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Abstract

Optimization is at the heart of many engineering problems. Many optimization problems,

however, are computationally intractable. One approach to tackle such intractability is

to find a tractable problem whose solution, when found, approximates that of the origi-

nal problem. Specifically, convex optimization problems are often efficiently solvable, and

finding a convex formulation that approximates a nonconvex problem, known as convex

relaxation, is an effective approach.

This work concerns a particular class of optimization problem, namely constrained sig-

nomial optimization. Based on the idea that optimization of a function is equivalent to

verifying its positivity, we first study a certificate of signomial positivity over a constrained

set, which finds a decomposition of the signomial into sum of parts that are verifiably

positive via convex constraints. However, the certificate only provides a sufficient con-

dition for positivity. The main contribution of the work is to show that by multiplying

additionally more complex functions, larger subset of signomials that are positive over a

compact convex set, and eventually all, may be certified by the above method. The result

is analogous to classic positivstellensatz results from algebraic geometry which certifies

polynomial positivity by finding its representation with sum of square polynomials.

The result provides a convergent hierarchy of certificate for signomial positivity over a con-

strained set that is increasingly more complete. The hierarchy of certificate in turn gives

a convex relaxation algorithm that computes the lower bounds of constrained signomial

optimization problems that are increasingly tighter at the cost of additional computational

complexity. At some finite level of the hierarchy, we obtain the optimal solution.
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Chapter 1

Introduction

A signomial is a function of the form: f(x) =
∑`

j=1 cj exp(Ajx), where c ∈ R,Aj ∈
Rn for j = 1...l are fixed. Optimization of such function subject to signomial inequalities

and equalities is called signomial programming (SP). Although computationally difficult,

SPs have wide range of applications in chemical engineering [31], aeronautics [35], circuit

design [17], and communications network optimization [10].

Signomials may be thought of as a generalization of polynonmials. By a change of vari-

able yi = expxi, one has the expression p(y) =
∑`

j=1 cj
∏n

i=1 y
αij

i ; in polynomials, the expo-

nents are restricted to be integers. Algorithms for polynomial optimization, with its wide

applications, have been well studied. The algorithms are based on sum of squares (SOS)

certificate of polynomial positivity as described by positivstellensatz results from algebraic

geometry and are computationally tied to Semidefinite Programming (SDP) [22, 26]. More

recently, the concept of sums of nonnegative circuit polynomials (SONC) has been pro-

posed as a new sufficient condition for positivity suited for sparse polynomials, which may

be used to design efficient algorithms that depend on the number of terms in the polyno-

mials and not the degrees [16].

Such methods for polynomial optimization reap the equivalence between global opti-

mization of a function and verification of its positivity. Under this view, Chandrasekaran

and Shah proposed the seminal Sums-of-AM/GM Exponential (SAGE) certificate of sig-

nomial positivity [8]. Similar to SOS certificate, the SAGE certificate is based on finding
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a decomposition of signomials into sum of parts, each being positive and is efficiently ver-

ifiable. The key insight of such certificate is that for a signomial has at most one negative

term, verifying its positivity may be reduced to finding a solution to a sufficiently small set

of convex constraints. In 2019, Murray, Chandrasekaran and Wierman generalized SAGE

certificates to signomial positivity over a convex set, namely conditional SAGE, derived

based on convex duality [23]. The generalization finds that when a signomial has one

negative component, certifying its positivity over a convex set may again be reduced to

checking a set of convex constraints. The same authors have also adapted SAGE certificate

to polynomials and have shown certain equivalence between SAGE and SONC [23].

Common to all of above results is the notion of hierarchy. Note that SOS, SONC, SAGE

are all relaxations of certificate for positivity; not all positive signomials or polynomials

may be certified directly via SOS, SONC or SAGE. However, with additional computa-

tional complexity, larger subset of positive functions may be verified as so. The specific way

in which computational complexity is increased in the hierarchy depends on individual re-

sults. In many results, especially the positivstellensatz results in the polynomial literature,

additional computational complexity is imposed by multiplication of an extra function to

the one of interest or inclusion of additional terms in the decomposition. The hierarchy is

complete if all positive functions of a given class may be verified as so at some finite level

of the hierarchy.

In this thesis, we first discuss the conditional SAGE certificates for signomial positivity

over a convex set. The certificate was derived by my supervisor Yaoliang Yu in 2018 and

also by Murray et al. [23], independently. We will then discuss the conditional SAGE and

how it may be used to design an algorithm for constrained signomial optimization. Such

results have also been independently examined by Murray et al. [23]. Then, we prove a

completeness result for conditional SAGE. The result guarantees that after multiplication

of a sufficiently large function, every signomial that is positive over a compact convex set

may be verified via the conditional SAGE certificate.
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Chapter 2

Notations and Background

2.1 Notations

We use bold fonts to denote vectors and matrices. Use v\i ∈ Rn−1 to denote vector v ∈ Rn

with the ith coordinate removed, and vi to denote its ith coordinate. Given a matrix

A ∈ Rn×m, use A(i) ∈ Rm to denote its ith row, and use A\i ∈ Rm to denote the sub-

matrix with ith row removed. Given a row vector u ∈ Rn and column vector v ∈ Rn,

uv is used to denote the dot product between them. Given a function that maps from

real to real (i.e. f : R → R), overload is definition by allowing vector value input for

which the output is the element wise map of the function. For example, given x ∈ Rn,

exp(x) = [exp(x1), . . . exp(xn)]>.

For brevity, given c ∈ R` and A ∈ R`×n,

Sig(c,A)(x) =
∑̀
j=1

cj exp(Ajx)

is the signomial defined by c and A. Given A ∈ R`×n and a set X ⊂ Rn, define the cone

of coefficients c for which Sig(c,A)(x) is nonnegative over X .

CNNS(c,A)(x) = {c ∈ R` : Sig(c,A)(x) ≥ 0 ∀x ∈ X}
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And use the following notation for relative entropy for also known as KL-divergence. Given

vectors v,u ∈ Rn, define:

D(v,u) =
n∑
i=1

vi log(
vi
ui

)

Where the log is base 2. Finally, given A ∈ R`×n, define the following. For some p ∈ Z++,

Ep(A) = [A1 . . .A`(p+1) ]> where (A(i))i=1...`(p+1) =

{A ∈ Rn : A =
∑̀
i=1

wiA
(i) such that wi ∈ Z ∀i, and

∑̀
i

wi ≤ p}

The notation is imported from [8]. Ep(A) is the matrix whose rows are the integer combi-

nations of rows in A up to summation p.

2.2 Background

2.2.1 Certificate of Positivity and Optimization

Certificate for positivity is motivated by its application in optimization. Consider the

following constrained optimization problem:

f ∗X = inf
x∈X

f(x)

which may be reformulated as a problem of certifying function positivity.

f ∗X = supλ s.t. f(x)− λ ≥ 0 ∀x ∈ X

In other words, constrained optimization problem may be reduced to checking the positivity

of a function over a set. Consider a class of function F , and subset FX such that infX f(x) ≥
0 ⇐⇒ f(x) ∈ FX . The optimization problem is solved if membership in FX can be

checked.

f ∗X = supλ s.t. f(x)− λ ∈ FX
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Naturally, certifying function positivity is no easier than the optimization problem itself.

Of interest is to find a sufficient condition for function positivity; we want to develop a

tractable set GX ⊂ FX such that checking Sig(c,A) ∈ G is sufficiently easy. Then:

fGX = supλ s.t. f(x)− λ ∈ GX

is a tractable problem and fGX ≤ f ∗X .

2.2.2 Polynomial Optimization

The equivalence of optimization and certificate of positivity is well established in polyno-

mial optimization. Consider a general problem formulation of the following form:

min p(x)

s.t. gi(x) ≥ 0 ∀i = 1, . . .m

Use K = {x : gi(x) ≥ 0 ∀i = 1, . . .m} to denote the semialgebraic set defined by polyno-

mials. The above is equivalent to solving the following problem.

max γ

s.t. p(x)− γ ≥ 0 ∀x ∈ K

which calls for characterization of nonnegative polynomials. One observation is that if a

polynomial can be written as a sum of squares, then it is positive. Naturally, one wonders

whether all positive polynomials may be written as sum of squares, and Hilbert posed such

question in the 17th century. However, it is not difficult to show the existence of counter

examples. For example

f(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2

may be shown to be non-negative but cannot be expressed as sum of squares. Hilbert later

showed that non-negative homogeneous polynomial in n variables and degree 2d can be

represented as sum of squares of other polynomials if and only if n = 2, or 2d = 2, or n =

3 and 2d = 4. [15].

Hilbert’s question began the study of positive polynomials and finding their algebraic
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certificates, known as positivtellensatz. While numerous theorems have been developed,

below we highlight a few results.

The following theorem from the 19th century shows that every positive polynomial may

be expressed as the sum of squares of rational functions.

