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Abstract

Battery Energy Storage Systems (BESSs) play a pivotal role in facilitating the grid

integration of renewable energy resources and mitigating the impact of high pene-

tration of Electric Vehicles (EVs). The increasing number of EVs, however, would

lead to stockpiling of used Electric Vehicle Batteries (EVBs) after their vehicular

End-of-Life (EoL). Since high installation and capital costs of new BESS pose a

barrier to their large-scale deployment, utilization of the used EVBs after repurpos-

ing can play a significant role in power systems by helping defer capacity addition

in the long-term. This would also alleviate the adverse environmental impacts of

manufacturing more batteries and delay the recycling process of used EVBs. There

are significant benefits for the utilities, EV customers, and governments in utilizing

the used EVBs, as they offer a cheaper option for energy storage applications. In

this context, BESS has emerged as a promising and viable solution for utilities such

as microgrids and Local Distribution Companies (LDCs) for balancing their supply

and demand and implementing efficient control and operation. The thesis aims at

developing models for planning, operation, and control of BESS and Repurposed

Electric Vehicle Battery (REVB) in isolated microgrids and distribution systems.

The thesis first presents a comprehensive and novel framework for planning and

operation of BESS based on REVBs. A systematic procedure is proposed to model

and simulate the degradation of EVBs during their first life in vehicles to capture

the impact on their State of Health (SoH) and hence on the number of years to reach

their EoL, which are used to estimate the expected cost of installing REVBs. A

generic microgrid planning model is developed to determine the optimal energy and

power ratings, and year of installation and replacement of new BESSs and REVBs

considering the impact of calendar and cycling degradations. The proposed planning

model introduces a novel set of mathematical relations for BESS degradation and

optimal year of replacement, thereby avoiding premature replacements and additional

costs. The EVB degradation model is arrived at by using a real EVs drive cycle

database and the microgrid planning model is validated using the CIGRE isolated

microgrid test system.

The thesis then extends the earlier proposed microgrid planning model to include

system adequacy requirement using a novel backward-forward propagation approach

with an embedded energy sharing strategy for multiple REVB units. A novel concept

of measuring the adequacy level of the microgrid in terms of REVB energy to power

ratio (E/P ) is presented. The novel, heuristic, adequacy check module starts from
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the terminal year of the planning horizon, and propagates to the initial year, to

ensure that the microgrid’s capacity adequacy requirements are met in all years. To

accommodate multiple installations and replacements of REVBs over the planning

horizon, an energy sharing strategy among various installed REVB units is proposed

to enhance the battery useful life and delay their replacements so as to minimize the

total cost. The proposed models are validated on the CIGRE isolated microgrid test

system.

The third part of the thesis introduces an interactive real-time Community En-

ergy Management System (CEMS) for an REVB-based Community Energy Storage

System (CESS) in a practical Low-Voltage (LV) distribution system. This is an

extension (in terms of operation and control) to the first research problem, where

economic viability of installing REVBs is assessed. A rule-based controller for the

four-quadrant REVB-based CESS is embedded in the CEMS to reduce the loading of

the distribution transformer and slow down battery degradation. The proposed con-

troller structure can be modified based on the specific characteristics of the battery.

A Hardware-in-the-Loop (HIL) simulation is carried out to validate the simulation

results and illustrate the effectiveness of the proposed CEMS and its rule-based con-

trol algorithm, using actual signals from the Battery Management System (BMS)

and the bidirectional charger setup.
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Chapter 1

Introduction

1.1 Motivation

Reduction of Greenhouse Gas (GHG) emissions is a long-term government commit-

ment of many countries around the world. Based on reports published by National

Aeronautics and Space Administration (NASA) and the (US) National Oceanic and

Atmospheric Administration (NOAA), the warmest year globally, since recording

began in 1880, was 2015 [1]. The two main GHG emission contributors, that pro-

duce energy by the combustion of fossil fuels, are the electricity and transportation

sectors. According to Environment Canada, the latter accounts for 24% of total

national emissions [2]. Moreover, the transportation sector being dependent on oil,

is an issue of energy security, as it means being dependent on foreign resources in

the long-term.

In pursuit of addressing the aforementioned environmental challenges, many fed-

eral and provincial governments around the world have started adopting policies to

promote electrification of the transportation sector, and integrating clean Renweable

Energy Sources (RESs) such as wind and solar in the electricity sector which is in

accordance with the Paris (climate change) Agreement of 2015. In Canada, the

province of Ontario offered a package of $250 million in incentives and programs to

electrify the transportation sector by 2020 [3] and Canada has set a target to reduce

its 2005 GHG emission level by at least 30%, by 2030 [4]. In Norway and the Nether-

lands, policies have been implemented to ensure that all passenger cars purchased

from 2025 onward are Electric Vehicles (EVs) [5].
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It is a fact that nearly all automotive manufacturers are now producing EVs and

have made significant investments in EV development to meet the demands of the

market. According to the International Energy Agency (IEA) publication, Global EV

Outlook 2018, the global EV stock exceeded 5.2 million cars in 2018 after crossing

the first million threshold in 2015 [6]. In Canada, the EV market sales growth in

2018 for EVs was 125% of 2017 levels [7]. Globally, the sale of EVs will continue to

grow in the coming years and is expected to touch 100 million units by 2030 [8].

When an Electric Vehicle Battery (EVB) reaches its End-of-Life (EoL), it is

removed from the vehicle and replaced by new batteries in order to maintain the

power and energy density require for high performance of the vehicle. There are two

options for the used EVBs, recycling or repurposing. The first option is not preferred

and justifiable since the used EVB still has enough energy capacity to serve in a

variety of stationary applications [9]. According to [6], in Ontario, Canada, 500,000

EVs will be driven on the province′s roads by 2025.

This will result in stockpiling of a large number of used EVBs, because of the need

to replace batteries periodically. The challenge of disposing of these EVBs safely at

their EoL would be immense, because of the safety hazards involved, and the fact

that recycling them would be wasteful due to the significant energy capacity left in

the battery. Significant economic and environmental benefits can be accrued if EVBs

can be reused after the end of their first life. They can either be reused directly after

their EoL, or go through a process of refurbishing and repurposing before being used

again in stationary energy storage applications. There is also a need for a systematic

procedure to model the degradation of EVBs during their first-life.

While grid reinforcements involve high investment costs, a cheaper option, that

metaphorically kills two birds with one stone, is the reuse of EVBs for this purpose.

The reuse of EVB is also an opportunity for the EV owners to lower their replacement

cost while helping the system ensure a secure and reliable energy supply in the grid

at a much lower cost.

In recent years, Battery Energy Storage Systems (BESSs) have come in the lime-

light offering viable solutions to grid operators to overcome the uncertainty intro-

duced by the growing presence of RES and the consequent need for more system

reserves and deferring high upgrade costs. A lot of work has been reported in recent

years [10–14] on the applications of BESS in microgrids. However, the high cost

of BESS limits their large-scale deployment in stationary applications. Therefore,

there is a need to explore viable solutions to potentially offset the high initial cost
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of BESS and one of them is the utilization of reused or Repurposed Electric Vehicle

Batteries (REVBs). REVBs can reduce the high cost of fuel transportation along

with reducing the environmental impact.

However, there is a need to develop microgrid planning models which examine

both REVBs and new BESS as possible options, taking into account their degrada-

tion characteristics, and arrive at the most suitable and economically viable invest-

ment decisions for the microgrids.

The ability of a microgrid to meet the demand at all times (over the plan horizon)

is reflected on its adequacy. One of the means to meet adequacy requirements, is by

installing REVBs. However, energy capacity of REVBs are affected by their cycling

and calendar aging which significantly impacts the microgrid adequacy performance.

Therefore, the microgrid planning models need to determine the optimal set of REVB

investments that ensures the adequacy level of the microgrid while also capturing

their degradation during the operational process over the plan horizon.

The REVB can also serve as part of a Community Energy Storage System (CESS)

while being owned by the Local Distribution Company (LDC); they can also be

owned by microgrid operators for various applications. CESS refers to a small grid-

scale distributed energy storage located in the distribution system, which releases

the stress and ensures efficient operation [15]. With significant increase in residential

BESS deployment in recent years in Ontario [16], CESS designed using REVBs can

provide a cost effective solution.

The utilization of REVBs with appropriate modelling and control system is worth

examining. There is a need to carry out Hardware-in-the-Loop (HIL) simulations

which would allow the dynamic behavior of REVB-based CESS to be realistically

represented and controlled, for CESS grid integration applications.

With increasing number of EVs each year, which leads to stockpiling of used

EVBs, the goal of the research presented in this thesis is to model, plan, and inves-

tigate the feasibility, economic opportunities, and technical operational aspects of

integration of REVBs in stationary applications. The efficient and proper control of

REVB units would lead to their large-scale deployment in grid-scale (e.g., CESS) or

microgrid applications. Also, it will offset the high replacement cost of batteries for

EVs owners.
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1.2 Literature Review

In this section an overview of the relevant research reported in the literature pertain-

ing to EVs, BESS planning and operations in microgrids, and CESS are presented

and discussed.

1.2.1 Electric Vehicles

There has been a growing interest during the last decade in the electrification of

the transportation sector as a promising solution environmentally, and economically.

The benefits of EVs are well understood and so are the technical and economical

challenges of integrating them into the grid. To study these benefits and challenges,

EV market forecast is needed in order to determine (i) the expected aggregated

charging demand, and (ii) the expected storage capacity available from used EVBs.

Several studies are reported in the literature on the forecast of EV market pene-

tration under various scenarios [6,17–19]. As stated in a recent report [20], the global

sales of EVs is expected to reach 54% of the sales of new light duty vehicles in 2040.

Moreover, it is estimated that 34% (530 millions EVs in total) of the global vehicle

fleet on the road will be electric by 2040. With fast growing number of used EVBs,

it is expected that REVBs will be readily available in the market.

1.2.1.1 Electric Vehicle Battery Degradation

Since REVBs are proposed to be used later in generic microgrid planning models,

a systematic procedure to model and capture the degradation of EVBs during their

first life in the vehicles, is needed. As a result, this part of the literature review

focuses on the modelling of an EVB and its degradation.

The Li-Ion EVB capacity degradation takes place during operation (referred to as

cycling degradation) and in its idle state (referred to as calendar degradation). The

cycling and calendar degradations cause permanent energy capacity loss in the EVB,

which should be captured and modeled. Thus, it is important to estimate the State

of Health (SoH) of the EVB over the time of their vehicular life. Several studies

in the literature developed different models estimating the degradation of Li-Ion

batteries using various approaches, considering different ageing factors [21]. In [22],

a practical capacity degradation model for Li-Ion batteries under different conditions
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was developed; it was noted that the capacity degradation of the battery depends

on several factors such as its State of Charge (SoC) and temperature. However, only

the cycling effect was accounted for, while calendar degradation was not considered.

Even though calendar degradation per year in Li-Ion batteries is small at room

temperature, it is important to be taken into account to determine the true cost

of the EVB after vehicular EoL [23] which would impact the cost of REVBs and

consequently the microgrid planning decisions.

The authors in [24] apply a simple method to predict the degradation of EVBs in

second-use stationary applications; the degradation model does not consider capacity

losses due to calendar degradation and SoH is assumed rather than modelling and

simulating the first life of EVBs to predict it.

1.2.1.2 Repurposed Electric Vehicle Battery

Researchers are examining various usages of REVBs in stationary applications, but

only a few projects have been reported so far [9, 25]. To integrate REVBs in such

applications, the SoH of EVBs at their EoL need be considered. The life of an EVB

can be extended after vehicular use by utilizing it in secondary applications under

safe and secure conditions that brings about savings for the electric utilities and

reduces the overall cost of new batteries for EV owners [26, 27]. Having substantial

energy capacity after its first life, EVBs can either be directly used or reconfigured

and repurposed for stationary applications. The authors in [28] reported that the

direct reuse of EVBs has more disadvantages than repurposing them; although direct

reuse is cheaper, their reliability and safety are of concern.

Since the idea of using REVBs in stationary applications is still under research,

only a few projects have been reported in the literature, while very little work is

available on pricing of REVBs. Studies in [29,30] and [25] explored various possible

market prices of REVBs. The market price consists of: (i) buying the used EVBs, (ii)

selling the REVBs that implicitly includes the repurposing cost, considering sorting,

collecting, testing, and reassembling the used EVBs.

The market price of Li-Ion REVBs is calculated in [25] based on a facility that is

adequate for testing and repurposing the used EVBs. The work in [31] extrapolated

the economic evaluation model presented in [25], while changing module size, cell

failure rate, and improvement in testing requirements.Various inputs are needed to

determine the price of REVBs, the SoH of used EVBs being the most crucial input.
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In recent years, various pilot projects for REVBs have been launched in Germany.

For instance, North Rhine-Westphalia has developed an REVB of 13 MWh energy

capacity, realized from 1,000 used EVBs. This makes it the largest second-use EVB in

the world [26]. Another pilot project in San Diego, California, USA is in collaboration

with BMW for testing the second life for EVBs. The project uses a repurposed Mini

E BMW EVB for stationary energy storage application. The size of the project is

100 kW/108 kWh of Li-Ion based batteries. The benefits potentially achieved are

reliability, RES integration, and reduction in overall cost of the EV [26].

In [32] an EVB is directly used in stationary application without repurposing;

various operational topologies and their associated controls are proposed. Different

types of battery chemistry were considered (including lead-acid, NiMH, and lithium)

to develop a flexible interface scheme based on modular boost-multilevel buck con-

verter. The authors concluded that a proper interface scheme with an efficient con-

troller can tackle the widely different voltages of different chemistries.

1.2.2 BESS Planning and Operation in a Microgrid

One of many purposes of introducing BESS in a microgrid is to reduce the total

investment and operating cost by overcoming the uncertainty introduced by RES

and the consequent need for more system reserve, and delaying high upgrade costs.

In this section some of the works reported in the literature addressing BESS planning

and operation in a microgrid are discussed; the main issues being: BESS power and

energy capacity sizing considering REVBs, battery degradation, BESS replacement

considering degradation, BESS planning and operation considering reliability, multi-

unit BESS planning, and power sharing for installed multi-unit REVBs.

Many works have been carried out in recent years [10–13] to examine the role of

BESS in supporting microgrids with rising cost of fossil fuel based generation.

An optimization method was introduced in [10] to find the optimal BESS size in

isolated and grid-connected microgrids. Artificial Neural Network (ANN) was used

for forecasting the wind and solar generation profiles. It was found that the optimally

sized BESS would reduce the total cost for an isolated microgrid and increase the

total benefit of a grid-connected microgrid. The BESS lifetime was assumed to be

fixed (three years), which is not accurate since the life depends on its cycling and

calendar degradation.
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A two-stage stochastic optimization model for a microgrid planning problem con-

sidering BESS, solar, and wind was proposed in [11]. The first stage considers invest-

ment decisions while the second seeks to minimize the microgrid’s operating cost.

However, the work uses a low value for the limit on BESS Depth of Discharge (DoD)

which does not accurately reflect the battery degradation during its operation. A low

DoD enforces the planning model to oversize the battery capacity during installation.

Also, the work does not consider the replacement cost for the battery. Furthermore,

battery degradation is not reflected on its energy capacity, which is important, so as

to capture the true cost of operation of the microgrid.

A study on cascaded sizing of BESS in remote microgrids equipped with wind

farms was carried out in [12]. Although it was noted that BESS capacity addition

over time could reduce the total operating cost of the microgrid, their degradation

and replacements were not considered.

In [33], a multi-stage algorithm for sizing of BESS and upgrading the geother-

mal generators was studied, considering the technical and economical constraints,

in an isolated microgrid with high wind penetration. Battery capacity degradation

was considered and the BESS would be replaced once it reaches 25% of its initial

energy capacity. Although capacity degradation was considered, the model was not

explained and degrading the battery to 25% capacity is not realistic.

In [34], BESS planning in microgrids was carried out considering life-cycle degra-

dation, by accounting for the number of Cycle-to-Failure (C2F); however, the re-

duction in BESS energy capacity due to cycling and calendar degradations was not

considered.

In [35], a stochastic optimization framework for BESS planning for isolated micro-

grids was proposed, wherein BESS cycling degradation was considered on a flat-rate

basis, not capturing the true capacity loss during discharging, and thus over- or

under-estimating the battery energy capacity. Also, a fixed replacement year was

considered, leading to premature replacement decisions and hence increasing the

plan cost.

BESSs involve high capital investments and can be economically unattractive in

microgrid application. In such a context, REVBs can provide the same services at a

fraction of the cost of a new BESS [9]. Also, by repurposing an EVB it would delay

its recycling and prolong its useful life.

It should be noted that, none of the above works attempted to determine the

optimal year of BESS replacement. Moreover, in most of the reported works, either
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the number of C2F or the impact of cycling and calendar degradations on the size are

considered, but not both, which is necessary to accurately capture the BESS energy

capacity and optimal operation. Also, there is a need to connect the stages of EVB

life to test the viability of REVBs in secondary applications.

For installation of either new BESS or REVBs in isolated microgrids the following

important issues need be considered: a) determining the optimal year of installation,

along with the optimal power and energy capacity ratings; b) optimal operation of

these devices; c) proper consideration of calendar and cycling degradation of BESS

and REVBs; and d) determining an optimal year of BESS replacement, considering

degradation, instead of using a fixed replacement year which can lead to premature

replacements and additional costs.

BESS Planning and Operation in a Microgrid Considering Reliability

There are very few reported works in the literature that consider BESS or REVB

planning and operation in a microgrid taking into account system reliability. In [36],

a holistic reliability model for power electronic equipment of a BESS in isolated

microgrids was proposed, where equipment failure rates were calculated and the

overall microgrid reliability was quantitatively determined. Degradation of the BESS

was not considered, which is critical when evaluating and assessing isolated microgrid

reliability.

The optimal investment plan considering BESSs and solar Photovoltaic (PV)

units is determined for a microgrid in [13]. Reliability was considered using two

scenarios: a sudden large change in load and a sudden change in solar irradiation

intensity. It is noted that the BESS can accrue benefits to the microgrid with an

appropriate capacity configuration. However, battery degradation or replacement

cost was not included in the planning model, which would have significantly impacted

the reliability evaluations.

In [37], the role of optimal BESS sizing on microgrid reliability is examined,

although battery degradation is not considered. The BESS was assumed to be single-

unit facility with a fixed life which under- or over-estimates the installed size of BESS.

The degradation of battery not reflecting on the installed capacity size has an impact

on reliability of the microgrid.

A BESS sizing model in a microgrid considering reliability is proposed in [38]. The

model minimizes the BESS installation cost and the expected microgrid operating
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cost. However, only one year of the planning horizon was assumed. No degradation

of the BESS was considered, which greatly affects the adequacy of the system when

it is taken into account.

In [39], a comprehensive multi-year distribution system planning model was

proposed considering reliability of the system as a constraint, and using a back-

propagation algorithm. However, the use of BESS was not considered.

Multi-Unit BESS Installations

The previous works pertaining to microgrid planning with BESSs and REVBs [10–

13, 33–35, 40, 41] did not consider multi-unit installations. Multi-unit installations

have benefits to microgrid operators since these boost the microgrid adequacy by

having more units (hence more capacity) online when there are outages. Also, the

discharging energy dispatched by the microgrid operator would be shared among the

multi-units which ultimately reduces battery degradation. Moreover, multi-units can

play a vital role in deferring the need for replacements or new installations when a

proper power sharing strategy between the units of the BESS/ REVB is used.

In [42] an Energy Management System (EMS) is proposed for the short-term

operation of a renewable hydrogen-based microgrid. It is noted that although the

power sharing strategy is a valid approach, it is not able to optimize the performance

for mid- and long-term operations. Therefore, there is a need for power sharing

strategy for long-term planning models while keeping the degradation of the BESS

as low as possible. When system upgrades are essentially driven by the continuously

increasing demand, the simultaneous multi-unit REVB installations and a proper

power sharing strategy can play a vital role in deferring the need for replacements

or new installations.

Coordination of multi-unit REVB operation and planning can reduce the total

cost of the microgrid. Although, in the literature, there are several studies that

consider BESS in general, very few have considered planning of REVBs in isolated

micrgrids considering adequacy, while no works have considered an power sharing

strategy coupled with battery degradation.

It is noted from the above review that most of the reported works on sizing of

BESS in a microgrid do not properly take into account battery degradation due to

cycling and calendar aging. On the other hand, some degradation models reported in

the literature [21,43] are too detailed, involve non-linear functions, which makes the
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BESS planning problem very difficult to solve. Therefore, there is a need to intro-

duce a linear degradation model that can be easily implemented within a microgrid

planning model. Moreover most of the works on BESS sizing, consider a fixed re-

placement year, which however can lead to incorrect replacement decisions and hence

increase the plan cost. Therefore, it is necessary to consider BESS replacement year

as a decision variable.

1.2.3 Community Energy Storage System

Introduction to CESS

The concept of CESS has gained attention amongst utilities in recent years with the

possibility of deploying BESS at the distribution level [44]. Typically, CESS is defined

as a utility-owned system that is connected to the LV distribution system to immunize

the network against adverse impacts of increased loading, outages, and power quality

issues [45]. With increasing penetration of EVs, REVBs are expected to present a

viable solution to the utility and customers by facilitating the development of CESS.

The use of REVBs as CESS would offset the utility cost by improving the voltage

profile and mitigating distribution transformer aging.

In [46], a discrete-continuous particle swarm optimizer was used to optimally

size a CESS considering solar panels and EVs to maximize the Net Present Value

(NPV) of profit from the energy arbitrage. It was noted that CESS could benefit

the distribution system by reducing the power losses, provide energy arbitrage and

improve the voltage profile. However, the work consider neither battery degradation

nor a proper EMS for CESS. EMS of CESS or, henceforth referred to, in this thesis

as Community Energy Management System (CEMS), is essential as it modifies the

control signals of the CESS based on the battery SoH. In [47] a CESS was proposed

to mitigate the voltage rise/ drop encountered by the grid due to high PV/ EV

penetration, but the work did not consider a detailed model of CESS taking into

account the technical constraints.

In [48], a profit maximizing operation framework for CESS was proposed to opti-

mally charge/ discharge the batteries taking advantage of the fluctuating electricity

prices. The proposed control architecture of CESS only controls the battery active

power, and if the CESS battery is degraded, the controller is not able to provide

any further controller maneuvering. In [49], households with smart appliances and

10



CESS were assessed from the perspective of the end-consumer. Two indices were

used to evaluate the CESS, the levelized cost of energy and the payback period.

The proposed control constraints does not take into account the battery SoH which

is important to capture CESS degradation and hence modify the charging and dis-

charging signals accordingly. The CESS capability to provide reactive power was not

considered in the proposed control.

With increasing adoption of EVs, their charging loads can lead to under-voltages

at distribution system nodes, and over-loading of feeders and transformers [50]. These

impacts can be alleviated by upgrading the transformers and feeders or implementing

coordinated charging of EVs [46,51–53]. Given that upgrading the transformers and

feeders is not a cost-effective solution and policies and communications infrastruc-

ture for coordinated charging are not available, installing CESS in LV distribution

systems [46,54], particularly with REVBs, is a viable alternative due to the increas-

ing availability of batteries in the market. Most of the studies on the control of

distribution systems, reported in the literature, focus on Medium-Voltage (MV) and

very little has been done on control of LV distribution systems or on designing a

proper control for CESS [51,53]. Therefore, there is a need for a proper controller for

CESS in an LV distribution system that ensures its successful operation and takes

into account the impact of battery degradation.

