points or more that improves the objective value. To resolve the issue, Friedman et
al. [10] introduced a smoothing cycle. The smoothing cycle varies some parameters in the
fused lasso problem, which allows fusions of more than two in the long run. Both methods
by Friedman et al. [10] and Hocking et al. [12] guarantee a correct solution. Unfortunately,
they are both very slow as they investigate all possible fusion events.

9

Chapter 3

Cluster characterization

3.1 Cluster characterization theorem

The following theorem is due to Chiquet et al. [8] appearing as a sequence of steps in a
proof of the agglomeration conjecture. Refer to the next section for a discussion of the
agglomeration conjecture. We restate the theorem here because it is needed for our analysis
and because we believe it is of independent interest.

Theorem 1. Let x∗1, . . . ,x
∗
n denote the optimizer of (1.1). For notational ease, let x∗

denote the concatenation of these vectors into a single vector in Rnd. Suppose that C is a
nonempty subset of {1, . . . , n}.

(a) Necessary condition: If for some x̂ ∈ Rd, x∗i = x̂ for i ∈ C and x∗i 6= x̂ for i /∈ C
(i.e., C is one of clusters exactly determined by (1.1)), then there exist z∗ij for i, j ∈ C,
i 6= j, which solve

ai −
1

|C|
∑
l∈C

al = λ
∑

j∈C−{i}

z∗ij ∀i ∈ C,∥∥z∗ij∥∥ ≤ 1 ∀i, j ∈ C, i 6= j,

z∗ij = −z∗ji ∀i, j ∈ C, i 6= j.

(3.1)

(b) Sufficient condition: Suppose there exists a solution z∗ij for j ∈ C − {i}, i ∈ C to

the conditions (3.1). Then there exists an x̂ ∈ Rd such that the minimizer x∗ of (1.1)
satisfies x∗i = x̂ for i ∈ C.

10

Note: This theorem is an almost exact characterization of clusters that are determined
by formulation (1.1). The only gap between the necessary and sufficient conditions is that
the necessary condition requires that C be exactly all the points in a cluster, whereas the
sufficient condition is sufficient for C to be a subset of the points in a cluster. The sufficient
condition is notable because it does not require any hypothesis about the other n − |C|
points occurring in the input.

Proof. (Chiquet et al.) Proof for Necessity (a)
As x∗ is the minimizer of the problem (1.1), and this objective function f ′(x) is convex,
it follows that 0 ∈ ∂f ′(x∗), where ∂f ′(x∗) denotes the subdifferential, that is, the set of
subgradients of f ′ at x∗. (See, e.g., [11] for background on convex analysis). Written
explicitly in terms of the derivative of the squared-norm and subdifferential of the norm,
this means that x∗ satisfies the following condition:

x∗i − ai + λ
∑
j 6=i

w∗ij = 0 ∀i = 1, . . . , n, (3.2)

where w∗ij, i = 1, . . . , n, j = 1, . . . , n, i 6= j, are subgradients of the Euclidean norm
function satisfying

w∗ij =

{
x∗i−x∗j
‖x∗i−x∗j‖

, for x∗i 6= x∗j ,

arbitrary point in B(0, 1), for x∗i = x∗j ,

with the requirement that w∗ij = −w∗ji in the second case. Here, B(c, r) is notation for the
closed Euclidean ball centered at c of radius r. Since x∗i = x̂ for i ∈ C, x∗i 6= x̂ for i /∈ C,
the KKT condition for i ∈ C is rewritten as

x̂− ai + λ
∑
j /∈C

x̂− x∗j∥∥x̂− x∗j∥∥ + λ
∑

j∈C−{i}

w∗ij = 0, (3.3)

Define z∗ij = w∗ij for i, j ∈ C, i 6= j. Then∥∥z∗ij∥∥ ≤ 1, z∗ij = −z∗ji,∀i, j ∈ C, i 6= j.

Substitute w∗ij = z∗ij into the equation (3.3) to obtain

x̂− ai + λ
∑
j /∈C

x̂− x∗j∥∥x̂− x∗j∥∥ + λ
∑

j∈C−{i}

z∗ij = 0, (3.4)

11

Sum the preceding equation over i ∈ C, noticing that the last term cancels out, leaving

|C|x̂−
∑
i∈C

ai + λ|C|
∑
j /∈C

x̂− x∗j∥∥x̂− x∗j∥∥ = 0,

which is rearranged to (renaming i to l):

λ
∑
j /∈C

x̂− x∗j∥∥x̂− x∗j∥∥ = −x̂+
1

|C|
∑
l∈C

al. (3.5)

Subtract (3.5) from (3.4), simplify and rearrange to obtain

ai −
1

|C|
∑
l∈C

al = λ
∑

j∈C−{i}

z∗ij ∀i ∈ C, (3.6)

as desired.

Proof for Sufficiency (b)
We will show that at the solution of (1.1), all the x∗i ’s for i ∈ C have a common value
under the hypothesis that z∗ij is a solution to the equation (3.1) for i, j ∈ C, i 6= j.

First, define the following intermediate problem. Let ã denote the centroid of ai for
i ∈ C:

ã =
1

|C|
∑
l∈C

al.

Consider the weighted problem sum-of-norms clustering problem with unknowns as follows:
one unknown x ∈ Rd is associated with C, and one unknown xj is associated with each
j /∈ C (for a total of n− |C|+ 1 unknown vectors):

min
x;xj

|C|
2
· ‖x− ã‖2 +

1

2

∑
j /∈C

‖xj − aj‖2 + λ|C|
∑
j /∈C

‖x− xj‖+ λ
∑
i,j /∈C
i<j

‖xi − xj‖ . (3.7)

This problem, being strongly convex, has a unique optimizer; denote the optimizing vectors
x̃ and x̃j for j /∈ C.

The optimality conditions for (3.7) are:

|C|(x̃− ã) + λ|C|
∑
j /∈C

gj = 0, (3.8)

x̃i − ai − λ|C|gi + λ
∑

j /∈C∪{i}

yij = 0 ∀i /∈ C, (3.9)

12

with subgradients defined as follows:

gj =

{
x̃−x̃j

‖x̃−x̃j‖ , for x̃j 6= x̃,

arbitrary in B(0, 1), for x̃j = x̃,
∀j /∈ C,

and

yij =

{
x̃i−x̃j

‖x̃i−x̃j‖ , for x̃i 6= x̃j,

arbitrary in B(0, 1), for x̃i = x̃j,
∀i, j /∈ C, i 6= j,

with the proviso that in the second case, yij = −yji.

We claim that the solution for (1.1) given by defining x∗i = x̃ for i ∈ C while keeping
the x∗j = x̃j for j /∈ C, where x̃ and x̃j are the optimizers for (3.7) as in the last few
paragraphs, is optimal for (1.1), which proves the main result. To show that this solution
is optimal for (1.1), we need to provide subgradients to establish the necessary condition.
Define wij to be the subgradients of xi 7→

∥∥xi − x̃∗j∥∥ evaluated at x̃∗i as follows:

wij = gj for i ∈ C, j /∈ C,
wij = yij for i, j /∈ C, i 6= j,

wij = z∗ij for i, j ∈ C, i 6= j,

Before confirming that the necessary condition is satisfied, we first need to confirm that
these are all valid subgradients. In the case that i ∈ C, j /∈ C, we have constructed gj
to be a valid subgradient of x 7→ ‖x− x̃j‖ evaluated at x̃, and we have taken x∗i = x̃,
x∗j = x̃j.

In the case that i, j /∈ C, we have construct yij to be a valid subgradient of x 7→
‖x− x̃j‖ evaluated at x̃i, and we have taken x∗i = x̃i, x

∗
j = x̃j.

In the case that i, j ∈ C, by construction x∗i = x∗j = x̃, so any vector in B(0, 1) is a
valid subgradient of x 7→ ‖x− x̃j‖ evaluated x̃i. Note that since z∗ij ∈ B(0, 1), then wij

defined above also lies in B(0, 1).

13

Now we check the necessary conditions for optimality in (1.1). First, consider an i ∈ C:

x̃∗i − ai + λ
∑
j 6=i

wij = x̃− ai + λ
∑

j∈C−{i}

wij + λ
∑
j /∈C

wij

= x̃− ai + λ
∑

j∈C−{i}

z∗ij + λ
∑
j /∈C

gj

= x̃− ai + ai −
1

|C|
∑
l∈C

al + λ
∑
j /∈C

gj (by (3.1))

= x̃− ã+ λ
∑
j /∈C

gj

= 0 (by (3.8)).

Then we check for i /∈ C:

x̃∗i − ai + λ
∑
j 6=i

wij = x̃i − ai + λ
∑
j∈C

wij + λ
∑

j /∈C∪{i}

wij

= x̃i − ai + λ
∑
j∈C

(−gi) + λ
∑

j /∈C∪{i}

yij

= x̃i − ai − λ|C|gi + λ
∑

j /∈C∪{i}

yij

= 0 (by (3.9)).

3.2 Agglomeration Conjecture

Recall that when λ = 0, each ai is in its own cluster in the solution to (1.1) (provided the
ai’s are distinct), whereas for sufficiently large λ, all the points are in one cluster. Hocking
et al. [12] conjectured that sum-of-norms clustering with equal weights has the following
agglomeration property: as λ increases, clusters merge with each other but never break up.
This means that the solutions to (1.1) as λ ranges over [0,∞) induce a tree of hierarchical
clusters on the data.

This conjecture was proved by Chiquet et al. using Theorem 1. Consider a λ̄ ≥ λ and

14

its corresponding sum-of-norms cluster model:

min
x1,...,xn

1

2

n∑
i=1

‖xi − ai‖2 + λ̄
∑
i<j

‖xi − xj‖ . (3.10)

Corollary 1.1. (Chiquet et al.) If there is a C such that minimizer x∗ of (1.1) satisfies
x∗i = x̂ for i ∈ C, x∗i 6= x̂ for i /∈ C for some x̂ ∈ Rd, then there exists an x̂′ ∈ Rd such
that the minimizer of (3.10), x̄∗, satisfies x̄∗i = x̂′ for i ∈ C.

The corollary follows from Theorem 1. If C is a cluster in the solution of (1.1), then
by the necessary condition, there exist subgraidents z∗ij satisfying (3.1) for λ. If we scale
each of these subgradients by λ/λ̄, we now obtain a solution to (3.1) for with λ replaced
by λ̄, and the theorem states that this is sufficient for the points in C to be in the same
cluster in the solution to (3.10).

Let fusion values denote the values of λ at which clusters fuse to form a larger cluster.
According to agglomeration theorem 1.1, there are at most n fusion values.

It should be noted that Hocking et al. construct an example of unequally-weighted sum-
of-norms clustering in which the agglomeration property fails. It is still mostly an open
question to characterize for which norms and for which families of unequal weights the
agglomeration property holds. Refer to Chi and Steinerberger [6] for some recent progress.

3.3 Extension to other weights

Several authors, e.g., Sun et al. [28] have introduced weights into either the first or second or
both summations in (1.1). One purpose for introducing weights is to be able to eliminate
many of the terms in the second summation (i.e., use a weight of 0 on those terms) in
order to reduce the number of terms in the objective function to o(n2) for the purpose
of efficient computation. For example, Sun et al. use exponentially decaying weights as
in (4.11) below that are zeroed out for ai’s sufficiently far apart. The Chiquet et al.
characterization theorem, however, does not extend to fully general weights. (The obstacle
is that the left-hand side of (3.5) does not cancel out the third term on the left-hand side
of (3.4) for general weights.) The most general class of weights for which the theorem
applies is multiplicative weights, which are as follows. Each data point ai for i = 1, . . . , n
is associated with a positive weight ri. Then both terms in (1.1) are weighted as follows:

min
x1,...,xn∈Rd

1

2

n∑
i=1

ri‖xi − ai‖2 + λ
∑
i<j

rirj‖xi − xj‖. (3.11)

15

Therefore, our recovery theorem also extends to multiplicative weights, which is the subject
of the rest of this section. A small computational experiment reported in Section 4.5 sug-
gests recovery of a mixture of Gaussians may also be possible with exponentially decaying
weights.

