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Abstract

The study of spectral expansion of graphs and expander graphs has been an extremely
fruitful line of research in Mathematics and Computer Science, with applications ranging
from random walks and fast sampling to optimization. In this dissertation, we study high
dimensional local spectral expansion, which is a generalization of the theory of spectral
expansion of graphs, to simplicial complexes.

We study two random walks on simplicial complexes, which we call the down-up walk,
which captures a wide array of natural random walks which can be used to sample random
combinatorial objects via the so-called heat-bath dynamics, and the swap walk, which can
be thought as a random walk on a sparse version of the Kneser graph.

First, we give a sharp bound for the spectral gap of the down-up walks in terms of
the local spectral expansion. Using this bound, we argue that the natural Markov chains
for (i) sampling a random independent of fixed size s of a graph G = (V,E) is rapidly
mixing, so long as s ≤ |V |

∆+η
– where ∆ is the maximum degree of any vertex in G, and η

is the magnitude of the least eigenvalue of the adjacency matrix of G; and (ii) sampling a
common independent set from two partition matroids of fixed size s is rapidly mixing, so
long as s ≤ r

3
– where r is the maximum size of any common independent set contained in

both partition matroids.

Next, we study the spectrum of the swap walks, and show that using local spectral
expansion we can relate the spectrum of the swap walk on any simplicial complex to
the spectrum of the Kneser graph. We will mention applications of this result in (i)
approximating constraint satisfaction problems (CSPs) on instances where the constraint
hypergraph is a high dimensional local spectral expander ; and in (ii) the construction of
new families of list decodable codes based on (sparse) Ramanujan complexes of Lubotzky,
Samuels, and Vishne.
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Chapter 1

Introduction

1.1 Higher Order Random Walks and Local Spectral

Expansion: A Bird’s Eye View

1.1.1 Higher Order Random Walks

Consider the following random walks [KM17, DK17, KO18, DDFH18, AJT19, DD19] de-
fined1 on a simplicial complex X. Initially, the random walk starts from an arbitrary face
α1 of dimension k in X.

• Down-Up Walk: In each step t ≥ 1, we choose a uniform random element i ∈ αt
and delete i from αt, and set αt+1 to be a uniform random face of dimension k in X
that contains αt \ {i}. This is called the k-th down-up walk of X, and its transition
matrix is denoted by P5k .

• Up-Down Walk: In each step t ≥ 1, we choose a uniform random face β of dimen-
sion k+ 1 in X that contains αt, and choose a uniform random element i ∈ β and set

1All the definitions in the introduction will be formally defined again in a more general setting in

Chapter 2.
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αt+1 = β \ {i}. This is called the k-th up-down walk of X, and its transition matrix
is denoted by P4k .

• Swap-Walk: In each step t ≥ 1, we choose a uniform random face β of cardinality
2|αt| in X that contains αt, and set αt+1 = β \ αt. This is called the k-th swap walk
of X, and its transition matrix is denoted by Sk.

The questions that we study in this thesis are the expansion and mixing time of these
random walks, i.e. the second eigenvalue λ2(M) where M ∈

{
P4k ,P

5
k , Sk

}
and the number

of steps t required for the distribution of αt to be close to the stationary distribution
of these random walks, which happens to be the uniform distribution on faces in X of
dimension k.

A graph is a simplicial complex of dimension 1. The transition matrix of the lazy random
walk on a graph is P40 . Similarly, for a graph the swap-walk S0 precisely describes the
non-lazy random walk.

Fundamental results in spectral graph theory state the equivalence between following re-
sults, (i) the second eigenvalue of a random walk matrix M being small, (ii) the graph
described by M approximately behaving like a sparse copy of the complete graph2, (iii) the
random walk described by M rapidly mixing.3 See [HLW06, WLP09] for surveys on this
topic.

Since the theory of expander graphs has many applications, there are various motivations
in generalizing these results for graphs to simplicial complexes. Several definitions of high-
dimensional expanders have been studied in the literature (e.g. [LM06, Gro10, PRT16,
DKW16, KM17, Opp18]), and these results have found interesting applications in discrete
geometry, complexity theory, coding theory, and property testing (e.g. [LM06, MW09,
FGL+11, KL14, EK16, KM16, KKL16, DK17, DHK+19]).

2In particular, the operator norm difference between the random walk matrices of a clique with self-loops

and a spectral expander is small.
3Formally one needs the second singular value being small, but this is not a problem for us since in

all the settings where we want to use this equivalence the second singular value will equal the second

eigenvalue.
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1.1.2 Local Spectral Expansion

In this thesis, we consider the definition of γ-local spectral expansion developed in [KM17,
DK17, KO18, Opp18, DDFH18] for studying random walks on simplicial complexes. The
local structures of a simplicial complex are described by its links. The link Xα of a face
α ∈ X is defined as the simplicial complex Xα = {β \ α : β ∈ X, β ⊃ α}. The graph
Gα = (Vα, Eα) of the link Xα is defined as follows: (i) each vertex i in Vα corresponds to
a singleton {i} in Xα, (ii) two vertices i, j ∈ Vα have an edge in Eα if and only if {i, j} is
contained in some face of Xα, (iii) the weight wij of an edge ij ∈ Eα is proportional to the
number of maximal faces in Xα that contains {i, j}.

Informally, a simplicial complex X is a γ-local-spectral expander if Gα is an expander
graph for every α ∈ X. In the following, we say X is a pure simplicial complex if every
maximal face of X is of the same dimension, and we call this the dimension of X.

Definition 1.1.1 (γ-local-spectral expansion [Opp18, KO18]). A d-dimensional pure sim-

plicial complex X is a γ-local-spectral expander if λ2(Gα) ≤ γ for every face α ∈ X of

dimension up to d− 2, where λ2(Gα) denotes the second largest eigenvalue of the random

walk matrix of Gα (where the transition probabilities are proportional to the edge weights).

Similarly, we say that X is a two-sided γ-local spectral expander if σ2(Gα) ≤ γ for every

face α of dimension up to d− 2, where σ2(Gα) denotes the second largest singular value of

the random walk matrix of Gα (where the transition probabilities are proportional to the

edge weights).

Below, we will survey some highlights from the study of local spectral expansion that will
be closely related to the results presented in this thesis,

Kaufman-Oppenheim Theorem

Kaufman and Oppenheim [KO18] proved that the k-th down-up walk and the (k − 1)-
th up-down walk have a non-trivial spectral gap as long as the simplicial complex is a
γ-local-spectral expander for γ < 2/k2.

3



Theorem 1.1.2 ([KO18]). Let X be a pure d-dimensional simplicial complex. Suppose X

is a γ-local-spectral expander. Then, for every 0 ≤ k ≤ d,

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

k + 1
+
kγ

2
,

Theorem 1.1.2 states that the spectral gap of P5k is at least g := 1 − λ2(P5k ) ≥ 1
k+1
− kγ

2
,

which implies by a standard argument (see Theorem 2.2.7) that the mixing time of these
walks is at most O( (k+1) log(n)

g
) where n is the size of the ground set of X. For example, if

γ ≤ 0, then the mixing time of P5k is at most O(k2 log(n)).

Oppenheim’s Trickling Down Theorem

Kaufman-Oppenheim Theorem 1.1.2 provides a way to bound the mixing time of the down-
up walks and up-down walks. To apply the theorem, however, one needs to check that
λ2(Gα) ≤ γ for every face α ∈ X of dimension at most d − 2. This is not an easy task.
There are too many graphs Gα to check, and these graphs are defined implicitly where
computing the edge weights involve non-trivial counting problems. A very useful result by
Oppenheim [Opp18] makes this task easier, by relating the second eigenvalue of the graph
of a lower-dimensional link to that of a higher-dimensional link.

Theorem 1.1.3 ([Opp18]). Let X be a pure d-dimensional simplicial complex. Suppose

λ2(Gβ) ≤ γ ≤ 1
2
for every face β of dimension k, and Gα is connected for every face α of

dimension k − 1. Then, for every face α of dimension k − 1, it holds that

λ2(Gα) ≤ γ

1− γ
.

Applying this theorem inductively, we can reduce the problem of bounding λ2(Gα) for
every α to bounding λ2(Gβ) for only those faces β of highest dimension.

Corollary 1.1.4 ([Opp18]). Let X be a pure d-dimensional simplicial complex. Suppose

λ2(Gβ) ≤ γ ≤ 1
d
for every face β of dimension d − 2, and Gα is connected for every face

α. Then, for every k ≤ d− 2, and for every face α of dimension k, it holds that

λ2(Gα) ≤ γ

1− (d− 2− k)γ
.
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Corollary 1.1.4 is useful for two reasons: First, note that the weight of every edge in Gβ

for face β of dimension d − 2 is either zero or one, which makes the task of bounding its
second eigenvalue more tractable. Second, if one can prove that λ2(Gβ) = O( 1

d2 ) for every
face β of dimension d − 2 and Gα is connected for every face α, then one can conclude
that λ2(Gα) = O( 1

d2 ) for every face α and hence the simplicial complex is a O( 1
d2 )-local-

spectral expander. So, the reduction of Oppenheim is basically lossless in the regime where
Kaufman-Oppenheim’s Theorem 1.1.2 applies.

Dikstein-Dinur-Filmus-Harsha Theorem

Dikstein, Dinur, Filmus, and Harsha [DDFH18] proved that the k-th up-down walk P4k
and the k-th down-up walk P5k satisfy a certain approximate commutativity relationship
when X is a two-sided γ-local spectral expander. In particular, they proved

Theorem 1.1.5 ([DDFH18]). Let X be a pure d-dimensional simplicial complex. Suppose

X is a two-sided γ-local spectral expander. Then, for 0 ≤ k ≤ d− 1 there exists a vectors
~δ, ~r ∈ R[0,d−1] such that,∥∥∥P4k − rkP5k − δk · I∥∥∥op

≤ O(γ) for all k = 0, . . . , d− 1

where we have used the notation ‖•‖op for the operator norm of •.

For the complete complex ∆n,d =
(

[n]
≤d+1

)
, it is a classical result ([Sta88]) that there actually

does exists vectors ~µ,~s ∈ R[0,d−1], such that

P4k − skP
5
k − µkI = 0, (sequential differentiability)

for all k = 0, . . . , d − 1. Indeed, the existence of the vector ~µ satisfying the sequential
differentiability criterion can be used to determine the entire spectrum of the operator
P4k (see, e.g. [GM15]). In this light, Theorem 1.1.5 can be seen as a way of seeing two-
sided γ-local spectral expanders as an approximate version of the complete complex ∆n,d,
quite similar to the standard results in spectral graph theory that suggest that expander
graphs can be seen as approximate versions of the complete graph. Indeed, using this idea,
it is shown in [DDFH18] that for small enough γ one can give an approximate spectral
decomposition of the operator P4k on a two-sided γ-local spectral expander X in which
both the eigenvalues and the eigenvectors are approximately what they would be in the

5



case of the complete complex ∆n,d. This is a particularly interesting connection, since
the complex ∆n,d contains O(nd) faces and there exists constructions of two-sided γ-local
spectral expanders which can have as little as Oγ(n) many edges based on the Ramanujan
complex constructions of Lubotzky, Samuels, and Vishne ([LSV05, DK17]).

Analyzing Mixing Times of Markov Chains

Recently, Anari, Liu, Oveis Gharan, and Vinzant [ALOV19] found a striking application of
Theorem 1.1.2 and Corollary 1.1.4 in proving the matroid expansion conjecture of Mihail
and Vazirani [MV87], answering a long standing open question in Markov Chain Monte
Carlo methods.

To illustrate their result, consider the special case of sampling a random spanning tree
from a graph G = (V,E). Let X be the simplicial complex where the ground set is E
and each acyclic subgraph of G is a face of X. Then X is a pure d-dimensional simplicial
complex, where d = |V | − 2 and the spanning trees of G are the maximal faces of X. Note
that P5d in X is exactly the natural Markov chain on the spanning trees of G, where in
each step we delete a uniformly random edge e from the current spanning tree T and add a
uniformly random edge f so that T − e+ f is a spanning tree. So, the problem of proving
the Markov chain on spanning trees is fast mixing is equivalent to upper bounding λ2(P5d )
of the simplicial complex X.

Using the nice structures of matroids, Anari, Liu, Oveis Gharan, and Vinzant [ALOV19]
showed that the graph Gβ is a complete multi-partite graph for every face β of dimension
d−2, and this implies that λ2(Gα) ≤ 0 for every face β of dimension d−2. Thus, it follows
from Oppenheim’s Corollary 1.1.4 that λ2(Gα) ≤ 0 for every face α.4 Then Kaufman-
Oppenheim’s Theorem 1.1.2 implies that λ2(P5d ) ≤ 1 − 1

d+1
, and thus the mixing time of

the Markov chain of sampling matroid bases is at most O(d2 log n). This provides the first
FPRAS for counting the number of matroid bases, and also proves that the basis exchange
graph of a matroid is an expander graph.

The proof of the matroid expansion conjecture shows that the techniques developed in
higher order random walks provide a new simplicial complex approach to analyze mixing
times of Markov chains. It is thus natural to investigate whether this approach can be
extended to other problems. Here we would like to discuss some limitations of the current
techniques. It can be shown that λ2(Gβ) ≤ 0 only if Gβ is a complete multi-partite

4The result that every matroid complex is a 0-local-spectral expander was also proved by Huh and

Wang [HW17], using techniques from Hodge theory for matroids [AHK18] instead of Oppenheim’s theorem.
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graph [God] and more generally a 0-local-expander is a weighted matroid complex [BH19],
and so the same analysis as in [ALOV19] only works for matroids. Note that Kaufman-
Oppenheim Theorem 1.1.2 only applies when λ2(Gα) ≤ O( 1

d2 ) for every face α up to
dimension d − 2. For many problems of natural interest, it does not hold that λ2(Gβ) ≤
O( 1

d2 ) even when restricted to faces β of dimension d− 2.

Agreement Tests and Coding Theory

In agreement testing, one is given a collection of local functions {fα : α→ {−1,+1}}α∈Ω,
where each α ∈ Ω is a subset of [n] of size k – i.e. Ω ⊂

(
[n]
k

)
– and would like to decide

the existence of a global function g : [n]→ {−1, 1} that agrees with the majority of local
functions fα, i.e.

deciding whether there exists some g such that Pr
α

[fα ≡ g|α] ≥ 1− ε.

Here the draw of the probability is over the uniform random choice of α ∈ Ω, g|α5 is the
restriction of g on α, and ε ∈ (0, 1) is a very small number. This is a very important
task for PCP constructions. In [DK17], using a precursor of Theorem 1.1.2, Dinur and
Kaufman showed that two-sided γ-local spectral expanders can be used to design explicit
agreement testers. Though, explicit agreement tests were known, the application of [DK17]
is significant since by using the sparse constructions of Ramanujan complexes of Lubotzky,
Samuels, and Vishne [LSV05], it implies the existence of an explicit construction with size
Od(n), whereas the previously known constructions [GS00, IKW12] required size O(nd).
As a consequence of their result, Dinur and Kaufman already show that one can boost the
distance of an error-correcting code without suffering too much in terms of rate by taking
the direct product of a code-word along the faces of a two-sided local spectral expander,
i.e. by re-encoding a codeword w ∈ {−1, 1}n as

{−1, 1}n 3 w 7→ (wα)α∈Ω ∈
(
{−1,+1}k

)Ω

,

where we wrote Ω for the collection of k-dimensional faces of X.

Their results were later improved by Dinur, Harsha, Kaufman, Navon, and Ta-Shma
[DHK+19] to show that the code resulting after this re-encoding is actually also list decod-
able.

5g|α(x) = g(x) for all x ∈ α.
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1.2 Main Results

Now, we present the main contributions of this thesis.

1.2.1 Up-Down and Down-Up Walks

Our first result, extends the local-spectral-extension approach to analyze the mixing times
of more general Markov chains by bounding the second eigenvalue for higher order random
walks which initially appeared in [AL20], in joint work with Lap Chi Lau,

Theorem 1.2.1 ([AL20]). Let X be a pure d-dimensional simplicial complex. Define

γj := max{λ2(Gα) : α ∈ X and α is of dimension j},

For any 0 ≤ k ≤ d,

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj).

The following are some remarks about Theorem 1.2.1.

1. A basic result is that a simplicial complex X is gallery connected (i.e. λ2(P5d ) < 1)
if Gα is connected (i.e. λ2(Gα) < 1) for every face α of dimension up to d − 2.
Theorem 1.2.1 provides a quantitative generalization of this result.

2. A corollary of Theorem 1.2.1 is that the spectral gap 1−λ2(P5k ) of the k-th down-up
walk is at least Ω(1/k) ifX is a O( 1

k
)-local-spectral expander. This is an improvement

of Theorem 1.1.2 where it requires the simplicial complex X to be a O( 1
k2 )-local-

spectral expander to conclude that P5k has a non-zero spectral gap.

3. It can be shown that the spectral gap 1−λ2(P5k ) of the k-th down-up walk is at most
O( 1

k
) for any simplicial complex (see Proposition 3.1.3), so Theorem 1.2.1 shows that

any O( 1
k
)-local-spectral expander has the optimal spectral gap for the k-th down-up

walk up to a constant factor.

4. The refinement of having a different bound γj for links of different dimension is very
useful for analyzing Markov chains. We will discuss some applications in Section 3.2.

8



5. Theorem 1.2.1 can be used to provide a tighter bound on the spectral gap of certain
“longer” random walks (see Corollary 1.3.6) which were utilized by [DK17, DHK+19]
for their applications in coding theory and agreement testing (see Section 1.3.5).

Combined with Oppenheim’s Theorem 1.1.3, Theorem 1.2.1 provides the following bound
for the second eigenvalue of higher order random walks in a black box fashion. See Sec-
tion 3.1 for the proof.

Corollary 1.2.2. Let X be a pure d-dimensional simplicial complex. For any 0 ≤ k ≤ d,

suppose γk−2 ≤ 1
k+1

and Gα is connected for every face α up to dimension k − 2, then

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

(k + 1)2
.

This provides a convenient way to bound the mixing time of Markov chains. Recall that
the edge weights in Gβ for face β of dimension d − 2 are either zero or one, and so it is
easier to bound their second eigenvalue. Corollary 1.2.2 states that as long as we can prove
λ2(Gβ) ≤ 1/(d + 1) for these unweighted graphs in the highest dimension, then we can
conclude that P5d is fast mixing.

1.2.2 Swap Walks

Our second result shows that for two-sided simplicial complexes, the swap walk matrices
Sk have bounded second singular value. This result initially appeared in [AJT19], in joint
work with Fernando Granha Jeronimo, and Madhur Tulsiani.

Theorem 1.2.3 ([AJT19]). Let X be a pure d-dimensional simplicial complex. Define,

γ := max{σ2(Gα) : α ∈ X and α is a face of dimension up to d− 2}.

If γ ≤ ε · (64 · dd+423d+2)−1 where ε ∈ (0, 1), then

σ2(Sk) ≤ ε.

Our proof of this result can be seen as a generalization of the previously mentioned results
of [DDFH18] about the approximate spectral decomposition of P4k using the approximate
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version of the sequential differentiability criterion (Theorem 1.1.5). Whereas they show
that in their decomposition, the random walk P4k over a γ-local spectral expander X has
approximate eigenvectors and eigenvalues acting similarly to what they would be in the case
of the complete complex ∆n,d, we show that Sk over a two-sided γ-local spectral expander
X has an approximate spectral decomposition where the approximate eigenvectors and
eigenvalues act similarly to how they would do on the complete complex ∆n,d. This result
can be seen as further proof that the notion of local spectral expansion captures behaving
approximately like the complete complex, for random walk operator not limited to the
up-down walk P4k .

It is quite important that we can control the second singular value of Sk to be arbitrarily
close to 0. Though, the assumption we make on the parameter γ for Theorem 1.2.3 is
very demanding, this will not hinder us from using this theorem: In Section 1.3.6, we will
discuss several applications of this result in approximating constraint satisfaction problems
and in coding theory. In both cases, we will think of the dimension d as being a constant.

This result was improved by Dikstein and Dinur [DD19],

Theorem 1.2.4. Let X be a pure d-dimensional simplicial complex. Define,

γ := max{σ2(Gα) : α ∈ X and α is a face of dimension up to d− 2}.

If γ ≤ ε · k−2 where ε ∈ (0, 1), then

σ2(Sk) ≤ ε.

We provide a proof sketch for this result in Appendix A.

1.3 Applications

We present several applications of Theorem 1.2.1 and Corollary 1.2.2, in analyzing mixing
times of Markov chains (Section 1.3.1, Section 1.3.2, Section 1.3.3), in analyzing construc-
tions of high-dimensional expanders (Section 1.3.4), and in analyzing longer random walks
(Section 1.3.5).

We will also discuss applications of Theorem 1.2.3 in approximating constraint satisfaction
problems and coding theory (Section 1.3.6)
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1.3.1 Sampling Independent Sets of Fixed Size

One of the most natural simplicial complexes to consider is the independent set complex
of a graph [Mes01, AB06]. Let G = (V,E) be a graph. The independent set complex IG,k
has the vertex set V as the ground set, and a subset S ⊂ V is a face in X if and only if S
is an independent set in G with |S| ≤ k.

We are interested in bounding λ2(P5k−1) for this simplicial complex X. The (k − 1)-th
down-up walk corresponds to a natural Markov chain on sampling independent sets of size
k. Initially, the random walk starts from an arbitrary independent set S1 of size k. In each
step t ≥ 1, we choose a uniform random vertex u ∈ St and delete it from St, and we choose
a uniform random vertex v so that St − u + v is still an independent set of size k and set
St+1 := St − u + v. This Markov chain is known to mix in polynomial time for k ≤ |V |

2∆+1

where ∆ is the maximum degree of G, by using the path coupling technique [BD97, MU05].
In [AL20], we proved the following more refined result,

Theorem 1.3.1. Let G = (V,E) be a graph with maximum degree ∆. Let P5k−1 be the

(k− 1)-th down-up walk on the simplicial complex IG,k. Let AG be the adjacency matrix of

G.

If k ≤ |V |
∆ + |λmin(AG)|

, then λ2(P5k−1) ≤ 1− 1

k2
.

It is well-known that |λmin(AG)| ≤ ∆ for a graph with maximum degree ∆, and so The-
orem 1.3.1 recovers the previous result that the Markov chain is fast mixing if k ≤ |V |

2∆
.

There are various graph classes with |λmin(AG)| smaller than ∆, and Theorem 1.3.1 allows
us to sample larger independent sets. For example, it is known that |λmin(AG)| ≤ O(

√
∆)

for planar graphs and more generally for graphs with bounded arboricity [Hay06], and also
for random graphs and more generally for two-sided expander graphs [HLW06].

1.3.2 Sampling Common Independent Sets in Two Partition Ma-

troids

A matroid M = (E, I) on the ground set E with the set of independent sets I ⊂ 2E is a
combinatorial object satisfying the following properties:

• (containment property) if S ∈ I and T ⊂ S, then T ∈ I,
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• (extension property) if S, T ∈ I such that |S| > |T | then there is some x ∈ S\T such
that {x} ∪ T ∈ I.

A partition matroid is the special case where the ground set E is partitioned into disjoint
blocks B1, . . . , Bl ⊆ E with parameters 0 ≤ di ≤ |Bi| for 1 ≤ i ≤ l, and a subset S is in I
if and only if |S ∩Bi| ≤ di for 1 ≤ i ≤ l.

The intersection of two matroidsM1 = (E, I1) andM2 = (E, I) over the same ground set E
can be used to formulate various interesting combinatorial optimization problems [Sch03].
We are interested in the problem of sampling a uniform random common independent set
of size k, i.e. a random subset F ∈ I1 ∩I2 with |F | = k.

Matroids naturally correspond to simplicial complexes. We let CM1,M2,k be the matroid
intersection complex with ground set E, where a subset F ⊂ E is a face in CM1,M2,k if and
only if F ∈ I1∩I2 and |F | ≤ k. The (k− 1)-th down-up walk of this complex corresponds
to a natural Markov chain on sampling common independent sets of M1 and M2 of size k.
We show that this Markov chain is fast mixing for k up to one third the size of a maximum
common independent set, when M1 and M2 are partition matroids and there are no two
elements belonging to the same block in both matroids (i.e. there are no two elements x, y
such that x and y are in the same block in M1 and also in the same block in M2).

In [AL20], we proved,

Theorem 1.3.2. Let M1 = (E, I1) and M2 = (E, I2) be two given partition matroids with

a common independent set of size r and no two elements belonging to the same block in

both matroids. If k ≤ r/3, then

λ2(P5k−1) ≤ 1− 1

k2
,

where P5k−1 is the (k − 1)-th down-up walk on the matroid intersection complex CM1,M2,k.

Sampling a common independent set of two partition matroids can be reduced to sampling
a random matching in a bipartite graph. In this regime, stronger results are known to exist
[JS89, JSV04] whose analysis is based on the canonical paths method while our analysis
provides an alternative approach using a spectral method.

The proof of Theorem 1.3.2 reveals an interesting property of the links of the simplicial
complex CM1,M2,k. For any face β of dimension k − 3, we show that the graph Gβ is the
complement of the line graph of a bipartite graph. We note that this holds for any two
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matroids, not just for partition matroids. By the additional assumptions that the two
matroids are partition matroids and there are no two elements in the same block in both
matroids, the graph Gβ is the line graph of a simple bipartite graph. Using the fact that
the adjacency matrix of the line graph of a simple graph has minimum eigenvalue at least
−2, we prove that λ2(Gβ) ≤ 1

k
as long as k ≤ r

3
. We can then use Corollary 1.2.2 to

conclude Theorem 1.3.2.

1.3.3 Sampling from the Gibbs Distributions of Spin Systems

Recently, Anari, Liu, and Oveis Gharan [ALO20] have used Theorem 1.2.1 to prove a
strong result about sampling independent sets from the hardcore distribution. Given a
graph G = (V,E) and a parameter λ > 0, the problem is to sample an independent set S
with probability λ|S|

ZG(λ)
where ZG(λ) :=

∑
S⊂V :S independent λ

|S| is the partition function. An
important work of Weitz [Wei06] gave a deterministic fully polynomial time approximation
scheme to estimate ZG(λ) for λ up to the “uniqueness threshold”, but the exponent of
the runtime depends on the maximum degree ∆ of G. It is conjectured that the natural
Markov chain for sampling independent sets mixes in polynomial time up to the uniqueness
threshold. Anari, Liu, and Oveis Gharan prove this conjecture and obtain a polynomial
time algorithm to estimate ZG(λ) up to the uniqueness threshold for any graph (even with
unbounded maximum degree). They consider a pure n-dimensional simplicial complex for
sampling independent sets, and prove that γj = Θ( 1

n−j ) for 0 ≤ j ≤ n − 2 by using the
techniques from correlation decay. Then it follows from Theorem 1.2.1 that the Markov
chain is fast mixing. Note that it is crucial to have a different bound γj for links of different
dimension in Theorem 1.2.1, so even when γn−2 = Θ(1) it is still possible to conclude fast
mixing.

The Markov chain considered by [ALO20], is indeed a particular case of a very general
random walk model on spin systems : Let a graph G = (V,E) and a number q > 1 be
given. One is interested in sampling over assignments α : V → [q] from the so-called
Gibbs distribution Π of the system which assigns measure Π(α) to an assignment α based
on the interactions between the spins α(u) and α(v) for all adjacent vertices u, v ∈ V .
This sampling problem is also captured by the random walk P5|V | where the random walk
corresponds to the so-called heat bath dynamics. Very recently, Chen, Liu, and Vigoda
[CLV20] extended the results of [ALO20] to show, that for the case where q = 2, in the
so-called correlation decay regime – where spins of vertices far from each other in the graph
have little correlation – Theorem 1.2.1 can again be used to show that these more general
random walks mix rapidly as well.
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Inspired by these results, in independent works Chen, Galanis, Štefankovič, and Vigoda
[CGSV20] and Feng, Guo, Yin, and Zhang [FGYZ20] have considered the problem of
sampling uniformly random q-colourings of a graph, which is yet another sampling problem
that can be tackled by the heat bath dynamics. They have shown that in the correlation
decay regime – where colours of vertices distant from each other in the graph have little
correlation – Theorem 1.2.1 again suffices to show rapid mixing.

1.3.4 Combinatorial Constructions of High Dimensional Expanders

Recently, Liu, Mohanty, and Yang [LMY19] presented an interesting combinatorial con-
struction of a sparse simplicial complex where all higher order random walks have a constant
spectral gap. Their construction is by taking a certain tensor product of a graph G on n
vertices and a small H-dimensional complete simplicial complex ∆s,H on s vertices.

Theorem 1.3.3 ([LMY19]). Let G be a T -regular triangle free graph on n vertices. There

is an explicit family (X(s,H,G))H≥1,s≥H+1 of simplicial complexes, satisfying the following

properties:

1. X(s,H,G) is a pure H-dimensional simplicial complex with Θ(n) maximal faces.

2. The spectral gap of the graphs of j dimensional links of the complex X(s,H,G) satisfies

1− γj ≥


1
2

if j ∈ [0, H − 2],(
1
2
− 1

2(T2H+1)

)
(1− σ2(G)) if j = −1,

where σ2(G) is the second largest eigenvalue of the normalized adjacency matrix of

G.

3. For any −1 ≤ j ≤ H − 2,

λ2(P5j+1) = λ2(P4j ) ≤ 1− Ω

(
1− σ2(G)

T 2 · j2 · (s− j) · 2j

)
,
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The main technical part of their proof is in establishing Item (3) in Theorem 1.3.3. They use
the special structures of their construction and the decomposition technique from [JSTV04]
to bound the spectral gap of the higher order random walks. The authors ask the question
whether the spectral property in Item (2) alone is enough to prove the fast mixing result in
Item (3). Note that Kaufman-Oppenheim’s Theorem 1.1.2 does not apply in this regime.

Using Theorem 1.2.1, we answer their question affirmatively, by deriving Item (3) from
Item (2) in a black box fashion. This slightly improves their bound and considerably
simplifies their analysis.

Corollary 1.3.4 ([AL20]). Let X := X(s,H,G) be a complex from Theorem 1.3.3 satisfying

Item (2). For any −1 ≤ j ≤ H − 2,

λ2(P5j+1) = λ2(P4j ) ≤ 1− Ω

(
1− σ2(G)

j · 2j

)
.

