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Abstract

Studying complex relationships between correlated responses and the associated covari-
ates has attracted much research interest. Numerous approaches have been developed to
model correlated responses. However, most available methods rely on a crucial condition
that response variables need to be precisely measured. In practice, this condition is often
violated due to various reasons related to the data collection, study designs, or the na-
ture of the variables. Without taking care of the feature of mismeasurement in variables,
inference results are often biased.

Although measurement error and misclassification have been extensively studied in the
literature, many problems of mismeasurement in correlated responses remain unexplored.
The first problem of interest concerns measurement error and misclassification in the joint
modeling of continuous and binary responses. In Chapter 2, we consider the setting with a
bivariate outcome vector which contains a continuous component and a binary component
both subject to mismeasurement. We propose an induced likelihood approach and describe
an EM algorithm to handle measurement error in continuous response and misclassification
in binary response simultaneously. The algorithm is fast and can be easily implemented.
Simulation studies confirm that the proposed methods successfully remove the bias induced
from the response mismeasurement. We implement the proposed methods to mice data
arising from a genome-wide association study.

As a complement to the likelihood-based methods discussed in Chapter 2, in Chapter 3,
we explore the bivariate generalized estimation equation method with mixed responses
subject to measurement error and misclassification. The generalized estimating equation
method enjoys robustness to certain model misspecification as well as consistency in the
estimation of the mean structure parameters. However, the consistency property relies
on the unbiasedness of estimating functions which can break down in the presence of the
measurement, error and misclassification in responses. We propose an insertion strategy
to simultaneously account for measurement error effects in a continuous response and
misclassification effects in a binary response. We consider scenarios where either an internal
or an external validation subsample is available.

In Chapter 4, we consider a more complex situation where covariates are of a high
dimension and may possess a network structure. We start with the case where data are
precisely measured and propose a generalized network structure model together with the
development of a two-step inferential procedure. In the first step, we employ a Gaussian
graphical model to facilitate the network structure, and in the second step, we incorporate
the estimated graphical structure of covariates and develop an estimating equation method.
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Furthermore, we extend the development to accommodating mismeasured responses. We
consider two cases where the information on mismeasurement is known or a validation
sample is available. Theoretical results are established and numerical studies are conducted
to justify the performance of the proposed methods.

In contrast to error-prone continuous and binary responses considered in the first three
chapters, we investigate error-corrupted count data which particularly involve zero-inflated
counts, a problem that has received little attention. Zero-inflated count data arise fre-
quently from cancer genomics studies, and it is often of interest to incorporate the fea-
ture of excessive zeros in the analysis. However, measurement error in count responses
is barely studied, let along the zero-inflated Poisson model with measurement error. In
Chapter 5, we propose a novel measurement error model which is unique for addressing
error-contaminated count data. We show that ignoring the measurement error effects in
analyzing the count response may generally lead to invalid inference results, and mean-
while, we identify situations where ignoring measurement error can still yield consistent
estimators. Furthermore, we propose a Bayesian method to address the effects of mea-
surement error under the zero-inflated Poisson model. We develop a data-augmentation
algorithm that is easy to implement. Simulation studies are conducted to evaluate the
performance of the proposed method. We apply our method to analyze a set of prostate
adenocarcinoma genomics data.

Finally, in Chapter 6, we examine another type of correlated responses: time series
data. We consider the autoregressive model and establish analytical results for quantify-
ing the biases of the parameter estimation if the measurement error effects are neglected.
We propose two measurement error models to describe different processes of data contam-
ination. An estimating equation approach is proposed for the estimation of the model
parameters with measurement error effects accounted for. We further discuss forecasting
using error-prone times series data. This work is motivated by the need of understanding
the ongoing evolving situation of the COVID-19 pandemic. It is important to assess how
the mortality rate may change over time, but error-contaminate COVID-19 data present a
considerable challenge in uncovering the true development path of the disease.
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Chapter 1

Introduction

Modeling correlated responses are commonly conducted in genomics studies and epidemi-
ology, which has attracted extensive research interests. In this thesis, we focus on handling
three classes of correlated responses that have wide application scopes in practice. The
first class includes the bivariate mixed responses, with a continuous component and a bi-
nary component. The second class contains the zero-inflated count data, which consists of
two correlated components, with one component controlling the probability of taking value
zero and another component modeling the distribution of a count variable. The third class
concerns time series data which are autocorrelated.

Most work of modeling correlated responses relies on the critical condition that the vari-
ables are precisely measured, although this condition is usually made implicitly. However,
measurement error is almost inevitable in practice. For example, in genetics, a genotype
can be misclassified due to sequencing errors. In studies of infectious disease, the number
of people infected with a certain disease, e.g., COVID-19, can be underestimated due to
the asymptomatic infections.

Despite available discussions of measurement error in responses, there has been rela-
tively little work on exploring the measurement error effects on the analysis of correlated
responses (Neuhaus, 2002; Chen et al., 2011). In this thesis, we develop inference methods
to address the effects due to measurement error and misclassification in different types of
correlated responses, including likelihood-based methods, estimating equations methods,
and Bayesian methods.

This thesis research is also motivated to tackle the challenges induced by noisy data
arising in applications. In genetic association studies, sometimes the research interest lies in



studying the association of a genetic biomarker with mixed responses, which may be error-
prone, and this motivates the topics discussed in Chapters 2-3. Meanwhile, understanding
the pathway of genetic networks attracts a lot of interest, where numerous candidate genetic
variants are associated with multiple traits in a complex manner. This presents a nice
scenario of the application of join models discussed in Chapter 4. Chapter 5 examines
the zero-inflated Poisson model which is widely applied to handle cancer genomics and
microbiome data to account for excessive zeros in count data. The ongoing pandemic of
COVID-19 presents a perfect example of measurement error in time series data discussed
in Chapter 6. Although our methods developed in this thesis are motivated by the unique
features of individual data, the application scope of our methods is very broad.

To better understand our development in the following chapters, in this chapter, we
review relevant topics. The remainder is organized as follows. In Section 1.1, we intro-
duce three classes of correlated responses and the approaches that are often used to handle
them. In Section 1.2, we explain the measurement error and misclassification mechanisms.
In Section 1.3, we discuss the undirected graphical model under the exponential family set-
ting. In Section 1.4, we explain several basic concepts of genome-wide association studies.
Finally, we outline the thesis topics in Section 1.5.

1.1 Modeling Correlated Responses

In this thesis, we are interested in three classes of correlated responses: mixed continuous
and discrete responses, count variables with the zero-inflating feature, and time series
data. In the sequel, we separately review each class of correlated responses as well as some
associated methods.

1.1.1 Mixed Responses and Joint Models

While modeling multiple responses of the same type has been extensively studied in longi-
tudinal studies, modeling mixed type of outcomes, such as continuous and binary responses,
has attracted increasing attention. Several models and inference methods were developed,
such as generalized estimating equation methods (Liang and Zeger, 1986; Zeger and Liang,
1986), latent variable models (Sammel and Ryan, 1996), and multivariate linear mixed
models (MLMM, Sammel et al., 1999). Jointly modeling multiple responses simultane-
ously has the advantage of boosting the estimation efficiency and the statistical power in
testing genetic effects (McCulloch, 2008). There have been various joint models, includ-
ing those for multiple discrete responses (Chen et al., 2016), latent variable models for

2



mixed continuous and discrete outcomes (Sammel et al., 1997; Teixeira-Pinto and Nor-
mand, 2009; Lin et al., 2014), correlated Probit models (Gueorguieva and Agresti, 2001),
estimating function methods (Prentice and Zhao, 1991; Fitzmaurice and Laird, 1995), and
the Bayesian framework (Wagner and Tiichler, 2010). Further generalizations were ex-
plored for handling clustered data (Catalano, 1997; Lin et al., 2010) and high dimensional
data (Faes et al., 2008).

Although numerous methods were proposed to incorporate the correlation among re-
sponses, these methods can be roughly classified into two categories: likelihood approaches
and estimating equation methods. These methods have their advantages and disadvan-
tages. For example, the estimating function method is robust to the model specification
by taking the price of the loss of efficiency. On the other hand, the estimators based on the
likelihood methods are the most efficient but rely on the correct specification of the full
distribution. In this section, we review the generalized linear mixed model with likelihood
theory and the generalized estimation equations with estimating function theory.

Generalized Linear Mixed Model

Fori =1,...,nand j = 1,...,m, let Y;; be the jth response for the ith individual
and let X; = (X1,... ,Xg,)T be the vector of covariates for the ¢th subject. Write Y; =
(Yii,..., Y)Y, The generalized linear mived model (GLMM) can be described in two
steps. Assume that conditional on random effects u; as well as covariates X;, the Y;; are
independent and marginally follow a distribution from the exponential family given by

YijPij — bl

f(Wijlwi, ui) = exp {M + c(yij; lﬁ)} g (1.1)
a(y)

where a(-), b(-) and ¢(-) are known functions, ¢;; is the canonical parameter, and 1 is a

dispersion parameter.

Based on the specification in (1.1), given covariates X; and random effects u;, the
conditional mean ju,;; = E(Yi;|u;, X;) equals ¥'(p;;) which is postulated by

9(piz) = Bo + By Xij + ui Fyy,

where /(+) is the first derivative of b(-), g(-) is a link function, 8 = (8o, 35)T is the
vector of regression parameters, and F;; is a quantity determined by the study design and
correlation among the responses. The random effects u; are assumed to be independent of
the covariates X;.



Contrary to the name of random effects, the components of 8 are often called fized
effects. The [ parameter in the generalized linear mixed model has a different interpreta-
tion from the generalized linear model with fixed effects only. In GLMM, the parameter
[ represents the changes of transformed responses associated with one unit change of co-
variates for an individual, whereas the 3 in the generalized linear model is interpreted as
the changes at the population level.

Generalized Estimating Equation

For ¢ = 1,. ..,n and j = 1, cee My, let Hij = E(Y;]|X”) and Vij = VaI'(Y;‘j’XZ'j) be the
conditional mean and variance, respectively, given covariates X;.

The conditional mean f;; is modeled by
9(uig) = Bo + B2 Xij,

where g(-) is a prespecified link function and 8 = (8, 8F)" is the vector of regression
parameters.

The conditional variance v;; is often modeled by a function of the mean and the dis-
persion parameters ). Namely,

vij = h(pij; ),
where 1) is the dispersion parameter and h(-) is a specified function characterizing the

relationship between the conditional variance v;; and the conditional mean p;; of Yj;
given X;;. For instance, the variance function of the binary response is often specified

as h(pij; ) = pij(1 — pi) where ¢ = 1.
With the only assumptions on the first two moments, the generalized estimating equa-

tion (GEE) method is a natural way to estimate 5. Let V; be the conditional variance of
Y; given X;. Define the estimating function

Ui(ﬁ) = D@-Vi’l(Yi - Mz’);

where p; = (p, - - - 7#im)T7 and D; = %'
Then solving
S u) =0
i=1



for [ gives a consistent estimator of 3, say B, provided regularity conditions (Liang and
Zeger, 1986; Prentice and Zhao, 1991). In addition, v/n(8 — ) is asymptotically normally
distributed with mean 0 and covariance matrix

{E (agf )) } E{U(B)U/(8)") {E (3%5)) }

We comment that the validity of the GEE method hinges on the assumption that

E(Yi;]1X:) = E(Yy| Xy5)

if the working matrix for V; is not diagonal. A detailed discussion on this assumption can
be found in Yi (2017, Section 5.1).

The consistency of the first order generalized estimating equation also requires the
mean structure to be correctly specified regardless of whether the covariance structure is
correctly specified or not. Sometimes, the association structure may be of scientific interest,
and the second-order GEEs are constructed by modeling the second moment (Prentice and
Zhao, 1991). Hall and Severini (1998) extended the original GEE model based on quasi-
likelihood to improve the efficiency without requiring any covariance specification. Hall
(2001) reviewed the relationships between different GEE approaches.

1.1.2 Zero-inflated Count Data and Zero-inflated Poisson Model

Count data arise from many studies of genomics (e.g. Fu et al., 2017) and microbiome (e.g.
Xu et al., 2020), and they are commonly modeled by a Poisson distribution. On the other
hand, count data may contain excessive zeros, which come from two sources, classified as
“structural zeros” and “sampling zeros”. The “structural zeros” refers to that an individual
is not “at risk” for the event and hence has no possibility to have a positive count. The
“sampling zeros’, on the contrary, refers to that the individual is “at-risk” with a positive
count, but results in a zero count by chance. For example, the count of the copy number
variations (CNVs) is a useful indication of mutations in genes that might be associated
with an increased risk of cancer. However, whether or not the CNVs are observed is also
determined by whether the relevant pathways are activated. Many subjects have no CNVs
simply due to the inactivated pathways, leading to extra “structural” zeros than expected
when considering the Poisson distribution.

Viewing data as being generated from a mixture of a point mass at zero and a Poisson
distribution, a zero-inflated Poisson model (Lambert, 1992) is commonly used to address
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the excessive zero issue in the analysis of count data. It basically consists of two correlated
components, where each component models a different aspect of zero-inflected count data.
Specifically, one component concerns the probability of an individual sampled from an “at-
risk” group and another component models the count variable conditional on the “at-risk”
group.

To be specific, for i = 1,...,n, let Y; denote the count outcome for subject ¢ taking a
non-negative integer value and let X; denote the associated covariate vector of dimension p,.
Fori=1,...,n, let ¢; = P(A; = 1|X;) represent the conditional probability of sampling
from ‘at-risk” group , given X;, and let u; = F(Y;|A; = 1, X;) denote the condition mean of
Y;, given being sampled from the ‘at-risk” group and the covariate X;, which are assumed
to satisfy 0 < ¢; < 1, and p; > 0. That is, Y; is sampled from the “non-at-risk” group with
probability 1 — ¢;, and sampled from the “at-risk” group with probability ¢;, following a
Poisson distribution with mean ;:

Y; = 0, with probability 1 — ¢,
Y; ~ Poisson(pu;), with probability ¢;.

1.1.3 Time Series Data and Autoregressive Model

Time series data arise commonly in epidemiology and infectious disease studies. Such data
are taken as the third type of correlated responses in this thesis, where the correlation
among the responses is directly reflected by the autocorrelation (or serial correlation). To
model time series data, various models have been proposed, such as the classical decom-
position model, autoregressive integrated moving average (ARIMA) model, autoregressive
conditional heteroskedasticity (ARCH) model, state-space models, etc.

We denote a time series as {X; : t = 1,...,T}, where X; is a random variable and T’
is a positive integer or infinite. Stationarity is an important assumption for many models.
The strictly stationarity for time series X; is defined as

(X1, X)) T L (Xars o, Xor) T (1.2)

for any positive integer n and r, where 2 means those variables have the same joint
distribution.

Sometimes, the assumption described in (1.2) is too strict and unrealistic in reality.
We may consider a weaker condition for the stationarity assumption, where time series
{X;:t=1,...,T} is weakly stationary if these two conditions are satisfied:

6



(i) E(X;) is independent of t,

(ii) Cov(Xy, X¢qr) is independent of ¢ for each 7.

In analysis of times series data, E(X;) and Cov(X;, X;,,) are important to be quanti-
fied. We define the autocovariance function

~v(h) = Cov(Xyip, Xy) for h=0,£1,--- |

and the autocorrelation function (ACF) is then defined as

The autocovariance function and the autocorrelation function provide useful measures for
the degree of dependence on the serial variables at different time lags, and thus, play
important roles in the forecasting of future values.

Due to the importance of the autocovariance function, its properties under the weakly
stationarity assumption are well studied:

(1) 7(0) > 0;
(2) [v(R)] < 7 (0)];
(3) v(h) =~(=h).

Autoregressive models are useful in analyzing time series data, which study the depen-
dence of X; on {X;_,,..., X1}, and is given by

p
Xe=do+ Y ¢ X j+e,

Jj=1

where p is an integer smaller than T, (ey, ..., ¢)" is independent of (X7, ..., X;)" with each
€; having zero mean and a variance, say, 02, ¢o is a constant drift, and ¢ = (¢1,...,¢,)"
is the regression coefficient.



1.2 Measurement Error and Misclassification

Measurement error is prevalent in various cases. Sometimes it is because of technique
errors. For example, when measuring a length, the last digit of the measurement is usually
an estimate. Sometimes it is because of recall bias. In observational epidemiology, people
answer questionnaires according to their experience in the past which is error-prone. A
detailed discussion on reasons and sources of measurement error is provided by Yi (2017,
Section 2.1).

In the literature of measurement error, we often distinguish different types of error-
prone variables; the case of error-prone continuous variables is called measurement error
and the case of error-prone discrete variables misclassification, although sometimes both
cases are simply referred to as measurement error or mismeasurement.

In this section, we review some measurement error models and misclassification models.

1.2.1 Measurement Error

Foriz=1,...,n,let Y; denote the precisely measured continuous response. Due to measure-
ment error, we do not observe Y;, but instead, we observe a surrogate Y;*. The relationship

between the true response Y; and the observed surrogates Y;* can be described by differ-

ent measurement error models in the same manner as Yi (2017) by introducing a random
variable e;:

1. Classical Additive Error Model:
}/i* = }/; + €,
where the error term e; is often assumed to be independent of the true response Y;.

2. Multiplicative Model:
Y;* = }/;'67;7

where the mean of e; is assumed to be 1.
3. Linear Regression Model:
Vi =y +mYi+7% X, + e,

where e; is independent of {Y;, X;} and is often assumed to follow a normal distribu-
tion with mean zero and variance o2, and 7y, 71, and 7, are parameters.
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4. General Regression Model:

where m(-) is a prespecified function which can be nonlinear, « is the vector of regres-
sion parameters associated with the measurement error model, and e; is independent

Although these measurement error models provide a flexible specification of the relation-
ship between the error-prone variable Y; and its surrogate version Y;*, model identifiability
issues may be a problem. To make the inferences meaningful, a specified model f(y;6)
must be identifiable. That is, if two parameters 0, and 6, make f(y;60,) = f(y; 62) hold for
any all possibly observed y (in a set of probability 1), then

01 = 0,.

Measurement error in covariates has received extensive research interest. On the other
hand, less research work has been directed to measurement error in response, partly because
the measurement error in response can be ignored in some scenarios, such as the response
model described by a linear regression model together with a certain additive measure-
ment error model. However, measurement error in response is not always ignorable if the
measurement error process is nonlinear (Yi, 2017, Page 353).

1.2.2 Misclassification

When error-prone variables are discrete, we usually describe it as a misclassification prob-
lem. Let Y; be a binary variable following a Bernoulli distribution. The true response Y; is
not observable but instead we observe the surrogate Y;*. Let m;p = P(Y;* = 1Y; =0, X;)
and ;3 = P(Y;* = 0]Y; = 1, X;) be the misclassification probabilities that may depend
on the covariates X;. The relationship between the true response Y; and the observed

surrogate Y;* is often modeled by logistic regressions models:

logit ;1 = app + oz;FlXZ-,
and logit o = apo + e X,

where o = (1, aly, apo, y) T is the vector of the regression parameters.

Misclassification in responses and covariates has been studied in the literature (e.g.,
Neuhaus, 2002; Ramalho, 2002; Prescott and Garthwaite, 2002; Paulino et al., 2003; Chen
et al.,, 2011; Yi et al., 2015; Shu and Yi, 2017). The misclassification in response will
generally lead to biased estimation of parameters if no action is properly taken.



1.3 Undirected Graphical Model

An wundirected graphical model (UGM), also called a Markov random field (MRF) or a
Markov network, does not require specification for the edge orientations and is natural to
be applied for image analysis and spatial statistics.

Fori=1,...,n, suppose X; = (X;1,..., X;)" is a random vector for subject i. Let V; =
{1,2,...,p} be the index set of the vertices, corresponding to the variables {X;1,..., Xy},
and let F; = V; x V; denote the set of edges derived from V;. We use an undirected graph
G; = (Vi, E;) to describe the relationship among the covariates for subject i, where an
edge of vertices s and t represents that X and X; are correlated. Since the distribution of
random vector X is assumed to be the same for each subject, we consider the graph for
each individual to be identical. Namely, Gy = --- = G, = G with G = (V, E).

Markov independence is an important assumption for graphical models. To illustrate
this assumption, we first define a cut set C C V to be a set of nodes that separate the
graph G into two disjoint components A and B (Figure 1.1).

A

Figure 1.1: Ezxample of a graph separated by a cut set C

Assumption 1 (Markov independence assumption) For all cut sets C CV
X4 L Xp|Xe,

where X 4, Xg and X¢ are the covariates corresponding to the sets A, B and C, respectively,
and 1L represents “is conditionally independent of”.
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Based on Assumption 1, a graphical model following the exponential family distribution
can be constructed by

fai50,0) = exp > 6B(zi) + > OuB(wi)B(zi) + Y Clza) — A(6,0) 3, (1.3)

keV (s,t)eER keV

where 6 = (04, - - QP)T is the vector of parameters, © = [fy] is a p X p symmetric matrix
with diagonal elements to be one, B(+) and C(-) are prespecified functions, and the function
A(6,0) is the normalizing constant to guarantee (1.3) to be a probability density function.

The density function (1.3) provides a general form, which includes many useful cases.
For example, the Gaussian graphical model can be derived with the specification of B(x;) =

Zit and C(xy)

— _ T
ot 2at2 ’
formulation is given by

where o, is a dispersion parameter to scale the covariate, and its

estxisxit - Z %xfk - A(ea @) ) (14)

Ts0t kev k

where oy, is a scale parameter for X;;, and A(6, ©) is the normalizing constant. When the
covariates follow a Bernoulli distribution, the Ising model can be derived from (1.3), given
by

fai:0,0) = exp{ Y Ouaiay — A(B,0) p | (1.5)

(s,t)eE
where B(zy;) = xi, C(zy) =0, and A(6,©) is a normalizing constant.

There are two methods for the parameter estimation of § and ©. The first method is
to estimate the parameter based on the global likelihood. For example, for the Gaussian

graphical model, the estimator can be estimated by maximizing the rescaled global log-
likelihood L(©; X'), which takes the form

L(©; X) = log Det(0) — Tr(S0) — A|O]|,,

where S = 237" | x;x] is the empirical covariance matrix, [|O]; = >, 21 |0st] is the £1-norm
of the off- dlagonal entrles of ©, X is the shrinkage parameter controlling the strength of
the penalty, and Det(-) and Tr(-) are, respectively, the determinant and trace of a matrix.

In practice, the parameter can be estimated through the graphical least absolute shrink-
age and selection operator (LASSO) algorithm (Friedman et al., 2008). Due to the com-
plexity of the computation, the algorithm generally takes a long time. This method seems
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to be mainly applied for Gaussian graphical models. An alternative method of estimating
© is based on the idea of the neighborhood-likelihood.

For a given vertex s € V| we use

={X;:teV\{s}}

to denote the collection of all other random variables in the graph except X,. Based on
the Markov independence assumption, we define the neighborhood set for s

N(s)={teV:(st)eFE}
to be the set of relevant variables for variable Xj.

As shown in Figure 1.2, the set N(s) is a cut set that separates {s} from the remaining
variables.

Figure 1.2: The vertices in gray compose the neighborhood set of vertex s, N (s)

Write 0(_) = (Os1, - - Os (515 U5 (541), - - - ,HSP)T and let /¢ (9(_5)) be the log-likelihood
for 0(_s scaled by —1/n,

C(0s) = —%bg {H P(Xs!X(s>)}

= —— Z 19 B zs Z estB zs it) + C(Xls) + D<0) )

teN (s

where B(:) and C(-) are functions specified the same as in (1.3) and D(f) is the log-
normalization constant.
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Then for s € V, we obtain an estimator for f_,), denoted as @\(,s), by minimizing
C(0-s) + Mg,

where A is the tuning parameter and || - ||; is the ¢;-norm. Although this method is
fast in implementation, it has a drawback that the resulting precision matrix © might be
asymmetric. Namely, ést +# éts for some s,t € V', where ést and éts represent the estimates
for the (s,t)th and the (¢, s)th entry of ©. To overcome this problem, extra rules are
applied to the estimates. For example, AND rule decides :Q:St and @\ts to be nonzero only if
both/\of Oy and 60,5 are nonzero; OR rule decides 0, and 6;, to be nonzero if either of 0
and 0y is nonzero (Meinshausen and Biithlmann, 2006).

1.4 Genome-Wide Association Study

Genome-wide association studies (GWAS), also known as whole-genome association studies
(WGAS), are observational studies searching for causal genetic variants that are associated
with the responses of primary interest by scanning over a genome-wide set of genetic
variants in different individuals. GWAS often focuses on the associations between single-
nucleotide polymorphisms (SNPs) and clinical outcomes, such as diseases.

A genome-wide association study is often conducted in two stages (Wason and Dud-
bridge, 2012). In the first stage, candidate SNPs are selected through a simple model,
such as linear regression, to gain computation speed. A set of candidate SNPs are selected
according to the strength of the associations. In this stage, due to a large number of tests,
several techniques can be applied to address the multiple testing issue, such as Bonferroni
correction and the Benjamini-Hochberg Procedure (Benjamini and Hochberg, 1995), etc.

In the second stage, a more advanced approach is applied to study the association
between the responses and the candidate SNPs screened from the first stage. There are
two purposes for this stage. Firstly, the results getting from the first stage are rudimentary
and need further validation. Secondly, advanced approaches can be used to study more
complex research problems, such as identifying the possible genetic pathways and the
pleiotropy effects to be introduced in Section 1.4.1. In this thesis, our research interest lies
in the second stage of the genome-wide association study.

The genome-wide association studies involve several new data features. One important
example is the population stratification. In the following subsections, we first introduce
the basic concepts of statistical genetics and then review several methods concerning the
population stratification.
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1.4.1 Basic Concepts in Statistical Genetics

Pleiotropy is a common phenomenon in genetics that one gene is simultaneously associated
with multiple traits. It has been widely studied in various types of research including
Phenylketonuria (e.g., Penrose, 1951), Schizophrenia (e.g., Navarrete et al., 2013), and
many others (e.g., Kraja et al., 2014).

As opposed to the pleiotropy effect, the term polygenic refers to the phenomenon that
a group of genetic variants is associated with the same phenotype outcome. Examples of
human polygenic traits are height, skin color, and eye color.

In genetics, the genes can not only have a complex association with multiple traits
but also interact with each other in a complex manner through a collection of molecular
regulators. To understand the mechanism of how the genes interact, these interactions are
often modeled as a network, which is the so-called gene regulatory network (GNR). In the
network, each gene will be expressed as a node and an interaction between two genes will
be represented by an edge (Yu et al., 2015).

Although there are different types of graphs, the most commonly used graph in the gene
regulatory network is the hub graph. In a hub graph, some of the nodes have a number
of links that greatly exceed the average number and these nodes are called hub nodes. In
GRN, the genes that are highly connected with other genes are called hub genes. Recently,
because the hub genes play a key role in biological processes and are informative to uncover
the mechanism of diseases, identifying hub genes has attracted a lot of the research interest
(Akavia et al., 2010).

1.4.2 Population Stratification

The population features, such as the ethnicity for the human being data, can serve as con-
founders in genetic association studies, due to the non-random mating within populations,
which is usually caused by the geological separation. To avoid the spurious association of
the genetic variant and the response, several strategies have been developed.

The first method is to adjust the population stratification by the multi-trait mixed
model (MTMM). The MTMM is an extension of the linear mixed model by incorporating
the relatedness among the subjects into the covariance matrix of random effects. To be
specific, the MTMM is defined as

Y, = B8YX, +u; + ¢, fori=1,...,n,
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where Y; is a continuous trait, X, includes the environmental covariates and genotype
covariates, ¢; is the random error independent of {X;,u;}, 8 is the vector of regression
coefficients, u; is the random effect representing the confounding effect resulting from the
subject dependent populations stratification. Write u = (u1, ..., u,)T. Often, u is assumed
to follow N (0, JSR), where 03 is a scale parameter and R is an n X n positive definite matrix
representing the pairwise relatedness among subjects. The relatedness matrix R can be
determined by various methods according to the different nature of data. For example,
when pedigree data are available, R is determined by the kinship matrix (Lange, 2003,
Page 82). An alternative approach is to estimate relatedness matrices from genome-wide

SNPs. The detail of specifying the relatedness matrix is to be discussed in Section 2.1.1.

The second method is to control the confounding by including the principal components
of the relatedness matrix as fixed effects. To conduct the principal component analysis,
the relatedness matrix is decomposed using the eigenvalue decomposition (EVD),

R=LDL",

where the columns of L are eigenvectors of R, and D is a diagonal matrix of positive
eigenvalues of R. Let F = RLD™% be the matrix of principal components of the genetic
information for the subjects, where each row of F', denoted as Fj, is the principal compo-
nents for subject 7. Here, D2 represents the diagonal matrix whose diagonal elements are
the reciprocal and square root of those diagonal elements of D.

The principal components based model can be cast as
V=01 Xi+ B F + 6,
where 8 = (Bf,55)T is the vector of regression coefficients, F; is the first few largest
principal components of the relatedness matrix R.

Compared to the principal component based linear model, the MTMM model can be
used to account for higher-rank confounding. On the other hand, controlling confounders
by including fixed effects can circumvent the intensive computational burden.

1.5 Thesis Topics and the Outline

This thesis tackles several important problems and offers new additions to the literature.
The thesis contains seven chapters with the last chapter concluding the thesis and the
appendix including additional materials for Chapters 2-6. The topics and the development
of Chapters 2-6 are outlined as follows.

15



1.5.1 Latent Variable Model with Bivariate Mixed Responses
Subject to Measurement Error and Misclassification

In genetic association studies, due to the concern of population stratification, a multi-
trait mixed model (MTMM) is often considered. In the MTMM, random effects are used
not only to model the correlation for the multiple outcomes of the same subject but also
to adjust for the relatedness among subjects. The MTMM has been widely applied in
genome-wide association studies in various setting (Zhang et al., 2010; Korte et al., 2012;
Zhou and Stephens, 2014; Furlotte and Eskin, 2015).

While mixed effects models have been widely used, they do not automatically ensure
the inference results to be valid without conditions. A critical condition of using such
models hinges on the precise measurements of the variables. Measurement error and mis-
classification, however, are typical features in genetic studies, but they are often ignored
in most applications. Even if the practitioners aware the importance of the measurement,
they might still ignore the effect of measurement error in genome-wide association studies
due to intensive computational burdens, and accounting for the measurement error and
misclassification does not only require great efforts of modeling but also introduce a large
number of algorithm implementations. This being said, it is important to accommodate
the mismeasurement to obtain valid results for genetic studies. Because of the advances
in computer technology, implementing time-consuming algorithms does not seem to be an
obstacle as before. A few studies, such as Hossain et al. (2009), Smith et al. (2013), and
Rekaya et al. (2016), investigated some methods of analyzing genetic data with misclassi-
fication in a variable.

In the literature of response mismeasurements, there has been research exploring ei-
ther measurement error in a continuous response (e.g., Buonaccorsi, 1991; Pepe et al.,
1994; Buonaccorsi, 1996), or misclassification in a discrete response (e.g., Neuhaus, 2002;
Ramalho, 2002; Prescott and Garthwaite, 2002; Paulino et al., 2003; Chen et al., 2011).
However, no available work has been directed to deal with mixed responses with mis-
measurement in continuous and discrete components, although there were a few studies
simultaneously addressing mixed types of mismeasurement in covariates (Spiegelman et al.,
2000; Yi et al., 2015; Zhang and Yi, 2019).

In Chapter 2, we consider the problem of joint modeling mixed responses with a contin-
uous and a binary variable respectively subject to measurement error and misclassification.
We employ the bivariate regression model with a latent variable which features the depen-
dence of the response components as well as the population stratification. We propose two
methods, the induced likelihood method and the EM algorithm approach, to account for
both measurement error and misclassification of the responses in inferential procedures. A
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general framework is considered for the specification of the mismeasurement processes. We
show that both methods yield valid estimation results.

1.5.2 Estimating Equation Approach with Bivariate Mixed Re-
sponses Subject to Measurement Error and Misclassifica-
tion

Correlated mixed types of data, containing both continuous and discrete variables arise
commonly from clinical trials and genetic association studies. Many models have been
proposed for analyzing such data. In addition to the well-studied likelihood approaches,
marginal models have also been widely used to handle correlated mixed types of data due to
the advantage of robustness to certain model misspecification since no full distributional
assumptions are required. For example, generalized estimating equations, proposed by
Liang and Zeger (1986), analyze the longitudinal data marginally and require only modeling
of the first and second moments. This method has been further extended by many authors
including Prentice and Zhao (1991); Hall and Severini (1998); Pan (2001); Wang and Long
(2011); Wang et al. (2012).

Marginal methods are useful in joint modeling of mixed responses, such as a continuous
response and a discrete response (e.g., Liu et al., 2009). However, such methods rely on
a crucial condition that the variables must be precisely measured. It is well known that
the mismeasurement in responses induces both biased parameter estimation and efficiency
loss (e.g., Neuhaus, 1999, 2002; Chen et al., 2011).

In Chapter 3, we use the bivariate generalized estimating equation to analyze mixed
continuous and discrete responses subject to mismeasurement. We develop an insertion
strategy to form unbiased estimating functions to accommodate the effects of measurement
error and misclassification in responses. We consider different study designs including
the main study/internal validation study and the main study/external study (Spiegelman
et al., 2000; Yi et al., 2018). We evaluate the proposed methods both theoretically and
numerically.
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1.5.3 Generalized Network Mixed Model in Discovering (Gene
Regulatory Network with Mixed Responses Subject to Mea-
surement Error and Misclassification

In genetic analysis, genes can not only have a complex association with multiple traits
but also interact with each other in a complex manner through molecular regulators. To
understand how these genes may interact, gene requlatory networks (GRN) are often em-
ployed to describe the associations among genes, where genes are taken as nodes and an
interaction between two genes is featured by an edge (Friedman, 2004). While many meth-
ods have been proposed for studying gene regulatory networks, a noticeable limitation is
that the computational procedures are problem-specific, which hinders their application
scope. To overcome this issue, several studies of applying graphical models to construct
gene regulatory networks were motivated (e.g., Li et al., 2012; Yu et al., 2015).

Although graphical models have been developed to construct gene regulatory networks,
most available work only focused on the modeling of covariates and did not consider how to
model the relationship between network structured covariates and a response variable, let
alone for the case with mixed bivariate responses with both continuous and discrete compo-
nents. With the analysis of mixed responses, generalized estimating equation methods are
useful because of its robustness of not requiring the specification of the joint distribution
of the response variables as well as its flexibility of accommodating different covariance
structures of the responses. The validity of such methods, however, is vulnerable to the
mismeasurement of the response variables.

While it is well studied that mismeasurement in a discrete response typically breaks
down the usual inference methods and ignoring this feature commonly yields erroneous
inference results (e.g., Neuhaus, 1999; Chen et al., 2011), to our knowledge, there has
not been research on dealing with error-contaminated mixed responses of both discrete
and continuous components, let alone for their relationship with covariates of network
structures.

In Chapter 4, we tackle this problem and make the following contributions: (1) we
propose a new class of generalized network structured models to delineate the relationship
between bivariate responses and covariates of a network structure; (2) we develop a two-
stage inferential procedure to identify the network structure for covariates and to address
the mismeasurement effects in responses of both continuous and discrete components; (3)
we rigorously establish the asymptotic results for the proposed estimators and study the
efficiency issues for different methods; (4) our methods offer tools for a broad variety of
applications to handle error-prone data with complex association structures. For example,
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they can be applied in genetic studies to simultaneously identify the gene regulatory net-
work and study the association between the gene network and mixed type traits with the
effects of mismeasurement accounted for.

To be specific, we develop a generalized network structured model which incorporates
the graphical structure in the generalized linear models through a two-step procedure. In
the first step, we identify the network structure in the covariates via the Gaussian graphical
model. In the second step, we build generalized estimating equations to study the associ-
ation between the bivariate responses and the network structured covariates selected from
Step 1, where the effects due to the contamination in the responses are accommodated for
valid inferential procedures. We start with a simple situation where the model parameters
for the mismeasurement processes are known; this development highlights the idea of how
effects of mismeasurement in the mixed responses can be accounted for in combination with
the examination with the network structure for covariates. Furthermore, we extend the
development to accommodating the cases where the parameters for the mismeasurement
models are unknown and must be estimated from an additional validation subsample.

1.5.4 Zero-Inflated Poisson Models with Measurement Error in
Response

Research on zero-inflated Poisson models has become active and has attracted various
studies from several perspectives. Rodrigues (2003) and Klein et al. (2015) pursued a
Bayesian inference analysis with zero-inflated models. Todem et al. (2016) developed a
marginal model for the zero-inflated Poisson data. Xiang et al. (2007) and Yang et al.
(2010) proposed a score test under the zero-inflated Poisson model.

Measurement error in count data has been scarcely explored, which basically has two
challenges. Firstly, the count variable is an integer, and thus the traditional measurement
error models, such as the classical additive model is not applicable in this situation. Sec-
ondly, the variables are bounded blow but unbounded above, because the observed values
are always positive.