We can draw the same conclusions as Theorem 1 when (3.1) in the necessary and suffi-
cient conditions is replaced with the following system of equalities and a norm inequality:

ai −
∑
l∈C

rl∑
l′∈C rl′

al = λ
∑

j∈C−{i}

rjz
∗
ij ∀i ∈ C,∥∥z∗ij∥∥ ≤ 1 ∀i, j ∈ C, i 6= j,

z∗ij = −z∗ji ∀i, j ∈ C, i 6= j.

(3.12)

The proof of this generalization is analogous to the proof of Theorem 1, which we omit.

An analogous agglomeration conjecture for this setting was shown by Chiquet et al.
[8], i.e. the path of solutions to (3.11) as λ ranges over [0,∞) contains no splits for
multiplicative weights.

16

Chapter 4

Recovery of mixture of Gaussians 1

4.1 Mixture of Gaussians

In this chapter, we assume the data a1, . . . ,an is generated by a mixture of Gaussians,
which is the same generative model adopted in [21]. The parameters of the generative model
are K means µ1, . . . ,µK ∈ Rd, K variances σ2

1, . . . , σ
2
k, and K probabilities w1, . . . , wk,

all positive and summing to 1. One draws n i.i.d. samples as follows. First, an index
m ∈ {1, . . . , K} is selected at random according to probabilities w1, . . . , wK . Next, a point
a is chosen according to the spherical Gaussian distribution N(µm, σ

2
mI). Note that the

covariance matrix could also be arbitrary, and our result could be extended to an arbitrary
covariance matrix. Our assumption is aligned with the assumption in Panahi et al. [21].

Panahi et al. [21] proved that for the appropriate choice of λ, sum-of-norms clustering
formulation (1.1) will exactly recover a mixture of Gaussians (i.e., each point will be labeled
with m if it was selected from N(µm, σ

2
mI)) provided that for all m,m′, 1 ≤ m < m′ ≤ K,

‖µm − µm′‖ ≥
CKσmax

wmin

polylog(n), (4.1)

where C = 1
n

∑
i ai, σmax = maxm σm and wmin = minmwm. As n→∞, µm’s have to be

more distantly separated. Hence, distinguishing the clusters becomes increasingly difficult.

1This chapter is based on Recovery of a mixture of Gaussians by sum-of-norms clustering by Jiang,
Vavasis and Zhai [15]

17

4.2 Main recovery theorem

In this section, we present our main result about recovery of mixture of Gaussians. As
noted in the introduction, a theorem stating that every point is labeled correctly is not
possible in the setting of n → ∞, so we settle for a theorem stating that points within a
constant number of standard deviations from the means are correctly labeled.

Theorem 2. Let the vertices a1, . . . ,an ∈ Rd be generated from a mixture of K Gaussian
distributions with parameters µ1, . . . ,µK, σ2

1, . . . , σ
2
K, and w1, . . . , wK. Let θ > 0 be given,

and let
Vm = {i : ‖ai − µm‖ ≤ θσm}, m = 1, . . . , K.

Let ε > 0 be arbitrary. Then for any m = 1, . . . , K, with probability exponentially close
to 1 (and depending on ε; see (4.5)) as n → ∞, for the solution x∗ to (1.1), the points
indexed by Vm are in the same cluster provided

λ ≥ 2θσm
(F (θ, d)wm − ε)n

. (4.2)

Here, F (θ, d) denotes the cumulative density function of the chi distribution with d degrees
of freedom (which tends to 1 rapidly as θ increases). Furthermore, the cluster associated
with Vm is distinct from the cluster associated with Vm′, 1 ≤ m < m′ ≤ K with probability
exponentially close to 1 as n→∞ (see (4.6)), provided that

λ <
‖µm − µm′‖

2(n− 1)
. (4.3)

In order to state a simpler bound, we can fix some values. For example, let us take
θ = 2d1/2 and let cd = F (2d1/2, d). The Chernoff bound implies that cd → 1 exponentially
fast in d. Let wmin = minm=1,...,K wm and σmax = maxm=1,...,K σm. Finally, let us take
ε = cdwmin/2. Then the above theorem states there is a λ such that with probability
tending to 1 exponentially fast in n, the points in Vm, for any m = 1, . . . , K are each in
the same cluster, and these clusters are distinct, provided that

min
1≤m<m′≤K

‖µm − µm′‖ >
16
√
dσmax

cdwmin

. (4.4)

Compared to the Panahi et al. bound (4.1), we have removed the dependence of the right-
hand side on n as well as the factor of K. (The dependence of the Panahi et al. bound on
d is not made explicit so we cannot compare the two bounds’ dependence on d. Note that
there is still an implicit dependence on K in (4.4) since necessarily wmin ≤ 1/K.)

18

4.3 Proof of the main theorem

Proof. Let ε > 0 be fixed. Fix an m ∈ {1, . . . , K}. First, we show that all the points
indexed by Vm are in the same cluster. The usual technique for proving a recovery result
is to find subgradients to satisfy the sufficient condition, which in this case is Theorem 1
taking C in the theorem to be Vm. Observe that conditions (3.1) involve equalities and
norm inequalities. A standard technique in the literature (see, e.g., Candès and Recht [4])
is to find the least-squares solution to the equalities and then prove that it satisfies the
inequalities. This is the technique we adopt herein. The conditions (3.1) are in sufficiently
simple form that we can write down the least-squares solution in closed form; it turns out
to be:

z∗ij =
1

λ|Vm|
(ai − aj) ∀i, j ∈ Vm, i 6= j.

It follows by construction (and is easy to check) that this formula satisfies the equalities
in (3.1), so the remaining task is to show that the norm bound

∥∥z∗ij∥∥ ≤ 1 is satisfied.
By definition of Vm, ‖ai − aj‖ ≤ 2θσm. The probability that an arbitrary sample ai is
associated with mean µm is wm. Furthermore, with probability F (θ, d), this sample satisfies
‖ai − µm‖ ≤ θσm, i.e., i ∈ Vm. Since the second choice in the mixture of Gaussians is
conditionally independent from the first, the overall probability that i ∈ Vm is F (θ, d)wm.
Therefore, E[|Vm|] = F (θ, d)wmn. It follows that the probability that |Vm| ≥ (F (θ, d)wm−
ε)n is exponentially close to 1 as n→∞ for a fixed ε > 0. Specifically,

Prob [|Vm| ≥ (F (θ, d)wm − ε)n] ≥ 1− exp(−2ε2n), (4.5)

by Hoeffding’s inequality for the binomial distribution [13]. Thus, provided

λ ≥ 2θσm/((F (θ, d)wm − ε)n),

we have constructed a solution to (3.1) with probability exponentially close to 1 as n→∞.

For the second part of the theorem, suppose 1 ≤ m < m′ ≤ K. For each sample ai
associated with µm satisfying ‖ai − µm‖ ≤ θσm (i.e., lying in Vm), the probability is 1/2
that

(ai − µm)T (µm′ − µm) ≤ 0

by the fact that the spherical Gaussian distribution has mirror-image symmetry about
any hyperplane through its mean. Therefore, with probability exponentially close to 1 as
n→∞, we can assume that at least one i ∈ Vm satisfies the above inequality. In particular,

Prob
[
∃i ∈ Vm s.t. (ai − µm)T (µm′ − µm) ≤ 0

]
≥ 1− 2−|Vm|, (4.6)

19

(Note that, as noted above, |Vm| grows linearly with n with probability exponentially close
to 1 as n → ∞.) Similarly, with probability exponentially close to 1, at least one sample
i′ ∈ Vm′ satisfies

(ai′ − µm′)T (µm − µm′) ≤ 0.

Then

‖ai − ai′‖2 = ‖ai − µm − ai′ + µm′ + µm − µm′‖2

= ‖ai − µm − ai + µm′‖2 + 2(ai − µm)T (µm − µm′)
− 2(ai′ − µm′)T (µm − µm′) + ‖µm − µm′‖2

≥ ‖µm − µm′‖2 , (4.7)

where, in the final line, we used the two inequalities derived earlier in this paragraph.

Consider the first-order optimality conditions for equation (1.1), which are given by
(3.2). Apply the triangle inequality to the summation in (3.2) to obtain,

‖x∗i − ai‖ ≤ λ(n− 1), and (4.8)

‖x∗i′ − ai′‖ ≤ λ(n− 1). (4.9)

Therefore,

‖x∗i − x∗i′‖ = ‖ai − ai′ + x∗i − ai − x∗i′ + ai′‖
≥ ‖ai − ai′‖ − ‖x∗i − ai‖ − ‖x∗i′ − ai′‖ (by the triangle inequality)

≥ ‖µm′ − µm‖ − 2λ(n− 1) (by (4.7), (4.8), and (4.9)).

Therefore, we conclude that x∗i 6= x∗i′ , i.e., that Vm and Vm′ are not in the same cluster,
provided that the right-hand side of the preceding inequality is positive, i.e.,

λ <
‖µm − µm′‖

2(n− 1)
.

This concludes the proof of the second statement.

4.4 Extension to multiplicative weights

With the new theorem of cluster characterization, we can derive the conditions about
recovery of mixture of Gaussians in the case of multiplicative weights noted in (3.11), as an

20

extension to Theorem 2. This requires a further modeling assumption on the distribution of
the weights. As before, assume each data item ai, i = 1, . . . , n is chosen from a mixture ofK
Gaussians. Assume that the weight ri associated with data item ai is chosen independently
at random according to ri ∼ Ωm. Here, m ∈ {1, . . . , K} denotes the specific Gaussian
associated with ai. The distributions Ω1, . . . ,ΩK are all assumed to be supported in a
single bounded interval [0, R]. Denote the mean of Ωm as r̄m, m = 1, . . . , K. Assume these
means are all positive: 0 < r̄m ≤ R.

The main result is that for any m = 1, . . . , K, with probability exponentially close to
1 (and depending on ε) as n → ∞, for the solution x∗ computed by (3.11), the points in
Vm are in the same cluster provided that

λ ≥ 2θσm
(F (θ, d)wm − ε)nr̄m

,

and the cluster associated with Vm is distinct from the cluster associated with Vm′ , 1 ≤
m < m′ ≤ K, provided that

λ <
‖µm − µm′‖

2(n− 1)(r̄ − ε)
,

where r̄ is the overall mean of the ri’s, that is, r̄ = w1r̄1 + · · ·+ wK r̄K .

Similar techniques from the proof of Theorem 2 are used to prove the recovery of the
multiplicative-weight problem. First, we can construct a solution to (3.12) as follows

z∗ij =
1

λr′m
(ai − aj) ∀i, j ∈ Vm, i 6= j,

where r′m =
∑

l∈Vm rl and ām =
∑

l∈Vm
rl
r′m
al. Our task is to prove that the norm bound∥∥z∗ij∥∥ ≤ 1 holds. By definition of Vm, ‖ai − aj‖ ≤ 2θσm. As before, the probability

that |Vm| ≥ (F (θ, d)wm − ε1)n is exponentially close to 1 as n → ∞ for a fixed ε1 >
0. Furthermore, the probability that r′m ≥ (r̄m − ε2)|Vm| is exponentially close to 1 by
Hoeffding’s inequality [13] as n→∞ for fixed ε2. Thus, provided

λ ≥ 2θσm
(F (θ, d)wmr̄m − ε)n

,

we have constructed a solution to (3.12) with probability exponentially close to 1, which
implies that all points in Vm are in the same cluster.

