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Abstract

Studying complex relationships between correlated responses and the associated covari-
ates has attracted much research interest. Numerous approaches have been developed to
model correlated responses. However, most available methods rely on a crucial condition
that response variables need to be precisely measured. In practice, this condition is often
violated due to various reasons related to the data collection, study designs, or the na-
ture of the variables. Without taking care of the feature of mismeasurement in variables,
inference results are often biased.

Although measurement error and misclassification have been extensively studied in the
literature, many problems of mismeasurement in correlated responses remain unexplored.
The first problem of interest concerns measurement error and misclassification in the joint
modeling of continuous and binary responses. In Chapter 2, we consider the setting with a
bivariate outcome vector which contains a continuous component and a binary component
both subject to mismeasurement. We propose an induced likelihood approach and describe
an EM algorithm to handle measurement error in continuous response and misclassification
in binary response simultaneously. The algorithm is fast and can be easily implemented.
Simulation studies confirm that the proposed methods successfully remove the bias induced
from the response mismeasurement. We implement the proposed methods to mice data
arising from a genome-wide association study.

As a complement to the likelihood-based methods discussed in Chapter 2, in Chapter 3,
we explore the bivariate generalized estimation equation method with mixed responses
subject to measurement error and misclassification. The generalized estimating equation
method enjoys robustness to certain model misspecification as well as consistency in the
estimation of the mean structure parameters. However, the consistency property relies
on the unbiasedness of estimating functions which can break down in the presence of the
measurement error and misclassification in responses. We propose an insertion strategy
to simultaneously account for measurement error effects in a continuous response and
misclassification effects in a binary response. We consider scenarios where either an internal
or an external validation subsample is available.

In Chapter 4, we consider a more complex situation where covariates are of a high
dimension and may possess a network structure. We start with the case where data are
precisely measured and propose a generalized network structure model together with the
development of a two-step inferential procedure. In the first step, we employ a Gaussian
graphical model to facilitate the network structure, and in the second step, we incorporate
the estimated graphical structure of covariates and develop an estimating equation method.
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Furthermore, we extend the development to accommodating mismeasured responses. We
consider two cases where the information on mismeasurement is known or a validation
sample is available. Theoretical results are established and numerical studies are conducted
to justify the performance of the proposed methods.

In contrast to error-prone continuous and binary responses considered in the first three
chapters, we investigate error-corrupted count data which particularly involve zero-inflated
counts, a problem that has received little attention. Zero-inflated count data arise fre-
quently from cancer genomics studies, and it is often of interest to incorporate the fea-
ture of excessive zeros in the analysis. However, measurement error in count responses
is barely studied, let along the zero-inflated Poisson model with measurement error. In
Chapter 5, we propose a novel measurement error model which is unique for addressing
error-contaminated count data. We show that ignoring the measurement error effects in
analyzing the count response may generally lead to invalid inference results, and mean-
while, we identify situations where ignoring measurement error can still yield consistent
estimators. Furthermore, we propose a Bayesian method to address the effects of mea-
surement error under the zero-inflated Poisson model. We develop a data-augmentation
algorithm that is easy to implement. Simulation studies are conducted to evaluate the
performance of the proposed method. We apply our method to analyze a set of prostate
adenocarcinoma genomics data.

Finally, in Chapter 6, we examine another type of correlated responses: time series
data. We consider the autoregressive model and establish analytical results for quantify-
ing the biases of the parameter estimation if the measurement error effects are neglected.
We propose two measurement error models to describe different processes of data contam-
ination. An estimating equation approach is proposed for the estimation of the model
parameters with measurement error effects accounted for. We further discuss forecasting
using error-prone times series data. This work is motivated by the need of understanding
the ongoing evolving situation of the COVID-19 pandemic. It is important to assess how
the mortality rate may change over time, but error-contaminate COVID-19 data present a
considerable challenge in uncovering the true development path of the disease.
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Chapter 1

Introduction

Modeling correlated responses are commonly conducted in genomics studies and epidemi-
ology, which has attracted extensive research interests. In this thesis, we focus on handling
three classes of correlated responses that have wide application scopes in practice. The
first class includes the bivariate mixed responses, with a continuous component and a bi-
nary component. The second class contains the zero-inflated count data, which consists of
two correlated components, with one component controlling the probability of taking value
zero and another component modeling the distribution of a count variable. The third class
concerns time series data which are autocorrelated.

Most work of modeling correlated responses relies on the critical condition that the vari-
ables are precisely measured, although this condition is usually made implicitly. However,
measurement error is almost inevitable in practice. For example, in genetics, a genotype
can be misclassified due to sequencing errors. In studies of infectious disease, the number
of people infected with a certain disease, e.g., COVID-19, can be underestimated due to
the asymptomatic infections.

Despite available discussions of measurement error in responses, there has been rela-
tively little work on exploring the measurement error effects on the analysis of correlated
responses (Neuhaus, 2002; Chen et al., 2011). In this thesis, we develop inference methods
to address the effects due to measurement error and misclassification in different types of
correlated responses, including likelihood-based methods, estimating equations methods,
and Bayesian methods.

This thesis research is also motivated to tackle the challenges induced by noisy data
arising in applications. In genetic association studies, sometimes the research interest lies in
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studying the association of a genetic biomarker with mixed responses, which may be error-
prone, and this motivates the topics discussed in Chapters 2–3. Meanwhile, understanding
the pathway of genetic networks attracts a lot of interest, where numerous candidate genetic
variants are associated with multiple traits in a complex manner. This presents a nice
scenario of the application of join models discussed in Chapter 4. Chapter 5 examines
the zero-inflated Poisson model which is widely applied to handle cancer genomics and
microbiome data to account for excessive zeros in count data. The ongoing pandemic of
COVID-19 presents a perfect example of measurement error in time series data discussed
in Chapter 6. Although our methods developed in this thesis are motivated by the unique
features of individual data, the application scope of our methods is very broad.

To better understand our development in the following chapters, in this chapter, we
review relevant topics. The remainder is organized as follows. In Section 1.1, we intro-
duce three classes of correlated responses and the approaches that are often used to handle
them. In Section 1.2, we explain the measurement error and misclassification mechanisms.
In Section 1.3, we discuss the undirected graphical model under the exponential family set-
ting. In Section 1.4, we explain several basic concepts of genome-wide association studies.
Finally, we outline the thesis topics in Section 1.5.

1.1 Modeling Correlated Responses

In this thesis, we are interested in three classes of correlated responses: mixed continuous
and discrete responses, count variables with the zero-inflating feature, and time series
data. In the sequel, we separately review each class of correlated responses as well as some
associated methods.

1.1.1 Mixed Responses and Joint Models

While modeling multiple responses of the same type has been extensively studied in longi-
tudinal studies, modeling mixed type of outcomes, such as continuous and binary responses,
has attracted increasing attention. Several models and inference methods were developed,
such as generalized estimating equation methods (Liang and Zeger, 1986; Zeger and Liang,
1986), latent variable models (Sammel and Ryan, 1996), and multivariate linear mixed
models (MLMM, Sammel et al., 1999). Jointly modeling multiple responses simultane-
ously has the advantage of boosting the estimation efficiency and the statistical power in
testing genetic effects (McCulloch, 2008). There have been various joint models, includ-
ing those for multiple discrete responses (Chen et al., 2016), latent variable models for
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mixed continuous and discrete outcomes (Sammel et al., 1997; Teixeira-Pinto and Nor-
mand, 2009; Lin et al., 2014), correlated Probit models (Gueorguieva and Agresti, 2001),
estimating function methods (Prentice and Zhao, 1991; Fitzmaurice and Laird, 1995), and
the Bayesian framework (Wagner and Tüchler, 2010). Further generalizations were ex-
plored for handling clustered data (Catalano, 1997; Lin et al., 2010) and high dimensional
data (Faes et al., 2008).

Although numerous methods were proposed to incorporate the correlation among re-
sponses, these methods can be roughly classified into two categories: likelihood approaches
and estimating equation methods. These methods have their advantages and disadvan-
tages. For example, the estimating function method is robust to the model specification
by taking the price of the loss of efficiency. On the other hand, the estimators based on the
likelihood methods are the most efficient but rely on the correct specification of the full
distribution. In this section, we review the generalized linear mixed model with likelihood
theory and the generalized estimation equations with estimating function theory.

Generalized Linear Mixed Model

For i = 1, . . . , n and j = 1, . . . ,m, let Yij be the jth response for the ith individual
and let Xi = (XT

i1, . . . , X
T
ip)

T be the vector of covariates for the ith subject. Write Yi =
(Yi1, . . . , Yim)T. The generalized linear mixed model (GLMM) can be described in two
steps. Assume that conditional on random effects ui as well as covariates Xi, the Yij are
independent and marginally follow a distribution from the exponential family given by

f(yij|xi, ui) = exp

{
yijϕij − b(ϕij)

a(ψ)
+ c(yij;ψ)

}
, (1.1)

where a(·), b(·) and c(·) are known functions, ϕij is the canonical parameter, and ψ is a
dispersion parameter.

Based on the specification in (1.1), given covariates Xi and random effects ui, the
conditional mean µuij = E(Yij|ui, Xi) equals b′(ϕij) which is postulated by

g(µuij) = β0 + βT
xXij + uT

i Fij,

where b′(·) is the first derivative of b(·), g(·) is a link function, β = (β0, β
T
x )T is the

vector of regression parameters, and Fij is a quantity determined by the study design and
correlation among the responses. The random effects ui are assumed to be independent of
the covariates Xi.
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Contrary to the name of random effects, the components of β are often called fixed
effects. The β parameter in the generalized linear mixed model has a different interpreta-
tion from the generalized linear model with fixed effects only. In GLMM, the parameter
β represents the changes of transformed responses associated with one unit change of co-
variates for an individual, whereas the β in the generalized linear model is interpreted as
the changes at the population level.

Generalized Estimating Equation

For i = 1, . . . , n and j = 1, . . . ,mi, let µij = E(Yij|Xij) and vij = Var(Yij|Xij) be the
conditional mean and variance, respectively, given covariates Xij.

The conditional mean µij is modeled by

g(µij) = β0 + βT
xXij,

where g(·) is a prespecified link function and β = (β0, β
T
x )T is the vector of regression

parameters.

The conditional variance vij is often modeled by a function of the mean and the dis-
persion parameters ψ. Namely,

vij = h(µij;ψ),

where ψ is the dispersion parameter and h(·) is a specified function characterizing the
relationship between the conditional variance vij and the conditional mean µij of Yij
given Xij. For instance, the variance function of the binary response is often specified
as h(µij;ψ) = µij(1− µij) where ψ = 1.

With the only assumptions on the first two moments, the generalized estimating equa-
tion (GEE) method is a natural way to estimate β. Let Vi be the conditional variance of
Yi given Xi. Define the estimating function

Ui(β) = DiV
−1
i (Yi − µi),

where µi = (µi1, . . . , µim)T, and Di =
∂µT

i

∂β
.

Then solving
n∑
i=1

Ui(β) = 0,

4



for β gives a consistent estimator of β, say β̂, provided regularity conditions (Liang and
Zeger, 1986; Prentice and Zhao, 1991). In addition,

√
n(β̂ − β) is asymptotically normally

distributed with mean 0 and covariance matrix{
E

(
∂Ui(β)

∂βT

)}−1

E{Ui(β)Ui(β)T}
{
E

(
∂Ui(β)

∂βT

)}−1T

.

We comment that the validity of the GEE method hinges on the assumption that

E(Yij|Xi) = E(Yij|Xij)

if the working matrix for Vi is not diagonal. A detailed discussion on this assumption can
be found in Yi (2017, Section 5.1).

The consistency of the first order generalized estimating equation also requires the
mean structure to be correctly specified regardless of whether the covariance structure is
correctly specified or not. Sometimes, the association structure may be of scientific interest,
and the second-order GEEs are constructed by modeling the second moment (Prentice and
Zhao, 1991). Hall and Severini (1998) extended the original GEE model based on quasi-
likelihood to improve the efficiency without requiring any covariance specification. Hall
(2001) reviewed the relationships between different GEE approaches.

1.1.2 Zero-inflated Count Data and Zero-inflated Poisson Model

Count data arise from many studies of genomics (e.g. Fu et al., 2017) and microbiome (e.g.
Xu et al., 2020), and they are commonly modeled by a Poisson distribution. On the other
hand, count data may contain excessive zeros, which come from two sources, classified as
“structural zeros” and “sampling zeros”. The “structural zeros” refers to that an individual
is not “at risk” for the event and hence has no possibility to have a positive count. The
“sampling zeros”, on the contrary, refers to that the individual is “at-risk” with a positive
count, but results in a zero count by chance. For example, the count of the copy number
variations (CNVs) is a useful indication of mutations in genes that might be associated
with an increased risk of cancer. However, whether or not the CNVs are observed is also
determined by whether the relevant pathways are activated. Many subjects have no CNVs
simply due to the inactivated pathways, leading to extra “structural” zeros than expected
when considering the Poisson distribution.

Viewing data as being generated from a mixture of a point mass at zero and a Poisson
distribution, a zero-inflated Poisson model (Lambert, 1992) is commonly used to address
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the excessive zero issue in the analysis of count data. It basically consists of two correlated
components, where each component models a different aspect of zero-inflected count data.
Specifically, one component concerns the probability of an individual sampled from an “at-
risk” group and another component models the count variable conditional on the “at-risk”
group.

To be specific, for i = 1, . . . , n, let Yi denote the count outcome for subject i taking a
non-negative integer value and letXi denote the associated covariate vector of dimension px.
For i = 1, . . . , n, let φi = P (Ai = 1|Xi) represent the conditional probability of sampling
from ‘at-risk” group , given Xi, and let µi = E(Yi|Ai = 1, Xi) denote the condition mean of
Yi, given being sampled from the ‘at-risk” group and the covariate Xi, which are assumed
to satisfy 0 < φi < 1, and µi > 0. That is, Yi is sampled from the “non-at-risk” group with
probability 1 − φi, and sampled from the “at-risk” group with probability φi, following a
Poisson distribution with mean µi:

Yi = 0, with probability 1− φi,
Yi ∼ Poisson(µi), with probability φi.

1.1.3 Time Series Data and Autoregressive Model

Time series data arise commonly in epidemiology and infectious disease studies. Such data
are taken as the third type of correlated responses in this thesis, where the correlation
among the responses is directly reflected by the autocorrelation (or serial correlation). To
model time series data, various models have been proposed, such as the classical decom-
position model, autoregressive integrated moving average (ARIMA) model, autoregressive
conditional heteroskedasticity (ARCH) model, state-space models, etc.

We denote a time series as {Xt : t = 1, . . . , T}, where Xt is a random variable and T
is a positive integer or infinite. Stationarity is an important assumption for many models.
The strictly stationarity for time series Xt is defined as

(X1, . . . , Xn)T d
= (X1+r, . . . , Xn+r)

T (1.2)

for any positive integer n and r, where
d
= means those variables have the same joint

distribution.

Sometimes, the assumption described in (1.2) is too strict and unrealistic in reality.
We may consider a weaker condition for the stationarity assumption, where time series
{Xt : t = 1, . . . , T} is weakly stationary if these two conditions are satisfied:
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(i) E(Xt) is independent of t,

(ii) Cov(Xt, Xt+r) is independent of t for each r.

In analysis of times series data, E(Xt) and Cov(Xt, Xt+r) are important to be quanti-
fied. We define the autocovariance function

γ(h) = Cov(Xt+h, Xt) for h = 0,±1, · · · ,

and the autocorrelation function (ACF) is then defined as

ρ(h) =
γ(h)

γ(0)
.

The autocovariance function and the autocorrelation function provide useful measures for
the degree of dependence on the serial variables at different time lags, and thus, play
important roles in the forecasting of future values.

Due to the importance of the autocovariance function, its properties under the weakly
stationarity assumption are well studied:

(1) γ(0) ≥ 0;

(2) |γ(h)| ≤ |γ(0)|;

(3) γ(h) = γ(−h).

Autoregressive models are useful in analyzing time series data, which study the depen-
dence of Xt on {Xt−p, . . . , Xt−1}, and is given by

Xt = φ0 +

p∑
j=1

φjXt−j + εt,

where p is an integer smaller than T , (ε1, . . . , εt)
T is independent of (X1, . . . , Xt)

T with each
εt having zero mean and a variance, say, σ2

ε , φ0 is a constant drift, and φ = (φ1, . . . , φp)
T

is the regression coefficient.
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1.2 Measurement Error and Misclassification

Measurement error is prevalent in various cases. Sometimes it is because of technique
errors. For example, when measuring a length, the last digit of the measurement is usually
an estimate. Sometimes it is because of recall bias. In observational epidemiology, people
answer questionnaires according to their experience in the past which is error-prone. A
detailed discussion on reasons and sources of measurement error is provided by Yi (2017,
Section 2.1).

In the literature of measurement error, we often distinguish different types of error-
prone variables; the case of error-prone continuous variables is called measurement error
and the case of error-prone discrete variables misclassification, although sometimes both
cases are simply referred to as measurement error or mismeasurement.

In this section, we review some measurement error models and misclassification models.

1.2.1 Measurement Error

For i = 1, . . . , n, let Yi denote the precisely measured continuous response. Due to measure-
ment error, we do not observe Yi, but instead, we observe a surrogate Y ∗i . The relationship
between the true response Yi and the observed surrogates Y ∗i can be described by differ-
ent measurement error models in the same manner as Yi (2017) by introducing a random
variable ei:

1. Classical Additive Error Model:

Y ∗i = Yi + ei,

where the error term ei is often assumed to be independent of the true response Yi.

2. Multiplicative Model:
Y ∗i = Yiei,

where the mean of ei is assumed to be 1.

3. Linear Regression Model:

Y ∗i = γ0 + γ1Yi + γT
2 Xi + ei,

where ei is independent of {Yi, Xi} and is often assumed to follow a normal distribu-
tion with mean zero and variance σ2

e , and γ0, γ1, and γ2 are parameters.
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4. General Regression Model:

Y ∗i = m(Yi, Xi; γ) + ei,

where m(·) is a prespecified function which can be nonlinear, γ is the vector of regres-
sion parameters associated with the measurement error model, and ei is independent
of {Yi, Xi}.

Although these measurement error models provide a flexible specification of the relation-
ship between the error-prone variable Yi and its surrogate version Y ∗i , model identifiability
issues may be a problem. To make the inferences meaningful, a specified model f(y; θ)
must be identifiable. That is, if two parameters θ1 and θ2 make f(y; θ1) = f(y; θ2) hold for
any all possibly observed y (in a set of probability 1), then

θ1 = θ2.

Measurement error in covariates has received extensive research interest. On the other
hand, less research work has been directed to measurement error in response, partly because
the measurement error in response can be ignored in some scenarios, such as the response
model described by a linear regression model together with a certain additive measure-
ment error model. However, measurement error in response is not always ignorable if the
measurement error process is nonlinear (Yi, 2017, Page 353).

1.2.2 Misclassification

When error-prone variables are discrete, we usually describe it as a misclassification prob-
lem. Let Yi be a binary variable following a Bernoulli distribution. The true response Yi is
not observable but instead we observe the surrogate Y ∗i . Let πi0 = P (Y ∗i = 1|Yi = 0, Xi)
and πi1 = P (Y ∗i = 0|Yi = 1, Xi) be the misclassification probabilities that may depend
on the covariates Xi. The relationship between the true response Yi and the observed
surrogate Y ∗i is often modeled by logistic regressions models:

logit πi1 = α01 + αT
x1Xi,

and logit πi0 = α00 + αT
x0Xi,

where α = (α01, α
T
x1, α00, α

T
x0)T is the vector of the regression parameters.

Misclassification in responses and covariates has been studied in the literature (e.g.,
Neuhaus, 2002; Ramalho, 2002; Prescott and Garthwaite, 2002; Paulino et al., 2003; Chen
et al., 2011; Yi et al., 2015; Shu and Yi, 2017). The misclassification in response will
generally lead to biased estimation of parameters if no action is properly taken.
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1.3 Undirected Graphical Model

An undirected graphical model (UGM), also called a Markov random field (MRF) or a
Markov network, does not require specification for the edge orientations and is natural to
be applied for image analysis and spatial statistics.

For i = 1, . . . , n, suppose Xi = (Xi1, . . . , Xip)
T is a random vector for subject i. Let Vi =

{1, 2, . . . , p} be the index set of the vertices, corresponding to the variables {Xi1, . . . , Xip},
and let Ei = Vi × Vi denote the set of edges derived from Vi. We use an undirected graph
Gi = (Vi, Ei) to describe the relationship among the covariates for subject i, where an
edge of vertices s and t represents that Xs and Xt are correlated. Since the distribution of
random vector Xi is assumed to be the same for each subject, we consider the graph for
each individual to be identical. Namely, G1 = · · · = Gn ≡ G with G = (V,E).

Markov independence is an important assumption for graphical models. To illustrate
this assumption, we first define a cut set C ⊆ V to be a set of nodes that separate the
graph G into two disjoint components A and B (Figure 1.1).

Figure 1.1: Example of a graph separated by a cut set C

Assumption 1 (Markov independence assumption) For all cut sets C ⊂ V

XA ⊥⊥ XB|XC,

where XA, XB and XC are the covariates corresponding to the sets A, B and C, respectively,
and ⊥⊥ represents “is conditionally independent of”.
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Based on Assumption 1, a graphical model following the exponential family distribution
can be constructed by

f(xi; θ,Θ) = exp

∑
k∈V

θkB(xik) +
∑

(s,t)∈E

θstB(xis)B(xit) +
∑
k∈V

C(xik)− A(θ,Θ)

 , (1.3)

where θ = (θ1, · · · θp)T is the vector of parameters, Θ = [θst] is a p × p symmetric matrix
with diagonal elements to be one, B(·) and C(·) are prespecified functions, and the function
A(θ,Θ) is the normalizing constant to guarantee (1.3) to be a probability density function.

The density function (1.3) provides a general form, which includes many useful cases.
For example, the Gaussian graphical model can be derived with the specification ofB(xit) =
xit
σt

and C(xit) = − x2
it

2σ2
t
, where σt is a dispersion parameter to scale the covariate, and its

formulation is given by

f(xi; θ,Θ) = exp

∑
k∈V

1

σk
θkxik +

∑
(s,t)∈E

1

σsσt
θstxisxit −

∑
k∈V

1

σ2
k

x2
ik − A(θ,Θ)

 , (1.4)

where σk is a scale parameter for Xik, and A(θ,Θ) is the normalizing constant. When the
covariates follow a Bernoulli distribution, the Ising model can be derived from (1.3), given
by

f(xi; θ,Θ) = exp

 ∑
(s,t)∈E

θstxisxit − A(θ,Θ)

 , (1.5)

where B(xti) = xit, C(xit) = 0, and A(θ,Θ) is a normalizing constant.

There are two methods for the parameter estimation of θ and Θ. The first method is
to estimate the parameter based on the global likelihood. For example, for the Gaussian
graphical model, the estimator can be estimated by maximizing the rescaled global log-
likelihood L(Θ;X), which takes the form

L(Θ;X) = log Det(Θ)− Tr(SΘ)− λ‖Θ‖1,

where S = 1
n

∑n
i=1 xix

T
i is the empirical covariance matrix, ‖Θ‖1 =

∑
s 6=t |θst| is the `1-norm

of the off-diagonal entries of Θ, λ is the shrinkage parameter controlling the strength of
the penalty, and Det(·) and Tr(·) are, respectively, the determinant and trace of a matrix.

In practice, the parameter can be estimated through the graphical least absolute shrink-
age and selection operator (LASSO) algorithm (Friedman et al., 2008). Due to the com-
plexity of the computation, the algorithm generally takes a long time. This method seems
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to be mainly applied for Gaussian graphical models. An alternative method of estimating
Θ is based on the idea of the neighborhood-likelihood.

For a given vertex s ∈ V , we use

X(−s) = {Xt : t ∈ V \ {s}}

to denote the collection of all other random variables in the graph except Xs. Based on
the Markov independence assumption, we define the neighborhood set for s

N (s) = {t ∈ V : (s, t) ∈ E}

to be the set of relevant variables for variable Xs.

As shown in Figure 1.2, the set N (s) is a cut set that separates {s} from the remaining
variables.

s

Figure 1.2: The vertices in gray compose the neighborhood set of vertex s, N (s)

Write θ(−s) = (θs1, . . . , θs,(s−1), θs,(s+1), . . . , θsp)
T and let `

(
θ(−s)

)
be the log-likelihood

for θ(−s) scaled by −1/n,

`
(
θ(−s)

)
= − 1

n
log

{
n∏
i=1

P (Xs|X(−s))

}

= − 1

n

n∑
i=1

θsB(Xis) +
∑
t∈N (s)

θstB(Xis)B(Xit) + C(Xis) +D(θ)

 ,

where B(·) and C(·) are functions specified the same as in (1.3) and D(θ) is the log-
normalization constant.
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Then for s ∈ V , we obtain an estimator for θ(−s), denoted as θ̂(−s), by minimizing

`
(
θ(−s)

)
+ λ‖θ(−s)‖1,

where λ is the tuning parameter and ‖ · ‖1 is the `1-norm. Although this method is
fast in implementation, it has a drawback that the resulting precision matrix Θ might be
asymmetric. Namely, θ̂st 6= θ̂ts for some s, t ∈ V , where θ̂st and θ̂ts represent the estimates
for the (s, t)th and the (t, s)th entry of Θ. To overcome this problem, extra rules are

applied to the estimates. For example, AND rule decides θ̂st and θ̂ts to be nonzero only if
both of θ̂st and θ̂ts are nonzero; OR rule decides θ̂st and θ̂ts to be nonzero if either of θ̂st
and θ̂ts is nonzero (Meinshausen and Bühlmann, 2006).

1.4 Genome-Wide Association Study

Genome-wide association studies (GWAS), also known as whole-genome association studies
(WGAS), are observational studies searching for causal genetic variants that are associated
with the responses of primary interest by scanning over a genome-wide set of genetic
variants in different individuals. GWAS often focuses on the associations between single-
nucleotide polymorphisms (SNPs) and clinical outcomes, such as diseases.

A genome-wide association study is often conducted in two stages (Wason and Dud-
bridge, 2012). In the first stage, candidate SNPs are selected through a simple model,
such as linear regression, to gain computation speed. A set of candidate SNPs are selected
according to the strength of the associations. In this stage, due to a large number of tests,
several techniques can be applied to address the multiple testing issue, such as Bonferroni
correction and the Benjamini-Hochberg Procedure (Benjamini and Hochberg, 1995), etc.

In the second stage, a more advanced approach is applied to study the association
between the responses and the candidate SNPs screened from the first stage. There are
two purposes for this stage. Firstly, the results getting from the first stage are rudimentary
and need further validation. Secondly, advanced approaches can be used to study more
complex research problems, such as identifying the possible genetic pathways and the
pleiotropy effects to be introduced in Section 1.4.1. In this thesis, our research interest lies
in the second stage of the genome-wide association study.

The genome-wide association studies involve several new data features. One important
example is the population stratification. In the following subsections, we first introduce
the basic concepts of statistical genetics and then review several methods concerning the
population stratification.
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1.4.1 Basic Concepts in Statistical Genetics

Pleiotropy is a common phenomenon in genetics that one gene is simultaneously associated
with multiple traits. It has been widely studied in various types of research including
Phenylketonuria (e.g., Penrose, 1951), Schizophrenia (e.g., Navarrete et al., 2013), and
many others (e.g., Kraja et al., 2014).

As opposed to the pleiotropy effect, the term polygenic refers to the phenomenon that
a group of genetic variants is associated with the same phenotype outcome. Examples of
human polygenic traits are height, skin color, and eye color.

In genetics, the genes can not only have a complex association with multiple traits
but also interact with each other in a complex manner through a collection of molecular
regulators. To understand the mechanism of how the genes interact, these interactions are
often modeled as a network, which is the so-called gene regulatory network (GNR). In the
network, each gene will be expressed as a node and an interaction between two genes will
be represented by an edge (Yu et al., 2015).

Although there are different types of graphs, the most commonly used graph in the gene
regulatory network is the hub graph. In a hub graph, some of the nodes have a number
of links that greatly exceed the average number and these nodes are called hub nodes. In
GRN, the genes that are highly connected with other genes are called hub genes. Recently,
because the hub genes play a key role in biological processes and are informative to uncover
the mechanism of diseases, identifying hub genes has attracted a lot of the research interest
(Akavia et al., 2010).

1.4.2 Population Stratification

The population features, such as the ethnicity for the human being data, can serve as con-
founders in genetic association studies, due to the non-random mating within populations,
which is usually caused by the geological separation. To avoid the spurious association of
the genetic variant and the response, several strategies have been developed.

The first method is to adjust the population stratification by the multi-trait mixed
model (MTMM). The MTMM is an extension of the linear mixed model by incorporating
the relatedness among the subjects into the covariance matrix of random effects. To be
specific, the MTMM is defined as

Yi = βTXi + ui + εi, for i = 1, . . . , n,
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where Yi is a continuous trait, Xi includes the environmental covariates and genotype
covariates, εi is the random error independent of {Xi, ui}, β is the vector of regression
coefficients, ui is the random effect representing the confounding effect resulting from the
subject dependent populations stratification. Write u = (u1, . . . , un)T. Often, u is assumed
to follow N(0, σ2

gR), where σ2
g is a scale parameter and R is an n×n positive definite matrix

representing the pairwise relatedness among subjects. The relatedness matrix R can be
determined by various methods according to the different nature of data. For example,
when pedigree data are available, R is determined by the kinship matrix (Lange, 2003,
Page 82). An alternative approach is to estimate relatedness matrices from genome-wide
SNPs. The detail of specifying the relatedness matrix is to be discussed in Section 2.1.1.

The second method is to control the confounding by including the principal components
of the relatedness matrix as fixed effects. To conduct the principal component analysis,
the relatedness matrix is decomposed using the eigenvalue decomposition (EVD),

R = LDLT,

where the columns of L are eigenvectors of R, and D is a diagonal matrix of positive
eigenvalues of R. Let F = RLD−

1
2 be the matrix of principal components of the genetic

information for the subjects, where each row of F , denoted as Fi, is the principal compo-
nents for subject i. Here, D−

1
2 represents the diagonal matrix whose diagonal elements are

the reciprocal and square root of those diagonal elements of D.

The principal components based model can be cast as

Yi = βT
1 Xi + βT

2 Fi + εi,

where β = (βT
1 , β

T
2 )T is the vector of regression coefficients, Fi is the first few largest

principal components of the relatedness matrix R.

Compared to the principal component based linear model, the MTMM model can be
used to account for higher-rank confounding. On the other hand, controlling confounders
by including fixed effects can circumvent the intensive computational burden.

1.5 Thesis Topics and the Outline

This thesis tackles several important problems and offers new additions to the literature.
The thesis contains seven chapters with the last chapter concluding the thesis and the
appendix including additional materials for Chapters 2–6. The topics and the development
of Chapters 2–6 are outlined as follows.
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1.5.1 Latent Variable Model with Bivariate Mixed Responses
Subject to Measurement Error and Misclassification

In genetic association studies, due to the concern of population stratification, a multi-
trait mixed model (MTMM) is often considered. In the MTMM, random effects are used
not only to model the correlation for the multiple outcomes of the same subject but also
to adjust for the relatedness among subjects. The MTMM has been widely applied in
genome-wide association studies in various setting (Zhang et al., 2010; Korte et al., 2012;
Zhou and Stephens, 2014; Furlotte and Eskin, 2015).

While mixed effects models have been widely used, they do not automatically ensure
the inference results to be valid without conditions. A critical condition of using such
models hinges on the precise measurements of the variables. Measurement error and mis-
classification, however, are typical features in genetic studies, but they are often ignored
in most applications. Even if the practitioners aware the importance of the measurement,
they might still ignore the effect of measurement error in genome-wide association studies
due to intensive computational burdens, and accounting for the measurement error and
misclassification does not only require great efforts of modeling but also introduce a large
number of algorithm implementations. This being said, it is important to accommodate
the mismeasurement to obtain valid results for genetic studies. Because of the advances
in computer technology, implementing time-consuming algorithms does not seem to be an
obstacle as before. A few studies, such as Hossain et al. (2009), Smith et al. (2013), and
Rekaya et al. (2016), investigated some methods of analyzing genetic data with misclassi-
fication in a variable.

In the literature of response mismeasurements, there has been research exploring ei-
ther measurement error in a continuous response (e.g., Buonaccorsi, 1991; Pepe et al.,
1994; Buonaccorsi, 1996), or misclassification in a discrete response (e.g., Neuhaus, 2002;
Ramalho, 2002; Prescott and Garthwaite, 2002; Paulino et al., 2003; Chen et al., 2011).
However, no available work has been directed to deal with mixed responses with mis-
measurement in continuous and discrete components, although there were a few studies
simultaneously addressing mixed types of mismeasurement in covariates (Spiegelman et al.,
2000; Yi et al., 2015; Zhang and Yi, 2019).

In Chapter 2, we consider the problem of joint modeling mixed responses with a contin-
uous and a binary variable respectively subject to measurement error and misclassification.
We employ the bivariate regression model with a latent variable which features the depen-
dence of the response components as well as the population stratification. We propose two
methods, the induced likelihood method and the EM algorithm approach, to account for
both measurement error and misclassification of the responses in inferential procedures. A
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general framework is considered for the specification of the mismeasurement processes. We
show that both methods yield valid estimation results.

1.5.2 Estimating Equation Approach with Bivariate Mixed Re-
sponses Subject to Measurement Error and Misclassifica-
tion

Correlated mixed types of data, containing both continuous and discrete variables arise
commonly from clinical trials and genetic association studies. Many models have been
proposed for analyzing such data. In addition to the well-studied likelihood approaches,
marginal models have also been widely used to handle correlated mixed types of data due to
the advantage of robustness to certain model misspecification since no full distributional
assumptions are required. For example, generalized estimating equations, proposed by
Liang and Zeger (1986), analyze the longitudinal data marginally and require only modeling
of the first and second moments. This method has been further extended by many authors
including Prentice and Zhao (1991); Hall and Severini (1998); Pan (2001); Wang and Long
(2011); Wang et al. (2012).

Marginal methods are useful in joint modeling of mixed responses, such as a continuous
response and a discrete response (e.g., Liu et al., 2009). However, such methods rely on
a crucial condition that the variables must be precisely measured. It is well known that
the mismeasurement in responses induces both biased parameter estimation and efficiency
loss (e.g., Neuhaus, 1999, 2002; Chen et al., 2011).

In Chapter 3, we use the bivariate generalized estimating equation to analyze mixed
continuous and discrete responses subject to mismeasurement. We develop an insertion
strategy to form unbiased estimating functions to accommodate the effects of measurement
error and misclassification in responses. We consider different study designs including
the main study/internal validation study and the main study/external study (Spiegelman
et al., 2000; Yi et al., 2018). We evaluate the proposed methods both theoretically and
numerically.
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1.5.3 Generalized Network Mixed Model in Discovering Gene
Regulatory Network with Mixed Responses Subject to Mea-
surement Error and Misclassification

In genetic analysis, genes can not only have a complex association with multiple traits
but also interact with each other in a complex manner through molecular regulators. To
understand how these genes may interact, gene regulatory networks (GRN) are often em-
ployed to describe the associations among genes, where genes are taken as nodes and an
interaction between two genes is featured by an edge (Friedman, 2004). While many meth-
ods have been proposed for studying gene regulatory networks, a noticeable limitation is
that the computational procedures are problem-specific, which hinders their application
scope. To overcome this issue, several studies of applying graphical models to construct
gene regulatory networks were motivated (e.g., Li et al., 2012; Yu et al., 2015).

Although graphical models have been developed to construct gene regulatory networks,
most available work only focused on the modeling of covariates and did not consider how to
model the relationship between network structured covariates and a response variable, let
alone for the case with mixed bivariate responses with both continuous and discrete compo-
nents. With the analysis of mixed responses, generalized estimating equation methods are
useful because of its robustness of not requiring the specification of the joint distribution
of the response variables as well as its flexibility of accommodating different covariance
structures of the responses. The validity of such methods, however, is vulnerable to the
mismeasurement of the response variables.

While it is well studied that mismeasurement in a discrete response typically breaks
down the usual inference methods and ignoring this feature commonly yields erroneous
inference results (e.g., Neuhaus, 1999; Chen et al., 2011), to our knowledge, there has
not been research on dealing with error-contaminated mixed responses of both discrete
and continuous components, let alone for their relationship with covariates of network
structures.

In Chapter 4, we tackle this problem and make the following contributions: (1) we
propose a new class of generalized network structured models to delineate the relationship
between bivariate responses and covariates of a network structure; (2) we develop a two-
stage inferential procedure to identify the network structure for covariates and to address
the mismeasurement effects in responses of both continuous and discrete components; (3)
we rigorously establish the asymptotic results for the proposed estimators and study the
efficiency issues for different methods; (4) our methods offer tools for a broad variety of
applications to handle error-prone data with complex association structures. For example,
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they can be applied in genetic studies to simultaneously identify the gene regulatory net-
work and study the association between the gene network and mixed type traits with the
effects of mismeasurement accounted for.

To be specific, we develop a generalized network structured model which incorporates
the graphical structure in the generalized linear models through a two-step procedure. In
the first step, we identify the network structure in the covariates via the Gaussian graphical
model. In the second step, we build generalized estimating equations to study the associ-
ation between the bivariate responses and the network structured covariates selected from
Step 1, where the effects due to the contamination in the responses are accommodated for
valid inferential procedures. We start with a simple situation where the model parameters
for the mismeasurement processes are known; this development highlights the idea of how
effects of mismeasurement in the mixed responses can be accounted for in combination with
the examination with the network structure for covariates. Furthermore, we extend the
development to accommodating the cases where the parameters for the mismeasurement
models are unknown and must be estimated from an additional validation subsample.

1.5.4 Zero-Inflated Poisson Models with Measurement Error in
Response

Research on zero-inflated Poisson models has become active and has attracted various
studies from several perspectives. Rodrigues (2003) and Klein et al. (2015) pursued a
Bayesian inference analysis with zero-inflated models. Todem et al. (2016) developed a
marginal model for the zero-inflated Poisson data. Xiang et al. (2007) and Yang et al.
(2010) proposed a score test under the zero-inflated Poisson model.

Measurement error in count data has been scarcely explored, which basically has two
challenges. Firstly, the count variable is an integer, and thus the traditional measurement
error models, such as the classical additive model is not applicable in this situation. Sec-
ondly, the variables are bounded blow but unbounded above, because the observed values
are always positive.

In Chapter 5, we propose a measurement error model that is unique for error-corrupted
count data by incorporating two possible sources of measurement error. We explore the
validity of statistical inference when measurement error in count data is ignored. We
develop a Bayesian framework to account for the measurement error effects, which avoids
the unidentifiability issue through the inclusion of weakly informative priors.
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1.5.5 Autoregressive Models with Data Subject to Measurement
Error

Time series data are common in the fields of epidemiology, economics, and engineering, and
various models and methods have been developed for analyzing such data. The validity
of these methods, however, hinges on the condition that time series data are precisely col-
lected. This condition is restrictive in applications. Measurement error is often inevitable.
In the study of air pollution, for example, it is difficult or even impossible to precisely
obtain the true measurement of the air population.

Some work on time series subject to measurement error is available in the literature.
Tanaka (2002) proposed a Lagrange multiplier test to assess the presence of measurement
error in time series data. Staudenmayer and Buonaccorsi (2005) explored the classical
measurement error model for the autoregressive model. Tripodis and Buonaccorsi (2009)
studied measurement error in forecasting using the Kalman filter. Dedecker et al. (2014)
considered non-linear AR(1) model with measurement error. Despite available discussions
of measurement error in time series, several limitations restrict the application scope of the
existing work. Most available methods consider only the autoregressive models without the
drift and assume the simplest additive measurement error model. Furthermore, most work
involves a complex formulation to adjusted for the measurement error effects, which is not
straightforward to implement for practitioners. In addition, to our knowledge, there is no
available work addresses measurement error effects on prediction under the autoregressive
model.

In Chapter 6, we systematically explore the analysis of error-prone time series data
under the autoregressive model. We propose two types of models to delineate measure-
ment error processes: the additive regression models and multiplicative models. These
modeling schemes offer us great flexibility in facilitating different applications. We inves-
tigate the impact of the naive analysis which ignores the feature of measurement error in
the inferential procedures, and we obtain analytical results for characterizing the biases
due to the naive analysis. We develop an estimating equation approach to adjust for the
measurement error effects on time series analysis. We establish asymptotic results for the
proposed estimators and develop the theoretical results for the forecasting of times series
in the presence of measurement error. Finally, we describe a block bootstrap algorithm for
computing standard errors of the proposed estimators.

Our work is partially motivated by the data of COVID-19, a wide-spread disease that
has become a global health challenge and has caused over ten million infections and half
million deaths as of August, 2020. Because of the special features of the disease, the
data of COVID-19 introduce many new challenges: 1) due to the asymptomatic infected
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cases and the patients with light symptoms who do not go to hospitals, the reported cases
with COVID-19 are typically smaller than the true number of infected cases; 2) due to
the limited test resources, many infected cases are not able to be identified instantly; and
3) the varying incubation periods lead to the delay of the identification of the infections.
Consequently, the discrepancy between the reported case number and the true case number
can be substantial, and ignoring these features and applying the traditional time series
analysis method would no longer produce valid results.

In Chapter 6, we apply the developed methods to analyze the COVID-19 data. We
are interested in studying how the mortality rate in a region may change over time and
describing the trajectory of the death rate. While the mortality rate of a disease is defined
as the death number divided by the case number, the determination of the mortality rate
of COVID-19 is challenging. In contrast to the standard definition, Baud et al. (2020)
estimated mortality rates by dividing the number of deaths on a given day by the number
of patients with confirmed COVID-19 infection 14 days before, with the consideration of
the maximum incubation time to be 14 days. Due to the unique features of COVID-19,
there does not seem to be a precise way to define the mortality rate of COVID-19. In
this chapter, we conduct a sensitivity analysis to assess the severity of the pandemic by
using different definitions of the mortality rate and considering different ways of modeling
measurement error in the data.

Using the data collected from the dashboard developed by Johns Hopkins University
(JHU-CSSE, Dong et al., 2020), we analyze the mortality rates of COVID-19 and conduct
forecasting of the COVID-19 related mortality rate for the four most populated provinces
in Canada, British Columbia, Ontario, Quebec, and Alberta.
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Chapter 2

Latent Variable Models with
Bivariate Mixed Responses Subject
to Measurement Error and
Misclassification

In this chapter, we focus on the effects of measurement error and misclassification on anal-
ysis of the mixed responses postulated with latent variable models. The notation and the
setup for the response model, the measurement error model as well as the misclassification
models are introduced in Section 2.1. We describe the induce likelihood method in Sec-
tion 2.2 and the EM algorithm method in Section 2.3. We extend the method to facilitating
pedigree data with correlated subjects in Section 2.4. Simulations studies are conducted to
evaluate the performance of the two methods in Section 2.5. To illustrate the usage of the
methods, in Section 2.6 we conduct numerical analysis using the mice data arising from a
genome-wide association study.

2.1 Model Setup

2.1.1 Response Model

Suppose n subjects are recruited independently in the study. For subject i = 1, . . . , n,
two possibly correlated responses Yij are measured for j = 1, 2, where Yi1 is a continuous
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variable, and Yi2 is a binary variable. Write Yi = (Yi1, Yi2)T. Let Xi = (Xi1, . . . , Xipx)
T

denote the covariate vector for subject i, where px is the dimension of the covariates. To
facilitate the association structure between the mix-type responses Yi1 and Yi2, we introduce
a latent variable ui. Conditional on random effects ui and covariates Xi, we assume that
Yi1 and Yi2 are independent, each having a probability density or mass function from the
exponential family

f(yij|ui, xi) = exp [{yijηj − bj(ηj)}/dj(φj) + cj(yij, φj)] ,

for i = 1, . . . , n and j = 1, 2 where bj(·), cj(·) and dj(·) are known functions, ηj is a
canonical parameter, and φ is a dispersion parameter.

Let µij = E(Yij|ui, Xi) be the conditional mean of response Yij for j = 1, 2, and then
µij = b′j(ηj). To explicitly describe the dependence of µij on random effects and the
covariates, we consider a bivariate generalized linear mixed model[

g1(µi1)
g2(µi2)

]
=

[
βT

1 Xi

βT
2 Xi

]
+

[
ui
ui

]
, (2.1)

where g1(·) and g2(·) are the link functions, determined by g−1
1 (·) = b′1(·) and g−1

2 (·) = b′2(·);
β = (βT

1 , β
T
2 )T is the vector of regression coefficients that is of primary interest; and ui is

a random effect. For the continuous response Yi1 with a normal distribution, b′1(t) is taken
as t; and for the binary response Yi2, b′2(t) = exp(t)/(1 + exp(t)), yielding that g1(t) = t
and g2(t) = log t

1−t , respectively, where t represents the argument of functions.

Write u = (u1, . . . , un)T. Often, u is assumed to follow a normal distribution N(0, σ2
gR),

where σ2
g is an unknown scale parameter, and R = [Rjk]n×n is a specified positive definite

matrix with the (j, k) element Rjk determined by the study design, where j, k = 1, . . . , n.
In applications, a particular specification of R may be imposed to feature a problem-specific
association structure. For instance, to reflect the independence among different subjects,
Sammel et al. (1997) set R as a diagonal matrix with the diagonal elements being given
(such as 1 or other values). In the development in Sections 2-4, we consider the case where
R is a given diagonal matrix, and in Section 5, we extend the diagonal R to a blockwise
diagonal matrix to reflect the correlation among the subjects.

Model (2.1) is useful for characterizing the dependence of mix-type responses on co-
variates (Sammel et al., 1997). This model can be conveniently used to analyze genetic
data with mix-type responses, where the genotype information may be summarized as the
covariates Xi = (Xi1, . . . , Xipx)

T, where for k = 1, . . . , px, covariate Xik can be continu-
ous (e.g., representing a continuous measurement of an environmental effect), or binary
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(e.g., representing a clinical treatment); Xik can be ordinal referring to, for example, the
genotype.

For instance, we observe the genotypes through genetic markers (called single nucleotide
polymorphisms, SNPs) in each locus (the location of a gene on the genome). For k =

1, . . . , px, let X
(1)
ik and X

(2)
ik stand for the nucleotides of SNP k for subject i inherited from

the father and mother respectively. Each SNP consists of two nucleotides, each being one
of the two types of alleles, “A1” and “A2”. Hence, all possible forms of a SNP are “A1A1”,
“A1A2” and “A2A2”, derived from different combinations of the alleles. Then the covariate
Xik, representing kth SNP for subject i, is coded according to the nucleotide level of A2,
given by

Xik = I(X
(1)
ik = A2) + I(X

(2)
ik = A2), (2.2)

yielding an ordinal variable Xik taking values of 0, 1 and 2, where I(·) is an indicator
function.

2.1.2 Measurement Error and Misclassification Models

For i = 1, . . . , n, suppose that the response variables Yi1 and Yi2 are subject to mismeasure-
ment and that their precise measurements may not be observed for every subject. Let Y ∗i1
and Y ∗i2 denote the observed measurements of Yi1 and Yi2, respectively; they are also called
surrogate measurements of Yi1 and Yi2. Let Zi = (Zi1, . . . , Zipz)

T denote the covariate
vector involved in the measurement error and misclassification process for subject i where
pz is the dimension of Zi. For ease of exposition, we assume that Zi is a subset of Xi; if
this is not the case, we can modify our initial definition of Xi to include Zi as its part.

To describe the mismeasurement processes, we consider the factorization

f(y∗i1, y
∗
i2|yi1, yi2, ui, xi) = f(y∗i1|y∗i2, yi1, yi2, ui, xi)f(y∗i2|yi1, yi2, ui, xi). (2.3)

We assume that

f(y∗i1|y∗i2, yi1, yi2, xi, ui) = f(y∗i1|yi1, yi2, xi) = f(y∗i1|yi1, yi2, zi), (2.4)

and f(y∗i2|yi1, yi2, xi, ui) = f(y∗i2|yi1, yi2, xi) = f(y∗i2|yi2, xi) = f(y∗i2|yi2, zi). (2.5)

Assumptions (2.4) and (2.5) basically say that conditional on the true responses and the
covariates, surrogate measurements and random effects are independent. The assumptions
also suggest that Zi completely reflects the dependence on the covariates when featuring
the measurement error and misclassification processes. While the last two equalities in
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(2.5) are not needed to assume, having them offers us a convenient way to model the
misclassification probabilities; see Yi et al. (2015).