In Chapter 5, we propose a measurement error model that is unique for error-corrupted
count data by incorporating two possible sources of measurement error. We explore the
validity of statistical inference when measurement error in count data is ignored. We
develop a Bayesian framework to account for the measurement error effects, which avoids
the unidentifiability issue through the inclusion of weakly informative priors.
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1.5.5 Autoregressive Models with Data Subject to Measurement
Error

Time series data are common in the fields of epidemiology, economics, and engineering, and
various models and methods have been developed for analyzing such data. The validity
of these methods, however, hinges on the condition that time series data are precisely col-
lected. This condition is restrictive in applications. Measurement error is often inevitable.
In the study of air pollution, for example, it is difficult or even impossible to precisely
obtain the true measurement of the air population.

Some work on time series subject to measurement error is available in the literature.
Tanaka (2002) proposed a Lagrange multiplier test to assess the presence of measurement
error in time series data. Staudenmayer and Buonaccorsi (2005) explored the classical
measurement error model for the autoregressive model. Tripodis and Buonaccorsi (2009)
studied measurement error in forecasting using the Kalman filter. Dedecker et al. (2014)
considered non-linear AR(1) model with measurement error. Despite available discussions
of measurement error in time series, several limitations restrict the application scope of the
existing work. Most available methods consider only the autoregressive models without the
drift and assume the simplest additive measurement error model. Furthermore, most work
involves a complex formulation to adjusted for the measurement error effects, which is not
straightforward to implement for practitioners. In addition, to our knowledge, there is no
available work addresses measurement error effects on prediction under the autoregressive
model.

In Chapter 6, we systematically explore the analysis of error-prone time series data
under the autoregressive model. We propose two types of models to delineate measure-
ment error processes: the additive regression models and multiplicative models. These
modeling schemes offer us great flexibility in facilitating different applications. We inves-
tigate the impact of the naive analysis which ignores the feature of measurement error in
the inferential procedures, and we obtain analytical results for characterizing the biases
due to the naive analysis. We develop an estimating equation approach to adjust for the
measurement error effects on time series analysis. We establish asymptotic results for the
proposed estimators and develop the theoretical results for the forecasting of times series
in the presence of measurement error. Finally, we describe a block bootstrap algorithm for
computing standard errors of the proposed estimators.

Our work is partially motivated by the data of COVID-19, a wide-spread disease that
has become a global health challenge and has caused over ten million infections and half
million deaths as of August, 2020. Because of the special features of the disease, the
data of COVID-19 introduce many new challenges: 1) due to the asymptomatic infected
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cases and the patients with light symptoms who do not go to hospitals, the reported cases
with COVID-19 are typically smaller than the true number of infected cases; 2) due to
the limited test resources, many infected cases are not able to be identified instantly; and
3) the varying incubation periods lead to the delay of the identification of the infections.
Consequently, the discrepancy between the reported case number and the true case number
can be substantial, and ignoring these features and applying the traditional time series
analysis method would no longer produce valid results.

In Chapter 6, we apply the developed methods to analyze the COVID-19 data. We
are interested in studying how the mortality rate in a region may change over time and
describing the trajectory of the death rate. While the mortality rate of a disease is defined
as the death number divided by the case number, the determination of the mortality rate
of COVID-19 is challenging. In contrast to the standard definition, Baud et al. (2020)
estimated mortality rates by dividing the number of deaths on a given day by the number
of patients with confirmed COVID-19 infection 14 days before, with the consideration of
the maximum incubation time to be 14 days. Due to the unique features of COVID-19,
there does not seem to be a precise way to define the mortality rate of COVID-19. In
this chapter, we conduct a sensitivity analysis to assess the severity of the pandemic by
using different definitions of the mortality rate and considering different ways of modeling
measurement error in the data.

Using the data collected from the dashboard developed by Johns Hopkins University
(JHU-CSSE, Dong et al., 2020), we analyze the mortality rates of COVID-19 and conduct
forecasting of the COVID-19 related mortality rate for the four most populated provinces
in Canada, British Columbia, Ontario, Quebec, and Alberta.
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Chapter 2

Latent Variable Models with
Bivariate Mixed Responses Subject
to Measurement Error and
Misclassification

In this chapter, we focus on the effects of measurement error and misclassification on anal-
ysis of the mixed responses postulated with latent variable models. The notation and the
setup for the response model, the measurement error model as well as the misclassification
models are introduced in Section 2.1. We describe the induce likelihood method in Sec-
tion 2.2 and the EM algorithm method in Section 2.3. We extend the method to facilitating
pedigree data with correlated subjects in Section 2.4. Simulations studies are conducted to
evaluate the performance of the two methods in Section 2.5. To illustrate the usage of the
methods, in Section 2.6 we conduct numerical analysis using the mice data arising from a
genome-wide association study.

2.1 Model Setup

2.1.1 Response Model

Suppose n subjects are recruited independently in the study. For subject ¢ = 1,... n,
two possibly correlated responses Y;; are measured for j = 1,2, where Yj; is a continuous
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variable, and Y}, is a binary variable. Write Y; = (Vj1,Yi2)T. Let X; = (Xi,..., Xip,)T
denote the covariate vector for subject ¢, where p, is the dimension of the covariates. To
facilitate the association structure between the mix-type responses Y;; and Yo, we introduce
a latent variable u;. Conditional on random effects u; and covariates X;, we assume that
Y;1 and Y}, are independent, each having a probability density or mass function from the
exponential family

fWijlwi, zi) = exp [{yin; — bj(n;) }/ di (o) + ¢;(yiz. ¢5)]

for i = 1,...,n and j = 1,2 where b;(-), ¢;(-) and d;(-) are known functions, n; is a
canonical parameter, and ¢ is a dispersion parameter.

Let p;; = E(Yi;|u;, X;) be the conditional mean of response Y;; for j = 1,2, and then
pij = b3(n;). To explicitly describe the dependence of p;; on random effects and the
covariates, we consider a bivariate generalized linear mixed model

{91(%1)} _ [5;?:] + {Uz} 7 (2.1)

92(#%’2) U;

where ¢;(-) and go(-) are the link functions, determined by g;*(-) = b} (-) and g5 *(-) = by(-);
B = (B, 1) is the vector of regression coefficients that is of primary interest; and u; is
a random effect. For the continuous response Y;; with a normal distribution, ¥/ (¢) is taken
as t; and for the binary response Yo, b, (t) = exp(t)/(1 + exp(t)), yielding that g;(t) = ¢

and go(t) = log 1, respectively, where ¢ represents the argument of functions.

Write v = (uy, ..., u,)T. Often, u is assumed to follow a normal distribution N (0, UER),
where 02 is an unknown scale parameter, and R = [Rjx]nxn is a specified positive definite
matrix with the (j, k) element R, determined by the study design, where j,k =1,...,n.
In applications, a particular specification of R may be imposed to feature a problem-specific
association structure. For instance, to reflect the independence among different subjects,
Sammel et al. (1997) set R as a diagonal matrix with the diagonal elements being given
(such as 1 or other values). In the development in Sections 2-4, we consider the case where
R is a given diagonal matrix, and in Section 5, we extend the diagonal R to a blockwise
diagonal matrix to reflect the correlation among the subjects.

Model (2.1) is useful for characterizing the dependence of mix-type responses on co-
variates (Sammel et al., 1997). This model can be conveniently used to analyze genetic
data with mix-type responses, where the genotype information may be summarized as the
covariates X; = (X, ... ,Xipz)T, where for k = 1,...,p,, covariate X;; can be continu-
ous (e.g., representing a continuous measurement of an environmental effect), or binary
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(e.g., representing a clinical treatment); X, can be ordinal referring to, for example, the
genotype.

For instance, we observe the genotypes through genetic markers (called single nucleotide
polymorphisms, SNPs) in each locus (the location of a gene on the genome). For k =
1,00, pe, let X Z.(,i ) and X Z.(,f ) stand for the nucleotides of SNP k for subject ¢ inherited from
the father and mother respectively. Each SNP consists of two nucleotides, each being one
of the two types of alleles, “A;” and “Ay”. Hence, all possible forms of a SNP are “A; A",
“A1Ay” and “AyAy”, derived from different combinations of the alleles. Then the covariate
Xk, representing kth SNP for subject ¢, is coded according to the nucleotide level of A,,
given by

X = I(XY) = Ay) + I(XP) = Ay), (2.2)

yielding an ordinal variable X;; taking values of 0, 1 and 2, where I(-) is an indicator
function.

2.1.2 Measurement Error and Misclassification Models

For¢ =1,...,n, suppose that the response variables Y;; and Y5 are subject to mismeasure-
ment and that their precise measurements may not be observed for every subject. Let Y]
and Y5 denote the observed measurements of Y;; and Y9, respectively; they are also called
surrogate measurements of Y;; and Y. Let Z; = (Z;,..., Zipz)T denote the covariate
vector involved in the measurement error and misclassification process for subject ¢ where
p. is the dimension of Z;. For ease of exposition, we assume that Z; is a subset of X;; if
this is not the case, we can modify our initial definition of X; to include Z; as its part.

To describe the mismeasurement processes, we consider the factorization

f(y:h y:2|yz‘17%2, qui) = f(yf1|y;<27 Yi1, Yi2, Uz’,xi)f(y;(2|yi1»yi27ui’xi)- (2-3)

We assume that

f(y;‘klyy:%yila Yi2, Ty, Uz) = f(y:ﬂymyiz, xz) = f(y;i\yn, Yi2, Zi), .
and FWh Y, viz, iy wi) = f(Us|Yin, Yiz, i) = f(Yialvio, i) = f(Yhlyi, z:).  (2.5)

Assumptions (2.4) and (2.5) basically say that conditional on the true responses and the
covariates, surrogate measurements and random effects are independent. The assumptions
also suggest that Z; completely reflects the dependence on the covariates when featuring
the measurement error and misclassification processes. While the last two equalities in

24



(2.5) are not needed to assume, having them offers us a convenient way to model the
misclassification probabilities; see Yi et al. (2015).

Let mp = P(Y3 = 1|Y;s = 0, Z;) and m;; = P(Y5 = 0|Yis = 1, Z;) be the misclassifica-
tion probabilities that may depend on the covariates Z;. We consider logistic models for
the misclassification process,

IOglt Ti1 = Qo1 + OéEIZZ‘,
and IOglt Ti0 = Qo + OéEOZZ‘, (26)

where o = (a1, aly, ago, aly)T is the vector of the regression parameters.

For the continuous response Y1, we consider a regression model which facilitates possible
dependence of Y;; on {Y;1,Yie, Z;},
Vi =m(Ya, Y, Zi;7) + €, (2.7)

where ¢; is the random error independent of {Y;1, Yo, X;, u;} and has zero mean and con-
stant variance o2, 7 is the vector of regression coefficients, and m(-) is the mean function
that can be linear or nonlinear.

Often, an additive model is considered for (2.7), given by
Vi =7 +mnYa +7f(Ye) + 732 + e, (2.8)

where f(-) is a function of the binary response Yis, v = (Y0,71,72,73)" is the vector of
parameters, and a normal distribution is assumed for e;. We comment that model (2.8)
offers the flexibility and convenience of featuring the dependence of surrogate variable Y}
on the true responses and covariates, but model identifiability may be a concern if no care
is taken. In Appendix A.1, we outline the discussion on this aspect.

2.2 Estimation Procedures

2.2.1 Induced Likelihood for the Observed Data

To see how the distribution of the observed Y.* is different from that of Y;, we derive the

1

conditional distribution of Y;* given {u;, X;}. Indeed,
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S i, ;) :/ Zf(yfzklay;(Qayihyiﬂumxi)dyil

Yil gy

Z/ FWhlyin, vie = 1, 20) f(Yhlyie = 1, 2) f (Yar |wi, 1) f (yi2 = 1wg, ;) dya
Yil

+/ FWialyin, yiz = 0, 2:) f (Yialyiz = 0, 23) f (i [wi, @) f (g2 = Olwi, ;) dyin,
Yi1

(2.9)
where in the second equality, we use (2.4), (2.5), and the conditional independence of

Yy and Yjs given {u;, X;, Z;}. Using the model formulations in Section 2.1, we have the
following expressions for the terms of (2.9):

: _ 1 {yi — myi, via, 237) 1] .
f(yi1|yi1a Yi2, Zz) = \/T—O-g exp |:— 20_3 :

(1-y2)+(1-0)u:
exp(aoq + aZTqu> }q Yi2 q)Y;2

TWhlvie = ¢, 2) =

—

1 + exp(ov, + OéquZi)

1 qyH+(1-9)(1-yj)
} with ¢ =0, 1;

X
{ 1+ exp(aog + ay2i)

1 yin — Blai — u;)?
f(irlwi, wi) = exp {—( 1 ) :

2mo? 20°
Yi2 | Tqy U 1+ eXp(Bngi + Uz) 1+ exp(ﬁgm‘i + Uz) .

Consequently, the conditional distribution of Y;*, given X;, is given by

F(y)es) = / £y i) du
= /f(yﬂui, ;) f (uglzi) du, (2.10)

where f(u;|z;) = —— exp (—%) , with R;; being the ith diagonal elements of
(QWGgRii)j Ogitii

matrix R, and f(y}|u;, x;) is determined by (2.9).
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Let 0 = (6%,7",a",0% 02,02)". Inference about § can be carried out using the likeli-

hood for the observed data, given by

n

L) =[] £ 1), (2.11)

i=1
where f(yf|z;) is determined by (2.10) with the dependence on parameter 6 suppressed in

the notation.

Maximizing L(6) with respect to 6 gives the maximum likelihood estimator, say 9, of
f. Under regularity conditions, this is equivalent to solving

isi(e) — 0, (2.12)

where ;(0) = Zlog f(y;|z;). Typically, (2.12) does not have an analytic solution; solving
(2.12) usually requires a numerical method, such as the Newton-Raphson method.

Under regularity conditions, 0 is a consistent estimator of 0, and
Vi —0) -5 N©0,17(0))  as  n— oo,

where

1(0) = E{S;()S(0)} . (2.13)

2.2.2 Implementation

The estimation of the parameter 6 is conducted by maximizing (2.11). We realize this by
using the Newton-Rhaphson algorithm in combination with the Monte Carlo method. Let
N, and N, be prespecified large integers.
Step 1. Take an initial parameter value (0 = (B(O)T,fy(O)T, a®T 520 0—3(0), 03(0))T and set
the iteration index ¢t = 0.

Step 2. At iteration (¢ + 1), for ¢ = 1,...,n, independently generate a sequence of values,
{ugl}, . ,UENU}}, from N (0, o ®) R;;), where ag(t) is the parameter o7 evaluated at the
tth iteration and Ry; is the (7,7) entry of matrix R. Fori =1,...,nanda=1,..., N,,
generate {y/¢", ...y} from N(BOTX, + ul”,02"), where 02" and B® are,
respectively, the parameter o2 and 3 evaluated at the tth iteration.
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Step 3. The likelihood function in (2.11) is approximated by

n

i) H{; Zf (]l } (2.14)

u

where

%« a [a,b * a
f(y; ]u£ ]7 E / yzl‘yz ]>yi2 =1,2)f(uhlvie =1, 2) f(yi2 = 1\%[, ],xi)
y b=1

+—nyﬂ|yu iz = 0,2) f (Ylyie = 0, ) f(yi2 = Ofui®, ).

ybl

Step 4. Compute S(0®)) = Zlog L(0) and 1(60) = aeaeT log L(), and update 8¢+1 by

g+ ]N(g(t))—lg(g(t)) +o®

Step 5. Check if the 0®*1) converges by evaluating (8% — ) /(0® + ¢})| < ¢z, where ¢;
and ¢y are prespecified small tolerance values. Otherwise, t :=t 4+ 1, and go back to
Step 2.

The Monte Carlo approximation from Step 2 to Step 4 has the computation complexity
of order O(nN,N,). For an accurate approximation, the computation typically requires a
large number of replicates such as 10000 for N, and N,. Alternatively, one may employ
the Gaussian quadrature method (James, 1980) to approximate the integral in (2.11), as
discussed in Appendix A.2.

2.3 EM Algorithm

In this section, we consider an alternative to estimating model parameters using the EM
algorithm. The log-likelihood for the complete data {(Y;i, Y, Yii, Y5, w;) i =1,...,n},
given X, is

> 108 f(yh Yo vin, iz, walr:) = > 108 f(Yir, vz wilyfy, vl 1) + > 1og f (Y5, yials).

=1 =1 i=1
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Thus, the E-step of the EM algorithm evaluates
Q(6,69) = Qi(6,6"),
i=1

where

Qi(0, e(t)) = Em,m,uﬁyi*l,yig,xi;e(t) {log f(Yi1, Yi3, Y, Yio, ui] X5 0) }
and the expectation is taken with respect to the conditional distribution of (Y1, Yo, u;)
given {Y;5, Y5, X;} with 0 set as 8%), the estimate of 6 at iteration .

The M-step is to maximize Q(#, 0®)) with respect to 6, which is equivalent to solving

"L 0Q;(0,60)
Z I )

S =0 (2.15)

i=1

for 6, provided regularity conditions. To obtain the solution of (2.15), we may implement
the Newton-Raphson algorithm. An updated estimate §**1) for @ at iteration ¢ is given by

-1
n 82 n o
i—=1 i=1

where t =0,1,2, ..., and 0 is an initial value of 6.

The integral involved in (2.16) can be approximated by numeric methods, such as the
Monte Carlo or Gaussian quadrature algorithm. Repeat through the E and M steps until
convergence of {#®*1) : ¢ =0,1,...}, and let 6 denote the resulting limit. The variance
estimate of § can be obtained following Louis (1982) or using the bootstrap procedure.

2.4 Extension to Handling Clustered Data

In genome-wide association studies (GWAS), facilitating the genetic relatedness for sub-
jects in the same clusters (e.g., families) is important to reflect the cluster structure of
data. To this end, we extend the preceding development by allowing the matrix R in
Section 2.1.1 to feature the inherent relatedness within the same cluster or family.

Let
Ry
Ry

f
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be a blockwise-diagonal matrix which delineates the population stratification based on the
pedigree information, where ny is the total number of families (or clusters) and R; is the
n; X n; relatedness matrix of family i. For ¢ = 1,...,ny, the (i, i) element R;,;, of R; may
be, for example, defined as the kinship coefficient (Lange, 2003, Page 82) for subjects iy
and iy in the family ¢, which is the weighted summation of the probabilities of each allele
pair for subjects i; and iy to be identical by descent (IBD) at the same locus k. Here an
allele pair is taken as identical by descent if the pair has the same type of nucleotide and
is inherited from the same ancestor.

To be specific, for k =1,...,p,,

2 2
1122 = ;LZ Z P (Xz(llc - 1(211>
=1 s=1
where P(XZ(IL Xi(;,i) is assumed to be identical for all the k£ and represents the common
probability that the two alleles X (lk and Xi(;,z, are inherited from the same ancestor for
l=1,2and s =1,2. Here X ) and X represent the nucleotides inherited from the father
and mother of subject i, respectively; in applications, the probabilities P (X z(lli =X (S)) are

often determined by pedigree data. For instance, R;,;, = 0.5 if 4; and i, are monozygotic

twins and R;,;, = 0.25 if 4; and i, has a parent-offspring relationship.

Fori=1,...,ny, let Y1, ..., Y1 be the continuous responses and Yj1a, . . ., Yj,,2 be the
binary responses of n; subjects in the ith family, and let Yfl‘l, oY pand Vi, oo Yo be
their corresponding surrogate measurements. For i =1,... ,nyandr =1,...,n;, we write
Yir = (}/;Tlv}/;TQ)Tv Yy = (Y;;k"DY;Q) ;and Y} = (}/HT? i YZ:;T)T' Then for ¢ =1,... 10y
andr = 1,...,n;, the response model (2.1) and the mismeasurement models in Section 2.1.2

are used to describe Y;, and Y;* where the random effect in (2.1) is now denoted as u;,.

With this setup, the conditional distribution (2.10) is now modified to be

il = [ T1 Fli i, 20 £ (G i,

where 4; = (u;, . .. ,umi)T follows a multivariate normal distribution with mean zero and
covariance matrix agRi. Then, the inference about the model parameter 6 can be carried
out using the same procedure in Section 2.2 or 2.3, and the asymptotic distribution for the
resulting estimator can be established in a similar manner.
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2.5 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed method in
terms of parameter estimates and associated variance estimates. In contrast, we also
consider three naive methods. In the first naive method (Naive Method 1), we ignore both
misclassification and measurement error in response variables and estimate the parameters
of the response model by fitting a generalized linear model using R function glm() directly
to the observed response measurements; in the second naive method (Naive Method 2),
we ignore misclassification in the binary response but account for continuous response
measurement error; and in the third analysis (Naive Method 3), we ignore continuous
response measurement error but just address misclassification in the binary response.

The sample size is set as n = 1000 and we consider model (2.1) with p, = 2 and model
(2.6) with p, = 1 and covariates Z; independently generated from the uniform distribution
U(0,2). To generate covariates X; for model (2.1), we consider two scenarios with different
nature in X;. In Scenario 1, covariates are continuous where X;; and X5 are independently
generated from U(—3,4) and N(0, 1), respectively. In Scenario 2, covariates are ordinal
representing a genotype shown in model (2.2); specifically, X;; = Xi(jl) + Xi(f) for j =1,2
where Xz'(ll ) and X,L»(f ) are independently generated from Bernoulli(0.2), and Xz(z1 ) and XS )
are independently generated from Bernoulli(0.5); here different success probabilities of the
Bernoulli distribution are chosen to reflect different minor allele frequencies (MAF) of
genotypes.

2.5.1 Performance of the Methods in Sections 2.2 and 2.3: Sim-
ulation Design

For i = 1,...,n, the random effects u;, featuring the correlation between the continuous
and discrete responses Y;; and Yjy, are independently generated from N (0, UERZ-Z-), where
Ry = 1fori=1,...,500, and R; = 2 for ¢« = 501,...,1000, and oy, is set as 0.8. The
response vector Y; = (Y;1, Yj2)T is then generated from the joint distribution
1 1 , s
f(yin, yiolus) = N —5iyn - g1 (1) ¥ | g2(pi2)? {1 = ga(pi) } "2,
where g1 (ps1) and go(jus2) are specified as in model (2.1) with g;(¢) = t and go(¢) = log (%_t),
and the coefficient B = (510, ﬁgo, 511, 621, 512, BQQ)T is set as (07, ]_5, 07, —12, 1, 1)T

The surrogate measurement Y} is generated from the measurement error model (2.8)
with 79 =0, 71 = 1, 73 = 0 and f(z) = 2z — 1 to transform the values of Y, from {0, 1}
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into {—1,1}. For the misclassification of Y;s, we generate the surrogate measurement Y}
from the model

logit 71 = a1 + a1 Z;,

and lOglt 0 = Qo + C(Z()Zi,
where a = (1, .1, o, 20) T is the vector of parameters to be specified.

We consider four settings with different degrees of measurement error and misclassifi-
cation rates. Settings 1 and 2 differ in the value of ~,, with 5 = 0.001 for Setting 1, and
v9 = 1.0 for Setting 2; in these two settings, o. is set 0.25 or 0.50 to reflect increasing
degrees of measurement error in Y;; and « is set as (—1.386,0, —1.386,0)T. In Settings 3
and 4, we take g, = 1.0 and 75 = 1.0 but consider different values for «; in Setting 3, we
let a1 = a0 = 0 and set g = agg to be —4.595 or —2.197, respectively, yielding 1%
and 10% misclassification proportions; and in Setting 4, we set ag, = agyp = —1 and let
a1 = Q. take a value of —3.5 or —1.2, leading to about 1% and 10% misclassification
proportions, respectively.

2.5.2 Performance of the Method in Section 2.4: Simulation De-
sign

In this simulation study, we consider the case where subjects are correlated by pairs.

For i = 1,...,500, the random effects (u;,u )" are generated from a bivariate normal
distribution with mean zero and covariance matrix azRi, where 0, = 0.8 and R; = (ll) 7 )

Here, p is taken as 0.25 or 0.5, respectively, to possibly represent the parent-offspring
relationship or monozygotic twin relationship of pairs (Lange, 2003). The response vector
for cluster 4, Y; = (Y11, Yiia, Yio1, Yizo) T, is then generated from the joint distribution

1

1 1
f(ym,ym,yz-m,ymlui) :% exp —§{ym - gl(ui11)}2 - 5{%21 - 91(,%'21)}2

X ga(pi2)"* {1 — 92(/%12)}17%12 Ga(ftin2)¥2* {1 — gQ(Mm)}kyi22 ,

where g1 (pi11), 91(fio1), g2(pi2) and go(pi2) are specified as in model (2.1) with ¢ (t) =
t and go(t) = log (%), and the coefficient 8 = (B0, 820, 11, P21, Pr2, Po2) T is set as
(0.7,1.5,0.7,—1.2,1,1)T. We comment that the correlation among the components of ¥;
is facilitated by the inclusion of random effects (u;1, ui)T in (fi11, fio1, fita,s fhioz) -

The surrogate Y;] and Y5 are generated in the same way as in Section 2.5.1, with
0. =0.25, %9 =1, a1 = a9 =0 and a,; = a9 = —1.386, yielding a misclassification rate
about 20%.
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2.5.3 Simulation Results

We report the results obtained from the proposed methods and Naive Methods 1-3 in
Tables 2.1-2.5 here.

In Tables 2.1-2.4, we report the simulation results for Section 2.5.1 and in Table 2.5 we
display the results for Section 2.5.2, where “Bias” is calculated as % ZZN:1 0, — 0, “SEE”
is the empirical standard error, “SEM” is calculated by (2.13), and “CR” stands for the
coverage rate of 95% confidence intervals for a parameter. That is for parameter 6, its
CR is given by

N
1 ~ (L) ~ (U)
N E [(Qk <9kz<9k ),
=1

where N is the number of simulation studies repeated, é,(f) and é,ﬁ“’ are calculated as

0, — Sd(ék) X Zoors and 0, + Sd(ék) X Zoors, respectively. Here, ) is an estimate of 0y,
sd(0y) is the associated standard error, and Zjg75 is the 0.975 quantile of N(0, 1).

Simulation results demonstrate that in the presence of mismeasurement in the response
components, the naive methods incur various kinds of biases although they may differ in the
magnitude for different settings. The naive methods generally produce large finite sample
biases and unreliable coverage rates for 95% confidence intervals that way off the nominal
level 95%. On the other hand, the two methods that correct for the mismeasurement effects
work very well for various settings regardless of whether the subjects are independent or
clustered. These methods yield small finite sample biases for the point estimates and fairly
good coverage rates for 95% confidence intervals.

2.6 Analysis of Mice SNPs Data

In this section, we illustrate our methods by analyzing the outbred Carworth Farms White
(CFW) mice data arising from a genome-wide association study.(Parker et al., 2016a,b)
This study provided measurements for 1200 mice on complex traits, including behavioral,
physiological and gene expression traits. The original data contain measurements of 99787
SNPs for 1200 mice. Mice with missing responses and the SNPs with the minor allele
frequency (MAF) lower than 0.05 are removed because such SNPs have low heterozygosity
and often lead to false-positive results in association tests (Anderson et al., 2010). We
examine the subset with 1157 mice and 77838 SNPs.

Fori=1,...,1157, let Y;; denote the true length of the tibia bone (in mm) and let Y;,
be a binary outcome where “0” represents a healthy bone and “1” stands for an abnormal
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bone. The surrogate Y;] is obtained in the laboratory and may differ from the true length
Y1, and Y} is measured by a subjective classification rule based on the 90 percentile of
bone-mineral density (BMD).

To analyze how the true responses are associated with the SNPs using the proposed
method with mismeasurement effects accounted for, we carry out three steps of analysis.
The first two steps are performed to screen unimportant SNPs to reduce the dimension
of SNPs that is substantially larger than the sample size. The third step is to carry
out a refined, post-screening analysis by applying the proposed method to the bivariate
generalized linear mixed model (2.1) with measurement error effects taken into account.

In Step 1, we conduct the principal component analysis (PCA) (Price et al., 2006).
Let G denote the n x n genomic relationship matrix using the genetic data following the
discussion of Section 3.2 in VanRaden (2008). Then we express G using the eigenvalue
decomposition (EVD),

G=LDL",

where the columns of L are the eigenvectors of GG, and D is the diagonal matrix of the
positive eigenvalues of G. Let F = GLD™% be the matrix of principal components of the
genetic information, with the ¢th row, denoted as Fj, representing the principal components
for subject i. According to the scree plot in Figure 2.1 and using the “elbow” criterion, we
include the first five principal components, denoted as Fj1, Fjo, Fj3, F;4 and Fj5, for subject
i as the fixed effects when building the response model.

In Step 2, we conduct a genomewide screening procedure by examining each SNP one
at a time using a model similar to (2.1). To adjust for the population stratification, we
also include five largest principal components PC; = (F}y, Fyo, Fi3, Fy4, Fi5)T for subject i.
Let W;; be the jth SNP for subject i and j = 1,...,p., Where py, is the dimension of
SNPs. We repeat the screening for j = 1,...,py, by respectively considering the model
with error effects adjusted:

g1(pin) = Bio + B1Wij + PCL - Boey + uj; (2.17)
Go(piz) = B30 + 551“@' + PC;F * Bpog + Ui (2.18)

where ¢1(-) is set as the identity function, gs(t) = log (%_t), uf is the random effect, and

K
Blos Bi1s Baos B315 Bpcy and Bpey are parameters.

To feature the misclassification of Y5, we use model (2.6) with Z; taken as the bone-
mineral density (BMD). Regarding the measurement error in Y;;, following the discussion
in Appendix A.1, we consider model (2.8) with 79 =0, 73 =1, 73 =0 and f(z) =2z — 1
for transforming the values of Yy from {0,1} into {—1,1}. Then we perform the Wald
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test to (2.17) with the null hypothesis Hy : 57, = 0 and to (2.18) with the null hypothesis
Hy : 5, = 0, respectively, where we employ the induced likelihood method and the EM
algorithm as opposed to the naive method without addressing error-in-variables.

In Figure 2.2, we report the Manhattan plot for each method which displays the result-
ing distribution of the SNP significant level, where SNPs are placed on the x-axis according
to their chromosomal position, and the —log;, of the SNP associated p-values obtained
from the Wald test are recorded on the y-axis. Using the significance level 1075 as a thresh-
old, we retain three SNPs, rs31681083 (chromosome 8), rs33030459 (chromosome 9) and
rs265727287 (chromosome 12) for our post-selection analysis in Step 3.

Finally, in Step 3, we build a final model with form (2.1) where X; include the three
selected SNPs, 1531681083 (Xi1), rs33030459 (Xi2) and rs265727287 (Xi3), as well as

the body weight of a mouse (X;4) and the five largest principal components
PC = (Fy1, Fyp, Fi3, Fia, Fi5)". That is,

[91 (Mz‘l)] _ lﬁlo + BuXi + B12Xio + Bi3Xiz + 14Xy + PCT - chl} + l“z
go(phi2) Baoo + P Xi1 + P22 Xio + P13 Xis + [raXia + pCt. Bpc2 U;

with g1 (¢) =t and g2(t) = log (1) as well as random effects u;.

] (2.19)

We apply the induced likelihood method and the EM algorithm in contrast the naive
method ignoring the error effects to fit model (2.19), and present the results in Table 2.6.
Both the induced likelihood method and the EM algorithm produce fairly close results, and
they suggest the same evidence for significance or insignificance of each covariates in model
(2.19). At the significance level 0.05, the SNPs 1531681083 (X;1), rs33030459 (X;2) and
rs265727287 (X;3) are significantly associated with tibia length, and the SNPs 15316810853
(X1) and rs33030459 (X;2) are significantly associated with the bone condition. It is also
observed that the bodyweight (X4) is significantly associated with both tibia length and
bone condition. However, in the naive analysis which disregards mismeasurement effects,
we obtain different evidence that rs31681083 (X)), 1533030459 (X;2) and bodyweight
(Xi4) are not significantly associated with the bone condition. It also shows the opposite
evidence for the effect of SNP 1533030459 (X;2) on the bone condition from that revealed
by the methods of accommodating mismeasurement effects.

The analyses also reveal evidence of misclassification in the binary response Yjs, re-
flected by the estimation results of a.q and «.; in Table 2.6. For healthy bones, a lower
BMD is associated with a higher probability of misclassification as the estimate of a.q is
negative, and for abnormal bones, a higher BMD is associated with a higher probability
of misclassification as the estimate of «,; is positive. In addition, the estimate of 7, is
significantly negative, suggesting the measurement error in tibia length (Y;;) is negatively
dependent on the true bone condition (Y;s).
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Table 2.6: Analysis results for the mice SNPs data

Naive Analysis Induced Likelihood Method EM Algorithm

Parameter Estimate S.E  p-value Estimate S.E p-value Estimate S.E  p-value

Estimates for Response Models - Tibia Length
Bio 17.141  0.121 <0.001 17.451 0.161  <0.001 17.469 0.166 <0.001
Bi1 -0.058 0.022 0.009 -0.152  0.035  <0.001 -0.154 0.036 <0.001
B2 -0.109 0.032 0.001 -0.204 0.043  <0.001 -0.210 0.045 <0.001
Bis 0.113 0.020 <0.001 0.131 0.026  <0.001 0.131 0.027 <0.001
B4 0.047 0.004 <0.001 0.037 0.006  <0.001 0.036  0.006 <0.001
Bis -0.002 0.001 0.005 -0.002 0.001 0.027 -0.003 0.001 0.013
Bie 0.002 0.001 0.156 -0.001  0.002 0.505 -0.002  0.002 0.355
Bz 0.002 0.001 0.207 -0.004 0.002 0.027 -0.005 0.002 0.024
Bis 0.000 0.001 0.695 -0.008 0.002  <0.001 -0.008 0.002 <0.001
Big -0.003 0.001 0.047 -0.008 0.002  <0.001 -0.008 0.002 <0.001

Estimates for Response Models - Tiebia Length
B0 -1.364  1.052 0.195 6.360 2.696 0.018 6.137 2.575 0.017
B21 -0.305 0.188 0.105 -1.590 0.532 0.003 -1.513 0.501 0.003
Ba2 0.097 0.272 0.720 -2.245 0.851 0.008 -2.187 0.799 0.006
B3 -0.170  0.171 0.320 0.363 0.393 0.356 0.336  0.376 0.371
B4 -0.020 0.038 0.605 -0.219  0.097 0.024 -0.207  0.093 0.025
B2s -0.004 0.008 0.617 0.001 0.015 0.946 -0.003 0.014 0.832
Be -0.002 0.010 0.830 -0.045 0.021 0.035 -0.048 0.021 0.019
B2z -0.040 0.011 <0.001 -0.102 0.031 0.001 -0.096 0.030 0.001
Bas -0.022 0.010 0.029 -0.138 0.038  <0.001 -0.132  0.036 <0.001
B9 0.028 0.011 0.011 -0.102 0.031 0.001 -0.095 0.029 0.001

Estimates for Mismeasurement Models
Y2 - - - -0.232 0.045  <0.001 -0.248 0.052 <0.001
@00 - - - 17.794 3.954  <0.001 17.490 3.529 <0.001
Qo1 - - - -12.210 1.467  <0.001 -12.329 1.534 <0.001
Q20 - - - -0.171  0.039  <0.001 -0.168 0.035 <0.001
0z - - - 0.099 0.013 <0.001 0.100 0.014 <0.001
o4 - - - 0.021 2.123 0.992 0.181 0.282 0.522
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Figure 2.1: The scree plot of the principal component analysis
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Figure 2.2: The Manhattan plots of the genome-wide association studies for the three
methods and two responses. The z-azxis shows the base-pair position (BP, the location of
a SNP) on genome which is divided as 19 chromosomes labeled from 1 to 19. The y-axis
s the —log,, scale of the p-value. Horizontal green dash lines mark the significant level
10=%. The orange dots show the SNPs discussed in the text and their labels are marked in

the small boxes.
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Chapter 3

Estimating Equation Approach with
Bivariate Mixed Responses Subject
to Measurement Error and
Misclassification

In contrast to likelihood-based approaches developed in Chapter 2, in this chapter, we
confine our attention to the marginal modeling, where we explore estimation equation
approaches to handle measurement error and misclassification in responses. In Section 3.1,
we present the basic notation and the model setup. In Section 3.2, we first introduce
the measurement error model and the misclassification model, and then we develop an
insertion strategy for estimation of the model parameters to account for the effects of
measurement error and misclassification in responses. In Section 3.3, we extend the method
to the scenario where either external or internal validation data are available. Simulations
studies are conducted in Section 3.4 to evaluate the performance of the proposed methods.
In Section 3.5 we apply the proposed method to analyze the mice data arising from a
genome-wide association study.

