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Abstract

With the recent progress in deep learning, one of the common approaches to represent
images is extracting deep features. A primitive way to do this is using off-the-shelf models.
However, these features could be improved through fine-tuning or even training a network
from scratch by domain-specific images. This desirable task is hindered by lack of annotated
or labeled images in the field of histopathology.

In this thesis, a new network, namely KimiaNet, is proposed that uses an existing dense
topology but is tailored for generating informative and discriminative deep features from
histopathology images for image representation. This model is trained based on the existing
DenseNet-121 architecture but by using more than 240,000 image patches of 1000× 1000
pixels acquired at 20× magnification.

Considering the high cost of histopathology image annotation, which makes the idea
impractical at the large scale, a high-cellularity mosaic approach is suggested which could
be used as a weak or soft labeling method. Patches used for training the KimiaNet are
extracted from 7,126 whole slide images of formalin-fixed paraffin-embedded (FFPE) biopsy
samples, spanning 30 cancer sub-types and publicly available through TCGA repository.

The quality of features generated by KimiaNet are tested via two types of image search,
(i) given a query slide, searching among all of the slides and finding the ones with the tissue
type similar to the query’s and (ii) searching among slides within the query slide’s tumor
type and finding slides with the same cancer sub-type as the query slide’s. Compared to the
pre-trained DenseNet-121 and the fine-tuned versions, KimiaNet achieved predominantly
the best results for both search modes.

In order to get an intuition of how effective training from scratch is on the expressiveness
of the deep features, the deep features of randomly selected patches, from each cancer sub-
type, are extracted using both KimiaNet and pre-trained DenseNet-121 and visualized after
reducing their dimensionality using t-SNE. This visualization illustrates that for KimiaNet,
the instances of each class can easily be distinguished from others while for pre-trained
DenseNet the instances of almost all of the classes are mixed together. This comparison is
another verification to show that how discriminative training with domain-specific images
has made the features. Also, four simpler networks, made up of repetitions of convolutional,
batch-normalization and ReLU layers, (CBR networks) are implemented and compared
against the KimiaNet to check if the network design could still be further simplified. The
experiments demonstrated that KimiaNet features are by far better than CBR networks
which validates the DenseNet-121 as a good candidate for KimiaNet’s architecture.
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1. Introduction

Histopathology is the gold-standard method to diagnose many diseases. The process of
diagnosing a disease in a patient using histopathology starts with performing a biopsy,
which means removing a small part of tissue, called specimen, from patient’s body, mostly
from a tumor or mass. The most common ways to do a biopsy are using a needle, an
endoscope or performing surgery. A pathologist first analyzes the specimen with naked
eyes and describes how it looks by features such as color and size. After that, the specimen
is prepared to be cut and put under the microscope for further diagnosis. There are two
ways to make the specimen firm enough so it can be cut into thin slices: paraffin-embedded
(permanent) sectioning and frozen sectioning. The paraffin-embedded sections are made by
first placing the specimen in a fixative (usually formalin) for several hours to preserve the
tissue. Next, the water inside the fixed specimen is replaced with paraffin wax. Then the
specimen is put inside a paraffin block. When this block is firm, the specimen is cut into
very thin slices. Afterwards, one thin slice is put on a glass slide, the paraffin is removed
from the tissue and water is added again. Finally, to stain different parts of the cells in the
tissue, dyes are used which results in the cell nuclei to turn to dark blue and cytoplasm to
be colored pink. In frozen sectioning, the specimen is quickly frozen and cut into very thin
layers. The staining process is the same as permanent sectioning. Finally, the pathologist
investigates the prepared specimen slide under a microscope and makes a diagnosis in
addition to writing a report. It is worth mentioning that the permanent sectioning process
usually takes several days and it has the best quality for the examination by the pathologist
while frozen sectioning is completed after 15 to 20 minutes but its quality is lower. In this
study, the permanent slides are used due to their high quality [24, 4]. 1,2

In digital pathology, the mentioned prepared specimen slides are scanned in very high
magnifications, like 20× or 40× using special scanners which results in gigapixel images,
as large as 100, 000 × 100, 000 pixels [17]. over the last few years, digital pathology has

1cancer.net
2cancer.gov
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gained more attention among pathologists and researchers thanks to advancements of the
whole slide digital scanners. Using digitized WSI has benefits such as (i) Easier collab-
oration among pathologists over the world through telepathology, (ii) Speeding up the
workflow in the hospitals, e.g. fast search over the WSIs instead of manually looking for
a glass slide, (iii) Providing the opportunity of applying image processing algorithms on a
valuable set of data to obtain useful information and (iv) Increasing the consistency and
decreasing/removing the inter-observer variability in diagnosis with the help of machine
learning, specifically deep learning [3, 14, 40, 6].

Before the popularity of deep learning, handcrafted methods were used to analyze
the digital pathology slides. The drawbacks of these methods are that having domain
knowledge is a prerequisite for their development which is costly and time-consuming. In
addition, handcrafted algorithms do not generalize well and usually drop in performance
when facing new data. Deep networks are a solution to these challenges.

In deep learning, only simple preprocessings are needed on the raw data which is then
fed to a network. Unlike the handcrafted methods, the task of feature extraction will be
enabled by the parameters (weights) of the network, acting as a function estimator. That
is why many of the recent research papers on digital pathology have benefited from either
off-the-shelf models or customized models [3, 20].

The features generated by deep networks are good candidates to represent images. As
one major problem in digital pathology is the large size of WSIs, e.g., 100,000 by 100,000
pixels, deep features of patches (sub-images) from images are extracted as compact, light-
weight and expressive representations. These features can be used for finding similar WSIs
for a query WSI in a large archive. The content-based histopathology image retrieval can
be quite useful for the daily workflow of pathologists. As well, studying the relationships
between the visual patterns in WSIs and genome information will be enabled by image rep-
resentation [13, 20]. However, there are still unanswered questions regarding these matters.
Do the advantages of fine-tuning/training a network with domain-specific data outweigh
the costs or features extracted from the pre-trained models? What are the challenges and
benefits of training a network from scratch in histopathology?

In this thesis, the focus will be on fine-tuning and training different models using the
DenseNet-121 topology [19, 45, 46] by freezing the weights of different blocks. These
models were trained on around 240,000 patches of size 1024 by 1024 pixels extracted
at 20× magnification from 7,375 TCGA WSIs depicting 30 different tumor sub-types.
Considering the experimental results, changes in quality of deep features generated by the
trained models are investigated with respect to their performance for WSI search. The
contributions of this thesis are:
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(i) Creating a manually labeled dataset for the task of tissue segmentation, consisting of
244 thumbnails chosen from the publicly available TCGA dataset.
(ii) Comparing the performance of different encoders as the backbone of U-Net topology
for the tissue segmentation task and proposing a tailored algorithm for this problem.
(iii) Proposing a clustering-based mosaic approach for WSI representation with a constraint
on high cellularity to employ the WSI label as a soft label for its patches to facilitate the
training.
(iv) Investigating the effect of training and fine-tuning the DenseNet-121 topology on the
representativeness of its deep features for the retrieval task. The training set for this study
contains 242,202 patches of 1024 × 1024 pixels extracted from the WSIs of 30 different
tumor sub-types available on TCGA dataset.

In the following chapters, first the relevant literature will be reviewed. Afterwards, the
tissue segmentation task is studied as an important step in the required preprocessing of
histopathology images. Then the process of creating a dataset from the TCGA repository
as well as fine-tuning/re-training a network, which we have named KimiaNet, is described.
Next, the performance of features generated by different versions of KimiaNet and the
pre-trained DenseNet-121 is compared. After that, the idea of using simpler and smaller
network architectures instead of DenseNet-121 is tested and the superiority of KimiaNet
is shown.

3



2. Literature Review

In this chapter, we will first review the research done for the problem of tissue segmentation
for histopathology images. After that, the role of deep learning in histopathology image
representation will be investigated. These approaches could be categorized into three types
of pre-trained, fine-tuned and trained. Finally, the DenseNet architecture and its strengths
are discussed as it is the utilized topology for training KimiaNet.

2.1 Histopathology Image Background Removal

There is not much research done on histopathology image background removal as a stand-
alone problem and it is often addressed as a part of a larger processing pipeline. But this
problem is generally solved using one of the following approaches:
(i) Machine-vision-based methods which include performing thresholding on features
such as image saturation and intensity and applying methods such the Otsu algorithm
on different color spaces. One of the competitive algorithms for this problem is the FESI
(Foreground Extraction from Structure Information) algorithm [5] which uses a combina-
tion of basic methods, such as median filtering, thresholding, erosion and dilation to address
this problem. Also, HistomicsTK library, which is one of the well-known and widely used
open-source libraries in digital histopathology, provides a tissue detection function and its
algorithm contains a series of Gaussian smoothing and Otsu thresholding.
(ii) Learning-based methods which use labeled data to train machine learning algorithms.
For example Alomari et al. have fed four features including color, appearance, texture and
spatial features to a two-layer neural network to classify the pixels into background and
foreground classes [1]. Also, Bándi et al. trained a CNN with 7 convolutional layers as
well as a UNet for tissue segmentation. The input for the networks were patches with a
single label of “tissue” or “background” based on its central pixel [2].

4
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2.2 Deep Learning Approaches in Histopathology Im-

age Representation

2.2.1 Pre-Trained Networks

Spanhol et al. extracted features of patches of breast cancer, BreaKHis dataset, from the
deepest layers of the BVLC CaffeNet model, e.g. fc6, fc7 and fc8, reusing the pre-trained
ImageNet weights. Then they used Logistic Regression to classify these features which
helped them achieve comparable results to a CNN trained from scratch [36].

