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Abstract  
The primary goals of the work presented in this thesis were to better understand how metal 

nanoparticles (MNPs) affect antimicrobial activity, and to develop green synthesis protocols for 

the fabrication of nanocomposites designed specifically for antimicrobial applications. This work 

utilized a meta-analytical framework to mine data from recent literature and determine which MNP 

physiochemical properties dictate their antibacterial activity. Linear regression models revealed a 

size dependence for the antibacterial activity of silver MNPs, where smaller nanoparticles are more 

effective at combating Gram-negative E. coli (R2 = 40.3%, p < 0.001). In contrast, surface charge 

was determined to be the dominate physiochemical parameter in predicting the efficacy of silver 

MNPs against Gram-positive S. aureus, with potential secondary dependency on MNP size (R2 < 

44%, p < 0.001 and < 0.05 for charge and size respectively). Better standardization in antimicrobial 

testing and reporting protocols will be critical in allowing for more powerful analyses in the future. 

 Building off of the meta-analytical work, ecofriendly and cost effective synthesis protocols 

were developed to generate copper nanoparticles using cellulose nanocrystals and tannic acid. 

Cellulose nanocrystals provided an effective and environmentally benign base for silver and 

copper MNPs to be deposited using simple one-pot reduction. The developed one-pot synthesis 

method was also shown to be effective for the generation of silver/cellulose and 

copper/silver/cellulose nanomaterials. The final morphology of the copper/cellulose MNPs was 

found to be heavily dependent on the order of reagents during one-pot reduction, where coating of 

tannic acid on cellulose nanocrystals was a necessary first step to generate small and well-

dispersed copper nanoparticles. The copper/cellulose composite was highly effective at 

suppressing the growth of S. cerevisiae microbes at a concentration of 25 µg/mL of copper.  
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1.1 Project Motivation 
Compound threats of the development of extreme antibiotic resistance in bacterial populations 

and the slowdown new antibiotic discovery has led to a dearth of new treatments for bacterial 

infections in humans [1]. With the “golden age of antibiotics” long gone [2], the development of 

new, non-antibiotic antimicrobial agents will be increasing important for the continuing health 

and safety of the world’s population. Metal nanoparticles, which have been generated since 

antiquity for their unique optical properties, have become of interest in the past decades for 

exactly this application [3]. It has been shown that metal nanoparticles are effective both against 

common culture strains [4] and against multi-drug resistant strains [5] of human-infecting 

pathogens, lending promise to the development of metal nanoparticle-based treatment regimes. 

However, to date, little to no work has been done on the clinical application of antimicrobial 

nanoparticles [6]. The clinical relevance of metal nanoparticles is in large part hindered because 

there is not yet a consensus on how they actually function in the suppression or killing of 

bacteria, nor is there a proven methodology to what makes a nanoparticle maximally effective 

for this application.  

A more rigorous understanding of what makes metal nanoparticles effective is crucial to 

the translation of these particles from bench to clinic. Determining from the literature what 

physiochemical parameters are important is challenging due to the high variance in the generated 

nanoparticles, in the testing procedures, and in the reporting standards. This variance makes it 

nearly impossible to draw meaningful conclusions about what parameters are or are not 

important through the comparison of individual articles. A larger and more robust analysis of the 

literature is needed to determine what overarching trends exist, and this can be achieved through 

systematic review and meta analytical techniques. Meta-analysis is crucial to increase the 
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population size and discern trends despite the noise introduced by high inter-study variance, and 

meta-analytical results are therefore more reliable for clinical translation [7]. 

Additionally, many antimicrobial metal nanoparticles are generated using highly toxic 

chemicals, such as sodium borohydride [8] or hydrazine [9], increasing the downstream risk of 

cyto- and ecotoxicity. Even when the understanding of metal nanoparticles’ antimicrobial 

activity is improved, they will not be translatable until they can be fabricated with sustainable 

and eco-friendly techniques. The ‘green’ fabrication of metal nanoparticles is becoming a more 

prevalent area of research, with a large body of research being published on the use of plant 

extracts and plant-derived compounds to synthesis metal nanoparticles [10]. However, work 

remains to be done in the controlled and specific green fabrication of antimicrobial metal 

nanoparticles. The combination of a thorough understanding of what makes metal nanoparticles 

optimally antimicrobial and how to fabricate nanoparticles fitting these specifications with green 

techniques will be an important goal in the generation of clinically relevant solutions. 

 

1.2 Project Outcomes 
The overall goal of this project was to understand and create potent new antimicrobials material 

with minimal negative environmental impact. This was achieved in two simultaneous thrusts: a 

theoretical component using data mining to clarify what nanoparticle properties are critical for 

antimicrobial applications, and an applied component on the fabrication and characterization of 

antimicrobial metal nanoparticles. 

The first section of this thesis focused on a theoretical approach to determining what 

makes metal nanoparticles maximally effective for antimicrobial applications. In this work, data 

mining and meta-analysis was employed to draw new knowledge from pre-existing literature on 

antimicrobial nanoparticles. The state of the literature was assessed, and the critical 



 

4 
 

physiochemical parameters were explored using linear regression models. Both single and 

multivariate models were used to explore the possibility of interaction terms between important 

physiochemical parameters. 

The second section of this thesis describes the fabrication and characterization of a 

versatile composite of cellulose nanocrystals and copper, silver, or copper and silver 

nanoparticles. The impact of fabrication parameters was evaluated to determine optimal 

fabrication conditions and understand how the fabrication process impacts the final material. The 

system was then proven to be useable for the fabrication of multiple types of metal nanoparticles, 

suggesting it’s broader applicability for a variety of projects. A preliminary assessment of 

antimicrobial activity was undertaken. The green system uses a one-pot fabrication method with 

water as the only solvent, and plant-derived reagents, which minimizes any negative 

environmental impact the fabrication process may have. The developed CNC/metal composites 

show promise as an ecofriendly, scalable, and tunable antimicrobial system. 

1.3 Thesis Outline 
This thesis consists of five chapters. The first chapter provides an introduction to the project, 

including the motivation and outcomes. The second chapter reviews the recent literature on 

antimicrobial nanoparticles, highlighting both what is known of their antimicrobial activity and 

how nanoparticles have previously been synthesized. The ecofriendly synthesis of metal 

nanoparticles is highlighted. Chapter three presents the results of the undertaken meta-analysis, 

providing insight into what does and does not influence the antimicrobial activity of metal 

nanoparticles. Chapter four builds off of the work presented in three and explores the novel green 

synthesis of metal nanoparticles theoretically optimized for antimicrobial application. Chapter 

five provides the project conclusions, as well as recommendations for future work. 
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Chapter 2: Literature Review 
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2.1 Background on Antibiotic Resistance 
Each year, bacterial infections cause severe illness around the world, and the rise of antibiotic 

resistance in bacteria means that more and more severe illnesses will develop as time goes on 

[11]. Current reports suggest that at least 26% of reported bacterial infections in Canada alone 

are resistant to at least one class of first-line antibiotics, and as it stands, reversing antibiotic 

resistance is immensely challenging at a community level [12]. These drug-resistant infections 

are associated with one billion dollars in annual healthcare spending in Canada alone [13], and 

this spending is predicted to increase as drug resistant infections continue to proliferate.  

Antibiotics were first used clinically in the 1910s with the synthesis of salvarsan, an 

organoarsenic compound and the first modern antibiotic [14]. Since then, a large number of 

antibiotics have been developed and commercialized for widespread use. However, the number 

of antibiotic compounds being isolated and commercialized has dropped significantly in recent 

decades, with the most recent new class of antibiotics being discovered in the mid-1980s [2]. 

Most antibiotics are derived from bacteria or fungi, which produce antibiotic compounds to 

suppress or kill competing microbes or to mediate interactions with eukaryotic hosts [15]. 

However, because antibiotic compounds are naturally occurring, there is a chance for bacteria to 

evolve resistant to these compounds, and the evolution is accelerated by overuse and misuse of 

antibiotics in human populations [16]. It is therefore crucial to develop novel solutions to address 

the impending antibiotic resistance crisis. 

Nanoparticles, which are materials with at least one dimension of less than 100 nm and 

physiochemical properties significantly different from their bulk state, have gained attention as a 

potential solution to the antibiotic resistance crisis [17]. Most nanoparticles, including organic 

materials such as carbon nanotubes and graphene sheets, and inorganic materials such as 

quantum dots and metal nanoparticles, display some level of toxicity towards bacteria [18]. 
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Metal nanoparticles in particular are promising antibacterial agents, due to their relatively low 

cost and ease of fabrication [19]. Metal nanoparticles with antimicrobial properties have been 

suggested for use in a wide range of applications, including in fabric or surface coating [20], 

[21], in food packaging [22], and in medical supplies such as hospital surfaces [23], [24] and 

catheters [25]. This literature review will discuss the current understandings of how metal 

nanoparticles can act as effective antimicrobial agents, as well as the various methods for 

synthesizing metal nanoparticles. Special emphasis is placed on the ‘green’ or sustainable 

synthesis of metal nanoparticles for antimicrobial applications. 

2.2 Mechanisms of Antimicrobial Activity of Metal 

Nanoparticles 
Despite the wide range of research conducted on antimicrobial nanoparticles, the mechanisms by 

which nanoparticles kill bacteria remain poorly understood. This is in part due to the vast number 

of interactions that these nanoparticles can have with bacterial cells, including electrostatic, 

hydrophobic, stereoselective, ligand-receptor, redox-active, or coordination-based interactions 

Figure 2.1: Targets of antibacterial metal nanoparticles in various areas of a bacterial cell. 
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[26]. While the exact interactions that lead to bacterial damage or death remain unclear, there are 

many pathways that have been explored as potential contributors. These pathways include 

damage due to physical adsorption of nanoparticles onto the cell (electrostatic or otherwise), 

oxidative damage via nanoparticle catalyzed redox reactions, and damage caused by heavy metal 

ions leached from the nanoparticle surface [27]. Each of these pathways can target a variety of 

biological structures (see Figure 2.1), including the cell membrane [28], DNA [29], and 

organelles [30]. Understanding the exact pathways will be an important step in designing 

optimally antimicrobial and clinically relevant nanoparticles. 

 

2.2.1 Physical Adsorption Dependent Pathways 
In a study conducted by Choi and coworkers, the antimicrobial activity of silver nanoparticles 

was compared to silver ions (from AgNO3) and silver colloids (AgCl) against a variety of 

wastewater-inhabiting bacteria [31]. In a direct comparison, silver nanoparticles were found to be 

more effective at inhibiting bacterial growth than ionic or colloidal silver. When a suspension of 

bacteria and silver nanoparticles was studied using high resolution backscattered scanning 

electron microscopy, the nanoparticles were observed to be physically contacting the bacterial 

cell membranes. Additionally, the bacterial membranes were seen to be pitting, which could be 

attributed to the physical adsorption of the nanoparticles onto the cells. Similar results were 

observed in a study of copper nanoparticle interactions with E. coli [32]. The authors evaluated a 

suspension of bacterial cells and copper nanoparticles using scanning electron microscopy, and 

found that the bacteria displayed unusual morphology, with shrunken, pitted, or otherwise 

disfigured membranes. This effect was attributed to the absorption of copper nanoparticles onto 

the bacteria, and subsequent release of toxic copper ions. 
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The surface charge of antibacterial nanoparticles may also be important in determining 

their antimicrobial efficacy, and for both silver and iron, positively charged nanoparticles are 

more effective than their negatively charged counterparts [33], [34]. While negatively charged 

nanoparticles may be able to bind electrostatically with the positive residues found in many 

bacterial membrane proteins [35], both Gram-positive and Gram-negative bacterial membranes 

bear overall negative charges. Therefore, a positively charged nanoparticle can be expected to be 

more strongly attracted to bacterial cells, becoming more tightly bound and potentially better 

disrupting membrane structure or other cellular processes that occur at the interface. 