Theorem 1 (Artin’s Positivstellensatz [4]) For a globally positive polynomial p(x), there

is a nonzero SOS polynomial q(x) such that q(x)p(x) is a sum of squares

Note that verification of a polynomial as sum of squares, as in above theorem, may be

reformulated as an SDP problem. The specifics are omitted from this thesis, readers are

directed to the seminal works by Lassere and Perrilo [26, 19]. The hierarchy is induced by

limiting the degree of q(x) to search for.

The following characterizes a polynomial positive over a compact semialgebraic set.

Theorem 2 (Schmudgen’s Positivstellensatz [32]) Assume the set K = {x ∈ Rn : g(x)i ≥
0 i = 1 . . . `}, defined by polynomials (g(x)i)i=1...` is compact. If polynomial p(x) is positive

on K, then

p(x) = s0(x) +
∑
i∈[`]

si(x)gi(x) +
∑

(i1,i2)∈[l]2

si1i2(x)gi(x)gj(x) + . . .

∑
i1...il∈[l]`

si1...i2(x)gi1(x)gi2(x) . . . gil(x)

where s(x)0, s(x)i, s(x)i1,i2 . . . s(x)i1...il are sum of square polynomials. The above is essen-

tially a search problem over sum of square polynomials, and may again be converted to

SDP by finding a representation of SOS polynomials as semidefinite matrices [26]. The

problem may also be relaxed by restricting the number of compositions of gi(x)’s (i.e. trun-

cating later summation terms on the RHS). The relaxation yields a converging hierarchy

for the problem of verifying polynomial positivity over a semialgebraic set.

The following provides a so called optimization-free positivstellensantz. That is, verifi-

cation of positivity is easy at sufficient level on the hierarchy.
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Theorem 3 (Polya’s Positivstellensatz [28]) For a globally positive polynomial

p(x) of even form, there exists p ∈ Z+ such that (
∑n

i=1 x2
i )
pp(x) has non negative coeffi-

cients.

Recently, Dickinson and Povh developed a new positivstellensatz for polynomial positive

over a semialgebraic set, which is closely related to both Schmudgen and Polya’s Posi-

tivstellensatz.

Theorem 4 (Dickson’s Positivstellensatz [12]) Let f0, .....fm ∈ R[x] be homogeneous

polynomials on Rn such that f0(x) > 0 for all x ∈ Rn
+ ∩

⋂m
i=1 f

−1
i (R+)\{0}. Then

for some p ∈ Z+, there exists homogeneous polynomials with nonnegative coefficients

g0, .....gm ∈ R[x] such that (x>1)pf0(x) = g0(x) +
∑m

i=1 fi(x)gi(x).

Positivstellensatz is to this day an active subject of study. Also recently, Ahmadi and

Hall have proposed an optimization free Positivstellensatz for polynomial positivity over a

semialgebraic set, by which positivity can be verified by checking that the multiplication

of two polynomials that depend by objective polynomial p(x) and constraint polynomials

(gi(x))i=1...` [3].
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Chapter 3

SAGE Relaxation of Signomial

Positivity

In this chapter we discuss a certificate of positivity for signomials based on decomposi-

tion of the function into sum of parts that are each verifiable positive, and a resulting

optimization algorithms due to the certificate. The approach to verification is similar to

SOS verification in finding a decomposition, but as opposed to relying on the fact that the

square of a function is positive, we first derive an efficiently computable characterization

of signomials with at most one negative term and is positive over a convex set. That is,

given that a signomial has at most one negative term, it is positive over a convex set if and

only if a set of convex constraints depending on the parameters defining the signomial and

convex set are satisfied. Given that a signomial with one negative term is not generally a

convex function, checking whether it is positive globally or over a convex set is may seem

to be intractable. The key insight is to clear the exponential of the negative term so the

problem is reduced to checking the minimum value of a signomial with only positive terms,

which is indeed a convex function.

A sufficient condition for signomial positivity follows from such characterization. We then

discuss a hierarchy of certificates that can verify the positivity of increasingly larger sub-

set of signomials, as well as the resulting algorithm for computing a lower bounds for

constrained signomial optimization problem.
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3.1 SAGE

SAGE certificate was originally developed as a certificate for global positivity by Chan-

drasekaran et al. in 2015 [8]. The building block of such certificate is a signomial with

at most one negative term, which Chandrasekaran et al. called AM-GM exponentials

(AGE). The same authors made the observation that the global positivity of such function

is reduced to finding the solution to relative entropy program. Then, if a signomial is a

summation of those with at most one negative term that are positive, the signomial is

positive. Such signomials are referred to as sum of AM/GM-exponentials (SAGE), which

forms a subset of globally positive signomials.

Since then, we and Murray et al. have independently generalized SAGE to positivity

over arbitrary set X ⊂ Rn, which encompasses the case when X = Rn [23]. The work

is based on the idea that the positivity of a signomial over a convex set may also be re-

duced to solving a convex program depending on the parameters defining the signomial,

if it has at most one negative term. The derivation is based on algebraic operations and

an application of convex duality. Summation of such signomial can also be verified to be

positive on the same convex set easily, by seeking a decomposition of their coefficients such

that the parameters of the decomposed signomial satisfy the convex constraints. Murray

et al. presented this work during the study of the thesis and have named the approach

Conditional SAGE. Below we discuss key definitions and derivations.

Definition 1 (Conditional AGE Signomials). AGE(A,X , i) is the cone of signomials

with at most one negative term at the ith index and is positive over X . Given A ∈ R`×n,

X ⊂ Rn and i ∈ [`], the ith AGE cone with respect to A and X is:

AGE(A,X , i) = {Sig(c,A) : c\i ≥ 0 and Sig(c,A)(x) ≥ 0 ∀x ∈ X}

By definition, AGE(A,X , i) is a cone; it is easy to verify that it is closed under addition

and nonnegative scaling. We may also define a similar set for the coefficients.

Definition 2 (Conditional AGE Cone). CAGE(A,X , i) is the cone of coefficients with at

most one negative term at the ith index, such that resulting signomial is positive over X .

Given A ∈ R`×n, X ⊂ Rn and i ∈ [`], the ith AGE coefficients with respect to X and A is:

CAGE(A,X , i) = {c ∈ R` : c\i ≥ 0 and Sig(c,A)(x) ≥ 0 ∀x ∈ X}

9



Equipped with above definition, we may define the SAGE cone. whereas SOS is summation

of squares, SAGE is a summation AGE signomials.

Definition 3 (Conditional SAGE Signomials). SAGE(A,X ) is Minkowski sum of

AGE(A,X , i) for i = 1 . . . `.

SAGE(A,X ) =
∑̀
i=1

AGE(A,X , i)

While SOS finds decomposition by terms in the polynomials, SAGE finds the decomposition

by coefficients. Such nature of SAGE allows the following the definition:

Definition 4 (Conditional SAGE Cone). CSAGE(A,X ) is Minkowski sum of

CAGE(A,X , i) for i = 1 . . . `.

CSAGE(A,X ) =
∑̀
i=1

CAGE(A,X , i)

It follows that CSAGE(A,X ) is also a cone. By definition, CSAGE(A,X ) ⊂ CNNS(A,X ).

The following theorem shows that CAGE(A,X , i) is a tractable set via convex constraints.

Theorem 5 [23]. Given A ∈ R`×n, X ⊂ Rn and i ∈ [`]. Let σX (λ) = supx∈X λ>x.

Then:

CAGE(A,X , i) = {c ∈ R` : ∃v ∈ R`−1 and λ ∈ Rn s.t.

σX (λ) +D(v, c\i)− 1>v ≤ ci

[A\i − 1Ai]
>v + λ = 0 and c\i ≥ 0}

Proof: Let δX denote the indicator function of X . A vector c ∈ R` is in the CAGE(A,X , i)
cone if and only if: ∑̀

j=1

cj exp(Ajx) ≥ 0 x ∈ X and c\i ≥ 0

⇐⇒
∑

1≤j≤l,j 6=i

cj exp((Aj −Ai)x) ≥ −ci ∀x ∈ X and c\i ≥ 0

⇐⇒ p∗ = inf
x∈Rn

δX (x) +
∑

1≤j≤l,j 6=i

cj exp((Aj −Ai)x) ≥ −ci and c\i ≥ 0

10



Where we removed the convex constraint with indicator function in the last step. Then

we may apply Fenchel duality to the minimization problem. The resulting dual is

d∗ = sup
λ∈Rn

v∈Rm−1

(A\i−1Ai)
>v+λ=0

−σX (λ)−D(v, c\i) + v>1

When X is nonempty, strong duality holds by corollary 3.3.11 of [30]. Consequently:

p∗ ≤ −ci and ci ≥ 0 ⇐⇒ −d∗ ≤ ci and c\i ≥ 0

and we have the desired result. When X is empty, p∗ = +∞ by definition of indicator

function. By choosing v,λ = 0, we have d∗ =∞ and desired result also follows.