44



3.1 Model Setup and Framework

3.1.1 Response Model

We consider the case with bivariate responses for which one component is continuous
and one component is binary. For i = 1,...,n, let Y; = (Yj1,Yjs)", where Y;; denotes
the continuous response, and Y;, represents the binary response, and n is the number of
subjects. Let X; = (Xj1, ... ,Xip)T denote the covariate vector for subject i, where p is
a positive integer. For ¢ = 1,...,n and j = 1,2, let p;; = E(Y;;|X;) be the conditional
mean of the Y};, given X;, and let v;; = Var(Y;;|X;) be the conditional variance of Y;; given
covariates X;.

We assume Y; and Y; are independent for any i # 7', but Y;; and Y;3 could be correlated.
A bivariate generalized linear model is employed to characterize the dependence of y;; on
X; for j=1,2:
91(pir) = B?Xi;
3.1
92(phio) = ﬁgTXz‘, (3-1)
where 3 = (8], 53)" is the vector of regression parameters, and g;(-) and go(+) are link
functions. For example, one may specify ¢;(t) =t and go(t) = log{t/(1 —t)}.
We assume that for j = 1,2,
vij = h(paz; ¥5), (3.2)
where 9, is the dispersion parameter and h(-) is a specified function characterizing the
relationship between the conditional variance v;; and the conditional mean f;; of Y;; given
X;. For instance, the variance functions of the continuous and binary response are often
specified, respectively, as

Vi1 (,Mil) =1,
and Vio(phi2) = pio(1 — pi2),

where 1, is often further reparameterized as o2 because of its non-negative property.

3.1.2 Estimating Equation Method

Let V;; = Var(Y;|X;) be the conditional covariance matrix of the response vector Y;, given
X;. The covariance matrix V;; is decomposed as
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where B; = diag {v;; : j = 1,2} and C; is the correlation matrix (} 7 ) of the response vector
Y;, given X;, with the parameter A bounded in [—1,1]. Let ¢ = (¢, \)T, and 6 = (8T, ¢T)T.

For:=1,...,n, let
Ua(6) = DLV (Y; — i), (3.4
where D;; = gﬁ% is a 2 x 2p matrix. Then U;;(0) is an unbiased estimating function which
can be used to estimate (3 if the parameter ¢ were known.

To estimate ¢, we construct a second set of estimating functions. For ¢ = 1,...,n and
g,k = 1,2, let vy denote the (j, k)th element of Vj;. Define & = (v, : 1 < j < k < 2)T,
and S; = {(Yij — ptij) (Y — par) : 1 < j <k < 2}". Let

Uin(0) = Dy;Vig ' (Si — &), (3.5)

where D; = %, and Vjy is a 3 x 3 weight matrix. Then U;»(#) is an unbiased estimating
function of ¢ for any given . This estimating function is the most efficient in the class
of all estimating functions of form (3.5) if the weight matrix Vj, is set as the covariance
matrix of S;. However, such a specification requires the modeling of the third and fourth
moments of Y;;, which is often difficult or of no interest. In practice, Vj, is often specified
as a diagonal matrix (e.g., Hall, 2001; Yi and Cook, 2002). Although such a specification
may incur some efficiency loss, it allows us to keep the model assumptions minimal, thus

protecting us against model misspecification.

Let U;(0) = (UE(Q),UZE(G))T. By the estimating function theory (e.g., Liang and

Zeger, 1986; Godambe, 1991; Newey and McFadden, 1994; Yi, 2017, Section 1.3.2), under
regularity conditions, solving

> Ui(0) =0

i=1

for 6 gives a consistent estimator, say, 6, of §, and \/ﬁ(é — 0) has an asymptotic normal
distribution with mean zero and covariance matrix

(o (2)) s (2542))

3.2 Methodology

3.2.1 Measurement Error and Misclassification Models

Suppose that for © = 1,...,n, the response variables Y;; and Yjs are subject to mismea-
surement and their precise measurements are not observed for every subject, but instead,
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surrogate measurements Y;; and Y5 are observed, respectively, for Y;; and Y.

To describe the mismeasurement processes, we consider the factorization

f(?/fp ?/;5‘%'1, Yi2, 33z) = f(y:1|y;27 Yi1, Yi2, »’Ui)f(yfﬂyn, Yi2, 5Uz')> (3-6)

for which we assume that

WY vins vio, ©i) = f(Wiilyin, iz, i)
and FWialyi, yie, i) = [ (Yialyiz, i) (3.7)
Let Z; = (Zu, ..., Zip.)" be the covariates involved in the misclassification. For ease of
exposition, we assume that Z; is a subset of X;; if this is not the case, we can modify
our initial definition of X; to include Z; as its part. Let mo = P(Y;5 = 1|Y;2 = 0, Z;) and
min = P(Y;5 = 0|Yi2 = 1, Z;) be the misclassification probabilities that may depend on the
covariates. We consider logistic models,

logit m;1 = g + ozZTlZZ-
and logit i = ago + aXyZs, (3.8)
where a = (a1, o}, age, aXy)T is the vector of the regression parameters.
For the continuous response Y;1, we consider a regression model which facilitates possible
dependence of Y;; on {Y;1,Y}s, Z;}
Yi=9+nYa+nYe+nZi+e, (3.9)

where e; is the random error which is independent of {Y;1, Yi2, Z;} and has zero mean and
constant variance o2, v = (70,71, 72,74 )" is the vector of regression coefficients. Often, a
normal distribution is assumed for the e;.

Let n = (7, a™)T denote the vector of parameters associated with the models (3.8)
and (3.9).

3.2.2 Estimating Equation Method in the Presence of Mismea-
surement

Without addressing measurement error and misclassification in the response, simply replac-
ing Yj; with Y} in the estimating functions (3.4) and (3.5) results in estimating functions

that are no longer unbiased, and the resultant estimators may be inconsistent. To account
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for the mismeasurement effects, we develop a two-step procedure to construct new esti-
mating functions, say Uj*(f) and U} (#), which are expressed in terms of the observed
measurements Y;; and Y5 together with the covariates and the model parameters and
satisfy

E{U;(0)} = 0, and E{U;(0)} = 0.

To this end, we develop a two-step procedure to correct for the effects of misclassification
in Y;o and those of measurement error in Y;; sequentially. In Step 1, we define
Yi3 — Tio

ok
Y =

L —mo— i’
where ;9 and 7;; are the misclassification rates postulated by (3.8). It is readily seen that
E(Y3 Yia, Xit) = Y.
Then we modify (3.4) and (3.5) by replacing Y;s and Y;3* and define
Y — it Vi = 2uaYi — pi5y — &a
z'*1(9) = D1Tivz‘1_1 (YZ** _ /;2) , and :2(9) = DQTZVZ'Q_I YaYs" — pn Y5 — peYan — & |
v Yyt = 2piYi3' + iy — &
(3.10)
for which we use Y2 = Y, for a binary variable Y, taking the value of either 0 or 1.

In Step 2, we further modify (3.10) by replacing Y;; with the observed variables in order
to obtain U} (#) and Uj%(#). To this end, define

Vi— 20— 0Ys —1Z

sk
Y;l - )
§a!
2 2
g 0
ok sk 2 e 2
Yii=Y1" — = — 34,
2 2
7 71
nd Vi = YV + 2A,
a i12 = L1 Lo iy
71
where
=Y A Y5
A — Ay A — ANjomin — Ao
T )
I —min — o
2
A — Ti0 — Ty
20 (1_71_ T )27
il 10
2
Ty — T
and Ail = i

(1 —my — m0)?
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Let Uf*(0) be U (0) = (U7 (0), U (0))" with Yiy, Yii, Vi Y;5* replaced by Y;i*, Yiii, Yiis,
respectively. In Appendix B.1, we show that E(Y;i*|Yi1, Yie) = Yi, E(Y:5|Yi, Yie, Xi) =
Y3, and E(Y;33|Yi1, Yz, Xi) = Y1 Yie, thus yielding

The unbiasedness of U;*(0) is immediate from that of U;(6), thus U;*(#) may be used
to obtain a consistent estimator of # because it is expressed in terms of the observed data.
To do so, we note that however, parameter n for the misclassification and measurement
error models are involved in U*(6). To explicitly spell out the dependence on 7, we write
Ur*(0) as U*(0,n). If n is known, say taking a value 7, then by the estimating function
theory, under regularity conditions (e.g., Godambe, 1991; Newey and McFadden, 1994; Yi,
2017, Section 1.3.2), solving

> U (0,m0) =0 (3.11)
=1

gives a consistent estimator, say 6, of = (8T, ¢™)T, and that \/n(f — ) has an asymptotic
normal distribution with mean zero and covariance matrix

(o (25} s (s (282}

3.3 Estimation Methods with Validation Data

In many applications, the parameter n for the measurement error and misclassification
models is usually unknown, and is estimated from additional validation data. We now
consider two types of validation studies, internal validation and external validation. Let
M denote the index set of the subjects in the main study, where {(y¥,v5, z;) : i € M}
is available. Let V represent the index set of the subjects in the validation data. For
internal validation, the validation data contain {(y, vk, vi1, ¥io, ;) : ¢ € V} with V C M;
for external validation, the validation data contain {(y},v5,vi1, Y2, 2:) : ¢ € V} with
MNVY =0. Let m denote the size of the validation subsample V.

3.3.1 External Validation
Estimation of 1 can be carried out by maximizing the conditional likelihood function
L(n) = 0L, Li(yi1, Yiolyin, Yiz, T3 M),
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with respect to n, where L; (v}, yis|vi1, Yiz, ;1) is the likelihood function contributed from
the ith individual and is determined by (3.8) and (3.9).

Let
Si(n) = dlog Li(y;? yfz‘yﬂ, Yi2, T4; 77)/877 (3-12)

denote the score function of parameter 7.

With external validation data, we consider estimation function

U3 (6, n 0
SICOEDY U,z* @n|+> 1 o |, (3.13)
ieM iev \S;(n)

where S;(n) is the score function determined by (3.12). Then solving

U0, =0
gives an estimator of (T, 7T)T, denoted as (AT, 7T)T.

Assume that regularity conditions hold and that the ratio m/n approaches a positive
constant p as n — co. In Appendix B.2, we show that (5, 7¢)" is a consistent estimator

of (0%,n™)*, and \/n {(0%, ne)t — (07, nT)T} has an asymptotic normal distribution with

: o 1 -l —1\T
mean zero and covariance matrix =1y Yr(lg")", where

ouU ouz
E{ gt E anTl 0 8
_ 1 o ok .
0 F :
0 <77T> (3.14)

19}
E(UzUs™) EUzU5T) 0 0 0
e = L E(U;;U;a*T) E(Uiz;Ulz*T) ol + (00 0

3.3.2 Internal Validation

To account for the effects of measurement error and misclassification in responses, we
construct the estimating functions

U3 (6,n) Un(6,7)
uP@.n) = > (Us0.n) | +> | Usl0.m) ], (3.15)
ieM\V 0 i€y Si(n)
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where U;;(0,n) and U;»(0,n) are the estimating functions under the true model as (3.4)
and (3.5), and S;(n) is the score function determined by (3.12). Here and elsewhere, 0 may
represent the real number zero, a zero vector, or a zero matrix whose meaning is clear in
each context. One can obtain an estimator, (0T, 7)™ for (67, n™)T, by solving equation

U@, =0 (3.16)

with respect to 6 and 7.

Since S;(n) does not depend on 6, solving (3.16) is equivalent to a two-step procedure.
First obtain 7 by solving »..,,.5i(n) = 0. Then solve the equation

U ~ ~
ieM\V 12 ey

to obtain an estimator of 6, denoted as 6; = (6T, ¢T)T.

Assume that regularity conditions hold and that the ratio m/n approaches a positive
constant p as n — oco. In Appendix B.3, we show that (9I , At )T is a consistent estimator

of (0%,n™)Y, and \/n {( o)t — (07, nT)T} has an asymptotic normal distribution with

mean zero and covariance matrix I'; 'Y (I'7 )T, where

ouUy” Uy oU;
L 90T b onT L ( g{ejTl ) 0
Li=—(1-p) |p(2) p(z)| —o|EGH) 0 |
06T 877 0 E <%>
0 o™

E(UUSY) E U;a* U5") 0 317

S =(1-p) E(U@z*U:fT) UU 0 |
O

E (UaU; ) (UllUZE U1
+o|EWaU]) BV E U2
s e e

Hs

3.3.3 Weighted Estimator with Internal Validation Data

Estimation of (0T, n™)T based on (3.15) basically treats the validation data and non-
validation data equally. To improve the efficiency of parameter estimation, we may attach
suitable weights to adjust contributions from the validation sample and the non-validation
sample.
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Let W = diag(wy,...,w,) be a diagonal matrix, where 0 < w; < 1for j = 1,....,pp
and w; =0 for j = (pg+1),...,q. Here ¢ = pg + p,, and py and p, represent, respectively,
the dimension of § and 1. We modify the estimating function (3.15) as

w Ui (0,m) Ui (6,m)
U0, = > W Us0.n) | +> (I, —W) | Ual0,n) | .
ieM\V 0 ieV Si(n)

where U;1(6,n), Uia(0, 1), and S;(n) are defined in the same way as in (3.15), and I, is the
q x ¢ identity matrix. An estimator of (7, n™)T, denoted (0L, 71)T, is obtained by solving
the equation
U™(9,m) =0

for 6 and 7.

Assume regularity conditions hold and that the ratio m/n approaches a positive con-
stant p as n — oo. Similar to the estimator obtained from (3.15), we can show that
(0T, AT)T is a consistent estimator of (67,7T)T, and \/ﬁ{(ég,ﬁg)T - (GT,nT)T} has an

asymptotic normal distribution with mean zero and covariance matrix ngl Ywl gvlT, where

OU* U Ui
B\t ) E{57 b (ggT ) 0
* %k jolal 2
FW = — (1 — p)W E ous E ou; — p(] — W) E ( 00T ) 0 ;
90T o071 0 E (asi >
0 0 o

Sw=(1—p)W |E (UsU™) E(UzU5T) 0| W
0 0 0
E(UaUY) E(UaUj) E(UaSE)
E(SU1) E(SUs)  E(SS])

The optimal weights can be obtained by minimizing Tr (FQVIZWFQVIT) with respect to
{ws,...,w,} with the constraints w; = 0 for j = (pg+1),...,q, where Tr(A) is the trace of
matrix A. Although the idea is straightforward, this optimization is computationally diffi-
cult. Alternatively, we develop an optimal weighted estimator based on linear combinations
of two simple estimators discussed as follows.

0)T ~0)T
(51() ~0)

The first estimator of (9%, ™)™ is obtained using the validation data only. Let "

o2
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be the resulting estimator by solving the equation
0,1
Up(0,n) | =0 (3.18)

for € and 7.

The second estimator of ¢, denoted as @11), solves the estimating equation constructed
from the non-validation data,

> (o)) - 29
Uz (6.7 |
ieM\V i2 \Y I

for 6, where U} (0, 7’7410)) is determined by U*(6,7) in (3.11) with 7 replaced by 771(0).
Under regularity conditions, both 51(0) and 51(1) are consistent estimators for 6. We
consider a weighted estimator to be a linear combination of 51(0) and @\1(1)

6i(Q) = Q8" + (I, — )6, (3.20)

where Q = diag(ws,...,wp,) is a diagonal matrix with constants 0 < w; < 1 for j =
1, ..oy Po-

To find the optimal weights, we target to minimize the asymptotic variance for each

element of 6;(Q). For r = 1,...,py, let 01-(42), 9(0) and 0 ) be the rth component of 61(2),

QAI(O) and Qf ), respectively. The variance of QIT(Q) is glven by

Var (%(Q)) —? (Var(é§2>) + Var(8')) — 200v(6° ﬁﬁ)))
— 2w, (Var(éﬁ) ) — COV(QAE?“) , ég})) + Var(éﬁ) ),
which is minimized at

* Var(e ) CO (917“ 7ég'))
Var(6\) + Var(6\)) — 2Cov(9, 60y

Let Q* = diag(wyj,...,ws, ). Then the estimator 0; = Q*é?) + (I — Q*)@I(O) is the optimal
estimator among the linear combinations of form (3.20).
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In practice, w; is estimated by

- Var(dy) — Cov(0y,. 01,)
T a0 4 Var (0D — 2Cou(6® gDy’
Var(0},’) + Var(0},”) — 2Cov(6;,,0;,")

where \//a\r(é%,)), \//a\r(éf,?ﬂ)) and @(éfrg) ,HA%,)) are estimates for Var(é%,)), Var(ég(:,)) and
Cov(ég), éﬁ)) by stacking the estimating functions in (3.18) and (3.19). The details are
presented in Appendix B.4.

We comment that in practice, the resulting weights @ may not satisfy the constraint
that 0 <@ < 1. If @' <0, we set @} to be 0 and if &} > 1, we specify & to be 1.

3.4 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed methods in
terms of parameter estimation and associated variance estimation. Similar to the simula-
tion studies in Chapter 2, for the sake of comparison, we consider three naive methods,
where either measurement error or misclassification, or both are ignored.

We consider the sample size n = 1000. The Xj; is independently generated from
U(—3,4), and the X is independently generated from N(0, 1). The response vector Y; =
(Yi1, Yio)T is generated from the model

G1(a) = Bio+ BuXi + 12X,
G2(tiz) = Pao + B Xit + P Xio,

where the coefficient vector € = (B9, B20, B11, Ba1, P12, Ba2) T isset as (0.7,0.7,1.5, —1.5, —1, 1) T,
g1(t) = t, and go(t) = log (1&). That is, Y;; is generated by N(u;1,0?) where o2 is set as
1, and Y}, is independently generated from Bernoulli(zs).

The surrogate measurement Y] is generated from the measurement error model, Y; =
Yi1 +7Yie +e;, where ¢; is a centered normal random error with variance o2 and is indepen-
dent of {Y;1,Y}2}. For the misclassification of Y5, we generate the surrogate measurement
Y5 by misclassification models (3.8). The values of «, 7, o2 are specified in Section 3.4.1.

For each estimator, we report the finite sample biases (denoted as “bias”), the standard
error (denoted as “SEE”), the model-based standard error (denoted as “SEM”), or the
coverage rate (denoted as “CR”).
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3.4.1 Simulation 1: Evaluation for the Case with Known Mis-
measurement Parameters

In this subsection, we consider the case where the parameters of measurement error and
misclassification models are known to the method in Section 3.2.2, taking the values as in
the specifications of generating the random variables.

To study the performance of the methods, we consider three settings. In Setting 1, fix
a = (—1.386,0,—1.386,0)T and v = 0.8, and compare the performance of the naive models
and the proposed model under different degrees of measurement error, where o, are set as
0.1, 0.5, 0.7. In Setting 2, fix 0. = 0.1 and v = 0.8, and evaluate the performance using the
data simulated with different misclassification rates, where a = (a1, a1, g0, Qo)™ is set
as (—4.595,0, —4.595,0)T, (—2.197,0,—2.197,0)T, or (—1.386,0, —1.386,0)", yielding the
misclassification rates mg and m; as 1%, 10% or 20%, respectively. In Setting 3, fix o, = 0.1
and o = (—1.386,0, —1.386,0)T, and evaluate the methods for different measurement error
mechanisms which are independent of the binary outcome Y;s (7 = 0), negatively associated
with the binary outcome (y = —0.8), or positively associated with the binary outcome
(v=0.8).

The results are presented in Tables 3.1-3.3. Different naive methods may perform dif-
ferently in both the point estimation and the variance estimation, but they all produce
large biases in the point estimation and poor coverage rates. Conversely, the proposed
method successfully corrects the biases due to the response mismeasurement, yielding rea-

sonably small finite sample biases and coverage rates in good agreement with the nominal
value 95%.

3.4.2 Simulation 2: Evaluation of the Case with Validation Data

In this simulation study, we compare the performance of the methods for three scenarios. In
the first scenario, we consider the same case as in Section 3.4.1 where the mismeasurement
parameter n is known. In the second and the third scenarios, we evaluate the performance
for the methods described in Sections 3.3.1 and 3.3.2 where 7 is unavailable but estimated
from either external validation data or internal validation data. We also display the results
of the method using the true measurements Y;; and Y, for comparisons.

We consider the same three settings as in Simulation 1. The results are reported in
Tables 3.4-3.6. As expected, the method using true response measurements produces the
best results with the smallest finite sample biases and model-based standard errors as well
as the best coverage rates of 95% confidence intervals. On the other hand, the proposed
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methods perform quite well for different scenarios. Finite sample biases are close to those
produced from the method with the true response measurements; model-based standard
errors agree fairly well with empirical standard errors and coverage rates of 95% confidence
intervals are in good agreement with the nominal level 95%.

3.4.3 Simulation 3: Evaluation of the Proposed Method with
Internal Validation Data with Different Sample Sizes and
Different Weights

In this subsection we compare the estimator described in Section 3.3.2 and the weighted
estimators described in Section 3.3.3. We also consider four different weights to Com/p%are
the estimates of using validation data only (@IO)), using non-validation data only ((911)),
using equal weights for validation data and non-validation data ((/9\1), and optimal weighted
estimator (6;). Our assessment focuses on examining the impact on the performance of the
proposed estimator of the sample size, the sample size ratio between the validation data
and non-validation data, and the weight choice. We consider two scenarios. In Scenario 1,
we fix the total sample size to be 1500 and let the sample size ratio vary as 2:1, 1:1, 1:2.
In Scenario 2, we fix the ratio to be 1:2 and let the total sample size be 1500 and 3000.

The results for Scenario 1 are presented in Figures 3.1-3.2 and the results for Scenario 2
are presented in Table 3.7. It is clear that the estimator with optimal weights described in
Section 3.3.3 and the estimator described in Section 3.3.2 perform the best among all the
estimators in terms of both finite sample biases and standard errors. Moreover, the former
estimator greatly outperforms the latter one. The efficiency gain of using the estimator
with optimal weights over the estimator in Section 3.3.2 can be as large as 58%, shown by
the estimate of [y with n = 1500.

3.5 Application to Mice SNPs Data

To illustrate the usage of the proposed method, we analyze data arising from a genome-wide
association study of outbred Carworth Farms White mice data (Parker et al., 2016b). This
study provided measurements with complex traits, including behavioral, physiological, and
gene expression traits.

For i = 1,...,1128, let Y;; be the weight of the tibialis anterior muscle (in mg), and
let Y;, be the binary outcome where “0” represents a healthy tibia bone and “1” stands
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for abnormal tibia bone, which is defined as the 90% quantile of the bone-mineral density.
Due to the concern of data quality, the true measurements of the responses Y;; and Y;, for
464 subjects are not available but their surrogate measurements Y;; and Y5 are available,
where Y] is the predicted tibialis anterior muscle weights based on muscle from other
body parts of the mice and Y5 is the bone condition judged by subjective observations
from technicians. Precise measurements of the responses Y;; and Y, together with their
surrogates Y;; and Y5 are available for the remaining 664 subjects, which are taken as the
validation data. Covariates include a continuous variable measuring the SNPs rs27338905
(X;1), and the first two principal components of genetics data (X;) and (Xj3) for subject
¢ which are described below in detail. Our main interest lies in studying the association of
SNPs 1527338905 with two physiological traits. We employ the model (3.1) with g;(¢) =t
and go(t) = log{t/(1 —t)} to facilitate the dependence of the responses on the covariates.

To account for the effect of population stratification (Price et al., 2006), similar to
Section 2.6 in Chapter 2, we conduct principal component analysis. According to the scree
plot in figure 3.3 and based on the “elbow” criterion, we include the first two principal
components (X;) and (X;3) as fixed effects in the response model.

We consider two settings for the misclassification and measurement error models. In
Setting 1, we consider the body weight (X;4) to be the covariates in model (3.8) to feature
the misclassification of Y;5. For the measurement error model, we consider (3.9) with the
covariates chosen to be the body weight (X4). In Setting 2, we consider model (3.8) to be
postulated by constants agg and «g;, and an additional constraint that v = 0 is imposed
for the measurement error model (3.9).

We analyze the data using the proposed optimal weighted estimator with internal val-
idation data, described in Section 3.3.3. We compare the results with the naive model
where the mismeasurement is ignored. The results are presented in Table 3.8. The pro-
posed method with two settings produces similar estimation results. Under the significance
level of 0.05, the estimates of 517 and [y suggest that SNP rs27338905 is significantly as-
sociated with the weight of tibialis anterior muscle but is not associated with the bone
condition. The estimates of (12, (13, P22 and Ps3 show that the effects of population
stratification are not significant. However, the naive method produces somewhat different
findings; there is no evidence showing the effects of SNP 7527338905 on the weight of the
tibialis anterior muscle.

Regarding the results for the parameters of the mismeasurement models, the mea-
surement error process is not influenced by the bone condition (Y3), as indicated by the
estimates of v5. The bodyweight of mice is only involved in the measurement error pro-
cess but not the misclassification process because the estimate of 73 is significant but the
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estimates of a,; and «,y are not. This suggests that the simpler specification of mismea-
surement models in Setting 2 is perhaps adequate and there is no need to consider the
more complicated models in Setting 1.
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Figure 3.1: Biases of the estimates in Simulation 3: Scenario 1 with different sample size
ratios between validation data and non-validation data. Equal Weight: the proposed method
with internal validation data described in Section 3.3.2. Optimal Weight: the proposed
weighted estimator with optimal weights as described in Section 3.3.3.
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Figure 3.2: Standard error of the estimates in Simulation 3: Scenario 1 with different
sample size ratios between validation data and non-validation data. FEqual Weight: the
proposed method with internal validation data described in Section 3.53.2. Optimal Weight:
the proposed weighted estimator with optimal weights as described in Section 3.5.35.
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Figure 3.3: The screeplot of the principal component analysis of the genotype data. The
top 10 principal components are presented. The bar refers to the variance of each principal
components. The solid line refers to the cumulative percentage of the variance.
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Chapter 4

Generalized Network Structured
Models with Mixed Responses
subject to Measurement Error and
Misclassification

As a continuation of the previous two chapters, in this chapter, we further consider set-
tings where covariates are of a high dimension and are associated with a network structure.
In Section 4.1, we start with the saturated response model and discuss the estimation of
the model parameters under the framework of generalized estimating equations. In Sec-
tion 4.2, we develop the generalized network structured model (GNSM), describe a two-step
implementation procedure of GNSM, and present the theoretical results for the proposed
estimators. In Sections 4.3 and 4.4, we further extend the GNSM to the augmented GNSM
by accounting for the effects due to measurement error and misclassification in the response
variables, and we also discuss efficiency issues for the proposed estimators. Simulations
studies are conducted in Section 4.5 to evaluate the performance of GNSM in regards to
both variable selection and parameter estimation. In Section 4.6, we apply the augmented
GNSM to a mice data set arising from a genome-wide association study.

4.1 Notation and Framework

Suppose n independent subjects are recruited for the study. For subject i = 1,...,n,
correlated responses Y;; and Yy are measured, where Y;; denotes the continuous response,
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and Yj, denotes the binary response. Define Y; = (Vi1,Yi2)T. Let X; = (Xi1,..., Xip)?t
denote the covariate vector for subject i, where p is the number of covariates. For ¢ =
1,...,nand j = 1,2, let pu;; = E(Y;;|X;) be the conditional mean of the Y;;, given X;, and
let v;; = Var(Y;;]X;) be the conditional variance of Y;; given covariates X;.

4.1.1 Saturated Response Model

To characterize the relationship among the covariates {X;1,..., X;,}, we use a graph, de-
noted as G; = (W,E’i), where V; = {1,--- ,p} includes all the indices of covariates and
Ei = V; x V; is an index set of all pairs of covariates. A covariate X;; is represented by
a vertez of the graph G; if j € V;. A pair of predictors {X;s, X;;} is linked by an edge
of the graph G; if (s,t) € E;, and X;; and X, are conditional dependent, given the re-
maining variables; let E; denote the set of all pairs (s,t) if X;s and Xj; are linked by an
edge. We assume that all subjects have the same covariate dependence structures. Namely,
Gy =Gy = =G, =G. We now let V, E and E denote the vertices, V' x V', and edges
of the graph, respectively.

We first consider a saturated model which includes all main effects and interactions,

Gi(pi) = Bro+ D BipXie + D PrseXisXi;

kev (s,t)eE

G2(ttiz) = Boo+ D> BopXik + D BoaXisXu,

kev (st)eE

\Zvvhere B=( 1\[76T) with By = (81,0, 82,0, Brk, Bok : k € V) and By = (Bist, Bost : (,1) €
E)T, and g;(-) and gy(-) are link functions. For example, one may specify g;(t) = ¢t and

g2(t) =log{t/(1 —t)}. Let ps be the dimension of j.

(4.1)

4.1.2 Estimating Equation

In this chapter, we start with the same estimation procedure as in described in Section 3.1.2.
We use the notation U;; (5, ¢) and U;(3, ¢) to denote the estimation equations constructed
based on the saturated model (4.1).

Let p; = (i1, pio)™. For i = 1,...,n, define the estimating functions

Un(B,¢) = DAV (Y — p); (4.2)
U (B,¢) = DRV (S — &), (4.3)
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where D;; = %‘g, Vip is given by (3.3), & = (vij : 1 < j < k < 2)T, Dy = 88(5%,
Si =Y — pij) Vi — i) 1 1 < j <k < 2}T7 and Vs is a 3 x 3 weight matrix as defined
in Section 3.1.2.
- - ~ T
Let Ui(8,9) = (Ug(b’, ?), UL(B, qb)) . By the estimating function theory (e.g., Liang

and Zeger, 1986; Godambe, 1991; Newey and McFadden, 1994; Yi, 2017, Section 1.3.2),
under regularity conditions, solving

for (BT, ¢T)T gives an estimator, say, (ET, qu)T, of (BT, ¢T)T.

4.2 Generalized Network Structured Model

4.2.1 Model Form

To focus on modeling the pairwise associations among the components of X;;, we consider
the graphical model (Hastie et al., 2015, Section 11)

1 1
f(x;;©) = exp —3 ( Z 0 TisTiv — 5 fok —A©) ¢, (4.4)

st)eb keV

where © = [fy] is a p X p symmetric matrix with diagonal elements to be one and (s,t)
element to be 6y, and A(©) = —1logdet|s| is the normalizing constant. This model
basically implies that X; follows a multivariate Gaussian distribution with zero mean and
covariance matrix Y, where © = ¥7!; and O is also known as the precision matriz.

In model (4.4), a nonzero parameter 0y implies that X;; and X, are conditionally
dependent, given other covariates. In applications, not every paired covariates components
in X; are necessarily correlated. That is, the edge set E is not necessarily identical to £ but

E = {(s, t) € E: 0, # O}. To feature the dependence of the responses on the covariates
with a network structure, we propose a generalized network structured model

Gi(pi) = Bio+ D BipXie+ Do BraXisXi;

keV (s,t)eE (45>
G2(ttiz) = Boo+ DO BopXie + D BoaXisXu,
keV (s,t)eE
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where By = (Bi0, Bo0, Bip, Po + k € V)T and By = (Bisr, Bt * (5,t) € E)' are the
regression coefficients. To differentiate the parameters in the saturated model (4.1), we let

Bu = (Bt Post @ (5,1) € E \ E)T.

4.2.2 Estimation Procedure

To determine the model form (4.5) as well as to estimate the associated parameters, we need
first to determine the set E. This essentially is equivalent to selecting active interaction
terms in the saturated model (4.1). In this section, we describe a two-stage procedure. In
Stage 1, we determine the dependence structure of the covariates via the graphical model
(4.4). In Stage 2, we use the estimating equation method to estimate the associated model
parameters. These two stages are respectively described in the following two subsections
in detail.

Stage 1: Identification of the Covariates Network Structure F

To identify E, we maximize the penalized log-likelihood function
((©) =) log f(x::0) - A6, (4.6)
i=1

where )\ is a positive tuning parameter controlling the sparsity of the resulting parameter
matrix and ||-|| is a penalizing norm function. A widely used norm is the ¢;-norm, yielding
the penalty of the Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996).

Directly maximizing (4.6), such as the Graphical LASSO Algorithm, requires a com-
putationally intensive algorithm (Friedman et al., 2008). In practice, a simpler estimation
method is often carried out by a neighborhood-based likelihood derived from (4.4). Specif-
ically, for every s € V, let X; (s denote the (p — 1)-dimensional subvector of X; with
its sth component removed, i.e., X;y\(p = (Xi1, -, Xi o1, Xigy1, - ,Xip)T. Then the
conditional probability density function for X, given Xj s}, is given by

1 1
/ (fﬁis‘xi,V\{s};e(—s)) = eXp —§$is Z Oz | — —IB?S - D Z Ot ) (4-7)

teV\{s} 2 teV\{s}
where D(-) = 51og 21+ (37,1 (4 Osti)” 15 the normalizing constant ensuring the integra-
tion of (4.7) equal one, and 0(_g = (051, ,0s5-1,05 541, ,Hsp)T is a (p—1)-dimensional
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vector of parameters indicating the relationship of X, with all other predictors X;; for
te{l,---,s—1,s+1,--- p} associated with (4.7).

Let ¢ (9(_3)) be the log-likelihood for 6_) multiplied by —%,

1 n
((0-9) = —glog{Hf (%s\%y\{s};e(s))}

i=1

= %Z %xis Z estxit +D Z estxit
=1

teV\{s} teV\{s}

Then an estimator of 6_,) can be obtained as

O = argmin {¢ (0) + A6, }
(—=9)

where A is a tuning parameter and ||-||; is the ¢;-norm.

The preceding procedure is repeated for all s € V' to yield an estimator @\s forall s € V.
Let N(s) = {t: (s,t) € E} denote the neighbor set for s € V. To determine an estimated
set of edges, we define

J\A/'(s):{tGV:é\st%O}

as the estimated neighbor set for s € V. It is worth noting that, for (s,t) € E, the estimates

Hst and Qts are not necessarily identical or both equal to zero at the same tlme although 6,
and 6,, are constrained to be equal. Therefore, s € N(t) does not imply ¢ € N(s), and vice
versa. To overcome this discrepancy, we apply the OR rule (Meinshausen and Biihlmann,
2006; Hastie et al., 2015, Page 255) when determining the inclusion of edge (s,t) in the
estimated edge set E by cither s € N(t) or t € N(s). Namely, we take

E:{(s,t):sef/’(t) orte./(\/'(s)}

as the estimated set of the edges.

The preceding procedure requires a suitable choice of the tuning parameter A. Several
methods, including the cross-validation (e.g., the BIC), the stability approach to regular-
ization selection (StARS) (Liu et al., 2010), and the rotation information criterion (Zhao
et al., 2012), may be employed to determine the optimal value of A. In this paper, we use
the rotation information criterion. To be specific, we take a set of candidate values for A,
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such as an equally spaced sequence from 0 to a certain positive value. We first arrange
the sample data in an array and then shuffle the data by randomly rotating the order of
subjects (rows) for each variable (columns). This procedure creates a reshuffled dataset so
that the association between paired variables is minimal. Then we implement our method
to this reshuffled dataset and find the smallest value of A such that all edges are regularized
to 0. We repeat this procedure several times (such as 10 times) using the R package huge
(Zhao et al., 2012) and select the resulting smallest value of \.

Under regular conditions in Meinshausen and Biithlmann (2006), we have that as n —
CX)7

P(E:E>—>1.

That is, the estimated set of edges E approximates the true network structure £ in prob-
ability. This results is available in Ravikumar et al. (2010, Section 2.2) and Theorem 5(b)
of Yang et al. (2015).

Stage 2: Estimation of Model Parameters

Once the network structure for X is identified, estimation of the model parameters in
model (4.5) can proceed in the same manner as in Section 4.1.2, with modifications of
estimating functions (4.2) and (4.3) to reflect the difference in the parameters for models
(4.1) and (4.5). Let (m\f, ?)T and ¢, respectively, denote the resultant estimators of
(BY, BT and ¢. Let Uji(By, B, @) and Usa(By, Bi, ¢) denote, respectively, the estimating
functions by modifying Uy (8,¢) and Un(B,¢) in (4.2) and (4.3). Let Ui(By, Bi, @) =

(UX (B, 51, 8), US (B, B, 0))

Then solving

> Ui(Bu. B ¢) =0 (4.8)
i=1

for (BT, BT, ¢T)T gives an estimator, say, (BT, BT, ¢T)T.

We comment that the true edge set E in model (4.5) is unknown and is estimated via
the procedure in Section 4.2.2; thus inducing extra uncertainty in implementing (4.8) for
the estimation of parameters. Consistent with the comments after (4.5) on the expression
of the parameters in models (4.1) and (4.5), we set Bu = 0 as the estimator for the subvector
of By which includes the coeflicients corresponding to the covariates in the unselected edge
set B\ E. Tt is noted that BH may not be identical to fy: their dimension can even be
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different due to the variability induced in estimating E' in Section 4.2.2. We now establish
theoretical results for the estimator obtained from preceding Stages 1 and 2.

Theorem 4.1 Let By be the true value of fu. Under reqularity conditions, there exists
some constant ¢ > 0 such that

P(B\H = Bue)) > 1 — O (exp(—cn)) .