A very interesting study by Parashar and coworkers also explored the impact of silver 

ions on the peptidoglycan layer that is present in the outer structures of both Gram-negative and 

Gram-positive bacteria, though in different amounts [36]. The authors modeled the lysozyme 

sensitive bond that connects N-acetylglucosamine and N-acetylmuramic acid within the 

peptidoglycan layer, when alone or in the presence, of 1, 2, and 5 silver ions, as shown in Figure 

2.2. It was found that the bond length stretches with increasing number of silver ions, effectively 

A B 

C 

Figure 2.2: Stretching of the R(C-O) lysozyme sensitive bond by 1, 2, or 5 silver atoms (A). Schematic representation 
of silver-mediated cell membrane damage (B). Transmission electron micrographs of E. coli cells at 1 and 12 hours 
of silver nanoparticle exposure, with red arrows indicating silver nanoparticles and black arrows indicating 
disintegrated bacterial components (C). Adapted from Parashar 2011. 
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weakening the structure and suggesting the possibility of eventual bond breakage. The authors 

theorized that with enough silver atoms, such as a few hundred in a nanoparticle, the bond could 

be cleaved, destabilizing the cell wall and eventually lysing the cell. This type of destabilization 

could only be achieved when the silver nanoparticles are adhered firmly to the bacterial cell 

membrane, leading the authors to conclude that physical adsorption between the nanoparticle and 

cell is critical to effective antibacterial action. 

Shape dependent nanoparticle behavior has also been observed at the whole-bacteria 

level. In a study by Hong et al. comparing spherical, cubic, and rod shaped silver nanoparticles, 

the cubic nanoparticles were found to be most effective against E. coli [17]. The authors 

proposed that both the cubic and spherical nanoparticles, which have much higher specific 

surface areas than nanorods, were able to pack more tightly to the bacterial cell surfaces, leading 

to increased membrane damage. Differently shaped nanoparticles have also been shown to have 

different interactions with the bacterial proteins that adsorb to their surface, which may cause 

varying states of dysregulation or death of the cell. Soleimani et al. synthesized silver spheres, 

rods, and cubes, and tested their inhibitory affect against E. coli, P. aeruginosa, S. aureus, and B. 

cereus model bacteria [18]. Cube shaped silver nanoparticles were found to be vastly more 

effective at inhibiting all strains of bacteria than any other shape. To uncover the potential 

mechanism, each type of nanoparticle was exposed to human serum albumin, and cubic 

nanoparticles were found to have the highest binding affinity for the proteins. It was theorized 

that nanoparticles with sharp edges were able to aggressively bind with and denature proteins, 

causing increased degradation and cellular damage. However, it is worth noting that unlike the 

study by Hong et al., which found nanospheres more effective than nanorods for overall bacterial 
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killing, this study found that nanorods (both sharp and blunt) where more effective than 

nanospheres. 

 

2.2.2 Redox Dependent Pathways 
The catalysis of biologically damaging reactive oxygen species (ROS) by nanoparticles is 

another pathway by which nanoparticles have been proposed to damage or kill bacteria. Recent 

work by Angelé-Martínez and colleagues sought to understand the damage caused by copper 

oxide nanoparticles through the study of DNA damage [37]. In a comparison of copper ions and 

copper oxide nanoparticles, the damage of nanoparticles was an order of magnitude higher. The 

authors used EPR spectroscopy to evaluate the reactive oxygen species generated by copper 

oxide nanoparticles, and found that hydroxyl radicals were the primary species generated when 

copper oxide particles were incubated with hydrogen peroxide (a common reactive oxygen 

species found in biological environments), while both hydroxyl and super oxide radicals were 

generated in the presence of hydrogen peroxide and ascorbate together. The generation of 

different reactive oxygen species suggests that multiple generation pathways may exist. 

Other work has been conducted looking at the impact of reactive oxygen species 

generated by nanoparticles on bacterial cell membranes. A simple experiment by Ansari et al. 

[38] used scanning electron microscopy to study changes in bacteria exposed to silver 

nanoparticles. The authors observed massive pitting in E. coli’s cell membranes when exposed to 

silver nanoparticles, which they attributed to ROS-mediated damage to the cell membrane. 

Fenton and Fenton-like chemistry, which is the generation of reactive oxygen species by heavy 

metal ions, has been shown to initiate the peroxidation of lipids, leading to catastrophic 

membrane failure [39]. Further studies have corroborated these results using reactive oxygen 

species assays, in which a fluorescent dye is used to label cells which have been damaged by 
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reactive oxygen species [40]. One such study found that after just two hours of incubation with 

silver nanoparticles, 40% of exposed E. coli cells showed significant reactive oxygen species 

related damage [41]. 

 

While many studies have focused on the antimicrobial potential of nanoparticles through 

the catalysis of reactive oxygen species, it is also possible that nanoparticles participate directly 

in cellular redox processes, inducing oxidative stress more directly. A theoretical study 

conducted by Burello et al. surveyed a number of metal oxide nanoparticles, evaluating their 

conduction and valence band levels and comparing them to relevant physiological redox 

potentials [19]. Many of the evaluated metal oxide nanoparticles had theoretical conduction 

bands that overlapped with the range of physiological redox potentials, as shown in Figure 2.3. 

These nanoparticles may therefore be capable of abstracting electrons from biological 

compounds critical to cell regulation, which could unbalance the cellular redox state and lead to 

oxidative stress. 

 

Figure 2.3: The conduction and valence band levels of various metal oxide nanoparticles (measured on the absolute 
vacuum scale). Grey band represents potential range of physiological redox reactions. Adapted from Burello 2011. 
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2.2.3 Metal Ion Dependent Pathways 
Metal nanoparticles have high surface energy, allowing them to solubilize and produce metal 

ions easily [42]. Heavy metal ions are known to be damaging to bacteria, and thus may represent 

a major component of nanoparticles toxicity. One study by Hachico et al. [43] examined the 

impact of silver ions released from silver nanoparticles on the membrane of P. putida, and found 

that relatively low concentrations of silver ions could prevent 100% of bacterial growth in 

comparison to control. The authors found that the ratio of cis to trans unsaturated fatty acids in 

the cell’s membrane was greatly increased with the increasing presence of silver ions. This 

conformational change from cis to trans isomers rapidly decreases membrane fluidity and 

permeability and is a common indicator of bacterial cell stress. 

Metal ions can also permeate the cells and cause damage to critical internal cellular 

components. In a study by Chatterjee and coworkers [44], DNA damage in the presence of 

copper nanoparticles was assessed, and it was found that within 30 minutes of contact time, the 

copper nanoparticles could completely convert super coiled DNA (the natural form of DNA) to 

Nick circular or linear confirmations, indicating extensive damage. To determine the source of 

damage, the authors also incubated the copper nanoparticles and DNA with reactive oxygen 

species scavengers or with ion chelators and found that only the copper ion chelator protected the 

DNA from extensive damage. Thus, the authors concluded that the release of ions from 

nanoparticles, not the generation of reactive oxygen species, was a primary driver in 

genotoxicity. Another study by Li and coworkers [30] explored the damage of heavy metal ions, 

and found that within 16 hours of exposure, the vast majority of metal ions localized in the cell’s 

mitochondria. The swelling of the mitochondria and loss of cristae suggested that the 

mitochondria lost all respiratory function, and the cell would be unable to persist. 
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2.2.4 Influence of Surface Coatings on Antimicrobial Activity 
Some researchers have also proposed alternate pathways for the intracellular toxicity of metal 

nanoparticles. Sabella et al. conducted a study on the toxicity of a variety of metal nanoparticles, 

and concluded that the most important factor in predicting nanoparticle toxicity was the uptake 

of the nanoparticles into the cells through lysosome mediated endocytosis [45]. Two types of 

gold nanoparticles were studied in detail – one with a surface coating of 11-mercapto 

undecanesulfonic acid (MUS) and octanethiol (OT), and the other with a surface coating of MUS 

and 2,7-dimethyl octanethiol (brOT). The gold nanoparticles with the MUS and OT coating were 

shown to pass through the model cell membranes, whereas the particles with a MUS and brOT 

coating could only be internalized by the cell through endocytosis. The MUS and brOT particles 

that could only be internalized through endocytosis showed significantly higher toxicity, both in 

model cells and in an in vivo test with Drosophila melanogaster. It was proposed that when 

internalized in highly acidic lysosomes, the MUS and brOT gold nanoparticles were degraded, 

Figure 2.4: Difference in toxicity of metal nanoparticles depending on their internalization mechanism. Adapted 
from Sabella 2014. 
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causing a significant release of gold ions which could subsequently cause cell damage and death 

(shown schematically in Figure 2.4). In comparison, the MUS and OT coated nanoparticles which 

entered the cell’s neutral cytosol did not release cell-damaging ions.  

The role that proteins and other biomacromolecules that can adsorb to nanoparticle 

surfaces has also been investigated as a pathway that can modulate nanoparticle toxicity. Walkey 

and coauthors created a library of 105 different gold nanoparticles, with 3 different core sizes 

and 67 potential surface ligands that were subsequently attached [46]. The nanoparticles were 

each exposed to human serum, and the protein corona that adsorbed to each nanoparticle was 

quantified. Following serum exposure, the nanoparticles were inoculated into eukaryotic cell 

type cultures (A549 human lung epithelial carcinoma cells), and cell association of the 

nanoparticles was quantified. The adsorbed protein fingerprint, which was unique to each type of 

nanoparticle, was found to be a significantly better predictor of cell association than any other 

predictor tested, including nanoparticle size or surface charge alone. It is also of note that in 

general, smaller nanoparticles were found to have a higher protein corona density, which could 

theoretically amplify the type of interaction it has with a cell. 

While the previously proposed endocytosis mediated pathways only apply to eukaryotic 

cells, it is not a stretch to imagine that nanoparticle surface-adsorbed biomacromolecules would 

also affect the nanoparticle interactions with bacteria. A study by Jain and coauthors looked at 

the difference in antibacterial efficacy of silver nanoparticles with either bare surfaces, or with 

protein capping derived from fungal cells [47]. In general, the authors found that bare 

nanoparticles were much more effective at damaging the bacteria than the nanoparticles with a 

cocktail of proteins adsorbed to the surface. Bare surface nanoparticles were found to release 

nearly twice the amount of silver ions as the protein capped ones, and triggered higher 
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intracellular ROS generation in all bacterial species tested. Another study by Li et al. observed 

similar results when testing the antibacterial capacity of iron nanoparticles with either bare 

surfaces or coatings of polymer or natural organic material (much like the nanoparticles would 

encounter in vivo or in the environment) [48]. The bare surface iron nanoparticles were 20 to 100 

times more effective at suppressing bacterial growth than any coated nanomaterial studied. When 

examined using transmission electron microscopy, the authors found that the bare iron 

nanoparticles were able to adsorb to the surface of E. coli cells, whereas any coating prohibited 

this interaction. The authors concluded that electrostatic or steric repulsion caused by the 

nanoparticle surface coatings prevented direct interaction of the nanoparticles with the bacteria, 

thus significantly lessening their bactericidal ability.  

2.3 Metal Nanoparticle Synthesis 

2.3.1 Single Metal Nanoparticle Synthesis 
Metal nanoparticles, as with most nanomaterials, can be synthesized with a wide variety of 

processes that can generally be divided into top-down and bottom-up processes. Top-down 

processes involve the breakdown of a bulk material into nanoparticles, most often through 

physical or chemical means. Bottom-up processes, in contrast, build nanoparticles up from 

smaller blocks, most often singular molecules. This includes processes such as chemical [49], 

[50] or electrochemical reduction [51]–[53] or radiolysis [54], [55]. Bottom-up processes have 

the advantage of providing more precise control over the composition and morphology of the 

generated nanoparticles and are often employed for the generation of metal nanoparticles in 

particular. 

Chemical reduction remains a very common method of synthesis for the production of 

nanoparticles. Colloidal solutions of metal nanoparticles have existed since antiquity [56], but 

the modern chemical reduction method was pioneered by Turkevich in the early 1950s [57], who 
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used a boiling solution of sodium citrate to generate monodisperse gold nanoparticles. To 

generate metal nanoparticles using chemical reduction, three major components are needed: a 

metal precursor (often a metal salt such as AgNO3 or HAuCl), a reducing agent, and a capping 

agent [49], though in many cases one molecule can serve as both the reducing and capping agent. 

