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Abstract

The squashing model proof technique is a powerful tool in proving security of quantum
key distribution (QKD) protocols since it reduces the dimension of the associated compu-
tational problem from infinite to finite. In the first half of this thesis, we formally prove
that the unconditional asymptotic security of an arbitrary QKD protocol after applying
a squashing model implies the same security for the original protocol. We also prove rig-
orously that the squashing map of the flag-state squashing model is indeed a quantum
channel for an infinite-dimensional input Hilbert space.

In the second half of the thesis, we apply the flag-state squashing model to the phase-
encoded BB84 protocol. Since all phase-encoded BB84 implementations have signal states
with unbalanced amplitudes in practice, the original security analyses a priori do not
apply to them. Previous security proofs use signal tagging of multi-photon pulses to
recover the behaviour of regular BB84. This is overly conservative, as for unbalanced
signals, the photon-number splitting attack does not leak full information to Eve. In this
work, we exploit the flag-state squashing model to preserve some parts of the multi-photon
generated private information in our analysis. Using a numerical proof technique, we obtain
significantly higher key rates compared with previously published results in the low-loss
regime. It turns out that the usual scenario of untrusted dark counts runs into conceptual
difficulties in some parameter regime. Thus, we discuss the trusted dark count scenario in
this paper as well. We also report a gain in key rates when part of the total loss is known
to be induced by a trusted device. We highlight that all these key rate improvements can
be achieved without modification of the experimental setup.
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Chapter 1

Introduction

Since the discovery of Shor’s algorithm [6] for polynomial-time factoring, quantum comput-
ers can, in theory, break current cryptosystems such as RSA that rely on the computational
hardness of factoring large integers. This poses serious threats to the security of all modern
communications that use public-key encryption. Later on, there are many proposals for
quantum-safe cryptography schemes such as post-quantum cryptography schemes which
rely on the fact that efficient algorithms for solving some hard mathematical problems have
yet to be discovered. Furthermore, even if there are really no efficient algorithms that can
solve these problems, an adversary with unlimited computational resources can still break
these encryption schemes. Therefore, all these schemes are providing only computational
security (i.e. assuming the adversary to have limited computational power) instead of
information-theoretic security.

Quantum key distribution (QKD) is another category of quantum-safe cryptography
schemes. The main advantage of QKD compared with other cryptography schemes is that
it assumes the adversary to have unlimited computational power. In fact, QKD, if im-
plemented correctly with a one-time pad, can in principle provide information-theoretical
security given that our laws of quantum mechanics are accurate and all possible side-
channel attacks are addressed. Another advantage of QKD is that any new attack methods
discovered by the adversary in the future will not compromise the security of encrypted
messages in the past. This is vastly different from any current or post-quantum cryptog-
raphy schemes where the security of encrypted messages can be fully compromised if an
adversary stores the messages and later discover an efficient decryption method or acquire
unrestricted computational resources.

The first QKD protocol, BB84, was proposed by Bennett and Brassard in 1984 [7].
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Since then many other QKD protocols have been proposed, but all of them share the same
setting where two trusted parties Alice and Bob try to establish a shared secret key so
that they can use a one-time pad to encrypt their messages. To do so, Alice sends signals
that are chosen at random from a predefined set of non-orthogonal quantum states to
Bob so that he can extract some information from measuring the states. Note that there
are protocols such as measurement-device-independent (MDI) protocols that require both
Alice and Bob to send out signal states to an untrusted party Charlie for measurement,
but we will not consider these in this thesis. An eavesdropper or adversary Eve is assumed
to have full control of the quantum channel for the signal transmission between Alice and
Bob, so Eve can also learn something about the signal states. Once the distribution phase
is ended, Alice and Bob will communicate via an authenticated classical channel in order
to 1) estimate and reduce the leaked information to Eve, 2) increase correlation between
their signal preparation and measurement data, and ultimately 3) establish a shared secret
key. This will form the starting point of our discussion in Section 2.2.

The outline of this thesis is given as follows. In Chapter 2, we will cover the mathemat-
ical representations of physical systems, quantum measurements, and quantum channels as
well as the notion of quantum entropy. These form the bases for understanding the QKD
security proof framework. There we describe each step of a generic QKD protocol, different
attacks that Eve can perform, and how one can prove unconditional asymptotic security
even if Eve is restricted to performing collective attacks. At the end, we will look at two
equivalent versions of the asymptotic key rate formulas and how the key rate calculation
task can be translated into a numerical optimisation problem that will result in a reliable
key rate lower bound.

In Chapter 3, our main focus is squashing models which is an important mathemat-
ical tool for proving security of QKD protocols that involve measurements of infinite-
dimensional signal states. We first review the motivation and general idea behind squash-
ing models. We then give a concise definition of a generic squashing model and prove
its unconditional asymptotic security formally. As we move on to discuss the recently
proposed flag-state squashing model [8], we will prove that it satisfies all the squashing
model criteria even for an infinite-dimensional input Hilbert space provided that there is
a non-trivial lower bound on the weight of a preserved subspace. Finally, we will briefly
mention that finding a general squashing model which can fit all QKD protocols is still an
ongoing quest.

In Chapter 4, we will prove asymptotic security of the unbalanced phase-encoded BB84
protocol using the numerical proof technique described at the end of Chapter 2 and the
flag-state squashing model. Since the main objective is to prove higher key rates than what
previous results [4, 5] proved, we will highlight the main difference between our approach
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and theirs and emphasise that our method is better. As a review, we will describe the full
protocol and how the signals and measurements are modelled mathematically. Then, we
will explain all the techniques that we have applied to this security proof and the way we
simulate our experimental data with realistic assumptions. Note that we have included all
the detailed derivations that we skip in the main body in the appendices for those who
are interested. At last, we will show that our key rates are indeed higher in the low-loss
regime and a trusted loss assumption can improve the key rates further.

The last chapter will conclude this thesis by summarising mainly Chapters 3 and 4 where
I have shown contributions. We will also point out some directions for future research.
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Chapter 2

Preliminaries

In this chapter, we first review the relevant mathematical and quantum information theory
background for understanding the QKD security analysis framework. We will then revisit
the asymptotic security analysis of a general QKD protocol in the asymptotic key scenario.

2.1 Quantum information theory

In QKD, the task is to harvest information stored in some physical quantum systems such
as photons. To quantify such information requires the usage of quantum information theory
which provides mathematical descriptions of the quantum systems, the information stored
in them, and their interactions with the environment and measurement devices. Most of
the content in this section is based on Refs. [9, 10, 11].

2.1.1 Physical systems and measurements

Quantum systems exist naturally (e.g. atoms, photons, trapped ions) or can be engineered
(e.g. superconducting qubits). They have found applications in many information pro-
cessing tasks such as QKD, quantum computing and quantum metrology. Although the
underlying physics of different quantum systems could be vastly different, quantum sys-
tems generally obey the big mathematical framework of quantum mechanics which consists
of a series of postulates irrespective of the systems’ physical details. Before we state the
postulates, we need to define the following mathematical objects.
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Definition 2.1.1. (Metric space [12])
A metric space is an ordered pair (M, d) where M is a set and an associated metric
d :M×M→ R is a function such that for any x, y, z ∈M, it holds that

1. d(x, y) = 0⇔ x = y,

2. d(x, y) = d(y, x),

3. d(x, y) + d(y, z) ≥ d(x, z),

4. d(x, y) ≥ 0.

Definition 2.1.2. (Cauchy sequence [12])
A sequence {xn} ⊂ M in a metric space (M, d) is Cauchy if for every positive real number
ε > 0, there exists a positive integer N such that for all integers n,m ≥ N , it holds that
d(xn, xm) < ε.

Definition 2.1.3. (Completeness [12])
A metric space M is complete if every Cauchy sequence in M is convergent (i.e. M
contains the limit to every Cauchy sequence).

Definition 2.1.4. (Hilbert space [13])
A complex vector space H is a Hilbert space if there exists an inner product 〈·|·〉 : H×H →
C such that for all vectors x, y, z ∈ H,

1. 〈x|y〉 = 〈y|x〉∗,

2. 〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉,

3. 〈x|αy〉 = α〈x|y〉 for all α ∈ C,

4. 〈αx|y〉 = α∗〈x|y〉 for all α ∈ C,

5. 〈x|x〉 ≥ 0,

6. 〈x|x〉 = 0 only if x = 0,

and if H is complete in the norm || · ||H defined as ||x||H =
√
〈x|x〉 with the metric d

defined as d(x, y) := ||x− y||H for every x, y ∈ H.

In the rest of this thesis, we will use the Dirac notation for vectors in a Hilbert space H
such that a “ket” |x〉 is equivalent to a vector x ∈ H in the definition above, and a “bra”
〈x| represents the complex conjugate transpose of the vector x ∈ H.

We state the first postulate of quantum mechanics quoted verbatim from Ref. [9].
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Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the system.
The system is completely described by its density operator, which is a positive
operator ρ with trace one, acting on the state space of the system. If a quantum
system is in the state ρi with probability pi, then the density operator for the system
is
∑

i piρi. ([9], p.102)

This provides a mathematical representation of the state of a physical system in terms of a
density operator ρ acting on a Hilbert space. As the postulate has stated, a system could
be in a statistical ensemble of states {pi, ρi} where pi is the probability of the system in
the i-th state ρi, in which case the state of a system is a probabilistic mixture ρ =

∑
i piρi.

A state ρ is called pure if it is rank-1, i.e. ρ = |ψ〉〈ψ|. Otherwise, we call the state mixed
if the rank of the density operator ρ is larger than 1. A more formal definition of density
operators will be given in the operator algebra language once we introduce the following
definitions.

Definition 2.1.5. (Positive operators [10])
Let H be a Hilbert space and P be a linear operator that maps H to H, i.e. P ∈ L(H). P
is a positive operator which we denote as P ≥ 0 or P ∈ Pos(H) if for all vectors |x〉 ∈ H,

〈x|P |x〉 ≥ 0. (2.1)

Definition 2.1.6. (Bounded operators [10])
Let H and K be two Hilbert spaces and the set of linear operators that map H to K as
L(H,K). An operator T ∈ L(H,K) is bounded if the operator norm which is defined as

||T ||op := sup{||T |h〉||K : |h〉 ∈ H, || |h〉||H} (2.2)

is finite. We denote the set of bounded linear operators that map H to K as B(H,K). If
H = K, then we denote the set simply as B(H).

Definition 2.1.7. (Compact operators [10])
Let H and K be two Hilbert spaces. An operator K ∈ B(H,K) is compact if there is a
sequence of finite-rank operators {Fn} ⊂ B(H,K) such that

lim
n→∞

||K − Fn||op = 0. (2.3)

We denote the set of compact operators that map H to K as K(H,K). If H = K, then we
denote the set simply as K(H).
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Theorem 2.1.1 (Singular value decomposition (SVD) [14])
Let H and K be two Hilbert spaces and let K ∈ K(H,K) be compact. Then, there exist two
orthonormal bases {|ei〉 : i ∈ N} ⊂ K and {|fi〉 : i ∈ N} ⊂ H such that

K =
∞∑
i=1

si(K)|ei〉〈fi| (2.4)

where {si(K) ∈ R : si(K) ≥ 0, i ∈ N} are the singular values of the operator K and can be

found as the eigenvalues of the operator |K| :=
√
K†K.

Definition 2.1.8. (Trace class operators and trace norm [10])
Let H be a Hilbert space with an orthonormal basis {|ei〉 : i ∈ N}. The set of trace class
operators is defined as

C1(H) = {K ∈ K(H) :
∑
i

si(K) <∞}, (2.5)

which is complete in the trace norm (or 1-norm) defined as

||K||1 :=
∑
i

si(K) =
∑
i

〈ei| |K| |ei〉 = Tr|K| = Tr
√
K†K. (2.6)

Therefore, the trace of the operator |K| is finite for all K ∈ C1(H).

These definitions will be referred to throughout the rest of this chapter and Chapter 3.
We now give the formal definition of density operators.

Definition 2.1.9. (Density operators)
An operator ρ ∈ C1(H) is a density operator if it satisfies ρ ≥ 0 and Tr(ρ) = 1. We denote
the set of density operators D(H). Since it is compact and Hermitian (i.e. ρ† = ρ), it has
a spectral decomposition

ρ =
∑
i

λi|ei〉〈ei| (2.7)

where {|ei〉} is the eigenbasis and {λi} are non-negative, real eigenvalues of ρ.

In many scenarios, we need to consider a physical system with multiple subsystems.
As another postulate of quantum mechanics (see p. 102, Postulate 4 in Ref. [9]), the state
space HAB for a bipartite system consisting of two subsystems A and B is the tensor
product of the two state spaces HA and HB, i.e. HAB = HA ⊗HB. This can be extended
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to any multipartite system where the state space is simply the tensor product of all the
state spaces of its subsystems. The reduced density operator ρA1 of a subsystem A1 is the
result of taking the partial trace of the n-partite density operator ρA1,...,An ∈ D(HA1,...,An)
on the rest of subsystems A2, ..., An, i.e.

ρA1 = TrA2,...,An(ρA1,...,An). (2.8)

Now if we consider a pure state of a bipartite system, we can use the following theorem to
decompose the state into a sum of orthonormal states of tensor product form.

Theorem 2.1.2 (Schmidt decomposition [9])
Let |ψ〉AB be a pure state of a bipartite system AB. Then there exist orthonormal bases
{|ei〉A} for subsystem A and {|fi〉B} for subsystem B such that

|ψ〉AB =
∑
i

√
λi|ei〉A ⊗ |fi〉B, (2.9)

where {λi} are non-negative, real numbers which satisfy
∑

i λi = 1.

This theorem implies that the two reduced density matrices ρA = TrB(|ψ〉〈ψ|AB) and
ρB = TrA(|ψ〉〈ψ|AB) of any bipartite pure state |ψ〉AB have the same eigenvalues. It follows
that for any mixed state ρA, one can construct a pure state |ψ〉AB using the eigensystem
of ρA and Equation (2.9) such that ρA = TrB(|ψ〉〈ψ|AB). This brings us to the following
theorem of purification.

Theorem 2.1.3 (Purification)
Let ρA ∈ D(HA) be a density operator. There always exists a pure state |ψ〉AB ∈ HAB such
that

ρA = TrB(|ψ〉〈ψ|AB), (2.10)

in which case, |ψ〉AB is said to purify (or is the purification of) the state ρA.

We move on to describe the mathematical formalism of measurements on quantum
states, which is given by another postulate of quantum mechanics as stated in (p. 102,
Postulate 3) Ref. [9]. It says that any quantum measurement can be represented by a set
of measurement operators {Mk} ⊂ L(H) which are labelled by the index k corresponding
to the measurement outcomes. For the system in a state ρ ∈ D(H), the probability of
obtaining measurement outcome k is

p(k) = Tr(M †
kMkρ), (2.11)
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and the post-measurement state of the system is the normalised state

MkρM
†
k

Tr(M †
kMkρ)

∈ D(H). (2.12)

The postulate ends with the completeness relation which demands the measurement oper-
ators to satisfy ∑

k

M †
kMk = 1H, (2.13)

ensuring that the probabilities in (2.11) sum to one. We also know that the operator M †
kMk

is a positive operator since 〈ψ|M †
kMk|ψ〉 ≥ 0 for all vectors |ψ〉 ∈ H. We can define a set

of positive operators {Pk := M †
kMk} which have a richer mathematical structure than the

general measurement operators {Mk}. For the operators {Pk} to satisfy the completeness
relation (2.13), they must be bounded operators. We call the set {Pk} a Positive Operator-
Valued Measure (POVM) as defined below.

Definition 2.1.10. (POVM)
Let {Pk} ⊂ B(H) ∩ Pos(H) be a set of positive, bounded linear operators on a Hilbert
space H. The set {Pk} is a POVM if it satisfies∑

k

Pk = 1H and p(k) = Tr(Pkρ) (2.14)

for all measurement outcomes k and for any pairs of probabilities associated with the state
ρ ∈ D(H) being measured, ({p(k)}, ρ).

Note that when the Hilbert space is infinite-dimensional, POVMs may not be compact
operators (see Definition 2.1.7) meaning that they may not have a spectral decomposition.
We now want to verify that the trace of the product between any POVM and density op-
erator is well-defined even in the infinite-dimensional case. We need the following theorem
which will also be used in Section 3.4.1.

Theorem 2.1.4 (Hölder’s inequality for inner product between C1(H) and B(H))
Let X ∈ C1(H) be any trace class operator and A ∈ B(H) be any bounded operator on a
Hilbert space H. It holds that

|Tr(AX)| ≤ ||A||op||X||1. (2.15)
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Proof. Let X ∈ C1(H). Since trace class operators are compact, they have an SVD, so we
can write

X =
∑
i

si|ψi〉〈φi| (2.16)

for si ≥ 0 for all i, {|ψi〉} and {|φi〉} are orthonormal bases of H. The trace norm of X is

||X||1 =
∑
i

si. (2.17)

Then for any bounded operators A ∈ B(H),

Tr(AX) =
∑
i

siTr(A|ψi〉〈φi|) =
∑
i

si〈φi|A|ψi〉, (2.18)

⇒ |Tr(AX)| ≤
∑
i

si|〈φi|A|ψi〉| ≤
∑
i

si||A||op = ||A||op||X||1. (2.19)

�

It follows that the trace of the product between any POVM element P ∈ B(H)∩Pos(H)
and any density operator ρ ∈ D(H) is upper bounded by

Tr(Pρ) = |Tr(Pρ)| ≤ ||P ||op||ρ||1 ≤ ||1H||op||ρ||1 = 1. (2.20)

Therefore, the trace is always finite and well-defined even when H is infinite-dimensional.

So far, we have gone through the mathematical descriptions of quantum states and
measurements, but we still haven’t discussed one of the most important properties of
quantum mechanics – entanglement. A Bell state |Ψ+〉 = 1√

2
(|00〉 + |11〉) is the simplest

example of an entangled state. Measurements on the first and second qubits will yield
perfectly correlated results (i.e. the joint measurement probabilities satisfy p(0, 1) = 0 =
p(1, 0)). This kind of correlations is much stronger than that of spatially separated classical
systems, thereby being a prominent property that distinguishes quantum systems from
classical ones. We now give the formal definition of entangled states.

Definition 2.1.11. (Separable and entangled states)
A bipartite state ρAB ∈ D(HAB) is separable if there exist a probability distribution {pi}
and two sets of density operators {σiA} ⊂ D(HA) and {τ jB} ⊂ D(HB) such that

ρAB =
∑
i

piσ
i
A ⊗ τ iB . (2.21)

Any bipartite state that cannot be written in the form (2.21) (i.e. not separable) is called
entangled.
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2.1.2 Quantum channels

In general, the state of a quantum system may change over time. From quantum mechanics,
we know that the evolution of quantum states is governed by a Hamiltonian. A more precise
statement of how quantum states evolve is given by the following postulate of quantum
mechanics, which we quote verbatim from Ref. [9] (p. 102).

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state ρ of the system at time t1 is related to the state
ρ′ of the system at time t2 by a unitary operator U which depends only on the times
t1 and t2,

ρ′ = UρU †. (2.22)

This tells us that a quantum system that does not interact with its environment or any
other systems only evolves unitarily.

However, all quantum systems that we encounter in experiments are unavoidably open
in the sense that there are always some interactions between the quantum system and the
environment. Therefore, we need an alternative mathematical description of how general
quantum systems evolve. A quantum channel is a map between density operators, which
represents a physical process of sending a quantum state ρ to another quantum state ρ′. It
is defined axiomatically such that it can describe any physical evolution of general quantum
systems. We now define the two properties that any quantum channel needs to satisfy.

Definition 2.1.12. (Completely Positive [10])
Let V ⊆ B(H) and W ⊆ B(K) be subspaces and let Φ : V → W be a linear map. Define
1Ck×k to be the identity map for all operators in Ck×k for all k ∈ N. The map Φ is called
k-positive if the map

Φ(k) := 1Ck×k ⊗ Φ (2.23)

is positive, that is, if Φ(k)(P ) is positive for all positive operators P ∈ Pos(Ck×k⊗V ). The
map Φ is completely positive (CP) if it is k-positive for all k ∈ N.

Definition 2.1.13. (Trace-non-increasing and trace-preserving)
Let Φ : L(H)→ L(K) be a linear map. It is trace-non-increasing (TNI) if for all X ∈ L(H),

Tr(Φ(X)) ≤ Tr(X). (2.24)

If equality holds in (2.24), then Φ is trace-preserving (TP).
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We want all quantum channels to satisfy these two conditions because 1) the output of
any quantum channel needs to be a valid density operator, and 2) any quantum channel
acting only on a subsystem of a multipartite system should still yield a valid multipartite
density operator. These lead to the following definition of a quantum channel.

Definition 2.1.14. (Quantum channels)
A quantum channel is a linear completely positive trace-preserving (CPTP) map.

There is another equivalent mathematical representation of a quantum channel given by the
Stinespring’s dilation theorem as stated after we give the definition of strong convergence.

Definition 2.1.15. (Strong convergence)
Let X ∈ B(H,K) be the limit of a sequence of bounded operators {Xn : n ∈ N} ⊂ B(H,K)
such that limn→∞Xn = X. The sequence is strongly convergent, if limn→∞ ||Xh−Xnh||K =
0 for every h ∈ H (denote as Xn

s−→ X).

Theorem 2.1.5 (Stinespring’s dilation theorem of quantum channel [10, 15])
Let Φ : B(H)→ B(K) be a quantum channel. Then there exists a Hilbert space E with an
orthonormal basis {|ea〉 : a ∈ A} for A being a non-empty index set with any cardinality
and a bounded operator V ∈ B(H⊗ E ,K) such that

Φ(X) = V (X ⊗ 1E)V
†, (2.25)

V =
∑
a∈A

Va ⊗ 〈ea|, (2.26)

s−
∑
a∈A

V †a Va = 1K, (2.27)

where
∑

a∈A is an unordered sum. The last line means that the sum converges strongly to
the identity.

One important class of quantum channels is entanglement breaking channels which as
their name suggest, turn any entangled state into separable states when they act on a
subsystem. We now state the definition.

Definition 2.1.16. (Entanglement Breaking Channels [16])
Let H, K1 and K2 be three Hilbert spaces and let Φ : B(H) → B(K2) be a quantum
channel. We call Φ entanglement breaking if (1K1 ⊗ Φ)(ρ) is separable for all density
operators ρ ∈ D(K1 ⊗H).
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2.1.3 Quantum entropy

To quantify the information stored in a quantum state, an analogous version of the Shannon
entropy for classical information is the von Neumann entropy defined below.

Definition 2.1.17. (von Neumann entropy)
The von Neumann entropy of the state ρ ∈ D(H) is defined as

S(ρ) = −Tr(ρ log2 ρ). (2.28)

To unify the notation for von Neumann (quantum) and Shannon (classical) entropies, we
make the following identification

H(A1, A2, ..., An)ρ = S(ρA1,A2,...,An) (2.29)

so that we can treat it as the entropy of the quantum systems or registers. The subscript
ρ will be omitted if it is clear by context which state the entropy refers to. We now state
the definitions of conditional entropy and mutual information for von Neumann entropy,
which are the same as the ones for Shannon entropy.

Definition 2.1.18. (Conditional von Neumann entropy & quantum mutual information)
The conditional von Neumann entropy of system X given system Y is

H(X|Y ) = H(X, Y )−H(Y ) (2.30)

and the quantum mutual information between systems X and Y is

I(X : Y ) = H(X) +H(Y )−H(X, Y ). (2.31)

Entropic inequalities are powerful tools in quantum information theory and are often
used in QKD security proofs. The following theorem for strong subadditivity (SSA) of
von Neumann entropy will be useful to us in Section 3.3 when we prove the unconditional
security of squashing models.

Theorem 2.1.6 (Strong subadditivity of von Neumann entropy [17, 11])
Let X, Y and Z be registers. For every (quantum) state of the register (X, Y, Z),

H(X, Y, Z) +H(Z) ≤ H(X,Z) +H(Y, Z). (2.32)
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This theorem implies that
H(X|Y, Z) ≤ H(X|Z). (2.33)

Intuitively, it means that the uncertainty of a system or register X is always lower if
you acquire additional knowledge from an extra system Y . Another important quantity in
quantum information is the quantum relative entropy which measures how much a quantum
state differs from another state. We give a more general definition below.

Definition 2.1.19. (Quantum relative entropy [11])
The quantum relative entropy of a positive operator P ∈ Pos(H) with respect to another
positive operator Q ∈ Pos(H) is defined as

D(P ||Q) =

{
Tr(P log2 P )− Tr(P log2Q), if ker(Q) ⊆ ker(P )

∞, otherwise.
(2.34)

An important property of quantum relative entropy is that it is always non-negative for
all density operators, which is described by Klein’s inequality.

Theorem 2.1.7 (Klein’s inequality [11])
Let P,Q ∈ Pos(H) be positive operators, and assume that Tr(P ) ≥ Tr(Q). It holds that

D(P ||Q) ≥ 0. (2.35)

In particular, it holds that D(ρ||σ) ≥ 0 for every choice of density operators ρ, σ ∈ D(H).

We now have the mathematical tools to discuss the security analysis framework for QKD.

2.2 Quantum key distribution

In this section, we will revisit the essential ideas of QKD by first describing a generic
QKD protocol and two important classes of attacks an eavesdropper can perform. We will
then discuss briefly the security definition of QKD and the asymptotic key rate formula.
Finally, we will end this section by going through the steps required to turn the key rate
calculation task into a semidefinite programming (SDP) problem. Note that some of the
content in this section follows a similar discussion in Section 2.2 and Chapter 3 of Lin’s
Master’s thesis [18].
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2.2.1 Generic QKD protocol

We now outline the procedure of a generic QKD protocol which comprises of a quantum
phase and a classical phase. The quantum phase uses an insecure quantum channel which
is assumed to be controlled by the eavesdropper Eve, whereas the classical phase uses a
classical authenticated channel through which all communications are public but cannot
be altered.