__ This theorem suggests that as n — oo, with the probability approaching 1, the estimator
O has the oracle property.

Next, we establish asymptotic properties for the estimator (B\\T[ , B\IT, ggT)T in the following
theorem; the proof of the results is presented in Appendix C.3.

Theorem 4.2 Let (B, B, ¢5) " denote the true value of the parameters (By, B, ¢")".
Under reqularity conditions, we have the following results:

(i) (BL, EIT, gF)T is a consistent estimator of (55(0), /BITO), o)t

(i) n{(BT,Br, ¢T)T — (Bt Biloy @0 )T} has the asymptotic normal distribution with
mean zero and covariance matrix

| I R (4.9)
where Ty = { E(w) E (%) E(W)} PR
Br=P1(0)
d=¢o

EO = E{Ui(/BM(OM /BI(O)a ¢0)U1T(BRI(U)7 61(0)7 ¢O)}

4.3 Generalized Network Structured Model with Mea-
surement Error and Misclassification

Suppose that the response variables Y;; and Yj, are subject to mismeasurement and their
precise measurements are not observed for every subject ¢ = 1,...,n, but instead, surrogate
measurements Y;; and Y5 are observed, respectively, for Y;; and Yjs. To describe the
mismeasurement processes, we consider the same factorization described in (3.6) and the
assumptions described in (3.7).
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4.3.1 Measurement Error and Misclassification Models

Let mo = P(Y;5 = 1|Yia = 0,7;) and m;; = P(Y5 = 0[Yi2 = 1, Z;) be the misclassification
probabilities that may depend on the covariates. We consider the same misclassification
models (3.8) as described in Section 3.2.1. For the continuous response Y;;, we consider a
regression model which facilitates possible dependence of Y;; on {Y;1, Y2, Z;}, as given by
(3.9). Let n = (%, a™)T denote the vector of parameters associated with (3.8) and (3.9).

4.3.2 Estimation Procedures with a Given Nuisance Parameter
n

The presence of mismeasurement in Y; does not affect the first step of identifying the
network structure in X; described in Section 4.2.2. However, if no action is taken to address
measurement error and misclassification in the responses, simply replacing Y;; with Y} in
the estimating functions (4.2) and (4.3) would yield biased estimating functlons, and hence,

possibly resulting in inconsistent estimators.

To account for the mismeasurement effects, we construct valid estimating functions, say
U (By, B, ¢) expressed in terms of the observed measurements Y} and Y5 together with
the covariates and the model parameters, such that

E{Ui*<51\17 ﬁla ¢>} =0

072 L2
To this end, we first define that A,y = ~—2 S0 A, = 271 and
(1—ms1—m0)2” (1—ms1—m0)2°
1-Y% Yk
A ZQA z2 —A A . . .
A, = =i — “;:r;l 170 where 7 and m;; are the misclassification rates postulated
k2 k2
Y- v Vi 2 2
*% 2 —Ti0 *% 17072 *% %2 o 3 .
by (3 8) Let Y:LQ - 1- lﬂ'zo —i1 Y;l - : }/7,11 }/;1 - 7% - »Y_%AZ’ a’nd

Y15 =YT7Y5 + 72A In Section 3.2.2, it has been shown that
E(Y} Yia,Ye) =Yx and E(Y Y, Y, Xi) =YaYi for k=1,2. (4.10)

Let U* (B\Ia /Bla gb) be U (/B\Ia ﬂla gb) n (4 8) with }/:ila }/;27 }/37 Y;1Y;2 repla‘ced by }/ﬁ*a }/z;*a
Y41 and Y;i%, respectively. Then by (4.10),

E[Ui*(/ﬁl\hﬂla )|Y;17 29 ] (/Bl\la/ﬁlaqb)

and thus, by the unbiasedness of U;(By, b1, ®), U (By, b1, ¢) is an unbiased estimating func-
tion. If the parameter n for the misclassification and measurement error models is known
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or estimated from an additional study, then solving
S U (B B ) = 0 (@.11)
i=1
for By, B and ¢ gives an estimator, say (BE,EIT,QET)T, of (BL, 8L, ¢1)T.
Theorem 4.3 Under reqularity conditions including those of Newey and McFadden (1994),
Yi (2017, Section 1.3.2) and Meinshausen and Biihlmann (2006), the estimator (@:\T[, EIT, g/gr)T

is consistent, and /n{(By, B, ") = (Buwy Biloy» @) "} has an asymptotic normal distri-
bution with mean zero and covariance matrix

r-tyrtt, (4.12)
U (B, Br.¢,m0) U (B, B #,m0) oU; (B, B1,¢,m0)
where I' = {E (+ﬁlo> E (+ITIO) E (%)}‘521?\1(0) and
1=P1(0)

=00
X = E{Ui* (51\10)); 51(0), ®o, TIO)UZ-*T (61\1(0)7 51(0), ®o, 7]0) }

4.4 Estimation Procedures with Validation Data

4.4.1 External Validation

To incorporate estimation of 7 in the estimation of (8, B, )T, consider the likelihood
function contributed from subject ¢ in the validation sample:

Li(yfb y:2|yi1, Yi2, Ti; 77) = f(yf1|yi17 Yi2, Zi)f(yfgfyu, Yi2, Zi)a

where the index i € V, f(yf|yn, i, 2i) is determined by (3.9) with the form

\/%U exp {—(yﬁ_70_711/"210_272%2_7321)2 }; and determined by (3.8), f(y5|vi1, vi2, 2;) equals

{ exp(agg + aly2) }(1_%2)%'*2 { 1 }(1111‘2)(11/;2)
1 + exp(ago + Ozzozi) 1+ exp(agy + a’zrozi)

y { eXp<a01 + alezi) }yiz(l—yfg) { 1 }yﬂyfz
1+ exp(ao + a};2) 1+ exp(an + al;z) '
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Let
Si(n) = 0log Li(y}1, yia|yir, yi, xism) /On fori eV, (4.13)

and construct the estimating function

U™ (B By 6,0 = D ( (BM’BI’ ” ) + ( ) (4.14)

ieM IS

where S;(n) is the score function determined by (4.13), and U} (Sy, b1, ¢, n) is the estimating
equation in (4.11) with the dependence on 7 explicitly spelled out. Then solving

Um)(ﬁl\u B, ¢, 77) =0

for By, Br, ¢ and n gives an estimator of 5y, 5;, ¢ and 7, denoted as ﬁf\‘f"? ﬁ{m, qAb(E‘“, and ™,
respectively.

Since S;(n) does not depend on (8L, BF, )T, solving (4.14) is equivalent to a two-step

procedure. First obtain 7™ by solving ) .., Si(n) = 0. Then solve the equation

> U (Bus B 6,7™) =0
ieM

for By, B and ¢ to obtain estimators of 5y, f; and ¢, denoted as BM , (E“ and gb“ respec-
tively.

Theorem 4.4 Assume that reqularity conditions in Theorem 4.3 hold and that the ratio
m/n approaches a positive constant p as n — 0o, we have the following results:

(i) v/n {( genT BEvT g )T = (B Bitoy» @010 )T} has an asymptotic normal dis-
1 F 1EE\1(F 1)T, where

(EV)

tribution with mean zero and covariance matriz 5

ou? oU? ou; ou: 000 o0
Ty = £ B () B(5sr) 2 (5F) E(anT) s 05, )| ;
m=T | N K i 0 0 0 0 B(%)] (4.15)
s 1 |[B@UT) o], , [0 0
w=w | 0 o/t |0 B(ssT)]

(ii) \/ﬁ{(Aﬁ“T,B{E‘”T,&E“T)T — (B Biloy: ngOT)T} has an asymptotic normal distribution
with mean zero and covariance matriz (14 p)T'.t S, ToLT, where

_ U} (Bw,Br,¢,1™") AU} (Bw,Br,¢,n™") AU (B, Br, 1™
R e e B G e B e )

Bu=Bm(0) >

b (4.16)
=90
Z(rwa = E{U’L* (BM(U)a ﬁr(o), ¢07 ,,’,)\u-:v))Ui*T (BM(U)’ ﬁT(O)v ¢07 r,/f}\(l“l\'))}.
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The proof of Theorem 4.4(i) is presented in Appendix C.4, and Theorem 4.4(ii) can be
readily derived from Theorem 4.4(i) by matrix calculation.

4.4.2 Internal Validation

With internal validation data, we consider the estimating function

U(m(ﬁmﬁhﬁﬁﬂ?) — Z (Ui*(ﬁl\“(/)@l’q5 1l ) + Z < Bmﬁl’ ) ) (4.17)

ieEM\V

where for i € M\V, U (By, b1, ¢, 1) is the estimating equation in (4.11) with the dependence
on 7 explicitly spelled out and for i € V, U;(By, b1, ¢) is the estimating function in (4.8),
and S;(n) is determined by (4.13). Then solving equation

U™ (B, B, ¢,m) =0 (4.18)

for By, Br, @ and n yields estimators for them, respectively denoted as ﬁM , ng“"), and
ﬁl\ .

Similar to that in Section 4.4.1, solving (4.18) is equivalent to a two-step procedure.
First obtain 7™ by solving »_..,,.5;(n) = 0. Then solve the equation

Z Ui*(ﬁ“”ﬁl’ o ﬁ(m) + Z Ui(ﬁmﬂl» ¢) =0

iEM\V i€V

for By, B and ¢ to obtain estimators of ,;, 5; and ¢, denoted as B\I , “ ¢“"), respectively.

Theorem 4.5 Assume that reqularity conditions in Theorem 4.3 hold and that the ratio
m/n approaches a positive constant p as n — 0o, we have the following results:

(i) \/ﬁ{( e BT T )T = (B Biloy» OT,ng)T} has an asymptotic normal dis-
tribution with mean zero and covariance matriz T 13 (T-HT, where

(V) (1v)

oo [F) S() £ 2GR]L P #(&) @ 0]
0 0 0 0 0 0 0 B (5%)
o G TR R 7 I )
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(ii) \/ﬁ{(Bli‘[“T,BfmT,QAﬁ“")T)T —( I\Tl(l)),ﬁgo),gzﬁoT)T} has an asymptotic normal distribution

with mean zero and covariance matriz T 23, (C)T ) where

()8 (V)8

oU? oU; oU; au; au; oU;
to= = |2(5) #(5) =2()] 0|2 () 2 () 2(5%)].
(4.20)

S = (1= p)E (UU;T) + pE (UU) — pE (USH) {E (S:5) Y TE (S:.U1) .

The proof of Theorem 4.5(i) is presented in Appendix C.5, and Theorem 4.5(ii) can be read-
ily derived from Theorem 4.5(i) by matrix calculation. We comment that Theorem 4.4(ii)
and Theorem 4.5(ii) have appealing implications in that they extend the estimator in The-
orem 4.3 to more realistic scenarios with unknown parameter 7 associated with the mea-
surement error and misclassification models to be estimated from additional data sources.
The estimators in Theorem 4.4(ii), Theorem 4.5(ii) and Theorem 4.3 are all consistent
estimators of (3L, 8L, #T)T, but they differ in the efficiency because of the nuisance pa-
rameter 5. The estimator (32T, BT, ¢™T)T in Theorem 4.4(ii) is less efficient than the
estimator (BT, BT, ¢T)T in Theorem 4.3 if 1o is set as ¥ associated with the asymptotic
covariance matrix in Theorem 4.4(ii), because the asymptotic covariance matrix for the
former estimator is (1 + p) times of that of the latter estimator. On the contrary, the
estimator in Theorem 4.5(ii) is more efficient than that in Theorem 4.3, provided certain
conditions, as shown in

Theorem 4.6 Let A = E(U;SH{E(S;SH)} E(S;UF). Consider 3y, Ty, 3 and T that
are defined in Theorems 4.2 and 4.3, respectively. Assume the reqularity conditions of
Theorem 4.5. If

[y's gt <rtert) (4.21)
and
Dot Tt + Tty <y tt + Tt s + I AT M, (4.22)
then we have
Avar{(By", B, 6" )T} < Avar{(B1, BT, 9")" ), (4.23)

for every p € (0,1], where Avar(-) represents the asymptotic covariance matriz of an esti-
mator, and the inequality < is the Loewner order.

The proof of Theorem 4.6 is outlined in Appendix C.6. This theorem says that under
some conditions, the estimators in Section 4.4.2, with nuisance parameter 1 estimated from
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an internal validation subsample, are more efficient than the estimators in Section 4.3.2,
with 7 being given. Such a result appears somewhat counterintuitive as one may ex-
pect estimation of 1 would induce additional variability for estimators of 3, G; and ¢.
However, this phenomenon arises commonly in the context of using estimating functions
(instead of the likelihood method) for estimation, as discussed by Newey and McFadden
(1994, Chapter 6). The condition (4.21) compares the asymptotic covariance matrix for
two estimators derived from different scenarios. This condition requires the estimator in
Theorem 4.2, derived from the true response measurements, to be more efficient than the
estimator in Theorem 4.3, obtained from surrogates measurements, which is often true
when Y] is less variable than Y;*. To understand condition (4.22), we look at the two terms
at the left-hand side first where the first term represents the asymptotic covariance matrix
in Theorem 4.2(ii). For the first term of the left-hand side of (4.22), we replace the left
[y with T" and ¥y with 3; for the second term of the left-hand side of (4.22), we replace
the right T’y with T", then (4.22) requires that the difference of such changes cannot exceed
[yATS, a non-negative definite matrix which involves the variability of S; (i,e, E(S;S})),
the covariance between S; and U; (i.e., E(S;U})) and the sensitivity of U; (i.e., ['y). The
efficiency gain stated in Theorem 4.6 holds for any value p € (0, 1], meaning that using
any reasonably large internal validation subsample always increase efficiency relative to
the case with n being given, provided certain conditions discussed earlier.

4.5 Simulation Studies

4.5.1 Simulation 1: Comparison of the GNSM with Ordinary
LASSO

In this subsection, we conduct simulation studies to evaluate the performance of the pro-
posed method for the variable selection (Section 4.2.2) and the parameter estimation (Sec-
tion 4.2.2), where no mismeasurement is present.

To evaluate the performance of the methods, we consider different graphs, displayed in
Figure 4.1, with different dependent structures of the covariates, which are characterized
by varying degrees of nodes. Here the degree of a node is defined as the number of edges
connected to this node. In the hub graph, two nodes have a higher degree than the other
four nodes. The scale-free graph is generated by the Barabasi-Albert algorithm (Barabasi
and Albert, 1999), where we start with an initial graph with only two connected nodes
and then randomly connect a new node to only one existing node successively. In the block
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Figure 4.1: lllustration of different graphs. (a): hub graph. (b): scale-free graph. (c): block
graph

graph, nodes are classified into several blocks in which the degrees of nodes within each
block are the same.

The covariates X; are generated from a multivariate normal distribution with mean
zero and covariance matrix ¥ = ©7!, where the precision matrix © is, respectively, given

by

1 6012 013 614 O 0 1 6012 6013 614a 0 616 1 612 6013 0 0 0

021 1 0 0 0 0 021 1 0 0 0 0 021 1 63 0 0 O
631 0 1 0 0 0 631 0 1 0 0 0 _ |031 032 1 0 0 O
©1=1g, 0 0 1 65 0462 fon 0 0o 1 0o o '®™S=lg o o 1 0 o0
0 0 0 054 1 0 0 0 0 0 1 056 0 0 0 0 1 0

0 0 0 064 0 1 061 0 0 0 065 1 0 0 0 0 0 1

for the hub, scale-free, and block graphs. Here the 6;; take a value either 0.2 or —0.2 for
the connected edges, and 0 otherwise.
The responses Y; are generated from the joint distribution
gmmﬂmﬂﬂi@ﬁ> " QMWmeﬂiMﬁ> o
g 1 N (P g

Vi-p2 VI-p2
" 1 eXp{_(yil —gl(ﬂil))z}7

210 202

fyi,vi2) = | @

where ®() is the cumulative distribution function for the standard normal distribution,
g1(pi1) and go(use) are specified as in model (4.5) with E indicated by each graph in
Figure 4.1, p. determines the correlation among Y;; and Yy, and we set ¢;(t) = t and
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go(t) = ®71(t). The joint distribution was discussed by de Leon and Wu (2011). We
set O to be a zero vector of dimension 22 or 18. Let f,, be of dimension 12, and let f;
be of dimension 6 or 10; the values of f,, and [; are recorded in Table 4.1 which fall in
the intervals [—0.7,—0.1] U [0.1,0.7]. The sample size n is set as 50, 200 or 1000. The
simulations are run for 1000 times for each parameter configuration.

To show the performance of the methods, we evaluate the results for the network
identification described in Stage 1 of Section 4.2.2 and the results of parameter estimation
described in Stage 2 of Section 4.2.2 using different measures. For the procedure in Stage 1,
we define two measures of variable selection, the true positive rate

H@@:@weEmm@@eEﬂ
{(s.0): (s.1) € B

TPR()) =

and false negative rate
H@@;@ngmﬁ@@eEH

FNR(A) = ‘{(s,t) H(s,0) & E}‘

where |A| is the size of the set A, and E is the estimated edge set for a given tuning
parameter A. For the estimation procedure in Stage 2, we consider two measures,

a T
”5—5”1222@(0_@0, and HB_BHQZZZ 39— 40,
JET t=1 =

where B§t) and @(»t) represent, respectively, the jth component of B and [ in the tth simu-
lation, T is the total number of simulations, and Z is the index set of Sy and f;.

To see how the choice of the tuning parameter A may affect the results obtained from
(4.6), for a given A in the interval [0, 0.8], we plot TPR(\) against F'N R()) in Figure 4.2,
where we report the results for the sample size n=>50, 200 and 1000. Figure 4.2 shows that
for a given A, the performance of the method in Section 4.2.2 improves as the sample size
increases.

In Table 4.2, we report the results obtained from the estimation procedure in Sec-
tion 4.2.2, which clearly demonstrate the improved performance of the proposed GNSM
method as the sample size increases regardless of the graph types.
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4.5.2 Simulation 2: Augmented GNSM with Measurement Error
and Misclassification in Responses

In this subsection, we evaluate the performance of the proposed estimators when the mixed
responses are subject to both measurement error and misclassification.

The covariates and the true responses are generated in the same way as in Section 4.5.1.
The surrogate measurement Y] is generated from the measurement error model, Y7 = Y;;1 +
7Y +e;, where v is set as 0.5, e; follows a normal distribution with mean zero and variance
o2 and is independent of {Y;;, Y2 }. We set o2 to be 0.2 or 0.7, reflecting different degrees of
measurement error. The surrogate measurement Y} is generated from the misclassification
models (3.8), where Z; is generated from Uniform(—2,3), and the parameter « is set as
(—4,—1)T, (=3,0)T and (=3, 1)T, respectively yielding the misclassification rate of 1%, 5%
and 10%. The sample size n is taken as 1000, and we take the generated data {(y, vk, z;) :
i=1,...,n} as the main study data.

To simulate validation data, we generate a validation sample of size 500 using the same
method as for generating the main study data. For the internal validation data, we keep

all the measurements {(y}y, Yjo; ¥j1, Yj2; Tj, 25) : j = 1,...,500} as validation data; and for
external validation sample, we take {(yJ, ¥jo, ¥j1,¥j2,25) © j = 1,...,500} as validation
data.

Simulation studies are run 1000 times for each parameter configuration. We compare
the performance of the augmented GNSM (Section 4.3.2) with the naive GNSM (Sec-
tion 4.2.2) where the effects of measurement error and misclassification are ignored. To dis-
play the results, we separately report the results for g;(p;1) and go(p;2) which respectively
describe the continuous and binary responses. Let Z be the index set of 5, and [ as in Sec-
tion 4.5.1. Let 37 denote the estimate for the jth component of (3}, 8F)T at the tth simu-

=J .
lation. We report the average bias (denoted “avgBias”) by calculating \Tll > ier 1B =B the
average empirical standard error (denoted “avgSEE”) by calculating \Tll > jeT esd’, average

model standard error (denoted “avgSEM”) by calculating ﬁ D ier msd’, and the average

. =j T S
ez CR?, where 87 = 57, 899,
esd’ is the empirical standard error of the jth estimator, msd’ stands for the standard
error of the jth estimator estimated by proposed model, CR’ is computed as

coverage rate (denoted “avgCR”) by calculating ﬁ 3

T
1 e N
CRi == d 1B < gl < pOI),
t=1
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with B(t)j (L) and B(t)j (U) respectively representing the lower and upper bounds of the 95%
confidence interval at simulation ¢, and 7" is the number of simulations taken as 1000 for
each setting.

The results are presented in Tables 4.3 and 4.4. Simulation results clearly show that in
the presence of mismeasurement in responses, the naive GNSM generally produces large
finite sample biases and unreliable coverage rates for 95% confidence intervals. On the
contrary, the augmented GNSM method adjusts for the mismeasurement effects and pro-
duces good results with small finite sample biases for the point estimates and fairly good
coverage rates for 95% confidence intervals.

The estimators produced with the availability of an external validation sample have
higher standard errors than those obtained under the scenario where the true parameters
are known. On the other hand, the estimators resulted from the interval validation method
are the most efficient among the three methods, confirming the results in Theorem 4.6.

4.6 Sensitivity Analysis of Mice SNPs Data

In this section, we apply the proposed method to analyze the outbred Carworth Farms
White (CFW) mice data arising from a genome-wide association study (Parker et al.,
2016b). The data set includes measurements of 1200 mice on behavioral, physiological,
and gene expression traits. It is interesting to study the association between a set of
candidate SNPs as well as their possible interactions with two bone morphology traits,
defined as the length of the tibia and the bone condition. To be specific, the covariates
include 20 candidate SNPs which were shown to be potentially associated with physiological
traits, reported in Supplementary Table 2 of Parker et al. (2016b) and were scaled to
have zero mean and unit standard error. Let Y;; denote the length of the tibia bone
(in mm) and let Y;» be a binary outcome where “0” represents a healthy bone and “1”
stands for an abnormal bone. The measurements of Y;; and Yj, are error-prone, where
measurement error may be involved with the continuous responses Y;; due to laboratory
error and variation, and misclassification may occur in classifying the value of Y, which is
based on the 90 percentile of bone-mineral density (BMD) of the sample. Consequently,
the available measurements are taken as surrogate measurements, denoted as Y;; and Y3,
of the true responses Y;; and Yjs.

To analyze the data by accommodating possibly existing association structures in the
covariates as well as addressing the mismeasurement effects in responses, we employ the
two-step procedure for the proposed augmented generalized structured network model to
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conduct inferences. In the first step, we fit a Gaussian graphical model to the covariates
using the method of Section 4.2.2 with the optimal A determined by the rotation informa-
tion criterion. The identified association structure among the covariates is displayed on
the left-hand side of Figure 4.3, which shows only four identified edges. On the right-hand
side of Figure 4.3, we plot the sparsity level against the tuning parameter A\, where the
sparsity level is defined as the number of selected edges divided by the total number of
edges in the saturated graph. It is seen that the sparsity is fairly insensitive to the choice
of tuning parameter around the neighbor of our optimal .

In the second step, we implement the estimation method described in Section 4.2.2
by incorporating the covariate association structure identified in the first step, where the
response model is given by (4.5) with g1(t) = t and go(t) = log -7, and the measurement
error model and the misclassification model are specified as (3.9) and (3.8), respectively.
To show how inference results may be affected by mismeasurement effects, we conduct
sensitivity analysis by considering different degrees of mismeasurement in Y;; and Yj,. For
model (3.9), we take 0. = 0.77 according to Lynch et al. (2019); in addition, we set o, to
be 0.72 or 0.82. For model (3.8), we consider oy = oy = —2.5, —1.5, or —0.5, respectively

yielding tiny (5%), moderate (10%), and substantial (20%) misclassification rates.

The analysis results are presented in Tables 4.5-4.7. The estimation results and the
inference conclusions are not sensitive to the different degrees of measurement error and
misclassification rates we consider. The SNPs rs25203010 and rs265727287 are significantly
associated with tibia length, which is consistent with the finding in Parker et al. (2016b).
For the bone condition responses, rs33583459, rs29477109, and rs265727287 are identified
to be the significant factors as their p-values are smaller than 0.01. The four interaction
terms are strongly associated with the responses, indicating that the network structure
plays an important role in studying the relationship between the candidate SNPs and the
responses.
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Figure 4.2: Results for Simulation 1: The plot of true positive rate against the false negative
rate obtained from the proposed GNSM for different values of tuning parameter A

Table 4.2: Results for Simulation 1: The bias of the estimators of § with different responses
types, sample sizes, graph types

Continuous Component Discrete Component
n  Graph [ [l BB 1l
block 6.369 3.562 7.636 3.195
50 hub 7.291 3.727 9.274 3.651
scale-free  6.914 3.420 9.128 3.579
block 1.366 0.752 1.345 0.550
200 hub 0.772 0.312 1.836 0.684
scale-free  0.691 0.279 1.806 0.676
block 0.228 0.093 0.561 0.228
1000 hub 0.273 0.101 0.742 0.274
scale-free  0.269 0.099 0.755 0.278
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Chapter 5

Zero-Inflated Poisson Models with
Measurement Error in Response

In this chapter, we study the measurement error in the zero-inflated Poisson model. In
Section 5.1, we discuss the setup of the response model as well as the measurement error
model. In Section 5.2, we examine the effects of measurement error on analyzing count data
and develop a method in Bayesian framework to account for the measurement error effects.
In Section 5.3, we extend the method to accounting for the effects due to measurement
error when validation subsamples are available. In Section 5.4, we illustrate the usage of
the method by applying it to the prostate adenocarcinoma genomics data. To evaluate the
performance of the method, we conduct simulation studies in Section 5.5.

5.1 Model Setup and Framework

5.1.1 Response Model

For:=1,...,n,let Y; denote the count outcome for subject ¢ taking a non-negative integer
value and let X; denote the associated covariate vector of dimension p,, where n is the
number of subjects in the study. We assume that Y; and Y} are independent for any ¢ # i'.
The responses Y; are sampled from two sources, either from an “at-risk” group where
the measurements follow a Poisson distribution, or from a “non-at-risk” group where the
measurements are zero. Let A; be a latent indicator variable showing from which sources
Y; is sampled, where “A; = 17 represents Y; is sampled from the “at-risk” group, and
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“A; = 07 otherwise. For i = 1,...,n, let ¢; = P(A; = 1|X;) represent the conditional
probability of sampling from ‘at-risk” group, given X;, and let p; = E(Y;|4A; = 1,X;)
denote the condition mean of Y;, given being sampled from the ‘at-risk” group and the
covariate X;, which are assumed to satisfy 0 < ¢; < 1, and p; > 0. That is, Y; is sampled
from the “non-at-risk” group with probability 1 —¢;, and sampled from the “at-risk” group
with probability ¢;, following a Poisson distribution with mean p;:

Y; = 0, with probability 1 — ¢;, (5.1)
Y; ~ Poisson(p;), with probability ¢;.

Therefore, the zero values of Y; may come from two sources: either from the “non-at-risk”
group or from the “at-risk” group taking a zero count. Consequently, the probability mass
function for response Y; is given by

P(Y; = 01X;) = 3, P(Yi = 0|1 4; = k, X;) P(A; = k| X;)
=(1 - ¢_z)+ pie™ (5.2)
P(Y;:yz‘Xﬁz(ﬁl% for yz:1,2,
To facilitate the dependence of ¢; and p; on covariates X;, we consider a complementary
log-log regression model for ¢; and a log linear model for p;:

cloglog ¢; = B0 + 54, Xi, (5.3)
log f1i = Buo + BraXi, (5.4)

where (840, 85,)" and (B0, B),)" are the coefficients of the binary component and the
count component respectively, 8 = (B840, ,ng, Buo, E_,E)T, and cloglog(t) = log{—log(1 —t)}
refers to the function of complementary log-log link. The complementary log-log link has
been frequently used to model zero-inflated Poisson model in the literature (e.g. Neelon
and Chung, 2017), whose interpretation is to be discussed in Section 5.2.1. We comment
that although we used the same notation X; to denote the covariates for ease of notations,
the covariates could be different for each component in (5.3) and (5.4) by constraining the
corresponding coefficients to be zero.

5.1.2 Measurement Error Model

Due to the measurement error in response Y;, its precise measurement is not observed
for every subject ¢ € {1,...,n}, but instead, surrogate measurement Y;* is observed for
1=1,...,n.
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Measurement error for count data often arises from two distinct scenarios, and we call
them the “add-in” and “leave-out”, respectively. The add-in error generates extra counts
that are not supposed to be counted when measuring Y;, yielding that the surrogate Y;* is
no smaller than the true value of Y;. For example, in genomics studies, we are interested in
examining the count of copy number variants (CNVs). However, the mapping errors and
incorrect sequencing may falsely include some insignificant CNVs, leading to the erroneous
count higher than the true value (Xie and Tammi, 2009). On the contrary, the leave-out
error may be caused by the loss of counts that should have been counted. In the CNV
example, a significant CNV may fail to be identified due to the under-counting from the
sequencing error. In the study of COVID-19, the daily reported cases number are often
subject to leave-out error due to the limited test capacity and undetected asymptomatic
infections as well as unreported cases with a mild symptom.

For measuring Y; with ¢ = 1,...,n, let Z;; denote the count due to the add-in error
and let Z;,_ denote the count due to the leave-out error. Here we propose a measurement
error model to feature the scenario where both the add-in and leave-out errors may exist;
given X;,

Y =Y +ciZip —c_Z;, (5.5)

where Z;, is independent of Y; and follows the Poisson distribution with mean J;, i.e.
Poisson(;); Z;_ is independent of Z;; but may be dependent on Y;, and the conditional
distribution of Z;_, given Y; = y; is the Binomial distribution with the probability =, i.e.
Binomial(y;, ;). Here c; and c¢_ are weights controlling the type of mismeasurements;
they may be restricted to take values in {0, 1} to facilitate various scenarios. For instance,
if both c; and c_ are zero, then Y;* and Y; are identical, i.e., no measurement error occurs;
if c, =0 and ¢ = 1, then only leave-out error is involved; if ¢, = 1 and ¢_ = 0, then
only add-in error exists; if ¢, = ¢. = 1 then both add-in and leave-out errors are equally
present. In applications, the background information or researchers’ experience may offer
a good sense for specifying suitable values for ¢+ and c—.

Model (5.5) applies to count data and is a form somewhat similar to the widely used
classical additive error model for featuring measurement error in continuous covariates.
(Stefanski, 2000; Carroll et al., 2006; Yi, 2017, Section 2.6). But two key differences make
model (5.5) unique. First, classical additive measurement error models do not differentiate
error sources and use a single random variable, say e; to represent the errors; secondly,
the error term e; is often assumed to be independent of true covariates. In model (5.5),
however, the error term is refined by sorting out the errors of different nature. In addition,
dependence of the error on the true variables is allowed. Basically, the joint distribution

97



of Y; and {7y, Z;_}, is treated as

Wi, ziv, zie|vi) = [y, zi|2a) f(zig | 20) (5.6)

in model (5.5) by allowing the dependence between Y; and Z;_, where f(-) represents the
joint or marginal distribution for the variables indicated by the arguments.

In model (5.5), assuming a Poisson distribution for 7, reflects its unboundedness yet
taking a large value with a small probability. This assumption is feasible in applications
where no upper limit is set for an add-in error and assuming errors beyond a certain value
is not likely. On the contrary, the leave-out error cannot exceed the value of Y; itself, so
assuming a Binomial distribution for the conditional distribution for Z;_, given Y;, can be
reasonable.

To facilitate different degrees of measurement error, we further model \; and m; via their
dependence on predictors, say, W;. and W,_, respectively, where W;, and W,_ can be the
same or different, and they can be part of covariates X; or identical to X;. Let W;, =
(Witgs ..., Wip, )T and Wi = (Wi—,...,W,;, )T denote the covariate vector associated
with add-in and leave-out processes, respectively, where p, and p_ are the dimension of
Wi+ and W;_, respectively. For ease of exposition, we assume that W;, and W,_ are subsets
of Xj; if this is not the case, we can modify our initial definition of X; to include W, and
W;_ as its parts.

The mean parameter )\; is modeled as
log A\ = ayo + Wi, (5.7)
and the probability 7; is postulated by a generalized linear model,

g(m) = ao+ L, W, (5.8)

where (o0, af,,) " and (a_g,al,,)T are coefficient vectors and g(-) is a link function. Here

the link function g(-) can be taken as the logit function g(t) = log -, the complementary
log-log link g(t) = log{—1log(1 — t)}, or the probit function g(-) = ®7!(-), where ®(-)
is the cumulative distribution function of the standard Gaussian distribution. Let o =
(at0, s ag, )T

—w

5.1.3 Impact of Naive Analysis

In the presence of measurement error in response Y;, the true response Y; may not be

observed. Instead, its surrogate Y;* is available. If we naively replace the response Y; by
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its surrogates Y;* in the inference procedure such as the likelihood method, the resulting

estimators may not be consistent.

To see how the distribution of Y;* is different from Y;, we consider the conditional
distribution of Y;* given X;:

yz|xz ZZf} Zie. Zi)IX; yz,Zer,Zz |xz)

Zi— Zi4

= Z Z fozezow (Y — Zi + 2ims Zig, 20| %)
Zi— Zi4

=3 Folyi = zir + zi|w) f(zis ) f (i Ly, i), (5.9)
Zi— Zi4+

where the second step is due to (5.5), the third step is due to the independence assumption

n (5.6), fyx(-|z;) is determined by (5.2) together with (5.3) and (5.4), and f(z|z;) and
f(zi—|yi, z;) are respectively determined by (5.7) and (5.8). Expression (5.9) shows that
the conditional distribution for Y;* given X, generally differs from that for Y; given X;

However, in some special cases, such as stated in Theorem 5.1 below, the conditional
distribution, f(y}|x;), of Y;* given X, is closely related to the conditional distribution (5.2)
of Y; given X; in the structure.

Theorem 5.1 Suppose Y; follows the zero-inflated Poisson distribution given by (5.2) and
the measurement error model for Y; is given by (5.5).

(a) Ifc, =0 andc_ =11n (5.5), then Y also follows a zero-inflated Poisson distribution
given by
POV =01X,) = (1— 67) + o1e ¥,
P = yi|X) = s for yr=1.2
where ¢; = ¢; and i = (1 — ;) ;.
(b) Ifc, =1 and c— =0 in (5.5), then Y;* follows a mizture distribution of two Poisson
distributions, given by

P =yiX;) = (1 - ¢i) -+ @Me (HitA) for yr=0,1,2,....

(c) If c,. =1 and c— =1 in (5.5), Y follows a mizture distribution of two Poisson
distributions, given by

L *y;k % *
P(}/;* :y'ﬂXZ) ( gbl) Y5 +¢’Lug;;” et fOT’ Y; 20’1727"'a
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where pf = (1 —m) i + A

The proof of Theorem 5.1 is presented in Appendix D.1. Theorem 5.1(a) says that
if there is no add-in error in the measurement error model (5.5) and the leave-out error
follows Binomial(y;, 7;) then the surrogate variable Y;* assumes the same zero-inflated
Poisson distribution (5.2) as the true response variable Y; except for replacing p; with
(1 — m;)pi, where the factor 1 — m; reflects the impact of the degree of the leave-out error.
We comment that Theorem 5.1 is analogous to the well-known Poisson Process Thinning
Theorem (Brown, 1979, Theorem 1) which says that if Y; follows Poisson();), then Y;*

follows Poisson((1 — ;) \;).

Theorem 5.1(b) suggests that if there is no leave-out error in measurement error model
(5.5) and the add-in error follows Poisson();), then the distribution of the surrogate variable
Y;* is determined by two Poisson distributions, given by

Y;* ~ Poisson()\;), with probability 1 — ¢;, (5.10)
Y;* ~ Poisson(u; + A;), with probability ¢;.

Theorem 5.1(c) may be viewed as a combined result from Theorem 5.1(a) and (b), saying
that when both the add-in error and the leave-out error are present, the distribution of
the surrogate variable Y;* assumes the same form as (5.10) except that p; is replaced by
(1 — )i

Next, we discuss possible biases of the naive analysis which disregards the difference
between Y; and Y;*. That is, we naively assume that Y;* follows the same distribution form
as Y;, then we replace Y; in (5.2) with Y;* and let ¢} and p} denote the resulting quantities

corresponding to ¢; and p; in (5.2), respectively; in addition, the same model forms as
(5.3) and (5.4) are assumed for ¢f and p}:

cloglog ¢} = 5, + 5, Xi, (5.11)
log iy = B + Bra X, (5.12)

where §* £ (/3;‘)0, ﬂ;;r, 00 ;E)T are the associated parameters which may differ from the
corresponding parameters in the models (5.3) and (5.4). Without adding any constraint
on the measurement error (5.5), it is generally expected that * differs from §. Even
with certain conditions for the measurement error model (5.5), such as those discussed in
Theorem 5.1(b)(c), Y;* does not follow a zero-inflated Poisson distribution, and thus §* # £.
However, for the case considered in Theorem 5.1(a), the following theorem describes the
relationship between $* and 3, which shows a scenario where conducting the naive analysis

can still yield consistent estimators for some parameters.
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Theorem 5.2 If the conditions in Theorem 5.1(a) holds, then we have

(i) By = Bgo and B}, = Bye,
(1) By = Buo +log(1 — m;),
(iii) Bty = Bra-

The proof of Theorem 5.2 is presented in Appendix D.2. Theorem 5.2 says that when
there is only leave-out error in model (5.5), within the frequentist framework, point esti-
mators of the parameters for the response models (5.3) and (5.4) except for the intercept
in (5.4) are still consistent if using the naive method by disregarding measurement error.
Furthermore, Theorem 5.2(ii) implies that the estimator for 5, obtained from the naive
method can be adjusted by subtracting log(1 — ;) to produce a consistent estimator. On
the other hand, Theorem 5.2 shows that if 7; is unknown, nonidentifiability arises because
Buo and m; cannot be separated when using the surrogate measurements Y;* together with
the covariates X;. However, this nonidentifiability issue can be circumvented if we conduct
inferences in the Bayesian framework with a weakly informative prior imposed.