This process is represented schematically in Figure 2.5. Using chemical reduction, 

physiochemical properties such as nanoparticle shape and size, polydispersity, surface charge, 

surface free energy, and crystallization (ie exposed crystalline face) can be controlled [58]. This 

flexibility positions chemical reduction as an advantageous choice of fabrication method. 

 

Extensive work has been undertaken to identify ways of controlling the final morphology 

of metal nanoparticles synthesized by chemical reduction. Recent work by Vreeland and 

coworkers [59] showed that precise shape and size control could be achieved by controlling the 

amount and addition time of a metal precursor (As shown in Figure 2.6). The authors proposed 

that in classical nanoparticle synthesis, the concentration of unreacted monomer (metal salt 

precursor) increases until it reaches supersaturation, after which it is thermodynamically 

favorable to form nuclei. The formation of nuclei reduces the concentration of the monomer, and 

from that point onward the largest particles grow larger and the smaller ones dissolve. However, 

by adding additional unreacted monomer after the ‘burst’ nucleation phase, the particles can 

Figure 2.5: Schematic representation of the critical components for chemical reduction synthesis of metal 
nanoparticles. Adapted from Jana 2001. 
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achieve an extended steady-state growth phase, where the size increases continually and 

uniformly until no more monomer is added. In this way, the simple supplementation of metal salt 

precursor over a steady period of time allows for precisely controlled and reproducibly sized 

nanoparticles to be grown. 

 

Other work has shown that factors such as choice of reducing or capping agent can vastly 

alter the final shape of a generated metal nanoparticle. A study by Yao et al. [60] showed that 

platinum nanoparticles could take either an extended wire form or a spherical form, when either 

a weak reducing agent (such as ethylene glycol) or a strong reducing agent (citric acid) is used. 

The authors proposed that a strong reducing agent like citric acid would force all the metal 

precursor to reduce to a zero-valent state, and these atoms will then preferentially aggregate and 

form spherical nanoparticles. In contrast, the weaker reducing agent complexed with the metal 

ions without reducing them fully, allowing them to polymerize into wires prior to complete 

Figure 2.6: Growth of highly monodisperse magnetite nanoparticles over time using an ‘extended’ LaMer 
mechanism. Adapted from Vreeland 2015. 
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reduction. In another study [61], hexadecyltrimethylammonium bromide  (CTAB), a commonly 

used surfactant, was used to control the growth of gold nanoparticles into rods or plates rather 

than spheres. The selective adsorption of CTAB molecules onto {111} planes of gold 

nanoparticles blocks the further addition of gold ions in those locations, which promotes the 

observed anisotropic growth. 

2.3.2 Bimetallic Nanoparticle Synthesis 
The production of bimetallic and multimetallic systems has also been an area of growing interest 

in the past decades, particularly for application in the area of catalysis [62]. Bimetallic metal 

nanoparticles may be core/shell particles, where one metal tends entirely to the core and is coated 

with a ‘shell’ of the second metal, or they may form ‘ordered’ or ‘true’ alloyed structures, in 

which molecules of each metal are well or homogenously dispersed within the particle [63]. Less 

commonly, ‘Janus’ or ‘twinned’ bimetallic nanoparticles can be formed, where each metal is 

segregated in one area but still contacting the other on at least one face [64]. There are a variety 

of synthesis strategies for producing bimetallic nanoparticles, ranging from simple chemical 

reduction-like methods to more complex ones. 

Chemical coreduction is one of the simplest methods that can be employed to generate 

bimetallic nanoparticles, and generally involves a simple simultaneous chemical reduction with 

more than one metal precursor. In chemical co-reduction processes, the metal salt precusors for 

multiple metals can be mixed together, and reduction occurs simultaneously to form multimetal 

particles. The affinity and strength of the reducing or capping agents used towards each metal 

plays a large role in dictating the final morphology of the bimetallic structure. Work by Kuai and 

coworkers [65], for example, showed that gold/palladium particles could be formed with either a 

core-shell or a true alloy morphology depending on the reducing agent used. When 

polyvinylpyrrolidone (PVP), a weak reducing agent, was used, gold was reduced first to form a 
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core and palladium(II) was reduced second to form a core, because the reduction of gold is 

thermodynamically easier . In contrast, when CTAB (a strong reducing agent under 

hydrothermal conditions) was used, both gold and palladium could be reduced simultaneously, 

forming an alloyed particle (represented schematically in Figure 2.7A). Another study by Han et 

al. [66] showed that the morphology of gold/palladium particles could be changed gradually 

from quasi-spherical particles to flower-like structures simply by increasing the concentration of 

sodium citrate used (Figure 2.7B).  

 

Another relatively facile method for the generation of bimetallic structures employs 

galvanic displacement. This process relies on a two-step method – first, metal nanoparticles 

‘seeds’ are generated with one metal salt precursor, and then these seeds are exposed to a second 

metal salt precursor, often in the presence of additional reducing agents [67]. This process relies 

on ions of the second metal, which must be a metal of higher reduction potential than the seed 

material, to solubilize and replace the core metal, effectively etching parts of the core away and 

Figure 2.7 TEM image and formation schematic of gold/palladium bimetallic particles formed with PVP and CTAB 

as reducing agents (A), TEM images of gold/palladium bimetallic particles formed with increasing concentrations 

of sodium citrate (B). Adapted from Kuai 2012 and Han 2012. 
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depositing the secondary metal. Galvanic displacement has been used to fabricate a wide range 

of particles, including silver/copper [68], silver/gold [67], and gold/palladium particles [69].  

2.3.3 Green Nanoparticle Synthesis 
The synthesis of metal nanoparticles using green, or environmentally sustainable, methods has 

grown greatly in the past years. A multitude of green fabrication strategies have been developed 

for metal nanoparticle synthesis, primarily based either on synthesis using single-cell cultures or 

synthesis using plant components (illustrated in Figure 2.8). Cellular synthesis most commonly 

leverages either whole cell culture, or cell-free supernatant (containing biomacromolecules 

produced by the cells) for synthesis. In whole cell synthesis, a metal precursor is introduced into 

a culture of living cells (either bacteria, algae, or some yeasts), and metal nanoparticles are 

generated within the cells themselves [70]. It has been proposed that the intracellular synthesis of 

nanoparticles is a byproduct of the cells’ inherent heavy-metal defense systems. The metal ions 

which enter the cells are sequestered, often either in the cell wall or within vacuoles in the cell, 

and then reduced as a strategy to mitigate their toxicity. As a result, the zero-valent ions in close 

proximity to one another are able to nucleate and form nanoparticles, similar to a chemical 

reduction strategy. Extracellular synthesis, on the other hand, utilizes biomacromolecules 

commonly produced by cells as reducing and capping agents, removing the cells from the 

solution prior to the start of the reaction [71]. In this case, nanoparticles are thought to be 

generated through simple chemical reduction pathways, where secondary metabolites produced 

by the cells act as reducing and capping agents [72]. 



 

22 
 

 

Plant-based synthesis is the other common route of biological synthesis, and may involve 

the use of whole plant extract [73], or extract from specific components of a plant, such as the 

roots [74], leaves [75], or bark [76]. Most commonly, the plant matter is boiled in distilled or 

deionized water to extract phytochemicals, which can then be used directly in the synthesis of 

metal nanoparticles. Terpenoids and plant polyphenols are most commonly cited as playing a 

major role in the reduction and capping of metal nanoparticles, though organic acids and proteins 

may also contribute.  

 

Terpenes are cyclic or chained hydrocarbons built from isoprene units, and are considered the 

largest class of secondary metabolites found in nature [77]. Many plant-derived terpenoids 

contain functional moieties such as carboxylic acid or hydroxyl groups, which play a key role in 

Figure 2.8: Methods of biological synthesis for metal nanoparticles. 

Figure 2.9: Common types of plant derived terpenes, and their role in the reduction and capping of metal 

nanoparticles. Adapted from Mashwani 2016. 
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the reduction of metal ions to zero-valent atoms (as shown in Figure 2.9) [78]. For example, work 

by Dubey et al. [79] showed that extract of Tansy fruit could easily form silver or gold 

nanoparticles, which was attributed to reduction of the metal salt precursors by terpenoids found 

in the essential oil extract. The authors proposed specifically that the terpenoids containing a 

carbonyl group could undergo conversion from =C=O to –C(O)=O, providing the necessary 

electron for reduction. 

Plant polyphenols are another major class of biomolecules that participate in the synthesis 

of metal nanoparticles. These molecules all contain a hydroxy-substituted benzene ring in their 

structure, and can range from very simple to very complex. As of 2015, over eight thousand 

types of polyphenols had been identified [80]. Singh and workers showed that clove extract 

could be used to successfully synthesize both gold and silver nanoparticles [81], which contains 

a high concentration of the polyphenol eugenol. The reaction scheme, shown in Figure 2.10A, 

shows that when eugenol is deprotonated, it can either exist in a resonance stabilized form, or 

oxidize and expel 2 electrons. These two electrons can then participate in the reduction of either 

two Ag+ ions or half an Au4+ ion. A study by Liu et al. showed that polyphenolic compounds 

from rice husk extract could be used to synthesize silver nanoparticles [82]. Caffeic acid (CA), a 

Figure 2.10: Reaction schematic for the reduction of metal nanoparticles by eugenol (A) or caffeic acid (B). 

Adapted from Singh 2010 and Liu 2018.   
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polyphenolic acid, was proposed to play a major role in the reduction, as one molecule of CA is 

able to donate up to 5 electrons to a metal precursor (Figure 2.10B).  

 

2.3.4 Green Synthesis Using Biopolymers 
Synthesis of metal nanoparticles using naturally derived biopolymers is a specific area of 

interest, as many biopolymers provide a combination of reducing or capping capabilities, and 

improved colloidal stability. Work has been done to generate nanoparticles using polymers such 

as chitosan, alginate, and cellulose [83]–[86]. Nanoparticles generated using cellulose 

nanocrystals (CNC) are of particular interest, as CNC has useful properties including high 

thermal stability, high mechanical strength, and low cytotoxicity [87]. Additionally, cellulose is 

considered the most abundant biopolymer on earth, and pristine nanocellulose can be 

biodegraded in a span of just weeks [88]. CNC has been used extensively as a capping agent in 

the synthesis of metal nanoparticles, and has been shown to promote the generation of 

monodisperse and stable colloids [89]. Lokanathan and colleagues explored the impact of 

increasing concentrations of CNC on the formation of silver nanoparticles [90], and found that a 

higher concentration of CNC generated significantly smaller nanoparticles (shown in Figure 

2.11). The authors proposed that the hydroxyl groups on the surface of the CNC play a role in 

coordinating the metal ions, causing the deposition of the nanoparticles directly on the surface. 

An increase in CNC concentration increases the number of potential nucleation sites, therefore 

generating more, smaller nanoparticles. Additionally, the sulfate half ester groups, present on the 

surface of cellulose nanocrystals generated via sulfuric acid hydrolysis, play a role in the capping 

of the nanoparticles. 
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Recent work has also shown that cellulose nanocrystals can be used for ‘reductant-free’ 

synthesis of metal nanoparticles, in which the cellulose acts as both the reducing and capping 

agent. Reductant free synthesis has been achieved either under hydrothermal synthesis conditions 

[91] or using chemical reduction in a highly basic environment [92]. In both cases, the reduction 

of the metal salt precursor to a nanoparticle was attributed to the hydroxyl groups present on 

CNC’s surface. At high enough temperature or in highly basic conditions, the hydroxyl groups 

become deprotonated, exposing an electron-rich oxygen anion that can participate in redox 

reactions. Additionally, the exposed oxygen may be capable of anchoring the metal nanoparticles 

to the CNC surface through electrostatic interactions [93]. Given the ability of CNC to act as 

both a reducing and capping agent, and its superior physical properties and sustainability, it is a 

promising choice for use in the synthesis of metal nanoparticles for a wide range of applications. 

