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Abstract

RTN (Random telegraph noise) is a noise process which occurs in solid-state electrical de-
vices such as MOSFETs (metal-oxide-semiconductor field effect transistors) and Josephson
Junctions. Defects in the crystal structure of these devices trap charge carriers, resulting in
modulations of the devices electrical transport properties such as mobility µ or threshold
voltage Vth. This is observed as sudden transitions between two discrete current, voltage,
or resistance levels, corresponding to the occupied/unoccupied states of the trap. The
magnitude of a traps effects can be linked to its physical location in devices, and so we
sought to apply RTN analysis during the characterization of devices such as MOSFETs
to learn more about its structure and any trap dependence on temperature or bias levels.
However, device measurements demonstrated a large proportion of RTN signals with more
than two levels, which strongly suggests the presence of multiple charge defects. This
scenario is commonly avoided in published research on RTN analysis, with most literature
focusing on measurements showing the effects of only a single trap. The frequency with
which multiple traps was observed in our measurements motivated the development of an
algorithm to better characterize multi-level RTN, and to avoid discarding large swathes of
measurement data.

The developed algorithm applies mixture models formed with Gaussians to identify,
isolate, and analyze RTN signals. This is accomplished through the use of machine learning
techniques to maximize the likelihood that a constrained combination of these models
describes the RTN components at every step. When multi-level RTN is present, it is
further decomposed into its constituent components which allows characterization of each
independent defects. The algorithm is applied to a set of cryogenic MOSFET measurements
taken from near cutoff and into saturation, which demonstrates the ability to characterize
trap count, trap amplitude, and state occupation distribution for each trap. Although
development of the algorithm has precluded an in depth exploration of the effects of
parameters such as temperature on these traps, that type of analysis could not have been
achieved to a suitable level of accuracy without it.
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Chapter 1

Introduction

Moore’s Law, the name given to the 1965 prediction by George Moore [39], has been driven
largely by shrinking the size of transistors through improvements in fabrication techniques.
However, it was recognized at least 20 years ago that as device dimensions approach their
natural limits, particularly for ubiquitous CMOS technologies, more significant innovations
would be required to prevent Moore’s law from slipping away. At the feature sizes necessary
for Moore’s law to continue, improvements in device geometry [21], materials [7, 37], and
fabrication technologies have all been realized and integrated into production workflow.
Despite this effort Moore’s law is beginning to fail, as the dimensions of modern CMOS
devices are at the limits of classical physics and quantum phenomena such as tunneling
are a legitimate concern. As a result, this has spurred on extensive research into so-called
post-silicon technologies. Silicon-based devices are often deployed alongside these new
technologies, to act as control or interfacing circuitry due to their well known behaviour.
Still, device miniaturization and operational conditions, such as at cryogenic temperatures,
means there is still knowledge to be gained from characterizing these classical devices.

1.1 Random Telegraph Noise

One technique for characterization is the study of fundamental noise processes that affects
devices during operation, such as RTN. RTN is a noise process involving random and
instantaneous transitions between two (or more) discrete levels of an observable such as
current, and which tends to affect smaller devices more strongly and has a larger impact
at cryogenic temperatures. RTN has three defining characteristics:

1



1. The transition amplitude: ∆RTN (when measuring current).

2. The capture lifetime τc, the average time a carrier is trapped for.

3. The emission lifetime τe, the average time between trapping events.

These quantities define the signals time domain procession, as shown in Figure 1.1.

Figure 1.1: The main parameters in an RTN signal are the trap amplitude ∆RTN and the
time constants τc and τe.

My research has focused on the study of RTN in MOSFET devices for device char-
acterization purposes, and has involved the direct measurement of devices at cryogenic
temperatures and the development of an algorithm for analysis of the measurement data.

This thesis will cover the scope of this research, starting in Chapter 2 with a discussion
of the theoretical background for modelling stochastic processes and a derivation of RTN
models. Chapter 3 will discuss various implementations of modelling techniques, including
a description of the developed algorithm. Following that will be Chapter 4 with a physical
description of RTN in MOSFETs, and finally Chapter 5 will demonstrate the application
of the algorithm on measured data and the resulting characterization.
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Chapter 2

Stochastic Processes

When performing experimentation, one can see only the outcome of the underlying processes
- for example, we do not observe force but rather the outcome of force acting on an object.
In many ways, experimentation is like observing the output of a black-box. One approach
to understanding what happens inside the black-box is to use inference to describe the
process that leads to the outcome. Complicating the matter is many processes have random
output values, which are represented as a random variable. When each observation can
be uniquely indexed (such as with points in space or more commonly time) the process is
called stochastic. Put another way, a process whose observed outcome is a random variable
indexed over a mathematical set of points is called a stochastic process. We can define the
distribution of outcomes of a random variable as f(x), a function of each outcome. Then
the distribution fx(t) of a stochastic process x(t) = x1, x2, . . . , xN can be described as a
result of the sequence of random variables and their distributions over time:

fx(t) = f(x(t1), x(t2), x(t3), . . . , x(tN)) (2.1)

where the right-hand side term represents the distribution of the random variable at each
point, from t = 1 to t = N .

2.1 Properties of Stochastic Processes

2.1.1 Probability Density and Mass

The distribution of outcomes for a random variable depends on whether the outcomes are
defined over continuous space or over discrete space. For continuous random variables the

3



distribution is defined using a PDF, while the PMF defines the distribution of a discrete
random variable. Both functions express the random variable as a function of the outcome
x defined over the sample space of possible outcomes X . A PDF is written f(x) and
defines the probability of a an observation in an arbitrary interval [a, b]:

P [a ≤ x ≤ b] =

∫ b

a

f(x)dx (2.2)

To ensure that probability is properly behaved everywhere, the following properties are
given:

f(x) ≥ 0 (2.3)

and ∫
X

f(x)dx = 1. (2.4)

In other words, the PDF is non-negative everywhere and the integral over all outcomes
must equal one.

The PMF is similarly defined, though with changes to account for the discrete outcomes.
It is denoted using pX(x), with

P (X = a) = pX(a). (2.5)

Likewise, it must be non-negative everywhere and the sum over all outcomes must equal
one:

pX(x) ≥ 0 (2.6)∑
X

pX(x)dx = 1 (2.7)

Both the PDF and PMF can also be expressed with a CDF denoted with F (X), where:

P (X ≤ x) = F (x) (2.8)

In other words, it is the cumulative probability of all outcomes up to and including x. For
a continuous random variable,

F (a) =

∫ a

−∞
f(x)dx (2.9)

and for a discrete random variable,

F (a) =
∑
x≤a

pX(x) (2.10)
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2.1.2 Moments and Statistics

The expected value and variance are descriptors of the models shape, and because it is
expressed as a mathematical function they are easily calculated as mathematical moments.
The r-th moment of a function f(x) around a value c is:

µr =

∫ ∞
−∞

(x− c)rf(x)dx (2.11)

though c = 0 unless otherwise explicitly stated. The expectation value, or mean, E[x] of a
distribution is defined as the first moment:

E[x] = µ =

∫ ∞
−∞

xf(x)dx. (2.12)

The second moment represents the variance, expressed as Var(x) or σ2:

σ2 = µ2 =

∫ ∞
−∞

x2f(x)dx (2.13)

and represents the spread of the distribution from the expected value.

2.1.3 Multivariate Distribution

When examining two or more random variables, additional statistics are used to describe
their relationship. For two random variables X and Y , covariance (sometimes written as
σ) is the deviation of the expected value of their product from their individual expected
values:

cov(X, Y ) = σX,Y = E[(X − E[X])(Y − E[Y ])] (2.14)

= E[XY ]− E[X]E[Y ] (2.15)

A similar statistic is the correlation ρ, which scales the the covariance by the product of
the individual variances:

corr(X, Y ) = ρX,Y =
cov(X, Y )

σXσY
(2.16)

where σX and σY are the variances of X and Y respectively.

The two random variables need not be from separate processes — it is equally valid to
define them from different indices in the stochastic process. For instance, let X represent
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the random variable X at time t1 and Y represent the random variable X at time t2. When
the correlation function ρ is written using time delayed variables from the same process, it
is called the autocorrelation function φ:

ρX,Y = ρX(t1),X(t2) = φx(t1, t2) (2.17)

More formally, the autocorrelation is defined as

φx(t1, t2) = x(t1)x(t2) =

∫ −∞
∞

∫ −∞
∞

x1x2fx(x1, x2)dx1dx2 (2.18)

Finally, the multivariate distribution z of independent random variables f, g, h, . . . is
the convolution of their distributions:

z(x) = f(x) ∗ g(x) ∗ h(x) ∗ . . . (2.19)

One method for solving a convolution is the Fourier transform. A convolution in the
original domain becomes multiplication under a Fourier transform, resulting in

F{z(x)} = F{f(x)}F{g(x)}F{h(x)} (2.20)

2.1.4 Stationarity

A stochastic process is said to be stationary if

f(x(t1), x(t2), . . . , x(tN)) = f(x(t1 + t0), x(t2 + t0), . . . , x(tN + t0)) (2.21)

where t0 is an arbitrary delay. That is to say, the distribution of the process in some window
of length N is invariant under a shift in time - it is called stationary to the order N .

When a process is stationary to the second order, then the autocorrelation function
(Equation 2.18) is a function of the difference τ = t2 − t1:

φx(t1, t2) = φx(τ) = x(t)x(t+ τ) (2.22)

From this, we can define a stochastic process as wide-sense stationary when

1. φx(t1, t2) = φx(τ), and

2. x(t) = constant.

That is, a stationary process of order 2 or greater is a wide-sense stationary process.
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2.2 Spectral Density

Accurate identification of a stochastic process in the time domain can be challenging and
depends strongly on the observation ”window”. An alternative approach which is highly
effective is through studying the spectral density, or more often the PSD, of the stochastic
process in the frequency domain. The PSD, S(f), of a signal describes the density of power
in a frequency range, with units of watts/hertz. Depending on what is being measured, it
may alternatively have units of amps2/hertz or volts2/hertz. Typically, an arbitrary noise
process is classified as low-frequency noise, high-frequency noise, or white noise based on
the frequency response of its PSD. Low frequency noises have a PSD with an inverse power
law relation S(f) ∝ 1/fα and high frequency noise processes have a PSD which follows a
power law relation S(f) ∝ fα (where α determines the degree of frequency dependence).
In comparison, white noise is frequency independent; see Figure 2.1 for a visualization of
the differences.

Figure 2.1: The spectral densities of stochastic process can typically be grouped based on
whether they are low-frequency dominant, high-frequency dominant, or frequency indepen-
dent (i.e. white noise).

For a random process x(t), the PSD is given by

Sx(f) = lim
T→∞

(
|XT (f)|2

T

)
(2.23)
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where

XT (f) =

∫ T/2

−T/2
x(t)e−i2πftdt. (2.24)

As x(t) can be difficult to define in such an analytical form, an alternative approach for
obtaining the PSD is through the Wiener-Khinchin Theorem, which states that the PSD of
a wide-sense stationary process x(t) is given by the Fourier transform of its autocorrelation
function:

Sx(f) = F [φ(t)] =

∫ ∞
−∞

φ(t)e−i2πftdt. (2.25)

2.2.1 Likelihood

As shown, a statistical model is defined not only by its shape but also by its parameters,
denoted as a vector θ. To calculate the probability of the output that has value x, the
parameters θ are assumed fixed and known and the equation is expressed:

P (X = x; θ) (2.26)

In experimentation however, the output is known (through measurement) while the
parameters are not. But, just as the outputs can be expressed as a function of the fixed
parameters, we can express the parameters as a function of the known output. This is
known as the likelihood function, and is a goodness-of-fit metric for a model. There are
slight differences depending on the sample space and whether is is discrete or continuous.
For a discrete model the likelihood function is defined as:

L (θ|x) = P (x|θ), (2.27)

and for a continuous model:
L (θ|x) = f(x|θ), (2.28)

The likelihood function estimates how well the model describes the observations x for a
given set of intervals θ. Thus, the goal in modelling is to maximize the likelihood function
- this can be done with any number of optimization techniques. Typically people work
with the log-likelihood function rather than the likelihood function, as it simplifies various
aspects of optimization. For example, the logarithmic function is a strictly increasing
function, so maximization of the log-likelihood function is equivalent to maximizing the
likelihood function. In addition, finding a global maximum for a function requires concavity
- a number of PDFs are only log-concave, such as the exponential and normal distributions.
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Two common methods which use the likelihood function to form a statistical model are
the MLE and the more involved EM algorithm. MLE involves finding the set of parameters
which maximizes the likelihood of the statistical model matching the observed data:

max
θ

L (θ|x) (2.29)

If the function is differentiable, the simplest technique to accomplish this is likely by
performing root-finding on the function:

δL

δθi
= 0 (2.30)

for θi ∈ θ. The EM algorithm calculates the expectation of the likelihood function L based
on a set of parameters, and then finds new parameters by maximizing that expectation.
This process is repeated until some a maximum is found, although it is not guaranteed to
be a global maximum. Thus, EM uses MLE in the maximization step of the algorithm.