Currently, there are only a few projects around the world based on CESS, owned

by the LDCs. The reason for utilities not installing CESS is that EV penetration

has been low so far and not impacting the grid. Also, from economic standpoint,

these are not viable because of the low level of EV charging demand and high cost

of new batteries. A CESS using REVBs presents opportunities to provide energy to

the LDC and reduce the impact of its EV charging load if a proper control strategy

for CESS is introduced.

EMS for CESS

In [55], a bi-level optimization approach is proposed to solve the EMS model for

communities under a distribution grid outage event. The CEMS model coupled

with home energy management system of various houses was iteratively solved. The

CEMS is responsible for controlling the battery charging/discharging power and re-

shaping decisions of the load for each house. It is noted that during grid outages,

the CEMS with its CESS and home energy control can have self-powered supply

capability. However, the CEMS control only provides P services to the communities.
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In order to provide bidirectional P and Q services and limit battery degradation

using a CESS, a four-quadrant charger is needed. Most of the bidirectional chargers

reported in the literature focus on P -control from the viewpoint of EVs, but not

from the point view of CESSs. Similarly, there is little work on providing Q-services

by CESS [52, 56]. To this effect, a controller for a four-quadrant EV charger was

proposed in [57], which took battery degradation cost into account; however, this

work did not include any HIL simulations based on detailed model of the power

network, and reducing the Loss of Life (LoL) impact of LV distribution transformer

was not analysed.

There are challenges that have to be overcome in controlling the active and reac-

tive powers using CESS, while seeking to reduce the adverse impact on the battery

SoH. A CEMS equipped with an effective controller for the CESS would be capa-

ble of improving the flexibility of the distribution system in a cost-effective manner,

while extending the life of the REVBs and the LV distribution transformer.

So far, only a few works have attempted to realize the operational benefits of a

CESS employing REVBs with a properly-designed CEMS. Such a CEMS should be

tested in an appropriate platform under different conditions to identify and address

the issues that may appear in real-life operation. In view of this, HIL simulations

become relevant in fast and accurate analysis of large and complex systems, such as

an LV distribution system equipped with CEMS.

HIL Simulation

HIL simulation is a comprehensive platform which is a synergic combination of actual

hardware components and computer simulation models in a closed-loop environment.

One of the reasons for utilizing HIL simulations is that it allows the dynamic behavior

of the battery-based CESS to be realistically represented and controlled [58]. While

some works on CESS for grid integration have been reported [59], the majority of

the existing works pertaining to battery-based CESS use the battery in a simulated

environment, and not in an HIL environment [60]. Also, most of the reported research

concentrates only on the economic side of CESS based on new batteries [35, 46, 54,

61–64], but not their implementation and control.

To the best of the author’s knowledge, the use of REVB-based CESS for active

and reactive power control in LV distribution networks has not been reported in the

literature. The control of EVs from the LDC’s standpoint has been considered for
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slow residential EV charging by optimally sharing the available capacity of the LV

transformer among several EV loads, which are also used as reactive power control

devices [51, 52, 65]. However, compared with a Vehicle-to-Grid (V2G) scheme, the

CESS can provide a better support to the grid as it is permanently connected, it is

able to go beyond the limits of the LV transformer to locally supply any extra load,

and can offer local voltage regulation.

It is noted that researchers have examined different simple approaches in control-

ling P and Q based on the V2G framework, considering merely battery degradation

while tuning the controller parameters. However, to the best of the author’s knowl-

edge, a study on the integration of a CEMS in an LV distribution system using

REVB in HIL environment has not been reported in the literature.

In view of the above discussions, there is a need for a real-time CEMS to control

an REVB-based CESS and study its interactions with a practical LV distribution

system using an HIL simulation environment.

1.3 Research Objectives

The main objectives of the research presented in this thesis are as follows:

• Develop a systematic procedure to model the degradation of EVBs for different

classes of EVs during their first life in vehicles, and incorporate these character-

istics to estimate the expected cost of installing REVBs. Considering multiple

drive cycles of different classes of EVBs would capture the impact on their

expected SoH and hence on the number of years to reach their EoL. The mar-

ket price of REVBs will be obtained using the capacity of the degraded EVB

units and their SoH, which will determine the economic feasibility of REVBs

as compared to new BESS in the long-term energy supply planning of a remote

microgrid.

• Develop a generic microgrid planning model to determine the optimal energy

size, power rating, and optimal year of installation and replacement of new

BESS and REVBs. The planning model should include the impact of degrada-

tion due to calendar and cycling effects on the BESS/REVBs’ energy capacity,

as well as on the number of C2F. The proposed model will introduce a novel

set of mathematical relations for BESS degradation and optimal year of re-

placement, thereby avoiding premature replacements and additional costs.
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• Extend the proposed microgrid planning model to include multi-unit REVBs

to simultaneously determine their multiple optimal installations, power and

energy sizing, replacement and investment timelines. To ensure that the mi-

crogrid’s capacity adequacy requirements are met at all years, a heuristic

backward-forward propagation process will be proposed.

• Develop a generic real-time CEMS to control a four-quadrant REVB-based

CESS and study its interactions with a practical LV distribution system using

an HIL simulation environment. The real-time CEMS will be validated with

an actual setup comprised of an actual Li-ion battery pack, for HIL simulation,

together with a four-quadrant charger.

1.4 Organization of the Thesis

The rest of this thesis is structured as follows:

Chapter 2 presents a brief background to the relevant topics related to this re-

search, including a description of microgrids, the generic Unit Commitment (UC)

formulation, BESS, basic concepts of EVB modelling and degradation, REVBs for

secondary use applications, a review of the Rainflow Counting Algorithm (RCA),

and some fundamentals of mathematical programming.

Chapter 3 presents a systematic procedure to model and simulate the degrada-

tion of EVBs and the novel framework and mathematical model for planning and

operation of isolated microgrids using BESS and REVB.

Chapter 4 presents the framework and mathematical model for a novel backward-

forward propagation approach with an embedded power sharing strategy for REVB

units to develop a microgrid planning model taking into consideration its reliability

aspects.

Finally, Chapter 5 presents a CEMS equipped with a rule-based controller for

REVB-based CESS and includes detailed analysis carried out using an HIL simula-

tion test-bed.

Chapter 6 presents the summary, concluding remarks and main contributions of

this thesis, and identifies some directions for future research work. Detailed data

of the test systems and other related inputs to the models used in this thesis are

presented in Appendices A and B.

14



Chapter 2

Background

This chapter presents a brief background review of the main topics and tools relevant

to the research proposed herein. The microgrid concept is presented, followed by an

overview of the BESS and its services. An overview of EVs and their models are

discussed, followed by a review of REVB for second-use applications. A typical two-

stage bidirectional converter topology is explained and the distribution transformer

degradation estimation is briefly discussed. Finally, a review of the RCA and some

fundamentals of mathematical programming are presented.

2.1 Nomenclature

Indices
g Index for generating units g ∈ G
t Index for operation-steps, [hour] t ∈ T
i Index for operation-steps, [second] i ∈ I

Parameters
CUPg Start-up cost generating unit [$]
CDNg Shut-down cost generating unit [$]
Pg Minimum generator power limit [kW]

Pg Maximum generator power limit [kW]
Pdy,t Isolated microgrid demand [kW]
RUPg Maximum ramp-up generator [kW]
RDNg Maximum Ramp-down generator [kW]
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Variables
PRes
t Isolated microgrid reserve demand [kW]
Ug,t Start-up binary decision [1 or 0]
Vg,t, Shut-down binary decision [1 or 0]
Wg,t Unit-commitment binary decision [1: ON or 0: OFF]

2.2 Microgrid

A microgrid is defined as a cluster of loads and small-generation technologies oper-

ating as a single controllable entity that provides both power and heat to its local

area. Microgrids can operate either in grid-connected mode, where there is a point

of common coupling, or in isolated mode [66]. The general architecture of a micro-

grid is shown in Figure 2.1. Microgrids include conventional diesel generators, wind

turbines, micro-turbines, PV panels, and energy storage systems, e.g., batteries, ul-

tracapacitors, and fuel cells.

Diesel 

Generator

Primary Loads Dump Loads

PCC

Microturbines PV system
Wind 

Turbines 
BESS

Figure 2.1: Schematic diagram of an islanded microgrid

The operation of microgrids has to be economically viable and technically reliable

[67]; the challenges are greater for isolated microgrids. With increasing deployment

of RES to reduce the fossil fuel dependency and reduce operation cost, particularly

in isolated microgrids, energy storage systems are essential as these can help the

isolated microgrids achieve better economy of operation.

The connection modes of a microgrid are of two types: grid-connected mode or

islanded/isolated mode. There are many examples of islanded/isolated microgrids
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around the world, and in Canada there are around 280 isolated microgrids [68]. These

microgrids do not have interconnection with the main electric grid primarily because

of geographical reasons.

Microgrid: Basic Scheduling Model

The basic scheduling model used in a microgrid essentially deals with committing

the available generating resources in close to real-time, and is similar to a traditional

UC model. The objective is to minimize the microgrid operation cost while meeting

the load and satisfying the generator limits and other system constraints [69, 70].

Several optimization methods have been proposed to solve the UC problem [69,70].

A general UC mathematical model is presented in [70]. The formulation of the UC

objective function and constraints are discussed in detail next.

Objective Function:

The objective function is the total generation cost of the available generating re-

sources over the operation horizon:

J =
∑
g∈G

∑
t∈T

[
Cg(Pg,t) Wg,t + CUPg Ug,t + CDNg Vg,t

]
(2.1)

where the first term of (2.1) represents the generation cost from the thermal units;

the cost function C(.) can either be a linear or a quadratic function. The second

and third terms respectively represent the start-up and shut-down costs, associated

with the thermal generators. Minimization of the objective function is subjected to

several constraints, of which, the most relevant ones are presented below [70]:

• Upper and lower limits of generation:

PgWg,t ≤ Pg,t ≤ Wg,tPg ∀t (2.2)

• Supply-Demand Balance: Total system demand at each hour should be sup-

plied by the power generated.∑
g∈G

Pg,t = Pdt ∀t (2.3)
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• Spinning Reserve Constraint: Reserves are important for isolated microgrids

to maintain a secure and flexible operation. Therefore, a constraint on system

spinning reserve is imposed at all time periods.∑
g∈G

(
PgWg,t − Pg,t

)
≥ PRes

t ∀t (2.4)

PRes
t = 10% Pdt ∀t (2.5)

• Ramp Up/Down Constraints: The increase or decrease in the generation be-

tween two consecutive time intervals is subjected to ramp-up and ramp-down

limits, respectively.

Pg,t ≤ Pg,t−1 +RUPg ∀g, t; t 6= 1 (2.6)

Pg,t ≥ Pg,t−1 −RDNg ∀g, t; t 6= 1 (2.7)

Concept of Adequacy

The system adequacy is defined as the ability to meet the peak demand in a steady

state condition [71].

2.3 Battery Energy Storage System (BESS)

Energy storage systems such as batteries have the capability to improve the perfor-

mance of the system and also contribute to several applications. Table 2.1 presents

the range of applications of energy storage systems to power systems [72]; it is to be

noted that many of applications are relevant to isolated microgrids also.

The BESS generally comprises the following main components: battery modules,

BMS, Power Conversion System (PCS) including bi-directional converters, controller,

and transformers, and EMS that controls the bi-directional flow of energy between

the grid and the BESS, as shown in Figure 2.2.

One of the challenges that the BESS can address is smoothening the output

generation profile of RES. When surplus energy is generated by PV or wind, it can

be stored in BESS, to be used later. On the other hand, when there is insufficient
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Table 2.1: Power System Applications of Energy Storage Systems

Category Description Category Description

Bulk energy service

Electric energy time-shift
(arbitrage)

Ancillary services

Frequency regulation

Power supply capacity Load following

RES curtailment Voltage support

Transmission services
Transmission upgrade deferral Black start provision

Transmission congestion relief Reserve Capacity

Distribution services

Distribution upgrade deferral

Customer services

Power quality

Voltage support Power reliability

Outage mitigation Time-shift

Distribution congestion relief Demand charge management

energy to supply the demand, the stored energy in a BESS can be discharged to

make up for the deficit [73].
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Figure 2.2: General block diagram of a BESS
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The deployment of BESS can either be in small-scale, at the distribution systems

level and microgrids, or in large-scale at the transmission level. The small-scale BESS

is known as CESS [61]; an example of a CESS is the Li-Ion based facility of 25/50

(kW/kWh) [74] DTE battery CESS project in Detroit, Michigan, USA.

According to [75], BESSs have been installed and used in distribution networks

and isolated microgrids all over the world, to provide services such as demand-supply

balancing. The microgrid projects discussed in [13] have BESS as one of the main

energy sources. The largest BESS installed in an isolated microgrid, is in China

and it is rated at 44.3 MWh. Since the costs associated with RES are decreasing;

thus introducing them in microgrids would be of great value, economically and envi-

ronmentally, and will make remote communities less dependent on fossil-fuel based

generators. It has been claimed that a Li-Ion based BESS is more economical as

compared to an inefficient peaking power plant [75].

In Canada, there are about 280 remote communities that house 200,000 people

and their main source of energy is diesel generators. The idea of installing wind

and solar energy is being pursued by the government and local utilities, in order to

reduce the dependency on diesel, reduce GHG emission, and harness free and clean

energy [76]. In this context, BESS can facilitate the penetration of RES, which can

eventually reduce the overall cost of electricity in the remote microgrids. According

to [76], electricity tariffs in many of the Northern remote microgrids in Canada are

in the range of 0.45 $/kWh and 2.5 $/kWh which is significantly higher than what

a retail customer pays in a Canadian city.

There are several configurations for deploying the energy storage systems [77];

for example, large BESS, owned and controlled by an industrial entity, utility, or

aggregator, and small privately owned BESS, controlled by an aggregator, or owned

and controlled by an aggregator.

Definitions

Several terms are used to represent the battery characteristics and operational states,

which are given below:

• Rated or nominal energy capacity: the initial energy capacity at the time of

installation, given in Ah or Wh.

• Rated power capacity: the initial power capacity at the time of installation,

given in W .
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• Lost battery capacity: the energy capacity lost, in Wh, due to calendar and

cycle degradations.

• Current energy capacity: the initial energy capacity minus lost battery capac-

ity, given in Ah or Wh.

• Energy to Power (E/P ) ratio: the ratio between energy and power capacities

of a battery. The power rating measures the instantaneous demand the battery

is able to supply. At the time of installation, E/P is determined from the rated

power and energy sizes. However, after the battery is operated, E/P is deter-

mined from the instantaneous power and energy sizes considering degradation.

Depending on the application of the battery, the E/P ratio can take values

either below or greater than unity.

• SoC: the available charge or energy left in the battery during operation based

on the current capacity taking into account degradation of the battery.

• DoD: the percentage of discharged energy between various combination of

transitions- charging, discharging, and battery idle mode.

• SoH: the condition of a battery; a zero SoH means that the battery is not

capable of delivering the minimum required power and energy for intended

applications [78], while an SoH of 100% means the battery is at its rated

capacity. The SoH can be mathematically represented as follows:

SoH = 1− Lost Capacity

Rated Capacity
(2.8)

Let us assume that the battery has an initial capacity of 16 kWh, and it

degrades to 14.4 kWh, through a number of years of operation. Hence, the

battery has an SoH of 90%.

• Energy density: the available energy in a battery per unit of volume.

• Power density: the available power in a battery per unit of volume.

• Battery cycle: is divided into two types, semi-cycle and full-cycle. Semi-cycle

refers to one single charge or discharge when the battery changes its SoC status

from the previous SoC. On the other hand, full-cycle is the summation of two

identical half-cycles of the the same DoD but in a opposite direction. When

determining the degradation, full-cycles are usually used and the cycles are

calculated using, for example the RCA, as explained in Section 2.8. When

the number of charging and discharging cycles, which corresponds to various

ranges of DoD, reaches its limits, it is said that the battery has reached its

EoL.
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2.4 Electric Vehicles

A schematic diagram of the power-train of an EV is presented in Figure 2.3, which is

used to model the mechanical traction power demand, referred to as Vehicle Longi-

tudinal Dynamic Model (VLDM), and the electrical traction power demand, referred

to as Vehicle Power-train Model (VPM). The EV is comprised of four main units:

the EVB, the dc/ac converter, the electric motor, and transmission system. Basi-

cally, the power needed to drive the vehicle is drawn from the battery unit and then

processed by the electric motor that is controlled via the dc/ac converter to generate

the traction propulsion power at the wheels through the transmission system [79].

DC/AC

converter
Battery

Electric Motor
Transmission

Gearbox

Wheels

Auxiliary 

loads

Figure 2.3: Traction power-train of EV

The VLDM determines the vehicle mechanical traction power demand based on

the power that the vehicle needs, to meet the instantaneous velocity and acceleration

of a given driving cycle. The vehicle mechanical traction power demand is obtained

from the traction force (FTt), which is comprised of: aerodynamic drag (F ad
t ), rolling

resistance (F r
t ), gradient resistance (F g

t ), and the vehicle′s inertia (F i
t ), and drive

cycle, as given by (2.9). Equations (2.10) and (2.11) show the structure of traction

force [79]. The relationship between the traction force and the drive cycle are given

below:

P d
t = FTt vt (2.9)

FTt = F ad
t + F r

t + F g
t + F i

t (2.10)

FTt =

[(
1

2
ρ Af CD v2t

)
+ (Mt g Cr cosα) + (Mt g sinα) +

(
Mt

dv

dt

)]
(2.11)
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The VPM is comprised of the traction dc/ac converter, electric motor, and transmis-
sion system, which determines the electrical traction power demand drawn from the
EVB. The commonly used dc/ac converter for passenger EVs is a three-leg IGBT
Voltage Source Converter (VSC), which inverts the required dc power to ac at the
electric motor side. The transmission system has the responsibility to step up the
mechanical torque of the motor in order to rotate the vehicle wheels. Two types of
EV traction motors are commonly available in the market: the induction machine
and the permanent magnet synchronous machine. The first type is the most popular
in passenger EVs since their cost is low and are lightweight; they produce high torque
and power [78, 79]. The equations governing the electrical traction power demand
P ed
t at the dc bus of the traction inverter are given below:

P ed
t = P td

t + P aux
t =


P td
t

ηtr · ηm
if P td

t ≥ 0

P td
t · ηtr · ηm otherswise

(2.12)

where P aux
t is the auxiliary demand of the vehicle, ηtr is the transmission effi-

ciency [79], and ηm is the combined traction inverter and motor efficiency [80]. The

parameters used in (2.9) to (2.12) are reported in Table A1 and A2 in Appendix A.

2.4.1 Electric Vehicle Battery Modelling

Currently, five types of EVBs are commercially available: the nickel-cadmium (NiCd)

battery, nickel-metal hydride (NiMH) battery, Sodium-Nickel Chloride or Zeolite

Battery Research Africa (ZEBRA), lead-acid, and Lithium-Ion (Li-Ion) [81]. Two

types of EVBs are commonly used in EVs and Hybrid Electric Vehicles (HEVs),

Li-Ion and Nickel-Metal Hydride (NiMH) [82].

According to [81], NiMH battery has a relatively high specific power and low

specific energy, and is commonly used in HEVs. Toyota Prius is an example, that

uses NiMH batteries because of their lower cost per Watt ($/W) compared to the

Li-Ion battery.

Different types of Li-Ion batteries are dominating the EV, HEV, and Plug-in Hy-

brid Electric Vehicle (PHEV) markets today: the lithium iron phosphate (LiFePO4),

lithium titanate (Li4Ti5O12), lithium manganese oxide (LiMn2O4), lithium nickel

manganese oxide (NMC), and lithium nickel cobalt aluminum oxide (LiNiCoAlO2)

[83]. The principle of operation of the Li-Ion battery is simple. When the bat-
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Table 2.2: Li-Ion Battery Capacity and Electric Range of Common EV Models

Model Type Capacity EV Battery
kWh Range (km) Type

Volkswagen e-Golf
Battery Electric
Vehicle (BEV)

35.8 201 Li-Ion

BMW i3 BEV 22 130 Li-Ion
Chevrolet Bolt EV BEV 60 383 Li-Ion

Chevrolet Volt PHEV 16 85 Li-Ion
Ford C-Max Energi PHEV 8 32 Li-Ion
Ford Focus Electric BEV 23 122 Li-Ion

KIA Soul EV BEV 27 149 Li-Ion
Mitsubishi i-MiEV BEV 16 100 Li-Ion

Nissan Leaf BEV 24 128 Li-Ion
Smart Fortwo BEV 17 145 Li-Ion
Tesla Model S BEV 90 435 Li-Ion
Tesla Model X BEV 90 413 Li-Ion
Tesla Roadstar BEV 53 393 Li-Ion
Toyota Prius PHEV 4.4 23 Li-Ion & NiMH

tery charges, Li-Ions in the cell move from the positive electrodes to the negative

electrodes, and in the opposite direction when discharging [84].

Six metrics are used to differentiate among the battery types: specific power,

specific energy, lifespan, safety, performance, and cost [78]. Li-Ion battery types

are currently used in EVs such as Tesla, Nissan Leaf, and Chevrolet Volt, as seen in

Table 2.2 [85]. Compared with other battery types mentioned before, Li-Ion batteries

have the highest specific energy and specific power for the least weight, with a low

self discharge, thus making them the best and obvious choice for EVs [83].

Electric and Thermal Models of a Battery

The modelling of batteries is classified under two categories, electrochemical models

and electrical equivalent circuit-based models. The former describes the electrochem-

ical processes occurring in the battery cell while the latter is circuit based, which

model the behaviour of the cell rather than the electrochemical processes in the cell.

The latter describes the electrical equivalent performance of the battery using volt-

age sources, resistors and capacitors, which is the focus of the present research. The

electrical model is mostly used in circuit simulations with other circuits and systems.
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There are many models that have been proposed to model the electrical behavior

of the battery. Among these, there are three different models for electrical equiva-

lent circuit-based: Thevenin’s equivalent, ac model, and runtime-based model [86].

Thevenin’s equivalent model is able to capture transients, but cannot predict the

battery runtime information nor the dc response of the battery cell [22, 86, 87]. The

ac model, also called the impedance-based electrical model, is able to capture the

ac response of the battery behavior over a large range of frequencies. However, this

model is only able to perform under a fixed SoC and temperature setting [86, 88].

The last basic model is runtime-based model that is able to capture the dc response

as well as the battery runtime information but fails to capture the ac response due

to limited transient capability [86,89].

Some models, referred to as a complete model, such as the one presented in [86],

combined the three main models into a complete equivalent circuit-based model

combining the advantages of each model. The complete model of the electric circuit

is able capture all the battery characteristics such as ac response, open circuit voltage

dependence on SoC, transient behavior, and battery runtime. The equivalent circuit-

based complete model for a single Li-Ion cell has been developed in [86] to capture

the battery terminal I-V characteristics, and the same is adopted in this thesis. The

complete electrical circuit model of the Li-Ion battery is shown in Figure 2.4 [86].

Cuse

VSoC

I

i

+−Voc

R0

Cs

Rs

Cl

Rl

I −

+

Vt

Figure 2.4: Complete electrical model of Li-Ion battery

The passive parameters are functions of SoC, temperature and the direction of the

current. The cylindrical battery cell ANR26650 manufactured by A123 Systems [90]

is widely used, and adopted in this work; the governing equations of its passive

components and dependent voltage source are identified in [90] and used in this
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thesis. The behaviour of each impedance element, resistance and capacitance (RC),

in the model are different for charging and discharging, leading to two equations per

impedance element [90].

It should be noted that when the battery pack is constructed, multiple battery

cells are connected in series and multiple battery strings are connected in parallel

that conforms to the electrical needs of a particular application.