(d) 

Figure 2.11: TEM images of silver nanoparticles generated with 0.1 wt% (a), 0.25 wt% (b), or 0.5 wt% (c) cellulose 

nanocrystal solutions as the capping agent. Scale bars represent 100 nm. Range of silver nanoparticles sizes for 

each solution of CNC (d). Adapted from Lokanathan 2014. 
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2.4 Conclusions 
A narrow summary of the literature on the fabrication and antimicrobial activity of nanoparticles 

has been presented in this section. While much work has attempted to determine how metal 

nanoparticles suppress or kill bacteria, there exists no field-wide consensus on the most 

important or true mechanisms. A lack of mechanistic understanding makes it challenging to 

understand which physiochemical parameters make metal nanoparticles maximally effective. 

More work therefore remains to be done in the generation of nanoparticles with specifically 

targeted physiochemical characteristics ideal for use in antimicrobial applications. The synthesis 

of metal nanoparticles using cost effective and eco-friendly methods has also been highlighted. 

Biopolymers, and particularly cellulose nanocrystals, show promise for use in the generation of 

controlled metal nanoparticles. CNC-capped silver nanoparticles have been successfully 

generated through a variety of methods, and more work remains to be done on the synthesis of 

other metal nanoparticles using CNC. This thesis work aims to contribute to the fabrication of 

maximally antimicrobial and sustainable metal nanoparticles both by furthering the mechanistic 

understanding of antimicrobial nanoparticles using data mining and meta-analysis, and by 

developing novel preparation methods for CNC-capped metal nanoparticles that have 

antimicrobial activity. 
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3.1 Introduction 

Within the last century, antibiotics have become the primary treatment for harmful bacterial 

infections. Most antibiotics are developed by exploiting the natural ability of specific bacteria to 

produce secondary metabolites that play a role in defending against competing microbes [94]. 

These compounds are identified and isolated from the bacteria based on their toxicity towards 

select human-infecting microorganisms, and then reproduced on the mass-scale as antibiotics to 

combat infection. Because antibiotic chemicals are synthesized by bacteria themselves, small 

portions of bacterial populations may naturally evolve to contain mutations that result in 

antibiotic resistance. In recent years, high rates of antibiotic use have allowed the propagation of 

resistant strains, some of which are virtually untreatable with currently developed antibiotics 

[95]. In response to this crisis, ways to manage and mitigate bacterial infection are being 

developed. 

Metal nanoparticles (MNPs) are well known to be antimicrobial, and could play a major 

role in addressing drug resistant infections. MNPs have already been extensively investigated for 

their antibacterial properties, with nearly 14,000 publications on the subject in 2019 alone. 

Additionally, numerous reviews have been compiled to distill the vast body of literature on the 

efficacy of MNPs [96]–[98]. There is a myriad of pathways through which MNPs are proposed 

to exert cellular toxicity, though there remains no consensus on which pathways are most true or 

most important. Until the activity of MNPs is better understood, it will be very challenging to 

design optimally bactericidal MNPs, limiting the scope of their clinical application. 

While there is yet to be agreement on a singular bactericidal mode of action, there are a 

number of widely referenced hypotheses. One commonly cited mechanism suggests that there 

are electrostatic interactions between positively charged metal ions and the negatively charged 

cell membranes of microorganisms [99], [100]. The adsorption of metal ions on the surface of 
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bacterial cells may damage the phospholipid bilayer of Gram negative bacteria [101] or the 

peptidoglycan layer of Gram positive bacteria [36]. Negatively charged metal nanoparticles may 

also be attracted to positive residues found in many bacterial membrane proteins [35], and MNPs 

adsorbed to bacteria have been shown to induce pits in the membrane, indicating severe damage 

[31], [32]. 

Another hypothesis is that metal ions leached from nanoparticles can infiltrate bacterial 

cells and cause damage to integral proteins or organelles within the cell. Silver ions have been 

shown to chelate sulfur-containing or phosphorous-containing compounds such as DNA, 

preventing cell replication [35]. Likewise, copper ions have been found to significantly damage 

or destroy bacterial DNA [44]. In addition to direct damage caused by chelation, released metal 

ions (as well as MNPs themselves) can generate reactive oxygen species (ROS), which induce 

oxidative stress and eventual apoptosis [102]. 

All proposed routes of MNP toxicity depend heavily on the nanoparticle’s specific 

physiochemical properties, such as metal type, size, surface charge, and attached surface ligands. 

MNP size and exposed crystalline face are known to affect catalytic activity, dictating which 

ROS byproducts are produced [103], [104]. The surface charge of MNPs also dictates their 

colloidal stability, preventing agglomeration and helping nanoparticles retain high specific 

surface area [105]. This in turn may affect the catalytic behavior of the nanoparticles and the 

magnitude of ion dissolution from their surface [106]. 

Some studies have sought to correlate fundamental physiochemical characteristics of 

MNPs, such as size or surface charge, with their antimicrobial performance [35], [107], [108]. 

However, there are so many permutations of metal type, size, charge, capping agent, and post 

fabrication functionalization that it is impossible to ascertain, at the bench level, whether a single 
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physiochemical characteristic dominates the response. Only a few studies have attempted to 

create a library of nanoparticles and understand their biological activity, and those have focused 

solely on the effects of MNPs on eukaryotic cell lines, not bacteria [46]. 

In addition to the challenge posed by the vast variance in physiochemical properties that 

may influence MNP’s antimicrobial activity, the cross comparability of individual MNP studies 

is low due to a lack of standardization in the testing of the MNPs. There are several common in 

vitro testing methods for evaluating antimicrobial efficacy, including broth dilution tests, such as 

minimum inhibitory concentration (MIC) or minimum bactericidal concentration (MBC), and 

zone of inhibition (ZOI) tests, such as disk diffusion or well diffusion [109]. While these tests are 

often assumed to be comparable in evaluating the overall performance of MNPs, broth MIC and 

MBC tests measure the dilution (or dose) of the MNPs, whereas ZOI tests measure the diffusion 

of the MNPs, rendering them incomparable. 

The actual interaction of the MNPs with the testing method chosen also must be 

considered before comparability can be assumed. In ZOI tests, if a compound being tested has 

poor solubility in the chosen agar, the test may incorrectly show low or no efficacy [110], [111]. 

ZOI tests were developed for antibiotic molecules, which can be an order of magnitude smaller 

than MNPs. Most nanoparticles have comparatively low diffusivity in the ZOI tests, and only 

soluble ions that are released from the nanoparticles will be able to participate in antibacterial 

activity. Dilution techniques such as MIC and MBC are therefore generally considered more 

robust, but the specific assay set-up can still influence the measured efficacy of MNPs. The 

chosen incubation broth, initial inoculum size, and specific strain of the bacterial model have all 

been shown to affect the measured efficacy of MNPs [112]–[114]. 
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The massive heterogeneity in the literature on metal nanoparticles makes it incredibly 

challenging to identify real trends in what makes a nanoparticle an effective antimicrobial agent. 

To determine what MNP properties are likely influential, we employ a meta-analytical technique, 

which is a process that systematically combines the results of hundreds of studies and allows for 

significantly increased statistical explanatory power. Meta-analysis has very recently been used 

to predict the interactions of select nanomaterials with eukaryotic models [115], [116], but to the 

best of our knowledge, no one has undertaken this work with antibacterial MNPs. The goal of 

this meta-analysis is therefore two-fold: to determine how well standardized the field currently is 

(in essence, to understand the cross comparability of the knowledge that has been generated), and 

to identify statistically robust trends around the influential physiochemical properties of 

antimicrobial MNPs. This in-depth analysis may also provide a starting point to make the case 

for the necessity of standardization in antimicrobial MNP testing. 

3.2. Experimental Procedure 

3.2.1 Initial article collection 

Peer reviewed original articles on antimicrobial metal nanoparticles published between January 

2015 and January 2019 were collected from Web of Science using advanced topic search. For each 

of the four metals of interest (silver, copper, gold, and zinc), a search was performed to find articles 

whose topics included reference to both a metal nanoparticle and antimicrobial activity. Variance 

in reporting language was accounted for in the search by including multiple potential search terms 

for each topic (searching antibacterial OR antimicrobial, silver OR Ag). In total, the initial search 

yielded 9252 articles across the four metals, which were further assessed for inclusion in the 

qualitative and/or quantitative meta-analysis. 
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3.2.2 Dataset refinement and inclusion criteria 
All identified articles were screened for relevance and reliability before being included in the 

meta-analysis, as detailed in Scheme 1. The systematic screening process followed methods 

previous laid out for use in meta-analysis [117]. Following initial article identification, the author 

defined keywords of all articles were compiled and assessed for mention of both metal 

nanoparticle(s) and antimicrobial activity. Of the original 9252 potential articles identified, 2907 

contained keywords relating both to metal nanoparticle(s) and antimicrobial activity. These 2907 

articles were then manually screened for relevance to the meta-analysis. Publications were 

considered relevant if they (1) reported on a single, unmodified metal nanoparticle (i.e. not 

multimetallic, not loaded with additional antimicrobial agents, not incorporated into a 

composite), and (2) included a quantitative assessment of the antimicrobial performance of said 

nanoparticle. Only articles that utilized a minimum inhibitory concentration (MIC) assay were 

considered eligible for use in the quantitative analysis, to minimize heterogeneity and allow for 

reasonable cross-comparison between articles. The 113 articles [33], [106], [110], [111], [117 – 

221]  To prepare the data for analysis, each article was divided into individual records containing 

one nanoparticle evaluated against one strain of bacteria. Articles yielded between 1 and 18 

records each, with modal value of 4 records per article, for a total of 398 records. 

Scheme 3.1.  Selection process for article identification through inclusion. 
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All articles that were included in the qualitative analysis were manually assessed, and 

data was extracted on both physiochemical characteristics of the nanoparticle and testing 

parameters for antimicrobial performance. A total of 15 variables – 6 continuous and 9 

categorical – were documented for each article mined.  The physiochemical properties noted 

were nanoparticle type (silver, copper, gold, or zinc), capping agent used during synthesis 

(grouped into either plant extract, cell culture extract, or others), nanoparticle size (in nm) as well 

as the size evaluation method (TEM, DLS, or others), nanoparticle shape, and nanoparticle 

surface charge as measured by zeta potential (in mV). For the MIC assay parameters, broth 

formulation (Mueller Hinton, Nutrient Broth, Luria Bertani, Tryptic Soy, or others), incubation 

time and temperature (in h and ˚C respectively), inoculum size (in colony forming units per mL), 

and nanoparticle minimum inhibitory concentration (in number of particles per mL) were 

catalogued. Lastly, information on the bacterial species, Gram type, and specific strain was 

collected. 

In addition to raw data, grouping variables were added to improve comprehension and 

allow for the identification of overall trends. These grouping variables included capping agent type 

(divided simply into plant-based synthesis, cell culture-based synthesis, and others) and the gram 

type of the bacteria. An ‘unknown’ designation was given for any single category not reported 

within a paper. The units for numeric categories of size, zeta potential, MIC, time, temperature, 

and inoculum size were standardized to nm, mV, µq/mL, h, ˚C, and number of colony forming 

units (# CFU) respectively. CFU values were additionally normalized using the natural log 

transform (ln(X+1)) prior to analysis. 
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3.2.3 Statistical analysis 
All statistical analysis was performed using Systat 13. Simple descriptive statistics were used to 

understand the trends in information reported, including the range of continuous variables and the 

frequency with which each variable was reported. ANOVA testing was used to determine 

differences in mean values for cross-comparative analysis and was performed for any population 

with greater than 5 records. ANOVA results were considered significant when p < 0.05. Linear 

regression was used to correlate physiochemical parameters with antibacterial efficacy. For data 

quality control during the building of regression models, any records with standardized residuals 

of  > 5  were considered outliers and discarded, after which regressions were recalculated. This 

process continued iteratively until no outliers remained. All regression fits were linear, with 95% 

confidence bounds. Regression results (slope fit) were considered statistically significant when p 

< 0.05.  