5.2 Bayesian Analysis Methodology

5.2.1 Bayesian Inference and Data Augmentation

Here we propose a Bayesian method for conducting inference about S by using the surrogate
measurements Y;*, together with the covariates, where the effects of measurement error are
accommodated.

Let 8 = (B0, B s Buos By,) " and let 6 = (67, a™)". Inference about the parameter 6 is
based on the posterior distribution of 6 given Y.* and X, given by

(2

[yl 0)m(0), (5.13)

where f(y7, 0|z;) represents the joint distribution of ¥; and 6, w(0) is the prior distribution
of parameter 0, f(y/|z;;0) is given by (5.9), and f(y;|z;) ff Y |:1cz, )m(6)d 6. Then, the

Bayes estimator of the parameters are given by the posterior mean f = E0|Y*, X;).

The basic idea of implementing Bayesian estimation is to sample a sequence of param-
eters from their posterior distribution given by (5.13). Then the Bayes point estimator
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9 is given by taking the sample mean of the sampled parameter sequence, and the v%-
credibility interval is given by (¢1-%, ¢y%), where 0 < v < 1, ¢,% is the v% quantile of the
sampled parameter sequence.

To this end, one may employ a sampling algorithm such as the Gibbs sampling method
to sample a sequence of values from the posteriors distribution (5.13), which, however,
can be challenging due to the complex structure of the probability mass function of Y;
in (5.2). To circumvent this, we consider an alternative way to express the distribution
of Y; by using two latent variables, say U;; and U, which are conditionally independent
given X;, and each follows a Poisson distribution. Rather than directly characterizing the
distribution of Y; by using (5.2) together with (5.3) and (5.4), we separately describe (5.3)
and (5.4) each using U;; and Uy, respectively, to gain the flexibility in modeling of the
distribution of Y;.

To be specific, we assume that given X;, U;; and Uy, are conditionally independent, and

that given X; the conditional distributions of U;; and U;y are given by

Ui1| X; ~ Poisson(p;1),
Ui2| X; ~ Poisson(p;),
where ;1 = exp(Bg0 + 8, X;) and p; = exp(Buo + B, Xi) with Bs0, Bge, Buo and By, being
the parameters in (5.3) and (5.4). Then (5.3) is equivalently written as ¢; = 1 — exp(f;1),
which can be viewed as the probability P(U;; > 0]X;). Therefore, the initial definition
(5.1) for Y; is equivalently expressed as
Y; = 0, with probability P(U;; = 0|X;), (5.14)

In other words, the values of Y; may be viewed by the distributions of U;; and U;s in such
a way: if U;7 = 0, then we set Y; = 0;
if U;; > 0, then we set Y; = Ujs;

and thus, we write Y; = 0- I(Uy = 0) 4+ Uye - [(U;; > 0), which is

where [(-) is the indicator function.

Consequently, the original distribution (5.2) of Y; together with (5.3) and (5.4) can
now be equivalently described by using U;; and Uy via (5.15). Thereby, using the idea of
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data augmentation (van Dyk and Meng, 2001), U;; and Uy can be used to ease sampling
procedures directly based on (5.13), which is complicated to realize. In particular, rather
than using f(y/|z;;60) in (5.13) directly, we use (5.9) with Y; replaced by (5.15) in its
derivation, and sampling parameter values from (5.13) can be equivalently re-expressed as
follows.

To see the idea, we consider the case with ¢, = ¢ = 1 when using (5.5). First, fixing
the initial parameter 6, we treat U;;, U;s, Z;+ and Z;_ as “missing data” and calculate their
posterior distribution, f(w;1, w2, ziv, 2|y, z:;0), given {Y;*, X;} and 60, which is given by

f(Uﬂ, Ui,y Zits Zz;ly?, Li; 9)

=P (Un = uq, Uip = Ui, Zip = yj — I(u > 0)ugp + i, Zi— = zi_|v4;0)

=P (Uil = Uz1|$z) P (Ui2 = Uz2|$z) P (Zi— = Zi—|Uz'1 = u;1, Uip = uyo, %) (5'16)
X P(Zy =y — I{uyg > 0)ue + 2 |x;),

where the first equality is due to (5.5) and (5.15), and in the second equality we use the
conditional independence between U;; and Uy, given X; as well as (5.6).

Next, we re-express the posterior distribution (5.13) of 8 by replacing Y; with U;; and
U2 and using the measurement error model (5.5):

FOly; w5, wan, wig, Zig, 2i-)
o f (wir, Ui, Ziv, 2i Y5, i, 0)m(0)
=P (U1 = ua|wi; Bo, Box) P (Uiz = Wia| s Buos Buz) P (Zie = zi—|ti1, Uin, T35 g, 0y
X P(Ziy =y — I{uy > 0)use + zi—|xi; oo, i) m(0), (5.17)

where the second step is due to (5.16) with the dependence on the parameters spelled out
explicitly. The advantage of (5.17) lies in its separation of the components of 6 by using
distributions for different random variables, i.e., U;;, U;s, Z;— and Z;,. For example, given
the rest parameters, the posterior distribution of parameters 34, and B4, are simplified by
(5.17) as

f(ﬁQ‘JO? B¢m|y:7 Ly U1y Wiy ity Zi—; ﬁ,u()v /B,LL:IJJ Qa_g, Xy, A1, a+w>

OCf(Uil\xi; B0, qux)ﬂ(e)'

Therefore, sampling values of 6 from (5.17) can be easily realized by sampling values for
(Boos Bia) ™ (Buos Biw) T (rgo, )T and (g, o) ", separately from their posterior distri-

—w

bution f(ﬁqso, B¢x|ui17 l’z‘); f(/B,LLOJ B,u:z:|u1'27 xz’)’ f(a+07 Oé+w’Zz‘+; 171) and f(Oé—07 Oé—w’Zz‘—7 U1, U2, xz)
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5.2.2 Implementation: Monte Carlo Markov Chain Method with

Data Augmentation

In this subsection, we describe the details of implementing the data augmentation idea
described in Section 5.2.1 by using an MCMC algorithm, which is summarized as follows.

Step 1:

Step 2:

(Data Augmentation) Generate U;;, Uy, Z;; and Z;_: For i = 1,...,n and
given Y*, X; and 6, generate U;1, Us2, Z;+ and Z;_ jointly from the distribution (5.16),
which can be realized by the inversion sampling algorithm described in Appendix D.3.

Update ay; using (5.7): For j =0,...,p, let ay; be the jth element of oy, let
Wiot+ = 1 and let W, be the jth element of W, . Given Z;, obtained from Step 1,
we generate oy from the posterior distribution

n n

H flojlzig) o H firlag;)m(og)

i=1 i=1

X exp (Z z,»+wij+oz+j> exp {— Z exp (a?_wiJr)} m(ay), (5.18)
i=1

i=1

where the second step comes from (5.7), and m(a ) is the prior distribution of ay
which may, for example, take a log-Gamma or a normal distribution with hyperpa-
rameters whose values are specified. When W;;, is binary, then we take 7(a) to
be a conjugate log-Gammal(c, d) prior with 7(a;) o< exp{—cexp(ay;)} exp(da;),
so that the posterior distribution (5.18) becomes

n

11 f(asilzis)

i=1

n n
X exp (Z zi+wij+a+j> exp {— Z exp(aiwﬂ_)} exp{—cexp(a4;)}exp(da;)
=1

i=1

n n
=exp { (d + Z Zi+wij+> aﬂ} exp |: {C + Zexp (Z wij:aﬂ*) wij+} exp(a+j)] y
1=1 i=1 J*#£]

which is the log-Gamma distribution, log-Gamma(c+3y ", eXP(Zj* i Wign

i s O ) Wi,
d + 22‘:1 ZierZ'jJr).
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Step 3:

Step 4:

Update a_;: For j =0,...,p_, let a_; be the jth element of a_,,, let Wj_ =1,
and let that W;;_ is the jth element of W;_. We generate a_; from the posterior
distribution

[ /(e zi) o H f i zi-|ej)m(a;)

«H(%){g (@0} 1)) wla),

where the second step comes from (5.8) and 7(a_;) the probability density function
of the prior of a_;, which can be taken as a normal distribution.

Update 3: Since both U;; and U;, follow a conditional Poisson distribution, given
X;, we update them in the same way as in Step 2. Let S8y; and 3,; respectively be
the jth element of 84 and 3,. Let X;o = 1 and Xj;; be the jth element of X;. For
Jj =0,...,ps, update 4; by sampling it from

L1/ (Bosluar) o< exp (Z Uilfﬂ'z'jﬂcbj) exp {— > eXp(ﬂgiﬁ'i)} m(Bs),
=1 =1 i=1

and update 3,; by sampling it from

L1/ (Busluiz) o< exp (Z uiﬂzjﬂm) exp {— Z eXP(ﬁEl’i)} (Bu)-

i=1 =1

where 7(f,) and 7(8,) are prior distributions for 84 and f,, respectively. For in-
stance, if the covariates X; are binary, we may take the conjugate log-Gamma prior

for B4 and f,,.

5.3 Extension to the Main/Validation Studies

The Bayesian inference circumvents the traditional identifiability issue in the frequentist
framework (e.g. Gelman et al., 2013, Page 412) by using weakly informative priors. In
some applications, however, even weakly informative priors are not available or cannot
be precisely set. In this circumstance, the study design can provide extra information
regarding the measurement error process through validation data.
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Let M denote the index set of the subjects in the main study, where {(y;, x;) : i € M} is
available. Let V represent the index set of the subjects in the validation data. For internal
validation, the validation data contain {(y},v;,x;) : ¢ € V} with V C M; for external
validation, the validation data contain {(y},y;, w;r,w;_) : i € V} with M NV = (. Let
m denote the size of the validation subsample V and let n be the size of M as used in
Sections 5.1-5.2.

5.3.1 Main/External Validation Study

With external validation data, we write the posterior function of # combining the main
and validation data:

ieEM %
& 7T(9) { H f(yz*’xl? 0)} {H f(y;k‘thi-ﬁ-v Wi—; a)} ) (519)
ieEM %

where f(y;|z;;6) comes from (5.9), f(yF|y:, wiy,w;—; ) is modeled by (5.5), and 7(0) is a
prior function.

Similar to the development of Section 5.2, instead of directly using (5.19) for sampling
values of the parameters, we apply the following sampling procedures:

Step 1: (Data Augmentation) Generate U;;, U;y, Z;, and Z;_. For i € M, we generate
augmented data in the same way as in Section 5.2.2. For i € V, we generate Z;, and
Z;_ from their joint posterior distribution

i, 2|V =y Yi=yio, B) = f(Ziv =y] —yi+2i-,Zi- = 250, 8), (5.20)
which is determined by (5.5).

Steps 2-3: Update a,; and a_;. These two steps are similar to Steps 2-3 in Section 5.2.2
except for replacing the summation Y, with Y iemuy- For example, we update
a; by sampling it from the posterior

H flaglziq) o< exp ( Z Zi+wij+a+j> exp {— Z eXP(O@Ter)} m(ay),

ieMUY ieEMUY ieMUY

Step 4: This is identical to Step 4 in Section 5.2.2.
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5.3.2 Main/Internal Validation Study

When internal validation data is available, the posterior function of parameter 6 now
becomes

iEM\V i€V

o 7(6) H [yl 0) [H {f@ﬂyz’;a)f(yi\xi;ﬁ)}] 3 (5.21)

iEM\V i€V
where f(y;|z;;0) comes from (5.9), f(y;|zi; B) is from (5.2), f(yf|yi; «) is from (5.5), and
7(0) is the prior function of parameters ¢. Similar to the development of Section 5.2,
instead of directly using (5.21) for sampling values of the parameters, we apply the following
sampling procedures:

Step 1: (Data Augmentation) Generate U;;, Uy, Z; and Z;_. For i € M\ V, we

generate the augmented data in a way similar to that in Section 5.2.2. For ¢ € V, we
generate the variables in the following steps iteratively.

1. We update the latent data augmentation variable U;; according to the value of

Ui and Y;, which includes three circumstances according to (5.15):

(i). Case 1 with Y; = 0 and U; = 0: By (5.15), Y; = 0 if and only if U;; =0 or
U;» = 0. That is, there is no restrictions on the U;; when U;s = 0, so in this
case Uy is generated from Poisson(p;1).

(ii). Case 2 with Y; = 0 and U;y # 0: (5.15) says that U;; is be surely be 0.
Hence, we set U;; = 0.

(iii). Case 3 with Y; > 0: (5.15) implies that U;; > 0. Hence, we update U;; by
a truncated Poisson(u;1) at 0.
2. Given U;; obtained in part 1, we update the latent variable U9, which includes
two cases:

(i). Case 1 with U;; > 0: we generate Uy by setting it equal to Y;; by (5.15).

(ii). Case 2 with Uy = 0: (5.15) shows that Y;; = 0, and thus, there are no
constraints on the variable U and we generate U,y from Poisson(u;).

3. Generate Z;, and Z;_ in the same way as in Step 1 in Section 5.3.1.

Steps 2—4: The steps are the same as Steps 24 in Section 5.2.2.
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5.4 Application to Prostate Adenocarcinoma Genomics
Data

5.4.1 Study Background

Here we apply the proposed methods to a multi-center molecular prostate cancer study. We
are interested in predicting whether or not cancer-related pathways are activated during
the prostate cancer progression and how the number of genes with copy number variations
(CNVs) within each pathway is associated with the risk factors. The data contain two
datasets that are linked by the genes in The Cancer Genome Atlas (TCGA) data that
are annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways data
through website cBioPortal. The first part includes the pathway information arising from
the KEGG pathways data, and the second part is the putative CNV data with 465 subjects
collected from two sources with 185 subjects from Broad Institute (Banerji et al., 2012)
and 280 subjects from Memorial Sloan-Kettering Cancer Center (MSKCC) (Taylor et al.,
2010) for prostate adenocarcinoma.

In this analysis, similar to Neelon and Chung (2017), we consider four pathways:
mitogen-activated protein kinase (MAPK) signaling, cytokine-cytokine receptor (CCR)
interaction, endocytosis (EC), and P53. Genes in the MAPK pathway are related to var-
ious cellular functions, such as cell proliferation, differentiation, and migration; genes in
the CCR interaction pathway are associated with inflammatory host defenses, cell growth,
differentiation and death, and the restoration of homeostasis; the genes in the EC pathway
are related to the mechanisms of cells transporting ligands, nutrients, proteins, and lipids
from the cell surface to the cell interior; and the p53 pathway is induced by a number of
stress signals, including DNA damage, oxidative stress, and activated oncogenes (Alberts
et al., 2002).

In our study here, we conduct four marginal analysis separately for each pathway,
where the response for each individual (Y;) is defined as the count of genes with significant
CNVs (with reading valued as either —2 or 2), which reflects the level of mutation in the
individual. We implement the Vuong tests (Vuong, 1989) to assess whether or not zero-
inflation exists in the response. With a p-value smaller than 0.001 for all four pathways,
the test result shows a strong sign of zero inflation. We investigate two different risk factors
that may be associated with the CNVs counts in two separate studies, which are reported
in Sections 5.4.2 and 5.4.3, respectively. In the first study, the covariate is denoted as X,
which is taken as the tumor stage, which is given by an indicator variable, taking value 0
or 1, according to the T2 or T3+ tumor stage for subject 7; and in the second study, the
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covariate is denoted as X;o, which represents the cancer recurrence, with X; = 1 if cancer
recurrence occurs and X; = 0 otherwise.

We are interested in understanding the relationship between Y; and a covariate in each
study. However, due to the potential sequencing error, the CNV reading of insignificant
gene can be falsely measured as significant, whereas the gene with significant CNVs can
be missed to be counted, and thus, the observed count number (denoted as Y;*) may

considerably differ from the true value of Y;. To feature this difference, we consider the
measurement error model (5.5) with ¢, = c_ = 1.

5.4.2 Association of Tumor Stage and CNVs

We conduct analysis for each pathway separately using the zero-inflated model (5.2), (5.3)
and (5.4) to feature the dependence of Y; on the covariate X;;. The dataset is combined
from multiple sources, and the data quality and genetic sequencing protocols can be dif-
ferent. Thus, in this study, we perceive that the measurement error process is associated
with the data source and use the measurement error models (5.7) and (5.8), where the
covariate W; is a binary indicator for the data source, with W; = 1 if the subject ¢ is from
the broad institute, and 0 otherwise.

In implementing the Bayesian procedures described in Section 5.2, we consider an
uninformative prior, log-Gamma(1000, 0.001), for the parameters of models (5.3), (5.4) and
(5.7). For the parameter a_g in the model (5.8), we consider the prior, Normal(—2,10),
where the negative mean reflects our expectation of a negative value for a_g, and a large
variance shows a flat prior. We use the Gelman-Robin method (Gelman et al., 1992) to
diagnose the convergence of Monte Carlo Markov chains, and the results show that MCMC
series for all the parameters well converge after running 250,000 iterations of sampling steps
and discarding the first 5000 as burn-in.

Our first interest lies in whether CNVs counts change as the tumor progresses for
patients who have activated the pathway. We implement the proposed method described
in Section 5.2.1, and for comparison, we also implement the naive method based on Neelon
and Chung (2017) where the difference of Y; and Y;* is neglected. The analysis results
of parameter estimation are presented in Figure 5.1. Both the naive method and the
proposed method find that the 3,, for all pathways are not significantly different from
zero, suggesting that patients in tumor stage T3+ do not have different mutations than
those in T2 stage. The estimates of the intercept of the count model (5.4), (3,9, for the

MAPK, CCR and EC pathways are higher than those of 3,y in the P53 pathway, showing
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that prostate cancer patients have more mutations in the genes involved in the pathways
of MAPK, CCR, and EC than the P53 pathway.

Our second interest is the probability of activation for patients as the tumor grows,
which is reflected by the estimation of parameters associated with ¢;. It is clear that the
proposed method with the measurement error effects accounted for yields results different
from the naive method. In Figure 5.2, we report credible intervals for the probability
of pathway activation using (5.3) together with estimates of S4 and fy,. The proposed
method indicates that the difference in the probability of pathway activation is close to
zero for patients in tumor stage T2 versus the patients in T3+. However, the naive method
suggests that the difference is very large.

5.4.3 Association of Cancer Recurrence and CNVs

We consider the endpoint to be, alternatively, the recurrence status of a prostate cancer
patient after being cured. We are interested in: 1) whether the status of cancer recurrence
is associated with activation of the pathway; and 2) for the subjects who have activated
the pathway, whether the status of cancer recurrence is associated with the CNVs counts.
We conduct an analysis for each pathway separately using (5.2), (5.3) and (5.4) to feature
the dependence of Y; on the covariate X;5. Since the covariate of cancer recurrence infor-
mation is only available in the MSKCC study, we focus on the analysis of 280 subjects in
the MSKCC study and consider measurement error models (5.7) and (5.8) with constant
parameters oo, and ag_ only, where IW; is no longer included in the models.

In implementing the Bayesian procedures described in Section 5.2, we consider the same
priors for parameters as in Section 5.4.2. We run 250,000 iterations of the sampling steps
and discard the first 5000 as burn-in. The resultant Monte Carlo Markov chains converge
according to the Gelman-Robin method (Gelman et al., 1992).

The results are exhibited in Figures 5.3-5.4. First, using the proposed methods in
Section 5.2 in contrast to the naive method as described in Neelon and Chung (2017), we
study the association between the status of recurrence of prostate cancer and the number of
CNVs for patients with activated pathways. In Figure 5.3, the proposed method suggests
that for all the pathways, under the significance level of 0.05, the number of CNVs is not
significantly associated with a higher risk of cancer recurrence, where the estimate of 3,
is, respectively, 0.007 and the credible interval (—0.393,0.401) for MAPK, 0.294 and the
credible interval (—0.098,0.614) for CCR, 0.144 and the credible interval (—0.346,0.655)
for EC, and 0.001 and the credible interval (—1.152,1.116) for P53. On the other hand,
the naive method shows that the patients with higher CNVs in the CCR pathway has a
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higher risk of recurrence, with the estimate of 3,, being 0.454 and the credible interval
(0.106, 0.802).

Secondly, we study the association between the activation of pathways and the risk of
cancer recurrence. We observe that the patients with the MAPK, CCR, or EC pathway
activated tend to have a higher risk of the prostate cancer recurrence, where the estimate
of B s, respectively, 0.906 and the credible interval (0.061,1.737), 1.021 and the credible
interval (0.145,1.999), and 1.205 and the credible interval (0.311,2.103) for each pathway.
On the other hand, the naive method indicates that the activation of the pathway is
associated with a lower cancer risk because the estimates of 34, are negative. We estimate
the probability of pathway activation using (5.3) and present the results in Figure 5.4.
The proposed method generally suggests that the cancer patients have low probabilities of
activation of the pathway, while the naive method indicates opposite findings.

5.5 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed
method. For the sake of comparison, we also implement the naive method where no action
is taken to deal with the measurement error in response.

We conduct two simulation studies. In the first simulation study, we evaluate the
performance of the proposed method under different settings of the parameters, leading to
different percentages of zeros in the responses. We conduct sensitivity analyses by exploring
different settings of the prior distribution of the parameters. In the second simulation study,
we evaluate the performance of the methods under different degrees of measurement error.

For both simulation studies, we run 1000 simulations for each setting. The sample size
is taken as n = 5000, and we consider model (5.3) with covariates X;; and (5.4) with
covariates X;s, where covariate X;; is generated from Binomial(0.5) and X is indepen-
dently generated from Uniform|0, 1]. The true response Y; is generated from (5.2), where
¢i =1 — exp{—exp(Byo + By Xi1)} and p; = Buo + Bz Xia-

To generate surrogate measurements Y;* of Y;, we consider the measurement error mod-
els (5.7) and (5.8) each associated with a covariate W;; and W, respectively, where
Wi is independently generated from U|0, 1], and W, is independently generated from
Ul0,2]. Furthermore, we generate Z;, from exponential(ag + ai,W;1) and Z;_ from

Binomial (Y}, 1i’;§;°égtiawvj)2)) As a result, Y;* is determined by Y;* =Y, + Z;, — Z;_.

To summarize the simulation results, we report biases (denoted “Bias”) by calculating
* Zfil 0y — 0y, model-based standard errors (denoted “SEM”), empirical standard error
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of the point estimates (denoted “SEE”), and the coverage rate (in percent) of 95% credible
intervals for a parameter, say 0, (denoted “CR”), defined as

1 ~ -
_ Z I(@k(L) < Qk < Qk(U)

=1

),

where N is the number of simulations, QA,(CL) and é,iU) are respectively the 2.5% and 97.5%
quantile for the sampled parameter values.

5.5.1 Simulation 1: Performance of the Proposed Method with
Different Zero Percentages and Hyperparameters

Two parameter settings are considered. In Setting 1, we consider (B0, Bpws Buos Buzx)’ =
(—=0.7,0.7,1,—0.5)", yielding about 60% zeros; in Setting 2, we consider (840, Bsz, Bu0s Buz) -
= (-0.2,0.7,1,0.5)T, yielding about 30% zeros. In both settings, we consider the param-
eters of the measurement error model (5.5) with ayg = a_g = 0, and (o, a_,)T =
(0.5, —2.3)T. For each setting, we study the sensitivity of results with respect to different
priors when implementing the proposed method and the naive method which disregards
the difference in Y; and Y;*. In the first set of priors, we consider uninformative pri-
ors log-Gamma(1000, 0.001) for Bs0, Bsz, Buo, Buzs tw, and Normal(0,1000%) for a_,,.
In the second set of priors, we choose log-Gamma(1,1) for Bs0, Bez, Buos Buzs Otw, and
Normal(—2,2%) for a_,,.

Table 5.1 shows that without accounting for measurement error in response, the naive
model produces biased estimates of the parameters and meaningless coverage rates of 95%
credible intervals. On the other hand, the proposed method considerably reduces the biases
resulting from the measurement error effects and provides reasonable standard errors. The
performance of the proposed method is satisfactory for different settings, regardless of the
specification of the prior distribution.

5.5.2 Simulation 2: Performance of Method with Different De-
grees of Measurement Error
In this subsection, we evaluate how the performance of the proposed method may be

affected by different degrees of measurement error resulting from different parameters in
the add-in process and the leave-out process. For the add-in process, we set the parameters
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(a0, yy)T in (5.7) to be (—1,0.6)T or (2, —1.2)T, leading to the mean of Z;; to be 0.5
(small) or 5.0 (substantial). For the leave-out process, we take the parameters (a_g, )"
in (5.8) to be (—1,—-1.2)T or (—0.8, —1)T, respectively, leading to 5% (low) or 10% (high)
counts being neglected.

To create a dataset for a main/external validation study, we randomly choose 2500
subjects and only keep the variables of Y;*, Y;, W;; and W;,. For the case of a main/internal
validation study, we randomly select 2500 subjects and keep their variables of Y;*, Y;, X1,
X2, Wi1 and W, to serve as the validation data.

We implement the methods described in Sections 5.2 and 5.3, as opposed to the naive
method by replacing Y; with Y;* in the analysis. When implementing the methods, we take
log-Gamma(1, 1) as the prior for 840, B4z, Buos Buz, @40, and Normal(—2,2?) for a_ and
Ay

The results are displayed in Table 5.2. Our proposed methods outperform the naive
method, regardless of the parameter settings for the measurement error model. The pro-
posed methods yield small finite sample biases for the point estimates and reasonable
coverage rates for 95% credible intervals.
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Parameter Estimation and Credible Interval
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Figure 5.1: The plot of parameter estimation of the zero-inflated Poisson models for the
association between tumor stage and CNVs. The point indicates the point estimation and
the line segments represent the 95% credible interval. The barplot is the associated standard
error for the estimation of the corresponding parameter.
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Figure 5.2: The plot of probability of pathway activation in the study of the association
between tumor stage and CNVs. The point indicates the point estimation and the line
segments represent the 95% credible interval. The barplot is the associated standard error
for the estimation of the corresponding parameter.

Table 5.1: Results for Simulation 1 with different zero percentage and prior parameters

Naive Mothod Proposed Method
Parameter Prior Bias SEE SEM CR% Bias SEE SEM CR%
Setting 1: zero-percentage 60%
Baso 1.506 0.030 0.029 0.0 0.004 0.089 0.086 93.3
Boz 0.340 0.051 0.049 0.0 0.004 0.082 0.079 94.1
Buo Uninformative 0.122 0.020 0.017 0.0 0.030 0.069 0.068 91.9
Bux 0.816 0.032 0.028 0.0 0.004 0.082 0.081 94.5
Qg - - - - 0.001 0.044 0.045 94.7
Qg - - - - 0.115 0.562  0.560 90.5
Bso 1.506 0.030 0.029 0.0 0.007  0.088  0.085 93.4
Box 0.340 0.051 0.049 0.0 0.005 0.081 0.078 94.2
Bro Informative 0.122 0.020 0.017 0.0 0.002 0.070 0.064 92.7
Bux 0.817 0.032 0.028 0.0 0.004 0.082 0.080 94.3
Qg - - - - 0.005 0.044 0.045 95.2
Ay - - - - 0.243 0.733 0.648 91.5
Setting 2: zero-percentage 30%
Beo 1.001 0.030 0.029 0.0 0.001  0.049 0.048 93.9
Box 0.332 0.052 0.049 0.2 0.002 0.056  0.055 94.5
Buo Uninformative 0.124 0.020 0.017 0.0 0.021 0.046 0.052 93.7
Buax 0.185 0.033 0.028 0.0 0.004 0.047 0.047 945
Qg - - - - 0.004 0.053 0.053 94.7
Ay - - - - 0.100 0.370 0.430 94.0
Baso 1.000 0.030 0.029 0.0 0.002 0.049 0.048 93.5
Boz 0.332 0.051 0.049 0.0 0.003 0.056  0.055 95.7
Buo Informative 0.124 0.020 0.017 0.0 0.012 0.043 0.052 96.6
Bux 0.184 0.033 0.028 0.0 0.003  0.047 0.047 94.2
Qg - - - - 0.006 0.053 0.053 94.5
a_y - - - - 0.017 0.389 0.456 96.0
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Parameter Estimation and Credible Interval
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Figure 5.3: The plot of parameter estimation of the zero-inflated Poisson models for the
association between cancer recurrence and CNVs. The point indicates the point estimation
and the line segments represent the 95% credible interval. The barplot is the associated
standard error for the estimation of the corresponding parameter.
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Figure 5.4: The plot of probability of pathway activation in the study of the association
between cancer recurrence and CNVs. The point indicates the point estimation and the
line segments represent the 95% credible interval. The barplot is the associated standard
error for the estimation of the corresponding parameter.
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Chapter 6

Autoregressive Models with Data
Subject to Measurement Error

In this chapter, we discuss error-contaminated time series data. The notation and the setup
for the autoregressive time series model and the proposed measurement error models are
introduced in Section 6.1. In Section 6.2, we present the theoretical results for character-
izing the impact of measurement error on the analysis of time series data. In Section 6.3,
we develop an estimating equation approach to adjust for the biases due to measurement
error. In Section 6.4, we implement the proposed method to analyze the COVID-19 data
in four provinces in Canada.

6.1 Model Setup and Framework

6.1.1 Time Series Model

Consider a T x 1 vector of time series, X7 = (X1, Xs,..., X7)". We are interested in
modeling the dependence of X, on it previous observations X *~1 and we consider it to be
postulated by an autoregressive model with lag p

p
Xt = Qbo + Z quthj + €, (61)
7=1

where p is an integer smaller than T, ¢®) = (¢, ..., ¢)" is independent of X = (X,..., X;)"
with each ¢ having zero mean and variance o2, ¢y is a constant drift, and ¢ = (¢q,...,d,)"
is the regression coefficient.
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The additive form in (6.1) and the zero mean assumption of ¢; show that ¢y and ¢ are
constrained by

¢0 = E(Xt> - {E(Xt—l)}Tﬁba (6-2)

where X; | = (Xi-1,...,X;—p)T. To make the process of X, stationary, ¢1,...,¢, are
further constrained such that all the roots of the equation in z

_¢1Zp_1_—¢p:0

have absolute values smaller than 1 (Brockwell and Davis, 2002, Section 3.1.). For example,
a stationary AR(1) process requires that |¢;]| < 1, and a stationary AR(2) process needs
that (¢1 + ¢2) < 1, (¢2 — ¢1) < 1 and |¢po| < 1. Here we are interested in the estimation
of parameters, ¢ and ¢y. Let p denote the mean F(X;) of the time series, which equals

1@% if X, is (weakly) stationary. When p = 1, the stationarity of a time series implies

Var(X;) = ﬁz fort=1,...,T.

6.1.2 Estimation of Model Parameters

The estimation of the parameters in the AR(p) time series model (6.1) can be carried out by
the least squares method. To see this, we first focus on estimation of ¢ = (¢1,...,¢,)". Let

S(¢) =] o 1Xe = (¢o + 28— ¢;Xi—;)}? be the sum of the squared difference between
X; and its linearly combined hlstory with lag p. Then applymg the constraint (6.2) gives

S(®) =Yt [{Xt BE(X)} —{ X1 — B(X;- 1)}T¢]

To minimize S(¢) with respect to ¢, we solve agff) = 0 for ¢ and obtain the solution

P = < Z {Xt 1- thl)} {)’thl - E()}tl)}T> zT: {)thfl - E()?tfl)} {Xi — E(X1)},

t=p+1 t=p+1
(6.3)

where for t = 1,...,T, E(X;) can be estimated by %Zthl X}, which is denoted as i.
Next, by the constraint (6.2), replacing E(X;) by i gives an estimator of ¢:

TR TR (6.4)
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Re-expressing (6.1) as ¢, = X; — (¢ + Z?Zl ¢;X;—;) and by the definition of S(¢), we
may estimate Var(e;) = o2 by

~2(LS) 1 w
Oe( )= T——pS(gb)
R S - U
_ T—_pt;l{Xt ~ B(X)}¥ - T—_pt_;l{xt E(X)HX, 1 — B(X,1)}"6
+TL—p Z <$T{)~<t 1— (Xt 1)}{Xt 1 _E()?tfl)}T(g (6.5)

with E(X;) estimated by .

Estimators (6.3)—(6.5) can be derived in an alternative way. First, by the stationarity
of the X;, for k =0,...,p and p < t, Cov(X;, X;_x) is time-independent and let v, denote
it; it is clear that 7o represents Var(X;) for any ¢. Let I' be the autocovariance matrix

Yoo Vp-1
F=| : -~
Yp-1 Y0

Let ¥ = (91, ,9)" with 3 = 7 ZtT:kH(Xt — 11)(X;_1, — Ji) being an estimator of
for k=0,...,p, and let T be the estimator of I' with i replaced by 45 for k =0,...,p—1.

Next, we examine the summation terms in (6 3) and (6.5) by using the fact that as
T — 00, 7 ZtT:p+1£Xt E(X)P 5 0, 75 2 p+1{Xt E(X)HXi 1 —E(X, )} =
v, and 7230 { X = B(X ) H{Xio1 — E(X;21)}" 5 T Then, (6.3)(6.5) motivate
an alternative method of finding estimators for ¢, ¢y, and o2, by solving the estimating
equations:

o=T""%

b0 = <1 - ¢z> 1 (6.6)
=1

02 = —2¢6"7 + ¢'T¢,

for ¢, ¢o, and o2, Let b, o and o2 denote the resultant estimators of ¢, ¢g, and o2,
respectively. These estimators are asymptotically equivalent to the least squares estimators
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$<LS), (EE)L ¥ and 52 in a sense that gg — $<LS) 250, (//50 — Agm 25 0and 52 — 529 250, as
T — oo, and hence, they are consistent (Box et al., 2015, Section A.7.4).

Estimating equations (6.6) offer a unified estimation framework in its connections with
not only the least squares estimation but also the maximum likelihood method under
the assumption of Gaussian error as well as the Yule-Walker method. Similar to the

least squares method, finding estimators using one of those approaches is asymptotically
equivalent to solving (6.6) for ¢, ¢y and o2 (Box et al., 2015, Section A.7.4).

6.2 Measurement Error and Impact

6.2.1 Measurement Error Models

Suppose that for ¢t = 1,...,T, the observation of X, is subject to measurement error and
the precise measurement of X; may not be observed, but its surrogate measurement X; is
available. We consider two measurement error models.

The first measurement error model takes an additive form

X =ap+ a1 Xy + e (6.7)
for t = 1,...,T, where the error term e; is independent of X; with mean 0 and time-
independent variance o2 and is assumed to be mutually independent for ¢t = 1,...,T,

and o = (ap, )" is the parameter vector. Here, o represents the systematic error and «o;
represents the constant inflation (or shrinkage) due to the measurement error. For instance,
if ap = 0, then setting a3 < 1 (or ay > 1) features the scenario where X} tends to be
smaller (or larger) than X, if the noise term is ignored. This model generalizes the classical
additive model considered by Staudenmayer and Buonaccorsi (2005) who considered the
case with ap = 0 and a; = 1.

By the stationarity of the X;, we note that model (6.7) yields F(X}) = ap + a0 and
Var(X]) = a3y + 07; (6.8)

the variability of the X} can be greater or smaller than that of the X;, depending on the
value of o.

The second measurement error model assumes a multiplicative form:

Xt* = 60utXt, (69)
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fort =1,...,T, where [, is a positive scaling parameter, and the u; are the error terms
which are independent of each other as well as of the X;, and have mean one and time-

independent variance o2. Depending on the distribution of the error term u;, (6.9) can

feature different types of discrepancy between X; and X}

The stationarity of the X; together with model (6.9) implies E(X}) = Sy, and

Var(X;) = Var(5y X;u)
= Bg {E(Xfuf) - EQ(XtUt)}
= B {E(XP)B(u) — E*(X) E*(ur) }
= G5 {(Var(X,) + E*(X,)) (03 + 1) — E*(X,) }
= A {(o0 + Do + o} (6.10)

where the third step is because of the independence of X; and w;.