1.3.5 Longer Random Walks and Other Applications

Consider the following generalization of the up-down walk where we take “longer” steps.
Initially, the random walk starts from an arbitrary α1 face of dimension a in X. In each
step t ≥ 1, we sample a uniformly random face β of dimension a+ h that contains αt, and
set αt+1 to be a uniformly random subset of β of dimension a. We call this the up-down
walk on X(a)-th with height h and write P

(h)
a .

The k-th up-down walk defined before is the special case P
(1)
k = P4k . Dinur and Kauf-

man [DK17] derived the following result about P4a,b from the result about the ordinary
up-down walks.

Corollary 1.3.5 ([DK17]). Let X be a d-dimensional pure simplicial complex. If X is a

γ-local-spectral expander, then for any 0 ≤ a < b ≤ d− 1,

λ2

(
P(h)
a

)
≤ a+ 1

a+ h+ 1
+O(ah · γ).

Using Theorem 1.2.1, in [AL20] we proved the following result. See Section 3.1 for the
proof.
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Corollary 1.3.6. Let X be a d-dimensional pure simplicial complex. If X is a γ-local-

spectral expander, then for any a, h ≥ 0 such that a+ h ≤ d we have,

λ2

(
P(h)
a

)
≤ (1 + γ)h · a+ 1

a+ h+ 1
.

In particular, if γ ≤ ε
h
for some 0 ≤ ε ≤ 1, then λ2(P

(h)
a ) ≤ eε · a+1

a+h+1
.

Whereas the bound from Corollary 1.3.5 requires γ = O( 1
(a+h+1)·h) to give a nontrivial

upper bound on the second eigenvalue of P(h)
a , Corollary 1.3.6 only requires γ ≤ O( 1

h
) to

give a comparable bound.

Corollary 1.3.5 has found applications in agreement testing and coding theory [DK17,
DHK+19, AJQ+20]. We believe that Corollary 1.3.6 can be of independent interest because
of those applications. One potential application would be in constructing double samplers
from Ramanujan complexes under a weaker expansion assumption [DK17].

1.3.6 Constraint Satisfaction Problems and Coding Theory

An important application of the expansion of the swap-walk Sk (Theorem 1.2.3) is in
approximating constraint satisfaction problems. In [AJT19], in joint work with Fernando
Granha Jeronimo and Madhur Tulsiani, we have shown that a k-CSP instance admits
an efficient approximation algorithm based on the Sum-of-Squares hierarchy when the
constraint complex is a two-sided local spectral expander. We recall: A k-CSP instance
I = (H, C) with alphabet size q, consists of a k-uniform constraint hypergraph H and a
set of constraints C = {Cη : η ∈ H} for each hyperedge η ∈ H – we will call the simplicial
complex X that is obtained from H by taking a downward closure, the constraint complex
of I. The objective is to find an assignment a : [n]→ [q] to the n vertices of H, that satisfy
as many of the constraints Cη as possible. It is known by the work of [BRS11, GS11] that
2-CSP instances admit an efficient approximation algorithm when their constraint graph
G is an expander graph.

Sparse, explicit, and hard instances of k-CSPs are of great importance in hardness re-
ductions. As local-spectral expanders can be sparse, a hardness result for k-CSPs would
have been really exciting. In our work, we have showed that the results for approximating
2-CSPs with expanding constraint graphs, generalize to all k-CSPs (where k is a constant)
whose constraint complex is a strong enough two-sided local spectral expander. The expan-
sion of the swap-walks is a crucial ingredient in our proof. This work is also the first result
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in the literature that makes use of expansion in approximating k-CSPs for k > 2. Since
high-dimensional expanders can be really sparse [LSV05, DK17], our work also is useful
in the sparse regime where there are as few as O(n) constraints. This was a limitation of
previous work, which only considered dense instances.

In a follow up paper to [AJT19], together with Dylan Quintana and Shashank Srivastava
[AJQ+20] we have shown that our approximation algorithm for CSPs can be used for the
list decoding of direct-sum codes obtained from a linear code C ⊂ {−1, 1}n by XOR-ing the
coordinates of a codeword w ∈ C along the faces of a high-dimensional expander X. This
already suggests that an approximation routine for k-XOR is useful decoding the resulting
code. It can be argued that the resulting code will have better distance than C. Further
using the Ramanujan complexes of Lubotzky, Samuels, and Vishne [LSV05] as X – which
are sparse – it is possible to argue that the relative rate of the resulting code will not
suffer too much. Most of our techincal work for establishing this result is in showing that
it is possible to list-decode direct-sum codes efficiently by using a Sum-of-Squares SDP
relaxation. Because, the Sum-of-Squares SDP hierarchy is beyond the scope of this thesis,
we do not present these results here.

1.4 Related Work

Our work follows a sequence of works [KM17, DK17, Opp18, KO18, DDFH18] which use
the spectral properties of the links of simplical complexes to analyze higher order ran-
dom walks. Higher order random walks on simplicial complexes were first introduced by
Kaufman and Mass [KM17]. They formulated related but more combinatorial notions of
skeleton expansion and colorful expansion to establish fast mixing of higher order random
walks. Dinur and Kaufman [DK17] introduced the definition of two-sided γ-local-spectral
expanders, which is similar to Definition 1.1.1 but requires all but the first eigenvalue to
have absolute value at most γ (i.e. it also controls the negative eigenvalues). They used
this stronger assumption to prove a similar theorem as in Theorem 1.1.2, and applied it
to construct efficient agreement tester with applications to PCP constructions. The one-
sided γ-local-expander in Definition 1.1.1 was first studied by Oppenheim [Opp18], where
he proved Theorem 1.1.3. Then, Kaufman and Oppenheim [KO18] strengthened the result
in [DK17] and prove Theorem 1.1.2.

Dikstein, Dinur, Filmus and Harsha [DDFH18] studied an alternative definition of high
dimensional expanders, based on the operator norm of the difference between the (non-
lazy) up-down and down-up operators. Using this definition, they show that it is possible
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to approximately characterize all the eigenvalues and eigenvectors of higher order random
walks. Their techniques were used in [AJT19] to analyze the “swap walks” on high di-
mensional expanders, with applications in designing good approximation algorithms for
solving constraint satisfaction problems on high-dimensional expanders. Independently,
the same “swap walks” were also studied by [DD19] under the name “complement walks”,
where applications in agreement testing were given.

The results in higher order random walks have also found applications in coding theory.
The double samplers in [DK17] are used in [DHK+19] to design an efficient algorithm to
decode direct product codes over high dimensional expanders. The swap walks in [AJT19]
were also independently studied by Dikstein and Dinur in [DD19], where they proved an
improvement over Theorem 1.2.3 and used this improvement to obtain sparser agreement
testers.

Analyzing Mixing Times of Markov Chains

Mixing time of Markov chains is an extensively studied topic with various applications
(see e.g. [WLP09, MT05]). There are several well-developed approaches to bound the
mixing time of a Markov chain. Perhaps the most widely used approach is the cou-
pling method (e.g. [Ald83, BD97]), which has applications in sampling graph colorings
(e.g. [Jer95, Vig00]) and many other problems (see [WLP09]). The canonical path (or
more generally multicommodity flow) method developed in [JS89, Sin92, Sin93] was used
in the important problem of sampling perfect matchings in bipartite graphs [JS89, JSV04]
and other problems including sampling matroid bases [FM92]. Geometric methods are
used in the important problem of sampling a random point in a convex body [DFK91,
LV06]. Analytical methods such as (modified) log-Sobolev inequalities and Nash inequal-
ities [DSC+96, BT06] are useful in proving sharp bounds on mixing time, e.g. a recent
paper [CGM19] used a modified log-Sobolev inequality to prove optimal mixing time of
the natural Markov chain on sampling matroid bases.

The simplicial complex approach studied in this thesis is quite different from the above
approaches. It is linear algebraic and designed to bound the second eigenvalue directly using
ideas from simplicial complexes. On the other hand, the coupling method is probabilistic
and designed to compare two random processes, while the canonical path method and the
geometric method are designed to bound the underlying expansion of the graph or the
geometric object. The analytical methods are more diffcult to apply and are not as widely
applicable, but when they work they could be used to prove very sharp results.
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1.5 Organization

We discuss the relevant definitions and mathematical foundations that will be used in this
thesis in Chapter 2.

Our results about the down-up walk will be presented in Chapter 3. These results include
the eigenvalue bounds Theorem 1.2.1, Corollary 1.2.2 for the up-down and down-up walks
P4k , P

5
k ; the eigenvalue bound Corollary 1.3.6 for the longer random walks P

(h)
k ; and the

sampling applications Theorem 1.3.1 and Theorem 1.3.2.

Our result about the swap walk (Theorem 1.2.3) will be presented in Chapter 4.

Finally, in Chapter 5 we will discuss some future directions.
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Chapter 2

Preliminaries

2.1 Linear Algebra

2.1.1 Vectors and Inner-Products

Throughout this thesis, bold faces will be used for scalar functions/vectors, i.e. f ∈ RV .
For i ∈ V , the notation 1i ∈ RV will be reserved for the indicator vector of i, i.e. 1i(i) = 1
and 1i(j) = 0 for all j 6= i; and similarly for S ⊆ V , we will write 1S =

∑
i∈S 1i for the

indicator vector of S. The notation 1V will be used for the vector of all ones, when V is
clear from context we will simply write 1 ∈ RV in place of 1V .

We use Π ∈ RV to denote various probability distributions, i.e.
∑

x∈V Π(x) = 1 and
Π(x) ≥ 0 for all x ∈ V – we will adopt the convention that whenever y 6∈ V , Π(y) = 0.

Given f , g ∈ RV , and a distribution Π on V such that Π(x) > 0 for all x ∈ V , we use the
notations 〈f , g〉Π and ‖f‖Π to denote the inner-product and the norm with respect to the
distribution Π, i.e.

〈f , g〉Π = f> · diag(Π) · g =
∑
x∈V

Π(x)f(x)g(x) and ‖f‖2
Π = 〈f ,f〉Π, (2.1)

where given v ∈ RV the notation diag(v) is used for the diagonal matrix that satisfies
[diag(v)](x, x) = v(x) for all x ∈ V and [diag(v)](x, y) = 0 whenever x 6= y. We reserve
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〈f , g〉 =
∑

x f(x)g(x) for the standard inner-product. Given f ∈ RV , we write ‖f‖`1 =∑
x∈V |f(x)| for its `1-norm, and ‖f‖`2 = (

∑
x∈V f(x)2)

1
2 for its `2-norm.

We recall the famous Cauchy-Schwarz inequality, which allows us to bound the inner-
product 〈f , g〉Π of two vectors f , g ∈ RV by the product of the norms ‖f‖Π and ‖f‖Π.

Fact 2.1.1 (Cauchy-Schwarz Inequality). Let f , g ∈ RV be vectors and suppose the vec-

torspace RV is equipped with the inner-product defined by the distribution Π. Then, we

have

|〈f , g〉Π| ≤ ‖f‖Π · ‖g‖Π.

Proof. The statement is trivial when g = 0, thus assume g 6= 0. Write,

h = f − 〈f , g〉Π
〈g, g〉Π

· g.

We have,

0 ≤ 〈h,h〉Π =
∑
x

Π(x) · h(x)2,

= 〈f ,f〉Π +
〈f , g〉2Π
〈g, g〉2Π

· 〈g, g〉2 − 2〈f , g〉Π
〈g, g〉Π

· 〈f , g〉Π,

= 〈f ,f〉Π −
〈f , g〉2Π
〈g, g〉Π

.

Rewriting the last inequality and taking square roots yields,

〈f , g〉2Π ≤ 〈f ,f〉Π · 〈g, g〉Π =⇒ |〈f , g〉Π| ≤
√
〈f ,f〉Π ·

√
〈g, g〉Π.

The statement follows since for any vector a ∈ RV one has,
√
〈a,a〉Π = ‖a‖Π.

2.1.2 Matrices and Eigenvalues

In this section, we will recall some results concerning eigenvalues and eigenvectors.
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We will use serif faces for matrices, i.e. A,B ∈ RU×V . The adjoint of the operator B ∈ RU×V ,
with respect to the inner-products defined by the distributions ΠU and ΠV on U and V , is
the operator B∗ ∈ RV×U such that

〈f ,Bg〉ΠU = 〈B∗f , g〉ΠV for all f ∈ RU , g ∈ RV .

If U = V and ΠU = ΠV , the operator B is called self-adjoint if B∗ = B. It is well known
that the operator B∗ ∈ RV×U is uniquely determined by the choice of B ∈ RU×V and the
inner-products defined by ΠU and ΠV (see e.g. [SC97, p. 318]),

Proposition 2.1.2. Let B ∈ RU×V be arbitrary. We write B∗ for the adjoint operator to

B with respect to the inner-products defined by the distributions ΠU and ΠV . Then,

B∗(x, y) = B(y, x) · ΠV (y)

ΠU(x)
for all x ∈ U, y ∈ V.

Proof. We obtain by applying Eq. (2.1) repeatedly,

B∗(x, y) = 1>xB
∗1y =

1

ΠU(x)
· 〈1x,B∗1y〉ΠU =

1

ΠU(x)
· 〈B1x,1y〉 =

ΠV (y)

ΠU(x)
1>xB

>1y.

The proposition follows by noting 1>xB
>1y = B(y, x).

When the vector spaces RU and RV are equipped with the counting measure, i.e. when we
have the standard inner-products on RU and RV , the adjoint matrix corresponds to the
transpose, i.e. B∗ = B>. Further, in this case when B ∈ RV×V is a square matrix, it is easy
to see that B is self-adjoint, i.e. B = B∗, if and only if B is symmetric, i.e. B> = B.

Let W ∈ RV×V be a square operator. A vector v ∈ CV \ {0} is called an eigenvector of
W if there exists a λ ∈ C such that, Wv = λv. We now recall the spectral theorem (see,
e.g. [HJ12])

Theorem 2.1.3 (Spectral Theorem). Let W ∈ RV×V be a self-adjoint operator with respect

to the inner-product defined by Π. Then, all the eigenvalues λ1(W), . . . , λ|V |(W) are real.

Further, W has an orthonormal collection of real eigenvectors w1, . . . ,w|V | ∈ RV such that,

W =

|V |∑
i=1

λi(W) ·wiw
∗
i and 〈wi,wj〉Π = 0 whenever i 6= j and ‖wi‖Π = 1,

where w∗i (v) = wi(v) · Π(v) for all v ∈ V .
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For self-adjoint operators W we adopt the convention of taking λi(W) to be the i-th largest
eigenvalue of W, i.e. we have λ1(W) ≥ · · · ≥ λ|V |(W). We will also write λmin(W) for the
least eigenvalue λ|V |(W) of W. We recall the following fundamental theorem from linear
algebra (see, e.g. [Bha13]),

Theorem 2.1.4 (Courant-Fischer-Weyl Minimax Principle). Let W ∈ RV×V be a self-

adjoint operator with respect to the measure Π. Then,

λj(W) = max
X⊆RV ,
dimX=j

min
f∈X ,
‖f‖Π=1

〈f ,Wf〉Π

where the minimum runs over all subspaces U of RV of dimension k. Further, the maxi-

mizer X is spanned by the top j eigenvectors of W, i.e. there exists f 1, . . . ,f j such that

W = span
{
f 1, . . . ,f j

}
such that 〈fk,f l〉Π = 0 whenever k 6= l, ‖f‖k = 1 for all k, and Wfk = λk(W)f .

Similarly,

λj(W) = min
Y⊆RV ,

dimY=n−j+1

max
f∈Y,
‖f‖Π=1

〈f ,Wf〉Π

Further, the minimizer Y is the subspace that is orthogonal to the top j− 1 eigenvectors of

W, i.e. there exists f 1, . . . ,f j−1 such that

Y = span
{
f 1, . . . ,f j−1

}⊥
= {g ∈ RV : 〈g,fk〉Π = 0 for all k ∈ [j − 1]}

and 〈fk,f l〉Π = 0 whenever k 6= l, ‖f‖k = 1 for all k, and Wfk = λk(W)f .

A self-adjoint operator A ∈ RV×V with respect to inner-product defined by Π is called
positive semi-definite, denoted by A �Π 0, if it satisfies 〈f ,Af〉Π ≥ 0 for all f ∈ RV .
This condition is equivalent to the condition that λmin(A) ≥ 0. For self-adjoint operators
A ∈ RV×V and B ∈ RV×V with respect to the same inner-product defined by Π, we will
write A �Π B if

〈f ,Af〉Π ≤ 〈f ,Bf〉Π for all f ∈ RV .

This is equivalent to A − B being positive-semidefinite, i.e. A − B �Π 0. If Π is just the
standard inner-product, we will drop the subscript Π.
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Given an operator B ∈ RV×U we will write σi(B) for the i-th largest singular of B, i.e. we
have σi(B) =

√
λi(B∗B). This expression is well-defined since B∗B is positive-semi definite,

〈f ,B∗Bf〉ΠU = 〈Bf ,Bf〉ΠV = ‖Bf‖2
ΠV
≥ 0,

and therefore λi(B∗B) ≥ 0. If B ∈ RV×V is a self-adjoint square operator, by the Spectral
Theorem 2.1.3 we can pick an orthonormal basis of eigenvectors {w}|V |i=1 of B that satisfy,

B∗B =

|V |∑
i,j=1

λi(B)λj(B)〈wi,wj〉wiw
∗
j =

|V |∑
j=1

λj(B)2wiw
∗
i ,

where we have used that w∗iwj = 〈wi,wj〉Π = 0 whenever i 6= j and 〈wi,wi〉Π = 1.
Using this, observation we obtain the following simple corollary from Courant-Fischer-
Weyl Theorem 2.1.4

Corollary 2.1.5. Let B ∈ RV×V be a self-adjoint operator with respect to the inner-product

defined by the distribution Π. There is a bijective mapping between the eigenvalues of λi(B)

of B and the eigenvalues λj(B∗B) of B∗B, where

λj(B
∗B) = j-th largest of all |λi(B)|2 for all i = 1, . . . , |V |.

In particular, since σj(B) =
√
λj(B∗B) we have,

σj(B) = j-th largest of all |λi(B)| for all i = 1, . . . , |V |.

We will use the following results about eigenvalues in Chapter 3; see e.g. [Bha13].

Fact 2.1.6. Let A ∈ RU×V and let A∗ be the adjoint of A with respect to the inner-products

on ΠU on RU and ΠV on RV . Then, the non-zero spectrum of AA∗ coincides with that of

BA with the same multiplicity.

Proof. Let f ∈ CU be an eigenvector of AB corresponding to the eigenvalue λ 6= 0,

i.e. ABf = λf . Then, we note that Bf ∈ CV is an eigenvector of BA of eigenvalue λ,

since

BA(Bf) = B(ABf) = B(λf) = λBf .
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As we can run the same argument for eigenpairs (λ, g) of AB to show that (λ,Ag) is an

eigenpair of BA, we know that the matrices AB and BA are going to have the same set of

non-zero eigenvalues.

Now, we show that (geometric) multiplicities are preserved. Let f 1, . . . ,f r ∈ RU be an

orthogonal collection of eigenvectors of AB corresponding to the same eigenvalue λ ∈
C\{0}, i.e.

〈f i,f j〉 = 0 and (AB)f j = λf j for all i, j = 1, . . . , r where i 6= j.

We want to show that gj = Bf j for j = 1, . . . , r also constitute an orthogonal collection

of eigenvectors of BA corresponding to the eigenvalue λ. To this end, we note

Remark 2.1.7. In the proof above we have used geometric multiplicities, i.e. the number of

linearly independent eigenvectors corresponding to an eigenvalue. The same statement also

holds for the algebraic multiplicities, i.e. the multiplicity of λ as a root of the characteristic

polynomial. As we will only use this fact when B = A∗, we will only be dealing with

self-adjoint matrices AB and BA, for which both notions of multiplicity coincide. Thus, for

simplicity we omit the proof for algebraic multiplicities.

Fact 2.1.8. Let A,B ∈ RV×V be two self-adjoint matrices with respect to the inner-product

defined by Π satisfying A �Π B. Then, λi(A) ≤ λi(B) for all 1 ≤ i ≤ |V |.

Proof. Let i ∈ [1, |V |] be arbitrary. Suppose X ? is the subspace that maximizes the

maximin formula in the Courant-Fischer-Weyl Theorem 2.1.4. We know since A �Π B, we

have

〈f ,Af〉Π ≤ 〈f ,Bf〉Π for all f ∈ RV .

In particular,

λi(A) = min
f∈X?,
‖f‖Π=1

〈f ,Af〉Π ≤ min
f∈X?,
‖f‖Π=1

〈f ,Bf〉Π.
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And thus,

λi(A) = min
f∈X?,
‖f‖Π=1

〈f ,Af〉Π ≤ min
f∈X?,
‖f‖Π=1

〈f ,Bf〉Π ≤ max
X⊆RV ,

dimX=k

min
f∈X ,
‖f‖Π=1

〈f ,Bf〉 = λi(B),

where we have invoked the Courant-Fischer-Weyl Theorem 2.1.4.

Theorem 2.1.9 (Cauchy Interlacing Theorem). Let A ∈ RV×V be a symmetric matrix and

B ∈ RU×U be a principal submatrix of A. Let n = |V | and m = |U |. For any 0 ≤ j ≤ m,

λj(A) ≥ λj(B) ≥ λn−m+j(A).

Proof. The inequality, λj(A) ≥ λj(B) follows by noticing that every subspace U ⊂ RU of

dimension dimU = j is also a subspace of RV of dimension j. In particular,

λj(B) = max
U⊆RU ,
dimU=j

min
f∈U,
‖f‖=1

〈f ,Bf〉 = max
U⊆RU ,
dimU=j

min
f∈U,
‖f‖=1

〈f ,Af〉 ≤ max
X⊆RV ,
dimX=j

min
f∈X ,
‖f‖=1

〈f ,Af〉 = λj(A).

Now, from the side of the inequality that we have proven, we can infer that

−λn−j+1(A) = λj(−A) ≥ λj(−B) = −λm−j+1(B).

Thus, we have λn−j(A) ≤ λm−j(A), and the inequality λn−m+j(A) ≤ λj(B) follows an index

change.

Theorem 2.1.10 (Weyl Interlacing Theorem). Let A,B ∈ RV×V be two symmetric matri-

ces. For any i, j ≥ 1 such that i+ j ≤ |V | − 1,

λi+j−1(A + B) ≤ λi(A) + λj(B).

Proof. Let Y1 = span{a1, . . . ,ai−1}⊥ be the subspace that is perpendicular to orthonormal

collection consisting of the first (i − 1) eigenvectors of A, i.e. the ak satisfy ‖ak‖ = 1 for
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all k ∈ [i − 1], 〈ak,al〉 = 0 whenever k 6= l and Aak = λk(A) · ak. We know by the

Courant-Fischer-Weyl Theorem 2.1.4 that,

〈f ,Af〉 ≤ λi(A) for all f ∈ Y1 such that ‖f‖ = 1. (2.2)

Similarly, let Y2 = span{b1, . . . , bj−1}⊥ be the subspace that is perpendicular to the or-

thonormal collection consisting of the first (j − 1) eigenvectors of B, i.e. the bk satisfy

‖bk‖ = 1 for all k ∈ [j − 1], 〈bk, bl〉 = 0 whenever k 6= l and Bbk = λk(B) · bk. We know by

the Courant-Fischer-Weyl Theorem 2.1.4 that,

〈f ,Bf〉 ≤ λj(B) for all f ∈ Y2 such that ‖f‖ = 1. (2.3)

Now, note that

Y1 ∩ Y2 = {f ∈ RV : 〈f ,ak〉 = 0 for all k ∈ [i− 1] and 〈f , bl〉 = 0 for all l ∈ [j − 1]}.

= span{a1, . . . ,ai−1, b1, . . . , bj−1}⊥.

In particular, dim(Y1 ∩ Y2) ≥ n− i− j + 2, since Y1 ∩ Y2 is the orthogonal subspace to a

subspace of dimension at most i+ j − 2. Now, note that

〈f , (A+B)f〉 = 〈f ,Af〉+ 〈f ,Bf〉 ≤ λi(A) + λj(B) for all f ∈ Y1 ∩Y2 such that ‖f‖ = 1

where we have used Y1 ∩Y2 ⊂ Y1 and Eq. (2.2) for bounding the first term and Y1 ∩Y2 ⊂
Y2 and Eq. (2.3) for bounding the second term. Thus, using the Courant-Fischer-Weyl

Theorem 2.1.4 we obtain

λi+j−1(A + B) = min
Y⊆RV ,

dimY=n−i−j+2

max
f∈Y,
‖f‖=1

〈f , (A + B)f〉 ≤ max
f∈Y1∩Y2,
‖f‖=1

〈f , (A + B)f〉 ≤ λi(A) + λj(B),

where we have assumed that dim(Y1 ∩ Y2) = n − i − j + 2 if this is not the case, we can

just take any subspace of Y1 ∩ Y2 of dimension n− i− j + 2 and the theorem follows.
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Let RV ,RU be a vector space equipped with the inner-products with respect to the measures
ΠU ,ΠV . We define operator norm of ‖A‖ΠU→ΠV of a matrix A ∈ RU×V as the following
quantity,

‖A‖ΠV→ΠU = max
{
‖Af‖ΠU : f ∈ RV , ‖f‖ΠU = 1

}
,

= max

{
‖Af‖ΠU

‖f‖ΠV

: f 6= 0,f ∈ RV

}
. (operator norm)

When A ∈ RV×V is a square operator, we will adopt the convention ‖A‖ΠU→ΠV = ‖A‖ΠV .
We recall the following elementary results about the operator norm that will be of use to
us in Chapter 4,

Fact 2.1.11. Let the vector spaces RU and RV be equipped with inner-products with respect

to the measures ΠU and ΠV and suppose A ∈ RU×V . Then,

‖A‖ΠU→ΠV =
√
λ1(A∗A) = σ1(A).

Proof. Recall that ‖Af‖2
ΠV

= 〈Af ,Af〉ΠV . In particular,

‖Af‖2
ΠV

= 〈Af ,Af〉ΠV = 〈f ,A∗Af〉ΠU .

By Courant-Fischer-Weyl Theorem 2.1.4, we know that this expression is maximized pre-

cisely when f ∈ RU is the top-eigenvector of A∗A with the value λ1(A∗A), which concludes

the proof for the claim ‖A‖ΠU→ΠV =
√
λ1(A∗A). The latter equality follows from Corol-

lary 2.1.5.

Fact 2.1.12 (Submultiplicativity of the Operator Norm). Let A ∈ RU×V and B ∈ RV×W

be given and suppose the vector spaces RU ,RV ,RW are equipped with inner-products with

respect to the measures ΠU ,ΠV , and ΠW respectively. Then,

‖AB‖ΠW→ΠU ≤ ‖A‖ΠV→ΠU · ‖B‖ΠW→ΠV .
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Proof. We have,

‖AB‖ΠW→ΠU = max

{
‖ABf‖ΠU

‖f‖ΠW

: f ∈ RW ,f 6= 0

}
,

≤ max

{
‖A‖ΠV→ΠU ·

‖Bf‖ΠV

‖f‖ΠW

: f ∈ RW ,f 6= 0

}
,

= ‖A‖ΠV→ΠU · ‖B‖ΠW→ΠV ,

where we have used the definition of the operator norm to get the last two (in)equalities.

Fact 2.1.13 (Triangle Inequality). Let A,B ∈ RU×V be given pair of operators, and sup-

pose the vector spaces RU and RV are equipped with the inner-product with respect to the

measures ΠU and ΠV . Then,

‖A + B‖ΠV→ΠU ≤ ‖A‖ΠV→ΠU + ‖B‖ΠV→ΠU .

Proof. We first show that for all f , g ∈ RU we have

‖f + g‖ΠU ≤ ‖f‖ΠU + ‖g‖ΠU . (2.4)

One has,

‖f+g‖2
ΠU

= 〈f+g,f+g〉ΠU = 〈f ,f〉ΠU+〈g, g〉ΠU+2〈f , g〉ΠU = ‖f‖2
ΠU

+‖g‖2
ΠU

+2〈f , g〉ΠU .

By the Cauchy-Schwarz Inequality (Fact 2.1.1) this implies,

‖f + g‖2
ΠU
≤ ‖f‖2

ΠU
+ ‖g‖2

ΠU
+ 2 · ‖f‖ΠU‖g‖ΠU = (‖f‖ΠU + ‖g‖ΠU )2.

Thus, Eq. (2.4) follows by taking square root of the above inequality.

To prove Fact 2.1.13, we use the definition of the operator norm, and observe

‖A + B‖ΠV→ΠU = max
{
‖(A + B)f‖ΠU : f ∈ RV , ‖f‖ΠV = 1

}
,

≤ max
{
‖Af‖ΠV→ΠU + ‖Bf‖ΠV→ΠU : f ∈ RV , ‖f‖ΠV = 1

}
,

≤ ‖A‖ΠV→ΠU + ‖B‖ΠV→ΠU .
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2.2 Graphs, Random Walks, and Eigenvalues

In this section, we will recall some basic results concerning the eigenvalues of self-adjoint
row-stochastic matrices M ∈ RV×V and their connection to mixing times of random walks
and graph isoperimetry.

2.2.1 Random Walk Operators

An operator M ∈ RU×V is called row-stochastic every non-zero entry M(i, j) of M is non-
negative and every row-sum is 1, i.e.M1. Let G = (V,E,w) be an edge-weighted undirected
graph with a weight we > 0 on each edge e ∈ E. The (weighted) adjacency matrix of G is
denoted by AG ∈ RV×V with AG(u, v) = wuv for uv ∈ E and AG(u, v) = 0 for uv /∈ E. The
diagonal degree matrix of G is denoted by DG where DG(v, v) = deg(v) =

∑
u:uv∈E wuv for

v ∈ V . The random walk matrix of G is denoted by MG := D−1
G AG. Note that MG is a

row-stochastic matrix.

If M ∈ RV×V is a row-stochastic self-adjoint operator with respect to the distribution Π,
then the random walk described by M is called reversible. It turns out that whenever
M is self-adjoint with respect to a distribution Π, Π is the stationary measure of M (see
e.g. [AF95, p. 57]),

Proposition 2.2.1. Let M ∈ RV×V be a row-stochastic matrix that is self-adjoint with

respect to the distribution Π, then Π is stationary for M, i.e. Π>M = Π>.