As corollary, CSAGE is characterized by the following set of convex constraints:

Corollary 1 Given A ∈ R`×n, X ⊂ Rn and i ∈ [`]. Let σX (λ) = supx∈X λ>x. Then:

CSAGE(A,X ) = {c ∈ R` : ∃c(i) ∈ R`,v(i) ∈ R`−1 and λ(i) ∈ Rn s.t.∑̀
i=1

c(i) = c and

σX (λ(i)) +D(v(i), c
(i)
\i )− v(i)>v(i) ≤ c

(i)
i

[A\i − 1Ai]
>v(i) + λ(i) = 0 and c

(i)
\i ≥ 0 for i = 1 . . . `}

There are O(`n) constraints defined by O(`(`+ n)) variables. Although the complexity of

the problem does increase depending on both the dimension of input to the signomial and

the number of terms, it is highly tractable.

3.2 SAGE Hierarchy

CSAGE(A,X ) is an inner approximation of the CNNS(A,X ) cone. We may however find

larger and more accurate inner approximation through what is known as modulation in

the literature. Define the hierarchy of SAGE cones as:

11



Definition 5 Given A ∈ R`×n, X ⊂ Rn, the pth level SAGE cone with respect to A and

X is:

C
(p)
SAGE(A,X ) = {c ∈ R` : (exp(Ax)>1)pSig(c,A) ∈ SAGE(Ep+1(A),X )}

That is, instead of certifying a given signomial to be positive, we verify whether its product

with a positive definite term is positive. Multiplication of a positive definite term does not

change positivity, and thus the test is valid. Equivalently, expanding the above definition

and paying attention to the coefficients of the larger signomial after multiplication of the

extra function gives:

C
(p)
SAGE(A,X ) = {c ∈ R` : ∃c(i) ∈ R`(p+1)

,v(i) ∈ R`(p+1)−1, Ã ∈ R`(p+1)×n and λ(i) ∈ Rn s.t.

Ãj1+`·j2+...+`p·jp+1 = Aj1 + . . .+ Aj` for j1 . . . jp+1 = 1 . . . `

c
(i)
k+1·` = c

(i)
k+2·` = . . . = c

(i)
k+`p ∀k = 1 . . . `,

∑̀
i=1

c
(i)
1:` = c

σX (λ(i)) +D(v(i), c
(i)
\i )− v(i)>v(i) ≤ c

(i)
i

[Ã\i − 1Ãi]
>v(i) + λ(i) = 0 and c

(i)
\i ≥ 0 for i = 1 . . . `(p+1)}

A more careful construction can reduce some of the constraints. In particular, the equality

constraints on c(i) are simply to construct a large vector with repeated sub-vectors, and

the constraints on Ã simply denote that its rows are linear combinations of rows of A.

In implementation, we may avoid such constraints by recycling variables. Ignoring such

constraints, at the pth level of the hierarchy, there are O(`(p+1)n) constraints defined by

O(`(p+1)(`(p+1) + n)) variables. Upon setting p = 0, we recover CSAGE(A,X ). Moreover,

we have the following relations.

Theorem 6 Given A ∈ R`×n, X ⊂ Rn, and some p ∈ Z++,

C
(p)
SAGE(A,X ) ⊆ C

(p+1)
SAGE(A,X ) ⊆ CNNS(A,X )

Proof: Let c ∈ C(p)
SAGE(A,X ). There exists c(1) . . . c(`)

such that c =
∑`

i=1 c
(i) and (exp(Ax)>1)pSig(c(i),A) ∈ AGE(Ep+1(A),X , i).

(exp(Ax)>1)(p+1)Sig(c(i),A) =
∑̀
j=1

exp(Ajx)(exp(Ax)>1)pSig(c(i),A)

12



Observe that exp(Ajx)(exp(Ax)>1)pSig(c(i),A) ∈ AGE(Ep+2(A),X , i) given

exp(Ax)>1)pSig(c(i),A) ∈ AGE(Ep+1(A),X , i) since multiplication of a one exponential

term does not change positivity, nor the positive coefficients. Since AGE(Ep+2(A),X , i)
and SAGE(Ep+2(A),X ) are both closed under addition, we have:

(exp(Ax)>1)(p+1)Sig(c(i),A) ∈ AGE(Ep+2(A),X , i) ⊆ SAGE(Ep+2(A),X )

=⇒ c(i) ∈ C(p+2)
SAGE(A,X ) =⇒ c ∈ C(p+2)

SAGE(A,X )

Now let c ∈ C(p+1)
SAGE(A,X ).

(exp(Ax)>1)(p+1)Sig(c,A) ∈ SAGE(Ep+1(A),X )

=⇒ (exp(Ax)>1)(p+1)Sig(c,A)(x) ≥ 0 ∀x ∈ X =⇒ Sig(c,A)(x) ≥ 0 ∀x ∈ X
=⇒ c ∈ CNNS(A,X )

The second to last implication is due to the fact that multiplication of a positive term does

not change positivity.

The above shows that the hierarchy of SAGE cone provides an increasingly accurate inner

approximation of non-negative signomials.

3.3 SAGE Relaxation

Given hierarchy of SAGE cones, we may formulate a hierarchy of relaxations for signomial

optimization. Consider signomial Sig(c,A) and a convex set X , let f ∗X = infx∈X Sig(c,A)(x).

The relaxation may be formulated as follows.

f
(p)
SAGE = sup

λ
λ s.t. Sig(c,A)− λ ∈ SAGE(p)(A,X )

= sup
λ
λ s.t. c− λ[1, 0, . . .] ∈ C(p)

SAGE(A,X )

Theorem 6 tells us that the conditional SAGE cones are inner approximations of signomials

that positive over a convex set. As result, we have that f
(p)
SAGE ≤ f

(p+1)
SAGE ≤ f ∗X .

3.4 Dual SAGE relaxation and Solution Recovery

The primal formulation presented in previous section computes lower bounds for a con-

strained signomial optimization problem. Fixing the exponents A and a constrained set X ,
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the set of coefficients for which Sig(A,X ) is a conditional SAGE signomial, CSAGE(A,X )

is cone. In this section, we derive a dual formulation which optimizes over the dual cone of

CSAGE(A,X ). A we will see, the dual SAGE cone may be seen as an outer approximation

of the exponentials of Sig(A,X ) (i.e. exp(Ax)), and as such, the formulation can be used

to recover a solution to the optimization problem (i.e. some x ∈ X ), as opposed to just a

lower bound to the optimization problem.

We begin by deriving the dual cone of CAGE(A,X , i). Recalling that CSAGE(A,X ) is

a Minkowski sum of (CAGE(A,X , i))i=1...`, its dual cone is easily found through a basic

theorem from convex analysis.

Theorem 7 The dual cone of CAGE(A,X ) is characterized as follows:

CAGE(A,X )∗ = cl{v ∈ Rl
+ : ∃α1 . . . αn+1 ∈ R+, x1, . . . ,xn+1 ∈ X , such that

vi =
l∑

k=1

αk, ∀j 6= i vj ≥
l∑

k=1

αk, exp((Aj −Ai)
>xk)}

Proof: We begin by considering the following expression of CAGE(A,X , i).

CAGE(A,X , i) = {c ∈ R` : c\i ≥ 0, and ∀x ∈ X , c> exp(Ax) ≥ 0}
= {c ∈ R` : c\i ≥ 0, and ∀x ∈ X , c> exp((A\i − 1Ai)

>x) ≥ 0}

Where in the last step we divided the expression by exp(A>i x). Consider the set

C̃AGE(A,X , i) = {c ∈ R` : ∀x ∈ X , c> exp((A\i −Ai)
>x) ≥ 0}

⊆ CAGE(A,X , i)

That is, we removed the AM-GM constraint that guarantees all but ith coefficient to be

non-negative. It follows from the definition of C̃AGE(A,X , i) that its dual is the convex

cone generated by the following set: {exp((A\i − 1Ai)
>x) : x ∈ X}. By Caratheodory’s

Theorem, any point in a convex set of dimension n may be expressed by at most n + 1

points [30], and thus we have the following characterization:

C̃AGE(A,X , i)∗ = {v ∈ Rn : ∃α1 . . . αn+1 ∈ R+, x1 . . .xn+1 ∈ X

v =
n+1∑
i=1

αi exp((A\i − 1Ai)
>x}

14



Now recall that CAGE(A,X , i) = C̃AGE(A,X , i) ∩ {c : c\i ≥ 0}. By elementary rule of

convex analysis, (A ∩ B)∗ = A∗ + B∗, and the dual cone of {c : c\i ≥ 0} is (Ri−1
+ × {0} ×

Rl−i−1
+ ). So we have:

CAGE(A,X , i)∗ = cl{v ∈ Rl
+ : ∃α1 . . . αn+1 ∈ R+, x1, . . . ,xn+1 ∈ X , such that

vi =
l∑

k=1

αk, ∀j 6= i vj ≥
l∑

k=1

αk, exp((Aj −Ai)
>xk)}.