Since E(X]) is time-independent for both (6.7) and (6.9), in the following discussion,
we let p* denote E(X]) for t =1,...,T. The modeling of the measurement error process
by (6.7) or (6.9) introduces extra parameters {ag, oy, 02} or {fy, 02}, where the variance
of the error term is bounded by the variability of X;* together with others. Clearly, (6.8)

shows that ¢ < Var(X;) and (6.10) implies that o2 < V%rg(i;z).
0

6.2.2 Naive Estimation and Bias for AR(1) Model

Estimating equations (6.6) are useful when measurements of X, are available. However,
due to the measurement error, X; is not observed so (6.6) cannot be directly used for
estimation of the parameters for model (6.1). As the surrogate X; for X; is available, one
may attempt to employ the naive analysis to model (6.1) with X; replaced by X;. Here we
study the impact of measurement error on the naive analysis disregarding the difference
between X; and X;. We start with the AR(1) model, i.e., model (6.1) with p = 1.

If we naively replace X; in (6.1) by X7, then the time series model (6.1) becomes
Xi=do+ o1 X+ ¢, (6.11)

where (45, ¢7)" and €; show possible differences from the corresponding quantity in the
model (6.1). To estimate ¢f and ¢, we may employ the ordinary least squares (OLS)
method. Specifically, we minimize S(¢f, ¢%) = So1_o(X; — ¢f — 7 X;})? with respective

123



to ¢ and ¢7, yielding the OLS estimators of ¢7 and ¢j:
(E Zt Q(X: 1 X(tl))(Xf _X*)
1 * Ok
Zt:Q(Xt—l - X(—l))Q
and ot =X — ¢ X", (6.12)
ok T * \ T *
where X(—l) = ﬁ Do Xy and X = ﬁ Do X

Y

Theorem 6.1 Let w1 = QLU(E_QQ), (b; = (blwl, and (ba = (OCO + a1¢0) (1 — (blwl). As-
1

202+02(1
sume the stationarity of the times series. If the measurement error process satisfies (6.7),
then

(1) gg’{L)qb’{ and&%#% as T — o0,
(2) € = ap(l — ¢%) + a1 — ¢ + ar1(dr — ¢7) X1 + (1 — ¢))er + ane fort =1,....T,

and hence Var(e}) = ¢3a2(1 — wy)? (1515) + (1 — wi¢1)%0? + o202

The proof of the theorem is included in Appendix E.2. This theorem essentially implies
that the naive estimator under the additive form in (6.7) is inconsistent because ¢f # ¢,
and ¢ # ¢o. The naive estimator g/g’{ attenuates and the attenuation factor w; depends on
the parameters a; and o2 of the measurement error model (6.7) as well as ¢; and o2 in the
time series model (6.1). The coefficient a; in the measurement error model (G. 7) affects
the estimation of the both naive estimators ¢1 and q§0, while the intercept ag influences
the estimation of ¢§ only, but not ¢ or Var(e*).

Theorem 6.2 Let wy = {1+ 02 + (1(;L¢;1 Z?O} L ¢ = drwa, and ¢f = 160(201 (1 —wagn). If

the times series is stationary and the measurement error process satisfies (6.9), then
(1) gg{—p—mb’{ andq@é—p—)qﬁg as T — oo,
(2) e = BoPour — ¢p + ﬁoXt—1(¢1Ut - w2¢1ut—1) + Bowsey fort=1,...,T,

(A.)2 g,
and hence Var(e}) = B2{o2¢% + (1 + 02)o?} + 5§¢%(1222) (l—i%)‘

The proof of the theorem is included in Appendix E.3. This theorem says the attenua-
tion effect resulting from the measurement error on estimation of ¢;. The constant scaling
parameter [ in the measurement error model (6.9) does not influence the estimation of
¢1 but affects the estimation of ¢ and 2. The attenuation factor wy is determined by
the magnitude o2 of measurement error as well as the values of ¢g, ¢1, and o2 of the time
series model (6.1).
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6.2.3 Naive Estimation and Bias for AR(p) Model with p > 2

We now extend the discussion in Section 6.2.2 to the AR(p) model with p > 2. Replacing
X, with X} in (6.1) gives the working model

p
=g+ Y X +e, (6.13)
j=1

where ¢* = (¢7,...,¢;)" and ¢ may differ from the corresponding symbol in (6.1). If
mimicking the procedure of using (6 6) with Xt replaced by X/ to estimate ¢*, ¢f and
o®* in (6.13), then we let o = ( . gb*) gbo and 7% denote the resultant estimators.
Similar to 75 and f, we define pi* = %thl X; and 3} = 7 tT 1k(X* (X — 1)

for k=1,...,p. Let 7* = (3f,....75) " and 75 = & S (X} — @) (X; — ).
We now discuss the asymptotic results of the naive estimators under different measure-

ment error models.

Theorem 6.3 Let 1, be the p x 1 unit and let I, be the p X p identity matriz. Define

v = a%’y, Yo = a%’yo + 02, ¢* = 2 (il + o2L,) 1y, ¢ = (1 —¢* - 1,) (g + a1p) and
02 = a2y + 02 — iy (02T + 021,) "' . Under regularity conditions, if the time series is

stationary and the measurement error process satisfies (6.7), then
(1) 7* 25 v and 7; L5 ~v¢ as T — oo.
(2) ¢ L o, oy s ¢, and 62 L 0% as T — .

(3) Let Q1 denote the (p + 1) x (p + 1) asymptotic covariance matriz of
\/_{ Ao, 7T - (vg,v*T)T} as T — oo. Then the elements of Q, are given by

Troo = Q100 + 403y002 + E(ey) — o

Gop = O1qop + 407,075
lepr = O/llqm + QQ%JE(VIP%I + Ypir) for T # 0,7 # p;
@ op = 1y + 203707 (Y0 + Y2p) + 035

for p > 1, where gj, is the (j,k) element of the asymptotic covariance matric of
(30, ¥5)T, given by (Brockwell et al., 1991, Section 7.3)

Gk = =3+ O (W¥iciek + ViekViej) (6.14)

1=—00

for (3,k) = (0,0), (0,p), (p,p) and (p,r) with r # 0 and r # p, with n = E(e})/o?.
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The proof of Theorem 6.3 is presented in the Appendix E.4. Similar to the results in
Theorem 6.1, the intercept o only influences ¢y and does not influence ¢.

Theorem 6.4 Let v* = 37, 75 = B2 {(02 + )yo + 0242}, ¢* = {T + 02(0 + 1)} 7.
* * * -1
0 = Po(1—¢" - 1) p, and 02 = S5(oy, + 1)y0 + Bgour® — 557" {T + oy +1*) L} 7.
Under regularity conditions, if the time series are statzonary and the measurement error

process satisfy (6.9), then

(1) 7% 25 v and 3; Lo ~vg as T — oo.
(2) (75* L o, QES L ¢, and 32 25 0% as T — oo.

(3) Let @y denote the (p + 1) x (p + 1) asymptotic covariance matriz of
\/_{ 7T = (6,7 } as T — oo. Then the elements of Qy are given by

@00 = Ba (02 +1)%qo0 + By {E(uy) — (02 + 1)*}E(X — p)*
+4pByon(on + Dvo + 4uBe{ E(uf) — E(u}) — o (o + 1)} E(X, — p)®
+ 20765 {E(uf) — 2E(u}) + 1 — o } %0

4By |on Do {B(ug) = 2B(uf) + o + 1= 0y} 0| + i By [E{(ur = D)} — o]

h=—o0

Bop = Boap(oy, +1) + By { E(w) — (0 + 1)} [E{(Xe — 1)* (Xegp — )} + E{(Xs — 1)>(Xs—p — )}]
+ 2uBg0svop + By B{3u — 3uf — 200} [E{(Xs — )*(Xe—p — 1)} + B{(Xe = 11)*(Xp4p —
+ 64 By Eur — 1)°y, + 41 Byo iy

Gy = Botpr + Boo [E{(Xe — 1)*(Xetp — 1) (Xerr — 1)} + E{(Xe = 1) (Xep — 1)* (Xeprr — 1)}
FE{(Xo—r = 1) ( Xy = 1)*(Xop — )} + E{(Xs = 1) (Xep—r — 1) (Xetp — 11)?}]
+ puBoos [E{(Xs — 1) (Xigp — 1) (Xipr — )} + B{(Xs — 1) (Xip — 1) (Xepar — 1)}
FE{(Xi—r — ) (Xt — 1) (Xegp — )} + E{(Xs — 1) (Xip—r — 1) (Xep — 1)}
+ 20 B30 (Vp—r| +Vptr) Jor T # o1 #0;

By = Bodpp + By (0 + 207) Var{(Xs — 1) (Xetp — )} + 280 E{(Xs — 1) (Xegp — 1) (Xew2p — 1)}
+ nBoon [B{(X: — 1) (Xisp — 1)*} + 2B{(Xs — 1) (Xigp — 1) (Xiy2p — )}
+ E{(X: — 1)*(Xpsp — )}] + 26°Bo0up + 21° By o (Yo + v2p) + 1" By

where the q;i, are given by (6.14), for (4,k) = (0,0),(0,p), (p,p) and (p,r) withr # 0

and 1 # p, and v, = limy_ oo = S0 S°T_ B{(X, — 10)(Xegp — (X — 1)}

The proof of the theorem is presented in Appendix E.5. The multiplicative measurement
error u, contributes to the biasedness of the parameter estimation for ¢, while the scaling
parameter 3y has no effects on the naive estimator ¢*.
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6.3 Methodology of Correcting Measurement Error
Effects

6.3.1 Estimation of Model Parameters

In the presence of measurement error, measurements of the X; are not always available
but surrogate measurements X; are available. It may be tempting to conduct a naive
analysis by implementing (6.6) with the X replaced by the X/, or equivalently with 1z and
3k replaced by i* and the 75, respectively, to find estimators of ¢, ¢y and o2. However, by
Theorems 6.3-6.4, such a procedure typically yields biased estimators. In this section, we
develop new estimators accounting for the measurement error effects described by either
the additive model (6.7) or the multiplicative model (6.9).

Our idea is still to employ (6.6) to find consistent estimators of ¢, ¢y and ¢, but
instead of replacing ;7 and the 7, with ;7* and the 7} as in the naive analysis, we replace
and the 7, in (6.6) with new functions of the X}, denoted as i and the 7, which adjust
for the measurement error effects. Specifically, if we can find x and the 7 such that they
resemble i and the 7 in the sense that as T — oo,

1 and 1 have the same limit in probability,
and i, and 7, have the same limit in probability for £ =0,...,p, (6.15)

then substituting i and the 7 with i and the 7, in (6.6) yields consistent estimators of
b, ¢o and o?.

With the availability of the 7 satisfying (6.15), let [ denote T with the ~i replaced by
the 7. Then provided regularity conditions, consistent estimators of @, ¢y and o2 can be
obtained by solving the estimating equations for ¢, ¢y, and o:

o=1"17,
p
do = (1 - Z@) 7, (6.16)
i=1
of =% — 26'7 + ¢'T9.
It is immediate to obtain the following result.

Theorem 6.5 Assume regularity conditions hold and the time series are stationary. If i
and the 3 are functions of the X witht = 1,...,T and they satisfy (6.15), and let ¢, ¢y,
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and G.° denote the estimators for ¢, ¢y and o2, respectively, obtained by solving (6.16).
Then, as T — oo

(1) ¢ 25 ¢, o = o, and 5.2 25 02;

(2) Vi(é — ¢) <= N(0,GQG™),
where G 1is the matriz of derivatives ofc;ﬁ with respect to the components of (35, 7*")".
Here Q) = (1, the matrix in Theorem 6.3, if measurement error follows the model
(6.7); and Q = Q2, the matriz in Theorem 6.4, if measurement error follows the
model (6.9).

Now we discuss explicitly how to determine z and the 7, under the measurement error
model (6.7) or (6.9). With (6.7), take i = £ — ag, Fp = 2 =% - 0—2), and 7 = % for

k=1,...,p. With (6.9), take i = g—;, Yo = (HZSZ’),BQ — GQH, and V=% fork=1,...,p.
u/~0
By the results in Theorem 6.3(1) and Theorem 6.4(1), it can be easily Verlﬁed that these

@ and the 7 satisfy (6.15).

We conclude this section with a procedure of estimating the asymptotic covariance ma-
trix for the estimator ¢. While Theorem 6.5 presents the sandwich form of the asymptotic
covariance matrix of ¢, its evaluation involves lengthy calculations. We may alternatively
employ the block bootstrap algorithm (Lahiri, 1999) to obtain variance estimates for ¢
using the following steps. Firstly, we set a positive integer, say NN, as the number for the
bootstrap sampling; NV can be set as a large number such as 1000. Next, we repeat through
the following five steps:

Step 1: At iteration n € {1,..., N}, we initialize a null time series X ™ of dimen-
sion 0 and specify a block length, say b, which is an integer between 0 and
T. Initialize m=1.

Step 2: Sample an index, say 4, from {0,...,7 — b}, and then define Xégil_l) =
{X’i+17 ce 7Xi+b}'

Step 3: Update the previous time series X ™™~V by appending xm add 1 to it, and let
X (m) denote the new time series.

Step 4: If the dimension X ™) is smaller than 7" then return to Steps 2 and 3;
otherwise drop the elements in the time series with the index greater than
T to ensure the dimension of X (™™ is identical to T" and then go to Step 5.
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(n,m)

Step 5: Obtain an estimate 5(”) of parameter ¢ by applying the times series X
to (6.16). If n < N, then set n to be n+ 1 and go back to Step 1 to repeat;
otherwise stop.

=(n) =(n) ~
Let o = % ZnN:1 ¢  be the sample mean. The bootstrap variance of ¢ is then given
by,

~ 1~ =
Varboot(¢) = N Z(¢(n) - ¢ )2.
n=1

6.3.2 Forecasting and Prediction Error

Forecasting is an important application of the autoregressive models. Specifically, in
forecasting based on the observed time series X(p)y = {z1,..., 27}, we are interested in
the predictions of {Xr.1,..., Xpr g} for a positive integer H, which is done one by one
starting from the nearest time point 7"+ 1 to the farthest time point 7"+ H. To this
end, let h = 1,..., H, the h-step forecasting of X, is based on its history of lag-p,
{Xrin-1,-.., Xrin_p}, by using the conditional expectation E(Xrin|Trin—1,- -\ Trin—p),
denoted )?THL, where for j =T +h —1,...,T7 4+ h — p, x; is the observe value of X if
Jj < T; and z; is the predicted value of Xj, )A(j, if j > T. This prediction minimizes the
squared prediction error E()?TJF;1 — Xr41)? (e.g., Box et al., 2015, Page 131).

If no measurement error is involved, due to the zero mean of the random error term ¢,
in the AR(p) model (6.1), for h =1,..., H, the conditional expectation can be calculated
by R

X1ih = @0+ QrO74h-1 + -+ OpTTin p- (6.17)

When measurement error appears, the observe values z; for j =7, ...,T—p+1in (6.17)
are no longer available but their surrogates X are available. We now provide a sensible
estimate of X; by using the measurement error model for characterizing the relationship
of X and X7. If measurement error follows (6.7), we “estimate” X; by

P 1
X;=—(X7 —ap) forj=t,....t—p+1; (6.18)

aq J

if the measurement error follows (6.9), then X ; is “estimated” by
X
Xj:ﬁ—j forj=t,....t—p+1. (6.19)
0
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These “estimates” are unbiased in the sense that E()A(J) =X, forj=1¢t,...,t—p+1.
Consequently, for h =1,..., H, X7, is predicted as

)?T+h = ¢p + ¢1)?T+h—1 +e ¢p)?T+hfp- (6.20)

In contrast to the observed values {zr,...,z7_,41}, also referred to as the initial val-
ues of the forecasting of Xr.1,..., Xrim, the estimates determined by (6.18) or (6.19)
introduce additional prediction error which should be characterized. Without the loss of
generality, we consider p = 1 to illustrate the recursive calculation of the prediction error;
the prediction error with a higher order of autoregressive process can be derived recursively
in a similar way but with more complex expressions.

If the measurement error follows (6.7), the mean squared prediction error of the 1-step
prediction is given by
Pgl) = E()?TH - XT+1)2
= E{(¢o + 1 X1) — (b0 + 1. X7 + e7.1) }

2
{¢1 (Xt ) ¢1 T — €T+1}
o7}

2 2
_ p10; 2

a? T

where the last step is due to the independence between e; and €1, as well as F(e?) = o

and E(e}) = o2

2
e

Then, the h-step prediction error is given by

P" = BE(Xrsn — Xrin)’
= E(¢o + ¢1)?T+h—1 — ¢o — 1 X4n1 — er41)”
=k {¢1 (XT—HL—I - XT+h—1) - €T+1}2

=GP + o
h—1

¢2h 2
_|_Z¢2’ 2 (6.21)

where the last step comes from the recursive evaluation of py,

130



Similarly, if the measurement error follows (6.9), the mean squared prediction error is
given by
Pél) = E()A(TH - XT+1)2

= E({¢o + 61 X1} — {0 + $1.X7 + €141})?

=E{1X; (ur — 1) — €T+1}2

= E{1X: (ur — )Y’ + E (6f1)

2B (X3 (ur — 1)} + E (&)

=g E{X7} E (up —2ur + 1) + E (€1,)

= ¢2{Var(X7) + E*(X7)H{E (u7) — 2E(ur) + 1} + 02

= ¢H{Var(Xr) + E*(X7)H{Var(ur) + E*(ur) — 2E(ur) + 1} + o2

= ¢ Var(Xr) + E*(X7)}Var(ur) + o2

_¢1{1_2¢2 + 1 }ai—%o?

where the fourth step is due to the independence of €., u; and X, the sixth step is due
to the independence of u; and Xy, the second last step is due to F(u;) = 1, and the last

step is because Var(X;) = due to the stationary AR(1) process. Hence,

1— ¢>2
P" = E(Xzin — Xr4n)®
= E{(¢o + 01 X11n-1) — (b0 + 01 Xr4n1 + er41)}
=E {¢1 ()?TJrh—l - XT+h—1) - €T+1}2
— P 4 o2

= %h{l_&—l—u}a —|—Z¢2$2 (6.22)

The evaluation of the mean squared prediction error Péh) is carried out by replacing the

parameters with their estimators. We comment that the common second term in (6.21) and

(6.22), 3271 ¢¥0?2, is the mean squared prediction error for the AR(1) model for error-free

settings (e.g. Box et al., 2015, Page 152), which equals %ﬁ;a
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For an o with 0 < a < 1, then h-step (1 — a)-prediction interval is constructed as
Xrin — Q%Péh),th + Q%P((gh) )

where ga the a-level quantile of the distribution of )?TJF;Z — X74p. In practice, under normal
assumption of ¢ and e;, one can take ga to be the a-level quantile of the standard normal
distribution (Brockwell and Davis, 2002, Page 108).

6.4 Analysis of COVID-19 Death Rates

6.4.1 Study Objective

Using Canadian provincial COVID-19 data containing the daily confirmed cases and deaths
from April 3, 2020 to May 4, 2020, we compare the times series of death rates for
British Columbia, Ontario, Quebec, and Alberta, the four provinces in Canada which
experience severe situations. The daily confirmed cases and fatalities are taken from
“1Point3Acres.com” (https://coronavirus.lpoint3acres.com/).

In epidemiology, the mortality rate, defined as the proportion of cumulative deaths
of the disease in the total number of people diagnosed with the disease (Kanchan et al.,
2015), is often used to measure the severeness of an infectious disease. For COVID-19,
determining the mortality rate is not trivial due to the difficulty in precisely determining
the number of infected cases. Due to the limited test capacity, individuals with light
symptoms are not being tested. Asymptomatic infections and the incubation period make
it difficult to acquire an accurate number of infections. To circumvent this, we explore
different definitions of death rates. Definition 1 is from Baud et al. (2020) who estimated
mortality rates by dividing the number of deaths on a given day by the number of patients
with confirmed COVID-19 infection 14 days before, with the consideration of the maximum
incubation time to be 14 days. On the other hand, the median time from symptom onset
to intensive care unit admission is about 10 days ([3] in Baud et al., 2020), so we consider
Definition 2 which is the number of deaths of COVID-19 on day ¢ divided by the number of
confirmed cases at day (t—10). In comparison, we also consider Definition 3 by calculating
the death rate on day ¢ as the ratio of the number of deaths on day ¢ to the number of
confirmed cases on the day t.

While the first two ways may help more reasonably estimate mortality rates than the
third definition, these calculated rates still differ from the true mortality rates because
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of under-reported cases which are primarily due to limited test capacity and undetected
asymptomatic infections. To reflect the discrepancy between the reported and the true
mortality rates for each province, for each definition of the mortality rate, we let X; ;, Xo,,
X3y, and Xy, represent the true mortality rate on day ¢ for British Columbia, Ontario,
Quebec and Alberta, respectively; and let X7,, X35, X3, and XJ, denote the reported
mortality rate on day t in British Columbia, Ontario, Quebec and Alberta, respectively.
The objective is to use the reported mortality rates { X}, : ¢ = 1,...,31} to infer the true
mortality rates X,; which are modeled by (6.1) separately for ¢ = 1,...,4. In addition,
we want to forecast the true mortality rate of COVID-19 for a future time period. Due to
the undetected asymptomatic cases and untested cases for light symptoms, the reported
mortality rates X}, are typically overestimated (i.e., X;, > X;;) fori =1,...,4. Asthereis
no exact information to guide us how to characterize the relationship between X}, and X,
here we conduct sensitivity studies by considering measurement error model (6.7) or (6.9).
We use the observed data X/, from April 3, 2020 to May 4, 2020, i.e., {X/, : t =1,..., T;}
with 73 = T, = 31, to estimate the model parameters in (6.1) with measurement error
effects accounted for, and then forecast the mortality rate of COVID-19, from May 5, 2020
to May 9, 2020, in British Columbia, Ontario, Quebec and Alberta, Canada.

6.4.2 Models Building

Figure 6.1 displays the trajectory of the mortality rates of COVID-19 in the four provinces
that are obtained from the three definitions. To assess the stationarity of the X}, we
conduct the augmented Dickey—Fuller (ADF) tests (Cheung and Lai, 1995) to times series
{X; :t=1,...,T}, or its differencing transformation {Xi*’(tﬂ) - X} it=1,...,T} for
1 =1,...,4 in each definition. Table 6.1 presents the test statistics and p-value of the ADF
test for each time series, where “T'SV” represents a test statistics value.

To determine the lag value p for the autoregression model (6.1) used for the time series
{Xis :t =1,..,T;} with Ty = Ty = 31 for i = 1,...,4, we fit the naive model (6.13)
with €} assumed to follow a normal distribution N(0,0?), and use the AIC criterion by
minimizing

T
— 2 log f(x}|wy, .- x},) + 2p, (6.23)

t=p
where f(zf|r;_,...,x;_,) is the conditional probability of X; given X7 ,,..., X} . The
results are summarized in Table 6.2, where no-differencing or 1-differencing is applied, the

entries with “-” indicate that the corresponding model is not applicable due to the ADF
test results.
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We take those lag values for an AR(p) model to feature the true mortality rate X,
for each definition and ¢ = 1,...,4. To be specific, for the British Columbia data, with
Definition 1 we consider two models: AR(1) model for the time series with 1-order differ-
encing and AR(2) model for the time series with no-differencing; with Definitions 2 and 3,
we consider AR(2) and AR(1) models, respectively, for the time series with 1-order dif-
ferencing. For the Ontario data, we consider AR(1) and AR(4) for the time series with
l-order differencing in Definitions 1 and 3, respectively, and AR(2) for Definition 2 with
no transformation. For the Quebec data, we consider AR(1) and AR(2) models for the
times series with l-order differencing in Definitions 1 and 2, respectively. For Alberta
data, we consider the AR(1) model for the times series with 1-order differencing for both
Definitions 1 and 2.

6.4.3 Sensitivity Analyses

As there are no additional data available for estimating the parameters for the model (6.7)
or (6.9), we conduct sensitivity analyses using the findings in the literature. Different
studies showed different estimates of the asymptomatic infection rates, changing from
17.9% to 78.3% (Kimball, 2020; Day, 2020). To accommodate the heterogeneity of different
studies, He et al. (2020) carried out a meta-analysis and obtained an estimate of the
asymptomatic infection rate to be 46%. If under-reported confirmed cases are only caused
from undetected asymptomatic cases, then X; = (1 — 74) X}, or equivalently,

X, = ! X, (6.24)

1—7’A

where 74 represents the rate of asymptomatic infections.

Now we use (6.24) as a starting point to conduct sensitivity analyses. In the multi-
plicative model (6.9), we take Syu; = ﬁ With E(u;) = 1, we set fy = ﬁ by setting

T4 = 46%), the value from the meta-analysis of He et al. (2020). To see different degrees

of error, we consider o2 to take a small value, say 02, and a large value, say, 02,, which

is alternatively reflected by the change of the coefficient of variation, C'V = E((TZW of the

error term u; from o, X 100% to o, x 100%.

When using the additive model (6.7) to characterize the measurement error process,
motivated by (6.24), we set ag = 0 and oy = =557, and let o2 take a small value, say o7,
and a large value, say 02, to feature an increasing degree of measurement error. Due to
the constraints for the parameters discussed for (6.8) and (6.10), we set the values for o,

Ou2, Oe1, and 0.9 case by case for each definition and for each province, which are recorded
in Table 6.3.
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The model-fitting results are reported in Tables 6.4-6.6 for the three definitions of
mortality rates, where the point estimates (EST), the associated standard errors (SE), and
the p-values for the model parameters are included. Table 6.4 shows that with Definition 1,
the estimates of ¢ in the absolute value from the proposed method are smaller than those
of naive method, while the estimates of ¢; produced from the proposed and naive methods
exhibit an opposite direction. As expected, the standard errors for the proposed method
are generally larger than those of the naive method. However, both methods find no
evidence to support that ¢g and ¢, are different from zero for the data of British Columbia
and Ontario, suggesting that the mortality rates of these two provinces remain statistically
unchanged. At the significance level 0.1, the naive method and the proposed method show
different evidence for the data of Quebec and Alberta. The naive method suggests a likely
downward trend with p-value 0.071 and 0.061 for testing of ¢y for Quebec and Alberta,
respectively. The proposed method, on the other hand, shows that ¢, is insignificant for
these two provinces.

Table 6.5 displays the results for Definition 2. For the British Columbia data, the
estimates of the three parameters ¢, ¢o and ¢3 produced from the proposed method are
smaller than those yielded from the naive method, whereas the standard errors output
from the proposed method are larger than those from the naive method. However, at the
significance level 0.05, both methods find no evidence to show the significance of ¢, ¢; and
¢, suggesting that the mortality rate of British Columbia remain unchanged with time.
Similar findings are revealed for the Alberta data except that the parameter estimates
output from the proposed method are larger than those produced from the naive method.
For the Ontario and Quebec data, the revealings from the two methods are quite different.
For Ontario, both methods show that ¢y is insignificant and ¢, is significant. The evidence
of ¢, however, depends on the nature of measurement error. On the contrary, the findings
for Quebec do not tend to show a definite direction, and they vary with the model form or
degree of the measurement error process.

Table 6.6 shows the results for Definition 3. For the British Columbia data, the es-
timates produced by the proposed method are smaller than those yielded from the naive
method. The standard errors output from the proposed method inflate as the degree of
measurement error increases. The naive and proposed methods reveal different evidence
for the significance of ¢y and ¢, and the degree of measurement error affects the findings
too. For the Ontario data, both methods uncover the same type of evidence for all the
parameters at the significance level 0.05, except for the case with the large error under the
multiplicative model.
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6.4.4 Forecasting

With the fitted model for each time series in Section 6.4.3, we forecast the true mortality
rate for the subsequent five days (May 5 — May 9) using the method described in Sec-
tion 6.3.2. Specifically, since the true mortality rates are not observable, we “estimate”
them using (6.18) and (6.19), respectively, for the measurement error models (6.7) and
(6.9), and then we forecast the values of X 30, X; 33, Xi34, X35, and X; 3¢ using (6.20).

To quantify the forecasting performance, we calculate P for h = 1,..., H for each
specified model of the mortality rates X;,;, and we report the results, together with the

total Zthl P in Tables 6.7-6.9, where H is set as 5. For h = 1,..., H, we report the

observed prediction error (Xry, — )?TM)Q, and the expected prediction error defined in
(6.21) and (6.22).

Forecasting results based on the three definitions of mortality rates are reported in
Figures 6.2-6.8 for the four provinces, where the prediction results after May 4 are marked
in blue and red for the measurement error models (6.7) and (6.9), respectively, together
with prediction areas marked in shaded parts, as well as the prediction results obtained
from the naive method by using (6.20) with naive estimates of ¢ (marked in dark yellow).
In comparison, we display the reported mortality rate (in black) from Apr 3, 2020 to May
9, 2020 as well as the adjusted mortality rates obtained from (6.24) (in green); in addition,
we report the fitted values using (6.17) in blue points. To compare the forecasting results
in the presence of different degrees of measurement error. We report the results derived
from a mild degree of measurement error in top subfigures and place those obtained from
a large degree of measurement error in bottom subfigures.

The results for British Columbia are presented in Figures 6.2-6.5. With Definition 1,
the methods with measurement error effects accommodated suggest that the mortality rate
in the past and its forecasting values are around 4%, whereas the results obtained from the
method without accounting for measurement error effects indicate that the mortality rates
over time are higher than 6%. With Definition 2, the methods with or without accounting
for measurement error effects reveal that the mortality rates over time are, respectively,
below 3.5% and above 5%. With Definition 3, the methods with or without accounting for
measurement error effects indicate that the mortality rates over time are around 3% and
above 4%, respectively.

The results for Ontario are presented in Figures 6.6-6.8. With Definition 1, the methods
with measurement error effects accommodated suggest that the mortality rate over time
is around 7% over time, while the reported mortality rate over time is about 12.5%. With
Definition 2, the methods with and without incorporating the feature of measurement error

136



indicate the mortality rate in the past and its forecasting values are, respectively, below 6%
and around 10%. With Definition 3, the mortality rate increases over time substantially.
The methods with measurement error effects accommodated suggest that the mortality
rate increases from 2% to above 4% whereas the reported mortality rate shows that rate
increases from below 4% to above 8%.

The results for Quebec are presented in Figures 6.9-6.10. With Definition 1 the methods
with measurement error effects accommodated show that the mortality rate is around
6.5% over time, whereas the method without considering measurement error indicates the
mortality rate is over 10%. With Definition 2, the methods with or without addressing the
measurement error effects show that the mortality rates over time are, respectively, below

6% and above 7.5%.

The results for Alberta are presented in Figures 6.11-6.12. With Definition 1 the
methods with and without measurement error accommodated suggest that the mortality
rates are, respectively, around 2% and 4% over time. With Definition 2, the methods with
or without addressing the measurement error effects show that the historical mortality rate
and its predictions are, respectively, below 2% and above 2%.

6.4.5 Model Assessment

The specification of lag p for model (6.1) of the true mortality rates {X;; :t =1,...,T}
is based on (6.23) which is derived from the reported mortality rates { X/, :t =1,...,T},
but not from {X;; : ¢ = 1,...,T} itself. This discrepancy introduces the possibility of
model misspecification when featuring the series X;; using (6.1). To investigate this, we
conduct a sensitivity analysis by considering the AR(p) with a different value of p for the
X+ from Definition 1. As Table 6.2 indicates the feasibility of using AR(1) for all four
provinces, here we further employ the AR(2) model to do forecasting for the period from
May 5 to May 9.

In Table 6.10, we report the observed and expected prediction errors of the forecasting
using AR(2) models in comparison with AR(1) models. Comparing different lag orders
of the autoregressive models, we find that in terms of the observed prediction error, the
selected AR(1) models have better performance than the AR(2) models for the data of
Ontario and Alberta, and the results for British Columbia and Quebec are fairly similar.
It is noticed that both the observed prediction error and the expected prediction error as-
sociated with the proposed method tend to become small when the degree of measurement
error increases for British Columbia, Ontario, and Quebec.
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Table 6.1: The results of the augmented Dickey-Fuller test

British Columbia Ontario Quebec Alberta

Definition Transformation TSV p-value TSV p-value TSV p-value TSV p-value

o Xt -8.346 <0.01 -1.527 0.755 -1.813 0.645 -2.850 0.245
Definition 1

Xiy1 — Xy -6.974 <0.01 -5.522 <0.01 -3.880 0.027 -3.516 0.059

Definition 2 Xt -1.208 0.878 -4.294 <0.01 -2.018 0.566 -1.768 0.662

Xep1 — X -3.336 0.084 -2.599 0.342 -3.340 0.084 -3.296 0.090

Definition 3 Xt -1.325 0.833 -2.264 0.471 0.098 0.999 -2.688 0.307

X1 — X -3.590 0.048 -4.584 <0.01 -2.209 0.492 -2.008 0.569

Table 6.2: The results of the augmented Dickey-Fuller test

British Columbia Ontario Quebec Alberta
Definition Differencing lag p Differencing lag p Differencing lag p Differencing lag p
Definition 1 1 degree 1 1 degree 1 1 degree 1 1 degree 1
no differencing 2 - - - - - -
Definition 2 1 degree 2 no differencing 2 1 degree 2 1 degree 1
Definition 3 1 degree 1 1 degree 4 - - - -
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Figure 6.1: The time series plots of the death rate with different definitions

Table 6.6: Definition 3: The parameter estimation under different measurement error
models: the AR(1) model with “order-1 differencing” is used to fit the data of British
Columbia and the AR(4) model with “order-1 differencing” is used to fit the data of
Ontario

British Columbia Ontario

Method Error Degree Parameter EST SE p-value EST SE p-value

b0 0.105 0.038 0.018 0.379 0.057 <0.001

b1 -0.207 0.077 0.020 -0.086 0.099 0.391

Naive - b2 - - - -0.287 0.106 0.012

b3 - - - -0.301 0.094 0.004

[ - - - -0.284 0.078 0.001

b0 0.057 0.021 0.021 0.206 0.031 <0.001

b1 -0.213 0.086 0.029 -0.088 0.100 0.383

Small (o2}) b2 - - - -0.290  0.109  0.014

b3 - - - -0.303 0.094 0.003

The Proposed Method [ - - - -0.287 0.081 0.002
with Additive Error b0 0.058 0.021 0.017 0.212 0.036 <0.001
b1 -0.234 0.147 0.137 -0.102 0.123 0.417

Large (025) b2 - - - -0.306  0.139 0.037

®3 - - - -0.318 0.107 0.006

ba - - - -0.308  0.093 0.003

b0 0.058 0.023 0.027 0.210 0.033 <0.001

b1 -0.244 0.090 0.019 -0.097 0.107 0.375

Small (¢2;) b2 - - - -0.300  0.117 0.016

®3 - - - -0.312 0.098 0.004

The Proposed Method b4 - - - -0.300 0.087 0.002
with Multiplicative Error ®0 0.066 0.035 0.087 0.230 0.058 0.001
b1 -0.401 0.219 0.092 -0.139 0.183 0.454

Large (032) P2 - - - -0.347  0.213 0.116

b3 - - - -0.354 0.159 0.035

ba - - - -0.361 0.149 0.023
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Chapter 7

Summary and Discussion

In this thesis, we investigate several important research problems concerning correlated
responses with measurement error or misclassification. The results in this thesis have been
or will be prepared as papers for dissemination. The research in Chapter 2 has been pre-
pared as a paper, Zhang and Yi (2020b), and has been accepted by Statistics in Medicine;
the results in Chapter 3 have been written up as a paper, Zhang and Yi (2020c), which
has been invited by Statistical Methods in Medical Research for revision; the results in
Chapter 4 have been included in the paper, Zhang and Yi (2020a), which has been sub-
mitted for publication; the results in Chapter 5 are being prepared as the paper, Zhang
and Yi (2020e), which is to be submitted for publication soon; the results in Chapter 6
have already been wrapped up as the paper, Zhang and Yi (2020d), and submitted for
publication. Below we present a summary for each chapter with discussions.

Chapter 2

When jointly modeling the mixed type of continuous and binary responses, we often en-
counter responses that are subject to measurement error and misclassification. To remove
the bias resulting from the mismeasurement, it is necessary to address both measure-
ment error and misclassification simultaneously. In this chapter, we develop two inference
approaches to account for the effects due to mismeasurement in responses under latent
variable models. The induced likelihood method can be easily implemented by R function
optim() and the EM algorithm has the advantage of dealing with associated integrals by
employing a complete likelihood formulation.

Although measurement error and misclassification is an inevitable issue in practice, such
features are often ignored in genetic association studies. Even in the statistical literature,
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available work mainly focuses on a single type of mismeasurement in responses, either
measurement error or misclassification but not both. In this chapter, we propose two valid
methods to account for measurement error and misclassification in mixed continuous and
discrete responses. Our methods can be applied to handle error-contaminated data arising
from genomewide-association studies for which mixed responses with a continuous variable
and a binary variable may be subjected to mismeasurement.