Turn now to the analysis of the upper bound on λ. The first-order optimality condi-
tions of (3.11) imply the following inequalities by applying the triangle inequality to the

21

summation of subgradients

‖x∗i − ai‖ ≤ λ
∑
j 6=i

rj, ∀i (4.10)

By the same argument in the proof of Theorem 2, there exist at least one i ∈ Vm, i′ ∈ Vm′
satisfying the following inequality with probability exponentially close to 1

‖x∗i − x∗i′‖ ≥ ‖µm′ − µm‖ − λ
∑
j 6=i

rj − λ
∑
j 6=i′

rj (by (4.7), (4.10)).

Therefore, we conclude that x∗i 6= x∗i′ , i.e., that Vm and Vm′ are not in the same cluster,
provided that for all i ∈ Vm, i′ ∈ Vm′

λ <
‖µm − µm′‖∑
j 6=i rj +

∑
j 6=i′ rj

.

Applying Hoeffding’s bound again, we can claim that for any ε > 0, with probability
tending to 1 exponentially fast with n, this inequality will hold provided that

λ <
‖µm − µm′‖

2(n− 1)(r̄ − ε)
.

4.5 Computational experiments

In this section, we perform experiments in which a solver for sum-of-norms clustering
is applied to a set of points drawn from a mixture of Gaussians. Four experiments are
performed to address four questions: (1) How flexibly can λ be chosen? (2) How does the
recovery depend on d, the space dimension? (3) How does the recovery degrade as σ (the
standard deviation of the Gaussians) increases? and (4) Does the result hold for general
weights?

Even though we do not attempt to test sum-of-norms clustering on other data sets in
this section, we are investigating its performance on a half-moon data set in Section 5.5.
For other data sets, we also refer the reader to [7, 12]. Moreover, the reader may refer to
[12] for comparison of sum-of-norms to other clustering algorithms.

In all cases, the code used is our own Julia [3] implemention of the Chi-Lange [7] ADMM
solver. Each iteration of this solver requires O(n2d) operations since the objective function
contains O(n2) terms, each involving vectors of length d. We observed that the number

22

of iterations to reach a fixed tolerance scales linearly with n. This means that the overall
running time scales cubically with n. Our convergence tolerance εtol was taken to be 10−6

in all cases. This tolerance corresponds to the quantities εpri and εrel in the supplemental
material of [7]. These parameters correspond to the absolute and relative precisions, which
control the primal and dual precisions. The algorithm terminates when the primal and dual
residuals are bounded by the precisions respectively. With this tolerance, the runs described
below took approximately 27 hours total on an Intel Xeon processor single-threaded.

After termination, clusters were recovered from the approximately converged solution
x̃1, . . . , x̃n as follows. An i is selected arbitrarily from {1, . . . , n}. Then all vectors j such
that ‖x̃i − x̃j‖ ≤

√
εtol are assigned to a cluster. These j’s (including i itself) are then

deleted from the list of nodes, and the process is repeated until all nodes are used up. Call
these recovered clusters R1, . . . , RK′ . The question of how to best retrieve clusters from an
approximate solution of (1.1) is nontrivial and is left as a topic for future research.

Then Vm, m = 1, . . . , K, are mapped to one of these recovered clusters, i.e., a mapping
` : {1, . . . , K} → {1, . . . , K ′} is computed such that R`(m) contains the most number of
elements of Vm. In other words,

`(m) := argmax
m′=1,...,K′

#(Vm ∩Rm′),

for each m = 1, . . . , K, with ties broken arbitrarily. (Here, #(·) denotes set-cardinality.)
This mapping `(·) is not necessarily injective.

Then three scores are computed:

s1 =
1

#(V1 ∪ · · · ∪ Vm)

K∑
m=1

#(Vm ∩R`(m)),

which is the fraction of entries in V1 ∪ · · · ∪ Vm correctly clustered,

s2 =
1

n

K∑
m=1

#{i ∈ {1, . . . , n} : ai ∼ N (µm, σ
2
mI) and i ∈ R`(m)},

the fraction of entries of all n data points correctly clustered, and

s3 =
#`({1, . . . , K})

K
,

the number of distinct recovered clusters divided by the true number. Note that as λ
increases, one would expect s1 and s2 to increase while s3 decreases, since clusters expand
as λ increases.

23

The first experiment is meant to determine whether choices λ outside the range specified
by Theorem 2 can still recover clusters. For this experiment we chose n = 1000, d = K = 6,
wi = 1/6 and µi = ei (ith column of the identity matrix) for i = 1, . . . , 6, σ = 0.0094, and
θ = 2.0. This choice of σ is made so that the upper and lower bounds on λ in Theorem 2
are nearly equal to a single value λ∗ = 7.0 · 10−4. Then we tested recovery for λ = κλ∗

with κ = 1/4, 1/2, 1, 2, 4, as shown in Table 4.1.

The data in Table 4.1 indicates that the recovery is perfect between λ∗/2 and 2λ∗. As
the theorem predicts, as λ increases, a greater number of Vm’s is recovered, but a smaller
number of Vm’s are distinct. This table suggests that a strengthening may exist of our main
theorem in which both inequalities are less restrictive, but not by orders of magnitude.

Table 4.1: Recovery for varying λ. Value λ∗ is the essentially unique value satisfying the
two inequalities of Theorem 2.

λ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)
λ∗/4 38/304 39/1000 6/6
λ∗/2 304/304 1000/1000 6/6
λ∗ 304/304 1000/1000 6/6
2λ∗ 304/304 1000/1000 6/6
4λ∗ 304/304 1000/1000 1/6

In the second experiment, we varied d and K. Note that as d and K get larger for fixed
n, we move away from the asymptotic range in which Theorem 2 applies since the size of
each cluster shrinks. On the other hand, as n is fixed while d and k get larger, we are
closer to the range of parameters for which the Panahi et al. result applies. For these tests,
we fixed n = 1000, looped over d = K = 4, 16, 64 and θ =

√
d (so that θ = 2, 4, 8). Note

that this variation of θ with respect to d is chosen so that F (θ, d) is about the same value
(between .5 and .6) for all three trials. As in the previous experiment, we chose wi = 1/K
and µi = ei (ith column of the identity matrix) for i = 1, . . . , K. Finally, we chose σ
so that the upper and lower bounds in Theorem 2 were equal, and we chose λ to be this
unique value of λ. (Note that σ shrinks like d3/2 for this variation of parameters.)

We found that in all three cases, all 1000 points were clustered correctly into K distinct
clusters (so no table is presented). This robust behavior is not predicted by our theorem,
since the arguments in the theorem are weak if n/K is small. See further comments on
this matter in Chapter 6.

24

The next experiment considers the effect of increasing σ. For this experiment we fixed
d = 1, K = 2, n = 1000, µ1 = 0, µ2 = 1, w1 = w2 = 1/2, θ = 1. Let λmax be the value
appearing on the right-hand side of (4.3). In all trials, we fixed λ = λmax, which does not
depend on σ. We chose σ∗ to be the value of σ that makes the right-hand sides of (4.2)
and (4.3) equal. Then we increased σ by factors of

√
2 to observe the effect on recovery.

The results appear in Table 4.2. Note that the method continues to be robust for values
of σ modestly outside the range that we have established, but then the behavior quickly
decays. It is likely that we could have gotten better performance by carefully tuning λ.

Table 4.2: Recovery for varying σ. Here, σ∗ is the unique value that makes the right-hand
sides of (4.2) and (4.3) equal.

σ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)
σ∗ 700/700 996/1000 2/2
21/2σ∗ 700/700 950/1000 2/2
2σ∗ 700/700 742/1000 2/2
23/2σ∗ 108/700 108/1000 2/2
4σ∗ 46/700 46/1000 2/2

The last experiment is a study of exponentially decaying weights, which is a case in
which our theory does not apply. Similar to Yuan et al. [30], we used the following weight-
ing:

min
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑
i<j

exp(−φ ‖ai − aj‖2) ‖xi − xj‖ , (4.11)

where φ > 0 is a tuning parameter. Note that for φ close to 0, this formulation recovers
equal weights, whereas as φ→∞, the weights in the second term tend to 0 and hence each
ai will end up in its own cluster. In the case of [30], the exponentially decaying weights are
truncated to 0 for points sufficiently far apart in order to improve computational efficiency
(by removing most of the terms from the second summation of (1.1)). However, since our
study here does not concern efficiency, we did not truncate any terms. We chose n = 1000,
d = K = 6, σ = .0094, λ as the unique value that satisfies (4.2) and (4.3) if φ were
zero (equal weights), θ = 2, The results in Table 4.3 show that for exponentially decaying
weights, the correct clusters are recovered provided that φ is not too large, i.e., the weights
do not fall to 0 too quickly.

25

Table 4.3: Recovery for varying φ.

φ s1 (% of Vm recovered) s2 (total % recovered) s3 (% distinct clusters)
500 304/304 999/1000 6/6
1000 304/304 901/1000 6/6
1500 92/304 144/1000 6/6
2000 14/304 14/1000 6/6

26

Chapter 5

Clustering test and guarantee 1

5.1 Feasibility and complementary slackness

In this section, we consider a second-order cone (SOCP) formulation of (1.1). Both feasibil-
ity and complementary slackness are stated. A second-order cone program can be directly
solved by a feasible interior-point method. For infeasible algorithms such as the ADMM
proposed by Chi and Lange [7], we construct a feasible solution for the SOCP from the
outputs of such algorithms.

5.1.1 Second-order cone formulation

We first present the equivalent SOCP formulation to (1.1), which will be derived in this
section. The SOCP formulation can be written in both standard dual and standard primal
forms. The standard dual form is as follows.

min
x,s,t

f(x, s, t) =
n∑
i=1

si + λ
∑

1≤i<j≤n

tij (5.1a)

s.t tij ≥ ‖xi − xj‖ , ∀1 ≤ i < j ≤ n , (5.1b)

si ≥
∥∥∥∥(xi − aisi − 1

)∥∥∥∥ , ∀i = 1, . . . , n . (5.1c)

1This chapter is based on On identifying clusters from sum-of-norms clustering computation by Jiang
and Vavasis [14].

27

The standard primal form is as follows.

min
x,y,z,s,u,t

f(x,y, z, s, u, t) =
n∑
i=1

si + λ
∑

1≤i<j≤n

tij (5.2a)

s.t xi − xj − yij = 0 , ∀1 ≤ i < j ≤ n , (5.2b)

xi − zi = ai , ∀i = 1, . . . , n , (5.2c)

si − ui = 1 , ∀i = 1, . . . , n , (5.2d)

tij ≥ ‖yij‖ , ∀1 ≤ i < j ≤ n , (5.2e)

si ≥
∥∥∥∥(ziui

)∥∥∥∥ , ∀i = 1, . . . , n . (5.2f)

The SOCP formulation of the dual problem is as follows.

max
δ,β,γ

h(δ,β, γ) =
n∑
i=1

aTi βi +
n∑
i=1

γi (5.3a)

s.t −
i−1∑
j=1

δji +
n∑

j=i+1

δij + βi = 0 , ∀i = 1, . . . , n , (5.3b)

λ ≥ ‖δij‖ , ∀1 ≤ i < j ≤ n , (5.3c)

1− γi ≥
∥∥∥∥(βiγi

)∥∥∥∥ , ∀i = 1, . . . , n . (5.3d)

Although the dual form (5.1) is more compact than the primal form (5.2), we will be
usng (5.2) for the rest of this thesis because we make explicit reference to the additional
variables in (5.2). Both primal and dual problems are feasible, and Slater condition holds
for both of them. Consider the following primal and dual feasible solution:

xi = ai, zi = 0, si = 1, ui = 0, ∀i = 1, . . . , n; yij = ai−aj, tij = ‖ai − aj‖+1, ∀1 ≤ i < j ≤ n;

δij = 0, ∀1 ≤ i < j ≤ n; βi = 0, γi = 0, ∀i = 1, . . . , n;

which is a also primal and dual Slater point. Hence, strong duality holds since the problem
is formulated as convex optimization.