Let πi0 = P (Y ∗i2 = 1|Yi2 = 0, Zi) and πi1 = P (Y ∗i2 = 0|Yi2 = 1, Zi) be the misclassifica-
tion probabilities that may depend on the covariates Zi. We consider logistic models for
the misclassification process,

logit πi1 = α01 + αT
z1Zi,

and logit πi0 = α00 + αT
z0Zi, (2.6)

where α = (α01, α
T
z1, α00, α

T
z0)T is the vector of the regression parameters.

For the continuous response Yi1, we consider a regression model which facilitates possible
dependence of Y ∗i1 on {Yi1, Yi2, Zi},

Y ∗i1 = m(Yi1, Yi2, Zi; γ) + ei, (2.7)

where ei is the random error independent of {Yi1, Yi2, Xi, ui} and has zero mean and con-
stant variance σ2

e , γ is the vector of regression coefficients, and m(·) is the mean function
that can be linear or nonlinear.

Often, an additive model is considered for (2.7), given by

Y ∗i1 = γ0 + γ1Yi1 + γ2f(Yi2) + γ3Zi3 + ei, (2.8)

where f(·) is a function of the binary response Yi2, γ = (γ0, γ1, γ2, γ3)T is the vector of
parameters, and a normal distribution is assumed for ei. We comment that model (2.8)
offers the flexibility and convenience of featuring the dependence of surrogate variable Y ∗i1
on the true responses and covariates, but model identifiability may be a concern if no care
is taken. In Appendix A.1, we outline the discussion on this aspect.

2.2 Estimation Procedures

2.2.1 Induced Likelihood for the Observed Data

To see how the distribution of the observed Y ∗i is different from that of Yi, we derive the
conditional distribution of Y ∗i given {ui, Xi}. Indeed,
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f(y∗i |ui, xi) =

∫
yi1

∑
yi2

f(y∗i1, y
∗
i2, yi1, yi2|ui, xi) dyi1

=

∫
yi1

f(y∗i1|yi1, yi2 = 1, zi)f(y∗i2|yi2 = 1, zi)f(yi1|ui, xi)f(yi2 = 1|ui, xi) dyi1

+

∫
yi1

f(y∗i1|yi1, yi2 = 0, zi)f(y∗i2|yi2 = 0, zi)f(yi1|ui, xi)f(yi2 = 0|ui, xi) dyi1,

(2.9)

where in the second equality, we use (2.4), (2.5), and the conditional independence of
Yi1 and Yi2 given {ui, Xi, Zi}. Using the model formulations in Section 2.1, we have the
following expressions for the terms of (2.9):

f(y∗i1|yi1, yi2, zi) =
1√

2πσ2
e

exp

[
−{y

∗
i1 −m(yi1, yi2, zi; γ)}2

2σ2
e

]
;

f(y∗i2|yi2 = q, zi) =

{
exp(α0q + αT

zqzi)

1 + exp(α0q + αT
zqzi)

}q(1−y∗i2)+(1−q)y∗i2

×
{

1

1 + exp(α0q + αT
zqzi)

}qy∗i2+(1−q)(1−y∗i2)

with q = 0, 1;

f(yi1|xi, ui) =
1√

2πσ2
exp

{
−(yi1 − βT

1 xi − ui)2

2σ2

}
;

f(yi2|xi, ui) =

{
exp(βT

2 xi + ui)

1 + exp(βT
2 xi + ui)

}yi2 { 1

1 + exp(βT
2 xi + ui)

}1−yi2
.

Consequently, the conditional distribution of Y ∗i , given Xi, is given by

f(y∗i |xi) =

∫
f(y∗i , ui|xi) dui

=

∫
f(y∗i |ui, xi)f(ui|xi) dui, (2.10)

where f(ui|xi) = 1

(2πσ2
gRii)

1
2

exp
(
− u2

i

2σ2
gRii

)
, with Rii being the ith diagonal elements of

matrix R, and f(y∗i |ui, xi) is determined by (2.9).
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Let θ = (βT, γT, αT, σ2, σ2
e , σ

2
g)

T. Inference about θ can be carried out using the likeli-
hood for the observed data, given by

L(θ) =
n∏
i=1

f(y∗i |xi), (2.11)

where f(y∗i |xi) is determined by (2.10) with the dependence on parameter θ suppressed in
the notation.

Maximizing L(θ) with respect to θ gives the maximum likelihood estimator, say θ̂, of
θ. Under regularity conditions, this is equivalent to solving

n∑
i=1

Si(θ) = 0, (2.12)

where Si(θ) = ∂
∂θ

log f(y∗i |xi). Typically, (2.12) does not have an analytic solution; solving
(2.12) usually requires a numerical method, such as the Newton-Raphson method.

Under regularity conditions, θ̂ is a consistent estimator of θ, and

√
n(θ̂ − θ) d−−→ N(0, I−1(θ)) as n −→∞,

where
I(θ) = E

{
Si(θ)S

T
i (θ)

}
. (2.13)

2.2.2 Implementation

The estimation of the parameter θ is conducted by maximizing (2.11). We realize this by
using the Newton-Rhaphson algorithm in combination with the Monte Carlo method. Let
Nu and Ny be prespecified large integers.

Step 1. Take an initial parameter value θ(0) = (β(0)T
, γ(0)T

, α(0)T
, σ2(0)

, σ2
e

(0)
, σ2

g
(0)

)T and set
the iteration index t = 0.

Step 2. At iteration (t + 1), for i = 1, . . . , n, independently generate a sequence of values,

{u[1]
i , . . . , u

[Nu]
i }, from N(0, σ2

g
(t)
Rii), where σ2

g
(t)

is the parameter σ2
g evaluated at the

tth iteration and Rii is the (i, i) entry of matrix R. For i = 1, . . . , n and a = 1, . . . , Nu,

generate {y[a,1]
i1 , . . . , y

[a,Ny ]
i1 } from N(β(t)T

Xi + u
[a]
i , σ

2(t)
), where σ2(t)

and β(t) are,
respectively, the parameter σ2 and β evaluated at the tth iteration.
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Step 3. The likelihood function in (2.11) is approximated by

L̃(θ) =
n∏
i=1

{
1

Nu

Nu∑
a=1

f(y∗i |u
[a]
i , xi)

}
, (2.14)

where

f(y∗i |u
[a]
i , xi) =

1

Ny

Ny∑
b=1

f(y∗i1|y
[a,b]
i1 , yi2 = 1, zi)f(y∗i2|yi2 = 1, zi)f(yi2 = 1|u[a]

i , xi)

+
1

Ny

Ny∑
b=1

f(y∗i1|y
[a,b]
i1 , yi2 = 0, zi)f(y∗i2|yi2 = 0, zi)f(yi2 = 0|u[a]

i , xi).

Step 4. Compute S̃(θ(t)) = ∂
∂θ

log L̃(θ) and Ĩ(θ(t)) = − ∂2

∂θ∂θT log L̃(θ), and update θ(t+1) by

θ(t+1) = Ĩ(θ(t))−1S̃(θ(t)) + θ(t).

Step 5. Check if the θ(t+1) converges by evaluating |(θ(t+1) − θ(t))/(θ(t) + c1)| < c2, where c1

and c2 are prespecified small tolerance values. Otherwise, t := t+ 1, and go back to
Step 2.

The Monte Carlo approximation from Step 2 to Step 4 has the computation complexity
of order O(nNuNy). For an accurate approximation, the computation typically requires a
large number of replicates such as 10000 for Nu and Ny. Alternatively, one may employ
the Gaussian quadrature method (James, 1980) to approximate the integral in (2.11), as
discussed in Appendix A.2.

2.3 EM Algorithm

In this section, we consider an alternative to estimating model parameters using the EM
algorithm. The log-likelihood for the complete data {(Yi1, Yi2, Y ∗i1, Y ∗i2, ui) : i = 1, . . . , n},
given Xi, is

n∑
i=1

log f(y∗i1, y
∗
i2, yi1, yi2, ui|xi) =

n∑
i=1

log f(yi1, yi2, ui|y∗i1, y∗i2, xi) +
n∑
i=1

log f(y∗i1, y
∗
i2|xi).
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Thus, the E-step of the EM algorithm evaluates

Q(θ, θ(t)) =
n∑
i=1

Qi(θ, θ
(t)),

where
Qi(θ, θ

(t)) = EYi1,Yi2,ui|Y ∗i1,Y ∗i2,Xi;θ(t) {log f(Y ∗i1, Y
∗
i2, Yi1, Yi2, ui|Xi; θ)} ,

and the expectation is taken with respect to the conditional distribution of (Yi1, Yi2, ui)
given {Y ∗i1, Y ∗i2, Xi} with θ set as θ(t), the estimate of θ at iteration t.

The M-step is to maximize Q(θ, θ(t)) with respect to θ, which is equivalent to solving

n∑
i=1

∂Qi(θ, θ
(t))

∂θ
= 0 (2.15)

for θ, provided regularity conditions. To obtain the solution of (2.15), we may implement
the Newton-Raphson algorithm. An updated estimate θ(t+1) for θ at iteration t is given by

θ(t+1) = θ(t) +

{
n∑
i=1

∂2

∂θ∂θT
Qi(θ, θ

(t))

}−1{ n∑
i=1

∂

∂θ
Qi(θ, θ

(t))

}
, (2.16)

where t = 0, 1, 2, . . ., and θ(0) is an initial value of θ.

The integral involved in (2.16) can be approximated by numeric methods, such as the
Monte Carlo or Gaussian quadrature algorithm. Repeat through the E and M steps until
convergence of {θ(t+1) : t = 0, 1, . . .}, and let θ̂ denote the resulting limit. The variance

estimate of θ̂ can be obtained following Louis (1982) or using the bootstrap procedure.

2.4 Extension to Handling Clustered Data

In genome-wide association studies (GWAS), facilitating the genetic relatedness for sub-
jects in the same clusters (e.g., families) is important to reflect the cluster structure of
data. To this end, we extend the preceding development by allowing the matrix R in
Section 2.1.1 to feature the inherent relatedness within the same cluster or family.

Let

R =


R1

R2

. . .

Rnf


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be a blockwise-diagonal matrix which delineates the population stratification based on the
pedigree information, where nf is the total number of families (or clusters) and Ri is the
ni×ni relatedness matrix of family i. For i = 1, . . . , nf , the (i1, i2) element Ri1i2 of Ri may
be, for example, defined as the kinship coefficient (Lange, 2003, Page 82) for subjects i1
and i2 in the family i, which is the weighted summation of the probabilities of each allele
pair for subjects i1 and i2 to be identical by descent (IBD) at the same locus k. Here an
allele pair is taken as identical by descent if the pair has the same type of nucleotide and
is inherited from the same ancestor.

To be specific, for k = 1, . . . , px,

Ri1i2 =
1

4

2∑
l=1

2∑
s=1

P
(
X

(l)
i1k

= X
(s)
i2k

)
,

where P (X
(l)
i1k

= X
(s)
i2k

) is assumed to be identical for all the k and represents the common

probability that the two alleles, X
(l)
i1k

and X
(s)
i2k

, are inherited from the same ancestor for

l = 1, 2 and s = 1, 2. Here X
(1)
ik and X

(2)
ik represent the nucleotides inherited from the father

and mother of subject i, respectively; in applications, the probabilities P
(
X

(l)
i1k

= X
(s)
i2k

)
are

often determined by pedigree data. For instance, Ri1i2 = 0.5 if i1 and i2 are monozygotic
twins and Ri1i2 = 0.25 if i1 and i2 has a parent-offspring relationship.

For i = 1, . . . , nf , let Yi11, . . . , Yini1 be the continuous responses and Yi12, . . . , Yini2 be the
binary responses of ni subjects in the ith family, and let Y ∗i11, . . . , Y

∗
ini1

and Y ∗i12, . . . , Y
∗
ini2

be
their corresponding surrogate measurements. For i = 1, . . . , nf and r = 1, . . . , ni, we write
Yir = (Yir1, Yir2)T, Y ∗ir = (Y ∗ir1, Y

∗
ir2)T, and Y ∗i = (Y ∗Ti1 , . . . , Y ∗Tini )T. Then for i = 1, . . . , nf

and r = 1, . . . , ni, the response model (2.1) and the mismeasurement models in Section 2.1.2
are used to describe Yir and Y ∗ir where the random effect in (2.1) is now denoted as uir.

With this setup, the conditional distribution (2.10) is now modified to be

f(y∗i |xi) =

∫ ni∏
r=1

f(y∗ir|ũi, xi)f(ũi) dũi,

where ũi = (ui1, . . . , uini)
T follows a multivariate normal distribution with mean zero and

covariance matrix σ2
gRi. Then, the inference about the model parameter θ can be carried

out using the same procedure in Section 2.2 or 2.3, and the asymptotic distribution for the
resulting estimator can be established in a similar manner.
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2.5 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed method in
terms of parameter estimates and associated variance estimates. In contrast, we also
consider three naive methods. In the first naive method (Naive Method 1), we ignore both
misclassification and measurement error in response variables and estimate the parameters
of the response model by fitting a generalized linear model using R function glm() directly
to the observed response measurements; in the second naive method (Naive Method 2),
we ignore misclassification in the binary response but account for continuous response
measurement error; and in the third analysis (Naive Method 3), we ignore continuous
response measurement error but just address misclassification in the binary response.

The sample size is set as n = 1000 and we consider model (2.1) with px = 2 and model
(2.6) with pz = 1 and covariates Zi independently generated from the uniform distribution
U(0, 2). To generate covariates Xi for model (2.1), we consider two scenarios with different
nature in Xi. In Scenario 1, covariates are continuous where Xi1 and Xi2 are independently
generated from U(−3, 4) and N(0, 1), respectively. In Scenario 2, covariates are ordinal

representing a genotype shown in model (2.2); specifically, Xij = X
(1)
ij + X

(2)
ij for j = 1, 2

where X
(1)
i1 and X

(2)
i1 are independently generated from Bernoulli(0.2), and X

(1)
i2 and X

(2)
i2

are independently generated from Bernoulli(0.5); here different success probabilities of the
Bernoulli distribution are chosen to reflect different minor allele frequencies (MAF) of
genotypes.

2.5.1 Performance of the Methods in Sections 2.2 and 2.3: Sim-
ulation Design

For i = 1, . . . , n, the random effects ui, featuring the correlation between the continuous
and discrete responses Yi1 and Yi2, are independently generated from N(0, σ2

gRii), where
Rii = 1 for i = 1, . . . , 500, and Rii = 2 for i = 501, . . . , 1000, and σg is set as 0.8. The
response vector Yi = (Yi1, Yi2)T is then generated from the joint distribution

f(yi1, yi2|ui) =
1√
2π

exp

[
−1

2
{yi1 − g1(µi1)}2

]
g2(µi2)yi2 {1− g2(µi2)}1−yi2 ,

where g1(µi1) and g2(µi2) are specified as in model (2.1) with g1(t) = t and g2(t) = log
(

t
1−t

)
,

and the coefficient β = (β10, β20, β11, β21, β12, β22)T is set as (0.7, 1.5, 0.7,−1.2, 1, 1)T.

The surrogate measurement Y ∗i1 is generated from the measurement error model (2.8)
with γ0 = 0, γ1 = 1, γ3 = 0 and f(x) = 2x − 1 to transform the values of Yi2 from {0, 1}
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into {−1, 1}. For the misclassification of Yi2, we generate the surrogate measurement Y ∗i2
from the model

logit πi1 = α01 + αz1Zi,

and logit πi0 = α00 + αz0Zi,

where α = (α01, αz1, α00, αz0)T is the vector of parameters to be specified.

We consider four settings with different degrees of measurement error and misclassifi-
cation rates. Settings 1 and 2 differ in the value of γ2, with γ2 = 0.001 for Setting 1, and
γ2 = 1.0 for Setting 2; in these two settings, σe is set 0.25 or 0.50 to reflect increasing
degrees of measurement error in Yi1 and α is set as (−1.386, 0,−1.386, 0)T. In Settings 3
and 4, we take σe = 1.0 and γ2 = 1.0 but consider different values for α; in Setting 3, we
let αz1 = αz0 = 0 and set α01 = α00 to be −4.595 or −2.197, respectively, yielding 1%
and 10% misclassification proportions; and in Setting 4, we set α01 = α00 = −1 and let
αz1 = αz0 take a value of −3.5 or −1.2, leading to about 1% and 10% misclassification
proportions, respectively.

2.5.2 Performance of the Method in Section 2.4: Simulation De-
sign

In this simulation study, we consider the case where subjects are correlated by pairs.
For i = 1, . . . , 500, the random effects (ui1, ui2)T are generated from a bivariate normal
distribution with mean zero and covariance matrix σ2

gRi, where σg = 0.8 and Ri =
(

1 ρ
ρ 1

)
.

Here, ρ is taken as 0.25 or 0.5, respectively, to possibly represent the parent-offspring
relationship or monozygotic twin relationship of pairs (Lange, 2003). The response vector
for cluster i, Yi = (Yi11, Yi12, Yi21, Yi22)T, is then generated from the joint distribution

f(yi11, yi12, yi21, yi22|ui) =
1

2π
exp

[
−1

2
{yi11 − g1(µi11)}2 − 1

2
{yi21 − g1(µi21)}2

]
× g2(µi2)yi12 {1− g2(µi12)}1−yi12 g2(µi22)yi22 {1− g2(µi22)}1−yi22 ,

where g1(µi11), g1(µi21), g2(µi12) and g2(µi22) are specified as in model (2.1) with g1(t) =
t and g2(t) = log

(
t

1−t

)
, and the coefficient β = (β10, β20, β11, β21, β12, β22)T is set as

(0.7, 1.5, 0.7,−1.2, 1, 1)T. We comment that the correlation among the components of Yi
is facilitated by the inclusion of random effects (ui1, ui2)T in (µi11, µi21, µi12, µi22)T.

The surrogate Y ∗i1 and Y ∗i2 are generated in the same way as in Section 2.5.1, with
σe = 0.25, γ2 = 1, αz1 = αz0 = 0 and αz1 = αz0 = −1.386, yielding a misclassification rate
about 20%.
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2.5.3 Simulation Results

We report the results obtained from the proposed methods and Naive Methods 1–3 in
Tables 2.1–2.5 here.

In Tables 2.1–2.4, we report the simulation results for Section 2.5.1 and in Table 2.5 we
display the results for Section 2.5.2, where “Bias” is calculated as 1

N

∑N
i=1 θ̂k − θk, “SEE”

is the empirical standard error, “SEM” is calculated by (2.13), and “CR” stands for the
coverage rate of 95% confidence intervals for a parameter. That is for parameter θk, its
CR is given by

1

N

N∑
i=1

I(θ̂k
(L)

< θk < θ̂k
(U)

),

where N is the number of simulation studies repeated, θ̂
(L)
k and θ̂

(U)
k are calculated as

θ̂k − sd(θ̂k) × Z0.975 and θ̂k + sd(θ̂k) × Z0.975, respectively. Here, θ̂k is an estimate of θk,
sd(θ̂k) is the associated standard error, and Z0.975 is the 0.975 quantile of N(0, 1).

Simulation results demonstrate that in the presence of mismeasurement in the response
components, the naive methods incur various kinds of biases although they may differ in the
magnitude for different settings. The naive methods generally produce large finite sample
biases and unreliable coverage rates for 95% confidence intervals that way off the nominal
level 95%. On the other hand, the two methods that correct for the mismeasurement effects
work very well for various settings regardless of whether the subjects are independent or
clustered. These methods yield small finite sample biases for the point estimates and fairly
good coverage rates for 95% confidence intervals.

2.6 Analysis of Mice SNPs Data

In this section, we illustrate our methods by analyzing the outbred Carworth Farms White
(CFW) mice data arising from a genome-wide association study.(Parker et al., 2016a,b)
This study provided measurements for 1200 mice on complex traits, including behavioral,
physiological and gene expression traits. The original data contain measurements of 99787
SNPs for 1200 mice. Mice with missing responses and the SNPs with the minor allele
frequency (MAF) lower than 0.05 are removed because such SNPs have low heterozygosity
and often lead to false-positive results in association tests (Anderson et al., 2010). We
examine the subset with 1157 mice and 77838 SNPs.

For i = 1, . . . , 1157, let Yi1 denote the true length of the tibia bone (in mm) and let Yi2
be a binary outcome where “0” represents a healthy bone and “1” stands for an abnormal

33



bone. The surrogate Y ∗i1 is obtained in the laboratory and may differ from the true length
Yi1, and Y ∗i2 is measured by a subjective classification rule based on the 90 percentile of
bone-mineral density (BMD).

To analyze how the true responses are associated with the SNPs using the proposed
method with mismeasurement effects accounted for, we carry out three steps of analysis.
The first two steps are performed to screen unimportant SNPs to reduce the dimension
of SNPs that is substantially larger than the sample size. The third step is to carry
out a refined, post-screening analysis by applying the proposed method to the bivariate
generalized linear mixed model (2.1) with measurement error effects taken into account.

In Step 1, we conduct the principal component analysis (PCA) (Price et al., 2006).
Let G denote the n × n genomic relationship matrix using the genetic data following the
discussion of Section 3.2 in VanRaden (2008). Then we express G using the eigenvalue
decomposition (EVD),

G = LDLT,

where the columns of L are the eigenvectors of G, and D is the diagonal matrix of the
positive eigenvalues of G. Let F = GLD−

1
2 be the matrix of principal components of the

genetic information, with the ith row, denoted as Fi, representing the principal components
for subject i. According to the scree plot in Figure 2.1 and using the “elbow” criterion, we
include the first five principal components, denoted as Fi1, Fi2, Fi3, Fi4 and Fi5, for subject
i as the fixed effects when building the response model.

In Step 2, we conduct a genomewide screening procedure by examining each SNP one
at a time using a model similar to (2.1). To adjust for the population stratification, we
also include five largest principal components PCi = (Fi1, Fi2, Fi3, Fi4, Fi5)T for subject i.
Let Wij be the jth SNP for subject i and j = 1, . . . , pSNP, where pSNP is the dimension of
SNPs. We repeat the screening for j = 1, . . . , pSNP by respectively considering the model
with error effects adjusted:

g1(µi1) = β∗10 + β∗11Wij + PCT
i · β∗PC1 + u∗i ; (2.17)

g2(µi2) = β∗20 + β∗21Wij + PCT
i · β∗PC2 + u∗i ; (2.18)

where g1(·) is set as the identity function, g2(t) = log
(

t
1−t

)
, u∗i is the random effect, and

β∗10, β∗11, β∗20, β∗21, β∗PC1 and β∗PC2 are parameters.

To feature the misclassification of Y ∗i2, we use model (2.6) with Zi taken as the bone-
mineral density (BMD). Regarding the measurement error in Yi1, following the discussion
in Appendix A.1, we consider model (2.8) with γ0 = 0, γ1 = 1, γ3 = 0 and f(x) = 2x− 1
for transforming the values of Yi2 from {0, 1} into {−1, 1}. Then we perform the Wald
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test to (2.17) with the null hypothesis H0 : β∗11 = 0 and to (2.18) with the null hypothesis
H0 : β∗21 = 0, respectively, where we employ the induced likelihood method and the EM
algorithm as opposed to the naive method without addressing error-in-variables.

In Figure 2.2, we report the Manhattan plot for each method which displays the result-
ing distribution of the SNP significant level, where SNPs are placed on the x-axis according
to their chromosomal position, and the − log10 of the SNP associated p-values obtained
from the Wald test are recorded on the y-axis. Using the significance level 10−6 as a thresh-
old, we retain three SNPs, rs31681083 (chromosome 8), rs33030459 (chromosome 9) and
rs265727287 (chromosome 12) for our post-selection analysis in Step 3.

Finally, in Step 3, we build a final model with form (2.1) where Xi include the three
selected SNPs, rs31681083 (Xi1), rs33030459 (Xi2) and rs265727287 (Xi3), as well as
the body weight of a mouse (Xi4) and the five largest principal components
PC = (Fi1, Fi2, Fi3, Fi4, Fi5)T. That is,[

g1(µi1)
g2(µi2)

]
=

[
β10 + β11Xi1 + β12Xi2 + β13Xi3 + β14Xi4 + PCT · βPC1

β20 + β21Xi1 + β22Xi2 + β13Xi3 + β14Xi4 + PCT · βPC2

]
+

[
ui
ui

]
(2.19)

with g1(t) = t and g2(t) = log
(

t
1−t

)
as well as random effects ui.

We apply the induced likelihood method and the EM algorithm in contrast the naive
method ignoring the error effects to fit model (2.19), and present the results in Table 2.6.
Both the induced likelihood method and the EM algorithm produce fairly close results, and
they suggest the same evidence for significance or insignificance of each covariates in model
(2.19). At the significance level 0.05, the SNPs rs31681083 (Xi1), rs33030459 (Xi2) and
rs265727287 (Xi3) are significantly associated with tibia length, and the SNPs rs31681083
(Xi1) and rs33030459 (Xi2) are significantly associated with the bone condition. It is also
observed that the bodyweight (Xi4) is significantly associated with both tibia length and
bone condition. However, in the naive analysis which disregards mismeasurement effects,
we obtain different evidence that rs31681083 (Xi1), rs33030459 (Xi2) and bodyweight
(Xi4) are not significantly associated with the bone condition. It also shows the opposite
evidence for the effect of SNP rs33030459 (Xi2) on the bone condition from that revealed
by the methods of accommodating mismeasurement effects.

The analyses also reveal evidence of misclassification in the binary response Yi2, re-
flected by the estimation results of αz0 and αz1 in Table 2.6. For healthy bones, a lower
BMD is associated with a higher probability of misclassification as the estimate of αz0 is
negative, and for abnormal bones, a higher BMD is associated with a higher probability
of misclassification as the estimate of αz1 is positive. In addition, the estimate of γ2 is
significantly negative, suggesting the measurement error in tibia length (Yi1) is negatively
dependent on the true bone condition (Yi2).
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Table 2.6: Analysis results for the mice SNPs data

Naive Analysis Induced Likelihood Method EM Algorithm
Parameter Estimate S.E p-value Estimate S.E p-value Estimate S.E p-value

Estimates for Response Models - Tibia Length
β10 17.141 0.121 <0.001 17.451 0.161 <0.001 17.469 0.166 <0.001
β11 -0.058 0.022 0.009 -0.152 0.035 <0.001 -0.154 0.036 <0.001
β12 -0.109 0.032 0.001 -0.204 0.043 <0.001 -0.210 0.045 <0.001
β13 0.113 0.020 <0.001 0.131 0.026 <0.001 0.131 0.027 <0.001
β14 0.047 0.004 <0.001 0.037 0.006 <0.001 0.036 0.006 <0.001
β15 -0.002 0.001 0.005 -0.002 0.001 0.027 -0.003 0.001 0.013
β16 0.002 0.001 0.156 -0.001 0.002 0.505 -0.002 0.002 0.355
β17 0.002 0.001 0.207 -0.004 0.002 0.027 -0.005 0.002 0.024
β18 0.000 0.001 0.695 -0.008 0.002 <0.001 -0.008 0.002 <0.001
β19 -0.003 0.001 0.047 -0.008 0.002 <0.001 -0.008 0.002 <0.001

Estimates for Response Models - Tiebia Length
β20 -1.364 1.052 0.195 6.360 2.696 0.018 6.137 2.575 0.017
β21 -0.305 0.188 0.105 -1.590 0.532 0.003 -1.513 0.501 0.003
β22 0.097 0.272 0.720 -2.245 0.851 0.008 -2.187 0.799 0.006
β23 -0.170 0.171 0.320 0.363 0.393 0.356 0.336 0.376 0.371
β24 -0.020 0.038 0.605 -0.219 0.097 0.024 -0.207 0.093 0.025
β25 -0.004 0.008 0.617 0.001 0.015 0.946 -0.003 0.014 0.832
β26 -0.002 0.010 0.830 -0.045 0.021 0.035 -0.048 0.021 0.019
β27 -0.040 0.011 <0.001 -0.102 0.031 0.001 -0.096 0.030 0.001
β28 -0.022 0.010 0.029 -0.138 0.038 <0.001 -0.132 0.036 <0.001
β29 0.028 0.011 0.011 -0.102 0.031 0.001 -0.095 0.029 0.001

Estimates for Mismeasurement Models
γ2 - - - -0.232 0.045 <0.001 -0.248 0.052 <0.001
α00 - - - 17.794 3.954 <0.001 17.490 3.529 <0.001
α01 - - - -12.210 1.467 <0.001 -12.329 1.534 <0.001
αz0 - - - -0.171 0.039 <0.001 -0.168 0.035 <0.001
αz1 - - - 0.099 0.013 <0.001 0.100 0.014 <0.001
σg - - - 0.021 2.123 0.992 0.181 0.282 0.522
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Figure 2.1: The scree plot of the principal component analysis
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Figure 2.2: The Manhattan plots of the genome-wide association studies for the three
methods and two responses. The x-axis shows the base-pair position (BP, the location of
a SNP) on genome which is divided as 19 chromosomes labeled from 1 to 19. The y-axis
is the − log10 scale of the p-value. Horizontal green dash lines mark the significant level
10−6. The orange dots show the SNPs discussed in the text and their labels are marked in
the small boxes.
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Chapter 3

Estimating Equation Approach with
Bivariate Mixed Responses Subject
to Measurement Error and
Misclassification

In contrast to likelihood-based approaches developed in Chapter 2, in this chapter, we
confine our attention to the marginal modeling, where we explore estimation equation
approaches to handle measurement error and misclassification in responses. In Section 3.1,
we present the basic notation and the model setup. In Section 3.2, we first introduce
the measurement error model and the misclassification model, and then we develop an
insertion strategy for estimation of the model parameters to account for the effects of
measurement error and misclassification in responses. In Section 3.3, we extend the method
to the scenario where either external or internal validation data are available. Simulations
studies are conducted in Section 3.4 to evaluate the performance of the proposed methods.
In Section 3.5 we apply the proposed method to analyze the mice data arising from a
genome-wide association study.
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3.1 Model Setup and Framework

3.1.1 Response Model

We consider the case with bivariate responses for which one component is continuous
and one component is binary. For i = 1, . . . , n, let Yi = (Yi1, Yi2)T, where Yi1 denotes
the continuous response, and Yi2 represents the binary response, and n is the number of
subjects. Let Xi = (Xi1, . . . , Xip)

T denote the covariate vector for subject i, where p is
a positive integer. For i = 1, . . . , n and j = 1, 2, let µij = E(Yij|Xi) be the conditional
mean of the Yij, given Xi, and let vij = Var(Yij|Xi) be the conditional variance of Yij given
covariates Xi.

We assume Yi and Yi′ are independent for any i 6= i′, but Yi1 and Yi2 could be correlated.
A bivariate generalized linear model is employed to characterize the dependence of µij on
Xi for j = 1, 2:

g1(µi1) = βT
1 Xi;

g2(µi2) = βT
2 Xi,

(3.1)

where β = (βT
1 , β

T
2 )T is the vector of regression parameters, and g1(·) and g2(·) are link

functions. For example, one may specify g1(t) = t and g2(t) = log{t/(1− t)}.
We assume that for j = 1, 2,

vij = h(µij;ψj), (3.2)

where ψj is the dispersion parameter and h(·) is a specified function characterizing the
relationship between the conditional variance vij and the conditional mean µij of Yij given
Xi. For instance, the variance functions of the continuous and binary response are often
specified, respectively, as

vi1(µi1) = ψ1,

and vi2(µi2) = µi2(1− µi2),

where ψ1 is often further reparameterized as σ2 because of its non-negative property.

3.1.2 Estimating Equation Method

Let Vi1 = Var(Yi|Xi) be the conditional covariance matrix of the response vector Yi, given
Xi. The covariance matrix Vi1 is decomposed as

Vi1 = B
1
2
i CiB

1
2
i , (3.3)
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where Bi = diag {vij : j = 1, 2} and Ci is the correlation matrix ( 1 λ
λ 1 ) of the response vector

Yi, given Xi, with the parameter λ bounded in [−1, 1]. Let φ = (ψ1, λ)T, and θ = (βT, φT)T.

For i = 1, . . . , n, let
Ui1(θ) = DT

1iV
−1
i1 (Yi − µi), (3.4)

where Di1 = ∂µi
∂βT is a 2× 2p matrix. Then Ui1(θ) is an unbiased estimating function which

can be used to estimate β if the parameter φ were known.

To estimate φ, we construct a second set of estimating functions. For i = 1, . . . , n and
j, k = 1, 2, let vijk denote the (j, k)th element of Vi1. Define ξi = (vijk : 1 ≤ j ≤ k ≤ 2)T,

and Si = {(Yij − µij)(Yik − µik) : 1 ≤ j ≤ k ≤ 2}T. Let

Ui2(θ) = DT
2iV

−1
i2 (Si − ξi), (3.5)

where Di2 = ∂ξi
∂φT , and Vi2 is a 3× 3 weight matrix. Then Ui2(θ) is an unbiased estimating

function of φ for any given β. This estimating function is the most efficient in the class
of all estimating functions of form (3.5) if the weight matrix Vi2 is set as the covariance
matrix of Si. However, such a specification requires the modeling of the third and fourth
moments of Yij, which is often difficult or of no interest. In practice, Vi2 is often specified
as a diagonal matrix (e.g., Hall, 2001; Yi and Cook, 2002). Although such a specification
may incur some efficiency loss, it allows us to keep the model assumptions minimal, thus
protecting us against model misspecification.

Let Ui(θ) =
(
UT
i1(θ), UT

i2(θ)
)T

. By the estimating function theory (e.g., Liang and
Zeger, 1986; Godambe, 1991; Newey and McFadden, 1994; Yi, 2017, Section 1.3.2), under
regularity conditions, solving

n∑
i=1

Ui(θ) = 0

for θ gives a consistent estimator, say, θ̃, of θ, and
√
n(θ̃ − θ) has an asymptotic normal

distribution with mean zero and covariance matrix{
E

(
∂Ui(θ)

∂θT

)}−1

E{Ui(θ)UT
i (θ)}

{
E

(
∂Ui(θ)

∂θT

)}−1T

.

3.2 Methodology

3.2.1 Measurement Error and Misclassification Models

Suppose that for i = 1, . . . , n, the response variables Yi1 and Yi2 are subject to mismea-
surement and their precise measurements are not observed for every subject, but instead,
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surrogate measurements Y ∗i1 and Y ∗i2 are observed, respectively, for Yi1 and Yi2.

To describe the mismeasurement processes, we consider the factorization

f(y∗i1, y
∗
i2|yi1, yi2, xi) = f(y∗i1|y∗i2, yi1, yi2, xi)f(y∗i2|yi1, yi2, xi), (3.6)

for which we assume that

f(y∗i1|y∗i2, yi1, yi2, xi) = f(y∗i1|yi1, yi2, xi)
and f(y∗i2|yi1, yi2, xi) = f(y∗i2|yi2, xi). (3.7)

Let Zi = (Zi1, . . . , Zipz)
T be the covariates involved in the misclassification. For ease of

exposition, we assume that Zi is a subset of Xi; if this is not the case, we can modify
our initial definition of Xi to include Zi as its part. Let πi0 = P (Y ∗i2 = 1|Yi2 = 0, Zi) and
πi1 = P (Y ∗i2 = 0|Yi2 = 1, Zi) be the misclassification probabilities that may depend on the
covariates. We consider logistic models,

logit πi1 = α01 + αT
z1Zi

and logit πi0 = α00 + αT
z0Zi, (3.8)

where α = (α01, α
T
z1, α00, α

T
z0)T is the vector of the regression parameters.

For the continuous response Yi1, we consider a regression model which facilitates possible
dependence of Y ∗i1 on {Yi1, Yi2, Zi}

Y ∗i1 = γ0 + γ1Yi1 + γ2Yi2 + γT
3 Zi + ei, (3.9)

where ei is the random error which is independent of {Yi1, Yi2, Zi} and has zero mean and
constant variance σ2

e , γ = (γ0, γ1, γ2, γ
T
3 )T is the vector of regression coefficients. Often, a

normal distribution is assumed for the ei.

Let η = (γT, αT)T denote the vector of parameters associated with the models (3.8)
and (3.9).

3.2.2 Estimating Equation Method in the Presence of Mismea-
surement

Without addressing measurement error and misclassification in the response, simply replac-
ing Yij with Y ∗ij in the estimating functions (3.4) and (3.5) results in estimating functions
that are no longer unbiased, and the resultant estimators may be inconsistent. To account
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for the mismeasurement effects, we develop a two-step procedure to construct new esti-
mating functions, say U∗∗i1 (θ) and U∗∗i2 (θ), which are expressed in terms of the observed
measurements Y ∗i1 and Y ∗i2 together with the covariates and the model parameters and
satisfy

E{U∗∗i1 (θ)} = 0, and E{U∗∗i2 (θ)} = 0.

To this end, we develop a two-step procedure to correct for the effects of misclassification
in Yi2 and those of measurement error in Yi1 sequentially. In Step 1, we define

Y ∗∗i2 =
Y ∗i2 − πi0

1− πi0 − πi1
,

where πi0 and πi1 are the misclassification rates postulated by (3.8). It is readily seen that
E(Y ∗∗i2 |Yi2, Xi1) = Yi2.

Then we modify (3.4) and (3.5) by replacing Yi2 and Y ∗∗i2 and define

U∗i1(θ) = DT
1iV

−1
i1

(
Yi1 − µi1
Y ∗∗i2 − µi2

)
, and U∗i2(θ) = DT

2iV
−1
i2

 Y 2
i1 − 2µi1Yi1 − µ2

i1 − ξi1
Yi1Y

∗∗
i2 − µi1Y ∗∗i2 − µi2Yi1 − ξi2

Y ∗∗i2 − 2µi2Y
∗∗
i2 + µ2

i2 − ξi3

 ,

(3.10)
for which we use Y 2

i2 = Yi2 for a binary variable Yi2 taking the value of either 0 or 1.

In Step 2, we further modify (3.10) by replacing Yi1 with the observed variables in order
to obtain U∗i1(θ) and U∗i2(θ). To this end, define

Y ∗∗i1 =
Y ∗i1 − γ0 − γ2Y

∗∗
i2 − γT

3 Zi
γ1

,

Y ∗∗i11 = Y ∗∗i1
2 − σ2

e

γ2
1

− γ2
2

γ2
1

∆i,

and Y ∗∗i12 = Y ∗∗i1 Y
∗∗
i2 +

γ2

γ1

∆i,

where

∆i =
∆

1−Y ∗i2
i0 ∆

Y ∗i2
i1 −∆i0πi1 −∆i1πi0
1− πi1 − πi0

,

∆i0 =
πi0 − π2

i0

(1− πi1 − πi0)2
,

and ∆i1 =
πi1 − π2

i1

(1− πi1 − πi0)2
.
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Let U∗∗i (θ) be U∗i (θ) = (U∗Ti1 (θ), U∗Ti2 (θ))T with Yi1, Y 2
i1, Yi1Y

∗∗
i2 replaced by Y ∗∗i1 , Y ∗∗i11, Y ∗∗i12,

respectively. In Appendix B.1, we show that E(Y ∗∗i1 |Yi1, Yi2) = Yi1, E(Y ∗∗i11|Yi1, Yi2, Xi) =
Y 2
i1, and E(Y ∗∗i12|Yi1, Yi2, Xi) = Yi1Yi2, thus yielding

E[U∗∗i (θ)|Yi1, Yi2, Xi] = Ui(θ).

The unbiasedness of U∗∗i (θ) is immediate from that of Ui(θ), thus U∗∗i (θ) may be used
to obtain a consistent estimator of θ because it is expressed in terms of the observed data.
To do so, we note that however, parameter η for the misclassification and measurement
error models are involved in U∗∗i (θ). To explicitly spell out the dependence on η, we write
U∗∗i (θ) as U∗∗i (θ, η). If η is known, say taking a value η0, then by the estimating function
theory, under regularity conditions (e.g., Godambe, 1991; Newey and McFadden, 1994; Yi,
2017, Section 1.3.2), solving

n∑
i=1

U∗∗i (θ, η0) = 0 (3.11)

gives a consistent estimator, say θ̂, of θ = (βT, φT)T, and that
√
n(θ̂−θ) has an asymptotic

normal distribution with mean zero and covariance matrix{
E

(
∂U∗∗i (θ, η0)

∂θT

)}−1

E{U∗∗i (θ, η0)U∗∗Ti (θ, η0)}
{
E

(
∂U∗∗i (θ, η0)

∂θT

)}−1T

.

3.3 Estimation Methods with Validation Data

In many applications, the parameter η for the measurement error and misclassification
models is usually unknown, and is estimated from additional validation data. We now
consider two types of validation studies, internal validation and external validation. Let
M denote the index set of the subjects in the main study, where {(y∗i1, y∗i2, xi) : i ∈ M}
is available. Let V represent the index set of the subjects in the validation data. For
internal validation, the validation data contain {(y∗i1, y∗i2, yi1, yi2, xi) : i ∈ V} with V ⊂ M;
for external validation, the validation data contain {(y∗i1, y∗i2, yi1, yi2, zi) : i ∈ V} with
M∩V = ∅. Let m denote the size of the validation subsample V .

3.3.1 External Validation

Estimation of η can be carried out by maximizing the conditional likelihood function

L(η) = Πn
i=1Li(y

∗
i1, y

∗
i2|yi1, yi2, xi; η),
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with respect to η, where Li(y
∗
i1, y

∗
i2|yi1, yi2, xi; η) is the likelihood function contributed from

the ith individual and is determined by (3.8) and (3.9).

Let
Si(η) = ∂ logLi(y

∗
i1, y

∗
i2|yi1, yi2, xi; η)/∂η (3.12)

denote the score function of parameter η.

With external validation data, we consider estimation function

U (E)(θ, η) =
∑
i∈M

U∗∗i1 (θ, η)
U∗∗i2 (θ, η)

0

+
∑
i∈V

 0
0

Si(η)

 , (3.13)

where Si(η) is the score function determined by (3.12). Then solving

U (E)(θ, η) = 0

gives an estimator of (θT, ηT)T, denoted as (θ̂T
E , η̂

T
E)T.

Assume that regularity conditions hold and that the ratio m/n approaches a positive
constant ρ as n −→ ∞. In Appendix B.2, we show that (θ̂T

E , η̂
T
E)T is a consistent estimator

of (θT, ηT)T, and
√
n
{

(θ̂T
E , η̂

T
E)T − (θT, ηT)T

}
has an asymptotic normal distribution with

mean zero and covariance matrix 1
1+ρ

Γ−1
E ΣE(Γ−1

E )T, where

ΓE = − 1
1+ρ


E
(
∂U∗∗i1
∂θT

)
E
(
∂U∗∗i1
∂ηT

)
E
(
∂U∗∗i2
∂θT

)
E
(
∂U∗∗i2
∂θT

)
0 0

− ρ
1+ρ

0 0
0 0

0 E
(
∂Si
∂ηT

)
 ;

ΣE = 1
1+ρ

E (U∗∗i1 U∗∗Ti1

)
E
(
U∗∗i1 U

∗∗T
i2

)
0

E
(
U∗∗i2 U

∗∗T
i1

)
E
(
U∗∗i2 U

∗∗T
i2

)
0

0 0 0

+ ρ
1+ρ

0 0 0
0 0 0
0 0 E

(
SiS

T
i

)
 .

(3.14)

3.3.2 Internal Validation

To account for the effects of measurement error and misclassification in responses, we
construct the estimating functions

U (I)(θ, η) =
∑

i∈M\V

U∗∗i1 (θ, η)
U∗∗i2 (θ, η)

0

+
∑
i∈V

Ui1(θ, η)
Ui2(θ, η)
Si(η)

 , (3.15)
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where Ui1(θ, η) and Ui2(θ, η) are the estimating functions under the true model as (3.4)
and (3.5), and Si(η) is the score function determined by (3.12). Here and elsewhere, 0 may
represent the real number zero, a zero vector, or a zero matrix whose meaning is clear in
each context. One can obtain an estimator, (θ̂T

I , η̂
T
I )T for (θT, ηT)T, by solving equation

U (I)(θ, η) = 0 (3.16)

with respect to θ and η.

Since Si(η) does not depend on θ, solving (3.16) is equivalent to a two-step procedure.
First obtain η̂I by solving

∑
i∈V Si(η) = 0. Then solve the equation

U (I)(θ, η) =
∑

i∈M\V

(
U∗∗i1 (θ, η̂I)
U∗∗i2 (θ, η̂I)

)
+
∑
i∈V

(
Ui1(θ, η̂I)
Ui2(θ, η̂I)

)
= 0,

to obtain an estimator of θ, denoted as θ̂I = (β̂T
I , φ̂

T
I )T.

Assume that regularity conditions hold and that the ratio m/n approaches a positive
constant ρ as n −→ ∞. In Appendix B.3, we show that (θ̂T

I , η̂
T
I )T is a consistent estimator

of (θT, ηT)T, and
√
n
{

(θ̂T
I , η̂

T
I )T − (θT, ηT)T

}
has an asymptotic normal distribution with

mean zero and covariance matrix Γ−1
I ΣI(Γ

−1
I )T, where

ΓI =− (1− ρ)


E
(
∂U∗∗i1
∂θT

)
E
(
∂U∗∗i1
∂ηT

)
E
(
∂U∗∗i2
∂θT

)
E
(
∂U∗∗i2
∂ηT

)
0 0

− ρ
E

(
∂Ui1
∂θT

)
0

E
(
∂Ui2
∂θT

)
0

0 E
(
∂Si
∂ηT

)
 ;

ΣI =(1− ρ)

E (U∗∗i1 U∗∗Ti1

)
E
(
U∗∗i1 U

∗∗T
i2

)
0

E
(
U∗∗i2 U

∗∗T
i1

)
E
(
U∗∗i2 U

∗∗T
i2

)
0

0 0 0


+ ρ

E (Ui1UT
i1

)
E
(
Ui1U

T
i2

)
E
(
Ui1S

T
i

)
E
(
Ui2U

T
i1

)
E
(
Ui2U

T
i2

)
E
(
Ui2S

T
i

)
E
(
SiU

T
i1

)
E
(
SiU

T
i2

)
E
(
SiS

T
i

)
 .

(3.17)

3.3.3 Weighted Estimator with Internal Validation Data

Estimation of (θT, ηT)T based on (3.15) basically treats the validation data and non-
validation data equally. To improve the efficiency of parameter estimation, we may attach
suitable weights to adjust contributions from the validation sample and the non-validation
sample.
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Let W = diag(w1, . . . , wq) be a diagonal matrix, where 0 ≤ wj ≤ 1 for j = 1, . . . , pθ
and wj = 0 for j = (pθ + 1), . . . , q. Here q = pθ + pη, and pθ and pη represent, respectively,
the dimension of θ and η. We modify the estimating function (3.15) as

U (W)(θ, η) =
∑

i∈M\V

W

U∗∗i1 (θ, η)
U∗∗i2 (θ, η)

0

+
∑
i∈V

(Iq −W )

Ui1(θ, η)
Ui2(θ, η)
Si(η)

 ,

where Ui1(θ, η), Ui2(θ, η), and Si(η) are defined in the same way as in (3.15), and Iq is the

q× q identity matrix. An estimator of (θT, ηT)T, denoted (θ̂T
w, η̂

T
w)T, is obtained by solving

the equation
U (W)(θ, η) = 0

for θ and η.

Assume regularity conditions hold and that the ratio m/n approaches a positive con-
stant ρ as n −→ ∞. Similar to the estimator obtained from (3.15), we can show that

(θ̂T
w, η̂

T
w)T is a consistent estimator of (θT, ηT)T, and

√
n
{

(θ̂T
w, η̂

T
w)T − (θT, ηT)T

}
has an

asymptotic normal distribution with mean zero and covariance matrix Γ−1
W ΣWΓ−1T

W , where

ΓW =− (1− ρ)W


E
(
∂U∗∗i1
∂θT

)
E
(
∂U∗∗i1
∂ηT

)
E
(
∂U∗∗i2
∂θT

)
E
(
∂U∗∗i2
∂θT

)
0 0

− ρ(I −W )

E
(
∂Ui1
∂θT

)
0

E
(
∂Ui2
∂θT

)
0

0 E
(
∂Si
∂ηT

)
 ;

ΣW =(1− ρ)W

E (U∗∗i1 U∗∗Ti1

)
E
(
U∗∗i1 U

∗∗T
i2

)
0

E
(
U∗∗i2 U

∗∗T
i1

)
E
(
U∗∗i2 U

∗∗T
i2

)
0

0 0 0

W
+ ρ(I −W )

E (Ui1UT
i1

)
E
(
Ui1U

T
i2

)
E
(
Ui1S

T
i

)
E
(
Ui2U

T
i1

)
E
(
Ui2U

T
i2

)
E
(
Ui2S

T
i

)
E
(
SiU

T
i1

)
E
(
SiU

T
i2

)
E
(
SiS

T
i

)
 (I −W ).

