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Abstract

Ambiguity, the quality of being open to more than one interpretation, permeates our
lives. It comes in different forms including linguistic and visual ambiguity, arises for var-
ious reasons and gives rise to disagreements among human observers that can be hard or
impossible to resolve. As artificial intelligence (AI) is increasingly infused into complex
domains of human decision making it is crucial that the underlying AI mechanisms also
support a notion of ambiguity. Yet, existing AI approaches typically assume that there
is a single correct answer for any given input, lacking mechanisms to incorporate diverse
human perspectives in various parts of the AI pipeline, including data labeling, model
development and user interface design.

This dissertation aims to shed light on the question of how humans and AI can be
effective partners in the presence of ambiguous problems. To address this question, we
begin by studying group deliberation as a tool to detect and analyze ambiguous cases in
data labeling. We present three case studies that investigate group deliberation in the
context of different labeling tasks, data modalities and types of human labeling expertise.

First, we present CrowdDeliberation, an online platform for synchronous group delib-
eration in novice crowd work, and show how worker deliberation affects resolvability and
accuracy in text classification tasks of varying subjectivity. We then translate our findings
to the expert domain of medical image classification to demonstrate how imposing addi-
tional structure on deliberation arguments can improve the efficiency of the deliberation
process without compromising its reliability. Finally, we present CrowdEEG, an online
platform for collaborative annotation and deliberation of medical time series data, imple-
menting an asynchronous and highly structured deliberation process. Our findings from
an observational study with 36 sleep health professionals help explain how disagreements
arise and when they can be resolved through group deliberation.

Beyond investigating group deliberation within data labeling, we also demonstrate how
the resulting deliberation data can be used to support both human and artificial intelli-
gence. To this end, we first present results from a controlled experiment with ten medical
generalists, suggesting that reading deliberation data from medical specialists significantly
improves generalists’ comprehension and diagnostic accuracy on difficult patient cases.
Second, we leverage deliberation data to simulate and investigate AI assistants that not
only highlight ambiguous cases, but also explain the underlying sources of ambiguity to
end users in human-interpretable terms. We provide evidence suggesting that this form of
ambiguity-aware AI can help end users to triage and trust AI-provided data classifications.

We conclude by outlining the main contributions of this dissertation and directions for
future research.
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Chapter 1

Introduction

Man must not attempt to dispel the ambiguity of his being but, on the contrary,
accept the task of realizing it.

— Simone de Beauvoir, The Ethics of Ambiguity

Major advances in artificial intelligence (AI) have enabled a new era of decision sup-
port, shifting from relatively constrained and well-defined problems to more complex and
nuanced domains. Many complex domains essential to our modern society, including jour-
nalism, criminal justice, healthcare or science, are full of problems for which it is difficult
or impossible to find a single correct answer to a given problem. For example, jurors can
arrive at different verdicts in light of the same evidence, or doctors can form conflicting
diagnoses looking at the same medical image. At the heart of many of these disagreements
lies ambiguity, the quality of being open to more than one interpretation.1 An acceptable
approach for decision making in the presence of ambiguous problems often requires elici-
tation and synthesis of diverse human perspectives to inform more well-defined, complete,
balanced or ethical decisions.

However, existing AI approaches typically assume that there is a single correct answer
for any given input, lacking mechanisms to incorporate diverse human perspectives. This
assumption is prevalent in various steps of the AI pipeline, including data labeling, model
development and user interface (UI) design. In data labeling, it has motivated the notion
that inter-rater disagreement is mere “noise in the signal” originating from human mistakes,
and has thus given rise to post-processing techniques that eliminate disagreement. In model

1https://en.oxforddictionaries.com/definition/ambiguity (accessed on 12 May 2020)
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development, it has favoured learning techniques and evaluation metrics that support no
more than a single correct output for any given input. In UI design for AI applications, it
has hampered the exploration of interfaces that communicate and explain ambiguous cases
to end users.

This thesis aims to shed light on the question of how humans and AI can be effec-
tive partners in the presence of ambiguous problems. We take the stance that inter-rater
disagreement carries valuable information that can and should be captured to better un-
derstand the structure of ambiguous problems.

One primary contribution of this work is to introduce and study group deliberation
in the context of data labeling, as a tool to detect and analyze ambiguous cases, and to
either resolve inter-rater disagreements organically through deliberation, or otherwise mark
them as irresolvable. In support of this contribution, we present insights from three case
studies about collaborative online platforms that all integrate group deliberation into data
labeling workflows, in the context of different data modalities, labeling tasks and types
of human labeler expertise. We further demonstrate how the resulting deliberation data
can be used not only to enable other human labelers to calibrate their own reasoning for
better comprehension and accuracy on difficult cases, but also to investigate how AI can
effectively communicate ambiguity to end users.

The remainder of this chapter introduces the central thesis of this dissertation and pro-
vides an overview of our main contributions as well as the scope of the research conducted
to support our thesis.
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1.1 Thesis Statement

This dissertation aims to defend the following thesis statement:

Ambiguity, the quality of being open to more than one interpretation, permeates
our lives. It can take various forms including linguistic and visual ambiguity,
arise for various reasons including heterogeneous data or vague definitions, and
give rise to inter-rater disagreements that can be hard or impossible to resolve.
Human and artificial intelligence can benefit from novel methods that aim to
detect and explain instances of ambiguity. The expected advantages of such
methods are a better understanding of why disagreement arises and when it
can be resolved, as well as better approaches for handling ambiguity in human
decision making—both unassisted and when assisted by artificial intelligence.

To defend this statement, the remainder of this dissertation addresses the following research
questions:

1. How can we capture the structure of ambiguous problems in data labeling?

(a) How can group deliberation be used to analyze ambiguity in data labeling?
(b) How can group deliberation be integrated into non-expert crowdsourcing?
(c) How can group deliberation be integrated into expert labeling tasks?

2. How can we leverage deliberation data to improve human decision making?

(a) How can we use deliberation data as training material for human labelers?
(b) How do labelers perceive deliberation data as a form of training feedback?
(c) How does reading deliberation data affect labeling decisions for future cases?

3. How can we leverage deliberation data to communicate ambiguity in AI output?

(a) How can we simulate an AI that detects and explains ambiguous data?
(b) How do end users perceive an ambiguity-aware AI assistant?
(c) How does an ambiguity-aware AI assistant affect end users’ labeling decisions?

Next, we summarize the research contributions made through the work presented in
this dissertation.
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1.2 Research Contributions

In this dissertation, we make the following research contributions:

1. We introduce group deliberation as a tool to detect and explain ambiguity in data
labeling. To this end, we implement and investigate deliberation workflows within
three different contexts:

(a) First, we present Crowd Deliberation, an online platform for synchronous
group deliberation in the context of non-expert crowd work. We study how
worker deliberation affects resolvability and accuracy using case studies with
both an objective and a subjective task, involving 316 crowd workers.

(b) Next, we translate our findings to the expert domain of medical image clas-
sification to study asynchronous group deliberation among medical specialists.
We present findings from an experiment with 15 retina specialists showing that
structuring deliberation arguments around a set of low-level decision criteria
improves the efficiency of the deliberation process.

(c) Finally, we build on the findings from the first two studies to createCrowdEEG,
an online platform for collaborative annotation and deliberation of medical time
series data. CrowdEEG implements an asynchronous and highly structured de-
liberation process. We present findings from an observational study with 36
sleep technologists about factors contributing to disagreement and resolvability.

2. We demonstrate how deliberation data can be used as training material to calibrate
human expert labelers. To this end, we present results from a controlled ex-
periment with ten medical generalists. Our results show that reading deliberation
data produced by specialists substantially improves generalists’ comprehension and
diagnostic accuracy on difficult patient cases.

3. We leverage deliberation data to simulate and investigate ambiguity-aware AI,
i.e., AI that not only detects, but also explains ambiguous data classifications. We
present results from a controlled experiment with twelve sleep technologists suggest-
ing that ambiguity-aware AI can improve the ability of end users to triage and trust
AI-provided output, and that the relevance of AI-provided ambiguity explanations is
crucial for expert end users to accurately disambiguate difficult cases.

4. We publish two novel datasets containing deliberation data in the context of both
non-expert and expert classification tasks.
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1.3 Research Scope

Here, we define the scope of research conducted as part of this dissertation. We clarify the
problem we aim to solve, the tasks and domains in which we seek to provide support for
the problem, and various aspects of the proposed solutions we investigated.

1.3.1 Tasks

We aim to address the problem of better supporting ambiguity in human-AI collaborative
tasks. Specifically, we focus on supervised learning settings for data classification that
rely on human-labeled data to train and evaluate AI algorithms. In this context, we are
interested in better understanding and supporting scenarios where the same data instance is
labeled by more than one human and where there is disagreement among those humans over
the correct classification label. In particular, we are interested in instances of disagreement
that arise for reasons more profound than simple human mistakes and which are hard or
impossible to resolve even when reviewed and discussed collectively as a group. While
there exist labeling tasks that naturally allow multiple labels for a single data instance,
e.g., assigning more than one genre to a single movie title, we are interested in classification
tasks that aim for a single label per data instance, but that leave room for interpretation
as to which the correct label should be. Within this scope, we study ways to support
ambiguity in different types of:

• Classification scales: We begin by studying binary classification tasks and move
on to multi-class classification on both nominal and ordinal scales.

• Data modalities: We investigate classification ambiguity in the context of various
data modalities including text documents, images and times series data.

1.3.2 Domains

The issue of ambiguity is not constrained to interpretations of people that lack a specific
training background for a given task. In fact, ambiguity and inter-rater disagreement are
well known phenomena even in seemingly well-defined expert domains. This dissertation
investigates the issue of ambiguity in both of these worlds:

• Novice domain: We begin by studying inter-rater disagreement and deliberation
within the context of non-expert crowd work facilitated through crowdsourcing mar-
ketplaces like Amazon’s Mechanical Turk.
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• Expert domain: Later, we translate our findings to the expert domain of med-
ical data interpretation. In particular, we present case studies from two separate
expert tasks: (1) assessment of eye disease by eye care physicians based on retinal
images, and (2) sleep stage classifications by trained sleep health professionals based
on biosignal recordings from a sleep laboratory.

1.3.3 Deliberation

Finally, we study group deliberation, our primary contribution for detecting and analyzing
ambiguity, in different shapes and forms. Specifically, we provide results about deliberation
dynamics with varying:

• Group size: While our initial study in focuses on groups of two or three members,
the remainder of the dissertation relies on groups of three for the simple reason that
a majority vote can be computed for disagreements among three, but not among two.

• Workflow: In the context of non-expert crowd work, we study synchronous delib-
eration conducted soon after the initial labeling task is completed because crowd
workers quickly move on to other tasks and it can be hard to motivate workers to
review disagreements at a later point in time. For our expert tasks, we facilitate an
asynchronous deliberation workflow to better fit review and discussion activities into
the busy schedule of health professionals.

• Argument structure: In the course of our three case studies, we evolve the way
deliberation arguments are captured from an open-ended to a highly structured for-
mat. The underlying motivation is twofold. On the one hand, our results suggest
that imposing an explicit structure on the way arguments are delivered can make the
deliberation process more efficient. On the other hand, collecting structured data
is useful for our other objective of simulating and investigating ambiguity-aware AI
assistants.
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1.4 Thesis Overview

Here, we provide an overview of the research included in this dissertation. We begin by
outlining the related literature that our work is situated within or builds on, followed by a
series of chapters that contribute to our goal of better supporting ambiguity in human-AI
collaborative workflows for data classification, by capturing and leveraging information
about instances ambiguity.

Chapter 3: We present three case studies of collaborative platforms that integrate group
deliberation into data labeling as a tool to detect and analyze instances of ambiguous data.
In the course of the chapter, we evolve the proposed deliberation methods in various ways:
(a) we begin by studying deliberation within the novice domain of microtask crowd work
and later translate our findings to two different expert domains of medical data interpre-
tation; (b) in the context of switching from novice to expert work, we transition from a
synchronous to an asynchronous deliberation workflow; (c) in each case study, we incre-
mentally impose additional structure on how our systems collect deliberation arguments to
increase efficiency, facilitate quantitative analysis and ultimately make deliberation data
accessible for use by AI assistants. We provide insights into why inter-rater disagreements
arose, under what circumstances they could be resolved and on how deliberation affected
accuracy, efficiency and higher-level decision making.

Chapter 4: We present and study a novel approach based on the idea that deliberation
data can be leveraged as training material for human labelers. In particular, we present
qualitative and quantitative findings from a controlled experiment suggesting that medical
generalists substantially benefit from reading deliberation discussions from medical special-
ists in the context of a complex diagnostic image assessment task. We demonstrate that
reading deliberation discussions not only helps expert labelers calibrate their reasoning
towards better comprehension on difficult cases, but also towards improved accuracy on a
held-out test dataset. We discuss the implications of our findings for increasing the pool
of trained expert labelers and medical diagnostic training.

Chapter 5: We present and study an AI assistant that not only highlights, but also
explains ambiguous data to end users in a human-AI collaborative data classification task.
We call this AI assistant “ambiguity-aware” and use a Wizard-of-Oz approach to study
its effects on the perception and behaviour of expert end users in a medical time series
classification task for sleep stage analysis. Our qualitative and quantitative results suggest
that ambiguity-aware AI assistants can help end users better triage and trust AI-suggested
classification labels, and that the quality of AI-provided ambiguity explanations strongly
affects experts’ ability to disambiguate difficult cases.
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Chapter 6: Finally, we synthesize our findings from the previous three chapters and
contextualize the collective impact of the research presented towards the issue of ambiguity
in human-AI interaction. We summarize the main contributions and takeaways of our
research in this space and conclude by discussing directions of interest for future work.

Appendices:

• Appendix A: We provide questionnaires used to understand how deliberation was
perceived by human labelers, why they disagreed and under what circumstances
disagreements could be resolved in Chapter 3.

• Appendix B: We provide questionnaires used to understand how human labelers
perceived deliberation data as a form of training feedback in Chapter 4.

• Appendix C: We provide questionnaires used to understand how expert end users
perceived ambiguity-aware AI assistants in Chapter 5.

1.5 Terminology

Here, we list and define central terms used throughout the dissertation:

1. Ambiguity — The quality of being open to more than one interpretation.2

2. Deliberation —The collaborative process of discussing contested issues by considering
various perspectives in order to form opinions and guide judgement.3

3. Adjudication — Synonym of deliberation used in the context of medical data inter-
pretation.

2https://en.oxforddictionaries.com/definition/ambiguity (accessed on 12 May 2020)
3https://www.comm.pitt.edu/oral-comm-lab/argument-deliberation/

argument-deliberation-introduction (accessed on 12 May 2020)
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Chapter 2

Background Literature

In this chapter, we provide an overview on background literature relevant to the content
of this dissertation. We begin by outlining the role of ambiguity and how it is currently
handled in various steps of the AI pipeline, including data labeling, model development and
user interfaces. We then introduce the reader to existing protocols and systems to facilitate
group deliberation which will later serve as a tool to detect and analyze ambiguity in data
classification. Finally, we summarize related work from the particular domain of medical
decision making and the role that ambiguity, deliberation and AI play in that context.

Before we begin, we introduce our high-level perspective on the central terms used in
this work and on their relationship to each other, including ambiguity, uncertainty, inter-
rater disagreement and group deliberation. In the context of this dissertation, ambiguity
is defined as the quality of being open to more than one interpretation. As such it is a
specific type of uncertainty arising from the circumstance that there may exist multiple
conflicting, yet equally valid interpretations of the same phenomenon. However, there exist
other forms of uncertainty, e.g., uncertainty due to a lack of information about the current
state of the world, or uncertainty around the precise consequences of a specific action for
the future state of the world.

Ambiguity and inter-rater disagreement are strongly linked to each other in that am-
biguity typically reveals itself in the form of disagreement among multiple independent
human observers. However, both concepts are not identical with each other, nor does one
imply the other. For example, given an ambiguous case, a specific group of observers may
happen to agree with each other while another combination of observers may have arrived
at conflicting interpretations. Conversely, two conflicting interpretations are not necessarily
also equally valid, e.g., if one observer made a mistake that ought to be corrected.
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This is where the process of group deliberation comes into play. It can help us un-
derstand whether a given disagreement is either based on mistakes and can therefore be
resolved or whether a disagreement is based on some form of underlying ambiguity and is
therefore irresolvable. We thus consider classification ambiguity the central problem this
work aims to address and group deliberation the central method used to expose if and how
an instance of inter-rater disagreement is linked to ambiguity.

2.1 Ambiguity in Human-AI Interaction

2.1.1 Ambiguity in Data Labeling

Ambiguity and the associated issue of inter-rater disagreement in data classification, are
both topics that have received ample attention not only in the epistemological (e.g., [55,
97, 136]) and medical (e.g., [10, 103, 114]) literature, but also within the human-computer
interaction (HCI, e.g., [25, 29, 64]), human computation (e.g., [9, 42, 93]), and computer-
supported cooperative work (CSCW, e.g., [8, 76, 95]) communities.

Aroyo and Welty [9] view inter-rater disagreement as a function of three phenomena:
variability among human annotators, characteristics of the data at hand, and the quality
of the task instructions. We adopt a similar approach in exploring inter-rater disagreement
in data classification, and synthesize prior work within these three categories below. In
addition, we take into account data presentation as another potential source of inter-rater
disagreement, pertaining to differences in the way that human annotators view the data
at hand.

Annotator differences. Mumpower and Stewart [97] offer an early theoretical ac-
count in which expert disagreement is discussed in three forms: (1) personality-based
disagreement, beget by expert ideology, venality, or incompetence, (2) judgement-based
disagreement, due to information gaps, and (3) structural disagreement, due to experts
holding different organizing principles or problem definitions. Garbayo [55] distinguishes
verbal disagreement—disagreement due to differences in terminology or semantics between
experts with respect to the problem definitions mentioned previously—from legitimate
disagreement, arising despite experts having access to the same evidence. Gurari and
Grauman [64] found that disagreement among crowd workers in visual question answering
tasks can arise from differing levels of annotator expertise. Kairam and Heer [76] showed
that inter-rater agreement in a crowdsourced entity annotation task is affected by how
conservatively or liberally workers follow task instructions.

10



Data characteristics. In addition to grader-specific factors, disagreement may be
an indicator of ambiguity, vagueness, or complexity inherent in the given data [8, 9, 10,
111, 114]. Prior works have demonstrated that inter-rater disagreement can be associated
with characteristics of individual data objects, including text documents for sentiment
classification [111], photographs for visual question answering [64], medical images for eye
disease assessment [114], and biomedical time series data for epilepsy diagnosis [10].

Task instructions. Finally, inter-rater disagreement has been attributed to ambiguous
category definitions [9, 25, 64, 93] relevant to a given task. Gurari and Grauman [64]
identified subjective questions and vocabulary mismatch between crowd workers as sources
of disagreement. Chang et al. [25] found that worker disagreement can arise due to
ambiguous or incomplete category definitions, and proposed a system to analyze crowd-
generated conceptual structures post-hoc. Manam and Quinn [93] developed workflows for
identifying and refining unclear instructions for crowdsourcing tasks.

Our work builds on these prior contributions by studying various factors contributing
to inter-rater disagreement in various settings of data classification. Our quantitative
analyses in Chapter 3 take into account various factors, including differences between
graders (in terms of professional credentials, geographic location, and work experience),
data characteristics of individual disagreement cases (e.g., in terms of data complexity),
and the role of classification guidelines (in terms of individual guideline rules) to understand
inter-rater disagreement.

Furthermore, Section 3.3 contributes a novel perspective on the problem of inter-rater
disagreement by incorporating data presentation as another potential factor contributing
to disagreement. In particular, that study incorporates the question to what extent differ-
ences in how experts choose to view the data at hand—configuring the viewer interface—
may be associated with experts arriving at divergent interpretations of the same data.

2.1.2 Ambiguity in Model Development

Prior systems have generally taken one of three approaches to the problem of ambiguity in
AI-based data classification:

Eliminating Ambiguity. Traditional machine learning classification methods elim-
inate class diversity using automatic procedures like majority vote [75], or expectation
maximization [107]. These systems tend to view ambiguity as a proxy for noise to be
reduced or eliminated in the data. [23, 148].

Aggregating Multiple Outputs. Other systems retain disagreement labels for the
purpose of training multiple models (e.g., one for each human labeler [62]); these systems
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typically produce multiple AI predictions which are aggregated into a single label before
being presented to the end user.

Label Distribution Learning. A more ambiguity-centric approach to data classifi-
cation is label distribution learning (LDL) [57], where machines are trained to predict not
just one label for a given case, but a distribution of possible classification labels [32, 112].
Standard LDL models will assign uncertainty estimates to their classification outputs, pro-
viding degrees of plausibility for each possible label.

2.1.3 Ambiguity in AI Interfaces

The question of how systems should communicate or visually represent uncertainty to end
users has received ample attention in the human-computer interaction (HCI) community
[130]. Approaches include visualizing uncertainty as extrinsic annotation (e.g., confidence
intervals), abstract, continuous outcomes (e.g, probability density plots), or hypothetical,
discrete outcomes (e.g., natural frequencies or icon arrays) [78]. Kay et. al [78] suggest
that communicating uncertainty through discrete outcomes can improve decision making
on the part of end users.

Prior work has found that collecting explanations around ambiguous cases during data
labeling workflows can be leveraged towards more fine-grained and flexible post-hoc data
classification [25]. Chen et al. [27] designed an AI-supported analytics tool for the pur-
pose of qualitative coding in social science shifting the focus to identifying disagreement
and ambiguity among groups of human coders. Galdran et al. [53] developed a system for
vessel classification from retinal images, with the ability to classify uncertain cases and pro-
vide direct uncertainty estimates for its labels while achieving state-of-the-art classification
performance.

In Chapter 5, simulate and explore an ambiguity-aware AI assistant for medical data
analysis, a system that provides human-interpretable rationales for all plausible classifi-
cation labels. While our AI assistant is simulated in the sense that it does not predict,
but merely displays human-annotated data, our work contributes novel insights about how
such an ambiguity-aware system affects expert perception and behaviour.

2.2 Group Deliberation

Instances of data ambiguity typically surface in the form of conflicting assessments among a
group of independent human observers. We are interested in leveraging inter-rater disagree-
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ment to drive collaborative analysis of the underlying sources of ambiguity. In particular,
we explore the role of group deliberation as a potential tool to detect and analyze ambigu-
ity in the context of data classification. In this section, we summarize existing protocols
and systems for group deliberation to contextualize our work.

2.2.1 Deliberation Protocols

A seminal protocol on structured decision making is the Delphi method [35], where experts
provide, justify and reconsider their estimates through questionnaires in multiple rounds.
A facilitator controls the information flow by summarizing estimates and filtering out ir-
relevant justification content at each round. The Delphi process ends after a fixed number
of rounds or when unanimous consensus is reached. The key characteristics of the Del-
phi method are anonymity of the participants, avoidance of any direct interaction among
group members, as well as structured and curated information flow as implemented by the
facilitator. The Delphi method is typically used for forecasting, policy making and other
types of complex decision making processes. Later versions of the Delphi method, e.g.,
by Hartman and Baldin [67], make use of computer-supported communication to facilitate
remote collaboration, larger groups and asynchronous interaction.

Group deliberation is a typical method for generating high-quality answers in expert
domains such as medicine [62, 82, 115]; however, little work has shown under what cir-
cumstances group deliberation is resolvable or produces better decisions. Several works
explored factors that influence the process and outcomes of group deliberation. Nemeth
[99] found that when jurors are required to reach a unanimous decision, there is more
conflict, more changes in assessments, and higher confidence in the final verdict reported
by members of the group. Solomon [135] sees conflict as an important feature of any
effective deliberation system. He argues that dissent is both necessary and useful—as “dis-
senting positions are associated with particular data or insights that would be otherwise
lost in consensus formation”—and criticizes procedures that push deliberators to reach
consensus. Instead, he advocates for a structured deliberation procedure that avoids the
undesired effects of groupthink [74]—the tendency to agree with the group by suppressing
dissent and appraisal of alternatives—by actively encouraging dissent, organizing indepen-
dent subgroups to discuss the same problem, and ensuring diversity of group membership.
Kiesler and Sproull [80] found that time limits imposed on deliberation tend to decrease
the number of arguments exchanged and to polarize discussions. The authors suggest the
use of voting techniques or explicit decision rules to structure the deliberation timeline.
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2.2.2 Deliberation Systems

Building on some of these early theoretical results, online deliberation systems have been
developed and validated in various domains, including public deliberation [84, 85], on-
demand fact checking [83], political debate [50] and knowledge base generation [154]. For
example, ConsiderIt [50, 84] is a platform for supporting public deliberation on difficult
decisions, such as controversial policy proposals made during U.S. state elections. Kriplean
et al. [85] explored ways to promote active listening in web discussions by explicitly encour-
aging discussion members to summarize the points they heard. Kriplean et al. [83] studied
the correctness of statements made in public deliberation and developed an on-demand
fact-checking system. Zhang et al. [154] introduced recursive summarization of discussion
trees to enable large scale discussions. Liu et al. [91] proposed a visualization technique
to augment deliberation for multi-criteria decision making. Their results suggest that
highlighting disagreement across multiple decision criteria can cause participants to align
their opinions for various reasons, from genuine consensus to appeasement. This finding
reinforces the importance of designing deliberation procedures to minimize groupthink.

The MicroTalk workflow proposed by Drapeau et al. [42] focuses on argumentation
within the microtask crowdsourcing setting. In MicroTalk, workers are prompted to provide
justifications for their decisions, and an algorithm selects certain justifications (based on
a metric of readability) to present them as counterarguments to other workers, triggering
them to reconsider their decision. MicroTalk is based on an asynchronous model with
no interactive back and forth discussion between workers. Building on this work, Chen
et al. [29] showed that a synchronous workflow enabling crowd workers to engage in
real-time, multi-turn discussions, can lead to additional improvements in answer accuracy.
In this dissertation, we study both synchronous and asynchronous workflows for group
deliberation among human annotators to analyze how disagreement arises and under what
circumstances it can be resolved.

Chang et al. [25] addressed the issue of ambiguous category definitions by proposing a
system to enable flexible, post-hoc analysis of crowd-generated, conceptual structures, as
opposed to refining classification guidelines a priori. Goyal et al. [60] designed a shared
sense-making interface allowing dyads of participants to synchronously share hypotheses,
evidence and other insights in a simulated criminal investigation task, leading to increased
decision making performance compared to a baseline interface. Chang et al. [26] proposed
a multi-step crowdsourcing workflow for semantic frame annotation, allowing workers to
express disagreement with expert-labeled golden data presented as feedback during label-
ing.

While we embed our work reported in Section 3.1 in a similar context as Drapeau et
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al., our focus is on understanding how unfiltered group deliberation, task types and other
characteristics impact resolvability, beyond just answer accuracy. The systems we report
on in Sections 3.2 and 3.3 leverage a workflow in which expert-provided classifications
can be contested by other experts in a round-based collaborative manner. Our work draws
inspiration from the Delphi method and builds on prior work above by deploying web-based,
structured deliberation systems. We extend the state of the art by translating existing
workflows into the complex expert domain of medical data analysis, and by integrating
a procedure to collect arguments from experts in the form of explicit rationales, centered
around pre-existing domain-specific decision criteria. Our approach differs from several
other works in that the primary objective is to achieve a better understanding of the sources
and dynamics of expert disagreement, as opposed to optimizing for accuracy within data
labeling workflows. In other words, our approach uniquely combines the two notions that
(1) there may exist multiple valid answers to one and the same question and that (2) the
reasons why multiple answers may be equally valid are important for expert end users to
understand and that these reasons can be effectively analyzed using the process of group
deliberation.

2.3 Medical Decision Making

Except for Section 3.1, all other sections in Chapter 3 as well as Chapters 4 and 5 are
anchored within the specific expert domain of medical decision making. Given the strong
focus of this dissertation on the medical domain, this section provides a more in-depth
overview on the issues of expert disagreement, group deliberation and AI-based decision
support in medical decision making scenarios.

2.3.1 Expert Disagreement in Medicine

Like any form of human interpretation, medical data analysis by human experts is a sub-
jective process and can lead to conflicting assessments among independent raters [10, 88,
118, 128]. The issue of inter-rater disagreement is particularly critical within medicine
where unreliable clinical decisions can impact patients’ lives adversely. Indeed, Raghu et
al. [114] concluded that label disagreement poses a “full-fledged clinical problem in the
healthcare domain.”

Prior work in medical decision making describes that medical experts are susceptible
to biases in their reasoning; for instance, “confirmation bias” can lead a medical expert
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to look only for evidence that is in line with their pre-existing hypothesis [19]. As sub-
optimal decision-making in medicine can have major consequences, it is crucial to combat
any reasoning biases medical experts may have. Our simulated ambiguity-aware AI aims
to mitigate this bias by putting forth arguments for conflicting medical assessments, en-
couraging perspective-taking for alternate lines of reasoning.

Related literature suggests that communicating uncertainty can impact cognition and
trust, and potentially influence experts’ decision-making behaviours [145]. That said, there
is a body of work showing that people have a general aversion towards ambiguity [79, 144].
For example, a study by Redelmeier and Shafir suggested that the uncertainty between two
medical assessments led some doctors to avoid making a decision altogether [117]. Work
done in psychology acknowledges ambiguity-tolerance as a personality variable [20, 72].
Medical education research advocates that given the inevitable nature of uncertainty in
contemporary medicine, medical experts must acquire a certain level of tolerance to it [92].

Several works have suggested ways to make productive use of disagreement information
in medical data labels (e.g., [10, 15, 32, 71, 114, 124, 129]). Inel et al. [71] introduced
domain-independent quality measures for labelers, task instructions and data, based on
disagreement information in a medical relation extraction task. Others developed models
to predict the likelihood that a given patient case will cause expert disagreement in var-
ious medical subspecialties, including epilepsy diagnosis from electrophysiological signals
[10], and eye disease diagnosis from retinal fundus photographs [114]. Finally, Barnett et
al. [15] evaluated different ways of computationally aggregating discordant medical assess-
ments from labelers with varying training background to harness collective intelligence for
medical diagnosis. In our work, we leverage the fact that conflicting expert assessments
can motivate detailed adjudication discussions about difficult cases, and test whether such
discussions can be repurposed to improve training for medical expert labelers at scale.

2.3.2 Group Deliberation in Medicine

The issue of low inter-rater reliability in the clinical domain has motivated efforts to find
methods of adjudicating ambiguous cases in medical data classification tasks. Group
deliberation has also garnered support in the medical domain as a method for generat-
ing a trusted reference standard for the evaluation of automated classification methods
[62, 82, 115].