3.3 Results and Discussion 
3.3.1 Literature search & data extraction.  
Original research articles published over a four-year span on silver, copper, gold, or zinc 

antimicrobial metal nanoparticles (MNPs) were identified using the Thomson Reuters Web of 

Science database. 9252 articles were initially identified as potentially relevant (see Methods), the 

majority of which (73%) reported on silver nanoparticles, followed by those that reported on zinc 

(14%), gold (7%), and copper (6%) MNPs. The texts were assessed to determine the antibacterial 

assay used. A majority of the papers initially identified from the literature (60%) used some form 

of ZOI test, such as disk or well diffusion, while only 20% of the articles reported an MIC test. A 

small minority of studies used more qualitative methods such as growth kinetics (4%) or plate 

streaking (3%) as their primary method of evaluation, and singular papers assessed antimicrobial 

activity through other techniques such as live/dead staining, flow cytometry, and cellular 
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respiration quantification. Zone of inhibition tests are likely the most common evaluation method 

due to their relative ease of use and comparatively low cost. However, ZOI tests are qualitative, 

not quantitative, so they cannot be directly used when trying to compare the relative efficacy of 

two separate studies [223]. Additionally, the solubility of the metal [111] in the chosen agar can 

drastically decrease or eliminate the measured inhibition zone of an otherwise antimicrobial 

MNP. Thus, only studies that employed an MIC test were included in the quantitative dataset. 

These articles were further assessed to determine reported information on the physiochemical 

characteristics of the MNPs fabricated, the MIC assay parameters used, and the bacterial models 

(reported in Figure 3.1).  

3.3.2 Trends in antimicrobial nanoparticle evaluation and reporting.  
While MIC broth dilution tests are considered to be more robust than ZOI tests, large variance in 

the specific methodological parameters used in individual studies was noted, which poses a 

significant barrier to rigorous cross-comparison of antimicrobial MNP studies. Standards for 

broth dilution methodologies have already been developed [224], but the adherence to these 

protocols is currently low in the field. Less than 8 percent of the articles considered in this study 

both provided a complete report on the utilized testing set-up and followed a standard protocol. 

Determining which studies are maximally cross-comparable is hindered by the vast number of 

reports that do not provide full and complete details on the nanoparticle synthesized, the 

experimental set-up used, or the model organism(s) tested. Only 27.75% of the articles 

considered in this study reported all 15 variables of interest, while 35.85% were missing one 

value, 23.58% were missing two values, and 19.81% were missing three or more values. The 

most commonly underreported variables were the surface charge of the synthesized nanoparticle 

(measured with zeta potential or otherwise), the number of colony forming units in the initial 

bacterial inoculum, and the specific strain of the model bacteria tested. All three of these 
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commonly unreported factors have been shown to affect the observed antimicrobial efficacy 

[112], [113], [225], suggesting that without report of these factors, it is impossible to understand 

the true behavior of a nanoparticle studied.  

Going forward, a standardized characterization and reporting protocol is suggested to 

ensure studies are similar enough for meaningful cross comparison. At minimum, nanoparticle 

material characteristics including the metal type, nanoparticle size, nanoparticle shape, capping 

agent used, and surface charge should be reported. The testing environment parameters, 

including the broth type used, the initial bacterial inoculum size, the time and temperature of 

incubation, and the concentration(s) of nanoparticles tested should also be reported. Lastly, the 

Figure 3.1: Summary of information on nanoparticle’s physiochemical characteristics, antibacterial assay 

used, and bacterial models tested for publications included in the quantitative dataset. For categorical 

variables (1-2, 4-5, 7-8, & 13-15), the total number of categories for that variable is bolded, and the percent of 

the population belonging to the most frequent categories are provided (*n/a for assay type, which encompasses 

all publications mined). For all continuous variables (3, 6, 9-12), the complete range as pulled from the 

quantitative dataset is presented. 
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species and specific strain of the bacteria tested for susceptibility should be considered and 

reported. 

3.3.3 Cross-comparative analysis of silver, copper, gold, and zinc antimicrobial 

MNPs.  
For all metal types, the three most commonly used model bacteria were E. coli, S. aureus, and P. 

aeruginosa, representing 33.1%, 28.6%, and 19.1% of the overall records respectively. E. coli is 

frequently used as a model Gram-negative bacterium, and S. aureus holds the same status for 

Gram-positive bacteria. P. aeruginosa, another Gram-negative bacteria, is a clinically relevant 

target for nanoparticle therapy, as this bacteria is naturally highly drug resistant [226], [227]. 

 

The variance in MIC values derived from the literature was high for all four metal types, 

irrespective of the bacterial species used as a model. The average MIC value for silver MNPs in 

this study did not differ significantly from the average MICs of copper or gold MNPs (p >> 

0.05), but it is not possible to determine from simple aggregate analysis whether the lack of 

significant difference in MIC between silver, copper, and gold is because metal type is not a 

driving factor in antimicrobial activity, or because of confounding factors adding noise to the 

system. Zinc MNPs, in contrast to copper and gold, were found to have a statistically 

significantly higher average MIC value than silver for all bacterial species tested (p < 0.01), 

Table 3.1: Average minimum inhibitory concentration (in µg/mL) for four highly reported types of metal 

nanoparticles and two broad spectrum antibiotics. * signifies the value is significantly different from silver for the 

same bacterium, p < 0.01.  

** signifies the values is significantly different from silver for the same bacterium, p < 0.001. n/a indicates too few 

data points for analysis. 
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despite the high levels of variance in the datasets. Zinc can therefore be concluded to be a less 

effective antimicrobial material than silver. 

While silver nanoparticles do display the lowest average MIC value, a significant 

difference in performance of silver MNPs when compared to traditionally used antibiotics was 

found, as seen in Table 1 (p < .001). Ciprofloxacin and imipenem, two broad-spectrum 

medications belonging to two different classes of antibiotics (quinolone antibiotics and 

carbapenem antibiotics respectively), have reported MIC values that often fall well below 1 

µg/mL, depending on bacterial species and strain tested [228]–[241].  Further improvement to 

the antimicrobial efficacy of MNPs on a per mass basis will be an important milestone in 

achieving medically translatable antimicrobial treatments using MNPs. 

 

3.3.4 Determining influential physiochemical characteristics of silver MNPs.  
Physiochemical parameters such as MNP size and surface charge have previously been proposed 

to influence the antimicrobial efficacy of a nanoparticle. However, the very disparate nature of 

individual MNPs that have been fabricated and tested makes it challenging to draw reliable proof 

from the literature. To increase the explanatory power of the work that has been done, this study 

sought to evaluate the effect of physical parameters on antimicrobial activity (as measured with 

minimum inhibitory concentrations) from a meta-analytical standpoint. Studies were considered 

as singular records of a physiochemical parameter and an MIC value, and the aggregate data 

from multiple articles was analyzed using linear regression techniques. 

As regression techniques are more reliable and more effective with larger bodies of data, 

regression analysis was only performed using data on silver MNPs that were tested against E. 

coli or S. aureus models of any strain, as these combinations of metal type and bacterial model 

constituted the vast majority (71%) of the publications available in our dataset. Not all data is 
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equally valuable, so to control for assumed rigor, only the papers that reported all 14 

experimental variables (those described in Fig. 1) were included. With all these considerations, 

57 records were included in the initial dataset. Prior to final analysis, data quality control was 

performed, and any record with a reported MIC value that lay 3 standard deviations or more 

away from the mean, or with a residual value greater than 5 in a simple one variable regression 

model, were considered outliers and removed. This process was repeated iteratively until there 

were no outliers, leaving a final set of 48 records on antimicrobial silver nanoparticles to be 

analyzed. It is worth noting that the data set for regression analysis naturally contained a much 

more normal and homogenous group of studies than the total set originally mined from the 

literature. The range of MIC values in the final set was 10 to 58 µg/mL, the range of surface 

charge (zeta potential) values was -58 to -10.5 mV, and the range of MNP size values was 0.78 

to 32 nm in diameter. 

Nanoparticle size had a significant effect (p <.0001) on the measured MIC for E. coli. As 

seen in Fig. 2A, there is a positive relationship between size and minimum inhibitory 

concentration, demonstrating that smaller nanoparticles are more effective against E. coli, and 

potentially against Gram-negative bacteria at large. The measured R2 value of 40.3% shows that 

despite the heterogeneity of the specific MNPs included in the analysis, over 40% of the variance 

in results is driven exclusively by nanoparticle size. 96.2% of the observed data points fell within 

the prediction limits of the size-only model, showing very good agreement between the model 

and the literature-derived values. In stark contrast to this result, nanoparticle size was not a 

statistically significant predictor of MIC for S. aureus when using the same model.  
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Nanoparticle size has previously been proposed as a driving factor in determining MNP 

antimicrobial activity, with the assumption that smaller nanoparticles are broadly more effective 

against all types of bacteria.  A number of studies [242], [243] have suggested that the MNPs 

must be below a critical size (for example, 10 nm in diameter) to cross a bacterial cell membrane 

and damage the cell directly. MNP size has also been shown to modulate the interaction of the 

nanoparticle with biological molecules. It has also been shown that for very small MNPs, 

complex protein adsorption occurs almost instantly in in vivo like conditions [244], and the 

proteins adsorbed change the extent of the nanoparticle/bacterial interaction [245]. However, 

very little previous work exploring the relationship between nanoparticle size and antimicrobial 

Figure 3.2: Linear regression models correlating antibacterial efficacy, as measured by minimum inhibitory 

concentration, with nanoparticle size (A and C) and surface charge (B and D). Black dotted lines represent regression 

lines of best fit, dashed colored lines represent upper and lower confidence intervals (95% confidence), and solid 

colored lines represent upper and lower prediction intervals. Models highlighted in green where a statistically 

significant correlation exists. 
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efficacy has considered the effect of Gram type as a driving factor. The aggregate data from this 

study clarifies the linear correlation of MNP size with MIC when tested against E. coli, but not S. 

aureus, indicating that a physiochemical characterization alone is not sufficient to describe how 

size influences the antibacterial efficacy. Rather, the specific characteristics of the bacteria, most 

notably the Gram type, play a simultaneous role. 

The effect of MNP surface charge was also explored with a single variable regression. 

For E. coli, no statistically significant trend was observed, suggesting that surface charge does 

not dictate the effect of MNPs when used against Gram-negative bacteria. However, a very 

strong linear dependence was shown for S. aureus (p < .005), where more negatively charged 

particles are much more effective than less negatively charged particles. The model fit (R2) was 

found to be 30.1%, indicating that a third of the variability in MNP efficacy can be explained 

singularly by surface charge. It is of note that the dataset did not include any MNPs with a 

positive surface charge, so it is not possible to determine from this model whether the greater 

effect of more negatively charged particles is due to the increasing negativity or the increasing 

magnitude of charge.  

As with size, surface charge has previously been proposed to affect the activity of 

nanoparticles against bacteria. When comparing nanoparticles with zeta potentials that are highly 

positive or highly negative, the more positively charged nanoparticles are found to be most 

effective. It is commonly proposed that the increased efficacy of positively charged particles is 

due to the stronger electrostatic interactions between the particles and the negatively charged 

bacterial cells. However, very little research has been done on the effect of magnitude of charge, 

particularly in negatively charged particles, despite the fact that most metal nanoparticles are 

negatively charged unless specific positive charge is otherwise induced. The effect of surface 
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charge on the Gram selectivity of nanoparticles has only recently been explored, and only for 

mixed or positively charged nanoparticles [108]. 

In addition to singularly looking at size and surface charge regression, multivariate 

models were built to explore the interaction between these parameters. An additive model of size 

and surface charge was built, effectively allowing each parameter to be understood while the 

other was controlled for. The additive model of size and surface charge did not differ in 

significance or fit from the size model for E. coli, increasing the evidence that size is the most 

important physiochemical parameter for Gram-negative bacteria. However, the additive model 

for S. aureus had an improved R2 of 44.6%, up almost 15% from the single variable surface 

charge model. Additionally, in the additive model, both size and surface charge were statistically 

significant (p < 0.05 and p < 0.001 respectively). This suggests that while surface charge does 

dominate the response, size may also play a smaller but significant role for MNPs used against 

Gram-positive bacteria. 