Our development is carried out for the generalized linear mixed model (2.1) where a
common random effect u; is introduced to feature the mean structure of the two response
components. More generally, one may use different random effects, say w;; and wu;, to
describe the mean structure of Y;; and Yjs, respectively. That is, we write model (2.1) as

gl<,uz‘1) X-T51 U4l
= | + ) 7.1
[92(,%‘2)] {XZT% U2 (7.1)
where u;; and u;, are random effects, and other symbols are defined in the same way as for
(2.1). Then we set the random effects vector u to be {(u;j1,ui2) 14 =1,...,n} and modify

the development accordingly.

Finally, in the development here, random effects u are assumed to have the covariance
structure agR with a pre-specified matrix R and an unknown 03. Letting R be pre-specified
allows us to incorporate a priori information of the study. In circumstances where R is
impossible to be feasibly prespecified, we write the covariance matrix of random effects
to be a single matrix, say R, which may contain multiple parameters rather than a single
parameter UZ considered here. Then we carry out the inferential procedures similar to
the development here by replacing 03 in the parameter vector 6 in Section 2.2.1 with the

parameters in R.

Chapter 3

Error-contaminated mixed responses with a continuous and a binary variable present
a new challenge in joint modeling and analysis of multiple responses. In this chapter, we
develop a generalized estimating equation approach to incorporate the dependence among
responses and develop an insertion strategy to adjust for the effects of mismeasurement in
responses. We propose valid estimators that apply when either internal validation data or
external validation data are available. Our methods are robust to model misspecification
and produce small finite sample biases. We develop a weighted estimator to improve the
efficiency of parameter estimation in the presence of internal validation data.

The generalized estimation equation is robust to model misspecification at the price of
the efficiency loss. To overcome this disadvantage, in addition to the weighted estimators
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proposed in Section 3.3.3, other strategies may also be considered. For example, Hall and
Severini (1998) proposed the extended generalized estimating equation (EGEE) based on
the idea of extended Quasi-Likelihood. The EGEE has better efficiency than the original
GEE approach (Prentice and Zhao, 1991) in some scenarios. The EGEE approach can be
easily adapted in our method with minor modifications in the estimation part.

Measurement error and misclassification are inevitable in many cases. In this chapter,
we propose several methods to address response mismeasurement in different types of study
designs. We have shown that under certain regularity conditions, the proposed estimators
are asymptotically normal and consistent. The methods are fast to implement and can
apply for various settings.

Chapter 4

[dentifying interactions among genetic variants is important in the analysis of gene
networks. In this chapter, we develop a generalized network model to facilitate the rela-
tionship between genetic variants with a complex structure and the mixed responses via a
two-step procedure. We further extend the development to handle data with measurement
error and misclassification in responses. Theoretical justifications are provided to ensure
the validity of the proposed method, and numerical studies demonstrate satisfactory finite
sample performance of the proposed method.

In the development here, we consider continuous covariates that are featured by the
Gaussian graphical model. It is interesting to generalize our method to accommodate
discrete covariates or mixed covariates with both discrete and continuous components.

Our methods focus on addressing the effects due to mismeasurement in mixed bivari-
ate responses, where covariates are assumed to be precisely measured. It is interesting
to extend our work here to handle data which contain error-contaminated covariates, in
addition to having mismeasured responses. In such a circumstance, adjusting the effects of
measurement error in covariates is necessary for the first step for identifying the network
structure for the true covariates. This research warrants exploration in depth.

Chapter 5

Zero-inflated Poisson models are useful in cancer genomics studies, which are, how-
ever, challenged by the presence of measurement error. While this problem is important,
not much work has been available. We provide a general strategy in dealing with error-
contaminated count data and proposed a flexible modeling scheme for measurement error
in count data. We introduce a mixture model to facilitate an add-in process and a leave-
out process for characterizing different types of measurement error associated count data.
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We explore the effects of different measurement error models on the analysis. Numerical
studies demonstrate satisfactory performance of the proposed method.

The development in this chapter can be modified to address the measurement error of
count data in other models. For example, besides the zero-inflated model, the hurdle model
(Mullahy, 1986) is also frequently used to account for excessive zeros in count data. Our
Bayesian method can be adapted to suit the hurdle model. Sometimes, it is interesting to
consider the overdispersion in count data. Our method can be further extended to deal
with zero-inflated Negative Binomial models (Yau et al., 2003).

Chapter 6

We investigate the impact of measurement error on time series analysis under autore-
gressive models and establish analytic results under the additive and multiplicative mea-
surement error models. We propose an estimating equation method to correct for the biases
induced from the naive analysis which disregards the differences between the true measure-
ments and their surrogate measurements. We rigorously establish the theoretical results
for the proposed method. As a genuine application, we apply to the proposed method to
analyze the mortality rates of COVID-19 data in four provinces, British Columbia, Ontario,
Quebec, and Alberta, which have the most severe virus outbreaks in Canada. The real
data analysis clearly demonstrates that incorporating measurement error in the analysis
can uncover various different results.

Our method has the flexibility or robustness in that distribution assumptions are re-
quired to describe the measurement error process as well as the time series autoregressive
process. While our research is motivated by the faulty nature of COVID-19 data, the
proposed method can be applied to handle other problems related to error-contaminated
time series. Our development here is directed to using autoregressive models to delineate
time series data. The same principles can be applied to other model forms such as moving
average models or autoregressive moving average models which may be used to handle
error-prone time series data, where technical details can be more notationally involved.

When checking the stationarity of time series, we apply the ADF test to the observed
time series X}, which is mainly driven by the unavailability of the true values of X, as
well as the fact that the weakly stationarity of observed time series implies the weakly
stationarity of the true time series if measurement error is featured with (6.7) or (6.9). It
is interesting to rigorously develop a formal test similar to the ADF test to handle time
series subject to measurement error.
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APPENDICES

In this part, we include supplementary materials associated with Chapters 2-6, including
regularity conditions, the proofs of the theoretical results, and additional calculations or
discussions.
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Appendix A

Supplement Materials for Chapter 2

A.1 Identifiability Issue

Model (2.8) may incur identifiability issues in some circumstances. For example, consider
that g;(z) = « for (2.1) and e; follows a normal distribution for (2.8). Then, the first
component of (2.1) is equivalent to

Y = B+ L Xi + €, (A1)
where 319 is the first element of 3; in (2.1) and B]; is the remaining vector, and ¢; is
independent of X; and follows normal distribution with zero mean and variance o2.

Plugging (A.1) into the additive measurement error model (2.8) gives
Vi =05+ BT X + o f (Yao) + 32 + €},
where e} = ¢; + ¢; is independent of {X;, Y, Z;} and follows N (0,02 + ¢2), and

By = Yo + 71B10; BTT = ’Ylﬁ?- (A.2)

(A.2) shows that based on the observed data, we are not able to separate vy from v;50,
v, from B;, and o2 from o?

To overcome model nonidentifiability, we may add extra constraints on each group of
parameters as commented by Yi (2017, Page 52). For example, we may specify 7y = —%72,
71 = 1 and 02 = 02, which is equivalent to specifying f(t) =2t — 1, 7 = 0, 73 = 1 and

2 _ 2
o°=og.
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A.2 (aussian Quadrature Approximation of the Ex-
pectation

In this section, we illustrate how to approximate
Euz‘7Yi1,Yi2 {g(YE, Y;;v Yii, Yio, us; 9)}a (AB)

using Gaussian-Hermite Quadrature.
Define the notation
Lyp(yirs iy Yire, Yior) = / 9(Yi1s Yins Yit, Yz, wi; 0) f (Yia|wi, 1) dyia,
Yi2

Lyl(uiayil*ayiQ*) = / LyQ(yilauiayil*ayi2*)f(?/i1|uiyxi)dyz‘la
Yi1l
Lu(yi1*7yi2*) = /Lyl(uiayil*ayi2*)f(ui|xi>dui-

Since Yo is a binary variable following Bernoulli distribution, we can compute the exact
expectation,

Lo (Yin, wis Yire, Yior) = (i1, Yios Vit Yz = 1w 0) f (yio = 1{u;)
+9(Yi1 Vi Yir, Yi2 = 0,35 0) f (yiz = Oluy).

Consider the case where R is an diagonal matrix, using Gaussian Quadrature, we can
approximate

S)
1

Ly (ui, yire, Yize) = ﬁ Z w](-y)Lyz (yin = \/EUU](y) + Bl m + wiy wi v, U,
j=1

S(u)

1 u u
Lu(yins, yios) ~ ﬁ Zw]( )Lyl(ui =V 2Riiagv§ )73/1‘1*7%'2*)-
j=1

where v](-y), v](-u) are the roots of the Hermite polynomial H, (x) for j = 1,2, ...,n (Abramowitz

and Stegun, 1972, Page 890), and wj(»y), w!™ are the associated weights given by

J
w(y) _ 2"7171!\/% and w(u) _ 2”7171!\/7_1'

n2[Hy oy (vf))2 T H (o))

)
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Based on the derivation above, the expectation (A.3) can be approximated as

1 Su) g)
p Z Zw]('u)w;(gy){g(yfp Yo, Yi1, Yiz = 1, ui; 0) f (yi2 = 1uy)
j=1 k=1

+9(Y51, Yia, Vi1, Yiz = 0,143 0) f(yi2 = Olu; .
(Y1 Vin Jf( |ui) } o Zrs 4

ui:\/2R¢¢0'ng(4u)
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Appendix B

Proofs of the Results in Chapter 3

B.1 Proof of E{UZ**(9)|Y;1, }/;2, X@} = UZ(Q)

Step 1: First, we show that
E(Y35 Y, Yie, Xi) = Y.

Indeed, by the definition of Y;5*,
Y3 —m |
E(Y5 Y, Y = j,X,) = E (1—” Y, Vis = J,X%)
— 0 — Ti1
E(Y35|Yi, Yie = j, Xi) — mio
1 — o — ™
{1><7r10+0>< (1—m40) 7r¢0 lf] —0

1—mip—mi1

= Oxmi1+1x(1— 7TL1 —7TL0 : .
1—mio—mi1 lf‘] - 1
B if =0
B ifj=1
=7

Thus, (B.1) holds.

Step 2: Next, we show that
E(KT*’KD }/;27 X’L) = }/;1'
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By the definition of Y;i*, we obtain that

E(iﬁ*m,m,Xi):E( i Mta — R Yz-l,Yn,Xi)
71
Y — 0 — 4 X
—F ( il 07 T Yz-l,Yig,Xi) —E (EY2 Yz-l,m,Xi)
71 Y1
1 TX,
:‘fE@mﬁhﬁmXﬁ—lL—ﬁﬁz—%
4! 71 " 71

:}/ila

where the third step is due to (B.1), and the last step comes from measurement error model
(3.9) together with E(e;|Yi1, Yie, X;) = 0.

Step 3: Since ¢; in (3.9) is independent of Yj;, Yi» and Y;3*, we have that

and

E (Yie|Yia, Y, X;) =0 (B.3)
E{e;(Yio — Y5)|Yi1, Yie, Xi} = 0. (B.4)

Now we prove that
E(Ai|Yi1, Y, X;) = E{ (Y — Yiy*)?| Y, Yo, X} (B.5)

Indeed, by the definition of A;,

1=V Y
Ay A = Ajomin — Ao

1 —mi —mo

E(A|Ya,Ya,Ye=74,X;,)=FE (

YilaY;Q :jv X’L>

o A=D1 —Ai1Tio R Aio—Aiomi1 —Ai1Ti0 o

— o ( 1=mi1—mio - (1 TrZO) 1—mi1—mi0 , fj=0

- . Aj—Ajomin —Ai1Tio [ Awn—Aiomii—Ai1Tio T
(1 ﬂ-“) ( 1—mi1 =m0 T i 1—mij1—mio , =1

Ajg, ifj=0
A, ifj=1

i
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On the other hand,

1 — T —

Yi—mo \
2—M> Yu,Yizzj,Xi}

E{(KQ - }/:5*)2 |Yi17}/;2 = ]7XZ} =FE { (YZ2 -

2 2
o (FEE) - o) () itj=0
= 2 2
(=m) (1= ez ) (1 2 ) i =1
A ifi=1
— A”
Hence, (B.5) is proved.
Step 4: We show that
E(Yi[Ya, Y, Xi) = Vi, (B.6)
By the definition of Y;i7,
s 00 %
E(YZ?{D{LI;KQaX’L) :E (}/;T* - _Z - _QQAZ }/;17}/;27)(1')
MmN
}/;: i Y'Z B Ve 2 2 2
—E {% et e 1 )} T AL Y, X,
gt TN
2 % > %
=L {Yﬂ + 5V = Y3 = 54
7 71
2Yie; | 2vei(Yio —Y3")  2%Yu(Ye — V5"
+ 1 + V2 ( 22 2 ) 4 2 1( 2 2 ) }/;17}/;2’)(2'}
g M Y1
2
=Y3 + %E {(Yb - Y5 = A Yz‘thQ,Xi}
1

2
_3/2'17

where the second step comes from the definition of Y;;* and the model (3.9), the fourth
step comes from (B.3), (B.4) and E {Yi1 (Yo — Y3")|Yi1, Yie, X;} = 0 which is due to (B.1),
and the last step is due to (B.5).
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Step 5: We show that

Similarly, by definition, we obtain that

12|3/117K27X)

I
&S

Y5+ 2,
T

}/;Lla}/;ﬁaXi}

=B {(Ve - Y+ A
1

94!
Yii—7 — 72Yz2 73 X;

il

Y;;17}/;27Xi}

I
&y

Kok
Y

(KI*Y{S* AV Y X)
Y — 0 — 1Y —TX,
=E ( il 0T Tt T Y+ YN Yﬂ,YzQ,Xz‘)
g
{Y; ’723/;2 Y3 X; +7(Yia — Y5)

Yh;Yz‘mXi> +

Vi = - 1@ IX;
E( Lo e K Yﬂ,Yﬂ,Xi) B (Y |Yar, Yz, X;)
+ 2B{(Ye Y,;*mz* Yia, Yoo X} + 2B (A Vir, Yoo, X))
M N
—F (3@»1 +2 Yz-l,m,Xi) Vo + 2B { (i = Vi)V [Via, Yoo, Xi } + 2B (Ad]Yir, Yoo, Xy
"N "N "N
VYo + L E{ (Yo = Y5 )5 [Yar, Yo, X | + 2B (Vi Yoo, X3) (B8)
N N

where the fifth step is due to the conditional independence assumption for Y;; and Y}
given by (2.4), and the sixth step comes from (3.9) and (B.1), and last step comes from
E(ei|Yi, Yie, X;) = 0.

By (B.5), we obtain that

E(Ai|Yn, Yo, X;) = E{(Yia = Yi5")?|Yi1, Yio, X }
:E {(}/;2 - }/;;*)}/;QD/ﬂ?}/ﬁa XZ} - E {(1/7:2 - Kz*)}i;ﬂ}ﬁl?}/ZQ?Xz}
=— E{(Yia = V3"V [Yar, Yie, Xi}

where the last step is due to (B.1). Consequently, (B.8) gives (B.7).

Step 6: In (3.10) we replace Yii, Y2 and Y;; Yy, respectively, with Y;i*, Vi1, and Y75, and
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then we obtain U;*(0) = (U5 (0), U (0))" where
B Yor Li1
Ui = DLVt (v ),
il ( ) 17741 (Y;;* _ #12>
. Vi — 2ua Y + pf — &
Ui (0) = D2i‘/i;1 Yits — Y pie — Y35 pin + parpriz — i
Vi3 = 20V + pi — &is
Then applying (B.1), (B.2), (B.6), and (B.7) gives that
E{UT(0)Yir, Yio, Xi} = Ui(0).

B.2 The Consistency and Normality of the Proposed
Estimator with External Validation Data

Assume that subjects are randomly assigned to the validation or nonvalidation sample.
Let 6; = I(i € V), where I(-) is the indicator function. Define H;;(6,n) = (1 —06;) U5 (0,7n),
Hip(0,m) = (1=0,)U5 (0,m), Hiz(n) = 0:S;(n), and H;(6,m) = {H}1(0,n), Hi5(0,m), H5(n)}".
Then, (3.13) is equivalent to

US0.n) = > Hib,n).
ieMyy

Since H;(6,n) is an unbiased estimating function, i.e., £ {H;(#,n)} = 0, then by esti-
mating function theory (Godambe, 1991; Newey and McFadden, 1994; Heyde, 1997, Ch.12)
we conclude that under regularity conditions, solving >, MUV H;(0,n) = 0 gives a consis-

tent estimator, (9%, nt)T, of (9%, 71T,

Applying the Taylor series expansion to ZieMUV Hl(é\E, ne) = 0, we obtain

= s ¥ (e (5) () o

emMyv eMyv
which leads to

m 1 OH,(0.)) OH.(6,1) Op 9

L+ 4= > (Fart FHrt) vy (D) -
n{ n+mi€MUV( n ) ne n
1

LS m) + o). (B.9)
n+mz‘eMUV
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: 1 OH,(6,1)  OH,(6,n)
Pe=tm y = >0 B (5 #5)
ieMJV
and
1
Sp=lim Var [ ——— Y H0,7)
e n+mz‘eMUV

Then applying the central limit theorem to (B.9) gives that

. 1 e
\/ﬁ {(02‘7”%)’1‘ - (gTa nT)T} L> N (07 mrEle(FEl)T> as n — oQ.

Now it remains to show that I'y and Y g are identical to (3.14). By the definitions of
H;(0,n), we derive that

Z U (0,m) Z oUS (0,m)

1 iEM o0t ieM ot 1 0 0
I'g = lim El T dUZ‘z*(TfM) 3 dUZ‘z*(TfM) — E|O 0
el IR P ) IR VT
0 0 n
8Ui*1* (0777) 8U:1* (977]) 0 0
n 90T onT m
= lim { — E | oUzm) 00U (0m) | — El0O 0
n—r00 n—+m 00T onT n+m 0 38,
0 0 ont
= — | g(ovzen plovseny| - L |0 0
1+p o0 on" Lt+p |y g(sm
0 0 onT
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Similarly, we have that

. 1
EE:nlggon—l—m, Z Var{H;(0,n)}
ieMJV
1
=1 4 T
i Nl > E{H{0,)HT6,n)}
ieMJv
1 (1=6:)2Uir 0, mUST(0,m) (1 —6;)2U(0,m U5 (8,1m) 0
= lm —— > B (1-6PUS @MU 00 (1= 8)2U5 0.mU5T6.) 0
ieMUV 0 0 67.8:(n) S (n)

01 (B OmUET (o
= lim - B{US (0. U7 (0
M 0

n—oo N+ mn :
1€

A,_\

»m}  E{UZ (8, )Ui*Z*T(

;Y E{UF0,nU5T(0,7)} 0
o,m} 0
0 0

1 0 0 0

+ lim Z 0 0 0
noeen A MmN\ 0 B{Si(n)ST(n)}

L (ELUR@,mUrT (0.} E{ULO,n)U5T(0,m)} 0 , (00 0
“1+p E{U (0, U (0,m} E{U5O0,nU5"0.n)} 0| +——10 0 0 ;
P 0 0 0 0 0 B{Si(n)SFmn}
where the third step is due to (1 —§;)? = (1 — §;) and 67 = §;.

B.3 The Consistency and Normality of the Proposed
Estimator with Internal Validation Data

Similar to Section B.2, we assume that subjects are randomly assigned to the validation or
nonvalidation sample. We define H;;(0,n) = (1 —06,)U(0,n) +6,;Uq(0,m), Hi2(0,n) = (1 —
0:) U5 (0,m) + 0:Uin(0,m), Hiz(0,m) = 6:S:(n), and Hy(0,m) = {H;;(0,m), H5(0,m), Hz(n)}".
Then, (3.15) is equivalent to

ieM
Similar to Section B.2, we conclude that under regularity conditions, solving > H;(0,7n) =
iEM

0 gives a consistent estimator, (47, 71T, of (4T, nT)T.

Applying the Taylor series expansion to > ., H; (6T, A7) = 0, we obtain

S0+ (2 BH(""){(QI) - (g)}Jrop(l):o,

ieM ieM "
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which leads to

S

iEM

Let

and

H;(6,1) + 0p(1).

)
ri- i {

>1 = lim Var

35

\/_ZH 6,n)

Then applying the central limit theorem to (B.10) gives that

\/_{(91 ,771)

= (0" )T} = N (0, Ty ()T

Now it remains to show that I'1 and 3; are identical to (3.17). By definition of H;(6,n),

I'1 equals

(

lim { ——F

n— oo

——E Z

0 i€V onT
8Ui*1*(T0777) an*l*(TOW) 8Uz‘1(g,77) 0
a0 0 00
_n mE Uz (0,m) 8Ui*2:)(9,77) . TE AU;2(0,n) 0
n o™ onT n 20T
0 0 0 a5Si(n)
ont
** *ok oU;1(0,n)
E 8U2819(T0»77) E OUBITIE[‘OW) E 810+T O
ok ok OU;2(0,m)
—(l=p) | p (%) p(%zln) | —p| E (5"
95Si(n)
o o ()
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Similarly, we have that

Y1 = lim — Z Var {H;(0,n)}

n—oo N

ieM
:nlgrolog > E{H;(0,n)H; (6,7)}
iEM
o (1= 6:)*U (0, mUST(0,m) (1 —8)*U(0,mU5T(8,m) 0
= lim ~ Y E | (1=6)2U5 0, mUET0,n) (1-6)2U5 (0,mMU5T(0,7) 0
ieEM 0 0 0
o 07U (0,m U (0,m) 67U (0,mUL(0,m) 67U (0,m)S] (n)
+ lim — Y E 52 Uia(0, U)UZT1(9 ) 67U (0,mU(0,m) 67U (0,1m)S] (1)
ieM (5 Ui

7
7
mSE(n)  62Un(0,m)S () 67S:i(n)S;(n)
O,nUTTO0,n)} E{UF0,n)U5T(0,m)}) 0
0,mU"(0,n)} E{U50,nU5T(0,1)} 0
0
(0
(0

(0,
= lim n-m_ 1 Z
T nsoo Mmoo nm—m

iEM\V

m 1 (E{Uﬂ(e

+ lim ——> " | E{Us(0
0

(6

(

E{U(
E{Ui‘z*(
0 0

)

;MULO,m}y  E{Ua(0,n)Us0,m)} E{Un(0,7)S}(0,n)}
Iim 7L UK.} EUL 0 mUL 00} E{UaO.m)ST(6.1))
iev \E{U1(6,7)SF(0,m)} E{Ux(0,n)SF(6,n)} E{Si(0,n)S}(6,n)}

E{UZ (0. MUY (0,0} E{US(0.mU5T(0,m)} 0

=1 —p) | B{UZ (0.mU5(0.m)} E{UZ (0, U5 (0.n)} 0
0 0 0

0

E{U(0,mU;(0,m)} E{Ua(0,n)U50,m)} E{Un(0,1)S] (n)}
+p | EU2(0,n)U;(0,n)}  EUa(0.n)U, T1(9 m} E{Ua(0,n)SF ()} ],
E{U#(0,mS ()} E{Un(0,n)SF (M} E{Si(n)S] (n)}

where the third step is due to §;(1—4;) = 0 and the fourth step comes from (1—4;)? = (1-¢;)
and 67 = §;.

n)
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B.4 Determination the values of Var(g( )) Var(a( )) and
Cov (0}, 0})

To study the covariance between @?} and éﬁ), we jointly combine the estimating procedure

by stacking the estimating functions from validation data and nonvalidation data. However,
this procedure makes the resulting dimension of estimating functions be greater than the
dimension of parameter 6. To overcome this problem, following the spirit of (Shu and Yi,
2017) , we enlarge the original parameter space by using different symbols, say, 8 and

6| respectively, to represent the parameter 6 in the estimating function of 5(0 and 5(1
where the true value of #®) and ™) are identical to that of . Specifically, con81der the
estimating functions

T, (0O T 9Ty = I(i € V) - Si(n) . (B.11)

Solving the estimating function > W;(0OT nT ¢WT) = (0, we obtain an estimator,
(HOT {T HOTT of (POT 5T gIITYT By estimating function theory (e.g. Godambe, 1991;
Newey and McFadden, 1994; Yi, 2017, Section 1.3.2), the variance of (HOT ZT 9OTYT can
be estimated by the empirical sandwich estimator

(- ~ |
Var {(9<°>T,ﬁT,9<1>T)T} = —Ig'Se Ty, (B.12)

where qu = % =1 { G(O)T T HOTT w; (é\ 7/7\ é\ )} and

So =150, {v @0 0O 7, N}
Therefore, r((Z)TE) Var( T) and COV(/@\(O) é\(lr)) are, respectively, the covariance ma-

trix, Var {(é\( AT, omT

where ¢ = py + py.

)t } corresponding to elements (r,7), (r+ ¢, +¢q) and (r,7 + q)
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Appendix C

Conditions and Proofs of the Results
in Chapter 4

C.1 Regularity Conditions

(R1) The dimension p of the covariates is of a polynomial order of the sample size n. That
is, p = O(n?) for a constant v > 0.

(R2) There exists 0 < k < 1 so that

max [N (s)| = O(n").

seV

(R3) There exists some m < oo so that

max. N(s) (YN ()] < m.

SEV, teN (s

(R4) There exists a constant 6 > 0 and £ with k < £ < 1 for  in condition (R2), such
that for every edge (s,t) € E,

Imge| > o7

where 7, is the partial correlation between X;, and X;; after eliminating the linear
effects from all remaining variables { X, : k € V '\ {s,t}}.

(R5) The covariance matrix of X; is non-singular.
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(R6) The parameter space B of (8L, 8T, ¢T)T is compact.

(R7) Given the data, the estimating functions Y ;- U;(By, 1, ¢) are continuous in (8}, A, )"
everywhere, and satisfy the condition (12.5) in Theorem 12.1 of Heyde (1997).

(R8) Given the data, the estimating functions Y ., U;(By, fr, ¢) are continuously differen-
tiable in a neighbourhood of (8Y, AT, ¢™)T.

(R9) For U;(w; By, Br, @) defined in (4.8) with w = (y,z")", there exists a function h(w)
with E{h(W;)} < oo, such that |U;(w, By, b1, ¢)| < h(w) for all By, f;, and ¢, where
Wi = (Y, X"

(R10) The equation Eyx{U;(Bu(), Bi0), ®0)} = 0 has an unique solution.

Conditions (R1)—(R5) are the regularity conditions discussed by Meinshausen and
Biihlmann (2006). Condition (R1) allows for a high dimension of the covariates and reg-
ulates the dimension of covariates on a scale relative to the sample size. Conditions (R2)
and (R3) basically regulate the sparsity of the graph and the maximum possible growth
rate of the size of neighborhoods. Condition (R4) provides a lower bound of the magnitude
of partial correlations to ensure the consistency of variable selection of edge set E. Con-
dition (R5) requires the existence of the precision matrix. Conditions (R6)-(R8) are the
regularity conditions for estimating functions discussed by Heyde (1997). Condition (R9)
is the condition for Theorem 2 in Jennrich (1969). Condition (R10) is used to show the
consistency in Theorem 2, which was also assumed by Yi and Reid (2010), among others.

C.2 Proof of Theorem 4.1

For k and ¢ defined in Conditions (R3) and (R4), consider a tuning parameter A in (4.6)
satisfying A ~ dn~(179/2 with k < € < ¢ and a scaling constant d > 0. Then according to
Meinshausen and Bithlmann (2006, Page 1445), with regularity conditions assumed, there
exists ¢ > 0 such that

P(E =FE) =1- O(exp(—cn)), (C.1)

vielding, by the definition of 3y, that
P(B\H = fBu) > 1 — O(exp(—cnf)).

Thus, the conclusion follows from that 0 < e < & < 1.
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C.3 Proof of Theorem 4.2

Proof of Theorem 4.2 (i)

Step 1: We introduce basic notation first

Let (By, Br, Bu, @) be the generic symbol of parameters from parameter space 3, and let
B, o) = ( TO),BIT(O), 55(0), ¢g )T denote the true value of the parameters § =
(BY, Bt ,BH,qu) . Let &€ = {F*: E* C E‘} denote the collection of all possible sub-
sets of E. For an estimated edge set E for F, let I B) = {Bs : (s,t) € E} denote the
subvector of (BF, 1)t Wlth the indexes included in , and let g**(E) = {Bst: (s,t) ¢ E} be
the complement of 5*() i, e the subvector of (8L, A1)T with the indexes not included in
E. The introduction of B ) and 3 offers a new way to partition the vector (81, B1)7T,
or F, according to the estimated set E.

For U;(By, A1, ¢) in (4.8) and a generic element E% in &, let U] (3, 3E"), ¢) denote the
estimating function Uy(By, B, ¢) with B replaced by 8*F*) and define

H(Bu, B s &) = (E\"X{Ui(ﬁ““ﬁ“@}) ,

Bu
1 *(BY) ~
Hio o) = 3 (P2 G0 e - B (o)
EaecE
and
HT(BM; BI; ﬁll; 925) = EY|X{H7TL(5I\U 517 5117 ¢)}7 (C3>

the expectation is taken with respect to Y; given X;, and H'(By, B, Bu, ¢) can be written

{UT (B, 57D ~
a8 > pace (E”{U’ (B@ég) 32 > I(E* = E).

Step 2: To show the consistency of (3T, BT, 7)™, we apply Theorem 5.9 of Van der Vaart
(2000, Page 46) by varying the required conditions. That is, it suffices to show that

Claim 1: inf (BT, 6T)TB(n HH(B O)|| > 0= |H(Bo, ¢o)||-

Claim 2: sup HH,Z(B,qb) — H(ﬁ,gb)“ 250 asn — .
B9
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Step 3: Show Claim 1.

By Condition (R10) and the definition of B, (8, Bio)> By, @0 )" 18 the unique solu-
tion to the equation H(pBy, B, B, ¢) = 0.

Given the data, by Conditions (R6) and (R7), applying by the Heine-Cantor Theorem

(Rudin, 1976, Theorem 4.19), (UZ-T(SM,BI,gb), B )T is uniformly continuous in  and ¢,
implying that ||H (S5, ¢)|| is continuous, where ||-|| is the Euclidean norm. Since the set
B(n) = {(BT,¢")T € B: ||(B%,¢")" — (B3, 88)"|| = n} is a compact subset of B for any
n > 0, there exists (57, ¢ )" € B(n) such that

f o B0 = H (B, o)l

(BT ¢T)TeB(n
Since (B¢, ¢¢)T is the unique solution of H(S,¢) = 0, then for any (8],¢1)T #
(B3, ¢5)", we have that ||[H (8, ¢1)| > 0. That is,
inf HH(ﬁ P > 0= [[H(Bo, ¢o)ll -

(BT,¢T)TeB(n

Step 4: Show Claim 2.
Noting that

up |HI(B,0) = H(B,¢)|| < sup |HL(B,0) — HY(8,0)| + $up |H(8,¢) — H(5, ¢)

(C.4)
we examine the two terms on the right-hand side of (C.4) separately.
1°. For the first term on the right-hand side of (C.4), by (C.2) and (C.3),
sup || (8, ¢) — H'(8,9)||
B,
U1 (B, BED, ) — B{UT (B, BE, .
—Sup Z ( Zl 1 (BM ﬁﬁ**(Ea(b)_ ﬁ**(‘]{_gz’a)Z (ﬁn 0 (b)} ) I<E = E) )
B¢ ||pace
—sup|| 3" [ Z Ul (B, 857, 6) — E{U} (B, 8", )} | - 1(E* = B)| .
B¢ || paee
=sup |- Z U (B, 5P, 6) — B{U] (B, 5P, ¢>}H . (C.5)
’ i=1
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Now we show the convergence of %ZLI U;(/BM, B*(E), ¢) for a given estimated graph
E. By Condition (R9) and the uniform weak law of large numbers (Newey and McFadden,
1994, Lemma 2.4), we have that

sup %Z Ul (Bu, 85, ¢) — B{US (8., 5P, ¢)}‘ 250,

’ i=1

and thus by (C.5),
sup ||HI(8,9) — H'(B,9)|| 250 as n — 00. (C.6)
B,

2°. Next, for the second term on the right-hand side of (C.4), we have that

lim P (suq;; HHT(5,¢) — H(p, (b)” > e)

n—oo B
= lim P (Sup |HY(8,6) — H(B,9)|| > ¢|E = E> P(E = E)
n—oo B7¢

# Jim P (sup [H1(3.0) — H(3.0)| > £ E) PE £ )

E:E)

= lim P (suq;: HHT(ﬁ, ¢) — H(B,0)|| > ¢

n—oo B

= lim P <sup > (E{U;(B‘;;gfa)’ ¢)}) I(E*=E)— H(B,0)|| > ¢|E = E)
n—oo B,¢ Face ﬁ

= lim P (sup Z (E{Ug(ﬁ‘\i;(ﬂ;()m)’@}) I(E*=FE) - H(B,0)| > e)
n—oo B:d’ Face 6

= lim P (Sup (E{U’T(%i;(ﬁ;(E)’¢)}) — H(p, (b)H > 6) =0,
n—0o0 B,¢

where the second step is because of lim,,_,, P(E # E) = 0, the third step is because of
(C.3) and (C.2), and last step is by the definition H (S, ¢).
Therefore,
sp |H1(B,¢) — H(B,9)| = 0as n — oc. (C.7)

Combining (C.4), (C.6) and (C.7) shows Claim 2.
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Proof of Theorem 4.2 (ii)
By (C.1),

P(E =E) — 0 as n — oo,

which implies that as n — oo

{ZUT 51\17 *(E ZU ﬁhhﬁb } 7

and

n n
§ : 1 *®) @ £ § : OU;(Bu,B1,¢) U (Bu.Br,®)  OU;(Bu.Bré)
au! B s . * (B . *(E) 3B, i P, s P1y
P { < i (6[;;3{; #) 8U1<Bg£~ ,6) aU,L(ﬁgfF ,¢)> — ( i ng 1 i angl i &ZT ' ) N O,
M 1

=1 i=1

because by definition of UiT(ﬁM,,B*(E),QS), we have that UJ(BM,ﬁ*(E),gb) = U;(By, b1, @) if
E=F.

Hence, we have that

> U B B, 6) =D Ui(Bus B 6) + 0p(1) (C.8)
=1 =1
and
Z <8UI (Bv,8* P 0) UL (Bu,B*E) ) an(BI\I,B*(E)7¢)>
BT BT 96T

oU; (Bu,B1,¢)  OUi(Bai,Br,¢)  OUs(Bu,01,¢)
_Z ( BER 8T o7 ) + op(1).

~

Applying the Taylor series expansion to Y ., UJ(E\[, B*“E)? ¢) = 0 around (6M(0), 51(0)7 o),
we obtain

- N (OUBBLS) OU(BwBLd)  OUi(BaBLe)
Z Ui(ﬁl\[(ﬂ)a 51(0)7 ¢) + Z ( 8%113 : 8§IT ' 8271T : >
=1

: Bv=PBr(0)
i=1 Br="PB1(0)
p=do
6/\1\1 BM(O)
X G| = | Bo +0p(1) =0,

¢ o
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yielding

n

Bu /BM(O)
1 OU; (Bu,Br,¢)  OU;(Bu,Br,¢)  OU; (B, Br,0) 9
{_nz ( a’BXT[I ‘%ITI 8¢TI ) Br=PBwi(0) x/n @ N ﬁI(O)
=1 Bi1=Bi(0) 0] %0
p=do
1 n
:% ; Ui(/BM(O)MBI(O)a CZ’O) + Op(l)- (C~9)
Let
: 1 (0Ui(Bu BL0)  OU(Bw BLd)  OUi (B B0)
Lo = 73220 E(X’Y) {E Z < 0By o ot ) Bra=Br(0)
i=1 Br=P1(0)
d=¢o
and

. I ¢
Y= nlljg@ Var {% ; Ui(Buo), Bio)» ¢0)} -

Then applying the central limit theorem to (C.9) gives that

Va{ (B BE 8 = (Bl Bl )T} = N (0TS as n— o,

where the expectation and variance are taken with respect to the joint distribution of Y;
and X; with the model parameters taken as their true value.

Now it remains to show that I’y and ¥, are identical to those specified as in (4.9). By
the assumption that the variables are independent and identically are distributed, it is
immediate that

T, = [E {aui(%ﬂm} E {6@(521%61@)} B {an(ggjfl’@}]

Bu=Br(0)
Br="PB4(0)
p=do
and
. 1 ¢
Yo = nhg)lo Var {% ; Ui(Bu(o)» Buo), ¢0)}
1
= lim - 2 Var {U; (Buo): Bio)s ¢o) }

=F {UiT(ﬁM(O)a 51(0)7 (bO)Uz (ﬁM(O)’ ﬁ1(0)> ¢0)} - ET {Uz (BM(O)? BI(O); ¢0)} E {Ui<51\1(0)> 61(0)7 ¢O}
=E {UzT(ﬁm(o), 51(0), ¢0)Ui(5M(o)> 51(0)> ¢0)} .
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C.4 Proof of Theorem 4.4

To reflect the randomness introduced by the selection of the edge set, we use U;T(ﬁn, B*(E), o,m)
to denote the estimating function U (B, 51, ¢, 1) in (4.14) with the edge set E, estimate by

E, where 8*B) = {B,, : (s,t) € E} represents the subvector of (8T, BT)T with the indexes
included in E.