Quantum phase

1. (State preparation) The sender Alice prepares N quantum states with each chosen
randomly from a countable set {ρi} of non-orthogonal states according to the proba-
bility distribution {pi}. We call A′m the m-th signal register or system. Alice records
her random choices in order and sends the total state

⊗N
m=1 ρim through a quantum

channel ΦN to Bob.

2. (Measurement) The receiver Bob measures the total output state ΦN(
⊗N

m=1 ρim)

from the channel with a joint POVM {
⊗N

r=1 F
B
kr
} where the index kr labels the

Bob’s measurement outcome corresponding to the r-th output state. Bob records all
his measurement outcome in order.

After steps 1 and 2, Alice and Bob proceed to the classical phase which involves purely
classical communication procedures.

Classical phase

3. (Parameter estimation) Alice and Bob collaboratively select a small random subset
of their data (i.e. Alice’s choices of state x and Bob’s measurement outcomes y) to
estimate how much the eavesdropper Eve has learnt about the signal states. They
exchange their data corresponding to the selected subset through the classical channel
in order to establish a joint frequency distribution f(x, y), which converges to a joint
probability distribution in the limit of N → ∞. If f(x, y) fulfills the predefined set
of acceptable statistics, then the protocol proceeds, otherwise it aborts.

4. (Announcement) If Alice and Bob decide to proceed with the protocol, they may
make announcements about the remaining data which are not used in the testing
step via the classical channel depending on the protocol. Since the announcements
are public, Eve is assumed to know all the content of the announcements.
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5. (Sifting & post-selection) According to the announcements, Alice and Bob may choose
to discard some of their data to increase correlation between the data kept by each
of them.

6. (Key map) In a direct (reverse) reconciliation scheme, Alice (Bob) performs a key
map which maps her (his) sifted and post-selected data into a key string over an
alphabet, which we call the raw key. Typically, the alphabet is chosen to be {0, 1}
so that the key string is a bit string.

7. (Error correction/Information reconciliation) The person who does not perform the
key map may need additional information to recover a string perfectly correlated to
the key held by the other party due to imperfect signal states preparation and trans-
mission, Eve’s eavesdropping action, or imperfect measurements. Therefore, whoever
does the key map may need to publicly announce error correction information de-
pending on the error correction scheme, which will leak partial information of the
raw key to Eve.

8. (Privacy amplification) To remove Eve’s correlation to the raw key, Alice and Bob
need to apply privacy amplification to the key, which essentially reduces the key
length based on the maximum amount of information Eve could know about the
key. Alice or Bob first picks a hash function from a family of two-universal hash
functions (see Definition 5.4.1 in Renner’s PhD thesis [19]) which maps the raw key
to a shortened string which we call the final key. He or she will then announce the
choice of hash function publicly so that the other party can perform the same hashing
on his or her raw key.

This is called the prepare-and-measure scheme which is commonly practised in experiments
since this is straightforward to implement. However, analysing the security of a protocol of
such scheme directly is not intuitive and could be conceptually challenging for complicated
protocols.

There is an alternative QKD scheme - the entanglement-based scheme which involves
different procedures in the quantum phase. Instead of having Alice to prepare and send
out N signal states, Eve prepares a 2N -partite entangled state ρA1...ANB1...BN which can
be entangled with her quantum system. Eve then sends systems A1, ..., AN to Alice and
systems B1, ..., BN to Bob. Now Alice and Bob both have to measure each of the N systems
they receive from Eve with the POVMs {FA

i } and {FB
j } respectively. The classical phase

of an entanglement-based scheme is basically the same as that of a prepare-and-measure
scheme. Note that each step for both schemes may subject to some degree of modifications
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depending on the exact protocol, but these variations will not affect the discussion in the
remaining of this chapter.

For entanglement-based protocols, we can treat Eve’s eavesdropping action as a purifi-
cation of the shared quantum states between Alice and Bob, which permits an information-
theoretic quantification of the leaked information using quantum information theory. Thus,
these protocols have the advantage that their security analyses are usually more intuitive
than that for the prepare-and-measure ones. Nevertheless, to prepare a large number of
copies of highly entangled states in a short period of time could be experimentally chal-
lenging, so the entanglement-based scheme may not be as implementation-friendly as a
prepare-and-measure scheme.

To enjoy the best of both worlds, one can use the source replacement scheme [20, 21,
22, 23] to convert a prepare-and-measure protocol into an entanglement-based one, which
we will describe in the following. Let Am be the m-th private system of Alice and A′m be
the system for the m-th output signal state of Alice. Assume in a prepare-and-measure
protocol that Alice randomly picks N pure states∗ from the ensemble {(pi, |φi〉A′)} as
described in step 1 of the quantum phase. Then for the m-th signal state Alice prepares,
we can imagine a fictitious source in Alice’s device to prepare an entangled pure state

|ψ〉AmA′m =
∑
i

√
pi|i〉Am ⊗ |φi〉A′m (2.36)

where the orthonormal states {|i〉Am} represent Alice’s m-th random signal choice. When
Alice measures the entangled state |ψ〉AmA′m with the POVM {|i〉〈i|Am}, the reduced density
operator of system A′m collapses to the signal state |φi〉〈φi|A′m with probability pi. This
is equivalent to her randomly choosing a signal state from {|φi〉〈φi|A′m} according to the
probability distribution {pi}. Therefore, we have transformed the state preparation step in
a prepare-and-measure protocol into Alice measuring the bipartite entangled state |ψ〉AmA′m
with respect to her private system Am.

In the source replacement scheme, after Alice measures the state |ψ〉AmA′m with the
POVM {|i〉〈i|Am} for each m ∈ {1, 2, ..., N}, all N signal systems will go through the
quantum channel ΦN : D(HA′1...A

′
N

)→ D(HB1...BN ) and Bob will measure the output state.
However, Bob’s joint POVM which acts only on his quantum systems B1, ..., BN commutes
with Alice’s joint POVM on systems A1, ..., AN , so Alice can delay her measurement until
Bob receives the total signal state. If Alice’s measurements are delayed, then Alice and

∗We will discuss the source replacement scheme for the scenario where Alice’s signal states are mixed
states in Section 4.3.2.
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Bob will share the state

ρA1...ANB1...BN = (1A1...AN ⊗ ΦN)

(
N⊗
m=1

|ψ〉〈ψ|AmA′m

)
, (2.37)

which is entangled between Alice’s and Bob’s systems if ΦN is not an entanglement breaking
channel. Since we assume the worst case where Eve has full control of the quantum channel,
Eve has a purification of the state ρA1...ANB1...BN . Now we recover the last step of the
quantum phase of an entanglement-based protocol where Alice and Bob both measure
their part of the shared entangled state ρA1...ANB1...BN distributed by Eve. We remark that

Figure 2.1: Illustration of the quantum phase of three QKD schemes: (a) In the prepare-
and-measure scheme, Alice sends

⊗N
m=1 ρim through a quantum channel ΦN controlled by

Eve to Bob who measures with a POVM MB. (b) In the entanglement-based scheme, Eve
sends two parts of an entangled state ρA1...ANB1...BN to Alice and Bob who measure their
parts with POVMs MA and MB respectively. (c) In the source replacement scheme, Alice
prepares an entangled state ρA1...ANA

′
1...A

′
N

=
⊗N

m=1 |ψ〉〈ψ|AmA′m defined in (2.36), keeps
systems A1, ..., AN and sends systems A′1, ..., A

′
N to Bob through the quantum channel ΦN .

Alice and Bob then both measure their parts with POVMs MA and MB. We see that
picture (c) allows one to convert scheme (a) into scheme (b) but with an extra condition
that Alice’s state ρA1...AN is fixed by Alice (i.e. not chosen by Eve).

since the map ΦN only acts on systems A′m for m = 1, ..., N as shown in Equation (2.37),
Eve cannot influence Alice’s state ρA1...AN , so Alice’s reduce density operator before and
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after she sends out the signals should be the same. This extra condition on Alice’s state
ρA1...AN makes a source replacement scheme slightly different from an entanglement-based
scheme where Eve is free to choose the full state ρA1...ANB1...BN without any restriction on
ρA1...AN . The three schemes are summarised in Figure 2.1.

Hence, we have shown how the quantum phase of a prepare-and-measure protocol can
be converted completely into the quantum phase of an entanglement-based protocol. This
correspondence between the two types of protocols allows one to analyse the security of
any prepare-and-measure protocol as if it is an entanglement-based one, thereby unifying
the security analyses of two types of protocols.

2.2.2 Attack models

In the worst-case scenario, Eve fully controls the quantum channel ΦN in (2.37) and has a
purification of the state ρA1...ANB1...BN shared between Alice and Bob. Naturally, the action
of the quantum channel ΦN depends entirely on how Eve interacts with the signal systems
A′1, ..., A

′
N and what she sends to Bob eventually. We call these collectively Eve’s attack

or eavesdropping strategy. We list here two types of attacks that Eve can perform.

Coherent attacks

In a coherent attack, Eve interacts coherently with all N signal states with her ancillary
system E, which she may measure coherently after Alice and Bob make public announce-
ments in order to gain information of the shared key. As a consequence, Bob may receive
a state with systems B1, ..., BN dependent on one another. This is the most general form
of attacks that Eve can perform.

Collective attacks

In a collective attack, Eve interacts with each of N signals in the same way such that the
full quantum channel ΦN = Φ⊗N is the N -fold tensor product of the quantum channel Φ
for an individual signal. This implies that the total state shared between Alice and Bob
ρA1...ANB1...BN = ρ⊗NAB is simply N copies of the state ρAB corresponding to Alice sending
one signal. We call this the independent and identically distributed (i.i.d.) scenario where
the shared state for each round of signal sending is independent of other rounds. In this
case, Eve would keep an ancillary system E for each round in order to purify the state
ρAB. After Alice and Bob make all the announcements, Eve may measure all her ancillary
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systems from N copies of purification of the state ρAB collectively to learn about the shared
key. This class of attacks is more restrictive than coherent attacks, so it may not contain
the worst attack that Eve can perform for a given protocol. However, in the asymptotic
limit where N → ∞, Eve’s optimal attack converges to a collective attack, which we will
discuss in Section 2.2.4.

2.2.3 Security definition of QKD

We now move on to give the formal security definition of any QKD protocol, which was
first stated in Refs. [24, 25, 26]. The idea is to compare the QKD protocol of our interest
with an ideal protocol that is perfectly secure. Assume that a QKD protocol either aborts
or generates classical keys sA, sB ∈ S for Alice and Bob, where we denote key space (i.e.
the set of all possible output keys) of the protocol to be S.

Definition 2.2.1. (ε-security [19])
Let P be a QKD protocol, which is associated with a CPTNI map EPABE→SASBE′ , and let
ρABE ∈ D(HABE) be a tripartite state shared by Alice, Bob and Eve. The protocol P is
ε-secure on the input state ρABE if the output ρSASBE′ := EPABE→SASBE′(ρABE) satisfies

1

2
||ρSASBE′ − ρUU ⊗ ρE′ ||1 ≤ ε , (2.38)

where ρUU :=
∑

s∈S
1
|S| |s〉〈s| ⊗ |s〉〈s| is the state that represents Alice and Bob sharing an

identical key and for each key in S to be equally likely. The states ρSASBE′ and ρE′ can be
unnormalised. If the protocol P is ε-secure on all input states ρABE ∈ D(HABE), then P
is ε-fully secure.

The ε-security definition sets an upper bound ε for how much the actual output

ρSASBE′ =
∑

sA,sB∈S

p(sA, sB)|sA〉〈sA| ⊗ |sB〉〈sB| ⊗ ρ(sA,sB)
E′ (2.39)

of a QKD protocol can deviate from an ideal protocol’s output ρUU ⊗ ρE′ for which Eve’s
system decouples completely from Alice’s and Bob’s perfectly correlated and completely
random keys. Note that the protocol’s output ρSASBE′ and Eve’s reduced density operator
ρE′ can have trace less than one since the completely positive trace-non-increasing (CPTNI)
map EPABE→SASBE′ is assumed to output a zero operator when the protocol P aborts. We
can interpret the definition in (2.38) as the joint probability of an ε-secure protocol not
aborted and its output being imperfect is at most ε. Therefore, a protocol that always
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aborts is perfectly secure (ε = 0) under this security definition despite being completely
useless in key generation.

In a practical scenario, one should set the security parameter ε prior to carrying out the
protocol since it directly affects the acceptance probability of the protocol in the parameter
estimation step and also the key rate formula. However, in the asymptotic limit of sending
an infinite number of signals, the ε-dependence in the key rate will vanish and the notion
of ε-security is no longer needed in the asymptotic key regime. This is because given that
Alice and Bob know the joint measurement probabilities, the protocol will either abort if
it fails (i.e. Alice’s and Bob’s keys disagree and/or the key is not secret) or proceed if it
succeeds as the key length tends to infinity.

2.2.4 Asymptotic key rate

A formal security proof of any QKD protocol provides a concrete quantification of a proto-
col’s key generation efficiency for a predefined security parameter ε. The secure key rate of
a QKD protocol is the number of secure key bits generated per signal sent (or clock cycle),
which is what a security proof aims to obtain. In this section, we will see how we can
prove unconditional security of any QKD protocol even if we restrict Eve’s attack only to
collective attacks, and subsequently show the asymptotic key rate formula for an infinite
number of signals. Note that we will not discuss the key rate formula for the finite-size
scenario where only a finite number of signals are sent from Alice to Bob.

Restricting Eve’s attack: coherent to collective

In reality, we need to analyse the security of a QKD protocol under Eve’s arbitrary attacks
including coherent attacks. However, it is hard to directly prove security under coherent
attacks since there is not enough symmetry in the total state shared by Alice and Bob.
Fortunately, the quantum de Finetti representation theorem [19, 27, 28] shows us that
asymptotically all coherent attacks can be reduced to collective attacks. Therefore, we can
prove unconditional security of a protocol in the asymptotic regime by focusing only on
collective attacks where the joint state shared by Alice and Bob is of the form ρ⊗NAB .

We briefly introduce the idea of the quantum de Finetti representation theorem here.
Let ρn+k ∈ D(H⊗(n+k)) be a permutation-invariant operator on n + k subsystems, i.e.
permuting the order of all the subsystems in any way leaves the operator unchanged. As
shown in Ref. [19], the reduced state ρn ∈ D(H⊗n) can be approximated by a probabilistic
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mixture of states which are superpositions of states satisfying the form

σ⊗(n−r) ⊗ τ r (2.40)

where σ ∈ D(H) and τ r ∈ D(H⊗r) are arbitrary states. The approximation of the reduced
state ρn converges exponentially fast in integers k and r. If n is very large and k, r � n, then
the reduced density operator for n− r subsystems is approximately a convex combination
of i.i.d. states, i.e.

∑
i piσ

⊗(n−r)
i . Note that the above description of the quantum de

Finetti representation theorem holds for finite-dimensional Hilbert spaces, but the general
idea still applies to the case when dim(H) = ∞ which was proven by Renner and Cirac
[28].

To apply the quantum de Finetti theorem here, we set N = n+ k to be the number of
bipartite systems AB shared between Alice and Bob, then we permute all pairs of bipartite
systems to obtain the symmetrised state

ρNAB =
1

|Π|
∑
π∈Π

ρAπ(1)Bπ(1)...Aπ(N)Bπ(N)
, (2.41)

where Π is the set of all possible permutations on N elements. Experimentally, this means
that Alice and Bob have to simultaneously permute their measurement data for different
rounds. However, the permutation of Alice’s and Bob’s systems does not have to be
performed in reality since Scarani and Renner has proven in Lemma 1 [29] that the original
version of a QKD protocol is at least as secure as its symmetrised version. Therefore, we can
directly assume a protocol is symmetrised in the security proof. By choosing k, r � N , the
state corresponding to N−k−r pairs of Alice’s and Bob’s shared system is approximately a
convex combination of i.i.d. states with each corresponding to a collective attack scenario.

Alternatively, the post-selection technique [30] can be used if the QKD protocol is
permutation-invariant in the sense that for any permutation Π on the input states of the
protocol E , there exists a CPTP map GΠ such that when it is applied to the outputs of
the protocol with permuted inputs, it somehow reverses the effect of the permutation and
recovers the original outputs, i.e. GΠ ◦ E ◦Π = E . The post-selection theorem says that if
such a protocol is ε-secure when restricted to collective attacks, then it is ε-secure under
coherent attacks such that

ε ≤ (N + 1)d
2−1 ε , (2.42)

which grows only polynomially in N where d is the dimension of the Hilbert space HAB for
a single pair of Alice’s and Bob’s systems. It has been shown in Section 3.4.3 of Beaudry’s
PhD thesis [31] that a generic protocol E can be broken down into a sequence of subpro-
tocols which represent steps (2) to (8) of the generic protocol described in Section 2.2.1:
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measurement (F ), sifting (Sift), parameter estimation (PE), information reconciliation
(IR), and privacy amplification (PA), i.e.

E = PA ◦ IR ◦ PE ◦ Sift ◦ F .

Typically, the first three subprotocols F , Sift, and PE are permutation-invariant, but IR
and PA are not. Beaudry [31] shows that the subprotocols IR and PA can be converted
into permutation-invariant versions at some cost to the security parameter for coherent
attacks, ε in (2.42) (see p. 101 in [31]). Note that in the finite-key scenario, the post-
selection technique allows one to prove tighter lower bounds of the key rates than that
allowed by the quantum de Finetti theorem [30].

When N tends to infinity, it follows from both the quantum de Finetti theorem and the
post-selection technique that Eve’s optimal attack converges to a collective attack. Thus,
the asymptotic key rate formula introduced below involves only the entropy related to a
single round of the protocol due to the i.i.d. structure of Alice’s and Bob’s shared state in
a collective attack.

Asymptotic key rate formula

In the asymptotic limit where N →∞, all the N -dependent terms that relate to the finite-
size effect in the key rate formula vanish, thereby recovering the Devetak-Winter formula
[32] for asymptotic secure key rate. Let Z be the key register held by Alice (Bob) in direct
(reverse) reconciliation, E be Eve’s quantum and classical register, and B be Bob’s (Alice’s)
classical register for storing his (her) measurement outcomes. The Devetak-Winter formula
can be expressed as

R∞ = ppass[min
ρ∈S

H(Z|E)−H(Z|B)], (2.43)

where ppass is the probability of passing the sifting and post-selection steps, S is the set
of density operators that satisfy Alice’s and Bob’s joint statistics. Their statistics in the
asymptotic case is a joint probability distribution over their measurement outcomes (in
the source replacement scheme).

The first term is called the privacy amplification term which quantifies the minimum
uncertainty of the raw key with respect to Eve in terms of bits given that she obtains
her ancillary system E through eavesdropping. To be more specific, this term reflects the
amount of randomness in the final key in Eve’s perspective, which the privacy amplification
step (step (8) of the generic protocol described in Section 2.2.1) can distill from the raw
key. The second term is the error correction term which counts the amount of information
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about the raw key leaked to Eve during the public announcements for the error correction
procedure. In practice, no error correction code has an error correction rate that reaches
the Shannon limit, so the error correction term can be replaced by δEC = fEC H(Z|B)
with a heuristic classical error-correction efficiency factor fEC ≥ 1. Note that the security
parameter ε does not appear in (2.43) because the ε-dependent term in the key rate formula
vanishes in the asymptotic limit.

2.2.5 Numerical key rate and convex optimisation

The key rate formula (2.43) requires one to minimise the privacy amplification term over
all feasible tripartite states shared by Alice, Bob and Eve, which makes it numerically
difficult to solve since Eve’s system can be very large. An alternative form of the key
rate formula [33, 2] replaces the privacy amplification term with a minimisation of the
relative entropy over all feasible bipartite states shared between Alice and Bob. This form
is more suitable for numerical key rate calculation since Eve’s system does not enter the
optimisation problem. This alternative form of the key rate formula is given by

R∞ = min
ρAB∈S

D(G(ρAB)||Z(G(ρAB)))− ppass δEC , (2.44)

where G and Z are two maps that will be discussed below. This formula again has a
privacy amplification term as the first term and an error correction term δEC in the second
term as we have discussed earlier. We direct the reader to Theorem 1 by Coles [34] and
Section 4.0.3 in Ref. [2] for full details on how the privacy amplification term in the form
of minimising a conditional entropy in (2.43) can be converted into the quantum relative
entropy minimisation in (2.44).

The map G is a CPTNI map capturing the effects of measurements, sifting, post-
selection and announcements on a single state shared between Alice and Bob. It is not
trace-preserving because the map outputs the zero operator if the measurement outcomes
or the announcements do not pass sifting and post-selection, which gives rise to an un-
normalised state. We now sketch the basic idea behind the map G. Alice and Bob each
measures their respective systems on the joint state ρAB and each of them keeps two clas-
sical registers for storing their measurement outcome and announcement. The map G then
projects onto a subspace in the classical registers corresponding to the measurements and
announcements that pass the post-selection process. Finally, a key register is added to
store the key map result which takes the measurement outcomes and announcements as
arguments.
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We now provide the full details of the map G which has been formulated in Section 4.0.2
of Ref. [2] by Winick et al. Consider the source replacement scheme. Let the announce-
ments from Alice and Bob be a ∈ SA and b ∈ SB for SA and SB to be their announcement
sets, and their measurement outcomes to be labelled by ã ∈ ΩA

a and b̃ ∈ ΩB
b respectively,

where ΩA
a and ΩB

b are the labelling sets for Alice’s and Bob’s allowed measurement out-
comes corresponding to the announcements a and b respectively. For example, in the
standard BB84 with active basis choice, both Alice and Bob announce their measurement
bases x or z, so SA = SB = {x, z}. For each of the basis announcement a, b ∈ {x, z},
Alice’s and Bob’s labelling sets for their measurement outcomes are ΩA

a = {0, 1} and
ΩB
b = {0, 1, ‘no-click’, ’double-click’}.

The construction of map G follows the three steps in a generic QKD protocol: (1)
measurements and announcements, (2) post-selection, and (3) key map. The first step
is Alice and Bob performing measurements and announcements on their shared quantum
state ρAB. This can be captured by a quantum channel A which has a Kraus representation

A(ρAB) =
∑
a∈SA

∑
b∈SB

(KA
a ⊗KB

b )ρAB(KA
a ⊗KB

b )†. (2.45)

The Kraus operators associated with Alice’s measurement and announcement are

KA
a =

∑
ã∈ΩAa

√
FA

(a,ã) ⊗ |a〉Ã ⊗ |ã〉A (2.46)

where {FA
(a,ã) : a ∈ SA, ã ∈ ΩA

a } is Alice’s POVM, and Ã and A are the classical registers
that keep her announcement and measurement data. Similarly, Bob’s Kraus operator is

KB
b =

∑
b̃∈ΩBb

√
FB

(b,b̃)
⊗ |b〉B̃ ⊗ |b̃〉B (2.47)

where {FB
(b,b̃)

: b ∈ SB, b̃ ∈ ΩB
b } is Bob’s POVM, and B̃ and B denote the classical registers

that store his announcement and measurement outcome respectively.

The second step is the joint post-selection on Alice’s and Bob’s data. Let the set of
joint announcements that Alice and Bob agree to keep be K ⊆ SA × SB. For standard
BB84 with active basis choice, the “keep” set K corresponding to sifting is {(x, x), (z, z)}.
If we now project the state A(ρAB) onto the subspace defined by the projector

Π =
∑

(a,b)∈K

|a〉〈a|Ã ⊗ |b〉〈b|B̃ ⊗ 1ABAB , (2.48)
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then the unnormalised state ΠA(ρAB)Π corresponds to the result of the post-selection.

The last step is the key mapping process. In the direct reconciliation scheme, a key
map function g : SA × ΩA

a × SB → SZ takes Alice’s announcement and measurement
outcome together with Bob’s announcement as input and outputs a key in the key set SZ .
For instance, the key map satisfies g(a, ã, b) = ã for any ã ∈ {0, 1} and a, b ∈ {x, z} in the
case of standard BB84 with active basis choice since Alice simply uses her measurement
outcome (signal choice) as the key. Let V be an isometry that adds in a key register R for
keeping the key map output. The isometry takes the form

V =
∑
a∈SA

∑
ã∈ΩAa

∑
b∈SB
|g(a, ã, b)〉R ⊗ |a〉〈a|Ã ⊗ |ã〉〈ã|A ⊗ |b〉〈b|B̃ ⊗ 1ABB . (2.49)

The map G is simply the sequential application of the three steps, which is defined as

G(ρAB) = VΠA(ρAB)ΠV †. (2.50)

The other map Z is a pinching channel that projects the key register onto classical
states. The result is a classical-quantum state which represents Alice’s and Bob’s shared
post-measurement and post-announcement state associated with each key map results.
More precisely, the map Z is defined as

Z(σZC) =
1∑
j=0

(|j〉〈j|Z ⊗ 1C) σZC (|j〉〈j|Z ⊗ 1C) (2.51)

with register C encapsulates all registers except Z.

For protocols that have a simple key map (e.g. the key map depends only on one party’s
measurement outcomes), the map G can be further simplified as pointed out in Appendix
A of Ref. [35] by Lin et al. We will give a specific form of the maps G and Z for the
unbalanced phase-encoded BB84 protocol in Chapter 4.

Semidefinite programming (SDP) problem for the key rate

We gave the motivation why the key rate formula in (2.44) is more suitable for numerical
key rate calculations. We also know that the error correction term only uses the joint
probabilities of the key map outcomes and Bob’s measurement outcomes, which can easily
be obtained from Alice’s and Bob’s joint measurement outcome probabilities. Thus, cal-
culating the error correction term is straightforward even by hand. What follows is how
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one can convert the calculation of the privacy amplification term in (2.44) from a convex
optimisation problem into an SDP problem which guarantees a reliable lower bound on
the key rate with the solution to its corresponding dual problem.