3.4 Conclusions 
Meta-analysis was performed on data mined from the literature over a five-year span to 

determine the trends in testing and reporting on antimicrobial metal nanoparticles. Simple 

aggregate analysis shows that silver nanoparticles are statistically more effective than zinc oxide 

nanoparticles at killing or suppressing both Gram-negative and Gram-positive bacteria, but that 

there is not a significant difference in the antimicrobial activity of copper or gold particles when 

compared to silver. It is not possible to determine whether metal type would emerge as a driving 

factor in antimicrobial activity when the heterogeneity in testing and reporting protocols is 

minimized.    
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Nanoparticle size is a defining factor in predicting the antimicrobial activity of silver NPs 

against Gram-negative bacterium (p < 0.0001). The compiled papers indicate a positive 

correlation between size and MIC (R2 of 40.3%), where smaller MNPs are more effective and 

thus require lower concentrations to inhibit bacterial growth. In contrast, size alone is not shown 

to affect the MIC of silver NPs against Gram-positive bacteria. Differences in the cell wall and 

membrane structures of these bacteria may modulate the bactericidal mechanism(s) of MNPs.  

Surface charge does not show any significant correlation with MIC for Gram-negative bacteria. 

However, the efficacy of silver MNPs against Gram-positive bacteria is considerably affected by 

zeta potential (p < .005) where highly negative MNPs require lower concentrations to inhibit 

bacterial growth than less negative MNPs. Interestingly, multivariate regression using both size 

and surface charge as independent variables creates a more rigorous model (R2 of 44.6%), 

indicating that the antibacterial efficacy of MNPs against Gram positive bacteria is dominated by 

charge, but is also somewhat affected by the size of silver NP used. 

Due to the sheer number of papers that did not report significant material and testing 

parameters (such as surface charge, number of bacterial colony forming units used in the 

inoculum, and the specific bacterial strain tested), more intricate analysis is not possible. It is 

critical that common antimicrobial testing and reporting methods are adopted, to allow further 

insight on the exact mechanisms of MNP antimicrobial activity to be obtained. This study 

demonstrates that while improvement in standardization is needed, meta-analytical techniques 

can still be employed to successfully generate new knowledge by data-mining and analyzing the 

current literature.  
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Chapter 4: Synthesis and 

Characterization of Copper-, Silver-, and 

Copper/Silver-Cellulose Nanocrystal 

Composites with Antimicrobial Activity 
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4.1 Introduction 
The green synthesis of metal nanoparticles is very desirable to reduce cyto- and ecotoxicity and 

increase their range of applications. A large body of work on the synthesis of metal nanoparticles 

using living cells [246]–[248], cell culture extract [249]–[251], and plant extracts [252]–[254] 

has been generated in the past decades. Of particular interest is the fabrication of metal 

nanoparticles using cellulose nanocrystals as an ecofriendly substrate. Cellulose nanocrystals 

(CNC) can be derived from plant matter, bacteria, and tunicates, and have been shown to have no 

toxicity to human cells [255]. Additionally, they have desirable physical properties such as good 

dispersibility [256] and high mechanical strength [257]. CNC derived from acid-hydrolyzed 

wood pulp has been shown to be highly effective at coordinating nanoparticles [86], where the 

hydrolysis-generated sulfate half ester groups act participate in nanoparticle capping and the 

abundant hydroxyl groups participate in the capture of metal ions [90]. 

 Much work has been done on the preparation of cellulose nanocrystal-bound metal 

nanoparticles, for applications such as food packaging [258], [259], sensing [260], [261], water 

purification [262], and catalysis [89], [91]. Antimicrobial metal and CNC composites have also 

been developed through a variety of routes, including hydrothermal synthesis [263] and chemical 

reduction [264]. However, much of this work involves the use of toxic or environmentally 

harmful reducing agents, such as sodium borohydride [8], or non-biodegradable polymers, such 

as polyethylenimine [265]. This precludes these composites from being considered completely 

green and increases the risk of downstream cyto- or ecotoxicity.  

 The development of more sustainable metal/CNC composites has been recently explored, 

using natural compounds for both the reducing and capping of metal nanoparticles. Shi and 

coworkers [266] developed a silver and CNC composite by coating polydopamine, a mussel-

associated polymer, onto the CNC surface [99]. The abundance of catechol groups in 
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polydopamine were able to successfully coordinate with and reduce the silver ion precursor to 

silver nanoparticles, resulting in a multitude of well dispersed nanoparticles on the CNC surface.  

 While this is a relatively effective strategy, the polymerization of polydopamine from 

dopamine requires a significant time period, which limits the scalability of the product. In this 

work, a similar one-pot reduction method was employed, with tannic acid used as the CNC 

coating instead of dopamine. Tannic acid is a plant derived polyphenol, and has previously been 

used as a coating in biomedical applications due to its biodegradability and self-coating behavior 

[267]. Tannic acid has also been extensively used in the synthesis of metal nanoparticles, and can 

act as both a reducing and capping agent [268]. 

In this chapter, metal nanoparticles were deposited on tannic acid-coated cellulose 

nanocrystals using a simple one-pot chemical reduction method. The impact of fabrication 

parameters was explored, and the order of reagent addition was found to have a strong influence 

on the final morphology of the composite. The generated copper/CNC and silver/CNC 

composites had high colloidal stability, and the metal nanoparticles were found to be very small 

(<10 nm average in diameter), which indicates that they may be promising for antimicrobial 

application. Additionally, the same one-pot system can be used to reduce copper and silver onto 

CNC simultaneously, demonstrating a desirable versatility. 

4.2. Experimental Procedure 

4.2.1 Materials 
Cellulose nanocrystals, with length of 100 to 200 nm and width of 5 to 20 nm, were donated by 

CelluForce Inc. Tannic acid (C76H52O46) , silver nitrate (AgNO3), copper sulfate (CuSO4), and 

sodium hydroxide (NaOH) pellets were purchased from Sigma-Aldrich and used as received. 

Milli-Q water (resistance of greater than or equal to 18 MΩ cm) was used as the sole solvent for 

all procedures, and was generated by a Millipore Mill-A purification system. 
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4.2.2 One Pot Preparation of Metal/CNC/Tannic Acid Composites 
Cellulose nanocrystals (CNC) were mixed into 15 mL of Milli-Q (MQ) water at a concentration 

of 0.01 wt% with a vortex mixer and thoroughly dispersed via bath sonication for 25 minutes at 

10˚C. Powdered tannic acid (0.255 g) was dispersed in 15 mL of MQ water (a concentration of 1 

mM) with vigorous shaking and vortex mixing. Stock solutions of metal salt precursors (either 

CuSO4, AgNO3, or an equal combination of the two) were dispersed in MQ water with vigorous 

shaking and vortex mixing. The CNC and tannic acid solutions were combined with vortex 

mixing, and then the pH of the CNC/tannic acid solution was adjusted to 9.0 used aliquots of 

freshly prepared 1.0 M NaOH solution. The CNC/tannic acid was then transferred to a round 

bottom flask and heated to 50˚C under stirring at 400 RPM. Metal salt precursor solution was 

added dropwise to the CNC/tannic acid solution to achieve a molar ratio of 0.06 (for copper) or 

0.03 (for silver or copper/silver), following the procedure for rapid generate of metal 

nanoparticles with tannic acid previously laid out [269]. The reaction began immediately, and 

was allowed to proceed for 4 hours at elevated temperature. The metal/CNC/tannic acid solution 

was then centrifuged at 4250 RPM for 30 minutes, and the supernatant was decanted. The pellet 

(containing the CNC-bound metal nanoparticles) was re-dispersed in fresh MQ water and stored 

for further use. 

 

4.2.3 Composite Characterization 
4.2.3.1 UV-Visible Spectra 

A UV-Visible Spectrometer was used to generate spectra from 200 to 800 nm. All samples were 

prepared in MQ water at a 0.1 wt% concentration, and bath sonicated for 2 minutes directly prior 

to measurement. Scans were performed at room temperature and latent pH. Each spectrum was 

normalized based on the broadband scattering peak of cellulose nanocrystals from that sample. 
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4.2.3.2 Hydrodynamic Size and Zeta Potential 

Hydrodynamic size and zeta potential (ZP) were both determined using a Malvern Nano-ZS90 

Zetasizer. Samples were diluted to a 0.1 wt% (w/w) concentration in MQ water and bath 

sonicated for 2 minutes directly prior to measurement. Hydrodynamic size was determined using 

single angle (90˚) dynamic light scattering at room temperature. Zeta potential was determined 

based on electrophoretic mobility at room temperature. All measurements were taken 5 times and 

the average is presented. 

4.2.3.3 Transmission Electron Microscopy 

Samples were diluted to a concentration of 0.1 wt% (w/w) in MQ water and bath sonicated for 

30 minutes at 10˚C to assure dispersion. 25 µL of sample was drop-cast on a carbon-coated 

copper grid (200 mesh) and allowed to dry for 24 hours in ambient conditions. A Philips CM 10 

transmission electron microscope with a 60 kV accelerating voltage was used to take all images. 

All image analysis was performed using ImageJ software. Nanoparticle sizes derived from 

ImageJ software represent the average value no less than 100 particles. 

4.2.3.4 Scanning Electron Microscopy 

Samples were diluted to a concentration of 0.1 wt% (w/w) in MQ water and bath sonicated for 

30 minutes at 10˚C to assure dispersion. 25 µL of sample was drop-cast on a new silicon wafer 

chip and allowed to dry for 24 hours in ambient conditions. The wafer was coated in a thin layer 

of gold (thickness < 5 nm) using a simple sputter-coating process to improve conductivity of the 

samples. An FEI Quanta Feg 250 Environmental scanning electron microscope with EDX was 

used to take all images. 

4.2.3.5 Antifungal Testing 

Active dry yeast (Saccharomyces cerevisiae) was used as the model organism for antifungal 

testing. Yeast was added to deionized water at 37˚C under stirring to disperse, and glucose was 

added to the solution to prompt activation and respiration. The extent of fungal respiration was 
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measured as carbon dioxide produced (in mL) using simple water displacement. A small aliquot 

of metal/CNC/tannic acid sample (1 mL, 0.025 wt% w/w) was added to the flask, and the rate of 

respiration (CO2 produced over time) was tracked for a 25 minute period. Control experiments 

were performed using the same protocol, but with 1 mL of deionized water added instead of 

sample. 

4.3 Results and Discussion 

4.3.1 Characterization of Copper/CNC Nanoparticles 
Copper nanoparticles bound to nanocellulose substrates were successfully fabricated using a 

simple one-pot chemical reduction method. Copper sulfate (CuSO4) was used as the metal salt 

precursor, tannic acid (TA) was used as the reducing agent, and cellulose nanocrystals (CNC) 

were used as the capping agent. Tannic acid, a plant polyphenol, has been shown to be an 

effective reducing agent in the synthesis of a variety of metal nanoparticles, as each molecule can 

donate up to 20 electrons to reduce a metal cation [270]. When dispersed in water, tannic acid 

undergoes partial hydrolysis, exposing gallic acid moieties that act as reductants, and glucose 

moieties that act as weak capping agents under basic conditions [268]. For complexation with a 

metal cation, the gallic acid units must be deprotonated, which occurs around pH 8 and above 

[271], [272].  