With the inequalities, the above may be seen as an outer approximation of the set:

{exp((A\i − 1Ai)
>x) : x ∈ X}

which is not tractable via convex constraints, as it essentially characterizes Sig(A\i −
1Ai,X ) over X . However, we show below that by the relaxation of such set through outer

approximation, CAGE(A,X , i)∗ is indeed tractable via convex constraints.

Theorem 8 The dual cone CAGE(A,X , i)∗ is equivalent to

CAGE(A,X , i)∗ = cl({v ∈ Rl
+ : ∃z ∈ viX ⊆ Rn such that ∀j, vi log

vi
vj
≤ −(Aj −Ai)

>z})

Proof: We prove the equivalence of the terms inside the closure in Theorem 7 and Theo-

rem 8.

Let v be such that

vi =
l∑

k=1

αk, ∀j 6= i, vj ≥
l∑

k=1

αk exp((Aj −Ai)
>xk)

for some α1 . . . αn+1 ∈ R+ and x1, . . . ,xn+1 ∈ X . Then,

log
vj
vi
≥ log

∑l
k=1 αk exp((Aj −Ai)

>xk)∑l
k=1 αi

= log
l∑

k=1

αk∑l
k=1 αk

((Aj −Ai)
>xk)

≥ log exp((Aj −Ai)
>

l∑
k=1

αi∑l
k=1 αk

xi) = (Aj −Ai)
>x,
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for some x =
∑l

k=1
αk∑l

k=1 αk
xk ∈ X . Thus, defining z = vix, we see that v belongs to the

right-hand side of the expression in Theorem 8.

Conversely, let v be such that

∀j, vi log
vi
vj
≤ −(Aj −Ai)

>z

for some α1 . . . αn+1 ∈ R+ and z ∈ viX . Then,

log
vj
vi
≥ (Aj −Ai)

>x ⇐⇒ vj ≥ vi exp((Aj −Ai)
>x),

for some x ∈ X . Thus, setting αi = 1
m+1

vi and xi = x, we know v belongs to the right-hand

side of the definition in Theorem 7.

Recall that CSAGE(A,X ) =
∑`

i CAGE(A,X , i). Thus the dual cone CSAGE(A,X )∗ =

∩`i=1CAGE(A,X , i)∗.

Corollary 2

CSAGE(A,X )∗ = cl({v ∈ Rl
+ : ∃z(i) ∈ viX ⊆ Rn for i = 1 . . . ` s.t.

∀j, vi log
vi
vj
≤ −(Aj −Ai)

>z(i)})

And more generally, following a similar analysis of finding C
(∗)
SAGE, we obtain:

Corollary 3

C
(p)
SAGE(A,X )∗ = cl({v ∈ R`

+ : ∃λ ∈ R`(p+1)

+ , λ(1) . . .λ(`p) ∈ R`
+, Ã ∈ R`(p+1)×n

,

z(i) ∈ λiX ⊆ Rn for i = 1 . . . `(p+1) s.t.

Ãj1+`·j2+...+`p·jp+1 = Aj1 + . . .+ Aj` ∀j1 . . . jp+1 = 1 . . . `

λ = [λ(1), . . . ,λ(`p)]>,
`p∑
i=1

λ(i) = v ∀k = 1 . . . `

∀j, λi log
λi
λj
≤ −(Ãj − Ãi)

>z(i)})
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With the dual SAGE cone defined, we may find a dual formulation to the SAGE relaxation.

f
(p)
SAGE = sup

λ
λ s.t. Sig(c,A)− λ ∈ SAGE(p)(A,X ) (3.1)

= sup
λ
λ s.t. c− λ[1, 0, . . .] ∈ C(p)

SAGE(A,X ) (3.2)

= sup
λ

inf
v∈C(p)

SAGE(A,X )∗
λ+ (c− λ[1, 0, . . .])>v (3.3)

= inf
v∈C(p)

SAGE(A,X )∗
sup
λ
λ+ (c− λ[1, 0, . . .])>v (3.4)

= inf
v

c>v s.t. v ∈ C(p)
SAGE(A,X )∗,v1 = 1 (3.5)

(3.6)

Strong duality holds; C
(p)
SAGE(A,X )∗ is a cone and v s.t. v1 = 1 can be found in the relative

interior [7].

We have already seen that CAGE(A,X , i)∗ is an outer approximation of exponential over the

constrained set {exp(Ax) : x ∈ X}, and by construction and so is C
(p)
SAGE(A,X )∗. This al-

lows for a method to recover a feasible solution to the original problem infx∈X Sig(A,X )(x).

First, it is possible that the solution to the above dual problem is in the feasible region:

ṽ = exp(Ax) for some x ∈ X ∈ X ⇐⇒ log ṽ = Ax. In such case, ṽ is indeed an optimal

solution the original problem. Suppose ṽ is not in the feasible region. We may project ṽ to

the feasible region by solving argminx̃∈X || log v∗ −Ax||, which is a convex program. The

value of the objective function after such projection, c>x̃ is then an upper bound on the

optimal solution to the minimization problem. Together with c>ṽ, which is a lower bound

to the original minimization problem, we obtain a range of the possible optimal values.

3.4.1 Applications to Engineering Problems

A problem of the form:

min Sig(c(0),A(0))(x)

s.t. Sig(c(i),A(i))(x) ≤ 1 for i = 1 . . .m

Sig(c(j),A(j))(x) = 1 for j = m+ 1 . . . n
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Where (Sig(c(i),A(i)))i=1...m are signomials with positive coefficients and (Sig(c(j),A(j)))j=m+1...n

are monomials is referred to as geometric programming [14]. Although it is not a convex

program in the above form due to the equality constraints on the monomials, it may be con-

verted so with a log transform. In particular, by letting y = log(x) ⇐⇒ x = exp(y), and

applying log transform of the functions, (Sig(c(i),A(i)))i=1...m, the signomials with positive

coefficients become log-sum-exp functions, which are convex, and (Sig(c(j),A(j)))j=m+1...n,

the monomials, become affine. Such formulation, restricting the objective signomials to

consist of only positive coefficients, nevertheless can be used to model many physical pro-

cesses such as communication systems [9] and circuit design. [7]

A generalization of the above formulation are problems of the following form:

min Sig(c(0),A(0))(x)

Sig(c(j),A(j))(x) ≤ 0 for j = 1 . . . n

Where Sig(c(0),A(0))(x), (Sig(c(j),A(j))(x))j=1...n are general signomial functions. To see

that it is a strict generalization, we may move the nonzero constant over to one side,

and express the equality constraint with two inequality constrains. Such formulation en-

compasses problems in aircraft design [1] [2], in optimizing the structure and geometry of

various parts such as wing, vertical tail and fuselage. When any of Sig(c(j),A(j) is non-

convex, however, the feasible region of the above problem may be non-convex. Indeed,

in many real problems, the constraint signomials are not guaranteed to be convex. Mur-

ray et al. have proposed to use partial dualization, where Lagrangian relaxation to the

constrained problem is applied only with the non-convex signomials [23]. Specifically, let:

I = {j : j ≥ 1, Sig(c(j),A(j)) is convex}
K = {j : j ≥ 1, Sig(c(j),A(j)) is non-convex}
X = {x : Sig(c(j),A(j))(x) ≤ 0 for j ∈ I}

Consider the following formulation:

fKX = sup
γ
{γ : λj ≥ 0 for j ∈ K, Sig(c(0),A(0))(x) +

∑
j∈K

λjSig(c(j),A(j))(x)− γ ≥ 0 ∀x ∈ X}

Where λj ≥ 0 for j ∈ K are the dual variables. One may check that fLX ≤ f ∗X by noting the

roles of the dual variables when some Sig(c(j),A(j))(x) ≤ 0 is satisfied. We may combine
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partial dualization with SAGE relaxation as follows:

f
(SAGE,K)
X = sup

γ
{γ : λi ≥ 0 for i ∈ K, Sig(c(0),A(0))(x) +

∑
j∈K

λjSig(c(j),A(j))(x)− γ

∈ SAGE(A,X )}

Where A is a matrix that includes the rows of all of (A(j))j=0...n. It follows that f
(SAGE,L)
X ≤

f ∗X . Such blending of the two methods allow application of SAGE in wider range of opti-

mization problems involving signomials, even when the constraint set is not strictly convex.
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Chapter 4

A Completeness Theorem

In this chapter we discuss the main contribution of the thesis, a completeness theorem for

conditional SAGE.