First of all, the objective function D(G(ρAB)||Z(G(ρAB))) is a convex function with
respect to the argument ρAB [33, 2] based on the property of relative entropy. Therefore,
the privacy amplification term is essentially a convex optimisation of the form

min
ρAB

D(G(ρAB)||Z(G(ρAB)))

subject to Tr[Γi ρAB] = γi for i = 1, ..., r,

Tr[Γ̃j ρAB] ≤ γ̃j for j = 1, ..., s,

Tr(ρAB) = 1, ρAB ≥ 0,

(2.52)

with Hermitian operators {Γi} and {Γ̃j} together with the real numbers {γi} and {γ̃j}
set the equality and inequality constraints for the optimisation problem, which are usually
obtained from the observed statistics in a QKD experiment and the characterisation of
the signal source. These constraints define the feasible set of density operators S which
appears in the key rate formula (2.44). Numerical solvers such as CVX in MATLAB can
handle this kind of convex optimisation, but the output solution is often not optimal due
to finite numerical precision, in which case the suboptimal solution only provides an upper
bound for the actual key rate.

To obtain a reliable lower bound for the key rate, we first have to convert the convex
optimisation problem in (2.52) into an SDP problem. An SDP problem concerns with
optimising a linear objective function over a subset of positive (semidefinite) operators.
The standard form of an SDP problem can be expressed as [36, 11]

Primal Problem

min
X
〈A,X〉

subject to 〈Bi, X〉 = bi for i = 1, ..., r,

〈B̃j, X〉 ≤ b̃j for j = 1, ..., s,

X ≥ 0,

Dual Problem

max
~y

r∑
i=1

biyi +
s∑
j=1

b̃jyj+r

subject to
r∑
i=1

yiBi +
s∑
j=1

yj+rB̃j ≤ A,

yj+r ≤ 0 for j = 1, ..., s,

~y ∈ Rr+s,

where 〈A,B〉 = Tr(A†B) is the Hilbert-Schmidt inner product between two operators A and
B. By weak duality of SDP [36], the solution to the primal problem always upper bounds
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the solution to the dual problem. If the primal problem is feasible (i.e. the set of operators
that satisfy all the constraints of the primal problem is non-empty) and there exists a
vector ~y ∈ Rr+s which satisfies strict inequality for all constraints in the dual problem (i.e.

∃ ~y ∈ Rr+s such that
∑r

i=1 yiBi +
∑s

j=1 yj+rB̃j < A and yj+r < 0 for j = 1, ..., s), then
the optimal primal solution equals to the optimal dual solution. This is called the Slater’s
condition [11].

The weak duality of SDP tells us that if we can convert the convex optimisation problem
in (2.52) into a primal SDP problem with its optimal solution guaranteed to lower bound
the key rate, then any solution to the dual problem will be a reliable lower bound for the
key rate. Therefore, the suboptimal dual solution provided by a numerical solver will not
overestimate the key rate. Moreover, if the Slater’s condition is satisfied and the optimal
solution to the primal SDP problem is close to the actual key rate (i.e. the optimal solution
to (2.52)), then so is the dual optimal solution, which ensures tightness of the key rate
lower bound.

The way Winick et al. [2] convert (2.52) into a primal SDP problem is to linearise the
convex objective function f(ρ) := D(G(ρ)||Z(G(ρ))) in (2.52) with its matrix gradient

∇f(ρ) = [G†(log G(ρ))− G†(logZ(G(ρ)))]T (2.53)

to obtain the lower bound for the optimal solution to (2.52)

α := min
ρ∈S

f(ρ) ≥ f(ρ′)− Tr(ρ′∇f(ρ′)T ) + min
σ∈S

Tr(σ∇f(ρ′)T ). (2.54)

for any state ρ′ ∈ S in the feasible set. The closer the state ρ′ to the optimal state ρ∗ ∈ S,
the tighter the lower bound, so it is important to choose a ρ′ close to ρ∗ in the actual key
rate calculation. To get ρ′ sufficiently close to ρ∗, Ref. [2] uses the Frank-Wolfe algorithm
[37] to sequentially minimise the function Tr(∆ρ∇f(ρi)

T ) subject to ∆ρ+ ρi ∈ S for each
step i with a numerical convex optimisation solver. We call this “Step 1”.

The last term in (2.54) can be viewed as a primal SDP problem which can then be
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turned into its dual problem†

max
~y

r∑
i=1

γiyi +
s∑
j=1

γ̃jyj+r

subject to
r∑
i=1

yiΓi +
s∑
j=1

yj+rΓ̃j ≤ ∇f(ρ′)T ,

yj+r ≤ 0 for j = 1, ..., s,

~y ∈ Rr+s.

(2.55)

Define S∗(ρ′) to be the dual feasible set which contains all vectors ~y ∈ Rr+s that satisfy all
the above constraints, then the lower bound for the privacy amplification term is

f(ρ′)− Tr(ρ′∇f(ρ′)T ) + max
~y∈S∗(ρ′)

(
r∑
i=1

γiyi +
s∑
j=1

γ̃jyj+r

)
. (2.56)

We refer the reader to Appendix A.2 in Ref. [2] for the derivations. We call the linearisation
process together with solving the dual problem “Step 2”. The whole numerical framework
for lower bounding the privacy amplification term is summarised in Figure 2.2.

If the operator G(ρ) is singular, the matrix gradient ∇f(ρ) may be undefined, in which
case Ref. [2] proposed a perturbed version of the objective function by replacing the map
G with a perturbed map

Gε(ρ) := (1− ε)G(ρ) +
ε

d′
1d′ (2.57)

with d′ to be the dimension of G(ρ) such that fε(ρ) := D(Gε(ρ)||Z(Gε(ρ))), thereby ensuring
the gradient of the perturbed objective function ∇fε(ρ) to be defined always. It follows
from the proof in Ref. [2] that the optimal solution to the perturbed objective function
satisfies

α ≥ α(ε)− ζε where α(ε) := min
ρ∈S

fε(ρ), (2.58)

and the lower bound for the privacy amplification term under the perturbation is

fε(ρ
′)− Tr(ρ′∇fε(ρ′)T ) + max

~y∈S∗ε (ρ′)

(
r∑
i=1

γiyi +
s∑
j=1

γ̃jyj+r

)
− ζε , (2.59)

†In the original paper [2], the authors did not consider inequality constraints, so the second line in the
constraints of the dual problem (2.55) was not included in Ref. [2].
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Figure 2.2: Illustration of the numerical approach in obtaining the lower bound for the
privacy amplification term. Starting with the initial guess ρ0 ∈ S, step 1 takes ρ0 to a
point ρ ∈ S near the optimal point ρ∗ ∈ S. Step 2 begins with the linearisation of the
convex function f at ρ and ends with finding the suboptimal solution to the dual problem.
The linearisation undercuts the convex function, thereby guaranteeing any dual solution to
lower bound the optimal value f(ρ∗). This figure is reproduced from Figure 1 of Ref. [2].

where the dual feasible set is

S∗ε(ρ
′) := {~y ∈ Rr+s :

r∑
i=1

yiΓi +
s∑
j=1

yj+rΓ̃j ≤ ∇fε(ρ′)T , yj+r ≤ 0 for j = 1, ..., s}

and the correction term is ζε := 2ε(d′−1) log d′

ε(d′−1)
provided that the perturbation param-

eter ε satisfies 0 < ε ≤ 1
e(d′−1)

for e to be the base of the natural logarithm. The form of the

correction term ζε comes from the use of Fannes’ inequality [38, 39] in upper bounding the
difference between the original and the perturbed objective functions when evaluated on
the same state, i.e. |f(ρ) − fε(ρ)| ≤ ζε (Lemma 8 [2]). We emphasise that the expression
in (2.59) is still a valid lower bound for the optimal solution α = min

ρ∈S
f(ρ) (Theorem 2 [2]),

so this bound is a generalised version of the unperturbed bound (2.56) which corresponds
to the case when ε = 0 and G(ρ) is full-rank.

Due to finite numerical precision in any actual computation (e.g. the constraint matri-
ces could be created with slight deviations, the density operator and the matrix gradient
are not stored with infinite precision, numerical optimisation solvers do not return solu-
tions that satisfy all constraints exactly), one must address the reliability issue with the
numerically obtained lower bound for the privacy amplification term. To handle this prob-
lem, the authors of [2] reformulate the SDP problem such that the constraints do not have
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to be satisfied precisely. The basic idea is to allow the constraints for the optimisation
problem outlined above to relax slightly, which is equivalent to enlarging the feasible set,
so naturally, the lower bound obtained in this case would be more conservative.

We now summarise the way of handling finite numerical precision discussed in Section
3.3 – 3.4 of Ref. [2]. Let the matrices {Γ′i} and {Γ̃′j} together with the real numbers {γ′i}
and {γ̃′j} be the finite-precision form stored in a computer, which correspond to the actual

equality and inequality constraints: matrices {Γi} and {Γ̃j} together with the real numbers
{γi} and {γ̃j}. Let ε′ > 0 be a relaxation parameter that is chosen to be sufficiently but
not overly large such that the set‡

S̃ε′ = {ρ ∈ D(HAB) : |Tr(Γ′iρ)− γ′i| ≤ ε′ ∀ i,Tr(Γ̃′jρ) ≤ γ̃′j + ε′ ∀ j} (2.60)

is guaranteed to contain the original feasible set S, i.e. S ⊆ S̃ε′ . There are two sources
of imprecision that allow one to determine the relaxation parameter ε′. The first one is
the imprecision in representing the constraints in a computer, which is described by the
parameter [2]

εrep := max
i,j
{||Γ′i − Γi||HS , ||Γ̃′j − Γ̃j||HS}+ max

i,j
{|γ′i − γi|, |γ̃′j − γ̃j|} (2.61)

that measures the maximal deviation from the actual constraints, where the Hilbert-
Schmidt norm is defined as ||X||HS :=

√
Tr(X†X). The second source of imprecision comes

from the fact that solutions returned by numerical solvers never satisfy all constraints ex-
actly (e.g. the matrix corresponding to the suboptimal solution can have slightly negative
eigenvalues). This source of imprecision is measured by the maximal constraint violation
εsol of the matrix output from the numerical solver. According to Appendix D of Ref. [2],
the relaxation parameter ε′ can be chosen to be

ε′ = max{εrep, εsol} (2.62)

in order to ensure the original feasible set is really contained by the enlarged set.

The relaxed equality constraints |Tr(Γ′iρ)− γ′i| ≤ ε′ in (2.60) can be split into two sets
of inequality constraints:

Tr(Γ′iρ) ≤ γ′i + ε′ and Tr(−Γ′iρ) ≤ −γ′i + ε′ for i = 1, ..., r. (2.63)

‡Note that the authors of Ref. [2] did not consider inequality constraints in the original paper. Here, we
generalise the idea to the inequality constraints by adding ε′ to each finite-precision inequality constraints
{γ̃′j} so that the enlarged feasible set with respect to the imperfect constraints still contains the original
feasible set.
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Hence, all our constraints are now inequality constraints. Since we enlarge the feasible set,
it is intuitive to see that the optimal solution to the perturbed objective function over S̃ε′
to be upper bounded by the true optimal value α,

α ≥ αε′(ε)− ζε where αε′(ε) := min
ρ∈S̃ε′

fε(ρ), (2.64)

which was proven in Theorem 3 of Ref. [2]. Most importantly, the lower bound for the
privacy amplification term as a dual problem corresponding to the optimisation of the
perturbed and linearised objective function over the enlarged feasible set is

fε(ρ
′)−Tr(ρ′∇fε(ρ′)T )+ max

~y∈S̃∗ε (ρ′)

(
r∑
i=1

(γi + ε′)yi +
r∑
i=1

(−γi + ε′)yi+r +
s∑
j=1

(γ̃j + ε′)yj+2r

)
−ζε ,

(2.65)
where the new dual feasible set is

S̃∗ε(ρ
′) := {~y ∈ R2r+s :

r∑
i=1

(yi−yi+r)Γi+
s∑
j=1

yj+2r Γ̃j ≤ ∇fε(ρ′)T , yk ≤ 0 for k = 1, ..., 2r+s}.

This lower bound for the true key rate will be the secure key rate value quoted from a
numerical security proof of a QKD protocol.
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Chapter 3

Squashing Models

In this chapter, we will first review the basic ideas behind squashing models and state the
formal definition of a valid squashing model. We will then discuss how squashing models
can be incorporated into current security proof framework to prove unconditional security
of QKD protocols. Finally, we will study the flat-state squashing model as an example. For
the closing remark, we will briefly mention the open problems in QKD related to squashing
models.

3.1 Introduction

In any QKD protocol, quantum signal states must travel through a quantum channel
which is assumed to be controlled by the adversary before it reaches the receiver. As
described in the previous chapter, when we prove the security of a protocol, we calculate
the key rate with the quantum state corresponding to the adversary’s worst attack given
that it satisfies the measurement statistics. However, to find the worst attack among all
possible attacks allowed by quantum theory, we cannot restrict the dimension of the output
state of the quantum channel. Therefore, the key rate calculation which is reformulated
as the optimisation problem in (2.52) requires an optimisation over infinite-dimensional
density matrices. This is clearly not a numerically tractable optimisation problem because
computers can only store and operate on finite-dimensional matrices. We will see that
squashing models provide the solution to this issue.

Squashing models connect the actual QKD protocol to a virtual QKD protocol asso-
ciated with a finite-dimensional optimisation problem. As we will prove in Section 3.3,
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the optimal solution to the new finite-dimensional optimisation problem is guaranteed to
lower bound the optimal solution to the original problem. Therefore, we can obtain a re-
liable lower bound for the key rate of the actual protocol by solving the finite-dimensional
optimisation problem admitted by a squashing model.

The intuition behind squashing models is as follows. The goal is to build a physical
model that ensures the receiver to receive finite-dimension states which are called squashed
states from the quantum channel. To achieve this, we manually insert an additional phys-
ical channel Λ between the actual quantum channel Φ and the receiver as illustrated in
Figure 3.1. This additional channel Λ which we call a squashing map is constructed to
reduce the dimension of incoming states from infinite to finite. We assume the adversary
to have full control of the squashing map. The receiver will measure the squashed states
with a new set of measurements which reproduce the original statistics. Therefore, we
obtain an effective QKD protocol where the receiver’s state is finite-dimensional. Prov-
ing the security of this virtual protocol only requires one to optimise a finite-dimensional
optimisation problem if the sender’s state is also finite-dimensional.

Figure 3.1: Illustration of how a virtual protocol (bottom) with finite-dimensional output

states Λ ◦Φ(ρ) and POVM {F̃k} can be obtained from applying a squashing model to the
original protocol (top) with infinite-dimensional output states Φ(ρ) and POVM {Fk}.

The first squashing model’s existence was postulated by Gottesman, Lo, Lütkenhaus,
and Preskill (GLLP) [40] to prove security of the weak coherence pulse BB84 protocol by
converting the receiver’s states into qubit states so that the qubit-to-qubit security analysis
[41, 42] can still be applied. We call a squashing model qubit-based if it converts the original
protocol into an effective qubit protocol. Later, more qubit-based squashing models were
discovered for various QKD protocols [43, 4, 44], which extend the applicability of qubit-
to-qubit security analysis to a wider class of QKD protocols. However, it was proven by
Beaudry et al. [3] with the counterexample of the six-state protocol that not all QKD
protocols have an exact qubit-based squashing model. Also, most of the existing qubit-
based squashing models rely on randomly assigning certain measurement outcomes that

34



can only be caused by multi-photons to one of the two qubit measurement outcomes. This
will introduce additional qubit errors to the original data and may lower the key rate with
this extra noise.

Recently, a new type of squashing model, namely the flag-state squashing model [8],
is developed to circumvent the limitations of the qubit-based squashing models. This
squashing model can be applied to any QKD protocols with the receiver’s POVM being
block-diagonal in some basis. Since the POVM associated with a measurement using
threshold detectors is block-diagonal in total photon number basis, most discrete-variable
protocols using threshold detectors for measurements will admit a flag-state squashing
model. We will see more details about this model in Section 3.4 and how it is applied to
the unbalanced phase-encoded BB84 protocol in Chapter 4.

3.2 Mathematical definition

In this section, we will state the formal definition of a squashing model and highlight the
implications of the definition.

Definition 3.2.1. (Squashing Model)
Let H, K be two Hilbert spaces where dim(H) = ∞ and dim(K) is finite. Let D(H)
and B(H) denote the set of density matrices and the set of bounded operators acting on
a Hilbert space H respectively. Let Λ : D(H) 7→ D(K) be a linear CPTP map (i.e. a
physical quantum channel). Let {Fk} ⊂ B(H) be a POVM where k labels a finite set of
measurement outcomes. Λ is a squashing map if:

(1) there exists another POVM {F̃k} ⊂ B(K) such that

Tr
(
F̃kΛ(ρ)

)
= Tr (Fkρ) = p(k) ∀ ρ ∈ D(H), (3.1)

where p(k) denotes the probability of outcome k ,

(2) Λ is not entanglement breaking.

The corresponding adjoint map Λ† : B(K) 7→ B(H) is CP unital (UCP), not entanglement
breaking, and satisfies

Λ†(F̃k) = Fk ∀ k . (3.2)

Since Λ† is linear, any linear dependency between elements Fk is conserved such that∑
k

ckFk = 0 ⇐⇒
∑
k

ckF̃k = 0 where ck ∈ C ∀ k. (3.3)
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The first condition infers that the squashing model needs to preserve the probabilities of
all measurement outcomes and for all quantum states. The second condition is necessary
because a certain degree of entanglement between the sender’s and the receiver’s states
must be preserved after the receiver’s state passes through the squashing map in order
for a QKD protocol to distill secure keys [22]. This condition rules out squashing map
candidates that take the form Φ(ρ) =

∑
k Tr(Fkρ)σk where σk ∈ D(K) for each k [16].

In previous literature [3, 43], the actual measurement performed by the experimental
setup is described by what they call the “basic” measurement POVM FB. The basic
measurement is differentiated from the “full” measurement which is obtained from classical
post-processing the basic measurement statistics as illustrated in Figure 3.2. In general,
classical post-processing is not a necessary procedure for a squashing model to work (see
flag-state squashing model in Section 3.4). Therefore, we do not include classical post-
processing in our definition. To align our notation with Refs. [3, 43], the POVM {Fk} in
our definition refers to the full measurement POVM FM or the basic measurement POVM
FB depending on whether classical post-processing of the basic measurement statistics is
used. The “target” measurement FQ in Refs. [3, 43] is equivalent to the squashed POVM

{F̃k} in the definition above.

Figure 3.2: Illustration of how the actual measurement in an experiment combined with a
classical post-processing scheme can be viewed equivalent to the action of a squashing map
followed by a new set of measurements on the squashed states. This figure is reproduced
from Figure 1 of Ref. [3].
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3.3 Unconditional security of squashing models

When we use squashing model to prove security of a QKD protocol, we need to make sure
that proving the virtual (squashed) protocol to be secure entails the original protocol to
be secure. In this section, we will prove unconditional security of squashing model in the
asymptotic limit which is stated in the following theorem.

Theorem 3.3.1 (Unconditional Asymptotic Security of Squashing Models)
The asymptotic secure key rate of the virtual QKD protocol associated with any squashing
model applied to a QKD protocol always lower bounds the asymptotic secure key rate of the
original QKD protocol.

Intuitively, allowing Eve to control the squashing channel gives her additional eaves-
dropping power or knowledge of the signals. Therefore, one can expect the secure key rate
of any protocol to reduce under the usage of a squashing model. In the formal proof below,
we use the source replacement scheme where Alice sends a quantum state to Bob.

Proof. Let the joint state shared by Alice and Bob be ρAB and the state |ψ〉ABE be the
purification of the state ρAB (i.e. ρAB = TrE(|ψ〉〈ψ|ABE)), where A, B and E denotes the
registers of Alice, Bob and Eve respectively. By Schmidt decomposition, the pure state
can be decomposed as

|ψ〉ABE =
∑
i

√
λi|ei〉AB ⊗ |fi〉E , (3.4)

where λi ∈ R ∀ i, and the two sets of vectors {|ei〉AB} and {|fi〉E} form the orthonormal
bases of the Hilbert spaces HAB and HE respectively.

In the source-replacement scheme, both Alice and Bob will measure their states. Let
Alice’s and Bob’s joint POVM be {Pk} with k labelling their joint measurement outcomes.
The state shared by all parties after Alice and Bob perform measurements and public
announcements is

ρABMCE =
∑
i,j,k

√
λiλj(

√
Pk|ei〉〈ej|

√
Pk)AB ⊗ |k〉〈k|M ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E (3.5)

where M and C denote the classical registers for storing Alice’s and Bob’s joint measure-
ment outcomes and their public announcements respectively. Since announcements are
made public, Eve can keep a copy of register C. A key map is performed by either Alice
or Bob depending on the reconciliation scheme. The key map g̃ outputs a key bit z using
the measurement data k and the announcement data ak (i.e. g̃ : k × ak 7→ z). We add a
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classical key register Z to keep the raw key bit. After tracing out registers A, B and M ,
the classical-quantum (c-q) state for the key register and Eve’s registers is

ρZCE =
∑
i,j,k

√
λiλjTr(Pk|ei〉〈ej|)|g̃(k, ak)〉〈g̃(k, ak)|Z ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E . (3.6)

We shall see later that if the initial purifying state |ψ〉ABE is fixed, the state in Equation
(3.6) is also the joint state of the key and Eve’s registers when a squashing model is applied.

Assume that a squashing model exists for the QKD protocol, which has a squashing
map Λ : D(HB) 7→ D(HB′) and a squashed joint POVM {Qk : Λ̃†(Qk) = Pk} ⊂ B(HAB′)

with the map Λ̃† being the adjoint of the extended squashing map Λ̃ = 1A⊗Λ. A squashing
map is by definition a quantum channel, so by Stinespring’s dilation theorem, there exists
an isometry VB→B′E′ such that

Λ(ρ) = TrE′(VB→B′E′ ρ V
†
B→B′E′). (3.7)

We name Bob’s new register corresponding to the squashed states he receives B′ and the
environment register E ′. Since we assume that the squashing map is in Eve’s domain, Eve
has access to the register E ′ which means her registers (E,E ′) together purify Alice’s and
Bob’s new joint state ρAB′ = (1A ⊗ Λ)(ρAB). After squashing, the new pure state is

|ψ̃〉AB′EE′ = (1A ⊗ VB→B′E′)|ψ〉ABE (3.8)

=
∑
i

√
λi(1A ⊗ VB→B′E′)|ei〉AB ⊗ |fi〉E . (3.9)

We now consider the state shared by all parties after Alice and Bob perform their
measurements and announcements under a squashing model, which takes the form

ρ̃AB′MCE′E =
∑
i,j,k

√
λiλj(

√
Qk ⊗ 1E′)(1A ⊗ VB→B′E′)|ei〉〈ej|(1A ⊗ V †B→B′E′)(

√
Qk ⊗ 1E′)

⊗ |k〉〈k|M ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E . (3.10)

Applying the same key map g̃ defined above, the c-q state of the key and Eve’s registers is

ρ̃ZCE′E =
∑
i,j,k

√
λiλjTrAB′ [(

√
Qk⊗1E′)(1A⊗VB→B′E′)|ei〉〈ej|(1A⊗V †B→B′E′)(

√
Qk⊗1E′)]×

|g̃(k, ak)〉〈g̃(k, ak)|Z ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E . (3.11)
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If Eve gives up her additional knowledge from the squashing channel, she discards her
system E ′ (i.e. tracing out register E ′) resulting in the state

ρ̃ZCE =
∑
i,j,k

√
λiλjTr[(

√
Qk ⊗ 1E′)(1A ⊗ VB→B′E′)|ei〉〈ej|(1A ⊗ V †B→B′E′)(

√
Qk ⊗ 1E′)]×

|g̃(k, ak)〉〈g̃(k, ak)|Z ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E . (3.12)

Using the definition of the dilation isometry V †B→B′E′ , we can simplify the trace as

Tr[(
√
Qk ⊗ 1E′)(1A ⊗ VB→B′E′)|ei〉〈ej|(1A ⊗ V †B→B′E′)(

√
Qk ⊗ 1E′)]

=TrAB′(QkTrE′ [(1A ⊗ VB→B′E′)|ei〉〈ej|(1A ⊗ V †B→B′E′)]) (3.13)

=TrAB′ [Qk(1A ⊗ Λ)(|ei〉〈ej|)] (3.14)

=TrAB′ [QkΛ̃(|ei〉〈ej|)] (3.15)

=TrAB[Λ̃†(Qk)|ei〉〈ej|] (3.16)

=TrAB(Pk|ei〉〈ej|). (3.17)

Hence, we recover the state ρZCE in (3.6) as in

ρ̃ZCE =
∑
i,j,k

√
λiλjTr(Pk|ei〉〈ej|)|g̃(k, ak)〉〈g̃(k, ak)|Z ⊗ |ak〉〈ak|C ⊗ |fi〉〈fj|E (3.18)

= ρZCE .

This implies that Eve can perform the same attack as before if she does not utilise the
additional register E ′ from purifying the squashed state.

We are ready to show that the asymptotic secure key rate can only decrease after
applying the squashing model. In the Devetak-Winter key rate formula [32], the error-
correction term is unaffected by the squashing model since this term only cares about the
joint probabilities of the raw key and the measurement outcomes, which are preserved by
the squashing model. Therefore, we only need to consider the privacy amplification (PA)
term in the rest of the proof.