The lumped thermal equivalent model [90] is used in this thesis to simulate the

temperature, which is a function of the passive parameters of the electrical equivalent

circuit model. The power loss, which is dissipated heat, is assumed to be generated

at the core of the battery cell and is calculated, as shown below, by multiplying the

battery cell current with the voltage drop across the internal impedance:

Qh = (Voc − Vbatt) Ibatt (2.13)

The dynamic relationship between the core temperature (Tc) and the surface tem-

perature (Ts) in °C are expressed as follows:

Cc
dTc
dt

= Qh +
Ts − Tc
Rc

(2.14)

CS
dTS
dt

=
Tf − Ts
Ru

+
Ts − Tc
Rc

(2.15)

The inputs in (2.14)-(2.15) are the inlet air coolant temperature (Tf ) and the heat

generation (Qh), which are determined using the electrical model. It should be noted

that Ru represents a convection thermal resistance modeled between the surface and

the surrounding coolant to account for convective cooling. The dynamics of the

battery thermal model is equivalently modeled by the equivalent electrical circuit in

Figure 2.5.

Battery Capacity Degradation Model

SoH is a subjective term used to indicate how much battery energy capacity has

degraded during cycling and storage in percentages, over time. The battery SoH is

100% when it is new while its EoL is reached when the SoH is 0%. It should be noted

that a zero SoH means that the battery is not capable of delivering the minimum

required power and energy for the intended application [78].
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Figure 2.5: Electrical equivalent circuit of battery cell thermal model

The changes in useable capacity (Cuse) of a battery can be the result of either

irreversible or reversible capacity loss. Irreversible capacity loss, widely known as

capacity degradation, is a result of cell ageing due to cycling and storage or refereed

to as calendar. The capacity loss of the battery is calculated considering the Ah

processed [22].

There are many approaches and models to estimate the capacity degradation
of an EVB based on the intended application [91]. Therefore, an empirical model
capable of representing the capacity degradation in EVBs is used in this thesis based
on [22]. The capacity degradation for an LiFePO4 battery is calculated from Ah
processed, at each instant. Various factors greatly affect capacity degradation: the
average SoC (SoCavg), the standard deviation of SoC (SoCdev), and temperature.
Based on experimental results reported in [22], a mathematical model for capacity
degradation was introduced to capture battery fading during cycling, as given below:

ζ
(
T, SoCev

avg, SoC
ev
dev, Ah

)
=
∑
i

[(
Ks1 SoC

ev
dev,i e

Ks2SoC
ev
avg,i Rs2∗+

Ks3 e
Ks4SoC

ev
dev,i

)
e

[
−Ea

R

(
1

Ti
− 1

Tref

)]]
Ahi (2.16)

It should be noted that in (2.16), the degraded capacity ζ is calculated only when

there is a change in the temperature. The battery temperature in °K is found by

the thermal model. The activation energy (Ea) has a value of 78, 060 mol/J . The

ideal gas constant R is 8.314 J/mol.K. The Tref is 298 K. The rest of the constant

parameters are as follows: ks1 = -4.092××10−4, ks2 = −2.167, ks3 = 1.408×10−5,
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and ks4 = 6.130 [22].

After Ah processed is determined, the Cuse can be calculated as follows [22]:

Cuse = Cuse(T, ζ) =
(
Qini − ζ

)ek1
(

1

T − k2
− 1

Tref − k2

)
(2.17)

where Qini is the initial true capacity at reference temperature (Tref ) and ζ the

capacity degraded in Ah. The measured temperature (T ) and Tref are in °K. The

parameters k1 and k2 are constants [22].

2.5 Repurposing EVB for Second Use Applica-

tions

EVBs are designed to supply the power and energy needed by a vehicle. When an

EVB is no longer capable of providing at least 80% of the energy required for the

full driving range of the EV, and at least 80% of the power that a new battery would

supply, it is considered to have reached its EoL [83]. However, when an EVB is not

able to meet the performance requirements of the vehicle, it may still be able to

provide energy and power for less demanding applications [92]. Therefore, there is a

need to repurpose the EVB after its EoL by re-engineering it for stationary energy

storage applications.

The process of repurposing the used EVB starts by removing it from the EV

power-train. Before the used EVB is repurposed, its remaining capacity is identified

using one of three methods [92]:

1. Measuring its capacity directly at the point of repurposing: This method is

simple but needs special equipment and time for processing.

2. Measuring the SoH and other parameters of the used EVB after applying a

drive cycle on the vehicle close to the time of replacement of the battery.

3. Installing a recording device that collects important information about the

battery at the beginning of its life.
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After the capacity degradation of the used EVB and several parameters are obtained,

the used EVB buying cost, that is paid to the EV owner, need be determined. The

used EVB buying cost can be considered to be a salvage value for the EV owner.

It should be noted that the cost of repurposing will vary across facilities depend-

ing on the level of disassembling of the battery packs, modules, or cells required.

Therefore, the deeper the level of disassembling, the higher are the costs incurred.

After disassembling, the battery modules are reconfigured to meet the requirements

of secondary use applications. Once the used EVBs are repurposed, refurbished, and

reconfigured, the battery can be called an REVB. The cost of repurposing and of

buying the used EVB will decide the selling price of the REVB in the market.

2.6 Bidirectional Converter

Bidirectional converter of an EVB is referred to as a four-quadrant converter which

is capable of operating in all four quadrants of the PQ plane with different com-

binations of real and reactive power, as follows: charging and capacitive, charging

and inductive, discharging and capacitive, and discharging and inductive. A general

schematic diagram of the two-stage converter is shown in Figure 2.6 [52,65].

The converter is capable of exchanging active power between the grid and the bat-

tery through the ac-dc and dc-dc converters. Basically, the bidirectional converter of

a battery is comprised of two stages, the first stage is a single-phase full-/half-bridge

ac/dc bidirectional converter that is able to charge and regulate the capacitor voltage

of the dc-link as well as setting the reactive power dispatch if needed, proportional

to the capacity of the converter. The second stage is a bidirectional dc/dc converter

based on a buck-boost topology capable of controlling the battery current according

to the setting of the controller for charging or discharging. The bidirectional con-

verter takes the advantage of the dc-link capacitor to inject/absorb reactive power

to/from the grid. It should be noted that the ability of the bidirectional converter

to provide reactive power will not have an impact on battery degradation.

2.7 Transformer Loss of Life

To estimate the distribution transformer degradation, an LoL index is estimated

using the thermal model proposed by IEEE C57.91-2011 [93], by first determining
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Figure 2.5: A general schematic diagram of the two-stage bidirectional converter.

Thereafter, the transformer aging acceleration factor is determined and aggregated

over all time intervals of the study (FEQA).

Finally, the distribution transformer’s daily LoL can be estimated as follows:

LoL(%) =
FEQA × t

α
× 100 (2.18)

where α is the normal insulation life of the transformer [93]. According to IEEE

C57.91-2011, in order to avoid premature transformer replacement, the LoL during

normal operation should not exceed a specific threshold [93].

2.8 Rainflow Counting Algorithm (RCA)

Any physical system or equipment with an operational cycle is subject to degradation

in its life due to fatigue and stress. The RCA is a lifetime estimation method that

determines the number of the cycles of operation that causes reduction in the life

of the equipment [91, 94, 95]. To capture battery capacity degradation accurately

and the replacement year, the RCA is used to count the number of discharge and

charge cycles and their corresponding DoD from its SoC profiles. There are different

ways to count the cycles using the RCA as explained in [94–96]. Each range of DoD
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Figure 2.6: A general schematic diagram of the two-stage bidirectional converter

the winding hottest-spot temperature, which is the main factor accelerating the

deterioration of the transformer insulation. This hottest-spot temperature depends

on the daily ambient air temperature, the transformer’s oil rise over ambient air

temperature, and the transformer’s winding hot-spot rise over top-oil temperature

[93, 94]. Thereafter, the transformer aging acceleration factor is determined and

aggregated over all time intervals of the study (FEQA).

Finally, the distribution transformer’s daily LoL can be estimated as follows:

LoL(%) =
FEQA × t

α
× 100 (2.18)

where α is the normal insulation life of the transformer [93]. According to IEEE

C57.91-2011, in order to avoid premature transformer replacement, the LoL during

normal operation should not exceed a specific threshold [93].

2.8 Rainflow Counting Algorithm (RCA)

Any physical system or equipment with an operational cycle is subject to degradation

in its life due to fatigue and stress. The RCA is a lifetime estimation method that

determines the number of the cycles of operation that causes reduction in the life

of the equipment [91, 95, 96]. To capture battery capacity degradation accurately

and the replacement year, the RCA is used to count the number of discharge and

charge cycles and their corresponding DoD from its SoC profiles. There are different
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ways to count the cycles using the RCA as explained in [95–97]. Each range of DoD

corresponds to a specific number of cycles to failure, that is provided by a battery

manufacturer, as shown in Figure 2.7 [98].
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Figure 2.7: Cycles to failure of Li-Ion battery vs DoD

The RCA analyzes a daily SoC profile of the battery, starting with a discharge

process. The counting begins at the highest peak and continues until it identifies the

lowest SOC value [97]. The discharging path (shown by the dark-blue line in Figure

2.8) of the SoC profile seeks to determine a continuously decreasing path to the lowest

value of the SoC without overlapping with the obtained first path. The method is
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Figure 2.8: Rain-Flow Cycling Counting During Charging and Discharging

31



repeated, starting from the next highest peak of the SoC until it determines the next

lowest valley and the corresponding discharge path. This counting will be repeated

until all the discharge paths of the SoC are determined, as presented in Figure 2.8.

The RCA will follow the same process to capture all the charging cycles. There-

fore, it begins from the lowest valley of the SoC profile and proceeds to identify the

highest peak and hence determines a continuously increasing path to the highest

value of the SoC, referred to as, charging path (shown by the red line in Figure 2.8).

The process will be repeated until all the charging paths are determined, as shown

in Figure 2.8.

Finally, the obtained semi-cycles of the charging and discharging paths are matched

to count the complete cycles that correspond to various ranges of DoD, as presented

in Figure 2.8.

Based on the matched cycles and the respective DoD, and using the data provided

by the battery manufacturer, the lifetime of the battery can hence be determined.

2.9 Mathematical Programming

An optimization problem is a mathematical process that can either maximize or

minimize an objective function that is subjected to constraints. Examples of types

of optimization problems are [99, 100]: Linear Programming (LP), Quadratic Pro-

gramming (QP), Non-Linear Programming (NLP), Mixed-Integer Linear Program-

ming (MILP), and Mixed-Integer Non-Linear Programming (MINLP).

Linear Programming (LP)

The LP problem is a linear optimization problem that has a linear objective function
subject to linear equality/inequality constraints. An LP problem can be mathemat-
ically stated as follows:

max / min f(x)

subject to g(x) = 0

h(x) ≤ 0

x ≥ 0

(2.19)

where f(x) is a linear objective function to either be maximized or minimized, g(x)

denotes a linear function describing the equality constraint, and h(x) represents a

linear function describing the inequality constraint [100].
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Non-Linear Programming (NLP)

NLP is similar to the LP explained earlier. However, the mathematical model is non-

linear either in the objective function or equality/inequality constraints or both [100].

Mixed-Integer Non-Linear Programming (MINLP)

When a nonlinear optimization problem has both discrete and continuous variables,

the problem is referred to as an MINLP problem. These problems are difficult to

solve and solutions can be obtained either by using decomposition techniques or

linearizing the non-linear variables and equations [100].

MINLP problems that have bilinear variables, as given by (2.20), can be linearized

and relaxed using the concept of McCormick envelop relaxation [101] to obtain an

LP problem.

min xy

s.t. xL ≤ x ≤ xU

yL ≤ y ≤ yU

x, y ≥ 0

(2.20)

First, the bilinear variables are replaced with a new variable xy = w. Then, sev-

eral derived equations are introduced to create an LP problem. The new linearized

optimization problem will be as follows:

min w

s.t.

xLy + yLx− xLyL ≤ w ≤ xUy + yUx− xUyL
xUy + yUx− xUyU ≤ w ≤ xLy + yUx− xLyU

xL ≤ w ≤ xU

yL ≤ w ≤ yU

w ≥ 0

(2.21)

In (2.21), xL and yL are lower bound values and xU and yU are upper bound values

of their respective variables x and y. The NLP problem in (2.20) hence becomes

an LP problem as seen in (2.21) which can be easily solved. McCormick envelopes

relaxation can be applied to any problem with a bilinear variable to invert the non-

convex function into a convex function.
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2.10 Summary

In this chapter, a general description and operations model for a microgrid was

presented. General concepts of an EV and its battery model including the thermal

model and capacity degradation model were explained. Repurposing EVB for second

use applications was presented, followed by an overview of the basic bidirectional

converter in batteries, and transformer LoL to estimate their aging. The RCA to

estimate battery degradation was explained in brief. Finally, a brief discussion on

mathematical programming was presented.
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Chapter 3

Planning and Operation of Isolated

Microgrids Based on Repurposed

Electric Vehicle Batteries∗

3.1 Nomenclature

Indices
g Index for generating units g ∈ G
t Index for operation-steps, [hour] t ∈ T
y Index for planning-steps, [year] y ∈ Y

Parameters
CUNS Cost of unserved demand [$/kWh]
Cv

E, C
v
pb BESS variable installation costs of energy and power ca-

pacities, respectively

[$/kWh, $/kW]

Cfx Fixed installation cost of REVB and new BESS [$]
OMCfx Fixed O&M cost of the REVB and new BESS [$/kW]
OMCv Variable O&M cost of REVB and new BESS [$/kW]
Pdy,t Isolated microgrid demand [kW]
P PV
y,t Solar power output forecast [kW]
PW
y,t Wind power output forecast [kW]

∗Parts of this chapter have been published as a paper in: T. Alharbi, K. Bhattacharya and M.
Kazerani, ”Planning and Operation of Isolated Microgrids Based on Repurposed Electric Vehicle
Batteries,” IEEE Transactions on Industrial Informatics, vol. 15, no.7, pp.4319-4331, July 2019.
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RC Replacement Cost [$/kWh]
M Large number
TND Total number of days in a year
FCI Fuel cost increase [%]
ηch, ηdch BESS charging and discharging efficiencies, respectively [%]

Variables
ACy BESS added capacity at replacement year [kWh]
By BESS installation decision [1 or 0]
CRBy BESS remaining energy capacity with respect to 80% of

the rated capacity [+, 0 , -]

[kWh]

CRB+
y CRBy value when it is positive only [kWh]

CRB−y CRBy value when it is negative or zero [kWh]
CF+

y Binary variable when CRBy value is positive
CF−y Binary variable when CRBy value is negative
E ini

y Initial energy capacity of BESS at installation [kWh]
Ey Minimum BESS capacity [kWh]
Ey Current BESS energy capacity [kWh]
EdegCyc

y Capacity Degradation due to cycling effect [kWh]
EdegCal

y Capacity Degradation due to calendar effect [kWh]
LCy BESS capacity loss due to degradation [kWh]
LRYy Bi-linear variable used to replace the product of two vari-

ables, replacement year and initial BESS capacity

[kWh]

PUNS
y,t Unserved demand [kW]
Pbay,t BESS Charging (-)/discharging (+) power [kW]
Pg,y,t Power output of generator [kW]
PRes
y,t Reserved demand [kW]
Pb iniy BESS power rating at initial installation [kW]
Pby Current BESS power rating [kW]
RY v

y Replacement year [year]
SoCy,t SoC of battery [kWh]
SRBy,t Reserve provided to the system by BESS [kW]
TED Total discharged energy by BESS in one day [kWh]
Uy,g,t Start-up binary decision [1 or 0]
Vy,g,t, Shut-down binary decision [1 or 0]
Wy,g,t Unit-commitment binary decision [1: generation i is on-

line, 0: otherwise]

X
ch/dch
y,t Binary decision [1: BESS is charging or discharging, 0:

otherwise]
ZRY

y BESS replacement year binary decision variable
ζ Total capacity loss due to cycling and calendar degrada-

tion of the EVB (Stage-I)
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ζCyc
t Total capacity loss due to cycling degradation (Stage-I)
ζCal
t Total capacity loss due to calendar degradation (Stage-I)

3.2 Introduction

The increasing penetration of EVs raises concerns of stockpiling of used EVBs after

their vehicular EoL [6, 102]. The retired EVBs, after repurposing, can serve as an

alternative option to new batteries in a BESS. Utilization of used EVBs, after repur-

posing, can play a significant role in isolated microgrids in alleviating the need for

costly new BESS or diesel generators in the long-term, which is beneficial, both eco-

nomically and environmentally. REVBs can provide the same services at a fraction

of the cost of a new BESS [9]; also, repurposing an EVB would delay its recycling

and prolong its useful life.

For installation of new BESS or REVBs in isolated microgrids the following issues

need to be considered: a) determining the optimal year of installation, along with the

optimal power and energy capacity ratings; b) optimal operation of these devices;

c) proper consideration of calendar and cycling degradations of BESS and REVBs;

and d) determining an optimal year of BESS replacement, considering degradation,

instead of using a fixed replacement year which can lead to premature replacements

and additional costs.

This chapter presents a comprehensive and novel framework and mathematical

model for planning and operation of BESS based on REVBs. Various new, modi-

fied and linearized operational constraints for the new BESS and REVBs have been

included in the planning model to ensure their replacement years are optimally deter-

mined. Several classes of EVs with multiple drive cycles are clustered and integrated

within the proposed framework. Therefore, the main objectives of this chapter are

as follows:

• Develop a systematic procedure to model the degradation of EVBs for different

classes of EVs during their first life in vehicles, and hence incorporate these

characteristics to estimate the expected cost of installing REVBs.

• Develop a generic microgrid planning model to determine the optimal energy

size, power rating, and optimal year of replacement of new BESS and REVBs.

The model needs to include the impact of degradation due to calendar and

cycling effects on the BESS/REVBs’ energy capacity, as well as on the number
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of C2F. The proposed model will introduce a novel set of mathematical rela-

tions for BESS degradation and optimal year of replacement, thereby avoiding

premature replacements and additional costs.

• Consider multiple drive cycles of different classes of EVs to capture their impact

on the expected SoH of the EVBs and hence on the number of years until they

reach their EoL. This leads to developing an expected degradation model of

EVBs for each class, for inclusion in the generic microgrid planning model

proposed earlier, to study the impact of uncertainties.

The structure of the chapter is as follows: Section 3.3 describes the proposed

framework, as well as the detailed mathematical models of each stage. In Section 3.4,

the proposed framework is simulated and the results are presented to demonstrate

the effectiveness of the proposed models with the exploration of various scenarios.

Section 3.5 presents a discussion on the algorithms used and their computational

aspects. Finally, conclusions are drawn in Section 3.6.

3.3 Proposed Microgrid Planning Framework and

Mathematical Models

In this section, a novel systematic framework is proposed for modelling of BEVs

during their first-use and subsequently their utilization as BESS in isolated micro-

grids for various second-use applications. The framework comprises three stages,

presented in Figure 3.1 which are discussed in detail in the following sub-sections;

the important inputs to, and outputs from, each stage are clearly identified in the

figure, and all assumptions are stated.

Stage-I: EVB Capacity Degradation During Vehicular Life

A comprehensive flowchart of Stage-I is shown in Figure 3.1. This stage simulates

the performance of an EVB during its first-life in an EV and determines its SoH at

any instant, and the number of years it takes for the battery to degrade to its SoH

threshold [103], considering cycling and calendar degradations. There is a need for

real and detailed drive cycle data of different EV classes to accurately estimate the

outputs.

This stage includes the following three models (Figure 3.1):
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Figure 3.1: Flowchart of the proposed systematic framework of REVBs utilization

• VLDM [80],

• VPM [80], and

• Battery Capacity Degradation Model (BCDM) [22].

The simulation starts with reading all the parameters as inputs, which are then fed,

together with the EV drive cycle, to the VLDM, to calculate the mechanical traction

power, P d
t . This power is transferred to the VPM to determine the electrical traction

power demand, P ed
t , needed from the battery. From P ed

t , the SoC and temperature

of the battery are calculated using the electrical and thermal models of the EVB,

as explained in [90]; the EVB’s capacity degradation and SoH are determined from

the BCDM [22]. It should be noted that [22] only accounts for degradation due

to cycling (ζCyc), while this work, besides cycling degradation, considers a linear

calendar degradation rate (ζCal) as well. The initial SoC is 90% and the EVB is

recharged to 90% at the end of each drive cycle.
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In this work, Li-Iron-Phosphate (LiFePO4)-based EVBs are considered; the BCDM

of LiFePO4 EVBs is expressed as a function of different stress factors, as follows:

ζ = ζCyc
t (T, SoCev

avg, SoC
ev
dev, Ah) + ζCal

t . (3.1)

where ζ is the total capacity loss due to cycling degradation of the EVB pack (ζCyc
t )

and calendar degradation of the EVB battery pack (ζCal
t ). The total capacity loss

due to cycling depends on EVB temperature T , the average value and standard

deviation of SoC, SoCev
avg and SoCev

dev, respectively. It should be noted that the

inputs to BCDM are results of EVB simulation based on a given drive cycle. The

SoH of the EVB is calculated as follows [22],

SoH =
(
1− ζ

(EVB size)

)
(3.2)

Stage-I provides two main outputs that will have an impact on Stage-II and Stage-

III, the SoH and the number of years it takes to degrade to 80% SoH threshold.

The latter determines how many years REVB will stay in second life applications

(microgrid applications).

Stage-II: Post Vehicular Life Assessment and Cost Estimation

Adopting the economic model from [104], the outputs of Stage-I (i.e., SoH and

number of years) are used to estimate the cost of an REVB, which includes the

monetary value of the used EVB and the cost of repurposing; this is used to determine

the economic feasibility of REVB as compared to new BESS in the long-term. The

cost of an REVB is dependent on module properties, cell failure rates, the used

battery SoH, as well as initial and degraded capacities of the EVB.

3.3.1 Stage-III: Microgrid Planning Model

The proposed planning model for isolated microgrids determines the optimal power

rating and energy capacity of BESS, as well as optimal year of installation and

replacement, taking into account the inherent cycling and calendar degradations.

Accounting for degradation ensures realistic operational decisions and an optimal

replacement year, thereby avoiding premature replacements and additional costs.

Two different options for BESS are considered, i.e., REVBs and new BESS.
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3.3.1.1 Objective Function

The objective function, J to be minimized, is the NPV of the total cost, given as

follows:

J = J1 + J2 + J3 + J4. (3.3)

In (3.3), the microgrid operation cost, J1, is comprised of the cost of unserved

demand, generation cost and start-up/shut-down costs, respectively, as given below.

J1 = TND
∑
g∈G

∑
y∈Y

∑
t∈T

{
1

(1 +R)y

[
PUNS
y,t · CUNS

y,t + (1 + FCI)y−1

(P y,g,t bg + cgWy,g,t) + SUPgUy,g,t + SDNgVy,g,t

]}
. (3.4)

The BESS installation cost in (3.3), J2, is composed of power capacity cost,

energy capacity cost, and a fixed installation cost, given as follows:

J2 =
∑
y∈Y

[
1

(1 +R)y
(
Pb iniy Cv

pb + E ini
y Cv

E +ByC
fx
) ]
. (3.5)

The O&M cost component in (3.3), J3, is composed of the fixed and variable

O&M costs of the BESS, which vary across technologies and types, as given below.