We derive the SOCP (5.2) as follows. Introduce auxiliary variables yij and zi and con-
straints (5.2b) and (5.2c). Introduce variable ti and constraint (5.2e). Introduce variables
si and ui satisfying (5.2d) and

si ≥
‖xi − ai‖

2
+

1

2
, ∀i = 1, . . . , n.

28

Multiply the constraint in the previous line by 2, and add s2i − 2si to both sides. Simplify
the inequality, and substitute ui to obtain constraint (5.2f). The objective function has
the following upper bound using auxiliary variables and new constraints:

f ′(x) =
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖xi − xj‖

=
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖yij‖

≤
n∑
i=1

si −
n

2
+ λ

∑
1≤i<j≤n

tij

= f(x,y, z, s, u, t)− n

2
.

(5.4)

Notice that (1.1) is a minimization problem. For every feasible solution x to (1.1), we can
construct a feasible solution (x′,y′, z′, s′, u′, t′) to (5.2) such that x = x′ and the upper
bound (5.4) is achieved. Hence, we can replace the objective function f ′(x) with the linear
function f(x,y, z, s, u, t) as shown in (5.2a). The original problem (1.1) and the SOCP
(5.2) are indeed equivalent. Since we omit the constant term n

2
in the objective function

of the SOCP, the objective values of (1.1) at x and (5.2) at the corresponding solution
(x′,y′, z′, s′, u′, t′) differ by a constant n

2
.

With a standard procedure to derive SOCP dual, we obtain the dual formulation (5.3).

For the clustering test, we require primal-dual feasibility for the above primal and dual
SOCP. Such a primal and dual feasible solution can be obtained by applying a feasible
primal-dual interior-point method to the problem above. Each iterate of the algorithm is
feasible, so is the output. Nevertheless, the output may not be feasible for our SOCP when
a general primal-dual algorithm is used to solve for (1.1). Luckily, given that the output
is close to the feasible set, we are able to find a small perturbation on the output to attain
feasibility. The rest of the section elaborates on the perturbation and validates feasibility
for the perturbed solution.

Now let us consider a general primal-dual algorithm which solves (1.1) and yields an
output that is either in or close to the feasible set. The dual problem of (1.1) is as follows.

max
δ

h′(δ) = −1

2

n∑
i=1

∥∥∥∥∥
i−1∑
j=1

δji −
n∑

j=i+1

δij

∥∥∥∥∥
2

−
∑

1≤i<j≤n

〈δij,ai − aj〉 (5.5a)

s.t ‖δij‖ ≤ λ , ∀1 ≤ i < j ≤ n . (5.5b)

29

Notice the formulation is equivalent to the SOCP dual (5.3). We obtained (5.5) by elimi-
nating β and γ in (5.3). The objective function h′(δ) has the following lower bound:

h′(δ) = −1

2

n∑
i=1

‖
n∑

j=i+1

δij −
i−1∑
j=1

δji‖2 −
∑

1≤i<j≤n

〈δij,ai − aj〉

≥
n∑
i=1

γi −
n

2
+

n∑
i=1

〈ai,βi〉

= h(δ,β, γ)− n

2
.

(5.6)

For every feasible solution δ to (5.5), we can construct a feasible solution (δ′,β′, γ′) to
(5.3) such that δ = δ′ and the lower bound (5.6) is achieved. The objective values of (5.5)
at δ and (5.3) at the corresponding solution (δ′,β′, γ′) differ by a constant n

2
.

Let (x, δ) denote the output yielded by the primal-dual algorithm. To construct a
feasible solution from (x, δ), we first update δ as follows

δij ←

{
λδij
‖δij‖ , if ‖δij‖ > λ,

δij, otherwise.

The updated δij has norm no more than λ. Notice that the perturbation is small provided
that the dual solution was already close to the feasible set. Next, define the following
variables:

yij = xi − xj, ∀1 ≤ i < j ≤ n,

zi = xi − ai, ∀i = 1, . . . , n,

si =
1

2
(1 + ‖zi‖2), ∀i = 1, . . . , n,

ui =
1

2
(−1 + ‖zi‖2), ∀i = 1, . . . , n,

tij = ‖yij‖, ∀1 ≤ i < j ≤ n,

βi =
i−1∑
j=1

δji −
n∑

j=i+1

δij, ∀i = 1, . . . , n,

γi =
1

2
(1− ‖βi‖2), ∀i = 1, . . . , n.

(5.7)

It can be easily verified that these newly defined variables, x from the primal-dual algorithm
and the updated δ form a primal and dual feasible solution for the SOCP. Notice that the
inequality (5.4) achieves equality at x and {x,y, z, s, u, t}, and the inequality (5.6) achieves

30

equality at the updated δ and {δ,β, γ}. Hence, the original objective function value at
(x, δ) and the SOCP objective function value at the updated solution differ by a constant
n
2
.

5.1.2 Complementary slackness

Let (x,y, z, s, u, t, δ,β, γ) be a primal and dual feasible solution for the SOCP formulation

of sum-of-norms clustering. Let us define εij =

(
εij1
εij2

)
for all 1 ≤ i < j ≤ n and σi =

σi1σi2
σi3

for all i = 1, . . . , n as follows:

tijλ+ yTijδij = εij1 , ∀1 ≤ i < j ≤ n, (5.8)

tijδij + λyij = εij2 , ∀1 ≤ i < j ≤ n, (5.9)

si(1− γi) + zTi βi + uiγi = σi1, ∀i = 1, . . . , n, (5.10)

siβi + (1− γi)zi = σi2, ∀i = 1, . . . , n, (5.11)

siγi + (1− γi)ui = σi3, ∀i = 1, . . . , n. (5.12)

At the optimizer, there hold ε = 0,σ = 0 by KKT conditions. The system of equalities
above becomes the complementary slackness condition. At an approximate solution, the

right-hand sides ε,σ are non-zero. If εij =

(
µ′

0

)
,σi =

µ′0
0

 for all i = 1, . . . , n and for

all 1 ≤ i < j ≤ n, we refer the corresponding solution as a µ′-centered solution, and µ′ is
the central-path parameter. Otherwise, an upper bound on general right-hand sides ε,σ

31

can be derived from the duality gap:

f ′(x)− h′(δ)

=f(x,y, z, s, u, t)− h(δ,β, γ) (By (5.4) and (5.6))

=
n∑
i=1

si −
n∑
i=1

γi +
n∑
i=1

〈xi − ai,βi〉+ λ
∑

1≤i<j≤n

tij −
n∑
i=1

〈xi,βi〉

(By adding and subtracting
n∑
i=1

〈xi,βi〉)

=
n∑
i=1

si −
n∑
i=1

γi +
n∑
i=1

〈xi − ai,βi〉+ λ
∑

1≤i<j≤n

tij −
n∑
i=1

〈xi,
i−1∑
j=1

δji −
n∑

j=i+1

δij〉 (By (5.3b))

=
n∑
i=1

si −
n∑
i=1

γi +
n∑
i=1

〈xi − ai,βi〉+ λ
∑

1≤i<j≤n

tij −
∑

1≤i<j≤n

〈xj − xi, δij〉

(By expanding the summation)

=
n∑
i=1

(si − γi + 〈xi − ai,βi〉) +
∑

1≤i<j≤n

(λtij + 〈yij, δij〉) (By (5.2b))

=
n∑
i=1

(si(1− γi) + 〈zi,βi〉+ uiγi) +
∑

1≤i<j≤n

(λtij + 〈yij, δij〉) (By (5.2c), (5.2d))

=
n∑
i=1

σi1 +
∑

1≤i<j≤n

εij1

Each term in the both summations is non-negative as shown below:

σi1 = si(1− γi) + 〈zi,βi〉+ uiγi =
1

2
(‖zi‖2 + 2〈zi,βi〉+ ‖βi‖2) ≥ 0, ∀i = 1, . . . , n,

εij1 = λtij + 〈yij, δij〉 ≥ λtij − ‖yij‖ ‖δij‖ ≥ λtij − λ ‖yij‖ = 0, ∀1 ≤ i < j ≤ n.

Define µ := f ′(x) − h′(δ) to be the duality gap at the feasible solution. Notice that our
choice of µ is the not usual central-path parameter µ used in the primal-dual interior-point
method. As mentioned earlier, we adopt the notation µ′ to denote the the central-path
parameter, and the relationship between µ and µ′ is that µ = (n+ 0.5(n+ 1)n)µ′. Since n
is a known constant, O(µ) and O(µ′) can be used interchangeably.

Combined with the non-negativity condition, σi1, ε
ij
1 satisfy σi1 ≤ µ for all i = 1, . . . , n

and εij1 ≤ µ for all 1 ≤ i < j ≤ n. At termination, the duality gap µ at the feasible solution
is small, which implies the right-hand sides σi1, ε

ij
1 are also well bounded.

32

We now have σi1, ε
ij
1 upper bounded in terms of µ, and the remainder of the section is

to establish upper bounds on
∥∥εij2 ∥∥ and

∥∥∥∥(σi2σi3
)∥∥∥∥. In fact, in (5.13) and (5.14) below, we

show that both are upper bounded by O(
√
µ). Consider a general setting of second-order

cone programming.

Lemma 3. Let p ∈ K1

⊗
· · ·
⊗

Kn, q ∈ K∗1
⊗
· · ·
⊗

K∗n denote a primal and dual feasible
solution for a second-order cone program where K1, . . . , Kn are second-order cones and
K∗1 , . . . , K

∗
n are the corresponding dual cones. Let x, z be subvectors of p, q respectively

such that x ∈ Ki and z ∈ K∗i . Let x =

(
x0
x̄

)
, z =

(
z0
z̄

)
. If xTz ≤ µ, then ‖z0x̄+ x0z̄‖ ≤

√
2x0z0µ.

Proof. If x0 = 0, then ‖x̄‖ ≤ x0 = 0 by feasibility assumption. Hence, x̄ = 0, which
implies ‖z0x̄+ x0z̄‖ = 0 ≤

√
2x0z0µ. Similarly, if z0 = 0, then z satisfies ‖z0x̄+ x0z̄‖ =

0 ≤
√

2x0z0µ by the same argument.

Otherwise, x0 > 0, z0 > 0, and we derive the following inequalities

xTz = x0z0 + x̄T z̄ ≤ µ

⇒ 1 +
x̄T

x0

z̄

z0
≤ µ

x0z0
(Since x0 > 0, z0 > 0)

⇒
∥∥∥∥ x̄x0 +

z̄

z0

∥∥∥∥2 =

∥∥∥∥ x̄x0
∥∥∥∥2 +

∥∥∥∥ z̄z0
∥∥∥∥2 + 2

x̄T

x0

z̄

z0
≤ 2− 2 +

2µ

x0z0
(Since x0 ≥ ‖x̄‖ , z0 ≥ ‖z̄‖)

⇒
∥∥∥∥ x̄x0 +

z̄

z0

∥∥∥∥ ≤√ 2µ

x0z0

⇒ ‖z0x̄+ x0z̄‖ ≤
√

2x0z0µ.

Let ā := 1
n

∑n
i=1 ai denote the centroid of all data points. Let x′1 := x′2 := ... := x′n :=

ā. Then the primal objective value of the original sum-of-norms formulation at x′ is

f ′(x′) =
1

2

n∑
l=1

‖ā− al‖2 .

Let δ′ij = 0 for all 1 ≤ i < j ≤ n. Then δ′ is a feasible solution to the dual problem of the
original formulation and the dual objective value at δ′ is

h′(δ′) = 0.

33

Let f ∗ and h∗ denote the primal and dual optimal values of the SOCP respectively, which
must satisfy the following inequality by strong duality:

n

2
= h′(δ′) +

n

2
≤ h∗ = f ∗ ≤ f ′(x′) +

n

2
=

1

2

n∑
l=1

‖ā− al‖2 +
n

2
.