We note that when M ∈ RV×V describes the random walk in the undirected edge-weighted
graphG = (V,E,w), it is self-adjoint with respect to the distribution Π = DG1/2

∑
uv∈E wuv

as, (
DG1

2
∑

uv∈E wuv

)>
D−1
G AG =

1

2
∑

uv∈E wuv
1>DGD

−1
G AG

=
1

2
∑

uv∈E wuv
1>AG

=
1>DG

2
∑

uv∈E wv
=

(
DG1

2
∑

uv∈E wuv

)>
.
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Proof of Proposition 2.2.1. AsM is self-adjoint, one has 〈Mf , g〉Π = 〈f ,Mg〉Π for all f , g ∈
RV . In particular, one has for all i ∈ V

[Π>M](i) = Π>M1i = 〈1,M1i〉Π = 〈M1,1i〉Π = 〈1,1i〉Π,

where we have used the row-stochasticity of M in the equality. Now, note that for all i ∈ V

〈1,1i〉Π = 1 · Π(i) = Π(i) and therefore [Π>M](i) = Π(i).

Thus, Π>M = Π>.

Remark 2.2.2. From now on we will refer to self-adjoint row-stochastic matrices M ∈ RV×V

with respect to the inner-product defined by the distribution Π, as reversible random walks

with stationary distribution Π. While there might be many distributions that are stationary

for M, we will call Π the stationary distribution. Our abuse of nomenclature is very mild as

we will later show that under the assumption of irreducibility (which we will soon discuss),

Π is indeed the unique stationary distribution of M (see Corollary 2.2.5). Also, notice that

in Section 2.1, we have adopted the convention of defining inner-products 〈•, •〉Π only for

distributions Π ∈ RV with Π(x) > 0 for all x ∈ V . So, whenever we say M is a reversible

random walk with the stationary distribution Π, we will also assume that Π(x) > 0.

From the definition of row-stochasticity, it is clear that a row-stochastic operatorM ∈ RV×V

has 1 as an eigenvalue, and the eigenvector corresponding to it is 1. We first show that, 1
is actually the largest eigenvalue of M in absolute value (see e.g. [WLP09, Lemma 12.1]),

Proposition 2.2.3. Let M ∈ RV×V be a reversible random walk matrix with stationary

distribution Π. Then,

λ1(M) = 1 and |λmin(M)| ≤ 1.

Proof. Let f ∈ RV \ {0} be an eigenvector of M corresponding to the value λ ∈ R,

i.e. Mf = λf . We write i? = arg maxi∈V |f(i)|. Then,

|λ| · |f(i?)| = |[Mf ](i?)| =

∣∣∣∣∣∑
j∈V

M(i?, j) · f(j)

∣∣∣∣∣ ≤∑
j∈V

M(i?, j)|f(i?)| ≤ |f(i?)|
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where we have used that M(i?, •) is a probability distribution in the last inequality. In

particular, this implies |λ| ≤ 1 and thus, λ1(M) ≤ 1 and |λmin(M)| ≤ 1. The statement

λ1(M) = 1 follows since M1 = 1, i.e. 1 is an eigenvalue of M.

We will call a reversible random walk matrix M ∈ RV×V with stationary measure Π ir-
reducible if there exists a time point tij > 0 for every pair of vertices {i, j} such that
Mtij(i, j) > 0, i.e. in tij discrete time-steps one can reach from i ∈ V to j ∈ V with non-
zero probability. Any reversible random walk matrix M ∈ RV×V with stationary measure
Π, can be thought as describing a random walk on the edge-weighted graph G = (V,E,w)
where

E = {ij : i, j ∈ V and M(i, j) > 0}
and every edge ij ∈ E is assigned the weight wij = 2Π(i) ·M(i, j).

Indeed, we have now

DG(i, i) =
∑
ij∈E

wij = 2Π(i)
∑
j∈V

M(i, j) = 2Π(i),

where we have used the row-stochasticity of M in the last equality. Using this, it is easy to
see that MG(i, j) = wij/DG(i, i) = M(i, j). Now, it is easy to see that for a row-stochastic
self-adjoint matrix M ∈ RV×V irreducibility is equivalent to the connectivity of the graph
G, over which M represents a random walk.

Under the assumption of irreducibility, we can show that 1 is (up to scaling) the only
eigenvector of M corresponding to the eigenvalue 1 (see e.g. [WLP09, Lemma 12.1]).

Theorem 2.2.4 (Perron-Frobenius). Let M ∈ RV×V be a reversible random walk matrix

with stationary distribution Π. M is irreducible if and only if λ2(M) < 1. Equivalently, for

an edge-weighted undirected graph G = (V,E,w), λ2(MG) < 1 if and only if G is connected.

Proof. The equivalence follows from the discussion above. Suppose and edge-weighted

graph G = (V,E,w) is disconnected, i.e. there exists two sets A,B ⊆ V such that A∩B =

∅, A t B = V , and E(A,B) = {ij ∈ E : i ∈ A, j ∈ B} = ∅. Then, since there are no

edges between A and B, we note that we can write

MG =

MG[A] 0

0 MG[B]
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where G[A] (resp. G[B]) is the induced subgraph of G on A (resp. B). Now, we note that 1A
and 1B are eigenvectorsMG since the row-stochasticity ofM induces the row-stochasticity of

MG[A] andMG[B]. Since 〈1A,1B〉Π = 0, we have by the Courant-Fischer-Weyl Theorem 2.1.4

λ2(MG) = 1.

Suppose now that G is connected, and suppose f ∈ RV \ {0} is an eigenvector to 1,

i.e. MGf = f . Write, i? = arg maxi∈V f(i). Then, note that

f(i?) = [MGf ](i?) =
∑
j:ij∈E

MG(i?, j)f(j),

and in particular for every vertex j ∈ V adjacent to i?, we have that f(j) = f(i?), where

we have used that MG(i?, j) > 0 if and only if i?j ∈ E and that
∑

j∈V MG(i?, j) = 1 by

row-stochasticity. Using the connectivity of G, we can extend this argument for every

j ∈ V by induction on distance from i?, and show that we have f(j) = f(i?) for all j ∈ V .

Indeed this means that f and 1 are co-linear. Since every eigenvector f to 1 is necessarily

co-linear to 1 (and not orthogonal) by the Courant-Fischer-Weyl Theorem 2.1.4 we obtain

that λ2(MG) < 1.

A nice consequence of the Perron-Frobenius Theorem 2.2.4 is the uniqueness of the sta-
tionary measure for reversible Markov chains,

Corollary 2.2.5. Let M ∈ RV×V be a reversible Markov chain with stationary distribution

Π ∈ RV . If M is irreducible, then Π is the unique stationary distribution of Π.

Proof. The Perron-Frobenius Theorem 2.2.4 tells us that the irreducible random walk

matrix M has the eigenvalue 1 with multiplicity 1. By the Spectral Theorem 2.1.3 this

means that any f ∈ RV that satisfies 〈f ,Mf〉Π = 1 and ‖f‖Π = 1 is necessarily co-

linear to 1. Suppose the distribution Π0 is stationary for M, i.e. Π>0 M = Π>0 and we

write Π∗0(i) = Π0(i)
Π(i)

. Notice that Π0 is well-defined as Π0(i) > 0 for all i ∈ V as per our

conventions (see Remark 2.2.2). We notice that Π0 is co-linear to 1 if and only if Π0 = Π.
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We note first that,

〈Π∗0,MΠ∗0〉Π = (Π∗0)> · diag(Π) ·MΠ∗0 = Π>0 MΠ∗0 = Π>0 Π∗0 =
∑
j∈V

Π0(j)2

Π(j)
.

And also,

〈Π∗0,Π∗0〉Π =
∑
j∈V

Π(j) · Π0(j)2

Π(j)
=
∑
j∈V

Π2
0(j)

Π(j)
.

Hence, Π∗0
‖Π∗0‖Π

must be co-linear to 1, however this is only possible if Π0 = Π, however this

is only possible if Π0 = Π. Thus, Π is the unique stationary distribution of M.

2.2.2 Graphs and Isoperimetry

Let G = (V,E,w) be an edge-weighted undirected graph where wij > 0 for all ij ∈ E.
Given a set S ⊆ V , the conductance ΦG(S) of S in G is defined by,

ΦG(S) =
w(E(S, S))

vol(S)
,

where we recall that w(E(S, S)) =
∑

ij∈E(S,S) wij and vol(S) =
∑

i∈S deg(i) where deg(i)
is the weighted degree of the vertex S. We define the conductance of the graph G as

Φ(G) = min
S⊂V,

0<vol(S)≤vol(V )/2

ΦG(S).

Now, writing (Xi)i≥0 for the state of the random walk starting from X0 ∈ V we can observe

ΦG(S) =
〈1S, (I−MG)1S〉Π

‖1S‖2
Π

= Pr[X1 6∈ S | X0 ∈ S] and Φ(G) = min
S⊂V,

0<Π(S)≤1/2

ΦM(S), (2.5)

where Π = DG1/(2
∑

ij∈E wij) is the stationary distribution of MG. Based on the observa-
tion above, we will write ΦM(S) := ΦG(S) and Φ(M) := Φ(G) from now on.

Now, we recall the easy direction of the Cheeger inequality, which can be used to lower
bound λ2(MG)

Theorem 2.2.6 ([AM85]). Let M ∈ RV×V be a row-stochastic self-adjoint matrix with

stationary distribution Π ∈ RV . Then

1− λ2(M)

2
≤ Φ(M).
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Proof. Let S ⊂ V be the set attaining the minimum conductance, i.e. Φ(M) = ΦM(S) and

0 < Π(S) ≤ 1/2. We write fS = 1S − 〈1,1S〉Π · 1 = 1S − Π(S) · 1 ∈ RV and note that 1

and fS are orthogonal in the inner-product defined by Π, i.e.

〈1,fS〉Π = 〈1,1S − 〈1,1S〉Π · 1〉Π = 〈1,1S〉Π − 〈1,1S〉Π · 〈1,1〉Π = 0

where we have used the observation 〈1,1〉Π =
∑

v∈V Π(v) = 1 since Π is a probability

distribution.

Further, since fS(i) = 1− Π(S) when i ∈ S and fS(j) = −Π(S) when j 6∈ S, we have

‖fS‖2
Π = 〈fS,fS〉Π,

=
∑
i∈S

(1− Π(S))2 · Π(i) +
∑
j 6∈S

Π(S)2 · Π(j),

= Π(S) · (1− Π(S))2 + Π(S)2Π(S),

= Π(S) · (1− Π(S))2 + Π(S)2 · (1− Π(S)), (Π(S) = 1− Π(S))

= Π(S) · (1− Π(S)) ≤ Π(S)

2
, (2.6)

where we have used Π(S) ≤ 1/2 to obtain the last inequality. Now, by the Courant-

Fischer-Weyl Theorem 2.1.4 we have

λ2(MG) ≥ min
f∈span{1,fS},
‖f‖Π=1

〈f ,MGf〉Π ≥
1

‖fS‖2
〈fS,MGfS〉Π,

where we have used 〈fS,1〉Π = 0 and Proposition 2.2.3 to get the last inequality, i.e. with-

out loss of generality we can assume that the minimizer will be colinear to fS since the

vector 1 attains the largest eigenvalue 1. Thus, we have

λ2(MG) · ‖fS‖2 ≥ 〈fS,MGfS〉Π (2.7)
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Now, we observe

〈fS,MGfS〉Π = 〈1S − Π(S) · 1,MG(1S − Π(S) · 1)〉Π,

= 〈1S,MG1S〉Π − 2Π(S) · 〈1S,MG1〉Π + Π(S)2 · 〈1,MG1〉Π,

= 〈1S,MG1S〉Π − 2Π(S)〈1S,1〉Π + Π(S)2, (MG1 = 1)

= 〈1S,MG1S〉Π − Π(S)2 (2.8)

where we have used 〈1S,1〉Π = Π(S) to obtain Eq. (2.8).

Thus, we have

‖fS‖2(1− λ2(MG)) ≤ 〈fS, (I−MG)fS〉Π, (by Eq. (2.7))

= ‖fS‖2 − 〈1S,MG1S〉Π + Π(S)2, (by Eq. (2.8))

= Π(S)− 〈1S,MG1S〉Π (by Eq. (2.6))

= 〈1S,1S〉Π − 〈1S,MG1S〉Π (〈1S,1S〉Π = Π(S)),

= 〈1S, (I−MG)1S〉Π,

= ΦM(S) · ‖1S‖2
Π = Π(S) · ΦM(S) (by Eq. (2.5))

Thus,

(1− λ2(MG)) · ‖fS‖
2
Π

Π(S)
≤ ΦM(S).

The theorem follows from Eq. (2.6).

2.2.3 Mixing Times

The mixing time T (ε,P) of the random walk operator P ∈ RV×V is defined to be the least
time step where the distribution of the random walk is ε-close to the stationary distribution
Π of P in the `1 distance, i.e. Π(t) for the distribution of the random walk after t-steps, we
have

T (ε,P) = min
{
t ∈ N≥0 : ‖Π(t) − Π‖`1 ≤ ε

}
.
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We will write A(x, •) for the x-th row of the matrix A. Recalling that the distribution of
the random walk P starting from x after t steps is given by Π(t) = Pt(x, •), we formally
define

T (ε,P) = min
{
t ∈ N≥0 : ‖Pt(x, •)− Π>‖`1 ≤ ε for all x ∈ V

}
. (mixing time)

For our applications in sampling in Section 3.2, we will use the following well known relation
between the mixing time of the random walk and the spectral gap of its transition matrix.
The proof we present will follow the exposition in [MT05, Proposition 1.12].

Theorem 2.2.7 (Spectral Mixing Time Bound). Let P ∈ RV×V be a reversible random

walk matrix with stationary distribution Π. One has,

T (ε,P) ≤ 1

1− σ2(P)
· log

1

ε ·
√

minx∈V Π(x)
,

where σ2(P) is the second largest singular value of P.

Proof. Let x ∈ V be an arbitrary vertex. For t ≥ 0, we define:

p(t)
x (y) =

Pt(x, y)

Π(y)
− 1.

Note that we have,

E
y∼Π
|p(t)
x (y)| =

∑
y∼V

Π(y) · |p(t)
x (y)| =

∑
y∼V

∣∣Pt(x, y)− Π(y)
∣∣ = ‖Pt(x, •)− Π>‖`1 .

Our plan is now bounding Ey∼Π |p(t)
x (y)| for all x to get a bound for the mixing time T (ε,P).

The function p
(t)
x satisfies two useful properties. Firstly, it is orthogonal to the constant

function, i.e. the eigenvector corresponding to 1

〈p(t)
x ,1〉Π =

∑
y∈V

Π(y) ·
(
Pt(x, y)

Π(y)
− 1

)
,

=
∑
y∈V

Pt(x, y)− Π(y),

=

(∑
y∈V

Pt(x, y)

)
−

(∑
y∈V

Π(y)

)
= 1− 1 = 0, (2.9)
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since Π is a probability distribution and Pt is a row-stochastic matrix. Second, we have

Pp
(t−1)
x = p

(t)
x since

[P · p(t−1)
x ](y) =

∑
z∈V

P(y, z) ·
(
Pt−1(x, z)

Π(z)
− 1

)
,

=

(∑
z∈V

P(y, z)
Pt−1(x, z)

Π(z)

)
− 1, (row-stochasticity)

=

(∑
z∈V

P(z, y) · Π(z)

Π(y)
· P

t−1(x, z)

Π(z)

)
− 1, (by Proposition 2.1.2 and P = P∗)

=

(
1

Π(y)

∑
z∈v

P(z, y) · Pt−1(x, z)

)
− 1.

=
Pt(x, y)

Π(y)
− 1 = p(t)

x (y) (2.10)

Now, the goal is to appeal to the eigenvalues of P to bound ‖Pt(x, •)−Π>‖`1 = Ey∼Π |p(t)
x |.

To this end we use Jensen’s inequality,

‖Pt(x, •)− Π>‖2
`1

=

(
E
y∼Π
|p(t)
x |
)2

≤ E
y∼Π
|p(t)
x |2 = ‖p(t)

x ‖2
Π.

By Eq. (2.10), we can write

‖p(t)‖2
Π = ‖P · p(t−1)‖2

Π = 〈Pp(t−1),Pp(t−1)〉Π = 〈p(t−1),P2p(t−1)〉Π.

Now, note that P2 has non-negative entries only and further, P21 = P · P · 1 = 1. Now, by

Corollary 2.1.5, Courant-Fischer-Weyl Theorem 2.1.4, and Eq. (2.9) we have

‖p(t)‖2
Π ≤ σ2(P)2 · ‖p(t−1)‖2

Π and inductively ‖p(t)‖2
Π ≤ σ2(P)2t‖p(0)‖2

Π (2.11)

Since p(0)(y) = I(x,y)
Π(y)
− 1, we have that the y-th entry is −1 when x 6= y and 1/Π(x) − 1

when x = y. Thus,

‖p(0)‖2
Π =

∑
y∈V,
y 6=x

Π(y) +

(
1− Π(x)

Π(x)

)2

·Π(x) = 1−Π(x) +
(1− Π(x))2

Π(x)
=

1

Π(x)
− 1 ≤ 1

Π(x)
.
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Plugging this in Eq. (2.11), we have

‖Pt(x, •)− Π>‖2
`1
≤ ‖p(t)

x ‖2
Π ≤ σ2(P)2t · 1

Π(x)
.

By solving σ2(P)2t · 1
Π(x)
≤ ε2, we see that

t ≥
log(1/(ε ·

√
Π(x))

log(1/σ2(P))
ensures ‖Pt(x, •)− Π>‖`1 ≤ ε.

The expression in the Theorem is obtained (i) by taking the maximum for all starting

points x ∈ V , and (ii) using the first order approximation log(1/σ2(P)) ≥ (1− σ2(P)).

2.3 Simplicial Complexes

A simplicial complex X is a collection of subsets that is downward closed, i.e. if β ∈ X
and α ⊂ β then α ∈ X. The elements α, β in X are called faces/simplices of X. The
dimension of a face α is defined as |α|−1, e.g. an edge is of dimension 1, a vertex/singleton
is of dimension 0, the empty set is of dimension −1. The collection of faces of dimension
j is denoted by X(j). The dimension of a simplicial complex is defined as the maximum
dimension of its faces. A d-dimensional simplicial complex is called pure if every maximal
face is of dimension d. All simplicial complexes we will consider in this thesis are pure.

2.3.1 Weighted Simplicial Complexes

A simplicial complex X can be equipped with a weighted function which assigns a positive
weight to each face ofX. We follow the formalism of [DDFH18] where the weight function is
a probability distribution Π on the faces of the same dimension. Let X be a d-dimensional
simplicial complex. Given a probability distribution Π := Πd with support X(d), we can
inductively obtain probability distributions Πj supported on X(j) for all j ∈ [−1, d − 1]
by considering the marginal distributions, i.e.

Πj(α) =
1

j + 2

∑
β∈X(j+1),

β⊃α

Πj+1(β). (2.12)
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Equivalently, we can understand Πj as the probability distribution of the following random
process: Sample a random face β ∈ X(d) using the probability distribution Πd, and then
sample a uniformly random subset of β in X(j). The pair (X,Π) will be referred as
a weighted simplicial complex. We write (X,Π) simply as X when Π is the uniform
distribution.
We will prove the following useful consequence of Eq. (2.12),

Proposition 2.3.1. Let (X,Π) be a d-dimensional weighted simplicial complex. For all

−1 ≤ j ≤ k ≤ d, and for all α ∈ X(j) one has,

Πj(α) =
1(
k+1
j+1

) ∑
β⊃α,
β∈X(k)

Πk(β).

Proof. When k = j + 1, the proposition is true by definition (Eq. (2.12)). We proceed by

induction, suppose there exists some k ∈ [j, d− 1] such that for every α ∈ X(j)

Πj(α) =
1(
k+1
j+1

) ∑
β⊃α,
β∈X(k)

Πk(β). (induction hypothesis)

With this we calulate,

Πj(α) =
1(
k+1
j+1

) ∑
β⊃α,
β∈X(k)

Πk(β),

=
1(
k+1
j+1

) ∑
β⊃α,
β∈X(k)

1

k + 2

∑
β′⊃β,

β′∈X(k+1)

Πk+1(β′) (by Eq. (2.12))

Now, we note that for each β′ ∈ X(k + 1) such that β′ ⊃ α is summed in the RHS

|β′| − |α| = k − j + 1 many times, each corresponding to a unique β ⊂ β′ such that

β ∈ X(k) and β ⊃ α is obtained by removing an element in β′ not contained in α.

Thus,

Πj(α) =
1(
k+1
j+1

) · k − j + 1

k + 2
·
∑
β′⊃α,

β′∈X(k+1)

Πk+1(β′),

=
1(
k+2
j+1

) ∑
β′⊃α,

β′∈X(k+1)

Πk+1(β′).
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Remark 2.3.2. Whenever β ) α, there exists a unique τ ∈ X(|β| − |α| − 1) satisfying

β = α t τ . For our applications, it will often be more convenient to have the index in the

summation in Eq. (2.12) and Proposition 2.3.1 to run over τ ∈ Xα(|β| − |α| − 1), than for

β ⊃ α.

2.3.2 Links and Link Graphs

Let (X,Π) be a pure d-dimensional weighted simplicial complex. The link Xα of a face α
is the simplicial complex defined as

Xα := {β \ α | β ∈ X, β ⊃ α}.
The probability distributions Π0, . . . ,Πd on X can naturally be used to define the proba-
bility distributions Πα

0 , . . . ,Π
α
d−|α| on Xα using conditional probability. Suppose α ∈ X(j).

For τ ∈ Xα(l), we define

Πα
l (τ) = Pr

β∼Πj+1+l

[β = α ∪ τ | β ⊃ α]

=
Πj+l+1(α ∪ τ)∑
β⊃α,

β∈X(j+l+1)
Πj+l+1(β)

,

=
Πj+l+1(α ∪ τ)(
j+l+2
l+1

)
· Πj(α)

(2.13)

where Eq. (2.13) is obtained from Proposition 2.3.1.

Remark 2.3.3. It is a crucial observation that the measures Πα
j satisfy Eq. (2.12) as well.

For α ∈ X(j), and τ ∈ Xα(l), one has,

Πα
l (τ) =

Πj+l+1(α t τ)(
j+l+2
l+2

) (by Eq. (2.13)),

=

1
j+l+2

∑
τ ′⊃τ,

τ ′∈Xα(l+1)

Πj+l+2(α t τ ′)(
j+l+2
l+1

)
Πj(α)

(by Eq. (2.12) and Remark 2.3.2),

=
1

l + 2

∑
τ ′⊃τ,

τ ′∈Xα(l+1)

Πj+l+2(α t τ ′)(
j+l+3
l+2

)
Πj(α)
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where in the last equality we have used the identity,

(j + l + 2)

(
j + l + 2

l + 1

)
= (l + 2)

(
j + l + 3

l + 2

)
.

In particular, by using Eq. (2.13) and Remark 2.3.2 again,

Πα
l (τ) =

1

l + 2

∑
τ ′⊃τ,

τ ′∈Xα(l+1)

Πα
l+1(τ ′).

As Proposition 2.3.1 is a simple consequence of Eq. (2.12), the conclusion of Proposi-

tion 2.3.1 is also satisfied by the measures Πα
j for all j = −1, . . . , d− |α|.

We will prove the following useful decomposition rule,

Proposition 2.3.4. Let (X,Π) be a d-dimensioal weighted simplicial complex. For all

−1 ≤ k ≤ d− 1, and for all α ∈ X(k) one has∑
z∈Xα(0)

Π0(z) · Π{z}k (α) = Πk(α).

Proof. By Eq. (2.12) and Remark 2.3.2, we have

Πk(α) =
1

k + 2

∑
β⊃α,

β∈X(k+1)

Πk+1(β) =
1

k + 2

∑
z∈Xα(0)

Πk+1(α t {z}).

Using Eq. (2.13), we can write

Πk+1(α t {z}) = (k + 2) · Π0(z) · Π{z}k (α).

The proposition follows by plugging this into the first equality.

Remark 2.3.5. It will often be more convenient to define Π
{z}
k (α) = 0 whenever z ∈ α or

α 6∈ X{z}(α). Using this convention, we can write∑
z∈X(0)

Π0(z) · Π{z}k (α) = Πk(α).
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2.3.3 Local Spectral Expansion

Given a link Xα, the graph Gα = (Xα(0), Xα(1),Πα
1 ) is defined as the 1-skeleton of Xα.

More explicitly, each singleton {v} in Xα is a vertex v in Gα, each pair {u, v} in Xα is an
edge uv in Gα, and the weight of uv in Gα is equal to Πα

1 ({u, v}). A simple observation is
that if X is a pure d-dimensional simplicial complex and Π is the uniform distribution on
X(d), then for any α ∈ X(d− 2) the weighting Πα

1 on the edges of Gα is uniform. We will
use this observation in Section 3.2.

The definition of local spectral expanders will be based on the random walk matrix of
Gα. Let Aα be the adjacency matrix of Gα. Let Dα be the diagonal degree matrix where
Dα(x, x) =

∑
y Aα(x, y) = 2Πα

0 (x) where the last equality is by Eq. (2.12). The random
walk matrix Mα of Gα is defined as Mα := D−1

α Aα, with

Mα(x, y) =
Πα

1 (x, y)

2Πα
0 (x)

for all {x, y} ∈ Xα(1) (2.14)

The distribution Πα
0 is the stationary distribution of Mα, as

(Πα
0 )>Mα = (Πα

0 )>D−1
α Aα = 1>Aα = (Πα

0 )>.

The matrix Mα is self-adjoint with respect to the inner-product defined by Πα
0 , as

〈f ,Mαg〉Πα0 = 〈f ,D−1
α Aαg〉Πα0 = 〈f ,Aαg〉 = 〈Aαf , g〉 = 〈D−1

α Aαf , g〉Πα0 = 〈Mαf , g〉Πα0 .

So, Mα have only real eigenvalues, and an orthonormal basis of eigenvectors with respect
to the inner-product defined by Πα

0 . The largest eigenvalue of Mα is 1, as Mα1 = 1 and
Mα is row-stochastic.

We also note, for all f , g ∈ RXα(0) we have

〈f ,Mαg〉Πα0 =
∑

x,y∈Xα(0),
x 6=y

Πα
1 ({x, y}) · f(x)g(y). (2.15)

Given a vector f , we will be interested in writing it as f = f1 + f⊥1, so that f1 = c1 for
some scalar c and 〈f1,f⊥1〉Πα0 = 0. It follows that c =

〈f ,1〉Πα0
〈1,1〉Πα0

= 〈f ,1〉Πα0 = Ex∼Πα0
[f(x)].

We write Jα = 1(Πα
0 )> as the operator to map f to f1, so that

Jαf = (1(Πα
0 )>)f = 〈f ,Πα

0 〉 · 1 = E
x∼Πα0

[f(x)] · 1 = f1. (projector to constant functions)
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Oppenheim’s Theorem

Let (X,Π) be a pure d-dimensional weighted simplicial complex. For all j = −1, . . . , d− 2
we define,

νj := νj(X,Π) = min
α∈X(j)

λmin(Mα) and γj := γj(X,Π) = max
α∈X(j)

λ2(Mα).

We say X is a γ-local-spectral expander if γi ≤ γ for −1 ≤ i ≤ d− 2. We say X is a two-
sided γ-local expander if max{γi, |νi|} ≤ γ for all −1 ≤ i ≤ d− 2. We note that two-sided
γ-local spectral expansion of the complex X implies σ2(Mα) ≤ γ for all α ∈ X(≤ d− 2).

We will now recall Oppenheim’s Theorem [Opp18], which relates the second eigenvalue of
the graph of a lower-dimensional link to that of a higher-dimensional link.

Theorem 2.3.6 (Oppenheim’s Theorem). Let (X,Π) be a pure d-dimenisonal weighted

simplicial complex. For any 0 ≤ j ≤ d− 2, if Gα is connected for every α ∈ X(j− 1), then

νj−1 ≥ νj + (1− νj) · ν2
j−1 and γj−1 ≤ γj + (1− γj) · γ2

j−1.

In particular, we have

νj−1 ≥
νj

1− νj
and γj−1 ≤

γj
1− γj

.

Theorem 2.3.6 is proven through the so-called Garland method, which goes back to [Gar73].
The main idea is that by using Proposition 2.3.4 one can decompose an expectation over
the distribution Πα

0 for α ∈ X(≤ d − 1) into an expectation of expectations over the
distributions Π

α∪{z}
0 for z ∈ Xα(0).

Proof of Theorem 2.3.6. We first assume j = 0 and prove γ−1 ≤ γ0 + (1 − γ0) · γ2
−1. We

will then explain how this implies the general case.

Throughout this proof, we will write M := M∅ and for z ∈ X(0), Mz := M{z} and Jz = J{z}.

Let f ∈ RX(1) be a unit eigenvector of M to the eigenvalue λ := λ2(M), i.e.

Mf = λf and ‖f‖2
Π0

= 1 and therefore 〈f ,Mf〉 = λ. (assumptions)
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We have by Eq. (2.15),

〈f ,Mf〉Π0 =
∑

x,y∈X(0),
x 6=y

Π1({x, y}) · f(x)f(y). (2.16)

We will now do calculations to show that we can think of the quadratic form over M∅ as

an expectation of quadratic forms over Mz for z ∈ X(0).

Thus, we can write

〈f ,Mf〉Π0 =
∑

x,y∈X(0),
x 6=y

Π1({x, y}) · f(x)f(y),

=
∑

x,y∈X(0),
x 6=y

∑
z∈X(0)

Π0(z) · Π{z}1 ({x, y}) · f(x)f(y), (by Proposition 2.3.4)

=
∑
z∈X(0)

Π0(z)
∑

x,y∈X(0),
x 6=y

Π
{z}
1 ({x, y}) · f(x)f(y),

= E
z∼Π0

 ∑
x,y∈X(0),

x6=y

Π
{z}
1 ({x, y}) · f(x)f(y)

,
= E

z∼Π0

〈f ,Mzf〉Π{z}0
(by Eq. (2.15)).

For z ∈ X(0), we will write Vz = Xz(0). We recall that Mz are row-stochastic matrices

whose top eigenvector is 1Vz ∈ RVz . The projector to the top-eigenspace of Mz is given by

Jz = 1Vz(Π
{z}
0 )> for all z ∈ X(0), and the projector to the eigenspace orthogonal to 1Vz is

given by IVz − Jz.