Let Eve’s optimal attack be the purification |ψ∗〉ABE meaning that it minimises the
PA term in the asymptotic key rate formula. Let the purifying state of the optimal pure
state after applying the squashing model be |ψ̃∗〉AB′EE′ = (1A ⊗ VB→B′E′)|ψ∗〉ABE . The
corresponding mixed states for the two pure states after measurement, announcement and
key map be ρ∗ZABMCE and ρ̃∗ZAB′MCE′E . We already showed that TrAB′ME′(ρ̃

∗
ZAB′MCE′E) =

ρ̃∗ZCE = ρ∗ZCE = TrABM(ρ∗ZABMCE). The last step is to show that the PA term of the
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original QKD protocol R∞PA (i.e. the first term in (2.43)) is lower bounded by the PA term

of the squashed protocol R̃∞PA as follows

R∞PA = min
|ψ〉ABE∈S

H(Z|C,E)ρZABMCE

= H(Z|C,E)ρ∗ZABMCE
(3.19)

= H(Z|C,E)ρ̃∗
ZAB′MCE′E

(∵ ρ̃∗ZCE = ρ∗ZCE) (3.20)

≥ H(Z|C,E,E ′)ρ̃∗
ZAB′MCE′E

(SSA) (3.21)

≥ min
|ψ̃〉AB′EE′∈S̃

H(Z|C,E,E ′)ρ̃ZAB′MCE′E
(3.22)

= R̃∞PA

where S denotes the feasible set of pure states that satisfy the measurement statistics and
S̃ = {|ψ̃〉AB′EE′ : TrE′E|ψ̃〉〈ψ̃| ∈ SAB′ ∩ Image(Λ̃)} is the intersecting set of the feasible set

SAB′ ⊂ D(HAB′) and the image of the extended squashing map Λ̃ = 1A ⊗ Λ. To go from
the third to the fourth line, we used strong subadditivity (SSA) of von Neumann entropy
(Theorem 2.1.6) which introduces the first inequality. The second inequality comes from

the fact that |ψ̃∗〉AB′EE′ ∈ S̃, so the minimisation over the whole set S̃ is at most the value

evaluated with |ψ̃∗〉AB′EE′ . Hence, we proved Theorem 3.3.1. �

With Theorem 3.3.1, we can prove the asymptotic unconditional security of a QKD
protocol using a squashing model if there exists one for the protocol.

3.4 Flag-state squashing model

The flag-state squashing model [8] is non-qubit-based, meaning that it does not squash
the protocol into an effective qubit protocol. Instead, it squashes the input states into
finite-, multi-dimensional states with some of the original state structure preserved. Note
that the flag-state squashing model only holds for cases where the POVM elements are
all block-diagonal with respect to two mutually orthogonal subspaces. We will show later
that the flag-state squashing model does not conserve probabilities if the POVM is not
block-diagonal.

Assume that all POVM elements Fk’s are block-diagonal in the sense that each element
has the form Fk = Fk,P⊕Fk,P⊥ in the same basis where P and P⊥ are orthogonal subspaces.
The flag-state squashing map Λ, as illustrated in Figure 3.3, first projects an input state
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ρ onto the two subspaces P and P⊥. We require the projectors for the two subspaces
{ΠP ,ΠP⊥} sum to identity of the full Hilbert space H (i.e. ΠP + ΠP⊥ = 1H). It then
applies an identity map to the projected state ρP = ΠPρΠP and measures the projected
state ρP⊥ = ΠP⊥ρΠP⊥ to give the squashed state

Λ(ρ) = ΠPρΠP ⊕
∑
k

Tr(FkΠP⊥ρΠP⊥)|k〉〈k| =
(
ρP 0
0

∑
k Tr(FkρP⊥)|k〉〈k|

)
. (3.23)

Figure 3.3: A flag-state squashing map Λ projects a state ρ onto orthogonal subspaces P
and P⊥ with projectors {ΠP ,ΠP⊥}. Depending on which subspace ρ is projected onto,
the projected state will either pass through the map unchanged if it is in subspace P , or
it will be measured and replaced by a classical flag-state |k〉〈k| based on the measurement
outcome k if it is in the P⊥-subspace. The squashing map is assigned to Eve, allowing her
to have more eavesdropping power. The result of the squashing map Λ(ρ) will then be sent

to Bob who performs the final measurement with the squashed POVM {F̃k}.

After the state passes through the squashing map, the receiver measures the squashed
state with the flag-state POVM {F̃k} where

F̃k = Fk,P ⊕ |k〉〈k| =
(
Fk,P 0

0 |k〉〈k|

)
=



Fk,P 0

0

0
. . .

1

↑ . . .

kth 0


. (3.24)

One can verify that the original probabilities for each outcome k are conserved when the
squashed state is measured by the flag-state POVM. Thus, condition (1) in Definition 3.2.1
for squashing models is satisfied.
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In general, an arbitrary input state does not have to be block-diagonal in the basis
where the POVM is block-diagonal. Projecting the state onto subspaces P and P⊥ will
set its off-diagonal blocks to zeros. Due to the block-diagonal structure of the POVM,
the measurement probability is unaffected by the state projections which we call a quan-
tum nondemolition (QND) measurement. However, if the POVM is not block-diagonal,
projecting the input state onto subspaces will alter the outcome probabilities. Therefore,
condition (1) in Definition 3.2.1 is not satisfied. Note that the dimension of the state and
the POVM elements has been reduced to the dimension of the subspace P plus the number
of elements in the POVM. If subspace P is finite-dimensional, then the image of the map
Λ is also finite-dimensional.

3.4.1 CPTP condition

We will prove that the flag-state squashing map Λ is a physical channel (i.e. a linear CPTP
map). The map Λ is by construction linear, so we only need to prove that it is CPTP. We
first show that the map Λ is trace-preserving (TP) which goes as

Tr(Λ(ρ)) = Tr[ΠPρΠP ⊕
∑
k

Tr(FkΠP⊥ρΠP⊥)|k〉〈k|] (3.25)

= Tr(ΠPρΠP ) +
∑
k

Tr(FkΠP⊥ρΠP⊥)Tr(|k〉〈k|) (3.26)

= Tr(ρΠP ) + Tr

[(∑
k

Fk

)
ΠP⊥ρΠP⊥

]
(3.27)

= Tr(ρΠP ) + Tr(ΠP⊥ρΠP⊥) (3.28)

= Tr(ρΠP ) + Tr(ρΠP⊥) (3.29)

= Tr[ρ(ΠP + ΠP⊥)] (3.30)

= Tr(ρ) = 1, (3.31)

where we used the cyclicity of trace, properties of the projectors: 1) Π2
P = ΠP and Π2

P⊥ =
ΠP⊥ , 2) ΠP + ΠP⊥ = 1H , and the property of POVM

∑
k Fk = 1H in the steps above.

Hence, the map Λ is indeed trace-preserving.

To prove that the map Λ is completely positive (CP), we need to use the following
theorem (Theorem 1) proved by Friedland [45].
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Definition 3.4.1. (Norm and weak convergence)
Let H be a Hilbert space and X ∈ B(H) be the limit of a sequence of bounded operators
{Xn : n ∈ N} ⊂ B(H) such that limn→∞Xn = X. The sequence is

1. convergent in norm || · ||, if limn→∞ ||Xn −X|| = 0,

2. weakly convergent, if limn→∞〈h̃, Xnh〉 = 〈h̃, Xh〉 for every h, h̃ ∈ H
(denote as Xn

w−→ X).

Theorem 3.4.1 (Choi’s theorem in infinite dimension [45])
For i = 1, 2, assume the following hold:

1. Hi is a Hilbert space with a countable orthonormal basis {|e(i)
j 〉 : j ∈ N}.

2. Π̃
(i)
n denotes the projection on span{|e(i)

1 〉, ..., |e
(i)
n 〉} for each n ∈ N.

3. Vi is a subspace of B(Hi), which is closed with respect to the norm || · ||i and the
∗-conjugation. Furthermore, Vi contains the subspace of all finite range operators.

4. Φ : V1 → V2 is a bounded linear map.

5. For each X ∈ V1, the sequence {Φ(Π̃
(1)
n XΠ̃

(1)
n ) : n ∈ N} converges weakly to Φ(X).

Then the map Φ is completely positive if and only if for each n ∈ N, the matrix

n∑
i,j=1

Ei,j ⊗ Π̃(2)
n Φ(Ei,j)Π̃

(2)
n ≥ 0 , (3.32)

where we define Ei,j = |e(1)
i 〉〈e

(1)
j |.

Here, we letH1 andH2 be two Hilbert spaces with countable orthonormal bases {|e(1)
j 〉 :

j ∈ N} and {|e(2)
j 〉 : j ∈ N} respectively. The bases are chosen such that |e(1)

j 〉 = |e(2)
j 〉 for

j ∈ {1, ..., p}, |e(2)
j 〉 = |j− p〉 which are the flag-states for j ∈ {p+ 1, ..., p+ |K|} where |K|

is the total number of POVM elements, and the P and P⊥ projectors can be expressed as

ΠP =

p∑
i=1

|e(1)
i 〉〈e

(1)
i | =

p∑
i=1

Ei,i , ΠP⊥ =
∞∑

i=p+1

|e(1)
i 〉〈e

(1)
i | =

∞∑
i=p+1

Ei,i . (3.33)

We restrict the domain and image of Λ to trace class operators C1(H1) ⊂ B(H1) and
C1(H2) ⊂ B(H2) respectively which are closed under trace norm || · ||1 and satisfy condition
(3) in Theorem 3.4.1.
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Next, we have to prove that the map Λ is bounded. For any operator X ∈ C1(H1), we
use the definition of Λ to find the upper bound

||Λ(X)||1 ≤ ||ΠPXΠP ||1 + ||
∑
k

Tr(FkΠP⊥XΠP⊥)|k〉〈k| ||1 (3.34)

≤ ||X||1 + ||
∑
k

|〈Fk,ΠP⊥XΠP⊥〉| · |k〉〈k| ||1 (3.35)

≤ ||X||1 +
∑
k

|〈Fk,ΠP⊥XΠP⊥〉| · || |k〉〈k| ||1 (3.36)

≤ ||X||1 +
∑
k

||Fk||op||ΠP⊥XΠP⊥||1 (3.37)

≤ ||X||1 +
∑
k

||X||1 (3.38)

= (1 + |K|)||X||1 , (3.39)

where we use the triangle inequality several times, the Hölder’s inequality (see Theorem
2.1.4) to get from (3.36) to (3.37), and the property of POVM elements that their spectra
are upper bounded by 1 (i.e. ||Fk||op ≤ 1). This implies ||Λ|| ≤ 1 + |K| and since we
assume |K| to be finite, the map Λ is bounded, so condition (4) is satisfied.

We then need to prove that for each X ∈ C1(H1), the sequence {Λ(Π̃
(1)
n XΠ̃

(1)
n ) : n ∈ N}

converges weakly to Λ(X) where Π̃
(1)
n is defined in the same way as in Theorem 3.4.1. Since

the set C1(H) is complete in trace norm || · ||1 , any sequence of trace class operators {Xn :
n ∈ N} ⊂ C1(H) converges to its limit X ∈ C1(H) in norm (i.e. limn→∞ ||Xn −X||1 = 0).

For a sequence {Π̃(1)
n XΠ̃

(1)
n : n ∈ N} ⊂ C1(H), there exists ε > 0 and a large enough positive

integer N0 such that for any n ≥ N0, it holds that ||Π̃(1)
n XΠ̃

(1)
n −X||1 < ε , then

||Λ(Π̃(1)
n XΠ̃(1)

n )− Λ(X)||1 ≤ ||Λ|| · ||Π̃(1)
n XΠ̃(1)

n −X||1 (3.40)

< (1 + |K|)ε . (3.41)

Since 1 + |K| is finite, the sequence {Λ(Π̃
(1)
n XΠ̃

(1)
n ) : n ∈ N} converges to Λ(X) in norm,

which also implies weak convergence Λ(Π̃
(1)
n XΠ̃

(1)
n )

w−→ Λ(X). Therefore, condition (5) is
satisfied, so Theorem 3.4.1 applies here.

We are now ready to show that the Choi matrix that appears in (3.32) is positive for

each n ∈ N. We define projectors Π̃
(2)
n the same way as in Theorem 3.4.1 and consider the
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Choi matrix for Λ of the form in (3.32) for a fixed n ∈ N

n∑
i,j=1

Ei,j ⊗ Π̃(2)
n Λ(Ei,j)Π̃

(2)
n (3.42)

=
n∑

i,j=1

Ei,j ⊗ Π̃(2)
n

(
ΠPEi,jΠP ⊕

∑
k

Tr(FkΠP⊥Ei,jΠP⊥)|k〉〈k|

)
Π̃(2)
n (3.43)

=

{∑n
i,j=1 Ei,j ⊗ Ei,j , if n ≤ p ,∑p
i,j=1 Ei,j ⊗ Ei,j ⊕

∑n
i,j=p+1 Ei,j ⊗

∑min{n−p,|K|}
k=1 Tr(FkEi,j)|k〉〈k|, if n > p .

(3.44)

For n ≤ p,
n∑

i,j=1

Ei,j ⊗ Ei,j =

(
n∑
i=1

|ei〉 ⊗ |ei〉

)(
n∑
j=1

〈ej| ⊗ 〈ej|

)
≥ 0. (3.45)

For n > p, we can consider the two parts in the direct sum in (3.44) separately since they
are in two orthogonal subspaces. The first term is positive by the same argument in (3.45).
The second term is

n∑
i,j=p+1

Ei,j ⊗
min{n−p,|K|}∑

k=1

Tr(FkEi,j)|k〉〈k| =
n∑

i,j=p+1

|ei〉〈ej| ⊗
min{n−p,|K|}∑

k=1

〈ej|Fk|ei〉|k〉〈k|.

(3.46)
The vector space V which this operator acts on has an orthonormal basis {|ei〉 ⊗ |k〉 :
p + 1 ≤ i ≤ n, 1 ≤ k ≤ |K|}. Let |ψ〉 =

∑n
r=p+1

∑
l cr,l|er〉 ⊗ |l〉 be an arbitrary vector in

V where cr,l ∈ C for all p + 1 ≤ r ≤ n and 1 ≤ l ≤ |K|. We implicitly assume that the

45



summation in index k below is over the range 1 ≤ k ≤ min{n− p, |K|} such that

〈ψ|

(
n∑

i,j=p+1

|ei〉〈ej| ⊗
∑
k

〈ej|Fk|ei〉|k〉〈k|

)
|ψ〉 (3.47)

=
n∑

i,j,r,s=p+1

∑
k,u,v

c∗r,ucs,v〈er|ei〉〈ej|es〉〈ej|Fk|ei〉〈u|k〉〈k|v〉 (3.48)

=
n∑

i,j=p+1

∑
k

c∗i,kcj,k〈ej|Fk|ei〉 (3.49)

=
∑
k

(
n∑

j=p+1

cj,k〈ej|

)
Fk

(
n∑

i=p+1

c∗i,k|ei〉

)
(3.50)

=

(
n∑

j=p+1

∑
u

cj,u〈ej| ⊗ 〈u|

)
︸ ︷︷ ︸

=〈φ|

∑
k

(Fk ⊗ |k〉〈k|)︸ ︷︷ ︸
≥0

(
n∑

i=p+1

∑
v

c∗i,v|ei〉 ⊗ |v〉

)
︸ ︷︷ ︸

=|φ〉

(3.51)

=〈φ|
∑
k

(Fk ⊗ |k〉〈k|)|φ〉 ≥ 0 (3.52)

is positive for any vector in vector space V , so the second term is also positive. Hence, we
have shown that for each n ∈ N, the Choi matrix for Λ is

n∑
i,j=1

Ei,j ⊗ Π̃(2)
n Λ(Ei,j)Π̃

(2)
n ≥ 0. (3.53)

By Theorem 3.4.1, the map Λ is completely positive.

To sum up this section, we have proved that the map Λ is indeed CPTP.

3.4.2 Bounding the weight in the preserved subspace

The map Λ outputs a classical state
∑

k Tr(FkρP⊥)|k〉〈k| whenever the input state is in the
subspace P⊥, which corresponds to an entanglement breaking channel [16]. The adversary
can learn the classical orthogonal states exactly, so one cannot distill secret keys out of
these states. Thus, we want to make sure the input state lives mostly in the subspace
P . To achieve this, we need to derive a lower bound for the weight of the input state in
subspace P using the observed statistics of the sender and receiver. With a strictly positive
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lower bound, the map Λ is not entanglement breaking, thereby satisfying condition (2) in
Definition 3.2.1.

Here, we focus on a scenario where the receiver’s detection unit uses purely threshold
detectors which are commonly implemented in discrete-variable QKD protocols. In this
case, the receiver’s POVM {Fk} is block-diagonal in the total photon number basis and
each POVM element commutes with all photon-number projectors (i.e. [Fk,Πn] = 0 ∀
k and n ∈ N). Naturally, if we set a finite photon-number cutoff N , we can define the
subspace P that we preserve to be the (n ≤ N)-photon subspace and the subspace P⊥

that we squash to be the (n > N)-photon subspace. The two subspaces are two Hilbert
spaces containing Fock states of at most N and at least N + 1 photons respectively. Each
element of the POVM {Fk} naturally satisfies the block-diagonal condition required by a
flag-state squashing model. One can construct an observable M from a linear combination
of POVM elements, i.e.

M =
∑
k

αkFk , (3.54)

where αk ∈ R for all k so that the operator M is Hermitian. This implies that the operator
M is also block-diagonal in the same way as each POVM element Fk .

The following method was first presented in Lütkenhaus’ PhD thesis [46] then adapted
by Narasimhachar [44] and Zhang et al. [8] to bound the weight p(n ≤ N) from below by
using the observed double-click and error rates. We generalise the idea to any observable
that has the form (3.54). We first define the minimum expectation value of an observable
M restricted to n-photon subspace to be

mmin
n := min

σn∈D(H)
{Tr(Mσn) : σn = ΠnσnΠn}. (3.55)

We will derive a lower bound for p(n ≤ N) with the average value of the observable M

〈M〉 =
N∑
n=0

p(n) mn +
∞∑

n=N+1

p(n) mn (3.56)

≥
N∑
n=0

p(n) mmin
n +

∞∑
n=N+1

p(n) mmin
n (3.57)

≥ mmin
n≤N

N∑
n=0

p(n) +mmin
n>N

∞∑
n=N+1

p(n) (3.58)

= p(n ≤ N) mmin
n≤N + [1− p(n ≤ N)] mmin

n>N (3.59)

= mmin
n>N − p(n ≤ N)(mmin

n>N −mmin
n≤N), (3.60)
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where we define mmin
n≤N := min0≤n≤N m

min
n and mmin

n>N := minn>N m
min
n . If one can show that

0 ≤ mmin
n≤N < mmin

n>N , then by rearranging the last line, we obtain the desired lower bound

p(n ≤ N) ≥
mmin
n>N − 〈M〉

mmin
n>N −mmin

n≤N
= 1−

〈M〉 −mmin
n≤N

mmin
n>N −mmin

n≤N
. (3.61)

For this lower bound to make sense (i.e. ≤ 1) and to be useful (i.e. > 0), we need to choose
a sensible N so that the average value 〈M〉 satisfies mmin

n≤N ≤ 〈M〉 < mmin
n>N . In addition, if

mmin
n increases monotonically with n ∈ N (i.e. mmin

n ≤ mmin
n+k for all n, k ∈ N), we can

rewrite Equation (3.61) as

p(n ≤ N) ≥ 1− 〈M〉 −m
min
0

mmin
N+1 −mmin

0

. (3.62)

For a concrete example of such lower bound, see Section 4.4.1 and Appendix B.

3.5 Open problems

We showed that the flag-state squashing model proposed by Zhang et al. [8] only applies
to QKD protocols where the POVM elements are all block-diagonal with respect to two
mutually orthogonal subspaces. In fact, all known squashing models so far [3, 47, 48, 43, 8]
rely somehow on the block-diagonal structure of POVM in the Fock basis, which is a
common feature of discrete-variable protocols that use threshold detectors for detection.
However, as we go into the domain of continuous-variable (CV) protocols, the POVMs
associated with homodyne and heterodyne measurements are no longer block-diagonal in
the Fock basis∗, so none of the previously known squashing models apply. Finding a
squashing model for CV protocols still remains as an open problem. Ultimately, this leads
to the question: whether a general squashing model that is applicable to all QKD protocols
exists at all. An affirmative answer to the question would not only provide a powerful tool
to proving security of QKD protocols, but could potentially find applications in other
fields such as quantum metrology and quantum computing that involve measurements on
quantum systems described by an infinite-dimensional Hilbert space.

∗Note that we have not ruled out the existence of a basis, other than the Fock basis, in which the
homodyne or heterodyne POVM is block-diagonal.
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Chapter 4

Security Proof for the Unbalanced
Phase-encoded BB84 Protocol

In this chapter, we will discuss a new security proof for the unbalanced phase-encoded
BB84 protocol that uses the flag-state squashing model introduced in Section 3.4 together
with the numerical proof method described in Section 2.2.5. Our main achievement is
to prove significantly higher secure key rates for this protocol compared with previously
published results in the low-loss regime. This chapter reuses all contents from the paper
written by the author (and co-authored by Norbert Lütkenhaus) [1] including the exact
wording, results and figures, but some parts in this chapter are slightly modified in order to
fit the flow of this thesis. Note that extended details and discussions for this chapter that
are beyond the scope of Ref. [1] have been provided in (or added to) the six appendices.

4.1 Introduction

The earliest phase-encoding quantum key distribution (QKD) scheme was proposed by
Bennett [49] in 1992 as a demonstration that any two non-orthogonal states can be used
for generating shared secret keys between two parties. Later, Townsend [50] and then
Hughes et al. [51] proposed a more practical phase-encoding BB84 protocol which uses two
Mach-Zehnder interferometers. In practice, the phase-modulator in each Mach-Zehnder
unit will introduce photon loss, thereby causing an asymmetry between the intensities of
the phase-encoded pulse and the reference pulse even if the typical observations do not
directly reveal this. This asymmetric loss was addressed in Refs. [52, 4, 5] which model
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the loss caused by an imperfect phase-modulator with a beam splitter (BS) of the same
transmission probability.

The first attempt in giving security proofs for this protocol was made by Li et al. [52].
Formal security proofs were later on provided by Ferenczi et al. [4] and Sunohara et al. [5]
which both used qubit-based reduction proof techniques. Despite being a deviation from
the standard BB84 protocol, Ref. [5] confirms that the old security analysis for the balanced
protocol still holds in the unbalanced case. This calls for a revision of the security statement
made by Ref. [4], which we will discuss in detail in Section 4.6.

Both Refs. [4] and [5] use decoy states [53, 54, 55], signal tagging [40, 56], and the
qubit squashing model [40, 3, 43, 44] to convert the full security analysis into an effective
qubit-to-qubit security analysis problem. Due to the asymmetric intensities of the signal
states, a single photon obtained from the photon number splitting (PNS) attack [57] will
be in one of two non-orthogonal states, even after basis announcements. According to the
Holevo-Helstrom bound [58, 59], there are no measurements that can perfectly discriminate
two non-orthogonal states, so the PNS attack will not leak full information of the signal’s
multi-photon part to Eve. Thus, the tagging approach, which pessimistically assumes that
all multi-photon signals leak their full information to an adversary, simplifies the security
proof but underestimates the secure key rate of this protocol.

In this chapter, we will answer the following questions: Could we improve the key rates
in Ref. [5] if we keep the multi-photon part of the signals? Could the multi-photon part
of the signal contribute significantly to key rates when the total loss or the asymmetry is
large?

To highlight the differences between our approach and Refs. [4, 5]’s, we apply the nu-
merical analysis formulated in Ref. [2] (see Section 2.2.5) which involves optimisations over
finite-dimensional matrices to obtain reliable lower bounds on the key rates. On the source
side, we treat lower photon numbers explicitly, while turning to tagging again for higher
photon numbers. On the receiver side, we know that the qubit squashing model converts
the multi-click events caused by the multi-photon part of the signals into additional qubit
errors [43, 4, 44]. The convenience of reaching a qubit picture may thus cost a reduction
in key rate. Therefore, we use the flag-state squashing model [8] (see Section 3.4) to cir-
cumvent this problem, especially for low-loss channels. The flag-state squashing model
preserves any measurement on a low photon-number subspace while tagging the arriving
signals of higher photon numbers. As a result, we obtain secret key rates that can exceed
the ones quoted in Refs. [4, 5].

During our investigations, we noticed a problem with the common approach which
attributes all observed errors to an adversary and describes Bob’s detection device by an
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idealised set-up. Once the actual detectors have some dark count rate, this approach may
lead in some circumstances to unphysical constraints, meaning that such an ideal device
could not lead to the actual observations. For that reason, we will also introduce results
for trusted detector noises, especially dark counts, for which this problem does not exist.

The rest of this chapter is outlined as follows. We first revisit the protocol in Section 4.2
and describe the mathematical model of the protocol in Section 4.3. We will then justify
our security proof techniques and state the methods that allow us to speed up our key
rate computations in Section 4.4. With the description of how we simulate experimental
statistics in Section 4.5, we present our lower bounds for the secure key rates of the protocol
in Section 4.6.

4.2 Protocol description

We consider a phase-encoded BB84 protocol with a Mach-Zehnder set-up. The only mod-
ification is that we take into account the typical loss in one arm of the interferometer,
which results from the insertion loss of phase modulators. This asymmetric loss leads to
an unbalance of the amplitudes of the two generated pulses as illustrated in Figure 4.1.
We describe here the general outline of the protocol structure. Since we are dealing with
the asymptotic key rate in this work, we omit any detail that would be relevant only for a
finite-size analysis of the protocol.