At the feasible solution (x,y, z, s, u, t, δ,β, γ), the objective value is at a distance of at
most µ away from the optimal value, which implies

n∑
i=1

si + λ
∑

1≤i<j≤n

tij ≤ f ∗ + µ ≤ 1

2

n∑
l=1

‖ā− al‖2 +
n

2
+ µ,

which is rearranged to

n∑
i=1

(
si −

1

2

)
+ λ

∑
1≤i<j≤n

tij ≤
1

2

n∑
l=1

‖ā− al‖2 + µ.

Moreover, by feasibility, si ≥ 1
2

holds for all i = 1, . . . , n and tij ≥ 0 holds for all 1 ≤ i <
j ≤ n. Hence,

si ≤
1

2

n∑
l=1

‖ā− al‖2 +
1

2
+ µ, tij ≤

1

λ

(
1

2

n∑
l=1

‖ā− al‖2 + µ

)
.

As tijλ+ yTijδij = εij1 ≤ µ,
∥∥εij2 ∥∥ has the following upper bound by Lemma 3

∥∥εij2 ∥∥ = ‖tijδij + λyij‖ ≤
√

2tijλµ ≤

√√√√ n∑
l=1

‖ā− al‖2 µ+ 2µ2. (5.13)

Similarly, at the feasible solution, the dual objective value is at a distance of at most µ
away from the optimal value, which implies

n∑
i=1

aTi βi +
n∑
i=1

γi ≥ h∗ − µ ≥ n

2
− µ,

which is rearranged to
n∑
i=1

(
1

2
− γi

)
≤

n∑
i=1

aTi βi + µ.

34

By feasibility, 1
2
− γi ≥ 0, which implies

1− γi ≤
1

2
+

n∑
i=1

aTi βi + µ.

Since λ ≥ ‖δij‖, ‖βi‖ satisfies

‖βi‖ =

∥∥∥∥∥
i−1∑
j=1

δji −
n∑

j=i+1

δij

∥∥∥∥∥ ≤ (n− 1)λ.

By Cauchy-Schwartz inequality,

aTi βi ≤ ‖ai‖ · ‖βi‖ ≤ (n− 1)λ ‖ai‖ .

Therefore, 1− γi satisfies

1− γi ≤
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ.

Since si(1− γi) + zTi βi + uiγi = σi1,

∥∥∥∥(σi2σi3
)∥∥∥∥ has the following upper bound by Lemma 3

∥∥∥∥(σi2σi3
)∥∥∥∥ =

∥∥∥∥(siβi + (1− γi)zi
siγi + (1− γi)ui

)∥∥∥∥ ≤√2si(1− γi)µ

≤

√√√√2 ·

(
1

2

n∑
l=1

‖ā− al‖2 +
1

2
+ µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
· µ

≤

√√√√(n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ.

(5.14)

5.2 Clustering test

Given a primal and dual feasible solution (x,y, z, s, u, t, δ,β, γ) with a duality gap µ,
we find candidate clusters as follows. First, select an index i from {1, . . . , n} arbitrarily.
Construct a ball of radius µ0.75 about xi. Create a candidate cluster with all indices k such
that xk is located in the ball about xi (i.e. {k : ‖xi − xk‖ ≤ µ3/4}). Now find an index j

35

that is not in any candidate cluster and construct a ball about xj. Repeat until all data
points are used up.

If the output of the primal-dual algorithm is not feasible for the SOCP, we construct a
feasible solution as described in the previous section. With the feasible solution, we define

gij :=

{
−δij, if i < j,
δji, if j < i.

For any candidate cluster C, compute qij := gij+ 1
m
·(xi−xj−ωi+ωj)+ 1

m

∑
k/∈C(gik−

gjk) for all i, j ∈ C, i 6= j, denoted as Chiquet-Gutierrez-Rigail (CGR) subgradients. Check
if the following two conditions hold:

CGR subgradient condition : All CGR subgradients qij satisfy the CGR inequality
‖qij‖ ≤ λ.

Separation condition : All candidate clusters are separated at distance of at least
2τ , where τ =

√
2µ.

If both conditions hold for all candidate clusters, then the test terminates and reports
‘success’. Each candidate cluster is a real cluster given by the optimal solution, thus all
clusters are correctly identified. The qij’s serve as certificates. If either condition fails
for any candidate cluster, the test reports ‘failure’. One has to run more iterations of the
algorithm to decrease the duality gap µ. Repeat the process until the test reports ‘success’.
Note that this test is algorithm-independent, but it does require the algorithm to be of
primal-dual type.

The CGR subgradients condition certifies that each cluster we identify is indeed a
cluster or part of a larger cluster by Theorem 1 in Section 3.1. This is presented in Section
5.2.1. The separation condition certifies that there is no super-cluster with more than one
cluster we identify by the following theorem:

Theorem 4. Define τ > 0 such that the true optimizer and the approximate solution are
at distance of at most τ away (i.e. ‖x − x∗‖ ≤ τ). If there exist i, j ∈ C such that
‖xi − xj‖ > 2τ , then C is not a cluster or part of a larger cluster.

Therefore, we determine all clusters correctly when the test succeeds.

5.2.1 CGR subgradients and clustering corollary

Let C ⊆ [n] denote a subset of points. Let m := |C| denote the cardinality of C.

36

Lemma 5. For all i, j ∈ C, i 6= j, define qij := gij + 1
m
·(xi−xj−ωi+ωj)+ 1

m

∑
k/∈C(gik−

gjk). Then qij satisfies

ai − ā =
∑

j∈C\{i}

qij, ∀i ∈ C (5.15)

qij = −qji, ∀i, j ∈ C, i 6= j, (5.16)

where ā = 1
m

∑
i∈C ai.

Proof. Substitute the primal constraint (5.2d) into the perturbed complementary slackness
(5.12) to obtain the following equality of γi and si

1− γi = si − σi3, ∀i = 1, . . . , n.

Substitute the equality above into (5.11) and divide both sides by si to obtain the following
equation of βi in terms of zi

βi = −zi + ωi, ∀i = 1, . . . , n.

Notice that the operation is valid because si ≥ 1
2

by the primal constraint (5.2d) and (5.2f).
Substitute the primal constraint (5.2c) and the equality above into the dual constraint
(5.3b) yielding

−
i−1∑
j=1

δji +
n∑

j=i+1

δij − xi + ai + ωi = 0, ∀i = 1, . . . , n.

With the definition of gij, the equality above is rewritten as

− xi + ai + ωi −
∑
j 6=i

gij = 0, ∀i = 1, . . . , n. (5.17)

By (5.17), we have the following equality holds for all i ∈ C

− xi + ai + ωi −
∑

j∈C\{i}

gij −
∑
k/∈C

gik = 0. (5.18)

Sum (5.18) over all i ∈ C and divide the new equality by m to obtain

− 1

m

∑
i∈C

xi + ā+
1

m

∑
i∈C

ωi −
1

m

∑
i∈C

∑
k/∈C

gik = 0. (5.19)

37

Change the index in (5.19) from i to j. Subtract (5.19) from (5.18) to obtain

−xi+
1

m

∑
j∈C

xj +ai− ā+ωi−
1

m

∑
j∈C

ωj−
∑

j∈C\{i}

gij +
1

m

∑
j∈C

∑
k/∈C

(gjk−gik) = 0, ∀i ∈ C,

which is rearranged to

ai − ā = xi −
1

m

∑
j∈C

xj − ωi +
1

m

∑
j∈C

ωj +
∑

j∈C\{i}

gij +
1

m

∑
j∈C

∑
k/∈C

(gik − gjk)

=
∑

j∈C\{i}

[
1

m
(xi − xj − ωi + ωj) + gij +

1

m

∑
k/∈C

(gik − gjk)

]
=

∑
j∈C\{i}

qij (By definition), ∀i ∈ C.

Moreover, by the definition of qij, we observe the following property for all i, j ∈ C, i 6= j

qij = gij +
1

m
· (xi − xj − ωi + ωj) +

1

m

∑
k/∈C

(gik − gjk)

= −gji −
1

m
· (xj − xi − ωj + ωi)−

1

m

∑
k/∈C

(gjk − gik)

= −qji

Corollary 5.1. If ‖qij‖ ≤ λ holds for all i 6= j, i, j ∈ C where C is a candidate cluster,
then C is a cluster or part of a larger cluster.

The proof of the corollary follows trivially by Theorem 1 and Corollary 1.1.

5.2.2 Duality gap and distinct clustering corollary

As derived earlier in Section 3.2, the duality gap at the feasible solution is:

f(x,y, z, s, u, t)−h(δ,β, γ) =
n∑
i=1

si+λ
∑

1≤i<j≤n

tij−
n∑
i=1

aTi βi−
n∑
i=1

γi =
n∑
i=1

σi1+
∑

1≤i<j≤n

εij1 =: µ.

(5.20)

38

By the property of strong convexity of f ′, we have

1

2
‖x− x∗‖2 ≤ f ′(x)− f ′(x∗) = f(x,y, z, s, u, t)− f(x∗,y∗, z∗, s∗, u∗, t∗),

which is further bounded as follows by weak duality

1

2
‖x− x∗‖2 ≤ f(x,y, z, s, u, t)− h(δ,β, γ). (5.21)

Then, for any primal-dual algorithm, the distance between the approximate solution and
the optimizer is given by

τ = ‖x− x∗‖ ≤
√

2µ (5.22)

Corollary 5.2. Let C denote a candidate cluster. If for all i ∈ C, j /∈ C it holds that
‖xi − xj‖ > 2τ where τ =

√
2µ for any primal-dual algorithm, then there does not exist a

super-cluster which strictly contains C.

The proof follows directly from Theorem 4.

5.3 Properties of the central path

In this section, we explore the properties of the central path for a primal-dual path following
algorithm. These properties play a fundamental role in the proof of our main theorem in
Section 6. In the main theorem, we state that if a primal-dual path following algorithm is
used, our clustering test will eventually succeed after a finite number of iterations when λ is
not at any fusion value. The proof of the ultimate success relies on the linear convergence
to the optimal primal-dual pair, which will be shown to be satisfied in the remainder of
this section.

Unfortunately, there are very few theorems about the central path of second-order-
cone programming in literature. The only applicable result that we are aware of is due
to Nesterov and Tuncel [20]. Their work showed that with a primal-dual interior point
method, the primal µ′-centered iterates converge to the primal analytic center superlinearly
under two assumptions. One of the assumptions is that there is a unique dual optimizer.
This assumption does not hold for SON clustering in general. There are often infinitely
many dual optimal solutions.

In spite of the lack of convergence analysis for SOCP, there are established theorems
from semidefinite programming (SDP). SDP specializes to SOCP. With some standard

39

techniques, we can easily rewrite our SOCP problem as SDP and apply the primal-dual
path following algorithm to solve the new SDP. The following theorem states that the
µ′-centered iterates converge to the analytic center superlinearly.

Theorem 6 (Luo et al. [18]). Assume the semidefinite program has a strictly comple-
mentary solution and the iterates of the algorithm converge tangentially to the central path.
Let (X(µ′), Z(µ′)) denote a µ′-centered primal-dual pair. Let (Xa, Za) denote the analytic
centers of the primal and dual optimal sets. Let µ′ ∈ (0, 1) be the central path parameter.
There holds

‖X(µ′)−Xa‖ = O(µ′), ‖Z(µ′)− Za‖ = O(µ′).

Tangential convergence to the central path is a terminology adopted by Luo et al.
[18]. It was first defined in [16] by Kojima et al. as follows. Let (Xr, Zr) denote the
solution generated by some algorithm at the rth iteration. Let (Xa, Za) denote an optimal
solution. Then the sequence {(Xr, Zr)} converges to the optimizer (Xa, Za) tangentially
to the central path if

lim
r→∞

∥∥∥√XrZr
√
Xr − µ′rI

∥∥∥
F
/µ′r = 0,

where µ′r = tr(XrZr). Assume a primal-dual path following algorithm satisfying the as-
sumptions of Luo et al., and it is applied to solve the SOCP as SDP. To employ Theorem
6, we show that our SOCP has a strictly complementary optimizer. Notice that this state-
ment is not necessarily true for all values of λ. One has to assume λ is not at any fusion
value. When λ is exactly at a fusion value λ∗, strict complementarity may fail. The failure
is not surprising since any arbitrarily small negative perturbation λ∗ + ε yields a different
clustering. In other words, complete cluster identification for these fusion values is ill-
posed. Thus it is unreasonable to expect an algorithm that satisfies a guarantee for such
a problem. There are at most n fusion values as a result of Theorem 1.1.