With this we can now write,

〈f ,Mf〉Π0 = E
z∼Π0

〈f ,Mzf〉Π{z}0
,

= E
z∼Π0

[
〈Jzf ,MzJzf〉Π{z}0

+ 〈(IVz − Jz)f ,Mz(IVz − Jz)f〉Π{z}0

]
= E

z∼Π0

[
‖Jzf‖2

Πz0
+ 〈(IVz − Jz)f ,Mz(IVz − Jz)f〉Π{z}0

]
(using MzJz = Jz)
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Since IVz − Jz is the orthogonal projection to the functions to 1Vz , i.e. the top eigenvector

of Mz we have,

〈f ,Mf〉Π0 ≤ E
z∼Π0

[
‖Jzf‖2

Π
{z}
0

+ λ2(Mz) · ‖(IVz − Jz)f‖2

Π
{z}
0

]
≤ E

z∼Π0

[
‖Jzf‖2

Π
{z}
0

+ γ0 · ‖(I− Jz)f‖2

Π
{z}
0

]
(2.17)

where we have used γ0 = maxz∼X(0) λ2(Mz).

We would like the analyze the terms in the expectation in Eq. (2.17). We recall that by

the definition of the projector to constant functions,

Jzf =
(
1(Π

{z}
0 )>

)
f =

(
E

x∼Π
{z}
0

f(x)

)
· 1

By Eq. (2.13) and Eq. (2.14) from the preceding section we obtain

Π
{z}
1 (x) =

Π1(x, z)

2Π0(z)
= M(z, x). (2.18)

Thus,

E
x∼Π

{z}
0

[f(x)] = [Mf ](z) and therefore E
z∈X(1)

[
‖Jzf‖2

Π
{z}
0

]
= ‖Mf‖2

Π0
.

From the above (since Mf = λf , and f is a unit eigenvector) we obtain

E
z∼Π0

[
‖Jzf‖2

z

]
= ‖λf‖2

Π0
= λ2 · ‖f‖2

Π0
= λ2. (2.19)

This settles the first term in the RHS of Eq. (2.17). Now, we proceed to investigate the

second term: Since Jz is an orthogonal projector, we have

E
z∼Π0

‖(I− Jz)f‖Π
{z}
0

= E
z∼Π0

[
‖f‖2

Π
{z}
0

− ‖Jzf‖2

Π
{z}
0

]
= E

z∼Π0

[
‖f‖2

Π
{z}
0

]
− λ2. (2.20)
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Now, we note

E
z∼Π0

[
‖f‖

Π
{z}
0

]
=

∑
z∈X(0)

Π0(z) ·
∑

x∈X{z}(0)

Π
{z}
0 (x) · f(x)2,

=
∑
z∈X(0)

∑
x∈X{z}(0)

Π0(z)Π
{z}
0 (x) · f(x)2,

=
∑

x∈X(0)

∑
z∈X{x}(0)

Π0(z) · Π{z}0 (x)f(x)2, (2.21)

=
∑

x∈X(0)

Π0(x) · f(x)2, (by Proposition 2.3.4)

= ‖f‖2
Π0

= 1 (as f is a unit vector)

where we have used the equivalence x ∈ X{z}(0) ⇐⇒ {x, z} ∈ X(1) ⇐⇒ z ∈ X{x}(0) for

Eq. (2.21). Using this Eq. (2.20) becomes

E
z∼Π0

‖(I− Jz)f‖Π
{z}
0

= 1− λ2.

We can plug this in Eq. (2.17) together with Eq. (2.19) to obtain,

〈f ,Mf〉Π0 ≤ λ2 + γ0 · (1− λ2) = γ0 + (1− γ0) · λ2.

As f is a unit eigenvector of λ (see our assumptions) corresponding to the eigenvalue

λ = λ2(M) we have

〈f ,Mf〉Π0 = λ ≤ γ0 + (1− γ0) · λ2.

Noticing that λ = λ2(M∅) = γ−1 concludes, we have now proven

γ−1 ≤ γ0 + (1− γ0) · γ2
−1.

The second expression in the theorem statement can be obtained by solving the inequality

for γ−1 assuming γ0 < 1/2. This assumption can be made without loss of generality as

we have γ0/(1 − γ0) ≥ 1 when γ0 ≥ 1/2, and thus by Proposition 2.2.3, the inequality

γ−1 ≤ 1 ≤ γ0/(1− γ0) follows trivially.
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Suppose now, j > 0 and α ∈ X(j). By repeating the same arguments in the link

(Xα,Π
α
d−|α|) we can get an upperbound on λ2(Mα) as MX

α (the link graph of α in X)

and MXα
∅ (the link graph of ∅ in Xα) are identical. By taking a maximum over all α we

prove the analogous statement for general γj.

As the analogous inequality for νj follows identically, we omit the proof.

An inductive argument proves the following corollary, which we will use in Section 3.2.

Corollary 2.3.7 (Oppenheim’s Corollary). Let (X,Π) be a pure d-dimenisonal weighted

simplicial complex. If Gα is connected for every α ∈ X(k) and every k ≤ d− 2, then

γj ≤
γd−2

1− (d− 2− j) · γd−2

.

Remark 2.3.8. To get a non-trivial bound on γ−1 using Oppenheim’s Corollary 2.3.7, i.e. to

ensure γ−1 < 1 using this line of arguments, we need to assume γd−2 < 1/(d− 1).

2.4 Higher Order Random Walks

2.4.1 Up and Down Operators

Let (X,Π) be a pure d-dimensional weighted simplicial complex. In the following defini-
tions, α ∈ X(k), β ∈ X(k + 1), f ∈ RX(j), g ∈ RX(k+1), and j ∈ [−1, d− 1].

The j-th up operator Uj : RX(j) → RX(j+1) is defined as

[Ujf ](β) =
1

j + 2

∑
x∈β

f(β\{x}) =
∑
α⊂β,
α∈X(j)

f(α)

j + 2
. (up operator)

The (j + 1)-st down operator Dj+1 : RX(j+1) → RX(j) is defined as

[Dj+1g](α) =
∑

x∈Xα(0)

Πj+1(α ∪ {x})
(j + 2)Πj(α)

·g(α∪{x}) =
∑
β⊃α,

β∈X(j+1)

Πj+1(β) · g(β)

(j + 2)Πj(α)
(down operator)

It is known [KO18, DDFH18] that Uj and Dj+1 are adjoints of each other, i.e.
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Proposition 2.4.1. Let (X,Π) be a pure d-dimensional weighted simplicial complex. Sup-

pose j ∈ [−1, d− 1]. Then,

〈g,Ujf〉Πj+1
= 〈Dj+1g,f〉Πj for all g ∈ RX(j+1),f ∈ RX(j). (adjointness)

Equivalently, the operators Uj and Dj+1 are adjoints of each other with respect to the inner-

products over Πj and Πj+1, i.e. U∗j = Dj+1 and D∗j+1 = Uj.

Proof. We appeal to Proposition 2.1.2. By the definition of the up operator, for β ∈
X(j + 1) and α ∈ X(j)

Uj(β, α) = 1>βUj1α = [Uj1α](β) =
∑
x∈β

1α(β \ {x})
j + 2

=
1[α ⊂ β]

j + 2
,

and similarly by the definition of the down operator

Dj+1(α, β) = 1>αDj+11β = [Dj+11β](α) =
∑

x∈Xα(0)

Πj+1(β) · 1β(α ∪ {x})
(j + 2) · Πj(α)

=
Πj+1(β) · 1[β ⊃ α]

(j + 2) · Πj(α)
.

It is clear that the equation in Proposition 2.1.2 is satisfied, and thus

D∗j+1 = Uj and U∗j = Dj+1.

Remark 2.4.2. We have stayed consistent with the notations in [DDFH18], and named Uj

and Dj+1 up and down operators with their right-action on functions (or vectors) in mind.

However, in terms of random walks, Uj describes a random down-movement from X(j+ 1)

to X(j), whereas Dj+1 describes a random up-movement from X(j) to X(j + 1), since the

action of the probability distribution is from the left.

We now remark that when viewed as random walk operators Uj and Dj respectively, com-
pose really nicely each other: Let X be a d-dimensional simplicial complex and let k, h ≥ 0
be such that k + h ≤ d. For a face α ∈ X(k), we introduce the notation

p(h)
α = (Dk+1 · · ·Dk+h)

>1α
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for the probability vector of the random movement that starts from α ∈ X(k) and moves
to X(k+ h) as described by the operators Dk+j for j = 1, . . . , k. We adopt the convention
that the empty product of matrices is the identity and thus, p(0)

α = 1α. We prove that p(h)
α

describes a probability distribution on the faces β ∈ X(k+h) that contain α which assigns
them measure proportional to Πk+h(β).

Proposition 2.4.3. Let X be a d-dimensional simplicial complex and k, h ≥ 0 such that

k + h ≤ d. For α ∈ X(k) and β ∈ X(k + h) one has,

p(h)
α (β) = 1[β ⊃ α] · 1(

k+h+1
h

) · Πk+h(β)

Πk(α)
= Πα

h−1(β\α).

Proof. Notice that for h = 0, the statement holds trivially. We proceed by induction:

Assume that there exists some h ≥ 0 that satisfies the induction hypothesis

p(h)
α (β) = 1[β ⊃ α] · 1(

k+h
h

) · Πk+h+1(β)

Πk(α)
(induction hypothesis)

for all β ∈ X(k + h).

For β′ ∈ X(k + (h+ 1)) one has by the definition of the down operator

p(h+1)
α (β′) = [D>k+h+1p

(h)
α ](β′),

= 1>β′ · (D>k+h+1p
(h)
α ),

= (Dk+h+11β′)
>p(h)

α ,

=
1

k + h+ 2
·
∑
x∈β′

Πk+h+1(β′)

Πk+h(β′\{x})
· p(h)

α (β′\{x}).

Plugging in the induction hypothesis, this implies

p(h+1)
α (β′) =

1

(k + h+ 2)
·
∑
x∈β′

Πk+h+1(β′)

Πk+h(β′\{x})
·

(
1[(β′\{x)}) ⊃ α] · 1(

k+h+1
h

) · Πk+h(β
′\{x})

Πk(α)

)
,

=
1

(k + h+ 2)
· 1(

k+h+1
h

) ·∑
x∈β′

1[β′\{x} ⊃ α] · Πk+h+1(β′)

Πk(α)
.
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From the preceding, it is clear that p
(h)
α (β′) = 0 if β′ 6⊃ α. Suppose therefore β′ ∈

X(k + h + 1) is such that β′ ⊃ α. Since there are precisely h + 1 indices whose deletion

still preserves the containment of α, we can write

p(h+1)
α (α) = 1[β′ ⊃ α] · h+ 1

k + h+ 2
· 1(

k+h+1
h

)Πk+h+1(β′)

Πk(α)
,

= 1[β′ ⊃ α] · 1(
k+h+2
h+1

) · Πk+h+1(β′)

Πk(α)
.

The statement p(h)
α (β) = Πα

h−1(β\α) is a consequence of Eq. (2.13).

Similarly, for β ∈ X(k + h) and α ∈ X(k), we introduce the notation q
(h)
β , as

q
(h)
β (α) = (Uk+h−1 · · ·Uk)>1β,

for the probability vector of the random movement starting from β ∈ X(k+h) and moving
to X(k) as described by Uk+h−j for j = 1, . . . , h. Using Proposition 2.4.3, and the fact
that (Uk+u−1 · · ·Uk)∗ = Dk+u · · ·Dk+1 we can see that q(h)

β is the uniform distribution of all
subsets of β contained in X(k)

Corollary 2.4.4. Let X(≤ d) be a simplicial complex, and k, h ≥ 0 be parameters satisfying

k + h ≤ d. For β ∈ X(k + h) and α ∈ X(k), one has

q
(h)
β (α) =

1(
k+h+1
h

) · 1[β ⊃ α].

2.4.2 Down-Up Walk, Up-Down Walk, and Non-Lazy Up-Down

Walk

We use the up and down operators to define three random walk operators on X(j). The
j-th down-up walk P5j and the j-th up-down walk P4j are defined as

P5j = Uj−1Dj and P4j = Dj+1Uj. (down-up walk, up-down walk)

As U∗i = Di+1, it is easy to observe that these operators are positive semi-definite. One
useful property of P4j and P5j is that they have the same non-zero spectrum with the same

51



multiplicity by Fact 2.1.6, and in particular λ2(P4j ) = λ2(P5j ). Also, we define the j-th
non-lazy up-down walk as

P∧j =
j + 2

j + 1

(
P4j −

1

j + 2
I

)
, (non-lazy up-down walk)

which is the up-down walk conditioned on not looping. It follows from the adjointness of
Uj and Dj+1 that all P5j , P

4
j , and P∧j are self-adjoint with respect to the inner-product

defined by Πj, e.g. given any f 1,f 2 ∈ RX(j),

〈f 1,P
4
j f 2〉Πj = 〈f 1,Dj+1Ujf 2〉Πj = 〈Ujf 1,Ujf 2〉Πj+1

= 〈Dj+1Ujf 1,f 2〉Πj = 〈P4j f 1,f 2〉Πj .

This implies that Πj is the stationary distribution for all these random walks P5j , P
4
j , and

P∧j by Proposition 2.2.1.

Combinatorial Interpretation: We can understand the higher order random walks as
a random walk on a bipartite graph between X(j) and X(j+ 1) as explained in [ALOV19,
DK17]. Consider the bipartite graph H = (X(j), X(j+1), E) in which a face α ∈ X(j) and
a face β ∈ X(j + 1) are connected if and only if α ⊂ β. The edge {α, β} ∈ H is assigned
the weight 1

j+2
·Πj+1(β). Using Eq. (2.12), it can be seen that the weighted degree of any

α ∈ X(j) is Πj(α). And the weighted degree of any β ∈ X(j+1) is exactly Πj+1(β). Thus,
the graph H has the (weighted) random walk matrix

MH =

(
0 Uj

Dj+1 0

)
.

One step of the down-up walk P5j+1 can be thought as a two step random walk in MH :
starting from some β ∈ X(j + 1), the random walk will go down from β ∈ X(j + 1) to
α ∈ X(j) by dropping an element of β, which is chosen uniformly at random as prescribed
by Uj, and then the random walk will go up from α ∈ X(j) to a random face β′ ∈ X(j+1)

which contains α as prescribed by Dj+1. Similarly, one step of the up-down walk P4j can be
thought as a two step random walk in MH starting from some α ∈ X(j). More precisely,

M2
H =

(
UjDj+1 0

0 Dj+1Uj 0

)
=

(
P5j+1 0

0 P4j

)
.

It is instructive to check that when the distribution Π of the simplicial complex is the
uniform distribution, then the down-up walks and the up-down walks are as described as
in the introduction.
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Remark 2.4.5 (Johson Graphs). If X is the Boolean slice of size k + 1, i.e. X =
(

[n]
≤k

)
,

then the non-lazy down-up walk P5k corresponds to a lazy random walk over the Johnson

graph J(n, k + 1) = (V,E) where V =
(

[n]
k+1

)
and there is an edge {α, α′} ∈ E whenever

|α ∩ α′| = |α| − 2. The random walk matrix of the Johnson graph is known to have

eigenvalues bounded away from 1 [GM15]. In Chapter 3 we will prove that the down-up

walks are expanding and our proof for this can be thought as a more robust version of

the proof of the eigenvalue bound for the Johnson graph – indeed, when X =
(

[n]
≤k+1

)
the

eigenvalue bound we give will be tight.

The down- and up- operators we have introduced can also be studied in the more general
setting of partially ordered sets. We refer the interested readers to [BR98].

2.4.3 Longer Random Walks

Suppose now X is a d-dimensional simplicial complex and a1, a2, h ≥ 0 are such that
a1 ≥ a2 and a1 + h ≤ d. We define the up-down walk between X(a1) and X(a2) through
X(a1 + h) to be

P(h)
a1,a2

= Da1+1 · · ·Da1+h · Ua1+h−1 · · ·Ua2 .

We will often refer to the parameter h as the height of the random walk. Similar to the
intuition that was presented about the up-down and the down-up walks, we can think of
P

(h)
a1,a2(α0, α1) as describing the following random process: Starting from some α0 ∈ X(a1)

we first sample a face β ∈ X(a1 + h) that contains α0 with probability p
(h)
α0 (β), and then

pick a uniformly random subset α1 ∈ X(a2) of β.

We will introduce the notation P
(h)
a := P

(h)
a,a, for the case where a1 = a2 = a.

2.4.4 Swap Operator

Let (X,Π) be a d-dimensional weighted simplicial complex and suppose k, l, h ≥ 0 satisfy
k ≥ l and k + j ≤ d. We consider the following random movement from X(k) to X(l):
Starting from from some α0 ∈ X(k) first sample a random face β ∈ X(k + h) containing
α0 with probability p

(h)
α0 (β), and then pick a uniformly random face α1 ∈ X(l) among all

the subsets of β that satisfy |α1 \ α0| = h. We will call this random process a step of
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the h-swapping walk from X(k) to X(l),as this random walk swaps h uniformly random
elements of α0 with β\α0. We will write S(h)

k,l for the operator describing the random process
we have written above, i.e. S(h)

k,l (α0, α1) = Pr[α1 | α0]. We have,

Proposition 2.4.6. Suppose X is a d-dimensional simplicial complex. Suppose, k, l, h ≥ 0

are given such that k ≤ l and k + h ≤ d. Let α0 ∈ X(k), α1 ∈ X(l), then

S
(h)
k,l (α0, α1) =

1[|α1\α0| = h](
k+1
l+1−h

)
·
(
k+h+1
h

) · Πk+h(α0 ∪ α1)

Πk(α0)

Proof. We first notice that the process we have describes above lands on α1 ∈ X(l) from

some β ∈ X(k + h) containing α0 such that |α1\α0| = h if and only if β = α1 ∪ α0.

This happens with probability p
(h)
α (α0 ∪ α1). Conditioned on picking β = α0 ∪ α1 the

probability of picking α1 as the uniformly random set such that |α1\α0| = h is, 1

( k+1
l+1−h)

as

this corresponds to picking l+ 1− h random elements from the set α1 of cardinality k+ 1.

By law of conditional probability,

S
(h)
k,l (α0, α1) = Pr[α1 | α0],

= Pr[α1 | β = α0 ∪ α1] · p(h)
α0

(α0 ∪ α1),

=
1[|α1\α0| = h](

k+1
l+1−h

) · p(h)
α0

(α0 ∪ α1)

Using Proposition 2.4.3, we obtain

S
(h)
k,l (α0, α1) =

1[|α1\α0| = h](
k+1
l+1−h

)
·
(
k+h+1
h

) · Πk+h(α0 ∪ α1)

Πk(α0)
,

which was to be demonstrated.

We remark that S(h)
k,l can be thought as the random walk P

(h)
k,l that is conditioned on having

|α1\α0| = h. This observation will be useful in Chapter 4. The important special cases
for us will be when h = l + 1, i.e. where α0 ∩ α1 = ∅. To simplify notation, we will write
Sk := S

(k+1)
k,k and Sk,l := S

(l+1)
k,l .
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Remark 2.4.7 (Kneser Graphs). If X is the complete complex ∆n,d, i.e. X =
(

[n]
≤d+1+h

)
,

then the swap walk Sk corresponds to the simple random walk over the Kneser graph,

K(n, k + 1) = (V,E) where the set of vertices is V =
(

[n]
k+1

)
, and there is an edge between

every two disjoint pair of sets in V , i.e. E = {{α, α′} : α, α′ ∈ V, α ∩ α′ = ∅}. The random
walk matrix of the Kneser graph is known to have eigenvalues that are small [GM15]. In

Chapter 4 we will prove that the swap walks are expanding and our proof for this can

be thought as a more robust version of the proof of the eigenvalue bound for the Kneser

graphs.
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Chapter 3

Down-Up Walks and Applications

3.1 Eigenvalue Bounds for Higher Order Random Walks

Our main result in this chapter is a quantitative generalization of the basic fact that a
pure d-dimensional simplicial complex X is gallery connected (i.e. λ2(P5d ) < 1) if and only
if the graph Gα is connected for every α ∈ X up to dimension d − 2 (i.e. λ2(Mα) < 1 for
all α ∈ X(k) and −1 ≤ j ≤ d− 2).

For simplicity of presentation, given a d-dimensional pure simplicial complex X, we will
adopt the convention of writing

γj := max
α∈X(j)

λ2(Mα) and νj := min
α∈X(j)

λmin(Mα),

where −1 ≤ j ≤ d− 2.

Theorem 3.1.1. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For any

0 ≤ k ≤ d,

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj).

Using an inductive argument as in [ALOV19, Theorem 3.3], we can prove a more general
statement about the entire range of eigenvalues.
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Theorem 3.1.2. Let (X,Π) be a pure d-dimensional weighted simplicial complex. Then,

for any 0 ≤ k ≤ d − 1 and for any −2 ≤ r ≤ k, the matrix P4k has at most |X(r)|
eigenvalues with value strictly greater than

1− r + 2

k + 2

k−1∏
j=r

(1− γj),

where we adopt the conventions that X(−2) = ∅ and
∏r−1

j=r(1− γj) = 1.

Note that Theorem 3.1.1 is a special case of Theorem 3.1.2 where r = −1 (recall that
X(−1) = {∅} and so |X(−1)| = 1). Further, Theorem 3.1.1 can only prove that λ2(P5d ) ≤
1− 1

d+1
. We observe that this bound is almost tight.

Proposition 3.1.3. Let X be a d-dimensional simplicial complex. Let n = |X(0)|. Suppose
2(d+ 1) ≤ n. Then λ2(P5d ) = λ2(P4d−1) ≥ 1− 2

d+1
.

Before we prove Theorem 3.1.1 and Theorem 3.1.2, we present two corollaries of Theo-
rem 3.1.1.
Combining with Oppenheim’s Corollary 2.3.7, Theorem 3.1.1 provides a bound on the
second eigenvalue of the d-th down-up walk based only on the maximum second eigenvalue
of the graphs in dimension d− 2. This will be useful in Section 3.2.

Corollary 3.1.4. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For

any 0 ≤ k ≤ d, suppose γk ≤ 1
k+1

and γj < 1 for −1 ≤ j ≤ k − 2, then

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

(k + 1)2
.

Proof. Since γk−2 ≤ 1
k+1

and γj < 1 for −1 ≤ j ≤ k − 2, it follows from Oppenheim’s

Corollary 2.3.7 that for any −1 ≤ j ≤ k − 3,

γj ≤
γk−2

1− (k − 2− j) · γk−2

≤
1

k+1

1− k−2−j
k+1

=
1

j + 3
.

Therefore, by Theorem 3.1.1,

λ2(P5k ) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj) ≤ 1− 1

k + 1

k−2∏
j=−1

j + 2

j + 3
= 1− 1

(k + 1)2
.
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Theorem 3.1.1 implies the following result for longer random walks on local-spectral ex-
panders.

Corollary 3.1.5. Let (X,Π) be a pure d-dimensional weighted simplicial complex. Let

0 ≤ a, h be such that a+ h ≤ d. If X is a γ-local-spectral expander, then

λ2(P(h)
a ) ≤ (1 + γ)h · a+ 1

a+ h+ 1
.

The rest of this section is organized as follows. We will first prove Theorem 3.1.1 in
Section 3.1.1, then Theorem 3.1.2 in Section 3.1.4, then Corollary 3.1.5 in Section 3.1.5,
and finally Proposition 3.1.3 in Section 3.1.6.

3.1.1 Spectral Bound: Proof of Theorem 3.1.1

In this section, we will provide a proof for Theorem 3.1.1,

Theorem 3.1.1. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For any

0 ≤ k ≤ d,

λ2(P5k ) = λ2(P4k−1) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj).

The key lemma in proving Theorem 3.1.1 is the following result that quantifies a spectral
bound on the difference of the k-th non-lazy up-down walk and the k-th down-up walk in
terms of the second eigenvalue of the links at dimension k − 1.

Lemma 3.1.6. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For any

0 ≤ k ≤ d− 1,

νk−1 ·
(
I− P5k

)
�Πk P

∧
k − P5k �Πk γk−1 ·

(
I− P5k

)
.

The proof of Lemma 3.1.6, will closely follow the proof of [DDFH18, Theorem 5.5], where
they prove the weaker inequality

νk−1 · I �Πk P
∧
k − P5k �Πk γk−1 · I. (3.1)

We remark that a similar statement was also used in [KO18] for proving Theorem 1.1.2.

We will first show how Lemma 3.1.6 implies Theorem 3.1.1 by an inductive argument.
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Proof of Theorem 3.1.1 from Lemma 3.1.6. We prove Theorem 3.1.1 by induction on k.

The base case is when k = 0, where P50 = 1Π>0 is a rank one matrix and so λ2(P50 ) ≤ 0,

and hence Theorem 3.1.1 trivially holds.

For the induction step, suppose we have

λ2(P5j+1) = λ2(P4j ) ≤ 1− 1

j + 2

j−1∏
i=−1

(1− γi). (induction hypothesis)

Since P5j+1 = UjDj+1 and P4j = Dj+1Uj have the same non-zero eigenvalues with the same

multiplicity by Fact 2.1.6, we only need to prove the statement for P4j+1. By Lemma 3.1.6,

P∧j+1 �Πj+1
γj · I + (1− γj)P5j+1

It follows from Fact 2.1.8 that

λ2(P∧j+1) ≤ γj + (1− γj) · λ2(P5j+1) ≤ 1− 1

j + 2

j∏
i=−1

(1− γi),

where the last equality is by plugging in the induction hypothesis. The theorem now follows

from the definition of non-lazy up-down walk, i.e.

P∧j+1 =
j + 3

j + 2

(
P4j+1 −

1

j + 3
I

)
⇐⇒ P4j+1 =

j + 2

j + 3
· P∧j+1 +

1

j + 3
I.

Therefore,

λ2(P4j+1) =
j + 2

j + 3
· λ2(P∧j+1) +

1

j + 3
≤ 1− 1

j + 3

j∏
i=−1

(1− γi),

and this proves the induction step.

3.1.2 Relation Between Up-Down and Down-Up Walks: Proof of

Lemma 3.1.6

The proof of Lemma 3.1.6 will rest on few useful identities established in [KO18, DDFH18],
which can be obtained through the “Garland Method”, which decomposes the higher order
random walk matrices into the random walk matrices of the links.
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In the following, given f ∈ RX(k) and α ∈ X(k− 1), we use fα to denote the restriction of
f to the entries in {α ∪ {x} | x ∈ Xα(0)}. And recall that Jα is the projector to constant
functions defined in Section 2.3.3

Lemma 3.1.7. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For all

f ∈ RX(j) the following hold,

1. 〈f , If〉Πj = Eα∼Πj−1
‖fα‖2

Πα0
= Eα∼Πj−1

〈fα,fα〉Πα0 ,

2. 〈f ,P5j f〉Πj = Eα∼Πj−1
‖Jαfα‖2

Πα0
= Eα∼Πj−1

〈fα, Jαfα〉Πα0 ,

3. 〈f ,P∧j f〉Πj = Eα∼Πj−1
〈fα,Mαfα〉Πα0 .

We will provide a proof of Lemma 3.1.7 in Section 3.1.3 for completeness. We are ready to
prove Lemma 3.1.6.

Proof of Lemma 3.1.6. Let f ∈ RX(j) be arbitrary. By Items (2) and (3) in Lemma 3.1.7,

we write

〈f , (P∧j − P5j )f〉Πj = E
α∼Πj−1

[
〈fα, (Mα − Jα)fα〉Πα0

]
.

Notice that since Mα is a row-stochastic matrix (with top eigenvector 1) and the matrix Jα

is the projector to its top eigenspace. Since both Mα and Jα are self-adjoint with respect

to the inner-product defined by Πα
0 (see Section 2.3.3), it follows that

Mα − Jα �Πα0
λ2(Mα) · I.

Moreover, since the matrix Mα− Jα is only supported on the subspace perpendicular to 1,

writing f⊥1α for the component of fα that is perpendicular to 1, we have

〈fα, (Mα − Jα)fα〉Πα0 = 〈f⊥1α , (Mα − Jα)f⊥1α 〉Πα0 .

As Jα is the projector to constant functions we have, f⊥1α = (I− Jα)fα and thus

〈fα, (Mα − Jα)fα〉 ≤ λ1(Mα − Jα) · ‖f⊥1α ‖2
Πα0
≤ λ2(Mα) · ‖(I− Jα)fα‖2

Πα0
, (3.2)

60



where the first inequality is by the Courant-Fischer-Weyl Theorem 2.1.4. Therefore,

〈f , (P∧j − P5j )f〉Πj = E
α∼Πj−1

[
〈fα, (Mα − Jα)fα〉Πα0

]
, (by Items (2) and (3) in Lemma 3.1.7)

≤ E
α∼Πj−1

[
λ2(Mα) · ‖(I− Jα)fα‖2Πα0

]
, (by Eq. (3.2))

≤ γj−1 · E
α∼Πj−1

[
‖(I− Jα)fα‖

2
Πα0

]
,

= γj−1 · E
α∼Πj−1

[
〈fα, (I− Jα)fα〉Πα0

]
, (by 〈Jαfα, Jαfα〉Πα0 = 〈fα, Jαfα〉Πα0 )

= γj−1 · 〈f , (I− P5j )f〉Πj (by Items (1) and (2) in Lemma 3.1.7).

This proves P∧j − P5j �Πj γj−1(I− P5j ).

To prove P∧j − P5j �Πk νk−1 · (I− P5k ), we observe

Mα − Jα ≥ λmin(Mα) · I,

as Jα is the projector to the top-eigenspace of the matrix Mα. The proof, then follows

analogously.

3.1.3 Garland Method: Proof of Lemma 3.1.7

Here we provide a proof of Lemma 3.1.7 for completeness. These arguments are from
[KO18, DDFH18].