In the context of a medical imaging study, in which the aim was to diagnose eye disease
based on retinal fundus images, Krause et al. [82] found that group deliberation was more
effective than majority vote when it came to recall among experts. This same dataset
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was used by Guan et al. [62] to demonstrate that ensembles of multiple grader-specific
machine learning models could outperform a single-prediction model trained on majority
labels, when benchmarked against an adjudicated gold standard. Penzel, Zhang, and Fietze
[106] argue that group deliberation, or “consensus scoring” is the optimal training technique
for human scorers in the context of sleep stage classification.

Recent work by Barnett et al. [15] showed that automatic pooling of independent
opinions from multiple doctors outperformed individual diagnosis across various diagnostic
tasks. However, the authors did not investigate the effects of permitting communication
or collaboration among doctors to allow for collective adjudication of their diagnoses.

While there has been long-standing debate about the relative benefits of collective
decision making versus the so-called wisdom of the crowd, there is evidence suggesting
that group discussions can indeed improve accuracy of decisions made both in general
intelligence tasks [98] and in medical diagnosis [51].

2.3.3 Medical Diagnosis Training

Given that medical generalists far outnumber specialists in various fields [5], research into
effective ways to train medical generalists for difficult cases holds the potential to tap into
a large pool of high-quality medical labelers.

A scalable approach for medical diagnosis training is through computer-based tutorials
[68, 86]. Typically, web-based tutorials for medical training present a series of patient
cases to the learner, and present case-specific feedback after the learner has submitted
their answer. Our approach is similar in that we follow a simple paradigm of presenting
feedback after a set of training cases. However, web-based tutorials for medical training
typically focus on curation of content for case-specific feedback while selecting mostly clean-
cut cases for which clear explanations exist. The work we present in Section 4 emphasizes
the use of difficult, contentious cases to test whether pre-existing adjudication discussions
not originally intended for training generalists can be re-used for educational purposes.

Our work draws inspiration from the medical education literature about discussion-
based learning. The idea that medical students may learn more effectively when engaging
in group discussions with their peers has been implemented in the concepts of problem-
based learning (PBL) and case-based learning (CBL) [40, 137]. Both approaches aim to
improve upon lecture-based learning by fostering collective clinical reasoning through group
discussions. CBL is a more structured and guided variant of discussion-based learning in
medicine while PBL implements an open-ended approach. In Chapter 4, we examine
whether passive consumption of specialist discussion about difficult cases can yield similar
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benefits for diagnostic reasoning as has previously been reported about PBL and CBL, but
applied to the context of medical labeling.

2.3.4 AI-based Clinical Decision Support

Clinical decision support (CDS) is broadly defined as the provision of intelligent assistance
to clinicians, medical staff, and patients [101]. CDS can include low-level functions like
computerized alerts and reminders for providers and patients, or high-level functions like
patient diagnosis [33]. Norman et al. [100] describe a dual process of diagnostic reason-
ing, where physicians engage in (1) a non-analytic or unconscious process of hypothesis
generation, and/or (2) a conscious, analytic process of hypothesis testing. The latter is
an extensive computational process, and has motivated efforts to develop AI-based CDS
systems for diagnostic support.

In such support systems, a physician cross-checks the algorithmic output against their
internal knowledge, but takes responsibility for the final diagnostic decision. Our work
takes a similar approach of augmenting, instead of automating, the job of physicians [61].

Barriers to the Adoption of AI-Based CDS Systems

Explainability. ML-based AI systems are typically opaque with respect to their internal
functions [96]. In fields where AI is tasked with important decisions, it is imperative that
automated decision making be interpretable, especially if the AI is known to be imperfect
[21, 81]. The field of XAI [146] emerged as a response to this problem of transparency
beginning in the 1970s and 1980s with the deployment of expert systems with explanation
capabilities—most notably for medical decisions [3]. Explanations have been found to
promote transparency in machine learning algorithms and make users more aware of how a
system works [113]. Recent approaches in XAI, e.g., Ehsan et al. [46], demonstrate that AI
systems can learn to generate human-like natural language explanations for their decisions.
Mittelstaedt et al. [96] argue that there is a mechanistic link between explanation and
justification in human discourse, and that machine explanations should emulate human
explanations. The simulated AI assistant we present in Chapter 5 instantiates these design
principles, by providing human-interpretable rationales for its outputs.

Trust. A lack of trust is arguably the most significant barrier to adoption of AI-based
systems. A CDS system can bias a physician to choose the wrong course of action against
their own clinical judgement [43]. Human experts may also fail to trust a reliable system.
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It is crucial that an appropriate level of trust in automation be established to balance over-
reliance and under-reliance. Cai et al. [21] demonstrated a link between explainability and
trust by showing that pathologists trusted a CDS tool for cancer diagnosis more if they
could tweak its internal representation of image similarity using domain-specific concepts
(e.g., number of fused glands).

Addressing the problem of trust becomes more complicated in the context of uncer-
tainty. Psychological uncertainty is an aversive state [145], and thus information must
be communicated effectively to hedge against its negative effects. There appears to be a
volatile relationship between uncertainty and trust. On the one hand, trust can be under-
mined by failing to communicate uncertainty; on the other hand, admitting uncertainty can
also hinder trust [145]. Thus, it is crucial that machines strike the right balance between
communicating and withholding uncertainty information.

Studies on how communicating uncertainty affects trust are limited and have produced
mixed results. While there is some evidence that trust can be fostered through explained
uncertainty [78], more research is needed. In a recent review of the matter, van der Bles
[145] acknowledged that uncertainty does not always produce negative emotional effects.
Indeed, in the healthcare domain, Schneider et al. [130] developed a system for communi-
cating uncertainty in fertility prognosis that increased users’ understanding of uncertainty
without causing them to have a negative view of the system.

In Chapter 5, we study how the workflows and perception of medical experts is affected
by an AI assistant capable of identifying and explaining ambiguous cases.
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Chapter 3

Group Deliberation for Data Labeling

One primary contribution of this dissertation is to introduce and study group deliberation
in the context of data labeling, as a tool to detect and analyze ambiguous cases, and
to either resolve inter-rater disagreements organically through deliberation, or otherwise
mark them as irresolvable. In this chapter, we present insights from three case studies
about collaborative online platforms that all integrate group deliberation into data labeling
workflows, in the context of different data modalities, labeling tasks and types of human
labeler expertise. Section 3.1 describes case studies on synchronous group deliberation
in the context of novice crowd work and text classification tasks of variable subjectivity.
In Sections 3.2 and 3.3, our focus shifts from novice crowd work to the expert domain of
medical data interpretation, exploring asynchronous and structured deliberation workflows
for image labeling and time series labeling respectively.
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3.1 Crowd Deliberation for Text Labeling

Crowdsourced classification of data typically assumes that objects can be unambiguously
classified into categories. In practice, many classification tasks are ambiguous due to
various forms of disagreement. Prior work shows that exchanging verbal justifications can
significantly improve answer accuracy over aggregation techniques. In this section, we
study how worker deliberation affects resolvability and accuracy using case studies with
both an objective and a subjective task. Results show that case resolvability depends
on various factors, including the level and reasons for the initial disagreement, as well as
the amount and quality of deliberation activities. Our work reinforces the finding that
deliberation can increase answer accuracy and the importance of verbal discussion in this
process. We contribute a new public data set on worker deliberation for text classification
tasks, and discuss considerations for the design of deliberation workflows for classification.

3.1.1 Motivation

Classification is a prevalent task in crowdsourcing as well as many real-world work practices.
A common assumption for many classification tasks is that objects can be unambiguously
classified into categories, and that the quality of the labeled data can be measured by
the extent to which annotators agree with one another. As a result, most post-processing
techniques designed to filter or aggregate labeled data interpret inter-rater disagreement
as “noise in the signal” originating from human mistakes. In practice, many classification
tasks are ambiguous, and disagreement can happen for various reasons including missing
context, imprecise questions, contradictory evidence, and multiple interpretations arising
from diverse levels or kinds of annotator expertise [64].

The independence of individual assessments has traditionally been considered a pre-
requisite for leveraging the ‘wisdom of the crowd’, but recent findings from crowdsourcing
[42] and social behavioural research [98] have found that deliberation can help improve
answer quality. Drapeau et al. [42] showed that crowdsourcing workflows enabling work-
ers to exchange justifications and to reconsider their assessments based on each other’s
arguments, can improve accuracy over output aggregation techniques. These prior works,
however, have focused mostly on answer correctness, with the a priori assumption that
each disagreement can be resolved to one correct answer.

In this work, we take the stance that inter-rater disagreement carries valuable informa-
tion [25, 76, 44] and that deliberation should not always lead to a unanimous consensus.
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In particular, we investigate factors that contribute to the resolvability of a case. We con-
ducted a study on two text classification tasks—a sarcasm classification task, which has
been shown to be inherently ambiguous [48], and a semantic relation extraction task, where
objective ground truth is available [42]—to investigate how deliberation affects resolvabil-
ity. Our key contributions are:

1. We study how the deliberation outcomes differ depending on task subjectivity.

2. We present observations showing that the resolvability of an ambiguous case depends
on the reasons for and level of initial disagreement, the amount and quality of the
deliberation activities, as well as the task and case characteristics.

3. We publish a new dataset on worker deliberation in text classification tasks, including
all original and revised classifications as well as the deliberation dialogues.

The rest of this section describes the details the deliberation workflow designed and im-
plemented for this study, outlines the experimental procedure and findings, and concludes
with a discussion of applications and design considerations.

3.1.2 Deliberation Workflow

We designed a workflow enabling crowdworkers to revisit and potentially resolve disagree-
ments in text classification tasks through group discussions. The input to our workflow
is a set of cases (e.g., text documents) to be classified. Each disagreement case either
gets resolved through discussion or remains unresolved. The output of our workflow are
multiple classification labels for each input case and its deliberation data consisting of
structured information (i.e., original and reconsidered classification decisions, confidence
levels, sources of disagreement, and evidence) and deliberation dialogues (e.g., arguments,
explanations, and examples).

This workflow transforms input to output in four time-limited stages (Figures 3.1).
Workflow stages A, B, C and D started at consecutive hours (e.g., 3pm, 4pm, 5pm, and
6pm), to ensure that all workers could complete one stage before collectively starting the
next.

Stage A: Independent Classification. Workers independently performed 10 clas-
sification microtasks. In each task, workers were asked to read a text document, classify
it into one of two categories, provide a confidence level for their decision, and highlight
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Figure 3.1: Input, output and stages of the deliberation workflow implemented for this
study. Each of the green blocks represents one of multiple microtasks in each of the four
workflow stages A, B, C and D.

evidence to support their choice. Workers were then asked to predict the level of disagree-
ment for the classification task by indicating whether they expect Substantial Agreement
(“I expect most people to agree with me”), Half Agreement (“I expect only about half of the
people to agree with me"), or Substantial Disagreement (“I expect most people to disagree
with me”). If workers chose one of the latter two options, they were also asked to choose the
sources of disagreement they anticipated. They could select multiple options from a list of
six preset options as described in Table 3.1—Fuzzy Definition, Missing Context, Contradic-
tory Evidence, Important Details, Expertise Needed, Subjective Case—covering a variety
of common sources of disagreement from prior work and our pilot studies. They could
provide their own rationale using an optional free-form field. Appendix A.1.2 provides a
complete list of questions and answer options for this stage.

Between stage A and B, our system dynamically put crowdworkers into groups of three
to deliberate on one or more cases, with the constraint that there was exactly one dissenter
for each disagreement case per group. To ensure group heterogeneity, the group formation
procedure was randomized, i.e., all workers had the same chance of being assigned to a
group, and it was equally likely for them to be grouped together with either two random
workers they disagreed with, or one with whom they agreed and one with whom they
disagreed.

Stage B: Discussion Round 1. Workers joined their assigned groups to discuss their
disagreement cases. For each case, workers were required to leave at least one comment in
the group chat explaining why they had chosen their label for the given case. In addition,
they could choose to highlight more parts of the text as evidence. The comments and
associated evidence were recorded and shown to other workers in real time.

Stage C: Discussion Round 2 and Reconsideration. Workers collectively re-
turned to review each other’s comments and participate in a second round of discussion
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Table 3.1: Preset choices for sources of disagreement.

Fuzzy Definition Other people may have different definitions of [sarcasm / relation] in mind.
Missing Context The text is ambiguous because of missing context (for example, [the identity of the product

/ some important information about the person or the place] is unknown).
Contrad. Evidence The text contains some features that indicate [sarcasm / relation] is expressed and other

features that indicate [absence of sarcasm / relation is not expressed].
Important Details The text contains relevant details other people could easily miss.
Expertise Needed Someone with more experience or expertise may see or understand something about the text

that I don’t.
Subjective Case This is a case where a person’s answer would depend heavily on their personal preferences

and taste.
Other Requiring free-form answer if selected

on the same disagreement cases. They were asked to further discuss the case by leaving
at least one comment in the group chat, and optionally highlight more evidence. After
providing at least one additional discussion comment, workers were individually prompted
to reconsider their original classification decision and confidence level. To submit their
final classification, workers could choose one of the two original class labels or a third
option named “irresolvable”. Finally, workers were also asked to re-evaluate what they
considered the source of disagreement for the given case and group in light of the previous
discussion. Workers were again given the six preset options (Table 3.1) and an optional
free-form field, as well as the free-form answer they had provided earlier as the anticipated
source of disagreement, if any (Appendix A.1.3). By providing the “irresolvable” option,
we reduced the bias for consensus, and incentivized workers to change their answer only
if they truly believed that their updated classification label was correct. Since we were
interested in case resolvability, the reconsidered classification decisions were collected from
all discussion members individually instead of enforcing the group to produce one joint
decision. Importantly, workers did not see the updated answers of other group members
before stage D to reduce opportunities for strategic voting.

Stage D: View Final Decisions. For each disagreement case, workers were pre-
sented with the final decision (i.e., either one of the class labels or “irresolvable”) from each
group member, and they were given a short open-ended survey on why they thought the
disagreement was resolved or not resolved, as well as why they had changed or stuck to
their original classification decision (Appendix A.1.4).

General Design Considerations

In the workflow design, we made several design decisions regarding the communication
medium used for deliberation, ensuring stable pay/work ratios through filler tasks, and
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Figure 3.2: Screenshots showing our worker deliberation interface paired with text classifi-
cation tasks for sarcasm detection (left) and relation extraction (right). The text documents
under discussion are shown on the left of each screenshot. Parts of the text are highlighted
by different group members as evidence supporting their classification decisions. Written
justifications are exchanged through a real-time chat component, with an embedded voting
summary, shown on the right of each screenshot.

motivating workers to return for all four consecutive workflow stages despite the intermit-
tent breaks.

Communication Medium. Our decision to use text (versus voice or video) as the
communication medium for deliberation was motivated by prior research suggesting that
written communication improves outcomes of consensus formation by avoiding bias from
the tone of voice or a perceived lack of anonymity [35, 120].

Filler Tasks. If workers had less than 10 disagreement cases to revisit in stages B, C
and D, they were asked to perform filler classification tasks (identical to the microtasks in
stage A) to fill up the slots. This was to ensure that workers would not be incentivized to
provide answers in stage A that were likely to agree with others just to reduce the number
of disagreement cases they would have to process in subsequent stages. The data from the
filler tasks were not used in our experiment.

Worker Retention. An important design consideration was the mechanism used
to encourage workers to collectively return to stages B and C for real-time discussion.
Through several pilot studies, we found a combination of monetary incentive and timed
notifications to be a successful approach. As a monetary incentive, we paid fixed amounts
for participation in each stage and an additional bonus for full participation in all stages.
We used the MTurk API to send out reminder emails five minutes before the start of stages
B, C and D, with a web link to join the next stage and a notice stating that the next stage
could only be joined within three minutes of its start.
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Interface

Our deliberation interface is general, i.e., it can be integrated into any task interface for
text classification and requires only minor modifications for other data modalities like im-
ages. Figure 3.2 shows the interface in action. The interface displays the text document in
question and attaches a chat box to the right, through which group members can exchange
justifications in real time. Group members are randomly assigned friendly-sounding and
easy-to-remember pseudonyms (e.g., ‘Joyful Joliot’ or ‘Enthusiastic Easley’) to allow users
to address each other without having to reveal their identity. Finally, the interface en-
ables users to highlight parts of the text document as evidence to support their argument.
Highlights and pseudonyms are color-coded per deliberator.

3.1.3 Experiment

We conducted an experiment to investigate how deliberation affects the outcomes of crowd-
sourced text classification tasks. Here, we describe the task types, procedure, participant
recruitment and payment associated with our study.

Task Types

We focus on two types of text classification tasks (Figure 3.2) with different degrees of
inherent subjectivity. During our pilot studies, we also considered other task types (e.g.,
image, audio or video classification), but decided to defer those to future work due to the
added complexity of synchronously highlighting evidence in such data modalities.

Sarcasm Task. For the first task type, we asked workers to label Amazon product
reviews as sarcastic or not sarcastic, using the sarcasm detection data set published by
Filatova [48]. We chose this task type and data set because Sarcasm detection is considered
by Filatova et al. [48] as an inherently subjective task due to the “absence of a formal
definition of sarcasm”, an observation further supported empirically by low rates of inter-
rater agreement in Filatova’s data set. To generate a subset of cases for our experiment, we
first identified all reviews for which Filatova [48] reported highest inter-rater disagreement
(i.e., 3 sarcastic vs. 2 not sarcastic or vice versa) and then, from this subset, retained the
40 most compact cases based on word count.

Relation Task. For the second task type, workers were asked to indicate whether
a certain semantic relation between a person and a place (e.g., “Nicolas Sarkozy lived in
France”, “Pavarotti died in Modena”) was expressed in a given sentence. In contrast to
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the sarcasm detection task, this task is more well-defined and objective, as the ground
truth data can be determined from the official label guidelines for the TAC KBP relations
LivedIn and DiedIn as published by the Linguistic Data Consortium. We presented the
corresponding relation definition to workers in each individual classification task (see right
side of Figure 3.2 for an example) to explicitly make workers aware of the label guidelines.
We used all 40 sentences from the data set used by Drapeau et al. [42], of which 25 have
ground truth labels.

Procedure

Before the experiment, workers first filled out a pre-study questionnaire eliciting demo-
graphic information, including age group, gender, native language and self-rated proficiency
in English (see Appendix A.1.1). Participants then collectively stepped through the four
consecutive stages of our workflow. They were free to close the browser tab or do other
work after completing each stage and before the start of the next one, of which they were
notified via email five minutes prior to start.

Participant Recruitment

We recruited 316 participants on Amazon Mechanical Turk, using workers from the US
who had completed at least 500 tasks with a 90% acceptance rate. Based on the pre-study
questionnaire, almost all of our workers are native English speakers (97%) and have high
self-rated proficiency in English (96% and 4% selected the highest and second highest levels
on a 5-point Likert scale). The distribution over age groups is: 18-25 (14%), 26-35 (44%),
36-45 (23%), 46-55 (13%) and 56+ (6%). About half of our workers (53%) are female.

Payment

Workers were paid US $1 for each stage that they completed. In addition, we paid a one-
time completion bonus of US $2 to workers who completed all four stages. Each stage took
workers around 15 minutes to complete, resulting in an approximate payment of US $6
per hour of work for participants who completed all four stages. Note that workers were
free to close the browser tab or do other work after completing each stage and before the
start of the next one. We incentivized workers to actively engage in discussion by offering
an extra bonus of US $0.50 for each disagreement case in which all group members voted
for the correct expert answer (which can be one of the two class labels, or “irresolvable”)
in stage C. As only few cases had an expert answer available, we paid the extra bonus to
all groups in the end that reached consensus on one of the two target categories.
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3.1.4 Research Questions and Hypotheses

Our study aims to answer three research questions.

Q1: Why do annotators disagree with one another? We expect disagreement
to arise due to different reasons in the two task types with different degrees of inherent
subjectivity, where the target concepts are more versus less well-defined. Based on this
intuition, we hypothesize that:

[H1a] Sources of disagreement differ significantly between the two task types.

[H1b] Annotators can predict levels of disagreement for individual cases better than
random.

Q2: Under what circumstances can disagreement be resolved through worker
deliberation? A variety of factors can contribute to the resolvability of a given case. First,
the characteristics of a task and its associated sources of disagreement can play a role. For
example, well-defined target categories may provide better grounding for convincing argu-
ments, enabling groups to more easily come to a consensus. We hypothesize that:

[H2a] Sources of disagreement affect whether a case will be resolved.

[H2b] Task subjectivity affects whether a case will be resolved.

Second, the characteristics of the deliberation activities can influence whether a case is
resolved. We hypothesize that:

[H2c] The extent to which members contributed equally affects case resolvability.

Third, we expect the amount of consensus in the label and overlap in highlighted
evidence during the independent classification phase (i.e., stage A) to be predictive of a
case’s resolvability. We hypothesize that:

[H2d] The extent of the disagreement amongst group members affects resolvability.

[H2e] The amount of overlapping evidence between group members affects resolv-
ability.
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Q3: What impact does the deliberation workflow have on crowdsourcing
outcomes and processes? The deliberation workflow, which encourages workers to con-
sider diverse evidence and arguments, may have a positive effect on crowdsourcing outcomes
and processes, such as improving the overall answer correctness and discouraging group-
think (i.e., the tendency of group members to blindly follow the majority). We hypothesize
that:

[H3a] Worker deliberation improves the quality of the crowdsourced annotations.

[H3b] The probability that a case will be resolved in favour of the initial majority
vote is similar to the probability that a case will not be resolved in favour of the
initial majority vote.

[H3c] Sources of disagreement and the extent to which members contributed equally
affects whether a case will be resolved correctly.

3.1.5 Experimental Conditions

One of the goals in our study is to understand the effect of worker deliberation on the quality
of crowdsourced annotations (H3a). To quantify the effects, we tested two additional
variants of our workflow without the discussion component. Each participant was randomly
assigned to one of the following conditions:

Disagree, Discuss and Reconsider (N=316): workers reconsider their position
after discussion with other group members. This is our main condition testing our
full deliberation workflow. If not otherwise noted, all results below are based on data
from this condition.

Disagree and Reconsider (N=26): workers reconsider their position after they
are shown group disagreement data, but without a discussion. This condition was
added to isolate potential effects of showing workers information on who agreed vs.
disagreed with them.

Reconsider Only (N=24): workers reconsider their position without being shown
group disagreement data and without a discussion. This condition was added to
identify any learning effects resulting from workers revisiting a case after labeling
other cases.
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The latter two conditions are used for hypothesis H3a only. In the results section for
hypothesis H3a, we use the term Baseline for labels submitted during stage A (i.e., before
any reconsideration), and otherwise refer to reconsidered labels submitted during workflow
stage C.

3.1.6 Data and Analysis

Data. For the analysis, the data include: (a) pre-study questionnaire data about demo-
graphics and language proficiency, (b) post-study questionnaire data, probing at workers’
thoughts about and experiences with the deliberation process, (c) all the messages ex-
changed in the deliberation workflow stages, (d) the pre- and post-deliberation classifica-
tion label and confidence for each worker, (e) the highlighted evidence for each case, (f)
the sources of disagreement as anticipated by workers before discussion and re-evaluated
by workers after discussion, (g) the anticipated resolvability of each case, and (h) the
anticipated level of disagreement for each case.

Method. For each task type, we ran a breadth analysis on 40 text documents with up
to 3 independent group discussions per document in order to identify the level of ambiguity
for each case. This was followed by a depth analysis of the 10 most ambiguous cases with
up to 16 independent group discussions per case, used to answer Q2 and Q3.

We analyzed the data using both quantitative (e.g., basic descriptive statistics, re-
gression models) and qualitative analysis of worker responses. For the logistic regression
models [94], we used the step-wise regression procedure to select the best possible com-
bination of variables that could explain the dependent variable, based on improvements
to the Akaike information criterion (AIC). We also test the goodness of fit of each model
using the Hosmer-Lemeshow [69], Osius-Rojek [102] and Stukel [139] tests at significance
level 0.05. For qualitative data analysis, line-by-line inductive open coding was performed
by one of the study authors to identify the emerging themes reported below.

Filtering. Due to worker dropout between the four workflow stages, there were groups
that became inactive during the deliberation process or had too few members remaining
at the end. Out of all 316 participants, 78.2% completed all four stages, 3.8% and 4.8%
dropped out after stages B and C respectively, and 13.2% completed only stage A. Possible
explanations for the moderate dropout after stage A are that some workers might not
have received or seen their email notifications in time (or not at all) to join stage B, or
may simply not have been interested in returning to the same type of task in subsequent
sessions. We excluded groups from the analysis if more than one member was inactive
(i.e., they did not complete stages B and C), resulting in empty or single person groups, or
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where the minority member was inactive, leading to groups of two people sharing the same
opinion. This resulted in two types of groups that were retained for the final analysis:

• 2 vs. 1 (unbalanced): all group members were active.

• 1 vs. 1 (balanced): one member dropped out, leaving two members with divergent
opinions.

From a total number of 418 groups, we excluded 110 (26%) for the aforementioned
reasons, resulting in 308 active groups retained for the analysis, of which 206 (67%) were
unbalanced (2 vs. 1) and 102 (33%) were balanced (1 vs. 1) groups.

Data Set. The full data set is published at: https://github.com/crowd-deliberation/
data.

3.1.7 Results

Analysis based on descriptive statistics shows that there was more disagreement in the
Sarcasm task than in the Relation task, confirming our premise that the Sarcasm task
is more subjective. Specifically, we computed the level of label disagreement for each of
the 40 cases per task type using the data from the breadth run. Label disagreement was
represented as entropy:

H(p) = −p log2 p− (1− p) log2 (1− p)

where p was the proportion of workers who chose the positive category (e.g., Sarcastic).
Entropy values range from 0 to 1; higher values mean more disagreement (e.g., 50% choos-
ing Sarcastic and 50% choosing Not Sarcastic) and lower values indicate less disagree-
ment. Cases had mean entropy values of 0.85 (SD = 0.22) in the Sarcasm task and 0.61
(SD = 0.32) in the Relation task, indicating less disagreement overall in the Relation task.
This difference is statistically significant under a two-sided t-test t(70) = 3.79, p < 0.001.

Q1: Why do annotators disagree with one another?

[H1a] To discover the sources of disagreement in each task, we analyzed the anticipated
and re-evaluated sources of disagreement that workers provided before and after discussion.
As workers were allowed to select multiple options, we use the simultaneous Pearson inde-
pendence test [18], which takes into account correlation between options. Results (in Tables
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Table 3.2: Anticipated sources of disagree-
ment (before discussion) where the propor-
tions of workers are significantly different.

Percentage of Participants

Task Relation Sarcasm

Missing Context 49% 4%
Contrad. Evidence 18% 43%

Table 3.3: Re-evaluated sources of disagree-
ment (after discussion) where the propor-
tions of workers are significantly different.

Percentage of Participants

Task Relation Sarcasm

Fuzzy Definition 28% 43%
Missing Context 24% 4%

Contrad. Evidence 11% 23%

3.2 and 3.3) show that certain sources of disagreement reported by the workers depend sig-
nificantly on the task type, both, as anticipated before discussion (χ2

S = 61.96, p < 0.001)
and as re-evaluated after the discussion (χ2

S = 89.88, p < 0.001). This result confirms
our hypothesis H1a. A higher percentage of workers anticipated Missing Context to be
a dominant source of disagreement in the Relation task (49%) than in the Sarcasm task
(4%). Note that we included Missing Context to capture the extent to which it leads
to disagreement, even though, following the standard TAC KBP guidelines for relation
extraction, workers were instructed to avoid inferences based on missing information in
the Relation task. Conversely, more workers anticipated Contradictory Evidence to be
a dominant source of disagreement in the Sarcasm task (43%) than in the Relation task
(18%). After discussion, while the same trends are observed, workers also identified Fuzzy
Definition as an additional source of disagreement, which is more prominent in the Sarcasm
task (43%) than the Relation task (28%).

[H1b] For Q1, we also investigated workers’ ability to predict disagreement. Workers
were asked to predict the level of disagreement before the discussion by choosing Substantial
Disagreement, Half Agreement, or Substantial Agreement. We determined the ground
truth “level of disagreement" for each case by running a two-sided proportion test to see if
there is a 50/50 split in group opinions about the label. If this null hypothesis could not be
rejected at significance level 0.05, we assumed the correct ground truth answer to be Half
Agreement. Otherwise, the correct ground truth answer was based on the label chosen by
majority vote. Based on the depth analysis data, 7 out of 10 cases in the Sarcasm task and
3 out of 10 cases in the Relation task resulted in Half Agreement.

Since very few workers predicted Substantial Disagreement (< 1% in each task type),
this answer option was grouped together with Half Agreement (known as Disagreement
from hereon) to allow for further inferential statistical tests. We measured workers’ ability
to predict the resulting two discrete levels Disagreement and Agreement (previously known
as Substantial Agreement). For both task types, we computed workers’ rate of being correct
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Figure 3.3: Aggregate performance of our worker population at predicting disagree-
ment/agreement by task type.

when predicting Disagreement or Agreement (precision), their rate of detecting all cases
with Disagreement or Agreement (recall), as well as their overall prediction performance,
in terms of balanced accuracy, a robust measure which accounts for class imbalance, defined
as the average of the recall values for Disagreement and Agreement.

Figure 3.3 shows that workers’ prediction performance was higher in the Relation task
in terms of all the metrics, except for Disagreement precision. In other words, only the rate
of being correct when predicting Disagreement was slightly higher in the Sarcasm task; for
all other metrics, workers were more successful in the Relation task. In terms of the overall
prediction performance, workers’ accuracy was significantly better than random in the
Relation task at 61% (χ2(1, N = 716) = 158.63, p < 0.001), whereas this was not the case
for the Sarcasm task. This result partially confirms our hypothesis H1b. More interestingly,
irrespective of the task type, when workers did predict Disagreement, their rates of being
correct were higher than when predicting Agreement; but they were also generally less
successful at detecting all cases with Disagreement than those with Agreement.

In summary, for Q1, we confirmed that sources of disagreement differ significantly
between the two task types, identified Missing Context as a characteristic source of dis-
agreement for the Relation task, and Contradictory Evidence and Fuzzy Definition for the
Sarcasm task (H1a). In addition, we showed that workers can predict levels of disagreement
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significantly better than random in the Relation task (H1b).

Q2: Under what circumstances can disagreement be resolved through worker
deliberation?

We analyzed the factors contributing to the resolution of disagreement using both quantita-
tive and qualitative analyses of the questionnaire data. Group discussions were considered
resolved if and only if all group members converged to one of the two target categories in
their final classification.