It is worth remarking that Theorem 6 does not directly apply to a primal-dual SOCP
interior-point method. SOCP is a special case of SDP, yet the central path of SOCP is
not just a simple projection of the SDP central path. The reason is that the log-barrier
function for SOCP is not a specialization of the log-barrier function for SDP. Let x denote

a primal feasible solution for an SOCP where x =

(
x0
x̄

)
∈ Rd+1 satisfies x0 ≥ ‖x̄‖. Then

the log-barrier function inherited from SDP reformulation would be

φSDP (x) = − ln(x20 − ‖x̄‖
2)− (d− 1) lnx0,

40

while the log-barrier function inherited from the original SOCP would be

φSOCP (x) = − ln(x20 − ‖x̄‖
2).

The removal of the second term actually accelerates the convergence.

We suspect that an SOCP interior-point method should also satisfy a bound analogous
to Theorem 6, but we are not aware of a proof in the literature.

5.3.1 Strict complementarity

By specializing the definition of strict complementarity in SDP to SOCP [1], a primal and
dual optimal solution satisfies strict complementarity if and only if

tij + λ > ‖yij + δij‖, ∀1 ≤ i < j ≤ n, (5.23)

si + 1− γi >
∥∥∥∥(zi + βi

ui + γi

)∥∥∥∥ , ∀i = 1, ..., n (5.24)

The following theorem is a sufficient condition for strict complementarity of (5.2) and
(5.3).

Theorem 7. If λ > 0 is a parameter value at which fusion does not occur, then there
exists a strictly complementary primal-dual optimal solution to SOCP (5.2) and (5.3) at
λ.

To prove Theorem 7, we consider a new optimization problem and construct such a
strictly complementary primal-dual optimal solution from the new problem. Let λ1, λ2 be
the two successive fusion values such that λ ∈ (λ1, λ2). Note that it is possible for λ1 = 0
or λ2 = ∞. Let (x′,y′, z′, s′, u′, t′, δ′,β′, γ′) denote a primal and dual optimal solution at
λ1. Let C1, C2, ..., CK denote the clusters identified by the optimal solution above. When
λ1 = 0, there are n clusters, and each cluster is a singleton set. When λ1 is the largest
fusion value, there is only one cluster containing all n points. Define āk := 1

|Ck|
∑

i∈Ck
ai.

Consider the following optimization problem:

min
p1,...,pK∈Rd

1

2

K∑
k=1

|Ck| ‖pk − āk‖2 + λ
∑

1≤k<k′≤K

|Ck| · |Ck′ | ‖pk − pk′‖ . (5.25)

Let p denote the optimal solution of (5.25).

41

Lemma 8. Vector p satisfies pk 6= pk′ for all k, k′ ∈ [K], k 6= k′.

Proof. For the purpose of contradiction, we may assume there exist k̂ 6= k̂′ such that
pk̂ = pk̂′ . Let x∗i = pk for i ∈ Ck, k ∈ [K]. By the first-order optimality condition of (5.25)
at p, there exist gkk′ ∈ ∂‖pk − pk′‖ for all k 6= k′ such that

0 = pk − āk + λ
∑
k′ 6=k

|CK′| · gkk′ = pk − ai + ai − āk + λ
∑
k′ 6=k

|CK′| · gkk′ . (5.26)

Define g′ with δ′ as before

g′ij :=

{
−δ′ij, if i < j,
δ′ji, if j < i.

By the feasibility and complementary slackness in Section 5.1, the dual solution satisfies

ai − āk =
∑

j∈Ck−{i}

g′ij, ∀i ∈ Ck, k ∈ [K], and
∥∥g′ij∥∥ =

∥∥δ′ij∥∥ ≤ λ1, ∀i 6= j. (5.27)

Substitute (5.27) to (5.26) to obtain

0 = pk − ai +
∑

j∈Ck−{i}

g′ij + λ
∑
k′ 6=k

|CK′ | · gkk′

= x∗i − ai +
∑

j∈Ck−{i}

g′ij + λ
∑
k′ 6=k

|CK′| · gkk′ ,

satisfying (3.2) at i. As i ∈ Ck, k ∈ [K] are chosen arbitrarily, the equality (3.2) holds for
all i hence x∗ is an optimal solution to (1.1). Since pk̂ = pk̂′ , we have x∗i = x∗j for all
i, j ∈ Ck̂ ∪ Ck̂′ . By the agglomerative properties of the clusterpath, cluster Ck̂, Ck̂′ merge
at some λ′ ∈ (λ1, λ], which contradicts our choice of λ2. That concludes our proof.

By Lemma 8, the objective function is differentiable at p. Hence, there holds

|Ck|(pk − āk) + λ|Ck|
∑
k′ 6=k

|Ck′| ·
pk − pk′
‖pk − pk′‖

= 0, ∀k ∈ [K]. (5.28)

42

Define the following primal-dual solution:

x∗i = pk, ∀i ∈ Ck, k ∈ [K]

y∗ij = x∗i − x∗j , ∀1 ≤ i < j ≤ n

z∗i = x∗i − ai, ∀i = 1, . . . , n,

s∗i =
1

2
(1 + ‖z∗i ‖2), ∀i = 1, . . . , n

u∗i =
1

2
(−1 + ‖z∗i ‖2), ∀i = 1, . . . , n

t∗ij = ‖y∗ij‖, ∀1 ≤ i < j ≤ n

δ∗ij =

{
δ′ij, if i < j and i, j ∈ Ck
λ
x∗j−x∗i
‖x∗j−x∗i ‖

, otherwise
∀1 ≤ i < j ≤ n

β∗i = −z∗i , ∀i = 1, . . . , n

γ∗i =
1

2
(1− ‖β∗i ‖2), ∀i = 1, . . . , n

(5.29)

Lemma 9. The solution defined by (5.29) is optimal for SOCP (5.2) and (5.3) at λ.

Proof. By construction, the primal constraints (5.2b), (5.2c), (5.2d), (5.2e), (5.2f), the dual
constraints (5.3c), (5.3d), and the complementary slackness conditions (5.8), (5.9), (5.10),
(5.11) and (5.12) with ε = 0,σ = 0 are automatically satisfied. It remains to check if the
solution satisfies (5.3b).

Verification for (5.3b): For any i ∈ Ck with some k ∈ [K], (5.3b) is rewritten as

43

follows due to (5.27) and (5.28)

−
i−1∑
j=1

δ∗ji +
n∑

j=i+1

δ∗ij + β∗i

=−
∑

j<i,j∈Ck−{i}

δ′ji +
∑

j>i,j∈Ck−{i}

δ′ij + λ
∑
k 6=k′
|Ck′ |

pk′ − pk
‖pk′ − pk‖

+ ai − x∗i

=−
∑

j∈Ck−{i}

g′ij + λ
∑
k 6=k′
|Ck′ |

pk′ − pk
‖pk′ − pk‖

+ ai − x∗i

=āk − ai + λ
∑
k 6=k′
|Ck′|

pk′ − pk
‖pk′ − pk‖

+ ai − pi

=āk + λ
∑
k 6=k′
|Ck′|

pk′ − pk
‖pk′ − pk‖

− pi

=0.

By KKT conditions, the solution defined above forms an optimal primal-dual pair.

Lemma 10. The solution defined by (5.29) is strictly complementary.

Proof. The strict complementarity is equivalent to (5.23) and (5.24), which can be easily
checked as shown below

Verification for (5.23): Let 1 ≤ i < j ≤ n. If y∗ij = 0, then there exists some k ∈ [K]
such that i, j ∈ Ck. By definition, t∗ij = 0 and δ∗ij = δij. Notice that δij is the optimal dual
solution to (1.1) at λ1, then it satisfies ‖δij‖ ≤ λ1 < λ by the definition of λ. Hence,

t∗ij + λ = λ > ‖δij‖ = ‖δ∗ij‖ = ‖y∗ij + δ∗ij‖.

If y∗ij 6= 0, then there exist k, k′ ∈ [K] such that i ∈ Ck, j ∈ Ck′ and k 6= k′. By

definition, t∗ij = ‖y∗ij‖ = ‖pk − pk′‖ and δ∗ij = λ
pk′−pk
‖pk′−pk‖

. Hence,

t∗ij + λ = ‖pk − pk′‖+ λ > |‖pk − pk′‖ − λ| =
∥∥∥∥pk − pk′ + λ

pk′ − pk
‖pk′ − pk‖

∥∥∥∥ =
∥∥y∗ij + δ∗ij

∥∥ .
44

Verification for (5.24): Let i ∈ [n]. By construction,

s∗i + 1− γ∗i = ‖z∗i ‖2 + 1 > 0 =

∥∥∥∥(z∗i − z∗i
−1

2
(1− ‖zi‖2) + 1

2
(1− ‖zi‖2)

)∥∥∥∥ =

∥∥∥∥(z∗i + β∗i
u∗i + γ∗i

)∥∥∥∥
Since the indices are chosen arbitrarily, the solution defined above is strictly complemen-
tary.

With three lemmas presented in this section, there exists a strictly complementary
optimal solution (as defined by (5.29)) to SOCP (5.2) and (5.3).

5.4 Test Guarantee

In Section 4, we validated our test theoretically in the sense that if the test succeeds, it
is guaranteed that the correct clusters are found. In this section, we show that the test
succeeds after a finite number of iterations of a certain interior point method, provided that
λ is not at any fusion value. Specifically, we prove that the two conditions in our test are
guaranteed to hold for a primal-dual path following algorithm satisfying the assumptions
of Luo et al. [18] when the duality gap µ is sufficiently small.

Theorem 11. If λ is not a fusion value, then there exists µ0 > 0 such that both CGR
subgradients and separation conditions in the test are satisfied for any duality gap µ ≤ µ0

for a primal-dual path following algorithm satisfying the assumptions of Luo et al. [18].

Let (x,y, z, s, u, t, δ,β, γ) denote a primal and dual feasible solution. Let C1, C2, ..., CK
denote the clusters obtained at optimum. Let µ′ ∈ (0, 1) denote the central path parameter
and let µ denote the duality gap at the feasible solution. By Theorem 6, there hold

‖x(µ′)− xa‖ = O(µ′), ‖δ(µ′)− δa‖ = O(µ′)

where x(µ′), δ(µ′) are µ′-centered solution and xa, δa are the analytic centers of the primal
and dual optimal sets respectively. Moreover, since the iterates converge tangentially to
the central path, we may assume the size of the central path neighborhood to be as follows

‖x− x(µ′)‖ = O(µ′), ‖δ − δ(µ′)‖ = O(µ′).

Luo et al. [18] validated the assumption above for their interior point algorithm, which is a
generalization of the Mizuno-Todd-Ye predictor-corrector method for linear programming.
Combine the two sets of equations above and employ the triangle inequality to obtain

‖x− xa‖ = O(µ′), ‖δ − δa‖ = O(µ′).

45

As the duality gap µ is of a linear order of the central path parameter µ′, the equalities
above are rewritten as

‖x− xa‖ = O(µ), ‖δ − δa‖ = O(µ).

Define p, p′ ≥ 0 such that ‖xi − xai ‖ ≤ pµ for all i and
∥∥δij − δaij∥∥ ≤ p′µ for all distinct

pairs (i, j). Then, for all distinct pairs (i, j) in any cluster Ck, there holds ‖xi − xj‖ ≤ 2pµ.
Moreover, define q > 0 such that all xai ’s in different clusters are at least q apart, which
implies that xi’s in different clusters are separated by a distance of at least q − 2pµ. We
may assume the duality gap satisfies µ < q

2p
. Notice that this assumption is guaranteed to

be true after a finite number of iterations.