2.3 Markov Models

A Markov model is used to describe a stochastic process which transitions between discrete
states in either a discrete time domain or continuous time domain - Figure 2.2 shows the
state diagram and transition probabilities for a two-state Markov model. They differ from
other stochastic models in that they satisfy the Markov property, which states that the
future states depend only on the current state. In other words, they are memoryless. In
this section, I will derive the statistical models which describe a continuous Markov process
or discrete Markov chain.1

2.3.1 Continuous Markov Process

Consider an arbitrary system with the following properties:

1. The system state can occupy one of two discrete states, labelled x0 and x1.

2. The system state can be written as X(t).

1The words process and chain are often used to differentiate Markov models in continuous or discrete
time.
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x0 x1P00(dt)

P01(dt)

P11(dt)

P10(dt)

Figure 2.2: State diagram for a Markov model with possible states x0 and x1. Over a step
in time dt, the probability of transitioning from state i ∈ x0, x1 to j ∈ x0, x1 is given by
Pij.

3. E(X(t0)) = x0P{X(t0) = x0}+ x1P{X(t0) = x1}

4. Pij(t) = P{X(t0 + t) = j | X(t0) = i}

• i, j ∈ {x0, x1}
• The system is memoryless.

5. P{X(t0 + t) = j | X(t0) = i} = P{X(t) = j | X(0) = i}

• The system is time homogenous — in other words, the starting point does not
matter, only the window t.

A system which satisfies these properties is known as a continuous time Markov process
(CTMP), or continuous Markov process. For clarity moving forward, we will force the
condition that if a transitions occurs at time t, then X(t) is the new state and X(t) 6= X(t−)
(where t− is the time just before t).

In meeting the requirements of a continuous Markov process, we can see that the
behaviour of the transition events will also meet that of a Poisson point process. Given a
time window t and random variable T for interarrival time, we will have:

1 = P{T ≤ t}+ P{T > t} (2.31)

or
P{T ≤ t} = 1− P{T > t} (2.32)

P{T > t} is equal to the probability that zero transition events occur in time t, which
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is easily calculated with the Poisson distribution:

P{k, t} =
(λt)ke−λt

k!

P{0, t} =
(λt)0e−λt

0!
P{0, t} = e−λt (2.33)

where the transition events occur at a rate λ = 1/τ . Thus we can write

P{T <= t} = 1− e−t/τ (2.34)

which is the CDF of the exponential distribution (as t → ∞, P → 1), and would
thus lead to the PDF through a simple differentiation. This supports our assertion of a
memoryless system, as the exponential distribution has the same property. This treatment
also agrees with one experimental observation, that the distribution of the state lifetimes
is exponential with a state dependent mean lifetime 1/τ .

Because there are only two possible states our RTN system can occupy, we can also
assert the probability that the system will be in either state under inspection through a
ratio of their average lifetimes:

P{X(t) = x0} =
τ0

τ0 + τ1
(2.35)

P{X(t) = x1} =
τ1

τ0 + τ1
(2.36)

These probabilities form the stationary distribution of the Markov model, and together
satisfy the need for

P{X(t) = x0}+ P{X(t) = x1} = 1

From our earlier condition, we can write the expectation value of the signal at any
arbitrary time t0 as:

E(X(t0)) = x0P{X(t0) = x0}+ x1P{X(t0) = x1}
E(X(t0)) = x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1
(2.37)

After a delay t in which transitions can occur, we can write the expectation value of
the signal as

E(X(t0 + t)) = x1P11(t) + x1P01(t) + x0P10(t) + x0P00(t), (2.38)
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where Pij(t) is the probability of beginning in state i and ending in state j after time t.
We would like to use these equations to calculate the autocorrelation of the signal after a
delay t:

φ(t) = 〈X(t0)X(t0 + t)〉 (2.39)

However, we must impose the following condition:

X(0)Pij 6= 0 ⇐⇒ X(0) = i

In words, the initial state of the system must be the same as the initial state in the
transition probability to be non-zero. Using this condition, and a simplification of the math
by setting x1 = ∆X and x0 = 0, we can explicitly write the autocorrelation function:

φ(t) = 〈X(t0)X(t0 + t)〉

φ(t) =

〈
∆X

τ1
τ0 + τ1

∆XP11(t)

〉
φ(t) =

〈
(∆X)2

τ1
τ0 + τ1

P11(t)

〉
(2.40)

We will need to solve for P11(t) to continue. Starting in state x1, we can write

P11(t) + P10(t) = 1 (2.41)

Furthermore, we can split the time window t into another window t′ + dt. Writing

P11(t+ dt) = P11(t)

(
1− dt

τ1

)
+ P10(t)

(
dt

τ0

)
(2.42)

In words, the probability of ending in the same state as you started after t+ dt is the
combination of two mutually exclusive events:

1. The probability of returning to the same state after time t and not transitioning in
dt.

2. The probability of being in the other state after time t, and then transitioning back
in dt.
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Substituting (2.41) in and taking dt→ 0, we get

P11(t+ dt) = P11(t)

(
1− dt

τ1

)
+ (1− P11(t))

(
dt

τ0

)
P11(t+ dt) = P11(t)−

P11(t)dt

τ1
+
dt

τ0
− P11(t)dt

τ0
P11(t+ dt)− P11(t)

dt
+ P11(t)

(
1

τ1
+

1

τ0

)
=

1

τ0
dP11(t)

dt
+ P11(t)

(
1

τ1
+

1

τ0

)
=

1

τ0
(2.43)

which is a differential equation in the form of Kolmogorov’s Forward Equation, with the
solution

P11(t) =
τ1

τ1 + τ0
+

τ0
τ1 + τ0

e
−
(

1
τ0

+ 1
τ1

)
t
. (2.44)

After solving P11(t) we can substitute it back into (2.40), resulting in

φ(t) =

〈
(∆X)2

τ1
τ0 + τ1

P11(t)

〉
φ(t) =

〈
(∆X)2

τ1
τ0 + τ1

(
τ1

τ0 + τ1
+

τ0
τ0 + τ1

e
−
(

1
τ0

+ 1
τ1

)
t

)〉

(2.45)φ(t) =

〈(
∆Xτ1
τ0 + τ1

)2

+
(∆X)2τ0τ1
(τ0 + τ1)2

e
−
(

1
τ0

+ 1
τ1

)
t

〉
.

We make use of the Wiener-Khinchin theorem to calculate the power spectral density
(PSD) of the signal from (2.45). Because X(t) is a stationary process, the Wiener-Khinchin
theorem uses a Fourier transform in the form

Sx(f) = 4

∫ ∞
0

φx(t) cos(2πft)dt, (2.46)

which after substituting φx(t) with Equation 2.45 yields

Sx(f) =
1

π

(∆X)2τ0τ1
(τ0 + τ1)2

1

1 +
(

2πfτ0τ1
τ0+τ1

)2 + Sx(0), (2.47)
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where Sx(0) is a DC term and does not contribute to overall noise.2 Because the sum
of two independent Poisson rates λ0 + λ1 = λA, we can offer an alternative form using
1
τ0

+ 1
τ1

= 1
τA

.

Sx(f) =
1

π

(∆X)2τA
τ0 + τ1

1

1 + (2πfτA)2
(2.48)

As we are working with frequency, it can be useful to use the frequency versions of the
time constants. Forgoing the previously used notation λ, we will now use fi, where i is the
state. With this notation, we can write f0 and f1 for the two unique states, and another fc
for the combined time constant τA (the notation fc is inspired by cutoff frequency in filter
design).

Sx(f) =
f0f1
π

(
∆X

fc

)2
1

1 + (2πf/fc)2

There are two interesting cases when considering the combined frequency fc:

Sx(f) =


f0f1
π

(
∆X

fc

)2

for f � fc;

f0f1
π

(
∆X

2πf

)2

for f � fc;

For f � fc the system has a white noise spectrum, and for f � fc the system has a
Brownian spectrum.

2.3.2 Discrete Markov Chain

In contrast to the continuous time model description RTN can also described using a discrete
time model, which is more suited to describing a finite-length measurement rather than
the physical phenomenon behind RTN. Consider a system with the following properties:

1. The system state can occupy one of two discrete states, labelled x0 and x1.

2. The system state can be written as Xs, s = 0, 1, 2, . . .

• s corresponds to a step in time.

• The system can be expressed over time as: X0 → X1 → X2 → . . .

2More information on the PSD derivation and the DC term can be found in Appendix B.1.2.
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3. pi(s) = P{Xs = i}

• The probability of being in state i at step s

4. pij = P{Xs+1 = j | Xs = i}

• i, j ∈ {x0, x1, x2, . . . }
• Probability of transitioning from state i to state j is independent of the states

before time s.

This is a discrete-time version of the Markov chain that was used for the continuous time
model. We can combine the last two Markov conditions to express the probability of being
in state more explicitly:

pj(s) = P{Xs = j | Xs−1 = i}P{Xs−1 = i}

Which naturally leads to:

pi(s− 1) = P{Xs−1 =j | Xs−2 = i}P{Xs−2 = i}
...

This expression for pj(s) thus leads to a recursion relation. We can describe such a relation
in the following way:

pj(0) = pj(0) (2.49)

pj(s) =
∑
i

pi(s− 1)pij (2.50)

However, if we can assign a definite state value i to the system at s = 0, then (2.49) vanishes
for any state other than i. The recursion equation (2.50) can then be rewritten as:

pj(s) = P{Xs = j | X0 = i} = pij(s) (2.51)

In words, it is the probability of transition from state i to state j after s steps, with the
following case for s = 0:

pij(0) =

{
1 if i = j;

0 if i 6= j;
(2.52)
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The form of the recursion naturally leads to formation of a transition probability matrix
for a single step, denoted by P :

P = ||pij||=

p11 p12 . . .
p21 p22 . . .
...

...
. . .


And an accompanying s-step transition probability matrix:

P (s) = ||pij(s)||=

p11(s) p12(s) . . .
p21(s) p22(s) . . .

...
...

. . .


It can be shown3 that the following relation holds:

P (s) = P s (2.53)

While this approach works for n possible states, because RTN is a two-state system
we can also treat the system as a series of Bernoulli trials. That is to say, at each point
in the measured signal we can perform a Bernoulli test on X to find its value. Let
P{Xs 6= Xs−1} = pi be the probability of a “success”, and P{Xs = Xs−1} = qi the
probability of a “failure”. A success (pi) is defined as a transition from state i, while a
failure (qi) is defined as remaining in state i. In other words, a successful outcome of the
Bernoulli test means the system has changed states. We require that if Xs−1 = i and a test
at step s registers a failure, then Xs = j (for i, j ∈ {x0, x1}, i 6= j).