Mormont et al. have compared the performance of several commonly used architectures,
including VGG-16, VGG-19, Inception-V3, ResNet-50, Inception-ResNet-V2, DenseNet-
201, and MobileNet, with 6 different strategies for preparing the features for the classifier:
(i) Extracting feature from the last layer, before the first fully connected layer, of the net-
works.
(ii) Selecting a subset of features extracted from the last layer.
(iii) Merging all the features extracted from the last layer of all of the networks together.
(iv) Merging the feature maps of several layers of each network.
(v) Extracting features from an inner layer instead of the last layer.
(vi) Fine-tuning by training the whole network on the specific dataset.
In the next step, the extracted features are fed to each of the three (i) linear support
vector machines, (ii) Extremely Randomized Trees and (iii) Fully Connected Layer classi-
fiers. These approaches were evaluated on 8 classification datasets, 4 histopathology and
4 cytology. The histopathology datasets were Necrosis, Lung, Breast and Glomeruli. The
analysis of their results showed that ResNet-50 and DenseNet-201 were the best among
the tested architectures. And concerning the methods of feature extraction, fine-tuning
the weights by training the whole network and using the fully connected classifier could
achieve the best results in general with considerable increase for multi-class datasets. The
best method for using the off-the-shelf networks seemed to be extracting features from
an inner layer, which should be determined separately for each individual case. This ap-
proach could result with result slightly worse than the trained networks while having the
advantage of not needing any training. Some interesting conclusions that were drawn from
the experiments were that (i) There was always an inner layer with features better than
the last layer, however, the position of the layer was not the same for different networks.
(ii) None of the feature merging approaches could improve the results. (iii) Many of the
features are redundant and very few of them are informative for the classification. [28].
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2.2.2 Fine-Tuned Networks

Faust et al. fine-tuned the last two blocks of a VGG-19 model, with a global average
pooling added at the end, initialized with ImageNet pre-trained weights. The dataset used
was made up of 838,644 1024 by 1024 patches extracted from 1,656 WSIs scanned at 20×
consisted of 74 tissue classes. They used the features extracted from this model, having 512
dimensions, to investigate the relationships of CNN deep features and human recognizable
morphologic patterns. [11]

2.2.3 Trained Networks

Liu et al. proposed a framework to detect and localize breast cancer metastasis in lymph
nodes. They trained the Inception (V3) architecture with 3 different settings: (i) The
network with weights initialized randomly. (ii) The pre-trained network with ImangeNet
weights. (iii) A down-sized model by decreasing the number of the filters. Comparing the
performance of each individual network, it was observed that using pre-trained weights
did not improve the performance of the model and just speeded up the convergence while
the smaller network could achieve the same results, even better in some metrics. The
ensemble of the three networks slightly improved the results. Finally, they tried to mimic
the workflow of the pathologists by feeding patches at different magnifications, e.g. 40×
and 20×, which did not benefit the model. Their evaluations were done on the Camelyon16
dataset, achieving the state of the art results in lesion-level tumor detection task, and an
independent dataset of 110 WSIs. [26]

Fu et al. fine-tuned an Inception-V4 network with 42 classes comprised of 28 tumor
types and 14 classes normal tissue. The source of their dataset was 17,396 fresh-frozen
whole slides available on TCGA repository. They extracted 512 by 512 pixels patches
with 50 pixels overlap in 20× magnification which resulted in 6,564,045, 1,357,892 and
6,641,462 patches from 8,067, 1,687 and 7,672 whole slides for the training, validation and
test datasets, respectively. To avoid any bias caused by differences in image preparation
process, they randomly selected 80% slides of each laboratory for the training dataset.
This network was trained with 6,564,045 patches extracted from 8,067 wholes slides in
which were cleaned by removing the uninformative and blurry patches. They trained the
mentioned network as a classifier but the ultimate goal was utilizing it as a histopathology
patch feature extractor to study the relationship between the deep features extracted by
the networks, which they called computational histopathological features, and genomic
driver alterations, whole transcriptomes and survival. This was done by extracting 1,536-
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dimensional features from the last layer of their trained model by feeding 14 Million patch
to it. [13]

Wei et al. trained a ResNet model with 18 layers to classify a patch of Lung Adeno-
carcinoma to one of the 5 histologic patterns: Lepidic, Acinar, Papillary, Micropapillary,
and Solid or label it as Benign. Using this model, they could identify major and minor
histologic patterns in a whole slide which are both important information considering the
fact that a WSI usually contains a mix of these patterns and could help pathologists with
preparing the documentations needed for each patient. Their dataset was made up of
422 Formalin-Fixed Paraffin-Embedded (FFPE) whole slides scanned at 20× magnifica-
tion which were randomly divided into 245, 34 and 143 slides for training, validation and
test sets. To create the dataset, they divided each slide in the training set into 4,161
variable size crops and the validation slides into 1,068 224 by 224 pixel patches. Then
these images were manually labeled by three pathologists. Due to the variable size of the
training crops, a sliding window was used to produce fix sized patches from each crop at
the training time. To find the right model size, they did tests on ResNets with 18, 34, 50,
101, and 152 layers which resulted in the same performance for all of the models so they
chose the 18-layer version. Finally, comparing the results of their trained model against the
performance of the three pathologists showed the model could outperform the pathologists
using three different metrics, ”Average Kappa Score”, ”Average Agreement” and ”Robust
Agreement”.[43]

2.3 DenseNet Architecture

DenseNet was introduced based on the idea that using shorter connections between the
input and output layers of CNNs, could give it the potential to get deeper, more accurate
and more efficient. The general architecture of the DenseNet is made up of several, generally
four, dense blocks (see Figure 2.1). Each of these dense blocks contains a number of layers
where each layer is connected to all of the subsequent layers in a block. This means if a
dense block contains l layers, there would be a total of l(l+1)

2
connections and the reason

behind this design is maximizing the flow of information between the layers. Having the
same feature map size for the layers in the dense block, all of the feature maps generated
by the proceeding layers are concatenated to the output feature maps of a layer.

Each layer is comprised of a sequence of batch normalization, ReLU and a 3 by 3
convolutions. If each layer generates k feature maps, the number features that the layer l
would take as input would be k0+k×(l−1). The hyperparameter k is called “growth rate”.
Due to the densely connected design of the network, each layer takes a large number of

7



Figure 2.1: A 5-layer dense block with a growth rate of k =4. Each layer takes all preceding
feature-maps as input [19].

feature maps as input. That is why a layer composed of a sequence of batch normalization,
ReLU and a 1 by 1 convolution, called “bottleneck layer” is added before each layer with
3 × 3 convolution to reduce to the number of layer input feature maps, generally to 4k,
and decrease the computational cost.

“Transition layers”, consisted of a sequence of batch normalization, a 1× 1 convolution
and a 2 × 2 average pooling, have been used between the consecutive dense blocks, to
perform down-sampling of the feature maps as it is an important part of CNNs. Also,
to make the network more compact, a hyperparameter β, where 0 < β ≤ 1 , is used to
decrease the m output feature maps of the dense block to bβmc. β is generally set to
0.5. The experiments have shown that this approach results in avoiding the generation of
redundant features by the network.

The DenseNet architecture, Figure 2.2, brings a number of benefits such as:
(i) By utilizing the densely connected layers pattern as a method to resolve the vanishing
gradient problem, this architecture can get deeper and more accurate without a decrease
in performance.
(ii) In addition, this architecture needs fewer parameters compared to the other networks
considering the fact that instead of relearning necessary feature maps at each layer, it reuses
the features by passing the information taken from the previous layers and concatenating
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them to the new feature maps generated at the current layer. For example, DenseNet
could achieve the same level of accuracy requiring around 1

3
of the parameters used in the

ResNet architecture.
(iii) Due to the fact that there is a short path between the loss function and each layer
in this network, it can be said that there is more supervision on the features produced by
each layer. This “deep supervision” can result in learning more discriminative features by
the intermediate layers which is highly desirable for image representation tasks.
(iv) DenseNet can achieve competitive results with very narrow layers, set by the growth
rate. The reason could be the accessibility of the preceding features at each layer of a
block which helps producing a “collective knowledge” in the network. Also, the growth
rate controls the amount of new information produced at each layer and can avoid over-
fitting by acting as a regularizer.

Figure 2.2: A detailed architecture of DenseNet with input size of 224×224, Image Source.

A well-known example of using DenseNet in a medical imaging task is CheXNet [27]
which is a DenseNet-121 network architecture trained with over 100,000 X-ray images.
CheXNet is able to detect all 14 diseases in the ChestX-ray14 dataset with a higher per-
formance than radiologists.
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3. Tissue Region Extraction

3.1 Introduction

WSIs can not be directly fed to the network as they are too large to be processed (a typical
WSI is usually larger than 50000 × 50000 pixels). A common solution to this problem is
to extract patches from the slide as its representatives. To perform the patch selection,
the question arises “where should the patches be extracted from?” which is the problem
of specifying the regions of interest. One of the ways to tackle this problem is to get
the regions of interest of the slides annotated by histopathologists. However, this is a
tedious and time-consuming task for the pathologists and is also subject to errors and
variability. Another way that currently seems to be more popular is automating this task.
The problem of automatic WSI annotation can be broken down into steps, all starting with
removing the background. The background is part of the glass slides that do not contain
any tissue. This background appears very bright in digital images and its segmentation
might be considered as a rather easy task. However, to stain variations, debris and many
artifacts (tissue folds, air bubbles, etc.) background segmentation, as the first major step
for WSI processing, is practically a difficult task.

In this chapter, the performance of the U-Net topology with different backbones in
the task of WSI background removal is investigated and an algorithm with close to 100%
sensitivity and specificity is proposed which can be used as a highly improved substitute
for the tissue mask generator function and also added to the Yottixel algorithm to increase
its performance (both explained in 4.3.2).