First, we recall

Lemma 3.1.7. Let (X,Π) be a pure d-dimensional weighted simplicial complex. For all

f ∈ RX(j) the following hold,

1. 〈f , If〉Πj = Eα∼Πj−1
‖fα‖2

Πα0
= Eα∼Πj−1

〈fα,fα〉Πα0 ,

2. 〈f ,P5j f〉Πj = Eα∼Πj−1
‖Jαfα‖2

Πα0
= Eα∼Πj−1

〈fα, Jαfα〉Πα0 ,

3. 〈f ,P∧j f〉Πj = Eα∼Πj−1
〈fα,Mαfα〉Πα0 .
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Proof. Item (1) can be proven from the identity

Πj(β) =
∑

α∈X(j−1),x∈X(0),
α∪x=β

Πj(α ∪ {x})
k + 1

=
∑

α∈X(j−1),x∈X(0),
α∪x=β

Πj−1(α) · Πα
0 (x),

where the last equality is by Eq. (2.13) that Πα
0 (x) =

Πj(α∪{x})
(j+1)·Πj−1(α)

. Then,

〈f , If〉Πj =
∑

β∈X(j)

Πj(β) · f(β)2

=
∑

β∈X(j)

∑
α∈X(j−1),x∈X(0),

α∪x=β

Πj−1(α) · Πα
0 (x) · fα(x)2

=
∑

α∈X(j−1)

Πj−1(α) ·
∑

x∈Xα(0)

Πα
0 (x) · fα(x)2

= E
α∼Πj−1

〈fα,fα〉Πα0 .

Item (2) follows by appealing to the definition of the down-up walk that P5j = Uj−1Dj,

and so

〈f ,P5j f〉Πj = 〈f ,Uj−1Djf〉Πj = 〈Djf ,Djf〉Πj−1
.

By the definition of the down operator and Πα
0 (x) =

Πj(α∪{x})
(j+1)·Πj−1(α)

from Eq. (2.13), it follows

that [Djf ](α) =
∑

x∈Xα(0) Πα
0 (x) · f(α ∪ {x}) = Ex∼Πα0

fα(x) and thus

〈f ,P5j f〉Πj =
∑

α∈X(j−1)

Πj−1(α)

(
E

x∼Πα0

fα(x)

)2

= E
α∼Πj−1

[(
E

x∼Πα0

fα(x)

)2
]
.

Observing that Jαfα = 1 · Ex∼Πα0
fα(x) by the definition of the projector to constant

functions and therefore ‖Jαfα‖2
Πα0

=
(
Ex∼Πα0

fα(x)
)2. Hence, Item (2) follows as

〈f ,P5j f〉Πj = E
α∼Πj−1

‖Jαfα‖2
Πα0

= E
α∼Πj−1

〈fα, Jαfα〉Πα0 ,

where we used that Jα is an orthogonal projection and so 〈Jαfα, Jαfα〉Πα0 = 〈fα, Jαfα〉Πα0 .
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For Item (3), by the definition of P4j = Dj+1Uj and the definition of up operator,

〈f ,P4j f〉Πj = 〈Ujf ,Ujf〉Πj+1
=

∑
β∈X(j+1)

Πj+1(β) ·
∑
x,y∈β

1

|β|2
f(β\x)f(β\y).

Now, by the definition of non-lazy up-down walk, we see that

〈f ,P∧j f〉Πj =
j + 2

j + 1
· 〈f ,P4j f〉Πj −

1

j + 1
〈f ,f〉Πj ,

=
∑

β∈X(j+1)

Πj+1(β)

|β| · (|β| − 1)

∑
x,y∈β

f(β\x)f(β\y)− 1

j + 1

∑
α∈X(j)

Πj(α)f(α)f(α),

where we got the second inequality using |β| = j+ 2. Now, notice that sampling α ∼ Πj is

the same as first sampling β ∼ Πj+1 and then sampling x ∼ β uniformly and considering

β\x, so we can get by Eq. (2.12) that

〈f ,P∧j f〉Πj =
∑

β∈X(j+1)

∑
x,y∈β

Πj+1(β)

|β| · (|β| − 1)
f(β\x)f(β\y)− 1

(j + 1)

∑
β∈X(j+1)

Πj+1(β) ·
∑
x∈β

f(β\x)f(β\x)

j + 2
,

=
∑

β∈X(j+1)

Πj+1(β)
∑
{x,y}∈β

1(|β|
2

)f(β\x)f(β\y)

where we have obtained the last inequality by using |β| = j+ 2 and noticing that the sum

kills the diagonal terms. Using τ = β\{x, y} and the identity Πj+1(β)

(|β|2 )
= Πj−1(τ) ·Πτ

1({x, y})
from Eq. (2.13), we can rewrite it as

〈f ,P∧j f〉Πj =
∑

β∈X(j+1)

∑
{x,y}∈β

Πτ
1({x, y}) · Πj−1(τ) · f(τ ∪ x)f(τ ∪ y)

=
∑

τ∈X(j−1)

Πj−1(τ)
∑

{x,y}∈Xτ (1)

Πτ
1({x, y})f(τ ∪ x)f(τ ∪ y).

On the other hand, using the equation

〈f ,Mτf〉Πτ0 =
∑

x∈Xτ (0)

Πτ
0(x) · f(x) · [Mτf ](x) =

∑
{x,y}∈Xτ (1)

f(x)f(y) · Πτ
1(x, y).
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where we use Mτ (x, y) =
Πτ1 (x,y)

2Πτ0 (x)
from Section 2.3.3, we can also write

E
τ∼Πj−1

[
〈f τ ,Mτ ,f τ 〉Πτ0

]
=

∑
τ∈X(j−1)

Πj−1(τ) ·
∑

{x,y}∈Xτ (1)

Πτ
1({x, y}) · f τ (x) · f τ (y),

and this proves 〈f ,P∧j f〉Πj = Eτ∼Πj−1

[
〈f τ ,Mτ ,f τ 〉Πτ0

]
.

3.1.4 Bounds for the Entire Spectrum: Proof of Theorem 3.1.2

We will prove Theorem 3.1.2 about the entire spectrum of the higher order random walks.

Theorem 3.1.2. Let (X,Π) be a pure d-dimensional weighted simplicial complex. Then,

for any 0 ≤ k ≤ d − 1 and for any −2 ≤ r ≤ k, the matrix P4k has at most |X(r)|
eigenvalues with value strictly greater than

1− r + 2

k + 2

k−1∏
j=r

(1− γj),

where we adopt the conventions that X(−2) = ∅ and
∏r−1

j=r(1− γj) = 1.

Proof. We prove by induction on k. The base case is when k = 0, where P40 = 1
2
M∅ + 1

2
I.

For r = −2, the claim states that we have at most |X(−2)| = 0 eigenvalues that are strictly

greater than 1, which is true since P40 is a stochastic matrix. For r = −1, the claim tells us

that that there are at most |X(−1)| = 1 eigenvalues which are strictly larger than 1
2

+ γ−1

2
,

which is true by the definition of γ−1 = λ2(M∅) and that since P40 is of rank |X(0)|. For

r = 0, the claim tells us that there are at most |X(0)| eigenvalues that are greater than 0,

which is true since this is the rank of |X(0)|.

For the induction step, suppose that there exists some j ≥ 1 such that the claim of the

theorem is true for all −1 ≤ r ≤ j. By Fact 2.1.6, P5j+1 and P4j have the same non-zero
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eigenvalues. By Lemma 3.1.6, P∧j+1 �Πj+1
γj I + (1 − γj)P5j , and thus for −1 ≤ r ≤ j the

matrix P∧j+1 has at most |X(r)| eigenvalues with value greater than

γj + (1− γj) ·

(
1− r + 2

j + 2

j−1∏
i=r

(1− γi)

)
= 1− r + 2

j + 2

j∏
i=r

(1− γi).

Using the definition of the non-lazy up-down walk, Eq. (non-lazy up-down walk), we have

that for −1 ≤ r ≤ j, P4j+1 has at most |X(r)| eigenvalues with value greater than

j + 2

j + 3

(
1− r + 2

j + 2

j∏
i=r

(1− γi)

)
+

1

j + 3
= 1− r + 2

j + 3

j∏
i=r

(1− γi).

For r = j + 1, the claim is trivial since the P4j+1 is of rank |X(j + 1)|.

3.1.5 Longer Random Walks: Proof of Corollary 3.1.5

Corollary 3.1.5. Let (X,Π) be a pure d-dimensional weighted simplicial complex. Let

0 ≤ a, h be such that a+ h ≤ d. If X is a γ-local-spectral expander, then

λ2(P(h)
a ) ≤ (1 + γ)h · a+ 1

a+ h+ 1
.

We will use two basic facts in the proof.

Fact 3.1.8. Let M1 ∈ RV×U and M2 ∈ RU×W be two row-stochastic matrices. Then, we

have σ2(M1 ·M2) ≤ σ2(M1) · σ2(M2).

Fact 3.1.9 (Bernoulli’s Inequality). Let x ≥ −1 and r ≥ 1 be real numbers. Then,

(1 + x)r ≥ 1 + r · x.

Proof. Recall that P(h)
a = Da+1 · · ·Da+h · Ua+h−1 · · ·Ua. As U∗i = Di+1, it can be observed

that P(h)
a is positive semi-definite and therefore, σ2(P

(h)
a ) = λ2(P

(h)
a ). By Fact 3.1.8,

λ2(P(h)
a ) = σ2(P(h)

a ) ≤ σ2(Da+1) · · ·σ2(Da+h) · σ2(Ua+h−1) · · ·σ2(Ua).
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Notice that as P4j = Dj+1Uj and D∗j+1 = Uj, we have λ2(P4j ) = σ2(Uj) · σ2(Dj+1). Thus,

by rearranging we obtain,

λ2(P(h)
a ) ≤

b−a−1∏
j=0

λ2(P4a+j),

≤
h−1∏
j=0

(
1− (1− γ)a+j+1

a+ j + 2

)
, (by Theorem 3.1.1)

≤
h−1∏
j=0

(
1− 1− (a+ j + 1) · γ

a+ j + 2

)
, (by Fact 3.1.9)

=
h−1∏
j=0

(
(1 + γ)

a+ j + 1

a+ j + 2

)
.

By cancellations in the telescoping product, we have

λ2(P(h)
a ) ≤ (1 + γ)h · a+ 1

a+ h+ 1
.

3.1.6 Lower Bound for the Expansion: Proof of Proposition 3.1.3

In this section, we will prove Proposition 3.1.3, i.e.

Proposition 3.1.3. Let X be a d-dimensional simplicial complex. Let n = |X(0)|. Suppose
2(d+ 1) ≤ n. Then λ2(P5d ) = λ2(P4d−1) ≥ 1− 2

d+1
.

The proof will be based on the easy side of Cheeger’s inequality, Theorem 2.2.6.

Proof of Proposition 3.1.3. It is clear that there should exist a vertex v ∈ X(0) such that

Π0(v) ≤ 1
|X(0)| = 1

n
.
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We consider the set Av ⊂ X(d) consisting of all faces in X(d) containing the vertex v,

i.e. Av = {β ∈ X(d) : v ∈ β}. Note that,

Πd(Av) = (d+ 1) · Π0(v), (by using Eq. (2.12) repeatedly),

≤ d+ 1

n
, (by using Π0(v) ≤ 1

n
),

≤ 1

2
. (by using 2(d+ 1) ≤ n)

By Theorem 2.2.6,
1− λ2(P5d )

2
≤ min

S:Πd(S)≤1/2
Φ(S) ≤ Φ(Av).

We recall that the random-walk P5d starting from a face β ∈ X(d) first picks an index i ∼ β

uniformly at random, and then picks some face β′ ⊃ (β\i) with probability proportional

to Πd(β
′). If β ∈ Av the only way we leave Av in a single step is when the index i we pick

from β is v, which happens with probability 1/|β| = 1/(d+ 1).

Writing (Xt)t≥0 for the state of the random walk, this means for any β ∈ Av we have

Pr[X1 6∈ Av | X0 = β] ≤ 1

d+ 1
.

It follows that

1− λ2(P5d )

2
≤ Φ(Av) =

∑
β∈Av

Πd(β)

Πd(Av)
·Pr[X1 6∈ Av | X0 = β] ≤ max

β∈Av
Pr[X1 6∈ Av | X0 = β] ≤ 1

d+ 1
.

Solving the expression for λ2(P5d ) proves the proposition.

3.2 Analyzing Mixing Times of Markov Chains

In this section, we will use Corollary 3.1.4 to analyze Markov chains for sampling indepen-
dent sets of a graph of fixed size and sampling common independent sets of two partition
matroids.
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3.2.1 Sampling Independent Sets

Let G = (V,E) be a graph. A subset of vertices S ⊂ V is called an independent set if
uv /∈ E for every pair u, v ∈ S. We are interested in the problem of sampling a uniformly
random independent set of size k. We will analyze a natural Markov chain for the problem
by analyzing the down-up walk of a corresponding simplicial complex.

Define the (k − 1)-dimensional simplicial complex IG,k of G = (V,E) as

IG,k = {S ⊂ V : |S| ≤ k and S is independent},

the complex consisting of all independent sets in G of cardinality at most k. We endow
IG,k with the uniform distribution Πk−1 on IG,k(k − 1), i.e. the set of independent sets of
size k. We simply write IG,k for the weighted simplicial complex (IG,k,Πk−1).

The (k − 1)-th down-up walk P5k−1 on IG,k corresponds to a natural Markov chain to
sample independent sets of size k. It is known that this Markov chain is fast mixing when
k ≤ |V |

2∆+1
using coupling techniques [BD97, MU05]. The main result in this subsection is

the following improved bound using higher order random walks on simplicial complexes.

Theorem 3.2.1. Let G = (V,E) be a graph with maximum degree ∆. Let P5k−1 be the

(k− 1)-th down-up walk on the simplicial complex IG,k. Let AG be the adjacency matrix of

G.

If k ≤ |V |
∆ + |λmin(AG)|

, then λ2(P5k−1) ≤ 1− 1

k2
.

It is well-known that |λmin(AG)| ≤ ∆ for a graph with maximum degree ∆, and so The-
orem 3.2.1 recovers the previous result that the Markov chain is fast mixing if k ≤ |V |

2∆
.

There are various graph classes with |λmin(AG)| smaller than ∆, and Theorem 3.2.1 allows
us to sample larger independent sets. For example, it is known that |λmin(AG)| ≤ O(

√
∆)

for planar graphs and more generally for graphs with bounded arboricity [Hay06], and also
for random graphs and more generally for two-sided expander graphs [HLW06].

Using the simple bound minS∈IG,k(k−1) Πk−1(S) ≥ n−k as Πk−1 is the uniform distribution,
the following mixing time result follows from Theorem 2.2.7.

Corollary 3.2.2. Let G = (V,E) be a graph with maximum degree ∆ and let AG be the

adjacency matrix of G. For any k ≤ n/(∆ + |λmin(AG)|), the down-up walk P5k−1 on the

simplicial complex IG,k samples a random independent set of G of size k whose distribution
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is ε-close to the uniform distribution on all independent sets of size k in the total variation

distance in

T (ε,P5k−1) ≤ k2 ·
(

log

(
1

ε

)
+ k · log n

)
many time steps.

This implies a polynomial time algorithm to approximately sample a uniform random
independent set and also a FPRAS for approximately counting the number of independent
set of size k for k ≤ n

∆+|λmin(AG)| .

Proof of Theorem 3.2.1

The plan is to use Corollary 3.1.4 to prove Theorem 3.2.1. To apply Corollary 3.1.4, we
need to prove that:

1. IG,k is a pure simplicial complex. It is a simple exercise that this complex is pure
when k ≤ n

∆+1
.

2. For each S ∈ IG,k with |S| ≤ k − 2, the random walk matrix MS of the graph GS of
the link (IG,k)S satisfies λ2(MS) < 1. This is proved in Lemma 3.2.3.

3. For each S ∈ IG,k with |S| = k − 2, the random walk matrix MS of the graph GS

satisfies λ2(MS) ≤ 1/k. This is proved in Lemma 3.2.4.

Assuming the three items are proven, Theorem 3.2.1 follows immediately from Corol-
lary 3.1.4. We will prove the second item in Section 3.2.1 and the third item in Section 3.2.1.

Proof of Lemma 3.2.3

Let HS = (VS, ES) be the underlying support graph of GS of the link (IG,k)S, i.e. GS

without edge weights. Let MS be the random walk matrix of GS as defined in Section 2.3.3.
Note that λ2(MS) < 1 if and only if HS is connected.

We introduce some notation to describe HS. We write NG[S] as the union of S and the
set of vertices which are connected to a vertex in S in G, i.e.

NG[S] = S ∪ {v : there exists some uv ∈ E(G) such that u ∈ S}.
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For a subset of vertices S ⊂ V (G), we write S = V (G) \ S for the complement of S in
G, and G[S] for the induced subgraph of G on S. For a graph H, we write H for the
complement graph of H.

Recall that a vertex v is in VS if and only if S ∪ {v} is an independent set in G of size
|S| + 1, and so VS is exactly V −NG[S] = NG[S]. Two vertices u, v ∈ VS have an edge in
HS if and only if S ∪ {u, v} is an independent set in G of size |S| + 2, and so uv ∈ ES if
and only if uv /∈ E(G). Therefore, we see that

HS = G[VS] = G[N [S]].

With the description of HS, we are ready to prove the second item in Section 3.2.1.

Lemma 3.2.3. Let G = (V,E) be a graph with maximum degree ∆. Suppose k ≤ |V |
∆+1

.

For any S ∈ IG,k with |S| ≤ k− 2, the random walk matrix MS of the graph GS of the link

(IG,k)S satisfies λ2(MS) < 1.

Proof. Note that λ2(MS) < 1 if and only if the underlying support graph HS of GS is

connected, so we focus on proving the latter. To prove that HS is connected, we prove

the stronger claim that every two vertices u, v ∈ HS has a path of length at most two.

If uv is an edge in HS, then there is a path of length one. Suppose uv is not an edge

in HS. Then uv is an edge in G. Since G is of maximum degree ∆, it implies that

|NG[{u, v}]| ≤ (degG(u) + 1) + (degG(v) + 1)− 2 ≤ 2∆, and also

|VS| = |V | − |NG[S]| ≥ |V | − |S| · (∆ + 1) ≥ 2∆ + 2,

where we use the assumptions that |S| ≤ k − 2 ≤ |V |
∆+1
− 2 in the last inequality. So, there

must be some vertex w such that w ∈ VS \NG[{u, v}]. This implies that wu /∈ E(G) and

wv /∈ E(G), and thus wu ∈ E(HS) and wv ∈ E(HS) and so there is a path of length two

connecting u and v in HS.

Proof of Lemma 3.2.4

We observe that GS is an unweighted graph for S with |S| = k − 2 when the distribution
on IG,k(k − 1) is the uniform distribution. Therefore, GS is simply a scaled version of HS,
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and the random walk matrix MS of GS is the same as the random walk matrix of HS. To
bound the second eigenvalue, we will use some simple interlacing arguments. We need the
stronger assumption that k ≤ |V (G)|

∆+|λmin(AG|)
in the proof of the following lemma. (Note that

for any unweighted graph G, we have |λmin(AG)| ≥ 1.)

Lemma 3.2.4. Let G = (V,E) be a graph with maximum degree ∆. Suppose k ≤ |V |/(∆+

|λmin(AG)|). For any S ∈ IG,k with |S| = k − 2, the random walk matrix MS of the graph

GS of the link (IG,k)S satisfies λ2(MS) ≤ 1
k
.

Proof of Lemma 3.2.4. Recall that for S with |S| = k − 2, the random walk matrix MS of

GS is the same as the random walk matrix of HS, and so we will focus on the latter. Let

DH be diagonal degree matrix of HS. As argued above, the random walk matrix MS of GS

is equal to MS = D−1
H AH . We can write the adjacency matrix AH of HS as

AH = 11> − I− AG[N [S]],

where AG[N [S]] is the adjacency matrix of G[N [S]]. By Weyl’s interlacing theorem,

λ2(MS) ≤ λ2(D
−1/2
H 11>D

−1/2
H ) + λ1(D

−1/2
H (−AG[N [S]] − I)D

−1/2
H ), (by Theorem 2.1.10)

= λ1(D
−1/2
H (−AG[N [S]] − I)D

−1/2
H ), (D−1/2

H 11>D
−1/2
H is of rank 1)

≤
∥∥D−1

H

∥∥ · λ1(−AG[N [S]] − I), (by Theorem 2.1.4)

(3.3)

≤
∥∥D−1

H

∥∥ · (|λmin(AG[N [S]])| − 1), ( λ1(−AG[N [S]]) = −λmin(AG[N [S]]))

≤
∥∥D−1

H

∥∥ · (|λmin(AG)| − 1), (by Theorem 2.1.9)

For Eq. (3.3), we have used the consequence of the Courant-Fischer-Weyl Theorem 2.1.4

λ1(W) = max
{
〈f ,Wf〉 : f ∈ RV , ‖f‖ = 1

}
in the following way: Let W = −AL − I and

g be an unit top-eigenvecor of D
−1/2
H WD

−1/2
H , i.e. ‖g‖ = 1 and 〈g,D−1/2

H WD
−1/2
H g〉 =

λ1(D
−1/2
H WD

−1/2
H ). Then,

λ1(W) ≥

〈
D
−1/2
H g

‖D−1/2
H g‖

,W
D
−1/2
H g

‖D−1/2
H g‖

〉
=
λ1(D

−1/2
H WD

−1/2
H )

‖D−1/2
H ‖2

≥ λ1(D
−1/2
H WD

−1/2
H )

‖D−1
H ‖

.
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It remains to bound ‖D−1
H ‖ = (minv degHS(v))−1. As HS = G[N [S]] = G[V −N [S]],

degHS(v) = |V | − |N [S]| − (degG[N [S]](v) + 1) ≥ |V | − (∆ + 1)(|S|+ 1),

where the last inequality uses that |N [S]| ≤ |S| · (∆ + 1) and degG[N [S]](v) ≤ degG(v) ≤ ∆.

Therefore, using our bound λ2(MS) ≤
∥∥D−1

H

∥∥ · (|λmin(AG)| − 1), we obtain

λ2(MS) ≤ |λmin(AG)| − 1

|V | − (∆ + 1) · (|S|+ 1)
=

|λmin(AG)| − 1

|V | − (∆ + 1) · (k − 1)
,

where we use |S| = k − 2. Finally, plugging in the assumption

k ≤ |V |
∆ + |λmin(AG)|

=⇒ λ2(MS) ≤ 1

k
.

3.2.2 Sampling Matroid Intersection

A matroid M = (E, I) on the ground set E with the set of independent sets I ⊂ 2E is a
combinatorial object satisfying the following properties:

• (containment property) if S ∈ I and T ⊂ S, then T ∈ I,

• (extension property) if S, T ∈ I such that |S| > |T | then there is some x ∈ S\T such
that {x} ∪ T ∈ I.

A partition matroid is the special case where the ground set E is partitioned into disjoint
blocks B1, . . . , Bl ⊆ E with parameters 0 ≤ di ≤ |Bi| for 1 ≤ i ≤ l, and a subset S is in I
if and only if |S ∩Bi| ≤ di for 1 ≤ i ≤ l.

The intersection of two matroidsM1 = (E, I1) andM2 = (E, I) over the same ground set E
can be used to formulate various interesting combinatorial optimization problems [Sch03].
We are interested in the problem of sampling a uniform random common independent
set of size k, i.e. a random subset F ∈ I1 ∩I2 with |F | = k. We will analyze a natural
Markov chain for the problem by analyzing the down-up walk of a corresponding simplicial
complex.
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Define the (k− 1)-dimensional matroid intersection complex CM1,M2,k of M1 = (E, I1) and
M2 = (E, I2) as

CM1,M2,k = {S ∈ I1 ∩I2 : |S| ≤ k},
the complex consisting of all common independent sets of both matroids containing at
most k elements. We endow CM1,M2,k(k − 1) with the uniform distribution Πk−1 on the
common independent sets S ∈ I1 ∩I2 with |S| = k. We write CM1,M2,k for the weighted
simplicial complex (CM1,M2,k,Πk−1).

The (k−1)-th down-up walk P5k−1 on CM1,M2,k corresponds to the following natural Markov
chain to sample common independent sets of size k. Initially, the random walk starts from
a common independent set S1 of size k. In each step t ≥ 1, we choose a uniform random
element i ∈ St and delete i from St, and set St+1 to be a uniform random common
independent set of size k that contains St \ {i}. The stationary distribution of P5k−1 is the
uniform distribution Πk−1; see Section 2.4 and Proposition 2.2.1.

The main result in this subsection is the following upper bound on the second eigenvalue
of P5k−1.

Theorem 3.2.5. Let M1 = (E, I1) and M2 = (E, I2) be two given partition matroids with

a common independent set of size r and no two elements belonging to the same block in

both matroids. If k ≤ r/3, then

λ2(P5k−1) ≤ 1− 1

k2
,

where P5k−1 is the (k − 1)-th down-up walk on the matroid intersection complex CM1,M2,k.

Using the simple bound minS∈CM1,M2,k
(k−1) Πk−1(S) ≥ n−k as Πk−1 is the uniform distribu-

tion, the following mixing time result follows from Theorem 2.2.7.

Corollary 3.2.6. Let M1 = (E, I1) and M2 = (E, I2) be two given partition matroids with

a common independent set of size r and no two elements belonging to the same block in

both matroids. For any k ≤ r/3 the down-up walk P5k−1 on the simplicial complex CM1,M2,k

samples a random common independent set of M1 and M2 of size k whose distribution is

ε-close to the uniform distribution on all common independent sets of size k in the total

variation distance in

T (ε,P5k−1) ≤ k2 ·
(

log

(
1

ε

)
+ k · log n

)
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many time steps.

This implies a polynomial time algorithm to approximately sample a uniform random
common independent set of two partition matroidsM1 andM2 of size k and also a FPRAS
for approximately counting the number of independent set of size k given k ≤ r

3

Proof of Theorem 3.2.5

The plan is to use Corollary 3.1.4 to prove Theorem 3.2.5. To apply Corollary 3.1.4, we
need to prove that:

1. CM1,M2,k is a pure simplicial complex. This is a simple proof in Claim 3.2.7.

2. For each S ∈ CM1,M2,k with |S| ≤ k−2, the random walk matrix MS of the graph GS

of the link (CM1,M2,k)S satisfies λ2(MS) < 1. This is proved in Lemma 3.2.8, showing
that the underlying graph of GS is the complement of the line graph of a bipartite
graph.

3. For each S ∈ CM1,M2,k with |S| = k − 2, the random walk matrix MS of the graph
GS satisfies λ2(MS) ≤ 1/k. This is proved in Lemma 3.2.11, using the fact that the
minimum eigenvalue of the adjacency matrix of the line graph of a simple graph is
at least −2.

Assuming the three items are proven, Theorem 3.2.5 follows immediately from Corol-
lary 3.1.4.

It remains to prove the three items. We will prove the second item in Section 3.2.2 and the
third item in Section 3.2.2. We note that the first two items hold for any two matroids,
and we only use the additional assumptions for the third item. The following is a simple
proof for the first item.

Claim 3.2.7. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with a common inde-

pendent set T ∈ I1 ∩I2 of size |T | = r. Any common independent set S ∈ I1 ∩I2 with

|S| < r/2 is contained in a larger common independent set. In particular, this implies that

the simplicial complex CM1,M2,k is a pure simplicial complex as long as k ≤ r/2.
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Proof. By the extension property of matroids, there is a subset T1 ⊂ T with |T1| ≥ r− |S|
such that S ∪ {x} is an independent set in I1 for any x ∈ T1. Similarly, there is a subset

T2 ⊂ T with |T2| ≥ r − |S| such that S ∪ {y} is an independent set in I2 for any y ∈ T2.

As |S| < r/2, this implies that T1 ∩ T2 6= ∅, and S ∪ {z} is a larger independent set that

contains S for any z ∈ T1 ∩ T2.

Proof of Lemma 3.2.8

Let HS = (ES, FS) be the underlying support graph of GS of the link (CM1,M2,k)S, that is,
HS is GS without edge weights. The vertex set of HS is ES = {x ∈ E | S ∪{x} ∈ I1 ∩I2}
and the edge set of HS is FS = {{x, y} | x, y ∈ E and S∪{x, y} ∈ I1 ∩I2}. Let MS be the
random walk matrix of GS as defined in Section 2.3.3. It is a basic fact in spectral graph
theory that λ2(MS) < 1 if and only if HS is connected.

We will see thatHS is the complement of the line graph of a bipartite graphB. To define the
bipartite graph B, we first introduce the matroid partition property (see e.g. [ALOV19]).
The matroid partition property says that there is a partition P := {P1, . . . , Pp} of the
vertex set ES (i.e.

⋃p
i=1 Pi = ES and Pi ∩ Pj = ∅ for i 6= j) with the property that for any

x, y ∈ ES,
S ∪ {x, y} /∈ I1 ⇐⇒ x, y ∈ Pi for some 1 ≤ i ≤ p.

In words, there is a partition P of the vertex set ES such that two elements x, y in ES
can be added to S to form an independent set in the first matroid M1 if and only if
x, y do not belong to the same class of the partition P . Similarly, there is a partition
Q := {Q1, . . . , Qq} of the vertex set ES such that for any two elements x, y ∈ ES, we have
S ∪ {x, y} /∈ I2 if and only if x, y ∈ Qi for some 1 ≤ i ≤ q.

We use the partitions P and Q to define the bipartite graph B as follows. The vertex set
of B is P t Q, where we create a vertex i ∈ P in B for each Pi in P , and we create a
vertex j ∈ Q in B for each Qj in Q. Each edge in B corresponds to an element in ES. For
each element x ∈ ES, we create the edge ex = ij in B if and only if x ∈ Pi and x ∈ Qj.
Note that the edge ex for x ∈ ES is well-defined by the matroid partition property. By
construction, it should be clear that the bipartite graph B satisfies the following important
property:

ex and ey do not share a vertex in B ⇐⇒ S∪{x, y} ∈ I1 ∩I2 ⇐⇒ {x, y} ∈ FS.
(3.4)
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Recall that the line graph L(B) of a graph B is defined as follows: the vertex set of L(B)
is the edge set of B, and two vertices in L(B) have an edge if and only if the corresponding
edges in B share an endpoint. Let L(B) be the complement of L(B) where L(B) and
L(B) have the same vertex set and two vertices in L(B) have an edge if and only if the
corresponding vertices in L(B) do not have an edge. Then, we see from Eq. (3.4) that

HS = L(B). (3.5)

Using the bipartite graph B, it is easy to show the second item in Section 3.2.2.