J3 =
∑
y∈Y

[
OMCfx

(1 +R)y
(Pby)

]
︸ ︷︷ ︸

Fixed O&M Cost of the Battery

+

TND
∑
y∈Y

∑
t∈T

[
OMCv

(1 +R)y

(
ηch

1− ηdch · ηch
(−Pbay,t)

)]
︸ ︷︷ ︸

Variable O&M Cost of the Battery

. (3.6)

The BESS replacement cost in (3.3), J4, is included only when BESS reaches its

EoL and has to be replaced, as given below.

J4 =

[
1

(1 +R)RY
+

1

(1 +R)2RY
+ ..

] (
EiniRC

)
. (3.7)
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The replacement year (RY ) is initially considered a fixed parameter, as in all stud-

ies reported in the literature. When the optimal year of replacement is determined,

it is a variable (RY v
y ), and (3.7) is modified, as the Present Value Factor (PVF),

given below, is no longer a constant.

PV F =
1

(1 +R)RY v
y

∀y. (3.8)

The PVF in (3.8) is nonlinear, which can be linearized as an infinite series using

binomial expression, as follows:

PV F =
(
1−RY v

y ·R
)

+
(RY v

y )2

2!
− (RY v

y )3

3!
+ · · · . (3.9)

By replacing the sum of higher-order terms of (3.9) with an equivalent parameter

εy, which is calculated by subtracting the first term of the binomial expression,(
1−RY v

y ·R
)
, from the original PVF of (3.8), a new representation of the PVF can

be derived as follows:

PV F =
(
1−RY v

y ·R
)

+ εy ∀y. (3.10)

It is noted that the PVFs obtained using (3.9) and the linearized version (3.10) are

exactly matched, as seen in Figure 3.2, and hence (3.10) helps avoid the nonlinear

terms created by the higher order terms in (3.9). The BESS replacement cost, after

introducing the replacement year as a variable, is then given as follows:

J4 =
(
1−R ·RY v

y

)
Eini

y RC + εy
(
Eini

y ·RC
)
. (3.11)

3.3.1.2 Model Constraints

• Change in SoC: In order to include BESS degradation, the change in SoC (∆SOCy,t),

when the BESS is charging or discharging, is given as follows.

∆SOCy,t =
{

(SOCy,t+1 − SOCy,t) ∆+
y,t

}
+{

(SOCy,t+1 − SOCy,t) ∆−y,t
}
∀y, t. (3.12)

42



0 2 4 6 8 10 12 14 16
Year

0

0.2

0.4

0.6

0.8

1

C
ur

re
nt

 V
al

ue
 

Original PVF
Proposed representation of PVF

Figure 3.2: PVF values over number of years

Equation (3.12) is linearized to reduce the computational burden. New rela-

tions for positive and negative changes in SoC, ∆SOC+
y,t, ∆SOC−y,t, respectively, are

presented below.

∆SOCy,t = SOCy,t+1 − SOCy,t ∀y, t (3.13)
−M ∆−y,t ≤ ∆SOCy,t ≤ M ∆+

y,t ∀y, t (3.14)

∆+
y,t + ∆−y,t ≤

y=T∑
y=1

By ∀y, t (3.15)

N∑
y=1

By = 1 ∀y. (3.16)

Constraint (3.14) ensures that ∆+
y,t is unity when ∆SOCy,t is positive and zero

otherwise; furthermore, ∆−y,t is unity when ∆SOCy,t is negative and zero otherwise.

Equation (3.15) enforces the coordination between ∆+
y,t and ∆−y,t, which are binary

variables. Equation (3.16) is a binary constraint for BESS installation, and is applied

only once during the planning horizon. Furthermore, ∆SOCy,t is split into two
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variables ∆+
y,t and ∆−y,t, to explicitly calculate BESS degradation due to cycling.

−BM ∆−y,t ≤∆SOC−y,t ≤ 0 ∀y. (3.17)
∆SOC−y,t ≤∆SOCy,t + (1−∆−y,t) M ∀y. (3.18)
∆SOC−y,t ≥∆SOCy,t − (1−∆−y,t) M ∀y. (3.19)

Constraint (3.17) forces ∆SOC−y,t to be equal to zero if ∆−y,t is zero, and negative

otherwise. The inequality constraints (3.18) and (3.19) ensure that ∆SOC−y,t is equal

to ∆SOCy,t if ∆−y,t is unity. The inequality constraints associated with ∆SOC+
y,t are

similar to (3.17)−(3.19), with the exception that ∆SOC+
y,t must be positive if ∆+

y,t

is unity and zero otherwise.

• BESS Sizing With Degradation: The BESS energy capacity and year of replace-

ment are determined optimally considering degradation due to calendar and cycling

factors, and number of C2F, as follows:

Ey =

{
E ini

y + EdegCyc
y ; y = 1

Ey−1 + EdegCyc
y − EdegCal

y + ACy∀y, y 6= 1.
(3.20)

EdegCyc
y = TND ·

24∑
t=1

(
K ·∆SOC−y,t

)
∀y. (3.21)

By 6 Eini
y 6M ·By ∀y. (3.22)

Note from (3.20) that the BESS energy capacity at the year of installation does

not consider calendar aging. The capacity lost by degradation during operation is

accounted for in (3.20) by introducing a negative variable EdegCyc
y . Degradation

due to cycling is calculated during discharging in (3.21), where K is a degradation

factor [105] obtained using lab measurements. The value of K is chosen as 3× 10−4

and varies based on BESS technology [105]. Note that the degradation approach

in [105] only considers cycling degradation, whereas this work includes both cycling

and calendar degradations, as reflected in (3.20). It should be noted that EdegCal
y of

the REVBs depends on the Y2D values for each class of EVs.

By is a binary variable, taking the value of unity when a BESS is installed at year

y, and zero otherwise; the initial BESS energy capacity is assigned optimally using

(3.22).

• Limit on Capital Budget of BESS: This imposes an upper limit on how much

capital the microgrid operator can invest in BESS, over the planning horizon. Ac-

cordingly,
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N∑
y=1

[
1

(1 +R)y
(
Pb iniy Cv

pb + E ini
y Cv

pb +ByC
fx
) ]

6 BL. (3.23)

The first and second terms in (3.23) denote the costs associated with the installed

power rating and energy capacity, respectively, and the third term represents the fixed

installation cost.

• Battery Energy to Power Ratio Constraints: To maintain the energy to power

ratio
(
E
P

)
of the installed BESS within acceptable limits for the chosen technology,

the following constraint is introduced:(
E

P

)
Pby 6 Ey 6 Pby

(
E

P

)
∀y = 1. (3.24)

• Standardization of BESS Power and Energy Ratings: The BESS energy and

power capacity ratings need to follow available market standards, as follows:

E ini
y = n1y · ΛE & Pb iniy = n2y · ΛP . (3.25)

It should be noted that n1y and n2y are integer variables, and Λ is the standard

unit power and energy rating available on the market. In this work, ΛP and ΛE are

assumed to be 50 kW and 50 kWh, respectively.

• Linearization of Battery Capacity Degradation: As per common practice of

BESS manufacturers [106], the battery is warranted to provide desired performance

until a SoH of 80% of its rated capacity. Beyond that, the battery is recommended

to be replaced, as the manufacturer is no longer responsible for any malfunction that

could occur. In view of the above, the same assumption is used in this work, as

follows:

Ey = 0.8Eini ∀y. (3.26)

CRBy = Ey − Ey ∀y. (3.27)

Eini is the rated capacity of the BESS; note that (3.26) imposes the lower limit

of BESS capacity before replacement. The value of CRBy represents the remaining

energy capacity with respect to replacement threshold of the rated capacity. It should

be noted that if the value of CRBy = 0 or negative in (3.27), the BESS replacement

is due.
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−M · CF−y ≤ CRBy ≤ M · CF+
y ∀y. (3.28)

CF+
y + CF−y ≤

y=T∑
y=1

By ∀y. (3.29)

Constraint (3.28) ensures that CF+
y is unity when CRBy is positive, and zero oth-

erwise; similarly, CF−y is unity when CRBy is negative and zero otherwise. Equation

(3.29) enforces the coordination between CF+
y and CF−y . The CRB+

y represents the

positive value of CRBy and its associated constraints given below make sure that

the obtained value is correct.

0 ≤ CRB+
y ≤ M · CF+

y ∀y. (3.30)
CRB+

y ≤ CRBy + (1− CF+
y ) M ∀y. (3.31)

CRB+
y ≥ CRBy − (1− CF+

y ) M ∀y. (3.32)

The inequality constraint (3.30) states that CRB+
y is zero if CF+

y is zero, and

positive, less than “M” value, otherwise. The inequality constraint (3.31) ensures

that CRB+
y is equal to CRBy if CF+

y is unity.

−M · CF−y ≤ CRB−y ≤ 0 ∀y. (3.33)
CRB−y ≤ CRBy + (1− CF−y ) M ∀y. (3.34)
CRB−y ≥ CRBy − (1− CF−y ) M ∀y. (3.35)

The inequality constraints (3.33)−(3.35) are similar to (3.30)−(3.32), with the

exception that negative CRB−y is considered. The logic-of-status changes, given

below, ensure the transitions of states from 0 to 1 when the BESS capacity degrades

to the minimum limit; Z RY
y is a binary variable and becomes unity when BESS

reaches its year of replacement.

Z RY
y+1 = CF−y+1 − CF−y ∀y, y 6= 1 : Z RY

y = 0; y = 1. (3.36)

The replacement year is obtained from the constraint below, when Z RY
y is unity.

RY v
y = Z RY

y × ordy ∀y. (3.37)

In (3.37), ordy is the relative position of each year in the set.

46



• Replacement Year Bi-linear Relations: As shown in (3.11), BESS replacement

cost is a bi-linear term (product of two continuous variables), not acceptable in

MILP problems. The McCormick method [101] is applied to solve the bi-linear

term, obtained from multiplication of the two variables RY v
y and Eini, by replacing(

RY v
y · Eini

)
with a new variable, LRY y, which is linked with the two variables,

and introducing the inequality constraints (3.38)−(3.43). Also, the upper and lower

bounds for the two variables of the bi-linear term are chosen appropriately to reduce

the search space of the linearized problem (3.43).

LRY y ≥ Eini RY v
y + Eini RY v

y − Eini RY v
y ∀y. (3.38)

LRY y ≥ Eini RY v
y + Eini RY v

y − Eini RY v
y ∀y. (3.39)

LRY y ≤ Eini RY v
y + Eini RY v

y − Eini RY v
y ∀y. (3.40)

LRY y ≤ EiniRY v
y + RY v

y Eini − Eini RY v
y ∀y. (3.41)

Eini ≤ Eini ≤ Eini ∀y. (3.42)
RY v

y ≤ RY v
y ≤ RY v

y ∀y. (3.43)

Finally, the linearized form of (3.11) is obtained as follows:

J4 =
(
Eini

y −R · LRYy
)
·RC + εy ·

(
Eini

y ·RC
)
. (3.44)

In order to ensure convergence for this linearized model, the constraint relaxation

has to be controlled using an appropriate relative optimality gap.

• Linearization of BESS Replacement Year: The BESS energy capacity lost due

to degradation, at year y, is given by:

LCy = Eini − Ey ∀y. (3.45)

At the replacement year, the variable ACy, below, ensures that the BESS capacity

is equal to Eini; accordingly, the various linearized relations are given as:

ACy ≥ 0 ∀y. (3.46)
ACy ≤ M Z RY

y ∀y. (3.47)
ACy ≥ LCy + (1− Z RY

y ) M ∀y. (3.48)
ACy ≤ LCy − (1− Z RY

y ) M ∀y. (3.49)

• BESS Power Sizing: Note that BESS power capacity is assumed to remain
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constant throughout the planning horizon; degradation essentially affects the energy

capacity, as follows:

Pby =

{
Pbiniy ; y = 1.
P by−1 ∀y, y 6= 1.

(3.50)

By 6 Pbiniy 6M ·By ∀y. (3.51)

The constraint (3.51) ensures that BESS power capacity constraints are in effect,

once the BESS is installed.

• BESS Operational Constraints: The energy balance of BESS is given below,

where the charging/discharging operations determine the SoC level [107]:

Pbay,t ·
[

(Xdch
y,t )

ηdch
+ (Xch

y,t)ηch

]
= SoCy,t − SoCy,t−1 ∀y, t. (3.52)

Since the proposed planning problem is solved as an MILP optimization problem,

it is essential that (3.52), which is also nonlinear, is linearized using “Big-M” method.

The linearized equations of charging/discharging constraints can be found in [107].

To force the binary variables associated with the charging and discharging processes

to be properly activated, several constraints are used and can found in [35,107].

−M X ch
y,t 6 Pbay,t 6M X dch

y,t ∀y, t. (3.53)

X dch
y,t +X ch

y,t 6
N∑
y=1

By ∀y, t. (3.54)

The constraint (3.53) ensures that Xdch
y,t is unity when discharging and zero oth-

erwise; it also ensures that Xch
y,t is unity when charging and zero otherwise. It is

assumed that the chosen Li-Ion battery has a round-trip efficiency of 90% [108].

The coordination between charging and discharging ensures that decision variables

are attained, and that BESS does not charge and discharge simultaneously, as per

(3.54).

The SoC of the BESS is bound by lower and upper limits; the lower limit depends

on the DoD, as given below.

Ey ·
(
1−DoD

)
6 SoCy,t 6 Ey ∀y ∈ Y, t ∈ T. (3.55)
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It should be noted that SoCy,t varies over time, and depends on BESS capacity

degradation. The maximum allowable DoD of a BESS is denoted by DoD.

− Charging and Discharging Operational Relations: In order to capture the O&M

cost of the BESS in (3.3), BESS discharge needs to be calculated accurately. The

total energy discharged (TED) is given as follows [35]:

TED =

(
ηch

1− ηdch ηch

) T∑
t=1

−Pbay,t ∆t ∀y ∈ Y, t ∈ T. (3.56)

− Cycling Operations Constraints: The maximum number of C2F of BESS, NC2F ,

is obtained from the manufacturer as “Wöhler Curve”, which captures the effect of

BESS cycling degradation on the operations, as follows [34,35]:

TND·
∑
t∈T

X dch
y,t +X ch

y,t = Cycy ∀y ∈ Y, t ∈ T. (3.57)∑
y∈Y

Cycy 6 NC2F ∀y ∈ Y. (3.58)

Cycy is number of operational cycles of the BESS in year y; the value of NC2F is

provided by [108]. Note that Cycy can be obtained more accurately by implementing

the rainflow algorithm [96], by counting the operation cycles and grouping them in

various ranges of DoD, which is beyond the scope of this work.

• System Operational Constraints: The system demand-supply balance is given

as follows:

G∑
i=1

Py,i,t + Pbay,t + P PV
y,t + PW

y,t + PUNS
y,t = (1 + Γ)y−1Pdt (3.59)

Reserve constraints ensure that enough capacity is committed from generators

and BESS to meet the system peak demand and maintain a reserve capacity margin,

given as follows [35].∑
g∈G

(
PgWy,g,t − Py,g,t

)
+ SRBy,t ≥ χ

[
(1 + Γ)y−1

(Pdy,t − PUNS
y,t ) + P Solar

y,t + PWind
y,t

]
∀y, t. (3.60)
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In (3.60), Γ is the annual rate of demand increase and χ is a reserve allocation factor

to be maintained taking into account the uncertainty of RESs.

All standard unit commitment constraints are considered for generating units,

such as ramp-up/ramp-down constraints, minimum-up/minimum-down time con-

straints, and binary coordination constraints, which are discussed in [70].

3.4 Results and Discussions

3.4.1 Input Data, Assumptions, and Test System

3.4.1.1 Stage-I

In the deterministic case, one class of EV (EV2), as presented in Table 3.1, with

two realistic drive cycles, FTP-75 and EPA-Highway, are considered to obtain the

degradation using the BCDM, by emulating a realistic urban-highway-urban round

trip [109]. The FTP-75 drive cycle has three phases: cold-start, stabilized, and hot-

start, whereas the EPA-Highway drive cycle has only one phase. The total driving

distance is 68.16 miles, with an average speed of 34.22 km/h.

On the other hand, for a stochastic case study, three different classes of EV are

considered (EV1, EV2, and EV3), with twelve drive cycles for each class of EV,

selected based on a frequency-based feature selection approach [110]; real-world data

is collected and preprocessed, and the drive cycles have been clustered based on EV

classes. Table 3.1 presents the general data for the three classes of EV considered

in the studies. The EV drive cycles data §§ is based on the actual data collected for

three EV classes from the Region of Waterloo, Ontario, Canada, over a period of

three years.

The vehicle parameters used to calculate the traction power using VLDM and

VPM, are presented in Table 3.2 for EV2 class [80]. Similar parameters for the other

classes of EVs can be found in [79]. It is assumed that the EVB packs for all the EV

classes are fully charged at the beginning of the drive cycle, and their SoC is allowed

to vary between 20% and 90% during operation.

§§The data was collected in the Drive4Data program, led by Waterloo Institute for Sustainable
Energy (WISE). More information is available at: https://wise.uwaterloo.ca/drive4data.
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Table 3.1: EV Participants Database Summary

Model Size (kWh) Datalogging interval

EV1 Ford Focus 23 2013-2016
EV2 Nissan Leaf 24 2013-2016
EV3 Chevrolet Volt 16 2013-2016

Table 3.2: Nissan Leaf Vehicle (EV2) and other Parameters

Parameters Value Unit Parameters Value Unit

Effective vehicle frontal area (Af ) 2.59 m2 Air density (ρ) 1.225 (kg/m3)
Aerodynamic drag coefficient (CD) 0.28 - Gearbox ratio (Ng) 7.94 -
Gravitational acceleration (g) 9.81 (m/s2) Vehicle mass (m) 1,177 (kg)
Rolling resistance coefficient (Cr) 0.0125 - Wheel radius (rw) 0.3 m

It should be noted that the battery type of all EV classes is Li-ion pack as per

information given by their manufactures.

3.4.1.2 Stage-II and Stage-III

The Li-Ion battery is considered for both new and repurposed BESS, whose costs

are given in Table 3.3. The microgrid has a total investment budget of $2.5 million.

The maximum DoD is assumed to be 80%, whereas the E
P

ratio is between 1 and

4 [108]. The energy cost of REVBs is obtained in Stage-II, which is multiplied by

different factors obtained from [108] to estimate the different cost components of an

REVB system. Note that the cost of installing an REVB as a BESS is assumed to

be the same as installing a new BESS.

Table 3.3: System Costs of New and Repurposed Li-Ion BESS

Cv
pb Cv

E OMCfx OMCv RC Energy-Unit Power-Unit

$/kW $/kWh $/kWh $/kWh $/kWh $/kWh $/kW

New 1,859 901 13.2 0.0014 1,560 445 525

Repurposed 1,334 456 13.2 0.0018 1,115 200 236

The proposed BESS planning model is validated and tested on the CIGRE iso-

lated microgrid benchmark system [67], which features the following components: 3
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diesel generator units with ratings of 2,500 kW (DG1), 1,400 kW (DG2) and 800 kW

(DG3); a 310 kW CHP-diesel unit (DG4); a 500 kW gas-microturbine (DG5); and

8 PV units and 4-wind turbine units, with total installed capacities of 840 kW and

1,450 kW, respectively [67]. These dispatchable and non-dispatchable units supply

the peak demand of 5.29 MW in the first year, which increases annually at the rate

2% over a 10-year planning horizon [67]. A 3% annual fuel cost increase (FCI) is

assumed. The proposed BESS sizing model is executed based on forecasted profiles

of average power demand, and solar and wind generation, shown in Figure 3.3 and

Figure 3.4 [67]. The operating reserve requirement of the isolated microgrid is 13%
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Figure 3.3: Isolated microgrid hourly demand profile of each year (Pdt)

of the hourly demand. The fixed installation cost is $20, 000, which is incurred only

once. When the replacement year of the BESS is assumed to be fixed, the BESS is

replaced every 5 years. The discount rate (R) of the planning problem is assumed

to be 8%, and the maximum BESS energy capacity and power rating that can be

installed are 10 MWh and 10 MW, respectively. It should be noted that the Big-M

value is set to be 10,000 which is similar to the maximum BESS energy capacity.
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Figure 3.4: PV and wind hourly generation profiles

3.4.2 Results and Analysis

3.4.2.1 Stage-I

Deterministic Case Study: The Stage-I models are solved for a realistic urban-

highway-urban round trip drive cycle which results in degradation of the EVB pack to

an SoH of 80.2% of the original capacity of 24 kWh (EV2 class), with ζ = 4.752 kWh.

The degraded capacity after one daily drive cycle is 0.00775% of the initial capacity

(Figure 3.5(a)), and it is noted that the EVB reaches an SoH of 80.2% after 7 years

on the road (Figure 3.5 (b)). Assuming that the EVBs have a calendar life of 15

years [111], 7 years on the road means that they have a remaining calendar life of

8-years.

Stochastic Case Study: First, each EV class parameters described in Table 3.1

and their 12-selected drive cycles were simulated. The number of driving cycles to

reach the threshold of SoH (80%) is then determined. Figure 3.6(a)-Figure 3.6(c)

show the number of driving cycles required by each class of EV to reach an SoH of

80%. Each EVB reaches its 80% SoH depending on how harsh the acceleration and

braking events were for that vehicle’s drive cycle. Since each drive cycle represents a

one-day driving operation, the number of years that it takes for the EVB to degrade

to an SoH of 80%, denoted by Y2D, can be calculated as follows:

Y2D = Number of Drive Cycles to 80% SOH/TND (3.61)

After determining the Y2D of each drive cycle, it is then multiplied by a uniform prob-
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Figure 3.5: (a) EVB normalized capacity for one-day driving (b) EVB normalized capacity for
7-Years driving

ability distribution function to determine the expected Y2D, denoted by E(Y2D),

for each EV class, which will impact Stage-II and Stage-III. The remaining life of an

EVB will impact the cost of REVBs , and later will influence their replacement year

in the microgrid planning model. For the drive cycles considered in this work, it is

noted that the value of E(Y2D) is 5.6 years for class EV1, 5.1 years for class EV2 is,

and 5 years for class EV3. These values are less than those in the deterministic case

because of the presence of numerous real data scenarios of the drive cycles. Accord-

ingly, there would be early replacements for EVBs during their first-life, and longer

calendar years for REVBs in microgrid applications.

The stochastic studies demonstrate how to capture and represent the heterogene-

ity of REVBs in the real-world (e.g., different charging / discharging coefficients,

different remaining capacities for second-life purpose in microgrids, and different

characteristics) by clustering and integrating within the proposed planning model.

Thus, modelling the performance of the EVB on the road over a number of years

until it reaches its 80% SoH provides the inputs needed for Stage-II. It should be

noted that varying drive cycles, initial SoC, and other parameters of an EVB would

result in a different SoH, and, in turn, a different REVB cost, as presented in the

stochastic case.
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Figure 3.6: EVB normalized capacity for different drive cycles and EV classes
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3.4.2.2 Stage-II and Stage-III

The outputs of Stage-I of the deterministic case, are introduced as inputs to Stage-II;

the results show that the cost of the used Li-Ion EVB of 80.2% SoH is 141 $/kWh

and the effective repurposing cost is 59 $/kWh. The total cost of the REVB is

therefore 200 $/kWh. These values are compared with those for a new Li-Ion BESS

(Table 3.3), and introduced as inputs to Stage-III. It should be noted that the REVB

cost is based on EV2 class of the Nissan Leaf battery capacity of 24 kWh. In order

to examine the suitability of the proposed BESS planning model, the following cases

are considered:

• Base Case: No BESS installation.

• Case I: With REVB as BESS.

• Case II: With new BESS.