3.1.1 Problem Definition

As the name suggests, the goal in the problem of background removal or tissue segmen-
tation in histopathology images is to remove irrelevant and uninformative pixels as much
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as possible with the minimum damage to the tissue pixels. Since histopathology image
analysis is generally the last step for the diagnosis of many diseases such as cancer, inflam-
mation and infection, it is crucial to avoid losing tissue pixels. This adds an important
consideration for the evaluation of the algorithm proposed for this problem which states
that the sensitivity of the segmentation algorithm has more importance than its specificity
and should be very high.

3.1.2 Importance and Applications

In many histopathology image analysis tasks, such as patch extraction for training a net-
work, specifying the tissue parts is the first step. So segmenting the tissue precisely is a
prerequisite for an effective algorithm. On the other hand, if this step is not performed
well, irrelevant parts may confuse the algorithm (see Figure 3.1).

Tissue Segmentation

Figure 3.1: Using tissue segmentation for patch extraction

Tissue segmentation can be used to speed up the digital pathology slide scanners. These
scanners are used to digitize glass slides containing tissue specimens and generate WSIs.
While scanning, the focus depth of the scanner must be adjusted for different tissue regions
due to variable tissue types. This creates the need for scanners to identify the tissue areas
on the glass slide. This step should be done precisely; if a mistake occurs during scanning,
some parts of the slide will be scanned blurry which has the potential for causing problems
in the further analysis tasks since the data is lost, there is no way to fix it in the following
steps of the workflow (see Figure 3.2). Currently, a lab technician manually checks every
slide after scanning, and re-scans the corrupted slides which is a tedious and expensive
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procedure. Extracting the tissue parts of the slide before starting the scanning, can reduce
the time and cost of this process while doing it at a higher precision [2, 29].

Blurry

Clear

Blurry

Figure 3.2: Different parts of a scanned slide having different clarities

3.1.3 Challenges

The problem of tissue segmentation may seem easy in some cases (Figure 3.3) but it has
its own challenges. These challenges can be divided into two types: (i) The ones that
are related to the tissue type. For instance, air sacs in the lung, and fatty tissue which
could appear in many tissue types, may confuse algorithms due to their similarity to the
background (i.e., lack of complex texture). (ii) The other category is artifacts which include
extra or weak stain, dirt, air bubbles, broken glass and marker traces (Figure 3.4).

3.2 Dataset Creation and Training

3.2.1 Dataset

To create a dataset for tissue background segmentation, we used 244 WSIs randomly
selected from different organs such as brain, breast, kidney, and lung. As one of the
challenges of histopathology image analysis is the WSI size, a WSI could be as large as
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Figure 3.3: Simple cases for tissue segmentation. These samples are segmented by a
simple handcrafted method.

100,000 by 100,000 pixels, labeling each pixel was not practical. To overcome this problem,
we chose to work with the thumbnails, which are generally around 1× magnification. In
addition to easier labeling, this has the advantage of faster computation.

Creating tissue masks was performed in 2.5x magnification as we found it to be the
lowest magnification that still allows us to distinguish the tissue parts from the background
in challenging cases such as poor staining. The labeling process is comprised of 3 steps
(Figure 3.5):
(i) First, we developed a handcrafted algorithm to create initial masks for every thumbnail.
This algorithm applies binary thresholding on the gray-scale thumbnails and does some
processing based on the size of contours and their distances1 (see Algorithm 1).
(ii) After that, the initial masks were refined manually to make sure that all tissue regions
are selected and noise and artifacts are removed as much as possible. At this step, morpho-
logical dilation was performed on difficult cases, to make sure all tissue parts are preserved
2.
(iii) Finally, each pair of mask and thumbnail was resized to make each dimension less than
1024 pixels, preserving the aspect ratio, to make the images small enough to be fed to the
network.

1Implemented by Abtin Riasatian
2Done by Maral Rasoolijaberi
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(a) Lung tissue with Air Sacs (b) Fatty Tissue

(c) Extra Stain in Background (d) Poor Staining (e) Dirty Glass Slide

Figure 3.4: Common challenges of the tissue segmentation task. (a) and
(b) are examples for challenges caused by tissue type. (c), (d) and (e)
are instances of challenges caused by artifacts.

3.2.2 Training - Model Architecture

U-Net, which is a CNN with a U-shape architecture, is made up of two parts, called encoder
and decoder. The first sub-network, known as the encoder, extracts high-level features to
capture the image content. The decoder subnetwork, also known as the expansion part,
creates the desired segmentation map. Figure 3.6 shows the proposed network architecture.
U-Net-based deep networks, the same as U-Net, include two encoder and decoder sub-
networks. As the input image passes through the first sub-network, higher-level features
are extracted. In the next sub-network, deep feature maps are combined with low-level
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Algorithm 1 Handcrafted Masking Method

1: chosenContours← []
2: rgbThmb← readInput()
3: binThmb← binaryThresholding(rgbThmb)
4: contours, hierarchy ← findContours(binThmb)
5: fatherContours← getContours(contours, hierarchy, 0) . Get the values is the first level of the

hierarchy tree as the fatherContours
6: append(chosenContours, fatherContours)
7: firstLevelChildren← getContours(contours, hierarchy, 1) . Get the values is the second level of

the hierarchy tree as the fatherContours
8: firstLevelChildren← sort(firstLevelChildren, key =′ area′)
9: append(chosenContours, firstLevelChildren[0])

10: i← 1
11: while firstLevelChildren[i].area > min(firstLevelChildren[i − 1].area ×

ratioThreshold, areaThreshold) do . Add contours until the ratio of
the contour’s area to the next
larger contour’s is greater than
a threshold

12: append(chosenContours, firstLevelChildren[i])
13: i← i + 1

14: for xinfirstLevelChildren do
15: distanceCondition← distanceToClosest(x, chosenContours) < distanceThreshold .

Add contours closer than a
threshold to one of the cur-
rently chosen ones

16: if distanceConditionand(xnotinchosenContours) then
17: append(chosenContours, x)

18: for xinfirstLevelChildren do
19: areaCondition← getArea(x) > areaThreshold
20: if areaConditionand(xnotinchosenContours) then
21: append(chosenContours, x)

22: drawContours(chosenContours, finalMask,′ white′) . Specifying the tissue areas
with the while color

23: for holeintextrminvert(binThmb) do
24: if holeMinThreshold < hole.area < holeMaxThreshold then
25: drawContours(hole, finalMask,′ black′) . Specifying the holes with the

black color

feature maps from the encoder sub-network. The spatial resolution of feature maps is
increased in the second sub-network so the output mask has the same size as the input
image. The connections between the encoder and decoder in U-Net architecture facilitate
the information propagation. In terms of connections in the U-Net architecture, feature
maps from the encoder part are cropped and concatenated to feature maps in the decoder
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Original Thumbnails Initial Masks Refined Masks

Figure 3.5: Steps of generating masks for two sample slides: (i) creating the initial masks
using a handcrafted algorithm (ii) refining the initial masks manually.

sub-network to retrieve local information. These connections enable the network to learn
from a few number of samples [33]. To improve the performance of U-Net, we applied
custom backbones on its architecture using Segmentation Models python library. The
encoder part of these customized networks is the feature extractor, i.e., complete network
architecture except the last fully connected layer, of a chosen network, e.g., MobileNet.
The decoder part consists of 5 decoder blocks with filters of size 256, 128, 64, 32 and 16 as
it gets deeper. The structure of each decoder block is made up of one 2d-upsampling layer
and two repetitions of 2d-convolution, batch-normalization and ReLU activation. Four skip
connections connect layers from the encoder part, usually the output of ReLU activation at
a certain layer of each encoder block, to the last four decoder blocks, after the up-sampling
layer. The last layer of the network is a 2d-convolution layer with Sigmoid activation. We
experimented with six different backbones (topologies) for U-Net-based solutions for tissue
segmentation which are introduced in Section 3.3.1.
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Feature Extractor of Different 

Architectures such as MobileNet

Figure 3.6: U-Net Topology

3.3 Experiments

3.3.1 Topologies and Training Process

We have experimented with 6 different network topologies including MobileNet [18],
VGG16 [34], EfficientNetB3 [38], ResNet50 [16], ResNext101 [44], and DenseNet121 [19]
as the backbone of U-Net model to find the most suitable ones for tissue segmentation. All
networks were trained for 50 epochs, with no early stopping, using Adam optimizer with
the learning rate of 1e − 4 on one NVIDIA Tesla V100 GPU with 32GB memory. After
running the experiments with two loss functions, (i) Jaccard Index and (ii) sensitivity plus
specificity. We chose the latter so the network tries to avoid the misclassification of tissue
parts as background while having a good performance at recognizing background. This is
due to the importance of the sensitivity in this problem (we have to find all tissue pixels).
The drawback of using Jaccard Index as the loss function was the relatively low sensitivity
of the results. The networks were initialized with ImageNet weights and were trained and
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evaluated with five-fold cross-validation 3. For each fold, 195 1024×1024 RGB images were
used as the input and binary masks with the same size as the label, or ground-truth, in
which pixel value 1 (positive) meant tissue and pixel value 0 (negative) meant background.
Input images and their corresponding masks were augmented by three transformations: (i)
Random rotation within the range of -180 and 180 degrees, (ii) random horizontal flipping,
and (iii) random vertical flipping.

The validation dataset contained 49 images for each fold. Considering the changes
in the validation loss for two networks, ResNext101 with around 51 million parameters
and EfficientNet-B3 with less than 18 million parameters, through 50 epochs, Figure 3.7,
it seems that both have the same pattern; 20 epochs appeared to be enough for proper
network training. This would take around 20 minutes for a medium-size network and 40
minutes for a large network which is a negligible cost considering the benefits of using
networks.