Let C := Ck for some k ∈ [K]. By Lemma 3, there hold
∥∥εij2 ∥∥ ≤√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2

for all i < j and∥∥∥∥(σi2σi3
)∥∥∥∥ ≤

√√√√(n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ

for all i.

5.4.1 Bound the CGR subgradient

Bound ‖δij‖
Lemma 12. For all i, j ∈ C, i 6= j, the following inequality holds

‖δij‖ ≤ λ− r + p′µ

where r := minl 6=l′,l,l′∈Ck,k∈[K](λ− ‖δall′‖) > 0.

Proof. Let i, j ∈ C and i 6= j. By the definition of analytic center and strict complemen-
tarity,

‖δall′‖ < λ,

holds for all l 6= l′, l, l′ ∈ Ck, k ∈ [K]. Hence, r > 0 by definition. Moreover, r also satisfies∥∥δaij∥∥ ≤ λ− r, ∀i, j ∈ C, i 6= j.

Since
∥∥δij − δaij∥∥ ≤ p′µ, we obtain

‖δij‖ ≤ λ− r + p′µ, ∀i, j ∈ C, i 6= j.

46

Bound ‖gik − gjk‖

Lemma 13. For all i, j ∈ C and k /∈ C, the following inequality holds

‖gik − gjk‖ ≤
4λpµ

q − 2pµ
+

2
√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2

q − 2pµ
+

µ

q − 2pµ

Proof. Let i, j ∈ C and k /∈ C. Without loss of generality, we may assume i < j < k.
Hence, gik = −δik, gjk = −δjk. By (5.9), we derive

tikδik − tjkδjk = −λyik + λyjk + εik2 − ε
jk
2 = −λ(xi − xj) + εik2 − ε

jk
2 . (5.30)

Adding the term (tjk − tik)δjk to both sides of the equality to obtain

tik(δik − δjk) = (tjk − tik)δjk − λ(xi − xj) + εik2 − ε
jk
2 .

Notice that tik ≥ ‖yik‖ = ‖xi − xk‖ ≥ q − 2pµ > 0 by the primal constraint (5.2e) and
our assumption on the duality gap. Divide the equality above by tik to obtain

δik − δjk =
tjk − tik
tik

δjk −
λ(xi − xj)

tik
+
εik2 − ε

jk
2

tik
.

Substitute the definition of g into the equality above to obtain

gik − gjk =
tik − tjk
tik

δjk +
λ(xi − xj)

tik
− ε

ik
2 − ε

jk
2

tik
. (5.31)

By the perturbed complementary slackness (5.8), the primal constraint (5.2e) and the
Cauchy-Schwarz inequality, we derive the following inequality

εik1 = tikλ+ yTikδik ≥ tikλ− ‖yik‖ · ‖δik‖ ≥ tikλ− ‖yik‖ · λ,

which yields an upper bound on tik

tik ≤ ‖yik‖+
εik1
λ
.

Combined with the primal constraint (5.2e) at tjk and the triangle inequality, we obtain
the following

tik − tjk ≤ ‖yik‖+
εik1
λ
− ‖yjk‖ ≤ ‖yik − yjk‖+

εik1
λ

= ‖xi − xj‖+
εik1
λ
. (5.32)

47

The same inequality holds for tjk − tik due to the symmetry of (5.32). By (5.31), (5.32)
and triangle inequality, the norm bound of gik − gjk is as follows

‖gik − gjk‖ ≤
|tik − tjk| · ‖δjk‖

tik
+
λ ‖xi − xj‖

tik
+

∥∥εik2 ∥∥+
∥∥∥εjk2 ∥∥∥

tik
(By triangle inequality)

≤
‖xi − xj‖+

εik1
λ

tik
‖δjk‖+

λ ‖xi − xj‖
tik

+

∥∥εik2 ∥∥+
∥∥∥εjk2 ∥∥∥

tik
(By (5.32))

≤ 2λ ‖xi − xj‖
tik

+

∥∥εik2 ∥∥+
∥∥∥εjk2 ∥∥∥

tik
+
εik1
tik

(By (5.2e) and (5.30)).

Since i, j ∈ C and k /∈ C, there hold tik ≥ ‖yik‖ = ‖xi − xk‖ ≥ q − 2pµ and ‖xi − xj‖ ≤
2pµ. Moreover, there also hold εik1 ≤ µ,

∥∥εik2 ∥∥ ≤ √∑n
l=1 ‖ā− al‖

2 µ+ 2µ2 and
∥∥∥εjk2 ∥∥∥ ≤√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2. Hence, ‖gik − gjk‖ is further upper bounded as follows

‖gik − gjk‖ ≤
4λpµ

q − 2pµ
+

2
√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2

q − 2pµ
+

µ

q − 2pµ
(5.33)

Bound ‖ωi‖

Lemma 14. For all i ∈ C, it holds

‖ωi‖ ≤ 2

√√√√2

(
n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ.

Proof. Let i ∈ C. By definition,

ωi =
σi3
si
zi +

1

si
σi2.

By the primal constraint (5.2f), we have

‖zi‖ ≤
√

2si − 1 ≤
√

2si, si ≥
1

2
,

48

which implies
‖zi‖
si
≤
√

2

si
≤
√

4 = 2,
1

si
≤ 2.

Coupled with triangle inequality, these two inequalities yield

‖ωi‖ ≤
‖zi‖
si

σi3 +
1

si

∥∥σi2∥∥ ≤ 2σi3 + 2
∥∥σi2∥∥ .

Moreover, since

∥∥∥∥(σi2σi3
)∥∥∥∥ ≤ √(∑n

l=1 ‖ā− al‖
2 + 1 + 2µ

)
·
(
1
2

+
∑n

l=1(n− 1)λ ‖al‖+ µ
)
µ

holds for any i ∈ [n] by Lemma 3 and the duality gap,

(σi3)
2 +

∥∥σi2∥∥2 ≤
(

n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ.

which implies the following inequality since (a+ b)2 ≤ 2a2 + 2b2

(σi3 +
∥∥σi2∥∥)2 ≤ 2 ·

(
n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ.

Therefore, the following holds as i ∈ C is chosen arbitrarily:

‖ωi‖ ≤ 2σi3 + 2
∥∥σi2∥∥ ≤ 2

√√√√2 ·

(
n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ.

Bound CGR subgradients

Lemma 15. For all i, j ∈ C and i < j, there holds

‖qij‖ ≤λ− r + p′µ+
1

m
·

2pµ+ 4

√√√√2 ·

(
n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ

+
n−m
m

 4λpµ

q − 2pµ
+

2
√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2

q − 2pµ
+

µ

q − 2pµ

 .

49

Proof. Let i, j ∈ C and i < j. By triangle inequality,

‖qij‖ ≤ ‖δij‖+
1

m
· (‖xi − xj‖+ ‖ωi‖+ ‖ωj‖) +

1

m

∑
k/∈C

‖gik − gjk‖ .

With the assumptions on the distance between points,

‖xi − xj‖ ≤ 2pµ.

By Lemma 12, 13, Lemma 14 and the inequality above, we obtain

‖qij‖ ≤λ− r + p′µ+
1

m
·

2pµ+ 4

√√√√2 ·

(
n∑
l=1

‖ā− al‖2 + 1 + 2µ

)
·

(
1

2
+

n∑
l=1

(n− 1)λ ‖al‖+ µ

)
µ

+
n−m
m

 4λpµ

q − 2pµ
+

2
√∑n

l=1 ‖ā− al‖
2 µ+ 2µ2

q − 2pµ
+

µ

q − 2pµ

 .

(5.34)

5.4.2 Proof of Theorem 11

Proof. We rewrite (5.34) with O(·) notation to obtain the following inequality

‖qij‖ ≤ λ− r +O(
√
µ), ∀i, j ∈ Ck, i 6= j, k ∈ [K],

since C = Ck is an arbitrarily cluster. As r > 0 by Lemma 12, there exists µ1 > 0 such
that for all µ ≤ µ1, ‖qij‖ ≤ λ holds for all i, j ∈ Ck, i 6= j, k ∈ [K]. Here concludes the
proof of the CGR subgradient condition.

Since q > 0, there exists µ2 > 0 such that 2
√

2µ2 < q − 2pµ2. Hence, for all µ ≤ µ2,
all clusters are separated at distance of at least 2

√
2µ2. Here concludes the proof of the

second condition.

Let µ0 = min{µ1, µ2}, then both CGR subgradient and separation conditions are sat-
isfied for any µ ≤ µ0.

50

5.5 Computational experiments

In this section, we conduct experiments in which a Chi-Lange ADMM solver [7] and our
clustering test for sum-of-norms clustering are applied to a simulated dataset of two nor-
mally distributed half moons. We intend to answer the following questions: (1) How does
the performance of our test depend on λ? and (2) How does the recovery of two half moons
depend on λ?

Our algorithm is implemented in Julia [3]. It terminates if the clustering test suc-
ceeds, or if the maximum number of iterations is reached. In the algorithm, the code
tests for clustering every t iterations of the ADMM solver. The value of t is taken to
be 8 in our experiment. At the end of every t iterations, the solver yields a primal
solution and a dual solution, from which our algorithm constructs a primal and dual
feasible pair for the SOCP formulation by (5.7). With the feasible solution, the algo-
rithm then creates candidate clusters, computes duality gap and constructs CGR subgra-
dients. The code checks for the CGR subgradient condition and separation condition.
If both conditions hold, the clustering test reports ‘success’. Otherwise, the code runs t
more iterations of the ADMM solver and repeats the clustering test. The detailed algo-
rithm is outlined as follows. Each iteration of the ADMM solver is of complexity O(n2d).

51

Algorithm 2: Find clusters

C ← {1, . . . , n};
k ← 1;
while C 6= ∅ do

Choose i ∈ C arbitrarily;

Create a cluster Rk ← {j : ‖xi − xj‖ ≤ µ3/4} (including i itself);
Delete all these points in Rk from C;
k ← k + 1;

Return candidate clusters {R1, R2, . . . , RK′};

Algorithm 3: An ADMM algorithm with our clustering test

Result: Clustering assignment
Initialize (x, δ);
while clustering test fails or maximum number of iterations is not reached do

for l = 1, 2, . . . , t do
ADMM updates by Chi and Lange [7];

end
Construct a feasible solution for SOCP by (5.29) from the current ADMM
iterate;

Compute the duality gap µ;
Run Algorithm 2 to find clusters {R1, R2, . . . , RK′};
Compute CGR subgradients from dual variables for {R1, R2, . . . , RK′};
Check the CGR subgradient condition; Check that no two clusters are distance
≤ 2
√

2µ of each other;
Mark the clustering test ‘success’ if both conditions pass and mark it ‘failure’
otherwise;

end
Return recovered clusters {R1, R2, . . . , RK′}.

To assess the performance of recovery, we employ the Rand index by Rand [25]. Rand
index is a measure which specifically evaluates the performance of clustering. It compares
two clusterings {R1, . . . , RK′} and {V1, . . . , VK} in a pairwise manner. If a pair of data
points are placed in the same cluster in both clusterings, or if a pair of data points are
placed in different clusters in both clusterings, then this pair is called a similar assignment
and it contributes to the measure of similarity between two clusterings. We define the

52

following two sets of similar assignments on all distinct pairs of instances:

S : = {(i, j) : 1 ≤ i < j ≤ n such that there exist m,m′ satisfying i, j ∈ Vm ∩Rm′},
D : = {(i, j) : 1 ≤ i < j ≤ n such that i ∈ Vm1 , j ∈ Vm2 ,m1 6= m2, and

i ∈ Rm′1
, j ∈ Rm′2

,m′1 6= m′2}.