For Cases I and II, the following four scenarios pertaining to the BESS are studied:

(a) Fixed year of replacement, no degradation.

(b) Fixed year of replacement, considering degradation.

(c) Variable replacement year, considering degradation.

(d) Variable replacement year, considering degradation, with no C2F constraints.

The microgrid operator has the option to install BESS, either new or REVB, with the

objective of lowering the total NPV of costs, and thereby increasing its participation

in the system reserve service provisions and discharging energy during peak periods.

Also, the microgrid operator will optimally replace the BESS based on the introduced

set of constraints to avoid premature replacement and additional costs. As shown

in Table 3.4, for Case-I, Scenario-a, the total cost of the microgrid is $60,501,295,

which is considerably lower than that without BESS (Base Case), when the cost is

$82,097,474. The size of BESS as an REVB is optimally determined in Case-I(a) to

be 800 kWh with power rating of 600 kW; since degradation effect is not taken into

account, the BESS size is determined based on the terminal year requirements, which

implicitly satisfies previous year requirements as well. The operation of microgrid

for one day in year-5 of Case-I(a) is highlighted in Figure 3.7, which presents the

supply-demand balance where the supply is represented by stacked areas including
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Table 3.4: Optimal Battery Sizing Solutions (REVB)

Base Case Case-I: with REVBs

Scenario- - a b c d

Deg./RY.∗ - No/ Fixed Yes/ Fixed Yes/Variable Yes/Variable

J , $ 82,097,474 60,501,295 61,370,432 60,563,632 60,371,250

J1, $ 82,097,474 58,329,594 58,774,730 59,235,576 57,756,013

J2, $ - 1,097,407 1,202,963 1,328,056 1,640,000

J3, $ - 54,045 53,663 58,095 71,638

J4, $ - 1,020,249 1,339,077 780,710 903,600

RYy [year] - every 5 years 7 8

Pby [kW] - 600 600 650 800

Ey [kWh] - 800 1,050 1,200

*Deg./RY. denotes degradation and replacement year, respectively.

two discharging events of REVBs and the total load of the microgrid is represented

by a solid line.

In Case-I, Scenario-b, which considers BESS calendar and cycling degradations,

a 1,050 kWh / 600 kW REVB is optimally determined for the BESS in the mi-

crogrid. Even though the total microgrid cost is increased, the incremental cost of
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Figure 3.7: Supply and demand mix in Year-5 of Case-I, Scenario-a
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$869,137 (compared to Case-I(a)) captures the BESS size accurately. The optimal

scheduling and planning decisions indicate that the cost of isolated microgrid oper-

ation is higher when BESS degradation is considered, since the operation is more

accurately modelled and the microgrid operator adjusts the energy allocation (re-

serve and discharging) of BESS accordingly. It should be noted that degradation

due to cycling is only counted during discharging. Considering a flat rate of cycling

degradation would lead to premature replacement and additional costs (overestimat-

ing BESS sizes) would be incurred since each system operator has different operating

characteristics. However, when considering both cycling and calendar degradations

accurately, the optimal sizes would be obtained and premature replacements are

prevented.

Table 3.5: Optimal Battery Sizing Solutions (New BESS)

Base Case Case-II: with New BESS

Scenario- - a b c d

Deg./RY.∗ - No/ Fixed Yes/ Fixed Yes/Variable Yes/Variable

J , $ 82,097,474 61,534,080 62,556,243 61,885,146 61,873,402

J1, $ 82,097,474 58,465,019 58,927,916 58,476,460 58,155,742

J2, $ - 1,676,991 1,799,491 2,138,472 2,433,102

J3, $ - 53,852 49,078 58,049 62,469

J4, $ - 1,338,219 1,779,758 1,179,678 1,222,088

RYy [year] - every 5 years 6 8

Pby [kW] - 600 550 650 700

Ey [kWh] - 750 950 1200 1450

*Deg./RY. denotes degradation and replacement year, respectively.

Case-1, Scenario-c considers both the optimal year of replacement and the impact

of degradation; the total cost of the microgrid is reduced, and a saving of $806,800 is

achieved, as compared to Case-I(b). Although the size of the REVB is greater than

that in Case-I(b), i.e., 1,200 kWh/ 650 kW, the optimal replacement year, which

is year-7, ensures that the premature replacement observed in other Scenarios, is

prevented. The replacement cost in Case-I(c) is decreased by $558,366 as the year

of replacement is deferred to the seventh year, as opposed to that in Case-I(a) and

Case-I(b), and most of the work reported in the literature, where replacement year is

fixed, resulting in inaccurate BESS planning decisions. Moreover, implementing the

optimal year of replacement prevents more replacements over the planning horizon,

which reduces capital expenditure. If degradation and optimal replacement year are
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ignored, the model’s optimal decisions will be affected and hence reflected on the

total cost of the microgrid, as well as its reliability during operation.

It is noted that in all scenarios of Case-II (Table 3.5), installing a new BESS

increases the microgrid total cost. Comparing Case-I(c) with Case-II(c), it is seen

that the microgrid achieves a saving of $1,321,514 over the planning horizon when an

REVB is installed as the BESS instead of a new BESS. However, it should be noted

that the battery management system of the REVB has to be as reliable as that of a

new BESS. As in Case-I(c), when the model considers optimal replacement year in

Case-II(c), a significant cost saving of $671,097 compared to Case-II(b), is achieved

over the 10-year planning horizon.

Table 3.4 also shows that optimal investments in REVBs significantly reduces

the microgrid cost over the planning horizon. The optimal planning model leads to

further superior results after the replacement year is made a variable. When the

replacement year was fixed, the system accrued additional costs since the BESS had

not reached its EoL at the year of replacement. This premature replacement added

more cost to the microgrid operator, as seen in Case-I(b) and Case-II(b).

Similarly, when the optimal planning model does not consider the BESS degrada-

tion (Scenario-a in Case-I and Case-II ), the total cost of the microgrid, (J), is the

lowest among the scenarios pertaining to that case, and it does not reflect the true

cost of the microgrid. Optimal year of BESS replacement in Case-I(c) and Case-II(c)

occurs when the battery capacity reaches 80% of its original rated capacity. Accord-

ingly, in Table 3.4, Case-I(c) shows that the BESS is optimally replaced in year 7,

while Case-II(c), in Table 3.5, shows that the BESS is optimally replaced in year 6;

and not in year 5 as in Cases-I(a),(b), and Cases-II(a),(b).

The impact of BESS capacity degradation due to cycling and calendar aging is

fully considered, given that BESS degrades when there is a discharging process. Most

of the BESS sizing problems found in the literature consider a fixed degradation

during cycling at each year irrespective of the operation, thereby obtaining a size

and cost that are not quite accurate. When no degradation is considered, as in

Scenario-a, the sizing of the REVB is lower than that when degradation model is

implemented. The lower sizing is optimally chosen because the model sizes the REVB

at the terminal year when the demand is the highest, assuming the REVB energy

size will not degrade with time. This consideration is not valid even though it has

the least cost among all scenarios.

The optimal replacement year would be most important when considering dis-
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tributed BESS. Since each BESS operation would be different, the replacement year

will also be different.

Most energy management and resource allocation studies for BESS sizing do not

explicitly consider life-cycle degradation due to C2F or discharging. The latter leads

to BESS size degradation which has a great impact on the operation of a system.

In these case studies, since REVBs have lower number of C2F as compared to new

BESS, the microgrid operator tends to allocate more reserve to the REVBs instead of

discharging them, while the new BESS are scheduled for discharging operations much

more. This is shown in Figure 3.8, which compares the reserve allocated to REVBs

vis-à-vis new BESS. More discharging, understandably, leads to earlier replacement

year for new BESS as compared to REVBs .
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Figure 3.8: Reserves allocation of new BESS and REVBs in Year-9 of Case-I and
Case-II, Scenario-a

Allocating more reserves is reflected as well, in the optimal replacement year to

be year-7, in Case-I, Scenario-c, as against year-6 in Case-II, Scenario-c, as shown in

Tables 3.4 and 3.5. However, in Case-II, the microgrid operator tends to discharge

more energy since a new BESS has a higher number of C2F. Figures 3.9 and 3.10

depict the total microgrid reserve allocated by microgrid operator at year-10 to the

thermal generators, REVBs , and new BESS to meet the reserve requirements.

It is noted from Figure 3.11 that the average reserve allocation is mostly higher
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for REVBs as compared to new BESS. Also, it is clear from Figure 3.12 that new

BESS units are involved more in energy buffering than REVBs . In the first and

second year, both new BESS and REVBs are assigned only for reserve allocation so

that the battery does not degrade while buffering. Also, the REVB is assigned for

reserve allocation only, in year-4 and year-7, since it has fewer C2F as compared to

new BESS.

In Case-I(d) and Case-II(d) presented in Tables 3.4 and 3.5, the C2F constraints

are not considered. Due to the fact that the BESS does not have limits on C2F, the

BESS tends to discharge more, which results in more degradation of the battery, that

necessitates the system to have a larger size of BESS. Also, the replacement year of

the BESS is shifted to, a later year. Even though the total microgrid operation cost is

reduced, this reduction does not reflect the true operation cost of the microgrid. Case-

I(d) demonstrates how the replacement year of REVBs is limited by the calendar

degradation and REVBs have to be replaced at year-8, which is affected by Stage-I

outputs, and demonstrates why it is important to consider Stage-I.

3.4.2.3 Stochastic Case Study of Stage-II and Stage-III

After the REVBs are clustered into three classes, the optimal decisions for different

classes are obtained separately. The results obtained for each class are presented in

Table 3.6; only Scenario-c of Case-I is considered. It is evident that the results of
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Figure 3.9: Reserve provisions in Year-10 of Case-I, Scenario-c
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Figure 3.10: Reserve provisions in Year-10 of Case-II, Scenario-c

all the EV classes are quite similar. The installed REVB system based on EV1 class

has a higher operation and planning cost than EV2 or EV3 because it has a higher

Y2D, which was obtained in Stage-I, and lower number of C2F. EV2 and EV3 yield
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Figure 3.11: Average reserve over planning horizon
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Figure 3.12: Annual energy consumption over planning horizon

the same optimal solutions because they have quite similar values of Y2D and C2F.

Table 3.6: Optimal Solutions with Different EV Classes

Case-I-Scenario-C: with REVBs

EV Class EV1 EV2 and EV3

Deg./RY.∗ Yes/ Variable Yes/ Variable

J , $ 60,339,949 60,171,400

J1, $ 58,172,088 58,000,046
J2, $ 1,328,056 1,328,056
J3, $ 59,095 62,588
J4, $ 780,710 780,710

RYy [year] 7 7

Pby [kW] 650 650
Ey [kWh] 1200 1200

*Deg./RY. denotes degradation and replacement year, respec-
tively.
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3.5 Algorithms and Computational Aspects

The Stage-I models -VLDM, VPM and BCDM- are programmed and simulated in

Matlab/Simulink. The proposed microgrid planning model is programmed and ex-

ecuted in the GAMS environment on an IBM Server xSeries 460 with 8 Intel Xeon

2.8 GHz processors and 3 GB (effective) of RAM. The optimization model is an

MILP model which is solved using the CPLEX solver, which provides an option to

use either Benders decomposition algorithm, or by default, uses the conventional

branch and bound (B&B) algorithm. In this work, the CPLEX was set to use the

default B&B algorithm [112]. The MILP optimal solution is obtained by setting the

optimality gap to 5%. The model and solver statistics for the chosen cases are given

in Table 3.7.

Table 3.7: Model Statistics

Base Case Case-I(c)

Model Type MILP MILP
Solver Used CPLEX CPLEX
Number of Single Equations 5,541 12,434
Number of Single Variables 5,581 8,373
CPU time 0.182 (s)∗ 4 (h)∗

*(s) and (h) denote second and hour, receptively.

3.5.1 Comments on Linearization

In mathematical programming, the concept of linearization involves approximating

a given function using a linear function in an interval. In this work, three different

linearization methods are used for different tasks. First, the PVF of (3.8) is linearized

as an infinite series using binomial expression. By replacing the sum of higher-order

terms of (3.9) with εy, a new representation of the PVF is derived. This linearization

is only a transformation and does not impact the accuracy, as shown in Figure 3.2.

The second type of linearization involves linearizing the product of a binary and

a continuous variable, and is used at multiple instances, in the BESS operational

and sizing constraints. This linearization uses the commonly used Big-M method

where an additional set of linear constraints is used to represent the product of

two variables. The linear set of constraints are effectively modeled to represent the
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product of variables in an exact form. There is no approximation, and hence, no

loss of accuracy. The third type of linearization is McCormick linearization [101],

that is used to linearize the term associated with the replacement cost J4 in (3.7).

McCormick linearization is a convex relaxation approach used for bilinear variables

(product of two continuous variables), wherein the lower and upper bounds of the

two continuous variables are chosen in such a way that the search for the optimal

solution is within practical limits of computation. It should be noted that the chosen

boundaries of the two variables define the solution space.

In this work, the variables of concern in J4 (3.7) are the replacement year (RY v
y )

and the BESS capacity (Eini
y ). As be noted from Table 3.8, the lower and upper

Table 3.8: Boundary Limits of Nonlinear Variables

Lower Limits Upper Limits

RY v
y 1 year (new BESS) 10 years

RY v
y 1 year ( REVBs ) Depends on Y2D

Eini
y 0 MWh 10 MWh

bounds of these variables are chosen based on realistic considerations of the micro-

grid planner; for example, maximum BESS capacity to be installed is chosen to be

10 MWh, which is governed by external factors such as budgetary limits or policy

decisions. The replacement year for REVBs depends on the remaining life of the

batteries. It should be noted that the accuracy of the planning model will not be

impacted by the process of linearization.

3.6 Summary

The large-scale deployment of BESS within microgrids is constrained by their high

investment cost barrier while the availability of used EVBs has created a less ex-

pensive option for the planners. Researchers have, thus far, not taken into account

BESS degradation, in sizing and life-cycle assessment for microgrid long-term plan-

ning models. This work develops a systematic procedure to model the degradation

of EVBs for different classes of EV during their first-life. This model is integrated

into a novel microgrid planning model that determines the optimal decisions of new

BESS and REVBs and their corresponding sizing and year of installation, taking into

account a new set of mathematical relations of BESS degradation and optimal year of
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replacement. REVBs are modeled considering their first-life drive cycles and degra-

dation models, which impacts the microgrid planning decisions, if not considered.

Stage-I and Stage-II of the proposed framework quantify the EV battery first-life

and present a process to calculate the cost of REVB. The model in Stage-I can be

used by researchers and EV manufacturers to develop a data set of EV batteries

pertaining to their life. The mathematical model in Stage-III of the proposed frame-

work is targeted to a microgrid or distribution system planner, wherein the planner

accesses the data set from Stage-I and Stage-II, for the model in Stage-III. To have

a robust operation of REVBs, they are assumed to be equipped with a BMS that

controls the operation of the REVBs.
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Chapter 4

A Backward-Forward Propagation

Approach for REVB-Based

Microgrid Planning Considering

Adequacy∗

4.1 Nomenclature

Indices
d Time interval, days, d ∈ D
g Generation unit g ∈ G
k REVB unit k ∈ K
t Time interval, hours, t ∈ T
y Planning horizon, years, y ∈ Y

Parameters
CND Chosen number of days in a single year
CUNS Cost of unserved demand [$/kW]
Cv

E REVB annual installation cost of energy capacity [$/kWh]
Cv

pb REVB annual installation cost of power capacity [ $/kW]
Cfx Annual fixed installation cost of REVB [$]

∗Parts of this chapter have been submitted as a paper in: T. Alharbi, K. Bhattacharya and M.
Kazerani, ”A New Approach for Repurposed EV Battery-Based Microgrid Planning Considering
Adequacy,” in IEEE Transactions on Power System, 2020

67



DoD Maximum DoD of the REVB [%]
DoD Minimum DoD of the REVB [%]
(E/P ) Maximum energy to power ratio of the REVB
(E/P ) Minimum energy to power ratio of the REVB
M Large number
OMCfx Annual fixed O&M cost of the REVB [$/kW]
OMCv Annual variable O&M cost of REVB [$/kW]
P Solar
d,t Isolated microgrid solar power output forecast [kW]
PWind
d,t Isolated microgrid wind power output forecast [kW]
Pdd,t Isolated microgrid demand [kW]
RC REVB replacement cost [$/kWh]
SDN g Shut-down cost of generator [$/h]
SUP g Start-up cost of generator [$/h]
TD Total number of days in a year
ηch REVB charging efficiency [%]
ηdch REVB discharging efficiency [%]
σk Lower threshold of SoH for the REVB
αk REVB degradation factor [%]
ΛE Market standard for REVB energy capacity sizes [kWh]
ΛP Market standard for REVB power capacity sizes [kW]
β Energy sharing based degradation factor [%]

Variables
ACk Energy capacity of REVB added in replacement year [kWh]
Bk Binary decision for REVB installation [1 or 0]
CRBk REVB remaining energy capacity [kWh]
CFk Binary decision for CRBk [kWh]
CF+

k Binary decision for REVB when CRBk is [+]
CF−k Binary decision for REVB when CRBk is [0 or -]
Ek REVB energy capacity [kWh]
E ini

k REVB nominal energy capacity at time of installation [kWh]
EdegCyc

k REVB capacity degradation due to cycling effect [kWh]
EdegCal

k REVB capacity degradation due to calendar effect [kWh]
Ek REVB total installed nominal energy capacity [kWh]

Ede
k REVB total energy capacity after degradation [kWh]

Ede
k /Pbk REVB energy to power ratio at current capacity

Ek Minimum REVB energy capacity [kWh]
n1k Integer variables for REVB energy capacity size
n2k Integer variables for REVB power capacity size
ordy Relative position of the REVB replacement year
PUNS
d,t Isolated microgrid unserved demand [kW]
Pbk REVB power capacity [kW]
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Pb inik REVB nominal power capacity at time of installation [kW]
Pbk REVB total installed power capacity [kW]
Pbak,d,t REVB charging (-)/discharging (+) power [kW]
Pg g,d,t Generator power output [kW]
RY v

k REVB replacement year
SRBk,d,t Reserve provided to the microgrid by REVB [kW]
SOCk,d,t SoC of the REVB [kWh]
Ug,d,t Generator shut-down binary decision [1 or 0]
Vg,d,t Generator start-up binary decision [1 or 0]
Wg,d,t Generator commitment binary decision[1: ON, 0: OFF]
Xch

k,d,t Binary decision for REVB charging
Xdch

k,d,t Binary decision for REVB discharging
Z RY

k Binary decision on REVB replacement
γk REVB weighing factor for energy sharing
∆+

k,d,t Binary decision for REVB ∆SOC+
k,d,t

∆−k,d,t Binary decision for REVB ∆SOC−k,d,t
∆SOCk,d,tChange in SoC of the REVB [kWh]
∆SOC+

k,d,tChange in SoC of the REVB when charging [kWh]
∆SOC−k,d,tChange in SoC of the REVB when discharging [kWh]

4.2 Introduction

Chapter 3 presented a systematic procedure to model the degradation of EVBs for

different classes of EVs during their first-life. This model was integrated into a novel

microgrid planning framework to determine the optimal investment plan for new

BESS and REVBs. However, the planning model did not take into consideration

system adequacy aspects, which are very important for isolated microgrids.

Moreover in Chapter 3, the REVBs were considered as single unit systems, for

simplicity in modeling. However, in real systems, that is not the case. For example,

a 450 kW/450 kWh REVB would in real-life, is typically comprised of three 150

kW/150 kWh batteries. Therefore, a multiple unit REVB installation plan is now

considered and a new energy sharing strategy is proposed in this chapter.

Ideally a single comprehensive MILP model would solve the REVB-based micro-

grid planning problem, as was considered in the previous chapter. However, such a

formulation is computationally very intensive and after the introduction of adequacy

constraints and multi-unit REVBs, the problem dimension is significantly increased

and fails to arrive at a feasible optimal solution. To circumvent these issues, a new
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heuristic backward-forward propagation approach is proposed in this chapter to ar-

rive at the sub-optimal microgrid plan decisions.

In view of the above discussions, the main objectives of this chapter are as follows:

• To extend the previously proposed microgrid planning model to include multi-

unit REVBs to simultaneously determine their optimal installations, power and

energy sizing, as well as replacement and investment timelines.

• To accommodate multiple installations and replacements of REVBs over the

planning horizon, a novel power sharing strategy among various installed REVB

units is proposed to enhance the battery useful life and delay their replacements

so as to minimize the total cost.

• A novel, heuristic, adequacy check module is introduced starting from the

terminal year of the planning horizon, and backwords propagating to the initial

year, to ensure that the microgrid’s capacity adequacy requirements are met

at all years. The investment plan is revised appropriately, if at any year the

adequacy constraint is not satisfied.

• A novel forward-propagation approach, based on the operation of the REVB

units is introduced to take into account their degradation, and hence to ap-

propriately select their replacement year, which may also require revising the

installed energy capacity of the REVBs.

The structure of the chapter is as follows: The proposed backward-forward propa-

gation approach is presented in Section 4.4. The mathematical model for multi-year,

multi-unit REVB-based microgrid planning is presented in Section 4.4 as well. In

Section 4.5, the system under study and its parameters are introduced. Thereafter,

the results of the case study using the proposed approach are presented and discussed

in detail in Section 4.6 to demonstrate the effectiveness of the approach. The work

is summarized in Section 4.7.

4.3 Proposed Concept for Adequacy Check using

Battery E/P Ratio

The installed REVB units will experience both cycle and calendar degradations over

the years because of operation and idling, which will reduce their E/P ratio below

unity, as given in Figure 4.1. Therefore, a degraded REVB unit will not be able to

supply the rated power P for the entire one hour interval.
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In order for the microgrid to maintain the required adequacy level after installing

REVB units, the total microgrid capacity (including REVBs) need be maintained

by ensuring that the E/P ratio of the installed REVBs is always above unity.
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Figure 4.1: Proposed Energy to Power ratio adequacy check

As an example shown in Figure 4.1, in the first year, three battery units are

installed, of sizes 10 kWh /5 kW, 5 kWh / 2.5 kW, and 5 kWh / 2.5 kW, respectively.

Battery units experience degradation over time, their energy capacity permanently

reduces thus reducing the amount of energy a battery unit can store during operation.

As seen in the third year, the first unit energy capacity is reduced to 8.5 kWh (85%

SoH) and by the fifth year it is 4 kWh (40% SoH). The other battery units also

experience similar degradation in their SoH.

The degradation of the battery will impact the E/P ratio. As previously men-

tioned, the E/P ratio is the total energy capacity of all battery units divided by their
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total power capacity. In the first and the third year, the E/P ratio is greater than

unity, being 2 and 1.7 respectively. The E/P ratio being greater than unity indicates

that the battery can supply power at its rated capacity P for one hour, or more, and

is hence satisfying the adequacy constraint. On the other hand, in the fifth year,

the E/P ratio falls below unity which means the battery is not able to provide P

kW power for one hour, and hence the E/P ratio represents a lack of adequacy. In

conclusion, if the E/P ratio is above unity, the battery is fully available, while if not,

then it is on partial outage and impacts system adequacy and needs to be replaced

by new battery units.

4.4 Backward-Forward Propagation Approach for

Multi-year, Multi-Unit REVB-based Micro-

grid Planning Considering Adequacy

In this section, a comprehensive multi-year, multi-unit REVB-based microgrid plan-

ning framework is proposed to determine the optimal power and energy sizes, year

of installation, and year of replacements of the REVB units. Also, a power sharing

strategy is proposed to enhance the battery useful life and delay the replacements of

the REVB units to minimize the total investment cost while ensuring the adequacy

is not compromised. A three-stage approach is proposed, as outlined below.