4.1 Main Result

Theorem 9 Let A = [A1 . . .A`]
> ⊂ Q`×n and c ∈ R`. Consider a signomial Sig(c,A)

and a compact convex set X ⊂ Rn. If Sig(c,A)(x) > 0 ∀x ∈ X , then there exists some

p ∈ Z+ s.t. (exp(Ax)>1))pSig(c,A) ∈ SAGE(Ep+1(A),X ).

Few notable consequences in relation to what we discussed follow from the theorem. First,

it shows that the given a fixed set of exponents and a compact convex set, SAGE cone

becomes exactly the set of coefficients for the signomial defined by the exponents is positive

over the set at finite level of hiearchy. That is,

∃p ∈ Z+ s.t. C
(p)
SAGE(A,X ) = CNNS(A,X )

Similarly, the dual SAGE cone can express the set of exponentials over a convex set at

some finite level of the hierarchy.

∃p ∈ Z+ s.t. C
(p)
SAGE(A,X )∗ = {exp(Ax) : x ∈ X}

20



It follows that the conditional SAGE relaxation attains optimal value at some finite level

in the hierarchy. That is

∃p ∈ Z+ s.t. f
(p)
SAGE = inf

x∈X
Sig(c,A)(x)

4.2 Related Work

The theorem may be thought of as a positivstellensatz for signomials over a compact con-

vex set, similar to Schmundgen’s Positivstellensatz (Theorem 2) for polynomilas over a

compact semialgebraic set, where the verification is through SAGE as opposed to SOS.

Positivstellensatz to this day is an active area of study. Recently, Dressler, Ilima and De

Wolff have shown a Schmüdgen type positivstellensatz using SONC polynomials [13]. Also

recently, Ahmadi and Hall have proposed an optimization free positivstellensatz for poly-

nomial positivity over a semialgebraic set, by which positivity can be verified by checking

that the multiplication of two polynomials that depend by objective polynomial p(x) and

constraint polynomials (gi(x))i=1...` [3], without the procedure for finding sum of square

representation through SDP. This work was well received in the optimization community

as it posed the possibility of much more efficient polynomial optimization algorithms.

Directly relevant to the current result is the completeness theorem for global positivity

of signomials, which was presented by Chandrasekaran and Shah in their introduction of

SAGE [8]. The result showed that for any globally positive signomial function f(x) sat-

isfying some mild assumptions, there exists some function w(x) and p ∈ Z+ such that

w(x)pf(x) may be certified by SAGE. In fact, the proof essentially shows that w(x)pf(x)

is a signomial with positive coefficients. This may be viewed as an analogue of Polya-

type results for signomials [28]. The same article also presented a convergent hierarchy for

constrained signomial optimization by appealing to representation theorems. In particular,

any signomial positive on a compact semialgebraic set may be verified via SAGE certificate

through Lagrangian relaxation with the signomials defining the set.

There are a few key characteristics of the current completeness result. First, unlike pre-

vious convergent hierarchy for unconstrained SAGE, it does not require assumptions on

the exponents besides rationality. Second, the convergent hierarchy holds for any arbitrary
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compact convex set. Thus it is more general than historical results for convergent hierar-

chies on semialgebraic sets (recall that a semialgebraic set is defined by finite polynomial

inequalities), or the recent constrained SAGE hierarchy which assumed the constrained set

to be defined by signomials. The proof of the current result uses redundant constraints

which may be added due to compactness assumed on the convex set, in order to bypass cer-

tain issues. In the proofs for previous constrained SAGE and the recent SONC hierarchies,

redundant constrains due to compactness assumption is made to guarantee Archimedean

property in the set generated by the functions defining the constrained set, which allows

appeal to representation theorems. The proof for the current article does not appeal to a

representation theorem but rather a recent positivstellensantz result developed by Dick-

son, covered in the previous chapter. The connection is made mostly through elementary

algebraic operations, as will be clear in the rest of the chapter.

4.3 Proof of Main Result

The proof is structured as follows. We first note that any compact convex set X may be

expressed as intersection of a set of (possibly infinite) rational halfspaces HX . We then

apply change of variable y = exp(Ax) and show that positivity of signomial Sig(c,A) over

intersection of halfspaces HX implies the positivity of a corresponding polynomial p(y) over

a set T (A,X )
++ , the intersection of positive orthant and a set defined by (possibly infinite)

polynomial inequalities. We then make modification to the aforementioned set to show that

the positivity of p(y) over such set implies its positivity over T (A,X )∗
+ , the intersection of

nonnegative orthant and a homogeneous semialgebraic set (defined by finite homogeneous

polynomials). We then appeal to Dickson’s Positivstellensatz to claim that (y>1)pp(y) for

some p ∈ Z+ yields a representation by polynomials with only positive coefficients and

the homogeneous polynomilas defining T (A,X )∗
+ . Undoing the variable change, we show

through the representation that the original signomial after multiplication of extra term,

(exp(Ax)>1)pSig(c,A) is a SAGE signomial.

Without loss of generality, we may make the following assumptions about the structure of

exponent vectors A ∈ Q`×n defining Sig(c,A).

(a) the first n rows (Aj)j=1...n are linearly independent
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(b) An+1 = 0

The assumptions are in fact not restrictive. To satisfy the first condition, we may select

a set of linearly independent vectors as the first n. The proof is easily generalized to the

case when the span of the vectors has dimension less than n. The second condition is not

restrictive either, since we may insert a zero vector into the set of exponents. However, it

is a variable required for in certain step in the proof.

The proof at heart is a reduction to Dickson’s Positivstellensatz. The proof is divided

into sections explaining each step in the reduction.

4.3.1 Representation of Compact Convex Set as Rational Halfs-

paces

In the section we discuss the following result which finds connection between compact

convex set and rational half-spaces. It has been shown by Silva and Tuncel [33], and we

will paraphrase it below.

Theorem 10 ([33]) A rational halfspace h ⊂ Rn is a set {x ∈ Rn : w>x ≤ b} where

w ∈ Qn,b ∈ Q. Given a compact convex set X , there exists a set of rational halfspaces H

such that X = ∩h∈Hh

Proof: The proof is nonconstructive. It suffices to show that for each y ∈ Rn\X , there ex-

ists w ∈ Qn, b ∈ Q such that w>x ≤ b < w>y ∀x ∈ X . Recall that Q is dense in R. Thus

it suffices to show that for each y ∈ Rn\X , there exists w ∈ Qn such that σX (w) < w>y.

Then by denseness, we may find b ∈ Q s.t σX (w) < b < w>y, which implies the desired

result.

Let ξ be the set the intersection of all halfspaces defined by rational vector containing

X . ξ = {x : w>x ≤ σX (w), ∀w ∈ Qn}. Proof is complete if X = ξ, since by definition

of ξ, if y ∈ Rn\ξ, there exists some w ∈ Qn such that σX (w) < w>y. Indeed, X = ξ as

shown below.

First, suppose x̄ ∈ X . For any w ∈ Qn, w>x̄ ≤ σX(w) by definition, and thus x̄ ∈ ξ.
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X ⊆ ξ by construction.

Next, suppose x̄ ∈ ξ. Consider any w̄ ∈ Rn. Let (wk)k∈N ⊂ Qn be a sequence of

vectors converging to w̄. Since X is compact, support function σX (·) is continuous. Image

of convergent sequence under continuous map converges, thus (σX (wk))k∈N converges to

σX (w̄). By assumption and definition of ξ, w>k x̄ ≤ σX (wk) for all k. The limit preserves

inequality, so w̄>x̄ ≤ σX (w̄). This implies x̄ ∈ {x ∈ Rn : w>x ≤ σX (w) ∀w ∈ Rn}. By

Theorem 13.1 of [30], a convex set is the intersection of all of its supporting hyperplanes.

i.e. X = {x ∈ Rn : w>x ≤ σX (w) ∀w ∈ Rn} and thus x̄ ∈ X .

Without loss of generality, for the compact convex set X , let HX denote the set of rational

halfspaces defining X . We have shown:

x ∈ X ⇐⇒ ∩h∈HXh

4.3.2 Signomial to Polynomial

We have now reduced the positivity of signomial Sig(c,A) over compact convex set X to its

positivity over intersection of rational halfspaces HX . In this section we apply the change

of variable y = exp(Ax) ∈ R`
++. We obtain a polynomial after the change of variable

p(y) = c>y as result. Further, we are interested in the sufficient and necessary conditions

on y = exp(Ax) ∈ R`
++ given x ∈ ∩h∈HXh.