Then Rand index is defined as the fraction of all distinct pairs which are similar assign-
ments:

R =
|S|+ |D|(

n
2

) ,

where |·| denotes the cardinality function. The value of R ranges from 0 to 1. When R = 0,
two clusterings are completely dissimilar. When R = 1, two clusterings are identical. A
higher Rand index indicates a higher level of similarity. A random assignment to clusters
in the case of equally sized clusters, K = 2 yields expected Rand index of 0.5.

The experiment is conducted on a simulated dataset of two normally distributed half
moons with 500 instances. The angle of two half moons follows a Gaussian distribution
with a mean of 0 and a standard deviation of π

6
. A random noise which follows a two-

dimensional Gaussian distribution with a mean of 0 and a standard deviation of 0.05
displaces the instances from the moons. Fifty linearly spaced values of λ are taken from
the range [10−8, 0.00496]. The range is determined empirically. Furthermore, the maximum
number of iterations is chosen to be 50,000. It took approximately 15 hours total on an
Intel Xeon processor single-threaded to complete the experiment.

53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
104

X 0.0038463
Y 50000

X 0.0018219
Y 50000

X 0.0029353
Y 7280 X 0.0039475

Y 5840

Figure 5.1: Iteration counts versus λ

Our first objective is to evaluate the performance of our clustering test. At 32 out of
50 values of λ, the clustering test succeeds before the maximum number of iterations is
reached. When λ is in the range between λ = 0.0018219 and λ = 0.0028341, the algorithm
repeatedly reaches the iteration threshold before the test succeeds as shown in Figure 5.1.
The performance is interpretable with theories discussed earlier. The clustering test is not
guaranteed to succeed when λ is at a fusion value, and the test performs poorly near a
fusion value as shown in Figure 5.1. When n = 500, there are at most 500 fusion values.
All fusion values are in the range between λ = 0.00040 and λ = 0.00405 as observed in the
experiment. Hence, fusion occurs frequently, and massive fusion values are located densely
in a small region. Thus, in our experiment, it is very likely that the λ we pick is near or
at a fusion value, which leads to the poor performance of our clustering test.

We anticipate that the clustering test improves with fewer data points, and it is indeed
the case. The same experiment is also implemented for 200 instances generated from two
normally distributed half moons with the same parameters. At 89 out of 100 values of λ,
our clustering test succeeds before the maximum number of iterations is reached.

The experiment also attempts to explore the relationship between λ value and the

54

recovery of half moons. To evaluates the recovery, we compute the Rand index with the
recovered clustering and the generative clustering. The figure below shows Rand index
against λ values. The value of Rand index increases monotonically and peaks at λ =
0.00395, where the clustering test succeeds and the Rand index achieves a value of 0.949.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10 -3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
X 0.0039475
Y 0.94939

X 0.0029353
Y 0.74828

X 0.0026317
Y 0.63516

X 0.0018219
Y 0.50233

Figure 5.2: Rand index versus λ

To illustrate the clustering at λ = 0.00395, we also plot the two half moons and color
the clusters. Red instances belong to one cluster, and blue instances belong to another
cluster. Yellow instances are assigned to clusters of singleton points, and they are identified
as noises.

55

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 5.3: Labeled points with clustering at λ = 0.00395

Sum-of-norms clustering with equal weights performs poorly on standard half moons
[7] and normally distributed half moons with a large standard deviation. To resolve the
issue, many authors such as Sun et al. [28] apply exponentially decaying weights to the
sum-of-norms clustering. The exponentially decaying weight of pair (i, j) is determined by
the distance between original data ai and aj. The weight is set to zero if j is not among
i′s k-nearest neighbors. Otherwise, the weight is computed as follows

wij = exp(−φ ‖ai − aj‖2)

where φ is a nonnegative parameter. Assigning weights in this manner implicitly imposes a
prior hypothesis that the nearest-neighbor structure corresponds to true clustering, which
is certainly the case for the standard half-moon data set. Chi and Lange [7] assess the
effect of the number of nearest neighbors k and the parameter φ on SON clustering with
numerical experiments on a half-moon dataset of 100 points. Setting k = 10 and φ = 0.5
yields the best clustering. Choosing k = 50 and φ = 0 results in a similar clustering
pattern to our experiment: clusters only form until late then all points quickly coalesce
to one cluster. At any value of λ, SON clustering could not identify two half moons with
high accuracy. When k = 10 and φ = 0, or k = 50 and φ = 0.5, SON clustering correctly

56

identifies clusters for the easier points but fails to cluster points located at the lower tip of
the right moon and the upper tip of the left moon.

57

Chapter 6

Discussion

The analysis of the mixture of Gaussians in Chapter 4 used only standard bounds and
simple properties of the normal distribution, so it should be apparent to the reader that
many extensions of this result (e.g., Gaussians with a more general covariance matrix,
uniform distributions, many kinds of deterministic distributions) are possible. The key
technique is Theorem 1, which essentially decouples the clusters from each other so that
each can be analyzed in isolation. Such a theorem does not apply to most other clustering
algorithms, or even to sum-of-norm clustering in the case of non-multiplicative weights, so
obtaining similar results for other algorithms remains a challenge.

An interesting question concerns the ranges of parameters for which the Panahi et al.
result (which requires an upper bound on n), or its extension due to Sun et al. applies versus
our bound (which assumes n → ∞). Our result, stated loosely, is that the probability of
correct labeling of points a fixed number of standard deviations from the means goes to 1
exponentially fast in n, whereas the other result states that all points are correctly labeled
with probability that goes to 1 exponentially fast in the ratio

min1≤m<m′≤K ‖µm − µm′‖
max1≤m≤K σm

.

Is it possible to stitch the two results together into a theorem that encompasses all values
of n? One of our computational experiments suggests that this may be possible.

We also proposed a test to determine all clusters from an approximate solution yielded
from any primal-dual type method. If the test reports ‘success’, then the clusters are
correctly identified. Moreover, if a primal-dual path following method that maintains close
proximity to the central path is used, the test is guaranteed to report ‘success’ after a finite

58

number of iterations at non-fusion values of λ, where strict complementarity holds. A few
natural questions concerning strict complementarity and the test itself are (1) Is there a
rigorous test that works when strict complementarity fails? (2) What is the complexity for
our clustering test since it depends on the choice of λ values? (3) Is the test guaranteed
to work for a general primal-dual algorithm? (4) Can one identify clusters correctly from
a primal-only algorithm?

59

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Pro-
gramming, 95, 12 2001.

[2] Dimitri P. Bertsekas. Incremental proximal methods for large scale convex optimiza-
tion. Mathematical Programming, 129(2):163, June 2011.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia: A fresh approach to
numerical computing. SIAM Rev., 59(1):65–98, 2017.

[4] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex op-
timization. Foundations of Computational Mathematics, 9(6):717, Apr 2009.

[5] Raymond B. Cattell. The description of personality: Principles and findings in a
factor analysis. The American Journal of Psychology, 58(1):69–90, 1945.

[6] E. Chi and S. Steinerberger. Recovering trees with convex clustering. https://arxiv.
org/abs/1806.11096, 2018.

[7] Eric C. Chi and Kenneth Lange. Splitting methods for convex clustering. Journal of
Computational and Graphical Statistics, 24(4):994–1013, 2015. PMID: 27087770.

[8] J. Chiquet, P. Gutierrez, and G. Rigaill. Fast tree inference with weighted fusion
penalties. Journal of Computational and Graphical Statistics, 26:205–216, 2017.

[9] Chris Ding, Xiaofeng He, and Horst D. Simon. On the Equivalence of Nonnegative
Matrix Factorization and Spectral Clustering, pages 606–610. Society for Industrial
and Applied Mathematics, 2005.

[10] Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise
coordinate optimization. Ann. Appl. Stat., 1(2):302–332, 12 2007.

60

https://arxiv.org/abs/1806.11096
https://arxiv.org/abs/1806.11096

[11] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex anal-
ysis. Springer, 2012.

[12] T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: An algorithm for cluster-
ing using convex fusion penalties. In International Conference on Machine Learning,
2011.

[13] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Amer. Stat. Assoc, 58:13–30, 1963.

[14] T. Jiang and S. Vavasis. On identifying clusters from sum-of-norms clustering com-
putation. https://arxiv.org/abs/2006.11355, 2020.

[15] T. Jiang, S. Vavasis, and C. W. Zhai. Recovery of a mixture of gaussians by sum-of-
norms clustering. https://arxiv.org/abs/1902.07137, 2019.

[16] M. Kojima, M. Shida, and S. Shindoh. Local convergence of predictor—corrector
infeasible-interior-point algorithms for sdps and sdlcps. Mathematical Programming,
80:129–160, 1998.

[17] F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms regularization:
With application to particle filter output computation. In IEEE Statistical Signal
Processing Workshop (SSP), 2011.

[18] Zhi-Quan Luo, Jos F. Sturm, and Shuzhong Zhang. Superlinear convergence of a
symmetric primal-dual path following algorithm for semidefinite programming. SIAM
Journal on Optimization, 8(1):59–81, 1998.

[19] Dustin G Mixon, Soledad Villar, and Rachel Ward. Clustering subgaussian mixtures
by semidefinite programming. Information and Inference: A Journal of the IMA,
6(4):389–415, 03 2017.

[20] Yu. Nesterov and L. Tuncel. Local superlinear convergence of polynomial-time interior-
point methods for hyperbolicity cone optimization problems. SIAM Journal on Opti-
mization, 26(1):139–170, 2016.

[21] A. Panahi, D. Dubhashi, F. Johansson, and C. Bhattacharyya. Clustering by sum of
norms: Stochastic incremental algorithm, convergence and cluster recovery. Journal
of Machine Learning Research, 70, 2017.

61

https://arxiv.org/abs/2006.11355
https://arxiv.org/abs/1902.07137

[22] K. Pelckmans, J. De Brabanter, J. A. K. Suykens, and B. De Moor. Convex cluster
shrinkage. Available on-line at ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/
ccs_pelckmans2005.pdf, 2005.

[23] Jiming Peng and Yu Wei. Approximating K-means-type clustering via semidefinite
programming. SIAM J. Optim., 18(1):186–205, 2007.

[24] Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penaliza-
tion. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(5):1527–1546, 2017.

[25] William M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846–850, 1971.

[26] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and
trends in machine learning, 4:107–194, 2011.

[27] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

[28] D. Sun, K.-C. Toh, and Y. Yuan. Convex clustering: model, theoretical guarantees
and efficient algorithm. https://arxiv.org/abs/1810.02677, 2018.

[29] Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Elec-
tron. J. Statist., 9(2):2324–2347, 2015.

[30] Y. Yuan, D. Sun, and K.-C. Toh. An efficient semismooth Newton based algorithm
for convex clustering. https://arxiv.org/abs/1802.07091, 2018.

[31] Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng Yan. Convex optimization
procedure for clustering: Theoretical revisit. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 1619–1627. Curran Associates, Inc., 2014.

62

ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/ccs_pelckmans2005.pdf
ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/ccs_pelckmans2005.pdf
https://arxiv.org/abs/1810.02677
https://arxiv.org/abs/1802.07091

	List of Tables
	List of Figures
	Introduction
	Motivation
	Sum-of-norms clustering
	Recovery of a mixture of Gaussians
	Identifying clusters from computation

	Literature Review
	Clustering
	Algorithm for sum-of-norms clustering
	Review of recovery
	Review of clustering identification

	Cluster characterization
	Cluster characterization theorem
	Agglomeration Conjecture
	Extension to other weights

	Recovery of mixture of Gaussians
	Mixture of Gaussians
	Main recovery theorem
	Proof of the main theorem
	Extension to multiplicative weights
	Computational experiments

	Clustering test and guarantee
	Feasibility and complementary slackness
	Second-order cone formulation
	Complementary slackness

	Clustering test
	CGR subgradients and clustering corollary
	Duality gap and distinct clustering corollary

	Properties of the central path
	Strict complementarity

	Test Guarantee
	Bound the CGR subgradient
	Proof of Theorem 11

	Computational experiments

	Discussion
	References