For the quantitative analysis, a logistic regression model was used to discover factors
that affect whether a case is resolved or not. The variables considered include, for each
potential source of disagreement, the proportion of workers within a group who selected this
source after discussion (H2a), the task type (H2b), various statistics capturing the amount
of words contributed by group members (H2c), the level of initial consensus (H2d), and
the amount of overlap between the highlighted pieces of evidence among the dissenting
parties within a group (H2e), as measured by the Jaccard index, a statistic for the overlap
between two sets. The pairwise interactions between the selected factors were excluded
due to lack of statistical significance.1

Table 3.4: Logistic model for understanding the likelihood of resolving a case.

Model Parameters

Variable β̂ Std. Error t p-value

Subjective Case -2.16 0.83 -2.59 **
Fuzzy Definition -1.45 0.53 -2.73 **

Contrad. Evidence -1.48 0.65 -2.27 *
# Words Min/Max -1.49 0.67 -2.24 *

Group 2 vs. 1 -0.67 0.33 -2.04 *
Sarcasm Task 0.61 0.36 1.69

[H2a] Results (Table 3.4) show that certain sources of disagreement—namely, Subjec-
tive Case, Fuzzy Definition, and Contradictory Evidence—decrease the probability of a
case being resolved, partially confirming our hypothesis H2a.

1Statistically significant results are reported as follows: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*).
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In the post-study questionnaire, workers describe some cases as straightforward, requir-
ing only a second glance to reach consensus (“After rereading, I realize the whole review
is a joke and the positive points are sarcastic.”), while other cases are ambiguous or con-
fusing due to contradictory evidence (e.g., the text contains features of both sarcasm and
non-sarcasm) and missing context.

[H2b] We speculated that task subjectivity affects whether a case will be resolved.
Results are mixed. Our step-wise regression procedure revealed no detectable differences
in case resolvability between the Sarcasm and Relation tasks. However, in the post-study
questionnaire, workers in the Relation task mentioned that well-defined category definitions
helped them resolve disagreement (“We were able to refer to the definition of LivedIn. That
made the answer clear.”), while the “lack of instruction on what constitutes a sarcastic
review” was considered a barrier to resolving cases in the Sarcasm task.

[H2c] We hypothesize that the extent to which members contributed equally predicts
whether the case will be resolved. Our model selected # Words Min/Max, i.e., the pro-
portion of words contributed by the least active and the most active contributors within a
group, as a significant predictor variable, confirming hypothesis H2c. An increase in this
proportion decreases the likelihood of a case being resolved. In other words, if members
contributed equally, cases were significantly less likely to be resolved than if some members
contributed substantially more than others.

Qualitative analysis also shows that interactions between members of the discussion
groups can influence the final outcomes. Workers said that disagreement was resolved
by clarifying the task (“Members were becoming clearer on interpretation of the task.”),
providing examples (“Using examples, we were able to persuade the group member to
change their opinion.”), using evidence (“We were able to point out things in the sentence
that were overlooked by others.”), or pointing out false assumptions (“Others pointed
out things that some of us had assumed in the sentence and changed our opinions.”)
Many workers identified the quality of deliberation activity itself as the main driver for
reaching consensus in an argumentative manner, e.g., “People that didn’t agree listened
to the arguments and were willing to change their mind to sarcastic.”) On the other
hand, workers also reported some group-related factors that hindered the resolution of
disagreement, including divergent, but equally valid interpretations (“I think it depends
on how people view sarcasm.”) and the lack of communication (“[My group was] not
continuing a conversation. Responding with one word responses does not solve anything.”)

[H2d] A consensus level of 2 vs. 1 (i.e., two workers agree, one worker disagrees) also
decreases the likelihood of a case being resolved compared to the consensus level of 1 vs.
1, confirming our hypothesis H2d.
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[H2e] Finally, the overlap in evidence among group members was not selected as a
relevant factor for the optimal model fit, leading us to reject hypothesis H2e.

To summarize the findings for Q2, we found various factors that affect whether a case
is resolved or not, including some sources of disagreement (H2a), task type (H2b), the
degree to which deliberation activity is balanced within a group (H2c) and the level of
initial consensus (H2d). Other factors like overlap in evidence highlighted by dissenting
parties (H2e) had no significant effect on resolvability. Finally, our analysis shows that
worker characteristics (such as age and personality) can have some influence on the way
they deliberate (e.g., their overall tendency to revise their position), which in turn can play
a role in resolving a case.

Q3: What impact does the deliberation workflow have on crowdsourcing out-
comes and processes?

[H3a] To evaluate whether worker deliberation improves crowdsourcing outcomes, we com-
pared workers’ answer correctness between our three experimental conditions Reconsider
Only, Disagree and Reconsider, and Disagree, Discuss and Reconsider and our
Baseline (i.e., original labels submitted in stage A). This part of the analysis is restricted
to the 25 cases from the breadth run, where we have ground truth to assess correctness.

Correctness was measured by F1-score (i.e., the harmonic mean of precision and recall)
of individual workers. We did not aggregrate labels across multiple workers as our workflow
did not contain a requirement for shared unanimous group decisions, but instead incen-
tivized independent reconsideration from individual workers in all conditions. Assessments
that were revised to “irresolvable” were excluded because they were neither right nor wrong.
Overall, correctness was significantly higher inDisagree, Discuss and Reconsider, with
no significant differences between the other three conditions. Figure 3.4 provides a visual
comparison. The statistical significance of these differences was confirmed by a one-way
analysis of variance (F (3, 115) = 6.42, p < 0.001), followed by pairwise comparisons with
Holm-Bonferroni correction. The pairwise comparisons confirmed that theDisagree, Dis-
cuss and Reconsider workflow resulted in significantly higher F1-scores than Baseline
(t(64) = −3.44, p < 0.01), Reconsider Only (t(44) = −4.38, p < 0.001), and Disagree
and Reconsider (t(25) = −3.02, p < 0.05). There were no detectable differences among
the other pairings. These results confirm our hypothesis H3a that worker deliberation im-
proves the quality of the crowdsourced annotations. Furthermore, this result suggests that
the improvement in correctness is not due to learning effects or knowledge about group
disagreement data, but due to the actual discussion process.
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Figure 3.4: Individual workers’ answer quality in the Relation task across different recon-
sideration workflows.

[H3b] For Q3, we were also interested in whether our proposed deliberation workflow
discourages groupthink, an undesirable effect where discussion members tend to agree with
the original majority answer within a group. For this question, we performed a close-up
analysis on all groups with a composition of 2 vs. 1, and analyzed whether the proportion
of cases resolved in favour of the original majority vote was similar to the proportion of
cases not resolved in favour of the original majority vote. We used a two-sided proportion
test which confirmed our null hypothesis H3b that both outcomes were not detectably
different, χ2(1, N = 136) = 0.60, p = 0.44. In other words, unbalanced discussion groups
were equally likely to converge to the original majority opinion as they were to achieve
the opposite outcome, i.e., leave the case unresolved or converge to the original minority
opinion. Our quantitative results provide evidence that our proposed deliberation workflow
effectively discourages groupthink.

[H3c] For Q2, we identified factors that contribute to the resolvability of a case. For
hypothesis H3c, we investigate whether some of the factors considered in Q2, e.g., sources
of disagrement and the extent to which members contributed equally, also predict whether
or not a case will be resolved correctly. We performed an analysis on the subset of cases for
which ground truth was available and which were resolved in the deliberation process. We
used a similar step-wise logistic regression procedure as for Q2, defining the correctness of

37



the final consensus label as the dependent variable and including the same set of predictor
variables. Results (Table 3.5) show that certain sources of disagreement made the correct
resolution of a case more likely (Missing Context) or less likely (Expertise Needed). The
extent to which members contributed equally (#Words Min/Max) was a negative predictor
for correct resolution. These results partially confirm our hypothesis H3c.

Table 3.5: Logistic model for understanding the likelihood of resolving a case correctly.

Model Parameters

Variable β̂ Std. Error t p-value

Expertise Needed -3.89 1.95 -1.99 *
Missing Context 2.91 1.42 2.05 *

# Words Min/Max -3.43 1.73 -1.99 *

To summarize, we provide evidence showing that worker deliberation significantly im-
proves the quality of crowdsourced annotations (H3a), while discouraging undesirable be-
haviour such as groupthink (H3b), and that certain sources of disagreement and the extent
to which members contribute equally help predict the correctness of the final resolution
(H3c).

3.1.8 Discussion

In this section, we studied how deliberation affects resolvability and answer accuracy, and
how deliberation outcomes depend on task subjectivity. Our results demonstrate that legit-
imate reasons for disagreement can vary by task, and worker deliberation can help resolve
some of these cases. Importantly, we identified several factors (such as the level of initial
consensus, the amount and quality of deliberation activities, and sources of disagreement)
that contribute to case resolvability. We reinforced the finding that deliberation can in-
crease answer accuracy and the importance of verbal discussion in this process. Finally,
our deliberation workflow discouraged undesirable behaviour, such as groupthink. Our
anonymized data set is publicly available for research reuse.

Generalizability and Applications

Our empirical findings are based on experiments using two specific task types, one subjec-
tive sarcasm detection task, and one objective (person-to-place) relation extraction task.
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Caution is warranted for translating these results to a broader set of classification tasks
and data modalities. However, the deliberation workflow we propoosed is general, and
can be applied to classification tasks involving other data types (e.g., images, videos, time
series data), given minor modifications to the interface to facilitate annotation of evidence
in other modalities. In some complex scenarios requiring hierarchical decision processes,
our workflow will need to be modified. For example, in image classification, individual
image features might be disambiguated first before resolving disagreement on the image
level. Our results revolve around atomic classification problems in paid crowdwork, and it
is expected that deliberation processes in more complex settings would give rise to more
complex dynamics (e.g., circular disagreement in sequential classification).

In general, deliberation workflows like ours can be particularly useful in domains where
inter-rater disagreement is rather the norm than exception, e.g., medicine [44, 36, 118].
Beyond enabling workers to discuss and reconsider ambiguous cases, our deliberation work-
flow collects rich information from human annotators (e.g., confidence levels, arguments,
assumptions, examples, inferences, relevant features from the data, and meta information
about sources of disagreement) that can be used to teach both humans and machines. For
example, prior work has shown that asking annotators to highlight relevant features in
input data (i.e., words in a text document or regions in an image) can improve machine
inference in sentiment analysis tasks [133, 151, 152, 153] and visual category learning [39].
More generally, we posit that future efforts towards interpretable machine learning can
use data produced through group discussion to analyze, replicate and mimic human deci-
sion making processes. While some of the less structured deliberation output (e.g., verbal
arguments) may not yet be fully parsed by automated methods, human learners could
significantly benefit from edge-case examples coming with discussions and highlighted fea-
tures from more experienced annotators. Existing efforts to optimize or harness workers’
ability to learn complex tasks [41, 104] could thus leverage data produced through worker
deliberation.

Another outcome of deliberation could be the refinement and disambiguation of anno-
tation guidelines or category definitions for expert tasks. For example, scoring manuals
in the field of medical imaging undergo regular revisions to increase inter-rater reliabil-
ity [36, 118], a procedure which could benefit from structured and web-based deliberation
workflows.

Design Considerations for Classification Tasks

Redundant Labeling. Our results demonstrate that workers can predict levels of inter-rater
disagreement significantly better than random for certain task types. Prior work has shown
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that being able to predict answer diversity can reduce cost because fewer annotators are
needed when answer agreement is expected [64]. Enlisting human capabilities to predict
answer agreement incurs minimal extra cost because it requires one additional human
response for each data object.

Task Interfaces. Our results show that certain sources of disagreement are more likely
to occur for some task types than for others. In classification tasks (like our Relation
task) that require annotators to make decisions solely based on the information provided
in the data, the interface could remind annotators who indicate “Missing Context” as the
reason for anticipating disagreement to minimize ungrounded assumptions about any latent
contextual information.

Deliberation Workflow. We found a variety of factors that affect case resolvability. De-
liberation workflows for crowdsourced classification tasks should therefore be equipped with
incentive mechanisms to reduce or strengthen the effect of certain factors in a task-specific
manner. For example, in task types where objectivity is possible and the goal is to find
one correct answer, deliberation procedures should have incentives to reduce the impact of
undesirable behaviour (e.g., stubbornness or lack of care) and undesirable group dynamics
(like groupthink or lack of communication) on the final discussion outcome. Deliberation
workflows for more subjective classification tasks where the goal is to uncover multiple
divergent, but equally valid interpretations of the task and data (e.g., sentiment analysis,
relevance rating, text translation) should incentivize group members to be assertive about
their interpretation, and change their assessment only under certain conditions (e.g., when
false assumptions or illogical conclusions are pointed out).

Various deliberation systems have been proposed in complex domains like public de-
liberation [50, 84, 85], on-demand fact checking [83], and knowledge base generation [154].
While our study is primarily embedded in the domain of paid crowd work, our empirical
findings and some aspects of our workflow design may be informative for deliberation sys-
tems in general. For example, our insight that sources of disagreement, when captured in
structured form, can help predict case resolvability (H2a) could be leveraged to categorize
debates and streamline consensus building. Our finding that equal contribution among
discussion members seemed to negatively affect case resolvability (H2c) and final answer
correctness (H3c) was surprising as balanced contribution is often considered beneficial for
fruitful discussion. This finding could inspire future investigations into the balance between
active and passive forms of contribution to deliberation, related to work by Kriplean et al.
[85] on active listening in web discussions. Another potentially counter-intuitive finding of
our work is the fact that unbalanced (2 vs. 1) groups were less likely to resolve a case than
balanced (1 vs. 1) groups (H2d). To our knowledge, our study is the first to investigate the
effect of initial consensus level on case resolvability by having multiple independent groups
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of size two or three discuss the same case in crowdsourced classification tasks. While one
may expect that unbalanced groups converge faster, one possible explanation for our obser-
vation is the added complexity of communication and coordination among three versus two
group members. We showed that a perceived lack of expert knowledge was associated with
resolving disagreements incorrectly (H3c). This result has interesting connections to prior
work on integrating on-demand fact checking into public deliberation [83], suggesting that
crowdsourcing workflows could benefit from similar approaches for on-demand provision of
expertise.

Limitations

We studied the effects of deliberation in the context of two binary classification tasks and
small groups consisting of only two or three members. In practice, many classification
problems have more than two classes and discussion groups can also be larger. Future
work can investigate new methods for scaling to more complex classification problems and
more complex group structures.

A practical limitation of our workflow is its reliance on multiple rounds of synchronous
communication and potential attrition between stages. Dropout was highest after the first
stage in our workflow, suggesting promising future research on incentives for workers to
return for multiple consecutive sessions, or on systems that initiate discussions immediately
as disagreement arises before workers leave the platform.

Our deliberation workflow enables workers to consider alternative views on ambiguous
cases through discussion, and produces useful data such as arguments, examples, and ev-
idence. However, deliberation also incurs a cost in terms of time. A promising area for
future work is to develop techniques to improve the efficiency of the deliberation process
[42] and to characterize the cost-benefit of using real-time deliberation in task workflows.
Another direction for future work is to explore other deliberation incentives beyond mon-
etary compensation, including peer-based reputation systems for constructive deliberation
[52]. In more complicated incentive schemes, moderators could be rewarded for establishing
a balanced and constructive deliberation among group members.

3.1.9 Conclusion

This section contributes novel insights into the circumstances and outcomes of worker de-
liberation for handling inter-rater disagreement in crowdsourced text classification tasks
with varying degrees of inherent subjectivity. Based on a custom-designed workflow for
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real-time worker deliberation, we investigated the impact of various factors on the proba-
bility that a disagreement among small groups of crowdworkers will be resolved through
synchronous group discussion. Our results suggest that the reasons for and level of the
initial disagreement, the amount and quality of deliberation activities, as well as the task
and case characteristics play a role for resolvability. To encourage future work in the field of
worker deliberation, we publish our data set including all original classifications, discussion
comments, text highlights, and revised positions from crowdworkers. Future work includes
developing and validating new deliberation protocols and demonstrating how the informa-
tion produced by worker deliberation can be used to train both humans and machines.
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3.2 Expert Deliberation for Image Labeling

With this second study on group deliberation in data labeling, our focus starts to shift from
the domain of novice crowd work to the expert domain of medical data interpretation. Note
that in the medical domain, the term adjudication is commonly used as a synonym of group
deliberation. We therefore use both terms interchangeably throughout the remainder of
this dissertation.

This section explores the process of group deliberation among medical doctors in the
context of interpreting and classifying medical images for the presence and severity of
diabetic retinopathy (DR), a complication of diabetes that can lead to vision loss. In
particular, we present and evaluate a remote, tool-based and asynchronous system and
structured grading rubric for adjudicating image-based assessments. We compare three
different procedures for adjudicating DR severity among panels of retina specialists: (1)
in-person adjudication (Baseline); (2) remote, tool-based adjudication for assessing DR
severity alone (TA); (3) remote, tool-based adjudication using a feature-based rubric (TA-
F). Our results suggest that remote, tool-based adjudication presents a flexible and reliable
alternative to in-person adjudication for DR diagnosis, and that feature-based rubrics can
help accelerate consensus for tool-based adjudication of DR without compromising label
quality.

3.2.1 Motivation

Diabetic retinopathy (DR) is one of the leading causes of vision loss worldwide [141]. The
process of grading DR severity involves the examination of the retina and the assessment
of several features, such as microaneurysms (MAs), intraretinal hemorrhages, and neo-
vascularization [6]. In a teleophthalmology setting for remote screening, certified graders
examine retinal fundus images to determine the presence and severity of disease as it ap-
pears in a two-dimensional (2D) photograph [134]. Prior work has shown that this process
of human interpretation is subject to individual grader bias, as demonstrated by high
intergrader variability, with kappa scores ranging from 0.40 to 0.65 [1, 132, 87, 54, 119, 88].

This moderate-to-poor agreement between graders has led to difficulties in reliable
evaluation of both individual graders as well as assistive technologies. Yet, due to lim-
ited access to skilled healthcare providers, there continues to be a surge in interest in
the development of assistive technologies, such as deep-learning systems, resulting in a
sharp increase in the demand for high-quality reference standards of labeled-image data
[63, 82, 115, 62, 140, 122, 47, 58, 56, 4]. Prior work has examined different methods for

43



resolving disagreements among experienced graders when creating a reference standard
[82], including majority vote, arbitration of disagreements by a more senior grader, and
in-person adjudication among expert panels.

In ophthalmology, a recognized method to obtain a reliable reference standard is expert
adjudication of images [82, 142, 49]. Multiple experienced doctors independently grade
images and discuss disagreements until resolved. Such “in-person” adjudication has been
shown to produce higher-quality labels [82] but can be challenging to schedule: it requires
coordination of multiple, highly experienced specialists for in-person sessions, and even
small image sets on the order of a few thousand cases can take months to adjudicate due
to clinical scheduling conflicts.

In this study, we presented and evaluated a tool-based system for adjudicating images
that was suitable for remote grading and removes the need for in-person sessions. Our
system allowed doctors to discuss and resolve disagreements on diagnoses remotely, without
convening at a set time and place. The practices described in this section aimed to increase
the efficiency and flexibility of adjudication, while maintaining the quality of the labels
produced. We evaluated our system in the context of DR severity grading based on retinal
fundus images.

In addition, we proposed an adjudication system with the ability to impose an explicit
structure on the adjudication process by organizing the process of image interpretation
around a set of discrete, detailed evaluation criteria. We investigated the effects of such a
structure on the efficiency and reliability of adjudication for DR grading. Specifically, we
presented a feature-based rubric for adjudication of DR severity grades, in which graders
assess individual features (MAs, hemorrhages, neovascularization, etc.) in addition to
overall DR severity.

Taken together, these improvements allow high-quality reference standards to be ob-
tained by the community, and have the further benefit of offering flexibility for individual
graders to schedule their reviewing activity around their clinical duties.

3.2.2 Methods

Experimental Design

The experiment conducted for this study compared three different adjudication procedures
for assessing DR severity based on retinal fundus images as follows: in-person adjudication
(Baseline); remote, tool-based adjudication (TA) for assessing DR severity alone; and
remote, tool-based adjudication using a feature-based rubric to assess DR severity (TA-F).
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Table 3.6: Baseline Characteristics

The experiment implemented a between-subjects design in which independent panels of
three retina specialists each graded and adjudicated the same set of images following one
of three adjudication procedures (Baseline, TA, TA-F). We describe the image set, each of
the three adjudication procedures, and details about the retina specialist graders below.
For each design, graders were primarily assessing DR severity, but not diabetic macular
edema (DME).

Image Set

We used a subset of 499 images (Table 3.6) from the development dataset used by Krause
et al. [82] The image set consisted of central field-of-view images obtained from patients
who presented for DR screening at three eye hospitals in India (Aravind Eye Hospital,
Sankara Nethralaya, and Narayana Nethralaya). The image set was sampled to include
approximately 50% of cases that had some level of DR [82]. Anonymized patient codes
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were provided from two of three hospitals, allowing us to verify no patient duplication.
For the third hospital, patient codes were not provided; this allows for the possibility that
169 images from this hospital may contain multiple images from the same patient; given
that these were sampled from a much larger set of images, duplication is unlikely. Image
sizes ranged from 640 × 480 to 2588 × 3388 pixels, and were presented to adjudicators at
the original resolutions. All images were de-identified according to the Health Insurance
Portability and Accountability Act Safe Harbor before transfer to study investigators.
Ethics review and institutional review board exemption were obtained through the Quorum
Review institutional review board (Seattle, WA).

Adjudication Procedures

Baseline Adjudication. Following the practices described in Krause et al. [82], our
Baseline adjudication procedure consisted of the following three stages: (1) an initial inde-
pendent evaluation; (2) remote review of disagreements; and (3) in-person discussion and
final resolution of remaining cases.

For the first stage, three fellowship-trained retina specialists undertook independent
grading of the image set. Images in which the independent graders agreed were considered
resolved. Next, each of the three retina specialists independently reviewed one-third of the
remaining images with any level of disagreement. This independent review procedure was
facilitated through the use of online spreadsheets. Cases that remained unresolved after the
independent review round were discussed by all three retina specialists in person. During
the in-person sessions, all three retina specialists were present at a set time and place,
and conflicting grades were reviewed and adjudicated within the panel until all specialists
came to an agreement. The time from start of independent grading to full adjudication for
the image set was around 3 months. While the total time each grader spent on grading
and adjudication activities was not tracked precisely, a substantial portion of the 3-month
period was due to difficulties in scheduling the retina specialists to physically convene for
in-person discussions.

Tool-Based Adjudication (TA). To ensure the continuity of the adjudication pro-
cess and to reduce the logistic overhead associated with in-person adjudication, we designed
and implemented a tool-based system for remote adjudication that removes the need for
in-person sessions (Figure 3.5). Similar to the Baseline procedure, the TA procedure com-
mences with independent grading: each panel member first assesses each image for DR
severity. Next, those images with any level of disagreement are reviewed by one panel
member at a time in a round-robin fashion until agreement is reached for the given case
(Figure 3.6). For each review round, the active grader reviews all grades and comments
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Table 3.7: Comparison of adjudication procedures

provided in previous rounds, re-grades the given image for DR severity, and provides more
detailed comments, or replies to other graders’ comments. To handle cases with persistent
disagreement, the TA procedure imposes a limit on the number of review rounds for each
case. In our studies, each case was limited to a maximum of 15 review rounds (i.e., 5
reviews per grader for a panel of 3 graders). See Table 3.7 for a comparison of the Baseline
and TA adjudication procedures.

Tool-Based Adjudication With Feature Rubric (TA-F). Disagreements over DR
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Figure 3.5: Process diagram illustrating remote TA; images are first graded independently
by each panel member (round 0); cases with any level of disagreement after independent
grading are reviewed by all graders in a round-robin fashion (rounds 1–N); the procedure
ends after N review rounds.

severity can arise for various reasons (e.g., due to divergent assessments of the presence
and extent of individual features or due to divergent interpretations of whether a reti-
nal pathology is diabetic in nature or not). One benefit of the tool-based adjudication
procedure proposed in this section is the ability to impose an explicit structure to the
adjudication process by introducing prompts for individual, detailed evaluation criteria.
This ability can be leveraged to remind graders of the specific criteria they should apply
to assess an image (e.g., from standardized grading guidelines) so that discussions over po-
tential disagreements are grounded in predefined factors relevant to the overall diagnostic
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Figure 3.6: Illustration of the round-robin approach for remote TA in the context of DR
severity grading.

decision.

In our experiment, we developed a feature-based rubric in which graders were first
prompted to assess each image for a set of DR-related features before assessing the image
for overall DR severity. Following the International Clinical Diabetic Retinopathy (ICDR)
disease severity scale [6], we included the following 10 features in the TA-F procedure: MAs,
cotton-wool spots, hard exudates, retinal hemorrhage (heme), venous beading (VB), in-
traretinal microvascular abnormalities (IRMA), neovascularization or fibrous proliferation,
preretinal or vitreous hemorrhage, laser scars from panretinal photocoagulation, and laser
scars from focal photocoagulation. Graders assessed whether each feature was present, not
present, or ungradable. For heme, graders also assessed whether any retinal hemorrhage
was extensive in four quadrants, based on standard photo 2A from the Early Treatment
Diabetic Retinopathy Study (ETDRS) [2]. For VB, graders also assessed whether defi-
nite venous beading, if present, was observed in two or more quadrants, based on ETDRS
standard photo 6A [2]. Similarly, for IRMA, graders assessed whether any IRMA was
prominent, based on ETDRS standard photo 8A [2]. Intergrader disagreement may not
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Figure 3.7: Grading interface for remote TA-F for DR severity assessment. Grader
pseudonyms (RX, RY, RZ) are used to associate grading decisions and discussion com-
ments from previous rounds with specific (anonymized) grader identities. The current
grader’s pseudonym is highlighted with bold white font (see RZ). The panel on the right-
hand side lists all prompts included in the TA-F procedure.

only arise over the presence or severity of disease, but also over the specific classification
and etiology of an observed pathology. In particular, the appearance of DR may resemble
other forms of retinal disease, such as hypertensive retinopathy (HTN), retinal vein occlu-
sion (RVO), and retinal artery occlusion (RAO) [14, 17]. Graders were therefore prompted
to assess for the presence of HTN, RVO, and RAO in addition to providing a DR severity
assessment. In the adjudication interface (Figure 3.7), disagreements were visualized for
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both feature- and diagnosis-level decisions to inform adjudicators about assessments from
other panel members. Full agreement within a panel was only required regarding the over-
all gradeability of an image as well as for the diagnosis decisions (DR, HTN, RVO, RAO)
in order to resolve a case; cases could be resolved despite disagreements on individual
features.

Graders

We recruited 14 American Board of Ophthalmology–certified fellowship-trained retina spe-
cialists to form five adjudication panels, including one panel for the Baseline procedure,
two panels for the TA procedure (Panels A and B), and two panels for the TA-F procedure
(Panels C and D). Due to the limited availability of retina specialists, one of 14 graders
participated in two panels (Baseline and TA Panel B); otherwise, each grader participated
in one panel only. Participating retina specialist graders completed their fellowship train-
ing between the years 2009 and 2017 and the number of years in practice (post fellowship)
at the time of participation in the study ranged from 0.5 to 8.5 years.

Evaluating Tool-Based Adjudication

We evaluated the tool-based adjudication procedures (TA, TA-F) for reliability and ef-
ficiency. Reliability was assessed in terms of agreement with the Baseline adjudication
procedure, using Cohen’s quadratically weighted kappa score [31]. A nonparametric boot-
strap procedure [30] with 2000 samples was used to compute confidence intervals (CIs)
for the kappa scores. The weighting function for the calculation of kappa scores was the
square of the stepwise distance between DR grades on a five-point ordinal scale (e.g., a
disagreement between no DR and severe nonproliferative diabetic retinopathy [NPDR],
which are three steps apart on the ICDR scale, would receive a weight of 32 = 9 when
calculating kappa; larger disagreements would more strongly reduce this metric). Images
unanimously deemed ungradable and those with persistent disagreement after 15 review
rounds in any of the panels were excluded from kappa score calculations. Exact agreement
rates and strikeout rates (i.e., the fraction of images for which grades differed by >2 steps)
were calculated as additional measures of agreement for each panel pair.

The efficiency of TA versus TA-F was evaluated using the number of review rounds
required to resolve each case in a given panel, and using the cumulative percentage of cases
resolved in each round, including independent grading (round 0) and the subsequent review
rounds (rounds 1–15). We used the standard permutation test to assess the statistical
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significance of these differences [30]. Due to software-related irregularities, in which the
full-adjudication discussions were not recorded, 11 images (2%) were excluded from the
analysis. Results are based on the remaining 488 cases. For TA-F specifically, the relative
efficiency of resolving disagreements on each of the rubric criteria was assessed as the
number of review rounds required to reach agreement on a given criterion, or as the round
number in which a case was closed despite disagreement on the criterion.

3.2.3 Results

Reliability

Table 3.8: Inter-panel agreement among all pairs of panels as Cohen’s kappa.

Table 3.9: Inter-panel agreement among all
pairs of panels as exact agreement.

Table 3.10: Inter-panel agreement among
all pairs of panels as strikeout rate.

Remote TA grades showed high agreement with the Baseline adjudication procedure
(Table 3.8), with Cohen’s kappa scores of 0.943 (95%CI, 0.919–0.962) and 0.948 (95%CI,

52



0.931–0.964) for the two panels assessing DR severity alone without the use of a feature
rubric (TA), and 0.921 (95%CI, 0.886–0.948) and 0.963 (95%CI, 0.949–0.975) for the two
panels using the feature-based rubric (TA-F). Both TA and TA-F showed high rates of re-
producibility, as measured by the Cohen’s kappa score between the two independent panels
for each procedure. The kappa score for agreement was at 0.932 (95%CI, 0.911–0.950) be-
tween the two panels in the TA procedure and at 0.919 (95%CI, 0.882–0.949) for TA-F.
Exact agreement rates (Table 3.9) and strikeout rates (Table 3.10) are reported as addi-
tional measures of agreement for each pair of panels.

Efficiency

Figure 3.8: Number of review rounds re-
quired per case (i.e., number of rounds un-
til agreement or 15 in case of persistent dis-
agreement) for each of the four adjudication
panels.

Figure 3.9: Cumulative percentage of cases
resolved per adjudication round for TA
procedures.

Cases adjudicated using TA-F were resolved in significantly fewer rounds compared
with assessing DR severity without the rubric (TA; p < 0.001; permutation test, Figure
3.8). During independent grading (round 0), graders were in agreement for 72% of all cases
using TA-F, compared with 67% TA, and to 58% in Baseline in-person adjudication. Using
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Figure 3.10: Mean number of review rounds required per rubric criterion in remote TA-F.
The Y axis indicates the number of rounds after independent grading until either agree-
ment was reached for the given criterion; or the case was closed due to overall agreement on
the diagnosis level. Note that the mean number of review rounds may be below 1 because
cases not requiring adjudication due to independent agreement were considered to have 0
review rounds. Green bars correspond to feature criteria, blue bars correspond to differen-
tial diagnosis criteria. Error bars indicate the 95% confidence intervals. CWS, cotton-wool
spot; HE, hard exudate; NVFP, neovascularization or fibrous proliferation; PRHVH, Pre-
retinal or vitreous hemorrhage; PRP, pan-retinal photocoagulation scars; FLP, focal laser
photocoagulation scars.