1 5 10 15 20 25 30 35 40 45 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Los
s

ResNext101_train_loss
ResNext101_validation_loss
EfficientNetB3_train_loss
EfficientNetB3_validation_loss

Figure 3.7: Training and validation loss for ResNext-101 and EfficientNet-B3

3Implemented by Abtin Riasatian
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3.3.2 Methods Chosen for Comparison

To compare our results against other methods, we used the same input images fed to our
networks as their input and calculated their performance against the ground-truth masks.
All methods were checked to be able to work with the given inputs.

We compared our results against four traditional computer vision methods4:
(i) FESI algorithm[5] is improved by changing the color space of the input image from
BGR to LAB and the value of the first two channels, lightness and red/green value, are
changed to maximum intensity value5. The color space of the resulting image is changed
to gray-scale and binarized using the mean value of the image as threshold. This binary
image is passed to the Gaussian filter instead of using the absolute value of the Laplacian of
the gray-scale image as done in the original paper. (ii) We used locate tissue cnts function
available in the open-source Python package, Tissuloc [7], as a recently developed method
for comparative purposes. We modified the function in a way that it uses the thumbnail
image as input. Also, all of the input parameters of the function are set to default values
except min tissue size which is set to 50 to make sure the algorithm would detect all
tissue parts. (iii) HistomicsTK Python library as one of the most popular libraries in the
histopathology domain. saliency.tissue detection.get tissue mask function was used as the
tissue segmentation method.

We set the input parameters deconvolve first to False, n thresholding steps to 1 and
min size threshold to 50.
(iv) Otsu binarization method as one of the well-known algorithms to classify pixels into
foreground and background. The RGB thumbnail images are first converted to gray-scale
and then the Otsu method is applied.

3.3.3 Performance Evaluation

In the test phase, we evaluated all methods using ground-truth masks via 5-fold cross-
validation. In addition to the processing time, four different metrics including Jaccard
index [2], Dice coefficient [1], sensitivity, and specificity [10], were measured. The definition
of these metrics are presented below:

4Implemented by Abtin Riasatian
5Taken from https://github.com/alexander-rakhlin/he stained fg extraction
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Jaccard =
TP

TP + FP + FN
, (3.1)

Dice =
2× TP

2× TP + FP + FN
, (3.2)

Sensitivity =
TP

TP + FN
, (3.3)

Specificity =
TN

TN + FP
, (3.4)

where TP, TN, FP, and FN denote the number of true positives, true negatives, false
positives, and false negatives, respectively. The segmented pixels are considered as positive
where they are labeled as tissue and vice versa.

3.3.4 Results and Analysis

In addition to Improved FESI and TissueLoc methods, we chose HistomicsTK tissue seg-
mentation and Otsu algorithm to compare our networks’ results against well-known meth-
ods for histopathology image analysis.

Table 3.1 shows that all networks, except VGG16, outperform all four handcrafted
methods considering their overall performance. The most important advantage of networks

Method Time (s) Jaccard Index Dice Coeff. Sensitivity Specificity
MobileNet 0.11 0.95 0.97 0.99 0.99
EfficientNet-B3 0.18 0.95 0.97 0.99 0.98
ResNet50 0.16 0.94 0.97 0.99 0.98
DenseNet121 0.16 0.93 0.96 0.99 0.98
ResNext101 0.50 0.93 0.96 0.99 0.98
VGG16 0.11 0.75 0.82 0.99 0.81
Improved FESI [5] 0.11 0.86 0.92 0.91 0.97
TissueLoc [7] 0.26 0.81 0.88 0.88 0.97
Otsu algorithm 0.02 0.81 0.89 0.82 0.99
Histomics-TK 0.13 0.78 0.87 0.79 0.99

Table 3.1: Summary of results: Comparing our networks with image-processing methods
(gray rows).
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over the handcrafted methods is their high sensitivity (≈ 99%) which almost guarantees
tissue preservation in the generated masks. It is also worth mentioning that the networks
have managed to generate very specific results while preserving the sensitivity, all of the
networks, except VGG-16 having greater than or equal to 98% specificity. In addition,
the speed of mask generation in the networks is as fast as handcrafted methods such as
Improved FESI and TissueLoc while achieving considerably higher Jaccard Index and Dice
Coefficients.

It can be seen that Jaccard Index for the networks with the best performances, namely
MobileNet and EfficientNet-B3, is 9% higher than the best handcrafted method, namely
Improved FESI. Also the box plot in Figure 3.8 indicates the stability of the networks’
results compared to the handcrafted methods.

To compare network backbones, it can be seen that MobileNet has shown the best
performance. Also, EfficientNet-B3 has been very competitive. The poor performance of
VGG-16 could be due to several reasons. First of all, this network has a large number of
parameters (more than 23 million) while it only has 66 layers compared to other networks
such as MobileNet with more than 8 million parameters and 128 layers and EfficientNet-B3
with around 18 million parameters and 418 layers. Also, the use of batch normalization and
ReLU activation layers in the convolution blocks in other architectures have the benefits
of avoiding internal covariate shift, which results in faster convergence, and keeping the
network sparse, causing the generalization error to decrease, respectively. Since VGG-16
lacks these layers in its architecture, it converges with difficulty.

Figure 3.9 depicts a visual overview of the proposed network results against the common
image-processing methods. Four different slides are shown in this figure, each having a
challenge. From left to right:

The first slide has its glass slide margin in the scanned slide which could be mistakenly
segmented as the tissue like in Otsu and HistomicsTK’s results.

The second example contains fat tissue, which is hard to segment due to its similarity
to the background color. A black marker trace can also be seen at the bottom left side
of the slide. Both EfficientNet-B3 and MobileNet networks have done a good job at this
example ignoring the marker trace and taking the fat as the tissue, which is desired. VGG-
16 has taken the fat part but has also labeled some dirt and the marker trace as the tissue.
However, all of the handcrafted methods have missed the fat and only the Improved FESI
algorithm has managed to ignore the marker trace but it is at the cost of losing more tissue
parts than other handcrafted methods, which is not a desirable behavior.

The challenge of the third slide is the bubble in the bottom right, formed during the
slide preparation. Also, there are some very small dirt and tissue parts on the slides
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which are good indicators of the algorithms’ sensitivity and specificity. MobileNet and
EfficientNet-B3 have labeled the bubble as background and also have correctly labeled
small tissue and dirt areas. It can be observed that the EffiecientNet-B3 network has been
more conservative about the tissue parts and have labeled more parts as tissue than the
MobileNet. This difference might be due to the higher specificity of the MobileNet. VGG-
16 has performed very badly, segmenting almost all of the slide as tissue. The improved
FESI and TissueLoc algorithms have performed well removing the artifact and dirt but
this is done by the price of losing some tissue parts, which is not negligible in this problem.
The HistomicsTK and Otsu algorithms have generated almost the same mask, failing to
remove the bubble in addition to losing some tissue parts.

The fourth slide is a lung tissue and contains air sacs which is another challenge for
the tissue segmentation algorithms. MobileNet and EfficientNet-B3 have a good overall
performance for this slide but seem to have lost a part of a small tissue at the right side
of the slide. VGG-16 has also generated a pretty good segmentation mask, losing just
some small tissue parts. The Improved FESI algorithm has missed a lot of tissue parts
which means low sensitivity while the TissueLoc has segmented a lot of background as the
tissue which means low specificity. The Otsu and HistomicsTK methods have done well
with their only problem not being conservative enough which results in minor tissue loss
in their results.

3.4 Conclusion

Tissue background segmentation is crucial for patch selection which is required for training
deep networks. In this chapter, we have compared the performance of U-Net with various
custom topologies (backbones) for the identification of tissue regions in whole slide images.
Using different networks combines the strength of current state-of-the-art CNNs with the
custom architecture of the U-Net model for image segmentation. Whereas U-Net topologies
can generate masks with 99% sensitivity, handcrafted methods struggled to approach high
80%. MobileNet and EfficientNet-B3 appeared to be the best backbone topologies for the
U-Net.

The main contributions of this part are creating a manually labeled dataset consisting
of 244 thumbnails, chosen from the publicly available TCGA dataset. As well, this chapter
compared the performance of different encoders as the backbone of U-Net topology for the
tissue segmentation task and proposing a tailored algorithm for this problem which can be
used as a replacement for the tissue segmentation functions in the KimiaNet pipeline.
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Figure 3.8: Jaccard Index Boxplot for different methods
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Figure 3.9: Example results of different methods in tissue segmentation task for
challenging cases.
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4. Data Preparation and Training

4.1 Public Image Datasets

Using public datasets has the benefit of reproducibility of research results in addition to the
possibility of evaluating improvements or new methods against the current ones. Public
datasets also help conduct high-quality research due to having a more realistic distribution
of data [30, 35]. Two examples of publicly available databases in the area of histopathology,
which could be used to create smaller datasets, are TCGA, containing 30,072 WSIs of
different cancer types, and CAMELYON17 with 1000 WSIs of breast cancer (lymph node
metastasis)[23].

TCGA repository (i.e., Genomic Data Commons, GDC) with 11,007 cases containing
30,072 WSIs overall is a publicly available repository [15, 41, 9]. The WSIs are depicting 25
organs (primary sites) with 32 cancer subtypes which can be seen in Table 4.1. Each case is
associated with a lot of information such as “Morphology”, “Primary Diagnosis”, “Tissue
or Organ of origin”, “Patient Age at the time of Diagnosis”, “Tumor Stage”, “Gender”,
“Race” and “Ethnicity”.

4.2 Creating a Reusable Dataset

The objective of this part was to create a general dataset for different research purposes
rather than a dataset only limited to this research. So we had to impose some additional
constraints. The first step was filtering out the frozen section biopsy WSIs due to their
low quality which could result in negative effects on the learning process of the network.
This means that only permanent section biopsy WSIs were used in this dataset and it is
done by selecting the “Diagnostic Slides” option under the “Experimental Strategy” bar
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of the “Files” tab on GDC repository web site. Since the only option for the “Program”
bar under the “Cases” tab is “TCGA”, we do not need to specify our program.