The optimal weights can be obtained by minimizing Tr
(
Γ−1

W ΣWΓ−1T
W

)
with respect to

{w1, . . . , wθ} with the constraints wj = 0 for j = (pθ +1), . . . , q, where Tr(A) is the trace of
matrix A. Although the idea is straightforward, this optimization is computationally diffi-
cult. Alternatively, we develop an optimal weighted estimator based on linear combinations
of two simple estimators discussed as follows.

The first estimator of (θT, ηT)T is obtained using the validation data only. Let (θ̂
(0)T
I , η̂

(0)T
I )T
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be the resulting estimator by solving the equation

∑
i∈V

Ui1(θ, η)
Ui2(θ, η)
Si(η)

 = 0 (3.18)

for θ and η.

The second estimator of θ, denoted as θ̂
(1)
I , solves the estimating equation constructed

from the non-validation data,

∑
i∈M\V

(
U∗∗i1 (θ, η̂

(0)
I )

U∗∗i2 (θ, η̂
(0)
I )

)
= 0 (3.19)

for θ, where U∗∗ij (θ, η̂
(0)
I ) is determined by U∗∗ij (θ, η) in (3.11) with η replaced by η̂

(0)
I .

Under regularity conditions, both θ̂
(0)
I and θ̂

(1)
I are consistent estimators for θ. We

consider a weighted estimator to be a linear combination of θ̂
(0)
I and θ̂

(1)
I :

θ̃I(Ω) = Ωθ̂
(1)
I + (Ipθ − Ω)θ̂

(0)
I , (3.20)

where Ω = diag(ω1, . . . , ωpθ) is a diagonal matrix with constants 0 ≤ ωj ≤ 1 for j =
1, . . . , pθ.

To find the optimal weights, we target to minimize the asymptotic variance for each
element of θ̃I(Ω). For r = 1, . . . , pθ, let θ̃Ir(Ω), θ̂

(0)
Ir and θ̂

(1)
Ir be the rth component of θ̃I(Ω),

θ̂
(0)
I and θ̂

(1)
I , respectively. The variance of θ̃Ir(Ω) is given by

Var
(
θ̃Ir(Ω)

)
=ω2

r

(
Var(θ̂

(0)
Ir ) + Var(θ̂

(1)
Ir )− 2Cov(θ̂

(0)
Ir , θ̂

(1)
Ir )
)

− 2ωr

(
Var(θ̂

(0)
Ir )− Cov(θ̂

(0)
Ir , θ̂

(1)
Ir )
)

+ Var(θ̂
(1)
Ir ),

which is minimized at

ω∗r =
Var(θ̂

(0)
Ir )− Cov(θ̂

(0)
Ir , θ̂

(1)
Ir )

Var(θ̂
(0)
Ir ) + Var(θ̂

(1)
Ir )− 2Cov(θ̂

(0)
Ir , θ̂

(1)
Ir )

.

Let Ω∗ = diag(ω∗1, . . . , ω
∗
pθ

). Then the estimator θ̃∗I = Ω∗θ̂
(1)
I + (I − Ω∗)θ̂

(0)
I is the optimal

estimator among the linear combinations of form (3.20).
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In practice, ω∗r is estimated by

ω̂∗r =
V̂ar(θ̂

(1)
Ir )− Ĉov(θ̂

(0)
Ir , θ̂

(1)
Ir )

V̂ar(θ̂
(0)
Ir ) + V̂ar(θ̂

(1)
Ir )− 2Ĉov(θ̂

(0)
Ir , θ̂

(1)
Ir )

,

where V̂ar(θ̂
(1)
Ir ), V̂ar(θ̂

(0)
Ir ) and Ĉov(θ̂

(0)
Ir , θ̂

(1)
Ir ) are estimates for Var(θ̂

(1)
Ir ), Var(θ̂

(0)
Ir ) and

Cov(θ̂
(0)
Ir , θ̂

(1)
Ir ) by stacking the estimating functions in (3.18) and (3.19). The details are

presented in Appendix B.4.

We comment that in practice, the resulting weights ω̂∗r may not satisfy the constraint
that 0 ≤ ω̂∗r ≤ 1. If ω̂∗r < 0, we set ω̂∗r to be 0 and if ω̂∗r > 1, we specify ω̂∗r to be 1.

3.4 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed methods in
terms of parameter estimation and associated variance estimation. Similar to the simula-
tion studies in Chapter 2, for the sake of comparison, we consider three naive methods,
where either measurement error or misclassification, or both are ignored.

We consider the sample size n = 1000. The Xi1 is independently generated from
U(−3, 4), and the Xi2 is independently generated from N(0, 1). The response vector Yi =
(Yi1, Yi2)T is generated from the model

g1(µi1) = β10 + β11Xi1 + β12Xi2,

g2(µi2) = β20 + β21Xi1 + β22Xi2,

where the coefficient vector θ = (β10, β20, β11, β21, β12, β22)T is set as (0.7, 0.7, 1.5,−1.5,−1, 1)T,
g1(t) = t, and g2(t) = log

(
t

1−t

)
. That is, Yi1 is generated by N(µi1, σ

2) where σ2 is set as
1, and Yi2 is independently generated from Bernoulli(µi2).

The surrogate measurement Y ∗i1 is generated from the measurement error model, Y ∗i1 =
Yi1 +γYi2 +ei, where ei is a centered normal random error with variance σ2

e and is indepen-
dent of {Yi1, Yi2}. For the misclassification of Yi2, we generate the surrogate measurement
Y ∗i2 by misclassification models (3.8). The values of α, γ, σ2

e are specified in Section 3.4.1.

For each estimator, we report the finite sample biases (denoted as “bias”), the standard
error (denoted as “SEE”), the model-based standard error (denoted as “SEM”), or the
coverage rate (denoted as “CR”).
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3.4.1 Simulation 1: Evaluation for the Case with Known Mis-
measurement Parameters

In this subsection, we consider the case where the parameters of measurement error and
misclassification models are known to the method in Section 3.2.2, taking the values as in
the specifications of generating the random variables.

To study the performance of the methods, we consider three settings. In Setting 1, fix
α = (−1.386, 0,−1.386, 0)T and γ = 0.8, and compare the performance of the naive models
and the proposed model under different degrees of measurement error, where σe are set as
0.1, 0.5, 0.7. In Setting 2, fix σe = 0.1 and γ = 0.8, and evaluate the performance using the
data simulated with different misclassification rates, where α = (α01, αx1, α00, αx0)T is set
as (−4.595, 0,−4.595, 0)T, (−2.197, 0,−2.197, 0)T, or (−1.386, 0,−1.386, 0)T, yielding the
misclassification rates π0 and π1 as 1%, 10% or 20%, respectively. In Setting 3, fix σe = 0.1
and α = (−1.386, 0,−1.386, 0)T, and evaluate the methods for different measurement error
mechanisms which are independent of the binary outcome Yi2 (γ = 0), negatively associated
with the binary outcome (γ = −0.8), or positively associated with the binary outcome
(γ = 0.8).

The results are presented in Tables 3.1–3.3. Different naive methods may perform dif-
ferently in both the point estimation and the variance estimation, but they all produce
large biases in the point estimation and poor coverage rates. Conversely, the proposed
method successfully corrects the biases due to the response mismeasurement, yielding rea-
sonably small finite sample biases and coverage rates in good agreement with the nominal
value 95%.

3.4.2 Simulation 2: Evaluation of the Case with Validation Data

In this simulation study, we compare the performance of the methods for three scenarios. In
the first scenario, we consider the same case as in Section 3.4.1 where the mismeasurement
parameter η is known. In the second and the third scenarios, we evaluate the performance
for the methods described in Sections 3.3.1 and 3.3.2 where η is unavailable but estimated
from either external validation data or internal validation data. We also display the results
of the method using the true measurements Yi1 and Yi2 for comparisons.

We consider the same three settings as in Simulation 1. The results are reported in
Tables 3.4–3.6. As expected, the method using true response measurements produces the
best results with the smallest finite sample biases and model-based standard errors as well
as the best coverage rates of 95% confidence intervals. On the other hand, the proposed
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methods perform quite well for different scenarios. Finite sample biases are close to those
produced from the method with the true response measurements; model-based standard
errors agree fairly well with empirical standard errors and coverage rates of 95% confidence
intervals are in good agreement with the nominal level 95%.

3.4.3 Simulation 3: Evaluation of the Proposed Method with
Internal Validation Data with Different Sample Sizes and
Different Weights

In this subsection we compare the estimator described in Section 3.3.2 and the weighted
estimators described in Section 3.3.3. We also consider four different weights to compare
the estimates of using validation data only (θ̂

(0)
I ), using non-validation data only (θ̂

(1)
I ),

using equal weights for validation data and non-validation data (θ̂I), and optimal weighted
estimator (θ̃∗I ). Our assessment focuses on examining the impact on the performance of the
proposed estimator of the sample size, the sample size ratio between the validation data
and non-validation data, and the weight choice. We consider two scenarios. In Scenario 1,
we fix the total sample size to be 1500 and let the sample size ratio vary as 2:1, 1:1, 1:2.
In Scenario 2, we fix the ratio to be 1:2 and let the total sample size be 1500 and 3000.

The results for Scenario 1 are presented in Figures 3.1–3.2 and the results for Scenario 2
are presented in Table 3.7. It is clear that the estimator with optimal weights described in
Section 3.3.3 and the estimator described in Section 3.3.2 perform the best among all the
estimators in terms of both finite sample biases and standard errors. Moreover, the former
estimator greatly outperforms the latter one. The efficiency gain of using the estimator
with optimal weights over the estimator in Section 3.3.2 can be as large as 58%, shown by
the estimate of β21 with n = 1500.

3.5 Application to Mice SNPs Data

To illustrate the usage of the proposed method, we analyze data arising from a genome-wide
association study of outbred Carworth Farms White mice data (Parker et al., 2016b). This
study provided measurements with complex traits, including behavioral, physiological, and
gene expression traits.

For i = 1, . . . , 1128, let Yi1 be the weight of the tibialis anterior muscle (in mg), and
let Yi2 be the binary outcome where “0” represents a healthy tibia bone and “1” stands
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for abnormal tibia bone, which is defined as the 90% quantile of the bone-mineral density.
Due to the concern of data quality, the true measurements of the responses Yi1 and Yi2 for
464 subjects are not available but their surrogate measurements Y ∗i1 and Y ∗i2 are available,
where Y ∗i1 is the predicted tibialis anterior muscle weights based on muscle from other
body parts of the mice and Y ∗i2 is the bone condition judged by subjective observations
from technicians. Precise measurements of the responses Yi1 and Yi2 together with their
surrogates Y ∗i1 and Y ∗i2 are available for the remaining 664 subjects, which are taken as the
validation data. Covariates include a continuous variable measuring the SNPs rs27338905
(Xi1), and the first two principal components of genetics data (Xi2) and (Xi3) for subject
i which are described below in detail. Our main interest lies in studying the association of
SNPs rs27338905 with two physiological traits. We employ the model (3.1) with g1(t) = t
and g2(t) = log{t/(1− t)} to facilitate the dependence of the responses on the covariates.

To account for the effect of population stratification (Price et al., 2006), similar to
Section 2.6 in Chapter 2, we conduct principal component analysis. According to the scree
plot in figure 3.3 and based on the “elbow” criterion, we include the first two principal
components (Xi2) and (Xi3) as fixed effects in the response model.

We consider two settings for the misclassification and measurement error models. In
Setting 1, we consider the body weight (Xi4) to be the covariates in model (3.8) to feature
the misclassification of Y ∗i2. For the measurement error model, we consider (3.9) with the
covariates chosen to be the body weight (Xi4). In Setting 2, we consider model (3.8) to be
postulated by constants α00 and α01, and an additional constraint that γ2 = 0 is imposed
for the measurement error model (3.9).

We analyze the data using the proposed optimal weighted estimator with internal val-
idation data, described in Section 3.3.3. We compare the results with the naive model
where the mismeasurement is ignored. The results are presented in Table 3.8. The pro-
posed method with two settings produces similar estimation results. Under the significance
level of 0.05, the estimates of β11 and β21 suggest that SNP rs27338905 is significantly as-
sociated with the weight of tibialis anterior muscle but is not associated with the bone
condition. The estimates of β12, β13, β22 and β23 show that the effects of population
stratification are not significant. However, the naive method produces somewhat different
findings; there is no evidence showing the effects of SNP rs27338905 on the weight of the
tibialis anterior muscle.

Regarding the results for the parameters of the mismeasurement models, the mea-
surement error process is not influenced by the bone condition (Yi2), as indicated by the
estimates of γ2. The bodyweight of mice is only involved in the measurement error pro-
cess but not the misclassification process because the estimate of γ3 is significant but the
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estimates of αx1 and αx0 are not. This suggests that the simpler specification of mismea-
surement models in Setting 2 is perhaps adequate and there is no need to consider the
more complicated models in Setting 1.
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Figure 3.1: Biases of the estimates in Simulation 3: Scenario 1 with different sample size
ratios between validation data and non-validation data. Equal Weight: the proposed method
with internal validation data described in Section 3.3.2. Optimal Weight: the proposed
weighted estimator with optimal weights as described in Section 3.3.3.
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Figure 3.2: Standard error of the estimates in Simulation 3: Scenario 1 with different
sample size ratios between validation data and non-validation data. Equal Weight: the
proposed method with internal validation data described in Section 3.3.2. Optimal Weight:
the proposed weighted estimator with optimal weights as described in Section 3.3.3.
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Figure 3.3: The screeplot of the principal component analysis of the genotype data. The
top 10 principal components are presented. The bar refers to the variance of each principal
components. The solid line refers to the cumulative percentage of the variance.

68



Chapter 4

Generalized Network Structured
Models with Mixed Responses
subject to Measurement Error and
Misclassification

As a continuation of the previous two chapters, in this chapter, we further consider set-
tings where covariates are of a high dimension and are associated with a network structure.
In Section 4.1, we start with the saturated response model and discuss the estimation of
the model parameters under the framework of generalized estimating equations. In Sec-
tion 4.2, we develop the generalized network structured model (GNSM), describe a two-step
implementation procedure of GNSM, and present the theoretical results for the proposed
estimators. In Sections 4.3 and 4.4, we further extend the GNSM to the augmented GNSM
by accounting for the effects due to measurement error and misclassification in the response
variables, and we also discuss efficiency issues for the proposed estimators. Simulations
studies are conducted in Section 4.5 to evaluate the performance of GNSM in regards to
both variable selection and parameter estimation. In Section 4.6, we apply the augmented
GNSM to a mice data set arising from a genome-wide association study.

4.1 Notation and Framework

Suppose n independent subjects are recruited for the study. For subject i = 1, . . . , n,
correlated responses Yi1 and Yi2 are measured, where Yi1 denotes the continuous response,
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and Yi2 denotes the binary response. Define Yi = (Yi1, Yi2)T. Let Xi = (Xi1, . . . , Xip)
T

denote the covariate vector for subject i, where p is the number of covariates. For i =
1, . . . , n and j = 1, 2, let µij = E(Yij|Xi) be the conditional mean of the Yij, given Xi, and
let vij = Var(Yij|Xi) be the conditional variance of Yij given covariates Xi.

4.1.1 Saturated Response Model

To characterize the relationship among the covariates {Xi1, . . . , Xip}, we use a graph, de-

noted as Gi = (Vi, Ẽi), where Vi = {1, · · · , p} includes all the indices of covariates and

Ẽi = Vi × Vi is an index set of all pairs of covariates. A covariate Xij is represented by
a vertex of the graph Gi if j ∈ Vi. A pair of predictors {Xis, Xit} is linked by an edge
of the graph Gi if (s, t) ∈ Ei, and Xis and Xit are conditional dependent, given the re-
maining variables; let Ei denote the set of all pairs (s, t) if Xis and Xit are linked by an
edge. We assume that all subjects have the same covariate dependence structures. Namely,
G1 = G2 = · · · = Gn ≡ G. We now let V , Ẽ and E denote the vertices, V × V , and edges
of the graph, respectively.

We first consider a saturated model which includes all main effects and interactions,

g1(µi1) = β1,0 +
∑
k∈V

β1,kXik +
∑

(s,t)∈Ẽ
β1,stXisXit;

g2(µi2) = β2,0 +
∑
k∈V

β2,kXik +
∑

(s,t)∈Ẽ
β2,stXisXit,

(4.1)

where β = (βT
M , β

T
P )T with βM = (β1,0, β2,0, β1,k, β2,k : k ∈ V )T and βP = (β1,st, β2,st : (s, t) ∈

Ẽ)T, and g1(·) and g2(·) are link functions. For example, one may specify g1(t) = t and
g2(t) = log{t/(1− t)}. Let ps be the dimension of β.

4.1.2 Estimating Equation

In this chapter, we start with the same estimation procedure as in described in Section 3.1.2.
We use the notation Ũi1(β, φ) and Ũi2(β, φ) to denote the estimation equations constructed
based on the saturated model (4.1).

Let µi = (µi1, µi2)T. For i = 1, . . . , n, define the estimating functions

Ũi1(β, φ) = DT
i1V

−1
i1 (Yi − µi); (4.2)

Ũi2(β, φ) = DT
i2V

−1
i2 (Si − ξi), (4.3)
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where Di1 = ∂µi
∂β

, Vi1 is given by (3.3), ξi = (vijk : 1 ≤ j ≤ k ≤ 2)T, Di2 = ∂ξi
∂φT ,

Si = {(Yij − µij)(Yik − µik) : 1 ≤ j ≤ k ≤ 2}T, and Vi2 is a 3× 3 weight matrix as defined
in Section 3.1.2.

Let Ũi(β, φ) =
(
ŨT
i1(β, φ), ŨT

i2(β, φ)
)T

. By the estimating function theory (e.g., Liang

and Zeger, 1986; Godambe, 1991; Newey and McFadden, 1994; Yi, 2017, Section 1.3.2),
under regularity conditions, solving

n∑
i=1

Ũi(β, φ) = 0

for (βT, φT)T gives an estimator, say, (β̃T, φ̃T)T, of (βT, φT)T.

4.2 Generalized Network Structured Model

4.2.1 Model Form

To focus on modeling the pairwise associations among the components of Xij, we consider
the graphical model (Hastie et al., 2015, Section 11)

f(xi; Θ) = exp

−1

2

∑
(s,t)∈Ẽ

θstxisxit −
1

2

∑
k∈V

x2
ik − A(Θ)

 , (4.4)

where Θ = [θst] is a p × p symmetric matrix with diagonal elements to be one and (s, t)
element to be θst, and A(Θ) = −1

2
log det | Θ

2π
| is the normalizing constant. This model

basically implies that Xi follows a multivariate Gaussian distribution with zero mean and
covariance matrix Σ, where Θ = Σ−1; and Θ is also known as the precision matrix.

In model (4.4), a nonzero parameter θst implies that Xis and Xit are conditionally
dependent, given other covariates. In applications, not every paired covariates components
in Xi are necessarily correlated. That is, the edge set E is not necessarily identical to Ẽ but

E =
{

(s, t) ∈ Ẽ : θst 6= 0
}

. To feature the dependence of the responses on the covariates

with a network structure, we propose a generalized network structured model

g1(µi1) = β1,0 +
∑
k∈V

β1,kXik +
∑

(s,t)∈E
β1,stXisXit;

g2(µi2) = β2,0 +
∑
k∈V

β2,kXik +
∑

(s,t)∈E
β2,stXisXit,

(4.5)
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where βM = (β1,0, β2,0, β1,k, β2,k : k ∈ V )T and βI = (β1,st, β2,st : (s, t) ∈ E)T are the
regression coefficients. To differentiate the parameters in the saturated model (4.1), we let

βII = (β1,st, β2,st : (s, t) ∈ Ẽ \ E)T.

4.2.2 Estimation Procedure

To determine the model form (4.5) as well as to estimate the associated parameters, we need
first to determine the set E. This essentially is equivalent to selecting active interaction
terms in the saturated model (4.1). In this section, we describe a two-stage procedure. In
Stage 1, we determine the dependence structure of the covariates via the graphical model
(4.4). In Stage 2, we use the estimating equation method to estimate the associated model
parameters. These two stages are respectively described in the following two subsections
in detail.

Stage 1: Identification of the Covariates Network Structure E

To identify E, we maximize the penalized log-likelihood function

`(Θ) =
n∑
i=1

log f(xi; Θ)− λ ‖Θ‖ , (4.6)

where λ is a positive tuning parameter controlling the sparsity of the resulting parameter
matrix and ‖·‖ is a penalizing norm function. A widely used norm is the `1-norm, yielding
the penalty of the Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996).

Directly maximizing (4.6), such as the Graphical LASSO Algorithm, requires a com-
putationally intensive algorithm (Friedman et al., 2008). In practice, a simpler estimation
method is often carried out by a neighborhood-based likelihood derived from (4.4). Specif-
ically, for every s ∈ V , let Xi,V \{s} denote the (p − 1)-dimensional subvector of Xi with

its sth component removed, i.e., Xi,V \{s} = (Xi1, · · · , Xi,s−1, Xi,s+1, · · · , Xip)
T. Then the

conditional probability density function for Xis, given Xi,V \{s}, is given by

f
(
xis|xi,V \{s}; θ(−s)

)
= exp

−1

2
xis

 ∑
t∈V \{s}

θstxit

− 1

2
x2
is −D

 ∑
t∈V \{s}

θstxit

 , (4.7)

where D(·) = 1
2

log 2π+ 1
8
(
∑

t∈V \{s} θstxit)
2 is the normalizing constant ensuring the integra-

tion of (4.7) equal one, and θ(−s) = (θs1, · · · , θs,s−1, θs,s+1, · · · , θsp)T is a (p−1)-dimensional
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vector of parameters indicating the relationship of Xis with all other predictors Xit for
t ∈ {1, · · · , s− 1, s+ 1, · · · , p} associated with (4.7).

Let `
(
θ(−s)

)
be the log-likelihood for θ(−s) multiplied by − 1

n
,

`
(
θ(−s)

)
= − 1

n
log

{
n∏
i=1

f
(
xis|xi,V \{s}; θ(−s)

)}

=
1

n

n∑
i=1

1

2
xis

 ∑
t∈V \{s}

θstxit

+D

 ∑
t∈V \{s}

θstxit

 .

Then an estimator of θ(−s) can be obtained as

θ̂(−s) = arg min
θ(−s)

{
`
(
θ(−s)

)
+ λ

∥∥θ(−s)
∥∥

1

}
,

where λ is a tuning parameter and ‖·‖1 is the `1-norm.

The preceding procedure is repeated for all s ∈ V to yield an estimator θ̂s for all s ∈ V .
Let N (s) = {t : (s, t) ∈ E} denote the neighbor set for s ∈ V . To determine an estimated
set of edges, we define

N̂ (s) =
{
t ∈ V : θ̂st 6= 0

}
as the estimated neighbor set for s ∈ V . It is worth noting that, for (s, t) ∈ E, the estimates

θ̂st and θ̂ts are not necessarily identical or both equal to zero at the same time although θst
and θts are constrained to be equal. Therefore, s ∈ N̂ (t) does not imply t ∈ N̂ (s), and vice
versa. To overcome this discrepancy, we apply the OR rule (Meinshausen and Bühlmann,
2006; Hastie et al., 2015, Page 255) when determining the inclusion of edge (s, t) in the

estimated edge set Ê by either s ∈ N̂ (t) or t ∈ N̂ (s). Namely, we take

Ê =
{

(s, t) : s ∈ N̂ (t) or t ∈ N̂ (s)
}

as the estimated set of the edges.

The preceding procedure requires a suitable choice of the tuning parameter λ. Several
methods, including the cross-validation (e.g., the BIC), the stability approach to regular-
ization selection (StARS) (Liu et al., 2010), and the rotation information criterion (Zhao
et al., 2012), may be employed to determine the optimal value of λ. In this paper, we use
the rotation information criterion. To be specific, we take a set of candidate values for λ,
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such as an equally spaced sequence from 0 to a certain positive value. We first arrange
the sample data in an array and then shuffle the data by randomly rotating the order of
subjects (rows) for each variable (columns). This procedure creates a reshuffled dataset so
that the association between paired variables is minimal. Then we implement our method
to this reshuffled dataset and find the smallest value of λ such that all edges are regularized
to 0. We repeat this procedure several times (such as 10 times) using the R package huge

(Zhao et al., 2012) and select the resulting smallest value of λ.

Under regular conditions in Meinshausen and Bühlmann (2006), we have that as n→
∞,

P
(
Ê = E

)
−→ 1.

That is, the estimated set of edges Ê approximates the true network structure E in prob-
ability. This results is available in Ravikumar et al. (2010, Section 2.2) and Theorem 5(b)
of Yang et al. (2015).

Stage 2: Estimation of Model Parameters

Once the network structure for X is identified, estimation of the model parameters in
model (4.5) can proceed in the same manner as in Section 4.1.2, with modifications of
estimating functions (4.2) and (4.3) to reflect the difference in the parameters for models

(4.1) and (4.5). Let (β̂T
M , β̂

T
I )T and φ̂, respectively, denote the resultant estimators of

(βT
M , β

T
I )T and φ. Let Ui1(βM, βI, φ) and Ui2(βM, βI, φ) denote, respectively, the estimating

functions by modifying Ũi1(β, φ) and Ũi2(β, φ) in (4.2) and (4.3). Let Ui(βM, βI, φ) =(
UT
i1(βM, βI, φ), UT

i2(βM, βI, φ)
)T

.

Then solving
n∑
i=1

Ui(βM, βI, φ) = 0 (4.8)

for (βT
M , β

T
I , φ

T)T gives an estimator, say, (β̂T
M , β̂

T
I , φ̂

T)T.

We comment that the true edge set E in model (4.5) is unknown and is estimated via
the procedure in Section 4.2.2, thus inducing extra uncertainty in implementing (4.8) for
the estimation of parameters. Consistent with the comments after (4.5) on the expression

of the parameters in models (4.1) and (4.5), we set β̂II = 0 as the estimator for the subvector
of βII which includes the coefficients corresponding to the covariates in the unselected edge
set Ẽ \ Ê. It is noted that β̂II may not be identical to βII: their dimension can even be
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different due to the variability induced in estimating E in Section 4.2.2. We now establish
theoretical results for the estimator obtained from preceding Stages 1 and 2.

Theorem 4.1 Let βII(0) be the true value of βII. Under regularity conditions, there exists
some constant c > 0 such that

P (β̂II = βII(0)) ≥ 1−O (exp(−cn)) .

This theorem suggests that as n→∞, with the probability approaching 1, the estimator
β̂II has the oracle property.

Next, we establish asymptotic properties for the estimator (β̂T
M , β̂

T
I , φ̂

T)T in the following
theorem; the proof of the results is presented in Appendix C.3.

Theorem 4.2 Let (βT
M(0), β

T
I(0), φ

T
0 )T denote the true value of the parameters (βT

M , β
T
I , φ

T)T.
Under regularity conditions, we have the following results:

(i) (β̂T
M , β̂

T
I , φ̂

T)T is a consistent estimator of (βT
M(0), β

T
I(0), φ

T
0 )T.

(ii)
√
n{(β̂T

M , β̂
T
I , φ̂

T)T − (βT
M(0), β

T
I(0), φ

T
0 )T} has the asymptotic normal distribution with

mean zero and covariance matrix

Γ−1
0 Σ0Γ−1T

0 , (4.9)

where Γ0 =
{
E
(
∂Ui(βM,βI,φ)

∂βT
M

)
E
(
∂Ui(βM,βI,φ)

∂βT
I

)
E
(
∂Ui(βM,βI,φ)

∂φT

)}∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

and

Σ0 = E{Ui(βM(0), βI(0), φ0)UT
i (βM(0), βI(0), φ0)}.

4.3 Generalized Network Structured Model with Mea-

surement Error and Misclassification

Suppose that the response variables Yi1 and Yi2 are subject to mismeasurement and their
precise measurements are not observed for every subject i = 1, . . . , n, but instead, surrogate
measurements Y ∗i1 and Y ∗i2 are observed, respectively, for Yi1 and Yi2. To describe the
mismeasurement processes, we consider the same factorization described in (3.6) and the
assumptions described in (3.7).
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4.3.1 Measurement Error and Misclassification Models

Let πi0 = P (Y ∗i2 = 1|Yi2 = 0, Zi) and πi1 = P (Y ∗i2 = 0|Yi2 = 1, Zi) be the misclassification
probabilities that may depend on the covariates. We consider the same misclassification
models (3.8) as described in Section 3.2.1. For the continuous response Yi1, we consider a
regression model which facilitates possible dependence of Y ∗i1 on {Yi1, Yi2, Zi}, as given by
(3.9). Let η = (γT, αT)T denote the vector of parameters associated with (3.8) and (3.9).

4.3.2 Estimation Procedures with a Given Nuisance Parameter
η

The presence of mismeasurement in Yi does not affect the first step of identifying the
network structure in Xi described in Section 4.2.2. However, if no action is taken to address
measurement error and misclassification in the responses, simply replacing Yij with Y ∗ij in
the estimating functions (4.2) and (4.3) would yield biased estimating functions, and hence,
possibly resulting in inconsistent estimators.

To account for the mismeasurement effects, we construct valid estimating functions, say
U∗i (βM, βI, φ) expressed in terms of the observed measurements Y ∗i1 and Y ∗i2 together with
the covariates and the model parameters, such that

E{U∗i (βM, βI, φ)} = 0.

To this end, we first define that ∆i0 =
πi0−π2

i0

(1−πi1−πi0)2 , ∆i1 =
πi1−π2

i1

(1−πi1−πi0)2 , and

∆i =
∆

1−Y ∗i2
i0 ∆

Y ∗i2
i1 −∆i0πi1−∆i1πi0
1−πi1−πi0 , where πi0 and πi1 are the misclassification rates postulated

by (3.8). Let Y ∗∗i2 =
Y ∗i2−πi0

1−πi0−πi1 , Y ∗∗i1 =
Y ∗i1−γ0−γ2Y ∗∗i2 −γT

3 Zi
γ1

, Y ∗∗i11 = Y ∗∗i1
2 − σ2

e

γ2
1
− γ2

2

γ2
1
∆i, and

Y ∗∗i12 = Y ∗∗i1 Y
∗∗
i2 + γ2

γ1
∆i. In Section 3.2.2, it has been shown that

E(Y ∗∗ik |Yi1, Yi2) = Yik and E(Y ∗∗i1k|Yi1, Yi2, Xi) = Yi1Yik for k = 1, 2. (4.10)

Let U∗i (βM, βI, φ) be Ui(βM, βI, φ) in (4.8) with Yi1, Yi2, Y 2
i1, Yi1Yi2 replaced by Y ∗∗i1 , Y ∗∗i2 ,

Y ∗∗i11 and Y ∗∗i12, respectively. Then by (4.10),

E[U∗i (βM, βI, φ)|Yi1, Yi2, Xi] = Ui(βM, βI, φ),

and thus, by the unbiasedness of Ui(βM, βI, φ), U∗i (βM, βI, φ) is an unbiased estimating func-
tion. If the parameter η for the misclassification and measurement error models is known
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or estimated from an additional study, then solving

n∑
i=1

U∗i (βM, βI, φ) = 0 (4.11)

for βM, βI and φ gives an estimator, say (β̂T
M , β̂

T
I , φ̂

T)T, of (βT
M , β

T
I , φ

T)T.

Theorem 4.3 Under regularity conditions including those of Newey and McFadden (1994),

Yi (2017, Section 1.3.2) and Meinshausen and Bühlmann (2006), the estimator (β̂T
M , β̂

T
I , φ̂

T)T

is consistent, and
√
n{(β̂T

M , β̂
T
I , φ̂

T)T − (βT
M(0), β

T
I(0), φ

T
0 )T} has an asymptotic normal distri-

bution with mean zero and covariance matrix

Γ−1ΣΓ−1T, (4.12)

where Γ =
{
E
(
∂U∗i (βM,βI,φ,η0)

∂βT
M

)
E
(
∂U∗i (βM,βI,φ,η0)

∂βT
I

)
E
(
∂U∗i (βM,βI,φ,η0)

∂φT

)}∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

and

Σ = E{U∗i (βM(0), βI(0), φ0, η0)U∗Ti (βM(0), βI(0), φ0, η0)}.

4.4 Estimation Procedures with Validation Data

4.4.1 External Validation

To incorporate estimation of η in the estimation of (βT
M , β

T
I , φ

T)T, consider the likelihood
function contributed from subject i in the validation sample:

Li(y
∗
i1, y

∗
i2|yi1, yi2, xi; η) = f(y∗i1|yi1, yi2, zi)f(y∗i2|yi1, yi2, zi),

where the index i ∈ V , f(y∗i1|yi1, yi2, zi) is determined by (3.9) with the form
1√

2πσe
exp

{
− (y∗i1−γ0−γ1yi1−γ2yi2−γ3zi)

2

2σ2
e

}
; and determined by (3.8), f(y∗i2|yi1, yi2, zi) equals

{
exp(α00 + αT

z0zi)

1 + exp(α00 + αT
z0zi)

}(1−yi2)y∗i2
{

1

1 + exp(α00 + αT
z0zi)

}(1−yi2)(1−y∗i2)

×
{

exp(α01 + αT
z1zi)

1 + exp(α01 + αT
z1zi)

}yi2(1−y∗i2){
1

1 + exp(α01 + αT
z1zi)

}yi2y∗i2
.
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Let
Si(η) = ∂ logLi(y

∗
i1, y

∗
i2|yi1, yi2, xi; η)/∂η for i ∈ V , (4.13)

and construct the estimating function

U (EV)(βM, βI, φ, η) =
∑
i∈M

(
U∗i (βM, βI, φ, η)

0

)
+
∑
i∈V

(
0

Si(η)

)
, (4.14)

where Si(η) is the score function determined by (4.13), and U∗i (βM, βI, φ, η) is the estimating
equation in (4.11) with the dependence on η explicitly spelled out. Then solving

U (EV)(βM, βI, φ, η) = 0

for βM, βI, φ and η gives an estimator of βM, βI, φ and η, denoted as β̂ (EV)

M , β̂ (EV)

I , φ̂(EV), and η̂(EV),
respectively.

Since Si(η) does not depend on (βT
M , β

T
I , φ

T)T, solving (4.14) is equivalent to a two-step
procedure. First obtain η̂(EV) by solving

∑
i∈V Si(η) = 0. Then solve the equation∑

i∈M

U∗i (βM, βI, φ, η̂
(EV)) = 0

for βM, βI and φ to obtain estimators of βM, βI and φ, denoted as β̂ (EV)

M , β̂ (EV)

I and φ̂(EV), respec-
tively.

Theorem 4.4 Assume that regularity conditions in Theorem 4.3 hold and that the ratio
m/n approaches a positive constant ρ as n −→∞, we have the following results:

(i)
√
n
{

(β̂ (EV)T
M , β̂ (EV)T

I , φ̂(EV)T, η̂(EV)T)T − (βT
M(0), β

T
I(0), φ

T
0 , η

T
0 )T
}

has an asymptotic normal dis-

tribution with mean zero and covariance matrix 1
1+ρ

Γ−1
(EV)

Σ(EV)(Γ
−1
(EV)

)T, where

Γ(EV) = 1
1+ρ

[
E
(
∂U∗i
∂βT

M

)
E
(
∂U∗i
∂βT

I

)
E
(
∂U∗i
∂φT

)
E
(
∂U∗i
∂ηT

)
0 0 0 0

]
+ ρ

1+ρ

[
0 0 0 0

0 0 0 E
(
∂Si
∂ηT

)]
;

Σ(EV) = 1
1+ρ

[
E
(
U∗i U

∗T
i

)
0

0 0

]
+ ρ

1+ρ

[
0 0
0 E

(
SiS

T
i

)] . (4.15)

(ii)
√
n
{

(β̂ (EV)T
M , β̂ (EV)T

I , φ̂(EV)T)T − (βT
M(0), β

T
I(0), φ

T
0 )T
}

has an asymptotic normal distribution

with mean zero and covariance matrix (1 + ρ)Γ−1
(EV)β

Σ(EV)βΓ
−1T
(EV)β

, where

Γ(EV)β =
{
E
(
∂U∗i (βM,βI,φ,η̂

(EV))

∂βT
M

)
E
(
∂U∗i (βM,βI,φ,η̂

(EV))

∂βT
I

)
E
(
∂U∗i (βM,βI,φ,η̂

(EV))
∂φT

)}∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

;

Σ(EV)β = E{U∗i (βM(0), βI(0), φ0, η̂
(EV))U∗Ti (βM(0), βI(0), φ0, η̂

(EV))}.
(4.16)
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The proof of Theorem 4.4(i) is presented in Appendix C.4, and Theorem 4.4(ii) can be
readily derived from Theorem 4.4(i) by matrix calculation.

4.4.2 Internal Validation

With internal validation data, we consider the estimating function

U (IV)(βM, βI, φ, η) =
∑

i∈M\V

(
U∗i (βM, βI, φ, η)

0

)
+
∑
i∈V

(
Ui(βM, βI, φ)

Si(η)

)
, (4.17)

where for i ∈M\V , U∗i (βM, βI, φ, η) is the estimating equation in (4.11) with the dependence
on η explicitly spelled out and for i ∈ V , Ui(βM, βI, φ) is the estimating function in (4.8),
and Si(η) is determined by (4.13). Then solving equation

U (IV)(βM, βI, φ, η) = 0 (4.18)

for βM, βI, φ and η yields estimators for them, respectively denoted as β̂ (IV)

M , β̂ (IV)

I , φ̂(IV), and
η̂(IV).

Similar to that in Section 4.4.1, solving (4.18) is equivalent to a two-step procedure.
First obtain η̂(IV) by solving

∑
i∈V Si(η) = 0. Then solve the equation∑

i∈M\V

U∗i (βM, βI, φ, η̂
(IV)) +

∑
i∈V

Ui(βM, βI, φ) = 0

for βM, βI and φ to obtain estimators of βM, βI and φ, denoted as β̂ (IV)

M , β̂ (IV)

I , φ̂(IV), respectively.

Theorem 4.5 Assume that regularity conditions in Theorem 4.3 hold and that the ratio
m/n approaches a positive constant ρ as n −→∞, we have the following results:

(i)
√
n
{

(β̂ (IV)T
M , β̂ (IV)T

I , φ̂(IV)T, η̂(IV)T)T − (βT
M(0), β

T
I(0), φ

T
0 , η

T
0 )T
}

has an asymptotic normal dis-

tribution with mean zero and covariance matrix Γ−1
(IV)

Σ(IV)(Γ
−1
(IV)

)T, where

Γ(IV) = (1− ρ)

E ( ∂U∗i∂βT
M

)
E

(
∂U∗i
∂βT

I

)
E
(
∂U∗i
∂φT

)
E
(
∂U∗i
∂ηT

)
0 0 0 0

+ ρ

E
(
∂Ui
∂βT

M

)
E

(
∂Ui
∂θTI

)
E
(
∂Ui
∂φT

)
0

0 0 0 E
(
∂Si
∂ηT

)
 ;

Σ(IV) = (1− ρ)

[
E
(
U∗i U

∗T
i

)
0

0 0

]
+ ρ

[
E
(
UiU

T
i

)
E
(
UiS

T
i

)
E
(
SiU

T
i

)
E
(
SiS

T
i

)] .
(4.19)
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(ii)
√
n
{

(β̂ (IV)T
M , β̂ (IV)T

I , φ̂(IV)T)T − (βT
M(0), β

T
I(0), φ

T
0 )T
}

has an asymptotic normal distribution

with mean zero and covariance matrix Γ−1
(IV)β

Σ(IV)β(Γ
−1
(IV)β

)T, where

Γ(IV)β = (1− ρ)
[
E
(
∂U∗i
∂βT

M

)
E
(
∂U∗i
∂βT

I

)
E
(
∂U∗i
∂φT

)]
+ ρ

[
E
(
∂Ui
∂βT

M

)
E
(
∂Ui
∂θT

I

)
E
(
∂Ui
∂φT

)]
,

(4.20)

Σ(IV)β = (1− ρ)E
(
U∗i U

∗T
i

)
+ ρE

(
UiU

T
i

)
− ρE

(
UiS

T
i

)
{E
(
SiS

T
i

)
}−1E

(
SiU

T
i

)
.

The proof of Theorem 4.5(i) is presented in Appendix C.5, and Theorem 4.5(ii) can be read-
ily derived from Theorem 4.5(i) by matrix calculation. We comment that Theorem 4.4(ii)
and Theorem 4.5(ii) have appealing implications in that they extend the estimator in The-
orem 4.3 to more realistic scenarios with unknown parameter η associated with the mea-
surement error and misclassification models to be estimated from additional data sources.
The estimators in Theorem 4.4(ii), Theorem 4.5(ii) and Theorem 4.3 are all consistent
estimators of (βT

M , β
T
I , φ

T)T, but they differ in the efficiency because of the nuisance pa-

rameter η. The estimator (β̂ (EV)T
M , β̂ (EV)T

I , φ̂(EV)T)T in Theorem 4.4(ii) is less efficient than the

estimator (β̂T
M , β̂

T
I , φ̂

T)T in Theorem 4.3 if η0 is set as η̂(E) associated with the asymptotic
covariance matrix in Theorem 4.4(ii), because the asymptotic covariance matrix for the
former estimator is (1 + ρ) times of that of the latter estimator. On the contrary, the
estimator in Theorem 4.5(ii) is more efficient than that in Theorem 4.3, provided certain
conditions, as shown in

Theorem 4.6 Let ∆ = E(UiS
T
i ){E(SiS

T
i )}−1E(SiU

T
i ). Consider Σ0, Γ0, Σ and Γ that

are defined in Theorems 4.2 and 4.3, respectively. Assume the regularity conditions of
Theorem 4.5. If

Γ−1
0 Σ0Γ−1T

0 ≤ Γ−1ΣΓ−1T, (4.21)

and

Γ−1
0 Σ0Γ−1T

0 + Γ−1
0 ΣΓ−1T

0 ≤Γ−1ΣΓ−1T
0 + Γ−1

0 ΣΓ−1T + Γ−1
0 ∆Γ−1T

0 , (4.22)

then we have
Avar{(β̂ (IV)T

M , β̂ (IV)T
I , φ̂(IV)T)T} ≤ Avar{(β̂T

M , β̂
T
I , φ̂

T)T}, (4.23)

for every ρ ∈ (0, 1], where Avar(·) represents the asymptotic covariance matrix of an esti-
mator, and the inequality ≤ is the Loewner order.

The proof of Theorem 4.6 is outlined in Appendix C.6. This theorem says that under
some conditions, the estimators in Section 4.4.2, with nuisance parameter η estimated from
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an internal validation subsample, are more efficient than the estimators in Section 4.3.2,
with η being given. Such a result appears somewhat counterintuitive as one may ex-
pect estimation of η would induce additional variability for estimators of βM, βI and φ.
However, this phenomenon arises commonly in the context of using estimating functions
(instead of the likelihood method) for estimation, as discussed by Newey and McFadden
(1994, Chapter 6). The condition (4.21) compares the asymptotic covariance matrix for
two estimators derived from different scenarios. This condition requires the estimator in
Theorem 4.2, derived from the true response measurements, to be more efficient than the
estimator in Theorem 4.3, obtained from surrogates measurements, which is often true
when Yi is less variable than Y ∗i . To understand condition (4.22), we look at the two terms
at the left-hand side first where the first term represents the asymptotic covariance matrix
in Theorem 4.2(ii). For the first term of the left-hand side of (4.22), we replace the left
Γ0 with Γ and Σ0 with Σ; for the second term of the left-hand side of (4.22), we replace
the right Γ0 with Γ, then (4.22) requires that the difference of such changes cannot exceed
Γ0∆ΓT

0 , a non-negative definite matrix which involves the variability of Si (i,e, E(SiS
T
i )),

the covariance between Si and Ui (i.e., E(SiU
T
i )) and the sensitivity of Ui (i.e., Γ0). The

efficiency gain stated in Theorem 4.6 holds for any value ρ ∈ (0, 1], meaning that using
any reasonably large internal validation subsample always increase efficiency relative to
the case with η being given, provided certain conditions discussed earlier.

4.5 Simulation Studies

4.5.1 Simulation 1: Comparison of the GNSM with Ordinary
LASSO

In this subsection, we conduct simulation studies to evaluate the performance of the pro-
posed method for the variable selection (Section 4.2.2) and the parameter estimation (Sec-
tion 4.2.2), where no mismeasurement is present.

To evaluate the performance of the methods, we consider different graphs, displayed in
Figure 4.1, with different dependent structures of the covariates, which are characterized
by varying degrees of nodes. Here the degree of a node is defined as the number of edges
connected to this node. In the hub graph, two nodes have a higher degree than the other
four nodes. The scale-free graph is generated by the Barabási-Albert algorithm (Barabási
and Albert, 1999), where we start with an initial graph with only two connected nodes
and then randomly connect a new node to only one existing node successively. In the block
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(a) (b) (c)

Figure 4.1: Illustration of different graphs. (a): hub graph. (b): scale-free graph. (c): block
graph

graph, nodes are classified into several blocks in which the degrees of nodes within each
block are the same.

The covariates Xi are generated from a multivariate normal distribution with mean
zero and covariance matrix Σ = Θ−1, where the precision matrix Θ is, respectively, given
by

Θ1 =


1 θ12 θ13 θ14 0 0
θ21 1 0 0 0 0
θ31 0 1 0 0 0
θ41 0 0 1 θ45 θ46

0 0 0 θ54 1 0
0 0 0 θ64 0 1

 ,Θ2 =


1 θ12 θ13 θ14 0 θ16

θ21 1 0 0 0 0
θ31 0 1 0 0 0
θ41 0 0 1 0 0
0 0 0 0 1 θ56

θ61 0 0 0 θ65 1

 , and Θ3 =


1 θ12 θ13 0 0 0
θ21 1 θ23 0 0 0
θ31 θ32 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



for the hub, scale-free, and block graphs. Here the θij take a value either 0.2 or −0.2 for
the connected edges, and 0 otherwise.

The responses Yi are generated from the joint distribution

f(yi1, yi2) =

Φ

g2(µi2) + ρc

(
yi1−g1(µi1)

σ

)
√

1− ρ2
c


yi2 1− Φ

g2(µi2) + ρc

(
yi1−g1(µi1)

σ

)
√

1− ρ2
c


1−yi2

× 1√
2πσ

exp

{
−(yi1 − g1(µi1))2

2σ2

}
,

where Φ(t) is the cumulative distribution function for the standard normal distribution,
g1(µi1) and g2(µi2) are specified as in model (4.5) with E indicated by each graph in
Figure 4.1, ρc determines the correlation among Yi1 and Yi2, and we set g1(t) = t and
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g2(t) = Φ−1(t). The joint distribution was discussed by de Leon and Wu (2011). We
set βII to be a zero vector of dimension 22 or 18. Let βM be of dimension 12, and let βI

be of dimension 6 or 10; the values of βM and βI are recorded in Table 4.1 which fall in
the intervals [−0.7,−0.1] ∪ [0.1, 0.7]. The sample size n is set as 50, 200 or 1000. The
simulations are run for 1000 times for each parameter configuration.

To show the performance of the methods, we evaluate the results for the network
identification described in Stage 1 of Section 4.2.2 and the results of parameter estimation
described in Stage 2 of Section 4.2.2 using different measures. For the procedure in Stage 1,
we define two measures of variable selection, the true positive rate

TPR(λ) =

∣∣∣{(s, t) : (s, t) ∈ E and (s, t) ∈ Ê}
∣∣∣∣∣∣{(s, t) : (s, t) ∈ E}

∣∣∣
and false negative rate

FNR(λ) =

∣∣∣{(s, t) : (s, t) /∈ E and (s, t) ∈ Ê}
∣∣∣∣∣∣{(s, t) : (s, t) /∈ E}

∣∣∣ ,

where |A| is the size of the set A, and Ê is the estimated edge set for a given tuning
parameter λ. For the estimation procedure in Stage 2, we consider two measures,

∥∥∥β̂ − β∥∥∥
1

=
∑
j∈I

T∑
t=1

|β̂(t)
j − β

(t)
j | and

∥∥∥β̂ − β∥∥∥
2

=
∑
j∈I

T∑
t=1

√
|β̂(t)
j − β

(t)
j |2,

where β̂
(t)
j and β

(t)
j represent, respectively, the jth component of β̂ and β in the tth simu-

lation, T is the total number of simulations, and I is the index set of βM and βI.