Consider a signal in state i — let a transition (i.e. a successful Bernoulli test) occur
after S number of steps and let s be an arbitrary number of steps. We define two outcomes:

1. No transition occurs in s steps: S > s

2. A transition does occur in s steps: S <= s

which leads to

P{S <= s}+ P{S > s} = 1

P{S <= s} = 1− P{S > s}

P{S > s} is the probability that no transitions occur in s steps, which can be equiv-
alently described using a binomial distributed random variable4 S ′ which describes the

3See Appendix B.2.1
4Represented by the symbol Bin(s, p), where s is the number of trials and p is the probability of success.
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number of Bernoulli successes r (if a success occurs with probability pi) in s independent
trials:

S ′ ∼ Bin(s, pi) (2.54)

with PMF

P{S ′ = r} = P{r; s, pi} =

(
s

r

)
pri q

s−r
i . (2.55)

Then,

P{S <= s} = 1− P{S > s}
P{S <= s} = 1− P{S ′ = s}
P{S <= s} = 1− P{r = 0; s, pi}

P{S <= s} = 1−
(
s

0

)
qsi

P{S <= s} = 1− qsi

which yields the geometric distribution CDF, which counts failures until the first success.
This is to be expected as the geometric distribution is the discrete equivalent to the
exponential distribution, which we found in the continuous time model. It has the same
important property of being memoryless, which is vital to our assertion of a discrete Markov
chain.

We will use σ to denote the expected number of successes before the first failure (from
geometric distribution):

σi = E(Si) = 1/qi (2.56)

We will also introduce a new notation for the possible states:

⇀x =

[
x0
x1

]
(2.57)

We will then define5 the starting probability distribution as a vector π0:

π0 =

[
P{X0 = x0}
P{X0 = x1}

]
=


σ0

σ0 + σ1
σ1

σ0 + σ1

 =


q1

q0 + q1
q0

q0 + q1

 (2.58)

5Requiring that if Xs−1 = x0 and there is a success at step s, Xs = x1 (and vice-versa). This requirement
forces σ0 + σ1 = 1.
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and corresponding expectation value:

E(X0) = πT0
⇀x (2.59)

More generally, we can define a probability distribution vector at any state s:

πs =

[
P{Xs = x0}
P{Xs = x1}

]
from which it follows:

πTs = πT0 P
s (2.60)

E(Xs) = πTs
⇀x (2.61)

Tying this back into the Markov chain reduces the transition probability matrices to:

P =

[
p00 p01
p10 p11

]
=

[
p0 q0
q1 p1

]
(2.62)

P s =

[
p00(s) p01(s)
p10(s) p11(s)

]
(2.63)

We can explicitly solve for P s through matrix manipulation. We begin by diagonalizing
matrix P . Instead of using the characteristic equation to solve for the eigenvalues (det(P −
λI) = 0), two useful properties make it much easier:

1. λ1 = σ if for all rows i and columns j:∑
j

pij = σ (2.64)

• In words, if the sum of the elements in each row is the same for all rows, that
sum is an eigenvalue of the matrix.

2.
∑

i λi = Tr(P )

• The trace of the matrix (sum of the diagonal) is equal to the sum of the eigen-
values.
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For P , the sum of the rows p0 + q0 = q1 + p1 = 1, which means λ = 1 is an eigenvalue
of P. Furthermore, for a 2× 2 matrix, there can be 2 eigenvalues. There:

Tr(P ) = p0 + p1 = λ1 + λ2

Which we can use to solve for λ2. That makes the eigenvalues of P :

λ1 = 1

λ2 = p0 + p1 − 1

The corresponding eigenvectors6 ⇀u and ⇀v are:

⇀u =

[
1
1

]
⇀v =

[
1
α

]
(2.65)

where α = − q1
q0

. We can then diagonalize P using S = [⇀u ⇀v]:

S−1PS =

[
1 0
0 g(s)

]
where

g(s) =

(
1− q0 − 2q1 − (1− q1)α

1− α

)s
(2.66)

g(s) =

(
1− q0 − 2q1 − (1− q1)(−q1/q0)

1− (−q1/q0)

)s
(2.67)

g(s) =

(
1− q0 − 2q1 + q1/q0 − q21/q0

(q0 + q1)/q0

)s
(2.68)

g(s) =

(
q0 − q20 − 2q1q0 + q1 − q21

q0 + q1

)s
(2.69)

g(s) =

(−(q0 + q1 − 1)(q0 + q1)

q0 + q1

)s
(2.70)

g(s) = (1− q0 − q1)s (2.71)

6See B.2.3 for calculation.
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Then:

P s = (S(S−1AS)S−1)s

P s = S(S−1AS)sS−1

P s = S

[
1 0
0 g(s)

]s
S−1

P s =
1

1− α

[
−α + g(s) 1− g(s)
α(g(s)− 1) 1− αg(s)

]
(2.72)

With P s defined, we can begin the process to calculate the PSD in the same way as in
the continuous model. To start, the autocorrelation function of the discrete time signal is:

RX(s0, s0 + s) = Xs0Xs0+s (2.73)

= X0Xs (2.74)

= (πT0
⇀x)(πTs

⇀x) (2.75)

The first product is:

πT0
⇀x = ∆X

q0
q0 + q1

(2.76)

and the second product is:

πTs
⇀x = πT0 P

s⇀x

= ∆X
q0

q0 + q1
(2.77)

2.3.3 Hidden Markov Model

A very well established technique for modelling Markov chains is the HMM. HMM is a
tool used to model stochastic processes in cases where the sequence of observations YT
is generated by a hidden state sequence ST , demonstrated in Figure 2.3, and where the
hidden sequence of states is assumed to satisfy the Markov property.

HMM can be used to model the time domain parameters of such a system, such as
transition probability and time constants, and has been applied for characterizing two-level
RTN data in the past. However, a limitation of HMM is the mutual exclusivity of states,
which leads to an exponential relation between the state space needed to describe a system
and the number of possible states. For N independent objects which can each occupy
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Figure 2.3: The sequence of observations described by the random variable YT is generated
by the hidden states ST .

S unique states, an HMM would need NS total states to describe the state progression.
By decomposing the system into N independent subsystems, the state space is reduced
to N × S. Ghahramani discussed some variations on the traditional HMM that address
this limitation, such as the tree structure HMM, but they are not as readily available in
common analysis software. [13]

2.4 RTN as a Mixture Model

A mixture model is a statistical model used when the total sample population is described
by a mixture of multiple submodels of the same family, but with different parameters.
A time-discrete, two-level RTN signal transitions between two mutually exclusive and
independent states. The observed state of the RTN signal at any point in time is given by
the random variable ξ, with parameters τ for average time spent in state and transition
amplitude ∆ξ. The two states themselves are represented by the random variables X and
Y , with mean values µX and µY respectively. While the distribution of signal values for
pure RTN will consist only of two delta functions located at µX and µY , noise factors arising
from measurement inaccuracy and other noise sources will result in Gaussian distributed
subpopulations. Hence, we can model the overall RTN population as a Gaussian Mixture
model,

fξ = fX + fY (2.78)

fξ =
1

σX
√

2π
exp

[
1

2

(
x− µX
σX

)2
]

+
1

σY
√

2π
exp

[
1

2

(
x− µY
σY

)2
]

(2.79)

However, we need to relate these model parameters to the RTN signal parameters for
the model to make sense. As the measurement time and number of samples increases, the
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probabilities associated with observing either state X or Y when randomly observing the
signal will approach the stationary distribution of the signal:

P (ξ = X) =
τX

τX + τY
P (ξ = Y ) =

τY
τX + τY

(2.80)

We use these probabilities to scale the Gaussians in the Gaussian mixture model accordingly:

fξ = P (ξ = X)fX + P (ξ = Y )fY (2.81)

Next, the Gaussian mean values are defined using a base value b and separation value
s,

µX = b µY = b+ s (2.82)

where b and s represent an offset affecting both peaks (such as a DC offset) and the trap
amplitude respectively.

Finally, as white noise processes will affect both states equally, we set σX = σY = σ.
Thus, the total PDF of the mixture model is

f(x) = P (ξ = X) fX(x;µ = b, σ) + P (ξ = Y )fY (x;µ = b+ s, σ) (2.83)

and plotted in Figure 2.4.
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Figure 2.4: Gaussian mixture model with parameters b = 0, s = 6, and p = 1/3.

Modelling a multi-level RTN signal follows from this definition under the assumption
that it is the result of multiple independent two-level RTN signals, which will be referred
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to as RTN subcomponents. This assumption comes from the physical origins of RTN in
devices, and will be explained further in Chapter 4. For each subcomponent i, j, k, . . .
there are associated random variables ξi, ξj, ξk, . . .. Hence, the multi-level distribution is
a convolution of multiple two-level distributions. From the associative property of the
convolution operator ((f ∗ g) ∗ h = f ∗ (g ∗ h)), the operation itself is not affect by the
number of signals and the order in which the convolution is performed.

For a single trap signal (with states X, Y ), it can be shown

F{f(x)} = F

{
1

σX
√

2π
exp

1

2

(
x− µX
σX

)2

+
1

σY
√

2π
exp

1

2

(
x− µY
σY

)2
}

(2.84)

= exp
(
−σXσY ω2/2

)
[exp (−iωµX) + exp (−iωµY )] (2.85)

As the measurement and white noise contributions should be invariant under state
switching, let σX = σY for a slight simplification in the model. Using this result for a single
trap, Equation 2.20 can be easily expanded for multiple subsignals. In the case of two RTN
signals, it would become:

F{z(x)} = exp
(
−3σ2ω2/2

)
[exp (−iω(µX1 + µX2 + µX3)) + exp (−iω(µY1 + µX2 + µX3))

+ exp (−iω(µX1 + µY2 + µX3)) + exp (−iω(µX1 + µX2 + µY3))
+ exp (−iω(µY1 + µY2 + µX3)) + exp (−iω(µY1 + µX2 + µY3))
+ exp (−iω(µX1 + µY2 + µY3)) + exp (−iω(µY1 + µY2 + µY3))]

(2.86)

where µXi and µYi are the two states for the i-th subsignal. The convolution of three
Gaussian mixture models is depicted graphically in Figure 2.5d. In this case, the convolution
is solved numerically from three vectors each representing a mixture model density function
(Figure 2.5a, Figure 2.5b, and Figure 2.5c).

After developing a statistical model which can be used for describing an RTN signal, the
next step is application of the model to extract parameters of interest. To accomplish this,
the measurement data must undergo processing to convert it from time-domain sampling
data to density functions for each subcomponent. This required the development of an
analysis algorithm, which will be discussed in the following chapter.
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(a) (b) (c)

(d)

Figure 2.5: (a), (b), (c) Gaussian mixture models with parameters b0 = b1 = b2 = 0 and
s0 = 4, s1 = 10, s2 = 22 respectively. (d) Numerical convolution calculated using the
Python NumPy library.
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Chapter 3

Noise Analysis Algorithm

Over the course of my research, I implemented and developed the analysis algorithm over
many stages. The original algorithm used to analyze RTN noise was intended only for
use with a two-level system, but when measurements resulted in a much larger number of
datasets with multiple (> 2) levels than anticipated, a new algorithm was developed to
account for this. This new algorithm uses a combination of machine learning techniques
for modelling a multi-level RTN signal, and has been developed over time to provide more
accurate analysis. In this chapter I will explain the initial algorithm as well as the evolution
of the subsequent algorithm.

3.1 Two-Level Model

The first technique was inspired by [60], and was intended for two-level RTN analysis. The
technique is similar to a manually implement HMM, in that each sample is sorted into one
of the two states based on the state of the previous sample. With two levels, it is relatively
straightforward to sort the samples as the shape of distribution is known a priori to be a
mixture of two Gaussians. However, one complicating factor is the degree of separation
between the two Gaussians, which is determined by the RTN transition amplitude and
amount of white background noise captured during measurement, with varying degrees of
separation shown in Figure 3.1. For very well defined RTN, the Gaussians will be distinct
and the separation between them will be much greater than their standard deviations,
as in Figure 3.1a. On the other hand, if the trap amplitude is smaller in magnitude, or
there is a large amount of white noise contributions, then the Gaussians will overlap, like
in Figure 3.1b. Sorting samples in the former case is trivial, but sorting criterion needs
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to be developed for the latter. More specifically, the criteria must determine the sample
classifications in the overlap region, which would be the area defined by the tails of the
Gaussians (the grey box in Figure 3.1b).