We tried to divide the data into the most detailed classes so it could be used for
different research purposes by simply merging some classes with respect to one aspect or
characteristic of the classes. Therefore, each class is made unique by a combination of
three characteristics of the cases which are “morphology”, “primary diagnosis” and “tissue
or organ of origin”. For example, a class of the dataset had the label of [’8520/3’, ’Lobular
carcinoma, NOS’, ’Breast, NOS’] which means that its morphology code is 8520/3, its
primary diagnosis is Lobular carcinoma and the tissue is taken from the Breast.

To clean the data, the cases having at least one of the three characteristics as ’Not
Reported’ or missing were removed. Next, classes with sample count of less than 20 WSIs
were removed. The reason behind this was to have at least 2 samples for the test dataset
for each class, assuming the test dataset ratio at 20%.

4.3 Dataset for KimiaNet

4.3.1 Dividing the Whole Slide Images

We used the general dataset explained in the last section with some changes and consid-
erations for creating the train, validation and test datasets for this study. We chose the
validation and test samples from the cases with only one WSI for the sake of simplicity
of performance calculation. For each class of the general dataset, cases with a single WSI
were separated and shuffled. Then two groups of samples with the size of ten percent
of that class were added to validation and test datasets. Finally, the WSIs with missing
magnification information or a magnification less than 20× were removed. This results
in a test dataset with 744 slides accounting for around 10% of the data. The validation
set had 741 slides, also almost 10% of the data. The rest of the data, containing 7,126
WSIs and about 80% of the whole dataset of permanent cases of TCGA after cleaning was
assigned to the training set. While the chosen ratio for train, validation and test datasets
is common in machine learning but the validation and test datasets could even be smaller
due to the large size of the whole dataset. The reason behind this statement is that it is
expected that a set randomly chosen from the a large dataset is more likely to capture its
distribution.

We also used a different WSI labeling approach in the dataset which is based on the
tumor types. Each case in TCGA dataset is assigned to one of the 32 tumor types shown
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in Table 4.1. Each tumor type is divided into a number of tumor subtypes, for example,
Endocrine tumor type has the subtypes of Thyroid carcinoma (THCA), Adrenocortical
carcinoma (ACC) and Pheochromocytoma and Paraganglioma (PCPG). Using tumor types
is a common way of labeling the data in the recent studies [9] and it lets us do two types
of search, (i) searching among all of the tumor types, i.e., horizontal search, and (ii)
searching among tumor subtypes of a specific tumor type, i.e., vertical search. Methods of
searching and evaluating the proposed algorithms will be discussed in detail in Chapter 5
(Experiments). It is worth mentioning that two of the classes of the 32 tumor types were
removed during the process of data cleaning mentioned earlier in this subsection and also
in section 4.2. The removed classes were UCEC (Uterine Corpus Endometrial Carcinoma)
due to the missing morphology information, and DLBC (Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma) class for not having any sub-classes, with respect to the labeling scheme
mentioned in section 4.2, with at least 20 cases1.

4.3.2 Patch Extraction

Since the WSIs are too large to be fed to the neural networks, small size images within
WSIs, called patches, should be extracted. We chose the size of the patches to be 1000×
1000 at 20× magnification which is the largest size that we could feed to a neural network
considering available computational resources. We chose to work at 20× magnification
because 10× magnification could not provide enough details of tissue, e.g., nuclei details,
while 40× magnification would result in a large number of patches and very long training
time as a result. Figure 4.1 shows sample images for TCGA dataset.

For patch extraction from the test WSIs, first the 1× magnification of each WSI is
extracted for preprocessing which results in locating the patches to be extracted2. The
preprocessing at 1×magnification is done by first removing the red, blue and green markers
from the thumbnail using a public library3. After that, the background pixels are removed
by doing some process on the standard deviation of the three channel values of each pixel
and performing thresholding on the output of moving an average kernel on the thumbnail
in HSD color space. Finally, the non-overlapping patches are extracted by moving through
the tissue background mask and checking whether 90% or more of the patch contains tissue,

1Implementation of the process explained in this subsection were done by Abtin Riasatian, with Morteza
Babaie, Prof.Tizhoosh and Hany Kashani helping in discussions

2We cannot divide the entire WSI to patches since the number of patches would be too large prohibitively
prolonging the learning process. Besides, o not all the patches are informative enough

3Python WSI Preprocessing
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Figure 4.1: Sample patches from TCGA dataset (see Table 4.1 for abbreviations).

i.e., less than 10% background, and it is not low contrast. This resulted in 116,088 patches
for the test dataset. This process was parallelized using the Dask python library4.

Due to the large number of WSIs in the training and validation sets, we had to use a
different method for patch extraction. We applied the mosaic generation of the Yottixel
search engine [21]. This algorithm first partitions the 5× magnification of each WSI into
9 different regions based on their color decomposition using K-means algorithm (the value
9 is chosen empirically based on the maximum number of visually different tissue types
from the perspective of a pathologist). After that, 15% of the patches of each partition
is randomly extracted with the constraint of spatial diversity which was implemented by
another K-means algorithm. These patches can be seen as a way to represent the WSI
with less amount of data. However, they may not be suitable for training a reliable cancer
feature extractor since not all of the patches are from cancerous areas in WSI (TCGA data

4The process explained in this subsection were implemented by Abtin Riasatian with the help of Kimia
Lab members: (i) The code was parallelized by Shivam Kalra. (ii) Amir Safarpoor and Sobhan Shafiei’s
Tissue Segmentation and Contrast Checking codes were reused
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Algorithm 2 Modified Yottixel Algorithm

1: mI ← 20× . Magnification for indexing
2: mC ← 5× . Magnification for clustering
3: l← 1000 . Patch size l × l at mI

4: nC ← 9 . Number of clusters at mC

5: p← 15% . Mosaic percentage
6: TCell ← 20% . Top cases among sorted cellularity
7: A← readWSI(fileName) . Read an image
8: procedure YottixelIndex(A,mI ,mC , l, nC , p, TCell)
9: S← Segment(A,mC) . Separate tissue/background

10: P ← Patching(A,S,mI , l) . Get all patches
11: C ← KMeansCluster(P ) . Cluster patches
12: M ← getMosaic(C, p,A) . Select a mosaic
13: M ′ ← cellMosaic(M,TCell) . Keep cell patches
14: F ← Network(M ′) . Get features
15: return F . Set of features for A

is not labeled). As most TCGA images depict high-grade carcinomas, a nuclei segmentation
function was implemented to use only the top 20% of the patches with respect to their cell
nuclei amount (assigning high cellularity to high-grade carcinoma). To measure the cell
nuclei ratio of each patch, first color deconvolution is applied to convert the color space
from RGB to hematoxylin and eosin using the HistomicsTK library. Then the hematoxylin
channel was binarized using an empirical threshold5 which results in the nuclei mask of
the patch (Figure 4.2). The cell nuclei ratio of each patch is calculated by the number of
“positive” pixels in the nuclei mas divided by the area of the patch. In the end, patches
are sorted according to their cell nuclei ratio and the top 20% of them are chosen for the
final dataset if their file size is larger than 110 KB to remove background patches (see
Algorithm 2). This resulted in the final training and validation datasets with 242,202 and
24,646 patches, respectively6. Figure 4.3 depicts an example of patches extracted by the
Yottixel algorithm and filtered with respect to their nuclei ratio in the next step.

5A possible improvement is to use Otsu thresholding
6The coordinates of these patches were provided by Shivam Kalra, the patch extraction and nuclei

segmentation codes were implemented by Abtin Riasatian
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Figure 4.2: Examples of cell nuclei segmentation

4.3.3 Nuclei Ratio, a Heuristic for Patch Labelling

In the last subsection, it is mentioned that patches in training and validation datasets
are chosen based on their nuclei ratio. Since these patches, which are expected to be the
cancerous regions, will be used for training the network and are labeled using the tumor
type information of the WSI that they are extracted from. This approach is a solution for
the problem of labeling the patches and is used as a replacement for manually annotating
the WSI which can only be done by a pathologist and is an expensive and time-consuming
process. But what is the rationale behind this approach?

As uncontrolled cell growth is a common sign for carcinomas, mainly seen in areas with
unusually high presence of cell nuclei (e.g., small cell carcinoma is extremely hypercellular),
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Figure 4.3: A WSI and its selected mosaic patches (left), Yottixel mosaic with 80 patches
(middle), modified cellMosaic with 16 patches (right).

nuclei ratio can be used to filter out most of the benign/healthy patches [42]. We chose
nuclei ratio to automate patch selection, an indirect or soft way of patch labeling, as this
is one of the common features of cancer that spans most neoplasms, especially high-grade
carcinomas. This means that we can use nuclei ratio to select patches with a higher
probability of malignant, i.e., cancerous. However, high nuclei ratio can also be observed
in inflammatory tissue and non-neoplastic cell types in some cases [13] but we believe that
the advantages would outweigh the drawbacks of this approach. Since a WSI contains
several thousand cells with many of them being cancerous in the TCGA dataset, it is very
unlikely to completely miss tumors by patching a WSI.