To see how the choice of the tuning parameter λ may affect the results obtained from
(4.6), for a given λ in the interval [0, 0.8], we plot TPR(λ) against FNR(λ) in Figure 4.2,
where we report the results for the sample size n=50, 200 and 1000. Figure 4.2 shows that
for a given λ, the performance of the method in Section 4.2.2 improves as the sample size
increases.

In Table 4.2, we report the results obtained from the estimation procedure in Sec-
tion 4.2.2, which clearly demonstrate the improved performance of the proposed GNSM
method as the sample size increases regardless of the graph types.
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4.5.2 Simulation 2: Augmented GNSM with Measurement Error
and Misclassification in Responses

In this subsection, we evaluate the performance of the proposed estimators when the mixed
responses are subject to both measurement error and misclassification.

The covariates and the true responses are generated in the same way as in Section 4.5.1.
The surrogate measurement Y ∗i1 is generated from the measurement error model, Y ∗i1 = Yi1+
γYi2 +ei, where γ is set as 0.5, ei follows a normal distribution with mean zero and variance
σ2
e and is independent of {Yi1, Yi2}. We set σ2

e to be 0.2 or 0.7, reflecting different degrees of
measurement error. The surrogate measurement Y ∗i2 is generated from the misclassification
models (3.8), where Zi is generated from Uniform(−2, 3), and the parameter α is set as
(−4,−1)T, (−3, 0)T and (−3, 1)T, respectively yielding the misclassification rate of 1%, 5%
and 10%. The sample size n is taken as 1000, and we take the generated data {(y∗i1, y∗i2, xi) :
i = 1, . . . , n} as the main study data.

To simulate validation data, we generate a validation sample of size 500 using the same
method as for generating the main study data. For the internal validation data, we keep
all the measurements {(y∗j1, y∗j2, yj1, yj2, xj, zj) : j = 1, . . . , 500} as validation data; and for
external validation sample, we take {(y∗j1, y∗j2, yj1, yj2, zj) : j = 1, . . . , 500} as validation
data.

Simulation studies are run 1000 times for each parameter configuration. We compare
the performance of the augmented GNSM (Section 4.3.2) with the naive GNSM (Sec-
tion 4.2.2) where the effects of measurement error and misclassification are ignored. To dis-
play the results, we separately report the results for g1(µi1) and g2(µi2) which respectively
describe the continuous and binary responses. Let I be the index set of βM and βI as in Sec-
tion 4.5.1. Let β̂(t)j denote the estimate for the jth component of (βT

M , β
T
I )T at the tth simu-

lation. We report the average bias (denoted “avgBias”) by calculating 1
|I|
∑

j∈I |
¯̂
β
j

−βj|, the

average empirical standard error (denoted “avgSEE”) by calculating 1
|I|
∑

j∈I esdj, average

model standard error (denoted “avgSEM”) by calculating 1
|I|
∑

j∈I msdj, and the average

coverage rate (denoted “avgCR”) by calculating 1
|I|
∑

j∈I CRj, where
¯̂
β
j

= 1
T

∑T
t=1 β̂

(t)j,

esdj is the empirical standard error of the jth estimator, msdj stands for the standard
error of the jth estimator estimated by proposed model, CRj is computed as

CRj
l =

1

T

T∑
t=1

I(β̂(t)j(L) < βjl < β̂(t)j(U)),
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with β̂(t)j(L) and β̂(t)j(U) respectively representing the lower and upper bounds of the 95%
confidence interval at simulation t, and T is the number of simulations taken as 1000 for
each setting.

The results are presented in Tables 4.3 and 4.4. Simulation results clearly show that in
the presence of mismeasurement in responses, the naive GNSM generally produces large
finite sample biases and unreliable coverage rates for 95% confidence intervals. On the
contrary, the augmented GNSM method adjusts for the mismeasurement effects and pro-
duces good results with small finite sample biases for the point estimates and fairly good
coverage rates for 95% confidence intervals.

The estimators produced with the availability of an external validation sample have
higher standard errors than those obtained under the scenario where the true parameters
are known. On the other hand, the estimators resulted from the interval validation method
are the most efficient among the three methods, confirming the results in Theorem 4.6.

4.6 Sensitivity Analysis of Mice SNPs Data

In this section, we apply the proposed method to analyze the outbred Carworth Farms
White (CFW) mice data arising from a genome-wide association study (Parker et al.,
2016b). The data set includes measurements of 1200 mice on behavioral, physiological,
and gene expression traits. It is interesting to study the association between a set of
candidate SNPs as well as their possible interactions with two bone morphology traits,
defined as the length of the tibia and the bone condition. To be specific, the covariates
include 20 candidate SNPs which were shown to be potentially associated with physiological
traits, reported in Supplementary Table 2 of Parker et al. (2016b) and were scaled to
have zero mean and unit standard error. Let Yi1 denote the length of the tibia bone
(in mm) and let Yi2 be a binary outcome where “0” represents a healthy bone and “1”
stands for an abnormal bone. The measurements of Yi1 and Yi2 are error-prone, where
measurement error may be involved with the continuous responses Yi1 due to laboratory
error and variation, and misclassification may occur in classifying the value of Yi2 which is
based on the 90 percentile of bone-mineral density (BMD) of the sample. Consequently,
the available measurements are taken as surrogate measurements, denoted as Y ∗i1 and Y ∗i2,
of the true responses Yi1 and Yi2.

To analyze the data by accommodating possibly existing association structures in the
covariates as well as addressing the mismeasurement effects in responses, we employ the
two-step procedure for the proposed augmented generalized structured network model to
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conduct inferences. In the first step, we fit a Gaussian graphical model to the covariates
using the method of Section 4.2.2 with the optimal λ determined by the rotation informa-
tion criterion. The identified association structure among the covariates is displayed on
the left-hand side of Figure 4.3, which shows only four identified edges. On the right-hand
side of Figure 4.3, we plot the sparsity level against the tuning parameter λ, where the
sparsity level is defined as the number of selected edges divided by the total number of
edges in the saturated graph. It is seen that the sparsity is fairly insensitive to the choice
of tuning parameter around the neighbor of our optimal λ.

In the second step, we implement the estimation method described in Section 4.2.2
by incorporating the covariate association structure identified in the first step, where the
response model is given by (4.5) with g1(t) = t and g2(t) = log t

1−t , and the measurement
error model and the misclassification model are specified as (3.9) and (3.8), respectively.
To show how inference results may be affected by mismeasurement effects, we conduct
sensitivity analysis by considering different degrees of mismeasurement in Yi1 and Yi2. For
model (3.9), we take σe = 0.77 according to Lynch et al. (2019); in addition, we set σe to
be 0.72 or 0.82. For model (3.8), we consider α0 = α1 = −2.5,−1.5, or −0.5, respectively
yielding tiny (5%), moderate (10%), and substantial (20%) misclassification rates.

The analysis results are presented in Tables 4.5–4.7. The estimation results and the
inference conclusions are not sensitive to the different degrees of measurement error and
misclassification rates we consider. The SNPs rs25203010 and rs265727287 are significantly
associated with tibia length, which is consistent with the finding in Parker et al. (2016b).
For the bone condition responses, rs33583459, rs29477109, and rs265727287 are identified
to be the significant factors as their p-values are smaller than 0.01. The four interaction
terms are strongly associated with the responses, indicating that the network structure
plays an important role in studying the relationship between the candidate SNPs and the
responses.
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Figure 4.2: Results for Simulation 1: The plot of true positive rate against the false negative
rate obtained from the proposed GNSM for different values of tuning parameter λ

Table 4.2: Results for Simulation 1: The bias of the estimators of β with different responses
types, sample sizes, graph types

Continuous Component Discrete Component
n Graph ‖·‖1 ‖·‖2 ‖·‖1 ‖·‖2

50
block 6.369 3.562 7.636 3.195
hub 7.291 3.727 9.274 3.651

scale-free 6.914 3.420 9.128 3.579

200
block 1.366 0.752 1.345 0.550
hub 0.772 0.312 1.836 0.684

scale-free 0.691 0.279 1.806 0.676

1000
block 0.228 0.093 0.561 0.228
hub 0.273 0.101 0.742 0.274

scale-free 0.269 0.099 0.755 0.278
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Chapter 5

Zero-Inflated Poisson Models with
Measurement Error in Response

In this chapter, we study the measurement error in the zero-inflated Poisson model. In
Section 5.1, we discuss the setup of the response model as well as the measurement error
model. In Section 5.2, we examine the effects of measurement error on analyzing count data
and develop a method in Bayesian framework to account for the measurement error effects.
In Section 5.3, we extend the method to accounting for the effects due to measurement
error when validation subsamples are available. In Section 5.4, we illustrate the usage of
the method by applying it to the prostate adenocarcinoma genomics data. To evaluate the
performance of the method, we conduct simulation studies in Section 5.5.

5.1 Model Setup and Framework

5.1.1 Response Model

For i = 1, . . . , n, let Yi denote the count outcome for subject i taking a non-negative integer
value and let Xi denote the associated covariate vector of dimension px, where n is the
number of subjects in the study. We assume that Yi and Yi′ are independent for any i 6= i′.
The responses Yi are sampled from two sources, either from an “at-risk” group where
the measurements follow a Poisson distribution, or from a “non-at-risk” group where the
measurements are zero. Let Ai be a latent indicator variable showing from which sources
Yi is sampled, where “Ai = 1” represents Yi is sampled from the “at-risk” group, and
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“Ai = 0” otherwise. For i = 1, . . . , n, let φi = P (Ai = 1|Xi) represent the conditional
probability of sampling from ‘at-risk” group, given Xi, and let µi = E(Yi|Ai = 1, Xi)
denote the condition mean of Yi, given being sampled from the ‘at-risk” group and the
covariate Xi, which are assumed to satisfy 0 < φi < 1, and µi > 0. That is, Yi is sampled
from the “non-at-risk” group with probability 1−φi, and sampled from the “at-risk” group
with probability φi, following a Poisson distribution with mean µi:

Yi = 0, with probability 1− φi, (5.1)

Yi ∼ Poisson(µi), with probability φi.

Therefore, the zero values of Yi may come from two sources: either from the “non-at-risk”
group or from the “at-risk” group taking a zero count. Consequently, the probability mass
function for response Yi is given by

P (Yi = 0|Xi) =
∑1

k=0 P (Yi = 0|Ai = k,Xi)P (Ai = k|Xi)
= (1− φi) + φie

−µi ;

P (Yi = yi|Xi) = φi
µ
yi
i e
−µi

yi!
for yi = 1, 2, . . . .

(5.2)

To facilitate the dependence of φi and µi on covariates Xi, we consider a complementary
log-log regression model for φi and a log linear model for µi:

cloglog φi = βφ0 + βT
φxXi, (5.3)

log µi = βµ0 + βT
µxXi, (5.4)

where (βφ0, β
T
φx)

T and (βµ0, β
T
µx)

T are the coefficients of the binary component and the
count component respectively, β = (βφ0, β

T
φx, βµ0, β

T
µx)

T, and cloglog(t) = log{− log(1− t)}
refers to the function of complementary log-log link. The complementary log-log link has
been frequently used to model zero-inflated Poisson model in the literature (e.g. Neelon
and Chung, 2017), whose interpretation is to be discussed in Section 5.2.1. We comment
that although we used the same notation Xi to denote the covariates for ease of notations,
the covariates could be different for each component in (5.3) and (5.4) by constraining the
corresponding coefficients to be zero.

5.1.2 Measurement Error Model

Due to the measurement error in response Yi, its precise measurement is not observed
for every subject i ∈ {1, . . . , n}, but instead, surrogate measurement Y ∗i is observed for
i = 1, . . . , n.
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Measurement error for count data often arises from two distinct scenarios, and we call
them the “add-in” and “leave-out”, respectively. The add-in error generates extra counts
that are not supposed to be counted when measuring Yi, yielding that the surrogate Y ∗i is
no smaller than the true value of Yi. For example, in genomics studies, we are interested in
examining the count of copy number variants (CNVs). However, the mapping errors and
incorrect sequencing may falsely include some insignificant CNVs, leading to the erroneous
count higher than the true value (Xie and Tammi, 2009). On the contrary, the leave-out
error may be caused by the loss of counts that should have been counted. In the CNV
example, a significant CNV may fail to be identified due to the under-counting from the
sequencing error. In the study of COVID-19, the daily reported cases number are often
subject to leave-out error due to the limited test capacity and undetected asymptomatic
infections as well as unreported cases with a mild symptom.

For measuring Yi with i = 1, . . . , n, let Zi+ denote the count due to the add-in error
and let Zi− denote the count due to the leave-out error. Here we propose a measurement
error model to feature the scenario where both the add-in and leave-out errors may exist;
given Xi,

Y ∗i = Yi + c+Zi+ − c−Zi−, (5.5)

where Zi+ is independent of Yi and follows the Poisson distribution with mean λi, i.e.
Poisson(λi); Zi− is independent of Zi+ but may be dependent on Yi, and the conditional
distribution of Zi−, given Yi = yi is the Binomial distribution with the probability πi, i.e.
Binomial(yi, πi). Here c+ and c− are weights controlling the type of mismeasurements;
they may be restricted to take values in {0, 1} to facilitate various scenarios. For instance,
if both c+ and c− are zero, then Y ∗i and Yi are identical, i.e., no measurement error occurs;
if c+ = 0 and c− = 1, then only leave-out error is involved; if c+ = 1 and c− = 0, then
only add-in error exists; if c+ = c− = 1 then both add-in and leave-out errors are equally
present. In applications, the background information or researchers’ experience may offer
a good sense for specifying suitable values for c+ and c−.

Model (5.5) applies to count data and is a form somewhat similar to the widely used
classical additive error model for featuring measurement error in continuous covariates.
(Stefanski, 2000; Carroll et al., 2006; Yi, 2017, Section 2.6). But two key differences make
model (5.5) unique. First, classical additive measurement error models do not differentiate
error sources and use a single random variable, say ei to represent the errors; secondly,
the error term ei is often assumed to be independent of true covariates. In model (5.5),
however, the error term is refined by sorting out the errors of different nature. In addition,
dependence of the error on the true variables is allowed. Basically, the joint distribution
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of Yi and {Zi+, Zi−}, is treated as

f(yi, zi+, zi−|xi) = f(yi, zi−|xi)f(zi+|xi) (5.6)

in model (5.5) by allowing the dependence between Yi and Zi−, where f(·) represents the
joint or marginal distribution for the variables indicated by the arguments.

In model (5.5), assuming a Poisson distribution for Zi+ reflects its unboundedness yet
taking a large value with a small probability. This assumption is feasible in applications
where no upper limit is set for an add-in error and assuming errors beyond a certain value
is not likely. On the contrary, the leave-out error cannot exceed the value of Yi itself, so
assuming a Binomial distribution for the conditional distribution for Zi−, given Yi, can be
reasonable.

To facilitate different degrees of measurement error, we further model λi and πi via their
dependence on predictors, say, Wi+ and Wi−, respectively, where Wi+ and Wi− can be the
same or different, and they can be part of covariates Xi or identical to Xi. Let Wi+ =
(Wi1+, . . . ,Wip+)T and Wi− = (Wi1−, . . . ,Wip−)T denote the covariate vector associated
with add-in and leave-out processes, respectively, where p+ and p− are the dimension of
Wi+ and Wi−, respectively. For ease of exposition, we assume that Wi+ and Wi− are subsets
of Xi; if this is not the case, we can modify our initial definition of Xi to include Wi+ and
Wi− as its parts.

The mean parameter λi is modeled as

log λi = α+0 + αT
+wWi+, (5.7)

and the probability πi is postulated by a generalized linear model,

g(πi) = α−0 + αT
−wWi−, (5.8)

where (α+0, α
T
+w)T and (α−0, α

T
−w)T are coefficient vectors and g(·) is a link function. Here

the link function g(·) can be taken as the logit function g(t) = log t
1−t , the complementary

log-log link g(t) = log{− log(1 − t)}, or the probit function g(·) = Φ−1(·), where Φ(·)
is the cumulative distribution function of the standard Gaussian distribution. Let α =
(α+0, α

T
+w, α−0, α

T
−w)T.

5.1.3 Impact of Naive Analysis

In the presence of measurement error in response Yi, the true response Yi may not be
observed. Instead, its surrogate Y ∗i is available. If we naively replace the response Yi by
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its surrogates Y ∗i in the inference procedure such as the likelihood method, the resulting
estimators may not be consistent.

To see how the distribution of Y ∗i is different from Yi, we consider the conditional
distribution of Y ∗i given Xi:

f(y∗i |xi) =
∑
zi−

∑
zi+

f(Y ∗i , Zi+, Zi−)|Xi
(y∗i , zi+, zi−|xi)

=
∑
zi−

∑
zi+

f(Yi, Zi+, Zi−)|Xi
(yi − zi+ + zi−, zi+, zi−|xi)

=
∑
zi−

∑
zi+

fYi|Xi
(yi − zi+ + zi−|xi)f(zi+|xi)f(zi−|yi, xi), (5.9)

where the second step is due to (5.5), the third step is due to the independence assumption
in (5.6), fYi|Xi

(·|xi) is determined by (5.2) together with (5.3) and (5.4), and f(zi+|xi) and
f(zi−|yi, xi) are respectively determined by (5.7) and (5.8). Expression (5.9) shows that
the conditional distribution for Y ∗i given Xi generally differs from that for Yi given Xi

However, in some special cases, such as stated in Theorem 5.1 below, the conditional
distribution, f(y∗i |xi), of Y ∗i given Xi, is closely related to the conditional distribution (5.2)
of Yi given Xi in the structure.

Theorem 5.1 Suppose Yi follows the zero-inflated Poisson distribution given by (5.2) and
the measurement error model for Yi is given by (5.5).

(a) If c+ = 0 and c− = 1 in (5.5), then Y ∗i also follows a zero-inflated Poisson distribution
given by

P (Y ∗i = 0|Xi) = (1− φ∗i ) + φ∗i e
−µ∗i ;

P (Y ∗i = y∗i |Xi) = φ∗i
µ∗i
y∗i e−µ

∗
i

y∗i !
for y∗i = 1, 2, . . . ,

where φ∗i = φi and µ∗i = (1− πi)µi.

(b) If c+ = 1 and c− = 0 in (5.5), then Y ∗i follows a mixture distribution of two Poisson
distributions, given by

P (Y ∗i = y∗i |Xi) = (1− φi)λ
y∗i
i e−λi

y∗i !
+ φi

(µi+λi)
y∗i

y∗i !
e−(µi+λi) for y∗i = 0, 1, 2, . . . .

(c) If c+ = 1 and c− = 1 in (5.5), Y ∗i follows a mixture distribution of two Poisson
distributions, given by

P (Y ∗i = y∗i |Xi) = (1− φi)λ
y∗i
i e−λi

y∗i !
+ φi

µ∗i
y∗i

y∗i !
e−µ

∗
i for y∗i = 0, 1, 2, . . . ,
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where µ∗i = (1− πi)µi + λi.

The proof of Theorem 5.1 is presented in Appendix D.1. Theorem 5.1(a) says that
if there is no add-in error in the measurement error model (5.5) and the leave-out error
follows Binomial(yi, πi) then the surrogate variable Y ∗i assumes the same zero-inflated
Poisson distribution (5.2) as the true response variable Yi except for replacing µi with
(1− πi)µi, where the factor 1− πi reflects the impact of the degree of the leave-out error.
We comment that Theorem 5.1 is analogous to the well-known Poisson Process Thinning
Theorem (Brown, 1979, Theorem 1) which says that if Yi follows Poisson(λi), then Y ∗i
follows Poisson((1− πi)λi).

Theorem 5.1(b) suggests that if there is no leave-out error in measurement error model
(5.5) and the add-in error follows Poisson(λi), then the distribution of the surrogate variable
Y ∗i is determined by two Poisson distributions, given by

Y ∗i ∼ Poisson(λi), with probability 1− φi, (5.10)

Y ∗i ∼ Poisson(µi + λi), with probability φi.

Theorem 5.1(c) may be viewed as a combined result from Theorem 5.1(a) and (b), saying
that when both the add-in error and the leave-out error are present, the distribution of
the surrogate variable Y ∗i assumes the same form as (5.10) except that µi is replaced by
(1− πi)µi.

Next, we discuss possible biases of the naive analysis which disregards the difference
between Yi and Y ∗i . That is, we naively assume that Y ∗i follows the same distribution form
as Yi, then we replace Yi in (5.2) with Y ∗i and let φ∗i and µ∗i denote the resulting quantities
corresponding to φi and µi in (5.2), respectively; in addition, the same model forms as
(5.3) and (5.4) are assumed for φ∗i and µ∗i :

cloglog φ∗i = β∗φ0 + β∗TφxXi, (5.11)

log µ∗i = β∗µ0 + β∗TµxXi, (5.12)

where β∗ , (β∗φ0, β
∗T
φx , β

∗
µ0, β

∗T
µx )T are the associated parameters which may differ from the

corresponding parameters in the models (5.3) and (5.4). Without adding any constraint
on the measurement error (5.5), it is generally expected that β∗ differs from β. Even
with certain conditions for the measurement error model (5.5), such as those discussed in
Theorem 5.1(b)(c), Y ∗i does not follow a zero-inflated Poisson distribution, and thus β∗ 6= β.
However, for the case considered in Theorem 5.1(a), the following theorem describes the
relationship between β∗ and β, which shows a scenario where conducting the naive analysis
can still yield consistent estimators for some parameters.
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Theorem 5.2 If the conditions in Theorem 5.1(a) holds, then we have

(i) β∗φ0 = βφ0 and β∗φx = βφx,

(ii) β∗µ0 = βµ0 + log(1− πi),

(iii) β∗µx = βµx.

The proof of Theorem 5.2 is presented in Appendix D.2. Theorem 5.2 says that when
there is only leave-out error in model (5.5), within the frequentist framework, point esti-
mators of the parameters for the response models (5.3) and (5.4) except for the intercept
in (5.4) are still consistent if using the naive method by disregarding measurement error.
Furthermore, Theorem 5.2(ii) implies that the estimator for βµ0 obtained from the naive
method can be adjusted by subtracting log(1− πi) to produce a consistent estimator. On
the other hand, Theorem 5.2 shows that if πi is unknown, nonidentifiability arises because
βµ0 and πi cannot be separated when using the surrogate measurements Y ∗i together with
the covariates Xi. However, this nonidentifiability issue can be circumvented if we conduct
inferences in the Bayesian framework with a weakly informative prior imposed.

5.2 Bayesian Analysis Methodology

5.2.1 Bayesian Inference and Data Augmentation

Here we propose a Bayesian method for conducting inference about β by using the surrogate
measurements Y ∗i , together with the covariates, where the effects of measurement error are
accommodated.

Let β = (βφ0, β
T
φx, βµ0, β

T
µx)

T and let θ = (βT, αT)T. Inference about the parameter θ is
based on the posterior distribution of θ given Y ∗i and Xi, given by

f(θ|y∗i , xi) =
f(y∗i , θ|xi)
f(y∗i |xi)

∝ f(y∗i |xi; θ)π(θ), (5.13)

where f(y∗i , θ|xi) represents the joint distribution of Yi and θ, π(θ) is the prior distribution
of parameter θ, f(y∗i |xi; θ) is given by (5.9), and f(y∗i |xi) =

∫
f(y∗i |xi; θ)π(θ)d θ. Then, the

Bayes estimator of the parameters are given by the posterior mean θ̂ = E(θ|Y ∗i , Xi).

The basic idea of implementing Bayesian estimation is to sample a sequence of param-
eters from their posterior distribution given by (5.13). Then the Bayes point estimator
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θ̂ is given by taking the sample mean of the sampled parameter sequence, and the γ%-
credibility interval is given by (q1−γ%, qγ%), where 0 < γ < 1, qγ% is the γ% quantile of the
sampled parameter sequence.

To this end, one may employ a sampling algorithm such as the Gibbs sampling method
to sample a sequence of values from the posteriors distribution (5.13), which, however,
can be challenging due to the complex structure of the probability mass function of Yi
in (5.2). To circumvent this, we consider an alternative way to express the distribution
of Yi by using two latent variables, say Ui1 and Ui2, which are conditionally independent
given Xi, and each follows a Poisson distribution. Rather than directly characterizing the
distribution of Yi by using (5.2) together with (5.3) and (5.4), we separately describe (5.3)
and (5.4) each using Ui1 and Ui2, respectively, to gain the flexibility in modeling of the
distribution of Yi.

To be specific, we assume that given Xi, Ui1 and Ui2 are conditionally independent, and
that given Xi the conditional distributions of Ui1 and Ui2 are given by

Ui1|Xi ∼ Poisson(µi1),

Ui2|Xi ∼ Poisson(µi),

where µi1 = exp(βφ0 + βT
φxXi) and µi = exp(βµ0 + βT

µxXi) with βφ0, βφx, βµ0 and βµx being
the parameters in (5.3) and (5.4). Then (5.3) is equivalently written as φi = 1− exp(µi1),
which can be viewed as the probability P (Ui1 > 0|Xi). Therefore, the initial definition
(5.1) for Yi is equivalently expressed as

Yi = 0, with probability P (Ui1 = 0|Xi), (5.14)

Yi = Ui2, with probability P (Ui1 > 0|Xi).

In other words, the values of Yi may be viewed by the distributions of Ui1 and Ui2 in such
a way: if Ui1 = 0, then we set Yi = 0;

if Ui1 > 0, then we set Yi = Ui2;

and thus, we write Yi = 0 · I(Ui1 = 0) + Ui2 · I(Ui1 > 0), which is

Yi = Ui2I(Ui1 > 0), (5.15)

where I(·) is the indicator function.

Consequently, the original distribution (5.2) of Yi together with (5.3) and (5.4) can
now be equivalently described by using Ui1 and Ui2 via (5.15). Thereby, using the idea of
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data augmentation (van Dyk and Meng, 2001), Ui1 and Ui2 can be used to ease sampling
procedures directly based on (5.13), which is complicated to realize. In particular, rather
than using f(y∗i |xi; θ) in (5.13) directly, we use (5.9) with Yi replaced by (5.15) in its
derivation, and sampling parameter values from (5.13) can be equivalently re-expressed as
follows.

To see the idea, we consider the case with c+ = c− = 1 when using (5.5). First, fixing
the initial parameter θ, we treat Ui1, Ui2, Zi+ and Zi− as “missing data” and calculate their
posterior distribution, f(ui1, ui2, zi+, zi−|y∗i , xi; θ), given {Y ∗i , Xi} and θ, which is given by

f(ui1, ui2, zi+, zi−|y∗i , xi; θ)
=P (Ui1 = ui1, Ui2 = ui2, Zi+ = y∗i − I(ui1 > 0)ui2 + zi−, Zi− = zi−|xi; θ)
=P (Ui1 = ui1|xi)P (Ui2 = ui2|xi)P (Zi− = zi−|Ui1 = ui1, Ui2 = ui2, xi) (5.16)

× P (Zi+ = y∗i − I(ui1 > 0)ui2 + zi−|xi) ,

where the first equality is due to (5.5) and (5.15), and in the second equality we use the
conditional independence between Ui1 and Ui2 given Xi as well as (5.6).

Next, we re-express the posterior distribution (5.13) of θ by replacing Yi with Ui1 and
Ui2 and using the measurement error model (5.5):

f(θ|y∗i , xi, ui1, ui2, zi+, zi−)

∝f(ui1, ui2, zi+, zi−|y∗i , xi; θ)π(θ)

=P (Ui1 = ui1|xi; βφ0, βφx)P (Ui2 = ui2|xi; βµ0, βµx)P (Zi− = zi−|ui1, ui2, xi;α−0, α−w)

× P (Zi+ = y∗i − I(ui1 > 0)ui2 + zi−|xi;α+0, α+w) π(θ), (5.17)

where the second step is due to (5.16) with the dependence on the parameters spelled out
explicitly. The advantage of (5.17) lies in its separation of the components of θ by using
distributions for different random variables, i.e., Ui1, Ui2, Zi− and Zi+. For example, given
the rest parameters, the posterior distribution of parameters βφ0 and βφx are simplified by
(5.17) as

f(βφ0, βφx|y∗i , xi, ui1, ui2, zi+, zi−; βµ0, βµx, α−0, α−w, α+0, α+w)

∝f(ui1|xi; βφ0, βφx)π(θ).

Therefore, sampling values of θ from (5.17) can be easily realized by sampling values for
(βφ0, β

T
φx)

T, (βµ0, β
T
µx)

T, (α+0, α
T
+w)T and (α−0, α

T
−w)T, separately from their posterior distri-

bution f(βφ0, βφx|ui1, xi), f(βµ0, βµx|ui2, xi), f(α+0, α+w|zi+, xi) and f(α−0, α−w|zi−, ui1, ui2, xi).
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5.2.2 Implementation: Monte Carlo Markov Chain Method with
Data Augmentation

In this subsection, we describe the details of implementing the data augmentation idea
described in Section 5.2.1 by using an MCMC algorithm, which is summarized as follows.

Step 1: (Data Augmentation) Generate Ui1, Ui2, Zi+ and Zi−: For i = 1, . . . , n and
given Y ∗i , Xi and θ, generate Ui1, Ui2, Zi+ and Zi− jointly from the distribution (5.16),
which can be realized by the inversion sampling algorithm described in Appendix D.3.

Step 2: Update α+j using (5.7): For j = 0, . . . , p+, let α+j be the jth element of α+w, let
Wi0+ = 1 and let Wij+ be the jth element of Wi+. Given Zi+ obtained from Step 1,
we generate α+j from the posterior distribution

n∏
i=1

f(α+j|zi+) ∝
n∏
i=1

f(zi+|α+j)π(α+)

∝ exp

(
n∑
i=1

zi+wij+α+j

)
exp

{
−

n∑
i=1

exp (αT
+wi+)

}
π(α+), (5.18)

where the second step comes from (5.7), and π(α+) is the prior distribution of α+

which may, for example, take a log-Gamma or a normal distribution with hyperpa-
rameters whose values are specified. When Wij+ is binary, then we take π(α+) to
be a conjugate log-Gamma(c, d) prior with π(α+j) ∝ exp{−c exp(α+j)} exp(dα+j),
so that the posterior distribution (5.18) becomes

n∏
i=1

f(α+j |zi+)

∝ exp

(
n∑
i=1

zi+wij+α+j

)
exp

{
−

n∑
i=1

exp(αT
+wi+)

}
exp{−c exp(α+j)} exp(dα+j)

= exp

{(
d+

n∑
i=1

zi+wij+

)
α+j

}
exp

−
c+

n∑
i=1

exp

∑
j∗ 6=j

wij∗+α+j∗

wij+

 exp(α+j)

 ,
which is the log-Gamma distribution, log-Gamma(c+

∑n
i=1 exp(

∑
j∗ 6=jWij∗+

α+j∗)Wij+,
d+

∑n
i=1 zi+wij+).
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Step 3: Update α−j: For j = 0, . . . , p−, let α−j be the jth element of α−w, let Wi0− = 1,
and let that Wij− is the jth element of Wi−. We generate α−j from the posterior
distribution

n∏
i=1

f(α−j|yi, zi−) ∝
n∏
i=1

f(yi, zi−|α−j)π(α−j)

∝
n∏
i=1

(
yi
zi−

){
g−1(αT

−wi−)
}zi− {

1− g−1(αT
−wi−)

}yi−zi−
π(α−j),

where the second step comes from (5.8) and π(α−j) the probability density function
of the prior of α−j, which can be taken as a normal distribution.

Step 4: Update β: Since both Ui1 and Ui2 follow a conditional Poisson distribution, given
Xi, we update them in the same way as in Step 2. Let βφj and βµj respectively be
the jth element of βφ and βµ. Let Xi0 = 1 and Xij be the jth element of Xi. For
j = 0, . . . , px, update βφj by sampling it from

n∏
i=1

f(βφj|ui1) ∝ exp

(
n∑
i=1

ui1xijβφj

)
exp

{
−

n∑
i=1

exp(βT
φ xi)

}
π(βφ),

and update βµj by sampling it from

n∏
i=1

f(βµj|ui2) ∝ exp

(
n∑
i=1

ui2xijβµj

)
exp

{
−

n∑
i=1

exp(βT
µ xi)

}
π(βµ).

where π(βφ) and π(βµ) are prior distributions for βφ and βµ, respectively. For in-
stance, if the covariates Xi are binary, we may take the conjugate log-Gamma prior
for βφ and βµ.

5.3 Extension to the Main/Validation Studies

The Bayesian inference circumvents the traditional identifiability issue in the frequentist
framework (e.g. Gelman et al., 2013, Page 412) by using weakly informative priors. In
some applications, however, even weakly informative priors are not available or cannot
be precisely set. In this circumstance, the study design can provide extra information
regarding the measurement error process through validation data.
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LetM denote the index set of the subjects in the main study, where {(y∗i , xi) : i ∈M} is
available. Let V represent the index set of the subjects in the validation data. For internal
validation, the validation data contain {(y∗i , yi, xi) : i ∈ V} with V ⊂ M; for external
validation, the validation data contain {(y∗i , yi, wi+, wi−) : i ∈ V} with M∩ V = ∅. Let
m denote the size of the validation subsample V and let n be the size of M as used in
Sections 5.1–5.2.

5.3.1 Main/External Validation Study

With external validation data, we write the posterior function of θ combining the main
and validation data: {∏

i∈M

f(θ|y∗i , xi)

}{∏
i∈V

f(θ|y∗i , yi, wi+, wi−)

}

∝ π(θ)

{∏
i∈M

f(y∗i |xi; θ)

}{∏
i∈V

f(y∗i |yi, wi+, wi−;α)

}
, (5.19)

where f(y∗i |xi; θ) comes from (5.9), f(y∗i |yi, wi+, wi−;α) is modeled by (5.5), and π(θ) is a
prior function.

Similar to the development of Section 5.2, instead of directly using (5.19) for sampling
values of the parameters, we apply the following sampling procedures:

Step 1: (Data Augmentation) Generate Ui1, Ui2, Zi+ and Zi−. For i ∈M, we generate
augmented data in the same way as in Section 5.2.2. For i ∈ V , we generate Zi+ and
Zi− from their joint posterior distribution

f(zi+, zi−|Y ∗i = y∗i , Yi = yi;α, β) = f (Zi+ = y∗i − yi + zi−, Zi− = zi−;α, β) , (5.20)

which is determined by (5.5).

Steps 2-3: Update α+j and α−j. These two steps are similar to Steps 2–3 in Section 5.2.2
except for replacing the summation

∑n
i=1 with

∑
i∈M∪V . For example, we update

α+j by sampling it from the posterior

∏
i∈M∪V

f(α+j|zi+) ∝ exp

( ∑
i∈M∪V

zi+wij+α+j

)
exp

{
−
∑

i∈M∪V

exp(αT
+wi+)

}
π(α+),

Step 4: This is identical to Step 4 in Section 5.2.2.
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5.3.2 Main/Internal Validation Study

When internal validation data is available, the posterior function of parameter θ now
becomes  ∏

i∈M\V

f(θ|y∗i , xi)


{∏
i∈V

f(θ|y∗i , yi, xi)

}

∝ π(θ)

 ∏
i∈M\V

f(y∗i |xi; θ)


[∏
i∈V

{f(y∗i |yi;α)f(yi|xi; β)}

]
, (5.21)

where f(y∗i |xi; θ) comes from (5.9), f(yi|xi; β) is from (5.2), f(y∗i |yi;α) is from (5.5), and
π(θ) is the prior function of parameters θ. Similar to the development of Section 5.2,
instead of directly using (5.21) for sampling values of the parameters, we apply the following
sampling procedures:

Step 1: (Data Augmentation) Generate Ui1, Ui2, Zi+ and Zi−. For i ∈ M \ V , we
generate the augmented data in a way similar to that in Section 5.2.2. For i ∈ V , we
generate the variables in the following steps iteratively.

1. We update the latent data augmentation variable Ui1 according to the value of
Ui2 and Yi, which includes three circumstances according to (5.15):

(i). Case 1 with Yi = 0 and Ui2 = 0: By (5.15), Yi = 0 if and only if Ui1 = 0 or
Ui2 = 0. That is, there is no restrictions on the Ui1 when Ui2 = 0, so in this
case Ui1 is generated from Poisson(µi1).

(ii). Case 2 with Yi = 0 and Ui2 6= 0: (5.15) says that Ui1 is be surely be 0.
Hence, we set Ui1 = 0.

(iii). Case 3 with Yi > 0: (5.15) implies that Ui1 > 0. Hence, we update Ui1 by
a truncated Poisson(µi1) at 0.

2. Given Ui1 obtained in part 1, we update the latent variable Ui2, which includes
two cases:

(i). Case 1 with Ui1 > 0: we generate Ui2 by setting it equal to Yi1 by (5.15).

(ii). Case 2 with Ui1 = 0: (5.15) shows that Yij = 0, and thus, there are no
constraints on the variable Ui2 and we generate Ui2 from Poisson(µi).

3. Generate Zi+ and Zi− in the same way as in Step 1 in Section 5.3.1.

Steps 2–4: The steps are the same as Steps 2–4 in Section 5.2.2.
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5.4 Application to Prostate Adenocarcinoma Genomics

Data

5.4.1 Study Background

Here we apply the proposed methods to a multi-center molecular prostate cancer study. We
are interested in predicting whether or not cancer-related pathways are activated during
the prostate cancer progression and how the number of genes with copy number variations
(CNVs) within each pathway is associated with the risk factors. The data contain two
datasets that are linked by the genes in The Cancer Genome Atlas (TCGA) data that
are annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways data
through website cBioPortal. The first part includes the pathway information arising from
the KEGG pathways data, and the second part is the putative CNV data with 465 subjects
collected from two sources with 185 subjects from Broad Institute (Banerji et al., 2012)
and 280 subjects from Memorial Sloan-Kettering Cancer Center (MSKCC) (Taylor et al.,
2010) for prostate adenocarcinoma.

In this analysis, similar to Neelon and Chung (2017), we consider four pathways:
mitogen-activated protein kinase (MAPK) signaling, cytokine-cytokine receptor (CCR)
interaction, endocytosis (EC), and P53. Genes in the MAPK pathway are related to var-
ious cellular functions, such as cell proliferation, differentiation, and migration; genes in
the CCR interaction pathway are associated with inflammatory host defenses, cell growth,
differentiation and death, and the restoration of homeostasis; the genes in the EC pathway
are related to the mechanisms of cells transporting ligands, nutrients, proteins, and lipids
from the cell surface to the cell interior; and the p53 pathway is induced by a number of
stress signals, including DNA damage, oxidative stress, and activated oncogenes (Alberts
et al., 2002).

In our study here, we conduct four marginal analysis separately for each pathway,
where the response for each individual (Yi) is defined as the count of genes with significant
CNVs (with reading valued as either −2 or 2), which reflects the level of mutation in the
individual. We implement the Vuong tests (Vuong, 1989) to assess whether or not zero-
inflation exists in the response. With a p-value smaller than 0.001 for all four pathways,
the test result shows a strong sign of zero inflation. We investigate two different risk factors
that may be associated with the CNVs counts in two separate studies, which are reported
in Sections 5.4.2 and 5.4.3, respectively. In the first study, the covariate is denoted as Xi1,
which is taken as the tumor stage, which is given by an indicator variable, taking value 0
or 1, according to the T2 or T3+ tumor stage for subject i; and in the second study, the
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covariate is denoted as Xi2, which represents the cancer recurrence, with Xi = 1 if cancer
recurrence occurs and Xi = 0 otherwise.

We are interested in understanding the relationship between Yi and a covariate in each
study. However, due to the potential sequencing error, the CNV reading of insignificant
gene can be falsely measured as significant, whereas the gene with significant CNVs can
be missed to be counted, and thus, the observed count number (denoted as Y ∗i ) may
considerably differ from the true value of Yi. To feature this difference, we consider the
measurement error model (5.5) with c+ = c− = 1.

5.4.2 Association of Tumor Stage and CNVs

We conduct analysis for each pathway separately using the zero-inflated model (5.2), (5.3)
and (5.4) to feature the dependence of Yi on the covariate Xi1. The dataset is combined
from multiple sources, and the data quality and genetic sequencing protocols can be dif-
ferent. Thus, in this study, we perceive that the measurement error process is associated
with the data source and use the measurement error models (5.7) and (5.8), where the
covariate Wi is a binary indicator for the data source, with Wi = 1 if the subject i is from
the broad institute, and 0 otherwise.

In implementing the Bayesian procedures described in Section 5.2, we consider an
uninformative prior, log-Gamma(1000, 0.001), for the parameters of models (5.3), (5.4) and
(5.7). For the parameter α−0 in the model (5.8), we consider the prior, Normal(−2, 10),
where the negative mean reflects our expectation of a negative value for α−0, and a large
variance shows a flat prior. We use the Gelman-Robin method (Gelman et al., 1992) to
diagnose the convergence of Monte Carlo Markov chains, and the results show that MCMC
series for all the parameters well converge after running 250,000 iterations of sampling steps
and discarding the first 5000 as burn-in.

Our first interest lies in whether CNVs counts change as the tumor progresses for
patients who have activated the pathway. We implement the proposed method described
in Section 5.2.1, and for comparison, we also implement the naive method based on Neelon
and Chung (2017) where the difference of Yi and Y ∗i is neglected. The analysis results
of parameter estimation are presented in Figure 5.1. Both the naive method and the
proposed method find that the βµx for all pathways are not significantly different from
zero, suggesting that patients in tumor stage T3+ do not have different mutations than
those in T2 stage. The estimates of the intercept of the count model (5.4), βµ0, for the
MAPK, CCR and EC pathways are higher than those of βµ0 in the P53 pathway, showing

109



that prostate cancer patients have more mutations in the genes involved in the pathways
of MAPK, CCR, and EC than the P53 pathway.

Our second interest is the probability of activation for patients as the tumor grows,
which is reflected by the estimation of parameters associated with φi. It is clear that the
proposed method with the measurement error effects accounted for yields results different
from the naive method. In Figure 5.2, we report credible intervals for the probability
of pathway activation using (5.3) together with estimates of βφ0 and βφx. The proposed
method indicates that the difference in the probability of pathway activation is close to
zero for patients in tumor stage T2 versus the patients in T3+. However, the naive method
suggests that the difference is very large.

5.4.3 Association of Cancer Recurrence and CNVs

We consider the endpoint to be, alternatively, the recurrence status of a prostate cancer
patient after being cured. We are interested in: 1) whether the status of cancer recurrence
is associated with activation of the pathway; and 2) for the subjects who have activated
the pathway, whether the status of cancer recurrence is associated with the CNVs counts.
We conduct an analysis for each pathway separately using (5.2), (5.3) and (5.4) to feature
the dependence of Yi on the covariate Xi2. Since the covariate of cancer recurrence infor-
mation is only available in the MSKCC study, we focus on the analysis of 280 subjects in
the MSKCC study and consider measurement error models (5.7) and (5.8) with constant
parameters α0+ and α0− only, where Wi is no longer included in the models.

In implementing the Bayesian procedures described in Section 5.2, we consider the same
priors for parameters as in Section 5.4.2. We run 250,000 iterations of the sampling steps
and discard the first 5000 as burn-in. The resultant Monte Carlo Markov chains converge
according to the Gelman-Robin method (Gelman et al., 1992).

The results are exhibited in Figures 5.3–5.4. First, using the proposed methods in
Section 5.2 in contrast to the naive method as described in Neelon and Chung (2017), we
study the association between the status of recurrence of prostate cancer and the number of
CNVs for patients with activated pathways. In Figure 5.3, the proposed method suggests
that for all the pathways, under the significance level of 0.05, the number of CNVs is not
significantly associated with a higher risk of cancer recurrence, where the estimate of βµx
is, respectively, 0.007 and the credible interval (−0.393, 0.401) for MAPK, 0.294 and the
credible interval (−0.098, 0.614) for CCR, 0.144 and the credible interval (−0.346, 0.655)
for EC, and 0.001 and the credible interval (−1.152, 1.116) for P53. On the other hand,
the naive method shows that the patients with higher CNVs in the CCR pathway has a
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higher risk of recurrence, with the estimate of βµx being 0.454 and the credible interval
(0.106, 0.802).

Secondly, we study the association between the activation of pathways and the risk of
cancer recurrence. We observe that the patients with the MAPK, CCR, or EC pathway
activated tend to have a higher risk of the prostate cancer recurrence, where the estimate
of βφx is, respectively, 0.906 and the credible interval (0.061, 1.737), 1.021 and the credible
interval (0.145, 1.999), and 1.205 and the credible interval (0.311, 2.103) for each pathway.
On the other hand, the naive method indicates that the activation of the pathway is
associated with a lower cancer risk because the estimates of βφx are negative. We estimate
the probability of pathway activation using (5.3) and present the results in Figure 5.4.
The proposed method generally suggests that the cancer patients have low probabilities of
activation of the pathway, while the naive method indicates opposite findings.

5.5 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed
method. For the sake of comparison, we also implement the naive method where no action
is taken to deal with the measurement error in response.

We conduct two simulation studies. In the first simulation study, we evaluate the
performance of the proposed method under different settings of the parameters, leading to
different percentages of zeros in the responses. We conduct sensitivity analyses by exploring
different settings of the prior distribution of the parameters. In the second simulation study,
we evaluate the performance of the methods under different degrees of measurement error.

For both simulation studies, we run 1000 simulations for each setting. The sample size
is taken as n = 5000, and we consider model (5.3) with covariates Xi1 and (5.4) with
covariates Xi2, where covariate Xi1 is generated from Binomial(0.5) and Xi2 is indepen-
dently generated from Uniform[0, 1]. The true response Yi is generated from (5.2), where
φi = 1− exp{− exp(βφ0 + βφxXi1)} and µi = βµ0 + βµxXi2.

To generate surrogate measurements Y ∗i of Yi, we consider the measurement error mod-
els (5.7) and (5.8) each associated with a covariate Wi1 and Wi2, respectively, where
Wi1 is independently generated from U [0, 1], and Wi2 is independently generated from
U [0, 2]. Furthermore, we generate Zi+ from exponential(α+0 + α+wWi1) and Zi− from

Binomial(Yi,
exp(α-0+α-wWi2)

1+exp(α-0+α-wWi2)
). As a result, Y ∗i is determined by Y ∗i = Yi + Zi+ − Zi−.

To summarize the simulation results, we report biases (denoted “Bias”) by calculating
1
N

∑N
i=1 θ̂k − θk, model-based standard errors (denoted “SEM”), empirical standard error
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of the point estimates (denoted “SEE”), and the coverage rate (in percent) of 95% credible
intervals for a parameter, say θk, (denoted “CR”), defined as

1

N

N∑
i=1

I(θ̂k
(L)

< θk < θ̂k
(U)

),

where N is the number of simulations, θ̂
(L)
k and θ̂

(U)
k are respectively the 2.5% and 97.5%

quantile for the sampled parameter values.

5.5.1 Simulation 1: Performance of the Proposed Method with
Different Zero Percentages and Hyperparameters

Two parameter settings are considered. In Setting 1, we consider (βφ0, βφx, βµ0, βµx)
T =

(−0.7, 0.7, 1,−0.5)T, yielding about 60% zeros; in Setting 2, we consider (βφ0, βφx, βµ0, βµx)
T

= (−0.2, 0.7, 1, 0.5)T, yielding about 30% zeros. In both settings, we consider the param-
eters of the measurement error model (5.5) with α+0 = α−0 = 0, and (α+w, α−w)T =
(0.5,−2.3)T. For each setting, we study the sensitivity of results with respect to different
priors when implementing the proposed method and the naive method which disregards
the difference in Yi and Y ∗i . In the first set of priors, we consider uninformative pri-
ors log-Gamma(1000, 0.001) for βφ0, βφx, βµ0, βµx, α+w, and Normal(0, 10002) for α−w.
In the second set of priors, we choose log-Gamma(1, 1) for βφ0, βφx, βµ0, βµx, α+w, and
Normal(−2, 22) for α−w.

Table 5.1 shows that without accounting for measurement error in response, the naive
model produces biased estimates of the parameters and meaningless coverage rates of 95%
credible intervals. On the other hand, the proposed method considerably reduces the biases
resulting from the measurement error effects and provides reasonable standard errors. The
performance of the proposed method is satisfactory for different settings, regardless of the
specification of the prior distribution.