Figure 4.1: The setup for the unbalanced phase-encoded BB84 protocol. All beam splitters
(BSs) are labelled by their transmissivities. The grouping of Bob’s detection events are
represented by the dotted boxes.
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1. State preparation: Alice prepares a phase-randomised coherent state with mean pho-
ton number |α|2 where α ∈ C and chooses a random phase φx from the set {0, π

2
, π, 3π

2
}

with equal probabilities in each round. Alice also sends a small portion of decoy co-
herent states with different mean photon numbers {|αi|2 : ∀αi ∈ C}i∈N.

2. Measurement : Once Bob receives the signal state, he chooses a random phase φB
from the set {0, π

2
} with equal probabilities and records all events coming from the

two detectors at any of the three time slots. A click is termed “outside” if it is not
in the 2nd (middle) time slot.

3. Testing : After repeating steps 1 & 2 for many times, Alice and Bob jointly announce
a random subset of their data (including events coming from decoy states) and decide
whether they should abort or proceed with the rest of the protocol.

4. Announcement, sifting and post-selection: For each round, Alice announces the basis
to be “even” if she picks her phase from {0, π} or she announces “odd” if her phase
is in {π

2
, 3π

2
}. Bob announces “even” if he picks φB = 0 or “odd” if φB = π

2
. In

addition to basis announcements, Bob also announces “discard” for events that have
only outside clicks or no click. Alice keeps the φx’s only for the rounds where Bob
did not announce ”discard” and where her bases match with Bob’s. Bob keeps a
detection event if his basis matches Alice’s and the event is not to be discarded.

5. Direct reconciliation key map: Alice maps φ
(j)
x in the j-th kept rounds to the j-th bit

zj of the raw key as

zj =

{
0, if φ

(j)
x = 0, π/2,

1, if φ
(j)
x = π, 3π/2.

(4.1)

6. Error correction and privacy amplification: Alice and Bob perform standard error
correction so that Bob also obtains a copy of the key map register. They then proceed
with a privacy amplification protocol to obtain a shared secret key.

We point out that our method generalises to any asymmetric basis choice (i.e. proba-
bilities of choosing “even” and “odd” bases are not equal). It was shown by Lo et al. [60]
that the probability of choosing one basis can be set arbitrarily close to 1 without affect-
ing the asymptotic security analysis. Note that the formalism described here would also
allow one to consider the reverse reconciliation approach, where in step 5 of the protocol
Bob performs a key map instead of Alice. Then, Alice and Bob would have to swap their
respective roles in step 6.
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4.3 Mathematical model of the protocol

4.3.1 Optical models

We start by identifying two equivalent optical models for the Mach-Zehnder component
that appears in both Alice’s and Bob’s apparatus. The descriptions for the two models
are illustrated in Figure 4.2. Instead of having the loss in one arm of the interferometer,
the equivalent model places a loss element in front of the Mach-Zehnder component, which
then has an asymmetric beam splitter at the entry [4].

Figure 4.2: Equivalence relationship between a lossy phase modulator in the encoding
device and an uneven BS with transmissivity 1

2ξ
followed by another uneven BS with

transmissivity ξ and a perfect phase modulator, where ξ = 1
1+κ

[4].

This replacement picture tells us that Alice’s loss can be absorbed into the rescaled
amplitude of the incoming single laser pulse, whereas Bob’s loss can be absorbed into the
channel’s action.

4.3.2 State preparation

We use the source-replacement scheme [20, 22] to represent a prepare-and-measure scheme
with an entanglement-based scheme. Since Alice’s signal state is mixed, we will introduce
a purifying “shield” system that will be left behind in the source so that the existing
source-replacement framework described in Section 2.2.1 can be applied. We will provide
a detailed description of the entangled pure state prepared by Alice below.

To prepare the output signal state, Alice’s laser first creates a phase-randomised coher-
ent state

σin(2α) =

∫ 2π

0

dθ

2π
|2αeiθ〉〈2αeiθ| =

∞∑
n=0

pn(2α)|n〉〈n|, (4.2)
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where pn(β) = e−|β|
2 |β|2n

n!
is the Poissonian distribution in photon number n. She then

sends it through her encoding device set at a phase φx which outputs a time-bin signal
with two modes,

σx(α) =

∫ 2π

0

dθ

2π
|ψθx(α)〉〈ψθx(α)|, (4.3)

where |ψθx(α)〉 = |αeiθ,
√
κ αei(θ−φx)〉.

In the following steps, we will express the state σx(α) in a two-mode Fock basis {|sxn(ξ)〉}
which is defined later in Equation (4.8). Let ã †1 and ã †2 be the creation operators of the two
output time modes of the signal. We define a rescaled amplitude α̃ := α

√
1 + κ = α/

√
ξ

with the definition ξ := 1
1+κ

and a new mode creation operator

ã †θ,x :=
1

α̃
(αeiθ ã †1 +

√
κ αei(θ−φx) ã †2 ) (4.4)

=
eiθ√
1 + κ

(ã †1 +
√
κ αe−iφx ã †2 ) (4.5)

= eiθ(
√
ξ ã †1 +

√
1− ξ e−iφx ã †2 ). (4.6)

We define a set of two-mode Fock states for n ∈ N as

|sxn(ξ)〉 =
1√
n!

(ã †θ=0,x)
n|0〉 (4.7)

=
n∑
k=0

√(
n

k

)
ξ
n−k
2 (1− ξ)

k
2 e−ikφx|n− k, k〉, (4.8)

The state |ψθx(α)〉 can be rewritten in the new basis as

|ψθx(α)〉 = e−
|α̃|2
2

∞∑
n=0

α̃ n

n!
(ã †θ,x)

n|0〉

= e−
|α̃|2
2

∞∑
n=0

(α̃eiθ)n√
n!
|sxn(ξ)〉

(4.9)

which is a coherent state with amplitude α̃. The phase-randomised signal state is therefore
a Poissonian mixture of the new Fock states as in

σx(α) =
∞∑
n=0

pn(α̃)|sxn(ξ)〉〈sxn(ξ)|. (4.10)
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Since the signal state σx(α) is mixed, Alice can purify the state by introducing an
ancillary system AS such that the following is a pure state

|σx(α)〉ASA′ =
∞∑
n=0

√
pn(α̃) |n〉AS ⊗ |sxn(ξ)〉A′ , (4.11)

where the register A′ is the signal system. Note that the probability pn(α̃) is independent
of Alice’s choice x.

We can summarise the source description as Alice preparing an entangled pure state

|Ψ〉AASA′ =
∑
x

√
px |x〉A ⊗ |σx(α)〉ASA′ , (4.12)

where {|x〉A}x=0,...,3 is an orthonormal basis of Alice’s register A for x corresponding to the
phase φx = π

2
x and px = 1

4
for all x ∈ {0, 1, 2, 3}. Note that registers A and AS are private

to Alice, and Eve only has access to the signal system A′. We call the purifying system
AS a “shield” system for it to be inaccessible to Eve (i.e. Eve only gets the mixed state
σx(α) but not the pure state |σx(α)〉ASA′).

4.3.3 Trusted and (semi-)untrusted components

Before we describe the mathematical model for the measurements in this protocol, we
should first address the potential security loopholes in the protocol implementation by
discussing the assumptions for trusted and (semi-)untrusted components. In an actual
QKD experiment, there could be flaws or imperfections in implementing the protocol,
particularly, in Alice’s and Bob’s devices for signal preparation and measurement. The
adversary Eve could make use of these flaws unknown to Alice and Bob to compromise
the security of a QKD implementation, even if the QKD protocol itself has been proven to
be secure theoretically. These are called side-channel attacks and have been demonstrated
experimentally, for example, by Qi et al. [61] and Fung et al. [62]. One way of addressing
side-channel attacks that utilise vulnerabilities in Alice’s and Bob’s devices is to use a
device-independent (DI) protocol [63] by treating Alice’s and Bob’s devices as spatially
isolated black boxes, thereby not requiring them to be trusted. However, we know that
the devices used in an experiment are more than black boxes, so the DI assumption is the
most pessimistic scenario for any QKD protocol.

In a more optimistic view, since QKD experiments nowadays will impose countermea-
sures for known side-channel attacks, experimental components and devices can be trusted
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to a certain degree if they are properly calibrated. A careful but not overly conservative
assumption would be that some components in a QKD experiment are more trustworthy
than others. One may assume these components to be trusted (i.e. not in Eve’s control)
so that any known defects such as loss and noise of these devices are assumed to originate
from the devices but not from Eve. Here, we consider only Bob’s measurement device to be
defective, which can be mathematically modelled in the way described in Section 4.3.4 with
the known defects taken into account. On the other hand, for the components that cannot
be fully trusted, we cannot eliminate the possibility that Eve has some control over the
defects (e.g. Eve blinds Bob’s detectors), but at the same time, we do not want to assume
these components to be fully untrusted. To find a middle ground between trusted and fully
untrusted, we can impose the semi-untrusted assumption where we assume the physical
modelling for the defects is accurate, but the parameters for the model are unknown to us.
For example, the detection inefficiency of a detector can be modelled by a beam splitter
with the transmissivity set to its detection efficiency followed by a perfectly efficient de-
tector, but the actual detection inefficiency is unknown. We then assume the result of the
defects to come from the quantum channel controlled by Eve while assuming Bob’s device
is free of these defects. We illustrate the assumption for semi-untrusted defects in Figure
4.3. In this sense, the defects due to the imperfect components are outsourced to Eve who,

Figure 4.3: Illustration of the replacement model for outsourcing a semi-untrusted defect in
Bob’s measurement device to the channel. The upper picture shows the original situation
where Bob’s measurement device suffers from a defect. Assume that we know how to model
the defect or its effect on the measurement statistics but not the model parameters. As
shown in the lower picture, the semi-untrusted assumption hypothesise the existence of
an additional quantum channel that can reproduce the same effect of the defect as in the
upper picture while assuming Bob’s device to not have such defect. Note that no proofs
have confirmed the existence of such channel for all kinds of defects except for detection
inefficiency when there is no efficiency mismatch.

intuitively, would gain more eavesdropping power under such an assumption. Therefore,
treating some components to be semi-untrusted is supposed to be more conservative than

56



seeing them as trusted. Since our treatment for semi-untrusted components has not been
formally proven to be able to address side-channel attacks completely, one can view our
method more of a toy model or a working assumption than a solution to the problem.

In fact, the semi-untrusted assumption has been a common practice to treat detection
inefficiency and noise as defects potentially caused or influenced by Eve. We remark that
the replacement picture shown in Figure 4.3 applies to semi-untrusted detection inefficiency
when there is no efficiency mismatch, but not to mismatched detection inefficiencies and
dark counts simply because no channel has been found to reproduce their exact effects if
Bob were to measure with lossless or dark-count-free detectors. Nonetheless, we keep the
analysis for semi-untrusted dark counts in this work just to flag the consequence of this
commonly practised assumption. This issue will be elaborated more in Section 4.5. To
simplify our language, we will refer to any semi-untrusted defects simply as “untrusted”
since fully untrusted defects are not considered in this work.

4.3.4 Measurements

In the prepare-and-measure scheme, the action of Alice randomly choosing the phase φx in
the signal state is equivalent to a measurement on |Ψ〉AASA′ with POVM {|x〉〈x|A}x=0,...,3.
Alice’s measurement can be performed before or after Bob performs his measurement.

We start out by describing the POVM of Bob’s measurement assuming ideal devices,
especially without dark counts of the detectors. We will later on derive the POVM of
devices with specified dark counts. To characterise all of Bob’s possible measurement
outcomes, we construct his POVM using the creation and annihilation operators for six
optical modes arriving at 3 different time slots and at 2 detectors. Ignoring global phases,
the six annihilation operators of a fixed phase φB, which correspond to the six “click”
locations depicted in Figure 4.1, are

b1 = b4 →
√
ξ

2
a1 , (4.13)

b3 = b6 →
√

1− ξ
2

a2 , (4.14)

b2,φB →
√

1− ξ
2

a1 − eiφB
√
ξ

2
a2 , (4.15)

b5,φB →
√

1− ξ
2

a1 + eiφB

√
ξ

2
a2 , (4.16)
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where a1 and a2 are annihilation operators of the two incoming time modes of the signal.

Since b1 = b4 and b3 = b6, the POVM elements corresponding to click events at 1
and 4 (3 and 6) are the same. Hence, each pair can be combined into a single time-mode
annihilation operator. The corresponding operators for the two pairs are

bt1 →
√
ξ a1 , bt3 →

√
1− ξ a2 (4.17)

where t1 and t3 denote the 1st and the 3rd time slots in Fig 4.1. This is equivalent
to coarse-graining the outside-only click POVM elements and outcome probabilities but
without losing information about the relative phase, φx−φB. This reduces the redundancy
in constraints for the optimisation which will be described in Section 4.4.3.

As Bob’s measurement outcomes consist of all combinations of click events at different
time slots, detectors, and basis choices, his POVM elements are obtained by summing
weighted projectors of all possible states that could lead to a particular click pattern.
Based on the fact that Bob uses threshold detectors for detection, all POVM elements are
block-diagonal in total photon number basis [3, 43].

These allow the construction of Bob’s POVM elements in terms of the modes impinging
on the detectors by first restricting to the n-total photon subspace of Bob’s entire system,
and defining the following operators corresponding to different click events:

• no-click: (for n = 0)
F φB

0 = p(φB)|0〉〈0|, (4.18)

• single-click: (for n ≥ 1)

F n,φB
i1

= p(φB)
1

n!
(b†i1)

n|0〉〈0|bni1 , (4.19)

• double-click: (for n ≥ 2)

F n,φB
i1,i2

= p(φB)
n−1∑
k=1

(b†i1)
n−k(b†i2)

k|0〉〈0|bn−ki1
bki2

(n− k)! k!
, (4.20)

• triple-click: (for n ≥ 3)

F n,φB
i1,i2,i3

= p(φB)
n−2∑
k=1

n−k−1∑
j=1

|β3(n, j, k)〉〈β3(n, j, k)| (4.21)

with |β3(n, j, k)〉 =
(b†i1

)n−k−j(b†i2
)k(b†i3

)j |0〉√
(n−k−j)! k! j!

,
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• all-click: (for n ≥ 4)

F n,φB
ac = p(φB)

n−3∑
k=1

n−k−2∑
j=1

n−k−j−1∑
l=1

|β4(n, j, k, l)〉〈β4(n, j, k, l)| (4.22)

with |β4(n, j, k, l)〉 =
(b†i1

)n−k−j−l(b†i2
)k(b†i3

)j(b†i4
)l|0〉√

(n−k−j−l)! k! j! l!
,

where p(φB) is the probability of choosing the phase φB and b†iµ ∈ {b
†
t1 , b

†
2,φB

, b†5,φB , b
†
t3}

are the mode creation operators for a fixed phase φB, with b†iµ 6= b†iν for all µ 6= ν and
µ, ν ∈ {1, 2, 3, 4}. We can express Bob’s POVM elements in terms of the incoming modes,
a1 and a2, by substituting the final modes with Equations (4.15) – (4.17).

To obtain Bob’s POVM elements for the full Hilbert space, one simply sums over all
contributions from all photon number subspaces to get

Fk =
∞∑
n=0

F n
k , (4.23)

where k labels the 16 possible click patterns (Bob’s measurement outcomes) in each of the
two measurement bases. For n to be less than the minimum photon number to trigger the
click event k, F n

k is a zero operator. If k is the no-click event, F n
k is a zero operator for all

n ≥ 1.

To reduce the number of linearly dependent POVM elements for better numerical per-
formance in calculating key rates∗, we combine the pairs of φB-independent POVM el-
ements of the two measurement bases into one by summing the two elements together.
This reduces the cardinality of Bob’s POVM from 32 to 28 since the following four click
patterns: no-click, t1-only, t3-only, and t1&t3 are basis-independent.

In a trusted dark-count scenario where dark counts are not controlled by Eve, we incor-
porate the effect of dark counts into Bob’s POVM by applying a classical post-processing
map, P , on Bob’s POVM elements {Fk}. The output of the map is a new POVM {Pk}
with each element corresponding to a linear combination of the original POVM such that

∗As we will point out in Section 4.4.1, the number of POVM elements is related to the dimension of
the flag-state subspace. If the two POVM elements are linearly dependent, they are essentially the same
constraint for the convex optimisation problem in (4.37) up to a scaling factor. Therefore, omitting either
of the two elements will not affect the optimisation result, but the flag-state subspace dimension will
reduce by one. As for all numerical optimisations, the smaller the dimension of the problem, the shorter
the runtime.
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Pk =
∑

iPk,i Fi where Pk,i are the matrix elements of the linear map P . We illustrate the
action of the map P with the new POVM elements listed in Appendix A. Since the map
P acts the same on all photon-number subspaces, it also holds that

P n
k =

∑
i

Pk,i F n
i . (4.24)

The map P models the effect of dark counts as a classical noise in the sense that for
each detector and at each detection time window, a no-click event flips to a click event
with probability, pd. We can recover Bob’s dark-count-free POVM {Fk} by setting the
dark-count probability pd = 0 in the case with untrusted dark counts.

Overall, we obtain the joint POVM of Alice’s and Bob’s measurements {|x〉〈x|A ⊗ Pk}
where x ∈ {0, ..., 3} and k ∈ {1, ..., 28} since Bob has 28 coarse-grained outcomes in total
if no-click is included.

4.4 Security proof techniques

4.4.1 Flag-state squashing model

In order to numerically compute the secure key rate, we need to reduce the dimension
of Bob’s state from infinite to finite so that numerical optimisation solvers can be used.
Since Bob uses threshold detectors, his POVM elements are block-diagonal, so the qubit
squashing model [3, 43, 4, 44] can be applied. However, by reassigning the multi-click
events to single-click events randomly, the squashing model introduces additional qubit
errors to the original data. Instead, the flag-state squashing model [8] is used here to
circumvent this problem.

We set a finite photon-number cutoff NB and define the (n ≤ NB)- and (n > NB)-
photon subspaces† to be two Hilbert spaces containing Fock states of at most NB and at
least NB + 1 photons respectively. The flag-state squashing map Λ first projects Bob’s
state ρ onto the two subspaces. It then applies an identity map to the projected state
ρn≤NB and measures the projected state ρn>NB with the POVM {Pk} to give the squashed
state

Λ(ρ) =

(
ρn≤NB 0

0
∑

k Tr(Pk ρn>NB)|k〉〈k|

)
. (4.25)

†We identify (n ≤ NB)- and (n > NB)-photon subspaces as the P - and P⊥-subspaces mentioned in
Section 3.4 respectively.
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Bob’s corresponding flag-state squashed POVM elements are

P̃k =

(
NB∑
n=0

P n
k

)
⊕ |k〉〈k|, (4.26)

where NB is a finite-number photon cutoff and k labels Bob’s detection events. The joint
POVM of Alice’s and Bob’s measurements in the flag-state squashing model is {|x〉〈x|A ⊗
P̃k} where x ∈ {0, ..., 3} and k ∈ {1, ..., 28}.

Since the measurement channel acting on the (n > NB)-photon subspace is entangle-
ment breaking [16], one needs to lower bound Tr(Πn≤NB ρ) with Bob’s measurement statis-
tics to ensure that some entanglement between Alice and Bob is preserved in order for them
to establish a secret key [22]. For trusted dark counts, we show in Appendix B that the
lower bound for the weight of the (n ≤ NB)-photon signal subspace conditioned on Alice
choosing signal x is given by

p(n ≤ NB|x) ≥ 1− p(cc|x)− p(cc|0)

pmin(cc|NB + 1)− p(cc|0)
, (4.27)

p(cc|0) = 1− (1− pd)2[1 + pd(1− pd)2(2− pd)], (4.28)

pmin(cc|n) = 1− (1− pd)2ξn − (1− pd)4(1− ξ)n, (4.29)

where the conditional cross-click probability, p(cc|x), is the sum of the observed probabil-
ities of all events excluding no-click events, events with clicks only in time slot t2 (inside-
only), and events with clicks only in time slots t1, t3 (outside-only) given that Alice picks
signal x. We also show in Appendix B that the bound in (4.27) is always tighter than the
dark-count-free bound (pd = 0) derived by Narashimhachar [44], so we could also obtain a
lower bound of the secure key rate using that dark-count-free bound. For untrusted dark
counts, one simply has to use that bound.

4.4.2 Decoy state & decomposition of key rate formula

In this work, we prove the security of the protocol against any collective attack. Since
the signal states and measurements are permutation invariant between different rounds,
the quantum de Finetti theorem [27] (see Section 2.2.4) or the postselection technique [30]
can be applied to uplift our security statement to the security against coherent attacks,
which will both lead to the same asymptotic key rate. From that we obtain a composable
ε-security proof [19] of the protocol under Eve’s general attacks with the same asymptotic
key rate as under the collective attack.

61



Recall the asymptotic key rate formula (2.44) for collective attack

R∞ = min
ρAASB∈S

D(G(ρAASB)||Z(G(ρAASB)))− ppass δEC .

For this specific protocol, the explicit forms of the quantities ppass and H(Z|B) are shown
in Appendix C, and the G map that was introduced in Section 2.2.5 takes the form [2, 35]

G(ρ) =
∑
i

Ki ρ K
†
i (4.30)

with the Kraus operators of this protocol defined as

K0 = (|0〉Z ⊗ |0〉〈0|A + |1〉Z ⊗ |2〉〈2|A)⊗FB0 ⊗ |0〉B̃ , (4.31)

K1 = (|0〉Z ⊗ |1〉〈1|A + |1〉Z ⊗ |3〉〈3|A)⊗FB1 ⊗ |1〉B̃ , (4.32)

where {|0〉B̃, |1〉B̃} is Bob’s basis announcement bit, FBj =
√∑

b∈K Fb,φB=π
2
j and K denotes

Bob’s post-selected outcomes. Also, recall that the Z map introduced in Section 2.2.5 is
given by

Z(σZC) =
1∑
j=0

(|j〉〈j|Z ⊗ 1C) σZC (|j〉〈j|Z ⊗ 1C) (4.33)

with register C encapsulates all registers except Z.

Since Alice is sending a Poissonian mixture of Fock states, Eve can, in principle, perform
a QND measurement on Alice’s signal to learn its photon number without disturbing
the signal itself. We show in Appendix D that as a direct consequence of this the state
ρAASB is block-diagonal in Alice’s output photon number ñ. Therefore, without loss of
generality, we can restrict the minimisation in Equation (2.44) to be taken over a smaller
set S′ = {ρAASB ∈ S : ρAASB =

∑∞
ñ=0 pñ |ñ〉〈ñ|AS ⊗ ρñAB} where {ρñAB} are the normalised

states conditioned on Alice sending out ñ photons. This allows one to split the PA term
into a probabilistic combination of PA terms associated with different ñ as in

R∞ = min
ρAASB∈S

′

∞∑
ñ=0

pñ D(G(ρñAB)||Z(G(ρñAB)))− ppass δEC . (4.34)

See Appendix D for the proof of the decomposition.

For our analysis, we assume a decoy-state scenario [53, 54, 55], which means that in
addition to the usual signal states, Alice prepares also decoy states that are represented
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by dephased laser pulses with different intensity levels |αi|2. More precisely, we assume for
simplicity the infinite-decoy scenario, where a countably infinite number of decoy inten-
sities are used so that a decoy data analysis can reveal to Alice and Bob the conditional
probabilities of any observable, where the condition is with respect to Alice’s output photon
number ñ.

These conditional probabilities constrain the feasible set of normalised states Sñ for
each of Alice’s output photon number ñ independently, which further restricts the min-
imisation in Equation (4.34) to be taken over a smaller set S′′ = {ρAASB ∈ S : ρAASB =∑∞

ñ=0 pñ |ñ〉〈ñ|AS ⊗ ρñAB, ρñAB ∈ Sñ ∀ ñ ∈ N} ⊂ S′. Given that the probability distribution
{pñ}ñ∈N is fixed by the intensity of the signal, the minimisation over S′′ can be pulled into
the summation and split into minimisations over individual Sñ, resulting in the following
key rate formula

R∞ =
∞∑
ñ=0

pñ min
ρñAB∈Sñ

D(G(ρñAB)||Z(G(ρñAB)))− ppass δEC . (4.35)

We remark that the inclusion of a finite number of decoy states would be a natural extension
of this work, in which case the description of each set Sñ would depend on other sets
{Sn′ : n′ 6= ñ}. Hence, a more careful treatment of the PA term would be needed.

The major benefit of breaking down the PA term into individual minimisations is to
avoid the need of keeping the infinite-dimensional shield system AS in the argument of
the optimisation as seen in Equation (2.44). Instead of optimising over the set of infinite-
dimensional states, we convert our problem into an infinite number of optimisations with
finite-dimensional arguments.

Notice that when Alice sends out vacuum (0 photons), Eve learns nothing about Alice’s
choice x, so each key bit z ∈ {0, 1} is equally likely to Eve, which implies that H(Z|E) =
H(Z) = 1. Therefore, the first term in the summation in Equation (4.35) is equal to pñ=0

pass

which is the contribution from Alice sending out vacuum to the probability of passing
sifting and post-selection.

By Klein’s inequality (Theorem 2.1.7), we have that D(G(ρñAB)||Z(G(ρñAB))) ≥ 0 for all
ñ ∈ N. Thus, omitting any terms in the summation will only reduce the total value on
the right-hand side of Equation (4.35). In fact, omitting an ñ-photon term is the same as
treating all ñ-photon output signals as being tagged for which the encoded state is fully
known to Eve. Since we can only optimise a finite number of terms in the infinite sum, we
can truncate the infinite sum at ñ = NA where NA is a positive finite integer to obtain a
lower bound for the key rate. The choice of NA = 1 corresponds to the tagging as used in
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Refs. [4, 5]. We then have the key rate expression as

R∞ ≥ pñ=0
pass +

NA∑
ñ=1

pñ min
ρñAB∈Sñ

D(G(ρñAB)||Z(G(ρñAB)))− ppass δEC . (4.36)

This allows us to reduce the number of finite-dimensional optimisations from infinity to a
finite number that corresponds to the limited computational resources available to us.