Stage-I: determines the optimal power, energy size and number of REVB units

required to be in place, at the plan terminal year while ensuring the microgrid

adequacy is met.

Stage-II: includes the backward-propagation approach which determines the

optimal year of installation of all REVB units, for the decisions obtained in

Stage-I.

Stage-III is a forward-propagation approach that determines the optimal year

of replacements, and the weighing decision variables for REVB-discharging

that accounts for battery degradation. The decisions obtained in Stage-I and

Stage-II will be revised if the degradation of REVB units violate the allowable

adequacy limit of the microgrid.
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The backward propagation of the model starts from the plan terminal year Y and

ends at the first year. The forward propagation follows, where the model is executed

from the first year and ending at the terminal year. Within the forward propagation

process, a power sharing strategy is incorporated and an iterative adequacy check

is introduced that involves post-processing evaluation of the plan decisions such as

power and energy capacities. This adequacy check ensures that the target plan

adequacy level is met for every year and that degradation is minimized. The details

of the proposed framework are discussed next.

4.4.1 Stage-I: Terminal Year Optimal Sizing of REVB Based

on Adequacy Check

In this stage, the microgrid optimal plan decisions include the power and energy sizes

of the REVB units for the terminal year Figure 4.2. The number of REVB units

needed to be installed are divided into clusters, each with a set of REVB units. The

step-by-step procedure is discussed in detail as follows.

S1.1 Read input data for the test system to be input to the microgrid planning

model for terminal year (Y ).

S1.2 Solve the planning model to determine the optimal REVB power (Pb ini
k ) and

energy (E ini
k ) sizes, along with other optimal plan decisions.

S1.3 Using the plan outcomes, microgrid generating unit data (including reliability

data), and terminal year demand, execute the LOLP Convolution Algorithm

to construct the COPT for terminal year.

S1.4 Using the COPT, evaluate the microgrid’s LOLP and check if it satisfies ade-

quacy standards.

S1.5 If YES, select the optimal REVB sizes obtained, and go to next step. If NO,

reject the optimal REVB decisions and increase Pb ini
k , following the available

capacity standards. Go to Step S1.2 , re-execute the microgrid planning model

again.

S1.6 Final plan decisions for terminal year (Y ) are obtained, which satisfy target

adequacy standard of the microgrid,
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sizes of REVBs following
the available standards

Yes

No

Figure 4.2: Flowchart for Stage-I

In the next stage, a backward-propagation approach, which starts from year Y −1

and terminated at the initial year, is used to obtain the optimal installation year of

each REVB unit belonging to a given cluster of REVBs.

4.4.2 Stage-II: REVBs Optimal Sizing and Year of Installa-

tion

After the optimal power and energy sizes are obtained for year Y in Stage-I and the

allocation of number of battery units in each REVB cluster is laid out, the optimal

REVB sizes required in the earlier years of the plan, along with the installation year

of the REVB units are now determined in Stage-II, starting from year Y -1, as shown

in Figure 4.3. The adequacy check used in Stage-I has been used in Stage-II, as well.

The obtained REVB power size Pb ini
k of year y is fixed, as a starting point for

year y-1. Since Pb ini
k for year y satisfies the target adequacy standard, its value is
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Figure 4.3: Flowchart for Stage-II

reduced in steps to obtain the minimum Pb ini
k while satisfying the target adequacy

at year y-1. The planning model is then solved for year y − 1, fixing the obtained

value of Pb ini
k to determine the optimal E ini

k decisions. This is repeated until the

power and energy sizes of the REVBs are determined for all years.

The optimal installation years are obtained directly from solving the planning

model in the final iteration.
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4.4.3 Stage-III: Optimal Year of Replacement of REVB

In the previous stages, the optimal sizing and year of installation of REVBs are

determined based on the backward-propagation approach. In Stage-III, a forward-

propagation process, starting from the initial year and terminating at year Y is

proposed, to determine the optimal replacement year of each REVB unit, as shown

in Figure 4.4.

When an REVB is installed in year y, and continuously operated, it will experi-

ence both cycle and calendar degradations over the years. Because of this, although

its Pbk will remain the same, its Ek will decrease, thereby reducing the Ek/Pk ratio

below unity and hence not allowing the REVB to supply the Pbk power for one

hour, which means the microgrid adequacy is violated. Therefore, if the LOLP

target level is violated the optimal decisions of Stage-II, i.e., the optimal REVB

sizes, may have to be revised by the new proposed approach, forward propagation,

implemented in Stage III, as REVB operations are taken into consideration. The

new proposed approach, forward-propagation, is essential since the REVB cumula-

tive energy degradation can make the Ek/Pk ratio less than unity, which will violate

the adequacy limit. In this stage, the microgrid planning model is solved after the

proposed energy sharing constraints of the REVBs have been introduced by fixing

Pb ini
k , E ini

k and the installation year, that are obtained in earlier stages.

In the microgrid planning model, the energy sharing strategy is based on new

weighing decision variables that are optimally chosen by the microgrid planning

model to allocate the discharging power needed by the microgrid among the installed

multiple of REVBs.

4.4.4 Microgrid Planning Model for Horizon Year

The objective function J of the horizon year planning model of the microgrid seeks

to minimize its total annualized investment and operating cost at the horizon year,

which is given as follows:

J =
∑
y

J1 + J2 + J3 + J4. (4.1)

In (4.1), J1 represents the total operating cost of the microgrid and is comprised
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Figure 4.4: Flowchart for Stage-III

of the generation cost of each unit, and cost of unserved demand, given as follows:

J1 = (TD/CND)
∑
g∈G

∑
d∈D

∑
t∈T

[
(Pg g,d,t bg + cgWg,d,t) + SUPgUg,d,t + SDNgVg,d,t+

PUNS
d,t CUNS

d,t +

]
. (4.2)

In (4.1), J2 represents the installation cost of multiple REVB units and includes

their power capacity cost, energy capacity cost, and a fixed installation cost, given
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as follows:

J2 =
∑
k∈K

[ (
Pb inik Cv

pb + E ini
k Cv

E +BkC
fx
) ]
. (4.3)

In (4.1), J3 represents the Operating and Maintenance (O&M) cost and comprises

the fixed and variable O&M costs of the REVB.

J3 =
∑
k∈K

[
OMCfx (Pbk)

]
︸ ︷︷ ︸

Fixed O&M Cost of the Battery

+

(TD/CND)
∑
k∈K

∑
d∈D

∑
t∈T

[
OMCv

(
ηch

1− ηdch · ηch
(−Pbak,d,t)

)]
︸ ︷︷ ︸

Variable O&M Cost of the Battery

. (4.4)

In (4.1), J4 represents the REVB replacement cost and is applied only when the

REVB reaches its specified EoL, as given below.

J4 =
K∑
k=1

[ (
Eini

k −R · LRYk
)
·RC + εk ·

(
Eini

k ·RC
) ]
. (4.5)

It should be noted that J4 is only considered in Stage-III of the planning frame-

work when determining the optimal replacement decisions, and (4.5) is adopted from

Eq. (3.11) [54] . The McCormick method [101] has been applied to replace the bi-

linear term, obtained from multiplication of the two variables RY v
k and Eini

k , by

replacing (RY v
k · Eini

k ) with a new variable, LRYk, which is linked with the two

variables [54]. An in depth explanation can be found in (3.38)−(3.43).

Model Sizing Constraints

• Capital Budget of REVB: This constraint imposes an upper limit on the capital

spending/ investment on the microgrid towards multiple installations and replace-

ments of REVBs in the plan horizon year.

K∑
k=1

[ (
Pb inik Cv

pb + E ini
k Cv

E +BkC
fx
) ]

6 BL. (4.6)
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The first and second terms in (4.6) represents the costs associated with the installed

power and energy capacities of each unit, respectively, and the third term represents

the fixed installation cost of REVB units. These costs altogether must be below the

assigned budget limit.

• REVB Power Sizing: These constraints pertain to the limits on REVB power

capacity to be installed.

Bk · Pbit 6 Pbinik 6M ·Bk ∀k ∈ K (4.7)
Pbk = Pbinik ∀k ∈ K (4.8)

Pb inik = ϕ2k · ΛP ∀k ∈ K (4.9)

Note from Eq. (4.8) that the power size remains constant throughout the plan-

ning horizon. The installed power capacity is restricted to follow available market

standards as given (4.9); ϕ2k is an integer variable. Also note that Pbinik is only

active in the year of installation, and Pbit is a power capacity setting used as lower

limit when the adequacy check is not satisfied in the previous iteration.

• REVB Energy Sizing: The binary variables Bk take the value of unity if there

is an installation during the plan interval.

Bk · Eit 6 Eini
k 6M ·Bk ∀k ∈ K (4.10)

E ini
k = ϕ1k · ΛE ∀k ∈ K (4.11)

(E/P ) Pb inik 6 E ini
k 6 Pb inik (E/P ) ∀k ∈ K (4.12)

Ek = E ini
k − EdegCyc

k − EdegCal
k + ACk ∀k ∈ K (4.13)

EdegCyc
k = (TD/CND) ·

∑
d∈D

∑
t∈T

(
αk ·∆SOC−k,d,t

)
∀k ∈ K (4.14)

Once the REVB unit is installed, the energy capacity of each unit k is restricted

between its lower and upper bounds, as in (4.10). The E ini
k sizes should adhere to

energy ratings available in the market, ΛE, as given in (4.11). Moreover, the E ini
k

value has to be within the upper and lower limits of E/P ratio, as given in (4.12).

Note that once Stage-I and Stage-II decisions are final, the Bk vector for a given year

y is created.

The REVB capacity lost due to cycling and calendar degradations, (EdegCyc
k ,

EdegCal
k ), respectively, during operation (discharging only, ∆SOC−k,d,t) and idling

modes are accounted for, as given in (4.13) and (4.14). The last term in (4.13) is

only active when there is replacement of REVB unit which is optimally selected

based on the REVB operation. Note that, Eit is an energy capacity setting used

79



as lower limit when the adequacy check is not satisfied in the previous iteration

of Stage-III, i.e., the Ek/P ini
k ratio after degradation is less than unity. In (4.11)

the ϕ1k is an integer variable. It should be noted that in Stage-III, at the end of

year y, the value of Ek will be E ini
k for next year. The variables denoting REVB

capacity lost due to cycling degradation, EdegCyc
k , and replacement capacity, ACk,

are operational-planning dependent variables, as they will be discussed later.

• REVB Operational Constraints: Once the REVB unit is installed, the oper-

ational constraints that define the discharging and charging process and balancing

the energy level of the battery are given as follows [107]:

SoCk,d,t = SoCk,d,t−1 + Pbak,d,t

[
(Xdch

k,d,t)

ηdch
+ (Xch

k,d,t)ηch

]
∀k ∈ K ∈ d ∈ D, t ∈ T

(4.15)

The energy balance equation of REVB given in (4.15) dictates the SoC level of each

unit, which must be within the capacity limit of the battery as given in (4.16).

The lower limits depends on how much DoD is allowed each time, DoD. It should

be noted that (4.15) is a non-linear equation and the detailed linearization using

“Big-M” method can be found in [35,54].

Ek ·
(
1−DoD

)
6 SoCk,d,t 6 Ek ∀k ∈ K ∈ d ∈ D, t ∈ T (4.16)

−M X ch
k,d,t 6 Pbak,d,t 6M X dch

k,d,t ∀k ∈ K ∈ d ∈ D, t ∈ T (4.17)
−Pbk ≤ Pbak,d,t ≤ Pbk ∀k ∈ K ∈ d ∈ D, t ∈ T (4.18)
X dch

k,d,t +X ch
k,d,t 6 Bk ∀k ∈ K ∈ d ∈ D, t ∈ T (4.19)

(TD/CND) ·
∑
d∈D

∑
t∈T

X dch
k,d,t +X ch

k,d,t 6 NC2Fk
∀k ∈ K ∈ d ∈ D, t ∈ T (4.20)

To activate the charging and discharging process, binary variables X ch
k,d,t, X

dch
k,d,t, re-

spectively, are introduced in (4.17). The charging/discharging power, Pbak,d,t, is

limited by the installed power size of the REVB unit (4.18). The binary variables

are forced to act as a switch between the charging and discharging processes, as

shown in (4.19). In order to count how many operational cycles the REVB has

gone through, (4.20) is introduced which is limited by the manufacturer stated C2F,

NC2Fk
[34,35]. It should be noted that NC2Fk

for a certain year is carried over to the

following year until the battery unit is replaced.

− Energy Sharing Operation of REVBs Included in Stage-III: The proposed en-

ergy sharing operation strategy among the multiple installed REVB units is based on
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weighing factors (γk), optimally determined by the model in Stage-III. These factors

represent the magnitude of degradation of each REVB unit on a yearly basis and

depends on the REVB discharging power which is a function of EdegCyc
k . The SoH

of the battery is impacted by the values of γk, as given below,∑
k∈K

γk = 1 (4.21)∑
k∈K

γk · EdegCyc
k ≤ β

∑
k∈K

Eini
k . (4.22)

Note that the γk of each unit is between zero and unity. The parameter β in (4.22)

represents the upper limit of cycling degradation of each REVB unit. This parameter

is a decision of the microgrid planner, and has a significant influence on the battery

EoL and discharging schedules.

• REVB Replacement Constraints: Once the energy capacity of REVBs, Ek,

reaches the lower SoH threshold, given by (4.23), the associated variables and con-

straints below will be active. Note that, σk is a percentage of the rated capacity

recommended by the manufacturer at which the battery should be replaced.

Ek = σk E
ini
k ∀k ∈ K (4.23)

CRBk = Ek − Ek ∀k ∈ K (4.24)

CFk =

{
CF+

k if CRBk is a positive value
CF−k otherwise

∀k ∈ K (4.25)

Z RY
k+1 = CF−k+1 − CF−k ∀k ∈ K (4.26)
RY v

k = Z RY
k × ordy ∀k ∈ K (4.27)

ACk = Eini
k − Ek ⇒ ∃ if Z RY

k = 1 ∀k ∈ K (4.28)

The CFk takes a binary variable, as given in (4.25). If REVB energy capacity reaches

the lower SoH threshold, then there is a replacement and CF−k will be unity while

CF+
k is zero. The binary variable Z RY

k+1 is an indicator variable that marks the

replacement year, as explained mathematically in (4.26) and (4.27). Finally when

Z RY
k+1 is unity, the variable ACk, ensures that the REVB energy capacity is equal to

Eini
k as mentioned earlier in (4.13).

• System Operational Constraints: The microgrid supply-demand balance is given

below where the total discharge and charge power from all the installed REVB units
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are included, given as follows :∑
g∈G

Pg,d,t +
∑
k∈K

Pbak,d,t + P PV
d,t + PW

d,t + PUNS
d,t = Pdd,t ∀d ∈ D, t ∈ T. (4.29)

Reserve constraints ensure that enough capacity is committed from generators

and all installed REVB units, in order to meet the system peak demand and maintain

a capacity margin, given as follows [35].∑
g∈G

(
PgWg,d,t − Pg,d,t

)
+
∑
k∈K

SRBk,d,t ≥ χ
[
(Pdd,t − PUNS

d,t )+

P Solar
d,t + PWind

d,t

]
∀d ∈ D, t ∈ T. (4.30)

In (4.30), χ is a reserve allocation factor to be maintained, taking into account the

uncertainty of RESs. Similar to the supply-demand balance constraint, the total

reserve from all the installed REVB units are summed up to arrive at an overall

reserve capacity, SRBk,d,t, given as follows:

SRBk,d,t ≤ −Pbak,d,t + min
{ [
SOCk,d,t − Ek,d,t(1−DoD)

]
ηdch, P bk

}
∀d ∈ D, t ∈ T. (4.31)

The SRBk,d,t value of each installed REVB unit takes the higher capacity from either

the available energy or the installed power of REVB unit and it also subtracts or

adds the discharging/charging power, as mathematically given in (4.31).

All standard unit commitment constraints are considered for generating units,

such as ramp-up/ramp-down constraints, minimum-up/minimum-down time con-

straints, and binary coordination constraints, which are discussed in [70].

• LOLP Convolution Algorithm: The Forced Outage Rate (FOR) is defined as

the probability of the generating unit or the installed REVB clusters being in an

outage state. In order to determine the LOLP of the microgrid, the COPT has to

be constructed, which will include the capacities and associated FOR. The COPT

can be derived from the conditional probability relationship, given as follows:

Cprbnew(X) = Cprbold(X) · (1− FOR) + Cprbold(X − C) · FOR ∀X < C (4.32)
Cprb(X) =1 ∀X > C (4.33)

where x represents the demand of the system and c represents the capacity of the
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next unit to be convolved. Cprbnew denotes the cumulative probability of x kW or

more on outage for a system after convolving the next unit, while Cprbold represents

the probability of x kW or more on outage for the system before c is added [71].

4.5 System Under Study

The test system under study is the CIGRE isolated microgrid benchmark which

houses three diesel generators with ratings of 2,500 kW, 1,400 kW, and 800 kW,

respectively, a CHP-diesel unit with a capacity of 310 kW; a 500 kW gas-fired micro-

turbine; and eight solar PV units for a total of 840 kW, and four wind turbine units

with a total capacity of 1,450 kW [67,113].

As mentioned earlier, the generators and the REVBs supply three days of demand,

each representing a season with the associated peak in first year being 5.54, 5.40

and 5.03 MW, respectively, which increases by 2% annually over a 10-year planning

horizon [67]. The target LOLP for the microgrid is assumed to be 0.1 or lower. The

market standard for power and energy capacities of REVBs, ΛP and ΛE respectively,

are assumed to be 50 kW and 50 kWh.

The annual increase in the fuel cost is assumed 3%. The total capital expenditures

on REVB installations and replacements, made by the microgrid operator, is limited

by an annual budget limit of $2.5 million. The parameter αk in (4.14) is a degradation

factor equal to 0.0003 which accounts for cycling degradation and is based on lab

measurements [105]. The FOR of all generating units and REVBs are assumed to

vary between 0.07 to 0.1.

Li-Ion batteries are considered for REVBs, whose costs are given in Table 4.1

[54, 108]. The maximum and the minimum DoD are assumed to be 80% and 20%,

respectively, whereas the E/P ratio is between 1 and 4 [108]. The degradation of a

battery unit is defined and limited is this work by the parameter β = 8%, in (4.22).

Table 4.1: REVB Cost Parameters

Cv
Pb Cv

E OMCfx OMCv RC Energy Capacity Power Capacity
$/kW $/kWh $/kWh $/kWh $/kWh $/kWh $/kW

REVB 1,334 456 13.2 0.018 1,115 200 236

The operating reserve requirement of the isolated microgrid is 13% of the hourly

demand. The fixed installation for REVB cost is $20, 000, which is incurred only at
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the year of installation. The discount rate (R) of the planning problem is assumed to

be 8%. It should be noted that the Big-M value is set to be 10,000 which is similar

to the maximum REVB energy capacity.

4.6 Results and Discussions

The proposed framework discussed in Section 4.4.1 is used to determine the optimal

power and energy sizes for the terminal year, as shown in Table 4.2, iteration-1.

Although this is the lowest cost plan, note that it does not meet the microgrid’s

adequacy level. Hence, this solution is revised by increasing Pb ini
k to satisfy the

condition that LOLPY 6 0.1. The optimal solution with REVBs satisfying the

adequacy constraint is obtained in the ninth iteration (as highlighted). The total

power capacity required to meet the adequacy constraint is 1,350 kW, for which the

corresponding optimal energy capacity is 1,450 kWh. The resulting LOLP of 0.071

meets the target adequacy level of the microgrid.

Table 4.2: Stage-I Optimal REVB Power Sizing and LOLP

Power Size
REVB Clusters

Iteration C1 C2 C3 LOLP

kW kW kW kW

1 950 500 450 - 0.1318
2 1000 500 450 50 0.1308
3 1050 500 450 100 0.1273
4 1100 500 450 150 0.1201
5 1150 500 450 200 0.1162
6 1200 500 450 250 0.1155
7 1250 500 450 300 0.1143
8 1300 500 450 350 0.1139

9 1350 500 450 400 0.0711

The installed REVBs are grouped into three clusters, C1, C2 and C3, each with

multiple battery units. Cluster C1 has 3 battery units for a total of 500 kW/ 550

kWh, cluster C2 has 4 units for a total of 450 kW/550 kWh and cluster C3 has 3
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battery units for a total of 400 kW/400 kWh. Table 4.3 presents the cluster-wise

REVBs power and energy sizes for the plan terminal year.

Table 4.3: Stage-I Optimal REVB Power and Energy Sizes in Year-10

Total Capacity Clusters
Units

1 2 3 4

1450 kWh/ 1350 kW

C1 250 kWh 150 kWh 150 kWh -
550 kWh/500 kW 250 kW 100 kW 150 kW -

C2 100 kWh 100 kWh 150 kWh 150 kWh
500 kWh/450 kW 100 kW 100 kW 150 kW 100 kW

C3 150 kWh 100 kWh 150 kWh -
400 kWh/400 kW 150 kW 100 kW 150 kW -

In Stage-II, starting from year Y-1 and fixing the terminal year plan obtained

from Stage-I, the LOLP is determined as seen from the first iteration of year-9 in

Table 4.4, to have met the target, i.e., LOLPY 6 0.1. However, installing this amount

of REVB power capacity is costly and not needed. Therefore, Pb ini
k is reduced in

steps until the LOLP is not violated. At the fifth iteration, when Pb ini
k = 1150 kW ,

the LOLP exceeds 0.1; hence the previous iteration value of Pb ini
k = 1200 kW is

selected. The corresponding optimal E ini
k at year-9 is obtained to be 1,300 kWh.

This approach is repeated for the previous year by fixing the optimal Pb ini
k and

E ini
k obtained for the current year, until year-1 is reached. The detailed iteration

results for Stage-II are given in Table 4.4, and the summary plan is given in Table 4.5.

Table 4.4: Stage-II Optimal REVB Power Sizing Capacity and LOLP

Power Size
REVB Clusters

Iteration C1 C2 C3 LOLP

kW kW kW kW
Year-10 (obtained from Stage-I)

9 1350 500 450 400 0.0711
Year-9

1 1350 500 450 400 0.0686
2 1300 500 450 350 0.0689
3 1250 500 450 300 0.0696

Continued on next page
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Table 4.4 – Continued from previous page

Power Size
REVB Clusters

Iteration C1 C2 C3 LOLP

kW kW kW kW
4 1200 500 450 250 0.0702
5 1150 500 450 200 0.1127

Year-8
1 1200 500 450 250 0.0686
2 1150 500 450 200 0.0687
3 1100 500 450 150 0.0693
4 1050 500 450 100 0.1121

Year-7
1 1100 500 450 150 0.0630
2 1050 500 450 100 0.0634
3 1000 500 450 50 0.0638
4 950 500 450 - 0.0644
5 900 500 400 - 0.11189

Year-6
1 950 500 450 - 0.0632
2 900 500 400 - 0.0636
3 850 500 350 - 0.0643
4 800 500 300 - 0.11180

Year-5
1 850 500 350 - 0.0615
2 800 500 300 - 0.0615
3 750 500 250 - 0.0623
4 700 500 200 - 0.0628
5 650 500 150 - 0.11006

Year-4
1 700 500 200 - 0.0615
2 650 500 150 - 0.0619
3 600 500 100 - 0.0625
4 600 500 100 - 0.11003

Year-3
1 600 500 100 - 0.0561
2 550 500 50 - 0.0565
3 500 500 0 - 0.0572

Continued on next page
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Table 4.4 – Continued from previous page

Power Size
REVB Clusters

Iteration C1 C2 C3 LOLP

kW kW kW kW
4 450 450 0 - 0.10997

Year-2
1 500 500 - - 0.0560
2 450 450 - - 0.0560
3 400 400 - - 0.0568
4 350 350 - - 0.0574
5 300 300 - - 0.10993

Year-1
1 350 350 - - 0.0547
2 300 300 - - 0.0551
3 250 250 - - 0.0558
4 200 200 - - 0.1086

From Table 4.4 the highlighted rows, which denote the optimal REVB sizes for the

given year, are collected and presented in Table 4.5. Note that Table 4.5a presents

the yearly cumulative REVB sizes from the terminal year to the first year, with

the binary numbers denoting the cumulative presence of battery units in the three

clusters of the REVBs. For example, in year-8, the cumulative REVB size required

for the microgrid is 1100 kW/1200 kWh and this capacity will be distributed over

the three clusters, C1, C2, C3, with three, four and one battery units respectively,

whose sizes are given in Table 4.3. In Table 4.5b, the actual unit sizes to be installed

in each year of the plan horizon are hence presented, along with the exact cluster

in which that unit will belong, and the year of commissioning, denoted by the Bk

matrix.