Lemma 3.2.8. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with a common

independent set T ∈ I1 ∩I2 of size |T | = r. Suppose k < r/2 − 1. For any S ∈ CM1,M2,k

with |S| ≤ k − 2, the random walk matrix MS of the graph GS of the link (CM1,M2,k)S

satisfies λ2(MS) < 1.

Proof. It is well known that λ2(MS) < 1 if and only if the underlying support graph HS of

GS is connected, so we focus on proving the latter. Since |S| ≤ k − 2 < r/2− 3, it follows

from Claim 3.2.7 that there are four elements a, b, c, d ∈ E such that S ∪ {a, b, c, d} ∈
I1 ∩I2. In the bipartite graph B in Eq. (3.5), the four elements a, b, c, d correspond to

four vertex-disjoint edges ea, eb, ec, ed in B by Eq. (3.4). To prove that HS is connected,

we prove the stronger claim that every two vertices u, v ∈ HS has a path of length at most

two. If uv is an edge in HS, then there is a path of length one. Suppose uv is not an edge

in HS. Then eu and ev shares a vertex in B and so they span at most three vertices in B.

This implies that eu ∪ ev cannot intersect all four (vertex-disjoint) edges ea, eb, ec, ed. So

there must be an edge, say ea, which is vertex-disjoint from both eu and ev. Then u-a-v is

path of length two in HS by Eq. (3.4), which completes the proof.

Proof of Lemma 3.2.11

For the third term, we need to prove that for each S ∈ CM1,M2,k with |S| = k − 2, the
random walk matrix MS of the graph GS satisfies λ2(MS) ≤ 1

k
. We use the additional

assumptions for the following property.
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Claim 3.2.9. If M1 and M2 are two partition matroids and there are no two elements

x, y such that x, y belongs to the same block in M1 and also the same block in M2, then

Eq. (3.5) holds with the property that the bipartite graph B is a simple graph.

Observe that GS is an unweighted graph for S with |S| = k − 2 when the distribution on
CM1,M2,k(k−1) is the uniform distribution (i.e. the distribution on the common independent
sets of size k is the uniform distribution). This is because when |S| = k−2, for any x, y ∈ E,
either S∪{x, y} is contained in exactly one or zero set of size k in CM1,M2,k, and each set of
size k is assigned the same weight in the uniform distribution (more formally see Eq. (2.13)
for the definition of the weight). Therefore, GS is simply a scaled version of HS, and the
random walk matrix MS of GS is the same as the random walk matrix of HS.

Fact 3.2.10. Let G = (V,E) be any simple graph and AL(G) be the adjacency matrix of the

line graph of G. It holds that λmin(AL(G)) ≥ −2.

Proof. Define B ∈ RE×V to be the edge-vertex incidence matrix of G = (V,E), i.e. B(e, v) =

1[v ∈ e]. Observe that

2I + AL(G) = BB> =⇒ λmin

(
2I + AL(G)

)
= λmin

(
BB>

)
≥ 0,

as BB> is a positive semidefinite matrix. This implies that λmin(AL(G)) ≥ −2.

We are ready to bound the second eigenvalue of MS. We need the stronger assumption
that k ≤ r

3
in the proof of the following lemma.

Lemma 3.2.11. Let M1 = (E, I1) and M2 = (E, I2) be two partition matroids with

a common independent set T ∈ I1 ∩I2 of size |T | = r and there are no two elements

belonging to the same block in both matroids. Suppose k ≤ r/3. For any S ∈ CM1,M2,k with

|S| = k − 2, the random walk matrix MS of the graph GS of the link (CM1,M2,k)S satisfies

λ2(MS) ≤ 1/k.

Proof. Recall that for S with |S| = k − 2, the random walk matrix MS of GS is the same

as the random walk matrix of HS, and so we will focus on the latter. By Claim 3.2.9, HS
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is the complement of the line graph of a simple graph, and so we can write the adjacency

matrix AH of HS as

AH = 11> − I− AL,

where AL is the adjacency matrix of the line graph L(B) in Eq. (3.5). Let DH be diagonal

degree matrix of HS. As argued above, the random walk matrix MS of GS is equal to

MS = D−1
H AH . Using that D−1

H and D
−1/2
H AHD

−1/2
H are similar matrices and have the same

spectrum, we have

λ2(MS) = λ2(D
−1/2
H AHD

−1/2
H ),

= λ2(D
−1/2
H (11> − AL − I)D

−1/2
H ),

= λ2

(
D
−1/2
H 11>D

−1/2
H + D

−1/2
H (−AL − I)D

−1/2
H

)
.

Using the Weyl Interlacing Theorem 2.1.10,

λ2(MS) ≤ λ2(D
−1/2
H 11>D

−1/2
H ) + λ1(D

−1/2
H (−AL − I)D

−1/2
H ), (by Theorem 2.1.10)

= λ1(D
−1/2
H (−AL − I)D

−1/2
H ), (D−1/2

H 11>D
−1/2
H is of rank 1)

≤
∥∥D−1

H

∥∥ · λ1(−AL − I), (by Theorem 2.1.4) (3.6)

≤
∥∥D−1

H

∥∥ · (|λmin(AL)| − 1), (by using λ1(−AL) = −λmin(AL))

=
∥∥D−1

H

∥∥. (by Fact 3.2.10) (3.7)

For Eq. (3.6), we have used the implication of Theorem 2.1.4,

λ1(W) = max
{
〈f ,Wf〉 : f ∈ RV , ‖f‖ = 1

}
in the following way: Let W = −AL − I and g be an unit top-eigenvector of D−1/2

H WD
−1/2
H ,

i.e. ‖g‖ = 1 and 〈g,D−1/2
H WD

−1/2
H g〉 = λ1(D

−1/2
H WD

−1/2
H ). Then,

λ1(W) ≥

〈
D
−1/2
H g

‖D−1/2
H g‖

,W
D
−1/2
H g

‖D−1/2
H g‖

〉
=
λ1(D

−1/2
H WD

−1/2
H )

‖D−1/2
H g‖2

≥ λ1(D
−1/2
H WD

−1/2
H )

‖D−1
H ‖

.

It remains to bound ‖D−1
H ‖ = (minx degHS(x))−1. By the definition of HS, the degree

degHS(x) of x ∈ E is equal to the number of elements y ∈ E \ (S ∪ {x}) such that
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S ∪ {x, y} ∈ I1 ∩I2. By our assumption, there is a common independent set T ∈ I1 ∩I2

of size r. Since |S ∪ {x}| = k− 1, by the extension property of the first matroid M1, there

are at least r−k+ 1 elements y ∈ T such that S ∪{x, y} ∈ I1. Similarly, there are at least

r− k+ 1 elements y ∈ T such that S ∪{x, y} ∈ I2. Therefore, there are at least r− 2k+ 2

elements y ∈ T such that S ∪ {x, y} ∈ I1 ∩I2. This implies that for any x ∈ V (HS),

degHS(x) ≥ r − 2k + 2 ≥ k =⇒ λ2(MS) ≤ ‖D−1
H ‖ ≤

1

k
,

where we use the assumption that k ≤ r
3
.
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Chapter 4

Expansion Swap Walks

4.1 Statement of Results

Swap walks Sk,l arise naturally in several applications ranging from approximation al-
gorithms for k-CSPs [AJT19], to list decoding of codes [AJQ+20], to agreement testing
[DD19]. For these applications, one typically thinks of k being constant or independent of
n := |X(0)| – the size of the ground set. For this reason, we analyze the spectra of swap
walks. We show that swap walks Sk,l over simplicial complexes (X,Π) which are two-sided
γ-local spectral expanders are indeed expanding for γ sufficiently small.

Due to technical reasons, we study the case of square swap walks Sk := Sk,k and rectangular
swap walks Sk,l (where k 6= l) independently.

For the square case we prove,

Theorem 4.1.1. Let (X,Π) be a pure d-dimensional two-sided γ local spectral expander

such that γ ≤ ε
(
64kk+423k+2

)−1 where ε ∈ (0, 1) and k ≥ 0 some parameter such that

d ≥ 2k + 1. Then the second largest singular value σ2(Sk) of the swap walk Sk on X(k) is

σ2(Sk) ≤ ε.

For the rectangular case we prove,
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Theorem 4.1.2. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander.

Suppose k, l ≥ 0 are parameters such that d ≥ k+ l+ 1. If γ ≤ ε2 · (128 · k2 · ll+424l+2k+6)−1

for some ε ∈ (0, 1), then the second singular value of the operator Sk,l can be bounded from

above

σ2(Sk,l) ≤ ε.

In Appendix A, we will sketch a proof for the following improvement to Theorem 4.1.2 due
to Dikstein and Dinur [DD19].

Theorem 4.1.3. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander.

Let k, l ≥ 0 be parameters such that d ≥ k+ l+ 1. Then, writing Sk,l for the swap operator

on the complex (X,Π) we have

σ2(Sk,l) ≤ (k + 1) · (l + 1) · γ.

For simplicity, we base our exposition on the square case – the rectangular case will follow
similarly (and is handled in Section 4.3.3). We prove Theorem 4.1.1 by connecting the
spectral structure of Sk on a general two-sided γ-local spectral expander to the well behaved
case of complete simplicial complexes, ∆n,d =

(
[n]
≤d+1

)
equipped with the uniform measure

on the d-dimensional faces
(

[n]
d+1

)
. To distinguish these two cases we denote by S

∆n,d

k,k for
the swap-walk on the complete complex ∆n,d and Sk,k for the swap-walk on the concrete
simplicial complex (X,Π) that we care about. We recall that S

∆n,d

k is the random walk
operator of the well known Kneser graph K(n, k + 1).

Definition 4.1.4 (Kneser Graph K(n, k) [GM15]). Let n, k ≥ 1 be parameters such

that n ≥ 2k. The Kneser graph K(n, k) is the graph G = (V,E) where V =
(

[n]
k

)
and

E = {{α, α′} | α ∩ α′ = ∅}.

We recall that the spectrum of the Kneser graphs are well-understood.

Fact 4.1.5 (Kneser Graph [GM15]). Let n, k ≥ 1 be parameters such that n ≥ 2k. The

singular values of the unnormalized adjacency matrix of the Kneser graph K(n, k) are(
n− k − i
k − i

)
,

for i = 0, . . . , k.
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This means that σ2(S∆
k,k) = Ok(1/n) as shown in Claim 4.1.6.

Claim 4.1.6. Let d ≥ 2k + 1. The second largest singular value σ2(S
∆n,d

k,k ) of the swap

operator S
∆n,d

k,k

σ2(S
∆n,d

k ) =
k + 1

n− k − 1
,

provided n ≥Mk where Mk ∈ N only depends on k.

Proof. First note that for the complete complex ∆n,d, the operator S
∆n,d

k,k is the random

walk matrix of the Kneser graph K(n, k + 1). Since the degree of K(n, k) is
(
n−k−1
k+1

)
, the

result follows from Fact 4.1.5.

Therefore, if we could claim that σ2(Sk) of the swap walk Sk over an arbitrary two-sided
γ-local spectral expander is close to σ2(S

∆n,d

k ) for small enough γ, we would conclude
that the swap walks Sk have bounded second singular value σ2(Sk) for strong two-sided
local-spectral expanders. A priori there is no reason why this claim should hold since
a general d-dimensional two-sided γ-local spectral expander may have much fewer faces
(Od(n) versus

∑d
j=0

(
n
j+1

)
in the complete complex ∆n,d). Fortunately, it turns out that

this claim is indeed true (up to Ok(γ) errors).

To prove Theorem 4.1.1 we employ the machinery developed in [DDFH18]. Before we delve
into the full technical analysis, it might be instructive to see how Theorem 4.1.1 is obtained
from understanding the quadratic form 〈Skf ,f〉Πk for f ∈ RX(k).

First we informally recall the decomposition of RX(k) into subspaces
⊕k

i=−1 V(k,i) = RX(k)

from [DDFH18] where the vectorspaces V(k;•) are approximately orthogonal with each
other and V(k,i) can be thought of as the subspace of approximate eigenvectors of RX(k)

(the precise definitions are deferred to Section 4.3.1). In this decomposition, V(k;−1) is
defined as the space of constant functions in RX(k) and all the other vector spaces V(k;i)

for i 6= −1 are (actually) orthogonal to it. It will turn out that for small enough γ, the
decomposition

⊕k
i=−1 V(k;i) will be proper, i.e. every f ∈ RX(k) can be uniquely written as

f =
∑k

i=−1 f i where f i ∈ V(k;i).

Equipped with this machinery, we prove the stronger result that for small enough γ, the
swap operators Sk of any two-sided γ-local spectral expander has an approximate spectrum
that only depends on k. Formally,
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Lemma 4.1.7. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander

where γ ≤ ε
(
64kk+423k+2

)−1 for some ε ∈ (0, 1). If d ≥ 2k + 1, there exists constants λSkk,i
for all i = −1, . . . , k only depending on k and i (and not on (X,Π)) such that, for any

f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Skf ,f〉Πk =
k∑
i=0

λSkk,i · 〈f i,f i〉Πk ± ε.

where f =
∑k

i=−1 f i is the unique decomposition satisfying f i ∈ V(k;i)

Roughly, Lemma 4.1.7 suggests that the vector spaces V(k;i) can be thought as the space
of approximate eigenvectors of V(k;i) associated with the value λSkk,i. Given Lemma 4.1.7,
one might be led into believing that this is all one needs to show σ2(Sk) is indeed small,
since the approximate eigenvalues λk,i only depend on k and i. However, giving an explicit
expression for these approximate eigenvalues proves to be a challenge. For this reason, we
rely on the singular values of Kneser graphs, as we will elaborate later.

To aid with our proof of Lemma 4.1.7, we introduce the notion of balanced operators which
in particular captures longer- (P(h)

k ) and (as we will soon discuss) swap walks (Sk). We
show that the quadratic form expression of Lemma 4.1.7 is a particular case of a general
result for 〈Bf ,f〉Πk where B ∈ RX(k)×X(k) is a balanced operator. A balanced operator
B ∈ RX(k)×X(k) is any operator that can be obtained as linear combination of pure balanced
operators, the later being operators that are a formal product of an equal number of up
(U•) and down (D•) operators. The following result will be proven in Section 4.3.

Lemma 4.1.8. Let (X,Π) be a d-dimensional two-sided γ-local spectral expander such that

γ ≤ ε
(
16kk+2`2

∑
W∈Y |αW|

)−1, for some ε ∈ (0, 1). Let Y ⊆ {Y | Y ∈ RX(k)×X(k)} be a

collection of formal operators that are product of an equal number of at most l up and down

operators (i.e., pure balanced operators). Let B =
∑

Y∈Y α
YY where αY ∈ R for all Y ∈ Y.

Then, there exists constants λYk,i only depending on k and i (and not on (X,Π)), such that

for any f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Bf ,f〉Πk =
k∑

i=−1

(∑
Y∈Y

αYλYk,i

)
· 〈f i,f i〉Πk ± ε,

where f =
∑k

i=−1 f i is the unique decomposition where f i ∈ V(k;i) for all i = −1, . . . , k.
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The above result is very useful to understand the swap-operators Sk, as we will see that
they are balanced operators. We will prove the following general result in Section 4.2,

Corollary 4.1.9. Let (X,Π) be a d-dimensional simplicial complex, and let k, l, h ≥ 0 be

parameters satisfying k ≥ l ≥ h and, k + h ≤ d. Then,(
k + 1

l + 1− h

)
S

(h)
k,l =

u∑
j=0

(−1)h−j ·
(
k + 1 + j

l + 1

)
·
(
h

j

)
· P(j)

k,l .

In particular, this implies that we have

Sk =
k+1∑
j=0

(−1)k+1−j ·
(
k + 1 + j

j

)
·
(
k + 1

j

)
· P(j)

k ,

where we recall that the longer random walk operators P
(j)
k = Dk+1 · · ·Dk+jUk+j−1 · · ·Uk

consist of an equal number of up- and down-operators.

With all these above mentioned facts, finally we have what it takes to prove Theorem 4.1.1.
For convenience we restate it below,

Theorem 4.1.1. Let (X,Π) be a pure d-dimensional two-sided γ local spectral expander

such that γ ≤ ε
(
64kk+423k+2

)−1 where ε ∈ (0, 1) and k ≥ 0 some parameter such that

d ≥ 2k + 1. Then the second largest singular value σ2(Sk) of the swap walk Sk on X(k) is

σ2(Sk) ≤ ε.

Proof. First we show that for i ∈ [0, k] the approximate eigenvalue λSkk,i (from Lemma 4.1.7)

of the swap operator Sk is actually zero. Note that for i ∈ [0, k] the space V(k;i) is a non-

trivial vectorspace (i.e., V(k;i) is not the space of constant functions). Let S∆n,d

k,k be the swap

operator of the complete complex ∆n,d. On one hand Claim 4.1.6 gives

σ2(S
∆n,d

k ) = max
{∣∣〈f , S∆

k f〉Πk
∣∣ : f ∈ RX(k), 〈f ,1〉Πk = 0, ‖f‖Πk = 1

}
= Ok

(
1

n

)
.
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On the other hand since the complete complex ∆n,d is a two-sided γ∆-local spectral ex-

pander where γ∆ = Ok(1/n), if n is sufficiently large we have γ∆ ≤ γ and thus Lemma 4.1.8

and Corollary 4.1.9 can be applied to give

σ2(S
∆n,d

k ) ≥ max
{
〈f i, S∆

k f i〉Πk : f i ∈ V(k;i), ‖f i‖Πk = 1
}

=
∣∣∣λSkk,i∣∣∣ ± Ok

(
1

n

)
.

where we have also used that V(k;i) is orthogonal to 1 for i ≥ 0. Since n is arbitrary and

λk,i depends only on k and i, we obtain λSkk,i = 0 as claimed. Now we apply Lemma 4.1.8

to the swap operator Sk of the two-sided γ-local spectral expander (X,Π). Let f be any

vector that is orthogonal to 1. Since V(k;i) are all orthogonal to the subspace spanned by

1 (i.e. V(k;−1)) except for i = −1, we have f =
∑k

i=0 f i. Thus, by Lemma 4.1.7

|〈Skf ,f〉Πk | ≤

∣∣∣∣∣
k∑
i=0

λk,i · 〈f i,f i〉Πk ± ε

∣∣∣∣∣,
= ε. (since λSkk,i = 0)

And therefore,

σ2(Sk) = max
{
|〈f , Skf〉Πk | : f ∈ RX(k), 〈f ,1〉Πk = 0, ‖f‖Πk = 1

}
,

≤ ε

4.2 Swap Walks and Longer Random Walks

The goal of this section will be to prove the following formula for the swap walks S
(h)
k,l in

terms of the longer random walks P(j)
k,l for j = 0, . . . , h,

Corollary 4.1.9. Let (X,Π) be a d-dimensional simplicial complex, and let k, l, h ≥ 0 be

parameters satisfying k ≥ l ≥ h and, k + h ≤ d. Then,(
k + 1

l + 1− h

)
S

(h)
k,l =

u∑
j=0

(−1)h−j ·
(
k + 1 + j

l + 1

)
·
(
h

j

)
· P(j)

k,l .
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We will prove this statement in Section 4.2.1.

Our approach for proving this result will rely on first establishing a formula for the longer
random walks P(h)

k,l in terms of the swap walks S(j)
k,l ,

Lemma 4.2.1. Let u, l, k, d ≥ 0 be given satisfying k ≥ l ≥ h, and k + h ≤ d. Then, we

have the following formula for the P
(h)
k,l on any d-dimensional simplicial complex X

P
(h)
k,l =

h∑
j=0

(
h
j

)(
k+1
l+1−j

)(
k+h+1
l+1

) · S(j)
k,l .

We will prove this result in Section 4.2.3. The main observation the proof of Lemma 4.2.1
hinge on the following alternative characterization of the swap-walks:

We recall that S(h)
k,l can be thought as describing the same process as P(h)

k,l , where we con-
dition the transitions between α and α′ on having a difference of fixed size: Starting from
a face α ∈ X(k), first we sample a face β ∈ X(k + h) from the distribution p

(h)
α (see Sec-

tion 2.4.1 and Section 2.4.4), and then we sample a uniformly random subset α′ ∈ X(l) of β
among all the subsets that satisfy |α′\α| = h. In particular, we have S(h)

k,l (α, α
′) = Pr[α′ | α].

It will be convenient for us to give an alternative description of S(h)
k,l : We describe the process

which we will call the j-swapping walk of height h which we will represent by the stochastic
operator S(h;j)

k,l : Starting from a face α ∈ X(k), first we sample a face β ∈ X(k + h) from
the distribution p

(h)
α , and then we sample a uniformly random subset α′ ∈ X(l) of β among

all the subsets that satisfy |α′\α| = j, i.e. S(h;j)
k,l (α, α′) = Pr[α′ | α]. It turns out that when

h ≥ j, the walks S(j)
k,l and the walks S(h,j)

k,l follow the same law. Formally,

Lemma 4.2.2. Let (X,Π) be a d-dimensional simplicial complex for d ≥ 0, and suppose

k, l, h, j ≥ 0 are parameters satisfying k ≥ l ≥ h ≥ j, and k + h ≤ d. Then,

S
(h;j)
k,l = S

(j)
k,l .

We will prove this result in Section 4.2.2.

Finally, we will use binomial inversion to obtain Corollary 4.1.9 from Lemma 4.2.1. The
following result is well-known (see e.g. [BS02])
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Fact 4.2.3. Let (an)n≥0, (bn)n≥0 be arbitrary sequences. Suppose for all n ≥ 0 we have,

bn =
n∑
j=0

(
n

j

)
· (−1)j · aj.

Then, we also have

an =
n∑
j=0

(
n

j

)
· (−1)j · bj.

For completeness, we will provide a proof of this in Section 4.2.4

4.2.1 Swap Walks in Terms of Longer Random Walks: Proof of

Corollary 4.1.9

Assuming all the statements we have mentioned in the previous section, we now provide a
proof for Corollary 4.1.9. We recall,

Corollary 4.1.9. Let (X,Π) be a d-dimensional simplicial complex, and let k, l, h ≥ 0 be

parameters satisfying k ≥ l ≥ h and, k + h ≤ d. Then,(
k + 1

l + 1− h

)
S

(h)
k,l =

u∑
j=0

(−1)h−j ·
(
k + 1 + j

l + 1

)
·
(
h

j

)
· P(j)

k,l .

Proof. Fix faces α ∈ X(k) and α′ ∈ X(l) and set for all j = 0, . . . , h

aj :=

(
k + 1

l + 1− j

)
· (−1)j · S(j)

k,l (α, α
′).

Notice that we have by Lemma 4.2.1(
k + 1 + h

l + 1

)
· P(h)

k,l (α, α
′) =

h∑
j=0

(
h

j

)
· (−1)j · aj =

h∑
j=0

(
h

j

)
·
(

k + 1

l + 1− j

)
· S(h)

k,l (α, α
′).

In particular, setting for all j = 0, . . . , h

bj :=

(
k + 1 + j

l + 1

)
· P(j)

k,l (α, α
′),
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we can apply Fact 4.2.3 to obtain(
k + 1

l + 1− h

)
· (−1)h · S(h)

k,l (α, α
′) = ah,

=
h∑
j=0

(
h

j

)
· (−1)j · bj,

=
h∑
j=0

(
h

j

)
·
(
k + 1 + j

l + 1

)
· (−1)j · P(j)

k,l (α, α
′).

Dividing both sides of this equation by (−1)h yields the desired result.

4.2.2 Swap Walks are Height Independent: Proof of Lemma 4.2.2

The main result we will prove in this section, will be that the j-swapping walks S(h;j)
k,l are

independent of the parameter h, so long as the parameter h is large enough, i.e. h ≥ j,

Lemma 4.2.2. Let (X,Π) be a d-dimensional simplicial complex for d ≥ 0, and suppose

k, l, h, j ≥ 0 are parameters satisfying k ≥ l ≥ h ≥ j, and k + h ≤ d. Then,

S
(h;j)
k,l = S

(j)
k,l .

Proof. We fix some α ∈ X(k) and α′ ∈ X(l), and show that S(h;j)
k,l (α, α′) = S

(j)
k,l (α, α

′). It is

clear that the claim is true when |α′\α| 6= j, as both quantities equal 0 in this case. Thus,

we assume |α′\α| = j. By Proposition 2.4.6, we know

S
(j)
k,l (α, α

′) =
1(

k+1
l+1−j

)(
k+j+1
j

) · Πk+j(α ∪ α′)
Πk(α)

. (4.1)

Thus, it remains to show

S
(h;j)
k,l (α, α′) =

1(
k+1
l+1−j

)(
k+j+1
j

) · Πk+j(α ∪ α′)
Πk(α)

. (4.2)

The process S
(h;j)
k,l first samples a face β ∈ X(k + h) from the distribution p

(h)
α and then

resamples a uniformly random face α(h;j) ∈ X(l) among all the subsets • ∈ X(l) of β that
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satisfy | • \α| = j. It is clear, that α(h;j) = α′ is only possible when β ⊃ α ∪ α′ which
happens with probability,

Pr
β∼p(h)

α

[β ⊃ α ∪ α′] =
∑

β∈X(k+h),

β⊃α∪α′

p(h)
α (β),

=
∑

τ∈Xα(h−1),

τ⊃α′\α

Πα
h−1(τ), (by Proposition 2.4.3)

=

(
h

j

)
Πα
j−1(α′\α), (by Proposition 2.3.1 and |α′\α| = j)

=

(
h
j

)(
k+j+1
j

) · Πk+j(α ∪ α′)
Πk(α)

. (by Eq. (2.13) and |α′\α| = j)

Then, we note that conditioning on picking some β ⊃ α ∪ α′, we sample α′ from β with

probability

Pr[α(h;j) = α′ | β ⊃ α ∪ α′] =
1(

k+1
l+1−j

)
·
(
h
j

)
since

(
k+1
l+1−j

)
·
(
h
j

)
is the number of subsets • ∈ X(l) of β such that | • \α| = j.

Thus, by law of conditional probability we have established Eq. (4.2), as

S
(h;j)
k,l (α, α′) = Pr[α(h;j) = α′],

= Pr[α(h;j) = α′ | β ⊃ α ∪ α′] · Pr
β∼p(h)

α

[β ⊃ α ∪ α′],

=
1(

k+j+1
j

)(
k+1
l+1−j

)Πk+j(α ∪ α′)
Πk(α)

.

4.2.3 Longer Random Walks in Terms of the Swap Walks: Proof

of Lemma 4.2.1

We show that the longer random walks P
(h)
k,l are given by an average of swap walks S

(j)
k,l

with respect to the hypergeometric distribution.
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Lemma 4.2.1. Let u, l, k, d ≥ 0 be given satisfying k ≥ l ≥ h, and k + h ≤ d. Then, we

have the following formula for the P
(h)
k,l on any d-dimensional simplicial complex X

P
(h)
k,l =

h∑
j=0

(
h
j

)(
k+1
l+1−j

)(
k+h+1
l+1

) · S(j)
k,l .

Proof. Our proof will rely on the observation that starting from α the processes P(h)
k,l and

S
(h;j)
k,l can be factorized into two steps: (i) picking some β ∈ X(k + h) with respect to p

(h)
α ,

(ii) picking a face α′ ∈ X(l) such that α′ ⊂ β. It is only step (ii) that these processes differ.

Our idea will be conditioning both processes on picking the same β, and then conditioning

the first process |β\α1|.

We introduce some notation: starting from α we will write α(h) for the random face that P(h)
k,l

picks at step (ii), and α(h;j) for the random face that S(h;j)
k,l picks, i.e. we have P(h)

k,l (α, α
′) =

Pr[α(h) = α′] and S
(h;j)
k,l (α, α′) = Pr[α(h;j) = α′]. Let β ∈ X(k) be an arbitrary face.

We condition both processes on picking β in step (i). We write Ej(β) for the event that

the uniformly random set α(h) ∈ X(l) we pick satisfies |α(h) ∩ β| = j. By elementary

combinatorics,

Pr
α(h)⊂β,
α(h)∈X(l)

[Ej(β) | β] =

(
h
j

)(
k+1
l+1−j

)(
k+h+1
l+1

)
where the draw of the probability is uniform over the subsets α(h) ∈ X(l) of β ∈ X(k+h).

By definition (Section 2.4.3 and Section 4.2.2), we have for all α′ ∈ X(l),

Pr[α(h;j) = α′ | β] = Pr[α(h) = α′ | β and Ej(β)] (4.3)

since α(h;j) conditioned on β is distributed uniformly among all subsets of β in X(l) that

have difference of size j with α, and α(h) conditioned on β is distributed uniformly among

all the subsets of β in X(l).
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Now, by the law of total probability we have

P
(h)
k,l (α, α

′) =
h∑
j=0

∑
β∈X(k+h)

p(h)
α (β) · Pr[Ej(β) | β] · Pr[α(h) = α′ | β and Ej(β)],

=
h∑
j=0

(
h
j

)(
k+1
l+1−j

)(
k+1+h
l+1

) · E
β∼p(h)

α

[
Pr[α(h) = α′ | β and Ej(β)]

]
,

=
h∑
j=0

(
h
j

)(
k+1
l+1−j

)(
k+h+1
l+1

) · E
β∼p(h)

α

Pr
[
α(h;j) = α′ | β

]
where we used Eq. (4.3) to get the last equality. Another application of the law of total

probability gives us

E
β∼p(h)

α

Pr
[
α(h;j) = α′ | β

]
= Pr[α(h;j) = α′] = S

(h;j)
k,l .

This allows us to write,

P
(h)
k,l =

h∑
j=0

(
h
j

)(
k+1
l+1−j

)(
k+h+1
l+1

) · S(h;j)
k,l (α, α′).

The statement follows using the height independence of the swap walks S(h;j)
k,l = S

(j)
k,l for all

j = 0, . . . , h, i.e. Lemma 4.2.2

4.2.4 Binomial Inversion: Proof of Fact 4.2.3

In this section, we prove provide the proof for the binomial inversion result we have used
to obtain Corollary 4.1.9. We recall the following well-known result (see e.g. [BS02])

Fact 4.2.3. Let (an)n≥0, (bn)n≥0 be arbitrary sequences. Suppose for all n ≥ 0 we have,

bn =
n∑
j=0

(
n

j

)
· (−1)j · aj.