TA-F, only 3% of the cases required more than one full “round-robin” of reviews from the
panel (round 3), compared with 9% of the cases in the absence of the feature-based rubric
(Figure 3.9). Both differences were statistically significant under a permutation test of two
panels for TA versus two panels for TA-F (p = 0.004 for round 0, p < 0.001 for round 3).
The only two cases with persistent disagreement after 15 rounds of review were observed in
the TA procedure (Panel A). Overall, cases assessed as mild NPDR or severe NPDR in the
Baseline adjudication procedure showed the lowest rates of independent agreement (i.e.,
before adjudication), with agreement rates of 31.7% and 44.6%, respectively. Mild NPDR
and severe NPDR were also the only two categories with any persistent disagreement (1
case each), and with the highest proportion of cases requiring more than two rounds of
review for at least one of three graders (3.3% and 1.8%, respectively) in order to reach a
consensus.

Among the 10 feature criteria included in the TA-F rubric, assessments of the presence
and extent of heme, VB, and IRMA required the greatest number of review rounds on av-
erage (Figure 3.10). As for the differential diagnosis section of the TA-F rubric, assessment
of HTN required more review rounds on average than assessments of RVO and RAO.

Finally, each of the four panels conducting tool-based adjudication completed all 499
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images within 58 days from initial grading to full adjudication, with the fastest panel
completing in 19 days. Note that these durations also include intervals of idle time in which
the system waited for graders to complete their review passes, and that graders performed
other labeling tasks during their own idle intervals. The total amount of time spent on
grading and reviewing activities is therefore substantially lower than the corresponding
end-to-end durations per panel.

3.2.4 Discussion

As machine-learning methods become more common in ophthalmology, the need to accu-
rately assess diagnostic performance grows. Algorithms that may be used to automate or
augment aspects of eye care should be subjected to rigorous evaluation of their perfor-
mance, against trusted reference standards. This in turn motivates the development of
high-quality reference standards, a process that has received relatively little attention in
the literature.

Previous studies suggest that adjudication can not only reliably be used to evaluate
DR severity, but should be the reference standard used in deep-learning algorithms [82].
While several methods may be used for this process, such as in-person adjudication among
expert panels and arbitration of disagreements by a senior grader (Domalpally A, et al.
IOVS 2018;59:ARVO E-Abstract 4676) these methods rely on the time and expertise of
certain physicians. In the present study, we present a tool-based system for remote expert
adjudication of image-based interpretations and evaluate the system in the context of DR
severity assessment. In this tool-based method, anonymity allows for an unbiased review
of the image, with further clarity added by the rubric feature. Furthermore, the flexibility
inherent in the design increases its appeal and ease of use.

Performance of Tool-Based Adjudication

Our study suggests that remote, tool-based adjudication procedures can produce DR grades
that are in high agreement with the reference standard of in-person adjudication while
offering a range of benefits: an increase in flexibility to accommodate graders’ schedules,
the possibility to anonymize graders throughout the adjudication process to avoid potential
biases grounded in grader identity or seniority, and the option to explicitly structure the
adjudication process around detailed evaluation criteria.

Research into efficient and reliable procedures to produce high-quality grading decisions
can be applied to manual screening in teleophthalmology settings and to the validation of
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automated methods, such as deep-learning systems. In both cases, reliable classification
decisions are required to avoid potentially devastating consequences, such as missing cases
of advanced disease. Validating the classification performance against a reliable reference
standard may be of particular importance for automated methods as, once deployed into
a clinical screening setting, these methods can affect large patient populations in a short
amount of time.

Beyond the evaluation of our remote TA procedure for adjudicating fundus images
for DR severity assessment, we demonstrate how our proposed tool-based procedure can
provide structure to the adjudication process itself using explicit prompts for detailed
evaluation criteria. The resulting TA-F procedure leads to a significant reduction in the
number of rounds needed to resolve disagreements. One possible explanation for the ob-
served efficiency improvement may be that the feature rubric helped graders communicate
their rationale and the specific source of disagreement more efficiently than was otherwise
achieved through free-form comments (e.g., by focusing communication on the specific
guideline criteria that graders are instructed to factor into a diagnosis). Besides efficiency
in communication, the guideline-centric rubrics may serve as a lightweight checklist, lead-
ing graders to be more consistent in their individual practices. This may reduce variance
or allow graders to externalize the diagnostic criteria in a way that reduces their task-
related mental workload. As supporting evidence (Figure 3.9), the first-round agreement
rates were significantly higher with the use of the rubric, even before further adjudication.
Finally, the rubrics lead to the production of structured information (i.e., the specific eval-
uation criteria applied in each case), facilitating detailed quantitative analyses to examine
how and why disagreements arise both across a set of images and for individual cases.

Still, there were specific features of the disease that required more discussion. While
the explicit reasons for why heme, VB, and IRMA required the greatest number of review
rounds are not clear, it is possible that the overlap between the objective (i.e., simple pres-
ence or absence) and subjective (i.e., extent and prominence) features of these particular
anatomic abnormalities led to more disagreement. Despite standard reference photographs
to help guide whether or not the heme is extensive, VB is definite, or the IRMA is promi-
nent, there is an inherent subjectivity to the process. Ultimately, the physician’s gestalt
leads her to define disease severity. This same overall impression or pattern recognition
may explain why venous and arterial occlusions resolved in fewer rounds, as these diseases
have a hallmark appearance. HTN, on the other hand, can overlap with and mimic several
other eye diseases, DR being the most common, and giving a definitive diagnosis based on
a fundus photograph alone can be challenging. Exploring these feature-based discrepancies
may provide more insight on how the model synthesizes the information within the image
and also on how to continue to improve it.
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Utility in Clinical Practice

We believe the technology we describe here may have several clinical applications. First,
our approach for remote adjudication is well suited for integration into existing telemedical
workflows, which face the same problem of high intergrader variability as is the case for
on-site clinical grading [134]. Here, our proposed system can help resolve ambiguous cases
through group decision-making [15] on demand to improve clinical outcomes on a patient-
by-patient basis. Apart from adjudication, our tool’s functionality of integrating feature-
level rubrics into the image interpretation process may facilitate grading by individual
graders in difficult cases, by helping list and systematize the image findings.

Second, expanding TA and TA-F use for rare conditions or difficult to diagnose cases,
where a patient may otherwise be advised to travel to seek a second or third opinion, could
potentially have an important impact on time to diagnosis and treatment, which are likely
to impact quality of life and healthcare costs.

Third, and perhaps most importantly, our adjudication tool lends itself naturally for
generating highly reliable and trusted reference standards for the validation of automated
methods, such as deep-learning models. The process of building and evaluating deep-
learning models typically involves at least the three following distinct datasets: a ‘devel-
opment’ dataset used to train the model, a ‘tuning’ dataset used to select high-performing
model candidates during the training phase, and a ‘validation’ dataset used to benchmark
the performance of the final model. While development datasets, in many cases, consist
of tens or hundreds of thousands of training examples, the datasets used for tuning and
validation are typically smaller scale, on the order of several hundred up to a few thousand
cases. The methods presented here can facilitate the creation of tuning and validation sets
with a substantially reduced overhead, due to lower time and coordination requirements
as compared to in-person adjudication. In this study, we demonstrated the feasibility
of remote TA for a set of 499 images, positioning it as a useful procedure especially for
generating tuning and validation datasets. The availability of a highly trusted validation
dataset is of critical importance especially for so-called “black box” systems, where there
is limited ability to understand how the model makes its diagnosis. As methods for re-
mote adjudication in clinical decision-making scale, it may become feasible to produce
adjudicated datasets large enough to be used for training, which would extend the current
state-of-the-art in model development.
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Limitations

Our study is not without limitations. First, while we quantify the reliability of each adju-
dication method using consensus grades from two independent expert panels, the metrics
reported in this section remain relative ones given the lack of an absolute, objective gold
standard for DR severity assessment in the context of our study. To alleviate this issue,
further work may benchmark adjudication decisions from digital fundus images against
more rigorous diagnostic procedures (e.g., dilated fundus exam by a retina specialist) [7] or
objective outcomes, such as any future development of blindness. Second, graders partic-
ipating in this study were practicing retina specialists rather than research-grade reading
center graders. While reading center gradings may be a more standardized gold standard,
the incorporation of insights from clinical practice into the grading may render our results
more applicable to real-life scenarios than may otherwise be the case with research-grade
readings. Third, we only adjudicated DR severity, but did not adjudicate DME. Agree-
ment levels may be lower overall given difficulties in diagnosing DME on 2D fundus photos.
Finally, the grading decisions in this study were based on fundus images without accompa-
nying patient information or clinical records. In practice, DR severity assessment based on
digital fundus photography should consider patient history and be complemented by more
rigorous diagnostic procedures including dilated fundus examination by a trained eye care
professional and optical coherence tomography (OCT) or other imaging techniques when
indicated to confirm the diagnosis [7].

Our TA-F procedure included a mechanism to assign pseudonyms to graders to avoid
biases grounded in grader identity. Anonymization of graders was not possible during
the in-person discussions of the Baseline adjudication procedure, and could not be done
for the TA procedure because the functionality for grader anonymization was added at a
later stage of our tool’s development. Anonymization of members in group-based decision
processes generally reduces incentives for groupthink behavior, and thus tends to slow
down consensus formation rather than accelerating it [131, 109]. Thus, we reason that our
reported benefit of TA-F is an underestimate of the true benefit, relative to comparing TA
and TA-F when neither (or both) is anonymized.

Our results show that remote, tool-based adjudication can help organize the consensus
formation process especially for those cases that can be resolved in the first few review
rounds, but falls short of fully alleviating the problem of small portions of disagreement
cases persisting over several review rounds. Future work may explore methods to accelerate
resolution for such hard cases, for example, by investigating if aggregation methods like
majority vote after the first two review rounds are sufficient proxies for final adjudicated
decisions, or by implementing automatic techniques to schedule video conference calls to

58



discuss small collections of hard cases among panelists without the need to involve a human
coordinator.

Other promising avenues for future research revolve around the development of feature
rubrics for improved efficiency and reliability of adjudication procedures. Understanding
which strategies and practices for rubric development generally result in the biggest im-
provements across various diagnostic tasks would be helpful for the community so that
other researchers can reliably produce effective rubrics for different areas of medical image
interpretation.

3.2.5 Conclusion

Remote, tool-based adjudication presents a reliable alternative to in-person adjudication
for DR severity assessment. The system allows flexibility so that graders can schedule their
reviewing around their clinical duties. Additional benefits include the option of blinding
graders from the identity of other panel members and the ability to structure the discussion
of controversial cases around a set of discrete evaluation criteria. We found that feature-
based rubrics for DR can help accelerate consensus formation for tool-based adjudication
without compromising label quality.
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3.3 Expert Deliberation for Time Series Labeling

We conclude this chapter with a final case study on group deliberation in data labeling,
again within the domain of medical decision making. In this section, we build on our
insights from section 3.2 to design and implement CrowdEEG, an online platform enabling
groups of medical experts to collaboratively label and adjudicate complex medical time
series data.

Prior work shows that expert disagreement can arise due to diverse factors including
expert background, the quality and presentation of data, and guideline clarity. In this
section, we study how these factors predict initial discrepancies in the context of medical
time series analysis, examining why certain disagreements persist after adjudication, and
how adjudication impacts clinical decisions. Results from a case study with 36 experts
and 4,543 adjudicated cases in a sleep stage classification task show that these factors con-
tribute to both initial disagreement and resolvability, each in their own unique way. We
provide evidence suggesting that structured adjudication can lead to significant revisions
in treatment-relevant clinical parameters. Our work demonstrates how structured adjudi-
cation can support consensus and facilitate a deep understanding of expert disagreement
in medical data analysis.

3.3.1 Motivation

Receiving a reliable diagnosis is one of the fundamental steps in health care delivery; it
sheds light on the state of a patient’s health condition and informs subsequent treatment
decisions. The diagnostic process often requires visual analysis of medical data (e.g., x-
rays, ultrasounds, electrophysiological signals) and a subsequent classification thereof (e.g.,
normal vs. abnormal). Expert classification tasks relying on visual analysis, however, tend
to give rise to expert disagreement due to their inherently subjective nature—and the
medical domain presents no exception in this regard.

In certain non-expert domains (e.g., crowdsourcing), techniques like majority vote and
other computational methods (e.g., EM algorithm) are used to aggregate divergent human
assessments into what is assumed to be a “correct” answer. By contrast, other approaches
acknowledge that disagreement carries valuable information [44, 129], and that resolving
disagreements is not always possible or desirable, even if human graders are given the
opportunity to deliberate on a case [125]. In the clinical domain, collaborative, team-based
decision making has long been deemed superior to individual diagnosis by the National
Academy of Medicine [12]. Little is understood, however, about the factors that contribute
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to expert disagreement and processes that facilitate resolution of disagreement in medical
data analysis from a socio-technical perspective.

Our work addresses this research gap by studying the sources and dynamics of expert
disagreement in medical data analysis through structured, collaborative adjudication, i.e.,
the process of reviewing and potentially resolving divergent assessments collectively as a
group. Our findings from an observational case study with 36 experts and 4,543 adjudi-
cated cases in a sleep stage classification task reveal that diverse factors, including expert
background, the quality and presentation of data, and classification guidelines, contribute
to both initial disagreement and resolvability. Our findings also demonstrate how adju-
dication can lead to significant revisions in experts’ quantification of diagnostic markers,
which in turn have the potential to impact patients’ lives through changes in treatment
outcomes. Our main contributions are:

1. We demonstrate how the sources and dynamics of expert disagreement in medical
data analysis can be understood through collective adjudication.

2. We conducted an observational study to analyze expert disagreement, illuminating
diverse factors impacting the extent of disagreement, including expert background,
the quality and presentation of data, and guideline clarity.

3. We contribute a structured adjudication workflow to capture expert rationales in a
guideline-centric and interoperable format.

In what follows, we detail the design evolution of our structured adjudication workflow,
outline our research questions, methods, and findings, and conclude with a discussion of
use cases and design considerations for our approach.

3.3.2 Application Domain

We embed our work in the field of biomedical time-series classification, an expert domain
with typically low inter-rater agreement rate, and deploy our adjudication system in the
context of sleep stage classification, where the average rate of agreement among two in-
dependent experts is approximately 82% with Cohen’s kappa of 0.76 [36]. Sleep stage
classification lends itself as a task for our case study, as it not only involves lengthy and
complex guidelines likely to spur inter-rater disagreement, but sleep data includes a wide
range of signal modalities, many of which are integral parts of other diagnostic procedures
in medicine. The task of sleep stage classification involves mapping fixed-length segments
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of a polysomnogram, i.e., a continuous multimodal medical time series recording, to one
of five sleep stages — Wake, Rapid Eye Movement (REM) sleep or one of three non-REM
sleep stages (NREM 1, NREM 2, NREM 3). The resulting sequence of sleep stages, called
a hypnogram, serves as a relevant artifact in the diagnostic process for various sleep-related
disorders and other neurological diseases. The classification of time series segments into
sleep stages is based on the presence of distinguishing features of the EEG waveform and
other supportive signal modalities like respiratory information.

3.3.3 Structured Adjudication

For the purpose of our study, we designed and implemented a workflow and interface for
collective expert adjudication of classification decisions in the context of medical data anal-
ysis. Here, we describe our iterative design process and the resulting design considerations
that informed our final design and implementation.

Design Evolution

Our design process was structured into three steps: (1) formative sessions of in-person
adjudication to acquire a better understanding of inter-personal dynamics and expert ar-
gumentation patterns used in medical adjudication, (2) adjudication via video conference
as a testbed for remote adjudication, and (3) web-based adjudication informed by insights
from the first two steps. In all three steps, the CrowdEEG signal viewer 2 was used for
independent classification, but it was only in the final stage where adjudication of disagree-
ments was conducted directly within the web interface.

In-Person Adjudication. An initial formative session of in-person adjudication was
conducted with three board-certified sleep technologists. After an initial round of inde-
pendent classification, researchers organized an in-person meeting in the hospital to host
adjudication discussions for select disagreement cases. All members of the expert panel
convened at a set time and place to collectively discuss disagreements in front of a shared
screen. 106 minutes of discussion content was recorded (using screen capture and audio
recording), transcribed, and analyzed. Our findings led to several design considerations
both general and specific to our data modality:

• Discussions were primarily centered around the classification guidelines, including the
presence of individual patterns or features in the data. This observation primarily

2http://crowdeeg.ca
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informed our motivation for integrating classification guidelines into the final web-
based approach.

• Inter-personal dynamics occasionally distracted from the case at hand (e.g., jokes
about the grading style or background of other panel members), or caused bias in
favour of certain experts (e.g., the most dominant ones or the ones with highest
perceived expertise). Based on this finding, we decided to hide information about
expert identity and expert background in our web-based implementation.

• For some disagreement cases, experts requested to review data windows before or
after the case in question (specific to sequential data). In addition, resolving cer-
tain disagreements triggered consensus on short cascades of subsequent cases in the
recording timeline. Based on these two insights, we decided to have experts review
all cases in a given recording for our web-based procedure, one expert at a time, to
account for any sequential dependencies.

• The configuration of the viewer (e.g., signal visibility and amplitude scaling) played
a role in discussing and resolving disagreements. We noticed that, for certain cases,
adjusting the viewer settings triggered consensus without further argumentation.
Inspired by this observation, we decided to allow experts to configure various aspects
of the viewing interface, and to record viewer settings for each classification decision
to facilitate quantitative analysis.

Remote Adjudication via Video Conference. In a second step, we conducted a
1-hour experimental session for remote adjudication with the same three experts, this time
using video conference as the communication medium. The cases discussed in this step
were distinct from the cases previously discussed in person. All three panel members and
one moderator (whose role was to ensure adjudication discussions stayed on topic) joined
the video conference at the same time. Each expert was assigned one colour (red, green,
or blue) that could be used to annotate the location and shape of characteristic features
on a shared screen during discussion. Discussions were recorded (via screen capture and
audio recording) and analyzed, resulting in additional findings:

• Despite the fact that experts were not co-located in the same room, inter-personal dy-
namics seemed to influence the discussion based on perceived grader experience and
the effectiveness of individual communication or argumentation skills. While part
of this behavior may have been influenced by the fact that the same three experts
had previously conducted in-person adjudication on separate cases, this observation
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reinforced our design consideration to anonymize experts during adjudication and
informed our choice of text as a communication medium during web-based adjudica-
tion.

• The logistics of scheduling multiple domain experts to collectively join a meeting
at a set time even without the need for a co-located face-to-face setup proved to
be prohibitive for a large-scale study. This realization motivated our decision to
implement an asynchronous approach for our web-based adjudication workflow in
which experts review disagreement cases in a round-robin fashion, one expert at a
time.

• The interplay of distinct features within the same classification case, as well as dis-
agreements over the exact transition boundaries between different feature types were
topics of contention and became evident through on-screen drawing. Inspired by this
observation, we included measures of signal complexity in our data analysis, both
with regard to the frequency domain (i.e., how complex is the signal overall?) and
from a time-frequency view (i.e., how complex is the signal due to transitions over
time?).

Web-based Adjudication. Our design considerations derived from the first two steps
informed an early prototype of our web-based adjudication workflow and interface. The
primary motivations for moving the adjudication process to a web-based implementation
were (1) the ability to orchestrate adjudication at a larger scale involving multiple concur-
rent expert panels (2), mitigation of certain undesirable factors observed during in-person
adjudication and adjudication via video conference, and (3) the introduction of explicit
structure to the process of collecting expert rationales for post-hoc quantitative analysis.

Our first iteration of the web-based adjudication workflow addressed the former two mo-
tivations by reducing scheduling conflicts among experts through a round-based scheduling
approach, by hiding information about grader identity and background, and by using text
as a communication medium. We conducted a small-scale pilot using our initial prototype
with three independent panels, each with three experts. The objective of the pilot was to
validate the overall interface and workflow and to analyze open-ended discussion contents
before attempting a more structured approach of collecting expert rationales.

Open-ended discussion comments collected during the pilot were generally free of inter-
personal comments, concise (ranging from a few words to one or two sentences), and focused
primarily on specific rules from the classification guidelines including low-level features
referenced therein. While the majority of comments matched this description, we noticed

64



(a) Rationale form. (b) Data view for disagreement case with expert discussion.

Figure 3.11: Interface for structured adjudication of classification decisions in medical time
series analysis.

that few comments contained arguments not captured by the classification guidelines (e.g.,
addressing implicit nuances with regard to ambiguous terminology used for individual rules
in the guideline or referring to the assumed health condition of the patient). Based on these
findings, we decided to proceed with integrating classification guidelines into the workflow
in an extensible and structured manner. We also decided to retain the option of providing
open-ended comments throughout the process to cover the few cases in which guidelines
were insufficient for a comprehensive rationale. The remainder of this section outlines our
final design and implementation of web-based, structured adjudication.

Rule-based Representation of Guidelines

In our approach, classification guidelines are represented as a set of inference rules matching
a basic template:

IF Evidence A Present AND Evidence B Present THEN Classify as X
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Each rule defines a Boolean proposition or a conjunction (AND connection) of multiple
propositions (e.g., rapid eye movements are present AND low-chin EMG tone is present
AND low-amplitude, mixed-frequency EEG is present) that need to be true in order to
make a certain annotation decision (e.g., classify as REM sleep). We will later refer to the
propositions on the left side as evidence criteria. More complex rules can be decomposed
to match this template. For example, disjunctions (OR connections) can be split into
multiple rules relying just on conjunctions.

While our case study demonstrates the utility of our approach using a domain-specific
guideline, the overall approach is domain-agnostic, borrowing basic concepts of proposi-
tional logic. For our case study, we adapted a domain-specific classification guideline [70],
translating it into a set of 36 separate inference rules. These rules referenced a set of 15
unique basic features whose presence were relevant for at least one of the rules. We also
included placeholder rules, one for each of the possible classification choices, that could be
selected in case none of the other rules applied.

Workflow

Our final workflow consists of two stages. First, all panel members independently perform
an initial classification pass on the entire data record. Second, each expert reviews and
re-classifies all disagreement cases in the record in a round-based fashion, one expert at a
time. We describe both workflow stages below.

Classification. The entry point for participants is an automated email notification
with a link to sign into our web-based system to proceed with their classification task.
During initial classification, each grader classifies all cases in the data record (i.e., 30-second
windows within a sleep EEG) into task-specific categories (i.e., one of five sleep stages).
To account for sequential dependencies in the classification process [128] as observed in
the pilot study, graders can navigate back and forth through all cases and are free to
adjust previous classification decisions throughout their pass. Our pilot studies revealed
that the specific way in which graders choose to view the data—i.e., which signals they
choose to be visible, how they scale individual signal amplitudes, and which frequency
filters they apply—can affect individual grading decisions. Our workflow therefore allows
for graders to adjust viewer settings throughout their pass and to revise grading decisions
accordingly. As graders are free to update prior classifications throughout their pass, our
workflow requires that graders explicitly mark a pass as complete, so grading decisions can
be locked in for comparison with other panel members.

Adjudication. Our pilot study made clear the fact that scheduling multiple domain
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experts to synchronously adjudicate a disagreement at a set time is logistically prohibitive
for a large-scale study with geographically remote participants. This insight informed our
design consideration to choose an asynchronous, round-based approach for our adjudication
workflow. In each round, the active grader reviews all disagreement cases among the data
record, remotely and on their own time. Our system notifies individual panel members via
email when their adjudication pass becomes available. Upon login, graders are immediately
positioned on the first disagreement case in the data record, and can jump to the next or
previous disagreement case as they proceed. During each adjudication pass, the active
grader reviews each disagreement case at least once before the pass can be marked as
complete. The approach to navigation and re-classification is similar to the workflow
previously described for independent classification. In addition, graders are required to
provide an explicit, structured rationale for each re-classification decision, and must choose
at least one domain-specific guideline in support of their classification. For each guideline
rule cited, graders are asked to indicate the extent to which they believe the given rule-
specific evidence criteria to be met. Finally, graders are given the option to leave an open-
ended comment about each decision to account for cases where guidelines are insufficient
to explain a comprehensive rationale. All rationales collected from previous adjudication
rounds are presented to graders automatically when they navigate to a given disagreement
case, encouraging adjudicators to review any prior case-specific discussion within the panel.

A disagreement case is considered resolved when all graders in a panel converge on
the same classification. The adjudication process ends when all disagreement cases are
resolved, or when a specified number of adjudication rounds have been completed. In our
case study, we limit adjudication to three rounds, i.e., one review pass per panel member.

User Interface

We designed a user interface (UI) to implement our workflows for classification and adju-
dication within a web-based platform (Figure 3.11). Components of the adjudication UI
were integrated into the classification UI to ensure contextual vicinity between case-specific
expert discussions and signal data. We briefly describe the classification UI below, followed
by a more detailed outline of the adjudication UI.

Classification. The primary purpose of the classification UI is to enable experts to
view and classify complex data efficiently without violating any existing domain-specific
conventions. It is therefore designed to emulate existing viewer software for the domain-
specific task at hand (i.e., sleep staging). The largest portion of the screen is devoted
to data presentation, with controls streamlined for efficient user input. In addition to
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on-screen controls, there is hotkey functionality for navigation, classification, and select
viewer settings (cf. Figure 3.11b, components 6 to 9).

Adjudication. The adjudication UI (Figure 3.11) is designed for explicit and justified
collaborative decision making. Its components are general and can be instantiated in the
context of other data classification tasks (e.g., for text documents or images). Our pilot
study suggested that a critically important step for experts in understanding disagreements
is a compact view of any conflicting classification choices within the group. Therefore, the
adjudication UI visualizes group decisions by displaying the number of votes assigned
to each classification category using circular indicators attached to classification buttons.
Disagreement cases are visually contrasted from agreement cases to guide graders’ attention
using multiple red-colored vote indicators (Figure 3.11b, component 6).

As disagreement cases can be scattered across a single contiguous data record, our adju-
dication UI extends the base navigation panel with two additional buttons (and hotkeys) to
jump directly to the subsequent and previous disagreement case (Figure 3.11b, component
9).

To facilitate structured communication between members of an expert panel, the ad-
judication UI includes a discussion component to render case-specific expert rationales.
Early prototype testing suggested that some graders re-classified disagreement cases with-
out reviewing prior discussions on the case. We therefore chose to automatically open the
discussion component as soon as graders navigate to a disagreement case to encourage ac-
tive review of prior arguments. Expert rationales and open-ended comments (if any) from
all group members are displayed in chronological order (Figure 3.11b). Each guideline
rule cited within can be expanded using mouse-over to reveal information about pertinent
evidence criteria. As our pilot study showed that inter-personal dynamics can distract
from deliberation, we chose to use expert pseudonyms allowing group members to distin-
guish their own rationale (Figure 3.11b, component 4) from those of other experts in the
group (Figure 3.11b, component 5) while hiding any information about expert identity or
background.

For the purpose of providing justifications for re-classification decisions, the adjudica-
tion UI includes a rationale form (Figure 3.11a). The rationale form is triggered when a
grader submits a classification choice, and classification choices are saved only after the
form has been completed and submitted. The form consists of three parts: a rule selector
(Figure 3.11a, component 1) enabling experts to search a catalogue of pre-defined guideline
rules and to cite those that best represent their rationale; a component asking experts to
specify the extent to which they believe each of the evidence criteria for the selected rule(s)
are met (Figure 3.11a, component 2); and the option to provide an additional open-ended
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comment (Figure 3.11a, component 3). Graders are required to select at least one guideline
rule in support of their classification choice, but can choose to cite additional rules if appli-
cable even if those happen to contradict their classification. The design consideration here
was to allow graders to discuss potential nuances or conflicts between multiple guidelines
rules by citing several ones and clarifying their reasoning using open-ended comments. The
rationale form is domain-agnostic and can be instantiated for a specific application domain
by providing a rule-based representation of the pertinent classification guidelines, in the
format described above.

3.3.4 Research Questions and Hypotheses

Our study addresses three research questions.

Q1: Why do experts disagree during independent classification?

Diverse factors including training background and preferences in data presentation may
cause experts to arrive at divergent classification decisions, beyond characteristics inherent
in the data itself. For example, experts with varying credentials or varying levels of work
experience may be more likely to disagree. Likewise, our formative design process suggested
that experts may disagree solely based on the use of different viewer settings. Based on
these intuitions, we hypothesize that:

[H1a] Differences in expert background (i.e., credentials, geographic location, and
work experience) are associated with higher disagreement.

[H1b] Differences in viewer settings (i.e., signal visibility, amplitude scaling, and
frequency filters) are associated with higher disagreement.

[H1c] Certain data characteristics (i.e., abnormalities in a patient’s health condition,
and case-specific signal complexity) are associated with higher disagreement.

Q2: Why do certain disagreements persist after collective adjudication?

The same factors that contribute to independent disagreements may similarly con-
tribute to the dynamics of adjudication among panels of experts, and may help explain
why certain disagreements get resolved through exchange of arguments while others per-
sist. Beyond this intuition, we take the stance that knowing about the specific criteria over
which experts disagree will best explain why certain cases get resolved and others do not.
We hypothesize that:
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[H2a] Differences in expert background affect the likelihood of resolving a case.

[H2b] Differences in viewer settings affect the likelihood of resolving a case.

[H2c] Data characteristics affect the likelihood of resolving a case.

[H2d] The specific structure of a disagreement (i.e., discrepancies over the presence of
individual features in the data) carries greater explanatory power for understanding
why certain disagreements persist after adjudication, compared to the other factors
(i.e., differences in expert background or viewer settings, and data characteristics).

Q3: What impact does adjudication have on clinical decision making?

Collaborative decision making has been championed by national health research insti-
tutions [12], which assume that team-based approaches lead to significant improvements
in clinical decision making. Adopting the paradigm of collective intelligence in healthcare,
we hypothesize that:

[H3a] Experts perceive collective adjudication as useful for arriving at reliable and
trustworthy classification decisions.

[H3b] Adjudication can lead to significant revisions in treatment-relevant diagnostic
markers.

3.3.5 Methods

Here we describe the details of our observational case study including participant recruit-
ment, data set, procedure and statistical analysis.