5.5.2 Simulation 2: Performance of Method with Different De-
grees of Measurement Error

In this subsection, we evaluate how the performance of the proposed method may be
affected by different degrees of measurement error resulting from different parameters in
the add-in process and the leave-out process. For the add-in process, we set the parameters
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(α+0, α+w)T in (5.7) to be (−1, 0.6)T or (2,−1.2)T, leading to the mean of Zi+ to be 0.5
(small) or 5.0 (substantial). For the leave-out process, we take the parameters (α−0, α−w)T

in (5.8) to be (−1,−1.2)T or (−0.8,−1)T, respectively, leading to 5% (low) or 10% (high)
counts being neglected.

To create a dataset for a main/external validation study, we randomly choose 2500
subjects and only keep the variables of Y ∗i , Yi, Wi1 and Wi2. For the case of a main/internal
validation study, we randomly select 2500 subjects and keep their variables of Y ∗i , Yi, Xi1,
Xi2, Wi1 and Wi2 to serve as the validation data.

We implement the methods described in Sections 5.2 and 5.3, as opposed to the naive
method by replacing Yi with Y ∗i in the analysis. When implementing the methods, we take
log-Gamma(1, 1) as the prior for βφ0, βφx, βµ0, βµx, α+0, and Normal(−2, 22) for α−0 and
α−w.

The results are displayed in Table 5.2. Our proposed methods outperform the naive
method, regardless of the parameter settings for the measurement error model. The pro-
posed methods yield small finite sample biases for the point estimates and reasonable
coverage rates for 95% credible intervals.
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Figure 5.1: The plot of parameter estimation of the zero-inflated Poisson models for the
association between tumor stage and CNVs. The point indicates the point estimation and
the line segments represent the 95% credible interval. The barplot is the associated standard
error for the estimation of the corresponding parameter.

114



Stage T2 Stage T3+

MAPK CCR EC P53 MAPK CCR EC P53

0.00

0.25

0.50

0.75

Pathway

V
al

ue

Method

Proposed

Naive

Probability of Pathway Activation

Figure 5.2: The plot of probability of pathway activation in the study of the association
between tumor stage and CNVs. The point indicates the point estimation and the line
segments represent the 95% credible interval. The barplot is the associated standard error
for the estimation of the corresponding parameter.

Table 5.1: Results for Simulation 1 with different zero percentage and prior parameters

Naive Mothod Proposed Method
Parameter Prior Bias SEE SEM CR% Bias SEE SEM CR%

Setting 1: zero-percentage 60%
βφ0

Uninformative

1.506 0.030 0.029 0.0 0.004 0.089 0.086 93.3
βφx 0.340 0.051 0.049 0.0 0.004 0.082 0.079 94.1
βµ0 0.122 0.020 0.017 0.0 0.030 0.069 0.068 91.9
βµx 0.816 0.032 0.028 0.0 0.004 0.082 0.081 94.5
α+w - - - - 0.001 0.044 0.045 94.7
α−w - - - - 0.115 0.562 0.560 90.5
βφ0

Informative

1.506 0.030 0.029 0.0 0.007 0.088 0.085 93.4
βφx 0.340 0.051 0.049 0.0 0.005 0.081 0.078 94.2
βµ0 0.122 0.020 0.017 0.0 0.002 0.070 0.064 92.7
βµx 0.817 0.032 0.028 0.0 0.004 0.082 0.080 94.3
α+w - - - - 0.005 0.044 0.045 95.2
α−w - - - - 0.243 0.733 0.648 91.5

Setting 2: zero-percentage 30%
βφ0

Uninformative

1.001 0.030 0.029 0.0 0.001 0.049 0.048 93.9
βφx 0.332 0.052 0.049 0.2 0.002 0.056 0.055 94.5
βµ0 0.124 0.020 0.017 0.0 0.021 0.046 0.052 93.7
βµx 0.185 0.033 0.028 0.0 0.004 0.047 0.047 94.5
α+w - - - - 0.004 0.053 0.053 94.7
α−w - - - - 0.100 0.370 0.430 94.0
βφ0

Informative

1.000 0.030 0.029 0.0 0.002 0.049 0.048 93.5
βφx 0.332 0.051 0.049 0.0 0.003 0.056 0.055 95.7
βµ0 0.124 0.020 0.017 0.0 0.012 0.043 0.052 96.6
βµx 0.184 0.033 0.028 0.0 0.003 0.047 0.047 94.2
α+w - - - - 0.006 0.053 0.053 94.5
α−w - - - - 0.017 0.389 0.456 96.0
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Figure 5.3: The plot of parameter estimation of the zero-inflated Poisson models for the
association between cancer recurrence and CNVs. The point indicates the point estimation
and the line segments represent the 95% credible interval. The barplot is the associated
standard error for the estimation of the corresponding parameter.
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Figure 5.4: The plot of probability of pathway activation in the study of the association
between cancer recurrence and CNVs. The point indicates the point estimation and the
line segments represent the 95% credible interval. The barplot is the associated standard
error for the estimation of the corresponding parameter.
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Chapter 6

Autoregressive Models with Data
Subject to Measurement Error

In this chapter, we discuss error-contaminated time series data. The notation and the setup
for the autoregressive time series model and the proposed measurement error models are
introduced in Section 6.1. In Section 6.2, we present the theoretical results for character-
izing the impact of measurement error on the analysis of time series data. In Section 6.3,
we develop an estimating equation approach to adjust for the biases due to measurement
error. In Section 6.4, we implement the proposed method to analyze the COVID-19 data
in four provinces in Canada.

6.1 Model Setup and Framework

6.1.1 Time Series Model

Consider a T × 1 vector of time series, X(T ) = (X1, X2, . . . , XT )T. We are interested in
modeling the dependence of Xt on it previous observations X(t−1) and we consider it to be
postulated by an autoregressive model with lag p

Xt = φ0 +

p∑
j=1

φjXt−j + εt, (6.1)

where p is an integer smaller than T , ε(t) = (ε1, . . . , εt)
T is independent ofX(t) = (X1, . . . , Xt)

T

with each εt having zero mean and variance σ2
ε , φ0 is a constant drift, and φ = (φ1, . . . , φp)

T

is the regression coefficient.
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The additive form in (6.1) and the zero mean assumption of εt show that φ0 and φ are
constrained by

φ0 = E(Xt)− {E(X̃t−1)}Tφ, (6.2)

where X̃t−1 = (Xt−1, . . . , Xt−p)
T. To make the process of Xt stationary, φ1, . . . , φp are

further constrained such that all the roots of the equation in z

zp − φ1z
p−1 − · · · − φp = 0

have absolute values smaller than 1 (Brockwell and Davis, 2002, Section 3.1.). For example,
a stationary AR(1) process requires that |φ1| < 1, and a stationary AR(2) process needs
that (φ1 + φ2) < 1, (φ2 − φ1) < 1 and |φ2| < 1. Here we are interested in the estimation
of parameters, φ and φ0. Let µ denote the mean E(Xt) of the time series, which equals

φ0

1−φ1−...−φp if Xt is (weakly) stationary. When p = 1, the stationarity of a time series implies

Var(Xt) = σ2
ε

1−φ2
1

for t = 1, . . . , T .

6.1.2 Estimation of Model Parameters

The estimation of the parameters in the AR(p) time series model (6.1) can be carried out by
the least squares method. To see this, we first focus on estimation of φ = (φ1, . . . , φp)

T. Let

S(φ) =
∑T

t=p+1{Xt − (φ0 +
∑p

j=1 φjXt−j)}2 be the sum of the squared difference between
Xt and its linearly combined history with lag p. Then applying the constraint (6.2) gives

S(φ) =
∑T

t=p+1

[
{Xt − E(Xt)} − {X̃t−1 − E(X̃t−1)}Tφ

]2

.

To minimize S(φ) with respect to φ, we solve ∂S(φ)
∂φ

= 0 for φ and obtain the solution

φ̂(LS) =

(
T∑

t=p+1

{
X̃t−1 − E(X̃t−1)

}{
X̃t−1 − E(X̃t−1)

}T
)−1 T∑

t=p+1

{
X̃t−1 − E(X̃t−1)

}
{Xt − E(Xt)} ,

(6.3)

where for t = 1, . . . , T , E(Xt) can be estimated by 1
T

∑T
t=1 Xt, which is denoted as µ̂.

Next, by the constraint (6.2), replacing E(Xt) by µ̂ gives an estimator of φ0:

φ̂(LS)

0 = µ̂− µ̂ ·
p∑
j=1

φ̂j. (6.4)
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Re-expressing (6.1) as εt = Xt − (φ0 +
∑p

j=1 φjXt−j) and by the definition of S(φ), we

may estimate Var(εt) = σ2
ε by

σ̂2(LS)

ε =
1

T − p
S(φ̂)

=
1

T − p

T∑
t=p+1

{Xt − E(Xt)}2 − 2

T − p

T∑
t=p+1

{Xt − E(Xt)}{X̃t−1 − E(X̃t−1)}Tφ̂

+
1

T − p

T∑
t=p+1

φ̂T{X̃t−1 − E(X̃t−1)}{X̃t−1 − E(X̃t−1)}Tφ̂ (6.5)

with E(Xt) estimated by µ̂.

Estimators (6.3)–(6.5) can be derived in an alternative way. First, by the stationarity
of the Xt, for k = 0, . . . , p and p ≤ t, Cov(Xt, Xt−k) is time-independent and let γk denote
it; it is clear that γ0 represents Var(Xt) for any t. Let Γ be the autocovariance matrix

Γ =

 γ0 · · · γp−1
...

. . .
...

γp−1 · · · γ0

 .

Let γ̂ = (γ̂1, · · · , γ̂p)T with γ̂k = 1
T−k

∑T
t=k+1(Xt − µ̂)(Xt−k − µ̂) being an estimator of γk

for k = 0, . . . , p, and let Γ̂ be the estimator of Γ with γk replaced by γ̂k for k = 0, . . . , p−1.

Next, we examine the summation terms in (6.3) and (6.5) by using the fact that as

T →∞, 1
T−p

∑T
t=p+1{Xt−E(Xt)}2 p−→ γ0, 1

T−p
∑T

t=p+1{Xt−E(Xt)}{X̃t−1−E(X̃t−1)}T p−→
γ, and 1

T−p
∑T

t=p+1{X̃t−1−E(X̃t−1)}{X̃t−1−E(X̃t−1)}T p−→ Γ. Then, (6.3)–(6.5) motivate

an alternative method of finding estimators for φ, φ0, and σ2
ε , by solving the estimating

equations:

φ = Γ̂−1γ̂;

φ0 =

(
1−

p∑
i=1

φi

)
µ̂; (6.6)

σ2
ε = γ̂0 − 2φTγ̂ + φTΓ̂φ,

for φ, φ0, and σ2
ε . Let φ̂, φ̂0 and σ̂2

ε denote the resultant estimators of φ, φ0, and σ2
ε ,

respectively. These estimators are asymptotically equivalent to the least squares estimators
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φ̂(LS), φ̂(LS)

0 , and σ̂2(LS)
ε in a sense that φ̂− φ̂(LS) p−→ 0, φ̂0 − φ̂(LS)

0

p−→ 0 and σ̂2
ε − σ̂2(LS)

ε

p−→ 0, as
T →∞, and hence, they are consistent (Box et al., 2015, Section A.7.4).

Estimating equations (6.6) offer a unified estimation framework in its connections with
not only the least squares estimation but also the maximum likelihood method under
the assumption of Gaussian error as well as the Yule-Walker method. Similar to the
least squares method, finding estimators using one of those approaches is asymptotically
equivalent to solving (6.6) for φ, φ0 and σ2

ε (Box et al., 2015, Section A.7.4).

6.2 Measurement Error and Impact

6.2.1 Measurement Error Models

Suppose that for t = 1, . . . , T , the observation of Xt is subject to measurement error and
the precise measurement of Xt may not be observed, but its surrogate measurement X∗t is
available. We consider two measurement error models.

The first measurement error model takes an additive form

X∗t = α0 + α1Xt + et (6.7)

for t = 1, . . . , T , where the error term et is independent of Xt with mean 0 and time-
independent variance σ2

e and is assumed to be mutually independent for t = 1, . . . , T ,
and α = (α0, α1)T is the parameter vector. Here, α0 represents the systematic error and α1

represents the constant inflation (or shrinkage) due to the measurement error. For instance,
if α0 = 0, then setting α1 < 1 (or α1 > 1) features the scenario where X∗t tends to be
smaller (or larger) than Xt if the noise term is ignored. This model generalizes the classical
additive model considered by Staudenmayer and Buonaccorsi (2005) who considered the
case with α0 = 0 and α1 = 1.

By the stationarity of the Xt, we note that model (6.7) yields E(X∗t ) = α0 + α1µ and

Var(X∗t ) = α2
1γ0 + σ2

e ; (6.8)

the variability of the X∗t can be greater or smaller than that of the Xt, depending on the
value of α1.

The second measurement error model assumes a multiplicative form:

X∗t = β0utXt, (6.9)
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for t = 1, . . . , T , where β0 is a positive scaling parameter, and the ut are the error terms
which are independent of each other as well as of the Xt, and have mean one and time-
independent variance σ2

u. Depending on the distribution of the error term ut, (6.9) can
feature different types of discrepancy between Xt and X∗t .

The stationarity of the Xt together with model (6.9) implies E(X∗t ) = β0µ, and

Var(X∗t ) = Var(β0Xtut)

= β2
0

{
E(X2

t u
2
t )− E2(Xtut)

}
= β2

0

{
E(X2

t )E(u2
t )− E2(Xt)E

2(ut)
}

= β2
0

{
(Var(Xt) + E2(Xt))(σ

2
u + 1)− E2(Xt)

}
= β2

0

{
(σ2

u + 1)γ0 + σ2
uµ

2
}
, (6.10)

where the third step is because of the independence of Xt and ut.

Since E(X∗t ) is time-independent for both (6.7) and (6.9), in the following discussion,
we let µ∗ denote E(X∗t ) for t = 1, . . . , T . The modeling of the measurement error process
by (6.7) or (6.9) introduces extra parameters {α0, α1, σ2

e} or {β0, σ2
u}, where the variance

of the error term is bounded by the variability of X∗t together with others. Clearly, (6.8)

shows that σ2
e < Var(X∗t ) and (6.10) implies that σ2

u <
Var(X∗t )

β2
0µ

2 .

6.2.2 Naive Estimation and Bias for AR(1) Model

Estimating equations (6.6) are useful when measurements of Xt are available. However,
due to the measurement error, Xt is not observed so (6.6) cannot be directly used for
estimation of the parameters for model (6.1). As the surrogate X∗t for Xt is available, one
may attempt to employ the naive analysis to model (6.1) with Xt replaced by X∗t . Here we
study the impact of measurement error on the naive analysis disregarding the difference
between Xt and X∗t . We start with the AR(1) model, i.e., model (6.1) with p = 1.

If we naively replace Xt in (6.1) by X∗t , then the time series model (6.1) becomes

X∗t = φ∗0 + φ∗1X
∗
t−1 + ε∗t , (6.11)

where (φ∗0, φ
∗
1)T and ε∗t show possible differences from the corresponding quantity in the

model (6.1). To estimate φ∗0 and φ∗1, we may employ the ordinary least squares (OLS)
method. Specifically, we minimize S(φ∗0, φ

∗
1) =

∑T
t=2(X∗t − φ∗0 − φ∗1X∗t−1)2 with respective
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to φ∗0 and φ∗1, yielding the OLS estimators of φ∗1 and φ∗0:

φ̂∗1 =

∑T
t=2(X∗t−1 − X̄∗(−1))(X

∗
t − X̄∗)∑T

t=2(X∗t−1 − X̄∗(−1))
2

,

and φ̂∗0 = X̄∗t − φ̂∗1X̄∗, (6.12)

where X̄∗(−1) = 1
T−1

∑T
t=2X

∗
t−1 and X̄∗ = 1

T−1

∑T
t=2X

∗
t .

Theorem 6.1 Let ω1 =
α2

1σ
2
ε

α2
1σ

2
ε+σ2

e(1−φ2
1)

, φ∗1 = φ1ω1, and φ∗0 =
(
α0 + α1φ0

1−φ1

)
(1− φ1ω1). As-

sume the stationarity of the times series. If the measurement error process satisfies (6.7),
then

(1) φ̂∗1
p−−→ φ∗1 and φ̂∗0

p−−→ φ∗0 as T →∞,

(2) ε∗t = α0(1− φ∗1) + α1φ0 − φ∗0 + α1(φ1 − φ∗1)Xt−1 + (1− φ∗1)et + α1εt for t = 1, . . . , T ,

and hence Var(ε∗t ) = φ2
1α

2
1(1− ω1)2

(
σ2
ε

1−φ2
1

)
+ (1− ω1φ1)2σ2

e + α2
1σ

2
ε .

The proof of the theorem is included in Appendix E.2. This theorem essentially implies
that the naive estimator under the additive form in (6.7) is inconsistent because φ∗1 6= φ1

and φ∗0 6= φ0. The naive estimator φ̂∗1 attenuates and the attenuation factor ω1 depends on
the parameters α1 and σ2

e of the measurement error model (6.7) as well as φ1 and σ2
ε in the

time series model (6.1). The coefficient α1 in the measurement error model (6.7) affects

the estimation of the both naive estimators φ̂∗1 and φ̂∗0, while the intercept α0 influences
the estimation of φ∗0 only, but not φ∗1 or Var(ε∗).

Theorem 6.2 Let ω2 = {1 + σ2
u +

(1+φ1)σ2
uφ

2
0

(1−φ1)σ2
ε
}−1, φ∗1 = φ1ω2, and φ∗0 = β0φ0

1−φ1
(1− ω2φ1). If

the times series is stationary and the measurement error process satisfies (6.9), then

(1) φ̂∗1
p−−→ φ∗1 and φ̂∗0

p−−→ φ∗0 as T →∞,

(2) ε∗t = β0φ0ut − φ∗0 + β0Xt−1(φ1ut − ω2φ1ut−1) + β0utεt for t = 1, . . . , T ,

and hence Var(ε∗t ) = β2
0{σ2

uφ
2
0 + (1 + σ2

u)σ
2
ε}+ β2

0φ
2
1

(1+ω2
2)

ω2

σ2
ε

(1−φ2
1)
.

The proof of the theorem is included in Appendix E.3. This theorem says the attenua-
tion effect resulting from the measurement error on estimation of φ1. The constant scaling
parameter β0 in the measurement error model (6.9) does not influence the estimation of
φ1 but affects the estimation of φ0 and σ2

ε . The attenuation factor ω2 is determined by
the magnitude σ2

u of measurement error as well as the values of φ0, φ1, and σ2
ε of the time

series model (6.1).
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6.2.3 Naive Estimation and Bias for AR(p) Model with p ≥ 2

We now extend the discussion in Section 6.2.2 to the AR(p) model with p ≥ 2. Replacing
Xt with X∗t in (6.1) gives the working model

X∗t = φ∗0 +

p∑
j=1

φ∗jX
∗
t−j + ε∗t , (6.13)

where φ∗ = (φ∗1, . . . , φ
∗
p)

T and ε∗t may differ from the corresponding symbol in (6.1). If
mimicking the procedure of using (6.6) with Xt replaced by X∗t to estimate φ∗, φ∗0 and

σ2∗
ε in (6.13), then we let φ̂∗ = (φ̂∗1, . . . , φ̂

∗
p)

T, φ̂∗0 and σ̂∗2ε denote the resultant estimators.

Similar to γ̂k and µ̂, we define µ̂∗ = 1
T

∑T
t=1X

∗
t and γ̂∗k = 1

T−k
∑T−k

t=1 (X∗t − µ̂∗)(X∗t+k − µ̂∗)
for k = 1, . . . , p. Let γ̂∗ = (γ̂∗1 , . . . , γ̂

∗
p)

T and γ̂∗0 = 1
T

∑T
t=1(X∗t − µ̂∗)(X∗t − µ̂∗).

We now discuss the asymptotic results of the naive estimators under different measure-
ment error models.

Theorem 6.3 Let 1p be the p × 1 unit and let Ip be the p × p identity matrix. Define
γ∗ = α2

1γ, γ∗0 = α2
1γ0 + σ2

e , φ∗ = α2
1(α2

1Γ + σ2
eIp)

−1γ, φ∗0 = (1− φ∗ · 1p) (α0 + α1µ) and

σ2∗
ε = α2

1γ0 + σ2
e − α4

1γ
T (α2

1Γ + σ2
eIp)

−1
γ. Under regularity conditions, if the time series is

stationary and the measurement error process satisfies (6.7), then

(1) γ̂∗
p−−→ γ∗ and γ̂∗0

p−−→ γ∗0 as T →∞.

(2) φ̂∗
p−−→ φ∗, φ̂∗0

p−−→ φ∗0, and σ̂2∗
ε

p−−→ σ2∗
ε as T →∞.

(3) Let Q1 denote the (p + 1) × (p + 1) asymptotic covariance matrix of√
T
{

(γ̂∗0 , γ̂
∗T)T − (γ∗0 , γ

∗T)T
}

as T →∞. Then the elements of Q1 are given by

q∗100 = α4
1q00 + 4α2

1γ0σ
2
e + E(e4

t )− σ4
e ;

q∗10p = α4
1q0p + 4α2

1γpσ
2
e ;

q∗1pr = α4
1qpr + 2α2

1σ
2
e(γ|p−r| + γp+r) for r 6= 0, r 6= p;

q∗1pp = α4
1qpp + 2α2

1σ
2
e(γ0 + γ2p) + σ4

e ;

for p ≥ 1, where qjk is the (j, k) element of the asymptotic covariance matrix of
(γ̂0, γ̂

T)T, given by (Brockwell et al., 1991, Section 7.3)

qjk = (η − 3)γjγk +
∞∑

i=−∞

(γiγi−j+k + γi+kγi−j) (6.14)

for (j, k) = (0, 0), (0, p), (p, p) and (p, r) with r 6= 0 and r 6= p, with η = E(ε4t )/σ
4
ε .
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The proof of Theorem 6.3 is presented in the Appendix E.4. Similar to the results in
Theorem 6.1, the intercept α0 only influences φ0 and does not influence φ.

Theorem 6.4 Let γ∗ = β2
0γ, γ∗0 = β2

0 {(σ2
u + 1)γ0 + σ2

uµ
2}, φ∗ = {Γ + σ2

u(γ0 + µ2)Ip}−1
γ,

φ∗0 = β0 (1− φ∗T · 1p)µ, and σ2∗
ε = β2

0(σ2
u + 1)γ0 + β2

0σ
2
uµ

2 − β2
0γ

T {Γ + σ2
u(γ0 + µ2)Ip}−1

γ.
Under regularity conditions, if the time series are stationary and the measurement error
process satisfy (6.9), then

(1) γ̂∗
p−−→ γ∗ and γ̂∗0

p−−→ γ∗0 as T →∞.

(2) φ̂∗
p−−→ φ∗, φ̂∗0

p−−→ φ∗0, and σ̂2∗
ε

p−−→ σ2∗
ε as T →∞.

(3) Let Q2 denote the (p + 1) × (p + 1) asymptotic covariance matrix of√
T
{

(γ̂∗0 , γ̂
∗T)T − (γ∗0 , γ

∗T)T
}

as T →∞. Then the elements of Q2 are given by

q∗200 = β4
0(σ2

u + 1)2q00 + β4
0{E(u4t )− (σ2

u + 1)2}E(Xt − µ)4

+ 4µβ4
0σ

2
u(σ2

u + 1)v0 + 4µβ4
0{E(u4t )− E(u3t )− σ2

u(σ2
u + 1)}E(Xt − µ)3

+ 2µ2β4
0

{
E(u4t )− 2E(u3t ) + 1− σ4

u

}
γ0

+ 4µ2β4
0

[
σ4
u

∞∑
h=−∞

γh +
{
E(u4t )− 2E(u3t ) + σ2

u + 1− σ4
u

}
γ0

]
+ µ4β4

0

[
E{(ut − 1)4} − σ4

u

]
;

q∗20p = β4
0qp(σ

2
u + 1) + β4

0

{
E(u3t )− (σ2

u + 1)
} [
E{(Xt − µ)3(Xt+p − µ)}+ E{(Xt − µ)3(Xt−p − µ)}

]
+ 2µβ4

0σ
2
uv0p + µβ4

0E{3u3t − 3u2t − 2σ2
u}
[
E{(Xt − µ)2(Xt−p − µ)}+ E{(Xt − µ)2(Xt+p − µ)}

]
+ 6µ2β4

0E(ut − 1)3γp + 4µ2β4
0σ

2
uγp;

q∗2pr = β4
0qpr + β4

0σ
2
u

[
E{(Xt − µ)2(Xt+p − µ)(Xt+r − µ)}+ E{(Xt − µ)(Xt+p − µ)2(Xt+p+r − µ)}

+E{(Xt−r − µ)(Xt − µ)2(Xt+p − µ)}+ E{(Xt − µ)(Xt+p−r − µ)(Xt+p − µ)2}
]

+ µβ4
0σ

2
u [E{(Xt − µ)(Xt+p − µ)(Xt+r − µ)}+ E{(Xt − µ)(Xt+p − µ)(Xt+p+r − µ)}

+E{(Xt−r − µ)(Xt − µ)(Xt+p − µ)}+ E{(Xt − µ)(Xt+p−r − µ)(Xt+p − µ)}]
+ 2µ2β4

0σ
2
u(γ|p−r| + γp+r) for r 6= p, r 6= 0;

q∗2pp = β4
0qpp + β4

0(σ4
u + 2σ2

u)Var{(Xt − µ)(Xt+p − µ)}+ 2β4
0E{(Xt − µ)(Xt+p − µ)2(Xt+2p − µ)}

+ µβ4
0σ

2
u

[
E{(Xt − µ)(Xt+p − µ)2}+ 2E{(Xt − µ)(Xt+p − µ)(Xt+2p − µ)}

+ E{(Xt − µ)2(Xt+p − µ)}
]

+ 2µ2β4
0σ

4
uγp + 2µ2β4

0σ
2
u(γ0 + γ2p) + µ4β4

0σ
4
u,

where the qjk are given by (6.14), for (j, k) = (0, 0), (0, p), (p, p) and (p, r) with r 6= 0

and r 6= p, and vp = limT→∞
1
T

∑T
t=1

∑T
s=1 E{(Xt − µ)(Xt+p − µ)(Xs − µ)}.

The proof of the theorem is presented in Appendix E.5. The multiplicative measurement
error ut contributes to the biasedness of the parameter estimation for φ, while the scaling
parameter β0 has no effects on the naive estimator φ̂∗.
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6.3 Methodology of Correcting Measurement Error

Effects

6.3.1 Estimation of Model Parameters

In the presence of measurement error, measurements of the Xt are not always available
but surrogate measurements X∗t are available. It may be tempting to conduct a naive
analysis by implementing (6.6) with the Xt replaced by the X∗t , or equivalently with µ̂ and
γ̂k replaced by µ̂∗ and the γ̂∗k, respectively, to find estimators of φ, φ0 and σ2

ε . However, by
Theorems 6.3–6.4, such a procedure typically yields biased estimators. In this section, we
develop new estimators accounting for the measurement error effects described by either
the additive model (6.7) or the multiplicative model (6.9).

Our idea is still to employ (6.6) to find consistent estimators of φ, φ0 and σ2
ε , but

instead of replacing µ̂ and the γ̂k with µ̂∗ and the γ̂∗k as in the naive analysis, we replace µ̂
and the γ̂k in (6.6) with new functions of the X∗t , denoted as µ̃ and the γ̃k, which adjust
for the measurement error effects. Specifically, if we can find µ̃ and the γ̃k such that they
resemble µ̂ and the γ̂k in the sense that as T →∞,

µ̃ and µ̂ have the same limit in probability,

and γ̃k and γ̂k have the same limit in probability for k = 0, . . . , p, (6.15)

then substituting µ̂ and the γ̂k with µ̃ and the γ̃k in (6.6) yields consistent estimators of
φ, φ0 and σ2

ε .

With the availability of the γ̃k satisfying (6.15), let Γ̃ denote Γ with the γk replaced by
the γ̃k. Then provided regularity conditions, consistent estimators of φ, φ0 and σ2

ε can be
obtained by solving the estimating equations for φ, φ0, and σ2

ε :

φ = Γ̃−1γ̃,

φ0 =

(
1−

p∑
i=1

φi

)
µ̃, (6.16)

σ2
ε = γ̃0 − 2φTγ̃ + φTΓ̃φ.

It is immediate to obtain the following result.

Theorem 6.5 Assume regularity conditions hold and the time series are stationary. If µ̃
and the γ̃k are functions of the X∗t with t = 1, . . . , T and they satisfy (6.15), and let φ̃, φ̃0,
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and σ̃ε
2 denote the estimators for φ, φ0 and σ2

ε , respectively, obtained by solving (6.16).
Then, as T →∞

(1) φ̃
p−→ φ, φ̃0

p−→ φ0, and σ̃ε
2 p−→ σ2

ε ;

(2)
√
n(φ̃− φ)

d−−→ N(0, GQGT),

where G is the matrix of derivatives of φ̃ with respect to the components of (γ̂∗0 , γ̂
∗T)T.

Here Q = Q1, the matrix in Theorem 6.3, if measurement error follows the model
(6.7); and Q = Q2, the matrix in Theorem 6.4, if measurement error follows the
model (6.9).

Now we discuss explicitly how to determine µ̃ and the γ̃k under the measurement error

model (6.7) or (6.9). With (6.7), take µ̃ = µ̂∗

α1
− α0, γ̃0 = 1

α2
1
(γ̂∗0 − σ2

e), and γ̃k =
γ̂∗k
α2

1
for

k = 1, . . . , p. With (6.9), take µ̃ = µ̂∗

β0
, γ̃0 =

γ∗0
(1+σ2

u)β2
0
− σ2

uµ
2

σ2
u+1

, and γ̃k =
γ̂∗k
β2

0
for k = 1, . . . , p.

By the results in Theorem 6.3(1) and Theorem 6.4(1), it can be easily verified that these
µ̃ and the γ̃k satisfy (6.15).

We conclude this section with a procedure of estimating the asymptotic covariance ma-
trix for the estimator φ̃. While Theorem 6.5 presents the sandwich form of the asymptotic
covariance matrix of φ̃, its evaluation involves lengthy calculations. We may alternatively
employ the block bootstrap algorithm (Lahiri, 1999) to obtain variance estimates for φ̃
using the following steps. Firstly, we set a positive integer, say N , as the number for the
bootstrap sampling; N can be set as a large number such as 1000. Next, we repeat through
the following five steps:

Step 1: At iteration n ∈ {1, . . . , N}, we initialize a null time series X(n,0) of dimen-
sion 0 and specify a block length, say b, which is an integer between 0 and
T . Initialize m=1.

Step 2: Sample an index, say i, from {0, . . . , T − b}, and then define X
(m−1)
add =

{Xi+1, . . . , Xi+b}.

Step 3: Update the previous time series X(n,m−1) by appending X
(m−1)
add to it, and let

X(n,m) denote the new time series.

Step 4: If the dimension X(n,m) is smaller than T then return to Steps 2 and 3;
otherwise drop the elements in the time series with the index greater than
T to ensure the dimension of X(n,m) is identical to T and then go to Step 5.
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Step 5: Obtain an estimate φ̃(n) of parameter φ by applying the times series X(n,m)

to (6.16). If n < N , then set n to be n+ 1 and go back to Step 1 to repeat;
otherwise stop.

Let
¯̃
φ

(n)

= 1
N

∑N
n=1

¯̃
φ

(n)

be the sample mean. The bootstrap variance of φ̃ is then given
by,

Varboot(φ̃) =
1

N

N∑
n=1

(φ̃(n) − ¯̃
φ

(n)

)2.

6.3.2 Forecasting and Prediction Error

Forecasting is an important application of the autoregressive models. Specifically, in
forecasting based on the observed time series X(T ) = {x1, . . . , xT}, we are interested in
the predictions of {XT+1, . . . , XT+H} for a positive integer H, which is done one by one
starting from the nearest time point T + 1 to the farthest time point T + H. To this
end, let h = 1, . . . , H, the h-step forecasting of XT+h is based on its history of lag-p,
{XT+h−1, . . . , XT+h−p}, by using the conditional expectation E(XT+h|xT+h−1, . . . , xT+h−p),

denoted X̂T+h, where for j = T + h − 1, . . . , T + h − p, xj is the observe value of Xj if

j ≤ T ; and xj is the predicted value of Xj, X̂j, if j > T . This prediction minimizes the

squared prediction error E(X̂T+h −XT+h)
2 (e.g., Box et al., 2015, Page 131).

If no measurement error is involved, due to the zero mean of the random error term εt
in the AR(p) model (6.1), for h = 1, . . . , H, the conditional expectation can be calculated
by

X̂T+h = φ0 + φ1xT+h−1 + . . .+ φpxT+h−p. (6.17)

When measurement error appears, the observe values xj for j = T, . . . , T−p+1 in (6.17)
are no longer available but their surrogates X∗j are available. We now provide a sensible
estimate of Xj by using the measurement error model for characterizing the relationship
of Xj and X∗j . If measurement error follows (6.7), we “estimate” Xj by

X̂j =
1

α1

(X∗j − α0) for j = t, . . . , t− p+ 1; (6.18)

if the measurement error follows (6.9), then X̂j is “estimated” by

X̂j =
X∗j
β0

for j = t, . . . , t− p+ 1. (6.19)
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These “estimates” are unbiased in the sense that E(X̂j) = Xj for j = t, . . . , t − p + 1.
Consequently, for h = 1, . . . , H, XT+h is predicted as

X̂T+h = φ0 + φ1X̂T+h−1 + · · ·+ φpX̂T+h−p. (6.20)

In contrast to the observed values {xT , . . . , xT−p+1}, also referred to as the initial val-
ues of the forecasting of XT+1, . . . , XT+H , the estimates determined by (6.18) or (6.19)
introduce additional prediction error which should be characterized. Without the loss of
generality, we consider p = 1 to illustrate the recursive calculation of the prediction error;
the prediction error with a higher order of autoregressive process can be derived recursively
in a similar way but with more complex expressions.

If the measurement error follows (6.7), the mean squared prediction error of the 1-step
prediction is given by

P(1)
e = E(X̂T+1 −XT+1)2

= E{(φ0 + φ1X̂T )− (φ0 + φ1XT + εT+1)}2

= E

{
φ1

(
Xt +

eT
α1

)
− φ1XT − εT+1

}2

=
φ2

1σ
2
e

α2
1

+ σ2
ε ,

where the last step is due to the independence between et and εt+1, as well as E(e2
t ) = σ2

e

and E(ε2t ) = σ2
ε .

Then, the h-step prediction error is given by

P(h)
e = E(X̂T+h −XT+h)

2

= E(φ0 + φ1X̂T+h−1 − φ0 − φ1XT+h−1 − εT+1)2

= E
{
φ1

(
X̂T+h−1 −XT+h−1

)
− εT+1

}2

= φ2
1P(h−1)

e + σ2
ε

=
φ2h

1 σ
2
e

α2
1

+
h−1∑
i=0

φ2i
1 σ

2
ε , (6.21)

where the last step comes from the recursive evaluation of P
(h−1)
e .
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Similarly, if the measurement error follows (6.9), the mean squared prediction error is
given by

P(1)
e = E(X̂T+1 −XT+1)2

= E({φ0 + φ1X̂T} − {φ0 + φ1XT + εT+1})2

= E {φ1Xt (uT − 1)− εT+1}2

= E {φ1Xt (uT − 1)}2 + E
(
ε2T+1

)
= φ2

1E
{
X2
T (uT − 1)2}+ E

(
ε2T+1

)
= φ2

1E
{
X2
T

}
E
(
u2
T − 2uT + 1

)
+ E

(
ε2T+1

)
= φ2

1{Var(XT ) + E2(XT )}{E
(
u2
T

)
− 2E(uT ) + 1}+ σ2

ε

= φ2
1{Var(XT ) + E2(XT )}{Var(uT ) + E2(uT )− 2E(uT ) + 1}+ σ2

ε

= φ2
1{Var(XT ) + E2(XT )}Var(uT ) + σ2

ε

= φ2
1

{
σ2
ε

1− φ2
1

+ µ2

}
σ2
u + σ2

ε ,

where the fourth step is due to the independence of εt+1, ut and Xt, the sixth step is due
to the independence of ut and Xt, the second last step is due to E(ut) = 1, and the last

step is because Var(Xt) = σ2
ε

1−φ2
1

due to the stationary AR(1) process. Hence,

P(h)
e = E(X̂T+h −XT+h)

2

= E{(φ0 + φ1X̂T+h−1)− (φ0 + φ1XT+h−1 + εT+1)}2

= E
{
φ1

(
X̂T+h−1 −XT+h−1

)
− εT+1

}2

= φ2
1P(h−1)

e + σ2
ε

= φ2h−2
1 P(1)

e +
h−2∑
i=0

φ2i
1 σ

2
ε

= φ2h
1

{
σ2
ε

1− φ2
1

+ µ2

}
σ2
u +

h−1∑
i=0

φ2i
1 σ

2
ε . (6.22)

The evaluation of the mean squared prediction error P
(h)
e is carried out by replacing the

parameters with their estimators. We comment that the common second term in (6.21) and
(6.22),

∑h−1
i=0 φ

2i
1 σ

2
ε , is the mean squared prediction error for the AR(1) model for error-free

settings (e.g. Box et al., 2015, Page 152), which equals
1−φ2h

1

1−φ2
1
σ2
ε .
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For an α with 0 < α < 1, then h-step (1− α)-prediction interval is constructed as[
X̂T+h − qα

2
P(h)

e , X̂T+h + qα
2
P(h)

e

]
,

where qα
2

the α-level quantile of the distribution of X̂T+h−XT+h. In practice, under normal
assumption of εt and et, one can take qα

2
to be the α-level quantile of the standard normal

distribution (Brockwell and Davis, 2002, Page 108).

6.4 Analysis of COVID-19 Death Rates

6.4.1 Study Objective

Using Canadian provincial COVID-19 data containing the daily confirmed cases and deaths
from April 3, 2020 to May 4, 2020, we compare the times series of death rates for
British Columbia, Ontario, Quebec, and Alberta, the four provinces in Canada which
experience severe situations. The daily confirmed cases and fatalities are taken from
“1Point3Acres.com” (https://coronavirus.1point3acres.com/).

In epidemiology, the mortality rate, defined as the proportion of cumulative deaths
of the disease in the total number of people diagnosed with the disease (Kanchan et al.,
2015), is often used to measure the severeness of an infectious disease. For COVID-19,
determining the mortality rate is not trivial due to the difficulty in precisely determining
the number of infected cases. Due to the limited test capacity, individuals with light
symptoms are not being tested. Asymptomatic infections and the incubation period make
it difficult to acquire an accurate number of infections. To circumvent this, we explore
different definitions of death rates. Definition 1 is from Baud et al. (2020) who estimated
mortality rates by dividing the number of deaths on a given day by the number of patients
with confirmed COVID-19 infection 14 days before, with the consideration of the maximum
incubation time to be 14 days. On the other hand, the median time from symptom onset
to intensive care unit admission is about 10 days ([3] in Baud et al., 2020), so we consider
Definition 2 which is the number of deaths of COVID-19 on day t divided by the number of
confirmed cases at day (t−10). In comparison, we also consider Definition 3 by calculating
the death rate on day t as the ratio of the number of deaths on day t to the number of
confirmed cases on the day t.

While the first two ways may help more reasonably estimate mortality rates than the
third definition, these calculated rates still differ from the true mortality rates because
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of under-reported cases which are primarily due to limited test capacity and undetected
asymptomatic infections. To reflect the discrepancy between the reported and the true
mortality rates for each province, for each definition of the mortality rate, we let X1,t, X2,t,
X3,t, and X4,t, represent the true mortality rate on day t for British Columbia, Ontario,
Quebec and Alberta, respectively; and let X∗1,t, X

∗
2,t, X

∗
3,t and X∗4,t denote the reported

mortality rate on day t in British Columbia, Ontario, Quebec and Alberta, respectively.
The objective is to use the reported mortality rates {X∗it : t = 1, . . . , 31} to infer the true
mortality rates Xi,t which are modeled by (6.1) separately for i = 1, . . . , 4. In addition,
we want to forecast the true mortality rate of COVID-19 for a future time period. Due to
the undetected asymptomatic cases and untested cases for light symptoms, the reported
mortality rates X∗i,t are typically overestimated (i.e., X∗i,t ≥ Xi,t) for i = 1, . . . , 4. As there is
no exact information to guide us how to characterize the relationship between X∗it and Xit,
here we conduct sensitivity studies by considering measurement error model (6.7) or (6.9).
We use the observed data X∗i,t from April 3, 2020 to May 4, 2020, i.e., {X∗i,t : t = 1, ..., Ti}
with T1 = T2 = 31, to estimate the model parameters in (6.1) with measurement error
effects accounted for, and then forecast the mortality rate of COVID-19, from May 5, 2020
to May 9, 2020, in British Columbia, Ontario, Quebec and Alberta, Canada.

6.4.2 Models Building

Figure 6.1 displays the trajectory of the mortality rates of COVID-19 in the four provinces
that are obtained from the three definitions. To assess the stationarity of the X∗it, we
conduct the augmented Dickey–Fuller (ADF) tests (Cheung and Lai, 1995) to times series
{X∗i,t : t = 1, . . . , T}, or its differencing transformation {X∗i,(t+1) − X∗i,t : t = 1, . . . , T} for
i = 1, . . . , 4 in each definition. Table 6.1 presents the test statistics and p-value of the ADF
test for each time series, where “TSV” represents a test statistics value.

To determine the lag value p for the autoregression model (6.1) used for the time series
{Xi,t : t = 1, ..., Ti} with T1 = T2 = 31 for i = 1, . . . , 4, we fit the naive model (6.13)
with ε∗t assumed to follow a normal distribution N(0, σ∗2ε ), and use the AIC criterion by
minimizing

− 2
T∑
t=p

log f(x∗t |x∗t−1, . . . , x
∗
t−p) + 2p, (6.23)

where f(x∗t |x∗t−1, . . . , x
∗
t−p) is the conditional probability of X∗t given X∗t−1, . . . , X

∗
t−p. The

results are summarized in Table 6.2, where no-differencing or 1-differencing is applied, the
entries with “-” indicate that the corresponding model is not applicable due to the ADF
test results.
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We take those lag values for an AR(p) model to feature the true mortality rate Xi,t

for each definition and i = 1, . . . , 4. To be specific, for the British Columbia data, with
Definition 1 we consider two models: AR(1) model for the time series with 1-order differ-
encing and AR(2) model for the time series with no-differencing; with Definitions 2 and 3,
we consider AR(2) and AR(1) models, respectively, for the time series with 1-order dif-
ferencing. For the Ontario data, we consider AR(1) and AR(4) for the time series with
1-order differencing in Definitions 1 and 3, respectively, and AR(2) for Definition 2 with
no transformation. For the Quebec data, we consider AR(1) and AR(2) models for the
times series with 1-order differencing in Definitions 1 and 2, respectively. For Alberta
data, we consider the AR(1) model for the times series with 1-order differencing for both
Definitions 1 and 2.

6.4.3 Sensitivity Analyses

As there are no additional data available for estimating the parameters for the model (6.7)
or (6.9), we conduct sensitivity analyses using the findings in the literature. Different
studies showed different estimates of the asymptomatic infection rates, changing from
17.9% to 78.3% (Kimball, 2020; Day, 2020). To accommodate the heterogeneity of different
studies, He et al. (2020) carried out a meta-analysis and obtained an estimate of the
asymptomatic infection rate to be 46%. If under-reported confirmed cases are only caused
from undetected asymptomatic cases, then Xt = (1− τA)X∗t , or equivalently,

X∗t =
1

1− τA
Xt, (6.24)

where τA represents the rate of asymptomatic infections.

Now we use (6.24) as a starting point to conduct sensitivity analyses. In the multi-
plicative model (6.9), we take β0ut = 1

1−τA
. With E(ut) = 1, we set β0 = 1

1−τA
by setting

τA = 46%, the value from the meta-analysis of He et al. (2020). To see different degrees
of error, we consider σ2

u to take a small value, say σ2
u1, and a large value, say, σ2

u2, which
is alternatively reflected by the change of the coefficient of variation, CV = σu

E(ut)
, of the

error term ut from σu1 × 100% to σu2 × 100%.

When using the additive model (6.7) to characterize the measurement error process,
motivated by (6.24), we set α0 = 0 and α1 = 1

1−46%
, and let σ2

e take a small value, say σ2
e1,

and a large value, say σ2
e2, to feature an increasing degree of measurement error. Due to

the constraints for the parameters discussed for (6.8) and (6.10), we set the values for σu1,
σu2, σe1, and σe2 case by case for each definition and for each province, which are recorded
in Table 6.3.
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The model-fitting results are reported in Tables 6.4–6.6 for the three definitions of
mortality rates, where the point estimates (EST), the associated standard errors (SE), and
the p-values for the model parameters are included. Table 6.4 shows that with Definition 1,
the estimates of φ0 in the absolute value from the proposed method are smaller than those
of naive method, while the estimates of φ1 produced from the proposed and naive methods
exhibit an opposite direction. As expected, the standard errors for the proposed method
are generally larger than those of the naive method. However, both methods find no
evidence to support that φ0 and φ1 are different from zero for the data of British Columbia
and Ontario, suggesting that the mortality rates of these two provinces remain statistically
unchanged. At the significance level 0.1, the naive method and the proposed method show
different evidence for the data of Quebec and Alberta. The naive method suggests a likely
downward trend with p-value 0.071 and 0.061 for testing of φ0 for Quebec and Alberta,
respectively. The proposed method, on the other hand, shows that φ0 is insignificant for
these two provinces.

Table 6.5 displays the results for Definition 2. For the British Columbia data, the
estimates of the three parameters φ1, φ2 and φ3 produced from the proposed method are
smaller than those yielded from the naive method, whereas the standard errors output
from the proposed method are larger than those from the naive method. However, at the
significance level 0.05, both methods find no evidence to show the significance of φ0, φ1 and
φ2, suggesting that the mortality rate of British Columbia remain unchanged with time.
Similar findings are revealed for the Alberta data except that the parameter estimates
output from the proposed method are larger than those produced from the naive method.
For the Ontario and Quebec data, the revealings from the two methods are quite different.
For Ontario, both methods show that φ0 is insignificant and φ1 is significant. The evidence
of φ2, however, depends on the nature of measurement error. On the contrary, the findings
for Quebec do not tend to show a definite direction, and they vary with the model form or
degree of the measurement error process.

Table 6.6 shows the results for Definition 3. For the British Columbia data, the es-
timates produced by the proposed method are smaller than those yielded from the naive
method. The standard errors output from the proposed method inflate as the degree of
measurement error increases. The naive and proposed methods reveal different evidence
for the significance of φ0 and φ1, and the degree of measurement error affects the findings
too. For the Ontario data, both methods uncover the same type of evidence for all the
parameters at the significance level 0.05, except for the case with the large error under the
multiplicative model.
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6.4.4 Forecasting

With the fitted model for each time series in Section 6.4.3, we forecast the true mortality
rate for the subsequent five days (May 5 – May 9) using the method described in Sec-
tion 6.3.2. Specifically, since the true mortality rates are not observable, we “estimate”
them using (6.18) and (6.19), respectively, for the measurement error models (6.7) and
(6.9), and then we forecast the values of Xi,32, Xi,33, Xi,34, Xi,35, and Xi,36 using (6.20).

To quantify the forecasting performance, we calculate P
(h)
e for h = 1, . . . , H for each

specified model of the mortality rates Xi,t, and we report the results, together with the

total
∑H

h=1 P
(h)
e in Tables 6.7–6.9, where H is set as 5. For h = 1, . . . , H, we report the

observed prediction error (XT+h − X̂T+h)
2, and the expected prediction error defined in

(6.21) and (6.22).

Forecasting results based on the three definitions of mortality rates are reported in
Figures 6.2–6.8 for the four provinces, where the prediction results after May 4 are marked
in blue and red for the measurement error models (6.7) and (6.9), respectively, together
with prediction areas marked in shaded parts, as well as the prediction results obtained
from the naive method by using (6.20) with naive estimates of φ (marked in dark yellow).
In comparison, we display the reported mortality rate (in black) from Apr 3, 2020 to May
9, 2020 as well as the adjusted mortality rates obtained from (6.24) (in green); in addition,
we report the fitted values using (6.17) in blue points. To compare the forecasting results
in the presence of different degrees of measurement error. We report the results derived
from a mild degree of measurement error in top subfigures and place those obtained from
a large degree of measurement error in bottom subfigures.