Then, we also have

an =
n∑
j=0

(
n

j

)
· (−1)j · bj.
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Proof. Suppose we have,

bn =
n∑
j=0

(
n

j

)
· (−1)j · aj (assumption)

for all n ≥ 0. Then,

n∑
j=0

(
n

j

)
· (−1)j · bj =

n∑
j=0

(
n

j

)
· (−1)j ·

j∑
i=0

(
j

i

)
· (−1)i · ai, (by assumption)

=
n∑
j=0

j∑
i=0

(
n

j

)(
j

i

)
(−1)j+i · ai,

=
n∑
i=0

(
n∑
j=i

(
n

j

)(
j

i

)
(−1)(j+i)

)
ai,

=
n∑
i=0

(
n∑
j=i

(
n

i

)(
n− i
j − i

)
(−1)(j+i)

)
· ai, (by

(
n

j

)(
j

i

)
=

(
n

i

)(
n− i
j − i

)
)

=
n∑
i=0

(
n∑
j=i

(
n− i
j − i

)
(−1)j+i

)(
n

i

)
· ai,

=
n∑
i=0

(
n−i∑
l=0

(
n− i
l

)
(−1)l

)
·
(
n

i

)
· ai, (l = j − i)

where to get the last inequality we also used (−1)j−i = (−1)j+i. Now, we conclude by the

binomial theorem,

n−i∑
l=0

(
n− i
l

)
(−1)l = (1− 1)n−i =

1 if i = n,

0 otherwise.

And therefore,
n∑
j=0

(
n

j

)
· (−1)j · bj =

(
n

n

)
an = an.
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4.3 Decompositions of RX(k) and Balanced Operators

We state the definitions used in our technical proofs starting with γ-HDX from [DDFH18].
A d-dimensional simplicial complex X is called γ-HDX provided that we have

‖P∧i − P5i ‖Πi ≤ γ, (γ-HDX)

for every i = 0, . . . , d.

We observe that from Lemma 3.1.6, it trivially follows that any two-sided γ-local spectral
expander is a γ-HDX.

Corollary 4.3.1. Let (X,Π) be a d-dimensional simplicial complex. For all j = 0, . . . , d−1

we have

νj−1 · I �Πj P
∧
j − P5j �Πj γj−1 · I.

In particular, if (X,Π) is a pure two-sided γ-local spectral expander, i.e. max{γj, |νj|} ≤ γ

for all j = −1, · · · , d− 2 we have ∥∥∥P∧j − P5j

∥∥∥
Πj
≤ γ,

for all j = 0, . . . , d− 1 and thus (X,Π) is also a γ-HDX.

Proof. By Lemma 3.1.6, we know

νj−1 · (I− P5j ) �Πj P
∧
j − P5j �Πj γj−1 · (I− P5j )

since P5j is positive semi-definite, i.e. P5j �Πj 0 and νj−1 ≤ 0.

The second claim about the operator norm, follows immediately from the definition of the

positive semi-definite order �Πj and the definition of the operator norm.

Naturally the complete complex ∆n,d is a γ-HDX with as it is also a two-sided γ-local
spectral expander. Moreover, in this particular case γ vanishes as n grows.

Lemma 4.3.2 (From [DDFH18]). The complete complex ∆n,d is a γ-HDX with γ =

Od (1/n).
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Proof. It is easy to verify that when α ∈ ∆n,d(j) for j = −1, . . . , d − 2, the random walk

matrix Mα of the link describes the random walk on a complete graph on n − (j + 1)

vertices. Thus, σ2(Mα) ≤ 1/(n− (j + 1)).

4.3.1 Decompositions of RX(k)

We first introduce some notation: Let (X,Π) be a d-dimensional simplicial complex, for
0 ≤ i ≤ d we write

H(i) := kerDi =
{
f ∈ RX(i) : Dif = 0

}
for the linear subspace of RX(i) on which Di vanishes. We set, H(−1) = R. We write V(k;i)

for the linear subspace of RX(k) that consists of lifts of functions from H(i), i.e. for all i > k,

V(k;i) := Uk−1 · · ·UiH(i) =
{
Uk−1 · · ·Uih : h ∈ H(i)

}
.

When, i = k we set V(i;i) = H(i). For convenience, we also introduce the shorthand
notation, U(h)

k ∈ RX(k+h)×X(k) for the operator,

U
(h)
k =

{
I if h = 0,

Uk+h−1 · · ·Uk if h ≥ 1.

With our new notation, V(k;i) = U
(k−i)
i ker(Di).

We first show that if X the least eigenvalue λmin(Mα) of the links α ∈ X(≤ d− 2) is large
enough, then the vector spaces V(k;i) yield a decomposition of the vector space RX(k), i.e.

Theorem 4.3.3 ([DDFH18]). Let X be a d-dimensional simplicial complex such that |νi| <
1
i+2

for all = −1, . . . , d− 2. Then, we have the decomposition,

RX(k) = V(k;k) ⊕ V(k;k−1) ⊕ · · · ⊕ V(k;−1)

for all k = 0, . . . , d.

In particular, every function f ∈ RX(k) has a unique decomposition f =
∑k

i=−1 f i such

that f i ∈ V(i;k) for all i = −1, . . . , k.

Further, for all f i ∈ V(k;i) and i ≥ 0 we have 〈f i,1〉Πk = 0.
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Before we go on proving this theorem, we make a simple observation,

Corollary 4.3.4. Let (X,Π) be a d-dimensional simplicial complex. For 0 ≤ l ≤ d− 1 we

have,

λmin(P4l ) ≥ 1 + (l + 1) · νl−1

l + 2
.

Proof. By Lemma 3.1.6, we know

P∧l �Πl νl−1I + (1− νl−1)P5l .

Using the definition of the non-lazy up-down walk P∧l , this implies

P4l �Πl

1 + (l + 1)νl−1

l + 2
· I +

l + 1

l + 2
· (1− νl−1) · P5i �Πl

1 + (l + 1)νl−1

l + 2
· I,

where we have used νl−1 ≤ 0 and P5l �Πl 0. The claim now follows from Fact 2.1.8.

Proof of Theorem 4.3.3. We first prove the claim about uniqueness of the decomposition:

We note that assuming the bound |νi| < 1
i+2

, we can show that every up-down walk P4i

for i = 0, . . . , k − 1 on X is positive definite by Corollary 4.3.4. Since in this case,

λmin(P4l ) =
1 + (l + 1) · νl−1

l + 2
> 0

for all l = 0, . . . , d− 1.

We now, prove the decomposition theorem by induction on k. The induction basis is

the case when k = −1, where the statement is trivially true, since RX(−1) = R and

V(−1;−1) = H(−1) = R. Thus, we suppose that the statement of the theorem holds for some

k > −1, i.e. every function from f ∈ RX(k) has a unique decomposition f =
∑k

i=−1 U
(k−i)
i hi

where hi ∈ H(i). By applying the rank-nullity theorem to the operator Dk+1 we can obtain

that RX(k+1) = ker(Dk+1)⊕ im(D∗k+1) = ker(Dk+1)⊕ im(Uk), i.e. every g ∈ RX(k+1) can be

written uniquely such that g = hk+1 + g′ where g′ ∈ im(Uk). In particular, there exists

some f ∈ RX(k) such that g = hk+1 + Ukf . As we have shown above, by our assumption
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P4k = Dk+1Uk is positive-definite, i.e. ker(P4k ) = ker(Uk) is trivial, which means that the

map Uk is injective. Thus, the unique choice of g′ determines the choice of f uniquely,

i.e. there exists a unique hk+1 ∈ H(k+1) and a unique f ∈ RX(k) such that g = hk+1 +Ukf .

Now, by our induction assumption we have a unique decomposition g =
∑k+1

i=−1 U
(k−i)
i hi

such that hi ∈ H(i).

Now, we proceed to show the orthogonality claim: For k ≥ i ≥ 0, let f i ∈ V(k;i) be

arbitrary, i.e. f i = U
(k−i)
i hi. Then, we have

〈f i,1〉Πk = 〈Uk−1 · · ·Uihi,1〉Πk = 〈hi,Di+1 · · ·Dk1〉Πi = 〈hi,1〉Πi ,

where we have used the definition of the down operator to obtain Di+1 · · ·Dk1 = 1. Now,

the statement follows from the rank-nullity theorem: Since 1 ∈ im(D∗i ) = im(Ui−1) and

hi ∈ ker(Di) we have 〈hi,1〉Πi = 0.

For convenience set ~δ ∈ Rd−1 such that δi = 1/(i + 2) for i = 0, . . . , d − 1. It will be
convenient to work with the following equivalent definition of of γ-HDX

‖Di+1Ui − (1− δi)Ui−1Di − δiI‖Πi
≤ i+ 1

i+ 2
· γ for all i = 0, . . . , d− 1. (γ-HDX)

Towards our goal of understanding quadratic forms of swap operators we study the approx-
imate spectrum of operators of the form Y = Y` · · ·Y1 ∈ RX(k)×X(k) where each Yi is either
an up or down operator. We regard the expression Y` . . .Y1 defining Y as a formal product.
When we say that the spectrum of Y depends on Y we mean that it depends on k and on
the formal expression Y` . . .Y1 (i.e. the pattern of the up- and down-operators occurring in
Y). By definition, the random walks P4k = Dk+1Uk and P5k = Uk−1Dk are pure balanced op-
erators where l = 1. Similarly, the random walk operator P(h)

k = Dk+1 · · ·Dk+hUk+h−1 · · ·Uk
is also a pure balanced operator where l = 2h.

Taking linear combinations of pure balanced operators leads to the notion of balanced
operators. Formally, we call B ∈ RX(k)×X(k) a balanced operator provided there exists a
set of pure balanced operators Y such that

B =
∑
Y∈Y

αY · Y,
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where the scalars αY for Y ∈ Y satisfy αY ∈ R.
The following observation is why we consider the notion of balanced operators,

Observation 4.3.5. Let (X,Π) be a d-dimensional simplicial complex. Corollary 4.1.9

establishes that all swap walks S(h)
k,l are balanced operators so long as they are well-defined.

In particular, the operators Sk and Sk,l are balanced operators as well.

It turns out that at a more crude level the behavior of Y is governed by how the number
of up operators compares to the number of down operators. For this reason, for a pure
balanced operator Y ∈ RX(k)×X(k) we define the notations, define

U(Y) = {Yi | Yi is an up operator} and D(Y) = {Yi | Yi is a down operator}.
When Y is clear in the context we use U = U(Y) and D = D(Y).
Henceforth we adopt the convention of always assuming hi ∈ H(i) = ker (Di), f i ∈ V(k;i)

and g ∈ RX(k). This convention will make the statements of the technical results of Sec-
tion 4.3.2 cleaner.

4.3.2 Quadratic Forms over Balanced Operators

Now we establish all the technical results leading to and including the analysis of quadratic
forms over balanced operators. Our main result is Lemma 4.1.8 which can be thought of
as a result about the approximate spectrum and approximate eigenvectors of balanced
operators. This can be seen as a generalization of the results of [DDFH18], which proves
the analogous result for the case of the up-down operators P4i . To establish our result, we
need to make the error parameters in their analysis explicit. We first recall Lemma 4.1.8,

Lemma 4.1.8. Let (X,Π) be a d-dimensional two-sided γ-local spectral expander such that

γ ≤ ε
(
16kk+2`2

∑
W∈Y |αW|

)−1, for some ε ∈ (0, 1). Let Y ⊆ {Y | Y ∈ RX(k)×X(k)} be a

collection of formal operators that are product of an equal number of at most l up and down

operators (i.e., pure balanced operators). Let B =
∑

Y∈Y α
YY where αY ∈ R for all Y ∈ Y.

Then, there exists constants λYk,i only depending on k and i (and not on (X,Π)), such that

for any f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Bf ,f〉Πk =
k∑

i=−1

(∑
Y∈Y

αYλYk,i

)
· 〈f i,f i〉Πk ± ε,
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where f =
∑k

i=−1 f i is the unique decomposition where f i ∈ V(k;i) for all i = −1, . . . , k.

Since swap walks are balanced operators, this will directly imply the following,

Lemma 4.1.7. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander

where γ ≤ ε
(
64kk+423k+2

)−1 for some ε ∈ (0, 1). If d ≥ 2k + 1, there exists constants λSkk,i
for all i = −1, . . . , k only depending on k and i (and not on (X,Π)) such that, for any

f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Skf ,f〉Πk =
k∑
i=0

λSkk,i · 〈f i,f i〉Πk ± ε.

where f =
∑k

i=−1 f i is the unique decomposition satisfying f i ∈ V(k;i)

The next result, Lemma 4.3.6, (implicit in [DDFH18]) will be key in establishing that the
spectral structure of balanced operators on a γ-HDX is fully determined by the parameters
in ~δ provided γ is small enough. Note that the condition of being a γ-HDX provides a
“calculus” for rearranging a single pair of up and down Dj+1Uj operators. The next result
treats the more general case of Dj+1Uj · · ·Ui where j > i.

Lemma 4.3.6 (Structure Lemma). Let (X,Π) be a pure d-dimensional simplicial com-

plex that is a two-sided γ-local spectral expander (in particular, a γ-HDX). Suppose, Y =

(Y` · · ·Y1) ∈ RX(i+`−2)×X(i) is an operator such that each Yi is either an up- or down-

operator and |D(Y)| = 1. Let Yc ∈ D be the unique down operator in Y = Y` . . .Y1. Then,

for any operator A ∈ RX(k)×X(i+l−2) with ‖A‖Πi+`−2→Πk ≤ 1 and for all vectors hi ∈ H(i)

and g ∈ RX(k) we have we have,

〈AY` . . .Y1hi, g〉Πk =

0 if ` = 1 or c = 1

Qc,i(~δ) · 〈AU(`−2)
i hi, g〉Πk ± (c− 1) · γ · ‖hi‖Πi‖g‖Πk otherwise,

where Qc,i(•) is a polynomial in the variables ~δ (from the γ-HDX definition) depending on

c, i such that Qc,i(~δ) ≤ 1.
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Proof. The statement is trivial when ` = 1 or c = 1, since in both cases Y is of the form

Y = (Y` · · ·Y2)Di and in particular, Yhi = 0, since hi ∈ H(i). We proceed by induction on

c: Assume that for any pure balanced operator Y′ = Y′` · · ·Y′1 such that Y′c−1 is the unique

down operator, we have

〈AY′` · · ·Y′1hi, g〉Πk ≤ Qc−1,i(δ) · 〈AU(l−2)
i hi, g〉Πk ± (c− 2) · γ · ‖hi‖Πi · ‖g‖Πk . (IH)

We observe now, that since Yc is the unique down operator in Y we must have Yc = Dj+1

for c = i + j − 2, and in particular YcYc−1 = Dj+1Uj. Note that since (X,Π) is a γ-HDX,

we have

‖Dj+1Uj − (1− δj) · Uj−1Dj − δj I‖Πj
≤ j + 1

j + 2
· γ.

In particular, there exists an operator Q ∈ RX(j)×X(j) such that ‖Q‖Πj ≤ (j+ 1)/(j+ 2) · γ
that satisfies,

Dj+1Uj = Q + (1− δj) · Uj−1Dj + δj I.

We substitute this, in place on YcYc−1,

〈AYhi, g〉Πk = 〈AY` · · ·Yc+1(Dj+1Uj)Yc−2 · · ·Y1hi, g〉Πk ,

= 〈AY` · · ·Yc+1(Q + (1− δj) · Uj−1Dj + δj I)Yc−2 · · ·Y1hi, g〉Πk .

By expanding the above,

〈AY` · · ·Yc+1(Q + (1− δj) · Uj−1Dj + δj I)Yc−2 · · ·Y1hi, g〉Πk
= 〈AY` · · ·Yc+1QYc−2 · · ·Y1hi, g〉Πk

+ (1− δj) · 〈AY` · · ·Yc+1Uj−1DjYc−2 · · ·Y1hi, g〉Πk
+ δj · 〈AY` · · ·Yc+1IYc−2 · · · g〉Πk (4.4)

The first term on the RHS can be bound by the Cauchy-Schwarz-Inequality (Fact 2.1.1)
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and the submultiplicativity of the operator norm (Fact 2.1.12)

〈AY` · · ·Yc+1QYc−2 · · ·Y1hi, g〉Πk = ± ‖AYc−2 · · ·Y1‖ · ‖hi‖Πi · ‖g‖Πk ,

= ± j + 1

j + 2
· γ · ‖hi‖Πi · ‖g‖Πk ,

= ± γ · ‖hi‖Πi · ‖g‖Πk . (4.5)

The second term on the RHS can be bounded by the induction hypothesis (IH) since the

only down-operator on the expression Y` · · ·Yc+1Uj−1Dj · Yc−2 · · ·Y1 is on the (c − 1)-st

spot, i.e.

〈AY` · · ·Yc+1Uj−1DjYc−2 · · ·Y1hi, g〉Πk
≤ Qc−1,i(δ) · 〈AU(l−2)

i hi, g〉Πk ± (c− 2) · γ · ‖hi‖Πi · ‖g‖Πk (4.6)

The third term can be seen to be equal to δj · 〈AU(`−2)
i hi, g〉Πk since the only down operator

among Yj is Yc which is not present there. Plugging this, Eq. (4.5), and Eq. (4.6) into

Eq. (4.4), we obtain

〈AYhi, g〉Πk ≤ (1− δj) ·Qc−1,i(~δ) · 〈AU(l−2)
i hi, g〉Πk

+ δj · 〈AU(l−2)
i hi, g〉Πk ± (c− 2) · γ · ‖hi‖Πi

± γ · ‖hi‖Πi‖g‖Πk .

Setting Qc,i(~δ) = (1− δj)Qc−1,i(~δ) + δj yields the result.

With Lemma 4.3.6 we are close to recover the approximate spectrum of Dk+1Uk from [DDFH18].
However, in our application we will need to analyze more general operators, namely, pure
balanced and balanced operators.

Lemma 4.3.7 (Refinement of [DDFH18]). Let (X,Π) be a two-sided γ-local spectral ex-

pander and let k, l, i ≥ 0 be parameters such that d ≥ k + 1 and l ≥ k ≥ i. Then for
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any f i ∈ V(k;i) such that f i = U
(k−i)
i hi and for any operator A ∈ RX(l)×X(k) such that

‖A‖Πk→Πl ≤ 1, we have

〈AP4k f i, g〉 = λ
P4k
i · 〈Af i, g〉 ± (k − i+ 1) · γ · ‖hi‖Πi‖g‖Πi ,

where λP
4
k
i = Qk−i+2,i(~δ) with Qx,y(•) being defined as in Lemma 4.3.6.

Proof. Recall that P4k = Dk+1Uk. The statement follows from Lemma 4.3.6 by setting

Y = Dk+1U
(k+1−i)
i .

We also show that the powers of P4k = Dk+1Uk behave as expected,

Lemma 4.3.8 (Exponentiation Lemma). Let (X,Π) be a pure d-dimensional two-sided

γ-local spectral expander and let k, i ≥ 0 be parameters such that d ≥ k + 1 and k ≥ i.

Then for any f i ∈ V(k;i) such that f i = U
(k−i)
i hi

〈(Dk+1Uk)
s f i,f i〉Πk =

(
λ
P4k
i

)s
· ‖f i‖2

Πk
± s · (k − i+ 1) · γ · ‖hi‖Πi‖f i‖Πk ,

where λP
4
k
i is defined as in Lemma 4.3.7.

Proof. Follows immediately from the foregoing and the fact that ‖P4k ‖Πk = 1.

Let again let Y = (Y` · · ·Y1) ∈ RX(k)×X(i) be a product of up and down operators. In the
case |D(Y)| > |U(Y)|, we show that Y is an operator whose kernel approximately contains
H(i) = ker(Di).

Lemma 4.3.9 (Refinement of [DDFH18]). Let (X,Π) be a pure d-dimensional simplicial

complex that is a two-sided γ-local spectral expander (in particular, a γ-HDX). Suppose,

Y = (Y` · · ·Y1) ∈ RX(j)×X(i) is a product of up- and down- operators such that |D(Y)| >
|U(Y)|. Then, for any operator A ∈ RX(k)×X(j) with ‖A‖Πj→Πk ≤ 1 and for all vectors

hi ∈ H(i) and g ∈ RX(k) we have

〈AYhi, g〉Πk = ± `2 · γ · ‖hi‖Πi‖g‖Πk .
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Proof. Let c ∈ [`] be the smallest index for which Yc is a down operator. Observe that

c < `/2 since |D| > |U|. We perform induction on m = |D|. If ` = 1 or c = 1, then the

claim holds trivially since Yhi = (Y` · · ·Y2)Dihi = 0. Hence, we assume c,m > 1 and that

we have

〈AY′hi, g〉Πk = ±`2 · γ · ‖hi‖2
Πi
· ‖g‖2

Πk
, (IH)

for every product Y′ = Y′` · · ·Y′1 of up- and down-operators satisfying the conditionm−1 ≥
|D(Y′)| > |U(Y′)|.

In our case, WcWc−1 = Di+cUi+c−1. Thus, applying Lemma 4.3.6 we obtain

〈AYhi, g〉Πk = 〈(AY` . . .Yc+1)Di+cUi+c−1U
(c−1)
i hi, g〉Πk ,

= Qc,i(~δ) · 〈(AY` . . .Yc+1)U
(c−1)
i hi, g〉Πk ±

`

2
· γ · ‖hi‖Πi‖g‖Πk ,

= ±Qc,i(~δ) · (`− 2)2 · γ · ‖hi‖Πi‖g‖Πk ±
`

2
· γ‖hi‖Πi‖g‖Πk , (by IH)

= ± `2 · γ · ‖hi‖Πi‖g‖Πk ,

where in the last step we used Qc,i(~δ) ≤ 1 and in our application of Lemma 4.3.6 we have

used that ‖AY` · · ·Yc+1‖Πi+c→Πk ≤ 1.

We now consider an important particular case of product operators Y = Y` · · ·Y1 ∈
RX(k)×X(k) where |D(Y)| = |U(Y)|, namely, the random walk operators

P
(h)
k = Dk+1 · · ·Dk+hUk+h−1 · · ·Uk.

We show that P(h)
k is approximately a polynomial in the operator P4k = Dk+1Uk. As a warm

up consider the case P
(2)
k = Dk+1Dk+2Uk+1Uk. Using the inequality from the definition γ-

HDX, we get

P
(2)
k ≈ (1− δk+1) · Dk+1UkDk+1Uk + δk+1 · Dk+1Uk,

= (1− δk+1) · (Dk+1Uk)
2 + δk+1 · Dk+1Uk,

= (1− δk+1) ·
(
P4k

)2

+ δk+1 · P4k .
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Inspecting this polynomial more carefully we see that that its coefficients form a probability
distribution. This property holds in general as the following Lemma 4.3.10 shows. This
gives an alternative (approximate) random walk interpretation of P(h)

k as the walk that first
selects the the length s according to the distribution encoded in the polynomial and takes
s steps of the random walk P4k , as dictated by

(
P4k

)s
.

Lemma 4.3.10 (Canonical Polynomials). Let (X,Π) be a d-dimensional two-sided γ-local

spectral expander (in particular, a γ-HDX). For k, h ≥ 0 such that d ≥ k + h there exists

a degree h univariate polynomial Fu,h,~δ depending only on h, k, ~δ such that∥∥∥P(h)
k − Fu,k,~δ

(
P4k

)∥∥∥
Πk
≤ (h− 1)2 · γ.

Moreover, the coefficients of this polynomial form a probability distribution, i.e., Fu,k,~δ(x) =∑h
i=0 cix

i where
∑h

i=0 ci = 1 and ci ≥ 0 for i = 0, . . . , h.

Proof. For h = 0, P(0)
k = I and the lemma follows. Similarly, if h = 1, P(1)

k = P4k and the

lemma follows. Now suppose h ≥ 2. Set Y = P
(h)
k , i.e.,

Y = Dk+1 . . . (Dk+hUk+h−1) . . .Uk.

For convenience, we let j = k + h − 1. Using the condition for being a γ-HDX, and

the submultiplicativity of the operator norm (Fact 2.1.12 )we can replace Dj+1Uj in Y by

(1− δj)Uj−1Dj + δj I incurring an error of γ (in operator norm) and yielding∥∥∥P(h)
k −

(
(1− δj) · Y′ + δj · P(h−1)

k

)∥∥∥
Πk
≤ γ,

where Y′ was obtained from Y by moving the rightmost occurrence of a down operator (in

this case Dj+1) one position to right. We continue this process of moving the rightmost

occurrence of a down operator until the resulting operator is up to (h−1) ·γ error, i.e. until

we obtain ∥∥∥∥∥∥∥∥P
(h)
k −

α · P(h−1)
k · (Dk+1Uk)︸ ︷︷ ︸

=P
(h−1)
k ·P4k

+ β · P(h−1)
k


∥∥∥∥∥∥∥∥

Πk

≤ (h− 1) · γ,
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where α =
∏j

i=k+1 (1− δi) and β =
∑j

i=k+1 δi
∏j

i=k+1 (1− δi). Since δi = δi > 0, α, β are

non-negative and satisfy α + β = 1. Now the result follows from the induction hypothesis

applied to P
(h−1)
k , i.e. setting Fh,k,~δ(x) = α · x · Fh−1,k,~δ(x) + β · Fh−1,k,~δ(x).

Remark 4.3.11. Having a polynomial expression Fu,k,~δ(P
4
k ) ≈ P

(h)
k and knowing that Sk can

be written as linear combination of longer walks P
(h)
k (Corollary 4.1.9), we could deduce

that Sk is also approximately a polynomial in Dk+1Uk. Using an error refined version

of the Lemma 4.3.8 (showing that exponentiation of Dk+1Uk behaves naturally), we could

deduce the approximate spectrum of Sk. We avoid this approach since it analysis introduces

tedious error terms and we can understand quadratic forms of pure balanced operators

directly.

Remark 4.3.12. The canonical polynomial Fu,k,~δ(P
4
k ) will later be used in the error analysis

that relates the norms ‖hi‖Πi and ‖f i‖Πk (Lemma 4.3.15).

Now we consider the case of balanced operators Y ∈ RX(k)×X(k) where |D| = |U| in full
generality. We show how the quadratic form of Y behaves in terms of the approximate
eigenspace decomposition RX(k) =

⊕k
i=−1 V(k;i).

Lemma 4.3.13 (Pure Balanced Walks). Let (X,Π) be a pure d-dimensional two-sided

γ-local spectral expander (in particular, a γ-HDX). Suppose Y = Y` . . .Y1 ∈ RX(k)×X(k) is

a product of an equal number of up and down operators, i.e., |D(Y)| = |U(Y)|. Then for

f i ∈ V(k;i)

〈Yf i,f i〉Πk = λWk,i · 〈f i,f i〉Πk ± γ · (`2 + `(k − i− 1))‖hi‖Πi‖f i‖Πk ,

where λYk,i is a constant depending only on Y, k and i (and not (X,Π)), and hi ∈ H(i) is

such that f i = U
(k−i)
i hi.

Proof. We perform induction on even `. For ` = 0, the result trivially follows so assume

` ≥ 2. For the induction step, we assume that for every l′ < l and Ỹ = Ỹl′ · · · Ỹ1 consisting
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of an equal number of up- and down- operators, we have

〈Ỹf i,f i〉Πk = λỸk,i · 〈f i,f i〉Πk ± γ · (`′2 + `′(k − i− 1))‖hi‖Πi‖f i‖Πk , (IH)

Let c ∈ [`] be the smallest index of a down operator. Set A = Y` . . .Yc+1 and let Y′ =

Yc . . .Y1 = Dk+c−1Uk+c−2 . . .Uk. Observe that

〈Yf i,f i〉Πk = 〈AY′f i,f i〉Πk = 〈ADk+c−1U
(c−1)
k (U

(k−i)
i hi),f i〉Πk = 〈ADk+c−1U

(k+c−1−i)
i hi,f i〉Πk .

Applying Lemma 4.3.6 to the RHS above gives

〈ADk+c−1U
(k+c−1−i)
i hi,f i〉Πk = Qk+c−i−1,i(~δ) · 〈AUk+c−1−i

i hi,f i〉Πk ± (c+ k − i− 1) · γ · ‖hi‖Πi‖f i‖Πk ,

= Qk+c−i,i(~δ)〈AU
(c−2)
k f i,f i〉Πk ± (c+ k − i− 1) · γ · ‖hi‖Πi‖f i‖Πk .

Applying the induction hypothesis (IH) to Y′′ = AU
(c−2)
k in the above RHS yields

Qc−1+k−i,i(~δ) · λY
′′

k,i · 〈f i,f i〉Πk
± Qc−1+k−i,i(~δ) · γ · ((`− 2)2 + (`− 2)(k − i− 1))‖hi‖Πi‖f i‖Πk

± (c+ k − i− 2) · γ · ‖hi‖Πi‖f i‖Πk

= λYk,i · 〈f i,f i〉Πk ± γ · (`2 + `(k − i− 1))‖hi‖Πi‖f i‖Πk ,

where we have defined λWk,i := Qc−1+k−i,i(~δ)·λW
′′

k,i . The last inequality follows fromQc−1+k−i,i(~δ) ≤
1 and c ≤ `.

To understand all errors in the analysis in Lemma 4.3.13 we need to derive the approximate
orthogonality of the vectors f i ∈ V(k;i) and f j ∈ V(k;j) for i 6= j from [DDFH18] in more
detail. We start with the following bound in terms of hi,hj.

Lemma 4.3.14 (Refinement of [DDFH18]). Let (X,Π) be a pure d-dimensional two-sided

γ-local spectral expander (in particular, a γ-HDX). Let k, i, j be parameters, such that

k ≥ i, j and i 6= j. Then, we have

〈f i,f j〉Πk = ± (2k − i− j)2 · γ · ‖hi‖Πi‖hj‖Πj .

where hi,hj satisfy U
(k−i)
i hi = f i and U

(k−j)
j hj = f j.
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Proof. Without loss of generality suppose i > j. We have

〈f i,f j〉Πk = 〈U(k−i)
i hi,U

(k−j)
j hj〉Πk = 〈Yhi,hj〉Πj ,

where Y = Dj+1 · · ·DkUk−1 · · ·Ui. Since k − j > k − i, i.e. |D(Y)| > U(Y)|, the statement

follows from Lemma 4.3.9.

To give a bound for Lemma 4.3.14 only in terms of the approximate eigenvector norms
‖f i‖Πk and not in terms of ‖hi‖Πi , we need to understand how the norms of hi and f i are
related.