Participant Recruitment

We recruited 36 expert participants via domain-specific online platforms. Based on the
pre-study questionnaire (Appendix A.2.1), our expert participants were located in the
United States (26), Canada (7), the European Union (2), and other unspecified geographic
locations (1). The majority of participants (30) were Registered Polysomnographic Tech-
nologists (RPSGT); six held lower credentials. More than half of our expert participants
(23) reported having at least five years of experience working as sleep technologists. Out
of our 36 participants, 31 self-reported as female and five as male. The distribution over
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age groups was: 18-25 (1), 26-35 (8), 36-45 (16), 46-55 (8), 56+ (3). Participants were
paid US $112.50 for two scoring passes (independent classification and one review pass)
via online gift cards, or the equivalent amount in the currency of their specified location,
corresponding to an hourly rate of US $37.50 with three hours of estimated total work on
average.

Data

For the purpose of our study, we sampled just over 86 hours of sleep recording data from
twelve different patients with a mean recording duration of 7.19 hours (SD = 43 mins),
reflecting the standard length of a night at a sleep laboratory. Our dataset included patients
with four different health conditions (three healthy patients, three with Parkinson’s disease,
three with Alzheimer’s disease and three with sleep apnea). The distribution over patient
age groups was: 40-44 (2), 60-64 (1), 65-69 (2), 70-74 (3), 75-79 (4). Six patients were
female and six were male. The complete dataset included 10,349 individual classification
cases each corresponding to one 30-second window of biosignal data to be classified into
one of five different sleep stages. Almost half of all cases (4,543; 44%) resulted in some
level of expert disagreement over the correct classification label. Note that agreement rates
here refer to exact agreement among three experts whereas rates reported in prior work
refer to agreement among just two experts and are therefore expected to be higher. Out
of all disagreement cases, about one third (1,667; 37%) remained unresolved after three
rounds of collective adjudication.

Procedure

Before the study, experts first completed a pre-study questionnaire (Appendix A.2.1) so-
liciting demographic information, including age group, gender, geographic location, their
highest credential, as well as the number of years of work experience in the sleep health
profession. The 36 expert participants were randomly grouped into groups of three and
each group was assigned to one of the twelve recordings for collective adjudication. Hence,
each expert grader participated in exactly one panel and each recording was scored and ad-
judicated by the same set of three experts. Experts first performed an initial independent
classification pass on their assigned recordings, followed by three rounds of adjudication,
one round per grader in the panel. The order in which experts performed the review
passes was scheduled based on expert availability in each panel, i.e., for each panel, the
three experts were sequenced based on their earliest possible availability for completing a
full review pass. Alternative sequencing options such as randomization may be desirable
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based on the specific study setup, e.g., if experts are part of multiple distinct adjudication
panels. In our case study, where experts are part of exactly one panel and perform one
review pass each, individual availability was taken into account as a social requirement to
reduce delays between review passes. In each adjudication round, the active grader stepped
through each individual disagreement case, re-scored the case, and provided a rationale for
their final classification decision. In each adjudication round and for each disagreement
case, the active grader was presented with the most recent classifications from all three
panel members, as well as the grades and rationales submitted during each of the preceding
rounds. Note that our observational case study treats independent classification and adju-
dication as consecutive workflow stages, rather than distinct experimental conditions. The
study concluded with a post-study questionnaire (Appendix A.2.2) allowing participants to
provide open-ended feedback about the benefits and drawbacks of the adjudication inter-
face and procedure. We also included two questions to assess the degree to which experts
agreed that ‘The adjudication process was useful for generating a reliable hypnogram’, and
the degree to which experts agreed that ‘The final adjudicated hypnogram can be trusted
more than the hypnogram from my first pass’, both on 5-point Likert scales.

Analysis

For Q1 and Q2, we analyzed how various socio-technical factors like expert background,
data characteristics, and viewer settings, were associated with expert disagreement during
independent classification (Q1), and with the likelihood of leaving a disagreement unre-
solved after collective adjudication (Q2). We investigated both research questions using
logistic regression models. For Q1, the logistic model was run on all classification cases
(N=10,349), the dependent outcome variable indicating whether a case had any level of
disagreement (N=4,543) versus perfect agreement among all three experts. For Q2, we ran
a sub-analysis on just those cases with any initial disagreement (N=4,543) to understand
why some disagreements persisted after three rounds of collective adjudication (N=1,667),
whereas other disagreements managed to get resolved. Both analyses shared a base set of
independent variables, described in Table 3.11.

For Q2 specifically, we derived additional independent variables from the structured
rationales experts submitted during adjudication. The complete set of all 36 guideline
rules mentioned 15 unique basic features. We derived one independent variable for each
one of these features, which assumed a true value if some, but not all panel members had
mentioned the feature in their rationale for a given disagreement case, and false if either all
or none had mentioned it. This approach allowed us to condense expert rationales from a
complex set of guideline rules into a compact view of basic features to gauge the explanatory
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Table 3.11: Factors used as independent variables in Q1 and Q2.

Category Variable Description

Grader Differences

Experience true if panel members had different levels of work experience, i.e., if
some had 5+ years of work experience, while others did not; false if
all panel members had the same level of work experience

Location true if panel members were from different geographic locations; false
if all were from the same location

Credentials true if some, but not all panel members held an RPSGT credential;
false if either all or none were RPSGTs

Viewer Differences

Frequency Filter true if some, but not all panel members had activated the frequency
filter while making a classification decision; false if either all or none
had activated the frequency filter

Amplitude Scaling true if some, but not all panel members adjusted the sensitivity of the
signals for a given case; false if either all or none had made adjustments
to amplitude scaling

Signal Visibility true if there were differences among panel members in how many sig-
nals were visible when making a classification decision; false if all
looked at the same set of signals for a given case

Data Characteristics

Patient Condition one of three disease conditions—Alzheimer’s, Parkinson’s, or sleep
apnea—compared to the healthy baseline

Signal Complexity true if the EEG for a given classification case was more complex than
the median case with regard to the frequency domain; complexity
was measured as spectral entropy, which is high if the signal contains
multiple dominant frequencies, and low if it only contains one main
frequency [13]

Signal Transitions true if the EEG for a given classification case was more complex than
the median case with regard to the time-frequency domain; measured
as entropy over the dominant frequencies for each 2-second segment
within a 30-second window

power of feature-level expert rationales for understanding why certain disagreements persist
after adjudication.

For Q3, we used paired t-tests to compare the value of aggregate diagnostic mark-
ers before and after adjudication. A one-sample Wilcoxon signed rank test was used to
understand if experts considered the adjudication process useful for making their classifi-
cation decisions more reliable and trustworthy as per the two questions in the post-study
questionnaire.

For qualitative data analysis, line-by-line inductive open coding was performed by one
of the study authors to identify the emerging themes reported below.
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3.3.6 Results

Structured adjudication resulted in a 20-30% increase in inter-rater agreement over the
course of three rounds (cf. Figure 3.12). The machine-readable outputs of our system
allowed for several insights to be had regarding the dynamics of our structured adjudication
process. We observed vast differences in the role that different features (i.e., distinct
evidence criteria mentioned in the classification guidelines) played for adjudication. Not
only were certain features mentioned orders of magnitude more often than others (cf.
Figure 3.13); different features also contributed to the resolvability of disagreements in
diverse ways. Here we present the results of our data analysis with respect to each of our
research questions.

Q1: Why do experts disagree?

In determining the causes of disagreement during independent classification, various fac-
tors were analyzed across different groups of variables, including differences in grader back-
ground and viewer settings, as well as characteristics inherent in the data itself (Table 3.12,
left side):

• For grader background, differences in work experience, as well as geographic lo-
cation, were significant determinants in predicting disagreement before adjudication.
Differences in grader credentials were not found to be significant in predicting initial
disagreement among a panel—results providing partial support for our hypothesis
H1a.

• Differences in viewer settings used by graders during independent classification—
frequency filters, amplitude scaling, and signal visibility—all were significant factors
for initial agreement rates. However, while differences in frequency filter settings and
amplitude scaling were associated with disagreement, differences in signal visibility
(i.e., differences in whether graders were viewing all or only a subset of the available
signals), was found to be a significant predictor of initial agreement among a panel.
Our results partially confirm hypothesis H1b.

• With respect to data characteristics, and in line with our hypothesis H1c, the
overall signal complexity for a given case contributed to initial disagreement. Dis-
agreement was significantly higher for patients with Parkinson’s and Alzheimer’s
disease, compared to a baseline of healthy patients. The same insight is also re-
flected in our observation that these two health conditions exhibited the lowest levels
of inter-rater agreement before adjudication (Figure 3.12).
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Figure 3.12: Agreement rate by adjudi-
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Figure 3.13: Number of times each fea-
ture type was mentioned in a rationale (log
scale).

Q2: Why do disagreements persist?

In analyzing which factors were associated with persistent disagreement—i.e., cases with
initial disagreement that remained unresolved after adjudication vs. those that were re-
solved through adjudication—similar patterns were observed across variable groups (Table
3.12, right side). Many of the same factors associated with initial disagreement were also
significant explanatory variables for the outcome of persistent disagreement after adjudi-
cation, offering partial support for hypotheses H2a, H2b, and H2c. There were notable
shifts, however, in the way that certain variables were associated with resolving a case
compared to how they contributed to initial disagreement. We focus on those variables
with differential effects between Q1 and Q2.

Variance in grader credentials, while not found to cause disagreements in Q1, was as-
sociated with an increased likelihood of resolving disagreement cases (Q2). Similarly, with
respect to data characteristics, sleep apnea patients did not give rise to more disagreement
than healthy patients did during independent classification, but disagreement cases could
be resolved more readily for sleep apnea patients than for the healthy baseline. On the
other hand, Alzheimer’s disease did not significantly contribute to the persistence of dis-
agreement, despite the fact that it contributed to initial disagreement. Where the EEG
signal itself was concerned, overall signal complexity correlated with greater resolvability,
whereas signal complexity in terms of transitions over time was associated with higher
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Table 3.12: Logistic models for understanding why experts disagree during independent
classification (Q1), and why certain disagreements persist after adjudication (Q2).

Q1: Why Disagree? Q2: Why Unresolved?

Independent Variable β̂ SE t p β̂ SE t p

Grader Differences
Experience 0.69 0.06 12.30 *** 0.58 0.13 4.45 ***
Location 0.36 0.07 5.06 *** 0.50 0.20 2.57 *
Credentials -0.06 0.07 -0.79 -0.93 0.16 -5.91 ***

Viewer Differences
Frequency Filter 0.51 0.07 7.72 *** 0.83 0.14 5.76 ***
Amplitude Scaling 0.19 0.05 3.91 *** 0.04 0.11 0.32
Signal Visibility -0.25 0.07 -3.39 *** -0.44 0.17 -2.62 **

Data Characteristics
Patient Condition

Parkinson’s 0.73 0.07 10.98 *** 0.91 0.16 5.61 ***
Alzheimer’s 0.27 0.08 3.30 *** -0.18 0.19 -0.97
Sleep Apnea 0.14 0.09 1.55 -0.59 0.23 -2.58 **

Signal
Complexity 0.22 0.04 5.05 *** -0.57 0.11 -4.98 ***
Transitions -0.07 0.04 -1.64 0.54 0.10 5.19 ***

Feature Disagreements (Q2)
Slow Wave Activity 5.12 0.21 24.31 ***
LAMF 2.16 0.11 19.38 ***
Arousal 1.88 0.19 9.65 ***
Alpha Rhythm 1.67 0.12 13.64 ***
Eye Blinks 1.51 0.39 3.85 ***
K Complex 1.33 0.12 10.85 ***
Sleep Spindle 1.25 0.13 9.77 ***
Reading Eye Movements 0.83 0.54 1.55
Low Chin EMG Tone 0.71 1.02 0.69
Vertex Wave 0.61 0.35 1.76
High Chin EMG Tone 0.57 1.07 0.53
Rapid Eye Movements 0.48 1.02 0.48
EEG 4-7 Hz + Slowing 0.05 0.25 0.20
Slow Eye Movements -0.82 0.36 -2.32 *
Major Body Movement -2.88 0.59 -4.88 ***
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chances of leaving a case unresolved. Differences in amplitude scaling, amenable to viewer
settings, were not significant for resolving disagreements, despite causing disagreement
during independent classification.

In addition to this base set of variables, Table 3.12 provides a list of 15 EEG features
mentioned in at least one of the structured expert rationales from our study. For seven
of these, we found that disagreements over feature presence were significantly associated
with leaving cases unresolved. We found the opposite to be true for two other features—
slow eye movement and major body movement—where discrepancies over feature presence
were correlated with consensus formation. Most importantly, however, across all variable
groups, it were the feature-level variables that showed the greatest effect sizes for case
resolvability overall. This finding confirms our hypothesisH2d, the claim that the structure
of a disagreement, with respect to feature-level rationales, holds the greatest explanatory
power for why disagreements remain unresolved even after adjudication.

Q3: What impact does adjudication have on clinical decision making?

We assessed this question through both qualitative and quantitative measures. Through a
post-study survey, expert graders responded that the structured adjudication process was
both useful for generating a reliable hypnogram (p < 0.001), and that the final adjudicated
hypnogram could be trusted more than the original one (p < 0.001). These findings support
our hypothesis H3a. Changes in sleep parameters from before to after adjudication were
analyzed as objective measurements for the impact of adjudication (Figure 3.14). We
observed a significant decrease (p < 0.05) in the percentage of sleep time classified as REM
sleep (%REM)—a treatment-relevant diagnostic marker—with shifts ranging between -
7.5% and 1.4%. This finding offers support for our hypothesis H3b.

Qualitative Feedback. All participants were given the opportunity to provide open-
ended feedback regarding both the interface of our adjudication system, as well as the
adjudication procedure deployed in our study. Where the design of our platform was
concerned, graders commended the clarity of its structured, guideline-centric format, with
quick access to a comprehensive list of classification guidelines, and a view through which
to appreciate other graders’ classifications and rationales.

Grader feedback was unanimously in favour of the collaborative practice of adjudication,
especially in a structured format that allowed for the exchange of individual justifications
for one’s classification decisions. As group discussion was achieved remotely, our graders
felt that having a clear-cut time window for each individual grader to complete their pass on
the record was beneficial for promoting efficiency of adjudication. However, the sequential
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Figure 3.14: Change in diagnostic markers from before to after adjudication.

nature of our procedure, where the first grader must complete their pass before the second
grader in the panel can begin theirs, was considered an obstacle by some participants. At
the same time, our graders recognized that real-time adjudication may be challenging given
the logistical burden of scheduling synchronous sessions among experts, even if facilitated
through a remote, web-based system.

Our procedure, requiring graders to construct structured arguments in support of their
decisions in terms of rules from the classification guideline, was said to have the potential
to improve individual graders’ scoring abilities. To borrow a quote from one expert, a
guideline-centric adjudication procedure can help both those who have been scoring for
years and are thus “stuck in their ways”, as well those with minimal scoring experience, who
may need a concrete guide. Where the effects of adjudication on consensus are concerned,
most participants perceived the exchange of arguments and justifications among the group
as a balanced approach for reviewing cases collectively: “Sometimes I still disagreed. Other
times I changed my perspective.” One expert reinforced our stance that “truly subjective
cases” ought to be recognized as such, rather than enforcing artificial consensus.

3.3.7 Discussion

Our core contribution in this section is an observational study of expert disagreement in
the domain of medical data analysis. With prior work establishing that group deliberation
can be a useful and effective method for resolving disagreement, we built a structured,
guideline-centric adjudication system and workflow to facilitate our study.
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In addition to offering further support for adjudication as a method of supporting
consensus formation, our findings help elucidate the reasons why experts disagree about
medical data classification decisions, why some of those disagreements persist, and how
adjudication outcomes may translate to clinical outcomes. We discuss the generalizability
of our findings and their potential applications, offer design considerations for expert ad-
judication workflows, and conclude by addressing limitations of our study and directions
for future work.

Generalizability and Applications

Our case study was limited to the specific task of interpreting and classifying biomedical
time series, so caution is warranted in generalizing the results to outside domains and to
task types other than data classification (e.g., policy design, content generation). However,
sleep stage classification is a good exemplar for the medical domain, as it shares several
characteristics with other diagnostic tasks: (1) expert disagreement is prevalent within; (2)
data classification guidelines are lengthy and complex; (3) data analysis includes a wide
range of signal modalities (i.e., EEG, ECG, eye movements, muscle activation, etc.), many
of which are integral parts also of other diagnostic procedures in medicine; and (4) various
low-level features of the data (e.g., alpha rhythm, sleep spindles, K-complexes) provide
the basis for higher level assessments (i.e., sleep stage classifications, diagnosis of sleep
disorders). We characterize the types of medical data analysis tasks to which our findings
may generalize below.

Grader Differences. Findings on the effect of expert background on disagreement
dynamics may generalize better to tasks where procedures for expert certification vary
between countries or where such procedures may undergo significant changes over time. In
those cases, differences in graders’ geographic location or professional experience may play
a more significant role in contributing to disagreement than for tasks where certification
procedures are are globally standardized and remain relatively stable over time.

Viewer Settings. Findings on the effect of viewer settings on disagreement dynamics
may generalize better to tasks where complex patient data can be viewed from different
perspectives. Perspective adjustment can take various forms, including adjustment of the
amount of data viewed (e.g., montage selection in multimodal time series, or region-of-
interest adjustment in interpretation of pathology slides), or application of certain filter
settings (e.g., frequency filters in time series or audio data, or color filters in image data).
Such findings would not directly apply to classification tasks with static data views (e.g.,
text-based patient records).
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Data Characteristics. We included disease condition and signal complexity as vari-
ables to understand the effect of data characteristics on expert disagreement. The specific
operationalization of these variables may need to be adjusted for other task domains. The
idea, however, that certain pathologies or pattern complexity may complicate data inter-
pretation is domain-agnostic and may generalize to other task types.

Guidelines. The proposed guideline-centric adjudication process is general, and appli-
cable to task types where pre-existing guidelines in the expert community can be mapped
to a set of classification rules. Evidence-based grading guidelines are widely available across
multiple medical subspecialties [11], and the organization of guidelines into easily identi-
fiable grading recommendations is encouraged within the medical community [59]. There
are, however, some diagnostic tasks, such as diagnosis of epilepsy or glaucoma, for which
comprehensive guidelines yet have to be developed. The approach may generalize better
to tasks with only a few classification categories (e.g., sleep staging, diabetic retinopathy
grading, prostate cancer grading) than to classification tasks with very large decision spaces
(e.g., comprehensive differential diagnosis) or multiple classifications with respect to the
same patient record.

In our study, we hypothesized (H2d) that disagreements over the presence of specific
features in the data would offer the strongest explanatory power for the resolvability of
disagreements. Indeed, our results confirm that such feature-level rationales contribute
the strongest to explaining why certain disagreements persist after adjudication. This
finding suggests that expert disagreement, while influenced by social factors and specifics
of data presentation, can be best explained by leveraging feature-level justifications from
experts in medical data analysis. Since feature-level justifications were directly derived
from guideline rules cited during collaborative adjudication, disagreements on the feature
level can be considered a quantitative lens on low-level ambiguities within the guidelines.

Another finding from our study was that structured adjudication can lead to significant
revisions in clinical parameters relevant to real-world treatment outcomes (H3a). In our
sleep stage classification task, adjudication caused a significant decrease in %REM, com-
pared to an independently annotated record. Clinical decision making in many scenarios
hinges on the proportion of time spent in REM sleep recorded on an EEG. For instance,
REM sleep is decreased in several neurodegenerative disorders, including Parkinson’s dis-
ease and Alzheimer’s disease, and among older adults without Alzheimer’s, decreased REM
sleep is associated with a higher likelihood of developing the disease in the future [105].
The detection of REM sleep behaviour disorder, which is associated with a high risk of fu-
ture Parkinson’s disease, is critically dependent on the accurate classification of REM sleep
[110]. REM sleep is also decreased in sleep apnea, and the restoration of normal amounts
of REM sleep can be a marker of therapeutic efficacy in sleep apnea treatment. These
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insights position the adjudication process as something more than an academic exercise in
consensus formation, but an approach with the potential of altering clinical outcomes as a
direct result of changes in diagnostic markers.

Applications. There are several potential applications of our structured adjudication
system and procedure. First, a system like our own can be easily implemented in the
training of novice readers. In our study, differences in grader experience predicted both
discrepancies before adjudication, and persistent disagreement afterwards. Beyond the ob-
vious explanations for this, it is worth repeating that our expert participants highlighted
that adjudication may be helpful both for novice graders, and more experienced graders.
Our guideline-centric platform allowed for graders to go entirely by-the-book in their ap-
proach to classification, but the more seasoned scorers may well have stuck to their tried
and true reasons for their classification decisions, perhaps overlooking certain nuances in
the data that those following the rules would have better attended to, leading to disagree-
ment cases. Thus, our system may have equal potential for helping more experienced
readers reconsider their grading habits.

While structured adjudication was made possible in our study by the fact that standard-
ized, agreed-upon classification guidelines are pre-existent within the expert community,
our rationale form retained the option of providing open-ended comments. For domains
where standardized classification guidelines do not yet exist (e.g., epilepsy diagnosis), our
hybrid approach could offer the potential of mining open-ended arguments to extract ex-
plicit inference rules and thus iteratively generate a more structured representation of
classification guidelines.

The interoperable output of our structured adjudication system may also lend itself
naturally as input to other decision support systems. For example, machine learning
models could be trained using structured, ambiguity-aware data sets to not only classify
by diagnostic category (e.g., normal vs. abnormal), but also to identify ambiguous cases
and to explain those cases in terms of potentially controversial classification guidelines or
evidence criteria pertinent to the data at hand [32].

Design Considerations for Expert Adjudication

Davies and Chandler [37] delineate five design categories of an online deliberation system:
purpose, population, spatiotemporal distance, communication medium, and deliberative
process (e.g., identifiability and structure). In this section, we designed and implemented
an adjudication interface for expert users to engage in remote, anonymous, asychronous
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adjudication of medical time series data in a web-based environment through a structured,
guideline-centric procedure.

Purpose and Population. To facilitate adjudication of medical time series data in
the context of sleep stage classification, we designed a system and user interface to emulate
existing sleep scoring software, and embedded functionality for adjudication within. This
ensured that users could engage in effective group deliberation in a familiar environment.
True to the nature of our application domain, our system was aimed at expert users.

By engaging a population of expert users, we discovered that viewer settings play an
important role in causing and resolving disagreement. For example, differences in signal
visibility increased the likelihood of resolving disagreements through adjudication. While
the reason for this is debatable, we suggest that experts’ preferences and information needs
in the context of making clinical decisions may vary with their level and type of professional
experience. Designers of expert adjudication systems should therefore take into account
the fact that both expert background and preferences for interface settings affect how
assessments are made and how divergent assessments are adjudicated. However, differences
in certain viewer settings (e.g., gain adjustments) were also associated with initial and
persistent disagreement. While providing experts with sufficient amount of flexibility for
viewer configurations seems necessary in order to enable exploration of complex medical
data, adjudication systems may benefit from ways to share viewer settings between experts.
In particular, if differences in viewer settings spur disagreement and make the resolution
of discrepancies less likely, a feature allowing experts to view data “through the lens” of
another grader and temporarily adopt the other experts’ viewer settings may prove helpful
for more effective adjudication.

Spatiotemporal Distance and Medium. In order to conduct a large-scale study
with numerous expert users, we chose to deploy our system within a web-based environ-
ment, and had users participate remotely and asynchronously. While these decisions were
largely informed by logistical reasons, we also wanted to design a system to enable ef-
fective adjudication in real-world contexts were local, real-time deliberation is infeasible.
That said, we acknowledge that synchronous systems may be more effective at fostering
agreement between users [37].

Deliberative Process. We enacted an anonymous deliberation process to eliminate
user identifiability and reduce inter-personal bias during adjudication. Our findings on
how grader differences affected disagreement dynamics should therefore be interpreted in
the context of how different expert backgrounds may translate into different approaches to
reasoning and arguing about corner cases, rather than bias introduced by mere perception
of authority.
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Adding structure to the process of collecting expert rationale allowed for detailed quan-
titative analyses of adjudication dynamics in our observational study. It is well documented
that more structure fosters more deliberative behavior in an online deliberation setting [37].
However, in structuring a system around domain-specific annotation guidelines, structure
can limit the efficiency of the workfklow when said guidelines are numerous and complex.
Our design may have reduced input efficiency by forcing graders to navigate through a com-
prehensive set of rules irrespective of their classification decisions. However, unlike more
confirmatory UI designs, we argue that this structure encourages participants to consider
alternative lines of reasoning during adjudication. We showed how complex classification
guidelines can be integrated into adjudication processes in a flexible and interoperable
fashion. At the same time, our analysis leveraged a more compact view of expert ra-
tionale referencing basic feature types mentioned within the guideline rules. One design
consideration by way of promoting input efficiency for structured rationales is to use the
presence or absence of distinct, low-level features as an entry point for collecting expert
rationales. A hybrid approach may solicit compact, feature-level assessments first, in order
to intelligently recommend pertinent classification rules for adjudication in a second step.

Sharing and leveraging the insights of other users in a collaborative workflow has been
found to increase task performance [60]. However, in the same study, Goyal and Fussell
found that users who collaborated through an interface designed for shared sense making
do not report an increased sense of success during the task, and view such an interface as
having lower utility than standard setups. These reports suggest that users may need to
be informed in real time about the utility of deliberation systems that employ new but
important design elements—and may involve extra steps in the workflow—if such systems
are to be readily adopted by new users.

Limitations

Despite the demonstrated use cases of adjudication, there are limitations to the process.
First and foremost, adjudication is resource-intensive, a factor potentially hindering adop-
tion in real-world contexts. Our study demonstrates how elements of structure can benefit
adjudication procedures, and future work may explore how added structure could translate
to increased efficiency and reductions in cost. While a quantitative cost-benefit analysis is
beyond the scope of our study and will be left for future work, we demonstrate ways to
counter the challenges of scheduling synchronous expert meetings through a round-based
approach where experts can review cases on their own time. Future work may investigate
hybrid methods encouraging turn-based adjudication procedures, while providing the op-
portunity for real-time communication for times when experts happen to review the same
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case concurrently to make efficient use of their resources.

Our pilot study involved the same three experts conducting adjudication both in per-
son and via video conference. While we ensured that experts discussed different cases in
both stages, it is possible that certain behaviors observed via video conference may have
been influenced by previous face-to-face interactions (e.g., perceived level of experience,
word choice, intonation patterns). Our design considerations concerning inter-personal
dynamics (e.g., choice of text as a communication medium) were primarily informed by
in-person adjudication and subsequently reinforced by the possibility that these may also
play a role in adjudication via video conference. Future work may explore the differential
effects of communication media in medical adjudication using controlled between-subjects
experiments.

Another aspect of the adjudication practice left for future work is the question of
when to deploy such a system in a real-world context, clinical or otherwise. In settings
where a single expert reader is the norm, what are the costs of introducing collective
adjudication, given its demonstrated advantages in medical data analysis? If adjudication is
deemed too costly to be routine, what are the indications that may alert clinicians to when
group deliberation is necessary? Our findings demonstrate that adjudication outcomes
can translate to changes in diagnostic measures, suggesting that the use of adjudication
should be prioritized for those critical disagreement cases that have the highest potential
of impacting patients through revisions in treatment outcomes.

3.3.8 Conclusion

In this section, we introduced a novel perspective on the problem of expert disagreement
in medical data analysis using a structured form of collaborative adjudication to study
the nature and dynamics of disagreement from a socio-technical perspective. We demon-
strated the applicability of our approach in the context of medical time series analysis
for sleep stage classification, and showcased how the structured data produced can facili-
tate a deep understanding of the diverse factors playing a role in generating and resolving
disagreements, including expert background, data complexity, viewer settings and classifi-
cation guidelines. Our proposed workflow for structured adjudication has implications for
the design of decision support for clinical group decision making and for the collection of
expert-labeled data in the context of other applications like computer-aided diagnosis.
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3.4 Conclusion

In this chapter, we have explored the question of how group deliberation can be used
as a tool within data labeling workflows to help analyze instances of ambiguity resulting
in inter-rater disagreement. We reported three case studies of using both synchronous
and asynchronous deliberation workflows not only in novice crowd work, but also in the
expert domain of medical data interpretation. Our studies have demonstrated that group
deliberation is a versatile approach for addressing ambiguity in various data modalities,
including text documents, images and time series data, and that imposing structure on the
process does not only improve efficiency, but also helps us understand why disagreement
arises and when it may be resolved. The remainder of this dissertation aims to demonstrate
that the deliberation data collected in this process can be put into use to not only train less
experienced human labelers, but also to simulate and explore AI systems that highlight
and explain ambiguity in human-AI collaborative data analysis workflows.
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Chapter 4

Deliberation Data for Labeler Training

Workflows for medical data labeling critically depend on accurate assessments from human
experts. Yet human assessments can vary markedly, even among medical experts. Prior re-
search has demonstrated benefits of labeler training on performance. Here we utilized two
types of labeler training feedback: highlighting incorrect labels for difficult cases (“individ-
ual performance” feedback), and expert discussions from adjudication of these cases. We
presented ten generalist eye care professionals with either individual performance alone, or
individual performance and expert discussions from specialists. Compared to performance
feedback alone, seeing expert discussions significantly improved generalists’ understanding
of the rationale behind the correct diagnosis while motivating changes in their own labeling
approach; and also significantly improved average accuracy on one of four pathologies in a
held-out test set. This work suggests that image adjudication may provide benefits beyond
developing trusted consensus labels, and that exposure to specialist discussions can be an
effective training intervention for medical diagnosis.

4.1 Motivation

In recent years, major advances in machine learning (ML) have enabled a new era of decision
support tools (DST) for critical medical diagnostic tasks. With the increased capabilities of
deep learning models, DSTs are being developed to support much more complex diagnostic
processes with critical influence on patient outcomes. As these technologies mature, they
hold the potential to increase access to healthcare—a demonstrated need for large sections
of the developing world [16]. However, medical specialists sufficiently trained to perform
complex diagnoses are exceptionally rare [16].
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Alongside this growth in deep learning has been a parallel, increased need for large-
scale, labeled medical data to power the training of such models. Because medical data
is often highly regulated, and patient outcome is typically not available in the original
data source, lack of access to ground truth-labeled data has become a key barrier to the
development and evaluation of machine learning systems in medical domains [28]. As a
result, contemporary ML-powered algorithms typically rely on medical practitioners to
manually label data ground truth [28, 63, 138].

The collection of manually-labeled ground truth data from clinicians raises fundamental
human challenges. Because many high-stakes medical decisions are highly nuanced and
can be subject to personal opinion, even clinician assessments vary markedly. To combat
this problem, current labeling approaches enlist a small set of specialized world experts
to “adjudicate” the decision via consensus, as a way of producing a more reliable gold
standard [82]. However, specialists of this caliber are exceptionally rare and expensive. To
make the process more scalable, medical generalists with less training may be recruited
to perform labeling at larger scale [140]. This is an enticing approach given that medical
generalists far outnumber specialists (e.g. optometrists outnumber ophthalmologists 4.9-
fold [5]). Yet, generalists are less experienced: difficult patient cases lead to high inter-
labeler variability and incorrect diagnoses [82], limiting algorithmic validity and introducing
the risk of adverse outcomes for patients’ lives.