Previous studies have been undertaken to coat cellulose nanocrystals with tannic acid and 

with other catechol-containing monomers such as dopamine [273], [274]. While the exact 

interaction is not well understood, it has been shown that the oxidized phenolic moieties of 

tannic acid can react with the cellulose nanocrystals to form strong bonds, which may be based 

on covalent, hydrogen, or π–π stacking interactions. To induce a strong coating, the pH of the 

tannic acid and CNC solution in this study was adjusted to 9 using freshly prepared 0.1 M 

NaOH. Copper sulfate was then added to the basic tannic acid/CNC solution and allowed to react 
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to form copper oxide particles on the surface of the CNC. The presence of tannic acid on CNC 

and the formation of copper nanoparticles were monitored using UV-visible spectroscopy 

(Figure 4.1). The UV-visible spectrum of tannic acid is highly pH dependent, and at pH 9, it 

shows two characteristic peaks around 235 and 323 nm [275]. The tannic acid/CNC solution at 

pH 9 generated in this study showed peaks at 254 and 358 nm, indicating relatively good 

agreement with the literature. The composite with copper nanoparticles shows one primary peak 

at 285 nm, which is characteristic of the surface plasmon resonance peak displayed by copper 

oxide nanoparticles [276], [277]. Additionally, a small shoulder at 358 nm can be seen, which is 

indicative of a small amount of unreacted tannic acid remaining in the system. According to 

Mie’s theory, the presence of only one metal-associated peak indicates that the copper oxide 

particles are spherical in shape. [278] 
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Figure 4.1: UV-Visible spectra taken at room temperature and native pH for pristine CNC (red), tannic 

acid coated CNC (blue), and copper-nanoparticle coated CNC (black) (A). Photographs of CNC (B) and 

CuCNC (C) dispersions. 

 

The copper/tannic acid/CNC composites (CuCNC) were stable after 5 months storage in 

ambient conditions, with no obvious precipitation and no shift in UV-vis spectrum (indicating 

metal nanoparticle aggregation or agglomeration). The high stability is attributed in large part to 

the colloidal stability of cellulose nanocrystals, which bear highly negative surface charges, and 

thus experience high electrostatic repulsion. The stability of the system was probed using zeta 

potential measurements. A pristine CNC suspension had a zeta potential of -43.6 mV, which 

shows good agreement with previous literature [266]. The zeta potential of the CuCNC 

composite was -25.6 mV, which is still high enough to have good colloidal stability. In contrast, 

copper nanoparticles generated using tannic acid but without CNC as a control had a zeta 

potential of -20.2 mV, which verges on colloidal instability.  

Figure 4.2: TEM images of pristine cellulose nanocrystals (A), tannic acid coated cellulose nanocrystals 

(B), copper nanoparticles generated by tannic acid (C), and copper nanoparticles generated by tannic 

acid on cellulose nanocrystals (D). Each scale bar represents 100 nm.  
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The morphology of the copper composites was examined using a transmission electron 

microscope. Pristine cellulose nanocrystals have very low electron density, and are thus hard to 

visualize with TEM (Fig 4.2A). The addition of the tannic acid coating improves the contract 

somewhat, and a network-like structure can be observed with the tannic acid wrapping the CNC 

closely (Fig 4.2B). The copper-coated CNC show a similar network-like structure, with many 

very small and very well dispersed spherical copper nanoparticles dispersed along the tannic acid 

coated CNC rods. Copper nanoparticles generated tannic acid but without CNC are also 

spherical, but are much larger and have a higher polydispersity, indicating that they are less 

stable and more prone to agglomeration than the CNC-bound copper nanoparticles. 

 

 

4.3.2 Effects of Fabrication Parameters on Copper/CNC Morphology 
Factors such as reaction pH and concentration have been shown to affect the synthesis of metal 

nanoparticles when using tannic acid [279]–[281] , but even in the case where co-reductants such 

as sodium citrate have been used, little previous work has explored the effect of reagent addition 

order on the final material morphology. This study therefore sought to understand how reagent 

addition order might affect the generated CuCNC composite. In order to investigate this, 

copper/CNC composites and controls were fabricated using a variety of reagent addition orders, 

as shown in Scheme 4.1. 

 
Scheme 4.1: Tested reagent addition orders and controls for CuCNC composites. 
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Transmission electron microscopy was used to characterize the generated CuCNC 

composites. When tannic acid was added to the CNC dispersion first, followed by the addition of 

NaOH to adjust the pH to 9 and then copper sulfate, the metallization of CNC proceeds as 

expected, yielding many well dispersed copper oxide nanoparticles. However, when copper 

sulfate was added first, a unique ‘bundled’ morphology arose, as shown in Fig. 4.3A. These 

bundles were an average of 54 nm wide and 320 nm long, which is 2 to 5 times the average 

dimensions of pristine cellulose nanocrystals [256], and were coated in small nanoparticles. 

Scanning electron micrographs were also generated of these bundles to assure that the 

morphology was not an artifact of the TEM sample preparation, and very good agreement 

between the two types of micrographs was found (Fig 4.3B). The SEM images also suggest that 

the primary composite is in a ‘bundled’ form, some individual CNC still exist, forming a 

network between the bundles. Elemental analysis was performed directly during SEM 

measurement using EDX, which confirmed the presence of copper. 

To determine the source of the bundling, control experiments were undertaken using 

either just tannic acid and cellulose, or just copper sulfate and cellulose, and following an 

otherwise identical reaction procedure (as laid out in section 4.2.2). These control composites 

were also investigated with TEM imaging. The tannic acid/CNC composite without any copper 

sulfate (Fig 4.3D) showed a simple network structure, similar to those previously observed for 

other catechol-coated CNC composites [273], suggesting that the tannic acid is not the source of 

the bundling. The CuSO4/CNC control (Fig. 4.3C), in contrast, showed nearly identical 

‘bundled’ morphology to the original reversed-fabrication CuCNC composite. Unexpectedly, not 

only did the bundling occur with the addition of CuSO4, but a large number of very small copper 

oxide nanoparticles also appeared (average diameter of 4.02 nm), as seen by the high density of 
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dark circles in the TEM image. This can be explained by the reductive nature of cellulose 

nanocrystals in basic environments. While tannic acid was used as the primary reducing agent in 

this composite, CNC has previously been shown to generate nanoparticles in a ‘reducant-free’ 

synthesis [92]. The authors of this work proposed that the hydroxyl groups of CNC become 

deprotonated at higher pH, exposing an oxygen anion that can participate in reduction of metal 

nanoparticles. The authors further elaborate that this deprotonation lowers the ability of CNC to 

participate in hydrogen bonding, which means it has higher surface energy and is therefore more 

reactive than at a neutral or acidic pH. 

 

Figure 4.3: TEM and SEM micrographs of bundled copper/CNC colloid (A and B), and TEM 

micrographs of the copper/CNC composite fabricated without tannic acid (C) and without copper sulfate 

(D). The proposed mechanism for bundled or networked colloid formation based on reagent addition 

order (E). 

 

The presence of the bundling only when copper sulfate was added first (with or without 

tannic acid) clarifies that copper cations play a major role in causing the bundled morphology. 

Cellulose nanocrystals generated through sulfuric acid hydrolysis of plant matter bear numerous 

sulfate half ester groups on their surface [282], which impart their characteristic high negative 

charge. At basic pH, the hydroxyl groups on the surface of CNC are deprotonated, exposing an 
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oxygen anion. Either of these negatively charged function groups may interact strongly with the 

positive copper cations. The divalency of copper cations also means that they can interact with 

two non-adjacent positively charged sites [283], which could lead to the ‘bridging’ of two CNC 

rods, eventually causing bundling of many CNC rods at once (as shown schematically in Fig. 

4.3E). It can be assumed, in contrast, when CNC is first coated with a tannic acid layer, the 

exposed o-dihydroxyphenyl groups directly chelate and reduce the copper cations to copper 

nanoparticles before any strong electrostatic interactions occur. Thus, changing the order of 

addition of reagents in this system generates vastly different nanostructures from an otherwise 

identical fabrication protocol. 

 

4.3.3 Generation and Characterization of Silver/CNC and Copper/Silver/CNC 

Nanoparticles 
Following the successful fabrication of the copper oxide/CNC composite, a silver/CNC 

composite (AgCNC) was fabricated using the same one-pot method, with tannic acid as the 

reducing agent and cellulose nanocrystals as the capping agent. As with the CuCNC composite, 

tannic acid and colloidal CNC were first combined, and then silver salt precursor (silver nitrate) 

was added dropwise. The solution changed immediately from light orange to dark brown with 

the addition of the silver nitrate. Colloidal suspensions of silver nanoparticles have been shown 

to display a large range of colors, mostly commonly light yellow through dark red or brown 

depending on the shape and concentration [284], [285]. Thus, the visual results of this one-pot 

process are in good agreement with the previous reports. The generated AgCNC nanomaterial 

was stable after 5 months of storage at ambient conditions, with no change in color and no visual 

precipitation. 

Bimetallic composites with both copper and silver bound to CNC (CuAgCNC) were also 

generated. There are a variety of ways to generate bimetallic materials, such as using galvanic 
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replacement or digestive ripening processes [286]–[288]. Here, the simplest method, chemical 

coreduction, was used. Chemical coreduction has been used successfully to generate bimetallic 

nanoparticles [65], [66], and is advantageous in that it requires no additional preparation steps 

and is very scalable. For the chemical coreduction process, the metal salt precusors are mixed 

prior to the start of the reaction, and then the reduction can proceed unchanged. In this work, 

CuSO4 and AgNO3 were mixed in a 1:1 molar ratio, and added dropwise to a solution of tannic-

acid coated CNC. As with the single metal synthesis, the color of the solution changed 

immediately to a dark brown/black color, indicating the successful synthesis of metal 

nanoparticles. 

The AgCNC and CuAgCNC suspensions were analyzed using UV-visible spectroscopy 

(Fig. 4.4). The characteristic SPR peak of spherical silver nanoparticles ranges between 410 and 

430 nm [289], though the peak wavelength varies based on nanoparticle size and concentration 

[290]. The AgCNC composite displayed a peak at 420 nm, falling well within the expected limits 

for silver nanoparticles. An additional shoulder around 251 nm may be indicative of a small 

amount of residual tannic acid. The CuAgCNC composite showed two distinct peaks at 275 nm 

and 420 nm, aligning nearly perfectly with the copper oxide and silver peaks found for the single 

metal/CNC composites in this study. The relative peak intensity of both the copper and silver 

peak is lower than for the single metal composites, indicating the formation of fewer particles. 

This aligns well with the expected results, as half the amount of each precursor was used for the 

bimetallic composite as for either single metal composite. 
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Figure 4.4: UV-Visible spectra for silver/CNC (grey) and copper/silver/CNC (black) composites. 

Copper/CNC spectrum (blue) is show for comparison (A). Photographs of CuCNC (B), AgCNC (C), and 

CuAgCNC (D) dispersions. 

 

Truly alloyed metal nanoparticles generally display only one SPR peak, at a wavelength 

in between those of the two individual metals [291]. Core-shell nanoparticles with a complete 

shell with display only one SPR peak at the same location as the shell’s SPR peak, and core-shell 

nanoparticles with an incomplete shell will display two SPR peaks or ‘humps’ that appear closer 

to each other than the individual peaks for each metal would otherwise be [292], [293]. Colloidal 

solutions of two metal nanoparticles that are not alloyed in any way, but simply mixed, will 

display two peaks at the characteristic locations for each individual metal [294]. The presence of 

two distinct peaks in the location of silver and copper oxide SPR peaks suggest either that the 

chemical coreduction process simply yielded separate copper and silver particles on CNC, rather 

than any type of bimetallic particle. This is likely because there is a large difference in lattice 

size between copper and silver, rendering them relatively immiscible. Previous work has shown 
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that copper/silver core/shell nanoparticles that are not treated with an annealing process post-

fabrication will undergo dewetting, in which the silver nanoparticles form very small free-

floating particles around a bare copper core [68]. 

 

Figure 4.5: TEM micrographs of CuCNC (A) AgCNC (B) and CuAgCNC (C) nanocomposites. All scare 

bars are 100 nm. 

 

To better understand the morphology of the AgCNC and CuAgCNC composites, TEM 

imaging was employed, the results of which are shown in Fig. 4.5. The Ag/CNC composite 

showed similar morphology to the CuCNC composite, with many well dispersed spherical 

nanoparticles generated along a network of tannic acid-coated CNC. Both the CuCNC and 

AgCNC composites show no metal nanoparticles separate from the CNC network, suggesting 

most or all of the nanoparticles are well attached to the substrate. The CuAgCNC composite had 

a markedly different morphology than the single metal and CNC composites, containing a 

bimodal distribution of large (40 nm) darker particles and smaller (<10 nm) lighter particles. 