(a) (b)

Figure 3.1: (a) The signal peaks are well defined, so classification is straightforward. (b)
Signal peaks suffer from large overlap, denoted by grey box. Samples in this region may
belong to either peak.

Given mutually exclusive states i, j and the signal value at step s, two cases must be
addressed for the signal at step s′ = s+ 1.

1. The signal at step s is equal to the signal at s′, x(s) = x(s′), which occurs with
probability:

Pii = P (x(s′) = i | x(s) = i)

2. The signal at step s is not equal to the signal at s′, x(s) 6= x(s′), with probability:

Pij = P (x(s′) = j | x(s) = i)

With only two outcomes, Pii + Pij = 1, and we can define the sorting criteria based on
their values. Given x(s) = i,

x(s′) =

{
i if Pii ≥ Pij

j if Pij > Pii
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Without a priori knowledge of the RTN transition probabilities or time constants, the
sorting criteria cannot be evaluated directly. Instead they are estimated using threshold
values ITH unique to each state, which denote the maximum variance of a sample from
the state mean before it is considered to be in the other state. Give x(s) = i, the sorting
criteria can then be rewritten:

x(s′) =

{
i if Pii ≥ Pij ≡ x(s′) ≤ ITHi

j if Pii < Pij ≡ x(s′) > ITHi

(3.1)

The threshold values are illustrated for overlapping peaks in Figure 3.2.

The threshold is set as a function of the state separation ∆I and the variance σi of its
associated state. For example, the threshold value of state i = {down} may be defined as:

ITHdown
= µdown +

∆I

2
+
σdown

2
(3.2)

The second term is important because to prevent any undefined regions in the domain of
the sample criteria. In other words, for two states down and up where |µdown|< |µup|, the
threshold values must satisfy:

|ITHdown
|>= |ITHup| (3.3)

Figure 3.2: The lines ITHdown
and ITHup represent the threshold limit for a sample to remain

in the same state for the left hand peak and right hand peak respectively.
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To digitize the signal, the first sample in the measurement data is assigned to the state
whose mean value it is closest to. All subsequent samples are then classified according to
Equation 3.1 and their values set equal to the mean value of their corresponding state..
After iterating over the entire measurement sequence, a pure RTN digitized signal will
have been generated. With the digitized signal, estimation of the RTN parameters can
be determined using a variety of methods. The first is by analyzing the new posterior
distribution based on the digitized signal and comparing the relative amplitudes of the two
Gaussians to find the state occupation ratio. The second method is to manually count how
long each state’s lifetime is for both up and down states, and then calculate the average
lifetime based on those counts. This can be supplemented by generating a distribution of
the individual lifetimes and fitting it against the geometric distribution.

3.2 Multi-level Model

While the previous method worked well for two-level measurements, the thresholding
technique is insufficient for multi-level RTN. With more complex data a more systematic
approach was needed, which involves up to four stages:

1. Prior Estimation

2. Digitization

3. Decomposition

4. Parameter estimation

In prior estimation we seek to identify features of the signal and provide initial estimates
for signal parameters. Because white background noise is still a factor the signal is first
filtered using a rolling average. While computationally simple, the transfer function of the
rolling average is very similar to that of a Gaussian filter — the result is the deconvolution,
or at least the reduction, of any Gaussian noise contributions from the time domain signal
[54]. While very simple, it is ideal for preserving step responses and minimizing white noise
fluctuations. An ideal window length can be determined by comparing the RTN Lorentzian
spectrum to the filters transfer function

H(f) =
sin(πfM)

M sin(πf)
(3.4)
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where M is the window length. The window length is chosen so that the drop off of the
rolling average is similar to the Lorentzian - this is so as much white noise as possible is
filtered without removing RTN components.

Figure 3.3: Transfer function of a rolling average filter with window size M , compared to
the Lorentzian spectrum of RTN.

Following application of the rolling average to reduce white noise contributions, the den-
sity of the signal is estimated using a technique called KDE. While a traditional histogram
counts the number of samples that fall into pre-defined bins, KDE creates a distribution
by adding a kernel function at each point a sample falls. This has the effect of smoothing
the signal which is very important in the case of multi-level RTN. If the distribution is
not smooth, the chance of identifying roughness artifacts as RTN levels increases substan-
tially. Figure 3.4 shows the difference in density estimation achieved by using KDE with
Gaussian kernels in comparison to a standard histogram. The cumulative effect achieved
by processing a measurement signal using these techniques is shown in Figure 3.5.

The location and variance of each peak is estimated by fitting the estimated signal
density to a multi-Gaussian distribution. The number of traps N is estimated from the
number of peaks npeaks using

N = ceil(log2(npeaks)) (3.5)

where ceil means to round up to the next highest integer. However, unlike in the two-level
system, where one peak corresponded to the distribution of one state, in the multi trap
case one peak can correspond to the states of multiple traps. This means a further step is
needed. The time-lag plot, which is commonly used in prior estimation, provides a clear
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Figure 3.4: Estimated density for the same data found using a 15-bin histogram, a 30-bin
histogram, and Gaussian KDE.

Figure 3.5: The top row shows the density of measurement values using both a histogram
and KDE. The shapes are very similar, with no discernable RTN. The bottom row shows
the density of values after applying a rolling average to remove white noise. Both the
histogram and KDE show distinct RTN peaks, but peak finding of the histogram developed
density could yield many false positives without careful constraints.
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visualization that the states in RTN have high autocorrelation — when the signal is plotted
against a slightly delayed copy of itself visible clusters form, as shown in Figure 3.6.

(a)

(b) (c)

Figure 3.6: (a) Simulated multi-level RTN to demonstrate clusters formed from highly
correlated states. (b) One dimensional signal density found using KDE. (c) Time-lag plot
visualization of same data with a 1-step delay, plotted as a two-dimensional histogram.
*Densities are not normalized to 1.

This motivated the use of clustering techniques from machine learning on the RTN data.
Because the RTN states with high autocorrelation naturally form clusters, the value of the
signal at time t and the value of the signal at time t + dt are used as the ”features” of
the sample population. The most common technique for clustering is called K-means. In
K-means, clusters are all treated as the same size and samples are assigned to each cluster
based on proximity to the nearest cluster’s average. While efficient, this is limited if the
populations of one state is substantially different from the others or in cases where different

31



variances in the two features is required. To overcome these limitations, a two-dimensional
GMM clustering technique which uses expectation-maximization was applied, using an
implementation from the scikit-learn Python library. GMM clustering allows clusters of
different sizes and can account for different variances in the Gaussian parameters for the
two features of a state. While this means more free parameters are used, which increases
the potential for overfitting, the results from prior estimation are used as constraints on
the generated model. The result is that samples with high autocorrelation are clustered
together, and assigned the mean value of their associated cluster. Figure 3.7 shows the
same two-dimensional histogram of time-lag data from Figure 3.6c, plotted on a logarithmic
scale to enhance contrast of the smaller peaks, alongside a flat time-lag plot with clusters
marked by colour. By mapping the two-dimensional cluster data to the one dimensional
time domain signal a digitized signal is generated, as shown in Figure 3.7c.

Once the signal is digitized, its PMF is described with

fξ =
n∑
i=1

δ(cix) (3.6)

where n is the number of observed levels and
∑n

i=1 ci = 1. In other words, the distribution
is described as a series of scaled delta functions, with the scaling coefficient ci corresponding
to the state frequency.

The next step is to decompose the multi-level signal into its independent RTN sub-
components. A convolution model is pre-defined for N RTN components, and the density
of the signal is fit to the proper model constrained to the number of expected RTN com-
ponents. Fitting is accomplished using a non-linear least-squares minimization algorithm
implemented in the lmfit Python library, and redefines the signal density in terms of the
GMM components for each individual RTN component. Decomposition was performed on
the signal from Figure 3.6a, and the starting distribution and resulting distributions are
shown in Figure 3.9.

Digitization and decomposition yields the transition amplitude ∆RTN and stationary
distributions (Equation 2.35 and Equation 2.36) for any RTN subcomponents in the sig-
nal. The next chapter will focus on RTN in MOSFET devices and discuss the statistical
description and parameters of RTN in the context of device physics.
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(a) (b)

(c)

Figure 3.7: (a) Two-dimensional histogram of time-lag data from Figure 3.6, with a
logarithmic colour-scale. White represents regions with zero counts and hence is undefined
on the colour-scale. (b) Flat (i.e. no density component) time-lag data with colours
denoting clusters. (c) Digitized signal (black) achieved by mapping the cluster means to
each index point in the original signal. The dashed coloured lines represent the mean values
for each associated cluster in (b).
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Figure 3.8: Comparing the original signal (top) against digitized signal (bottom) in a
narrower range of data points.
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(a)

(b)

Figure 3.9: (a) Signal density distribution for the RTN signal to be decomposed. (b)
Distributions for the three RTN subcomponents.
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Chapter 4

Random Telegraph Noise in Devices

RTN is a fundamental noise process which is caused by localized defects in the structure
of an electronic device. In this chapter, I aim to describe how RTN is a consequence of
device physics and its physical origin. I will be describing it specifically in the context of
MOSFETs. Although it affects more devices, MOSFETs are well-understood and relatively
common. In the process, I will also describe the origins of other noise sources which are
common in electronic devices.

4.1 MOSFETs

A MOSFET is a switching transistor with three terminals, the gate, source, and drain.1

Two fundamental types of MOSFETs exist: the NMOS and the PMOS, defined by the
majority charge carrier when the MOSFET is turned on2. The structure for both devices
is identical, except for doping types:

• A moderately doped body, p-type for NMOS and n-type for PMOS.

• Heavily doped drain and source wells implanted into the body:

– n+-type for NMOS, and

– p+-type for PMOS.

1Technically the MOSFET body is a fourth terminal, but is often shorted to the source in practice.
2The majority charge carrier for an NMOS device is the electron, while for a PMOS device it is the

hole.
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• A vertically stacked gate structure on the substrate surface consisting of a dielectric
barrier and conducting material. Traditionally, the dielectric is an oxide like SiO2

and the conductor was a metal3, hence the term MOS.

For both NMOS and PMOS the application of a gate voltage, denoted VG or VGS, will
create a conducting channel between the drain and source wells, as shown in Figure 4.1 for
an NMOS. The current amplitude is determined by the applied drain voltage VDS.

Figure 4.1: Diagram of an NMOS device. In (a) the device is switched off. In (b) an
applied gate voltage VGS forms a channel between the drain and source. At this point, an
applied voltage VDS will cause current to flow through the channel. [28].

More accurately, a channel is only formed when VGS is beyond a certain threshold value
Vth — when this is achieved, the MOSFET is said to be in inversion mode. If this threshold
value is not reached the MOSFET may be in either accumulation or depletion mode,
depending on whether the MOS structure is forward or reverse biased. Exact conditions
for each mode are given in Table 4.1, with charge densities visualized for an NMOS device
are shown in Figure 4.2. Modes are described as follows:

Accumulation When the applied gate voltage is the wrong polarity to turn the MOSFET
on. This causes an accumulation of charge carriers of the type defined by the body
dopant.

3Modern devices use a polysilicon material.
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Depletion When the applied gate voltage begins to cause free carriers in the substrate to
be repelled from region near the body-oxide interface.

Inversion When the amplitude of the applied voltage attracts minority carriers to the
body-oxide interface, inverting charge in a localized region and forming a conducting
channel between the drain and source.

Table 4.1: Zones of operation for NMOS and PMOS devices.

Zone NMOS PMOS

Accumulation VGS ≤ 0 0 ≤ VGS

Depletion 0 < VGS ≤ Vth Vth ≤ VGS < 0

Inversion 0 < Vth < VGS VGS < Vth < 0

4.2 RTN in MOSFETs

As we have established a statistical model for describing and analyzing RTN, we must
establish a physical description of RTN in devices. It has been shown that defects in
the oxide layer near the substrate interface are the source of RTN in MOSFETs[44, 4].
The defects act as charge traps, which channel carriers can tunnel to and occupy for a
characteristic time, as shown in Figure 4.3. In addition it is possible for multiple independent
traps to exist in the channel. Interactions may occur, but this requires trap separation
which is less than the Fermi screening length of the traps [32]. Otherwise, the traps may
independently contribute their own RTN signature to the overall signal, and the result will
appear to have multiple levels, as shown in Figure 4.4.