4.4 Training

We trained/fine-tuned the DenseNet-121 architecture with four different settings to be able
to investigate the effect of fine-tuning a network with a dataset tailored for histopathology
on its performance compared to the available general-purpose networks. So we fine-tuned
the last dense block, the last two dense blocks and the last three dense blocks of DenseNet-
121 architecture and named them KimiaNet-I, KimiaNet-II, KimiaNet-III, respectively.
We also trained the whole DenseNet-121 which we call KimiaNet-IV (all weights are re-
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Figure 4.4: DenseNet architecture of KimiaNet.

learned). The general architecture of the KimiaNets can be seen in Figure 4.4

The Pytorch framework was used to implement the training and testing of the networks.
Each model was trained/fine-tuned on 4 Tesla V100 GPUs with 32GB memory for each
GPU. The size of batches were set to 256, 128, 128 and 64 for KimiaNet-I, KimiaNet-
II, KimiaNet-III and KimiaNet-IV, respectively. Each network was trained for about 20
epochs with the early stopping conditioned on three consecutive decreases in the validation
accuracy. The epoch time for models I to IV was around 60, 75, 90 and 110 minutes,
respectively. Adam optimizer was used for all models with initialized the learning rate of
0.0001 and scheduled to decrease the learning rate by a factor of ten (γ = 0.1) every 5
epoch. Each model was initialized with ImageNet pre-trained weights. The input of the
network was batches of 1000×1000 patches of 20× magnification and one of the 30 classes
of tumor types was assigned to each patch as its label (Table 4.1). The loss function was
set to cross-entropy for training these classifiers7.

4.5 Conclusion

In this chapter, the creation of a dataset for training KimiaNet was discussed. This dataset
consists of 242,202, 24,646 and 116088 patches of size 1000× 1000 pixels for training, vali-
dation and test datasets, respectively, extracted at 20× magnification from 7,126, 741 and
744 WSIs. These WSIs were extracted from the publicly available TCGA repository. The

7Implemented by Kimia Lab member Danial Maleki
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label of each WSI is employed as a soft label for its patches using a proposed clustering-
based mosaic approach with a constraint on high cellularity to facilitate the training. To
investigate the effect of fine-tuning a network using histopathology images on the perfor-
mance of histopathology image retrieval, the DenseNet-121 topology was trained in four
configurations, namely KimiaNet I, II, III and IV, in which the last dense block, the last two
dense blocks, the last three dense blocks and the whole network was trained, respectively.
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Code Primary Diagnosis #Patients
ACC Adrenocortical Carcinoma 86
BLCA Bladder Urothelial Carcinoma 410
BRCA Breast Invasive Carcinoma 1097
CESC Cervical Squamous Cell Carcinoma and Endocervical

Adenoc.
304

CHOL Cholangiocarcinoma 51
COAD Colon Adenocarcinoma 459
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48
ESCA Esophageal Carcinoma 185
GBM Glioblastoma Multiforme 604
HNSC Head and Neck Squamous Cell Carcinoma 473
KICH Kidney Chromophobe 112
KIRC Kidney Renal Clear Cell Carcinoma 537
KIRP Kidney Renal Papillary Cell Carcinoma 290
LGG Brain Lower Grade Glioma 513
LIHC Liver Hepatocellular Carcinoma 376
LUAD Lung Adenocarcinoma 522
LUSC Lung Squamous Cell Carcinoma 504
MESO Mesothelioma 86
OV Ovarian Serous Cystadenocarcinoma 590
PAAD Pancreatic Adenocarcinoma 185
PCPG Pheochromocytoma and Paraganglioma 179
PRAD Prostate Adenocarcinoma 499
READ Rectum Adenocarcinoma 170
SARC Sarcoma 261
SKCM Skin Cutaneous Melanoma 469
STAD Stomach Adenocarcinoma 442
TGCT Testicular Germ Cell Tumors 150
THCA Thyroid Carcinoma 507
THYM Thymoma 124
UCEC Uterine Corpus Endometrial Carcinoma 558
UCS Uterine Carcinosarcoma 57
UVM Uveal Melanoma 80

Table 4.1: The TCGA codes (in alphabetical order) of all 32 primary diagnoses and corre-
sponding number of evidently diagnosed patients in the dataset
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5. Experiments

After fine-tuning/training KimiaNet models I to IV, we designed a number of experiments
to assess the performance of these models as a feature extractor, i.e., how representative
these features are. In all of the following experiments, the features are extracted from the
last pooling layer of the network.

To evaluate the quality of the features extracted by the models trained, two types of
experiments have been done on the TCGA dataset, i.e., horizontal and vertical search,
which will be discussed in the following subsections1.

5.1 Horizontal Search and Analysis of the Results

In horizontal search, we measure the accuracy of the algorithm in finding the WSI with a
similar tumor type to the query WSI among all WSIs in the dataset.

In this experiment, the following tasks were performed for networks KimiaNet I to IV
and DenseNet-121 with ImageNet pre-trained weights. First, features are extracted for
each patch in the TCGA test dataset (116,088 patches). Then these features are barcoded.
Barcoding is the process of binarization of the features based on moving a 1-dimensional
window with the size of 2 on the features and outputting value one if the value on the left
was smaller or equal to the value on the right and zero otherwise [39, 21]. An example of
barcoding is illustrated in diagram 5.1.

After that we used the “leave-one-out” approach by repeatedly iterating over all WSIs,
taking one as the query WSI and the rest as the database. The distance between the query
WSI and the rest of the WSIs were calculated based on the “median-of-min” approach.

1A code implemented by Shivam Kalra was reused for these experiments. The adaptation of the code
to the project, some debugging and implementing additional features were done by Abtin Riasatian with
Morteza Babaei’s help in relevant discussions. The codes were mostly executed by Morteza Babaei.
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make the length of the barcoded 
vector the same as the input vector

Figure 5.1: An example of barcoding a feature vector with the length of 10

In this method, the minimum Hamming distance between the barcoded features of each
patch of the query WSI and the barcoded features of all patches of each of the WSIs
in the database is calculated and then the medium of all minimum distances is taken as
the distance between the query WSI and another WSI. Then the 3-Nearest Neighbours of
the query WSI are considered as the suggestions of the algorithm for WSIs similar to the
query. The label of the majority determines the label for the query WSI. The results of
this experiment are reported in Table 5.1 and Diagram 5.2

As Table 5.1 demonstrates, KimiaNet I, in which only the last dense block was fine-
tuned, has a considerable increase in performance (with accuracy 73.6 ± 18.0) compared
to DenseNet-121 initialized with ImageNet weights (with accuracy 44.8 ± 19.1). As more
blocks are fine-tuned the average accuracy increases and their standard deviation decreases,
with performances 76.2±16.6, 81.8±13.3 and 85.4±11.1 for KimiaNets II to IV. To compare
the model with the best results, KimiaNet IV with maximum accuracy for all tumor types
except one, against pre-trained DenseNet, as a commonly used image feature extractor
and classifier, we can see that the performance is, on average, improved by 40.7 ± 12.9.
The maximum amount of improvement was for melanocytic tumor type, 68%, while brain
that had the lowest level of improvement, 27%, reached 99% in KimiaNet IV. Figure 5.3
compares results of DenseNet and KimiaNet (IV) for an example query WSI.
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Tumor Type Patient # DN I II III IV diff
Brain 74 72 96 97 99 99 +27
Breast 91 53 86 87 91 91 +38
Endocrine 72 65 86 89 93 92 +28
Gastro. 88 53 74 81 80 84 +31
Gynaec. 30 13 43 40 47 57 +44
Head/neck 32 25 75 69 81 88 +63
Liver 51 43 67 69 80 88 +45
Melanocytic 28 18 57 54 75 86 +68
Mesenchymal 13 23 38 62 69 69 +46
Prostate/testis 53 57 89 91 94 96 +39
Pulmonary 86 56 83 86 85 86 +30
Urinary tract 123 59 89 89 88 89 +30

Table 5.1: 3-Nearest Neighbors accuracy (%) for the horizon-
tal search among 744 WSIs for differently fine-tuned/trained
KimiaNet. The best results are highlighted. The last column
shows the improvement of accuracy (%) through KimiaNet
compared to DenseNet.
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Figure 5.2: Horizontal search results (accuracy, in percentage)
for TCGA data.
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Query WSI: PCPG

PCPG PCPG PCPG

PCPG PCPG ACC

Query WSI: OV

OV OV OV

CESC OV CESC

Figure 5.3: Results for two sample query WSIs (left): Corresponding search results based
on KimiaNet IV features (top row for each query WSI) and DenseNet features (bottom
row for each query WSI) and their assigned TCGA primary diagnosis. For TCGA project
IDs see Table 4.1

5.2 Vertical Search and Analysis of the Results

In vertical search, we measure the performance of the algorithm in finding the WSI with
the similar tumor subtype to the query WSI among all WSIs of the same tumor site
in the dataset. For example, a query WSI is given with the subtype label “Low Grade
Glioma” (LGG) which is a brain tumor. So the algorithm is supposed to search among all
WSIs in the same tumor site, brain in this case, and suggest WSIs with the same tumor
subtype, namely LGG. In vertical search, the discriminative power of the feature extractor
for distinguishing the subtypes of tumors in the same site is evaluated, in this example
distinguishing LGG WSIs from the other brain tumor, namely “Glioblastoma Multiforme”
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(GBM).

This experiment was performed similar to the experiment for the horizontal search
(leave-one-out validation) except the search space for each query WSI was restricted to the
same tumor site as the query. Also, we realized that accuracy may not be a good metric
to evaluate the performance of this type of search; if there is a biased algorithm which
classifies all WSIs of the brain site as GBM, the accuracy for GBM would be 100% while
the accuracy for LGG is 0%. These results are not easy to translate and cannot show how
well the algorithm is performing (balance between sensitivity and specificity). For this
reason, we chose to use the F1-measure as the evaluation metric for this type of search
where for each subtype, the query subtype is taken as the True label and all other subtypes
are considered as the False label. The F1-measure is a harmonic mean of sensitivity and
specificity [8].