Based on mass diffraction principles [295], silver nanoparticles should diffract more electrons 

and thus appear darker in brightfield TEM images. However, increased electron diffusion due to 

Bragg’s diffraction off of crystalline materials can also play a large role, confounding the 

interpretation of the TEM results without also using selected area diffraction to determine the 
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presence of crystalline metal. More work to determine the specific composition of the CuAgCNC 

composites is therefore recommended. 

Table 4.1: Measured hydrodynamic and nanoparticle core size and zeta potential for copper- and silver-

containing CNC nanocomposites. 

 

The average sizes and stabilities of the AgCNC and CuAgCNC composites were 

measured and compared with pristine CNC and with CuCNC, as shown in Table 4.1. The 

hydrodynamic diameters, as determined by single angle dynamic light scattering, reflect the total 

size of the composite, including the CNC, the tannic acid coating, and the bound metal 

nanoparticles, and any hydration shell. As expected, the hydrodynamic diameter of each 

metal/CNC colloid is larger than the hydrodynamic diameter of pristine CNC, with the largest 

composite being the AgCNC composite. This larger size may be due to the relatively 

homogenous coating of larger silver nanoparticles, or because of a strong networking between 

some of the individual AgCNC particles, leading to slightly larger agglomerates. The actual 

metal nanoparticle core size was measured using TEM micrographs, and the copper oxide and 

silver nanoparticles from the monometallic composites were found to be quite small (under 10 

nanometers). The average metal core diameter for the CuAgCNC composite was much larger, at 

nearly 25 nm, with a high standard deviation of 21 nm. The high deviation is in part due to the 

bimodality of the system, where some nanoparticles were very small (averaging 11 nm), and 

others very large (upwards of 44 nm). The colloidal stability of the AgCNC and CuAgCNC 

composites was assessed with zeta potential, and was found to be -47 and -33.9 mV respectively, 
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indicating very good stability. This is consistent with the visual aging results, which showed no 

precipitation or sedimentation over a 5 month period in ambient conditions. 

4.3.4 Preliminary Antimicrobial Testing 
To assess the antimicrobial activity of these particles, CuCNC were tested against yeast 

(Saccharomyces cerevisiae), a single-celled eukaryotic model organism. Antifungal testing is a 

facile method for the preliminary evaluation of antimicrobial nanoparticles, and previous work 

has shown extensively that nanoparticles that are antifungal are also antimicrobial [296], [297]. 

Yeast produces carbon dioxide gas (CO2) as a byproduct of normal respiration, and a change in 

the rate of CO2 production can be used to evaluate the health of the yeast. While measurement of 

CO2 produced cannot directly delineate between reduced yeast growth rate and reduced cell 

viability, decrease in fermentation has previously been shown to correlate with both of these 

outcomes [298].  S. cerevisiae treated with 250 µg of CuCNC, which corresponds to a dose of 26 

µg of copper oxide nanoparticles, showed a 40% decrease in respiration with just 25 minutes of 

exposure time (Fig. 4.6). This high rate of respiratory decrease suggests that CuCNC is a highly 

effective antimicrobial agent. 

As previously discussed, metal nanoparticles are well-known to be antimicrobial, and a 

variety of inhibition pathways have been proposed, including the release of toxic heavy metal 

ions and the disruption of the cell membrane due to physical adsorption. Previous work has 

shown that metal nanoparticles bound to cellulose substrates are more antimicrobial than 

comparable free-floating nanoparticles [266]. The authors suggested that the high surface area of 

the cellulose substrate allowed for improved adsorption of the metal/CNC composite on the 

surface of bacteria, inducing more localized release of antimicrobial metal ions. Another recent 

work looking at the toxicity of cellulose-associated copper nanoparticles towards S. cerevisiae 

found that treatment of yeast with the CuCNC composite generated significantly higher levels of 
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reactive oxygen species that a copper ion precursor (CuSO4) alone [299], suggesting that the 

CNC plays a large role in increasing the composite’s toxicity. The authors found that the primary 

target of the generated reactive oxygen species was the lipid membrane of the yeast, which 

would an equally attainable target in bacterial model systems. 

As discussed in Chapter 3, smaller nanoparticles are generally expected to be more 

effective at combating Gram negative bacteria, and more negatively charged particles are 

expected to be more effective at combating Gram positive bacteria. Thus, it would be expected 

that the nanocomposites generated in this study, with metal core sizes under 10 nm and zeta 

potentials of -25 mV (somewhat negative) to -47 mV (highly negative) would be highly effective 

as a broad-spectrum antimicrobial agent. The model organism used in this study, yeast, also 

showed susceptibility to CuCNC composites. As the method of antimicrobial activity for 

metal/CNC composites has been shown to target primarily microbial cell membranes, the 

CuCNC, AgCNC, and CuAgCNC composites would all be expected to be highly translatable to 

specific antibacterial applications. 

Figure 4.6: Rate of respiration of yeast (measured as CO2 produced in mL) when allowed to respirate 

normally (black line) or in the presence of 250 µg of copper/CNC colloid (blue line). 
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4.4 Conclusion 
This chapter discusses the fabrication and characterization of nanocellulose-bound metal 

nanoparticles generated with a simple and green one-pot method. Tannic acid was successfully 

deposited onto cellulose nanocrystals, and copper, silver, or a combination of copper and silver 

nanoparticles were nucleated onto the substrate with dropwise addition of a metal salt precursor. 

Zeta potential analysis revealed that all of the metal/cellulose nanocrystal composites were 

colloidally stable, with average zeta potentials of -25.5, -47.0, and -33.9 mV for the CuCNC, 

AgCNC, and CuAgCNC nanocomposites, respectively. No agglomeration or precipitation was 

observed for any of the composites over a period of 5 months storage under ambient conditions. 

The copper and CNC composite showed good antimicrobial activity against S. cerevisiae, and 

previous literature indicates this damage may take place through reactive oxygen species 

generation and through physical adsorption and metal ion release. This system provides an 

ecofriendly and facile base for various metal nanoparticles to be fabricated, and the generated 

nanocomposites well suited to antimicrobial applications. Further studies will clarify the 

magnitude of antimicrobial activity of these metal and cellulose composites. 



 

63 
 

Chapter 5: Conclusions and Future 

Recommendations 
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5.1 Conclusions and Recommendations for Work Presented in 

Chapter 3 
Data mining and meta-analytical techniques were employed for the first time to understand 

larger trends in the efficacy of antimicrobial metal nanoparticles. For this work, over 9,000 

original research articles published between 2015 and 2019 were distilled down into a workable 

body of 600+ articles on single metal antimicrobial nanoparticles. The testing methodologies 

each article used to assess antimicrobial activity were documented, and zone of inhibition tests 

were found to be most common tests used, despite evidence in the literature that this class of 

tests cannot accurately measure the efficacy of nanoparticles. Of the articles published that did 

employ the more robust broth dilution techniques, there was little standardization found in the 

testing or reporting process. A large majority of tests used varying incubation broths, times, and 

temperatures, started with different bacterial inoculums, and tested different species and strains 

of bacteria. Additionally, over two-thirds of the publications included in the data set did not 

report critical information about the testing conditions, such as the bacterial strain or inoculum 

size, or about the material tested, such as its surface charge or shape. 

Simple analysis of variance testing was undertaken to determine the difference in efficacy 

of different metal types, including silver, copper, gold, and zinc nanoparticles. There was a very 

significant (p < 0.01) difference between the efficacy of zinc oxide nanoparticles when compared 

to silver nanoparticles, but no significant different could be found when comparing copper or 

gold nanoparticles to silver. It cannot be concluded at this time whether the lack of significant 

difference is due to the massive variance in the publications, or due to similarity in silver, 

copper, and gold nanoparticles for this application. 

Silver nanoparticles, which represented the focus of over 70% of the publications 

included in this study, were further used as a model to understand other influential characteristics 
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of antimicrobial nanoparticles. When using linear regression models, it was found that the Gram-

type of the bacteria being used as a model is a critical parameter. There was a strong linear 

correlation between size and efficacy for Gram negative bacteria, indicating that Gram-negative 

bacteria are increasingly susceptible to smaller nanoparticles. No such correlation existed for 

Gram-positive bacteria. In contrast, a strong linear correlation existed between surface charge 

and efficacy against Gram-positive bacteria, indicating that more negatively charged particles are 

more effective at damaging Gram-positive bacteria. No such correlation existed for Gram 

negative bacteria. 

The conclusion of this work is therefore twofold. The first conclusion is that the literature 

around antimicrobial metal nanoparticles is yet to be sufficiently standardized, which severely 

limits the ability to draw new and reliable knowledge from the literature. Improvement in the 

testing and reporting standards will be critical in allowing the advancement of the field. The 

second conclusion is that physiochemical parameters such as metal type, nanoparticle size, and 

nanoparticle surface charge do predict the efficacy of the nanoparticles against bacteria. 

However, the Gram type of the bacteria vastly modulates which parameters are important and 

must be considered when designing nanoparticles for specific applications. 

In the future, further statistical modeling could be undertaken to explore the effects of 

size and surface charge on the activity of non-silver nanoparticles, such as gold or copper. This 

could help elucidate whether or not the mechanism(s) of antimicrobial activity are consistent 

across these metals, or whether each one functions differently. Additionally, modeling should be 

performed on the activity of nanoparticles against bacteria aside from S. aureus and E. coli, to 

confirm that the difference in activity is indeed modulated by Gram type, and is not simply 

species specific.  



 

66 
 

5.2 Conclusions and Recommendations for Work Presented in 

Chapter 4 
This chapter detailed the fabrication and characterization of cellulose nanocrystal-bound metal 

nanoparticles. Tannic acid and CNC were used for the fabrication of copper, silver, and 

copper/silver metal nanoparticles in mild synthesis conditions, where water was the sole solvent 

and the reaction could proceed at near-room temperature. The system was shown to produce 

relatively monodisperse and highly stable nanoparticles of any metal type tested. The 

nanoparticles had an average size of 5, 7, and 25 nm diameters for the Cu, Ag, and CuAgCNC 

composites, respectively. All composites had a zeta potential of at least -25 mV, indicating good 

colloidal stability, which is attributed in large part to the high stability of cellulose nanocrystals 

themselves.  

 Optimization of the fabrication parameters was undertaken, and the order of reagent 

addition was found to have a large effect on the final product for CuCNC. When copper salt 

precursor and cellulose nanocrystals are mixed prior to the addition of tannic acid, highly 

‘bundled’ CNC structures occur, with copper acting as a crosslinker between adjacent CNC 

molecules. However, the coating of tannic acid on CNC prior to the addition of copper salt 

produces well-dispersed and individual copper coated CNC nanoparticles, due to the direct 

chelation and reduction of copper ions by tannic acid. The pre-coating of CNC with tannic acid 

also works to fabricate silver CNC-bound particles. A mixture of silver and copper nanoparticles 

can be bound simultaneously to tannic acid-coated CNC using simple chemical coreduction. 

 The CuCNC composite was found to have good antimicrobial activity, and is able to 

reduce the activity of yeast after just 25 minutes of contact time with a copper dosing of  

25 µg/mL (total composite dose of 250 µg/mL). It is expected that this antimicrobial activity is 

owing primarily to the presence of copper nanoparticles, as cellulose nanocrystals have no 
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measurable toxicity at such a low dose. Additionally, copper nanoparticles are likely able to 

generate damaging reactive oxygen species, which can easily cause peroxidation of the lipid 

membranes and therefore cause catastrophic membrane failure in yeast. 

 In conclusion, a simple one-pot and ecofriendly method was shown to produce 

antimicrobial metal/CNC nanocomposites. In the future, more work should be undertaken 

exploring the exact mechanisms of antimicrobial activity for each composite. It would also be 

advantageous to generate bimetallic alloys of silver and copper and compare their activity to 

each individual metal and a mixture of metals. Such work would help to elucidate the 

antibacterial mechanisms and help guide work towards the fabrication of maximally 

antimicrobial metal nanomaterials. 
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