Following [25], we can describe the defect statistics using the grand partition function,
as the defect can exchange energy and particles with the channel reservoir:

ZG =
∑
i,N

exp

(
−Ei −NEF

kBT

)
(4.1)

where the sum over i, N represents all combinations of states and particle numbers, Ei is
the energy for each state, and EF is the Fermi energy equivalent to the chemical potential
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(a) NMOS charge distribution in accumulation.

(b) NMOS charge distribution in depletion.

(c) NMOS charge distribution in inversion.

Figure 4.2: Charge distributions for an NMOS device in (a) accumulation, (b) depletion,
and (c) inversion.
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Figure 4.3: A single defect in the oxide trigger discrete fluctations in current though the
capture and emission of carriers. The distribution of current will reflect the average value
of each current state.

Figure 4.4: Simulated multi-level RTN as a result of three independent charge traps.
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of the material. If we consider a defect that can be either unoccupied (N = 0) or occupied
(N = 1), then the unoccupied state has energy E0 = 0 and ET represents the energy level
where the defect enters the occupied state. Then Equation 4.1 becomes

ZG = γ0 exp

(
−E0 −N0EF

kT

)
+ γT exp

(
−ET −NTEF

kT

)
(4.2)

= γ0 + γT exp

(
−ET − EF

kT

)
(4.3)

where γ represents the degeneracy of the state. Furthermore, the probability that the
defect will be observed in state i is

p(i) =
γi exp[−(Ei −NiEF )/kT ]

ZG
. (4.4)

From Equation 4.3 and Equation 4.4, the probability the defect is occupied is

p(T ) =
γT exp[−(ET − EF )/kT ]

γ0 + γT exp[−(ET − EF )/kT ]
(4.5)

=
1

1 + γ0/(γT exp[−(ET − EF )/kT ])

=

[
1 + g exp

(
ET − EF

kT

)]−1
(4.6)

where g = γ0/γT . The result derived using the grand partition function can be related to
the RTN time constants through the stationary distribution Equation 2.36, giving

p(T ) =
τc

τc + τe
=

[
1 + g exp

(
ET − EF

kT

)]−1
, (4.7)

where τc and τe are the characteristic times for the occupied state and unoccupied states
respectively.4 If we let g = 1 to show orbital degeneracy is a non-factor in state probability,
we can rewrite Equation 4.7 as

ln
τc
τe

= −ET − EF
kT

(4.8)

4The result of Equation 4.7 is slightly different from the equivalent in Kirton & M. Uren [25]: in that
work, and others, the stationary distribution for the occupied state is defined as τe/(τc + τe). However,
this is contrary to their earlier definition of the time constants and of the stationary distribution given in
other works, such as Machlup [35].
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Using the MOSFET energy levels at flat-band and under a bias, we can express ET −EF

ET − EF = (ECox − ET )− (EC − EF )− φ0 + qψs + q
xT
Tox

(VGS − VFB − ψs), (4.9)

where ECox is the conduction band energy of the oxide, EC is the conduction band energy
of silicon, φ0 is the conduction band offset between the oxide and silicon, qψs is the degree
of band bending in silicon, and q xT

Tox
(VGS − VFB − ψs) is the oxide band offset of the gate

voltage, flat-band voltage, and band bending5 respectively. The last term is scaled by the
depth xT of the defect into the oxide with thickness Tox. The defects location is given in
the energy diagram, shown in Figure 4.5.

Figure 4.5: Band bending in MOSFET inversion mode causes the Fermi level to approach
that of the trap which increases the likelihood of a carrier tunneling through the xT oxide
distance [6].

Equation 4.8 can be differentiated with respect to VGS to investigate the effect of gate

5Some bending may occur due to trapped charge
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voltage on trap time constants

d ln(τc/τe)

dVGS
= −ET − EF

kT
, (4.10)

d ln(τc/τe)

dVGS
= − q

kT

xT
Tox

, (4.11)

which provides a technique for estimating trap depth.

One limitation of this derivation is that it assumes constant energy levels along the
drain-source direction. Celik-Butler et al. [6] derived an extended model which accounts
for differences in band structure at either end of the channel region (i.e. near the source
and near the drain). This requires both forward and reverse drain-source biasing until a
maximum τc/τe is found in both directions,

ln

(
(τc/τe)fmax
(τc/τe)rmax

)
=

q

kBT

xT
Tox

[yT
L
VDSfmax −

(
1− yT

L

)
VDSrmax

]
(4.12)

where yT is the trap distance from the source, L is the channel length, (τc/τe)fmax , (τc/τe)rmax
are the maximum τc/τe ratios in both directions, and VDSfmax , VDSrmax are the corresponding
drain-source voltages. A complete diagram of the defects location within the MOSFET is
given in Figure 4.6.

It was shown in subsection 2.3.1 that the PSD of an RTN signal is a Lorentzian, with
amplitude and cut-off defined by the RTN parameters:

Sx(f) =
1

π

(∆I)2τ0τ1
(τ0 + τ1)2

1

1 +
(

2πfτ0τ1
τ0+τ1

)2 + Sx(0) (4.13)

where τa = (1/τc + 1/τe)
−1.

The RTN is inversely proportional to f 2 so if other noise sources are low enough it will
be visible at low frequencies, as shown in Figure 4.7.

4.3 Other Noise Sources in MOSFETs

4.3.1 White Noise

White noise is the common name for noise sources which have no frequency dependence -
the noise power is distributed evenly across the entire spectrum of frequencies. In electronic
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Figure 4.6: Given a MOSFET with gate oxide thickness Tox and channel length L, we set
the spatial origin (x, y) = (0, 0) to be at the intersection of the source, body, and oxide,
with y in the direction of current flow and x into the oxide. The charge trap is located a
distance of xt into the oxide, and a distance yt towards the drain.

devices, white noise can be caused by either Johnson-Nyquist noise (also called thermal
noise) or shot noise.

Johnson-Nyquist noise is a result of the Brownian motion of the electrons in a crystal
from thermal energy in an equilibrium state.6 Johnson-Nyquist noise has no dependence on
actual device bias and is always present except at 0 K. As a temperature of 0 K is impossible
to reach, it represents a minimum bound on device noise. The PSD of Johnson-Nyquist
noise is

Sx(f) = 4kBTR (4.14)

where kB is Boltzmann’s constant, T is absolute temperature, and R is the impedance of
the device.

In comparison, shot noise is a result of the discretization of current as charge carriers.
Although the average current through a point may remain macroscopically constant, in
reality there are fluctuations in the total number of carriers passing through that point
over time. A larger average current means a wider ranger of fluctuations, and if there is no
net current flow than these fluctuations cannot occur. Shot noise only depends on device

6At equilibrium the average temperature of the solid is constant. Brownian motion may cause localized
fluctuations, but these are random and average out.
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Figure 4.7: A pure RTN signal (blue) will follow a Lorentzian power spectrum (red), as
in Equation 4.13. However, in measurements there are other noise sources present in the
signal. At low frequencies the RTN may dominate the power spectrum but as it drops
off with f 2 other noise sources will overtake it, as shown here. The total signal spectrum
(green) follows the white noise spectrum (orange) at higher frequencies.
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Figure 4.8: Left: A time domain white noise signal generated with a 1 kHz sampling
frequency. Right: The corresponding PSD. As there are no DC components to the signal,
the PSD falls off very rapidly towards f = 0 Hz, but elsewhere the spectrum frequency
independent.

operation, expressed in the PSD formula:

Sx(f) = 2qI (4.15)

where q is the elementary charge and I is the average current.

4.3.2 Flicker Noise

Flicker noise, sometimes referred to as pink noise, is the dominant low-frequency noise
source. Its PSD varies with 1/fα, where α is very close to 1. For this reason, it is often
referred to as 1/f noise in academic literature.

Flicker, or 1/f , noise was originally described empirically, with no adequate physical
model proposed. In the 1950s and 1960s however, two models gained prominence [34].
The first, proposed by McWhorter in 1957, suggests that 1/f is caused by trapping of
significant numbers of carriers, where the time constants τ of each trapping event are
themselves distributed following 1/τ . This model suggests that fluctuations in the number
of carriers is the source of 1/f noise.

The second, proposed by Hooge in 1969, is similar to McWhorter’s in that it suggests
the trapping of carriers by oxide defects leads to 1/f . However, rather than the fluctu-
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Figure 4.9: 1/f noise can be difficult to identify in the time domain. Current data from
measurement of carbon nanotube devices by HeeBong Yang.

Figure 4.10: In the frequency domain, 1/f is much easier to identify. The Lorentzian
spectrum of RTN falls off much quicker, while white noise does not exhibit the same
frequency dependence as 1/f . In this measurement, RTN components are visible at the
lowest frequencies.

1
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ation of carrier numbers being the source, it suggests that trapping causes variations in
carrier mobilities. The model posits that it is mobility fluctuations, rather than number
fluctuations, that causes 1/f .

In either case, both models suggest that 1/f is the summation of many individual RTN
processes, a suggestion that has been corroborated theoretically and empirically by others
such as Howard [17].
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Chapter 5

Device Measurement and Analysis

This research was motivated by a desire to characterize CMOS devices operating at cryogenic
temperatures, with the goal of assessing RTN dependence on operational temperature or
device bias levels. Measurements were carried out on 28 nm PMOS devices using an ARS
4 K dry cryostat and an HP 4156A parameter analyzer — as such, measurements were
limited to 10,001 points. To achieve a high density of test coverage the parameter analyzer
was automated using a Python script, which sets the optimal measurement resolution,
programmed the sampling biases, and pulled and saved the measurement data. I then used
the algorithm to analyze these data.

The device used in testing was a low threshold PMOS device integrated in a TSMC
28 nm CMOS chip, with width W = 1 µm and a length of L = 35 nm.1 There were
many individual devices on the chip, but many exhibited failure from the start or during
the cooldown process. Individual devices were first functionally tested using an Everbeing
probe station – if the device was working, it was wirebonded to a customized chip carrier
using 30 µm gold wire. The device was tested once again after mounting in the cryostat
chamber. If still functional, the cryostat was sealed and lowered to its base temperature
- over the course of these measurements that was approximately 5.5 K. In addition to
the 5.5 K base temperature, higher temperatures were set using a metallic heater and a
Lakeshore 335 temperature controller. A combination of factors such as device heating
and measurement duration (spanning over a week of constant measuring) resulted in
slight temperature fluctuations over time - as such, the temperatures presented are the set
temperatures rather than measured. Sampling intervals were set at 5 ms and 20 ms, as
previous experiment results showed resolution artifacts at shorter sampling intervals and

1It is unknown whether these are effective dimensions or actual dimensions.
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fewer RTN samples above that. Finally, every combination of measurement parameters
was repeated for three measurements to increase statistical accuracy.

Figure 5.1: CMOS chip (circled in red) wirebonded to custom chip carrier, which in turn
is mounted on the cryostat cold finger.

(a) (b)

Figure 5.2: (a) MOSFET current-voltage (I-V) curve at room temperature, operating in
linear mode. (b) IV curve at 5.5 K. Despite change in temperature, MOSFET linear region
is still active.
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5.1 Example Analysis

In this section I will present a step-by-step visualization of application of the algorithm to
measurement data. The presented data were measured at 5.5 K at a gate voltage of −565
mV and drain voltage of −25 mV. In addition, the sampling time was set at 20 ms. First,
the measurement itself and current distribution is shown in Figure 5.3a and Figure 5.3b
respectively.

(a) (b)

Figure 5.3: (a) Unprocessed measurement signal for device measured at 5.5 K. (b) Estimated
density distribution.

The filtered data and estimated density estimation resulting from prior analysis are
shown in Figure 5.4a and Figure 5.4b respectively as well. The peaks representing RTN
states are marked with orange x-marks.