4.4.3 The optimisation problem

The convex optimisation problem corresponding to each PA term in Equation (4.36) can
be formulated as

minimise D(G(ρñAB)||Z(G(ρñAB)))

subject to

Tr[(|x〉〈x|A ⊗ P̃k) ρñAB] = p(x, k|ñ),

Tr[(|x〉〈x|A ⊗ Πn≤NB) ρñAB] ≥ p(x) pmin
n≤NB |x ,

TrB(ρñAB) =
1

pñ
TrASA′ [(|ñ〉〈ñ|AS ⊗ 1A′) |Ψ〉〈Ψ|AASA′ ],

Tr(ρñAB) = 1,

ρñAB ≥ 0.

(4.37)

The first line in the constraints demands the shared state ρñAB conditioned on Alice sending
out ñ photons to satisfy Alice’s and Bob’s joint measurement outcome probabilities con-
ditioned on ñ, which are obtained from the infinite-decoy analysis. The second line lower
bounds the weight of ρñAB in the (n ≤ NB)-photon subspace by Equation (4.27). The third
line demands that Alice’s reduced density matrix is unchanged. The last two lines ensure
that ρñAB is a valid, normalised density matrix.

4.4.4 Implementation of numerical security analysis

Following the procedure in Ref. [2] (also see Section 2.2.5), the suboptimal solutions to
the convex optimisation problem (4.37) for 1 ≤ ñ ≤ NA are obtained numerically using
the MATLAB optimisation package CVX and the Frank-Wolfe algorithm [37]. These
suboptimal solutions infer the upper bound for the individual privacy amplification terms
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in Equation (4.36). A linearisation of each of the optimisation problems at its suboptimal
solution results in a primal SDP problem of the form (2.54) which can be further converted
into a dual SDP problem as in (2.56). Using the CVX numerical solver again, the dual
suboptimal solutions for 1 ≤ ñ ≤ NA provide a reliable lower bound on the whole privacy
amplification term.

Solving the convex optimisation problem is computationally demanding in terms of time
and memory even if the flag-state squashing model is applied to reduce the dimension of
the matrix variables ρñAB. One can further utilise the structure of the flag-state squashed
state as described in Equation (4.25) to reduce the number of complex variables in the
allowed matrices ρñAB. Bob’s flag-state squashed POVM elements also enable us to split
multiplications between constraint matrices and the state variable ρñAB. In addition, the
objective function in (4.37) can be evaluated much faster if the computation is restricted
only to the non-zero subspaces in the images of the maps G and Z. With these three
techniques, we managed to reduce the computation time of the convex optimisation by a
significant amount. See Appendix E for the technical details.

We utilise the fact that the optimisation problem specified in (4.37) is independent
of the mean photon number |α|2 of Alice’s phase-randomised coherent state because the
minimisations in Equation (4.35) are over each set Sñ separately. In other words, the choice
of |α|2 only affects the photon number distribution {pñ} and the error-correction term δEC

in the key rate formula (4.36). Therefore, we can maximise the key rate lower bound over
the signal intensity |α|2 efficiently once we have the dual suboptimal solutions since the
error-correction term can be directly calculated from the observables of the corresponding
simulation.

4.5 Simulation of experiments

In the absence of experimental data, we have to perform a simulation of an experiment to
obtain realistic probability distributions which replace the experimental data as input of
our security analysis. To address imperfections in an experimental implementation of the
protocol, we consider both trusted and untrusted defects in our simulations as discussed in
Section 4.3.3. Note that the details of the simulation model are independent of the actual
security proof.
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4.5.1 Channel simulations & detection efficiency

We simulate the quantum channel between Alice and Bob with a loss-only channel which
is essentially an uneven beam splitter. We also assume that both detectors of Bob have
equal detection efficiency ηdet, where each detector can be modelled as a beam splitter
with a transmission rate ηdet followed by an ideal detector. In this simple model, a single
parameter η which we call the total transmissivity describes the combined loss caused by
the following three effects: the inefficiency in the process of coupling the signal light to the
optical fibre, the absorption and scattering processes of light in transmission through the
fibre, and the detection efficiency of Bob’s threshold detectors. The simulated outcome
probabilities for Bob’s measurement (with no dark counts) are derived in Appendix F.

We also investigate the case where we assume the detection efficiency ηdet to be outside
of Eve’s control, as a trusted, characterised loss element of the receiver. In that case, we
keep the beam splitter with transmissivity ηdet in Bob’s apparatus, which in turn modifies
the POVM elements described in Section 4.3.4. Bob’s POVM with known detection effi-
ciency can be obtained with a similar approach used in Ref. [8]. Note that the statistics
shown in Appendix F are unchanged under this trusted loss assumption.

4.5.2 Dark counts

To simulate our statistics when dark counts are present, we generate the outcome probabil-
ities with Bob’s classically post-processed POVM described in Section 4.3.4 and Appendix
A, which is associated with a dark-count probability, pd, for each detector and at each
detection time window. These statistics are equivalent to the dark-count-free statistics de-
rived in Appendix F after being classically post-processed in the same way as the POVM
elements in Appendix A.

If dark counts are assumed to be trusted in the sense that they are not in Eve’s con-
trol, we use the classically post-processed flag-state POVM {P̃k} as the constraint matrices
in the optimisation problem (4.37) to calculate the privacy amplification term. This ap-
proach guarantees the optimisation problem to be feasible since measurement probabilities
correspond directly to a quantum state in the simulation.

However, if we consider untrusted dark counts, that is, if we pessimistically attribute
the effect of dark count noise to Eve, the flag-state POVM of dark-count-free detectors is
used as the optimisation constraint matrices instead. Note that unlike the existence of a
physical model for pulling out the equal detection efficiency into the channel, this approach
is not covered by any physical equivalence model that allows one to outsource the dark
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counts to Eve. Therefore, it is possible that no quantum states could have led to the
classically post-processed statistics if the measurement is assumed to be dark-count-free.
In that case, the optimisation problem becomes infeasible due to unphysical constraints.
This is what we encounter in some parameter regime of our calculation, as we will point
out in the next section.

4.6 Key rates

Before diving into our main results, we start by stating the parameters used throughout
this section. We set Bob’s flag-state photon number cutoff to be NB = 4 so that the PA
term can be computed within a reasonable amount of time. The maximum number of
terms kept in the PA summation in Equation (4.36) is set to be NA = 3 since we observe
that the key rate in the low-loss regime does not improve even if we keep more than 3
terms. Furthermore, we set the dark count probability to be pd = 8.5 × 10−7 and the
error-correction efficiency to be fEC = 1.22 as quoted by Gobby et al. [64].

In Figure 4.4(a), we present lower bounds for the secure key rates per clock cycle
corresponding to different values of the phase-modulator transmissivity κ and the total
transmissivity η in the two scenarios with trusted and untrusted dark counts. The total
transmissivity η captures both the transmission efficiency of the loss-only channel and the
detection efficiency of Bob’s detectors. We obtain these bounds by maximising the lower
bounds for key rates over the mean photon number |α|2 as specified in Section 4.4.4. The
optimal |α|2 for each point in Figure 4.4(a) are shown in Figure 4.4(b).

Let us expand on the infeasibility issue with untrusted dark counts mentioned in Sec-
tion 4.5.2. In the high-loss regime where the total transmissivity η ≤ 0.2, the optimisation
problem for some parameters becomes infeasible meaning that no physical states can sat-
isfy the constraints that are imposed by observed statistics. This is a somehow surprising
observation since many previous security analyses (e.g. [4, 5, 40, 65]) assume dark counts
to be untrusted but did not encounter any issue with infeasible constraints. Most of these
analyses use coarse-grained statistics (e.g. bit/phase error rate) to bound Eve’s knowledge.
However, the use of refined statistics in our optimisation constraints poses more stringent
conditions on the feasible set which makes it less robust against infeasibility issues. There-
fore, at least when infeasibility is detected, we cannot outsource the dark counts simulated
by a classical noise model entirely to Eve as previous literature did. In the case of having
infeasible data, we allow the numerical solver to relax the satisfiability of constraints in the
sense that we are enlarging the search set to the degree where it is feasible. Due to large
constraint violations and a minimisation over an enlarged search set, we expect the key
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Figure 4.4: (a) Our optimal lower bounds and (b) the corresponding mean photon numbers
for secure key rates per clock cycle for both trusted (solid lines) and untrusted dark counts
(dotted lines) versus total transmissivity η. For clarity, we omit labelling the lines for
trusted and untrusted dark counts in the cases where the two lines are indistinguishable.
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rate lower bound obtained by this method to be much lower than the true value. As for
the feasible cases, Figure 4.4(a) shows that turning dark counts from untrusted to trusted
increases the key rates. In the remaining of this section, if we make statements about
the key rates without mentioning whether dark counts are trusted or untrusted, then the
statement applies to both cases.

In the design view of a QKD security analysis, the goal is to optimise over all param-
eters and find the optimal setting of the experimental setup. Here, we seek the optimal
asymmetric transmission parameter κ and the corresponding optimal signal intensity |α|2
that gives the highest key rate at different total transmissivity η. We see that the smaller
the value of κ, the lower the key rates in Figure 4.4(a) because Alice would need to send
more photons (as one can see from Figure 4.4(b)) in order to maintain an adequate propor-
tion of middle-click detection events, which allow Bob to infer the relative phase φx − φB.
Therefore, one should always aim at reducing the loss at the phase modulator in order to
increase the overall key rate.

To elaborate more on the optimality of the intensities in Figure 4.4(b), we point out the
two competing factors for using more photons in the signal. First, sending higher intensity
signals causes more photons to pass through Eve’s domain, which allows her to gain more
information about the signal, thereby reducing the key rate. Second, as more information
can be transmitted from Alice to Bob via multi-photon signals, the key rate may increase
if the cost of error correction increases less than the information gain by Eve.

These two factors pull the key rate into opposite directions, so there is an optimal
point for the key rate to be maximised, of which the corresponding optimal mean photon
number is shown in Figure 4.4(b). These values appear to be higher than the optimal
values for the key rates in Ref. [5]. This indicates that some multi-photon signals carry
useful information from Alice to Bob of which Eve does not possess full knowledge, and
hence favours signals with higher intensity.

4.6.1 Comparison with previous results

At this point, we would like to compare our results with previous results in Refs. [4, 5]
which both contain valid security proofs that make use of the single-photon components
only. Note that although the technical analysis of Ref. [4] is correct, the conclusion that
the key rate of the unbalanced BB84 protocol will be overestimated if one blindly uses
the security analysis of a balanced protocol is not. While Ref. [4] has shown that the key
rate for unbalanced signals is lower than that for balanced ones, the authors of Ref. [5]
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correctly point out that the drop in key rate is due to a smaller success rate of the unbal-
anced protocol, followed by the same key reduction during privacy amplification as for a
balanced protocol. So in effect, during the operation of an unbalanced protocol, the use
of privacy amplification terms from a balanced BB84 protocol still gives valid secret key
rates. Therefore, it is incorrect for Ref. [4] to conclude that the drop in secure key rates
for the unbalanced cases is due to the application of a new security analysis. Since Ref. [5]
provides a known analytical key rate of this scenario, we use that result as the baseline of
our investigations to show that in fact the secret key rate is underestimated by this security
analysis, and thus less privacy amplification is required in this situation.

We compare our key rates with Ref. [5]’s in Figure 4.5, which shows that our analysis
provides higher key rates for total transmissivity η > 0.1 (<10 dB), especially for small
κ values. Our method shows advantage in low-loss cases because the PA components
from the multi-photon part of Alice’s signals are larger in the low-loss regime, which are
pessimistically set to zero in Ref. [5]. This can be understood as Eve does not learn too
much of the multi-photon signals, thereby allowing more information to reach Bob.
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Figure 4.5: Percentage change in key rates comparing our optimal lower bounds for key
rates with Ref. [5]’s optimal key rates versus total transmissivity η. We label the changes
for trusted (untrusted) dark counts with solid (dotted) lines. A positive change means that
our key rate is higher.
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When the total transmissivity satisfies η ≤ 0.2, we encounter the issue with infeasible
constraints with untrusted dark counts. We recover approximately the same key rates in
Ref. [5] for most cases, but some of our lower bounds for the key rates (obtained from
maximising the dual SDP problem) in the untrusted noise scenario appear to be slightly
lower than Ref. [5]’s. To understand the gaps between our key rate upper bounds (which
are on par with Ref. [5]’s key rates) and lower bounds (see Sections 2.2.5 and 4.4.4 for the
meaning of the two bounds), we recall that our way of getting around the infeasibility issue
with untrusted noise is to relax the required precision for the constraints to be satisfied
in the numerical solver. The first-step suboptimal solution to the relaxed problem will
naturally suffer from stronger constraint violations which lead to a lower dual suboptimal
solution [2].

Notice that when the asymmetric loss parameter reaches κ = 0.3, the percentage in-
crease of our key rate relative to Ref. [5]’s is the least compared to other values of κ. This
phenomenon is also observed when we make the following choices of parameters: flag-state
photon cutoff NB ∈ {1, 2, 3, 4}, dark count probability pd ∈ {0, 10−5, 10−4}, and total
transmissivity η = 1. As our numerical data suggest, the ratio between the optimal values
of the privacy amplification terms attributed to Alice sending out 1-photon and 2-photon
signals,

r21 =
minρ2AB∈S2

D(G(ρ2
AB)||Z(G(ρ2

AB)))

minρ1AB∈S1
D(G(ρ1

AB)||Z(G(ρ1
AB)))

, (4.38)

reaches its smallest value when κ ≈ 0.3. This can be interpreted as the amount of pri-
vate information carried by 2-photon signals relative to the amount carried by 1-photon
signals is the least when κ ≈ 0.3, which corresponds to the points with the least key rate
improvement.

As a remark, the optimal signal intensities |α̃opt|2’s for Ref. [5]’s optimal key rates
(corresponding to Equation (6) in Ref. [5]), which we compare with in Figure 4.5, are
slowly decreasing as η increases. They satisfy |α̃opt|2 ≤ min{1, |αopt|2} where |αopt|2 is the
corresponding optimal intensity of our analysis as plotted in Figure 4.4(b). This means
that Ref. [5]’s optimal signal intensity is always smaller than our optimal intensity |αopt|2.
It is also true that Ref. [5]’s optimal intensity increases as κ reduces for all tested values
of η.

In the post-processing view, the goal is to determine the amount of key reduction from
privacy amplification that guarantees a secure final key for a given set of experimental
parameters. Particularly, in the case where the attenuation of the laser has already been
set to Ref. [5]’s optimal intensity for a chosen set of parameters, we compare the privacy
amplification term from our analysis with the one from Ref. [5]’s. To see this, we first show
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in Figure 4.6 that our method still gives higher key rates than Ref. [5]’s in the low-loss
regime (η > 0.15) even when our signal intensities are set to Ref. [5]’s. We then make
the connection between this result and the difference in privacy amplification with two
observations: 1) the probability of passing post-selection ppass is equal for both methods
and 2) the costs of error correction are approximately equal when the same signal intensity
is used in both approaches. It follows that the difference in key rates translates to the
difference in the privacy amplification terms in the key rate formula. Thus, our method
requires less key reduction from privacy amplification compared to Ref. [5] for low-loss
scenarios. This allows us to extract more secret key out of these unbalanced protocols
than previously thought.
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Figure 4.6: Percentage change in key rates comparing our lower bounds for key rates per
clock cycle evaluated at Ref. [5]’s optimal α̃opt with Ref. [5]’s optimal key rates versus total
transmissivity η. We label the changes for trusted (untrusted) dark counts with solid
(dotted) lines. A positive change means that our key rate is higher.

4.6.2 Trusted loss

We now turn to study the effect of trusted loss on the key rates. Previously, we assume
that the quantum channel contributes completely to the total loss. However, if we know
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that a certain part of the total loss is caused by some trusted components (e.g. Bob’s
detectors), the key rate can be improved since the channel loss is effectively smaller. The
key rate improvement has already been shown in both active and passive BB84 protocol
[8] where the detection efficiency of the receiver’s detectors is assumed to be beyond Eve’s
control. We will present a similar behaviour of the key rates of this protocol under different
trusted loss conditions.

We fix the total transmissivity to be η = 0.1 and assume dark counts to be trusted, and
then we vary the detection efficiency of Bob’s trusted detectors ηdet. Indeed, Figure 4.7(a)
shows that the lower bound of our optimal key rate increases with the proportion of the
trusted loss component coming from Bob’s detectors to the total loss, which takes the
form 1−ηdet

1−η . The optimal mean photon numbers corresponding to the optimal key rates

are displayed in Figure 4.7(b).

To summarise this section, we report a significant gain in key rates in the low-loss regime
(<10 dB) with our analysis. To be precise, with our security analysis, higher key rates can
be obtained when the signal intensities are set to our optimal and Ref. [5]’s optimal values.
We emphasise that the reported improvement can be attained without any modification
to the experimental setup. Lastly, we show that the key rates can be increased if we know
that the detection inefficiency contributes a considerable amount to the total loss.
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Figure 4.7: Assuming trusted dark counts, (a) our lower bounds for key rates and (b) the
mean photon numbers plotted against the proportion (in percentage) of the trusted loss
coming from the detection inefficiency of Bob’s detectors to a fixed total loss corresponding
to total transmissivity η = 0.1.
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Chapter 5

Conclusion and Outlook

In this thesis, we reviewed all the mathematical details that allow us to understand the
QKD security proof framework and how squashing models can be an important tool in
QKD security analyses. In Chapter 3, we proved the unconditional asymptotic security
under the usage of a generic squashing model formally for the first time. Moreover, we
discuss the flag-state squashing model in a more general setting than when it was first
introduced by Zhang et al. [8], and proved rigorously that the associated squashing map is
a quantum channel for an infinite-dimensional input Hilbert space. We pointed out that
lower bounding the weight of the preserved subspace in a flag-state squashing model is
essential for the squashing map to preserve some degree of entanglement. Subsequently, we
specialised in the case where the POVM is block-diagonal in the Fock basis and described
the method of using any observable that has a minimum observed value increasing with the
restricted detection photon number. Since the existences of all known squashing models
[3, 47, 48, 43, 8] are proved under the condition that the POVM is block-diagonal, it is
still an open problem whether a general squashing model that is applicable to all kinds of
QKD protocols, particularly continuous-variable protocols, exists or not.

In Chapter 4, we provide a new numerical security proof for the unbalanced phase-
encoded BB84 protocol. Using the newly developed flag-state squashing model [8], we are
able to derive additional private information from the multi-photon components of the
signal states. We compare our key rates with the key rates proved in Ref. [5] under the
same simulation parameters and show that our analysis results in significantly higher key
rates in the low-loss regime. In the design view, we find that a balanced protocol (κ = 1)
gives a higher key rate than an unbalanced protocol so that a design cannot take advantage
of an artificial induction of asymmetry. In the post-processing view, our method requires
less key reduction from privacy amplification compared to Ref. [5] for low-loss cases. We
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prove that our key rates are still better than Ref. [5]’s even when their optimal mean
signal photon numbers are used. Hence, any experiments that are already implementing
the optimal settings of Ref. [5] can profit from our higher key rates. We also explore the
advantage of characterising the receiver’s detection inefficiency as a trusted loss, which is
not allowed by Refs. [4, 5]’s proof technique. Our results suggest that the key rate can be
improved when the proportion of trusted loss due to detection inefficiency to the total loss
is significant.

We conclude here by pointing out some future directions of investigation related to
the work described in Chapter 4: It is important to find a formal way of incorporating
untrusted dark counts into the security analysis without leading to unphysical constraints.
As mentioned in Section 4.4.2, to extend our analysis to the use of a finite number of decoy
states, one must consider the dependence among different feasible conditional state sets
when handling the privacy amplification term. Finally, some of our proof techniques can
be transferred to a finite-key analysis. It would be worth comparing the key rates from a
finite-key analysis [66] with the asymptotic key rates reported here.

76



References

[1] Nicky Kai Hong Li and Norbert Lütkenhaus, “Improving key rates of the unbal-
anced phase-encoded BB84 protocol using the flag-state squashing model,” (2020),
arXiv:2007.08662 [quant-ph] .

[2] Adam Winick, Norbert Lütkenhaus, and Patrick J. Coles, “Reliable numerical key
rates for quantum key distribution,” Quantum 2, 77 (2018).

[3] Normand J. Beaudry, Tobias Moroder, and Norbert Lütkenhaus, “Squashing models
for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601
(2008).

[4] Agnes Ferenczi, Varun Narasimhachar, and Norbert Lütkenhaus, “Security proof of
the unbalanced phase-encoded Bennett-Brassard 1984 protocol,” Phys. Rev. A 86,
042327 (2012).

[5] Satoshi Sunohara, Kiyoshi Tamaki, and Nobuyuki Imoto, “Blind post-processing for
the unbalanced BB84,” (2013), arXiv:1302.1701 [quant-ph] .

[6] Peter W. Shor, “Algorithms for quantum computation: discrete logarithms and fac-
toring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science
(1994) pp. 124–134.

[7] Charles H. Bennett and Gilles Brassard, “Quantum cryptography: Public key distri-
bution and coin tossing,” Theoretical Computer Science 560, 7–11 (2014).

[8] Yanbao Zhang, Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus,
“Security proof of practical quantum key distribution with detection-efficiency mis-
match,” (2020), arXiv:2004.04383 [quant-ph] .

[9] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition (Cambridge University Press, 2010).

77

http://arxiv.org/abs/2007.08662
http://dx.doi.org/10.22331/q-2018-07-26-77
http://dx.doi.org/10.1103/PhysRevLett.101.093601
http://dx.doi.org/10.1103/PhysRevLett.101.093601
http://dx.doi.org/10.1103/PhysRevA.86.042327
http://dx.doi.org/10.1103/PhysRevA.86.042327
http://arxiv.org/abs/1302.1701
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://arxiv.org/abs/2004.04383
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667


[10] Vern Paulsen, “Lecture notes in operator algebra methods in QIT,” https://www.

math.uwaterloo.ca/~vpaulsen/OpAlgQIT.pdf (2020).

[11] John Watrous, The Theory of Quantum Information (Cambridge University Press,
2018).

[12] Walter Rudin, Principles of Mathematical Analysis , International series in pure and
applied mathematics (McGraw-Hill, 1976).

[13] Walter Rudin, Real and Complex Analysis, 3rd Ed., Mathematics series (McGraw-Hill,
1987).

[14] Tailen Hsing and Randall Eubank, “Compact operators and singular value decompo-
sition,” in Theoretical Foundations of Functional Data Analysis, with an Introduction
to Linear Operators (John Wiley Sons, Ltd, 2015) Chap. 4, pp. 91–128.

[15] Maxim Raginsky, “Radon–Nikodym derivatives of quantum operations,” Journal of
Mathematical Physics 44, 5003–5020 (2003).

[16] Michael Horodecki, Peter W. Shor, and Mary Beth Ruskai, “Entanglement breaking
channels,” Reviews in Mathematical Physics 15, 629–641 (2003).

[17] Elliott H. Lieb and Mary Beth Ruskai, “Proof of the strong subadditivity of quantum-
mechanical entropy,” Journal of Mathematical Physics 14, 1938–1941 (1973).

[18] Lin, Jie, Security Proofs for Quantum Key Distribution Protocols by Numerical Ap-
proaches, Master’s thesis, University of Waterloo (2017).

[19] Renato Renner, Security of Quantum Key Distribution, Ph.D. thesis, ETH Zurich
(2005), arXiv:quant-ph/0512258 [quant-ph] .

[20] Charles H. Bennett, Gilles Brassard, and N. David Mermin, “Quantum cryptography
without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[21] Frédéric Grosshans, Nicolas J. Cerf, Jérôme Wenger, Rosa Tualle-Brouri, and Philippe
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Appendix A

Explicit Form of Dark Count
Post-Processing

In this appendix, we will explicitly show the action of the classical post-processing map P
for simulating the effect of dark counts as mentioned in Section 4.3.4. We now list the new
POVM elements after the map P as follows.

• Post-processed no-click POVM element:

P φB
0 = (1− pd)6 F φB

0 . (A.1)

• Post-processed single-click POVM elements:

P φB
t1 = (1− pd)4(F φB

t1 + (1− (1− pd)2)F φB
0 ), (A.2)

P φB
t3 = (1− pd)4(F φB

t3 + (1− (1− pd)2)F φB
0 ), (A.3)

P φB
2 = (1− pd)5(F φB

2 + pd F
φB
0 ), (A.4)

P φB
5 = (1− pd)5(F φB

5 + pd F
φB
0 ). (A.5)

• Post-processed double-click POVM elements:

P φB
t1,t3 = (1− pd)2{F φB

t1,t3 + [1− (1− pd)2](F φB
t1 + F φB

t3 ) + [1− (1− pd)2]2 F φB
0 },

(A.6)

P φB
2,5 = (1− pd)4[F φB

2,5 + pd(F
φB
2 + F φB

5 ) + p2
d F

φB
0 ], (A.7)
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P φB
t1,2

= (1− pd)3{F φB
t1,2

+ pdF
φB
t1 + [1− (1− pd)2]F φB

2 + pd[1− (1− pd)2]F φB
0 },

(A.8)

P φB
t1,5

= (1− pd)3{F φB
t1,5

+ pdF
φB
t1 + [1− (1− pd)2]F φB

5 + pd[1− (1− pd)2]F φB
0 },

(A.9)

P φB
t3,2

= (1− pd)3{F φB
t3,2

+ pdF
φB
t3 + [1− (1− pd)2]F φB

2 + pd[1− (1− pd)2]F φB
0 },

(A.10)

P φB
t3,5

= (1− pd)3{F φB
t3,5

+ pdF
φB
t3 + [1− (1− pd)2]F φB

5 + pd[1− (1− pd)2]F φB
0 }.