Representation of Exponentials As Polynomial Constraints

When A ∈ Q`×n has rank less than `, the range does not cover R`, which adds restriction to

y = exp(Ax) ∈ R`
++. Since first n exponents (Aj)j=1...n are linearly independent, the rest

of the vectors may be expressed as rational linear combinations of the first n vectors, and

thus they are constrained by the first n vectors. For Aj with j ≥ n+2, Aj =
∑n+1

i w
(j)
i a(i)

where w(j) ∈ Qn for all j. Then;

yj = exp(Ajx) = exp(
n+1∑
i

w
(j)
i A(i)x) =

n+1∏
i

exp(Ajx)w
(j)
i =

n+1∏
i

y
w

(j)
i

i =
n∏
i

y
w

(j)
i

i

The last step is from the fact that An = 0. w
(j)
i ≥ 0 ∀i and since w

(j)
i ’s are rationals,

we may raise both sides by the smallest common denominator to clear the fractions. For
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example, yj = y
1
2
1 y

1
4
2 ⇐⇒ y4

j = y2
1y2.

We may apply such operation to yj for all j ≥ n + 2. The operation is only valid in

the positive orthant.

yj = exp(Ajx) =
n∏
i

y
w

(j)
i

i ∀j = n+ 2...l ⇐⇒ y
λ
(j)
j

j =
n∏
i

y
λ
(j)
i
i ∀j = n+ 2...l

⇐⇒ y
λ
(j)
j

j −
n∏
i

y
λ
(j)
i
i = 0 ∀j = n+ 2...l

Where λ(j)’s are obtained from the above procedure.

Rational Halfspace to Polynomial Constraint

To characterize the constraint x ∈ ∩h∈HX on y = exp(Ax), we begin by considering single

rational halfspace constraint on x ∈ Rn. Let h = {x : w>x ≤ d} ∈ HX . w ∈ Qn and

d ∈ Q. Recall that A ∈ Q`×n. Given such constraint on x, what can we say about the

exponential of rational linear map of x, y = exp(Ax)?

First consider the rational linear map Ax ∈ R` given a rational half-space constraint on x:

w>x ≤ d, we may find a rational halfspace constraint on the linear map. By assumption

we have that rank(A) = n which implies columns of A are linearly independent. Thus

there exits a left-inverse L = (A>A)−1A> ∈ Qn×` such that LAx = x. The rationality

of L follows from the rationality of A and inverse operation which preserves rationality.

Letting b = w>L ∈ Qn, we have that b>(Ax) ≤ d.

We then make the observation that exponential of a polyhedron is equivalent to poly-

nomial inequality. Beginning with y = exp(Ax) ⇐⇒ log y = Ax, a series of algebraic
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operations follows below. In doing so, we assume y ∈ Rn
++.

b(Ax) ≤ d ⇐⇒ b(log y) ≤ d ⇐⇒
n∑
i=1

bi(log yi) ≤ d

⇐⇒
n∑
i=1

(log ybii ) ≤ d ⇐⇒ log(
n∏
i=1

ybii ) ≤ d

⇐⇒
n∏
i=1

ybii ≤ exp(d) ⇐⇒
∏

i : bi>0

ybii ≤ exp(d)
∏

i : bi<0

y−bii

The last step moves terms with negative power by multiplication on both sides. For

example; y2
1y
−3
2 ≤ 1 ⇐⇒ y1 ≤ y3

2. Now since b ∈ Qn has rational entries, we may raise

both sides by a common denominator to clear fraction. Let m be the common denominator

of (bi)i=1...n ∏
i : bi>0

ybii ≤ exp(d)
∏

i : bi<0

y−bii

⇐⇒
∏

i : bi>0

ymbii ≤ exp(md)
∏

i : bi<0

y−mbii

⇐⇒ exp(md)
∏

i : bi<0

y−mbii −
∏

i : bi>0

ymbii ≥ 0

which are indeed polynomial equalities.

Intersection of Rational Halfspaces

In the above, single halfspace constraint has been shown equivalent to a polynomial con-

straint. To extend the above to intersection of (possibly infinite) halfspaces, we simply

take the intersection of the polynomial equations generated from them. For each k, Let

γ(k) = m(k)Bk,: ∈ Z` and c(k) = exp(m(k)d) ∈ R++. Let KX be a set of (possibly infinite)

indices depending on the rational halfspaces defining X . We may write as below.

c(k)
∏

i : γ
(k)
i <0

y
−γ(k)i
i −

∏
i : γ

(k)
i >0

y
γ
(k)
i
i ≥ 0 ∀k ∈ KX
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Now, consider the following set that depends on A ∈ Q`×n and X ⊂ Rn. Recall the

assumption An+1 = 0, which implies yn+1 = exp(An+1x) = 1.

T (A,X )
++ = {y = exp(Ax) : x ∈ X}

= {y ∈ Rn
++ : yn+1 = 1, y

λ
(j)
j

j −
n∏
i

y
λ
(j)
i
i = 0 ∀j = n+ 2...l

c(k)
∏

i : γ
(k)
i <0

y
−γ(k)i
i −

∏
i : γ

(k)
i >0

y
γ
(k)
i
i ≥ 0 ∀k ∈ KX}

= {y ∈ Rn
++ : yn+1 = 1, p

(j)
1 (y)− p(j)

2 (y) ≥ 0 ∀j = n+ 2...l,

q
(k)
1 (y)− q(k)

2 (y) ≥ 0 ∀k ∈ KX}

Where in the last expression we have written the terms abstractly. Each p
(j)
1 (y), p

(j)
2 (y),

q
(k)
1 (y), q

(k)
2 (y) is monomial. By construction, we have that x ∈ X ⇐⇒ y ∈ T (A,X )

++ .

Signomial Positivity to Polynomial Positivity

The change of variable y = exp(Ax) subject to x ∈ X reduces signomial positivity over

a compact convex set to polynomial positivity over intersection of positive orthant and

set defined (possible infinite) polynomial inequalities. In summary, we have shown the

following:

Sig(c,A) > 0 ∀x ∈ X =⇒ c>y > 0 ∀y ∈ T (A,X )
++

4.3.3 Positivity to Positivstellensatz

We recall however that the Dickson’s Positivstellensatz assumes polynomial positivity over

intersection of nonnegative orthant and set defined by finite homogeneous polynomials,

excluding the origin. Namely, there are three conditions that T (A,X )
++ does not satisfy.

1. T (A,X )
++ does not include the faces of the nonnegative orthant.

2. T (A,X )
++ is defined by polynomials that are possibly non-homogeneous.

3. T (A,X )
++ is defined by possibly infinite polynomials.
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The goal of this section is to describe modifications to the set T (A,X )
++ such that it satisfies the

premises of Dickson’s Positivstellensatz, while positivity is preserved. That is, there exists

a set T (A,X )∗ defined as the intersection of the nonnegative orthant and a semialgebraic

set defined by homogeneous polynomials such that:

c>y > 0 ∀y ∈ T (A,X )
++ =⇒ c>y > 0 ∀y ∈ (T (A,X )∗\0).

Inclusion of Points on the Faces of Nonnegative Orthant

In this subsection, we make modifications to T (A,X )
++ so that the resulting set is defined at the

intersection of the nonnegative orthant and set of polynomial equations, while preserving

positivity. Consider the following set that extends T (A,X )
++ to nonnegative orthant.

T (A,X )
+ = {y ∈ Rn

++ : yn+1 = 1, p
(j)
1 (y)− p(j)

2 (y) ≥ 0 ∀j = n+ 2...`,

q
(k)
1 (y)− q(k)

2 (y) ≥ 0 ∀k ∈ KX}

However, the positivity of c>y is not preserved in general. That is:

Proposition 1 There exists A ∈ Q`×n, c ∈ R` and compact convex set X such that

c>y > 0 ∀y ∈ T (A,X )
++ 6 =⇒ c>y > 0 ∀y ∈ (T (A,X )

+ \0).

Proof: We prove this by an example. Let A = [a1, a2, a3, a4] where a1 = [1, 0]>, a2 =

[0, 1]>, a3 = [0, 0]>, a4 = [0.1, 0.1]>, c = [1, 1,−1, 0]>, X = {x ∈ R3 : −2x1 + x2 ≤
0, x1 − 2x2 ≤ 0, x1 + x2 ≤ 1}. X is conveniently defined to be a compact intersection of

halfspaces.

Let y = exp(Ax). We have

y1 = exp(x1), y2 = exp(x2), y3 = 1, y10
4 = y1y2

Also

x ∈ X ⇐⇒ −2x1 + x2 ≤ 0, x1 − 2x2 ≤ 0 and x1 + x2 ≤ 1

⇐⇒ −2 log y1 + log y2 ≤ 0, log y1 − 2 log y2 ≤ 0 and log y1 + log y2 ≤ 1

⇐⇒ log(y−2
1 y2) ≤ 0, log(y1y

−2
2 ) ≤ 0 and log(y1y2) ≤ 1

⇐⇒ y2
1 − y2 ≥ 0, y2

2 − y1 ≥ 0 and e− y1y2 ≥ 0
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Therefore T (A,X )
++ = {y ∈ R4

++ : y10
4 = y1y2, y

2
1 − y2 ≥ 0, y2

2 − y1 ≥ 0, e − y1y2 ≥ 0} and

T (A,X )
+ = {y ∈ R4

+ : y10
4 = y1y2, y

2
1 − y2 ≥ 0, y2

2 − y1 ≥ 0, e− y1y2 ≥ 0}.