The results for British Columbia are presented in Figures 6.2–6.5. With Definition 1,
the methods with measurement error effects accommodated suggest that the mortality rate
in the past and its forecasting values are around 4%, whereas the results obtained from the
method without accounting for measurement error effects indicate that the mortality rates
over time are higher than 6%. With Definition 2, the methods with or without accounting
for measurement error effects reveal that the mortality rates over time are, respectively,
below 3.5% and above 5%. With Definition 3, the methods with or without accounting for
measurement error effects indicate that the mortality rates over time are around 3% and
above 4%, respectively.

The results for Ontario are presented in Figures 6.6–6.8. With Definition 1, the methods
with measurement error effects accommodated suggest that the mortality rate over time
is around 7% over time, while the reported mortality rate over time is about 12.5%. With
Definition 2, the methods with and without incorporating the feature of measurement error
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indicate the mortality rate in the past and its forecasting values are, respectively, below 6%
and around 10%. With Definition 3, the mortality rate increases over time substantially.
The methods with measurement error effects accommodated suggest that the mortality
rate increases from 2% to above 4% whereas the reported mortality rate shows that rate
increases from below 4% to above 8%.

The results for Quebec are presented in Figures 6.9–6.10. With Definition 1 the methods
with measurement error effects accommodated show that the mortality rate is around
6.5% over time, whereas the method without considering measurement error indicates the
mortality rate is over 10%. With Definition 2, the methods with or without addressing the
measurement error effects show that the mortality rates over time are, respectively, below
6% and above 7.5%.

The results for Alberta are presented in Figures 6.11–6.12. With Definition 1 the
methods with and without measurement error accommodated suggest that the mortality
rates are, respectively, around 2% and 4% over time. With Definition 2, the methods with
or without addressing the measurement error effects show that the historical mortality rate
and its predictions are, respectively, below 2% and above 2%.

6.4.5 Model Assessment

The specification of lag p for model (6.1) of the true mortality rates {Xi,t : t = 1, . . . , T}
is based on (6.23) which is derived from the reported mortality rates {X∗i,t : t = 1, . . . , T},
but not from {Xi,t : t = 1, . . . , T} itself. This discrepancy introduces the possibility of
model misspecification when featuring the series Xi,t using (6.1). To investigate this, we
conduct a sensitivity analysis by considering the AR(p) with a different value of p for the
Xi,t from Definition 1. As Table 6.2 indicates the feasibility of using AR(1) for all four
provinces, here we further employ the AR(2) model to do forecasting for the period from
May 5 to May 9.

In Table 6.10, we report the observed and expected prediction errors of the forecasting
using AR(2) models in comparison with AR(1) models. Comparing different lag orders
of the autoregressive models, we find that in terms of the observed prediction error, the
selected AR(1) models have better performance than the AR(2) models for the data of
Ontario and Alberta, and the results for British Columbia and Quebec are fairly similar.
It is noticed that both the observed prediction error and the expected prediction error as-
sociated with the proposed method tend to become small when the degree of measurement
error increases for British Columbia, Ontario, and Quebec.
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Table 6.1: The results of the augmented Dickey-Fuller test

British Columbia Ontario Quebec Alberta
Definition Transformation TSV p-value TSV p-value TSV p-value TSV p-value

Definition 1
Xt -8.346 <0.01 -1.527 0.755 -1.813 0.645 -2.850 0.245
Xt+1 −Xt -6.974 <0.01 -5.522 <0.01 -3.880 0.027 -3.516 0.059

Definition 2
Xt -1.208 0.878 -4.294 <0.01 -2.018 0.566 -1.768 0.662
Xt+1 −Xt -3.336 0.084 -2.599 0.342 -3.340 0.084 -3.296 0.090

Definition 3
Xt -1.325 0.833 -2.264 0.471 0.098 0.999 -2.688 0.307
Xt+1 −Xt -3.590 0.048 -4.584 <0.01 -2.209 0.492 -2.008 0.569

Table 6.2: The results of the augmented Dickey-Fuller test

British Columbia Ontario Quebec Alberta
Definition Differencing lag p Differencing lag p Differencing lag p Differencing lag p
Definition 1 1 degree 1 1 degree 1 1 degree 1 1 degree 1

no differencing 2 - - - - - -
Definition 2 1 degree 2 no differencing 2 1 degree 2 1 degree 1
Definition 3 1 degree 1 1 degree 4 - - - -
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Figure 6.1: The time series plots of the death rate with different definitions

Table 6.6: Definition 3: The parameter estimation under different measurement error
models: the AR(1) model with “order-1 differencing” is used to fit the data of British
Columbia and the AR(4) model with “order-1 differencing” is used to fit the data of
Ontario

British Columbia Ontario
Method Error Degree Parameter EST SE p-value EST SE p-value

Naive -

φ0 0.105 0.038 0.018 0.379 0.057 <0.001
φ1 -0.207 0.077 0.020 -0.086 0.099 0.391
φ2 - - - -0.287 0.106 0.012
φ3 - - - -0.301 0.094 0.004
φ4 - - - -0.284 0.078 0.001

Small (σ2
e1)

φ0 0.057 0.021 0.021 0.206 0.031 <0.001
φ1 -0.213 0.086 0.029 -0.088 0.100 0.383
φ2 - - - -0.290 0.109 0.014
φ3 - - - -0.303 0.094 0.003

The Proposed Method φ4 - - - -0.287 0.081 0.002
with Additive Error

Large (σ2
e2)

φ0 0.058 0.021 0.017 0.212 0.036 <0.001
φ1 -0.234 0.147 0.137 -0.102 0.123 0.417
φ2 - - - -0.306 0.139 0.037
φ3 - - - -0.318 0.107 0.006
φ4 - - - -0.308 0.093 0.003

Small (σ2
u1)

φ0 0.058 0.023 0.027 0.210 0.033 <0.001
φ1 -0.244 0.090 0.019 -0.097 0.107 0.375
φ2 - - - -0.300 0.117 0.016
φ3 - - - -0.312 0.098 0.004

The Proposed Method φ4 - - - -0.300 0.087 0.002
with Multiplicative Error

Large (σ2
u2)

φ0 0.066 0.035 0.087 0.230 0.058 0.001
φ1 -0.401 0.219 0.092 -0.139 0.183 0.454
φ2 - - - -0.347 0.213 0.116
φ3 - - - -0.354 0.159 0.035
φ4 - - - -0.361 0.149 0.023
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Chapter 7

Summary and Discussion

In this thesis, we investigate several important research problems concerning correlated
responses with measurement error or misclassification. The results in this thesis have been
or will be prepared as papers for dissemination. The research in Chapter 2 has been pre-
pared as a paper, Zhang and Yi (2020b), and has been accepted by Statistics in Medicine;
the results in Chapter 3 have been written up as a paper, Zhang and Yi (2020c), which
has been invited by Statistical Methods in Medical Research for revision; the results in
Chapter 4 have been included in the paper, Zhang and Yi (2020a), which has been sub-
mitted for publication; the results in Chapter 5 are being prepared as the paper, Zhang
and Yi (2020e), which is to be submitted for publication soon; the results in Chapter 6
have already been wrapped up as the paper, Zhang and Yi (2020d), and submitted for
publication. Below we present a summary for each chapter with discussions.

Chapter 2

When jointly modeling the mixed type of continuous and binary responses, we often en-
counter responses that are subject to measurement error and misclassification. To remove
the bias resulting from the mismeasurement, it is necessary to address both measure-
ment error and misclassification simultaneously. In this chapter, we develop two inference
approaches to account for the effects due to mismeasurement in responses under latent
variable models. The induced likelihood method can be easily implemented by R function
optim() and the EM algorithm has the advantage of dealing with associated integrals by
employing a complete likelihood formulation.

Although measurement error and misclassification is an inevitable issue in practice, such
features are often ignored in genetic association studies. Even in the statistical literature,
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available work mainly focuses on a single type of mismeasurement in responses, either
measurement error or misclassification but not both. In this chapter, we propose two valid
methods to account for measurement error and misclassification in mixed continuous and
discrete responses. Our methods can be applied to handle error-contaminated data arising
from genomewide-association studies for which mixed responses with a continuous variable
and a binary variable may be subjected to mismeasurement.

Our development is carried out for the generalized linear mixed model (2.1) where a
common random effect ui is introduced to feature the mean structure of the two response
components. More generally, one may use different random effects, say ui1 and ui2, to
describe the mean structure of Yi1 and Yi2, respectively. That is, we write model (2.1) as[

g1(µi1)
g2(µi2)

]
=

[
XT
i β1

XT
i β2

]
+

[
ui1
ui2

]
, (7.1)

where ui1 and ui2 are random effects, and other symbols are defined in the same way as for
(2.1). Then we set the random effects vector u to be {(ui1, ui2) : i = 1, . . . , n} and modify
the development accordingly.

Finally, in the development here, random effects u are assumed to have the covariance
structure σ2

gR with a pre-specified matrix R and an unknown σ2
g . Letting R be pre-specified

allows us to incorporate a priori information of the study. In circumstances where R is
impossible to be feasibly prespecified, we write the covariance matrix of random effects
to be a single matrix, say R̃, which may contain multiple parameters rather than a single
parameter σ2

g considered here. Then we carry out the inferential procedures similar to
the development here by replacing σ2

g in the parameter vector θ in Section 2.2.1 with the

parameters in R̃.

Chapter 3

Error-contaminated mixed responses with a continuous and a binary variable present
a new challenge in joint modeling and analysis of multiple responses. In this chapter, we
develop a generalized estimating equation approach to incorporate the dependence among
responses and develop an insertion strategy to adjust for the effects of mismeasurement in
responses. We propose valid estimators that apply when either internal validation data or
external validation data are available. Our methods are robust to model misspecification
and produce small finite sample biases. We develop a weighted estimator to improve the
efficiency of parameter estimation in the presence of internal validation data.

The generalized estimation equation is robust to model misspecification at the price of
the efficiency loss. To overcome this disadvantage, in addition to the weighted estimators
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proposed in Section 3.3.3, other strategies may also be considered. For example, Hall and
Severini (1998) proposed the extended generalized estimating equation (EGEE) based on
the idea of extended Quasi-Likelihood. The EGEE has better efficiency than the original
GEE approach (Prentice and Zhao, 1991) in some scenarios. The EGEE approach can be
easily adapted in our method with minor modifications in the estimation part.

Measurement error and misclassification are inevitable in many cases. In this chapter,
we propose several methods to address response mismeasurement in different types of study
designs. We have shown that under certain regularity conditions, the proposed estimators
are asymptotically normal and consistent. The methods are fast to implement and can
apply for various settings.

Chapter 4

Identifying interactions among genetic variants is important in the analysis of gene
networks. In this chapter, we develop a generalized network model to facilitate the rela-
tionship between genetic variants with a complex structure and the mixed responses via a
two-step procedure. We further extend the development to handle data with measurement
error and misclassification in responses. Theoretical justifications are provided to ensure
the validity of the proposed method, and numerical studies demonstrate satisfactory finite
sample performance of the proposed method.

In the development here, we consider continuous covariates that are featured by the
Gaussian graphical model. It is interesting to generalize our method to accommodate
discrete covariates or mixed covariates with both discrete and continuous components.

Our methods focus on addressing the effects due to mismeasurement in mixed bivari-
ate responses, where covariates are assumed to be precisely measured. It is interesting
to extend our work here to handle data which contain error-contaminated covariates, in
addition to having mismeasured responses. In such a circumstance, adjusting the effects of
measurement error in covariates is necessary for the first step for identifying the network
structure for the true covariates. This research warrants exploration in depth.

Chapter 5

Zero-inflated Poisson models are useful in cancer genomics studies, which are, how-
ever, challenged by the presence of measurement error. While this problem is important,
not much work has been available. We provide a general strategy in dealing with error-
contaminated count data and proposed a flexible modeling scheme for measurement error
in count data. We introduce a mixture model to facilitate an add-in process and a leave-
out process for characterizing different types of measurement error associated count data.
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We explore the effects of different measurement error models on the analysis. Numerical
studies demonstrate satisfactory performance of the proposed method.

The development in this chapter can be modified to address the measurement error of
count data in other models. For example, besides the zero-inflated model, the hurdle model
(Mullahy, 1986) is also frequently used to account for excessive zeros in count data. Our
Bayesian method can be adapted to suit the hurdle model. Sometimes, it is interesting to
consider the overdispersion in count data. Our method can be further extended to deal
with zero-inflated Negative Binomial models (Yau et al., 2003).

Chapter 6

We investigate the impact of measurement error on time series analysis under autore-
gressive models and establish analytic results under the additive and multiplicative mea-
surement error models. We propose an estimating equation method to correct for the biases
induced from the naive analysis which disregards the differences between the true measure-
ments and their surrogate measurements. We rigorously establish the theoretical results
for the proposed method. As a genuine application, we apply to the proposed method to
analyze the mortality rates of COVID-19 data in four provinces, British Columbia, Ontario,
Quebec, and Alberta, which have the most severe virus outbreaks in Canada. The real
data analysis clearly demonstrates that incorporating measurement error in the analysis
can uncover various different results.

Our method has the flexibility or robustness in that distribution assumptions are re-
quired to describe the measurement error process as well as the time series autoregressive
process. While our research is motivated by the faulty nature of COVID-19 data, the
proposed method can be applied to handle other problems related to error-contaminated
time series. Our development here is directed to using autoregressive models to delineate
time series data. The same principles can be applied to other model forms such as moving
average models or autoregressive moving average models which may be used to handle
error-prone time series data, where technical details can be more notationally involved.

When checking the stationarity of time series, we apply the ADF test to the observed
time series X∗t , which is mainly driven by the unavailability of the true values of Xt, as
well as the fact that the weakly stationarity of observed time series implies the weakly
stationarity of the true time series if measurement error is featured with (6.7) or (6.9). It
is interesting to rigorously develop a formal test similar to the ADF test to handle time
series subject to measurement error.
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APPENDICES

In this part, we include supplementary materials associated with Chapters 2–6, including
regularity conditions, the proofs of the theoretical results, and additional calculations or
discussions.
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Appendix A

Supplement Materials for Chapter 2

A.1 Identifiability Issue

Model (2.8) may incur identifiability issues in some circumstances. For example, consider
that g1(x) = x for (2.1) and ei follows a normal distribution for (2.8). Then, the first
component of (2.1) is equivalent to

Yi1 = β10 + βT
11Xi + εi, (A.1)

where β10 is the first element of β1 in (2.1) and βT
11 is the remaining vector, and εi is

independent of Xi and follows normal distribution with zero mean and variance σ2.

Plugging (A.1) into the additive measurement error model (2.8) gives

Y ∗i1 = β∗0 + β∗T1 Xi + γ2f(Yi2) + γ3Zi + e∗i ,

where e∗i = ei + εi is independent of {Xi, Yi2, Zi} and follows N(0, σ2 + σ2
e), and

β∗0 = γ0 + γ1β10; β∗T1 = γ1β
T
1 . (A.2)

(A.2) shows that based on the observed data, we are not able to separate γ0 from γ1β10,
γ1 from β1, and σ2 from σ2

e .

To overcome model nonidentifiability, we may add extra constraints on each group of
parameters as commented by Yi (2017, Page 52). For example, we may specify γ0 = −1

2
γ2,

γ1 = 1 and σ2 = σ2
e , which is equivalent to specifying f(t) = 2t − 1, γ0 = 0, γ1 = 1 and

σ2 = σ2
e .
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A.2 Gaussian Quadrature Approximation of the Ex-

pectation

In this section, we illustrate how to approximate

Eui,Yi1,Yi2{g(Y ∗i1, Y
∗
i2, Yi1, Yi2, ui; θ)}, (A.3)

using Gaussian-Hermite Quadrature.

Define the notation

Ly2(yi1, ui, yi1∗ , yi2∗) =

∫
yi2

g(y∗i1, y
∗
i2, yi1, yi2, ui; θ)f(yi2|ui, xi) dyi2,

Ly1(ui, yi1∗ , yi2∗) =

∫
yi1

Ly2(yi1, ui, yi1∗ , yi2∗)f(yi1|ui, xi) dyi1,

Lu(yi1∗ , yi2∗) =

∫
ui

Ly1(ui, yi1∗ , yi2∗)f(ui|xi) dui.

Since Yi2 is a binary variable following Bernoulli distribution, we can compute the exact
expectation,

Ly2(yi1, ui, yi1∗ , yi2∗) = g(y∗i1, y
∗
i2, yi1, yi2 = 1, ui; θ)f(yi2 = 1|ui)

+g(y∗i1, y
∗
i2, yi1, yi2 = 0, ui; θ)f(yi2 = 0|ui).

Consider the case where R is an diagonal matrix, using Gaussian Quadrature, we can
approximate

Ly1(ui, yi1∗ , yi2∗) ≈
1√
π

S(y)∑
j=1

w
(y)
j Ly2(yi1 =

√
2σv

(y)
j + βT

1 xi + ui, ui, y
∗
i1, y

∗
i2),

Lu(yi1∗ , yi2∗) ≈
1√
π

S(u)∑
j=1

w
(u)
j Ly1(ui =

√
2Riiσgv

(u)
j , yi1∗ , yi2∗).

where v
(y)
j , v

(u)
j are the roots of the Hermite polynomialHn(x) for j = 1, 2, ..., n (Abramowitz

and Stegun, 1972, Page 890), and w
(y)
j , w

(u)
j are the associated weights given by

w
(y)
j =

2n−1n!
√
π

n2[Hn−1(v
(y)
i )]2

and w
(u)
j =

2n−1n!
√
π

n2[Hn−1(v
(u)
i )]2

.
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Based on the derivation above, the expectation (A.3) can be approximated as

1

π

S(u)∑
j=1

S(y)∑
k=1

w
(u)
j w

(y)
k {g(y∗i1, y

∗
i2, yi1, yi2 = 1, ui; θ)f(yi2 = 1|ui)

+g(y∗i1, y
∗
i2, yi1, yi2 = 0, ui; θ)f(yi2 = 0|ui)}

∣∣∣∣∣yi1=
√

2σv
(y)
k +βT

1 xi+ui,

ui=
√

2Riiσgv
(u)
j

.
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Appendix B

Proofs of the Results in Chapter 3

B.1 Proof of E{U ∗∗i (θ)|Yi1, Yi2, Xi} = Ui(θ)

Step 1: First, we show that

E(Y ∗∗i2 |Yi1, Yi2, Xi) = Yi2. (B.1)

Indeed, by the definition of Y ∗∗i2 ,

E(Y ∗∗i2 |Yi1, Yi2 = j,Xi) = E

(
Y ∗i2 − πi0

1− πi0 − πi1

∣∣∣Yi1, Yi2 = j,Xi

)
=
E(Y ∗i2|Yi1, Yi2 = j,Xi)− πi0

1− πi0 − πi1

=

{
1×πi0+0×(1−πi0)−πi0

1−πi0−πi1 , if j = 0
0×πi1+1×(1−πi1)−πi0

1−πi0−πi1 , if j = 1

=

{
0, if j = 0

1, if j = 1

= j.

Thus, (B.1) holds.

Step 2: Next, we show that

E(Y ∗∗i1 |Yi1, Yi2, Xi) = Yi1. (B.2)
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By the definition of Y ∗∗i1 , we obtain that

E(Y ∗∗i1 |Yi1, Yi2, Xi) = E

(
Y ∗i1 − γ0 − γ2Y

∗∗
i2 − γT

3 Xi

γ1

∣∣∣Yi1, Yi2, Xi

)
= E

(
Y ∗i1 − γ0 − γT

3 Xi

γ1

∣∣∣Yi1, Yi2, Xi

)
− E

(
γ2

γ1

Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

)
=

1

γ1

E (Y ∗i1|Yi1, Yi2, Xi)−
γ0

γ1

− γ2

γ1

Yi2 −
γT

3 Xi

γ1

= Yi1,

where the third step is due to (B.1), and the last step comes from measurement error model
(3.9) together with E(ei|Yi1, Yi2, Xi) = 0.

Step 3: Since ei in (3.9) is independent of Yi1, Yi2 and Y ∗∗i2 , we have that

E (Yi1ei|Yi1, Yi2, Xi) = 0 (B.3)

and
E {ei(Yi2 − Y ∗∗i2 )|Yi1, Yi2, Xi} = 0. (B.4)

Now we prove that

E (∆i|Yi1, Yi2, Xi) = E
{

(Yi2 − Y ∗∗i2 )2|Yi1, Yi2, Xi

}
. (B.5)

Indeed, by the definition of ∆i,

E(∆i|Yi1, Yi1, Yi2 = j,Xi) = E

(
∆

1−Y ∗i2
i0 ∆

Y ∗i2
i1 −∆i0πi1 −∆i1πi0
1− πi1 − πi0

∣∣∣∣∣Yi1, Yi2 = j,Xi

)

=

πi0
(

∆i1−∆i0πi1−∆i1πi0
1−πi1−πi0

)
+ (1− πi0)

(
∆i0−∆i0πi1−∆i1πi0

1−πi1−πi0

)
, if j = 0

(1− πi1)
(

∆i1−∆i0πi1−∆i1πi0
1−πi1−πi0

)
+ πi1

(
∆i0−∆i0πi1−∆i1πi0

1−πi1−πi0

)
, if j = 1

=

{
∆i0, if j = 0

∆i1, if j = 1

= ∆ij.
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On the other hand,

E
{

(Yi2 − Y ∗∗i2 )2 |Yi1, Yi2 = j,Xi

}
= E

{(
Yi2 −

Y ∗i2 − πi0
1− πi0 − πi1

)2 ∣∣∣∣Yi1, Yi2 = j,Xi

}

=

πi0
(
− 1−πi0

1−πi0−πi1

)2

+ (1− πi0)
(

πi0
1−πi0−πi1

)2

, if j = 0

(1− πi1)
(

1− 1−πi0
1−πi0−πi1

)2

+ πi1

(
1 + πi0

1−πi0−πi1

)2

, if j = 1

=

{
∆i0, if j = 0

∆i1, if j = 1

= ∆ij.

Hence, (B.5) is proved.

Step 4: We show that

E(Y ∗∗i11|Yi1, Yi2, Xi) = Y 2
i1. (B.6)

By the definition of Y ∗∗i11,

E(Y ∗∗i11|Yi1, Yi2, Xi) =E

(
Y ∗∗i1

2 − σ2
e

γ2
1

− γ2
2

γ2
1

∆i

∣∣∣Yi1, Yi2, Xi

)
=E

[{
γ1Yi1 + ei + γ2(Yi2 − Y ∗∗i2 )

γ1

}2

− σ2
e

γ2
1

− γ2
2

γ2
1

∆i

∣∣∣Yi1, Yi2, Xi

]

=E

{
Y 2
i1 +

γ2
2

γ2
1

(Yi2 − Y ∗∗i2 )2 − γ2
2

γ2
1

∆i

+
2Yi1ei
γ1

+
2γ2ei(Yi2 − Y ∗∗i2 )

γ2
1

+
2γ2Yi1(Yi2 − Y ∗∗i2 )

γ1

∣∣∣Yi1, Yi2, Xi

}
=Y 2

i1 +
γ2

2

γ2
1

E
{

(Yi2 − Y ∗∗i2 )2 −∆i

∣∣∣Yi1, Yi2, Xi

}
=Y 2

i1,

where the second step comes from the definition of Y ∗∗i1 and the model (3.9), the fourth
step comes from (B.3), (B.4) and E {Yi1(Yi2 − Y ∗∗i2 )|Yi1, Yi2, Xi} = 0 which is due to (B.1),
and the last step is due to (B.5).
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Step 5: We show that
E(Y ∗∗i12|Yi1, Yi2, Xi) = Yi1Yi2. (B.7)

Similarly, by definition, we obtain that

E(Y ∗∗i12|Yi1, Yi2, Xi)

=E

(
Y ∗∗i1 Y

∗∗
i2 +

γ2

γ1

∆i

∣∣∣Yi1, Yi2, Xi

)
=E

(
Y ∗i1 − γ0 − γ2Y

∗∗
i2 − γT

3 Xi

γ1

Y ∗∗i2 +
γ2

γ1

∆i

∣∣∣Yi1, Yi2, Xi

)
=E

{
Y ∗i1 − γ0 − γ2Yi2 − γT

3 Xi + γ2(Yi2 − Y ∗∗i2 )

γ1

Y ∗∗i2 +
γ2

γ1

∆i

∣∣∣Yi1, Yi2, Xi

}
=E

(
Y ∗i1 − γ0 − γ2Yi2 − γT

3 Xi

γ1

Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

)
+
γ2

γ1

E
{

(Yi2 − Y ∗∗i2 )Y ∗∗i2 + ∆i

∣∣∣Yi1, Yi2, Xi

}
=E

(
Y ∗i1 − γ0 − γ2Yi2 − γT

3 Xi

γ1

∣∣∣Yi1, Yi2, Xi

)
E
(
Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

)
+
γ2

γ1

E
{

(Yi2 − Y ∗∗i2 )Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

}
+
γ2

γ1

E
(

∆i

∣∣∣Yi1, Yi2, Xi

)
=E

(
Yi1 +

ei
γ1

∣∣∣Yi1, Yi2, Xi

)
Yi2 +

γ2

γ1

E
{

(Yi2 − Y ∗∗i2 )Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

}
+
γ2

γ1

E
(

∆i

∣∣∣Yi1, Yi2, Xi

)
=Yi1Yi2 +

γ2

γ1

E
{

(Yi2 − Y ∗∗i2 )Y ∗∗i2

∣∣∣Yi1, Yi2, Xi

}
+
γ2

γ1

E
(

∆i

∣∣∣Yi1, Yi2, Xi

)
, (B.8)

where the fifth step is due to the conditional independence assumption for Y ∗i1 and Y ∗i2
given by (2.4), and the sixth step comes from (3.9) and (B.1), and last step comes from
E(ei|Yi1, Yi2, Xi) = 0.

By (B.5), we obtain that

E(∆i|Yi1, Yi2, Xi) = E
{

(Yi2 − Y ∗∗i2 )2|Yi1, Yi2, Xi

}
=E {(Yi2 − Y ∗∗i2 )Yi2|Yi1, Yi2, Xi} − E {(Yi2 − Y ∗∗i2 )Y ∗∗i2 |Yi1, Yi2, Xi}
=− E {(Yi2 − Y ∗∗i2 )Y ∗∗i2 |Yi1, Yi2, Xi} ,

where the last step is due to (B.1). Consequently, (B.8) gives (B.7).

Step 6: In (3.10) we replace Yi1, Y 2
i1 and Yi1Yi2, respectively, with Y ∗∗i1 , Y ∗∗i11, and Y ∗∗i12, and
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then we obtain U∗∗i (θ) = (U∗∗Ti1 (θ), U∗∗Ti2 (θ))T where

U∗∗i1 (θ) = DT
1iV

−1
i1

(
Y ∗∗i1 − µi1
Y ∗∗i2 − µi2

)
,

U∗∗i2 (θ) = DT
2iV

−1
i2

 Y ∗∗i11 − 2µi1Y
∗∗
i1 + µ2

i1 − ξi1
Y ∗∗i12 − Y ∗∗i1 µi2 − Y ∗∗i2 µi1 + µi1µi2 − ξi2

Y ∗∗i2 − 2µi2Y
∗∗
i2 + µ2

i2 − ξi3

 .

Then applying (B.1), (B.2), (B.6), and (B.7) gives that

E{U∗∗i (θ)|Yi1, Yi2, Xi} = Ui(θ).

B.2 The Consistency and Normality of the Proposed

Estimator with External Validation Data

Assume that subjects are randomly assigned to the validation or nonvalidation sample.
Let δi = I(i ∈ V), where I(·) is the indicator function. Define Hi1(θ, η) = (1− δi)U∗∗i1 (θ, η),
Hi2(θ, η) = (1−δi)U∗∗i2 (θ, η), Hi3(η) = δiSi(η), andHi(θ, η) = {HT

i1(θ, η), HT
i2(θ, η), HT

i3(η)}T.
Then, (3.13) is equivalent to

U (E)(θ, η) =
∑

i∈M
⋃
V

Hi(θ, η).

Since Hi(θ, η) is an unbiased estimating function, i.e., E {Hi(θ, η)} = 0, then by esti-
mating function theory (Godambe, 1991; Newey and McFadden, 1994; Heyde, 1997, Ch.12)
we conclude that under regularity conditions, solving

∑
i∈M

⋃
V Hi(θ, η) = 0 gives a consis-

tent estimator, (θ̂T
E, η̂

T
E)T, of (θT, ηT)T.

Applying the Taylor series expansion to
∑

i∈M
⋃
V Hi(θ̂E, η̂E) = 0, we obtain∑

i∈M
⋃
V

Hi(θ, η) +
∑

i∈M
⋃
V

(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

){(
θ̂E
η̂E

)
−
(
θ
η

)}
+ op(1) = 0,

which leads to√
1 +

m

n

− 1

n+m

∑
i∈M

⋃
V

(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

)√n
{(

θ̂E
η̂E

)
−
(
θ
η

)}
=

1√
n+m

∑
i∈M

⋃
V

Hi(θ, η) + op(1). (B.9)
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Let

ΓE = lim
n→∞

− 1

n+m

∑
i∈M

⋃
V

E
(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

)
and

ΣE = lim
n→∞

Var

 1√
n+m

∑
i∈M

⋃
V

Hi(θ, η)

 .

Then applying the central limit theorem to (B.9) gives that

√
n
{

(θ̂T
E, η̂

T
E)T − (θT, ηT)T

}
d−−−→ N

(
0,

1

1 + ρ
Γ−1
E ΣE(Γ−1

E )T

)
as n −→∞.

Now it remains to show that ΓE and ΣE are identical to (3.14). By the definitions of
Hi(θ, η), we derive that

ΓE = lim
n→∞

−
1

n+m
E


∑
i∈M

∂U∗∗i1 (θ,η)

∂θT

∑
i∈M

∂U∗∗i1 (θ,η)

∂ηT∑
i∈M

∂U∗∗i2 (θ,η)

∂θT

∑
i∈M

∂U∗∗i2 (θ,η)

∂ηT

0 0

− 1

n+m
E

0 0
0 0

0
∑

i∈V
∂Si(η)
∂ηT




= lim
n→∞

− n

n+m
E


∂U∗∗i1 (θ,η)

∂θT

∂U∗∗i1 (θ,η)

∂ηT

∂U∗∗i2 (θ,η)

∂θT

∂U∗∗i2 (θ,η)

∂ηT

0 0

− m

n+m
E

0 0
0 0

0 ∂Si
∂ηT




=− 1

1 + ρ


E
(
∂U∗∗i1 (θ,η)

∂θT

)
E
(
∂U∗∗i1 (θ,η)

∂ηT

)
E
(
∂U∗∗i2 (θ,η)

∂θT

)
E
(
∂U∗∗i2 (θ,η)

∂ηT

)
0 0

− ρ

1 + ρ

0 0
0 0

0 E
(
∂Si(η)
∂ηT

)
 .
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Similarly, we have that

ΣE = lim
n→∞

1

n+m

∑
i∈M

⋃
V

Var{Hi(θ, η)}

= lim
n→∞

1

n+m

∑
i∈M

⋃
V

E{Hi(θ, η)HT
i (θ, η)}

= lim
n→∞

1

n+m

∑
i∈M

⋃
V

E

(1− δi)2U∗∗i1 (θ, η)U∗∗Ti1 (θ, η) (1− δi)2U∗∗i1 (θ, η)U∗∗Ti2 (θ, η) 0
(1− δi)2U∗∗i2 (θ, η)U∗∗Ti1 (θ, η) (1− δi)2U∗∗i2 (θ, η)U∗∗Ti2 (θ, η) 0

0 0 δ2i Si(η)ST
i (η)


= lim
n→∞

n

n+m

1

n

∑
i∈M

E{U∗∗i1 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i1 (θ, η)U∗∗Ti2 (θ, η)} 0
E{U∗∗i2 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i2 (θ, η)U∗∗Ti2 (θ, η)} 0

0 0 0


+ lim
n→∞

m

n+m

1

m

∑
i∈V

0 0 0
0 0 0
0 0 E{Si(η)ST

i (η)}


=

1

1 + ρ

E{U∗∗i1 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i1 (θ, η)U∗∗Ti2 (θ, η)} 0
E{U∗∗i2 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i2 (θ, η)U∗∗Ti2 (θ, η)} 0

0 0 0

+
ρ

1 + ρ

0 0 0
0 0 0
0 0 E{Si(η)ST

i (η)}

 ,

where the third step is due to (1− δi)2 = (1− δi) and δ2
i = δi.

B.3 The Consistency and Normality of the Proposed

Estimator with Internal Validation Data

Similar to Section B.2, we assume that subjects are randomly assigned to the validation or
nonvalidation sample. We define Hi1(θ, η) = (1− δi)U∗∗i1 (θ, η)+ δiUi1(θ, η), Hi2(θ, η) = (1−
δi)U

∗∗
i2 (θ, η) + δiUi2(θ, η), Hi3(θ, η) = δiSi(η), and Hi(θ, η) = {HT

i1(θ, η), HT
i2(θ, η), HT

i3(η)}T.
Then, (3.15) is equivalent to

U (I)(θ, η) =
∑
i∈M

Hi(θ, η).

Similar to Section B.2, we conclude that under regularity conditions, solving
∑
i∈M

Hi(θ, η) =

0 gives a consistent estimator, (θ̂T
I , η̂

T
I )T, of (θT, ηT)T.

Applying the Taylor series expansion to
∑

i∈MHi(θ̂
T
I , η̂

T
I ) = 0, we obtain∑

i∈M

Hi(θ, η) +
∑
i∈M

(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

){(
θ̂I
η̂I

)
−
(
θ
η

)}
+ op(1) = 0,
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which leads to{
− 1

n

∑
i∈M

(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

)}√
n

{(
θ̂I
η̂I

)
−
(
θ
η

)}
=

1√
n

∑
i∈M

Hi(θ, η) + op(1). (B.10)

Let

ΓI = lim
n→∞

{
− 1

n

∑
i∈M

E
(
∂Hi(θ,η)
∂θT

∂Hi(θ,η)
∂ηT

)}
and

ΣI = lim
n→∞

Var

(
1√
n

∑
i∈M

Hi(θ, η)

)
.

Then applying the central limit theorem to (B.10) gives that

√
n
{

(θ̂T
I , η̂

T
I )T − (θT, ηT)T

}
d−−−→ N

(
0,Γ−1

I ΣI(Γ
−1
I )T

)
as n −→∞.

Now it remains to show that ΓI and ΣI are identical to (3.17). By definition of Hi(θ, η),
ΓI equals

lim
n→∞

−
1

n
E


∑

i∈M\V

∂U∗∗i1 (θ,η)

∂θT

∑
i∈M\V

∂U∗∗i1 (θ,η)

∂ηT∑
i∈M\V

∂U∗∗i2 (θ,η)

∂θT

∑
i∈M\V

∂U∗∗i2 (θ,η)

∂ηT

0 0

− 1

n
E


∑
i∈V

∂Ui1(θ,η)
∂θT 0∑

i∈V

∂Ui2(θ,η)
∂θT 0

0
∑

i∈V
∂Si(η)
∂ηT




= lim
n→∞

−n−mn E


∂U∗∗i1 (θ,η)

∂θT

∂U∗∗i1 (θ,η)

∂ηT

∂U∗∗i2 (θ,η)

∂θT

∂U∗∗i2 (θ,η)

∂ηT

0 0

− m

n
E


∂Ui1(θ,η)
∂θT 0

∂Ui2(θ,η)
∂θT 0

0 ∂Si(η)
∂ηT




=− (1− ρ)


E
(
∂U∗∗i1 (θ,η)

∂θT

)
E
(
∂U∗∗i1 (θ,η)

∂ηT

)
E
(
∂U∗∗i2 (θ,η)

∂θT

)
E
(
∂U∗∗i2 (θ,η)

∂θT

)
0 0

− ρ

E
(
∂Ui1(θ,η)
∂θT

)
0

E
(
∂Ui2(θ,η)
∂θT

)
0

0 E
(
∂Si(η)
∂ηT

)
 .

187



Similarly, we have that

ΣI = lim
n→∞

1

n

∑
i∈M

Var {Hi(θ, η)}

= lim
n→∞

1

n

∑
i∈M

E{Hi(θ, η)HT
i (θ, η)}

= lim
n→∞

1

n

∑
i∈M

E

(1− δi)2U∗∗i1 (θ, η)U∗∗Ti1 (θ, η) (1− δi)2U∗∗i1 (θ, η)U∗∗Ti2 (θ, η) 0
(1− δi)2U∗∗i2 (θ, η)U∗∗Ti1 (θ, η) (1− δi)2U∗∗i2 (θ, η)U∗∗Ti2 (θ, η) 0

0 0 0


+ lim
n→∞

1

n

∑
i∈M

E

δ2
i Ui1(θ, η)UT

i1(θ, η) δ2
i Ui1(θ, η)UT

i2(θ, η) δ2
i Ui1(θ, η)ST

i (η)
δ2
i Ui2(θ, η)UT

i1(θ, η) δ2
i Ui1(θ, η)UT

i1(θ, η) δ2
i Ui1(θ, η)ST

i (η)
δ2
i Ui1(θ, η)ST

i (η) δ2
i Ui2(θ, η)ST

i (η) δ2
i Si(η)ST

i (η)


= lim
n→∞

n−m
n

1

n−m
∑

i∈M\V

E{U∗∗i1 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i1 (θ, η)U∗∗Ti2 (θ, η)} 0
E{U∗∗i2 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i2 (θ, η)U∗∗Ti2 (θ, η)} 0

0 0 0


+ lim
n→∞

m

n

1

m

∑
i∈V

E{Ui1(θ, η)UT
i1(θ, η)} E{Ui1(θ, η)UT

i2(θ, η)} E{Ui1(θ, η)ST
i (θ, η)}

E{Ui2(θ, η)UT
i1(θ, η)} E{Ui1(θ, η)UT

i1(θ, η)} E{Ui1(θ, η)ST
i (θ, η)}

E{Ui1(θ, η)ST
i (θ, η)} E{Ui2(θ, η)ST

i (θ, η)} E{Si(θ, η)ST
i (θ, η)}


=(1− ρ)

E{U∗∗i1 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i1 (θ, η)U∗∗Ti2 (θ, η)} 0
E{U∗∗i2 (θ, η)U∗∗Ti1 (θ, η)} E{U∗∗i2 (θ, η)U∗∗Ti2 (θ, η)} 0

0 0 0


+ ρ

E{Ui1(θ, η)UT
i1(θ, η)} E{Ui1(θ, η)UT

i2(θ, η)} E{Ui1(θ, η)ST
i (η)}

E(Ui2(θ, η)UT
i1(θ, η)} E(Ui1(θ, η)UT

i1(θ, η)} E{Ui1(θ, η)ST
i (η)}

E{Ui1(θ, η)ST
i (η)} E{Ui2(θ, η)ST

i (η)} E{Si(η)ST
i (η)}

 ,

where the third step is due to δi(1−δi) = 0 and the fourth step comes from (1−δi)2 = (1−δi)
and δ2

i = δi.
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B.4 Determination the values of V̂ar(θ̂
(1)
Ir ), V̂ar(θ̂

(0)
Ir ) and

Ĉov(θ̂
(0)
Ir , θ̂

(1)
Ir )

To study the covariance between θ̂
(0)
Ir and θ̂

(1)
Ir , we jointly combine the estimating procedure

by stacking the estimating functions from validation data and nonvalidation data. However,
this procedure makes the resulting dimension of estimating functions be greater than the
dimension of parameter θ. To overcome this problem, following the spirit of (Shu and Yi,
2017) , we enlarge the original parameter space by using different symbols, say, θ(0) and

θ(1), respectively, to represent the parameter θ in the estimating function of θ̂
(0)
I and θ̂

(1)
I ,

where the true value of θ(0) and θ(1) are identical to that of θ. Specifically, consider the
estimating functions

Ψi(θ
(0)T, ηT, θ(1)T) =


I(i ∈ V) · Ui1(θ(0), η)
I(i ∈ V) · Ui2(θ(0), η)
I(i ∈ V) · Si(η)

I(i ∈M\V) · U∗∗i1 (θ(1), η)
I(i ∈M\V) · U∗∗i2 (θ(1), η)

 . (B.11)

Solving the estimating function
∑n

i=1 Ψi(θ
(0)T, ηT, θ(1)T) = 0, we obtain an estimator,

(θ̂(0)T, η̂T, θ̂(1)T)T, of (θ(0)T, ηT, θ(1)T)T. By estimating function theory (e.g. Godambe, 1991;

Newey and McFadden, 1994; Yi, 2017, Section 1.3.2), the variance of (θ̂(0)T, η̂T, θ̂(1)T)T can
be estimated by the empirical sandwich estimator

V̂ar
{

(θ̂(0)T, η̂T, θ̂(1)T)T
}

=
1

n
Γ−1

Ψ ΣΨΓ−1T
Ψ , (B.12)

where ΓΨ = 1
n

∑n
i=1

{
− ∂
∂(θ(0)T,ηT,θ(1)T)T Ψi(θ̂

(0), η̂, θ̂(1))
}

and

ΣΨ = 1
n

∑n
i=1

{
Ψi(θ̂

(0), η̂, θ̂(1))ΨT
i (θ̂(0), η̂, θ̂(1))

}
.

Therefore, V̂ar(θ̂
(0)
Ir ), V̂ar(θ̂

(1)
Ir ) and Ĉov(θ̂

(0)
Ir , θ̂

(1)
Ir ) are, respectively, the covariance ma-

trix, V̂ar
{

(θ̂(0)T, η̂T, θ̂(1)T)T
}

, corresponding to elements (r, r), (r + q, r + q) and (r, r + q)

where q = pθ + pη.
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Appendix C

Conditions and Proofs of the Results
in Chapter 4

C.1 Regularity Conditions

(R1) The dimension p of the covariates is of a polynomial order of the sample size n. That
is, p = O(nγ) for a constant γ > 0.

(R2) There exists 0 ≤ κ < 1 so that

max
s∈V
|N (s)| = O(nκ).

(R3) There exists some m <∞ so that

max
s∈V, t∈N (s)

|N (s)
⋂
N (t)| ≤ m.

(R4) There exists a constant δ > 0 and ξ with κ < ξ ≤ 1 for κ in condition (R2), such
that for every edge (s, t) ∈ E,

|πst| ≥ δn−
1−ξ

2 ,

where πst is the partial correlation between Xis and Xit after eliminating the linear
effects from all remaining variables {Xik : k ∈ V \ {s, t}}.

(R5) The covariance matrix of Xi is non-singular.
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(R6) The parameter space B of (βT
M , β

T
I , φ

T)T is compact.

(R7) Given the data, the estimating functions
∑n

i=1 Ui(βM, βI, φ) are continuous in (βT
M , β

T
I , φ

T)T

everywhere, and satisfy the condition (12.5) in Theorem 12.1 of Heyde (1997).

(R8) Given the data, the estimating functions
∑n

i=1 Ui(βM, βI, φ) are continuously differen-
tiable in a neighbourhood of (βT

M , β
T
I , φ

T)T.

(R9) For Ui(w; βM, βI, φ) defined in (4.8) with w = (y, xT)T, there exists a function h(w)
with E{h(Wi)} <∞, such that |Ui(w, βM, βI, φ)| < h(w) for all βM, βI, and φ, where
Wi = (Yi, X

T
i )T.

(R10) The equation EY|X{Ui(βM(0), βI(0), φ0)} = 0 has an unique solution.

Conditions (R1)–(R5) are the regularity conditions discussed by Meinshausen and
Bühlmann (2006). Condition (R1) allows for a high dimension of the covariates and reg-
ulates the dimension of covariates on a scale relative to the sample size. Conditions (R2)
and (R3) basically regulate the sparsity of the graph and the maximum possible growth
rate of the size of neighborhoods. Condition (R4) provides a lower bound of the magnitude
of partial correlations to ensure the consistency of variable selection of edge set E. Con-
dition (R5) requires the existence of the precision matrix. Conditions (R6)-(R8) are the
regularity conditions for estimating functions discussed by Heyde (1997). Condition (R9)
is the condition for Theorem 2 in Jennrich (1969). Condition (R10) is used to show the
consistency in Theorem 2, which was also assumed by Yi and Reid (2010), among others.

C.2 Proof of Theorem 4.1

For κ and ξ defined in Conditions (R3) and (R4), consider a tuning parameter λ in (4.6)
satisfying λ ∼ dn−(1−ε)/2 with κ < ε < ξ and a scaling constant d > 0. Then according to
Meinshausen and Bühlmann (2006, Page 1445), with regularity conditions assumed, there
exists c > 0 such that

P (Ê = E) = 1−O(exp(−cnε)), (C.1)

yielding, by the definition of β̂II, that

P (β̂II = βII) ≥ 1−O(exp(−cnε)).

Thus, the conclusion follows from that 0 < ε < ξ ≤ 1.
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C.3 Proof of Theorem 4.2

Proof of Theorem 4.2 (i)

Step 1: We introduce basic notation first

Let (βM, βI, βII, φ) be the generic symbol of parameters from parameter space B, and let
(βT

0 , φ
T
0 )T = (βT

M(0), β
T
I(0), β

T
II(0), φ

T
0 )T denote the true value of the parameters β =

(βT
M , β

T
I , β

T
II , φ

T)T. Let E = {Ea : Ea ⊆ Ẽ} denote the collection of all possible sub-

sets of Ẽ. For an estimated edge set Ê for E, let β∗(Ê) = {βst : (s, t) ∈ Ê} denote the

subvector of (βT
I , β

T
II )

T with the indexes included in Ê, and let β∗∗(Ê) = {βst : (s, t) /∈ Ê} be

the complement of β∗(Ê), i.e., the subvector of (βT
I , β

T
II )

T with the indexes not included in

Ê. The introduction of β∗(Ê) and β∗∗(Ê) offers a new way to partition the vector (βT
I , β

T
II )

T,

or E, according to the estimated set Ê.

For Ui(βM, βI, φ) in (4.8) and a generic element Ea in E , let U †i (βM, β
∗(Ea), φ) denote the

estimating function Ui(βM, βI, φ) with βI replaced by β∗(E
a), and define

H(βM, βI, βII, φ) =

(
EY|X{Ui(βM, βI, φ)}

βII

)
,

H†n(βM, βI, βII, φ) =
∑
Ea∈E

(
1
n

∑n
i=1 U

†
i (βM, β

∗(Ea), φ)
β∗∗(E

a)

)
· I(Ea = Ê), (C.2)

and

H†(βM, βI, βII, φ) = EY|X{H†n(βM, βI, βII, φ)}, (C.3)

the expectation is taken with respect to Yi given Xi, and H†(βM, βI, βII, φ) can be written

as
∑

Ea∈E

(
EY|X{U †i (βM, β

∗(Ea), φ)}
β∗∗(E

a)

)
· I(Ea = Ê).

Step 2: To show the consistency of (β̂T
M , β̂

T
I , φ̂

T)T, we apply Theorem 5.9 of Van der Vaart
(2000, Page 46) by varying the required conditions. That is, it suffices to show that

Claim 1: inf(βT,φT)T∈B(η) ‖H(β, φ)‖ > 0 = ‖H(β0, φ0)‖.

Claim 2: sup
β,φ

∥∥H†n(β, φ)−H(β, φ)
∥∥ p−→ 0 as n→∞.
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Step 3: Show Claim 1.

By Condition (R10) and the definition of βII, (βT
M(0), β

T
I(0), β

T
II(0), φ

T
0 )T is the unique solu-

tion to the equation H(βM, βI, βII, φ) = 0.

Given the data, by Conditions (R6) and (R7), applying by the Heine-Cantor Theorem

(Rudin, 1976, Theorem 4.19),
(
UT
i (βM, βI, φ), βT

II

)T
is uniformly continuous in β and φ,

implying that ‖H(β, φ)‖ is continuous, where ‖·‖ is the Euclidean norm. Since the set
B(η) =

{
(βT, φT)T ∈ B :

∥∥(βT, φT)T − (βT
0 , φ

T
0 )T
∥∥ ≥ η

}
is a compact subset of B for any

η > 0, there exists (βT
1 , φ

T
1 )T ∈ B(η) such that

inf
(βT,φT)T∈B(η)

‖H(β, φ)‖ = ‖H(β1, φ1)‖ .

Since (βT
0 , φ

T
0 )T is the unique solution of H(β, φ) = 0, then for any (βT

1 , φ
T
1 )T 6=

(βT
0 , φ

T
0 )T, we have that ‖H(β1, φ1)‖ > 0. That is,

inf
(βT,φT)T∈B(η)

‖H(β, φ)‖ > 0 = ‖H(β0, φ0)‖ .