The output of clustering and digitization is overlaid over the filtered data in Figure 5.5.
The estimated distribution for the corresponding convolution of mixture models is shown
in Figure 5.6a, and the decomposed distributions are shown in Figure 5.6b and Figure 5.6c.

Finally, the estimated power spectral density for the digitized signal in Figure 5.5 is
shown in Figure 5.7, along with the calculated Lorentzian spectrums corresponding to each
of the RTN components.

51



(a) (b)

Figure 5.4: (a) Measurement signal after application of rolling average filter to minimize
normally-distributed fluctuations. (b) Estimated density distribution of filtered data, with
peaks corresponding to identified states marked with orange checks.

Figure 5.5: Digitized signal (orange) overlaid filter measurement signal (blue).

Table 5.1: Extracted trap amplitude and time constant parameters for each component in
the signal.

∆I(nA) τc(ms) τe(ms)

Component #1 11.3 149.4 964.8

Component #2 30.8 526.7 446.6
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(a)

(b) (c)

Figure 5.6: (a) Estimated density distribution formed by the convolution of two Gaussian
mixture model components. (b) Density distribution of the first subcomponent. (c) Density
distribution of the second subcomponent.

53



Figure 5.7: Comparing estimated power spectral density of digitized signal (estimated
using Welch’s method) against the subcomponent spectrums calculated using a Lorentzian
spectrum and extracted parameters.
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5.2 Gate Dependence Sorted by Temperature

As gate dependence of RTN was shown in Equation 4.8, this was the focus of measurement
analysis. RTN dependence on temperature was explored at the same time, by analyzing
each measurement set independently — the sets of measurement conditions are given in
Table 5.2. For each temperature, the first step is exploring the number of traps. Next, the
RTN amplitude for each trap is characterized along with its relation to the average signal
current. Finally, the trap depth xT/Tox is investigated based on Equation 4.8.

Table 5.2: Parameters used to measure drain current through the transistors channel.

.

Test Set Temp (K) |VG| (mV) |VD| (mV)

A ∼ 5.5 480 - 620 5 - 30

B ∼ 14 480 - 600 5 - 30

C ∼ 100 480 - 600 5 - 25

5.2.1 5.5 Kelvin Data

Figure 5.8: Average number of traps at 5.5 K. As the gate voltage is increased, more traps
become active until a saturation point is reached.
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Figure 5.9: Average amplitude ∆I of the observed traps. The amplitude of the primary
trap remains relatively constant across gate voltage, but there are large fluctuations in
amplitude of the secondary traps.

Figure 5.10: Average amplitude of the observed trap relative to the mean signal value
∆I/Iavg. The primary trap ratio slightly decreases with increasing gate voltage, which
corresponds to increasing Iavg. The secondary trap ratio does not appear to have the same
relationship.

56



Figure 5.11: Trap distance xT into the oxide (thickness Tox) as a percentage. From the
percentages, the trap depth xT appears quite shallow – the depth is negative at some
gate voltages however, which suggests these traps are not in the oxide, but rather in the
channel itself. An alternate explanation is that these traps have the opposite polarity. This
possibility will be discussed later in this chapter.
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5.2.2 14 Kelvin Data

Figure 5.12: Average number of traps at 14 K. The behaviour is quite similar to Figure 5.8,
where increasing gate voltage leads to more activated traps up to a saturation level.

Figure 5.13: Average amplitude ∆I of the observed traps. The primary trap once again
behaves similarly to the 5.5 K data — a strong gate voltage dependence is seen on the
secondary trap however.
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Figure 5.14: Average amplitude of the observed trap relative to the mean signal value
∆I/Iavg. The behaviour does not deviate unexpectedly when taking it as a proportion
average current.

Figure 5.15: Trap distance xT into the oxide (thickness Tox) as a percentage. Trap behaviour
once again does not substantially change from the 5.5 K data.
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5.2.3 100 Kelvin Data

Figure 5.16: Average number of traps at 100 K. Far fewer traps are activated or observed
when increasing the gate voltage then at the lower temperatures, which may suggest thermal
noise is masking them.

Figure 5.17: Average amplitude ∆I of the observed traps. The trap amplitude has much
greater fluctuations at 100 K and has a larger overall amplitude than the 5.5 K and 14 K
results.

60



Figure 5.18: Average amplitude of the observed trap relative to the mean signal value
∆I/Iavg. The trap amplitude does not appear to have increased or decreased relative to
average current when compared to the 5.5 K and 14 K data.

Figure 5.19: Trap distance xT into the oxide (thickness Tox) as a percentage. Percent depth
of traps again fluctuates around zero at shallow levels.

61



5.3 Discussion

These results show there is a strong temperature dependence of some form on the observation
of RTN in device measurements. The 5.5 K and 14 K measurements yielded very similar
results for the number of traps, trap amplitude, trap depth, and gate voltage dependence.
A marked difference was seen in the results of the 100 K measurements, with less consistent
behaviour along gate bias, and only a handful of multi-level RTN signals observed. It is
possible that this is caused by an increase in thermal noise, which masks any RTN. However
thermal noise should be independent of gate voltage, and RTN is actually observed less at
higher bias levels — it should be consistent if thermal noise is the cause. This suggests
that there is another thermal effect at play, possibly on charge mobility or carrier density.
This would be the next area to explore in device characterization using RTN.

Observations of the trap depth xT/Tox show both positive and negative values for trap
depth. Defects causing RTN in MOSFETs have been shown to exist in the oxide[25], which
would correspond to a positive depth ratio — a negative value implies a defect located in
the channel. This may be a possibility, although the derivation for the xT/Tox relation
requires a trap energy inside the defect. Another possibility, suggested by Ralls et al. [44],
is for defects of opposite polarity to exist. One defect might be neutral to start and become
charged following carrier capture — this is the model used to define the RTN parameters
in terms of current. Another type may be charged to start and be neutralized following
carrier capture — the same capture mechanics would apply, however the definition of τc
and τe would apply for changes in current of the opposite polarity.

For both 5.5 K and 14 K, relatively consistent behaviour is observed across the gate
voltage sweep in terms of RTN amplitude ∆I and trap depth xT/Tox — at least for the
primary trap (labelled “Trap 1”). There is a larger variation in analysis results for secondary
traps, both in terms of mean value and the standard deviations of results — this is clearest
in the trap amplitude plots for both temperatures. This suggests the possibility that the
primary trap is the same physical defect while the second trap may be caused by one of a
few defects, activated at random by fluctuations in bias, carrier density, temperature, etc.
Another stage of this research may focus on discerning any consistency or repetition in the
secondary trap data, in an attempt to identify another unique trap.
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Chapter 6

Conclusion

We demonstrated the origin of RTN in semiconducting devices as caused by crystal defects.
These defects introduce an energy state that a charge carrier is able to occupy, which
causes modulation in channel parameters. When observed, these modulations cause discrete
transitions in channel current, voltage, or resistance. The lifetime of each discrete transition
is a random variable which is either geometrically or exponentially distributed, depending
on whether it is in discrete or continuous time. We can derive this result by modelling the
signal as a Markov process, which assumes the signal is a memoryless process whose state
can transition at any point. By calculating the autocorrelation function and then applying
the Wiener-Khinchin theorem we can likewise calculate the power spectrum of the RTN
signal. This can be verified experimentally, which offers validation of the statistical model.

While this type of frequency domain analysis is well established, time domain analysis
has typically be restricted to signals with only two-discrete levels. As multi-level RTN
is shown to be common especially at cryogenic temperatures, we developed an algorith-
mic technique for characterizing multi-level RTN. This algorithm uses a two-dimensional
clustering technique using Gaussian mixture models to identify the highly auto-correlated
RTN levels and digitize it. Following digitization, a constrained curve fitting technique
decomposes the signal into the individual RTN components, which allows parameters
corresponding to each trap to be identified.

More rigorous examination of the trap properties could not be accomplished due to
multiple factors. However, these factors are external limitations and not a result of a
weakness in the algorithm. The algorithm provides the necessary information to identify
the depth of multiple traps into the oxide and also the distance of the traps along the
channel length. Finally, the amplitude corresponding to each trap is extracted and can
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be further used for analysis. The demonstrated research has not engaged in modelling or
explaining the effects of operating parameters on traps, but rather enabled more rigorous
examination than existing techniques allow. The next steps in this research would delve
deeper into the trap models to explain the observed dependence on temperature and gate
voltage.

64



Bibliography

1. Amir, G. Continuous Time Markov Chains
http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf (2019).

2. Awano, H., Tsutsui, H., Ochi, H. & Sato, T. Multi-trap RTN parameter extraction
based on Bayesian inference in International Symposium on Quality Electronic
Design (ISQED) (IEEE, Mar. 2013).

3. Basnet, P. METAL OXIDE PHOTOCATALYTIC NANOSTRUCTURES
FABRICATED BY DYNAMIC SHADOWING GROWTH PhD thesis (Apr. 2015).

4. Bollu, M., Koch, F., Madenach, A. & Scholz, J. Electrical switching and noise
spectrum of Si-SiO2 interface defects generated by hot electrons. Applied Surface
Science 30, 142–147 (Oct. 1987).

5. Bury, K. V. Statistical Models in Applied Science isbn: 9780471125907 (Wiley, 1975).

6. Celik-Butler, Z., Vasina, P. & Vibhavie Amarasinghe, N. A method for locating the
position of oxide traps responsible for random telegraph signals in submicron
MOSFETs. eng. IEEE transactions on electron devices 47, 646–648. issn: 0018-9383
(2000).

7. Chau, R. et al. Application of high-κ gate dielectrics and metal gate electrodes to
enable silicon and non-silicon logic nanotechnology. Microelectronic Engineering 80,
1–6 (June 2005).

8. Cleve, R., Ekert, A., Macchiavello, C. & Mosca, M. Quantum algorithms revisited.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 454, 339–354 (Jan. 1998).

9. Colombeau, B. et al. Advanced CMOS devices: Challenges and implant solutions.
physica status solidi (a) 211, 101–108 (Dec. 2013).

10. Couch, L. W. Digital and Analog Communication Systems 8th ed. isbn:
9780132915380 (Pearson, 2013).

65

http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf


11. Dongaonkar, S., Giles, M. D., Kornfeld, A., Grossnickle, B. & Yoon, J. Random
telegraph noise (RTN) in 14nm logic technology: High volume data extraction and
analysis in 2016 IEEE Symposium on VLSI Technology (IEEE, June 2016).

12. Eroms, J. et al. Low-frequency noise in Josephson junctions for superconducting
qubits. Applied Physics Letters 89, 122516 (Sept. 2006).

13. Ghahramani, Z. in Series in Machine Perception and Artificial Intelligence 9–41
(World Scientific, June 2001).

14. Green, M. L., Gusev, E. P., Degraeve, R. & Garfunkel, E. L. Ultrathin (< 4 nm)
SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding
the processing, structure, and physical and electrical limits. Journal of Applied
Physics 90, 2057–2121 (Sept. 2001).

15. Guo, S., Wang, R., Mao, D., Wang, Y. & Huang, R. Anomalous random telegraph
noise in nanoscale transistors as direct evidence of two metastable states of oxide
traps. Scientific Reports 7 (July 2017).

16. Harlingen, D. J. V. et al. Decoherence in Josephson-junction qubits due to
critical-current fluctuations. Physical Review B 70 (Aug. 2004).

17. Howard, R. M. A modified random telegraph signal with a 1/f PSD in 2017
International Conference on Noise and Fluctuations (ICNF) (IEEE, June 2017).