(A.11)

• Post-processed triple-click POVM elements:

P φB
t1,t3,2

= (1− pd){F φB
t1,t3,2

+ pdF
φB
t1,t3 + [1− (1− pd)2](F φB

t1,2
+ F φB

t3,2
) (A.12)

+ pd[1− (1− pd)2](F φB
t1 + F φB

t3 ) + [1− (1− pd)2]2F φB
2 + pd[1− (1− pd)2]2F φB

0 },

P φB
t1,t3,5

= (1− pd){F φB
t1,t3,5

+ pdF
φB
t1,t3 + [1− (1− pd)2](F φB

t1,5
+ F φB

t3,5
) (A.13)

+ pd[1− (1− pd)2](F φB
t1 + F φB

t3 ) + [1− (1− pd)2]2F φB
5 + pd[1− (1− pd)2]2F φB

0 },

P φB
t1,2,5

= (1− pd)2{F φB
t1,2,5

+ pd(F
φB
t1,2

+ F φB
t1,5

) + [1− (1− pd)2]F φB
2,5 + p2

dF
φB
t1

+ pd[1− (1− pd)2](F φB
2 + F φB

5 ) + p2
d[1− (1− pd)2]F φB

0 },
(A.14)

P φB
t3,2,5

= (1− pd)2{F φB
t3,2,5

+ pd(F
φB
t3,2

+ F φB
t3,5

) + [1− (1− pd)2]F φB
2,5 + p2

dF
φB
t3

+ pd[1− (1− pd)2](F φB
2 + F φB

5 ) + p2
d[1− (1− pd)2]F φB

0 }.
(A.15)

• Post-processed all-click POVM elements:

P φB
t1,t3,2,5

= F φB
t1,t3,2,5

+ pd(F
φB
t1,t3,2

+ F φB
t1,t3,5

) + [1− (1− pd)2](F φB
t1,2,5

+ F φB
t3,2,5

)

+ pd[1− (1− pd)2](F φB
t1,2

+ F φB
t1,5

+ F φB
t3,2

+ F φB
t3,5

) + p2
d F

φB
t1,t3 + [1− (1− pd)2]2 F φB

2,5

+ p2
d[1− (1− pd)2](F φB

t1 + F φB
t3 ) + pd[1− (1− pd)2]2(F φB

2 + F φB
5 )

+ p2
d[1− (1− pd)2]2F φB

0 . (A.16)

It can be easily checked that the POVM elements above from (A.1) to (A.16) for a fixed
φB sums to p(φB)1B .
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Appendix B

Derivation of the lower bound for the
weight of (n ≤ NB)-photon subspace

We aim at lower bounding the weight of the (n ≤ NB)-photon signal subspace, p(n ≤ NB),
with Bob’s observed statistics. In this appendix, we use the cross-click probability to derive
a lower bound for p(n ≤ NB) in the following steps. The cross-click probability for any
signal satisfies

p(cc) =

NB∑
n=0

p(n)p(cc|n) +
∞∑

n=NB+1

p(n)p(cc|n)

≥
NB∑
n=0

p(n)pmin(cc|n) +
∞∑

n=NB+1

p(n)pmin(cc|n)

≥ p(n ≤ NB)Cmin
n≤NB + [1− p(n ≤ NB)]Cmin

n>NB

= Cmin
n>NB

− p(n ≤ NB)(Cmin
n>NB

− Cmin
n≤NB). (B.1)

In the second line, pmin(cc|n) denotes the minimal cross-click probability given that Bob
receives an n-photon signal. In the last two lines, we define p(n ≤ NB) :=

∑NB
n=0 p(n),

Cmin
n≤NB := min0≤n≤NB pmin(cc|n) and Cmin

n>NB
:= minn>NB pmin(cc|n). If pmin(cc|n) is mono-

tonically increasing with n, then Cmin
n≤NB = pmin(cc|0) and Cmin

n>NB
= pmin(cc|NB + 1). If we

also have strict inequality Cmin
n>NB

> Cmin
n≤NB , then we can turn the inequality in (B.1) into

the desired lower bound

p(n ≤ NB) ≥ 1− p(cc)− pmin(cc|0)

pmin(cc|NB + 1)− pmin(cc|0)
=: Bmin

n≤NB . (B.2)
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We will show that the minimum cross-click probabilities indeed satisfy the monotonicity
and the strict inequality conditions.

To obtain the minimum conditional probabilities pmin(cc|0) and pmin(cc|NB + 1), we
start by considering the new POVM elements after classical post-processing due to dark
counts, which appear in Equations (A.1) – (A.7). We first group the pre-processed POVM
elements into two coarse-grained POVM elements: outside-only (t1, t3, t1&t3) and inside-
only (2, 5, 2&5). Using Equations (4.19) and (4.20), the two elements can be expressed
as

Fout =
∑

φB∈{0,π/2}

(F φB
t1,t3 + F φB

t1 + F φB
t3 ) (B.3)

=
∞∑
n=1

n∑
i=0

ξi(1− ξ)n−i|i, n− i〉〈i, n− i|, (B.4)

Fin =
∑

φB∈{0,π/2}

(F φB
2,5 + F φB

2 + F φB
5 ) (B.5)

=
∞∑
n=1

n∑
i=0

ξn−i(1− ξ)i|i, n− i〉〈i, n− i|. (B.6)

Similarly, the two coarse-grained post-processed POVM elements can be found to be

Pout =
∑

φB∈{0,π/2}

(P φB
t1,t3 + P φB

t1 + P φB
t3 ) (B.7)

=
∑
φB

{(1− pd)2{F φB
t1,t3 + [1− (1− pd)2](F φB

t1 + F φB
t3 ) + [1− (1− pd)2]2 F φB

0 } (B.8)

+ (1− pd)4[F φB
t1 + (1− (1− pd)2)F φB

0 ] + (1− pd)4[F φB
t3 + (1− (1− pd)2)F φB

0 ]}

=
∑
φB

{(1− pd)2(F φB
t1,t3 + F φB

t1 + F φB
t3 )

+ {(1− pd)2[1− (1− pd)2]2 + 2(1− pd)4[1− (1− pd)2]}F φB
0 } (B.9)

= (1− pd)2{Fout + [1− (1− pd)2][1 + (1− pd)2]F0} (B.10)

= (1− pd)2{Fout + [1− (1− pd)4]F0}, (B.11)
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Pin =
∑

φB∈{0,π/2}

(P φB
2,5 + P φB

2 + P φB
5 ) (B.12)

=
∑
φB

{(1− pd)4[F φB
2,5 + pd(F

φB
2 + F φB

5 ) + p2
d F

φB
0 ]

+ (1− pd)5(F φB
2 + pd F

φB
0 ) + (1− pd)5(F φB

5 + pd F
φB
0 )} (B.13)

=
∑
φB

{(1− pd)4(F φB
2,5 + F φB

2 + F φB
5 ) + pd(1− pd)4[pd + 2(1− pd)]F φB

0 } (B.14)

= (1− pd)4{Fin + pd(2− pd)F0}, (B.15)

where the pre-processed no-click POVM element is F0 = |0, 0〉〈0, 0|. Therefore, the post-
processed coarse-grained POVM elements for inside-only and outside-only clicks are diag-
onal in the two-mode Fock basis {|i, n − i〉 : i = 0, ..., n} for all n ∈ N. The cross-click
POVM element is

Pcc = 1B − (Pout + Pin +
∑
φB

P φB
0 ) (B.16)

which is also diagonal in the two-mode Fock basis. Since Pcc is already diagonal, it is
straightforward to find Pcc’s minimum eigenvalue restricted to the n-photon subspace,
which corresponds to the minimum cross-click probability for any n-photon input states,
analytically. For an eigenstate |i, n − i〉, the associated cross-click probability (the eigen-
value of Pcc) can be found using Equations (A.1) – (B.16) as

p(cc| |i, n− i〉) = 1− (1− pd)2 ξi(1− ξ)n−i

− (1− pd)4 ξn−i(1− ξ)i (B.17)

for n ≥ 1, and for the vacuum state |0, 0〉 to be

p(cc|0) = 1− {(1− pd)2[1− (1− pd)4] + pd(1− pd)4(2− pd) + (1− pd)6} (B.18)

= 1− (1− pd)2[1 + pd (1− pd)2(2− pd)]. (B.19)

as stated in Equation (4.28). Since there is only one eigenvalue in the vacuum subspace,
we need not minimise the conditional probability (i.e. pmin(cc|0) = p(cc|0)). We exclude
the case where the phase modulator has zero transmissivity (κ = 0), then ξ = 1

1+κ
∈ [1

2
, 1),

so the minimum cross-click probability for any (n ≥ 1)-photon input state is

pmin(cc|n) = 1− (1− pd)2 ξn − (1− pd)4 (1− ξ)n (B.20)

as stated in Equation (4.29), which is valid for all n ≥ 1. Notice that pmin(cc|n) is mono-
tonically increasing with n which agrees with our intuition that cross-click events are more
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likely with more incoming photons. If we compare the second term in (B.19) with the
second and third terms in (B.20), we see that

(1− pd)2 [1 + pd (1− pd)2(2− pd)]︸ ︷︷ ︸
≥1

≥ (1− pd)2 (ξn + (1− pd)2 (1− ξ)n)︸ ︷︷ ︸
≤1

(B.21)

which implies for all n ≥ 1, p(cc|0) ≤ pmin(cc|n).

As we further restrict the dark count probability to pd ∈ [0, 1), it is analytically straight-
forward to verify that for all n ≥ 1 and ξ ∈ [1

2
, 1),

p(cc|0) ≤ pmin(cc|n) < pmin(cc|n+ 1), (B.22)

so the monotonicity and the strict inequality conditions for (B.2) to hold are satisfied. The
inequality (B.2) is of the same form as (4.27) in Section 4.4.1 except that the observed
cross-click probability in (4.27) is conditioned on Alice’s signal choice x.

We now move on to prove that the lower bound in the inequality (B.2) is tighter than
the lower bound derived by Narasimhachar [44] for no dark counts. We use the fact that

a− c
b− c

≤ a

b
, if 0 ≤ c ≤ a ≤ b (B.23)

and all probabilities are positive to show that

p(cc)− p(cc|0)

pmin(cc|NB + 1)− p(cc|0)
≤ p(cc)

pmin(cc|NB + 1)
. (B.24)

With (4.29), we can further show that

pmin(cc|NB + 1) ≥ 1− ξNB+1 − (1− ξ)NB+1 . (B.25)

Thus, the lower bound in (B.2) is larger than the lower bound derived by Narasimhachar
[44] which is the expression in (4.29) for a zero dark-count rate as in

p(n ≤ NB) ≥ Bmin
n≤NB ≥ 1− p(cc)

1− ξNB+1 − (1− ξ)NB+1
. (B.26)

The secure key rate should only reduce as we loosen the lower bound for the (n ≤ NB)-
photon subspace since the flag-state squashing map can be more entanglement-breaking
and so Eve could gain more information from purification. As a result, we can use the
dark-count-free lower bound blindly on Bob’s measurement data to obtain a secure key
rate even if the dark-count rate is assumed to be zero.
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Appendix C

Explicit Form of ppass and H(Z|B)

For the unbalanced phase-encoded BB84 protocol described in Section 4.2, the passing
post-selection probability that appears in the key rate formula (2.44) can be found as

ppass =
∑
b∈K

p(x = 0, b, φB = 0) + p(x = 1, b, φB =
π

2
)

+ p(x = 2, b, φB = 0) + p(x = 3, b, φB =
π

2
), (C.1)

where K denotes Bob’s post-selected outcomes. This factor takes into account the basis
sifting between Alice and Bob as well.

The error correction term for the key rate formula (if we ignore the heuristic classical
error-correction efficiency factor fEC) is the entropy of Alice’s key register Z conditioned
on Bob’s register B for his post-selected outcomes

H(Z|B) = −
1∑
z=0

∑
b∈K

∑
φB∈{0,π2 }

p(z, b, φB) log
p(z, b, φB)

p(b, φB)
(C.2)

where p(z, b, φB) are normalised probabilities

p(z = 0, b, φB = 0) = p(x = 0, b, φB = 0)/ppass , (C.3)

p(z = 0, b, φB =
π

2
) = p(x = 1, b, φB =

π

2
)/ppass , (C.4)

p(z = 1, b, φB = 0) = p(x = 2, b, φB = 0)/ppass , (C.5)

p(z = 1, b, φB =
π

2
) = p(x = 3, b, φB =

π

2
)/ppass . (C.6)
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Appendix D

Proof of Decomposing the Privacy
Amplification term

In this appendix, we will prove the decomposition of the privacy amplification term for the
key rate equation mentioned in Section 4.4.2. In Section 4.3.2, Equations (4.8), (4.11) and
(4.12) together describe the entangled pure state that Alice prepares to be

|Ψ〉AASA′ =
∑
x

√
px |x〉A ⊗

∞∑
ñ=0

√
pñ |ñ〉AS ⊗ |sxñ〉A′

where we simplify the notation here with pñ := pñ( α√
ξ
). Since the phase-randomised coher-

ent signal states are block-diagonal in total photon number basis in Eve’s point of view,
Eve can, without loss of generality, perform QND measurements to determine the total
photon number in the signal states. This allows her to keep an extra classical register that
tells her the total number of photons in the signal without degrading her eavesdropping
power as we will see below.

To see why allowing Eve to measure the total photon number in the signal state will
not affect our security statement, we first consider the most general scenario where we do
not assume anything about Eve’s attack. By Stinespring’s dilation theorem, the action of
a quantum channel on the signal state can be described by an isometry VA′→BE that takes
Alice’s signal system, A′, to Bob’s system, B, and Eve’s purifying system, E, such that
the pure state shared among all parties is

|Ψ̃〉AASBE =
∑
x

√
px |x〉A ⊗

∞∑
ñ=0

√
pñ |ñ〉AS ⊗ VA′→BE |sxñ〉A′ .
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Eve’s general reduced state conditioned on Alice’s measurement outcome x is

ρxE =
∞∑
ñ=0

pñ TrB(VA′→BE |sxñ〉〈sxñ| V
†
A′→BE). (D.1)

In the alternative scenario, we assume that Eve performs the QND measurement and
could perform adaptive attack according to her knowledge of the photon number. Let
Eve’s purifying system of the signal be E and the extra register for recording the photon
number in Alice’s signal be Ẽ. Again by Stinespring’s dilation theorem, one can describe
the action of a quantum channel on the signal state by an isometry VA′→BEẼ which takes
the form

VA′→BEẼ =
∞∑
ñ=0

V ñ
A′→BE ΠA′

ñ ⊗ |ñ〉Ẽ (D.2)

where V ñ
A′→BE is Eve’s isometry for purifying Bob’s quantum state given that she learns

the total photon number ñ and ΠA′

ñ is a projector which projects onto the ñ-total photon
subspace of the signal system A′. The shared pure state between Alice, Bob and Eve before
any announcements is

|Ψ〉AASBEẼ =
∑
x

√
px |x〉A ⊗

∞∑
ñ=0

√
pñ |ñ〉AS ⊗ V ñ

A′→BE |sxñ〉A′ ⊗ |ñ〉Ẽ (D.3)

and Eve’s reduced state conditioned on Alice’s measurement outcome x is

ρx
EẼ

=
∞∑
ñ=0

pñ TrB[V ñ
A′→BE |sxñ〉〈sxñ| (V ñ

A′→BE)†]⊗ |ñ〉〈ñ|Ẽ . (D.4)

If we further trace out Eve’s register Ẽ, her reduced state ρxE clearly contains the general
attack in (D.1) where Eve performs the same purification (i.e. V ñ

A′→BE = VA′→BE) for all
ñ ∈ N. Therefore, the assumption that Eve can measure the photon number of the signal
and the pure state shared by all parties to be (D.3) will not affect the security statement
of our proof.

To decompose the relative entropy in Equation (2.44), we can assume the pure state
shared by all parties to be (D.3) as argued above. Hence, the state shared by Alice and
Bob is

ρAASB =
∑
x,y

√
pxpy |x〉〈y|A ⊗

∞∑
ñ=0

pñ |ñ〉〈ñ|AS ⊗ Φ(|sxñ〉〈s
y
ñ|), (D.5)
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where the quantum channel between Alice and Bob is defined as Φ(·) := TrE(VA′→BE ·
V †A′→BE). If we reorder the positions of the three registers in the tensor product and define
the conditional state ρñAB =

∑
x,y

√
pxpy |x〉〈y|A ⊗ Φ(|sxñ〉〈s

y
ñ|), the state in (D.5) can be

expressed as

ρAASB =
∞∑
ñ=0

pñ |ñ〉〈ñ|AS ⊗ ρñAB . (D.6)

We will utilise this block-diagonal structure to decompose the relative entropy

D(G(ρAASB)||Z(G(ρAASB)))

in the following steps.

According to the definitions of G and Z maps stated in Equations (4.30) – (4.33), both
maps act trivially on Alice’s shield system AS (i.e. apply 1AS to the input state). Hence,
the unnormalised states G(ρAASB) and Z(G(ρAASB)) are also block-diagonal as in

N (ρAASB) =
∞∑
ñ=0

pñ |ñ〉〈ñ|AS ⊗N (ρñAB) (D.7)

for N to be the substitute for the maps G and Z ◦ G. Taking the matrix logarithm gives
us

logN (ρAASB) =
∞∑
ñ=0

|ñ〉〈ñ|AS ⊗ [(log pñ)1 + logN (ρñAB)]. (D.8)

By the definition of relative entropy, we decompose the PA term into

D(G(ρAASB)||Z(G(ρAASB)))

=Tr{G(ρAASB) [log G(ρAASB)− logZ(G(ρAASB))]}

=
∞∑
ñ=0

pñ Tr{G(ρñAB)
[
log G(ρñAB)− logZ(G(ρñAB)

]
}

=
∞∑
ñ=0

pñ D(G(ρñAB)||Z(G(ρñAB))), (D.9)

which completes the proof.
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Appendix E

Justifications for speeding up
numerical optimisations

In this appendix, we will cover all three techniques for speeding up the numerical optimi-
sation, which were mentioned in Section 4.4.4.

E.1 Reducing the number of variables

To speed up the optimisation for the problem specified in (4.37), we make use of the
structure of the flag-state squashed state. The joint state shared between Alice and Bob
ρAB can be expressed as

ρAB =

dA∑
i,j=1

∞∑
n,m=1

ρn,mi,j Ei,j ⊗ En,m , (E.1)

where Ei,j = |i〉〈j| with {|i〉} being an orthonormal basis and ρn,mi,j ∈ C ∀ i, j, n,m. Recall
that the flag-state squashing map takes the form of (4.25):

Λ(ρ) = Π≤NBρΠ≤NB +
∑
k

Tr(Fk Π>NB ρ Π>NB)|k〉〈k|, (E.2)
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and since the dimension of the 2-mode (n≤NB)-photon subspace is Tr(Πn≤NB) = (NB+1)(NB+2)
2

,
the joint state after squashing can be written as

ρ̃AB = (1A ⊗ Λ)ρAB

=

dA∑
i,j=1

∞∑
n,m=1

ρn,mi,j Ei,j ⊗ Λ(En,m)

=

dA∑
i,j=1

Ei,j ⊗

Tr(Πn≤NB )∑
n,m=1

ρn,mi,j En,m +

MB∑
k=1

cki,jẼk,k

 (E.3)

= (1A ⊗ Πn≤NB)ρAB(1A ⊗ Πn≤NB)

+

MB∑
k=1

(
dA∑
i=1

cki,iEi,i +

dA∑
i<j

cki,jEi,j + (cki,j)
∗Ej,i

)
⊗ Ẽk,k (E.4)

where we define Ẽk,l = ETr(Πn≤NB )+k, Tr(Πn≤NB )+l , cki,j = Tr[Pk (
∑∞

n,m=Tr(Πn≤NB )+1 ρ
n,m
i,j En,m)],

and MB to be the number of POVM elements. Since ρAB is Hermitian, we also know that

(ρn,mi,j )∗ = ρm,nj,i and (cki,j)
∗ = ckj,i . (E.5)

Therefore, we only have to optimize over (dA Tr(Πn≤NB))2 + d2
A × MB real parameters

instead of [dA(Tr(Πn≤NB) + MB)]2 real parameters if we simply take the squashed state
as a dA(Tr(Πn≤NB) + MB)-dimensional density matrix before imposing any optimisation
constraints. By reducing the number of parameters, we observe a significant speedup in
the optimisation (for dA = 4 and MB = 28).

E.2 Speedup in checking constraints

In the optimisation problem (4.37), to impose each of the constraints require explicit eval-
uation of the inner product between the updated squashed state ρ and each constraint
matrix Γµ. As the squashed state and all the constraint matrices in (4.37) admit a block-
diagonal structure, we only need to consider the matrix elements of ρ and {Γµ} that are
contained in these blocks to calculate the inner product. We will show that by defining
new optimisation variables of smaller dimensions, the optimisation problem (4.37) can be
restructured so that each constraint can be checked faster. By doing so, the optimisation
problem can be solved quicker.
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Let Γ be a squashed constraint matrix, which is Hermitian and can be expressed in the
squashed basis as

Γ =

dA∑
i,j=1

Ei,j ⊗

Tr(Πn≤NB )∑
n,m=1

Γn,mi,j En,m +

MB∑
k,l=1

Γk,li,j Ẽk,l

 (E.6)

where Γn,mi,j ∈ C, and satisfy (Γn,mi,j )∗ = Γm,nj,i ∀ i, j, n,m. We can split Tr(Γρ̃AB) into three
terms as in

Tr(Γρ̃AB) =

dA∑
i,j=1

Tr(Π≤NB )∑
n,m=1

Γn,mi,j ρ
m,n
j,i +

MB∑
k=1

Γk,ki,j c
k
j,i


= Tr[Γρ̃AB(1A ⊗ Π≤NB)] +

MB∑
k=1

(
dA∑
i=1

Γk,ki,i c
k
i,i +

dA∑
i>j

[Γk,ki,j c
k
j,i + (Γk,ki,j c

k
j,i)
∗]

)
(E.7)

= Tr(Γρ≤NB) +

MB∑
k=1

(
dA∑
i=1

Γk,ki,i c
k
i,i + 2

dA∑
i>j

Re(Γk,ki,j c
k
j,i)

)
(E.8)

= Tr(Γρ≤NB) + 〈~Γflag|~cdiag〉+ 2Re(〈~Γflag|~coff〉), (E.9)

where we define ρn≤NB = (1A⊗Πn≤NB) ρAB (1A⊗Πn≤NB), |~Γflag〉 =
∑dA

i,j=1

∑MB

k=1 Γk,ki,j |i〉 ⊗
|j〉 ⊗ |k〉, |~cdiag〉 =

∑dA
i=1

∑MB

k=1 c
k
i,i|i〉 ⊗ |i〉 ⊗ |k〉 and |~coff〉 =

∑dA
i<j

∑MB

k=1 c
k
i,j|i〉 ⊗ |j〉 ⊗ |k〉.

The expression (E.9) requires much fewer calculations in tracing the matrix product in the

flag-state subspace (i.e. span{Ẽk,l}).
Define a function R(σ) = D(G(σ)||Z(G(σ))) and an operator-valued functionM which

maps ρn≤NB , |~cdiag〉 and |~coff〉 to the density matrix ρ̃AB of the form in (E.4) where the
coefficients can be retrieved from cki,i = 〈i, i, k|~cdiag〉 and cki,j = 〈i, j, k|~coff〉 with |i, j, k〉 :=
|i〉 ⊗ |j〉 ⊗ |k〉. The convex optimisation problem can be restructured into

minimise R (M (ρn≤NB , |~cdiag〉, |~coff〉))
subject to

Tr(Γµ ρn≤NB) + 〈~Γµ,flag|~cdiag〉+ 2Re(〈~Γµ,flag|~coff〉) = γµ ,

Tr(Γ̃ν ρn≤NB) + 〈~̃Γν,flag|~cdiag〉+ 2Re(〈~̃Γν,flag|~coff〉) ≥ γ̃ν ,

M (ρn≤NB , |~cdiag〉, |~coff〉) ≥ 0, (E.10)

where the free variables for the numerical optimisation are ρn≤NB ∈ D(CdATr(Πn≤NB )),
|~cdiag〉 ∈ RdAMB , and |~coff〉 ∈ CdA(dA−1)MB/2.
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Since the equality and inequality constraints (133 constraints in (4.37)) have to be
checked for each run of the optimisation, reducing the time and memory used in matrix
multiplications of {Γµ} (and {Γ̃ν}) with the squashed state ρ̃AB substantially improves the
runtime of the whole key rate calculation.

E.3 Speedup in evaluating D(G(ρAB)||Z(G(ρAB)))
Recall the definitions of the G and Z maps as stated in Equations (4.30) – (4.33). Using
the form of the shared state ρAB specified in Equation (E.3) with i, j ∈ {0, 1, 2, 3} and
MB = 28, the state G(ρAB) can be expanded into

G(ρAB) =
[
(|0〉〈0|R ⊗ EA

0,0)⊗ σ0,0

+ (|0〉〈1|R ⊗ EA
0,2)⊗ σ0,2

+ (|1〉〈0|R ⊗ EA
2,0)⊗ σ2,0

+ (|1〉〈1|R ⊗ EA
2,2)⊗ σ2,2

]
⊗ |0〉〈0|B̃

+
[
(|0〉〈0|R ⊗ EA

1,1)⊗ σ1,1

+ (|0〉〈1|R ⊗ EA
1,3)⊗ σ1,3

+ (|1〉〈0|R ⊗ EA
3,1)⊗ σ3,1

+ (|1〉〈1|R ⊗ EA
3,3)⊗ σ3,3

]
⊗ |1〉〈1|B̃ , (E.11)

where σi,j := FBα(i)

(∑Tr(Πn≤NB )

n,m=1 ρn,mi,j En,m

)
FBα(i) + FBα(i)

(∑28
k=1 c

k
i,jẼk,k

)
FBα(i) with α(i) =

i mod 2. Apply the Z map to G(ρAB) will get

Z(G(ρAB)) =
[
(|0〉〈0|R ⊗ EA

0,0)⊗ σ0,0

+ (|1〉〈1|R ⊗ EA
2,2)⊗ σ2,2

]
⊗ |0〉〈0|B̃

+
[
(|0〉〈0|R ⊗ EA

1,1)⊗ σ1,1

+ (|1〉〈1|R ⊗ EA
3,3)⊗ σ3,3

]
⊗ |1〉〈1|B̃ . (E.12)

Since Bob’s basis announcement partitions G(ρAB) into 2 orthogonal subspaces with the
orthogonal projections and his quantum system B is further partitioned into 2 orthogonal
subspaces (i.e. (n≤NB)-photon subspace and the flag-state subspace), G(ρAB) as shown in
Equation (E.11) can be broken down into 4 orthogonal subspaces.