Step 4: Show Claim 2.

Noting that

sup
β,φ

∥∥H†n(β, φ)−H(β, φ)
∥∥ ≤ sup

β,φ

∥∥H†n(β, φ)−H†(β, φ)
∥∥+ sup

β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ ,
(C.4)

we examine the two terms on the right-hand side of (C.4) separately.

1◦. For the first term on the right-hand side of (C.4), by (C.2) and (C.3),

sup
β,φ

∥∥H†n(β, φ)−H†(β, φ)
∥∥

= sup
β,φ

∥∥∥∥∥∑
Ea∈E

(
1
n

∑n
i=1 U

†
i (βM, β

∗(Ea), φ)− E{U †i (βM, β
∗(Ea), φ)}

β∗∗(E
a) − β∗∗(Ea)

)
· I(Ea = Ê)

∥∥∥∥∥ ,
= sup

β,φ

∥∥∥∥∥∑
Ea∈E

[
1

n

n∑
i=1

U †i (βM, β
∗(Ea), φ)− E{U †i (βM, β

∗(Ea), φ)}

]
· I(Ea = Ê)

∥∥∥∥∥ ,
= sup

β,φ

∥∥∥∥∥ 1

n

n∑
i=1

U †i (βM, β
∗(Ê), φ)− E{U †i (βM, β

∗(Ê), φ)}

∥∥∥∥∥ . (C.5)
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Now we show the convergence of 1
n

∑n
i=1 U

†
i (βM, β

∗(Ê), φ) for a given estimated graph

Ê. By Condition (R9) and the uniform weak law of large numbers (Newey and McFadden,
1994, Lemma 2.4), we have that

sup
β,φ

∥∥∥∥∥ 1

n

n∑
i=1

U †i (βM, β
∗(Ê), φ)− E{U †i (βM, β

∗(Ê), φ)}

∥∥∥∥∥ p−→ 0,

and thus by (C.5),

sup
β,φ

∥∥H†n(β, φ)−H†(β, φ)
∥∥ p−→ 0 as n→∞. (C.6)

2◦. Next, for the second term on the right-hand side of (C.4), we have that

lim
n→∞

P

(
sup
β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ > ε

)
= lim

n→∞
P

(
sup
β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ > ε

∣∣∣∣Ê = E

)
P (Ê = E)

+ lim
n→∞

P

(
sup
β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ > ε

∣∣∣∣Ê 6= E

)
P (Ê 6= E)

= lim
n→∞

P

(
sup
β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ > ε

∣∣∣∣Ê = E

)
= lim

n→∞
P

(
sup
β,φ

∥∥∥∥∥∑
Ea∈E

(
E{U †i (βM, β

∗(Ea), φ)}
β∗∗(E

a)

)
· I(Ea = Ê)−H(β, φ)

∥∥∥∥∥ > ε

∣∣∣∣Ê = E

)

= lim
n→∞

P

(
sup
β,φ

∥∥∥∥∥∑
Ea∈E

(
E{U †i (βM, β

∗(Ea), φ)}
β∗∗(E

a)

)
· I(Ea = E)−H(β, φ)

∥∥∥∥∥ > ε

)

= lim
n→∞

P

(
sup
β,φ

∥∥∥∥(E{U †i (βM, β
∗(E), φ)}

β∗∗(E)

)
−H(β, φ)

∥∥∥∥ > ε

)
= 0,

where the second step is because of limn→∞ P (Ê 6= E) = 0, the third step is because of
(C.3) and (C.2), and last step is by the definition H(β, φ).

Therefore,
sup
β,φ

∥∥H†(β, φ)−H(β, φ)
∥∥ p−→ 0 as n→∞. (C.7)

Combining (C.4), (C.6) and (C.7) shows Claim 2.
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Proof of Theorem 4.2 (ii)

By (C.1),

P (Ê = E) −→ 0 as n→∞,
which implies that as n→∞

P

{
n∑
i=1

U †i (βM, β
∗(Ê), φ) =

n∑
i=1

Ui(βM, βI, φ)

}
−→ 0,

and

P

{
n∑
i=1

(
∂U
†
i
(βM,β

∗(Ê),φ)

∂βT
M

∂Ui(βM,β
∗(Ê),φ)

∂βT
I

∂Ui(βM,β
∗(Ê),φ)

∂φT

)
=

n∑
i=1

( ∂Ui(βM,βI,φ)

∂βT
M

∂Ui(βM,βI,φ)

∂βT
I

∂Ui(βM,βI,φ)

∂φT )

}
−−→ 0,

because by definition of U †i (βM, β
∗(Ê), φ), we have that U †i (βM, β

∗(Ê), φ) = Ui(βM, βI, φ) if

Ê = E.

Hence, we have that

n∑
i=1

U †i (βM, β
∗(Ê), φ) =

n∑
i=1

Ui(βM, βI, φ) + op(1) (C.8)

and
n∑
i=1

(
∂U†i (βM,β

∗(Ê),φ)

∂βT
M

∂Ui(βM,β
∗(Ê),φ)

∂βT
I

∂Ui(βM,β
∗(Ê),φ)

∂φT

)
=

n∑
i=1

(
∂Ui(βM,βI,φ)

∂βT
M

∂Ui(βM,βI,φ)

∂βT
I

∂Ui(βM,βI,φ)

∂φT

)
+ op(1).

Applying the Taylor series expansion to
∑n

i=1 U
†
i (β̂M, β̂

∗(Ê), φ̂) = 0 around (βT
M(0), β

T
I(0), φ

T
0 )T,

we obtain

n∑
i=1

Ui(βM(0), βI(0), φ) +
n∑
i=1

(
∂Ui(βM,βI,φ)

∂βT
M

∂Ui(βM,βI,φ)

∂βT
I

∂Ui(βM,βI,φ)

∂φT

)∣∣∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

×


β̂M

β̂I

φ̂

−
βM(0)

βI(0)

φ0


+ op(1) = 0,
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yielding{
− 1

n

n∑
i=1

(
∂Ui(βM,βI,φ)

∂βT
M

∂Ui(βM,βI,φ)

∂βT
I

∂Ui(βM,βI,φ)
∂φT

)}∣∣∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

×
√
n


β̂M

β̂I

φ̂

−
βM(0)

βI(0)

φ0




=
1√
n

n∑
i=1

Ui(βM(0), βI(0), φ0) + op(1). (C.9)

Let

Γ0 = lim
n→∞

E(X,Y )

{
1

n

n∑
i=1

(
∂Ui(βM,βI,φ)

∂βT
M

∂Ui(βM,βI,φ)

∂βT
I

∂Ui(βM,βI,φ)

∂φT

)}∣∣∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

and

Σ0 = lim
n→∞

Var

{
1√
n

n∑
i=1

Ui(βM(0), βI(0), φ0)

}
.

Then applying the central limit theorem to (C.9) gives that

√
n
{

(β̂T
M , β̂

T
I , φ̂

T)T − (βT
M(0), β

T
I(0), φ

T
0 )T
}

d−−−→ N
(
0,Γ−1

0 Σ0(Γ−1
0 )T

)
as n −→∞,

where the expectation and variance are taken with respect to the joint distribution of Yi
and Xi with the model parameters taken as their true value.

Now it remains to show that Γ0 and Σ0 are identical to those specified as in (4.9). By
the assumption that the variables are independent and identically are distributed, it is
immediate that

Γ0 =
[
E
{
∂Ui(βM,βI,φ)

∂βT
M

}
E
{
∂Ui(βM,βI,φ)

∂βT
I

}
E
{
∂Ui(βM,βI,φ)

∂φT

}]∣∣∣βM=βM(0)

βI=βI(0)

φ=φ0

and

Σ0 = lim
n→∞

Var

{
1√
n

n∑
i=1

Ui(βM(0), βI(0), φ0)

}

= lim
n→∞

1

n

n∑
i=1

Var
{
Ui(βM(0), βI(0), φ0)

}
= E

{
UT
i (βM(0), βI(0), φ0)Ui(βM(0), βI(0), φ0)

}
− ET

{
Ui(βM(0), βI(0), φ0)

}
E
{
Ui(βM(0), βI(0), φ0

}
= E

{
UT
i (βM(0), βI(0), φ0)Ui(βM(0), βI(0), φ0)

}
.
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C.4 Proof of Theorem 4.4

To reflect the randomness introduced by the selection of the edge set, we use U∗†i (βM, β
∗(Ê), φ, η)

to denote the estimating function U∗i (βM, βI, φ, η) in (4.14) with the edge set E, estimate by

Ê, where β∗(Ê) = {βst : (s, t) ∈ Ê} represents the subvector of (βT
I , β

T
II )

T with the indexes

included in Ê.

Assume the external validation sample is randomly formed. To simplify the nota-
tion, let β = (βT

M , β
T
I , φ

T)T and β† = (βT
M , β

∗(Ê), φT)T. Let δi = I(i ∈ V), where I(·)
is the indicator function. Define Fi1(β, η) = (1 − δi)U

∗
i (β, η), Fi2(η) = δiSi(η), and

Fi(β, η) = {FT
i1(β, η), FT

i2(η)}T, and define F †i1(β†, η) = (1 − δi)U∗†i (β†, η), and F †i (β†, η) =
{F †Ti1 (β†, η), FT

i2(η)}T. Then, (4.14) is equivalent to solving

U (EV)(β, η) =
∑

i∈M
⋃
V

F †i (β†, η).

Similar to the proof of Theorem 4.2(i), with Ui(βM, βI, φ) replaced by Fi(β, η) and

U †i (βM, β
∗(Ê), φ) replaced by F †i (β†, η), we can show that solving

∑
i∈M

⋃
V F

†
i (β†, η) = 0

gives a consistent estimator, (β̂ (EV)T, η̂(EV)T)T, of (βT, ηT)T.

Similar to the derivation of (C.8) in the proof of Theorem 4.2(ii), we have that
n∑
i=1

U∗†i (βM, β
∗(E), φ, η) =

n∑
i=1

U∗i (βM, βI, φ, η) + op(1)

and hence ∑
i∈M

⋃
V

F †i (β†, η) =
∑

i∈M
⋃
V

Fi(β, η) + op(1).

Applying the Taylor series expansion to
∑

i∈M
⋃
V F

†
i (β̂ (EV), η̂(EV)) = 0, we obtain

∑
i∈M

⋃
V

Fi(β0, η0) +
∑

i∈M
⋃
V

(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)∣∣∣∣∣∣
β=β0
η=η0

×
{(

β̂
η̂

)
−
(
β0

η0

)}
+ op(1) = 0,

which leads to√
1 +

m

n

 1

n+m

∑
i∈M

⋃
V

(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)
∣∣∣∣∣∣β=β0
η=η0

×
√
n

{(
β̂
η̂

)
−
(
β0

η0

)}

=
1√

n+m

∑
i∈M

⋃
V

Fi(β0, η0) + op(1). (C.10)
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Let

Γ(EV) = lim
n→∞

 1

n+m

∑
i∈M

⋃
V

E
(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)
∣∣∣∣∣∣
β=β0
η=η0

and

Σ(EV) = lim
n→∞

Var

 1√
n+m

∑
i∈M

⋃
V

Fi(β0, η0)

 .

Then applying the central limit theorem to (C.10) gives that

√
n
{

(β̂ (EV)T, η̂(EV)T)T − (βT
0 , η

T
0 )T
}

d−−−→ N

(
0,

1

1 + ρ
Γ−1

(EV)
Σ(EV)(Γ

−1
(EV)

)T

)
as n −→∞.

Now it remains to show that Γ(EV) and Σ(EV) are identical to (4.15). By the definitions of
Fi(β, η), we derive that

Γ(EV) = lim
n→∞

 1

n+m
E

 ∑
i∈M

∂U∗i (β,η)

∂βT

∑
i∈M

∂U∗i (β,η)

∂ηT

0 0

+
1

n+m
E

(
0 0

0
∑

i∈V
∂Si(η)
∂ηT

)
= lim
n→∞

{
n

n+m
E

(
∂U∗i (β,η)

∂βT

∂U∗i (β,η)

∂ηT

0 0

)
+

m

n+m
E

(
0 0

0 ∂Si(η)
∂ηT

)}

=
1

1 + ρ

(
E
(
∂U∗i (β,η)

∂βT

)
E
(
∂U∗i (β,η)

∂ηT

)
0 0

)
+

ρ

1 + ρ

(
0 0

0 E
(
∂Si(η)
∂ηT

)) .

For Σ(EV), we have that
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Σ(EV) = lim
n→∞

1

n+m

∑
i∈M

⋃
V

Var{Fi(β, η)}

= lim
n→∞

1

n+m

∑
i∈M

⋃
V

E{Fi(β, η)FT
i (β, η)}

= lim
n→∞

1

n+m

∑
i∈M

⋃
V

E

(
(1− δi)2U∗i (β, η)U∗Ti (β, η) 0

0 δ2
i Si(η)ST

i (η)

)

= lim
n→∞

n

n+m

1

n

∑
i∈M

(
E{U∗i (β, η)U∗Ti (β, η)} 0

0 0

)
+ lim

n→∞

m

n+m

1

m

∑
i∈V

(
0 0
0 E{Si(η)ST

i (η)}

)
=

1

1 + ρ

(
E{U∗i (β, η)U∗Ti (β, η)} 0

0 0

)
+

ρ

1 + ρ

(
0 0
0 E{Si(η)ST

i (η)}

)
,

where the fourth step is due to (1− δi)2 = (1− δi) and δ2
i = δi.

C.5 Proof of Theorem 4.5

Similar to Section C.4, we assume the internal validation subsample is randomly formed.
We define Fi1(β, η) = (1 − δi)U

∗
i1(β, η) + δiUi1(β, η), Fi2(β, η) = δiSi(η), and Fi(β, η) =

{FT
i1(β, η), FT

i2(η)}T, and define F †i1(β†, η) = (1−δi)U∗i1(β†, η)+δiUi1(β†, η), and F †i (β†, η) =
{F †Ti1 (β†, η), FT

i2(η)}T. Then, (4.17) is equivalent to

U (IV)(β, η) =
∑
i∈M

F †i (β†, η).

Similar to the proof of Theorem 4.2(i), with Ui(βM, βI, φ) replaced by Fi(β, η) and

U †i (βM, β
∗(Ê), φ) replaced by F †i (β†, η), we conclude that under regularity conditions, solving∑

i∈M F †i (β†, η) = 0 gives a consistent estimator, (β̂ (IV)T, η̂(IV)T)T, of (β0, η0)T.

Applying the Taylor series expansion to
∑

i∈M Fi(β̂
(IV)T, η̂(IV)T) = 0, we obtain

∑
i∈M

Fi(β0, η0) +
∑
i∈M

(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)∣∣∣∣∣
β=β0
η=η0

{(
β̂
η̂

)
−
(
β0

η0

)}
+ op(1) = 0,
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which leads to{
− 1

n

∑
i∈M

(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)}∣∣∣∣∣
β=β0
η=η0

×
√
n

{(
β̂
η̂

)
−
(
β0

η0

)}
=

1√
n

∑
i∈M

Fi(β0, η0) + op(1).

(C.11)

Let

Γ(IV) = lim
n→∞

{
1

n

∑
i∈M

E
(
∂Fi(β,η)
∂βT

∂Fi(β,η)
∂ηT

)}∣∣∣∣∣
β=β0
η=η0

and

Σ(IV) = lim
n→∞

Var

(
1√
n

∑
i∈M

Fi(β0, η0)

)
.

Then applying the central limit theorem to (C.11) gives that

√
n
{

(β̂ (IV)T, η̂(IV)T)T − (βT
0 , η

T
0 )T
}

d−−−→ N
(
0,Γ−1

(IV)
Σ(IV)(Γ

−1
(IV)

)T
)

as n −→∞.

Now it remains to show that Γ(IV) and Σ(IV) are identical to (4.19). By definition of
Fi(β, η), Γ(IV) equals

lim
n→∞

 1

n
E

 ∑
i∈M\V

∂U∗i (β,η)

∂βT

∑
i∈M\V

∂U∗i (β,η)

∂ηT

0 0

+
1

n
E

∑i∈V ∂Ui(β,η)
∂βT 0

0
∑

i∈V
∂Si(η)
∂ηT


= lim

n→∞

{
n−m
n

E

(
∂U∗i (β,η)

∂βT

∂U∗i (β,η)

∂ηT

0 0

)
+
m

n
E

(
∂Ui(β,η)
∂βT 0

0 ∂Si(η)
∂ηT

)}

=(1− ρ)

(
E
(
∂U∗i (β,η)

∂βT

)
E
(
∂U∗i (β,η)

∂ηT

)
0 0

)
+ ρ

E (∂Ui(β,η)
∂βT

)
0

0 E
(
∂Si(η)
∂ηT

) .
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Similarly, we have that

Σ(IV) = lim
n→∞

1

n

∑
i∈M

Var {Fi(β, η)}

= lim
n→∞

1

n

∑
i∈M

E{Fi(β, η)FT
i (β, η)}

= lim
n→∞

1

n

∑
i∈M

E

(
(1− δi)2U∗i (β, η)U∗Ti (β, η) 0

0 0

)
+ lim

n→∞

1

n

∑
i∈M

E

(
δ2
iUi(β, η)UT

i (β, η) δ2
iUi(β, η)ST

i (η)
δ2
iUi(β, η)ST

i (η) δ2
i Si(η)ST

i (η)

)
= lim

n→∞

n−m
n

1

n−m
∑

i∈M\V

(
E{U∗i (β, η)U∗Ti (β, η)} 0

0 0

)

+ lim
n→∞

m

n

1

m

∑
i∈V

(
E{Ui(β, η)UT

i (β, η)} E{Ui(β, η)ST
i (β, η)}

E{Ui(β, η)ST
i (β, η)} E{Si(β, η)ST

i (β, η)}

)
=(1− ρ)

(
E{U∗i (β, η)U∗Ti (β, η)} 0

0 0

)
+ ρ

(
E{Ui(β, η)UT

i (β, η)} E{Ui(β, η)ST
i (η)}

E{Ui(β, η)ST
i (η)} E{Si(η)ST

i (η)}

)
,

where the third step is due to δi(1−δi) = 0 and the fourth step comes from (1−δi)2 = (1−δi)
and δ2

i = δi.

C.6 Proof of Theorem 4.6

By (4.12) and (4.20), showing (4.23) is equivalent to showing

{(1− ρ)Γ + ρΓ0}−1{(1− ρ)Σ + ρΣ0 − ρ∆}{(1− ρ)Γ + ρΓ0}−1T ≤ Γ−1ΣΓ−1T. (C.12)

Left multiplying (1− ρ)Γ + ρΓ0 and right multiplying {(1− ρ)Γ + ρΓ0}T on both sides
of (C.12), we obtain

(1−ρ)Σ+ρΣ0−ρ∆ ≤ (1−ρ)2Σ+ρ(1−ρ)Γ0Γ−1Σ+ (1−ρ)ρΣΓ−1TΓT
0 +ρ2Γ0Γ−1ΣΓ−1TΓT

0 .
(C.13)
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Left multiplying Γ−1
0 and right multiplying Γ−1T

0 on the both sides of (C.13) gives

(1− ρ)Γ−1
0 ΣΓ−1T

0 + ρΓ−1
0 Σ0Γ−1T

0 − ρΓ−1
0 ∆Γ−1T

0

≤(1− ρ)2Γ−1
0 ΣΓ−1T

0 + ρ(1− ρ)Γ−1ΣΓ−1T
0 + (1− ρ)ρΓ−1

0 ΣΓ−1T + ρ2Γ−1ΣΓ−1T.

Then combining the terms with Γ−1
0 ΣΓ−1T

0 and dividing the both sides by ρ, we get

(1− ρ)Γ−1
0 ΣΓ−1T

0 + Γ−1
0 Σ0Γ−1T

0 − Γ−1
0 ∆Γ−1T

0 ≤ (1− ρ)Γ−1ΣΓ−1T
0 + (1− ρ)Γ−1

0 ΣΓ−1T

+ ρΓ−1ΣΓ−1T. (C.14)

It now suffices to show that (C.14) is true when the conditions (4.21) and (4.22) are
satisfied. For the case with ρ = 1, the inequality (C.14) is equivalent to

Γ−1
0 Σ0Γ−1T

0 − Γ−1
0 ∆Γ−1T

0 ≤ Γ−1ΣΓ−1T,

which is true by the condition (4.21) together with the fact that Γ−1
0 ∆Γ−1T

0 is non-negative
definite.

For the case with ρ < 1, dividing (1− ρ) on both sides, (C.14) is equivalent to

Γ−1
0 ΣΓ−1T

0 +
1

1− ρ
Γ−1

0 Σ0Γ−1T
0 − 1

1− ρ
Γ−1

0 ∆Γ−1T
0 ≤ Γ−1ΣΓ−1T

0 +Γ−1
0 ΣΓ−1T+

ρ

1− ρ
Γ−1ΣΓ−1T,

(C.15)
which is true, because

the left hand side of (C.15)

≤Γ−1
0 ΣΓ−1T

0 +
1

1− ρ
Γ−1

0 Σ0Γ−1T
0 − Γ−1

0 ∆Γ−1T
0

=Γ−1
0 ΣΓ−1T

0 + Γ−1
0 Σ0Γ−1T

0 +
ρ

1− ρ
Γ−1

0 Σ0Γ−1T
0 − Γ−1

0 ∆Γ−1T
0

≤Γ−1
0 ΣΓ−1T

0 + Γ−1
0 Σ0Γ−1T

0 +
ρ

1− ρ
Γ−1ΣΓ−1T − Γ−1

0 ∆Γ−1T
0

≤Γ−1ΣΓ−1T
0 + Γ−1

0 ΣΓ−1T +
ρ

1− ρ
Γ−1ΣΓ−1T

= the right hand side of (C.15),

where the first step is because ρ ∈ (0, 1), the third step is due to the condition (4.21) that
Γ−1

0 Σ0Γ−1T
0 ≤ Γ−1ΣΓ−1T, and the fourth step is due to the condition (4.22).
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Appendix D

Proofs of the Results in Chapter 5

D.1 Proof of Theorem 5.1

Proof of Theorem 5.1(a):

First, consider

P (Y ∗i = 0|Xi) =
∞∑
k=0

P (Y ∗i = 0|Yi = k,Xi)P (Yi = k|Xi)

=
∞∑
k=0

P (Zi− = k|Yi = k,Xi)P (Yi = k|Xi)

= P (Yi = 0|Xi)P (Zi− = 0|Yi = 0, Xi)

+
∞∑
k=1

P (Zi− = k|Yi = k,Xi)P (Yi = k|Xi)

= P (Yi = 0|Xi) +
∞∑
k=1

(
k
k

)
πki (1− πi)0 × µki

k!
e−µi

= P (Yi = 0|Xi) + φi

(
∞∑
k=1

(πiµi)
k

k!
e−µiπi

)
e−µi+µiπi

= P (Yi = 0|Xi) + φi(1− e−µiπi)e−µi(1−πi)

= 1− φi + φie
−µi(1−πi), (D.1)
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where the second step comes from (5.5) with c+ = 0 and c− = 1, the fourth step comes from

(5.2) and the distributional assumption of Zi−, the fifth step is because
∑∞

k=0
(πiµi)

k

k!
e−µiπi =

1, and the last step is due to (5.2).

Next, for Y ∗i = k ≥ 1, we calculate

P (Y ∗i = k|Xi) =
∞∑
r=0

P (Zi− = r|Y = k + r,Xi)P (Y = k + r|Xi)

= φi

∞∑
r=0

(
k + r
r

)
πri (1− πi)k ×

µk+r
i

(k + r)!
e−µi

= φi

∞∑
r=0

1

r!k!
(1− πi)kµki (µiπi)re−µi

= φi
{µi(1− πi)}k

k!
e−µi(1−πi), (D.2)

where the first step is due to (5.5) with c+ = 0 and c− = 1 and the second step is because
of (5.2) and the distributional assumption of Zi−.

Therefore, comparing (D.1) and (D.2) to (5.2), we conclude that conditional on Xi, Y
∗
i

follows a zero-inflated Poisson distribution with mean µi(1− πi) and the probability φi.

Proof of Theorem 5.1(b):

First, we consider the case with Y ∗i = 0. Under (5.5) with c+ = 1 and c− = 0, we note
that Y ∗i = 0 if and only if Yi = 0 and Zi+ = 0. Then,

P (Y ∗i = 0|Xi) = P (Yi = 0, Zi+ = 0|Xi)

= (1− φi + φie
−µi)e−λi

= (1− φi)e−λi + φie
−(µi+λi),

where the second step is due to the conditional independence assumption between Yi and
Zi+ given Xi, as well as (5.2) and the distributional assumption of Zi+.
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Next, for k ≥ 1, we have that

f(Y ∗i = k|Xi) = P (Yi = 0, Zi+ = k|Xi) +
k∑
t=1

P (Yi = t, Zi+ = k − t|Xi)

= (1− φi + φie
−µi)

λki e
−λi

k!
+

k∑
t=1

φi
µtie
−µi

t!
× λk−ti

(k − t)!
e−λi

= (1− φi)
λki e

−λi

k!
+

k∑
t=0

φi
µtie
−µi

t!
× λk−t

(k − t)!
e−λi

= (1− φi)
λki e

−λi

k!
+ φie

−µie−λi
k∑
t=0

µtiλ
k−t

t!(k − t)!

= (1− φi)
λki e

−λi

k!
+ φi

(µi + λi)
k

k!
e−(µi+λi)

k∑
t=0

k!

t!(k − t)!

(
µi

µi + λi

)t(
λi

µi + λi

)k−t
= (1− φi)

λki e
−λi

k!
+ φi

(µi + λi)
k

k!
e−(µi+λi),

where the second step is due to the conditional independence assumption between Yi and
Zi+ given Xi, as well as (5.2) and the distributional assumption of Zi+, and the last step
is due to the Binomial theorem. Thus, the conclusion follows.

Proof of Theorem 5.1(c):

Model (5.5) with c+ = c− = 1 can viewed as Y ∗i = (Yi − Zi−) + Zi+, where by The-
orem 5.1(a), the first term (Yi − Zi−) follows a zero-inflated Poisson distribution with
parameters φi and µ∗i = (1−πi)µi. Then applying Theorem 5.1(b) to Y ∗i , we conclude that

P (Y ∗i = y∗i |Xi) = (1− φi)λ
y∗i
i e−λi

y∗i !
+ φi

µ∗i
y∗i

y∗i !
e−µ

∗
i for y∗i = 0, 1, 2, . . . ,

where µ∗i = (1− πi)µi + λi.

D.2 Proof of Theorem 5.2

Proof:
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By Theorem 1(a), we have that if c+ = 0 and c− = 1, Y ∗i follows zero-inflated Poisson
distribution with parameter φ∗i and µ∗i , where φ∗i = φi and µ∗i = µi(1− π). Thus, by (5.4),

log µ∗i = log (1− πi) + log µi

= log(1− πi) + βµ0 + βT
µxXi

= β∗µ0 + β∗TµxXi. (D.3)

Comparing (D.3) to (5.12), we conclude that β∗µ0 = βµ0 + log(1− πi) and β∗µx = βµx.

D.3 Inverse Sampling of Multivariate Discrete Vari-

ables

To execute inverse sampling for multivariate discrete variables (Loukas and Kemp, 1983),
we evaluate the joint distribution of Ui1, Ui2, Zi− and Zi+, expressed in (5.16). Noting
that although Ui1 and Ui2 are unbounded (and Zi− is bounded by Ui2), the probability
(5.16) is extremely small for sufficiently large values. We focus only those values of Ui1 and
Ui2 bounded by sufficiently large values, say, J and K, respectively, and hence Zi− is also
bounded by K. Specifically, for j = 0, . . . , J , k = 0, . . . , K, and l = 0, . . . , K, we evaluate
(5.16)

pjkl = P (Ui1 = j, Ui2 = k, Zi− = l, Zi+ = y∗i − I(j > 0)k + l|xi)
= P (Zi+ = y∗i − I(j > 0)k + l|xi)P (Zi− = l|Ui1 = j, Ui2 = k|xi)P (Ui1 = j|xi)P (Ui2 = k|xi),

where each probability is computed based on the distribution assumed for the associated
random variables.

To ensure legitimate probabilities induced from the imposition of bounds to Ui1 and
Ui2, we normalize the pijk by calculating p∗jkl =

pjkl∑
j′,k′,l′ pj′k′l′

. Let Φ be the (J + 1)(K + 1)2-

dimensional column vector consisting of the p∗jkl with j = 0, . . . , J ; k = 0, . . . , K; and
l = 0, . . . , K, and let Φt denote the tth element of Φ for t = 1, . . . , (J + 1)(K + 1)2.

Generate a random value V from Uniform[0, 1] and find the smallest x such that∑x
t=1 Φt ≥ V . Examining Φx, we identify j0, k0 and l0 such that Φx = p∗j0k0l0

. Then
we set j0, k0 and l0 to be the values for Ui1, Ui2, and Zi−, respectively, and take Zi+ as
Y ∗i − I(Ui1 > 0)Ui2 + Zi− = y∗i − I(j > 0)k + l.
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Appendix E

Conditions and Proofs of the Results
in Chapter 6

E.1 Regularity Conditions

(R1) The time series {Xt : t = 1 . . . , T} is stationary.

(R2) The observed error-prone time series {X∗t : t = 1 . . . , T} is stationary.

(R3) For any t ∈ {1, . . . , T}, 1
T

∑T
s=1 γ|s−t| → 0 as T →∞.

(R4) For any p, 1
T

∑T
t=1

∑T
s=1E{(Xt − µ)(Xt+p − µ)(Xs − µ)} <∞.

While the two process {Xt : t = 1, . . . , T} and {X∗t : t = 1, . . . , T} are constrained by
the measurement error model (6.7) or (6.9), they can both be assumed to be stationary
without inducing conflicting requirements on the associated processes. Obviously, the weak
stationarity of {Xt : t = 1, . . . , T} implies the weak stationarity of {X∗t : t = 1, . . . , T}
if they are linked by (6.7) or (6.9). Condition (R3) says that as the time series goes
long enough, the average of the covariances between any paired variables is is negligible.
Condition (R4) requires the summation of the third moment of Xt is O(T ), which is needed
in Theorem 6.4 when φ0 6= 0; this condition can be satisfied if E(ε3t ) = 0, for example.
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E.2 The proof of Theorem 6.1

Applying the weak law of large numbers to φ̂∗1 given by (6.12), we obtain that the estimator

φ̂∗1 converges in probability to
Cov(X∗t ,X

∗
t−1)

Var(X∗t−1)
, which is denoted as φ∗1. Now we further examine

φ∗1 by using the AR(1) model (6.1) and the measurement error model (6.7):

φ∗1 =
Cov(X∗t , X

∗
t−1)

Var(X∗t−1)

=
Cov(α0 + α1Xt + et, α0 + α1Xt−1 + et−1)

Var(α0 + α1Xt + et)

=
α2

1Cov(Xt, Xt−1)

α2
1Var(Xt) + Var(et)

=
α2

1Cov(φ0 + φ1Xt−1 + εt, Xt−1)

α2
1Var(Xt) + Var(et)

= φ1 ·
α2

1Var(Xt−1)

α2
1Var(Xt) + V ar(et)

,

where the second step is due to (6.7), the third step is because of the independence among
the Xt and the et, and the fourth step is because of (6.1). Since the time series {Xt} is

stationary, it follows that Var(Xt) = Var(Xt−1) = σ2
ε

1−φ2
1
, and hence

φ∗1 = φ1 ·
α2

1σ
2
ε

α2
1σ

2
ε + σ2

e(1− φ2
1)

= φ1ω1. (E.1)

Next, applying the Slutsky’s theorem to (6.12), we have that as T →∞,

φ̂∗0
p−−→ E(X∗t )− φ∗1E(X∗t ),

where the limit equals
(
α0 + α1φ0

1−φ1

)
(1−φ1ω1) by (E.1) and the fact that E(X∗t ) = α0+ α1φ0

1−φ1
.

Finally, plugging the AR(1) model (6.1) into the measurement error model (6.11), we
obtain that

X∗t = α0 + α1(φ0 + φ1Xt−1 + εt) + et. (E.2)

On the other hand, plugging the measurement error model (6.7) into the working model
(6.11), we obtain that

X∗t = φ∗0 + φ∗1(α0 + α1Xt−1 + et) + ε∗t . (E.3)
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Then equating (E.2) and (E.3) that

ε∗ = α0(1− φ∗1) + α1φ0 − φ∗0 + α1(φ1 − φ∗1)Xt−1 + (1− φ∗1)et + α1εt.

Consequently, by the independence assumption for Xt−1, et and εt, we obtain that

V ar(ε∗t ) = φ2
1α

2
1(1− ω1)2Var(Xt−1) + (1− ω1φ1)2Var(et) + α2

1Var(εt)

= φ2
1α

2
1(1− ω1)2

(
σ2
ε

1− φ2
1

)
+ (1− ω1φ1)2σ2

e + α2
1σ

2
ε .

E.3 The proof of Theorem 6.2

As noted in the beginning of E.2, as T →∞, φ̂∗1
p−→ φ∗1 where

φ̂∗1 =
Cov(X∗t , X

∗
t−1)

Var(X∗t−1)
.

Now we further examine φ∗1 by using the AR(1) model (6.1) and the measurement error
model (6.9):

φ∗1 =
Cov(X∗t , X

∗
t−1)

Var(X∗t−1)

=
Cov(β0utXt, β0ut−1Xt−1)

Var(β0ut−1Xt−1)

=
β2

0Cov(utXt, ut−1Xt−1)

β2
0Var(ut−1Xt−1)

=
Cov{ut(φ0 + φ1Xt−1 + εt), ut−1Xt−1}

Var(Xt−1ut−1)

= φ1
Cov(utXt−1, ut−1Xt−1)

Var(ut−1Xt−1)

= φ1

E(utut−1X
2
t−1)− E(utXt−1)E(ut−1Xt−1)

E(u2
t−1X

2
t−1)− E2(ut−1Xt−1)

= φ1

E(ut)E(ut−1)E(X2
t−1)− E(ut)E(ut−1)E2(Xt−1)

E(u2
t−1)E(X2

t−1)− E2(ut−1Xt−1)
,

where the second step is due to measurement error model (6.9).
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Then, because ut, ut−1 and Xt−1 are mutually independent, we further have that

φ∗1 = φ1
E(ut)E(ut−1)Var(Xt−1)

{Var(ut−1) + E2(ut−1)}{Var(Xt−1) + E2(Xt−1)} − E2(ut−1)E2(Xt−1)

= φ1
Var(Xt−1)

{Var(ut−1) + 1}{Var(Xt−1) + E2(Xt−1)} − E2(Xt−1)

= φ1
Var(Xt−1)

Var(ut−1)Var(Xt−1) + Var(ut−1)E2(Xt−1) + Var(Xt−1)
, (E.4)

where the second last step is due to E(ut) = 1. Since the time series {Xt} is stationary,

it follows that E(Xt) = E(Xt−1) = φ0

1−φ1
and Var(Xt) = Var(Xt−1) = σ2

ε

1−φ2
1
. Hence (E.4)

becomes

φ∗1 = φ1
Var(Xt−1)

Var(ut−1)Var(Xt−1) + Var(ut−1)E2(Xt−1) + Var(Xt−1)

= φ1

σ2
ε

1−φ2
1

σ2
u

σ2
ε

1−φ2
1

+ σ2
u

(
φ0

1−φ1

)2

+ σ2
ε

1−φ2
1

= φ1
σ2
ε

σ2
εσ

2
u + σ2

ε + σ2
uφ

2
0

1+φ1

1−φ1

= φ1ω2. (E.5)

Next, applying the Slustky’s Theorem to (6.12) gives that as T →∞,

φ̂∗0
p−−→
(
β0φ0

1− φ1

)
(1− φ1ω2)

by (E.5) as well as E(X∗t ) = β0φ0

1−φ1
.

Finally plugging the AR(1) model (6.1) into the measurement error model (6.9), we
obtain that

X∗t = β0(φ0 + φ1Xt−1 + εt)ut. (E.6)

On the other hand, plugging the measurement error model (6.9) into the working model
(6.11), we obtain that

X∗t = φ∗0 + φ∗1(β0Xt−1ut−1) + ε∗t . (E.7)

Then equating (E.6) and (E.7) gives that

ε∗ = β0φ0ut − φ∗0 + β0Xt−1(φ1ut − ω2φ1ut−1) + β0utεt.
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yielding that

V ar(ε∗t ) = φ2
0β

2
0Var(ut) + β2

0φ
2
1Var(Xt−1ut) + β2

0ω
2
2φ

2
1Var(Xt−1ut−1) + β2

0V ar(utεt)

= φ2
0β

2
0σ

2
u + (β2

0φ
2
1 + β2

0ω
2
2φ

2
1){E(X2

t−1u
2
t−1)− E2(Xt)E

2(ut−1)}
+ β2

0{E(u2
t )E(ε2t )− E2(ut)E

2(εt)}
= φ2

0β
2
0σ

2
u + (β2

0φ
2
1 + β2

0ω
2
2φ

2
1){E(X2

t−1)E(u2
t−1)− E2(Xt)E

2(ut−1)}+ β2
0(σ2

u + 1)σ2
ε

= β2
0{σ2

uφ
2
0 + (1 + σ2

u)σ
2
ε}

+ β2
0φ

2
1(1 + ω2

2)
[
{Var(ut−1) + E2(ut−1)}{Var(Xt−1) + E2(Xt−1)} − E2(Xt−1)

]
= β2

0{σ2
uφ

2
0 + (1 + σ2

u)σ
2
ε}

+ β2
0φ

2
1(1 + ω2

2)
[
{Var(ut−1) + 1}{Var(Xt−1) + E2(Xt−1)} − E2(Xt−1)

]
= β2

0{σ2
uφ

2
0 + (1 + σ2

u)σ
2
ε}

+ β2
0φ

2
1(1 + ω2

2)
{

Var(ut−1)Var(Xt−1) + Var(ut−1)E2(Xt−1) + Var(Xt−1)
}

= β2
0{σ2

uφ
2
0 + (1 + σ2

u)σ
2
ε}+ β2

0φ
2
1(1 + ω2

2)
V ar(Xt−1)

ω2

= β2
0{σ2

uφ
2
0 + (1 + σ2

u)σ
2
ε}+ β2

0φ
2
1

1 + ω2
2

ω2

σ2
ε

1− φ2
1

,

where the second step is because of the independence assumption as well as E(u2
t−1) =

E(u2
t ) and E(ut−1) = E(ut) such that Var(Xt−1ut) = Var(Xt−1ut−1), and the second last

step is due to ω2 = Var(Xt−1)
Var(ut−1)Var(Xt−1)+Var(ut−1)E2(Xt−1)+Var(Xt−1)

in (E.5).

E.4 The proof of Theorem 6.3

Proof of Theorem 6.3(1):

For k = 1, . . . , p, applying the weak law of large numbers to γ̂∗k, we obtain that as
T →∞, the estimator γ̂∗k converges in probability to Cov(X∗t , X

∗
t−k), denoted γ∗k.

Next, we examine γk. By the form of measurement error model (6.7), we have that for
0 < k < t,

Cov(X∗t , X
∗
t−k) = Cov(α0 + α1Xt + et, α0 + α1Xt−k + et−k)

= α2
1Cov(Xt, Xt−k) = α2

1γk,

and by (6.8), Var(X∗t ) = α2
1γ0 + σ2

e , which is denoted as γ∗0 .
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Thus, Theorem 6.3(1) follows.

Proof of Theorem 6.3(2):

First, by Theorem 6.3(1), we write

γ̂∗ = α2
1γ + op(1) (E.8)

and
Γ̂∗ = α2

1Γ + σ2
eIp + op(1),

where Γ̂∗ =

 γ̂∗0 · · · γ̂∗p−1
...

. . .
...

γ̂∗p−1 · · · γ̂∗0

. Then the naive estimator φ̂∗ is obtained by replacing γ̂k

in (6.6) with γ̂∗k,

φ̂∗ =
{
α2

1Γ + σ2
eIp + op(1)

}−1 {
α2

1γ + op(1)
}

= α2
1

(
α2

1Γ + σ2
eIp
)−1

γ + op(1), (E.9)

and hence φ∗ = α2
1 (α2

1Γ + σ2
eIp)

−1
γ such that φ̂∗

p−→ φ∗ as T →∞.

Again, replacing γ̂k in (6.6) with γ̂∗k gives the naive estimator φ̂∗0

φ̂∗0 =
1

T − p

T∑
t=p

X∗t −

(
p∑

k=1

φ̂∗k

)(
1

T − p

T∑
t=p

X∗t−k

)

= E(X∗t )− E(X∗t )

p∑
k=1

φ̂∗k + op(1)

= α0 + α1E(Xt)− {α0 + α1E(Xt)}
p∑

k=1

{φ∗k + op(1)}+ op(1)

= (1− φ∗T · 1p) (α0 + α1µ) + op(1),

where φ̂k and φk are respectively the kth element of φ̂ and φ, the third step is because
φ̂k = φk + op(1) by (E.9) as well as the model form (6.7), and the last step is due to the
stationarity of the time series {Xt} such that E(Xt) = µ.
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Finally, noting that the native estimator σ̂2∗
ε is given by σ̂2∗

ε = γ̂∗0 − 2φ̂∗Tγ̂∗ + φ̂∗TΓ̂∗φ̂∗

by applying a version similar to (6.6), we obtain that

σ̂2∗
ε = γ̂∗0 − 2φ̂∗Tγ̂∗ + φ̂∗TΓ̂∗φ̂∗

= (α2
1γ

2
0 + σ2

e)− 2α4
1γ

T(α2
1Γ + σ2

eIp)
−1γ

+ α4
1γ

T(α2
1Γ + σ2

eIp)
−1(α2

1Γ + σ2
eIp)(α

2
1Γ + σ2

eIp)
−1γ + op(1)

= α2
1γ0 + σ2

e − α4
1γ

T(α2
1Γ + σ2

eIp)
−1γ + op(1),

where the second step is due to (6.8), (E.8) and (E.9).

Proof of Theorem 6.3(3):

Step 1: We show certain identities before proving Theorem 6.3(3).

1. By model (6.7), we have that

X∗t − µ̂∗ = α0 + α1Xt + et −
1

T

T∑
t=1

(α0 + α1Xt + et)

= α1

(
Xt −

1

T

T∑
t=1

Xt

)
+

(
et −

1

T

T∑
t=1

et

)
= α1(Xt − µ̂) + (et − ē), (E.10)

where the first step is because µ̂∗ = 1
T

∑T
t=1X

∗
t and in the last step ē = 1

T

∑T
t=1 et.

2. For any t and s, we have that

Cov
{

(Xt − µ̂)2, (Xs − µ̂)(es − ē)
}

=E{(Xt − µ̂)2(Xs − µ̂)(es − ē)} − {E(Xt − µ̂)2}E{(Xs − µ̂)(es − ē)}
=E{(Xt − µ̂)2(Xs − µ̂)}E(es − ē)− {E(Xt − µ̂)2}E(Xs − µ̂)E(es − ē)
=0, (E.11)

where the second step is due to the independence of et and Xt, and the last step is by
E(es − ē) = 0.
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3. By the independence of et and es for t 6= s, we have that

Cov {(Xt − µ̂)(et − ē), (Xs − µ̂)(es − ē)}
=E{(Xt − µ̂)(et − ē)(Xs − µ̂)(es − ē)} − E{(Xt − µ̂)(et − ē)}E{(Xs − µ̂)(es − ē)}
=E{(Xt − µ̂)(Xs − µ̂)}E{(et − ē)}E{(es − ē)}

− E{(Xt − µ̂)}E{(et − ē)}E{(Xs − µ̂)}E{(es − ē)}
=0, (E.12)

where the second step is due to the independence of the et and the Xt, and the last step
is by E(es − ē) = 0.

4. For any t, we have that

Var {(Xt − µ̂)(et − ē)}
=E{(Xt − µ̂)2(et − ē)2} − E2{(Xt − µ̂)(et − ē)}
=E{(Xt − µ̂)2}E{(et − ē)2} − E2{(Xt − µ̂)}E2{(et − ē)}
=E{(Xt − µ̂)2}E{(et − ē)2}. (E.13)

5. For any t, we have

lim
T→∞

E{(Xt − µ̂)2}

= lim
T→∞

E{(Xt − µ)2 + (µ− µ̂)2 + 2(Xt − µ)(µ− µ̂)}

=γ0 + lim
T→∞

E{(µ̂− µ)2}+ 2 lim
T→∞

E{(Xt − µ)(µ− µ̂)}

=γ0 + lim
T→∞

E{(µ̂− µ)2} − 2 lim
T→∞

E

[
(Xt − µ){ 1

T

T∑
s=1

(Xs − µ)}

]

=γ0 + lim
T→∞

V ar(µ̂)− 2 lim
T→∞

1

T

T∑
s=1

E{(Xt − µ)(Xs − µ)}

=γ0 + 0− 2 lim
T→∞

1

T

T∑
s=1

γ|s−t|

=γ0, (E.14)

where the third step is due to µ̂ − µ = 1
T

∑
s=1(Xs − µ), and the fourth step is because

E(µ̂−µ) = 0 by stationarity of the time series, the second last step is due to lim
T→∞

V ar(µ̂) =

0 (Brockwell et al., 1991, Theorem 7.1.1.), and the last step due to Condition (R3).
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6. Similar to (E.14), we have that

lim
T→∞

E{(Xt − µ̂)(Xt−p − µ̂)}

= lim
T→∞

E{(Xt − µ+ µ− µ̂)(Xt−p − µ+ µ− µ̂)}

= lim
T→∞

[E{(Xt − µ)(Xt−p − µ)}+ E{(µ− µ̂)(Xt−p − µ)} (E.15)

+E{(µ− µ̂)(Xt − µ)}+ E{(µ− µ̂)(µ− µ̂)}]

=γp + lim
T→∞

1

T

T∑
s=1

(γ|t−s| + γ|t−s−p|) + lim
T→∞

Var(µ̂)

=γp, (E.16)

where the last step is due to Condition (R3) and lim
T→∞

V ar(µ̂) = 0 (Brockwell et al., 1991,

Theorem 7.1.1).

7. For any t, we have

E{(et − ē)2}
=E{e2

t − 2etē+ ē2}

=

{
E(e2

t )−
2

T

T∑
s=1

E(etes) +
1

T 2

T∑
t=1

T∑
s=1

E(etes)

}

=E(e2
t ) +

{
− 2

T
E(etet) +

1

T 2

T∑
t=1

E(e2
t )

}
=
T − 1

T
E(e2

t ) =
T − 1

T
σ2
e , (E.17)

so lim
T→∞

E{(et − ē)2} = σ2
e .

8. By the independence of et and Xt, for any s and t, we have that

Cov{(Xt − µ̂)(et − ē), (es − ē)2}
=E{(Xt − µ̂)(et − ē)(es − ē)2} − E{(Xt − µ̂)(et − ē)}E{(es − ē)2}
=E(Xt − µ̂)E{(et − ē)(es − ē)2} − E(Xt − µ̂)E(et − ē)E(es − ē)2

=0, (E.18)

where the last step is due to E(Xt − µ̂) = 0 and E(et − ē) = 0.

215



9. For any t 6= s, Cov {(et − ē)2, (es − ē)2} = 0; and for t = s,

Var{(et − ē)2}
=E{(et − ē)4} − E2{(et − ē)2}
=E(e4

t )− 4E(e3
t ē) + 6E(e2

t ē
2)− 4E(etē

3) + E(ē4
t )− {E(e2

t )− 2E(etē) + E(ē2)}2

=E(e4
t )−

4

T
E(e4

t ) +

[
6(T − 1)

T 2
{E(e2

t )}2 +
6

T 2
E(e4

t )

]
− 4

T 3
E(e4

t )

+

[
1

T 3
E(e4

t ) +
3(T − 1)

T 3
{E(e2

t )}2

]
−
{
E(e2

t )−
2

T
E(e2

t ) +
1

T
E(e2

t )

}2

, (E.19)

so lim
T→∞

Var{(et − ē)2} = E(e4
t )− {E(e2

t )}2 = E(e4
t )− σ4

e .