The results of each model for the vertical search are shown in Table 5.2. As the
results suggest, KimiaNet models, especially III and IV, have considerably improved the
performance of the pre-trained DenseNet-121. Although the model with the most number
of maximum values was KimiaNet IV, with 15 maximum values, KimiaNet III had also a
good performance with 13 maximum values. Also, the performance improvements, from
the pre-trained DenseNet-121, have been greater for the subtypes with few slides. For
example, the F1-score for Uveal Melanoma (UVM), with only 4 slides, was remarkably
increased from 0% to 86% in KimiaNet III and 67% in KimiaNet IV. Another example is
Mesothelioma (MESO), having only 5 slides, rose from 0% to 33% and 75% in KimiaNets
III and IV, respectively. This shows that the KimiaNet models can perform well even
on the low data regimes while getting better results than the available feature extractors.
For example, F1-scores for Stomach Adenocarcinoma (STAD) and Lung Squamous Cell
Carcinoma (LUSC), having 30 and 43 slides, have been significantly enhanced from 63%
and 69% in pre-trained DenseNet-121 to 86% and 84% in KimiaNet IV, respectively.

To compare the discrimination power of the features extracted by KimiaNet-IV against
the pre-trained DenseNet-121, a fixed number of patches were randomly chosen from each
tumor type and fed to both networks. To be able to visualize the features in 2-d, their
dimensionalities were reduced using the t-SNE method. Figures 5.4 and 5.5 demonstrate
the huge affect of training DenseNet-121 with histopathology data. As can be observed,
the features of different tumor types generated by KimiaNet-IV are clearly separated from
each other while almost none of the tumor types have a specific boundary for the features
generated by DensetNet-121.
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Site Subtype nslides DN I II III IV
Brain LGG 39 71 75 82 85 81
Brain GBM 35 77 73 80 83 81
Endocrine THCA 51 94 98 98 99 100
Endocrine ACC 6 25 25 20 55 44
Endocrine PCPG 15 57 75 73 80 85
Gastro. ESCA 14 50 73 50 83 78
Gastro. COAD 32 65 76 75 75 76
Gastro. STAD 30 63 77 73 84 86
Gastro. READ 12 22 30 26 29 30
Gynaeco. UCS 30 75 86 60 75 86
Gynaeco. CESC 17 88 97 84 97 94
Gynaeco. OV 10 67 89 74 95 95
Liver, panc. CHOL 4 29 40 31 40 40
Liver, panc. LIHC 35 86 94 87 97 96
Liver, panc. PAAD 12 70 73 56 82 76
Melanocytic SKCM 24 92 94 94 98 94
Melanocytic UVM 4 0 40 40 86 67
Prostate/testis PRAD 40 99 100 99 100 100
Prostate/testis TGCT 13 96 100 96 100 100
Pulmonary LUAD 38 65 73 72 69 78
Pulmonary LUSC 43 69 74 74 75 84
Pulmonary MESO 5 0 0 0 33 75
Urinary tract BLCA 34 90 96 93 93 93
Urinary tract KIRC 50 83 95 99 97 97
Urinary tract KIRP 28 77 91 91 91 91
Urinary tract KICH 11 48 86 78 84 86

Table 5.2: k-NN results, k=3, for the vertical search among 744
WSIs. The best results are highlighted. F1-measure has been
reported here instead of simple classification accuracy. For TCGA
codes see Table 4.1 in Appendix.

5.3 Conclusion

In this chapter, two types of search, namely horizontal and vertical search, were conducted
in order to have a measurement of the effect of fine-tuning the DenseNet-121 network with
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histopathology images on the histopathology image search task. In the horizontal search
experiment, KimiaNet-IV achieved the highest accuracy for all of the tumor types (ex-
cept for “Endocrine”) with 92% having only 1% gap with the highest accuracy reached
by KimiaNet-III. Also, the results of the vertical search experiment illustrated that the
features generated by KimiaNet-IV are more informative than the other KimiaNet ver-
sions and pre-trained DenseNet-121. Additionally, the t-SNE plots showed that the deep
features generated by KimiaNet form visually distinguishable clusters where each cluster
is associated with a cancer sub-type. This is while the DenseNet-121’s deep features of
different classes were mostly mixed together. Moreover, KimiaNet-IV was evaluated using
two external datasets, “Endometrium” [37] and “Colorectal” [22], on the classification task
in which it achieved considerable results.
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Figure 5.4: t-SNE visualization of randomly selected test patches for DenseNet: no trend
of distinct clusters of cancer subtypes is visible.
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Figure 5.5: t-SNE visualization of randomly selected test patches for KimiaNet: a clear
trend of distinct and separable clusters of cancer subtypes is visible.
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6. CBR Networks: DenseNet versus
Occam’s Razor

6.1 Motivation

Occam’s Razor, as one of the basic scientific principles, postulates that smaller/simpler
solutions tend to be the right solution. A recently published paper by Raghu et al. [31]
suggests that transfer learning improves the performance of the algorithm negligibly and
also small networks with simple designs can compete with the commonly used architec-
tures, mentioned as ImageNet architectures. Particularly, in medical imaging tasks such
as classification of retinal fundus and chest x-ray images, simpler networks may perform
better which is due to the fundamental differences of these tasks with the classification of
natural images (see Figure 6.1). These differences are: (i) In medical imaging tasks the
image has mostly a similar pattern and decisions are made based on local variations while
in the natural images, for example, image of a cat, the boundaries are clear, and (ii) The
number of classes in medical imaging tasks are much smaller than the number of classes
in natural image classification. For example, in experiments mentioned in 5.1 and 5.2,
the number of classes were 30 while the ImageNet dataset has 1000 classes. This means
that probably the last layers of the ImageNet architectures are “overparameterized” for
medical imaging tasks. (iii) In addition, medical image datasets mostly have smaller sizes
compared to natural image datasets which could be caused by the high expense of creating
these datasets.

In this chapter, a family of simple architectures is proposed which are made from the
repetitions of convolution, batch normalization and ReLU layers (short CBR networks).
Reported experiments in literature test the performance of four variations of the CBR
networks against common networks such as ResNet-50, with 23.5 Million weights, and
Inception-V3, with 23 Million weights [31]. The results show that a network with a simple

44



Figure 6.1: Examples of natural images, taken from [12], chest
x-rays, taken from [27] and retinal fundus images, taken from
[25]

design called Small CBR with only 2 Million weights could compete with the mentioned
large networks in the classification tasks for retinal fundus and x-ray images. However, the
DenseNet-121 topology with 7 Million parameters, which is smaller than two of the CBR
networks with more than 8 Million parameters, was not investigated in the literature.

6.2 Experiments

We first implemented the two CBR architectures called Tiny and Small exactly as stated
in the literature [31] 1. We tried adding a dense layer before the last fully connected
layer which resulted in the improvement of the performance of the CBR networks. So
the experiments were done adding this change to the CBR architectures Small, LargeT,

1Implemented by Abtin Riasatian
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LargeW. We also did experiments with a modified version of the Small network which had
an additional (fifth) CBR block in its topology2. The number of parameters for the CBR
networks can be found in Table 6.1. The networks were initialized with random weights
and trained from scratch for around 40 epochs using the same TCGA dataset as used for
KimiaNet models. All settings were the same as for the training of the KimiaNet models
except that the learning rate was initialized with 0.003 and the batch size was 32 (see
Subsection 4.4). After training the networks, both horizontal and vertical search methods
were performed on the TCGA test dataset, same as KimiaNet models, using these networks
as feature extractors. The results will be compared against pre-trained DenseNet-121 and
KimiaNet-IV in the next section.

Network Number of Parameters
CBR Small 2 Millions
CBR Modified Small 5.5 Millions
CBR LargeT 8.5 Millions
CBR LargeW 8.5 Millions
DenseNet-121 7 Millions
KimiaNet-IV 7 Millions

Table 6.1: A comparison between the number
of parameters of CBR networks, DenseNet-121
and KimiaNet-IV

6.3 Analysis of the Results

For the horizontal search, as it can be observed in Table 6.2, KimiaNet-IV has achieved
the maximum accuracy for all of the tumor types. The performance of CBR Small and
CBR Modified Small networks slightly better than the pre-trained DenseNet-121 with
accuracy mean and standard deviations of 48±20 and 46±22 against 45±20, respectively.
Considering the large number of parameters of both CBR Large networks, around 8.5
Million, compared to DenseNet-121 and KimiaNet-IV, both with 7 Million weights, their
results are not competitive enough, having a large gap in performance with KimiaNet-
IV. This shows that not only the KimiaNet architecture is not overparameterized, but
its design, for example densely connected layers, has helped it to make better use of its
parameters compared to the simple design of CBR networks.

2Implemented by Danial Maleki
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Tumor Type Patien # Small Modified Small LargeT LargeW DN KN-IV
Brain 74 64 66 72 73 72 99
Breast 91 59 65 74 68 53 91
Endocrine 72 65 57 76 65 65 92
Gastro. 88 58 66 67 63 53 84
Gynaec. 30 30 27 37 27 13 57
Head/neck 32 47 59 63 56 25 88
Liver 51 31 29 39 31 43 88
Melanocytic 28 32 18 32 36 18 86
Mesenchymal 13 0 0 15 0 23 69
Prostate/testis 53 62 58 68 62 57 96
Pulmonary 86 56 49 56 51 56 86
Urinary tract 123 66 60 66 63 59 89

Table 6.2: Horizontal Resutls for CBR

Almost the same pattern can be seen in Table 6.3 for the vertical search. KimiaNet-
IV has achieved the maximum F1-score for 23 subtypes out of 26 while the CBR Large
networks could only achieve 2 or 3 maximum values. Also, the mean F1-Score and the
standard deviation for KimiaNet-IV is 84±16 while this number is 74±21 and 71±23 for the
LargeT and LargeW networks, respectively. This means that KimiaNet-IV accuracy is both
higher and more stable than the CBR results while having around 1.5 Million parameters
more. An interesting point is the close performance of the CBR Small network, 70 ± 23,
to the CBR LargeT, 71± 23 which shows that the simple design of the CBR networks can
not leverage the full power of its parameters.