Restricting to the image of map G, matrices G(ρAB) and Z(G(ρAB)) can be simplified
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to

G(ρAB) =


σ0,0 σ0,2 0 0
σ2,0 σ2,2 0 0
0 0 σ1,1 σ1,3

0 0 σ1,3 σ3,3

 , (E.13)

Z(G(ρAB)) =


σ0,0 0 0 0
0 σ2,2 0 0
0 0 σ1,1 0
0 0 0 σ3,3

 . (E.14)

Recall the definition of relative entropy: D(ρ||σ) = Tr(ρ log ρ) − Tr(ρ log σ), which is
finite if ker(σ) ⊆ ker(ρ). We can restrict to non-zero subspaces and express the objective
function as in Equation (E.17) below.

Tr(G(ρAB) log G(ρAB)) =
1∑
i=0

[
Tr
(
τ≤NBi log τ≤NBi

)
+ Tr

(
τflag
i log τflag

i

)]
, (E.15)

Tr(G(ρAB) logZ(G(ρAB))) =
1∑
i=0

[
Tr
(
τ≤NBi logP(τ≤NBi )

)
+ Tr

(
τflag
i logP(τflag

i )
)]
,

(E.16)

D(G(ρAB)||Z(G(ρAB))) =
1∑
i=0

[
D
(
τ≤NBi ||P(τ≤NBi )

)
+D

(
τflag
i ||P(τflag

i )
)]

, (E.17)

τβi :=

(
σβi,i σβi,i+2

σβi+2,i σβi+2,i+2

)
, P(τβi ) :=

(
σβi,i 0

0 σβi+2,i+2

)
with β ∈ {≤ NB, flag}, (E.18)

where we define the matrices σn≤NBi,j := FBα(i)

(∑Tr(Πn≤NB )

n,m=1 ρn,mi,j En,m

)
FBα(i) and σflag

i,j :=

FBα(i)

(∑28
k=1 c

k
i,jẼk,k

)
FBα(i).

The objective function in (E.17) only requires diagonalisation and the logarithms of
the smaller matrices τβi and P(τβi ) for i ∈ {0, 1} and β ∈ {n ≤ NB, flag}. Therefore,
the expression in (E.17) can be computed much quicker than if we directly calculate the
relative entropy with the full matrices G(ρAB) and Z(G(ρAB)).
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E.4 Speedup in evaluating the perturbed objective

function

In the step of linearising the convex optimisation problem, the gradient of the objective
function has to be evaluated at the suboptimal point obtained from the first step [2]. As
pointed out in Section 3.2 of Ref. [2], the gradient is undefined if the matrix G(ρAB) is
not full rank. Besides, due to the finite numerical precision of a computer, the computed
matrix G(ρAB) may have negative eigenvalues for which the objective function is undefined.
In these cases, we perform a perturbation on the matrix G(ρAB) by applying a depolarising
channel which gives the perturbed map Gε(ρAB), as defined in Ref. [2],

Gε(ρAB) := (1− ε)G(ρAB) +
ε

d′
1d′

= (1− ε)G(ρAB) +
ε

d′
1|Im(G) +

ε

d′
1|ker(G) ,

(E.19)

where ε > 0 is the perturbation parameter and d′ = dim(G(ρAB)). Applying the Z map to
(E.19) results in

Z(Gε(ρAB)) = (1− ε)Z(G(ρAB)) +
ε

d′
1|Im(G) +

ε

d′
1|ker(G) . (E.20)

The new objective function D(Gε(ρAB)||Z(Gε(ρAB))) is the relative entropy of the two
perturbed matrices (E.19) and (E.20). We now show that the evaluation of the relative
entropy can be restricted to the image of the map G. We evaluate the matrix logarithms

log Gε(ρAB) = log
[
(1− ε)G(ρAB) +

ε

d′
1|Im(G)

]
+ log

( ε
d′
1|ker(G)

)
, (E.21)

logZ(Gε(ρAB)) = log
[
(1− ε)Z(G(ρAB)) +

ε

d′
1|Im(G)

]
+ log

( ε
d′
1|ker(G)

)
. (E.22)

and define G̃ε(ρAB) := ΠIm(G)Gε(ρAB)ΠIm(G) to obtain

D(Gε(ρAB)||Z(Gε(ρAB))) = Tr{Gε(ρAB) [log Gε(ρAB)− logZ(Gε(ρAB))]} (E.23)

= Tr{G̃ε(ρAB)[log G̃ε(ρAB)− logZ(G̃ε(ρAB))]} (E.24)

= D(G̃ε(ρAB)||Z(G̃ε(ρAB))). (E.25)

The step going from (E.23) to (E.24) comes from the fact that Equation (E.21) minus
(E.22) results in the zero operator in the kernel of map G. Now that we only have to
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consider the image of G in (E.25), we can use the decomposition described in Equation
(E.17) but with the matrices τβi and P(τβi ) replaced by τ̃βi and P(τ̃βi ) respectively, which
are defined as

τ̃βi := (1− ε)τβi +
ε

d′
(1β ⊕ 1β), (E.26)

P(τ̃βi ) := (1− ε)P(τβi ) +
ε

d′
(1β ⊕ 1β) (E.27)

with β ∈ {n ≤ NB, flag}. Since we can break down the evaluation of the perturbed objec-
tive function into calculations on restricted subspaces, the speedup described in Appendix
E.3 applies here.
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Appendix F

Simulated Statistics with a Loss-only
Channel

In this appendix, we will derive Bob’s measurement outcome probabilities from an exper-
imental simulation that has the quantum channel as a loss-only channel. Suppose that
Alice sends out the 2-mode coherent signal state of choice x (see Equation (4.9))

|ψθ=0
x (α)〉A′ = |

√
ξα,
√

1− ξe−iφxα〉. (F.1)

We ignore the phase randomisation here since it does not affect Bob’s measurement out-
come statistics. The loss-only channel is effectively a beam splitter with transmissivity η.
When it is applied to the signal state |ψθ=0

x (α)〉A′ , the output is another 2-mode coherent
state with a reduced overall amplitude

|α′, β〉 := |
√
ηξα,

√
η(1− ξ)e−iφxα〉. (F.2)

We first calculate the overlap between the 2-mode coherent state |α′, β〉 with a general
4-mode (in spatial-temporal modes before Bob’s detectors) state

〈α′, β|(b†t1)
i(b†t3)

j(b†2,φB)k(b†5,φB)m|0, 0〉

=〈α′, β|(
√
ξ a†1)i(

√
1− ξ a†2)j(

√
1− ξ

2
a†1 − e−iφB

√
ξ

2
a†2)k(

√
1− ξ

2
a†1 + e−iφB

√
ξ

2
a†2)m|0, 0〉

=(
√
ξα′∗)i(

√
1− ξβ∗)j(

√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗)k(

√
1− ξ

2
α′∗ + e−iφB

√
ξ

2
β∗)m〈α′, β|0, 0〉

=(
√
ξα′∗)i(

√
1− ξβ∗)j(

√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗)k(

√
1− ξ

2
α′∗ + e−iφB

√
ξ

2
β∗)me−

|α′|2+|β|2
2

(F.3)
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With the expression (F.3), we can derive all of Bob’s dark count free outcome prob-
abilities conditioned on Alice chooses signal x in the following:

• Ideal no-click probability:

p(0|x) = |〈α′, β|0, 0〉|2 = e−(|α′|2+|β|2) = e−(ηξ+η(1−ξ))|α|2 = e−η|α|
2

(F.4)

• Ideal single-click probabilities:

p(2, φB|x) = 〈α′, β|

(
p(φB)

∞∑
n=1

1

n!
(b†2,φB)n|0, 0〉〈0, 0|bn2,φB

)
|α′, β〉

= p(φB)
∞∑
n=1

1

n!
|〈α′, β|(b†2,φB)n|0, 0〉|2

= p(φB)
∞∑
n=1

1

n!

∣∣∣∣∣
(√

1− ξ
2

α′∗ − e−iφB
√
ξ

2
β∗

)n

e−
|α′|2+|β|2

2

∣∣∣∣∣
2

= p(φB)e−η|α|
2
∞∑
n=1

1

n!

∣∣∣∣∣
√

1− ξ
2

eiφBα′∗ −
√
ξ

2
β∗

∣∣∣∣∣
2n

= p(φB)e−η|α|
2

exp

∣∣∣∣∣
√

1− ξ
2

eiφB
√
ηξα∗ −

√
ξ

2

√
η(1− ξ)eiφxα∗

∣∣∣∣∣
2

− 1


= p(φB)e−η|α|

2

[
exp

(
ηξ(1− ξ)

2
|α|2|eiφB − eiφx|2

)
− 1

]
= p(φB)e−η|α|

2

[
exp

(
ηξ(1− ξ)

2
|α|2(2− ei(φB−φx) − e−i(φB−φx))

)
− 1

]
= p(φB)e−η|α|

2

(eηξ(1−ξ)|α|
2(1−cos(φB−φx)) − 1). (F.5)

Similarly, by turning the minus sign in b†2,φB into a plus in b†5,φB gets us

p(5, φB|x) = p(φB)e−η|α|
2
∞∑
n=1

1

n!

∣∣∣∣∣
√

1− ξ
2

eiφBα′∗ +

√
ξ

2
β∗

∣∣∣∣∣
2n

= p(φB)e−η|α|
2

[
exp

(
ηξ(1− ξ)

2
|α|2|eiφB + eiφx|2

)
− 1

]
= p(φB)e−η|α|

2

(eηξ(1−ξ)|α|
2(1+cos(φB−φx)) − 1), (F.6)
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p(t1|x) = 〈α′, β|

(
∞∑
n=1

1

n!
(b†t1)

n|0, 0〉〈0, 0|bnt1

)
|α′, β〉

= e−(|α′|2+|β|2)

∞∑
n=1

(ξ|α′|2)n

n!

= e−η|α|
2

(eξ|α
′|2 − 1) = e−η|α|

2

(eηξ
2|α|2 − 1), (F.7)

p(t3|x) = 〈α′, β|

(
∞∑
n=1

1

n!
(b†t3)

n|0, 0〉〈0, 0|bnt3

)
|α′, β〉

= e−(|α′|2+|β|2)

∞∑
n=1

(1− ξ)n |β|
2n

n!

= e−η|α|
2

(e(1−ξ)|β|2 − 1) = e−η|α|
2

(eη(1−ξ)2|α|2 − 1). (F.8)

• Ideal double-click probabilities:

p(t1, t3|x) =
∞∑
n=2

n−1∑
k=1

1

(n− k)!k!
|〈α′, β|(b†t1)

n−k(b†t3)
k|0, 0〉|2

= e−η|α|
2
∞∑
n=2

1

n!

n−1∑
k=1

(
n

k

)
(ξ|α′|2)n−k[(1− ξ)|β|2]k

= e−η|α|
2
∞∑
n=2

1

n!
[(ξ|α′|2 + (1− ξ)|β|2)n − (ξ|α′|2)n − ((1− ξ)|β|2)n]

= e−η|α|
2
∞∑
n=2

1

n!
(η|α|2)n[(ξ2 + (1− ξ)2)n − ξ2n − (1− ξ)2n]

= e−η|α|
2

(eη|α|
2(ξ2+(1−ξ)2) − eη|α|2ξ2 − eη|α|2(1−ξ)2 + 1), (F.9)

〈α′, β|(b†2,φB)n−k(b†5,φB)k|0, 0〉

=

(√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗

)n−k(√
1− ξ

2
α′∗ + e−iφB

√
ξ

2
β∗

)k

e−
|α′|2+|β|2

2

=e−
η|α|2

2
(
√
ηξ(1− ξ)α∗)n√

2n

n−k∑
j=0

(
n− k
j

)
eiφB(n−k−j)(−eiφx)j

k∑
r=0

(
k

r

)
eiφB(k−r)eiφxr

=e−
η|α|2

2 (α∗
√
ηξ(1− ξ)/2)n(eiφB − eiφx)n−k(eiφB + eiφx)k, (F.10)
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p(2, 5, φB|x) =
∞∑
n=2

n−1∑
k=1

p(φB)

(n− k)!k!
|〈α′, β|(b†2,φB)n−k(b†5,φB)k|0, 0〉|2

= e−η|α|
2
∞∑
n=2

p(φB)

n!

(
ηξ(1− ξ)

2
|α|2
)n n−1∑

k=1

(
n

k

)
|eiφB − eiφx|2(n−k)|eiφB + eiφx|2k

= e−η|α|
2
∞∑
n=2

p(φB)

n!

(
ηξ(1− ξ)|α|2

)n
[2n − (1− cos(φB − φx))n − (1 + cos(φB − φx))n]

= p(φB)e−η|α|
2

[e2ηξ(1−ξ)|α|2 − eηξ(1−ξ)|α|2(1−cos(φB−φx)) − eηξ(1−ξ)|α|2(1+cos(φB−φx)) + 1],
(F.11)

〈α′, β|(b†t1)
n−k(b†2,φB)k|0〉 = (

√
ξα′∗)n−k(

√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗)ke−

|α′|2+|β|2
2

= e−
η|α|2

2

√
ξ

2n−k
√

1− ξ
2

k

(
√
ηα∗)n

k∑
r=0

(
k

r

)
eiφB(k−r)(−eiφx)r

= e−
η|α|2

2 (
√
ηα∗)n

√
ξ

2n−k
√

1− ξ
2

k

(eiφB − eiφx)k, (F.12)

p(t1, 2, φB|x) =
∞∑
n=2

n−1∑
k=1

p(φB)

(n− k)!k!
|〈α′, β|(b†t1)

n−k(b†2,φB)k|0〉|2

= e−η|α|
2
∞∑
n=2

p(φB)

n!

(
ηξ|α|2

)n n−1∑
k=1

(
n

k

)
ξn−k[(1− ξ) |e

iφB − eiφx|2

2
]k

= e−η|α|
2
∞∑
n=2

p(φB)

n!

(
ηξ|α|2

)n n−1∑
k=1

(
n

k

)
ξn−k[(1− ξ)(1− cos(φB − φx))]k

= p(φB)e−η|α|
2
∞∑
n=2

1

n!

(
ηξ|α|2

)n {(ξ + (1− ξ) cos(φB − φx))n − ξn

− [(1− ξ)(1− cos(φB − φx))]n}
= p(φB)e−η|α|

2

[eηξ(ξ+(1−ξ) cos(φB−φx))|α|2 − eηξ2|α|2 − eηξ(1−ξ)|α|2(1−cos(φB−φx)) + 1].
(F.13)

Again, by turning the minus sign in b†2,φB into a plus in b†5,φB (i.e. eiφB−eiφx → eiφB +eiφx):

p(t1, 5, φB|x) = p(φB)e−η|α|
2

[eηξ(1−ξ cos(φB−φx))|α|2 − eηξ2|α|2 − eηξ(1−ξ)|α|2(1+cos(φB−φx)) + 1].
(F.14)
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〈α′, β|(b†t3)
n−k(b†2,φB)k|0〉 = (

√
1− ξβ∗)n−k(

√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗)ke−

|α′|2+|β|2
2

= einφxe−
η|α|2

2

√
1− ξ

2n−k
√
ξ

2

k

(
√
ηα∗)n

k∑
r=0

(
k

r

)
ei(φB−φx)r(−1)k−r

= einφxe−
η|α|2

2

√
1− ξ

2n−k
√
ξ

2

k

(
√
ηα∗)n[ei(φB−φx) − 1]k, (F.15)

p(t3, 2, φB|x) =
∞∑
n=2

n−1∑
k=1

p(φB)

(n− k)!k!
|〈α′, β|(b†t3)

n−k(b†2,φB)k|0〉|2

= p(φB)e−η|α|
2
∞∑
n=2

1

n!

(
η(1− ξ)|α|2

)n n−1∑
k=1

(
n

k

)
(1− ξ)n−k

(
ξ
|ei(φB−φx) − 1|2

2

)k

= p(φB)e−η|α|
2
∞∑
n=2

1

n!

(
η(1− ξ)|α|2

)n n−1∑
k=1

(
n

k

)
(1− ξ)n−k[ξ(1− cos(φB − φx))]k

= p(φB)e−η|α|
2
∞∑
n=2

1

n!

(
η(1− ξ)|α|2

)n {(1− ξ cos(φB − φx))n − (1− ξ)n

− [ξ(1− cos(φB − φx))]n}
= p(φB)e−η|α|

2

[eη(1−ξ)(1−ξ cos(φB−φx))|α|2 − eη(1−ξ)2|α|2 − eηξ(1−ξ)|α|2(1−cos(φB−φx)) + 1].
(F.16)

Again, by turning the minus sign in b†2,φB into a plus in b†5,φB (i.e. eiφB−eiφx → eiφB +eiφx):

p(t3, 5, φB|x) = p(φB)e−η|α|
2

[eη(1−ξ)(1+ξ cos(φB−φx))|α|2−eη(1−ξ)2|α|2−eηξ(1−ξ)|α|2(1+cos(φB−φx))+1].
(F.17)

• Ideal triple-click probabilities:

〈α′, β|(b†t1)
n−k−j(b†t3)

k(b†2,φB)j|0〉

=(
√
ξα′∗)n−k−j(

√
1− ξβ∗)k

(√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗

)j

e−
|α′|2+|β|2

2

=eikφxe−
η|α|2

2 (
√
ηα∗)n

1√
2j

√
ξ

2(n−k)−j√
1− ξ

2k+j
j∑
r=0

(
j

r

)
eiφB(j−r)(−eiφx)r

=eikφxe−
η|α|2

2 (
√
ηα∗)n

1√
2j

√
ξ

2(n−k)−j√
1− ξ

2k+j
(eiφB − eiφx)j. (F.18)

105



Using the substitutions for index r = j + k and the variable C := cos(φB − φx),

p(t1, t3, 2, φB|x)

=
∞∑
n=3

n−2∑
k=1

n−k−1∑
j=1

p(φB)

(n− k − j)!k!j!
|〈α′, β|(b†t1)

n−k−j(b†t3)
k(b†2,φB)j|0〉|2

=p(φB)e−η|α|
2
∞∑
n=3

(η|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξ2(n−r)(1− ξ)2r

r−1∑
j=1

(
r

j

)
(

ξ

1− ξ
· |e

iφB − eiφx|2

2
)j

=p(φB)e−η|α|
2
∞∑
n=3

(η|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξ2(n−r)(1− ξ)2r

r−1∑
j=1

(
r

j

)
[
ξ

1− ξ
(1− cos(φB − φx)]j

=p(φB)e−η|α|
2
∞∑
n=3

(η|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξ2(n−r)(1− ξ)2r{[1 +

ξ(1− C)

1− ξ
]r − [

ξ(1− C)

1− ξ
]r − 1}

=p(φB)e−η|α|
2
∞∑
n=3

(η|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξ2(n−r)(1− ξ)r{(1− ξC)r − [ξ(1− C)]r − (1− ξ)r}

=p(φB)e−η|α|
2
∞∑
n=3

(η|α|2)n

n!
{[ξ2 + (1− ξ)(1− ξC)]n − [(1− ξ)(1− ξC)]n

− [ξ2 + ξ(1− ξ)(1− C)]n + [ξ(1− ξ)(1− C)]n

− [ξ2 + (1− ξ)2]n + ξ2n + (1− ξ)2n}
=p(φB)e−η|α|

2

[eη[ξ2+(1−ξ)(1−ξC)]|α|2 − eη(1−ξ)(1−ξC)|α|2 − eη[ξ2+ξ(1−ξ)(1−C)]|α|2

+ eηξ(1−ξ)(1−C)|α|2 − eη[ξ2+(1−ξ)2]|α|2 + eηξ
2|α|2 + eη(1−ξ)2|α|2 − 1]. (F.19)

Again, by turning the minus sign in b†2,φB into a plus in b†5,φB (i.e. eiφB−eiφx → eiφB +eiφx):

p(t1, t3, 5, φB|x) = p(φB)e−η|α|
2

[eη[ξ2+(1−ξ)(1+ξC)]|α|2 − eη(1−ξ)(1+ξC)|α|2 − eη[ξ2+ξ(1−ξ)(1+C)]|α|2

+ eηξ(1−ξ)(1+C)|α|2 − eη[ξ2+(1−ξ)2]|α|2 + eηξ
2|α|2 + eη(1−ξ)2|α|2 − 1].

(F.20)
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〈α′, β|(b†t1)
n−k−j(b†2,φB)k(b†5,φB)j|0〉

=(
√
ξα′∗)n−k−j(

√
1− ξ

2
α′∗ − e−iφB

√
ξ

2
β∗)k(

√
1− ξ

2
α′∗ + e−iφB

√
ξ

2
β∗)je−

|α′|2+|β|2
2

=e−
η|α|2

2 (
√
ηα∗)n

√
ξ

2n−k−j
√

1− ξ
2

k+j k∑
s=0

(
k

s

)
eiφB(k−s)(−eiφx)s

j∑
r=0

(
j

r

)
eiφB(j−r)eiφxr

=e−
η|α|2

2 (
√
ηα∗)n

√
ξ

2n−k−j
√

1− ξ
2

k+j

(eiφB − eiφx)k(eiφB + eiφx)j, (F.21)

p(t1, 2, 5, φB|x)

=
∞∑
n=3

n−2∑
k=1

n−k−1∑
j=1

p(φB)

(n− k − j)!k!j!
|〈α′, β|(b†t1)

n−k−j(b†2,φB)k(b†5,φB)j|0〉|2

=p(φB)e−η|α|
2
∞∑
n=3

(ηξ|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξn−r(

1− ξ
2

)r
r−1∑
j=1

(
r

j

)
|eiφB − eiφx |2(r−j)|eiφB + eiφx|2j

=p(φB)e−η|α|
2
∞∑
n=3

(ηξ|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξn−r(

1− ξ
2

)r
r−1∑
j=1

(
r

j

)
2r(1− C)r−j(1 + C)j

=p(φB)e−η|α|
2
∞∑
n=3

(ηξ|α|2)n

n!

n−1∑
r=2

(
n

r

)
ξn−r(1− ξ)r[2r − (1− C)r − (1 + C)r]

=p(φB)e−η|α|
2
∞∑
n=3

(ηξ|α|2)n

n!
{[ξ + 2(1− ξ)]n − [2(1− ξ)]n

− [ξ + (1− ξ)(1− C)]n + [(1− ξ)(1− C)]n

=p(φB)e−η|α|
2

[eηξ(2−ξ)|α|
2 − e2ηξ(1−ξ)|α|2 − eηξ[1−(1−ξ)C]|α|2 + eηξ(1−ξ)(1−C)|α|2

− eηξ[1+(1−ξ)C]|α|2 + eηξ(1−ξ)(1+C)|α|2 + eηξ
2|α|2 − 1]. (F.22)
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〈α′, β|(b†t3)
n−k−j(b†2,φB)k(b†5,φB)j|0〉

=(
√

1− ξβ∗)n−k−j(
√

1− ξ
2

α′∗ − e−iφB
√
ξ

2
β∗)k(

√
1− ξ

2
α′∗ + e−iφB

√
ξ

2
β∗)je−

|α′|2+|β|2
2

=eiφx(n−k−j)e−
η|α|2

2 (
√
ηα∗)n

√
1− ξ

2n−k−j
√
ξ

2

k+j k∑
s=0

(
k

s

)
eiφBs(−eiφx)k−s

j∑
r=0

(
j

r

)
eiφBreiφx(j−r)

=eiφx(n−k−j)e−
η|α|2

2 (
√
ηα∗)n

√
1− ξ

2n−k−j
√
ξ

2

k+j

(eiφB − eiφx)k(eiφB + eiφx)j. (F.23)

As we see by switching from b†t1 to b†t3 , we are simply swapping ξ ↔ 1− ξ compared with
Equation (F.21) and adding a global phase to the overlap, so

p(t3, 2, 5, φB|x) = p(φB)e−η|α|
2

[eη(1−ξ)(1+ξ)|α|2 − e2ηξ(1−ξ)|α|2 − eη(1−ξ)(1−ξC)|α|2 + eηξ(1−ξ)(1−C)|α|2

− eη(1−ξ)(1+ξC)|α|2 + eηξ(1−ξ)(1+C)|α|2 + eη(1−ξ)2|α|2 − 1]. (F.24)

• Ideal all-click probabilities:

p(t1, t3, 2, 5, φB|x)

=p(φB)[1− p(0|x)− p(t1|x)− p(t3|x)− p(t1, t3|x)]− p(2, φB|x)− p(5, φB|x)

−p(t1, 2, φB|x)− p(t1, 5, φB|x)− p(t3, 2, φB|x)− p(t3, 5, φB|x)− p(2, 5, φB|x)

−p(t1, 2, 5, φB|x)− p(t3, 2, 5, φB|x)− p(t1, t3, 2, φB|x)− p(t1, t3, 5, φB|x). (F.25)
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