18. Howard, R. M. Principles of Random Signal Analysis and Low Noise Design (John
Wiley & Sons, Inc., July 2002).

19. Iosifescu, M. Stochastic processes and applications in biology and medicine isbn:
354006270X (Editura AcademieiSpringer-Verlag, Bucureşti,New York, 1973).
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Appendix A

Device Physics

A.1 Conductivity in Solids

Electrons are fermions, which means they obey the Pauli exclusion principle - fermions
must have unique quantum numbers and cannot occupy the same quantum state. A
single atom has well defined quantum states that an electron can occupy, determined by
the electrons energy (n), orbital angular momentum (l), angular momentum vector or
projection (ml), and electron spin (s). The quantum numbers n determines the electrons
shell, l determines the subshell, ml the orbital an electron occupies, and finally s is a
parameterization to obey the exclusion principal. These numbers are sufficient to describe
the quantum states of a single atom, but when two like atoms are brought together to the
point that their orbitals overlap, there will not be enough quantum states for each electron.
To allow for this overlap to occur, the overlapping orbitals for each shell will split into
two sub-orbitals - one with slightly larger energy and one with slightly lower energy. The
energy difference between these sub-orbitals is also much smaller than the energy difference
between shells and subshells. Orbital splitting preserves the average energy of each electron
but introduces the necessary quantum states to describe them. This is the case when two
atoms are brought together, but the orbital splitting continues as more and more atoms
are brought together. As the number increases to the point of forming a macroscopic solid,
the orbital splitting can be approximated as a continuous band of quantum states - the
energy difference between states is so minute that electrons can move freely between them.
This process is demonstrated in Figure A.1.

An atom’s behaviour and interactions are largely governed by its valence electrons, and
this continues in band structure. The energy bands of interest in a solid are the conduction
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Figure A.1: As atoms are brought together, splitting occurs in the atomic levels to obey
the Pauli exclusion principle. At the point of forming a macroscopic crystal, the splitting of
states is so fine that the density of states form an almost continuous band of states, where
individual states cannot be distinguished.

and valence bands, along with the band gap that separates them. In solids band structure,
the conduction band is first unfilled band and the valence band is the final filled band.
More accurately, the conduction band and the valence band are the two bands closest to
the Fermi level. As fermions, electrons are described using Fermi-Dirac statistics, and the
Fermi level is equal to the energy state that has a 50% probability of being occupied at
any time. This is calculated using the Fermi-Dirac distribution, shown in Figure A.2 and
written as

f(ε) =
1

e(ε−µ)/kBT + 1
(A.1)

where ε is the electron energy, µ is the solids chemical potential, kB is the Boltzmann
constant, and T is absolute temperature.

As the Fermi level is defined as the 50% probability of occupation, then ε = µ. The
band gap, when it exists, is a region with no occupiable states and is a consequence
of the crystal structure, containing energy levels without a corresponding solution to
Schrodinger’s equation. Solids are classified as metals, insulators, or semiconductors based
on a combination of the band-gap and how filled their valence or conduction bands are,
as seen in Figure A.3. When the conduction band is only partially filled then electrons
have accessible states to move and the solid is called a metal.1 If the valence band is full
and the band-gap is very large, the solid is an insulator as electrons have no free states to

1When there is small overlap between the conduction and valence bands, it is called a semimetal instead.
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Figure A.2: The Fermi-Diract distribution, for T3 > T2 > T1 > T0 = 0. The distribution
describes the distribution of electron occupation of energy states E. The Fermi value EF
corresponds to the point where the state is 50% likely to be occupied. The number of
electrons is calculated by multiplying the distribution at an energy by the actual density
of states [3].
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move to. If the band-gap is small (ie. within the range of thermal excitation energy) then
the material is called a semiconductor, as its conductivity is directly proportional to the
number of electrons that can be excited to the conduction band.

Figure A.3: The electrical difference between “types” of solids is a matter of how full and
the separation of the materials conduction and valence bands. The conduction and valence
bands represent energy regions of non-zero density of states, while inside the bandgap
region the density of states is zero [26].

A.1.1 Semiconductors

Semiconductors formed strictly from Group IV elements such as silicon and germanium
or from a combination of Group III and Group V elements (shorthand III-V), such as
gallium-arsenide, are called intrinsic semiconductors.

In an intrinsic semiconductor, there is always the same concentration of electrons (n) as
concentration of holes (p): n = p. This quantity is called the intrinsic carrier concentration
ni, with

ni = p = n (A.2)

The number of free carriers in a unit volume is given by

ni = BT 3/2e−Eg/2kBT (A.3)

where B is a material dependent parameter, T is the absolute temperature in K, Eg is
the bandgap of the material, and kB is Boltzmann’s constant. For intrinsic silicon, B =
7.3× 1015cm−3K−3/2 and Eg = 1.12eV. The conductivity σ of an intrinsic semiconductor
is calculated using

σ = qni(µn + µp) (A.4)
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Figure A.4: The groups and associated elements that can be used in various combinations
to make semiconductors [31].

where µn and µp are the electron and hole mobility respectively. One can see the conductivity
of an intrinsic semiconductor is therefore a function of the material and temperature only.
From Equation A.3, we see the density of free electrons in the semiconductor, and therefore
its conductivity, increases with temperature. On the other hand, at T = 0K all intrinsic
semiconductors would become insulators unless otherwised biased. This relationship has
been plotting in Figure A.5.

When an electron is excited from the valence band to the conduction band, it leaves
a vacant quantum state behind that other electrons can then move to. This vacancy is
referred to as a hole and can be modelled as a particle with positive charge q. Holes can
be treated nearly the same as electrons, as fermions which can be the dominant charge
carrier in semiconducting devices. They differ in that their movement is actually the result
of a sequence of electrons moving to occupy the vacancy, which is mostly indistinguishable
from movement of the vacancy itself. However, it means that a hole has lower mobility and
higher effective mass than an electron.

To modify conductivity the carrier concentrations are changed through the use of
dopants, a process most commonly performed on silicon. Dopants are atoms with one more
or one less valence electron than silicon, but which displace and replace atoms in the crystal
when bombarded at high energies. When injected in low concentrations they do not have
a major effect on the crystal structure or behaviour, but each dopant introduces a free
carrier. When the dopant has 3 valence electrons (ie. it introduces a free hole) it is called
an acceptor, and a dopant with 5 valence electrons (ie. it introduces a free electron) is
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Figure A.5: The logarithmic behaviour of conductivity σ as a function of temperature T
for intrinsic silicon.

called a donor. Furthermore, because a dopant either adds or removes an electron, the
number of occupied states is different in a doped semiconductor compared to an intrinsic
semiconductor. This causes a shift in the Fermi level - towards the conduction band in
n-type semiconductors, or towards the valence band in p-type semiconductors. Figure A.6
shows a visualization of how a dopant replaces an original atom and how it causes the
Fermi level to shift.

σ = q(pµp + nµn) (A.5)

In sufficient quantities, semiconductor doping will lead to a significant change in the
electrical conductivity of the material - highly doped (or degenerate) semiconductors will
have conductivity approaching that of metal, whereas intrinsic or minimally doped (non-
degenerate) silicon has quite poor conductivity in comparison. The carrier concentrations
are expressed using the following ratio:

n0p0 = n2
i (A.6)

where n0 is the conducting electron concentration, p0 the conducting hole concentration,
and ni is the intrinsic concentration of the base material. When a semiconductor is
electron dominant it is called an n-type semiconductor, and p-type when hole dominant.
Semiconductor doping enables fine tuned control of the semiconductors electrical properties,
and is what enables the fabrication of complex devices from semiconductors.
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Figure A.6: When dopants are added to intrinsic silicon, the carrier density in the conduc-
tion band increases which leads to an increase Fermi level. Likewise, acceptors increase the
holel density in the valence band, which in turn decreases the Fermi level [36].
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A.2 Devices

A.2.1 Semiconducting P-N Junction

The simplest semiconductor device is a PN-junction, which is created when an interface
is formed between an n-type and p-type semiconductor. Although the Fermi level of each
semiconductor will be shifted due to concentration differences, when the junction is formed
and the two sides reach an equilibrium, by its very definition the Fermi level must be
constant across the junction, demonstrated in Figure A.7. The equaliization of the Fermi
level across the junction shifts the relative energies of the conduction and valence bands on
each side of the junction as well. It becomes energetically favourable for a certain number
carriers to move across the junction, resulting in the recombination of the free carriers
introduced by doping. The consequence of this recombination is that there is region around
the junction lacking in free charge carriers but which is still charged due to the ionized
nuclei of the dopants. This is called the depletion region, and a built-in voltage is generated
across it; there is zero net current across the junction.

Figure A.7: When a junction between p-type and n-type semiconductors are formed, band
bending occurs because the Fermi level EF equalizes across the junction [24].

There are two ways to generate further current across the junction:

1. A voltage can be applied which reduces the depletion region width and which cancels
the built-in voltage. When the depletion region reaches zero width, current will flow.
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2. A voltage is applied in the opposite direction, increasing the depletion region width.
The crystal will support up to a critical voltage level, after which breakdown will
occur in the crystal and current will flow.

A diode and LED are practical examples of a p-n junction, and p-n junctions are the
fundamental building blocks of most other semiconducting devices, though others exist
such as the p-i-n junction. BJTs and MOSFETs are examples of devices that are formed
using p-n junctions.
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Appendix B

Markov Chain Proofs

B.1 Theory - Continuous Time Model

B.1.1 Autocorrelation

φ(t) = 〈X(t0)X(t0 + t)〉

φ(t) =

〈(
x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1

)
(x1P11(t) + x1P01(t) + x0P10(t) + x0P00(t))

〉

φ(t) =

〈(
x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1

)
x1P11(t) +

(
x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1

)
x1P01(t)

+

(
x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1

)
x0P10(t) +

(
x0

τ0
τ0 + τ1

+ x1
τ1

τ0 + τ1

)
x0P00(t)

〉

φ(t) =

〈
����������
x0

τ0
τ0 + τ1

x1P11(t) + x1
τ1

τ0 + τ1
x1P11(t) +

����������
x0

τ0
τ0 + τ1

x1P01(t) +
����������
x1

τ1
τ0 + τ1

x1P01(t)

+
����������
x0

τ0
τ0 + τ1

x0P10(t) +
����������
x1

τ1
τ0 + τ1

x0P10(t) +
����������
x0

τ0
τ0 + τ1

x0P00(t) +
����������
x1

τ1
τ0 + τ1

x0P00(t)

〉

φ(t) =

〈
x21

τ1
τ0 + τ1

P11(t)

〉
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B.1.2 Power Spectral Density and Wiener-Khinchin Theorem

S(ω) =
1

2π

∫ ∞
−∞

φ(t)e−iωtdt (B.1)

=
1

π

∫ ∞
0

φ(t)e−iωtdt (B.2)

=
1

π

∫ ∞
0

(
∆Xτ1
τ0 + τ1

)2

e−iωtdt+
1

π

∫ ∞
0

(∆X)2τ0τ1
(τ0 + τ1)2

e
−
(

1
τ0

+ 1
τ1

)
t
e−iωtdt (B.3)

= SA + SB (B.4)

The first term SA is a constant in time, hence

SA(ω) =

(
∆Xτ1
τ0 + τ1

)2
δ(ω)

π
. (B.5)

The second term SB is

SB(ω) =
1

π

∫ ∞
0

(∆X)2τ0τ1
(τ0 + τ1)2

e
−
(

1
τ0

+ 1
τ1

)
t
e−iωtdt (B.6)

=
1

π

∫ ∞
0

(∆X)2τ0τ1
(τ0 + τ1)2

e
−
(

1
τ0

+ 1
τ1

)
t
cos(ωt)dt (B.7)

=
1

π

(∆X)2τ0τ1
(τ0 + τ1)2

[
1 +

(
ωτ0τ1
τ0 + τ1

)2
]−1

(B.8)

B.1.3 Power Spectral Density Scaling Factor

A scaling factor of 2π may or may not be included in the Wiener-Khinchin derived PSD.
The presence of such a scaling factor depends on how the Fourier transform is defined
(specifically if using ω instead of f .) An additional scaling factor of 2 may be present based
on restrictions placed upon f . Consider that the signals power is found through integrating
the PSD over all frequencies:

P =

∫ ∞
−∞

Sx(f)df = 2

∫ ∞
0

Sx(f)df

Using the property that Sx(f) = Sx(−f) if x is a real process. If we restrict our region
of interest to f > 0, which is valid considering this is a real signal, then the extra scaling
factor would need to be introduced to satisfy overall power.
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Source: https://www.asc.ohio-state.edu/jayaprakash.1/846/noiseho.pdf

B.1.4 Alternative to Kolmogorov’s Forward Equation

Kolmogorov’s Forward Equation is used to calculate the probability of being in a state
after some time t, but it can seem to be an arbitrary way of arriving there. It treats Pij(t)
as an abstraction from the actual probabilities and the solution is found with a differential
equation. However, we can use the exponential distribution of calculating the probability
of specific life times or we can use the Poisson distribution to calculate the probability of
n transitions in a time window. I attempted to use the Poisson probability to calculate
P11(t) without use of the different equation:

Let N be Poisson-distributed with mean 1/τ . The probability of n transitions occurring
in time t is given through the Poisson point process:

P (N(t) = n) =
(t/τ)ne−t/τ

n!