After the final sizes of the REVBs and their corresponding years of installations

were determined in Stage-I and Stage-II, the microgrid planning model is again

executed, this time for year-1 onward, proceeding forward over the plan horizon,

and including the Energy Sharing Constraints of the REVBs, given by (4.21) and

(4.22). The optimal values of γ and hence the REVB units’ cycling degradation are

obtained.
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Table 4.5: Stage-II: Summary Microgrid Plan for REVB

Year
Pbk Ek C1 C2 C3

kW kWh

10 1350 1450 1 1 1 1 1 1 1 1 1 1
9 1200 1300 1 1 1 1 1 1 1 1 1 0
8 1100 1200 1 1 1 1 1 1 1 1 0 0
7 950 1050 1 1 1 1 1 1 1 0 0 0
6 850 900 1 1 1 1 1 1 0 0 0 0
5 700 750 1 1 1 1 1 0 0 0 0 0
4 600 650 1 1 1 1 0 0 0 0 0 0
3 500 550 1 1 1 0 0 0 0 0 0 0
2 350 400 1 1 0 0 0 0 0 0 0 0
1 250 250 1 0 0 0 0 0 0 0 0 0

(a)

Year
Pbk/Ek C1 C2 C3

kW/kWh Bk Matrix

1 250/250 1 0 0 0 0 0 0 0 0 0
2 100/150 0 1 0 0 0 0 0 0 0 0
3 150/150 0 0 1 0 0 0 0 0 0 0
4 100/100 0 0 0 1 0 0 0 0 0 0
5 100/100 0 0 0 0 1 0 0 0 0 0
6 150/150 0 0 0 0 0 1 0 0 0 0
7 100/150 0 0 0 0 0 0 1 0 0 0
8 150/150 0 0 0 0 0 0 0 1 0 0
9 100/100 0 0 0 0 0 0 0 0 1 0
10 150/150 0 0 0 0 0 0 0 0 0 1

(b)

Table 4.6 shows the replacement decisions of the REVB units when they reach

their EoL. It is seen that there are a total of ten new installations in the 10-year

plan horizon while only five replacements are planned for.

As can be seen in Table 4.6, in the first year, only one REVB unit was installed

and from Figure 4.5 it is noted that the optimal schedule of the microgrid did not

require any REVB discharge; hence the REVB capacity was only kept as reserve

Figure 4.6. Therefore, only calendar degradation was accounted for in year-1, and

the 250 kWh REVB at the start of year-1 was degraded to 247.5 kWh at the start of

year-2 (Table 4.6). Moving-forward, as more REVB units are installed, the optimal

energy sharing decision variables γk for each unit are determined from the microgrid

planning model, and the energy discharged from each REVB unit is known, and

hence the cycling degradation comes into play.

In year-2, when the second REVB unit in C1 is installed, γC1,1 = 0.6 and γC1,2

= 0.4 are obtained, and the total discharge energy split between the two units are

determined. Note from Table 4.6, the total REVB energy capacity after degradation

at the start of year-2 is 397.5 kWh, which is greater than the total microgrid installed

power capacity of 350 kW; hence the Ek/P ini
k ratio is greater than unity and thus

meets the targeted adequacy level. Therefore, the REVB microgrid plan for year-2

is considered final.
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Figure 4.5: Dispatch of microgrid generators in year-1
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Figure 4.6: Isolated microgrid reserve provisions in Year-1

Furthermore, note from Table 4.6 that in year-4, there are four REVB units, three

of which belong to C1 (217.5 kWh, 137.3 kWh, 145.2 kWh) installed in previous years,

while the fourth in C2 of 100 kW/100 KWh installed in year-4. The cumulative sum

of the energy capacities after degradation and the new unit at the beginning of year-4

is 600 kWh, and its Ek/P ini
k ratio is unity. Therefore, the final plan for year-4 is

achieved.
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Table 4.6: Stage-III Results based on Stage-I and -II Outputs

Year
Pbk Ek Degraded Energy Capacity of REVB units Ede

k Ede
k /Pbk

kW kWh C1 (550 kWh) C2 (500 kWh) C3 (400 kWh) kWh

1 250 250 250 250 1

2 350 400 247.50 150 397.5 1.14

3 500 550 235.40 142.10 150 527.4 1.06

4 600 650 217.50 137.30 145.20 100 600 1

5 700 750 250 132.55 133.95 95.75 100 712.3 1.02

6 850 900 241.88 150 123.08 91 95.25 150 851.2 1.001

7 950 1,050 235.49 144.61 150 86.11 90.36 144.61 150 1,001.2 1.054

8 1100 1,200 222.49 137.86 140.63 100 84.11 137.86 143.25 150 1,116.2 1.015

9 1200 1,300 209.99 131.36 131.63 94 100 131.36 136.75 143.50 100 1,178.6 0.982

10 1350 1,450 200.27 122.64 122.90 85.78 91.78 122.64 128.03 134.78 91.78 150 1,250.6 0.926

Ede
k denotes total energy capacity after degradation.

The corresponding values of γk are 50%, 10%, 30% and 10%, respectively, which

determines the energy sharing of these units during year-4 operation, and it is noted

that the energy discharged by Unit-2 of C1 is the same as that by Unit-1 of C2 since

their γk values are the same.

Unit-1 of C1 reached its EoL at the end of year-4 and is replaced by a new

REVB unit of the same size at the start of year-5 (shown by the ”black” box in

Table 4.6). If the energy sharing strategy (4.22) was not included in Stage-III,

more energy would have been scheduled for discharge from REVB units installed

earlier as compared to the newer units because the microgrid planning model seeks

to minimize the installation and replacement cost. In the present work, the proposed

energy sharing strategy is able to reduce the degradation of the battery unit which

was installed earliest, and hence maintain the Ek/P ini
k ratio above unity to ensure

microgrid adequacy.

It is also noted from Table 4.6 that the Ek/P ini
k ratio at the start of year-9 falls

below unity, which means that the targeted adequacy level of the microgrid is not

met. Therefore, the energy capacity installed in year-9 (Unit-2 of C3), as obtained

from Stage-II, is rejected and needs to be revised. Table 4.7 presents the revised

results of Stage-III for year-9 and year-10, wherein it is noted that the energy capacity
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of REVB Unit-2 of C3 is increased by 100 kW, in year-9, to satisfy the Ek/P ini
k ratio

of that year, and it satisfies for year-10 as well.

Table 4.7: Stage-III Revised Energy Capacities

Year
Pbk Ek REVB C1 REVB C2 REVB C3 Ede

k Ede
k /Pbk

kW kWh (550 kWh) (500 kWh) (500 kWh) kWh

1 250 250 250 250 1

2 350 400 247.5 150 397.5 1.14

3 500 550 235.4 142.100 150 527.5 1.06

4 600 650 217.5 137.3 145.2 100 600 1

5 700 750 250 132.55 133.95 95.750 100 712.3 1.02

6 850 900 241.875 150 123.075 91 95.25 150 851.2 1.001

7 950 1050 235.487 144.612 150 86.112 90.362 144.612 150 1001.2 1.054

8 1,100 1200 222.487 137.862 140.625 100 84.112 137.862 143.25 150 1116.2 1.015

9 1,200 1400 209.987 131.362 131.625 94 100 131.362 136.75 143.5 200 1,278.6 1.066

10 1,350 1,550 204.237 123.362 123.625 86.5 94.45 123.362 126.8 132.25 189.25 150 1,353.8 1.003

Ede
k denotes total energy capacity after degradation.

Table 4.8 presents the SoH of each REVB unit of the three clusters after the

Stage-III final solution is obtained (Table 4.7). Note that, the battery is replaced

when the SoH is below 80%. Also note that both cycling and calendar degradations

contribute to the drop in SoH of the battery unit. The SoH of each unit starts to

degrade as the Stage-III algorithm progresses to the terminal year. Once the SoH

reaches its threshold limit of 80%, as Unit-1 in C1 at year-5 (highlighted in green),

there will be a replacement of the unit according to the optimization model described

earlier. For example, in year-5 the said unit was replaced by an unit of the same size

(250 kWh).

The year-wise costs to the microgrid, after the optimal plan is obtained, are

determined, and presented in Table 4.9 which includes the yearly total operation cost,

the REVBs installation cost, the REVBs O&M cost, and the REVBs replacement

cost.

It is noted that the operating cost of the microgrid increases over the plan horizon,

as shown in Table 4.9. The installation cost in the first year is the highest because of

the sizes of Pb ini
k and E ini

k installed that year. The yearly O&M cost also increases
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Table 4.8: REVB State of Health

Year
Ek REVB C1 REVB C2 REVB C3

kWh 550 kWh 500 kWh 500 kWh

1 250 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 400 0.990 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 550 0.942 0.947 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 650 0.870 0.915 0.968 1.000 0.000 0.000 0.000 0.000 0.000 0.000

5 750 1.000 0.884 0.893 0.958 1.000 0.000 0.000 0.000 0.000 0.000

6 900 0.968 1.000 0.821 0.910 0.953 1.000 0.000 0.000 0.000 0.000

7 1,050 0.942 0.964 1.000 0.861 0.904 0.964 1.000 0.000 0.000 0.000

8 1,200 0.890 0.919 0.938 1.000 0.841 0.919 0.955 1.000 0.000 0.000

9 1,400 0.840 0.876 0.878 0.940 1.000 0.876 0.912 0.957 1.000 0.000

10 1,550 0.817 0.822 0.824 0.865 0.945 0.822 0.845 0.882 0.946 1.000

Install Replace

significantly over the plan horizon as there are more installations and hence more

cost associated with it. There are only five replacements over the plan horizon. As

can be seen, year-6 and year-7 have the same replacement cost as they have the same

energy capacity. The same thing goes for year-8 and year-9.
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Table 4.9: Microgrid Costs Considering Optimal REVB Plan Decisions

UC Install OMC RC TC

J1,$ J2,$ J3,$ J4,$ J ,$
Year 1 6,997,568 467,500 3,300 - 7,468,368
Year 2 7,383,571 221,800 5,444 - 7,610,816
Year 3 7,783,709 288,500 7,733 - 8,079,942
Year 4 8,205,454 199,000 9,266 - 8,413,720
Year 5 8,676,094 199,000 10,793 278,750 9,164,637
Year 6 9,149,587 288,500 13,077 167,250 9,618,415
Year 7 9,670,584 221,800 14,714 167,250 10,074,348
Year 8 10,339,533 288,500 16,993 111,500 10,756,526
Year 9 11,001,071 244,600 18,734 111,500 11,375,905
Year 10 11,835,598 288,500 21,024 - 12,145,122

MGTC (J), $ 94,707,798

4.6.1 Computational Details

The MILP optimization model for the test system was programmed and executed

in the General Algebraic Modeling Systems (GAMS) environment [112]. The solver

used was CPLEX [114] which was executed on four Intel® Xeon® L7555 1.87-

GHz processors and 256 GB of RAM. The CPLEX solver utilizes the Branch and

Cut-based algorithm to solve the MILP model, which is a hybrid between Branch-

and-Bound and the cutting plane methods that are extensively used for solving such

programs [114]. In this model, CPLEX uses Symmetric Multi Processing (SMP),

also called threads, to control the number of processors to be used in parallel. The

model and solver statistics, including the resource usage and the relative optimality

gap are given in Table 4.10. Note that the relative optimality gap is defined as the

difference between the obtained solution and the minimum bound.

4.7 Summary

The chapter presented a novel backward-forward propagation approach with an em-

bedded power sharing strategy for REVB units to develop a microgrid planning
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Table 4.10: Model Statistics

Model Type MILP

Solver Used CPLEX

Blocks of Equations 108

Blocks of Variables 46

Number of Single Equations 3,605

Number of Single Variables 2,455

Non-Zero Elements 12,814

Discrete Variables 1,461

Generation Time 0.015 (s)∗

CPU time 4.070 (s)∗

Relative Gap (%) 0.00299

Threads 10

*(s) denotes time is second.

model taking into consideration its adequacy aspects. A novel concept of measuring

the adequacy level of the microgrid in terms of REVB energy to power Ek/P ini
k ratio

was presented. A sequential 3-stage scheme along with an associated mathematical

model for isolated microgrid planning and operation, and the adequacy check cri-

teria, were presented in detail. The successful operation of REVBs was ensured by

the power sharing strategy that is directly related to its degradation and hence its

replacement cost. The proposed power sharing strategy was capable of allocating

the power needed by the microgrid among different REVB units.

The results obtained from Stage-I and Stage-II were shown to be generally in

close agreement with those of Stage-III, although some improvements could be made

by using a more detailed battery model which would, however, render the planning

model to be computationally very challenging, even for small-sized microgrids. The

proposed framework is generic in nature, and can be used by both the microgrid

operator or third party investor to set up long-term plans.
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Chapter 5

Control and Hardware-in-the-Loop

Simulation of Community Energy

Storage Systems Based on

Repurposed Electric Vehicle

Batteries ‡

5.1 Nomenclature

Indices

CESS CESS index
Cal Calculated
cont Controller
d Direct-axis
ref Reference
lo Lower
load Total system load

‡Parts of this chapter have been submitted for review for possible publication: T. Alharbi,
M. Restrepo, M. Kazerani and K. Bhattacharya,”Control and Hardware-in-the-Loop Simulation
of Community Energy Storage Systems Based on Repurposed Electric Vehicle Batteries,” Electric
Power Systems Research, 2020.
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max Maximum
min Minimum
P Active Power index
Q Reactive Power index
q Quadrature-axis
sys System
R Node index
thr Threshold
up Upper

Variables

P Active Power [kW]
Q Reactive Power [kVAR]
S Apparent Power [kVA]
V Voltage [V]
θ Angle [rad]
m Rule-based controller slope
SoC SoC of the REVB battery unit [%]
SoH SoH of the REVB battery unit [%]
χ Percentage of the converter rating

5.2 Introduction

Chapter 3 and Chapter 4 presented investment planning frameworks and models for

installing single or multiple REVB units in an isolated microgrid. Another applica-

tion of REVBs is their role as CESS to help distribution networks.

With the increasing adoption of EVs, their charging loads can lead to under-

voltages at distribution system nodes, and over-loading of feeders and transformers

[50]. These impacts can be alleviated by upgrading the transformers and feeders

or implementing coordinated charging of EVs [51–53]. Given that upgrading the

transformers and feeders is not a cost-effective solution, and since regulatory policies

and communication infrastructure for coordinated charging are not available yet,

installing CESSs in LV distribution systems [46] particularly with REVBs, is a viable

alternative, because of the increasing availability of these batteries in the market.

Once CESS is adopted, there are challenges that have to be overcome in controlling

the active and reactive powers using CEMS, while seeking to reduce the adverse

impact on the battery SoH. A CEMS equipped with an effective controller for the

CESS is capable of improving the flexibility of the distribution system in a cost-
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effective manner, while extending the life of the REVBs and the LV distribution

transformer.

To realize the operational benefits of a CESS employing REVBs with a properly-

designed CEMS, it should be tested in an HIL simulation environment under different

conditions. The CEMS should monitor the condition of the LV distribution system

and set limits for the P and Q controller of the CESS. The controller determines

the battery charging and discharging decisions based on the intended application,

considering battery degradation. Thus, the controller should be so designed that

the required output power is delivered while slowing down the battery degradation

process.

This chapter presents the utilization and control of CESS in LV distribution

networks. A real-time CEMS is proposed for the control of the CESS, which uses

REVBs and a power electronic interface comprised of a four-quadrant ac/dc converter

and a bidirectional dc/dc converter together with the corresponding controllers. To

assess the capability of the controller in providing CESS services in the form of active

and reactive power control in an LV residential distribution network, four case studies

are carried out using HIL simulations. The HIL simulations use an actual battery

pack and a four-quadrant converter system. The impact of the proposed controller

on the REVB cycling performance is evaluated using an RCA. The distribution

transformer LoL is also estimated. The HIL simulation results demonstrate the

effectiveness of the proposed real-time CEMS in slowing down the degradation of the

battery and LoL of the distribution transformer, while improving the LV distribution

voltage profile.

In view of the above, this chapter presents a novel real-time CEMS to control

an REVB-based CESS and studies its interactions with a practical LV distribution

system using an HIL simulation environment. Therefore, the main objectives of this

chapter are as follows:

• Introducing an interactive real-time CEMS for an REVB-based CESS in an LV

distribution system. This is an extension (in terms of operation and control) to

the work reported in Chapter 3, where economic viability of installing REVBs

was proved.

• Developing a rule-based control strategy for the four-quadrant CESS charger,

which is embedded in the real-time CEMS, to reduce the loading of the distri-

bution transformer and battery degradation.

• Experimental verification of operation of the proposed real-time CEMS and its
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rule-based controller thorough HIL simulation.

The rest of the chapter is structured as follows: Section 5.3 describes the pro-

posed real-time CEMS, as well as the detailed model of the proposed rule-based

controller. In Section 5.4, the effectiveness of the proposed CEMS is verified through

HIL simulation, followed by discussion of the results in Section 5.5. Finally, some

conclusions are presented in Section 5.6.

5.3 The Proposed Real-Time CEMS and Rule-

Based CESS Controller

The main objectives of the real-time CEMS are improving the distribution system

voltage profile and reducing the adverse impact of EV charging load on the lifespan of

LV distribution transformer due to overloading. The process starts with generating

detailed daily household load profiles and processing real EV charging data. An LV

distribution system is modeled and power flow simulations are carried out. Then, the

distribution system is coupled with the real-time HIL simulation setup. The real-time

HIL simulation connects an actual battery, a four-quadrant converter, and associated

circuits for protection against over voltage/current with the LV distribution system

via the Real-Time Target (RTT), as discussed later in this section. The CEMS is

then modeled and connected to the LV distribution system and the real-time HIL

simulation in order to receive and store feedback signals. The CEMS houses the

proposed rule-based controller to control the repurposed EVB-based CESS. Once

the real-time CEMS is simulated and experimentally verified, the degradation of

repurposed-EVBs is estimated by applying the RCA on the obtained SoC profiles of

the CESS battery pack. Finally, the impact of the repurposed EVBs-based CESS

operation on LoL of the distribution transformer is estimated.

5.3.1 Real-Time CEMS for HIL Simulation Architecture

The real-time CEMS uses a practical model of the battery, for off-line simulation,

and an actual Li-ion battery pack, for HIL simulation, together with a four-quadrant

charger, acting as an active and reactive power source/sink. Figure 5.1 shows the

proposed architecture for the HIL simulation of the real-time CEMS, which is built
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upon an effective exchange of information between the CESS and the LV distribu-

tion system. The CEMS or the so-called aggregator (entity (c) in Figure 5.1) is

the controller that receives feedback signals from the LV transformer and the CESS

(entities (a) and (b), respectively, in Figure 5.1) through the RTT, and sends active

and reactive power control signals to the CESS, based on the embedded rule-based

controller. The CEMS seeks to reduce the transformer overloading, thus deceler-

ating the transformer LoL, regulate the voltage at CESS node, and slow down the

degradation of the battery.
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Figure 5.1: Detailed architecture of HIL simulation of the proposed real-time
CEMS

The proposed real-time CEMS, with the structure shown in Figure 5.2, is com-

prised of the rule-based controller for CESS, Phase-Locked Loop (PLL), dq trans-

formations, P and Q controller, and BMS measurements. The proposed rule-based

controller for CESS determines the Pref and Qref as set-points, based on which the

d- and q-axis components of CESS currents, Id and Iq, respectively, are calculated,
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as follows:

Id = 2 · Pref/Vd (5.1)
Iq = −2 ·Qref/Vd (5.2)

Note that, to facilitate the decoupled active and reactive power control with Id
and Iq, the PLL circuit sets the q-axis component of the CESS terminal voltage, Vq,

to zero.
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Figure 5.2: Architecture of the proposed real-time CEMS

It is assumed that the rule-based controller is an embedded controller in the

CEMS located at the distribution transformer, receiving real-time measurements of

active and reactive power consumption of all residential loads and the voltage at the

CESS connection point. It should be noted that the CESS is located at the end of

the LV feeder.
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5.3.2 Proposed Rule-Based Controller for CESS

The bidirectional P–Q converter of the CESS (entity (b) in Figure 5.1) receives

control signals from the aggregator (CEMS) to either inject or absorb active power

P and reactive power Q within the limits of CESS based on the BMS measurements.

The CESS rule-based controller is governed by a set of rules that are defined by

the CEMS and aim to:

− Reduce voltage deviations by sending reactive power control signals;

− Reduce transformer loading and distribution transformer LoL by sending active

power control signals;

− Reduce the CESS repurposed EVB degradation by cycling the battery at a

proper DoD.

The set points Pref and Qref of the CESS are the outputs of the controller, as shown

in Figure 5.2, that are determined using the following set of rules, illustrated by

Figure 5.3.

Pref =


−Pmax (discharge) Ssys > Sup

mp (Ssys − Sthr) Slo ≤ Ssys ≤ Sup

Pmax (charge) Ssys < Slo

(5.3)

where

mp =
0− Pmax

Sthr − Slo

; Pmax = Smax (5.4)

The value of Pref is constrained by the maximum and minimum values of the

battery SoC and voltage, converter rating Smax, and battery pack temperature, and is

derived based on the distribution transformer loading (Ssys) and BMS measurements.

As stated by IEEE Standard C57.91-2011 [93], the aging of the distribution trans-

former will increase exponentially as loading increases. Therefore, the limits of the

P -compensation function (Sup, Slo) are chosen, based on their impact on the trans-

former LoL, ensuring that the transformer loading is below 100%, while the operating

limits of the battery are respected and the battery degradation is reduced.

Since there is a close relationship between deep battery cycling and battery degra-

dation, an appropriate droop region for the rule-based controller is selected based on
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Figure 5.3: Proposed rule-based controller of CESS

the SoH of the battery, so that rapid degradation of the battery, due to deep battery

cycling in attempt to prevent overloading of distribution transformer, are avoided.