6.4 Conclusion

In this chapter, the idea of replacing the DenseNet-121 architecture with smaller/simpler
networks with negligible loss in performance was investigated. To this end, four sim-
ple networks, the so-called CBR networks, were implemented and tested against both
DenseNet-121 and KimiaNet. The results showed that KimiaNet features are better than
the CBR networks with a considerable gap. These simple networks performed only slightly
better than the pre-trained DenseNet. It can be concluded that KimiaNet appears to be
in compliance with the Occam’s Razor within the spectrum of tested topologies; it is as
small as necessary to be reliably accurate.
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Site Subtype nslides Small Modified Small LargeT LargeW DN KN-IV
Brain LGG 39 76 77 79 80 71 81
Brain GBM 35 69 72 75 76 77 81
Endocrine THCA 51 97 96 97 98 94 100
Endocrine ACC 6 0 0 0 0 25 44
Endocrine PCPG 15 71 69 71 71 57 85
Gastro. ESCA 14 64 50 70 64 50 78
Gastro. COAD 32 70 73 78 74 65 76
Gastro. STAD 30 67 74 73 74 63 86
Gastro. READ 12 42 45 48 32 22 30
Gynaeco. UCS 30 75 100 75 67 75 86
Gynaeco. CESC 17 91 92 82 94 88 94
Gynaeco. OV 10 82 82 67 82 67 95
Liver, panc. CHOL 4 22 22 22 40 29 40
Liver, panc. LIHC 35 89 92 90 90 86 96
Liver, panc. PAAD 12 57 67 64 67 70 76
Melanocytic SKCM 24 92 90 94 92 92 94
Melanocytic UVM 4 50 0 40 33 0 67
Prostate/testis PRAD 40 96 96 96 99 99 100
Prostate/testis TGCT 13 88 88 88 96 96 100
Pulmonary LUAD 38 46 51 57 57 65 78
Pulmonary LUSC 43 51 59 55 60 69 84
Pulmonary MESO 5 57 29 50 57 0 75
Urinary tract BLCA 34 93 92 90 92 90 93
Urinary tract KIRC 50 88 91 86 90 83 97
Urinary tract KIRP 28 82 77 81 82 77 91
Urinary tract KICH 11 73 80 76 76 48 86

Table 6.3: Vertical Resutls for CBR
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7. Summary and Conclusions

Deep learning has achieved considerable progress in recent years. Computer vision, in
particular medical image analysis has also benefited from this advancement. Using pre-
trained deep networks is established as an off-the-shelf solution for image representation.
Natural images in ImageNet, a large repository of natural images, have been frequently used
to train such networks with different architectures such as VGG, Inception, ResNet and
EfficientNet. Whereas it is common knowledge that fine-tuning or training deep networks
are expected to yield better results, employing pre-trained networks is quite ubiquitous.
This is largely due to the lack of labeled data, design challenges, and computational costs
of training deep networks.

In this thesis, the DenseNet-121 architecture, a commonly used pre-trained deep net-
work, was fine-tuned/trained with different configurations to study the effect of fine-tuning
a network with domain-specific images on the expressiveness of the generated deep features.
Consequently, four different models have been trained, starting from only fine-tuning the
last dense block of the DenseNet-121 and continue to unfreeze the parameters of more
dense blocks, i.e., the last two dense blocks, the last three dense blocks and the whole
network. These networks were named KimiaNet-I to KimiaNet-IV, respectively.

One of the main challenges of training a network with histopathology images is their
very large size, a digitized slide could be as large as 100,000 by 100,000 pixels. This means
histopathology whole slide images, WSIs, cannot be processed by the networks as they are.
To deal with this problem, these large WSIs are divided into smaller sub-images called
patches with appropriate size for training. However, this arises two problems: (i) The
number of patches may still be too large for many WSIs; the training process would take
a prohibitively long time. (ii) Due to the high cost of manual delineation of the slides or
patches (to highlight regions of interest, e.g., cancerous regions) expecting labeled image is
not practical in the large archives hospitals. In this study, these two problems are resolved
by proposing a clustering-based mosaic approach for WSI representation with a constraint
on high cellularity to employ the WSI label as a soft label for patches to facilitate the
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training.

The source of data for training KimiaNet, the DenseNet topology for histopathology, is
the publicly available TCGA repository which contains a 11,766 diagnostic digital slides.
These slides were first divided into patches which are grouped into different clusters based
on their staining (color) features. A total of 15% of the patches of each cluster were
randomly chosen. To filter out the patches with low cellularity, a sequence of color decon-
volution and thresholding was performed. These patches form a representative set of their
source WSI and can be labeled with the same cancer type. Equating the patch label with
the WSI label based on high cellularity is based on the idea that high-grade carcinomas are
generally associated with uncontrolled cell growth which can be spotted by a high number
of cell nuclei in a region/patch. This was proposed as a way of soft labeling histopathology
images in a raw repository where images have not been processed after acquisition.

The different versions of KimiaNet were fine-tuned/trained with around 240,000 patches
extracted at 20×magnification spanning 30 different tumor sub-types. Several experiments
were designed and performed to investigate the change in the quality and representativeness
of the deep features generated by KimiaNet versions compared to the pre-trained DenseNet-
121.

For comparative experiments, two types of search modes were conducted. The first
type called “horizontal search”, which is defined as measuring how accurate the algorithm
performs for searching among all of the WSIs in the database and suggesting WSIs with
the same tumor type as the query slide. In this experiment, KimiaNet-IV achieved the
maximum accuracy for all of the tumor types except “Endocrine” with 92% having only
1% gap with the maximum accuracy reached by KimiaNet-III. The second search mode is
“vertical search” in which a query WSI from a specific tissue region is taken as input and
the algorithm searches through the WSIs of the same tissue region and tries to suggest
WSIs with the same cancer sub-type (i.e., the same primary diagnosis) as the query slide.
The results of this experiment showed that the features generated by KimiaNet-IV are
more descriptive than its other versions and pre-trained DenseNet-121.

Another way for understanding the effect of training on the expressiveness of the deep
features is visualization. To do this, a fixed number of patches were selected from each
cancer type and fed to the KimiaNet-IV as well as the DenseNet-121 to extract their
deep features. The dimensionality of these two sets of features were reduced using the
t-SNE method so they could be visualized in a two-dimensional space (reduced from 1024
dimensions). Results showed that the features generated by KimiaNet form visually dis-
tinguishable clusters where each cluster is associated with a cancer sub-type. However, the
DenseNet-121’s deep features for different classes were too close to each other with large
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overlaps such that no obvious discrimination could be observed.

Some recent works state that medical imaging tasks could be performed with sim-
pler/smaller network architectures maintaining the same performance as the commonly
used but much larger topologies. Hence, four networks containing blocks of convolutional,
batch-normalization and ReLU layers (the so-called CBR networks) were implemented and
tested against DenseNet-121 and KimiaNet. The results demonstrated that KimiaNet fea-
tures are by far better than the CBR networks. These simple networks performed only
slightly better than the pre-trained DenseNet. This validates the DenseNet-121 as a good
candidate for KimiaNet’s architecture in compliance with the Occam’s Razor principle.

In addition, and as a required pre-processing step before training, the performance of
different networks for the U-Net topology were compared to the handcrafted methods in
the task of tissue extraction in histopathology slides. Around 240 WSIs were acquired
from TCGA and segmented manually at a low magnification to train the networks. The
results illustrated the superiority of the deep networks. The proposed tissue segmentation
exhibited 99% sensitivity and specificity for the test data.
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texture analysis in colorectal cancer histology. Scientific reports, 6:27988, 2016.

[23] Daisuke Komura and Shumpei Ishikawa. Machine learning methods for histopatho-
logical image analysis. Computational and structural biotechnology journal, 16:34–42,
2018.

[24] Richard Levenson. Histopathology is ripe for automation, 2017.

[25] Linchundan. Retinal fundus dataset. https://www.kaggle.com/linchundan/

fundusimage1000. Accessed: 2020-07-09.

[26] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger,
Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S
Corrado, et al. Detecting cancer metastases on gigapixel pathology images. arXiv
preprint arXiv:1703.02442, 2017.

[27] Mooney. Chest x-ray pneumonia dataset. https://www.kaggle.com/

paultimothymooney/chest-xray-pneumonia. Accessed: 2020-07-09.

54

https://www.kaggle.com/linchundan/fundusimage1000
https://www.kaggle.com/linchundan/fundusimage1000
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


[28] Romain Mormont, Pierre Geurts, and Raphaël Marée. Comparison of deep transfer
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Nomenclature

biopsy Biopsies are small samples of tissue taken from a mass or tumor that are examined
under a microscope to make a diagnosis. Biopsies are used most often to determine
whether cancer cells are present, although certain infections and other diseases can
be diagnosed as well [4]. xiv, 1, 57

frozen section biopsy A specific type of biopsy procedure called the frozen section was
developed in order to make a rapid diagnosis of a mass during surgery. During the
frozen section procedure, the surgeon removes a portion of the tissue mass. This
biopsy is then given to a pathologist who freezes the tissue, cuts it, and then stains it
with various dyes so that it can be examined under the microscope. The procedure
usually takes only minutes [4]. xiv, 25, 57

model In this thesis, the word “model” has the same meaning as the “trained neural
network”. iv, 2, 5–7, 17, 22, 32, 35, 36, 39, 46, 49

permanent section biopsy In this procedure the tissue is placed in a fixative solution,
embedded in wax, thinly cut, and then stained. Although this takes longer than a
frozen section biopsy, the permanent section leads to better-quality microscope slides
[4]. 25
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