In this chapter, we address these challenges by introducing and studying adjudica-
tion feedback for training medical image labelers. Our approach has the potential to
help decrease the dependency on specialists by expanding the set of trained labelers to
less-specialized workers, like generalists. The central underlying idea is to reuse existing
metadata from medical specialists’ adjudication of difficult cases to improve medical gen-
eralists’ comprehension and labeling accuracy. Specifically, we study whether discussion
dialogs, generated as a side product in the costly process of adjudication, can be repur-
posed as training material in medical data labeling workflows. We draw inspiration from
prior research in crowdsourcing, which has demonstrated benefits of labeler training on the
performance of non-experts on the web. Our research applies labeler training to the high-
stakes, challenging domain of medicine, advancing our understanding of how to provide
feedback to this emerging population of medical labelers.

In our controlled experiment, we examined the impact of two different forms of labeler
training feedback: individual performance on difficult cases, and specialist discussions from
adjudication of these cases. We presented ten certified eye care professionals with either
individual performance alone, or individual performance and specialist discussions. Our
results suggest that reading specialist discussions has benefits for generalists’ comprehen-
sion of difficult cases, on their motivation to alter their own labeling approach, and on
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their diagnostic accuracy on a held-out test set. Our main contributions are:

1. We conducted an empirical study to understand the benefit of presenting adjudication
discussions of difficult cases as a form of training feedback in medical data labeling.

2. We present results suggesting that showing adjudication discussions can improve
comprehension of the rationale behind the correct diagnosis while motivating changes
with respect to medical generalists’ labeling approach.

3. We demonstrate that these benefits observed during training also translated into
improved diagnostic accuracy in a held-out test set.

Taken together, this research advances our understanding of the emerging field of med-
ical labeling, and provides new implications for how to scale medical data collection on
high-stakes tasks with difficult-to-obtain ground truth.

4.2 Application Domain

Every year, eye disease causes vision impairments or blindness for millions of people world-
wide. In particular, retinal pathologies such as diabetic retinopathy (DR) rank among
the leading causes of vision loss in many industrialized countries [141]. To combat the
issue, several national governments have established population-wide screening programs
for early disease detection.

One of the central diagnostic artifacts in the assessment of retinal disease is fundus
photography, i.e., photographs taken of the background of a patient’s eye (Figure 4.1).
Digital fundus photos are used both in tele-medical screening [134] and for the development
of deep learning models for AI-assisted retinal assessment [63, 108]. Regardless of the
setting, expertise from certified medical professionals is required to determine the presence
and severity of disease as it appears in the image. While the diagnostic criteria for retinal
assessment are governed by official medical guidelines, image interpretation by medical
experts remains a subjective process [82]. The resulting inter-rater disagreement may not
only arise over the presence of disease, but also over the specific classification of an observed
pathology. In particular, the appearance of diabetic retinopathy may resemble other forms
of retinal disease such as hypertensive retinopathy (HTNR), retinal vein occlusion (RVO)
and retinal artery occlusion (RAO). It is crucial that treatment decisions are formed based
on correct differential diagnoses to avoid adverse outcomes for patients.
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Eye care professionals with varying levels of specialization are concerned with the as-
sessment of retinal disease [5]: (1) optometrists present the largest group of professionals
trained for retinal assessment; as generalists, they typically refer difficult-to-assess cases to
other experts, such as (2) general ophthalmologists, i.e., medical doctors who completed a
multi-year residency program in general eye and vision care; at the highest level of special-
ization, there is a small population of (3) retina specialists worldwide—ophthalmologists
who completed a two-year fellowship program in retinal assessment after completing their
eye care residency.

Our application domain is representative of other medical subspecialties. Not only does
it require the subjective process of image interpretation by human experts; it also involves
different types of easy-to-confuse pathologies (DR, HTNR, RVO, RAO), that require a
deep understanding of symptomatic differences to be reliably differentiated.

4.3 Research Questions & Hypotheses

The case discussions used in our training study are the by-product of an adjudication pro-
cess designed to analyze and resolve diagnostic disagreements among highly trained medical
specialists. As such, the discussion dialogs are expected to reflect types of vocabulary and
reasoning grounded in a deep understanding of a certain medical subspecialty. Yet, the
case discussions were not collected with an educational purpose in mind. As a result, they
may exhibit weaknesses when used for labeler training. For example, the fact that the
dialogs are rooted in disagreements and the potential use of specialist jargon may cause
confusion among less specialized medical professionals. Our study addresses two primary
research questions about how medical generalists perceive (Q1) and act upon (Q2) the
presentation of case-specific adjudication discussions from specialists as a form of medical
diagnosis training.

Q1: How do medical generalists perceive reading of specialist discussions as
a form of labeler training feedback?

Medical assessments can be contentious and it is possible for one expert to take the
perspective of another expert without necessarily agreeing with their final conclusion. Fur-
thermore, even if an expert understands and agrees with the diagnostic reasoning for one
specific case, it is not guaranteed that this will also motivate a change in their own labeling
approach for other cases.

In this study, we examine these three aspects—comprehension, agreement, adaptation—
separately, and hypothesize that reading of specialist discussions as a form of training
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feedback for medical generalists will:

[H1a] Improve comprehension of the rationale behind the correct diagnosis.

[H1b] Increase agreement with the answer key.

[H1c] Motivate adaptations in generalists’ labeling approach.

Q2: How does reading of specialist discussions affect generalists’ diagnostic
reasoning for future patient cases?

Beyond studying generalists’ perception of our training inverventions, it is crucial to
investigate its effect on future medical assessments. We project that the presentation of
case-specific adjudication discussions during labeler training will have benefits for general-
ists’ diagnostic reasoning in a held-out test set.

In particular, we hypothesize that reading of adjudication discussions during training
will:

[H2a] Improve diagnostic accuracy.

[H2b] Increase case-specific diagnostic confidence.

[H2c] Lower perceived case difficulty.

[H2d] Improve overall diagnostic self-efficacy.

4.4 Methods

4.4.1 Experts

Our study involved two distinct groups of experts with varying levels of specialization who
contributed during different stages of our data collection and experimental procedure.

Specialist Adjudicators. Three retina specialists collectively generated the answer
key and adjudication discussions for the medical images used in this study. The adjudica-
tion process implemented the remote, round-based protocol for group discussion described
in Section 3.2. First, each specialist adjudicator labeled each fundus image independently.
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Images with any level of disagreement were then reviewed in a round-robin fashion, by one
specialist at a time.

In each review round, the active specialist adjudicator was encouraged to explain the
rationale behind their diagnostic reasoning within a text-based discussion thread, and to
revise their diagnosis labels if they felt an adjustment was indicated based on insights from
the adjudication discussion. The adjudication process ended for a given image when all
members of the adjudication committee reached a unanimous consensus on all diagnosis
labels for that image (or after a maximum of 15 review rounds, i.e., up to five reviews per
adjudicator).

Note that this adjudication procedure was not designed with the purpose of training
medical generalists in mind, but to create trusted ground truth labels for the validation of
machine learning models. This study explores whether the discussion metadata generated
as a side product in the process can be recycled as an effective tool for training medical
generalists.

Generalists. Ten certified eye care professionals with varying training backgrounds
participated as generalist labelers in the training experiment of our study. These in-
cluded people at a lower level of specialization and those with substantially fewer years of
retina-specific training compared to members of the specialist adjudication committee. We
assigned each of the ten generalist labelers to one of the two types of training feedback,
ensuring that both groups were relatively balanced with respect to training background
and professional experience. There was no overlap between the two groups of specialist
adjudicators and generalist labelers in our study.

4.4.2 Image Sets

Our study used two distinct image sets: a train set used to elicit each generalist’s baseline
labeling performance before receiving training feedback, and a held-out test set used to
measure their labeling performance after training. Our training feedback focused on those
image cases in the train set where labels from generalists differed from the answer key.
Both image sets consisted of 36 images each.

Images were selected from a larger set of 499 cases labeled by our committee of three
retina specialists using the adjudication procedure outlined above. Specialists indepen-
dently agreed on 329 out of the 499 cases, leaving 170 disagreement cases for the round-
based review and discussion process. We performed a qualitative content analysis on these
170 disagreement cases based on the dialogs of their corresponding adjudication discus-
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sions. The objective of our qualitative analysis was to group difficult cases based on the
specific source of disagreement as well as the final adjudicated consensus labels.

Disagreement sources were categorized in a fine-grained and domain-specific manner
(e.g., the dark-red filter needs to be activated in order to detect the development of new
vessels around the optic disk, evidence suggesting diagnosis of proliferative diabetic eye
disease). Based on this fine-grained categorization, we formed pairs of cases sharing the
same source of disagreement and final consensus labels. From each pair, we assigned one
case to the train set and the other to the test set. Train and test set were thus enriched
for difficult cases and each image in the train set matched a separate image in the test set.

In summary, we used 72 distinct cases in our experiment, 36 for training and 36 for
testing. These 72 cases were selected from a larger set of 170 disagreement cases following
the procedure described above. The remaining 98 cases could not be paired based on their
source of disagreement and consensus labels and were therefore not used.

4.4.3 Procedure

Our study was designed to test two different forms of training feedback. The experiment
was structured accordingly as a three-step procedure: a training task involving assessment
of all images in the train set; a feedback phase providing information about cases from
the training task where an generalist’s answer differed from the adjudicated answer key; a
testing task with all images from the held-out test set.

A pre-study questionnaire (Appendix B.1) and a post-study questionnaire (Appendix
B.3) were administered before and after the study respectively. The pre-study qustionnaire
was used to collect information about generalists’ training background and professional ex-
perience. We also elicited generalists’ self-efficacy at detecting each of the four pathologies
both before and after the study. We determined the number of training cases and dis-
cussion points to show based on early piloting of the study and taking into account the
constraints of the image selection procedure described above.

Training Task. Generalists assessed images for overall gradability and for the presence
of four different pathologies: diabetic retinopathy (DR), hypertensive retinopathy (HTNR),
retinal vein occlusion (RVO), and retinal artery occlusion (RAO). Generalists also rated
their own diagnostic confidence and perceived case difficulty, each on 5-point Likert scales.
While there exist alternative ways of measuring confidence, we used a 5-point scale for its
granularity, following practices from prior clinical research [122]. Finally, for each case,
generalists provided an open-ended explanation of the reasoning behind their rationale.
Figure 4.1 shows the task interface including all input prompts for a gradable image.
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Figure 4.1: Task interface for medical image assessment. The medical image shown is an
illustrative example rather than from the real dataset.

Training Feedback. After completing the training task, generalist labelers received
an email notification with a link to an automatically generated feedback document. For
each case labeled during the training task, the feedback document compared the answer
provided by the generalist to the adjudicated answer key. Generalists were asked to review
each case where their answer differed from the answer key.

For each case reviewed, generalists filled out a short questionnaire (Appendix B.2),
rating their level of comprehension for the rationale behind the answer key (5-point Likert
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Figure 4.2: Training feedback interface for medical generalists. The medical image shown
is an illustrative example rather than from the real dataset.

scale), specifying the extent to which they agreed with the answer key (one of three answer
options), and indicating whether they would change anything about their future labeling
approach (including an open-ended explanation of what they would change). The purpose
of the case review questionnaire was twofold. First, the surveys helped ensure that gener-
alists reviewed the feedback carefully. Second, the surveys were used to collect structured
information about generalists’ perception of the feedback provided.

Testing Task. After reviewing the feedback for each of the cases where their answer
differed from the answer key, generalists were assigned the testing task with images from
the held-out test set they had not previously seen. The labeling procedure of the testing
task was identical to that of the training task.

4.4.4 Experimental Conditions

We compared two forms of training feedback for medical generalists to examine the impact
of presenting generalists with specialist adjudication discussions for difficult cases:

• Performance Only: Our baseline condition identified all cases where any of the
diagnosis labels provided by generalists during the training task differed from the
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adjudicated answer key. For each of these cases, our feedback interface presented the
medical image in question along with a list comparing generalist-provided labels with
the adjudicated answer key (Figure 4.2, left and middle).

• Performance & Discussion: In addition to providing individual performance feed-
back about the correctness of labels, our second type of training feedback also pre-
sented generalists with case-specific discussions from our specialist adjudication pro-
cedure. Specialist discussions were presented in a tabular format listing text-based
comments (Figure 4.2, right). Specialist identities were anonymized to avoid poten-
tial biases on the side of generalists.

To support validation of our findings, we make our data, including adjudication discus-
sions, characteristics of the generalist experts, as well as their labeling performance and
survey responses, publicly available as auxiliary material.

4.4.5 Analysis

For Q1, we analyzed responses to our case review surveys to understand how medical gen-
eralists perceive reading of specialist discussions as a form of labeler training feedback. The
case review surveys were collected for all cases where one or more generalist-provided labels
differed from the answer key. The Mann-Whitney U test was employed to compare Likert
type survey responses about perceived level of comprehension of the rationale behind the
correct diagnosis (H1a), agreement with the answer key (H1b), and generalists’ intention
to change their labeling approach in the future (H1c). We also qualitatively analyzed the
open-ended explanations for why (or why not) generalists agreed with the answer key and
what (if anything) they would change about their future labeling approach and why.

For Q2, we leveraged the fact that our two image sets for training and testing were
composed of paired case examples. That is, for each case in the train set, there existed a
separate case in the test set which had caused disagreement among specialist adjudicators
for the same reason as the training example. We refer to these as train example and test
example belonging to the same case-pair.

For our hypotheses about improvements in accuracy (H2a), increased diagnostic confi-
dence (H2b), and lowered perceived case difficulty (H2c), we first computed the respective
score deltas between the test example and the train example for each case-pair and gen-
eralist labeler. Score deltas for correctness were computed separately for each pathology
type (1 indicating improvement, i.e., wrong in train and correct in test; 0 indicating no
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change, i.e., wrong or correct in both train and test; -1 indicating decreased performance,
i.e., correct in train, but wrong in test), and averaged across all generalists per group. We
then compared the resulting average accuracy improvements per case-pair between both
groups using a permutation test (with 9999 bootstrap samples, stratified by case-pair).
Score deltas for confidence and difficulty were computed once for each case-pair and gen-
eralist. We tested for differences between both groups using one-sided Mann Whitney U
tests.

Finally, we hypothesized that exposing generalists to adjudication discussions from spe-
cialists would lead to an improvement in overall diagnostic self-efficacy (H2d). Improve-
ment was measured as the pre-to-post-study difference in diagnostic self-efficacy scores
for each generalist and pathology type. Given the limited number of generalists in each
group, results for this hypothesis are descriptive and should therefore only be used as an
indication.

Open-ended survey responses collected from generalists after reviewing feedback for
each training case were analyzed qualitatively. Line-by-line inductive open coding was
performed by one of the study authors to identify emerging themes and recurring themes
are reported below.

4.5 Results

4.5.1 Quantitative Insights

Q1: How do medical generalists perceive reading of specialist discussions as a
form of labeler training feedback?

Our hypothesis (H1a) that exposing generalist labelers to adjudication discussions
would facilitate a deeper understanding of the rationale behind the correct diagnosis was
confirmed, indicating a very large effect size (U = 4620.50, z = -4.44, p < 0.001, r =
0.99). Generalists strongly agreed that they understood the rationale behind the answer
key and could explain it to one of their colleagues in about half (49.1%; N = 114) of all
cases reviewed along with adjudication discussions, compared to only 17.5% (N = 120) of
cases reviewed without adjudication discussions (Figure 4.3, top). For the question as to
whether generalists agreed with the answer key after reviewing the training feedback, no
significant difference was detected between the two training feedback conditions, leaving
our hypothesis (H1b) unconfirmed (U = 6470.50, z = -1.23, n.s., r = 0.28; Figure 4.3, mid-
dle). Finally, generalists who were provided with adjudication discussions during training
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Figure 4.3: Generalists’ perception of training feedback.
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feedback were significantly more likely to express an intention of changing their labeling
approach in the future than generalists who were presented with just performance feed-
back alone, confirming our hypothesis (H1c) (U = 5853.00, z = -2.20, p < 0.05, r = 0.49;
Figure 4.3, bottom). Generalists indicated that they would adjust their labeling approach
for more than half (55.3%) of the cases reviewed along with adjudication discussions, while
generalists in the group with performance feedback alone denied any future adjustment to
their labeling approach for more than half (59.2%) of the cases reviewed.

Q2: How does reading of specialist discussions affect generalists’ diagnostic
reasoning for future patient cases?
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Figure 4.4: Average change in generalists’ diagnostic accuracy per case-pair in train set
and held-out test set. Error bars indicate 95% confidence intervals.

These benefits of reading adjudication discussions for generalists’ perception during
training feedback in part also translated to improvements in diagnostic accuracy on the
held-out test set (H2a) (Figure 4.4). Generalists exposed to adjudication discussions
during training feedback showed significantly greater accuracy improvements for diagnosing
RAO (µ = 10.6%, CI [2.9%, 18.2%]) than generalists exposed to performance feedback
alone (µ = 1.7%, CI [-6.8%, 10.1%]; p < 0.05; N = 36 case-pairs). No differences were
detected for the other pathology types. Generalists exposed to discussions achieved an
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absolute test accuracy of 93% for RAO detection, up from 83% in training. Accuracies
for DR, HTNR and RVO stayed constant before and after training at 61%, 64% and 83%
respectively.

This benefit of showing adjudication discussions for accuracy improvements in RAO
diagnosis was accompanied by similar improvements in self-efficacy (H2d): while none
of the generalists exposed to performance-only feedback reported any improvements in
self-efficacy for RAO diagnosis, the majority of generalists presented with adjudication
discussions did (one generalist with one step of improvement, a second generalist with two
steps of improvement, and a third generalist with four steps of improvement on the 5-point
Likert scale for self-efficacy; Figure 4.5).

Perf. & Discussion

Performance Only

5 4 3 2 1 0 1 2 3 4 5
# Experts

4 steps
down

3 steps
down

2 steps
down

1 step
down

No
change

1 step
up

2 steps
up

3 steps
up

4 steps
up

Figure 4.5: Improvement in generalists’ self-efficacy score for diagnosis of retinal artery
occlusion (RAO) after training feedback.

Finally, we hypothesized that the presentation of adjudication discussions would lead
to increased case-specific diagnostic confidence (H2b) and lowered levels of perceived case
difficulty (H2c) in the testing task (Figure 4.6). Both hypotheses were rejected. Indeed,
we observed the opposite effect: Reading adjudication discussions during training feedback
was associated with greater reductions in diagnostic confidence (U = 18555.00, z = -2.74,
p < 0.01, r = 0.61) and greater increases in perceived case difficulty (U = 14521.00, z =
-2.08, p < 0.05, r = 0.47) compared to training with performance feedback alone.
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Figure 4.6: Change in generalists’ diagnostic confidence and perceived case difficulty per
case-pair in train set and held-out test set.

4.5.2 Qualitative Insights

In addition to quantitative measures of diagnosis performance and attitudinal constructs
(such as self-reported comprehension), generalists also provided qualitative feedback about
their experience reviewing training cases with and without adjudication discussions.

Several themes emerged from this qualitative feedback. We describe some of the more
salient themes below, with representative quotes from generalists.
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Expressions of confusion and uncertainty when comparing their answers to
the answer key: Without specialist discussions, the reasons why generalists were incorrect
were often opaque:

• “I think there could be subtle VB [venous beading]... is that the rationale for severe?
I think if the resolution was better, I might be able to clearly see IRMA [intraretinal
microvascular abnormalities] temp to the fovea... is that the rationale for severe? I
wasn’t 100% on these two things, thus the moderate grade.”

• “would like clarification in the image about the features that make this severe NPDR
[non-proliferative diabetic retinopathy] and not a CRVO [central retinal vein occlu-
sion, a potential alternate diagnosis].”

By contrast, when specialist discussions were present, generalists often cited specific
details of their discussions in explaining their understanding of why they were incorrect:

• “blurry view but i can go along with the heme noted by other graders”

• “I could see the PDR [proliferative diabetic retinopathy] that they were discussing.
THere fore [sic] I could agree with them for DR [diabetic retinopathy].”

Acknowledgement of missed features: In some cases, generalists originally failed
to notice a feature; but when directed to the relevant part of the image by specialist
discussion, acknowledged their miss:

• “Agree with PRP scars, should have been PDR. ... will pay closer attention to laser
scars”

• “Wasn’t able to detect small/early IRMA ...” [When asked what they would change
about grading behavior, the response was] “Try to detect IRMA better”

Calibrating cutoffs to match other clinicians: In many cases, generalists recog-
nized that a pathology was potentially present, but ambiguous. They explicitly called out
the potential for disagreement due to subjective differences in the cutoff for a finding being
clinically significant. This theme emerged particularly in feedback around hypertensive
retinopathy (referred to as HTN in reader comments) and image gradability. In each case,
these subjective differences could lead to real changes in clinical outcomes, discussed below.

Much feedback was given around distinguishing hypertensive retinopathy versus dia-
betic retinopathy. Sample comments:

101



• “AV nicking is present and per guidelines that would be considered mild and thus a
yes grade for HTN. I do agree that it is mild and I was more generous with grading
HTN as G2 mentioned in adjudication ... [I plan on] being more conservative on
HTN grading.”

• “Overall, tended to undercall HTN in patients with clear DM”

• “I don’t think the AV nicking is as prominent as they [adjudicators] say, but I can see
why they might have thought that ... I will look out closer for AV nicking”

In addition to hypertensive retinopathy, generalists in our study also expressed uncer-
tainty around the threshold for considering a low-quality image gradable:

• “Image is blurry making my grade more of a guess, so I marked ungradable ... [I plan
to] mark referable pathology even if image is blurry and there is some doubt”

• “As adjuncter G2 noted, image resolution makes the grading of MAs [microaneurysms]
more of a guess; I didn’t mark it as ungradable since unlikely moderate or worse DR
present.”

Again, this distinction is subjective, yet has real-world implications: Many screening
programs will refer patients to specialists if their image is ungradable. In both of these
cases, the subjective differences reflect a common pattern observed in other cases of vari-
ability among eye doctors. Prior work by Kalpathy-Cramer et al. [77] demonstrated that
disagreements among doctors could be explained by differences in transition points between
different severity levels. Doctors tended to order cases by severity in a consistent manner;
but varied in the point at which a case was “severe enough”. This suggests that feedback of
the sort provided here can substantially improve concordance among doctors, by enabling
them to calibrate to the same expert level (i.e., in the case of our study, to a specialist-
provided answer key). A similar phenomenon was reported in a national screening program
for breast cancer [90].

4.6 Discussion

In this chapter, we introduced a novel perspective on the problem of calibrating medi-
cal professionals for accurate assessment of difficult cases in medical image labeling. We
demonstrated empirically that specialist discussions from adjudication of difficult cases can
be successfully used as training material for generalist labelers.
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Figure 4.7: Example adjudication discussions with mixed ratings (cases A and B) and
consistently high ratings (cases C and D) for answer key comprehension.

4.6.1 Impact on Comprehension and Accuracy

Our experimental results suggest that exposure to specialist discussions during training
feedback improves generalists’ comprehension of the rationale behind the correct diagnosis
(H1a), and makes a future adjustment of their labeling approach more likely (H1c). We
also demonstrated that these benefits observed during training translate into greater im-
provements in diagnostic accuracy in a held-out test set (H2a) and diagnostic self-efficacy
(H2d) for one of the four retinal pathologies included in the study. While the overall effect
on answer key comprehension was strongly positive, some adjudication discussions were
perceived as more helpful than others. Figure 4.7 shows four examples of adjudication
discussions: two discussions that received mixed ratings from generalists for answer key
comprehension (cases A and B), and two with consistently high ratings among generalists
(cases C and D). Case A is an example of a discussion characterized by vague language and
phrases of uncertainty on the side of specialists, whereas the discussion for case B consists
of a single comment only. While a full semantic analysis of our adjudication discussions
is beyond the scope of our study, both language use and overall length of a discussion
may have affected generalists’ perception its usefulness. Future research may explore ways
to motivate specialists a priori (i.e., before or during adjudication) to produce discussion
points well suited for training purposes, and evaluate design parameters such as the number
of cases and discussion points to show during training.
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4.6.2 Impact on Confidence and Perceived Difficulty

We also hypothesized that presentation of specialist discussions during training feedback
would increase generalists’ labeling confidence (H2b) and decrease their perceived case
difficulty (H2c) in the testing task, compared to showing performance feedback alone.
Neither hypothesis could be confirmed. In fact, we observed the opposite effect: generalists
who had seen adjudication discussions for difficult cases, scored lower on labeling confidence
and higher on perceived difficulty on similar case types in the testing task.

One possible explanation for this unexpected observation could be what has been coined
the Dunning-Kruger effect [45] or meta-ignorance: the phenomenon that performance and
confidence are often inversely correlated in intellectual tasks. This effect has been primarily
explained with so-called unknown unknowns on the side of poor performers, i.e., their
relative lack of awareness of deficiencies in their own expertise.

Another possible explanation may be that the performance-only training condition
did not reveal any information about the difficulty of a case. In other words, it did not
transmit any information that would help generalists appreciate how hard the training
cases were, whereas the training condition including adjudication discussions made the
notion of difficult and contentious cases immediately transparent to generalists.

4.6.3 Learning from Discussions

Our work presented in this chapter contributes to the existing body of literature on
discussion-based learning. The benefits learners can draw from active participation in
group discussions have been established in prior educational and psychological literature.
These works have studied differences between learning from online versus face-to-face dis-
cussions.

In medical education specifically, the concept of discussion-based learning has been
studied under the names of problem-based learning (PBL) and case-based learning (CBL)
[40, 137]. Both PBL and CBL differ from lecture-based learning in that they engage medical
students in small discussion groups for the purpose of collective clinical reasoning. PBL
is a more open-ended form of discussion-based learning while CBL imposes more guidance
and structure on the discussion process.

To our knowledge, there has been little prior research in repurposing expert case dis-
cussions for training purposes. Previous work [68] examined one potential application for
screening mammography using a pre-existing public annotated image set, but cited a range
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of challenges, including data curation and quality issues. The authors noted that in prac-
tice, separating the production and use of data for different purposes was difficult to do
cleanly. We believe our work has managed to avoid some of the challenges demonstrated
in that work through careful matching of the adjudication and training tasks: generalists
were making the same clinical judgments as specialist adjudicators, oriented around the
same inputs (only image data, no metadata); both groups had previously been through
a certification process for the task; our experimental design included some data curation;
and the adjudication format intrinsically elicited more detailed justifications among experts
that would not be elicited in a screening context.

Thus, our results extend the existing body of educational literature insofar as they
demonstrate the benefits of exposing individuals to consumption of case discussions, as
opposed to engaging groups in active discussions. This approach is inherently more scalable
and flexible in nature than group-based learning.

4.6.4 Potential Clinical Impact

The contributions described here are framed in the context of training machine learning
models: Generalist graders are trained to label images used for training a model, and our
interventions aim to bring their performance closer to that of specialists. The adjudication
discussions used for training were also collected as part of obtaining a test data set for an
ML model. These improvements should enable higher-quality ML models, by improving
the quality of training data collected by generalist labelers.

Our training intervention depends on the availability of specialist labels and discus-
sions. Yet, as generalists’ labeling accuracy increases through training, the need for label
redundancy may decrease [89], enabling more efficient labeling strategies. Our work opens
up questions about how best to distribute work between specialists and generalists in the
absence of data ground truth. For example, specialists could be recruited to label a small,
contained subset of data for training generalists, empowering generalists to take on the
rest.

Our results may also translate to clinical practice without relying on ML model develop-
ment. The labeling workflow we use here is similar to that used in telemedicine enterprises,
including screening for eye disease [34, 24]. Likewise, the adjudication discussions we col-
lected may mirror arbitration discussions used in some screening programs [90]. Thus,
there may be potential to use discussions generated for screening purposes in training non-
experts. Future work in this direction might aim at mapping new cases, with unknown
labels, to similar cases in the adjudicated set, allowing clinicians to view discussions around
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similar cases in the context of a case being screened. In this way, training interventions like
the one we demonstrate may expand the reach of screening programs without necessarily
requiring ML systems.

4.6.5 Limitations

Our study has several limitations. First, our experiment was conducted with ten medical
generalist labelers and three specialist adjudicators. While future work may aim to repro-
duce our findings with larger participant samples, samples of this size are not uncommon in
studies of medical experts like ours where recruitment is a challenge. Given the sample size,
we ensured to balance the level of experience of generalists between our two groups, and
triangulated our findings with qualitative analysis, to enrich and provide further support
for our quantitative findings.

Second, our study is situated in the medical subspeciality of image-based diagnosis
in ophthalmology. While the general approach of collecting and presenting adjudication
discussions can be easily applied to outside domains (medical or non-medical), caution
is warranted in generalizing our findings to other disciplines. That said, prior work has
demonstrated the prevalence of expert disagreement [15] and the effectiveness of discussion-
based learning [38] across various medical domains, suggesting that our results on passive
consumption of specialist discussions may generalize to other subspecialties as well. We
encourage future work to validate our approach in other application scenarios.

Third, the remote nature of our study and the tight schedules of our expert participants
did not permit precise control over the timing of the individual steps in the procedure. The
overall study duration was about one week, but we did not account for potential differences
in time experts spent between training and feedback, and between feedback testing phase.
Our study also did not include a measure of long-term improvement.

Finally, the cost effectiveness of our proposed technique depends on a pre-existing elec-
tronic framework for asynchronous adjudication. While most tele-medical grading centers
do not yet use such kind of procedure, there is a growing body of research in HCI on
designing and developing methods for online group discussion among crowd workers, that
could be leveraged towards a broader applicability of our approach [127].
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4.7 Conclusion

In this chapter, we provided a novel perspective on the challenge of improving compre-
hension and diagnostic accuracy in medical data labeling. We demonstrated that existing
specialist discussions from adjudication of difficult cases can be reused as training material
for generalist labelers—without introducing additional cost to the labeling process. Our
results suggest that the presentation of specialist adjudication discussions can improve gen-
eralists’ comprehension of the rationale behind the correct diagnosis, and make a future
adjustment of their labeling approach more likely. Furthermore, we showed that these
benefits observed during training also translated into significantly greater improvements
in diagnostic accuracy on a held-out test set for one out of four pathologies. The findings
presented in this chapter have important implications beyond medical diagnosis training
alone, highlighting a practical method applicable to expert labeler training in high-stakes
data labeling broadly.