First, we may check that c>y ≥ 1 ∀y ∈ T (A,X )
++ , as the constraints y2

1 − y2 ≥ 0, y2
2 − y1 ≥ 0

may only be satisfied when y1, y2 ≥ 1 given y > 0. However, letting ȳ = [0, 0, 1, 0]> ∈
T (A,X )

+ , c>ȳ = −1 < 0.

While counter-intuitive at first sight, the reason is in fact simple: while y = exp(Ax)

implicitly implies y ∈ Rn
++, the resulting polynomial equations after algebraic operations

do not. Explicit restriction of T (A,X )
++ to Rn

++ retains the constraint, but extending the

definition to nonnegative orthant includes ”jumps” with some coordinates of y being zero

to satisfy the polynomial constraints.

We may avoid such jumps by adding redundant constraints due to the compactnesss of

X . Thus y ∈ exp(AX ) is compact. And li ≤ yi ≤ ui for each i. Define the following set.

Υ = {y : ui − yi ≥ 0, yi − li ≥ 0 ∀i = 1 . . . `}

Υ, while being polynomial constraints, restricts to positive orthant since y /∈ Υ if yi = 0

for any i. In other words, the set is now restricted to be in the positive orthant through

redundant constraints. By definition of `i and ui, Υ ⊇ T (A,X )
++ . Thus T (A,X )

+ ∩Υ = T (A,X )
++ .

T (A,X )
+ ∩ Υ is indeed an intersection of nonnegative orthant and polynomial equations.

The constraints in Υ are also useful for making a certain claim, which is shown in the next

section.

Positivity over Non-negative Orthant of Homogeneous Polynomials

In this sub-section, we show a modification to polynomials in the definition of T (A,X )
+ ∩Υ

so that they are homogeneous. We also show that the modification preserves positivity.

T (A,X )
+ ∩Υ = {y ∈ Rn

++ : yn+1 = 1, p
(j)
1 (y)− p(j)

2 (y) ≥ 0 ∀j = n+ 2...l,

q
(k)
1 (y)− q(k)

2 (y) ≥ 0 ∀k ∈ KX
ui − yi ≥ 0, yi − li ≥ 0 ∀i = 1 . . . `}
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We modify the polynomials to be homogeneous by making the following transformation.

Let [x]+ = max(x, 0)

T̃ (A,X )
+ ∩ Υ̃ = {y ∈ Rn

+ :

y
[deg(p

(j)
2 )−deg(p

(j)
1 )]+

n+1 p
(j)
1 (y)− y[deg(p

(j)
1 )−deg(p

(j)
2 )]+

n+1 p
(j)
2 (y) = 0 ∀j = n+ 2...l

y
[deg(q

(k)
2 )−deg(q

(k)
1 )]+

n+1 q
(k)
1 (y)− y[deg(q

(k)
1 )−deg(q

(k)
2 )]+

n+1 q
(k)
2 (y) ≥ 0 ∀k ∈ KX

uiyn+1 − yi ≥ 0, yi − viyn+1 ≥ 0 ∀i = 1 . . . `}

We have multiplied yn+1 to appropriate terms so that the polynomials are homogeneous.

We have also removed the condition yn+1 = 1. The set has been modified considerably.

However, we claim the following:

Theorem 11 Consider a signomial Sig(c,A) and compact convex set X as in Theorem 9.

Then

c>y > 0 ∀y ∈ (T (A,X )
+ ∩Υ)\0 =⇒ c>y > 0 ∀y ∈ (T̃ (A,X )

+ ∩ Υ̃)\0

Proof: Consider some y ∈ (T̃ (A,X )
+ ∩ Υ̃)\0. First we have that yn+1 6= 0 for if otherwise

y = 0 by the constraints uiyn+1 − yi ≥ 0 ∀i. Let ỹ = y/yn+1. Since T̃ (A,X )
+ ∩ Υ̃ is a

semialgebraic set defined by homogeneous polynomials, it is closed under positive scaling

thus ỹ ∈ T̃ (A,X )
+ ∩ Υ̃. Since ỹn+1 = 1, the conditions for T̃ (A,X )

+ ∩ Υ̃ reduces to conditions

for T (A,X )
+ ∩Υ, and thus ỹ ∈ T (A,X )

+ ∩Υ. By assumption c>ỹ > 0. Recalling that yn+1 > 0,

c>y = c>(yn+1ỹ) > 0.

Infinite to finite polynomial inequalities

T̃ (A,X )
+ ∩ Υ̃ is defined by possibly infinite polynomials. In this sub-section, we want to show

that positivity over such set implies positivity over a set defined by finite polynomials.

Consider the following theorem, extended from the original statement in [12].

Theorem 12 Consider a set of homogeneous polynomials {f0} ∪ {fi | i ∈ I} ⊆ R[x] with

infinite cardinality. If f0(x) > 0 for all x ∈ Rn
+ ∩

⋂
i∈I f

−1
i (R+)\{0}, there exists a subset

J ⊆ I of finite cardinality such that f0(x) > 0 for all x ∈ Rn
+ ∩

⋂
i∈J f

−1
i (R+)\{0}.
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The proof of the above theorem is left in the appendix, and is adapted from [12] as well.

In Theorem 12, let Rn
+ ∩

⋂m
i∈I f

−1
i (R+) = T̃ (A,X )

+ ∩ Υ̃ and Rn
+ ∩

⋂
i∈J f

−1
i (R+) = T (A,X )∗

+ .

Then we have that c>y > 0 ∀y ∈ (T̃ (A,X )
+ ∩ Υ̃)\0 =⇒ c>y > 0 ∀y ∈ T (A,X )∗

+ . Although

the proof is non constructive, the the finite polynomials defining T (A,X )∗
+ are a subset of

ones defining T̃ (A,X )
+ ∩ Υ̃.

With the above, we have completed the reduction as below

Sig(c,A) > 0 ∀x ∈ X =⇒ c>y > 0 ∀y ∈ T (A,X )
++

=⇒ c>y > 0 ∀y ∈ T (A,X )
+ ∩Υ

=⇒ c>y > 0 ∀y ∈ (T̃ (A,X )
+ ∩ Υ̃)\0

=⇒ c>y > 0 ∀y ∈ T (A,X )∗
+ \0.

where T (A,X )∗
+ is an intersection of nonnegative orthant and a semialgebraic set defined by

finite homogeneous polynomials, as desired. In addition, we have the following relation.

Theorem 13 Consider any A ∈ Q`×n and X as in Theorem 9. With change of variable

y = exp(Ax):

x ∈ X =⇒ y ∈ (T (A,X )∗
+ )\0

Proof: We have already shown x ∈ X ⇐⇒ y ∈ T (A,X )
++ = T (A,X )

+ ∩ Υ. We have

yn+1 = exp(a>n+1x) = 1 by assumption on A. By construction of T̃ (A,X )
+ ∩ Υ̃, if y ∈

T (A,X )
+ ∩Υ with yn+1 = 1, then y ∈ T̃ (A,X )

+ ∩ Υ̃, as the modification is null when yn+1 = 1.

T̃ (A,X )
+ ∩ Υ̃ ⊆ T (A,X )∗

+ since the latter is defined by subset of polynomials of those defining

the former. So y ∈ T (A,X )∗
+ . Lastly, y = exp Ax 6= 0, which completes the proof.

4.3.4 Positivstellensatz to Conditional SAGE

In this sub-section, we appeal to Dickson’s Positivstellensatz to find a representation of

the polynomial p(y). Observe that all homogeneous polynomials defining T (A,X )∗
+ are of

the form m1(y) −m2(y); the difference of two monomials. Without loss of generality, we
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may write: T (A,X )∗
+ = {y ∈ Rn

+ : m
(j)
1 (y) −m(j)

2 (y) ≥ 0, j = 1 . . .m}. As a consequence

of Dickson’s Positivstellensatz. (Theorem 4), for some p ∈ Z+, there exists homogeneous

posynomials g1(y) . . . gm(y) s.t.