10. Similar to the derivation in (E.19), we can show Cov{(et−ē)2, (es−ē)(es+p−ē)} = 0
for s 6= t and s 6= t− p. For a given t,

Cov{(et − ē)2, (et − ē)(et+p − ē)}
=E{(et − ē)3(et+p − ē)} − E{(et − ē)2}E{(et − ē)(et+p − ē)}, (E.20)

which can be derived analogously to the (E.19) that limT→∞E{(et−ē)3(et+p−ē)}−E{(et−
ē)2}E{(et− ē)(et+p− ē)} = E{e3

t et+p}−E{e2
t}E{etet+p} = 0 and similarly lim

T→∞
Cov{(et−

ē)2, (et−p − ē)(et − ē)} = 0.

11. For any t,

Cov {(Xt − µ̂)(et+p − ē), (Xt+p−r − µ̂)(et+p − ē)}
=
[
E
{

(Xt − µ̂)(Xt+p−r − µ̂)(et+p − ē)2
}
− E(Xt − µ̂)E(Xt+p−r − µ̂)E2(et+p − ē)

]
= E {(Xt − µ̂)(Xt+p−r − µ̂)}E

{
(et+p − ē)2

}
= γ|p−r|

(
T − 1

T

)
σ2
e , (E.21)

where the second step is because of E(Xt− µ̂) = 0 and the independence of Xt and et, the
third step is due to (E.17) and (E.15). Hence,

lim
T→∞

Cov {(Xt − µ̂)(et+p − ē), (Xt+p−r − µ̂)(et+p − ē)} = γ|p−r|σ
2
e .

Similarly,

lim
T→∞

Cov {(Xt+p − µ̂)(et − ē), (Xt−r − µ̂)(et − ē)} = γ|p−r|σ
2
e .
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Similarly,

Cov {(Xt − µ̂)(et+p − ē), (Xt+p+r − µ̂)(et+p − ē)}
=
[
E
{

(Xt − µ̂)(Xt+p+r − µ̂)(et+p − ē)2
}

−E(Xt − µ̂)E(Xt+p−r − µ̂)E2(et+p − ē)
]

= E {(Xt − µ̂)(Xt+p+r − µ̂)}E
{

(et − ē)2
}

= γp+r

(
T − 1

T

)
σ2
e , (E.22)

and hence

lim
T→∞

Cov {(Xt − µ̂)(et+p − ē), (Xt+p+r − µ̂)(et+p − ē)} = γp+rσ
2
e .

Similarly,
lim
T→∞

Cov {(Xt+p − µ̂)(et − ē), (Xt+r − µ̂)(et − ē)} = γp+rσ
2
e .

12. By independence assumption between {et}, if t 6= s or p 6= r, we have that

Cov {(et − ē)(et+p − ē), (es − ē)(es+r − ē)} = 0. (E.23)

In addition, by (E.17), we have that

Var {(et − ē)(et+p − ē)}
= E

{
(et − ē)2(et+p − ē)2

}
= E

{
(et − ē)2

}
E
{

(et+p − ē)2
}
,

=

(
T − 1

T

)2

σ4
e , (E.24)

so limT→∞Var {(et − ē)(et+p − ē)} = σ4
e .

Step 2: Now we prove the results in (3).
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1◦. We first show the derivation of q∗100 as follows:

q∗100 = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ̂∗)2,
1

T

T∑
s=1

(X∗s − µ̂∗)2

}

= lim
T→∞

TCov

[
1

T

T∑
t=1

{
α2

1(Xt − µ̂)2 + 2α1(Xt − µ̂)(et − ē) + (et − ē)2
}
,

1

T

T∑
s=1

α2
1(Xs − µ̂)2 + 2α1(Xs − µ̂)(es − ē) + (es − ē)2

]

= α4
1 lim
T→∞

TCov

{
1

T

T∑
t=1

(Xt − µ̂)2,
1

T

T∑
s=1

(Xs − µ̂)2

}

+ lim
T→∞

TCov

{
1

T

T∑
t=1

2α1(Xt − µ̂)(et − ē),
1

T

T∑
s=1

2α1(Xs − µ̂)(es − ē)

}

+ lim
T→∞

TCov

{
1

T

T∑
t=1

(et − ē)2,
1

T

T∑
s=1

(es − ē)2

}

= α4
1q00 + lim

T→∞

4α2
1

T

T∑
t=1

T∑
s=1

Cov {(Xt − µ̂)(et − ē), (Xs − µ̂)(es − ē)}

+ lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov
{

(et − ē)2, (es − ē)2
}

= α4
1q00 + lim

T→∞

4α2
1

T

T∑
t=1

Cov {(Xt − µ̂)(et − ē), (Xt − µ̂)(et − ē)}

+ lim
T→∞

1

T

T∑
t=1

Cov
{

(et − ē)2, (et − ē)2
}

= α4
1q00 + 4α2

1E
{

(Xt − µ̂)2(et − ē)2
}

+ E(e4
t )−

{
E(e2

t )
}2

= α4
1q00 + 4α2

1γ0σ
2
e + E(e4

t )− σ4
e ,

where the second step is due to (E.10), the third step is because of (E.11), (E.18), and the

definition q00 = limT→∞ TCov
{

1
T

∑T
t=1(Xt − µ̂)2, 1

T

∑T
s=1(Xs − µ̂)2

}
, the fifth step is due

to (E.12) and (E.19), and the sixth step is because (E.13) and (E.19), and the last step is
because (E.17) and (E.18).
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2◦. We derive the value of q∗10p:

q∗10p = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ̂∗)2,
1

T − p

T−p∑
s=1

(X∗s − µ̂∗)(X∗s+p − µ̂∗)

}

= lim
T→∞

TCov

[
1

T

T∑
t=1

{
α2
1(Xt − µ̂)2 + 2α1(Xt − µ̂)(et − ē) + (et − ē)2

}
,

1

T − p

T−p∑
s=1

α2
1(Xs − µ̂)(Xs+p − µ̂) + α1(Xs − µ̂)(es+p − ē)

+ α1(Xs+p − µ̂)(es − ē) + (es − ē)(es+p − ē)

]

= α4
1 lim
T→∞

TCov

{
1

T

T∑
t=1

(Xt − µ̂)2,
1

T − p

T−p∑
s=1

(Xs − µ̂)(Xs+p − µ̂)

}

+ lim
T→∞

TCov

{
1

T

T∑
t=1

2α1(Xt − µ̂)(et − ē),
1

T − p

T−p∑
s=1

α1(Xs − µ̂)(es+p − ē)

}

+ lim
T→∞

TCov

{
1

T

T∑
t=1

2α1(Xt − µ̂)(et − ē),
1

T − p

T−p∑
s=1

α1(Xs+p − µ̂)(es − ē)

}

+ lim
T→∞

TCov

{
1

T

T∑
t=1

(et − ē)2,
1

T − p

T−p∑
s=1

(es − ē)(es+p − ē)

}

= α4
1q0p + lim

T→∞

2α2
1

T − p

T∑
t=1

T−p∑
s=1

Cov {(Xt − µ̂)(et − ē), (Xs − µ̂)(es+p − ēs)}

+ lim
T→∞

2α2
1

T − p

T∑
t=1

T−p∑
s=1

Cov {(Xt − µ̂)(et − ē), (Xs+p − µ̂)(es − ē)}

= α4
1q0p + lim

T→∞

2α2
1

T − p

T∑
t=p

(s=t−p)

Cov {(Xt − µ̂)(et − ē), (Xt−p − µ̂)(et − ē)}

+ lim
T→∞

2α2
1

T − p

T−p∑
t=1
(s=t)

Cov {(Xt − µ̂)(et − ē), (Xt+p − µ̂)(et − ē)}

= α4
1q0p + 2α2

1E
{

(Xt − µ̂)(Xt−p − µ̂)(et − ē)2
}

+ 2α2
1E
{

(Xt − µ̂)(Xt+p − µ̂)(et − ē)2
}

= α4
1q0p + 4α2

1γpσ
2
e ,

where the second step is due to (E.10), the third step is because of (E.11) and (E.18), the

fourth step is by definition that q0p = lim
T→∞

TCov
{

1
T

∑T
t=1(Xt − µ̂)2, 1

T−p
∑T−p

s=1 (Xs − µ̂)(Xs+p − µ̂)
}

and (E.20), the fifth step is due to (E.12), and the last step is result from (E.17) and (E.15).
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3◦. We derive q∗1pr for p > 0, r > 0 and p 6= r:

q∗1pr = lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(X∗t − µ̂∗)(X∗t+p − µ̂∗),
1

T − r

T−r∑
s=1

(X∗s − µ̂∗)(X∗s+r − µ̂∗)

}

= lim
T→∞

TCov

[
1

T − p

T−p∑
t=1

{
α2
1(Xt − µ̂)(Xt+p − µ̂) + α1(Xt − µ̂)(et+p − ē)

+α1(Xt+p − µ̂)(et − ē) + (et − ē)(et+p − ē)} ,

1

T − r

T−r∑
s=1

α2
1(Xs − µ̂)(Xs+r − µ̂) + α1(Xs − µ̂)(es+r − ē)

+ α1(Xs+r − µ̂)(es − ē) + (es − ē)(es+r − ē)

]

= α4
1 lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(Xt − µ̂)(Xt+p − µ̂),
1

T − r

T−r∑
s=1

(Xs − µ̂)(Xs+r − µ̂)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt − µ̂)(et+p − ē),
1

T − r

T−r∑
s=1

α1(Xs − µ̂)(es+r − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt − µ̂)(et+p − ē),
1

T − r

T−r∑
s=1

α1(Xs+r − µ̂)(es − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt+p − µ̂)(et − ē),
1

T − r

T−r∑
s=1

α1(Xs − µ̂)(es+r − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt+p − µ̂)(et − ē),
1

T − r

T−r∑
s=1

α1(Xs+r − µ̂)(es − ē)

}

= α4
1qpr + α2

1 lim
T→∞

T

(T − p)(T − r)

T−p∑
t=max(1,r−p+1)

(s=t+p−r)

Cov {(Xt − µ̂)(et+p − ē), (Xt+p−r − µ̂)(et+p − ē)}

+ α2
1 lim
T→∞

T

(T − p)(T − r)

T−p−r∑
t=1

(s=t+p)

Cov {(Xt − µ̂)(et+p − ē), (Xt+p+r − µ̂)(et+p − ē)}

+ α2
1 lim
T→∞

T

(T − p)(T − r)

T−p∑
t=r+1
(s=t−r)

Cov {(Xt+p − µ̂)(et − ē), (Xt−r − µ̂)(et − ē)}

+ α2
1 lim
T→∞

T

(T − p)(T − r)

T−max(p,r)∑
t=1
(s=t)

Cov {(Xt+p − µ̂)(et − ē), (Xt+r − µ̂)(et − ē)}

= α4
1qpr + 2α2

1σ
2
e(γ|p−r| + γp+r). (E.25)
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where the second step is due to (E.10), the third step is because of (E.11) and a similar
version to (E.18), the fourth step is because (E.23) and by the definition that

qpr = limT→∞ TCov
{

1
T−p

∑T−p
t=1 (Xt − µ̂)(Xt+p − µ̂), 1

T−r
∑T−r

s=1 (Xs − µ̂)(Xs+r − µ̂)
}

, and

the last step is from (E.21) and (E.22).

4◦. Finally, we present the derivation of q∗1pp for p 6= 0,

q∗1pp = lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(X∗t − µ̂∗)(X∗t+p − µ̂∗),
1

T − p

T−p∑
s=1

(X∗s − µ̂∗)(X∗s+p − µ̂∗)

}

= lim
T→∞

TCov

[
1

T − p

T−p∑
t=1

{
α2
1(Xt − µ̂)(Xt+p − µ̂) + α1(Xt − µ̂)(et+p − ē)

+α1(Xt+p − µ̂)(et − ē) + (et − ē)(et+p − ē)} ,

1

T − p

T−p∑
s=1

α2
1(Xs − µ̂)(Xs+p − µ̂) + α1(Xs − µ̂)(es+p − ē)

+ α1(Xs+p − µ̂)(es − ē) + (es − ē)(es+p − ē)

]

= α4
1 lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(Xt − µ̂)(Xt+p − µ̂),
1

T − p

T−p∑
s=1

(Xs − µ̂)(Xs+p − µ̂)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt − µ̂)(et+p − ē),
1

T − p

T−p∑
s=1

α1(Xs − µ̂)(es+p − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt − µ̂)(et+p − ē),
1

T − p

T−p∑
s=1

α1(Xs+p − µ̂)(es − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt+p − µ̂)(et − ē),
1

T − p

T−p∑
s=1

α1(Xs − µ̂)(es+p − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

α1(Xt+p − µ̂)(et − ē),
1

T − p

T−p∑
s=1

α1(Xs+p − µ̂)(es − ē)

}

+ lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(et − ē)(et+p − ē),
1

T − p

T−p∑
s=1

(es − ē)(es+p − ē)

}
,

where the second step is due to (E.10), the third step is because of (E.11) and a similar
version to (E.18),

Because (E.23) and by the definition that

qpp = lim
T→∞

TCov

{
1

T − p

T−p∑
t=1

(Xt − µ̂)(Xt+p − µ̂),
1

T − p

T−p∑
s=1

(Xs − µ̂)(Xs+p − µ̂)

}
,
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we have that

q∗1pp = α4
1qpp + α2

1 lim
T→∞

T

(T − p)2

T−p∑
t=1
s=t

Cov {(Xt − µ̂)(et+p − ē), (Xt − µ̂)(et+p − ē)}

+ α2
1 lim
T→∞

T

(T − p)2

T−2p∑
t=1
s=t+p

Cov {(Xt − µ̂)(et+p − ē), (Xt+2p − µ̂)(et+p − ē)}

+ α2
1 lim
T→∞

T

(T − p)2

T−p∑
t=1+p
s=t−p

Cov {(Xt+p − µ̂)(et − ē), (Xt−p − µ̂)(et − ē)}

+ α2
1 lim
T→∞

T

(T − p)2

T∑
t=1
s=t

Cov {(Xt+p − µ̂)(et − ē), (Xt+p − µ̂)(et − ē)}

+ α2
1 lim
T→∞

T

(T − p)2
Var {(et − ē)(et+p − ē)}

= α4
1qpp + 2α2

1σ
2
e(γ0 + γ2p) + σ4

e , (E.26)

where the last step is because of (E.24), and (E.21) and (E.22) with q = p.

E.5 The proof of Theorem 6.4

Proof of Theorem 6.4(1):

For k = 1, . . . , p, applying the weak law of large numbers to γ̂∗k, we obtain that as
T → ∞, the estimator γ̂∗k converges in probability to Cov(X∗t , X

∗
t−k), which is denoted as

γ∗k.

Next, we examine γk. By the form of measurement error model (6.9), we have that for
0 < k < t,

Cov(X∗t , X
∗
t−k)

= Cov(β0Xtut, β0Xt−kut−k)

= β2
0{E(XtutXt−kut−k)− E(Xtut)E(Xt−kut−k)}

= β2
0{E(ut)E(ut−k)Cov(Xt, Xt−k)}

= β2
0{Cov(Xt, Xt−k)} = β2

0γk,
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and by (6.10), Var(X∗t ) = β2
0 {(σ2

u + 1)γ0 + σ2
uµ

2}, which is denoted as γ∗0 . Thus, Theo-
rem 6.4(1) follows.

Proof of Theorem 6.4(2):

First, by Theorem 6.4(1), we write

γ̂∗ = β2
0γ + op(1)

and

Γ̂∗ =

β
2
0(σ2

u + 1)γ0 + β0σ
2
uµ

2 β2
0γ1 · · · β2

0γp−1
...

. . .
...

β2
0γp−1 β2

0γp−2 · · · β2
0(σ2

u + 1)γ0 + β0σ
2
uµ

2

+ op(1)

= β2
0

{
Γ + σ2

u(γ0 + µ2)Ip
}

+ op(1),

where Γ̂∗ =

 γ̂∗0 · · · γ̂∗p−1
...

. . .
...

γ̂∗p−1 · · · γ̂∗0

. Then the naive estimator φ̂∗ is obtained by replacing γ̂k

in (6.6) with γ̂∗k,

φ̂∗ = [β2
0

{
Γ + σ2

u(γ0 + µ2)Ip
}

+ op(1)]−1{β2
0γ + op(1)} =

{
Γ + σ2

u(γ0 + µ2)Ip
}−1

γ + op(1),
(E.27)

and hence φ∗ = {Γ + σ2
u(γ0 + µ2)Ip}−1

γ such that φ̂∗
p−→ φ∗ as T →∞.

Again, by replacing γ̂k in (6.6) with γ̂∗k gives the naive estimator φ̂∗0

φ̂∗0 =
1

T − p

T∑
t=p

X∗t −

(
p∑

k=1

φ̂∗k

)(
1

T − p

T∑
t=p

X∗t−k

)

= E(X∗t )− E(X∗t )

p∑
k=1

φ̂∗k + op(1)

= β0E(Xt)− β0E(Xt)

p∑
k=1

{φ∗k + op(1)}+ op(1),

= β0(1− φ∗T · 1p)µ+ op(1),
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where φ̂k and φk are respectively the kth element of φ̂ and φ, the third step is because
φ̂k = φk + op(1) by (E.27) as well as the model form (6.9), and the last step is due to the
stationarity of the time series {Xt} such that E(Xt) = µ.

Finally, noting that the native estimator σ̂ε
∗2 is given by σ̂∗2ε = γ̂∗0 − 2φ̂∗Tγ̂∗ + φ̂∗TΓ̂∗φ̂∗

by applying a version similar to (6.6), we obtain that

σ̂∗2ε =γ̂∗0 − 2φ̂∗Tγ̂∗ + φ̂∗TΓ̂∗φ̂∗

=β2
0

{
(σ2

u + 1)γ0 + σ2
uµ

2
}
− 2β2

0γ
T{Γ + σ2

u(γ0 + µ2)I}−1γ

+ β2
0γ

T{Γ + σ2
u(γ0 + µ2)I}−1{Γ + σ2

u(γ0 + µ2)I}{Γ + σ2
u(γ0 + µ2)I}−1γ + op(1)

=β2
0

{
(σ2

u + 1)γ0 + σ2
uµ

2
}
− β2

0γ
T{Γ + σ2

u(γ0 + µ2)I}−1γ + op(1).

Proof of Theorem 6.4(3):

Step 1: We show that as T →∞,

√
T

(
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)−
1

T − p

T−p∑
t=1

(X∗t − µ̂∗)(X∗t+p − µ̂∗)

)
= op(1). (E.28)

With some simple algebra,

√
T

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)−
1

T − p

T−p∑
t=1

(X∗t − µ̂∗)(X∗t+p − µ̂∗)

}

=
√
T

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)−
1

T − p

T−p∑
t=1

(X∗t − µ∗ + µ∗ − µ̂∗)(X∗t+p − µ∗ + µ∗ − µ̂∗)

}

=
√
T

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)−
1

T − p

T−p∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)

− 1

T − p

T−p∑
t=1

(X∗t − µ∗)(µ∗ − µ̂∗)−
1

T − p

T−p∑
t=1

(X∗t+p − µ∗)(µ∗ − µ̂∗)−
1

T − p

T−p∑
t=1

(µ∗ − µ̂∗)2
}

=
√
T

(
T − p
T
− 1

)
1

T − p

T−p∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗) +
1√
T

T∑
t=T−p+1

(X∗t − µ∗)(X∗t+p − µ∗)

+
√
T (µ̂∗ − µ∗)

(
1

T − p

T−p∑
t=1

X∗t +
1

T − p

T−p∑
t=1

X∗t+p − µ̂∗ − µ∗
)

(E.29)

, I1 + I2 + I3.
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Now we examine each term in (E.29) as T →∞ separately. First,

I1 = − p√
T

1

T − p

T−p∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗)

= − p√
T
{γ∗p + op(1)} = op(1) as T →∞. (E.30)

Next, we examine the second term I2 in (E.29). Since T−
1
2E[
∑T

t=T−p+1(X∗t −µ∗)(X∗t+p−
µ∗)] ≤ T−

1
2pVar(Xt) (Brockwell et al., 1991, Page 230) and T−

1
2pVar(Xt)→ 0 as T →∞,

we have that

I2 =
1√
T

T∑
t=T−p+1

(X∗t − µ∗)(X∗t+p − µ∗) = op(1). (E.31)

Finally, we examine I3 in (E.29).

1

T − p

T−p∑
t=1

X∗t+p − µ̂∗

=
1

T − p

T−p∑
t=1

X∗t+p −
1

T

p∑
t=1

X∗t −
1

T

T∑
t=p+1

X∗t

=
1

T − p

T−p∑
t=1

X∗t+p −
1

T

p∑
t=1

X∗t −
1

T

T−p∑
t=1

X∗t+p

=(
1

T − p
− 1

T
)

T−p∑
t=1

X∗t+p −
1

T

p∑
t=1

X∗t

=op(1) as T →∞, (E.32)

where µ̂∗ = 1
T

∑T
t=1 X

∗
t , and 1

T

∑p
t=1 X

∗
t = op(1) because E( 1

T

∑p
t=1X

∗
t ) = 1

T
pE(Xt) → 0

as T →∞. In addition, by the weak law of large numbers,

1

T − p

T−p∑
t=1

X∗t − µ∗
p−→ 0 as T →∞. (E.33)

By condition (R2) and the central limit theorem for strictly stationary p-dependent se-
quences (Brockwell et al., 1991, Theorem 6.4.2), we have

√
T (µ̂∗ − µ∗) = Op(1). (E.34)
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Therefore, applying (E.30), (E.31), (E.32), (E.33) and (E.34) yields (E.28).

Step 2: We now show that as T → ∞, the asymptotic covariance matrix of√
T
{

(γ̂∗0 , γ̂
∗T)T − (γ∗0 , γ

∗T)T
}

equals

lim
T→∞

Cov

{
1√
T

T∑
t=1

(X∗t − µ∗)(X∗t+r − µ∗),
1√
T

T∑
s=1

(X∗s − µ∗)(X∗s+q − µ∗)

}
.

For k ≤ p
√
T (γ̂k − γk)

=
√
T

{
1

T − k

T−k∑
t=1

(X∗t − µ̂∗)(X∗t+k − µ̂∗)− γk

}

=
√
T

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+k − µ∗)− γk

}

+
√
T

{
1

T − k

T−k∑
t=1

(X∗t − µ̂∗)(X∗t+k − µ̂∗)−
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+k − µ∗)

}

=

{
1√
T

T∑
t=1

(X∗t − µ∗)(X∗t+k − µ∗)− γk

}
+ op(1),

where the last step is due to (E.28).

Hence, the (r, q) element of matrix lim
T→∞

Var
(√

T
{

(γ̂∗0 , γ̂
∗T)T − (γ∗0 , γ

∗T)T
})

is given

by

lim
T→∞

Cov

{
1√
T

T∑
t=1

(X∗t − µ∗)(X∗t+r − µ∗),
1√
T

T∑
s=1

(X∗s − µ∗)(X∗s+q − µ∗)

}
.

Step 3: We show certain identities to be used for proving Theorem 6.4(3):

1. By model (6.9), we have that

X∗t − µ∗ = β0Xtut − β0µ

= β0Xtut − β0utµ+ β0utµ− β0µ

= β0{ut(Xt − µ) + µ(ut − 1)}, (E.35)
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where the first step is because µ∗ = E(β0Xtut) = β0E(Xt)E(ut) = β0µ.

2. We have that

lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, u2

s(Xs − µ)2
}

= lim
T→∞

1

T

T∑
t=1

T∑
s=1

[
E{u2

tu
2
s(Xt − µ)2(Xs − µ)2} − E(u2

t )E(u2
s)E{(Xt − µ)2}E{(Xs − µ)2}

]
,

= lim
T→∞

1

T

T∑
t=1

T∑
s=1
s 6=t

[
E(u2

tu
2
s)E{(Xt − µ)2(Xs − µ)2} − E(u2

t )E(u2
s)E{(Xt − µ)2}E{(Xs − µ)2}

]

+ lim
T→∞

1

T

T∑
t=1
s=t

[
E(u4

t )E{(Xt − µ)4} − E2(u2
t )E

2{(Xt − µ)2}
]
,

= lim
T→∞

1

T

T∑
t=1

T∑
s=1
s 6=t

[
E(u2

t )E(u2
s)Cov{(Xt − µ)2, (Xs − µ)2}

]
+ lim

T→∞

1

T

T∑
t=1
s=t

E2(u2
t )Var{(Xt − µ)2}

+ lim
T→∞

1

T

T∑
t=1
s=t

{
E(u4

t )− E2(u2
t )
}
E{(Xt − µ)4}

= lim
T→∞

1

T

T∑
t=1

T∑
s=1

[
E(u2

t )E(u2
s)Cov{(Xt − µ)2, (Xs − µ)2}

]
(E.36)

+ lim
T→∞

1

T

T∑
t=1

{
E(u4

t )− E2(u2
t )
}
E{(Xt − µ)4}

=(σ2
u + 1)2q00 + {E(u4

t )− (σ2
u + 1)2}E{(Xt − µ)4}, (E.37)

where the second and third step is due to the independence between ut and Xt. In the

last step, we use the definition q00 = limT→∞
1
T

T∑
t=1

T∑
s=1

Cov {(Xt − µ)2, (Xs − µ)2}, E(u2
t ) =

σ2
u + 1, and the fact that E(u4

t ) and E{(Xt− µ)4} are time-independent which are derived
from Conditions (R1) and (R2) together with independence between ut and Xt.
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3. Similar to the derivation in (E.36), now we derive the summation of Cov{β2
0u

2
t (Xt−

µ)2, β2
0usus+p(Xs − µ)(Xs+p − µ)} for p > 0,

lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov{β2
0u

2
t (Xt − µ)2, β2

0usus+p(Xs − µ)(Xs+p − µ)}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

[
E(u2

tusus+p)E{(Xt − µ)2(Xs − µ)(Xs+p − µ)}

−E(u2
t )E(us)E(us+p)E(Xt − µ)2E{(Xs − µ)(Xs+p − µ)}

]
= lim

T→∞

β4
0

T

T∑
t=1

T∑
s=1

E(u2
t )E(us)E(us+p)Cov{(Xt − µ)2, (Xs − µ)(Xs+p − µ)}

+ lim
T→∞

β4
0

T

T∑
t=1
s=t

{
E(u3

t )E(ut+p)− E(u2
t )E(ut)E(ut+p)

}
E{(Xt − µ)3(Xt+p − µ)}

+ lim
T→∞

β4
0

T

T∑
t=1
s=t−p

{
E(u3

t )E(ut−p)− E(u2
t )E(ut)E(ut−p)

}
E{(Xt − µ)3(Xt−p − µ)}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

(σ2
u + 1)Cov{(Xt − µ)2, (Xs − µ)(Xs+p − µ)}

+ β4
0

{
E(u3

t )− E(u2
t )
}
E{(Xt − µ)3(Xt+p − µ)}

+ β4
0

{
E(u3

t )− E(u2
t )
}
E{(Xt − µ)3(Xt−p − µ)},

= β4
0

{
E(u3

t )− (σ2
u + 1)

} [
E{(Xt − µ)3(Xt+p − µ)}+ E{(Xt − µ)3(Xt−p − µ)}

]
+ β4

0q0p(σ
2
u + 1), (E.38)

where the first step is because Xt and ut are independent, and the second last step is due
to E(u2

t ) = V ar(ut)+E(u2
t ) = σ2

u+1 and is derived similar to the second and third step in

(E.36), and the last step is because of the definition that q0p = limT→∞
1
T

T∑
t=1

T∑
s=1

Cov{(Xt−

µ)2, (Xs−µ)(Xs+p−µ)} and the fact that E{(Xt−µ)3(Xt+p−µ)}, E{(Xt−µ)3(Xt−p−µ)}
and E(u3

t ) are time-independent, derived from Conditions (R1) and (R2) together with the
independence between ut and Xt.
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4. Analogous to the derivation in (E.36) and (E.38), we derive the summation of
Cov{utut+p(Xt − µ)(Xt+p − µ), usus+r(Xs − µ)(Xs+r − µ)} for p > 0, r > 0 and p 6= r,

β4
0 lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov{utut+p(Xt − µ)(Xt+p − µ), usus+r(Xs − µ)(Xs+r − µ)}

=β4
0 lim
T→∞

1

T

T∑
t=1

T∑
s=1

E(utut+pusus+r)Cov{(Xt − µ)(Xt+p − µ), (Xs − µ)(Xs+r − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t

{
E(u2

t )E(ut+p)E(ut+r)− 1
}
E{(Xt − µ)2(Xt+p − µ)(Xt+r − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t+p

{
E(u2

t+p)E(ut)E(ut+p+r)− 1
}
E{(Xt − µ)(Xt+p − µ)2(Xt+p+r − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t−r

{
E(u2

t )E(ut+p)E(ut−r)− 1
}
E{(Xt−r − µ)(Xt − µ)2(Xt+p − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1

s=t+p−r

{
E(u2

t+p)E(ut)E(ut+p−r)− 1
}
E{(Xt − µ)(Xt+p−r − µ)Xt+p − µ)2}

=β4
0qpr + β4

0σ
2
uE{(Xt − µ)2(Xt+p − µ)(Xt+r − µ)}

+ β4
0σ

2
uE{(Xt − µ)(Xt+p − µ)2(Xt+p+r − µ)}

+ β4
0σ

2
uE{(Xt−r − µ)(Xt − µ)2(Xt+p − µ)}

+ β4
0σ

2
uE{(Xt − µ)(Xt+p−r − µ)(Xt+p − µ)2}, (E.39)

where the third step is derived analogously to the second step of (E.38), and E(utut+pusus+r) =

1, and the last step is due to the definition qpr = limT→∞
1
T

T∑
t=1

T∑
s=1

Cov{(Xt − µ)(Xt+p −

µ), (Xs − µ)(Xs+r − µ)} and the fact that E{(Xt − µ)2(Xt+p − µ)(Xt+r − µ)}, E{(Xt −
µ)(Xt+p − µ)2(Xt+p+r − µ)}, E{(Xt−r − µ)(Xt − µ)2(Xt+p − µ)}, and E{(Xt − µ)(Xt+p −
µ)2(Xt+2p − µ)} are time-independent derived from Conditions (R1) and (R2).
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5. Similar to the derivation in (E.36), (E.38), and (E.39), we derive the summation of
Cov{utut+p(Xt − µ)(Xt+p − µ), usus+p(Xs − µ)(Xs+p − µ)} for p > 0,

β4
0 lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov{utut+p(Xt − µ)(Xt+p − µ), usus+p(Xs − µ)(Xs+p − µ)}

= β4
0 lim
T→∞

1

T

T∑
t=1

T∑
s=1

E(ut)E(ut+p)E(us)E(us+p)Cov{(Xt − µ)(Xt+p − µ), (Xs − µ)(Xs+p − µ)

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t

{
E(u2

t )E(u2
t+p)− 1

}
Var{(Xt − µ)(Xt+p − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t+p

{
E(u2

t+p)E(ut)E(ut+2p)− 1
}
E{(Xt − µ)(Xt+p − µ)2(Xt+2p − µ)}

+ β4
0 lim
T→∞

1

T

T∑
t=1
s=t−p

{
E(u2

t )E(ut−p)E(ut+p)− 1
}
E{(Xt−p − µ)(Xt − µ)2(Xt+p − µ)}

= β4
0qpp + β4

0(σ4
u + 2σ2

u)Var{(Xt − µ)(Xt+p − µ)}+ 2β4
0E{(Xt − µ)(Xt+p − µ)2(Xt+2p − µ)},

(E.40)

where the last step is by the definition qpp = limT→∞
1
T

T∑
t=1

T∑
s=1

Cov{(Xt−µ)(Xt+p−µ), (Xs−

µ)(Xs+p−µ)} and E{(Xt−µ)(Xt+p−µ)2(Xt+2p−µ)} = E{(Xt−p−µ)(Xt−µ)2(Xt+p−µ)}
due to the stationarity of the time series and the fact that Var{(Xt − µ)(Xt+p − µ)} and
E{(Xt − µ)(Xt+p − µ)2(Xt+2p − µ)} are time-independent, resulted from the Conditions
(R1) and (R2).

6. For any t, s and p, we have that

Cov{(Xt − µ)(Xt−p − µ), (Xs − µ)}
=E{(Xt − µ)(Xt−p − µ)(Xs − µ)} − E{(Xt − µ)(Xt−p − µ)}E(Xs − µ)

=E{(Xt − µ)(Xt−p − µ)(Xs − µ)}, (E.41)

where the last step is because E(Xs − µ) = 0.
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7. For any t and s, we have that

Cov{ut(ut − 1)(Xt − µ), us(us − 1)(Xs − µ)}
=E{ut(ut − 1)(Xt − µ)us(us − 1)(Xs − µ)} − E{ut(ut − 1)(Xt − µ)}E{us(us − 1)(Xs − µ)}
=E{ut(ut − 1)(Xt − µ)us(us − 1)(Xs − µ)}
=E{ut(ut − 1)us(us − 1)}E{(Xt − µ)(Xs − µ)}, (E.42)

where the second step is because of the independence between ut and Xt and that E(Xt−
µ) = 0. Then, E{ut(ut − 1)us(us − 1)} = σ4

u for t 6= s and E{u2
t (ut − 1)2} = E(u4

t ) −
2E(u3

t ) + σ2
u + 1 for any t.

By (E.42), we have that

lim
T→∞

1

T

T∑
t=1

T∑
s=1

Cov {ut(ut − 1)(Xt − µ), us(us − 1)(Xs − µ)}

= lim
T→∞

1

T

T∑
t=1

T∑
s=1

E{ut(ut − 1)us(us − 1)}E{(Xt − µ)(Xs − µ)}

= lim
T→∞

1

T

T∑
t=1

T∑
s=1

σ4
uE{(Xt − µ)(Xs − µ)}

+ lim
T→∞

1

T

T∑
t=1
s=t

{
E(u4

t )− 2E(u3
t ) + σ2

u + 1− σ4
u

}
E{(Xt − µ)2}

=σ4
u

∞∑
h=−∞

γh +
{
E(u4

t )− 2E(u3
t ) + σ2

u + 1− σ4
u

}
γ0, (E.43)

where the last is because limT→∞
1
T

∑T
t=1

∑T
s=1E{(Xt−µ)(Xs−µ)} =

∑∞
h=−∞ γh (Brock-

well et al., 1991, Theorem 7.1.1).

8. For any t, s and p > 0, we have that

Cov{ut(ut − 1)(Xt − µ), us+p(us − 1)(Xs+p − µ)}
=E{ut(ut − 1)(Xt − µ)us+p(us − 1)(Xs+p − µ)}

− E{ut(ut − 1)(Xt − µ)}E{us+p(us − 1)(Xs+p − µ)}
=E{ut(ut − 1)us+p(us − 1)}E{(Xt − µ)(Xs+p − µ)}
=E{ut(ut − 1)us+p(us − 1)}γ|s+p−t|, (E.44)
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where the second step is because of the independence between ut and Xt and that E(Xt−
µ) = 0. Then, E{ut(ut − 1)us+p(us − 1)} = 0 for t 6= s and E{ut(ut − 1)2ut+p} =
E{ut(ut − 1)2} = E{(ut − 1)3}+ σ2

u for any s = t.

9. By independence of ut and us, for t 6= s, we have that

Cov{u2
t (Xt − µ)2, (us − 1)2} = 0, (E.45)

and for any t,

Cov{u2
t (Xt − µ)2, (ut − 1)2}

=E{u2
t (ut − 1)2(Xt − µ)2} − E{u2

t (Xt − µ)2}E{(ut − 1)2}
=
[
E{u2

t (ut − 1)2} − E(u2
t )E(ut − 1)2

]
E{(Xt − µ)2}

=
{
E(u4

t )− 2E(u3
t ) + σ2

u + 1− σ4
u − σ2

u

}
γ0

=
{
E(u4

t )− 2E(u3
t ) + 1− σ4

u

}
γ0. (E.46)

10. By independence of ut and us, for s 6= t, s 6= t+ p and any p, we have that

Cov{utut+p(Xt − µ)(Xt+p − µ), (us − 1)2} = 0. (E.47)

For any t and p > 0,

Cov{utut+p(Xt − µ)(Xt+p − µ), (ut − 1)2}
=E{utut+p(ut − 1)2(Xt − µ)(Xt+p − µ)} − E{utut+p(Xt − µ)(Xt+p − µ)}E{(ut − 1)2},
=
[
E{utut+p(ut − 1)2} − E(utut+p)E{(ut − 1)2}

]
E{(Xt − µ)(Xt+p − µ)}

=E
{

(ut − 1)3
}
γp, (E.48)

and
Cov{utut−p(Xt − µ)(Xt−p − µ), (ut − 1)2} = E

{
(ut − 1)3

}
γp.

11. For any t and s, and r 6= p and r > 0, we have that

Cov{utut+p(Xt − µ)(Xt+p − µ), (us − 1)(us+r − 1)} = 0. (E.49)

By independence of ut and us, for t 6= s and any p, we have that

Cov{utut+p(Xt − µ)(Xt+p − µ), (us − 1)(us+p − 1)} = 0, (E.50)
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and for any t and p > 0,

Cov{utut+p(Xt − µ)(Xt+p − µ), (ut − 1)(ut+p − 1)}
=E{utut+p(ut − 1)(tt+p − 1)(Xt − µ)(Xt+p − µ)} (E.51)

− E{utut+p(Xt − µ)(Xt+p − µ)}E{(ut − 1)(ut+p − 1)}
=E{ut(ut − 1)}E{ut+p(ut+p − 1)}E{(Xt − µ)(Xt+p − µ)}
=σ4

uγp. (E.52)

12. For any t, we have that

Cov{ut(ut − 1)(Xt − µ), (us − 1)2}
= E{ut(ut − 1)(Xt − µ)(us − 1)2} − E{ut(ut − 1)(Xt − µ)}E{(us − 1)2}
=
[
E{ut(ut − 1)(us − 1)2} − E{ut(ut − 1)}E{(us − 1)2}

]
E(Xt − µ) = 0, (E.53)

where the last step is because E(Xt − µ) = 0.

13. By independence assumption between {ut}, if t 6= s or p 6= r, we have that

Cov {(ut − 1)(ut+p − 1), (us − 1)(us+r − 1)} = 0. (E.54)

In addition, for any t and p we have that

Var {(ut − 1)(ut+p − 1)}
= E

{
(ut − 1)2(ut+p − 1)2

}
= E

{
(ut − 1)2

}
E
{

(ut+p − 1)2
}

= σ4
u, (E.55)

and for any t, we have that

Var(ut − 1)2

=E{(ut − 1)4} − E2{(ut − 1)2}
=E{(ut − 1)4} − σ4

u. (E.56)

Step 4: Now we prove the results in (3).
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1◦. We first show the derivation of q∗200 as follows:

q∗200 = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ∗)2,
1

T

T∑
s=1

(X∗s − µ∗)2

}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2 + 2µut(ut − 1)(Xt − µ) + µ2(ut − 1)2,

u2
s(Xs − µ)2 + 2µus(us − 1)(Xs − µ) + µ2(us − 1)2

}
= lim

T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, u2

s(Xs − µ)2
}

+ lim
T→∞

4µβ4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, us(us − 1)(Xs − µ)

}
+ lim

T→∞

2µ2β4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, (us − 1)2

}
+ lim

T→∞

4µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut − 1)(Xt − µ), us(us − 1)(Xs − µ)}

+ lim
T→∞

µ4β4
0

T

T∑
t=1

T∑
s=1

Cov
{

(ut − 1)2, (us − 1)2
}
,

= β4
0(σ2

u + 1)2q0 + β4
0{E(u4

t )− (σ2
u + 1)2}E{(Xt − µ)4}

+ 4µβ4
0σ

2
u(σ

2
u + 1)v00 + 4µβ4

0{E(u4
t )− E(u3

t )− σ2
u(σ

2
u + 1)}E{(Xt − µ)3}

+ 2µ2β4
0

{
E(u4

t )− 2E(u3
t ) + 1− σ4

u

}
γ0

+ 4µ2β4
0

[
σ4
u

∞∑
h=−∞

γh +
{
E(u4

t )− 2E(u3
t ) + σ2

u + 1− σ4
u

}
γ0

]
+ µ4β4

0

[
E{(ut − 1)4} − σ4

u

]
,

where the second step is due to (E.35), the third step is because of (E.53), the last step is
by (E.36), (E.41), (E.43), (E.45), (E.46), and (E.56).
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2◦. Then we derive the value of q∗20p:

q∗20p = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ∗)2,
1

T

T∑
s=1

(X∗s − µ∗)(X∗s+p − µ∗)

}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2 + 2µut(ut − 1)(Xt − µ) + µ2(ut − 1)2,

usus+p(Xs − µ)(Xs+p − µ) + µus(us+p − 1)(Xs − µ)

+µus+p(us − 1)(Xs+p − µ) + µ2(us − 1)(us+p − 1)
}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, usus+p(Xs − µ)(Xs+p − µ)

}
+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov
{
u2
t (Xt − µ)2, us(us+p − 1)(Xs − µ) + us+p(us − 1)(Xs+p − µ)

}
+ lim
T→∞

2µβ4
0

T

T∑
t=1

T∑
s=1

Cov {usus+p(Xs − µ)(Xs+p − µ), ut(ut − 1)(Xt − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

[
Cov

{
u2
t (Xt − µ)2, (us − 1)(us+p − 1)

}
+ Cov

{
(ut − 1)2, usus+p(Xs − µ)(Xs+p − µ)

}]
+ lim
T→∞

2µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut − 1)(Xt − µ), us(us+p − 1)(Xs − µ)}

+ lim
T→∞

2µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut − 1)(Xt − µ), us+p(us − 1)(Xs+p − µ)}

+ lim
T→∞

µ4β4
0

T

T∑
t=1

T∑
s=1

Cov
{

(ut − 1)2, (us − 1)(us+p − 1)
}
,

= β4
0q0p(σ

2
u + 1) + β4

0

{
E(u3

t )− (σ2
u + 1)

} [
E{(Xt − µ)3(Xt+p − µ)}+ E{(Xt − µ)3(Xt−p − µ)}

]
+ µβ4

0E{u3
t − u2

t }
[
E{(Xt − µ)2(Xt−p − µ)}+ E{(Xt − µ)2(Xt+p − µ)}

]
+ 2µβ4

0σ
2
uv0p + 2µβ4

0E{u3
t − u2

t − σ2
u}
[
E{(Xt − µ)2(Xt−p − µ)}+ E{(Xt − µ)2(Xt+p − µ)}

]
+ 2µ2β4

0E(ut − 1)3γp + 4µ2β4
0

{
E(ut − 1)3 + σ2

u

}
γp + µ4β4

0σ
4
u

= β4
0qp(σ

2
u + 1) + β4

0

{
E(u3

t )− (σ2
u + 1)

} [
E{(Xt − µ)3(Xt+p − µ)}+ E{(Xt − µ)3(Xt−p − µ)}

]
+ 2µβ4

0σ
2
uvp + µβ4

0E{3u3
t − 3u2

t − 2σ2
u}
[
E{(Xt − µ)2(Xt−p − µ)}+ E{(Xt − µ)2(Xt+p − µ)}

]
+ 6µ2β4

0E(ut − 1)3γp + 4µ2β4
0σ

2
uγp,
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where the second step is by (E.35), the third step is because (E.41) and (E.53), and the
second last step is because (E.38), (E.49), (E.48), (E.44), and (E.54).

3◦. Then we derive the value of q∗2pr for r 6= p

q∗2pr = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗),
1

T

T∑
s=1

(X∗s − µ∗)(X∗s+r − µ∗)

}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ) + µut(ut+p − 1)(Xt − µ)

+ µut+p(ut − 1)(Xt+p − µ) + µ2(ut − 1)(ut+p − 1),

usus+r(Xs − µ)(Xs+r − µ) + µus(us+r − 1)(Xs − µ) + µus+r(us − 1)(Xs+r − µ) + µ2(us − 1)(us+r − 1)
}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), usus+r(Xs − µ)(Xs+r − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {usus+r(Xs − µ)(Xs+r − µ), ut(ut+p − 1)(Xt − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {usus+r(Xs − µ)(Xs+r − µ), ut+p(ut − 1)(Xt+p − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), us(us+r − 1)(Xs − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), us+r(us − 1)(Xs+r − µ)}

+ lim
T→∞

2µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), (us − 1)(us+r − 1)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut+p − 1)(Xt − µ), us(us+r − 1)(Xs − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut+p − 1)(Xt − µ), us+r(us − 1)(Xs+r − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut+p(ut − 1)(Xt+p − µ), us(us+r − 1)(Xs − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut+p(ut − 1)(Xt+p − µ), us+r(us − 1)(Xs+r − µ)}

+ lim
T→∞

µ4β4
0

T

T∑
t=1

T∑
s=1

Cov {(ut − 1)(ut+p − 1), (us − 1)(us+q − 1)} ,
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where the second step is by (E.35), the third step is because (E.41) and (E.53). Then
because (E.38), (E.49), (E.44), and (E.54), we have that

q∗2pr = β4
0qpr + β4

0σ
2
u

[
E{(Xt − µ)2(Xt+p − µ)(Xt+r − µ)}

+ E{(Xt − µ)(Xt+p − µ)2(Xt+p+r − µ)}
+ E{(Xt−r − µ)(Xt − µ)2(Xt+p − µ)}

+ E{(Xt − µ)(Xt+p−r − µ)(Xt+p − µ)2}
]

+ µβ4
0σ

2
u

[
E{(Xt − µ)(Xt+p − µ)(Xt+r − µ)}

+ E{(Xt − µ)(Xt+p − µ)(Xt+p+r − µ)}
+ E{(Xt−r − µ)(Xt − µ)(Xt+p − µ)}

+ E{(Xt − µ)(Xt+p−r − µ)(Xt+p − µ)}
]

+ 2µ2β4
0σ

2
u(γ|p−r| + γp+r). (E.57)

4◦. Finally, similar to the derivation of q∗2pq, now we derive the value of q∗2pp. By (E.35),

q∗2pp = lim
T→∞

TCov

{
1

T

T∑
t=1

(X∗t − µ∗)(X∗t+p − µ∗),
1

T

T∑
s=1

(X∗s − µ∗)(X∗s+p − µ∗)

}

= lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov

{
utut+p(Xt − µ)(Xt+p − µ) + µut(ut+p − 1)(Xt − µ)

+ µut+p(ut − 1)(Xt+p − µ) + µ2(ut − 1)(ut+p − 1),

usus+r(Xs − µ)(Xs+p − µ) + µus(us+p − 1)(Xs − µ)

+ µus+p(us − 1)(Xs+p − µ) + µ2(us − 1)(us+p − 1)

}
.

Then, because (E.41) and (E.53), we have that,
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q∗2pp = lim
T→∞

β4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), usus+p(Xs − µ)(Xs+p − µ)}

+ lim
T→∞

2µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), (us − 1)(us+p − 1)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {usus+p(Xs − µ)(Xs+p − µ), ut(ut+p − 1)(Xt − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {usus+p(Xs − µ)(Xs+p − µ), ut+p(ut − 1)(Xt+p − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), us(us+p − 1)(Xs − µ)}

+ lim
T→∞

µβ4
0

T

T∑
t=1

T∑
s=1

Cov {utut+p(Xt − µ)(Xt+p − µ), us+p(us − 1)(Xs+p − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut+p − 1)(Xt − µ), us(us+p − 1)(Xs − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut(ut+p − 1)(Xt − µ), us+p(us − 1)(Xs+p − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut+p(ut − 1)(Xt+p − µ), us(us+p − 1)(Xs − µ)}

+ lim
T→∞

µ2β4
0

T

T∑
t=1

T∑
s=1

Cov {ut+p(ut − 1)(Xt+p − µ), us+p(us − 1)(Xs+p − µ)}

+ lim
T→∞

µ4β4
0

T

T∑
t=1

T∑
s=1

Cov {(ut − 1)(ut+p − 1), (us − 1)(us+p − 1)} .

Then, because (E.40), (E.50), (E.51) and (E.55), we have that,

q∗2pp = β4
0qpp + β4

0(σ4
u + 2σ2

u)Var{(Xt − µ)(Xt+p − µ)}
+ 2β4

0E{(Xt − µ)(Xt+p − µ)2(Xt+2p − µ)}

+ µβ4
0σ

2
u

[
E{(Xt − µ)(Xt+p − µ)2}+ 2E{(Xt − µ)(Xt+p − µ)(Xt+2p − µ)}

+ E{(Xt − µ)2(Xt+p − µ)}
]

+ 2µ2β4
0σ

4
uγp + 2µ2β4

0σ
2
u(γ0 + γ2p) + µ4β4

0σ
4
u. (E.58)
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