While this chapter has demonstrated how deliberation data can be put into use to
improve human comprehension of difficult cases, the next chapter will shed light on the
question of how deliberation data can be leveraged to help AI assistants highlight and
explain instances of ambiguity to human end users.
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Chapter 5

Deliberation Data for Ambiguity-aware
AI

AI assistants for clinical decision-making show increasing promise in medicine. However,
medical assessments can be contentious, leading to expert disagreement. This raises the
question of how AI assistants should be designed to handle the classification of ambiguous
cases. Our study compared two AI assistants that provide classification labels for medical
time series data along with quantitative uncertainty estimates: conventional vs. ambiguity-
aware. We simulated our ambiguity-aware AI based on real-world expert discussions to
highlight cases likely to lead to expert disagreement, and to present arguments for con-
flicting classification choices. Our results demonstrate that ambiguity-aware AI can alter
expert workflows by significantly increasing the proportion of contentious cases reviewed.
We also found that the relevance of AI-provided arguments (selected from guidelines either
randomly or by experts) affected experts’ accuracy at revising AI-suggested labels. The
work we present in this chapter contributes a novel perspective on the design of AI for
contentious clinical assessments.

5.1 Motivation

AI systems show increasing promise for numerous clinical applications. Recent advances in
deep learning have spawned AI systems with expert-level performance in several domains
of medical data classification (e.g., [115, 116, 138]). However, contentious patient cases
leading to expert disagreement are prevalent in medicine [82]. Given the gravity of correct
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clinical assessments, an important question in the design of AI for medical data analysis
is how the system should communicate uncertainty about the classification of ambiguous
cases.

State-of-the-art AI systems are capable of providing quantitative uncertainty estimates
(e.g., 70% confident that a patient case is abnormal). These estimates are typically de-
rived from posterior probability distributions over the possible classification labels. How-
ever, prior work has shown that these estimates do not always reliably predict expert
disagreement [114]. Furthermore, numeric representations of uncertainty alone may not
be sufficient for human experts to make sense of the underlying reasons behind the AI’s
uncertainty.

Prior work in explainable AI (XAI) has established the importance of providing reasons
for AI-suggested labels to foster model transparency and user trust [3, 113, 147]. Building
on this body of work, we argue that explanations for label ambiguity can be leveraged
by AI assistants to support medical reasoning. We detail a within-subject study with
twelve expert participants who interacted with both a conventional and an ambiguity-
aware AI assistant, reviewing a total of 4,514 AI-suggested labels, out of which 22% were
contentious. Both assistants used quantitative representations to communicate uncertainty,
but our ambiguity-aware AI also highlighted contentious cases and explained why they
were ambiguous by providing human-interpretable arguments for the conflicting labels.
While this feature was simulated using cases and arguments selected from real-world expert
discussions, participants were unaware of its simulated nature. Our findings suggest that
explaining ambiguity can benefit AI-assisted medical reasoning. Our main contributions
are:

1. We present a novel approach for communicating ambiguity in AI-assisted medical
reasoning, and provide evidence that ambiguity-aware AI can alter experts’ workflows
by effectively re-directing their attention and review activity to contentious cases.

2. We demonstrate that while explaining ambiguity can contribute to experts’ labeling
accuracy, its impact heavily depends on the relevance of the arguments provided (se-
lected from guidelines either randomly or by experts). Specifically, if the arguments
are not sufficiently relevant, experts’ accuracy can suffer to the point below that of
random guessing (i.e., less than 50% accurate).

3. We provide design considerations for communicating uncertainty in AI-assisted med-
ical reasoning, laying a foundation for future implementations of AI systems better
capable of conveying information about contentious cases.
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In the following sections, we introduce the design of our AI assistants, followed by
our research questions, hypotheses and methods. We then detail our quantitative and
qualitative findings, and conclude with a discussion of design considerations.

Figure 5.1: Interface for conventional and ambiguity-aware AI assistants in medical data
analysis.

5.2 Ambiguity-aware AI Assistance

In this study, we explore how human-AI collaboration is affected by an AI system’s ability
to not only flag if specific cases are on the classification boundary between two or more
categories, but also explain why a given case may be ambiguous. Specifically, we compare
a simulated AI system that provides experts with arguments for conflicting classification
choices for a contentious case to a conventional AI assistant that only provides numeric
uncertainty estimates. Our ambiguity-aware AI system uses a Wizard of Oz approach.
That is, justifications for conflicting classification labels were hand-authored by human
experts using the round-based discussion procedure described in Section 3.3. To compare
the ambiguity-aware AI assistant to a conventional AI assistant, we led participants to
believe that the justifications presented to them were generated by an AI while, in fact,
they were manually selected by human experts.

Figure 5.1 illustrates how the two AI assistants—conventional AI vs ambiguity-aware
AI—were integrated into an existing expert interface for classification of medical time series

110



data. Both AIs suggested classification labels based on a state-of-the-art deep learning
algorithm for sleep stage classification [138], which has an average accuracy of 87% (when
judged against consensus labels from an expert panel). Both AI assistants provided a
sequence overview of all suggested labels (hypnogram), in which each label corresponded
to a 30-second segment in the timeline of a multi-hour patient recording. Experts could
open a case by selecting the corresponding time window in the overview, or by navigating
through the recording chronologically.

The key difference between the two AI assistants was in how they communicated uncer-
tainty to expert end users. Typical output from machine learning algorithms includes not
only the predicted classification label, but also a likelihood distribution over all possible
classification choices. Both of our AI assistants were designed to communicate this type of
quantitative uncertainty estimate in two ways (Figure 5.1, blue labels 3 and 4): (1) in the
timeline overview, quantitative uncertainty was visualized by mapping the confidence level
(in percentage) for each possible classification label to a transparency value used to display
the label option in the timeline—low confidence classification labels were more transpar-
ent, and high confidence classification labels were more opaque; (2) in the case detail view,
quantitative uncertainty was displayed in a tabular format, listing all possible classification
choices ordered from most to least likely along with their percentage confidence levels.

While our conventional AI employed this baseline representation of uncertainty, our
ambiguity-aware AI also communicated qualitative uncertainty based on arguments gath-
ered from real-world expert discussions (Figure 5.1, orange labels 5 and 6). Specifically,
the timeline overview was augmented with an additional layer highlighting contentious
cases that were likely to spur expert disagreement. Note that these suggestions did not
dictate the order in which cases were presented to experts for review: experts were still
free to decide how to navigate the recording timeline and what cases to review in which
order. In addition, the case detail view for contentious cases was extended with an ambigu-
ity explanation, listing human-interpretable arguments for conflicting classification choices.
These arguments corresponded to discrete scoring rules from the official guidelines for sleep
stage classification, and were based on data from real-world expert discussions as described
above.

5.3 Research Questions and Hypotheses

Our work addresses two primary research questions about the impact of ambiguity-aware
AI on the behaviour (Q1) and perception (Q2) of medical experts.
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Q1: How does ambiguity-aware AI affect medical assessments?

Expert time is a limited and expensive resource in clinical settings and should therefore
be allocated efficiently. We take the stance that while medical experts should make their
clinical assessments with care, AI assistants can help prioritize which cases require their
attention the most. Our ambiguity-aware AI is designed to redirect experts’ attention
towards cases likely to be contentious, and to provide arguments explaining the underlying
classification ambiguity.

Our projection is that ambiguity explanations can inform clinical judgement and thus
increase experts’ classification accuracy without reducing the number of cases reviewed.
Specifically, we envision that the relevance of ambiguity explanations is crucial for success-
fully informing expert judgement. We hypothesize that:

[H1a] The proportion of contentious cases reviewed by experts will be higher with
an ambiguity-aware AI.

[H1b] Expert efficiency in terms of the overall number of cases reviewed will not
suffer with an ambiguity-aware AI.

[H1c] Expert accuracy in terms of the overall portion of cases reviewed and labeled
correctly will be higher with an ambiguity-aware AI.

[H1d] The accuracy of classification labels experts assigned to contentious cases will
depend on the relevance of the provided ambiguity explanations.

Q2: How is ambiguity-aware AI perceived by medical experts?

HCI research has established that poor user perception can be a barrier to adoption
of technology regardless of performance. It is therefore important to investigate expert
perception, beyond the primary outcome of reliability in AI-assisted clinical assessments.
We hypothesize that:

[H2a] Experts will have a preference for an ambiguity-aware AI.

[H2b] Experts will consider an ambiguity-aware AI more trustworthy.

[H2c] Highlighting and explaining contentious cases will not increase experts’ cog-
nitive load.

[H2d] Experts with higher ambiguity tolerance (as a personality trait) will have a
stronger preference for the ambiguity-aware AI.
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5.4 Methods

Here we describe the details of our controlled experiment including the task, data set, study
procedure, and statistical analysis. In our study, we simulate a scenario in which a medical
AI assistant first analyzes a patient case to suggest classification labels of a certain kind.
A trained medical expert then reviews and corrects as many AI-suggested classifications
as possible within a given time window. This setting represents a future scenario where
(imperfect) AI systems are deployed in time-sensitive clinical workflows while requiring
oversight from human experts.

5.4.1 Task

We conducted our study in the field of biomedical time-series classification, an expert do-
main with typically high rates of inter-rater disagreement. In particular, we compared our
conventional and ambiguity-aware AIs in the context of assisting trained medical profes-
sionals in the task of sleep stage classification (see description in Section 3.3.2). Figure 5.1
shows the expert classification interface used in our study.

5.4.2 Data

We selected two separate patient records (i.e, polysomnographic sleep studies) with similar
characteristics (Table 5.1) to examine the two AI assistants under comparable conditions
while avoiding learning effects on the side of experts.

Note that patient records where selected such that the AI accuracy measured against
just the contentious cases was close to 50% for both patients, meaning that correction by
human experts was only required for about half of those cases. In addition to counter-
balancing the order in which conventional and ambiguity-aware AI were presented to ex-
perts, the assignment of AI assistant to patient record was also fully counter-balanced.
A separate third patient record was randomly selected for a practice phase preceding the
main task.

Adjudication data. We source the data required to simulate our ambiguity-aware AI
(i.e., which cases have high expert disagreement, and what are the arguments for different
classification labels) from our previous study reported in Section 3.3. This prior work intro-
duced a round-based procedure to adjudicate clinical classification disagreements among
groups of experts using a highly structured argument format. In particular, arguments
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Table 5.1: Characteristics of patient records used by the AI assistants.

Patient A Patient B

Pathology Dementia Dementia
Sex Female Male
Age Group 70-74 years 75-79 years

Recording Duration 6h 52 min 30 sec 6h 18 min 30 sec
# Cases Total 825 757
% Contentious Cases Total 18% 18%
% Contentious Cases out of all Correct AI Suggestions 12% 11%
% Contentious Cases out of all Incorrect AI Suggestions 48% 51%

AI Accuracy Overall 84% 83%
AI Accuracy on Contentious Cases 55% 51%

were collected in the form of discrete classification rules taken from the official medical
guidelines (e.g., In patients who generate alpha rhythm, score stage N1 if the alpha rhythm
is extenuated and replaced by low-amplitude, mixed frequency activity for more than half of
the epoch).

This data set was used to simulate output for our ambiguity-aware AI: cases that had
caused expert disagreement and produced conflicting arguments in this data set were high-
lighted as contentious cases by our ambiguity-aware AI. Arguments put forward during
the real-world adjudication process were presented for these cases to explain the ambigu-
ity around conflicting classification labels. For Q1, we sought to examine the impact of
argument relevance on clinical decision making for contentious cases (H1d). To this end,
we added noise to ambiguity explanations by replacing a random subset (20%) of argu-
ments with scoring rules randomly selected from the same medical guidelines. Otherwise,
justifications were displayed as selected by experts during prior discussions, without fur-
ther manipulation. Our randomization procedure was constrained to ensure that randomly
selected arguments were never mentioned in the real-world expert discussion for a given
case, and that all arguments presented were still pertinent to their classification choice: for
example, an argument for REM sleep could only be replaced with another argument for
REM sleep.

Finally, classification accuracy (of either AI or human experts) was measured against
the consensus decision of our round-based adjudication procedure involving a panel of three
independent experts for each classification decision.
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5.4.3 Procedure

We recruited twelve sleep technologists as expert participants for our study. Our experts
were recruited with the help of an allied sleep technologist from a local research clinic who
posted our recruitment letter to a domain-specific Facebook group with about 4700 sleep
technologists from different countries. Each expert was exposed to both AI assistants in a
counter-balanced manner.

Consent procedure and pre-study questionnaire. After providing informed con-
sent for participation in the study, experts reported information about their demographics
(age, gender, geographic location) and professional background (professional or academic
training, number of years of professional experience). We employed the Intolerance of Am-
biguity scale, a psychometric survey instrument developed by Budner [20], to learn about
each expert’s general level of tolerance for ambiguity in decision making. We included the
phenomenological denial sub-scale consisting of four statements:

• An expert who doesn’t come up with a definite answer probably doesn’t know too much.

• There is really no such things as a problem that can’t be solved.

• People who insist upon a yes or no answer just don’t know how complicated things
really are.

• Many of our most important decisions are based on insufficient information.

Experts rated their level of agreement for each of the four statements on a 7-point Likert
scale. Appendix C.1 provides a complete list of questions and answer options from the
pre-study questionnaire.

Practice phase. Next, experts familiarized themselves for about 5 minutes with our
waveform classification user interface and with the basic interface components common to
both AI assistants.

Tasks. Experts performed the same main task twice, once with the ambiguity-aware AI
assistant and once with the conventional variant, in a counter-balanced order. In each task,
experts were asked to review the waveform of a particular patient record within a limited
time window of 15 minutes. The patient record was fully pre-classified by the AI assistant
and experts were asked to correct as many of the AI-suggested labels as possible within
the given time limit. Experts could revise AI-suggested labels by selecting a different sleep
stage label in the classification UI (Figure 5.1, gray labels 1 and 2). After each of the two
tasks, experts filled out a brief feedback questionnaire (Appendix C.2) probing for their
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perception of each AI assistant. The survey included scales to measure perceived trust
towards the AI assistant [73], cognitive load (NASA-TLX; [66]) during the task, perceived
diagnostic utility and mental support provided by the AI assistant, and whether experts
thought they would use the AI in practice.

Post-study questionnaire. After completing the tasks, experts compared both AI
assistants with respect to perceived reliability, trustworthiness, capability and provided an
overall preference. Experts rated each of these four items on a 7-point Likert scale ranging
from 1 (totally version A), 2 (much more version A than B), 3 (slightly more version A
than B), 4 (neutral), etc. to 7 (totally version B). Appendix C.3 provides a complete list
of questions and answer options from the post-study questionnaire. After completing the
post-study questionnaire, participants received a debrief statement informing them about
the simulated nature of the ambiguity-aware AI in this study. Experts were compensated
with CA$50 via online gift cards (or the equivalent amount in their preferred currency) for
participation in the study, with an average study duration of one hour.

5.4.4 Analysis

For Q1, we investigated the impact of our ambiguity-aware AI on experts’ behaviour in
reviewing AI-suggested classification labels. We used dependent t-tests to compare both
AI assistants with respect to the following outcome measures per expert: the proportion
of contentious cases out of all reviewed cases (H1a), the number of cases reviewed given
a fixed time window (H1b), and the accuracy rate of expert-provided labels (H1c). For
our secondary analysis on the relevance of arguments for contentious cases (H1d), we used
Pearson’s chi-squared test of independence to compare experts’ average accuracy at revising
AI-suggested labels when presented with either expert-selected arguments only vs. cases
with one or more randomly selected arguments.

For Q2, we compared experts’ perception of both AI assistants. A possible trend in
overall preference (H2a) for either of the AI assistants was examined using a one-sample
Wilcoxon signed rank test. Self-reported scores for perceived trust (H2b) and cognitive
workload (H2c) were compared between both AI assistants using Wilcoxon signed-rank
tests. Finally, we used a Pearson’s chi-squared test of independence to test whether experts’
overall tendency of ambiguity tolerance (ambiguity-tolerant vs. intolerant) was associated
with their overall preference for either AI assistant (preference for ambiguity-aware AI vs.
conventional AI; H2d).

Finally, line-by-line inductive open coding was performed by one of the study authors
to extract emerging themes from open-ended survey responses submitted by experts after
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Figure 5.2: Proportion of contentious cases
out of all cases reviewed. Ambiguity-aware
AI guided experts’ attention to contentious
cases. Connecting lines correspond to indi-
vidual experts.
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Figure 5.3: Experts’ correction rate for
cases with ambiguity explanation. The rele-
vance of ambiguity explanations affects clin-
ical assessments of contentious cases. Error
bars present 95% confidence intervals.

interacting with each AI. Experts were asked to reflect on how they decided which cases to
review and why, what information they used to make these decisions, and how information
about the AI’s uncertainty affected their decision making. Recurring themes are reported
below.

5.5 Results

5.5.1 Expert Participants

Based on the pre-study questionnaire, our expert participants were located in the United
States (6), Canada (4), the European Union (1) and one other unspecified location (1).
Eleven of our expert participants reported having at least ten years of experience working
as sleep technologists, and one participant reported having five to ten years of experience.
Out of the twelve experts, five self-reported as female, six as male, and one participant did
not specify their gender. The distribution over age groups was: 26-35 (1), 36-45 (7), 46-55
(1), 56+ (2), with one participant who did not specify their age group.
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5.5.2 Quantitative Insights

Q1: How does ambiguity-aware AI affect medical assessments?

We hypothesized that the ambiguity-aware AI assistant would alter experts’ workflow
and increase the number of contentious cases they review in the patient recording (H1a).
On average, the proportion of contentious cases out of all cases reviewed was significantly
greater with the ambiguity-aware AI (M=.38, SE=.05) than with the conventional AI
(M=.23, SE=.03), confirming our hypothesis (Figure 5.2). This difference was significant
t(11)=-2.82, p < .05, indicating a large effect size r=.48.

We also hypothesized that using the ambiguity-aware AI would not negatively affect the
number of cases reviewed by experts (H1b). Our results show that there was no significant
difference in the number of cases experts reviewed with the conventional AI (M=197.25,
SE=47.60) compared with the ambiguity-aware AI (M=178.92, SE=57.02), t(11)=.50,
p=.63. This result provides support for our hypothesis that experts’ efficiency at reviewing
AI-suggested labels was not negatively affected by being exposed to ambiguity explanations
for contentious cases. Our projection that experts would achieve a higher overall labeling
accuracy when assisted by the ambiguity-aware AI compared to the conventional one (H1c)
could not be confirmed, t(11)=1.00, p=.34, r=.53.

Finally, we examined the potential impact of the relevance of ambiguity explanations
for contentious cases on the likelihood that an expert would revise an AI-suggested label
correctly (H1d). We observed a significant association between the relevance of arguments
(whether they contain randomly selected arguments or not) and experts’ accuracy rate at
revising AI suggestions χ2=16.83, p < .001. In other words, the chance of a label getting
revised correctly by an expert was significantly higher if the arguments provided were
selected from guidelines via adjudication discussions (i.e., were relevant) than if they were
selected from the guidelines randomly (Figure 5.3). The odds of a label getting revised
correctly by an expert were 4.48 times higher (odds ratio) if the arguments provided were
selected from guidelines by experts than if they were selected from the guidelines randomly.

Q2: How is ambiguity-aware AI perceived by medical experts?

For Q2, we explored experts’ perception of both AI assistants. Results for our hypoth-
esis that experts would have an overall preference for the ambiguity-aware AI (H2a) were
mixed and were not statistically significant (p=.88). Except for two experts who did not
have a preference for either AI, preferences were polarized. Out of the ten participants
who expressed a preference, half preferred the ambiguity-aware AI assistant and the other
half preferred the conventional AI (Figure 5.4).
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Which AI did you prefer overall?

Which AI was more capable?

Which AI was more reliable?
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Conventional
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Neutral Slightly
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Much more Totally
Ambiguity−
aware AI

Figure 5.4: Experts’ preferences between both AI assistants.

While no significant differences could be detected between both AIs regarding perceived
overall trust (p=.47), the ambiguity-aware variant was considered to have significantly
greater integrity (p<.05), and we observed a potential, yet statistically insignificant trend
suggesting that experts may have had higher confidence in the ambiguity-aware AI than
in the conventional one (p=.09; Figure 5.5). These results provide partial support for our
hypothesis H2b.

Furthermore, there were no detectably significant differences between the cognitive load
scores of the two AI assistants on the NASA-TLX scale (p=.77), providing support for our
hypothesis about their comparable mental demand (H2c).

Finally, while experts varied in their level of ambiguity tolerance (M=17.25, SE=1.17),
ranging from 10 to 26 on a scale from 4 to 28, no significant effect of ambiguity tolerance
on expert perception could be detected (p=.62), leading us to reject hypothesis H2d.

5.5.3 Qualitative Insights

Our qualitative analysis of participant responses to open-ended survey questions yielded
insights on how our ambiguity-aware AI assistant can affect experts’ workflows and their
mental model of AI assistants.

Altering expert workflows. Time constraints play an important role in real-world
clinical workflows [143]. Case triaging—determining the priority for which cases receive an
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Figure 5.5: Expert ratings for perceived integrity and confidence from trust in automation
scale.

expert’s attention first—is a common practice in medicine. Similarly, our ambiguity-aware
AI assistant triages based on ambiguity by prioritizing contentious patient cases that need
more attention from the expert.

Our qualitative findings suggest that some experts found the ambiguity-aware AI system
to be more helpful in reducing cognitive load compared to the conventional assistant:
“Assistant B [ambiguity-aware] was more helpful in making me think as it listed the scoring
rules that could apply to the epoch."

Our analysis further highlights the effectiveness of the ambiguity-aware AI assistant in
redirecting experts’ attention to contentious cases. That is, six out of twelve experts in
our study explicitly mentioned that their workflow differed between the two AI assistants,
such that they prioritized checking contentious cases using the ambiguity-aware AI: “I first
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chose the areas that the AI had marked as ambiguous and then tried to check sleep onset,
REM onset, and stage 3 as time allowed."

One major criticism to the traditional approach of representing AI uncertainty with
numeric confidence values is that it is not sufficient for experts to make sense of the
underlying reasons behind the AI’s uncertainty. Our qualitative evidence suggests that
in choosing between numeric representations of AI uncertainty and human-interpretable
ambiguity arguments experts found the latter to be more effective in guiding their attention:
“When I saw that the [conventional] AI had lower than an 80% confidence in the scored
stage I tried to double check that epoch... I mostly used the areas marked as ambiguous [by
the ambiguity-aware AI] as opposed to the percentage of certainty."

In our study, we imposed time limits to understand how ambiguity-aware AI would help
guide expert attention under the time constraints of real-world workflows. This temporal
constraint was received differently by different expert participants. While some experts
perceived the timers to be “very frustrating", others found them useful: “The time limit
was great as my first instinct was to review the entire study and see if I was in agreement".

Mental models of AI assistants. Experts have preconceived mental models about
the level of ambiguity in different cases. For instance, experts may draw from their prior
experience of disagreements with other colleagues and have intuitions about what type
of medical assessment is the most difficult to agree upon in their specific domain (e.g.
certain classifications and stage transitions). It is therefore possible that these intuitions
are projected onto the AI assistant to anticipate where the AI would likely make mistakes:
“I had to think where do we, as scoring techs, usually have the strongest disagreement and
check those epochs."

Beyond preconceptions, we also observed that experts developed their own mentals
models about the two types of AI systems: “AI 1 [ambiguity-aware] was rather impressive
actually. Although in study 2, the persistent arousals may have interfered with accuracy
of AI 2 [conventional]." Further, their interaction experience with the same AI assistant
can also shape their judgement of where they will likely disagree with the system: “On
’B’ [ambiguity-aware], I tried to focus more on the ambiguous epochs indicated by the AI
and then on the staging that the AI in ’A’ [conventional] did not perform well with." AI
assistants could leverage this insight by grouping contentious cases based on an expert’s
reviewing and correction behaviour to adjust to their internal representation of specific
types of ambiguity.

121



5.6 Discussion

In this chapter, we studied how highlighting and explaining ambiguity by AI assistants
can aid medical experts in their decision making for contentious clinical cases. We con-
ducted a within-subjects study to investigate the use of ambiguity-aware AI assistants by
medical experts. Our results show that the ambiguity-aware AI can alter experts’ work-
flows by increasing the proportion of contentious cases reviewed while maintaining overall
productivity.

While experts’ overall labeling accuracy was not affected by providing ambiguity-
awareness, we observed a significant effect of argument relevance on experts’ case correction
rate. This promising insight motivates future research into the development and validation
of ambiguity-aware AI systems capable of providing highly relevant ambiguity explanations
for previously unseen cases.

Experts’ overall preferences and perceived levels of trust for either AI were polarized.
Results suggested higher perceived integrity, and a trend towards higher confidence in the
ambiguity-aware AI assistant compared to the conventional variant. These mixed results
may indicate the existence of other latent variables (e.g., experts’ familiarity with or trust
in automation technology) which could shape experts’ perception of AI systems generally.
Here, we discuss the generalizability and design implications of our findings and conclude
with limitations of our study and directions for future work.

5.6.1 Design Implications

Our findings have implications for different stages in the design of AI-based CDS systems,
ranging from data collection over model training to the design of user interfaces for AI
systems.

Data collection. In our work, we simulate an AI assistant’s capability to identify mul-
tiple conflicting arguments for why a medical classification decision may be contentious. To
this end, we rely on discussion metadata from our previous study on collective adjudication
among medical experts reported in Section 3.3. Developing an AI system capable of gen-
erating ambiguity explanations for previously unseen cases would require that structured
information on contentious cases is given in the training data. While several approaches
have been suggested to collect unstructured, open-ended arguments for contentious classi-
fication cases [29, 42, 125, 129], recent work from the medical domain demonstrates that
imposing structure on the discussion process can facilitate a deeper understanding of ex-
pert disagreement [123] and accelerate consensus formation [127]. We recommend that data
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collection procedures for AI-based CDS systems be equipped with structured discussion
procedures to benefit from these findings and facilitate the development of ambiguity-aware
classification models.

Model training. Our study suggests that expert workflows and trust can be positively
affected by endowing AI-based CDS systems with the ability to not only make classification
suggestions, but also to identify which cases may be contentious and why. Implementation
of such systems would require that supervised machine learning models are equipped with
additional prediction targets beyond classification labels alone. These additional prediction
targets could include the likelihood and potential sources of expert disagreement. They
could be integrated either into one joint training process or by developing several separate
models, one for each target. Cohen et al. [32] describe some additional requirements and
challenges in this context.

User interfaces. In this work, we evaluate one specific way of displaying and ex-
plaining ambiguity to expert end users by visually emphasizing contentious cases within
a collection of cases and by providing text-based arguments for conflicting classification
choices. While our results suggest that this representation may be effective, we recommend
that future work may explore more complex design considerations such as prioritization of
cases based on their disagreement likelihood, and interactive filters to group cases which
may be contentious for similar reasons.

5.6.2 Generalizability

Our study sheds light on the use of ambiguity-awareness in the specific domain of sleep
stage classification based on biomedical time series data. Therefore, caution is warranted
in generalizing the results of this study to outside domains. However, we argue that similar
displays of ambiguity explanations can be useful for various types of medical assessments
because the issues motivating our study are prevalent across subspecialties.

Despite the abundance of standardized medical guidelines [11], expert disagreement
is prevalent across medical disciplines [15, 128], making our approach useful beyond the
specific domain of sleep health. For example, differential diagnosis of epilepsy requires that
specialized neurologists visually inspect EEG data similar in nature to that used in our
study. Ambiguity-aware AI assistants could support the small pool of specialists world-
wide in detecting epileptiform abnormalities [10] and thus increase access to healthcare for
patients with epilepsy in low- and middle-income countries [149, 150].

The issue of expert disagreement in medical assessments has also been addressed using
structured adjudication for other data modalities, e.g., assessment of retinal images for
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diabetic retinopathy grading [126, 127] or glaucoma risk assessment [65, 108]. These studies
suggest that the recommendations we make for data collection in this work have been
considered independently and may be of merit beyond the development of ambiguity-aware
AI systems.

5.6.3 Limitations

In this chapter, we conducted a within-subjects study to investigate the use of ambiguity-
aware AI assistants by medical experts. Due to the tight working schedule of our experts
and the remote nature of our study, it was challenging to control the timing of each step in
the experiment precisely. For instance, participants varied in how long they waited after
completing the first main task before starting the second one. This lack in experimental
control may have impacted the extent to which exposure to the first AI assistant affected
how experts interacted with the latter one.

In our Wizard-of-Oz study, the ambiguity-aware AI was simulated, in the sense that
the assistant presented ambiguity information and arguments generated from real expert
discussions. While prior work has demonstrated the potential of predicting the likeli-
hood of expert disagreement directly from raw medical data [114], future work can focus
on training machine-learning algorithms based on ambiguity explanation data to provide
human-interpretable arguments for previously unseen contentious cases.

Finally, related work shows that medical practitioners seek to understand the specific
strengths and weaknesses of an AI before interacting with it [22]. Our work offers similar
findings by showing that explaining AI uncertainty can be useful also during the interaction
and help experts allocate cognitive resources and reassess their level of trust appropriately
for each specific case. While we did not detect a significant effect of ambiguity tolerance
on overall AI preference, we observed a trend that experts with higher ambiguity tolerance
exhibited more polarized preferences towards either AI assistant. Future research may
explore how different variables such as personality traits [20], domain-specific and culture-
specific communication styles [121] may shape these expectations and perceptions on the
side of medical experts.

5.7 Conclusion

In this chapter, we provided a novel perspective on the problem of how AI assistants for
medical reasoning can explain ambiguous cases to human experts. Our results from a user
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study with twelve medical experts comparing a conventional AI assistant to a simulated
ambiguity-aware AI assistant suggest that the system’s ability to not only flag, but also
explain contentious patient cases has merits for end users. In particular, we observed that
in comparison to the conventional AI, the ambiguity-aware AI was more effective in guiding
experts’ attention to contentious medical cases. In addition, our results demonstrate that
if explanations contain irrelevant arguments, experts’ accuracy at correcting AI-suggested
labels can drop below 50%. The work we presented in this chapter has implications for the
design of AI-based technology not only in the field of medicine, but more broadly in fields
that face similar challenges with classification ambiguity and expert disagreement.
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Chapter 6

Conclusion

Through the research presented in this dissertation, we introduced and studied novel ap-
proaches for handling ambiguity in human-AI collaborative workflows for data classification
problems. We provided methods, open datasets and empirical insights to address ambigu-
ity in various steps of the AI pipeline. Most importantly, we provided a thorough analysis
of group deliberation as a tool to understand and capture the structure of ambiguous
cases in data labeling. We also showed how the resulting deliberation data can be lever-
aged to improve outcomes both in the training of human labelers and for communicating
classification ambiguity in AI-powered assistive interfaces.