(y>1)pc>y =
m∑
j=1

gj(y)(m
(j)
1 (y)−m(j)

2 (y))

We show explicitly below that the the RHS is summation of terms each of which is positive

and have at most one negative term. Recalling that y = exp(Ax), this then implies that

it is a SAGE signomial. A key observation is that the LHS is a homogeneous polynomial,

and m
(j)
1 (y) −m(j)

2 is homogeneous for each j. Thus without loss of generality, for all j,

deg(gj(y)) + deg(m
(j)
1 (y) − m

(j)
2 (y)) = p + 1. That is, we may ignore indices that yield

polynomials with degree that is not p+ 1, since they must cancel out. Moreover, for each

j, without loss of generality gj(y) =
∑`(j)

k h
(j)
k (y). where h

(j)
k is a monomial and `(j) is the

number of terms in polynomial gj(y). Then:

(y>1)pc>y =
m∑
j=1

gj(y)(m
(j)
1 (y)−m(j)

2 (y))

=
m∑
j=1

`(j)∑
k=1

h
(j)
k (y)(m

(j)
1 (y)−m(j)

2 (y))

Now:

x ∈ X =⇒ y = exp Ax ∈ T (A,X )∗
+

=⇒ m
(j)
1 (y)−m(j)

2 (y) ≥ 0 ∀j = 1 . . .m

=⇒ h
(j)
k (y)(m

(j)
1 (y)−m(j)

2 (y)) ≥ 0 ∀j, k

=⇒ h
(j)
k (exp Ax)(m

(j)
1 (exp Ax)−m(j)

2 (exp Ax)) ≥ 0 ∀j, k

Let o
(j)
k (x) = h

(j)
k (exp Ax)(m

(j)
1 (exp Ax) −m(j)

2 (exp Ax)) ∀j, k. One may verify that it is

a signomial in the exponential form. Make the following observations for all j and k:

• o(j)
k (x) ≥ 0 ∀x ∈ X , as implied by above.

• o(j)
k (x) has one negative term, namely h

(j)
k (exp Ax)m

(j)
2 (exp Ax).
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• Since deg(gj(y) + (m
(j)
1 (y) −m(j)

2 (y))) = p + 1, the exponentials of o
(j)
k (x) are ones

of Ep+1(A)

Which implies o
(j)
k (x) ∈ SAGE(Ep+1(A),X ). SAGE(Ep+1(A),X ) is a cone and thus

closed under addition.

So (exp(Ax)>1)p
∑`

j=1 cj exp(Ajx) =
∑m

j=1

∑`(j)
k=1 o

(j)
k (x) ∈ SAGE(Ep+1(A),X ).
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Chapter 5

Discussions and Future Work

In this thesis we presented a convergent hierarchy of certificate for signomial positivity. We

first described a certificate of signomial positivity derived based from convex duality, and

a resulting algorithm for computing the lower bounds of constrained signomial programs.

The main contribution of the thesis shows that the certificate is complete. The proof

of the completeness result takes a similar approach as recent positivstellensatz results in

reducing positivity of desired form into another [8] [3]. In doing so, we used redundant con-

straints as done in previous proofs, but rather than appealing to representation theorems,

the current proof reduces to Dickson’s Positivstellensatz through algebraic operations. The

redundant constraints in particular is used to avoid ”jumps” when extending the aforemen-

tioned set to the intersection of non-negative orthant and polynomial equations, as well as

to preserve positivity of polynomial when modifying the set to be homogeneous.

We note a few technical insights in the proof. The proof for convergent hierarchy of

unconstrained SP presented by Chandrasekaran et al., is in fact a optimization-free pos-

itivstellesatz [8]. That is, it shows that given a globally positive signomials satisfying a

”mild assumptions” on structure the exponent vectors, multiplication of a function yields a

signomials with positive coefficients. In the current proof, the mild assumption is removed

by exploiting the compactness assumption. After appealing to Dickson’s Positivstellen-

satz to find a representation of the corresponding polynomial, we exploit the fact that the

polynomials defining the semialgebraic set is a difference of two terms to demonstrate a
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decomposition of the representation into sum of parts that each has one negative term and

is positive over the constrained set.

As for future directions, there are open questions resulting from this work. Although

the result holds for any compact convex set, we crucially relied on the rationality of the

exponents defining the signomials to reduce signomial positivity to polynomial positivity.

One direct extension would be to remove such assumption, which would yield a result fur-

ther unique from the previous polynomial literature. Another direction to pursue is to relax

the compactness assumption on the convex set. The difficulty of such extension mainly

lies in avoiding jumps when extending the the aforementioned set to nonnegative orthant,

which may be done through redundant constraints. We have considered this extension and

have found difficulty in developing a general method to construct redundant constraints

that avoid all jumps.
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[28] George Pólya. Über positive Darstellung von Polynomen. 73:141–145, 1928.

[29] Bruce Reznick. Uniform Denominators in Hilbert’s 17th Problem. Mathematische

Zeitschrift, 220:75–97, 1995.

[30] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[31] D. H. Roundtree and A. K. Rigler. A Penalty Treatment of Equality Constraints in

Generalized Geometric Programming. Journal of Optimization Theory and Applica-

tions, 11:169–178, 1982.
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APPENDICES

Proof of Theorem 12. Consider the set Ω = {x ∈ Rn
+ : ||x||2 = 1}, which is compact.

f0(x) > 0 for all x ∈ Rn
+∩

⋂
i∈J f

−1
i (R+)\{0} iff f0(x) > 0 for all x ∈ Ω∩Rn

+∩
⋂
i∈J f

−1
i (R+)

since f0(x) is homogeneous and its positivity is invariant to the scale of x. Thus we may

restrict to to the leveled set Ω. Make the following observations:

1. Without loss of generality assume that deg(fi(x)) ≥ 1 and maxx∈Ω{||∇fi(x)||} ≤
1 ∀i ∈ I. The second condition is not restrictive since the theorem only considers

positivity of homogeneous polynomials (fi(x))i∈I , which is invarint under scaling.

2. By mean value theorem, for any x,y ∈ Ω, and any i ∈ I, there exists α ∈ [0, 1] s.t. fi(x)−
fi(y) = (x− y)>∇fi(αx). Thus

||fi(x)− fi(y)||2 = ||(x− y)>∇fi(αx)||2
≤ ||x− y||2||∇fi(αx)||2
≤ ||x− y||2 max

x∈Ω
{||∇fi(x)||}

≤ ||x− y||2 ∀i ∈ I

This implies ∀i ∈ I, fi(x) is a continuous function.

3. ∀i ∈ I, ||fi(x)||2 = ||fi(x)− fi(0)||2 ≤ ||x||2 ≤ 1 ∀x ∈ Ω.

Now define the following compact sets:

• Ω0 = Ω ∩ f−1
0 (−R+)

• Ωj = Ω ∩ f−1
j (R+)
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• ΩJ = Ω ∩
⋂
i∈J f

−1
i (R+) =

⋂
i∈J Ωi ∀J ⊆ I

Observe that f0(x) > 0 for all x ∈ Rn
+ ∩

⋂
i∈I f

−1
i (R+)\{0} iff Ω0 ∩ ΩI = 0. The

goal is to show that ∃J ⊆ I Ω0 ∩ ΩJ = ∅, which implies then f0(x) > 0 for all x ∈
Rn

+ ∩
⋂
i∈J f

−1
i (R+)\{0}.

Consider the function: ξ(x) = sup{−fi(x) | i ∈ I} ∀x ∈ Ω. By observation (2), ζ(x)

is a supremum of continuous function and is thus continuous. Ω0 ∩ ΩI = 0 by assump-

tion, so ξ(x) > 0 ∀x ∈ Ω0. Moreover, by observation (3), ξ(x) ∈ (0, 1] ∀x ∈ Ω0. Let

ε = minx∈Ω0 ξ(x). Since Ω0 is compact, and ξ(x) is continuous, by the extreme value the-

orem, the min is attained in Ω0. So ε ∈ (0, 1].

Now consider the following two facts. (a) any x ∈ Ω0, there exists some i ∈ I s.t. −fi(x) ≥
2
3
ξ(x) ≥ 2

3
ε > 0. (b) for any y ∈ Ω0 s.t. ||x−y|| ≤ 1

3
ε, fi(y) ≤ fi(x)+||x−y||2 ≤ −2

3
ε+1

3
ε <

0. So y /∈ Ωi. Now consider the algorithm below.

Algorithm 1 Finding J ⊆ I s.t. Ω0 ∩ ΩJ = ∅
1: Let J = ∅
2: while ∃z ∈ Ω0 ∩ ΩJ do

3: If for some i ∈ I, fi(z) ≤ −2
3
ε, then J = J ∪ {i}

4: Return J

Suppose zt is chosen at tth iteration of while loop. First, ∃i ∈ I to add to J , by

claim (a). Since fi(zt) ≤ −2
3
< 0, by claim (b), for any zt+1 s.t. ||zt+1 − zt|| ≤ 1

3
ε,

zt+1 /∈ Ωi =⇒ zt+1 /∈ ΩJ∪i. Thus in each iteration, zt has a distance of at least 1
3
ε from

the previous ones. Since Ω0 is a compact set, the algorithm terminates in finite time, which

implies Ω0 ∩ ΩJ = ∅. The desired J ⊆ I is obtained.
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