Let X be Poisson-distributed with mean 1/τu, corresponding to transitions up. Let Y
be Poisson-distributed with mean 1/τd, corresponding to transitions down. The probability
P11(t) must equal the probability that Y is equal to X:

P11(t) = P (X = Y )

= P (X − Y = 0)

= e−(1/τu+1/τd)I0(2
√

1/(τuτd))

Which follows the Skellam distribution, where I0(x) is the zero-order modified Bessel
function of the first kind. This introduces two problems: the removal of any time depen-
dence and the problem of analytically reducing a modified Bessel function whose input is
variable. Despite other attempts to formulate the probability P11(t) in terms of explicit
probabilities, many problems would always arise and a satisfactory method could not be
found. Kolmogorov’s Forward Equation is an effective way of bypassing or simplifying
the complexity of trying to account for all possible transition sequences in an arbitrary
timeframe.
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B.2 Theory - Discrete Time

B.2.1 Transition Matrix Simplification

Lemma: Let A = (aij) and B = (bij), both N ×N matrices. The product matrix A×B =
AB has elements:

(AB)ij =
∑
k

aikbkj

Using matrix multiplication, we can show how to simplify the transition matrix. First,
solve for transition probability after s = 2 steps, and then after s = 3 steps:

pij(2) = P{X2 = j | X0 = i}
=
∑
k

P{X2 = j | X1 = k}P{X1 = k | X0 = i}

=
∑
k

pkjpik

=
∑
k

pikpkj

= P 2

pij(3) = P{X3 = j | X0 = i}
=
∑
k

P{X3 = j | X2 = k}P{X2 = k | X0 = i}

=
∑
k

pkjP
2

= P 3

This will extend to the general case of pij(s) = P s.

Source: https://www.stat.auckland.ac.nz/~fewster/325/notes/325book.pdf

B.2.2 Further simplification

The single step transition probability matrix:

P =

[
p q
p q

]
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for p+ q = 1. The two step transition probability matrix:

P 2 = PP =

[
p q
p q

] [
p q
p q

]
=

[
pp+ qp pq + qq
pp+ qp pq + qq

]
=

[
p(p+ q) q(p+ q)
p(p+ q) q(p+ q)

]
=

[
p q
p q

]
The three step transition probability matrix:

P 3 = PP 2 = PP = P 2 = P

It follows that for n steps:
P n = P

B.2.3 Eigenvector Calculation

We have:

P =

[
p0 q0
q1 p1

]
λ1 = 1

λ2 = p0 + p1 − 1
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For the first eigenvector:

P⇀u = λ1⇀u

(P − λ1I)⇀u = 0[
p0 − 1 q0
q1 p1 − 1

] [
u0
u1

]
= 0[

−q0 q0
q1 −q1

] [
u0
u1

]
= 0[

−q0u0 + q0u1
q1u0 − q1u1

]
= 0

−q0u0 + q0u1 = 0

u1 =
q0u0
q0

= u0

q1u0 − q1u1 = 0

u1 =
−q1u0
−q1

= u0

⇀u =

[
1
1

]
(B.9)

To verify whether ⇀u is an eigenvector,
check P⇀u = c⇀u for c a constant:[

p0 q0
q1 p1

] [
1
1

]
=

[
p0 + q0
q1 + p1

]
=

[
1
1

]
Thus ⇀u is an eigenvector.

Likewise, for the second eigenvector:

P⇀v = λ1⇀v

(P − λ2I)⇀v = 0[
p0 − (p0 + p1 − 1) q0

q1 p1 − (p0 + p1 − 1)

] [
v0
v1

]
= 0[

1− p1 q0
q1 1− p0

] [
v0
v1

]
= 0[

q1v0 + q0v1
q1v0 + q0v1

]
= 0

q1v0 + q0v1 = 0

v1 =
−q1v0
q0

q1v0 + q0v1 = 0

v1 =
−q1v0
q0

⇀v =

[
1

−q1/q0

]
(B.10)

To verify whether ⇀v is an eigenvector,
check P⇀v = c⇀v for c a constant:[
p0 q0
q1 p1

] 1
− q1
q0

 =

 p0 − q1
q1 −

p1q1

q0

 = (p0−q1)

 1
− q1
q0



−q1
q0

(p0 − q1) =
−q1p0
q0

+
q21
q0

=
−q1(1− q0)

q0
+

(1− p1)q1
q0

=
−q1(1− q0)

q0
+

(1− p1)q1
q0

=
�
�
�−q1

q0
+ q1 +

�
�
�q1
q0
− p1q1

q0
= q1 − (p1q1)/q0

Thus ⇀v is an eigenvector.
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B.2.4 Expected value of X(s)

Using x0 = 0, x1 = ∆X, and the following:

P s =

[
p00(s) p01(s)
p10(s) p11(s)

]
=

q0
q0 + q1

[
g(s)− α 1− g(s)
α(g(s)− 1) 1− αg(s)

]
γ0 =

q1

q0 + q1
γ1 =

q0

q0 + q1

The expectation value E(Xs) = πTs
⇀x is:

πTs
⇀x = πT0 P

s⇀x

=
[
γ0 γ1

] [p00(s) p01(s)
p10(s) p11(s)

] [
x0
x1

]
=
[
γ0p00(s) + γ1p10(s) γ0p01(s) + γ1p11(s)

] [x0
x1

]
= x0(γ0p00(s) + γ1p10(s)) + x1(γ0p01(s) + γ1p11(s))

= ∆X(γ0p01(s) + γ1p11(s))

=
∆Xq0
q0 + q1

(γ0(1− g(s)) + γ1(1− αg(s)))

=
∆Xq0
q0 + q1

(γ0 − γ0g(s)) + γ1 − γ1αg(s)))

=
∆Xq0
q0 + q1

(1− g(s)(γ0 + γ1α))

=
∆Xq0
q0 + q1

(
1− g(s)

(
q1

q0 + q1
+

q0

q0 + q1

−q1
q0

))

=
∆Xq0
q0 + q1

(
1− g(s)

(
q1

q0 + q1
− q1

q0 + q1

))

=
∆Xq0
q0 + q1
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Appendix C

Statistical Models

C.1 Normal Distribution

Also known as the Gaussian distribution, the normal distribution is one of the most common
statistical models. It models a random variable x with an average value µ and symmetric
variations about that average. The width of the distribution is given by the scaling factor
σ. The PDF is

fn(x;µ, σ) =
1

σ
√

2π
exp

1

2

(
x− µ
σ

)2

, (C.1)

−∞ < x, µ <∞, 0 < σ

and is plotted, along with the CDF, in Figure C.1.

If we expected consistent pulse amplitudes in our dummy pulse train with variations
described as white noise, the normal distribution could be used as a model for the average
value. Although some amplitudes may be smaller and some may be higher, the average
amplitude would still be µ and the probability of measuring other amplitudes would decrease
as the distance from µ increased.

C.2 Poisson Distribution

When a discrete random variable N represents the number of pulses (or more generally
events) in a continuous (most often in time) interval (0, x), the Poisson distribution is used.
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Figure C.1: a) PDF of the normal distribution with mean µ and variance σ marked. b)
CDF of the normal distribution. The mean value corresponds to a cumulative probability
of 50%.

The Poisson distribution is used very often in real-world applications to count random
events over time. The processes where the Poisson distribution is used are collectively
called Poisson point processes. Examples of Poisson point processes are the emission from
radioactive decay or detector interactions from cosmic ray particles, such as muons. The
Poisson distribution has a single parameters λ, the expected rate of events per unit time
(assumed to be constant). Although the Poisson distribution is used for processes that
occur in continuous space, as a counting process a Poisson random variable can only take
discrete values. Thus it is described using a PMF, which is given as:

fN(x;λ) =
λxe−λ

x!
(C.2)

0 < λ, x ∈ Z+

The PMF and CDF are plotted in Figure C.2.

The first and second moments of the Poisson distribution are equal:

µ = σ = λ (C.3)
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Figure C.2: a) PDF of the Poisson distribution for a process with an average rate λ of 5
events per interval. b) The corresponding CDF when λ = 5.

C.3 Exponential Distribution

When seeking to model the time between events in a Poisson point process rather than the
number of events in some interval, the exponential distribution is used. Thus in contrast
to the Poisson distribution, it is a continuous distribution over time or space. It can be
derived from the Poisson distribution (see 2.3.1), and as a consequence is dependent on
the same rate parameter λ. The model parameter is sometimes defined as τ = 1/λ, which
makes the units more intuitive.

The PDF of the exponential distribution is

f(x;λ) = λe−λx (C.4)

0 < λ, 0 ≤ x

with CDF
F (x;λ) = 1− e−λx (C.5)

The exponential PDF and CDF are shown in C.3.

The exponential distribution has the interesting property of memorylessness:

P (T > s+ t|T > s) = P (T > t), (C.6)

where T is the random variable representing the time between events, and s and t are both
intervals of time. What C.6 says is that if an event hasn’t occured in an interval s after

88



the starting time, the probability it will occur in another interval t is the same as if t was
counted from the starting time itself - the probability of duration T is the same after 30
seconds as it is after 0 seconds.

This is easily shown using conditional CDF to calculate the probability that the interval
will be longer than s+ t is s has already elapsed:

P (T > s+ t|T > s) =
P (T > s+ t ∩ T > s)

P (T > s)
(C.7)

=
P (T > s+ t)

P (T > s)
(C.8)

=
1− F (s+ t)

1− F (s)
(C.9)

=
e−λ(s+t)

e−λs
(C.10)

= e−λt (C.11)

= 1− F (t) (C.12)

= P (T > t) (C.13)

Thus, the probability that the interval will be longer than s + t given s has already
elapsed is the same as if s had not occurred. In other words, its future value does not
depend on what already happened.

C.4 Negative Binomial and Geometric Distribution

The negative binomial and geometric distributions are analogs of the Poisson and expo-
nential distributions when the events occur in discrete space rather than continuous. The
negative binomial distribution is used to model the number of failures (k) from a sequence
of n independent Bernoulli trials before r successes occur.1 For a given probability of
success p, the PMF is

f(k; r, p) =

(
k + r − 1

k

)
pr(1− p)k. (C.14)

1The terms failure and success are not necessarily meant literally, but are placeholders for the two
possible outcomes of a binary process.
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Figure C.3: PDF and CDF for an exponential distribution with rate parameter λ = 0.25,
or alternatively τ = 4.

The geometric distribution is a special case of the negative binomial distribution, which
counts the number of failures before the first success (r = 1). It has PMF

f(k; r = 1, p) =

(
k + 1− 1

k

)
p1(1− p)k (C.15)

= p(1− p)k. (C.16)

and like its continuous analog, the geometric distribution is memoryless. For a geometrically
distributed random variable S,

P (S > s+ t|S > s) = P (S > t) s, t ∈ Z+ (C.17)
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Figure C.4: PDF and CDF of a negative binomial distribution used to count the number
of failures until n = 3 successes, which occur with a probability of p = 0.3.
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Figure C.5: When the number of failures n = 1, the negative binomial distribution is
referred to as a geometric distribution. a,b) show the geometric PDF and CDF for the
same probability p = 0.3 as Figure C.4

.
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