Lemma 4.3.15 (Refinement of [DDFH18]). Let (X,Π) be a pure d-dimensional two-sided

γ-local spectral expander (in particular, a γ-HDX). Suppose we are given parameters k, i ≥
0 such that d ≥ k ≥ i. We define, ηk,i := (k − i)2 + 1 and let βi :=

√
|Fk−i,i,~δ(δi)± γ · ηk,i|

where Fk−i,k,~δ is a canonical polynomial of degree k − i from Lemma 4.3.10. Then, for all

f i ∈ V(k;i) we have,

〈f i,f i〉Πk = β2
i · 〈hi,hi〉Πi ,

where hi ∈ H(i) satisfies f i = U
(k−i)
i hi and f j = U

(k−j)
j hj. Furthermore, defining θk,i :=

(i+ 2)k−i if γ ≤ 1/(2 · ηk,i · θk,i), then βi ≥ 1
2θk,i

.

Proof. For i = k the result trivially follows so we assume k > i. First consider the case

k = i+ 1. We have

〈Uihi,Uihi〉Πi+1
= 〈Di+1Uihi,hi〉 = δi · 〈hi,hi〉Πi ± γ · 〈hi,hi〉Πi . (4.7)

This follows from the condition of being γ-HDX, i.e. we have

Di+1Ui = Q + (1− δi)Ui−1Di + δi · I,

for some operator Q ∈ RX(i)×X(i) with ‖Q‖Πi ≤ γ annd thus

〈Di+1Uihi,hi〉Πi = 〈Qhi,hi〉Πi + δi · ‖hi,hi‖Πi
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where we have used that Ui−1Dihi = 0. Now Eq. (4.7) follows from the Cauchy-Schwarz

Inequality (Fact 2.1.1).

For general k > i we have,

〈f i,f i〉Πk = 〈U(k−i)
i hi,U

(k−i)
i hi〉Πi = 〈Di+1 · · ·DkUk−1 · · ·Uihi,hi〉Πi = 〈P(k−i)

i hi,hi〉Πi .

Applying Lemma 4.3.10 to P
(k−i)
i together with Cauchy-Schwarz Inequality (Fact 2.1.1)

yields 〈
P

(k−i)
i hi,hi

〉
=
〈
Fk−i,i,~δ(P

4
i ) · hi,hi

〉
Πi
± γ · (k − i− 1)2.

Combining Eq. (4.7) and Lemma 4.3.8 gives

〈Fk−i,i,~δ(P
4
i )hi,hi〉Πi ± γ · (k − i− 1)2 =

〈
Fk−i,i,~δ(δi)hi,hi

〉
Πi
± γ · ((k − i)2 + 1).

Since FN
k−i,i,~δ(x) =

∑k−i
i=0 cix

i where the coefficients ci form a probability distribution, we

get

FN
k−i,i,~δ(δi) ≥ δk−ii =

(
1

i+ 2

)k−i
.

Now, we can state the approximate orthogonality Lemma 4.3.16 in terms of the eigenvector
norms.

Lemma 4.3.16 (Approximate Orthogonality (refinement of [DDFH18])). Let (X,Π) be a

pure d-dimensional two-sided γ-local spectral expander (in particular, a γ-HDX). Suppose

we are given parameters k, i, j ≥ 0 such that d ≥ k ≥ i, j. Let ηk,s, θk,s, βs for s ∈ {i, j} be
given as in Lemma 4.3.15. If i 6= j and βi, βj > 0, then for all f i ∈ V(k;i), f j ∈ V(k;j),

〈f i,f j〉Πk = ± γ · (2k − i− j)2

βiβj
‖f i‖Πk‖f j‖Πk .

Furthermore, if γ ≤ min (1/(2 · ηk,i · θk,i), 1/(2 · ηk,j · θk,j)), then βi, βj > 0 and

〈f i,f j〉Πk = ± γ · θk,i · θk,j · (2k − i− j)2‖f i‖Πk‖f j‖Πk .
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Proof. The statement follows directly from Lemma 4.3.15.

We will need this direct consequence of Lemma 4.3.16,

Corollary 4.3.17. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander

(in particular, a γ-HDX). Suppose k ≥ 0 is such that d ≥ k. Let f ∈ RX(k) be given with

f =
∑k

i=−1 f i with f i ∈ V(k;i) for every i = −1, . . . , k. If γ ≤ ε ·
(
(k + 2)2k · 4k2

)−1 for

some ε ∈ (0, 1) we have,

‖f‖2
Πk

= (1± ε) ·

(
k∑

i=−1

‖f i‖2
Πk

)
.

Proof. Since ‖f‖2
Πk

= 〈f ,f〉Πk , we have

‖f‖2
Πk

=
k∑

i=−1

‖f i‖2 +
k∑

i,j=−1,
i 6=j

〈f i,f j〉Πk .

By Lemma 4.3.16, we have

‖f‖2
Πk

=
k∑

i=−1

‖f i‖2 ±
k∑

i,j=−1,
i6=j

γ · θk,i · θk,j · (2k)2‖f i‖Πk · ‖f i‖Πk .

By using the AM-GM inequality on the RHS

‖f‖2
Πk

=
k∑

i=−1

‖f i‖2 ±
k∑

i,j=−1,i 6=j

γ · θk,i · θk,j · 2k2 ·
(
‖f i‖2

Πk
+ ‖f j‖2

Πk

)
,

=
k∑

i=−1

‖f i‖2 ± γ · (k + 2)2k · 2k2

k∑
i,j=−1,i 6=j

(
‖f i‖2

Πk
+ ‖f j‖2

Πk

)
, (θk,i, θk,j ≤ (k + 2)k)

=
k∑

i=−1

‖f i‖2 ± γ · (k + 2)2k · 4k2

k∑
i=−1

‖f i‖2
Πk
,

=
(
1± γ · (k + 2)2k · 4k2

)
·

k∑
i=−1

‖f i‖2
Πk
.

The statement now follows by our choice of γ.
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Now we finally prove Lemma 4.1.8 for bounding quadratic forms of general balanced oper-
ators. We will do this by generalizing the above analysis for pure balanced operators. We
restate again for convenience,

Lemma 4.1.8. Let (X,Π) be a d-dimensional two-sided γ-local spectral expander such that

γ ≤ ε
(
16kk+2`2

∑
W∈Y |αW|

)−1, for some ε ∈ (0, 1). Let Y ⊆ {Y | Y ∈ RX(k)×X(k)} be a

collection of formal operators that are product of an equal number of at most l up and down

operators (i.e., pure balanced operators). Let B =
∑

Y∈Y α
YY where αY ∈ R for all Y ∈ Y.

Then, there exists constants λYk,i only depending on k and i (and not on (X,Π)), such that

for any f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Bf ,f〉Πk =
k∑

i=−1

(∑
Y∈Y

αYλYk,i

)
· 〈f i,f i〉Πk ± ε,

where f =
∑k

i=−1 f i is the unique decomposition where f i ∈ V(k;i) for all i = −1, . . . , k.

Proof. The statement follows from Lemma 4.3.13, the assumption on γ, and the following

computation,

〈Bf ,f〉Πk =
k∑

i,j=−1

〈Bf i,f j〉Πk ,

=
k∑

i,j=−1

∑
Y∈Y

αY · 〈Yf i,f j〉Πk ,

=
k∑

i=−1

∑
Y∈Y

αY
(
λYk,i · 〈f i,f i〉Πk

)
,

±
k∑

i=−1

∑
Y∈Y

αY ·
(
γ · (`2 + ` · k)‖hi‖Πi‖f i‖Πk

)
,

+
k∑

i,j=−1,
i 6=j

∑
Y∈Y

αY ·
〈
Yf i,f j

〉
Πk
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where we have used Lemma 4.3.13 to obtain the expression on the last equality by rewriting

the diagonal terms 〈Yf i,f i〉Πk . Next, we note that for our choice of γ we have,

±
k∑

i=−1

∑
Y∈Y

αY ·
(
γ · (`2 + ` · k)‖hi‖Πi‖f i‖Πk

)
= ±ε

4

k∑
i=−1

〈f i,f i〉Πk = ±ε
2
,

where we have used Lemma 4.3.15 and Corollary 4.3.17. Next we note that we can bound

the cross-terms 〈Yf i,f j〉Πk . Suppose, i > j then,

〈Yf i,f j〉Πk = 〈YU(k−i)
i hi,U

(k−j)
j hj〉Πk = 〈AỸhi,hj〉Πj ,

where we wrote Ỹ = Di · · ·DkYUk−1 · · ·Ui and A = Dj+1 · · ·Di+1. Since Ỹ contains

more down-operators than up operators and ‖A‖Πi+1→Πj ≤ 1 as A is row-stochastic, by

Lemma 4.3.9

〈Yf i,f j〉Πk = ± (`+ 2k + 1)2 · γ · ‖hi‖Πi · ‖hj‖Πk ,

= ± (`+ 2k + 1)2 · γ
(
‖hi‖2

Πi
+ ‖hj‖2

Πj

)
.

where we have used the AM-GM inequality for the last step.

In particular, by our choice of γ,∑
i,j=−1,
i 6=j

∑
Y∈Y

αY · 〈Bf i,f j〉 = ± (`+ 2k + 1)2 · γ ·

(∑
Y∈Y

∣∣αY
∣∣) · k · k∑

i=−1

‖hi‖2
Πi
,

= ± ε

4
·

k∑
i=−1

‖f i‖2
Πk
,

= ± ε

2
,

where we have used where we have used Lemma 4.3.15 and Corollary 4.3.17.

We instantiate Lemma 4.3.16 for swap walks with their specific parameters. First, we
introduce some notation. Using Corollary 4.1.9, (and Sk = S

(k+1)
k,k ) we have

Sk =
k+1∑
j=0

(−1)k+1−j ·
(
k + j + 1

k + 1

)
·
(
k + 1

j

)
· P(j)

k =
k∑
j=0

αj · P(j)
k ,
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where αj = (−1)k+1−j ·
(
k+1+j
k+1

)
·
(
k+1
j

)
.

Finally, we have all the pieces to prove Lemma 4.1.7 restated below.

Lemma 4.1.7. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander

where γ ≤ ε
(
64kk+423k+2

)−1 for some ε ∈ (0, 1). If d ≥ 2k + 1, there exists constants λSkk,i
for all i = −1, . . . , k only depending on k and i (and not on (X,Π)) such that, for any

f ∈ RX(k) with ‖f‖Πk = 1 we have

〈Skf ,f〉Πk =
k∑
i=0

λSkk,i · 〈f i,f i〉Πk ± ε.

where f =
∑k

i=−1 f i is the unique decomposition satisfying f i ∈ V(k;i)

Proof. First note that Lemma 4.3.13 establishes the existence of approximate eigenvalues

λ
P

(j)
k
k,i of P(j)

k corresponding to space V(k;i) for i = −1, . . . , k such that λP
(j)
k
k,i depends only

on k, i and j. We have, λSkk,i =
∑k+1

j=0 αjλ
P

(i)
k
k,i where αj = (−1)k+1−j ·

(
k+1+j
k+1

)
·
(
k+1
j

)
. Now,

to apply Lemma 4.1.8 and conclude the lemma (with Corollary 4.1.9) we only we need to

bound
∑k

j=0 |αj|. Since

k+1∑
j=0

|αj| =
k+1∑
j=0

(
k + j + 1

k + 1

)
·
(
k + 1

j + 1

)
≤ 2k+1 ·

k∑
j=0

(
k + k + 1

j

)
= 23k+2,

where we have used
(
k+1
j

)
≤ 2k+1 for eliminating the first term.

4.3.3 Rectangular Swap Walks Sk,l

We turn to the spectral analysis of rectangular swap walks, i.e., Sk,l where k 6= l. Recall
that to bound σ2(Sk) in Theorem 4.1.1 we proved that the second sigular value of Sk on
a two-sided γ-local spectral expander (X,Π) is close to the second singular value of S∆n,d

k

using the analysis of quadratic forms over balanced operators from Section 4.3.2. Then we
appealed to the fact that S∆n,d

k,k is expanding since it is the walk operator of the well known
Kneser graph. In this rectangular case, we do not have a classical result establishing that
S

∆n,d

k,l is expanding, however one can still prove the following result Lemma 4.3.18.
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Lemma 4.3.18 ([AJT19]). Let parameters d, k, l ≥ 0 be given such that d ≥ k + l + 1.

The second largest singular value σ2(S
∆n,d

k+1,l+1) of the swap operator S
∆n,d

k,l on ∆n,d is

σ2(S
∆n,d

k,l ) ≤ max

(
k + 1

n− k − 1
,

l + 1

n− l − 1

)
,

provided n ≥Mk,l where Mk,l ∈ N only depends on k and l.

Lemma 4.3.18 can be proven by studying a generalization of Kneser graphs which we call
bipartite Kneser graphs. We write K(n, k, l) = (L,R,E) for the bipartite graph with the
bipartition (L,R) such that

L =

(
[n]

l

)
, R =

(
[n]

k

)
, and E = {{α, β} : α ∈ L, β ∈ R,α ∩ β = ∅}.

We then note that the normalized-adjacency matrix Wk+1,l+1 of the bipartite Kneser graph
K(n, k + 1, l + 1) can be written as,

Wk+1,l+1 =

(
0 S

∆n,d

k,l(
S

∆n,d

k,l

)∗
0

)
,

where we have introduced the notation S
∆n,d

k,l for the swap operator on the complete com-
plex. We observe,

W2
k+1,l+1 =

S∆n,d

(
S

∆n,d

k,l

)∗
0

0
(
S

∆n,d

k,l

)∗
S

∆n,d

k,l


By Fact 2.1.6, the upper-left and bottom-right principal submatrices of W2

k+1,l+1 have
the same singular values. In particular, as a consequence of the Courant-Fischer-Weyl
Theorem 2.1.4 and Corollary 2.1.5 we have

σ2

(
S

∆n,d

k,l

)
=
√
λ2

(
W2
k+1,l+1

)
= σ2(Wk+1,l+1). (4.8)

With this it is apparent that understanding the singular values of Wk+1,l+1 is useful for
understanding the singular values of S∆n,d

k,l – which is the operator which we actually care
about.

It turns out, one can still establish the entire spectrum of these graphs,
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Lemma 4.3.19 ([AJT19]). The non-zero eigenvalues of the normalized walk matrix of

Wk,l of K(n, k, l) are

±
(
n−k−i
l−i

)(
n−l−i
k−i

)(
n−k
l

)(
n−l
k

) ,

for i = 0, . . . ,min(k, l).

In particular, by Corollary 2.1.5 the singular values of Wk,l are(
n−k−i
l−i

)(
n−l−i
k−i

)(
n−k
l

)(
n−l
k

) ,

for i = 0, . . . ,min(k, l).

In [AJT19], the above lemma was proven by the observation that the precise set of eigen-
vectors for Wk,l is known (see, [Fil16]) as Wk,l is closely related to operators in the Johnson
scheme (see, [GM15]). However, we omit this computation as it requires introducing some
representation theory, which is beyond the scope of this thesis.

Now the proof follows a similar strategy to the one we have employed to prove Theo-
rem 4.1.1, by analyzing quadratic forms over S∗k,lSk,l using the results from Section 4.3.2
since by Corollary 4.1.9, the operator S∗k,lSk,l balanced. Formally,

Corollary 4.3.20. Let (X,Π) be a d-dimensional simplicial complex. Let k, l ≥ 0 be

parameters such that d ≥ k ≥ l. The operator S̃k,l = S∗k,lSk,l ∈ RX(l)×X(l) is balanced and

satisfies the following equality,

S̃k,l =
l+1∑
i,j=0

(−1)i+j
(
k + 1 + j

l + 1

)(
k + 1 + i

l + 1

)(
l + 1

i

)(
l + 1

j

)(
P

(j)
k,l

)∗
P

(i)
k,l.

Proof. The formula follows directly from Corollary 4.1.9. We only verify that the terms(
P

(j)
k,l

)∗
P

(i)
k,l are pure balanced operators, i.e. contain an equal number of up- and down-

operators. We have,(
P

(j)
k,l

)∗
P

(i)
k,l = (Dk+1 · · ·Dk+jUk+j−1 · · ·Ul)∗Dk+1 · · ·Dk+iUk+i−1 · · ·Ul,

= Dl+1 · · ·Dk+jUk+j−1 · · ·UkDk+1 · · ·Dk+iUk+i−1 · · ·Ul,

and thus each
(
P

(j)
k,l

)∗
P

(i)
k,l is a product of k+j−l+i up- and k+j−l+i down operators.
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Lemma 4.3.21. Let (X,Π) be a pure d-dimensional two-sided γ-local expander (in par-

ticular, a γ-HDX) such that γ ≤ ε · (128 · ·k2 · ll+424l+2k+6)−1 for some ε ∈ (0, 1). Let k, l

be parameters such that d ≥ k + l + 1 and k ≥ l. For any f =
∑l

i=−1 f i ∈ RX(l) such that

f i ∈ V(l;i) for all i = −1, . . . , l and ‖f‖Πl = 1, we have

〈
S̃k,lf ,f

〉
Πl

=
k∑

i=−1

λ
S̃k,l
l,i 〈f i,f i〉Πl ± ε

where λS̃k,lk,i are constants only depending on k, l, i (and not on (X,Π))

Proof. The proof will be analogous to that of Lemma 4.1.7. By Corollary 4.3.20, we have

S̃k,l =
l+1∑
i,j=0

αi,j ·
(
P

(i)
k,l

)∗
· P(j)

k,l ,

where αi,j = (−1)i+j
(
k+1+j
l+1

)(
k+1+i
l+1

)(
l+1
i

)(
l+1
j

)
. Similarly to what we did in the proof of

Lemma 4.1.7, we set set λS̃k,ll,r =
∑k

i,j=0 αi,jλ
S̃k,l
l,r (where λS̃k,ll,r are obtained from Lemma 4.3.13).

Now to apply Lemma 4.1.8, all we need to do is bound
∑l+1

i,j=0 |αi,j|.

l+1∑
i,j=0

|αi,j| =
l+1∑
i,j=0

(
k + j + 1

l + 1

)
·
(
l + 1

j

)(
k + i+ 1

l + 1

)
·
(
l + 1

i

)

≤ 22l+2 ·

(
l+1∑
j=0

(
k + j + 1

l + 1

))
·

(
l+1∑
i=0

(
k + i+ 1

i

))
≤ 24l+2k+6,

we are done.

Next, we show the analogous statement to Theorem 4.1.1 for S̃k,l which states that the
random walk S̃k,l on a two-sided γ-local spectral expander has very small second singular
value.

Lemma 4.3.22. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander.

Suppose k, l ≥ 0 are parameters such that d ≥ k+ l+ 1. If γ ≤ ε2 · (128 · k2 · ll+424l+2k+6)−1
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for some ε ∈ (0, 1), then the second singular value of the operator S̃k,l can be bounded from

above

σ2(S̃k,l) ≤ ε2.

Proof. Using Lemma 4.3.18, and the same argument as the one used to prove Theorem 4.1.1

we can conclude that λS̃k,ll,i = 0 for all i ≥ 0. Then, the proof follows analogously to

Theorem 4.1.1.

Now the proof of Theorem 4.1.2 follows directly, as we have by the definition of singular
values

σ2(Sk,l) =
√
λ2

(
S∗k,lSk,l

)
=

√
λ2(S̃k,l) =

√
σ2(S̃k,l),

where for the last step we have used that since S̃k,l is positive semi-definite, i.e. S̃k,l �Πl 0

we have σ2(S̃k,l) = λ2(S̃k,l).

Thus, we obtain Theorem 4.1.2, restated below for convenience

Theorem 4.1.2. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander.

Suppose k, l ≥ 0 are parameters such that d ≥ k+ l+ 1. If γ ≤ ε2 · (128 · k2 · ll+424l+2k+6)−1

for some ε ∈ (0, 1), then the second singular value of the operator Sk,l can be bounded from

above

σ2(Sk,l) ≤ ε.
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Chapter 5

Future Directions

Finally, in this chapter we will discuss some interesting future directions.

Sampling Applications. The spectral bound from Theorem 3.1.1 for the down-up walk
P4k , provides a natural framework for studying the rapid mixing of many natural chains of
interest. What are other settings we can apply this machinery to establish rapid mixing?
Can we use this machinery to show that the natural Markov chain for sampling a uniformly
random ∆ + o(∆) coloring of a graph of maximum degree ∆ is rapidly mixing? This is a
very important open question in the area of Markov chains. Currently, it is only known
that this Markov chain mixes rapidly when the number of colors is at least (11/6 − η)∆
where η is some fixed constant [CDM+19].

Improving Oppenheim’s Theorem. Oppenheim’s Theorem 2.3.6 is a very powerful tool
for establishing local spectral expansion, as it reduces the problem of studying the spectra
of the links of any dimension, to studying the spectra of links of maximal dimension.
However, a shortcoming of Oppenheim’s Theorem 2.3.6 is the very strong assumption it
makes on the expansion of the top-level links: In a d-dimensional complex (X,Π), to
have a non-trivial implication of Theorem 2.3.6, one needs to assume γd−2 = O(1/d). This
assumption is not always met, i.e. when the top level links are graphs on a constant number
of vertices, in general, one cannot hope for anything better than γd−2 = Ω(1). A natural
question here is whether one can improve Theorem 2.3.6, to work with weaker priors. A
very ambitious (but extremely useful) goal would be trying to understand what priors the
simplicial complex (X,Π) needs to satisfy such that assuming only the connectivity of the
links and γd−2 = Ω(1) we can show γj = O(1/(d− j)) for j = −1, . . . , d− 2.
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More General Random Walk Models. Though the higher order random walk frame-
work is powerful, unfortunately it does not cover all random walks of interest. One example
is the Markov chains for sampling perfect or near perfect matchings [JS89, JSV04]. Can
we use local spectral techniques for establishing rapid mixing of a wider array of natural
Markov chains? One particular interesting example is the Markov Chain used for perfect
or near perfect matchings. This approach might also allow an angle to attack the general
problem of sampling matroid intersection, of which matchings are a special case. Presently,
this problem is wide open.

Modified Log-Sobolev Inequalities. Our result Theorem 3.1.1 for bounding the second
eigenvalue of the down-up walk P4k is useful in arguing rapid mixing, because it could
be used to bound the spectral gap which quantifies the multiplicative decrease in the
`2-distance between the distribution of the random walk and the stationary distribution
after taking a step of the random walk (Theorem 2.2.7). For sharper estimates on the
mixing time, one can consider the modified log-Sobolev constant which roughly quantifies
the multiplicative decrease in the distance between the distribution of the random walk
and the stationary distribution in relative entropy after taking a step of the random walk.
Recently, Cryan, Guo, and Mousa [CGM19] have shown that the natural Markov chain
described by P5r for sampling matroid bases satisfies a modified log-Sobolev inequality and
established that this natural chain has optimal mixing time O(r log r). Do their result
generalize to all high-dimensional expanders? More generally, is there a property of the
local graphs Gα that would allow us to bound the (modified) log-Sobolev constant of the
corresponding chain as opposed to the spectral gap? This would give a more systematic
way of studying the (modified) log-Sobolev constants of many interesting Markov chains,
which in practice is known to be a challenging task.
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Appendix A

Improved Bound on the Second

Singular Value of Sk,l

A.1 Improved Bound on σ2(Sk,l)

To avoid introducing additional notation, we only provide a sketch for the proof of the
improved bound on the second singular value of the swap walk Sk,l on two-sided γ-local
spectral expanders due to [DD19].

Theorem 4.1.3. Let (X,Π) be a pure d-dimensional two-sided γ-local spectral expander.

Let k, l ≥ 0 be parameters such that d ≥ k+ l+ 1. Then, writing Sk,l for the swap operator

on the complex (X,Π) we have

σ2(Sk,l) ≤ (k + 1) · (l + 1) · γ.

To prove this result, we need to introduce the concept of partite complexes: Let (X,Π) be
a d-dimensional simplicial complex. We call (X,Π) partite, if there exists a partition of
X(0) =

⊔d+1
i=1 Vi such that Vi ∩ Vj = ∅ for all i 6= j and

|α ∩ Vi| = 1 for all α ∈ X(d), i = 1, . . . , d+ 1.
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We observe that a bipartite graph G = (L,R,E) is a one-dimensional partite simplicial
complex and thus partiteness can be seen as a generalization of bipartiteness for graphs to
simplicial complexes.

We now introduce the main lemma we will use to obtain Theorem 4.1.3.

Lemma A.1.1. Let (Y,Π) be a 2-dimensional partite complex with parts Y (0) = V1 t
V2 t V3. Let M1,2,M1,3, and M2,3 denote the random walk matrices of the bipartite graphs

G1,2 = G∅[V1 t V2], G1,3 = G∅[V1 t V3] and G2,3 = G∅[V2 t V3] – where we have written

G∅ for the empty link in Y , and in every one of these random walks transitions between

vertices i and j are taken with probability proportional to Π1({i, j}). If for every v ∈ V1,

the adjacency matrix of the link graph Mv satisfies σ2(Mv) ≤ η, then

σ2(M2,3) ≤ η + σ2(M1,2) · σ2(M1,3).

Proof Sketch. By abuse of notation, we will take Mi,j ∈ RVi×Vj to be the upper right

submatrix of the random walk matrix of Gi,j, i.e.

MGi,j =

 0 Mi,j

M∗i,j 0

 .

Notice that σ2(MGi,j) = σ2(Mi,j).

Suppose f , g ∈ RV be unit vectors such that f , g ⊥ 1.

We then note that by analogous arguments to those we have used used for proving Oppen-

heim’s Theorem 2.3.6, one can prove for any f ∈ RV3 and g ∈ RV2 , we have

〈
M2,3f , g

〉
= E

v∼V1

[〈Mvf v, gv〉], (A.1)

where we have again abused notation to write Mv for the upper-right submatrix of the

bipartite graph Gv with parts L and R confined into V2 and V3 (since v ∈ V1 and Y

is partite). We again follow the proof strategy of Theorem 2.3.6, and decompose f v =
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f1
v + f⊥1v and gv = g1

v + g⊥1v , where f1
v and g1

v are the parts of f v and gv that are

parallel to the constant function 1, and f⊥1v and g⊥1v are the parts of f v and gv that are

perpendicular to 1. Since Mv is row-stochastic Mvf
1
v is also parallel to 1, and Mvf

⊥1
v is

also perpendicular to 1. Thus,〈
M2,3f , g

〉
= E

v∼V1

[〈
Mvf

1
v , g

1
v

〉
+
〈
Mvf

⊥1
v , g⊥1v

〉]
,

= E
v∼V1

[〈
Mvf

1
v , g

1
v

〉]
+ E

v∼V1

[〈
Mvf

⊥1
v , g⊥1v

〉]
,

For bounding the second term, we note that

E
v∼V1

[〈
Mvf

⊥1
v , g⊥1v

〉]
≤ E

v∼V1

[σ2(Mv)‖f v‖ · ‖gv‖],

≤ E
v∼V1

[
σ2(Mv) ·

1

2
·
(
‖f v‖2 + ‖gv‖2

)]
, (by AM-GM inequality)

≤ η · 1

2
E

v∼V1

[
‖f v‖2 + ‖gv‖2

]
,

= η.

Where the last step follows from a similar argument to how we have proved Ev∼Π0‖f v‖2
Πv

=

‖f‖2
Π0

in the proof of Theorem 2.3.6 and the fact that f and g are unit vectors.

To bound the first term, Ev∼V1〈Mvf
1
v , g

1
v〉, we notice that analogously to have we shown,

Mvf
1 = [M∅f ](v) · 1 in the proof of Theorem 2.3.6, we can show,

g1 = E
u∼V3∩Yv(0)

gv(u) = [M1,3g](v) · 1 and f1 = E
v∼V2∩Yv(0)

f v(u) = [M1,2f ](v) · 1.

Now, notice that since Mv is an averaging operator, we have

E
v∈V1

〈Mvf
1
v , g

1
v〉 = E

v∈V1

[
[M1,2f ](v) · [M1,3g]

]
= 〈M1,2f ,M1,3g〉 ≤ σ2(M1,2) · σ2(M1,3).

Then, we observe

〈M1,3f , g〉 ≤ η + σ2(M1,2) · σ2(M1,3).

Since this holds for arbitrary unit vectors f , g such that f , g ⊥ 1 the statement follows.
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We can now proceed to sketch a proof for Theorem 4.1.3,

Proof Sketch for Theorem 4.1.3. We will proceed by induction on k + l. Suppose that

k + l = 0, i.e. k = l = 0. Then, Sk,l is just the empty link M∅, and by the two-sided

γ-local spectral expansion criterion, the statement follows.

We suppose now that there exists an N such that for all k, l ≥ 0 with k + l ≤ N we have

σ2(Sk,l) ≤ γ · (k + 1) · (l + 1).

Suppose now, k + l = N . We want to show, that we have

σ2(Sk+1,l) ≤ γ · (k + 2) · (l + 1).

To this end, we describe a 2-dimensional partite simplicial complex Y with parts,

Y (0) = X(k) tX(k + 1) tX(l).

And insert a 2-dimensional face {α1, α2, α3} into Y for α1 ∈ X(k), α2 ∈ X(k + 1), and

α3 ∈ X(l) whenever α1 ⊂ α2, α2 ∩ α3 = ∅ and α2 t α3 ∈ X. The weight associated with

face {α1, α2, α3} is proportional to Πk+l+2(α2 t α3).

We want to apply Lemma A.1.1 to conclude the theorem. We note that for all α1 ∈ X(k),

and the link graph Gα1 of Yα1 corresponds to the swap walk S0,l on the link of Xα1 , and

by the inductive assumption σ2(Mα1) ≤ (l + 1) · γ.

The bipartite graph between X(k) and X(l) (G1,3 in Lemma A.1.1) is precisely the swap

walk Sk,l on the complex X, and by assumption satisfies σ2(Sk,l) ≤ (k + 1) · (l + 1) · γ.

And the bipartite graph between X(k + 1) and X(l + 1) (G2,3 from Lemma A.1.1) is

precisely the swap walk Sk+1,l.

Thus, by Lemma A.1.1 we obtain

σ2(Sk+1,l) ≤ (l + 1)γ + (k + 1)(l + 1)γ · σ2(M1,2),
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where M1,2 is the random walk matrix of the bipartite graph between X(k) and X(k +

1) (G1,2 in Lemma A.1.1). Since M1,2 is row-stochastic, we have σ2(M1,2) ≤ 1 and the

statement follows.
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