In this chapter, we summarize our main contributions, specify how our findings support
the thesis statement, provide design recommendations for handling ambiguity in human-
AI collaborative workflows and conclude with several directions for future research in the
broader space of human-AI interaction in the context of complex, ill-defined and ambiguous
problems.

6.1 Contributions and Impact

We implemented and studied group deliberation as a tool to detect and explain ambiguity
in data labeling workflows. Our investigation focused on three different contexts.

First, we presented Crowd Deliberation, the first platform enabling synchronous group
deliberation in the context of non-expert crowdsourcing. We presented evidence suggest-
ing that group deliberation can not only significantly improve label accuracy, but that
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it also produces data that helps to understand why disagreement arises and under what
circumstances it can be resolved.

Second, we applied our findings to the expert domain of medical image classification,
applying an asynchronous deliberation workflow to a complex diagnostic task performed
by medical specialist labelers. Our insights from an experiment with 15 retina specialists
showed that structuring deliberation arguments around a set of low-level diagnostic criteria
significantly improved the efficiency of the deliberation process without compromising its
reliability.

Third, we leveraged our findings to design and build CrowdEEG, the first online plat-
form enabling expert crowds to collaboratively annotate and deliberate on medical time
series data. CrowdEEG implemented an asynchronous workflow combined with an even
more structured format for capturing human arguments. Using an observational study
with 36 sleep technologists, we analyzed various factors including expert background, data
characteristics, labeling guidelines and viewer configurations to better understand how
disagreement arises and when it can be resolved.

We also demonstrated how the resulting deliberation data can be put into use to train
human expert labelers. Our evidence from a controlled experiment with ten medical general-
ists suggests that reading deliberation data from medical specialists substantially improved
generalists’ comprehension as well as their diagnostic accuracy on difficult patient cases.

Finally, we leveraged deliberation data for a separate goal, to simulate and study
ambiguity-aware AI, i.e., AI that not only highlights ambiguous cases, but also explains the
underlying sources of ambiguity to end users. Our results from an experiment with twelve
sleep technologists demonstrated that this form of ambiguity-aware AI can significantly
improve the ability of expert end users to triage and trust AI-provided output. We also
provided evidence suggesting not only that expert end users paid attention to AI-provided
ambiguity explanations, but also that the relevance of these explanations to the specific
case at hand was crucial for human experts to accurately classify difficult ambiguous cases.

To stimulate future research in this space, we made two novel datasets publicly available
that contain deliberation data from both non-expert and expert classification tasks.

6.2 Support for Thesis Statement

We summarize our hypotheses from Chapters 3, 4 and 5 in Tables 6.1 and 6.2, including
the degree to which each hypothesis was supported by our observations. Collectively, our
insights provide support for the central claims of our thesis statement.
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Claim: Ambiguity, the quality of being open to more than one interpretation,
permeates our lives. It can take various forms including linguistic and visual
ambiguity, arise for various reasons including heterogeneous data or vague defi-
nitions, and give rise to inter-rater disagreements that can be hard or impossible
to resolve.

We demonstrated that ambiguity in data classification can take various forms. Linguistic
ambiguity was prevalent not only in the data instances to be classified, e.g., the text docu-
ments involved in the sarcasm detection and semantic relation verification tasks in Section
3.1. It could also be found in the classification guidelines used by humans to interpret the
data at hand, irrespective of data modality. Visual ambiguity was showcased in the context
of both image classification (Section 3.2) and time series classification (Section 3.3) tasks.

We provided analyses of the various sources of classification ambiguity: Section 3.1
demonstrated that fuzzy definitions in classification guidelines, discrepancies in labeler ex-
pertise, subjectivity, missing context, contradictory evidence or easy-to-miss details in the
data can constitute relevant sources of inter-rater disagreements in novice crowd work. Sec-
tion 3.3 provided similar insights in the context of expert tasks, assessing potential sources of
inter-rater disagreement within four categories: grader differences, viewer differences, data
characteristics, classification guidelines. Chapter 3 described three separate case studies
that provide support for the claim that certain instances of classification ambiguity give
rise to inter-rater disagreement that is hard or impossible to resolve even when addressed
through group deliberation.

Claim: Human and artificial intelligence can benefit from novel methods that
aim to detect and explain instances of ambiguity. The expected advantages of
such methods are a better understanding of why disagreement arises and when
it can be resolved, as well as better approaches for handling ambiguity in human
decision making—both unassisted and when assisted by artificial intelligence.

Chapter 3, specifically Sections 3.1 and 3.3 demonstrate how group deliberation is an ef-
fective tool to understand why disagreement arises and under which circumstances it can
be resolved in the context of data classification.

Chapters 4 and 5 illustrate how the resulting deliberation data can be leveraged to
support better approaches for handling ambiguity in human decision making. The case
study described in Chapter 4 serves as an example of how deliberation data can be used
as training material to improve unassisted human decision making on difficult cases in
the context of medical image classification. Chapter 5 showcased how deliberation data

128



can be used to support human decision making assisted by an AI capable of not only
highlighting ambiguous classifications, but also explaining potential sources of ambiguity
in human-interpretable terms.

6.3 Design Recommendations

This dissertation aims to provide guidance for both researchers and practitioners who seek
to incorporate the notion of ambiguity into the design and implementation of human-
AI collaborative systems. Based on the insights from our studies on group deliberation
in data labeling and experiments leveraging deliberation data for labeler training and
for ambiguity-aware AI, we make the following recommendations for handling ambiguity
within various steps of the AI pipeline.

Data Labeling: Procedures for data labeling should aim to identify and differentiate
between instances of ambiguity that are unintended and avoidable, and instances of am-
biguity that are either inevitable or an intentional part of the concept being labeled. The
recommendations below should be applied with this distinction in mind.

Labeling guidelines are a common source of linguistic ambiguity giving rise to inter-rater
disagreement. Unintentional vagueness in the labeling guidelines should be systematically
analyzed and removed. However, it is possible that the labeling guidelines are standardized
and may not be changed.

Inter-rater disagreement is a useful signal to identify potential instances of ambiguity.
However, label disagreements may also be due to other reasons such as human input
mistakes. The circumstance that human labelers can guess the likelihood of disagreement
for some tasks better than chance may be used to allocate resources for label redundancy
more efficiently.

Group deliberation is a useful tool to decide which instances of inter-rater disagreement
are hard or impossible to resolve and why. Deliberation therefore can be used to identify
truly ambiguous cases as well as the underlying sources of persistent disagreement. Delib-
eration data may in turn be used to identify and reduce unintentional vagueness in labeling
guidelines.

Groupthink dynamics should be mitigated by hiding the true identity and professional
credentials (e.g., academic degree) of discussion members, by encouraging balanced con-
tribution among the group and by avoiding explicit incentives for reaching unanimous
consensus.
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Table 6.1: Summary of hypotheses and their degree of support from Chapter 3.

3.1 Crowd Deliberation for Text Labeling
Q1: Why disagree?

H1a Sources of disagreement differ by task type. Supported (***)

H1b Annotators can predict disagreement levels. Supported for Relation task (***)

Q2: Why unresolved?
H2a Sources of disagreement affect resolvability. Supported for Subjective Case (**), Fuzzy Definition

(**) and Contradictory Evidence (*)
H2b Task subjectivity affects resolvability. Partially supported

H2c Extent of equal contribution affects resolvability. Supported (*)

H2d Level of initial consensus affects resolvability. Supported (*)

H2e Amount of overlap in evidence affects resolvability. Not supported

Q3: Impact?
H3a Worker deliberation improves answer correctness. Supported (***)

H3b Groupthink is discouraged by our deliberation incentives. Supported

H3c Sources of disagreement and the extent of equal contribu-
tion affect whether cases get resolved correctly.

Supported for Expertise Needed (*), Missing Context
(*) and the extent of equal contribution (*)

3.2 Expert Deliberation for Image Labeling
H1 Remote and in-person deliberation produce similar labels. Supported

H2 Remote deliberation is a reproducible process. Supported

H3 Imposing argument structure helps resolve disagreements
more efficiently in remote deliberation. Supported (***)

3.3 Expert Deliberation for Time Series Labeling
Q1: Why disagree?

H1a Differences in expert background predict disagreement. Supported for Experience (***) and Location (***)

H1b Differences in viewer settings predict disagreement. Supported (***)

H1c Data characteristics predict disagreement. Supported for Parkinson’s Disease (***), Alzheimer’s
Disease (***) and Signal Complexity (***)

Q2: Why unresolved?
H2a Differences in expert background predict resolvability. Supported (*)

H2b Differences in viewer settings predict resolvability. Supported for Freq. Filter (***) and Signal Visib. (**)

H2c Data characteristics predict resolvability. Supported for Parkinson’s Disease (***), Sleep Apnea
(**), Sig. Complexity (***), Sig. Transitions (***)

H2d Disagreement sources predict resolvability most strongly. Partially supported

Q3: Impact?
H3a Experts find deliberation labels reliable and trustworthy. Supported (***)

H3b Deliberation can significantly change diagnostic markers. Supported for %REM (*)
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Table 6.2: Summary of hypotheses and their degree of support from Chapters 4 and 5.

4 Deliberation Data for Labeler Training
Q1: Perception - Reading specialist discussions ...

H1a Improves generalists’ comprehension of the correct diagnosis. Supported (***)

H1b Increases generalists’ agreement with the answer key. Not supported

H1c Motivates adaptations in generalists’ labeling approach. Supported (*)

Q2: Behaviour - Reading specialist discussions ...
H2a Improves generalists’ diagnostic accuracy. Supported for retinal artery occlusion (*)

H2b Increases generalists’ diagnostic confidence. Opposite association found (**)

H2c Lowers generalists’ perceived case difficulty. Opposite association found (*)

H2d Improves generalists’ diagnostic self-efficacy. Partially supported

5 Deliberation Data for Ambiguity-aware AI
Q1: Behaviour?

H1a Experts review more contentious cases with an ambiguity-aware AI. Supported (*)

H1b Ambiguity-aware AI does not reduce experts’ overall efficiency. Supported

H1c Ambiguity-aware AI improves experts’ overall label accuracy. Not supported

H1d Relevance of ambiguity explanations predicts expert accuracy. Supported (***)

Q2: Perception?
H2a Experts generally prefer an ambiguity-aware AI. Not supported

H2b Experts consider an ambiguity-aware AI more trustworthy. Supported for Integrity (*)

H2c Ambiguity-aware AI does not inrease cognitive load. Supported

H2d Ambiguity tolerance predicts preference for an ambiguity-aware AI. Not supported

Asynchronous workflows for group deliberation are suitable for expert tasks as they
allow potentially busy labelers to complete their review activities on their own schedule.
For fast-paced crowdsourcing marketplaces where human labelers may only be available
for a very limited amount of time, synchronous (real-time) deliberation workflows may be
more effective.

Structuring arguments during deliberation procedures does not only help resolve dis-
agreements more efficiently, but can also produce useful metadata that can be parsed by
machines to understand why disagreements arise and why disagreements persist after group
deliberation.

Sources of ambiguity are diverse and can differ by task type. Human labelers may
arrive at conflicting interpretations for a variety of reasons, including differences in personal
background, differences in viewer settings, characteristics of the data at hand and vagueness
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in the labeling guidelines. For factors that can be controlled (e.g., viewer settings) it may
be desirable to keep those consistent for all labelers or to store information about the
specific configurations labelers make.

Training of human labelers can be enriched with discussion data from group deliberation
processes. In particular, less experienced human labelers can improve their comprehension,
labeling style and accuracy for difficult-to-classify cases by reading deliberation discussions
from more experienced human labelers.

Model Development: While this dissertation does not make explicit contributions
to the space of model development, we propose high-level recommendations for future
modeling approaches seeking to incorporate the notion of ambiguity.

Uncertainty and ambiguity are not identical. Uncertainty is characterized by a lack of
information needed to make accurate judgements about the current or future state of the
world. Ambiguity on the other hand is characterized by an inherent openness to multiple
interpretations about the same phenomenon. Both uncertainty and ambiguity should be
incorporated into model development. Yet, we recommend they be treated as separate
concepts.

The likelihood of ambiguity may be treated as a prediction target in model development.
However, ambiguous examples may be rare compared to non-ambiguous examples in a given
training set. We therefore recommend methods to address potential class imbalance when
modeling the likelihood of ambiguity.

Sources of ambiguity may be extracted from deliberation data implementing a struc-
tured argument format. These may be treated as auxiliary prediction targets for models
with strong explainability requirements.

User Interfaces: Communication between human users and AI models is both fa-
cilitated and constrained by UI design considerations. Designers should carefully decide
whether and how ambiguity-related information is exposed to end users to strike the right
balance for an efficient, effective and trusted interaction.

User trust can be promoted by highlighting and explaining instances of ambiguity as
predicted by an AI model. However, factors like user-specific or context-specific ambiguity
tolerance may affect whether exposing ambiguity information contributes to the establish-
ment or erosion of user trust.

Triaging is the process of prioritizing and allocating human intervention in resource-
limited settings. The predicted likelihood of ambiguity for a given case can be a useful

132



criterion for experts to choose which AI-suggestions to review first and thus save time and
cognitive resources on clear-cut cases.

Ambiguity explanations should be human-interpretable, case-specific and accurate. An
irrelevant or inaccurate ambiguity explanation may significantly harm a user’s ability to
disambiguate a case correctly. If accurate ambiguity explanations cannot be reliably pro-
duced they should not be exposed to the end user.

The impact of ambiguity is a factor that should determine whether users are exposed to
ambiguity information. For a resourceful and efficient interaction, we recommend that users
should not be exposed to ambiguity information for cases where different interpretations
cannot yield different decision outcomes. For example, if different interpretations of a
medical image will not affect the final treatment decision for a given patient, doctors should
not be informed about the underlying ambiguity to be economical with their cognitive
resources.

6.4 Opportunities for Future Work

In the previous three chapters, we discussed design implications, research limitations and
directions for future with a specific focus on the research scope for each particular study.
In this section, we broaden the scope and address additional directions for future research
in the space of human-AI collaborative decision-making for complex, ill-defined and am-
biguous problems.

Systems to label data of variable ambiguity: So far, the research presented in
Chapters 3 and 4 has produced individual building blocks within the bigger picture of
how interactive labeling can be done in the presence of ambiguous data. The future holds
the potential to connect these separate components into one integrated system capable of
intelligent adaptation when confronted with data of variable ambiguity. I am excited to
pursue this research direction centered around the following questions: How can we leverage
group deliberation to fuel automatic creation and refinement of labeling guidelines? How to
evaluate labeler quality in the presence of ambiguity? How to provide personalized feedback
to labelers by triangulating error types, labeling guidelines and group deliberation? Can we
synthesize ambiguous cases as training material for human labelers? How can we close the
loop by leveraging feedback from end users of an AI system to refine the labeling process?

Building ambiguity-aware AI assistants: The research presented in Chapter 5 has
paved the way for understanding the potential benefit of communicating ambiguity in AI
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output. Yet, these preliminary contributions relied on a Wizard-of-Oz approach leveraging
a simulated version of an ambiguity-aware AI assistant. Future research holds the potential
to explore the open question of how ambiguity-aware AI can and should be implemented.

One possible pathway towards implementation of ambiguity-aware AI would be to
combine techniques from multi-label learning, label distribution learning and model ex-
plainability to develop AI assistants capable of not only recognizing, but also explaining
ambiguous data. The large corpus of structured deliberation data for over 15,000 cases
that we collected within the CrowdEEG platform may lend itself as training input for the
purpose of building an initial prototype. However, the availability of ambiguity-related
data alone may not be sufficient for building ambiguity-aware AI assistants. The research
community may also need to develop novel evaluation metrics that allow us to measure the
quality of labels and explanations, produced either by humans or machines, in the presence
of inherently ambiguous problems.

Besides the modeling aspect of this broader question, more research is needed to un-
derstand when and how AI assistants should communicate ambiguity to end users: Should
an AI selectively communicate ambiguous cases, e.g., only if they have the potential to im-
pact meaningful outcomes like medical treatment decisions? Should systems adapt to user
characteristics like ambiguity tolerance? What are effective formats to explain ambiguity
for different data modalities?

Supporting other forms of problem complexity: The research presented in this
dissertation intentionally keeps a narrow focus on ambiguous classification problems. How-
ever, there exist many other reasons why humans may face complexity in decision making
and interpreting data. Recognizing this circumstance, future research may aim to enhance
the people-AI partnership for problems that are complex for reasons other than ambiguity.
For example, problems may be complex because they require the ability to make associa-
tions that are poorly understood by the current state of science. Arguably, one of the most
complex domains in our modern society is the advancement of science. The progress of
scientific discovery requires creative exploration and rigorous testing of novel hypotheses.
Diversity of perspectives and scientific disagreements are integral to this process.

In recent years, AI systems have acquired the somewhat surprising ability to make com-
plex data associations previously unknown or thought impossible within scientific commu-
nities. For example, deep neural networks can predict conditions like anemia or the risk of
future heart attacks from just a single photo of a patient’s retina. Yet, the immediate ben-
efit of these models to the process of scientific discovery remains limited due the black-box
nature of the underlying models. We posit that there is value in exploring methods from
Explainable AI (XAI) to foster diversity in scientific reasoning, exploring the following
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research directions: How can XAI become part of the modern scientific toolbox? How can
XAI help scientists diversify their process of hypothesis generation? How can we support
productive scientific discourse through XAI-powered collaborative thinking?

6.5 Summary

In this chapter, we summarized our main contributions, outlined how our findings support
the central claims of our thesis statement, provided design recommendations for handling
ambiguity in human-AI collaborative workflows and concluded with several directions for
future work in the space of human-AI interaction for complex, ill-defined and ambiguous
problems. The research presented in this work provides a novel perspective on the question
of how humans and AI can be effective partners in the presence of ambiguous problems.
We have provided a foundation and proposed directions we believe to be useful to enable
future research in this space.
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Appendix A

Group Deliberation for Data Labeling

This appendix includes the complete set of questionnaires used in Chapter 3.

A.1 Crowd Deliberation for Text Labeling

This appendix includes the complete set of questionnaires used in Section 3.1.

A.1.1 Pre-study Questionnaire

1. How old are you? (multiple choice)

◦ 18-25

◦ 26-35

◦ 36-45

◦ 46-55

◦ 56+

2. What is your gender? (multiple choice)

◦ Female

◦ Male

◦ Other:
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◦ Prefer not to say

3. Is English your first language? (multiple choice)

◦ Yes

◦ No

4. Is English your first language? (5-point Likert scale)

◦ 1 - Very Poor

◦ 2

◦ 3

◦ 4

◦ 5 - Very Good

A.1.2 Per-case Questionnaire after Independent Classification

1. Do you think other people might choose a different answer than you did? (multiple
choice)

◦ I expect most people to agree with me. [end of survey]

◦ I expect only about half of the people to agree with me.

◦ I expect most people to disagree with me.

2. Why do you think other people might choose a different answer? (checkboxes)

◦ Other people may have different definitions of [sarcasm / relation] in mind.

◦ The text is ambiguous because of missing context (for example, [the identity
of the product / some important information about the person or the place] is
unknown).

◦ The text contains some features that indicate [sarcasm / relation] is expressed
and other features that indicate [absence of sarcasm / relation is not expressed].

◦ The text contains relevant details other people could easily miss.

◦ Someone with more experience or expertise may see or understand something
about the text that I don’t.
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◦ This is a case where a person’s answer would depend heavily on their personal
preferences and taste.

◦ Other:

3. Please elaborate on your answer to the previous question, explaining why you think
other people might choose a different answer:

4. If there were other people who chose a different answer than you did, do you think a
group discussion would help to resolve the case? (multiple choice)

◦ Yes, a group discussion would help to resolve the case.

◦ No, a group discussion would not help to resolve the case.

A.1.3 Per-case Questionnaire after Discussion Round 2

1. Based on your deliberation, why do you think the other people in the group chose a
different answer? (checkboxes)

◦ [Free-form reason from previous survey if the participant submitted any]

◦ Other people may have different definitions of [sarcasm / relation] in mind.

◦ The text is ambiguous because of missing context (for example, [the identity
of the product / some important information about the person or the place] is
unknown).

◦ The text contains some features that indicate [sarcasm / relation] is expressed
and other features that indicate [absence of sarcasm / relation is not expressed].

◦ The text contains relevant details other people could easily miss.

◦ Someone with more experience or expertise may see or understand something
about the text that I don’t.

◦ This is a case where a person’s answer would depend heavily on their personal
preferences and taste.

◦ Other:

2. Please elaborate on your answer to the previous question (for example, if you changed
your mind about the source of disagreement, please explain why):
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A.1.4 Per-case Questionnaire after Viewing Final Decisions

1. Why do you think this case [could be / could not be fully] resolved?

2. Did somebody make you doubt your original answer? Why or why not? (multiple
choice)

◦ Yes:

◦ No:

3. Did somebody make you change your original answer? Why or why not? (multiple
choice)

◦ Yes:

◦ No:

4. Did you manage to convince someone to change their answer or confidence level?
Why do you think you were able/unable to convince them? (multiple choice)

◦ Yes:

◦ No:

5. Describe how you feel about the deliberation process:

6. Describe how you feel about the deliberation outcome:

A.2 Expert Deliberation for Time Series Labeling

This appendix includes the complete set of questionnaires used in Section 3.3.

A.2.1 Pre-study Questionnaire

1. How old are you? (multiple choice)

◦ 18-25

◦ 26-35

◦ 36-45
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◦ 46-55

◦ 56+

2. What is your gender? (multiple choice)

◦ Female

◦ Male

◦ Other:

◦ Prefer not to say

3. Where are you located? (multiple choice)

◦ Canada

◦ United States

◦ European Union

◦ Other:

4. Do you have any professional or academic training in sleep staging? (multiple choice)

◦ Yes

◦ No

5. If yes, please specify which kind of training, degree or certificate you hold:

6. How long have you worked in sleep? (multiple choice)

◦ Not at all

◦ < 3 months

◦ 3-6 months

◦ 6-12 months

◦ 1-2 years

◦ 2-3 years

◦ 3-5 years

◦ 5-10 years

◦ 10+ years
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A.2.2 Post-study Questionnaire

1. What computer did you use to complete our study? Please list the brand/model,
and year, if you know this information (e.g., laptop “Macbook” from 2013; or desktop
“Dell” from 2015):

2. What web browser did you use when running our study? (e.g., Chrome, Firefox,
Edge, Opera, etc.):

3. How much would you agree with the following statements? (each item answered on
a 5-point Likert scale ranging from 1 “Strongly Disagree” to 5 “Strongly Agree”)

◦ “The adjudication process was useful for generating a reliable hypnogram.”

◦ “The final adjudicated hypnogram can be trusted more than the hypnogram
from my first pass.”

4. What could be improved about the adjudication interface?

5. What were the good parts about the adjudication interface?

6. What could be improved about the adjudication procedure?

7. What were the good parts about the adjudication procedure?
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Appendix B

Deliberation Data for Labeler Training

This appendix includes the complete set of questionnaires used in Chapter 4.

B.1 Pre-study Questionnaire

1. How good do you think you are at grading diabetic retinopathy (DR)? (5-point Likert
scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

2. How good do you think you are at detecting the presence or absence of hypertensive
retinopathy (HTNR)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good
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3. How good do you think you are at detecting the presence or absence of retinal vein
occlusion (RVO)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

4. How good do you think you are at detecting the presence or absence of retinal artery
occlusion (RAO)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

5. What is your training background? (multiple choice)

◦ Optometrist

◦ General Ophthalmologist

◦ Retina Specialist

◦ Other:

6. How many years has it been since you finished residency or since you graduated from
optometry school?

7. Approximately how many DR images have you graded? (multiple choice)

◦ less than 100

◦ 100 to 500

◦ more than 500

8. How many years of experience do you have grading diabetic retinopathy (DR) images?
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B.2 Per-case Questionnaire after Training Feedback

1. Which of your responses differed from the answer key (if any)? (checkboxes)

◦ Diabetic Retinopathy (DR)
◦ Hypertensive Retinopathy (HTNR)
◦ Retinal Vein Occlusion (RVO)
◦ Retinal Artery Occlusion (RAO)

2. After reviewing the answer sheet for this case, do you understand the rationale behind
the answer key and could explain it to one of your colleagues? (5-point Likert scale)

◦ 1 - Strongly Disagree
◦ 2
◦ 3
◦ 4
◦ 5 - Strongly Agree

3. After reviewing the answer sheet for this case, do you agree with the answer key for
all prompts? (multiple choice)

◦ No, I strongly disagree with at least some of the answer key prompts.
◦ No, but I think all the answers in the answer key are reasonable.
◦ Yes, I would change all my answers to match the answer key.

4. Please explain in your own words why (or not) you agree with the answer key for all
prompts:

5. After reviewing the answer sheet for this case, is there anything you would change
about how you grade in the future? (multiple choice)

◦ No
◦ Yes

6. If yes, please explain what you would change and why. Otherwise, please explain
why you would not change anything:

7. Is there anything else you are still confused about after reviewing the case details?
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B.3 Post-study Questionnaire

1. How good do you think you are at grading diabetic retinopathy (DR)? (5-point Likert
scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

2. How good do you think you are at detecting the presence or absence of hypertensive
retinopathy (HTNR)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

3. How good do you think you are at detecting the presence or absence of retinal vein
occlusion (RVO)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

4. How good do you think you are at detecting the presence or absence of retinal artery
occlusion (RAO)? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3
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◦ 4

◦ 5 - Extremely good

5. How mentally demanding was the overall task? (5-point Likert scale)

◦ 1 - Not at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely

6. How physically demanding was the overall task? (5-point Likert scale)

◦ 1 - Not at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely

7. How hurried or rushed was the pace of the overall task? (5-point Likert scale)

◦ 1 - Not at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely

8. How successful were you in accomplishing what you were asked to do? (5-point Likert
scale)

◦ 1 - Perfect

◦ 2

◦ 3

◦ 4

◦ 5 - Failure
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9. How hard did you have to work to accomplish your level of performance? (5-point
Likert scale)

◦ 1 - Not at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely

10. How insecure, discouraged, irritated, stressed, and annoyed were you? (5-point Likert
scale)

◦ 1 - Not at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely

11. The personalized feedback provided in this study was useful overall. (5-point Likert
scale)

◦ 1 - Strongly Disagree

◦ 2

◦ 3

◦ 4

◦ 5 - Strongly Agree
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Appendix C

Deliberation Data for Ambiguity-aware
AI

This appendix includes the complete set of questionnaires used in Chapter 5.

C.1 Pre-study Questionnaire

1. How old are you? (multiple choice)

◦ 18-25

◦ 26-35

◦ 36-45

◦ 46-55

◦ 56+

2. What is your gender? (multiple choice)

◦ Female

◦ Male

◦ Other:

◦ Prefer not to say

3. Where are you located? (multiple choice)
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◦ Canada

◦ United States

◦ European Union

◦ Other:

4. Do you have any professional or academic training in sleep staging? (multiple choice)

◦ Yes

◦ No

5. If yes, please specify which kind of training, degree or certificate you hold:

6. How long have you worked in sleep? (multiple choice)

◦ Not at all

◦ < 3 months

◦ 3-6 months

◦ 6-12 months

◦ 1-2 years

◦ 2-3 years

◦ 3-5 years

◦ 5-10 years

◦ 10+ years

7. How often do you think two independent sleep experts tend to disagree on the correct
sleep stage for a given polysomnography (PSG) epoch? On average, I think, two
independent experts will: (multiple choice)

◦ disagree on less than 1% of the cases

◦ disagree on 2% - 10% of the cases

◦ disagree on 11% - 20% of the cases

◦ disagree on 21% - 30% of the cases

◦ disagree on 31% - 40% of the cases

◦ disagree on 41% - 50% of the cases
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◦ disagree on more than half of the cases

8. How good do you think you are at sleep stage classification? (5-point Likert scale)

◦ 1 - Not good at all

◦ 2

◦ 3

◦ 4

◦ 5 - Extremely good

9. How strongly do you agree with the following statements? (each item answered on a
7-point Likert scale ranging from 1 “Strongly Disagree” to 5 “Strongly Agree”)

◦ “An expert who doesn’t come up with a definite answer probably doesn’t know
too much.”

◦ “There is really no such things as a problem that can’t be solved.”

◦ “People who insist upon a yes or no answer just don’t know how complicated
things really are.”

◦ “Many of our most important decisions are based on insufficient information.”

C.2 Post-condition Questionnaire

1. How strongly do you agree with the following statements? (each item answered on a
5-point Likert scale ranging from 1 “Strongly Disagree” to 5 “Strongly Agree”)

◦ “The AI Assistant supported my interpretation of the sleep recording.”

◦ “The AI Assistant helped me think through different options to interpret the
sleep recording and organize my thoughts.”

◦ “I would continue using the AI assistant in practice.”

2. How strongly do you agree with the following statements? (each item answered on a
5-point Likert scale ranging from 1 “Strongly Disagree” to 5 “Strongly Agree”)

◦ “The AI Assistant was deceptive.”

◦ “The AI Assistant behaved in an underhanded manner.”
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◦ “I was suspicious of the AI Assistant’s intent, action, or outputs.”

◦ “I was wary of the AI Assistant.”

◦ “The AI Assistant’s actions will have a harmful or injurious outcome.”

◦ “I was confident in the AI Assistant.”

◦ “The AI Assistant provided security.”

◦ “The AI Assistant had integrity.”

◦ “The AI Assistant was dependable.”

◦ “The AI Assistant was reliable.”

◦ “I can trust the AI Assistant.”

◦ “I am familiar with the AI Assistant.”

3. Please tell us more about how your experience with this task: (each item answered
on a 5-point Likert scale ranging from 1 “Not at all” to 5 “Extremely”)

◦ How mentally demanding was the task?

◦ How physically demanding was the task?

◦ How hurried or rushed was the pace of the task?

◦ How successful were you at accomplishing what you were asked to do?

◦ How hard did you have to work to accomplish your level of performance?

◦ How insecure, discouraged, irritated, stressed and annoyed were you?

4. How did you decide which epochs to review and why?

5. Which information provided by the AI Assistant did you use to decide which epochs
to review and why?

6. How did information about the AI Assistant’s uncertainty affect your decision mak-
ing?

C.3 Post-study Questionnaire

1. Please compare AI Assistant A (the one you interacted with first, right after the
playground task) and AI Assistant B (the one you interacted with last): (each item
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answered on a 7-point Likert scale ranging from 1 “Totally Assistant A”, 2 “Much
more Assistant A than B”, 3 “Slightly more Assistant A than B”, 4 “Neutral”, etc. to
7 “Totally Assistant B”)

◦ Which of the two AI Assistants was more reliable?

◦ Which of the two AI Assistants was more trustworthy?

◦ Which of the two AI Assistants was more capable?

◦ Which of the two AI Assistants did you prefer overall?

2. Is there anything else you would like to tell us before completing the study?
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