The value of Qref , constrained by the apparent power capability of CESS inverter,

Smax, is determined using the proposed Q-compensation controller function based on

the magnitude of the voltage at the CESS connection node (R4), as follows (see Figure

5.3(b)):

Qref =


Qmax(CESS inductive) VCESS > Vup

mQ (VCESS − Vthr) Vlo ≤ VCESS ≤ Vup

−Qmax(CESS capacitive) VCESS < Vlo

(5.5)

where

mQ =
0−Qmax

Vthr − Vup
; Qmax = χ Smax (5.6)

According to ANSI C84.1-2011 standard [115], the voltage at residential nodes

must be maintained within Range A, based on the nominal voltage of 120 V (Vmin

= 114 V (0.95 pu),Vmax = 126 V (1.05 pu)). Therefore, the limits of the Q-

compensation function, Vup, Vlo, are chosen to satisfy Range A specification. The

reactive power compensation from the CESS seeks to improve the voltage at the
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end of the feeder and keep it always above the minimum service voltage. Note that

the value of χ in (5.6) is assumed to be half the rating of the converter so that the

CESS converter does not wear out due to excessive use of the dc-link capacitor, as

the provision of reactive currents tends to increase the dc voltage ripple, and thus,

has adverse impact on the lifespan of this component.

The reactive power reference Qref generated by the proposed rule-based controller

is sent to the CESS bidirectional charger which is constrained by the charger’s ap-

parent power capability, as follows [116]:

P 2
ref +Q2

ref 6 S2
max (5.7)

Qref =
| Qref |
Qref

√
S2
max − P 2

ref (5.8)

| Qref |6 Qmax = χ Smax (5.9)

Equations (5.8) and (5.9) are only used to limit the reactive power reference when

the apparent power limit is reached.

It should be noted that the proposed rule based controller has some similarities

to the IEEE 1547-2018 standard which provides the technical specifications and

requirements for distributed energy resources (DERs) in LV in general. However,

IEEE 1547-2018 standard does not take into account the degradation of the battery

and its SoH during operation.

5.4 Experimental Setup for HIL Simulation

The CEMS, including the proposed rule-based controller (Section 5.3), is validated

using the HIL simulation setup shown in Figure 5.4. The setup is comprised of a

power module which includes the CESS bidirectional converter, an RTT, the CEMS

work-station equipped with Matlab, and a battery pack whose BMS communicates

with the RTT through a Controller Area Network (CAN) bus to allow HIL simula-

tions.

The CEMS receives/sends the control signals from/to the RTT through a Trans-

mission Control Protocol/Internet Protocol (TCP/IP) link. At the same time, the
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RTT communicates with the four-quadrant converter and the battery BMS through

EtherCat and CAN links. This connection allows an external agent such as the

CEMS to control the CESS.

`

Figure 5.4: Experimental setup for HIL simulation

In the following, the main system components are explained in detail.

• Power Module: This is the part of CESS that interfaces the battery pack with

the grid. It is comprised of a filter, an ac/dc converter, and a dc/dc converter

with three independent channels. The power module is equipped with sensor of

measurements line voltage and current to monitor the state of the equipment during

tests. The power module parameters and its schematic diagram used in thesis are

reported in Table B1 and Figure B1 in Appendix B. Please refer to [117] for more

system parameters.

• RTT: This is a high-performance computer based on Linux that runs the HIL

simulation model and communicates the measurements and control signals from the

converter and the BMS to the CEMS in real-time, using an industrial ethernet link

(EtherCat) and CAN bus. Please refer to [117] RTT specifications.

• Battery Pack: This is a part of the CESS that is connected to the dc/dc

converter - with its three dc channels connected in parallel - through a circuit breaker.

A BMS is also included for monitoring the performance of the battery pack. Since
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Figure 5.5: Power module hardware and battery pack set up

the interface with the grid is a three-phase ac/dc converter, and the simulated CESS

operates in a single-phase distribution network, only the current and voltage signals

corresponding to phase A are used in the simulation, considering a scaling factor

to make the power level of the simulated system the same as that of the actual

hardware. The power module and battery pack set up used in this thesis is shown

in Figure 5.5.

• CEMS and LV Distribution System Work-station: This is a computer that runs

Matlab and is connected to the RTT through a TCP/IP link, and serves to build

and compile the distribution system simulation model, control the operation of the

power module in real-time, and visualize the simulation signals.

• CAN bus: The RTT is connected to the CEMS and BMS to allow them to

exchange information. The BMS is connected to the RTT via CAN bus to read

and log the battery data, such as SoC, over-current and over-voltage signals, cell

voltages, pack voltage, and pack temperature, during HIL simulation. It should be

noted that the actual signals of the converter and battery pack are used in the LV

distribution system model to evaluate the performance of the CEMS, in compliance

with the standard levels of voltage and transformer load.
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Table 5.1: Rule-Based Controller Parameters

Sup = 50 Slo = 40 Sthr = 45 (kVA)
Vup = 1.03 Vlo = 0.96 Vthr = 1 (p.u.)

5.5 Results and Discussions

5.5.1 Test System, Input Data and Assumptions

5.5.1.1 LV Distribution System

The developed real-time CEMS framework is used to perform HIL simulations on

the CIGRÉ North American 10-bus LV distribution system with a household load at

each bus, served by 50 kVA transformer with single-phase (12.47 kV) primary and

split-phase (240 V-120V) secondary [118]. The data for the LV distribution system,

extracted from [113], corresponds to a North-American LV residential feeder, shown

in Figure 5.6 .

The battery pack used in HIL simulation is a 4.1 kWh, 115 V Li-ion battery pack,

while the repurposed EVB considered for off-line simulation is a Toyota RV4 battery

pack, with an initial capacity of 42 kWh. It is assumed that the EVB capacity

had degraded to 33.6 kWh, i.e., 80% of its initial capacity, when it was removed

from the EV [54]. Since it was not possible to use a large-capacity EVB in the HIL

simulations, a 4.1 kWh battery was used instead and the simulation parameters and

signals were scaled down, accordingly.

The CESS is connected at the end of the LV distribution system feeder, at node

R4. The simulated model of the CESS charger in the distribution system imitates

the actual current and voltage signals measured directly on the CESS converter and

received via the RTT. The parameters of the proposed rule-based controller are given

in Table 5.1. Note that the controller band-gap in Figure 5.3(a) is set at 10 kVA for

Pmax by trial and error and Pmin of a ±10 kW.
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Figure 5.6: CIGRE Secondary distribution system model

5.5.1.2 EV Charging Load Profiles

A large volume of data is collected from the Dataloggers installed on several EVs

operating in Waterloo Region of Ontario, Canada, through the Drive4Data Program

[119]. The data includes initial battery SoC, EV arrival and departure times, drive

cycle, charging current and voltage. The EV charging load profiles are calculated

from the corresponding voltage and current data available.
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5.5.1.3 Residential Load Profiles

The load profiles of the residential customers at each of the 10 LV distribution system

nodes are created using the method presented in [120]. A sample stacked load profile

of a high-demand house in Summer is shown in Figure 5.7. Each load profile consists

of 5,760 data-points representing the demand of a house every 5 minutes, for 24

hours. The summer average demand of a household is 2 kVA higher than its annual

average demand. The residential loads are modeled as constant impedance loads,

which are therefore, voltage dependent. Some of the residential loads have a peak

demand of 12 kVA which results in a total system peak demand of 51 kVA at 9 PM;

however, because of the voltage dependency of loads, and voltage drop due to heavy

consumption, the actual load tends to be lower.

5.5.2 Test Results and Discussions

To investigate and illustrate the benefits of the proposed CEMS and the rule-based

CESS controller, the following four cases are simulated.

1) Case 0: no EV, no CESS, off-line simulation.

2) Case I: with EV, no CESS, off-line simulation.

3) Case II: with EV, CESS, and CEMS, off-line simulation.
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Figure 5.7: A stacked daily load profile of a sample house in Summer
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4) Case III: with EV, CESS, and CEMS, HIL simulation.

Note that the baseline (Case I) refers to no CESS is installed.

5.5.2.1 Case I

Figures 5.8(a)-(c) present Case I results for the total active, reactive, and apparent

power loading on the distribution transformer, as well as the system node voltages in

the presence of EV charging. It is noted that new peaks appear during early morning

and evening due to simultaneous charging of EVs, with total apparent power, Ssys,

surpassing the transformer rated capacity of 50 KVA, contributing to distribution

transformer’s LoL. The node voltages have clearly dropped during these periods,

violating the Range A limits (Vmin = 0.95 p.u., or 228 V). In this work, the thermal

model of distribution transformers, proposed by IEEE C57.91-2011 [93], has been

adopted to estimate the LoL of the transformer based on its loading. As Table 5.2

shows, in Case I, the annual LoL is 7.7% of the nominal life of 180,000 h, that is

beyond the specified 5% limit. Note also that the annual LoL of the distribution

transformer is approximately 0.3% in the Case 0, when neither EV load nor CESS

was considered. These results show that EV charging is detrimental to the life span

of the transformer. This impact would be even greater with larger EVBs with greater

charging capacities.
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Figure 5.8: Case I (a) Load active power and transformer apparent power and ca-
pacity limit; (b) Load and transformer reactive power; (c) LV distribution system
bus voltages and voltage limits.
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5.5.2.2 Case II

In Case II, with CESS and real-time CEMS under the proposed rule-based control,

the distribution transformer load (Ssys) is shaved to a point below the rated capacity

of 50 kVA, for most of the time. The loading in this case is 110%, lasting less than

20 minutes. According to [121], the rated overloading of the transformer depends on

the transformer’s previous loading. In the case under study, since the transformer

is previously loaded to approximately 94% of its rated capacity, it can be loaded

to 110%, for 60 minutes, at 78℃ [121]. Also, as can be noted from Figure 5.9(a),

the total active power loading on the transformer, Psys, is reduced by virtue of

the P -compensation of the CESS during peak hours. The system voltages are also

improved and are now within the acceptable range specified by ANSI [115] (Figure

5.9(c)), when compared to the voltages in Figure 5.8(c). This is due to the fact that

less current is drawn from the distribution transformer, as a result of the active and

reactive power compensation provided by CESS. It should be noted that the spikes

seen in Fig. 5.8(c) are due to merging of data from consecutive HIL simulations.
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Figure 5.9: Case II (a) Active powers of load, transformer, and CESS; (b)
Apparent and reactive powers of load, transformer, and CESS; (c) LV
system bus voltages.

It can be observed that the real-time simulation time-scale of 5,760 seconds used

in this work, corresponds to a 24-hour equivalent time-scale.
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Table 5.2: Distribution Transformer’s LoL

Case 0 Case I Case II Case III

Daily LoL (%) 0.00083 0.0211 0.0065 0.0065

Annual LoL (%) 0.30290 7.7 2.37 2.37

For Case-II, Figure 5.10 presents the PCESS and QCESS delivered to the LV dis-

tribution system, which are following closely the Pref and Qref set-points, issued by

the controller. Note that in the first window in Figure 5.10, between 0 and 480s,

there is a need for more active power from the CESS.
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Figure 5.10: Case II (a) CESS apparent, active power and its reference; (b) CESS
apparent, reactive power and its reference; (c) SoC of CESS battery pack

Also note that, in some instances, the CESS bidirectional charger provides more

Q-compensation to the LV distribution system than what the system needs, which

can be transferred to the MV side of the distribution transformer. The PCESS profile
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is reflected on the SoC profile of the battery, as shown in Figure 5.10(c). The annual

LoL of the distribution transformer in Case II is reduced to approximately 2.4% of

nominal life, which is below the specified limit (see Table 5.2). This demonstrates

the benefit of CESS in reducing the detrimental impact of EV charging on the life

of the transformer.

5.5.2.3 Case III

To validate the off-line CEMS simulation results and illustrate successful operation

under the embedded rule-based controller in following the set-points in the four

quadrants of the P -Q plane, Case III, i.e., HIL simulation is performed and results

are presented in Figures 5.11 to 5.12. It can be observed that the P , Q, and voltage

plots of Figure 5.11 are very similar to those of Figure 5.9, upon down-scaling.

Figures 5.11 (a)-(c) show the actions of the CEMS in setting the CESS battery

discharging at the maximum capacity of the charger when the transformer loading

is higher than its rated capacity, Sup, and charging at the maximum capacity where

transformer loading is below Slo. The charging and discharging are governed by the

Smax of the CESS bidirectional charger, shown in Figs. 5.11(a) and (b).

The voltage and current profiles of the CESS monitored by the BMS, are shown

in Figure 5.12, and are within their respective limits. Also, the SoC profile of the

battery pack in Case III is very similar to that obtained from the off-line simulations

in Case II. The SoC of the CESS battery was re-calculated based on its real-time

voltage and current to compare it with the SoC signal from the BMS. Figure 5.12

(c) shows that the SoC profiles agree closely.

It is evident from Figure 5.12 that the rule-based controller of the CEMS respects

the SoH of the repurposed EVB by discharging only when needed and with fewer

number of cycles and smaller DoD, so that battery degradation is minimal. This was

accomplished by implementing a properly-sized band-gap.
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Figure 5.11: Case III (a) Active powers of load, transformer, and CESS; (b)
Reactive powers of load, transformer, and CESS and apparent power
of transformer; (c) LV system bus voltages and voltage limits
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Figure 5.12: Case III (a) CESS battery current; (b) CESS battery voltage; (c)
CESS battery pack SoC

In order to measure how the CEMS would minimize battery degradation by

cycling the battery at lower DoD, the RCA which is a lifetime estimation method
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based on counting the charge and discharge cycles for different ranges of DoD [95],

is used in this work. Each DoD range corresponds to a specific number of cycles

to failure. This information is provided by the battery manufacturer and is used to

quantify the cumulative degradation impact of the cycles. The RCA decomposes the

SoC profile obtained from Case II into a combination of cycles based on the counts

of charging and discharging and their corresponding DoD, also referred to as, cycle

range or cycle amplitude. Figure 5.13 shows the inputs and outputs of the RCA.
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Figure 5.13: Inputs and outputs of RCA

The histogram of the SoC cycles, shown in Figure 5.14, depicts the number of

SoC cycles and the corresponding cycle average and DoD, where the cycle average of

each counted cycle is the mean of SoC at the beginning and end of each cycle. The

RCA counts only one cycle from the SoC (Figure 5.10(c)) with high DoD, while the

remaining counted cycles have low DoD, as shown in Figure 5.14.
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The options for voltage control in LV distribution systems are limited; however,

a CESS with REVBs, bidirectional converters and the proposed real-time CEMS

can accomplish this task effectively with a reliable communication. The idea is to

integrate several REVBs to create an energy hub for the LV distribution system.

From the utility’s perspective, the objective of employing REVBs as CESS is to

minimize the impact of EV charging load on the grid and prolong the life span of

the transformer. Alternatively, from the EV owners’ perspective, the objective of

adopting REVBs as residential BESS is to minimize the energy cost of EV charging

and arbitrage the remaining BESS capacity with the utility, through proper control

of the REVB charging and discharging.

Network upgrade deferral, improvement of voltage and system reliability, and

participation in active and reactive power services are all benefits that can be accrued

by REVB-based CESS and its associated proposed controller. To elaborate on the

first benefit, the total NPV is calculated without and with CESS, as one of the

most commonly used criteria for calculating the saving on investment. In this work,

in order to calculate the total NPV, the installation cost of the utilized REVB is

assumed to be $9,080 with a replacement cost of $6,720 (taken from Chapter 3),

and the replacement cost of transformer is assumed to be a $27,886 [121]. The

total NPV for a planning period of 24-year, with 8% discount rate, would yield a
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benefit of $6,257 (14% savings with respect to the case where no CESS is installed),

considering the obtained LoL of Case I and Case II. The savings would be much

higher considering that there are a large number of LV distribution systems within

the jurisdiction of each LDC.

With proper sizing of the repurposed EVB-based CESS in the LV distribution

system, and effective coordination of operation with possible battery energy stor-

age systems in the households, it is possible to fully eliminate overloading of the

distribution transformer according to the industry code.

5.6 Summary

This chapter proposed a CEMS equipped with a rule-based controller for REVB-

based CESS. Since the degradation of the batteries should be taken into account

whether the battery is new or used, the adopted controller structure can be modified

based on the specific characteristics of the battery. An HIL simulation was used to

validate the simulation results and illustrate the effectiveness of the proposed CEMS

and its rule-based control algorithms, using actual signals from the BMS and the

bidirectional charger setup. The performance of the controller and its compliance

with system voltage and transformer loading standards in an LV distribution system

were studied and analyzed. The results obtained from the HIL simulation were

satisfactory and showed improvement in operation of the LV distribution system in

terms of reducing LoL of distribution of transformer and system voltage regulation

as well as slowing down the CESS battery pack degradation.
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Chapter 6

Conclusions

6.1 Summary

The research presented in this thesis focused on planning, operation and control of

BESSs and REVBs.

Chapter 1 laid out the motivation of the research, emphasising the need for

comprehensive models and strategies for planning, operation and control considering

REVBs in isolated microgrid or as CESS in an LV distribution system. A literature

review of related works, particularly on planning and operation of BESS in microgrids

as well as the control of CESS utilizing HIL simulation, was presented. This chapter

also presented an overview of the research objectives.

Chapter 2 presented a brief background on the topics related to the research

including microgrids and basic UC model in such systems, BESSs and some ba-

sic definitions, EVs and EVB models and their degradation. Furthermore, REVBs

for second-use applications, bi-directional converters and transformer LoL were pre-

sented. Also, the well-known RCA was introduced and a brief overview of mathe-

matical programming was presented.

Chapter 3 discussed how the retired EVBs, after repurposing, can serve as an

alternative to new batteries in a BESS. The chapter proposed a comprehensive and

novel framework for planning and operation of a BESS based on REVBs. The first

stage of the framework presented a systematic procedure to model EVB degradation

during first life to capture their impact on the SoH and hence the number of years
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to their EoL. Taking into account the cost information from the second stage, a

novel microgrid planning model for optimal BESS sizing was proposed considering

the impact of degradation due to calendar and cycling effects. The proposed model

introduced a novel set of mathematical relations for BESS degradation and their

optimal year of replacement. The first stage was tested on a real EV drive cycle

database and the microgrid planning model was verified using the CIGRE isolated

microgrid test system benchmark.

Chapter 4 presented a novel backward-forward propagation approach with an em-

bedded energy sharing strategy for REVB units, which was incorporated within an

extended formulation of the previously developed microgrid planning model taking

into consideration its reliability aspects. The novel concept of measuring micro-

grid adequacy in terms of REVB E/P ratio was presented. A sequential 3-stage

scheme along with the associated mathematical model for isolated microgrid plan-

ning including the adequacy check criteria were presented in detail. The optimal

operation of REVBs was determined by the energy sharing strategy which was capa-

ble of distributing the power needed by the microgrid among different REVB units.

The results obtained from Stage-I and Stage-II were shown to be generally in close

agreement with those of Stage-III.

Chapter 5 proposed a novel CEMS equipped with a rule-based controller for

REVB-based CESS. Since degradation of batteries should be taken into account, the

proposed controller structure can be modified to suit the specific characteristics of the

battery. An HIL simulation was used to validate the simulation results and illustrate

the effectiveness of the proposed CEMS and its rule-based control algorithm, using

actual signals from the BMS and the bidirectional charger setup. The performance

of the controller and its compliance with system voltage and transformer loading

standards in an LV distribution system were studied and analyzed. The results

obtained from the HIL simulation were satisfactory and showed improvement in

operation of the LV distribution system in terms of reducing LoL of distribution

transformers and system voltage regulation as well as slowing down the CESS battery

pack degradation.

The main conclusions drawn from the presented research are as follows:

• The inclusion of BESS degradation models in the planning and operations

framework helps in avoiding under-/over-estimating the system regulation re-

serve requirements, and hence reduces the investment cost.

• If degradation and optimal replacement years are ignored, the optimal decisions
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will be affected and hence reflected on the total cost and reliability of the

microgrid.

• Including the feature of determining the optimal year of replacement prevents

excessive replacements over the planning horizon, which reduces capital expen-

diture.

• Since REVBs have lower number of C2F as compared to new BESS, the mi-

crogrid operator tends to keep REVBs in reserve instead of discharging them,

while the new BESS are scheduled for discharging operations significantly more.

• Including the REVB energy sharing strategy in the proposed planning model

helps reduce the degradation of the installed battery, and hence maintain the

E/P ratio above unity to ensure microgrid reliability.

6.2 Contributions

The main contributions of the research presented in this thesis can be summarized

as follows:

• The degradation characteristics and SoH of EVBs are captured and modeled in

detail, considering cycling and calendar degradations using real EV drive cycle

data.

• A novel microgrid planning model is proposed that determines the optimal

decisions on new BESS or REVBs, and their corresponding size and year of

installation, taking into account a new set of mathematical constraints relat-

ing to BESS degradation and optimal year of replacement. The REVBs are

modeled considering their first-life degradation, which impacts the microgrid

planning decisions.

• The extended microgrid planning model considering reliability allows including

multiple REVB units and simultaneous determination of their optimal sizing

and replacement timeline using a new energy sharing strategy among various

installed REVB units. Furthermore, the proposed heuristic algorithm is com-

putationally efficient and does not involve any additional complexity, beyond

that of the planning model proposed earlier, while enabling the inclusion of the

reliability constraint.

• The proposed rule-based control strategy embedded in an interactive real-time

CEMS ensures that the controller structure can be maneuvered to suit the

adopted battery’s characteristics and hence slow down its degradation and
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reduce loading of the distribution transformer.

The main contents and contributions of Chapter 3 have been published in IEEE

Transactions on Industrial Informatics [54]. The main contents of Chapter 4 is

submitted for review and possible publication in IEEE Transactions on Power System

[122], and the main contents of Chapter 5 is submitted for review and possible

publication in Electric Power Systems Research Journal [123].

6.3 Scope for Future Work

Further research can be conducted based on the work presented in this thesis. Some

ideas are presented below:

• To ease the computational burden and to be able to include dynamic deci-

sion variables and non-linearities in BESS; decomposition based optimization

methods are appealing options which may be considered for future studies.

• Inclusion of uncertainties in RES and demand and their impact on the micro-

grid plan decisions need to be investigated.

• The currently available microgrid planning models do not consider degradation

costs. There is a need to develop an appropriate degradation cost function for

REVBs based on their operating and physical characteristics for inclusion in

the microgrid planning models.

• The proposed rule-based controller can be further improved by introducing an

optimized dead-band around the threshold to avoid frequent controller switch-

ing between injecting/absorbing active and reactive power actions.

• Further improvements can be made by optimally sizing the CESS and including

distributed REVBs instead of one CESS unit owned by the utility. The CEMS

presented, is designed for a single REVB unit. This configuration can be made

more generic so that individual EV owners may connect their REVBs and

converters and respond with different degrees of flexibility to the control signals

from the CEMS. This will yield greater benefits than what can be realized with

a single REVB owner.
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Appendices

Appendix A

Table A1: Battery cell specifications

Parameter Value

Nominal voltage (V) 3.3

Charge capacity (Ah) 2.3

Nominal series resistance (mΩ) 10

Mass (g) 76

Table A2: Nissan Leaf parameters

Effective vehicle frontal area Af (m2) 2.59

Aerodynamic drag coefficient CD 0.28

Rolling resistance coefficient Cr 0.0125

Vehicle mass (excluding EVB) (kg) 1,177

Gearbox ratio Ng 7.94

Wheel radius rw(m) 0.3

Air density ρ (kg/m3) 1.225

Gravitational acceleration g (m/s2) 9.81
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Appendix B

Table B1: HIL System Data

Table B1: Power module specification

Power Input ratings, (maximum) Output Ratings, (maximum)

1 phase ac 3 phase ac 1 dc channel 3 dc channels

Voltage 0− 120 V 0− 208 V 20− 650 V 20− 650 V

Current 2× 24 A 3× 24 A 72 A 3× 24 A

Power 2.88 kW total 8.65 kW total 8.65 kW 8.65 kW

Figure B1: Power Module Schematic Diagram used

for HIL System
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