Assume the external validation sample is randomly formed. To simplify the nota-
tion, let 3 = (8L, 85, ¢ and gt = (BL, B*E) ¢™T. Let & = I(i € V), where I(-)
is the indicator function. Define F;;(8,n) = (1 — 0,)UF(B,n), Fia(n) = 0;S:(n), and
E(8,m) = {F1(8,n), F5(n)}", and define F} (8F,7) = (1= 6,)U;"(5%,n), and F/(5%,n) =
{FIT(8T,n), F3(n)}T. Then, (4.14) is equivalent to solving

> El(Bn)

ieMUJv

Similar to the proof of Theorem 4. 2(i), with U;(By, Bi, @) replaced by F;(5,n) and
Ul (By, B5F), ¢) replaced by FJ(Bt,7), we can show that solving ZieMquj(ﬁT,n) =0

gives a consistent estimator, (3T, 7™ T)T of (8%, nT)T.
Similar to the derivation of (C.8) in the proof of Theorem 4.2(ii), we have that

> U (B, 8, 6,m) ZU (Bus B 6:m) + 0,(1)
i=1
and hence

Yo FB )= ) F(B.n)+o(1).

eMyy eMyy

Applying the Taylor series expansion to ) . MUY Fz‘T (B(m’ n™) = 0, we obtain

> mma+ 3 (S o) ()= (M om -0
B=Bo
=m0

ieMUV iemMUV
{5 ()}

- > Fi(Bomo) + 0p(1). (C.10)

ieMyUy

which leads to

m 1 OF;(Bm)  OFi(Bm)
1+n{n+m > ( 5T T ) -
B=B
n=n

eMyv
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Let

F(EV) = hm 1 Z E <6Fi(577]) 3Fz‘(ﬁ7n))

n—oo | N+ m opt on't
ieMUv B=Po
=m0
and
E(1«:\') = lim Var T Z ﬁOa 770
nree n+m ieMJV

Then applying the central limit theorem to (C.10) gives that

~ . 1
\/ﬁ {(B(E\')T’ ﬁLEWT)T - ( (F]F? ng)T} L> N (07 mr;\l)zm\>(rg\1))T> as n — oo.

Now it remains to show that I';,, and X, are identical to (4.15). By the definitions of
F;(B,n), we derive that

ou(8,m) ou; (B,m)
Iy = lim 1 FE 1ez/%/t o857 zez/%/l ot + ;E 0 085-(77)
B S | nd+m 0 0 n—+m 0 Ziev a;T

AU (Bm)  OUF(B.m) 0 0
= lim " g osT on't +—"F 8Si(n)
n—oo | n+m 0 0 n+m 0 “onT

(B ) (0, )
0 5T

L+p 0

For Y., we have that
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Y = lim L > Var{F(8.n)}

n—oo N, + M

eMyy
L 1 T
emMyv
: 1 (1—06:)2U; (B, U (B,m) 0
= lim Z E( ) Z ’ 29, T
n—do M 4+ m ey 0 0::5:(n)Si (n)
— lim 1 <E{Ui*(/87n)Ui*T(B777)} 0)
n—>oon—|—mni€M 0 0

) m 1 0 0
+Jgﬁon+mﬁz (0 E{Si(n)S»T( )}>

7

(B 0) .

1+ 1+p(0 E{S(? (n)})’

where the fourth step is due to (1 — ;)% = (1 — §;) and 67 = §;.

C.5 Proof of Theorem 4.5

Similar to Section C.4, we assume the internal validation subsample is randomly formed.
We define F;1(8,nm) = (1 — 6)U;(B,n) + 6:;Ua(B,n), Fia(B,n) = §;5:(n), and Fi(5,n) =
{F1(8,m), F(n)}", and define F}\(8%,7) = (1=6,)U; (87, 1) +6:Un (8%, ), and F (87, 7) =
{FIT (81, 1), FY(n)}T. Then, (4.17) is equivalent to

I\ 5’ Z FT

1eEM

Similar to the proof of Theorem 4.2(i), with U;(By, b1, ¢) replaced by F;(8,n) and

Ul By, B +(E) ¢) replaced by (31, n), we conclude that under regularity conditions, solving

Y ieM F!(B',n) = 0 gives a consistent estimator, (BT, 7)T, of (8o, 7o)

~

Applying the Taylor series expansion to Y, F5(8™T,7™") = 0, we obtain

F;(Bn F 7] 3 ﬁ
s rcm 5 ()| {(3)- (1)} oo

ieM ieM

Bo
77:7]0
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which leads to

_lz OFy(Bm)  OFy(Bm)
n apT 377T

iEM

p=po : \/ﬁ{ (g) B (§§>} - %;Fi(ﬁoam) + 0,(1).

Let
. 1 oF, .
I, = lim {5 E E( i gBTm) £ 7(7,8T,n>>}

n—oo 4
1EM

n—oo
ieM

and
] 1
¥, = lim Var (% g E(ﬁoﬂ?o)) :

Then applying the central limit theorem to (C.11) gives that

Vi { BT (6, = N O TS s no oo

Now it remains to show that I',,, and X, are identical to (4.19). By definition of
F;(B,m), T',, equals

U (8, U (8, U, (B.m)
- L2 o 2 TEr\ 1 (X 0
lim ¢ —F | iem\v ieM\V + —F | v 0.
_ oU; (Bm)  U;(Bm) U (B.n)
= lim {” o < 0T ot ) + TE( o7 as?(n)>}
Uy (B, U (B, oUi(B,m)
g (B B (%)), (FC) o
=(1-p) +p 85.()
0 0 0 E <—">
ont
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Similarly, we have that

Y = lim — Z Var {F;(8,n)}

noeen ZGM
ieM
_JEEOEZ;E( 0 0>

U (B,mUN(B,n) 62Ui(B,n)SE(n)
e ZE( S2U(B,m)SEm)  02Si(m)SE(n) )

G )

= lim
n—oo n n —
iEM\V

m 1~ (E{U(B,mUT(B,m)} E{U(8,n)SL(5,
+7}E€oﬁm2({ (B,mUL(B,m)} E{U(B.m) (577)})

E{U(B,n)ST(B,m)} E{S:(6,7)S](8,1m)}

—(1-p) <E{Uz‘*(/6an2)Ui*T(ﬁa77)} 8)

+p <E{Ui(6,n)UF(6,n)} E{Ui(ﬂ,mS?(n)})
E{U(B,m)SF ()} E{Si(m)SF(n)} )

where the third step is due to 6;(1—4;) = 0 and the fourth step comes from (1—6;)% = (1-6;)
and 67 = ¢;.

C.6 Proof of Theorem 4.6
By (4.12) and (4.20), showing (4.23) is equivalent to showing
{1 =p)T +plo} H{(1 = p)Z + pZo — pAH(1 = p)T + pl} 1 <TIETH (C12)

Left multiplying (1 — p)T" + pI'g and right multiplying {(1 — p)T" + p['c}T on both sides
of (C.12), we obtain

(1—p)S+pS0— pA < (1—p)*Z+p(1—p)Lol I+ (1= p)pST T8 + p? Lol 'y
(C.13)
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Left multiplying I';* and right multiplying I';'" on the both sides of (C.13) gives

(1—p)Lg ' Z0g " + plg ' Bolg T — pLg AT
<1 = p)’Tg 'S0 + p(1 = pTTIETG T + (1= p)plg "SI + TS0

Then combining the terms with I';'SI';!" and dividing the both sides by p, we get

(1= p)g 'yt 4+ T e Tt — T AT < (1 — p) I '™ 4 (1 — p)Igter—tt
+ pl o (C.14)

It now suffices to show that (C.14) is true when the conditions (4.21) and (4.22) are
satisfied. For the case with p = 1, the inequality (C.14) is equivalent to

Lo'Selg ' =Tt ATg™ <T7'sr ',
which is true by the condition (4.21) together with the fact that Iy ' ATy '" is non-negative
definite.
For the case with p < 1, dividing (1 — p) on both sides, (C.14) is equivalent to

1 1
P512F61T+EF6120F61T_TPFEIAFSIT S P—IEF61T+F612F—1T+%F—IEF—IT’

(C.15)
which is true, because

the left hand side of (C.15)
<y 'srgtt+ TlpPE L2y - Iy AT
=g B0 + T 2ol + Tﬁ)pro DY PR VN e
§F512F61T + 1“6120[‘6” + %F_lxr_m . FalAFalT
<TIET T 4T tEr T 4 %F—lzp—lT

p
= the right hand side of (C.15),

where the first step is because p € (0, 1), the third step is due to the condition (4.21) that
L2t < T7'ST'T, and the fourth step is due to the condition (4.22).
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Appendix D

Proofs of the Results in Chapter 5

D.1 Proof of Theorem 5.1

Proof of Theorem 5.1(a):

First, consider
P(Y; =0[X;) = > P(Y;y = 0Y; = k, X;) P(Y; = k| X))
k=0

=" P(Zi- = K|Y; = k, X,)P(Y; = k| X;)
k=0

= P(Y; = 0[X;)P(Z;- = 0Y; =0, X;)

+ ZP(Zi— = klY; =k, X;) P(Y; = k| X;)

k=1
oo k
=PY;=0|X;) + <Z) (1 —m)° x %e"”
k=1 ’
— — S <7Ti'ui)k — i —Mi T
= P(Y;=0|X;) + ¢ [ Y e e
k=1 )

= P(Y; = 0|X1) + sz(l - 6_Mi7r'i)e_ui(1—7ri)
=1—¢;+ @‘e_’“(l_”i),
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where the second step comes from (5.5) with ¢, = 0 and ¢_ = 1, the fourth step comes from

(5.2) and the distributional assumption of Z;_, the fifth step is because Y .-, %e‘“m’ =
1, and the last step is due to (5.2).

Next, for Y* = k£ > 1, we calculate

WE

\3
Il

k+r

k_'_r T k’ /’Ll — Mg
< , )7@-(1—7@) X—(k+r)!e

(e~

Il
&

2

Il
=)

T

1 o
W(l — i)l (pami) e M

I
©
=
= L[]

k
Il =M} piiem) (D.2)

A

where the first step is due to (5.5) with ¢, = 0 and ¢_ = 1 and the second step is because
of (5.2) and the distributional assumption of Z;_.

Therefore, comparing (D.1) and (D.2) to (5.2), we conclude that conditional on X;, Y;*

follows a zero-inflated Poisson distribution with mean p;(1 — ;) and the probability ¢;.

Proof of Theorem 5.1(b):

First, we consider the case with Y;* = 0. Under (5.5) with ¢; =1 and ¢_ = 0, we note
that ¥;* = 0 if and only if ¥; = 0 and Z;; = 0. Then,
P =0[X;) = P(Y; =0, Z;; = 0]X;)
(1— ¢ + gie M) ™
(1= go)e™ 4 gre ),

where the second step is due to the conditional independence assumption between Y; and
Ziy given X, as well as (5.2) and the distributional assumption of Z;, .
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Next, for £ > 1, we have that

[ =k|X;) =P(Y;=0,Ziy :I{;|Xi)+zk:P(Yi =t, 7 =k —t|X;)
t=1
e e
=(1- ¢i))\f;!A + e HieTN tzk: G HiA* tt)'
:(1—¢i)¥+¢—(ﬂl+)\ (i) gt! <Mlljj/\)t(m)—:)\i>k_t
=(1 ¢Z))‘k e +¢Z%ew+m,

where the second step is due to the conditional independence assumption between Y; and
Z;+ given X;, as well as (5.2) and the distributional assumption of Z;,, and the last step
is due to the Binomial theorem. Thus, the conclusion follows.

Proof of Theorem 5.1(c):

Model (5.5) with ¢y = ¢ = 1 can viewed as Y;* = (Y; — Z;,_) + Z;,, where by The-
orem 5.1(a), the first term (Y; — Z;_) follows a zero-inflated Poisson distribution with
parameters ¢; and pf = (1 —m;)u;. Then applying Theorem 5.1(b) to Y;*, we conclude that

Py = | X) = (1 — 6 i,“+¢i“§ffe—ﬂ? for yf =0,1,2,...,

where pf = (1 — m;)u; + A;.

D.2 Proof of Theorem 5.2

Proof:
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By Theorem 1(a), we have that if ¢, = 0 and ¢_ = 1, Y;* follows zero-inflated Poisson
distribution with parameter ¢} and p}, where ¢ = ¢; and pf = p;(1 — 7). Thus, by (5.4),

log pi =log (1 —m;) +log w
= lOg(l — 7T,L') + ﬁuo + ExXl
= B+ B X (D.3)

Comparing (D.3) to (5.12), we conclude that S, = 8,0 + log(1 — ;) and 8}, = B,

D.3 Inverse Sampling of Multivariate Discrete Vari-
ables

To execute inverse sampling for multivariate discrete variables (Loukas and Kemp, 1983),
we evaluate the joint distribution of Uy, Uy, Z;— and Z;,, expressed in (5.16). Noting
that although U;; and U;y are unbounded (and Z;_ is bounded by Ujs), the probability
(5.16) is extremely small for sufficiently large values. We focus only those values of U;; and
U bounded by sufficiently large values, say, J and K, respectively, and hence Z;_ is also
bounded by K. Specifically, for j =0,...,J, k=0,...,K,and [ =0,..., K, we evaluate
(5.16)

piwt = P(Uin = j,Up =k, Zi =1, Z;i. = y; — I(j > 0)k + l|z;)

where each probability is computed based on the distribution assumed for the associated
random variables.

To ensure legitimate probabilities induced from the imposition of bounds to U;; and

Uiz, we normalize the p;j; by calculating pj,, = %. Let ® be the (J+1)(K +1)*-
MARLN J
dimensional column vector consisting of the pf, with j = 0,...,J;k = 0,..., K; and

[=0,...,K, and let ®; denote the tth element of ® for t = 1,...,(J + 1)(K + 1)

Generate a random value V' from Uniform[0,1] and find the smallest = such that
Zle ®, > V. Examining &,, we identify jy, ko and [y such that &, = p;okolo' Then
we set jo, ko and [y to be the values for Uy, Uy, and Z;_, respectively, and take Z;, as
Y*—I(Uil >O)Ui2+Z'_ :yj—[(] >O)k+l

)
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Appendix E

Conditions and Proofs of the Results
in Chapter 6

E.1 Regularity Conditions

(R1) The time series {X; :t =1...,T} is stationary.
(R2) The observed error-prone time series {X; : ¢ =1...,T} is stationary.

(R3) Forany t e {1,...,T}, %Zle Ys—t| = 0 as T — oo.
(R4) For any p, =30 S B{(X; — 1) (Xesp — 10)(Xs — )} < 00.

While the two process {X; :t =1,...,T} and {X; : t = 1,...,T} are constrained by
the measurement error model (6.7) or (6.9), they can both be assumed to be stationary
without inducing conflicting requirements on the associated processes. Obviously, the weak
stationarity of {X; : t = 1,...,T} implies the weak stationarity of {X; : ¢t =1,..., T}
if they are linked by (6.7) or (6.9). Condition (R3) says that as the time series goes
long enough, the average of the covariances between any paired variables is is negligible.
Condition (R4) requires the summation of the third moment of X; is O(7"), which is needed
in Theorem 6.4 when ¢ # 0; this condition can be satisfied if E(e}) = 0, for example.
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E.2 The proof of Theorem 6.1

Applying the weak law of large numbers to &5{ given by (6.12), we obtain that the estimator

Cov(X/}, X} . . .
W, which is denoted as ¢]. Now we further examine
t—1

¢; by using the AR(1) model (6.1) and the measurement error model (6.7):

@] converges in probability to

. Cov(X7, X7 )
#= Var(X;_;)
Cov(ag + an Xy + e, a0 + 1 Xy—1 + €4-1)
Var(ap + a1 X + €;)
~ ajCov(Xy, Xi-1)
~ a?Var(X;) + Var(e;)
. Oé%COV(Qb() + ¢1Xt_1 + €t Xt—l)
a?Var(X;) + Var(e;)
a?Var(X; )
" a2Var(X,) + Var(e,)’

:¢1

where the second step is due to (6.7), the third step is because of the independence among
the X; and the e;, and the fourth step is because of (6.1). Since the time series {X;} is

stationary, it follows that Var(X;) = Var(X;_;) = %, and hence
1

ajo!

252 2 _
0410'6 + 06(1

1 = ¢1-

qﬁ%) = gf)lwl. (El)

Next, applying the Slutsky’s theorem to (6.12), we have that as T" — oo,

06 — BE(X]) = 91 B(X]),

where the limit equals <a0 + %) (1—¢1w1) by (E.1) and the fact that E(X}) = ag+125>.

Finally, plugging the AR(1) model (6.1) into the measurement error model (6.11), we
obtain that
X: = og+ o (¢0 + ¢1Xt_1 + Et) + €. (EZ)

On the other hand, plugging the measurement error model (6.7) into the working model
(6.11), we obtain that

Xi = ¢5+ ¢i(a0 + anXy1 +er) + €. (E.3)
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Then equating (E.2) and (E.3) that
¢ = ag(l = ¢7) + 1o — g + a1(d1 — ¢7) Xe1 + (1 — d1)er + ey
Consequently, by the independence assumption for X; 1, e; and ¢;, we obtain that

Var(e) = ¢1ai(l — wi)?*Var(X,_1) + (1 — wi¢r)*Var(e,) + afVar(e)
2

O
= ¢%0¢%(1 — w1)2 <1 — ¢2) + (1 — W1¢1>20'z + 06%0'62.
1

E.3 The proof of Theorem 6.2

As noted in the beginning of E.2, as T" — oo, ;b\f L5 ¢t where

5 = Cov(X/, X} 1)
te Var(X; ;)

Now we further examine ¢} by using the AR(1) model (6.1) and the measurement error
model (6.9):

. Cov(X}, X7 )
o= Var(X; ,)
~ Cov(Bous Xy, Borg—1X¢1)
- Var(Bous—1X¢—1)
_ ﬁgCOV(UtXt,Utletq)
B ﬁgvar(utletfﬁ
~ Cov{u(do + o1 X1 +€), w1 Xe 1}
B Var(X;_qus_1)
. Cov(us X1, us—1X4-1)
0 Var(u;—1 X¢—1)
E(upuy—1 X7 1) — E(uXy1) E(ui—1X-1)
E(uf X2 ) — E*(u1X;1)
E(u)E(u—1)E(X2 ) — E(u) E(ui—1) E*(X;-1)
E(u%—l)E(th—l) — E2(uy—1.X; 1) ’

:¢1

= ¢
where the second step is due to measurement error model (6.9).
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Then, because u;, u;—1 and X;_; are mutually independent, we further have that

E(u)E(us—q1)Var(X;_1)

o = {Var(ut 1) + E?(uyq) H{Var(X; 1) + E2(X; 1)} — E*(w—1) E*(X;1)
Var(X;_1)
{Var(ut 1)+ 1H{Var(X, 1) + E2(X; 1)} — E?2(X; 1)
Var(X;_1)

= ¢ Var(u;_1)Var(X,_1) + Var(u,_1)E2(X,_1) + Var(X,_)’ (E.4)

where the second last step is due to E(u;) = 1. Since the time series {X;} is stationary,
it follows that E(X;) = E(X;1) = fol and Var(X;) = Var(X;_;) = % . Hence (E.4)

1 ]__d)%
becomes
(25* . (b Var(Xt_l)
L™ "War(uy_y ) Var(X,_y) + Var(u_1 ) E>(X,_1) + Var(X,_1)
o?
PV
= & e
021 ¢2+0—2< ¢1> +@
o2
= (bl € 2 1te1 = (ble. (E5)

2 +2 2 2
Ue Uu + Ue + 0u¢0 1—¢1

Next, applying the Slustky’s Theorem to (6.12) gives that as T" — oo,
( Bogo

o

T ¢1) (1= drws)

by (E.5) as well as E(X]) = fﬂ—fﬁ

Finally plugging the AR(1) model (6.1) into the measurement error model (6.9), we
obtain that

X7 = Bo(po + d1 Xi—1 + &)uy. (E.6)

On the other hand, plugging the measurement error model (6.9) into the working model
(6.11), we obtain that

= ¢y + 1 (BoXi—1ur—1) + €. (E.7)
Then equating (E.6) and (E.7) gives that

€ = Bodour — ¢f + BoXi—1(P1uy — wadru—1) + Boure.
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yielding that

Var(ef) = ¢33 Var(u,) + B2¢3Var(X;_1uy) + 52w§¢%Var(Xt_1ut_1) + B2V ar(ue;)
= gboﬂoa + (ﬁ0¢1 + 50“}2 1){E(Xt2 1Ut 1) — EQ(Xt)EQ(Ut—1>}
+ ﬁo{E(ut) () — EQ(ut)EQ(Q)}
= ¢(2)58 (ﬁoﬁbz + 50 Wy 1){E(Xt2 1)E(Ut 1) — EZ(Xt)EZ(Ut 1)} + BO(U + 1)
= Bo{oado + (1 +o3)al}
+ 51 (1+ w3) [{Var(ue) + B (up1) H{Var(Xo—1) + B*(X;-1)} — E*(X;1)]
= /BO{U’LzL¢0 +(1+ u) e}
+ Bt (L +wy) [{Var(ue) + 1H{Var(Xe1) + E*(X-1)} — B*(Xi-1)]
= Bofouds + (1 +on)oc}
+ B3¢ (1 + w3) { Var(u;—q) Var(X,—1) + Var(u;—1) E*(Xy—1) + Var(X;_1) }

= GO+ (L oo} + A1 4w N

2 2
1+wy o7

1—o¢¥
where the second step is because of the independence assumption as well as E(u? ;) =
E(u?) and E(u;_1) = E(u;) such that Var(X; ju;) = Var(X;_ju;_1), and the second last

; _ Var(X;_1) .
step 18 due to w2 = Var(ut_l)Var(Xt_1)+Var(utt_1l)E2(Xt_1)+Var(Xt_1) 1 (E5)

= Bi{oads + (L +00)o2} + 51

E.4 The proof of Theorem 6.3

Proof of Theorem 6.3(1):

For k = 1,...,p, applying the weak law of large numbers to 7;, we obtain that as
T — oo, the estimator 7} converges in probability to Cov(X;, X} ), denoted ;.

Next, we examine 7y,. By the form of measurement error model (6.7), we have that for
0<k<t,

Cov(X/, X, ;) = Cov(ag + a1 Xy + e, o0 + an Xy i + €1 )
= CK%COV(Xt, Xig) = a%fyk,

and by (6.8), Var(X}) = a2y, + o2, which is denoted as ;.
t 1 e 0
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Thus, Theorem 6.3(1) follows.

Proof of Theorem 6.3(2):

First, by Theorem 6.3(1), we write

7= aly+o,(1) (E.8)
and R
I* = ail + 021, + 0,(1),
(W A X
where I'* = : : |. Then the naive estimator ¢* is obtained by replacing 7
o

in (6.6) with 7%,
~ —1 —1
¢ = {a%f‘—i—agfp—l—op(l)} {O‘%PY"FOp(l)} = af (O‘%F"’"Jgjp) v+ 0p(1), (E.9)

and hence ¢* = a2 (2T + 021,) "~ such that ¢* 2+ ¢* as T — .

Again, replacing 7 in (6.6) with 7} gives the naive estimator %
N 1 T p R 1 T
=T, DX - <Z ¢’k> (T—_p ZXt—k)

t=p k=1 t=p
p —~
— B(X)) - B(X) Y 01+ 0,(1)
k=1

= ag+ a1 B(Xy) — {ao + a1 B(X0)} Y {1 + 0p(1)} + 0,(1)

k=1
= (1—=¢"-1,) (a0 + o) + op(1),

where (Ek and ¢y are respectively the kth element of gg and ¢, the third step is because

ok = ¢ + 0,(1) by (E.9) as well as the model form (6.7), and the last step is due to the
stationarity of the time series {X;} such that E(X;) = u.
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2%

Finally, noting that the native estimator 2* is given by 02* = 7} — 25”3* + E*Tf*a*
by applying a version similar to (6.6), we obtain that
= (aiyg +07) = 207" (AT + 071,) "'y
+ a?ll'Y»lj(O‘%F + Ug[p)_l(a%r + JSI;D)(O‘%F + UzIp)_17 + 0p(1)
= a%'VO + 03 - Q%VT(Q%F + Ug]p)_l'Y + 0p(1),

where the second step is due to (6.8), (E.8) and (E.9).

Proof of Theorem 6.3(3):

Step 1: We show certain identities before proving Theorem 6.3(3).
1. By model (6.7), we have that

T
* ~% 1
Xy — :a0+a1Xt+€t_TZ(QO"‘OClXt‘f’et)

t=1

T
1 1
= (Xt — ?;Xt> + <€t - T;et)
= Oél(Xt - //L\) + (et - é), (E].O)
where the first step is because ji* = %Zle X/ and in the last step € = %ZtT:l e
2. For any t and s, we have that
Cov {(X; — i)*, (X, — i) (es — &)}
=E{(X; — 1)*(X,s — i) (es — &)} — {E(X; — i)} E{(X, — i) (es — €)}
=E{(X; — )*(Xs — )} E(es — &) = {E(X; — 0)*}E(X, — i) Ees — €)
0, (E.11)

where the second step is due to the independence of e; and X;, and the last step is by
E(es —e) =0.

213



3. By the independence of e; and e, for t # s, we have that
Cov {(X; — i)e: — ), (X, — i)es — 7))
=E{(X; — n)(er — &)(Xs — ) (es — )} — E{(Xe — 1) (er — ) }E{(X — 1) (es — €)}
=E{(X; — ) (Xs — )} E{(e: — )} E{(es — @)}
— E{(X; — )} E{(e: — )} E{(Xs — 1) } E{(es — €)}
=0, (E.12)

where the second step is due to the independence of the e; and the X;, and the last step
is by E(es —€) = 0.

4. For any t, we have that
Var {(X; — 11)(es — €)}
=E{(X; — 1)’ (e, — ©)*} — E*{(X; — ) (er — @)}

=E{(X, = )"} E{(e: — )"} — E*{(X, — )} E*{ (e — €)}
=E{(X: — 0)*}E{ (e — €)*}. (E.13)

5. For any ¢, we have
hm E{(Xt - )%}
= hm B{(X; — p)* + (p — 10)* + 2(X; — p) (. — 70)}

T—oo

Z’Vo+Tlg§oE{(ﬁ—u)2}+2113130E{(Xt—u)(u—ﬁ)}
=yo+ lim B{(fi — p)*} =2 lim E |(X, — w){ Z

T
. ~ . 1
=0+ lim Var(f) =2 Jim - B{(X, - u)(X, — p)}

s=1
1 T
=Y + 0 — 2%1_1){)10 T Zl V|s—t|

where the third step is due to g — pu = 7>, (X, — ), and the fourth step is because
E(fi—p) = 0 by stationarity of the time series, the second last step is due to 7lim Var(p) =
— 00

0 (Brockwell et al., 1991, Theorem 7.1.1.), and the last step due to Condition (R3).
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6. Similar to (E.14), we have that
Tim B{(X — ) (Xep — )}
—00
=t E{(Xy — gt p = p)(Xop = pp 4 po = 11)}

= Jim [B{(X: — 1) (X — 1)} + E{(u— (X0 — )} (E.15)
FE{(— (X — )} + B — B)— D))

= Jim 2> (e + emap) + Jim Var(7)

. B (E.16)

where the last step is due to Condition (R3) and Tlim Var(p) =0 (Brockwell et al., 1991,
—00
Theorem 7.1.1).

7. For any t, we have

E{(e: — )"}

=E{e? — 2¢;e + &%}

= {E(ef) — % Z E(etes) + iz Z Z E(etes)}
—B(e) + {——E«m) > E<e%>}
T—1_ 5, T—1,
:TE(et) =7 o., (El?)
SO jlgrolo E{(e; — €)*} = o2
8. By the independence of e¢; and X, for any s and ¢, we have that
Cov{(X; — fi)(e: — €), (es — €)"}
=E{(X; — i)(e: — €)(es — €)*} = E{(X, — i) (e: — €)}E{(es — €)*}
=BE(X; —0)E{(e;, — &)(es — &)’} — B(X; — ) E(e; — €)E(es — €)*
=0, (E.18)

where the last step is due to E(X; — i) =0 and E(e; —é) = 0.
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9. For any t # s, Cov{(e; — €)%, (es — €)*} = 0; and for t = s,
Var{(e, — €)?}
=E{(e; — €)'} = B*{(er — &)}
=E(e}) — 4E(ele) + 6E(e}e®) — 4E(e,8*) + E(&}) — {E(e}) — 2E(ese) + E(&%)}?
4 6(T — 1) 4

—B(el) - pBlel) + | B + )] - B

+ {%E(ef) + w.{g(ef)}z} _ {E(ef) — %E(ef) + %E(e?)} . (E.19)

so lim Var{(e, — €2} = E(e}) — {B(})}” = B(e}) - o,

t

10. Similar to the derivation in (E.19), we can show Cov{(e;—¢€)?, (es—&)(essp—€)} =
for s #t and s #t — p. For a given t,

Cov{(e; — €)% (e: — &)(er+p — &)}
=E{(e1 — €)*(errp — &)} — E{(er — &)} E{(er — &) (eryp — €)}, (E.20)
which can be derived analogously to the (E.19) that limy ., E{(e;—€)*(eryp—€)}— E{(e;—
e’ YE{(es—é€)(eryp— )} = E{eler, — E{e?}E{eier4,} = 0 and similarly Th_r}go Cov{(e; —

€)?, (es—p —€)(er —€)} = 0.

11. For any ¢,

Cov {(Xy — i) (ersp — ), (Xegp—r — H)(er4p — €) }
= [E{(X; = 0)(Xiyp—r — B)(ersp — €)*} — B(Xy — B)E(Xiyp—y — 1) E*(e14p — €)]
= E{(X; = 1)(Xigpr — )} E {(er1p — €)°}

T-1

where the second step is because of F(X; — i) = 0 and the independence of X; and e;, the
third step is due to (E.17) and (E.15). Hence,

lim Cov {(X; — 1) (er1p — ), (Xepp—r — 1) (€11p — €)} = Vp-rj0s-

T—o0

Similarly,

lim Cov {(Xsy,, — 1) (er — &), (Xor — 1) (e — &)} = Ypr(02-

T—o0
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Similarly,

Cov{(X; — 1) (etrp — €), (Xespsr — 1) (€r4p — €)}

= [E{(Xi = 1) (Xispir — ) (ersp — ©)°}
—E(X: — ) E(Xpyp—r — ﬂ)E2<et+p - é)}

— B (X~ B (Xerper — )} E { (60 — )

T—-1
o (T) o, (E.22)

and hence

lim Cov {(X; — A)(ersp — €), (Xigprr — B)(€r4p — €)} = Ypir0e.

T—o00

Similarly,
Jim Cov {(Xesp — 1) (et — &), (Xipr — ) (e — )} = Yp4r0e.
12. By independence assumption between {e;}, if ¢ # s or p # r, we have that
Cov{(e; —€)(etp —€), (es — €)(estr — €)} = 0. (E.23)

In addition, by (E.17), we have that

Var {(e; — €)(er+p —€)}

= E{(e; — e)*(eryp — ©)*}

= E{(ee — &)’} E{(ersp — )"},

_ (%)203 (E.24)

so limy_,o Var{(e; — €)(esyp, — €)} = 0.

Step 2: Now we prove the results in (3).
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1°. We first show the derivation of ¢j,, as follows:

T T
* . 1 * ~x\2
Q100 = 711_{1;0 T'Cov { ; ;(X — ) }
1 T
. 2 = _5\2
= ,111_{20 TCov tzl {Oél Xt + 2@1(Xt /.L) (et 6) + (et 6) } s

- Z a2(X 24+ 201 (X, — i) (es — @) + (es — 6)2]

T T
1 - 1 .
+711_I)I;OTCOV{?;2a1(Xt—,u)(et e),?;Qal(Xs—u)(e —e)}
1« 1«
: 2
+71£r010TC0 {?Z(et—e) ?2(65—6) }

s T T
as .
= oo+ Jim T D237 Cov{(Xi = fer ) (X, =)~}
T T
2
+T11_I)EOT;200V{675—6 —e)’}
T

C 4o N _ . _
= afqo0 + jlgfolo Tl ZCOV{(Xt —i)(er — €), (X — i) (e; — @)}

=1

—I—hm—ZCov{et—e (e — €)%}

= 0/11(]00 + 4a1E{ (X; — u) (e —e) } + E(ef) — {E(e?)}2
= aiqoo + 4aiyol + E(e}) — o,

where the second step is due to (E.10), the third step is because of (E.11), (E.18), and the

definition qoo = limp. TCov {% ST X =2 AT (X, - ﬁ)?}, the fifth step is due

o (E.12) and (E.19), and the sixth step is because (E.13) and (E.19), and the last step is
because (E.17) and (E.18).
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2°. We derive the value of gj,:

1 X =
Qop = Th_Igo TCov {T tz; ) m ; (X3 — 1) (X3, — /7*)}
= lim TCov li{onX 249204 (X — —e)2
= pm T L 1(Xe — a1 (Xy — ) (e — &) + (e — )},
1 =, R R R )
ﬂ a1 (Xs — 1) (Xs4p — 1) + a1(Xs — ) (es4p — €)

+ o1 (Xspp — 1) (es — €) + (€5 — €)(estp — 6)1

T T—p
1 1
4 7. ~\2 ~ ~
Q; Th_{I;OTCOV{T E (Xe — 1) ,m E (Xs—M)(Xerp_/i)}

t=1 s=1
. 1 o - i}

+ Thjr{; TCov {T tzzl 201 (X — p)( Z aq (X Y(€st+p — e)}
1 T 1 T—p

+ Jim TCov ¢ = ;2a1(Xt —D)(e, — @), > Z; o1 (Xapp — ) (es — 5)}
| e

+ Jim TCov q — ;(et —e)?, % ;(es —&)(esrp — é)}

202 & T:p 7
= aiqop + lim o _1p ; X_; Cov{(Xs — 1i)(er — €), (Xs — i) (€s4p — €5)}
+ lim 207 ZT:T_pCOV{(Xt —1)(er — @), (Xopp —)(es — )}
Tooo T —p i o e TR

T
. 202
= aiqop + Th_r)n L Z Cov{(X;, —)(e; — &), (Xy—p — ) (er — &)}

(S t— p)
2 T—-p
+ Th_{lgo Z Cov{(X¢ — 1i)(er — €), (Xeqp — 1) (er — €)}

= oilqop + 201 B {(X; — ﬁ)(Xt—p —)(er —)°} + 201 E {(X; — ) (Xepp — 1)(er — €)%}

= 0/11(1017 + 40‘%7}?‘73’
where the second step is due to (E.10), the third step is because of (E.11) and (E.18), the
fourth step is by definition that go, = Tlgrolo TCov {% ST (X — ) ﬁ STP(X, — 1) (Xayp — ,ZZ)}
and (E.20), the fifth step is due to (E.12), and the last step is result from (E.17) and (E.15).
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3°. We derive ¢, for p >0, r >0 and p # r:

1 T—p T—r
qikpr = TIE};O TCov {H ;(Xt* )(X:—i-p A* a T r 821 a—i—r - ZZ*)}
T—p
— Jim TCov| = 3" {a3(X, — 1)(Xusp — ) + o1 (Xs — ) (ersp — ©)
Am T—p 2 11 tp — 1(Xe = B)(ettp

+041(Xt+p (e — @)+ (er —e)(eryp —€)},

1 —~ ~ ~ _
T—r Z af (X = 1)(Xopr — 1) + 1 (Xs = i) (€51r — €)
s=1

+ o1 (Xsr — ) (es — €) + (65 — €)(€syr — €)

T—o0
t=1 s=1

T—-p T—r
) 1 ~ —~ 1 ~ —~
= ajf lim TCov {T—p E (Xt — 0)(Xe4p — 1), T E (Xs = 1) (Xspr — H)}

1 T—p 1 T—r
+ TILI;%O TCov {H — aq (Xt )(et+p - e), T_r — O[l(Xs - ﬁ)(es-i-r - é)}
1 T—p 1 T—r
+ Tlgiclm TCov {T—p ; a1 (X, — ) (et4+p — €), T—r 2 a1 (Xgqr — 1) (€5 — e)}
1 T—p 1 T—r
+ %LI};I)O TCov {H tZ:; Oél(Xt.i,.p )(et - 6), T_r 2 Oél(Xs - ﬁ)(es-l,-r — 6)}
1 T—p 1 T—r
+ 7ﬂh_I}réO TCov { T—p 2 o (Xep — 1) (er — @), T—7r 2 ar(Xepr — 1) (es — @)}
T g
= O/ILQPT + a% Th_>néo (T —p)(T 1) Z Cov {(X¢ — i) (et+p — €), (Xetp—r — ) (€t4+p — €)}
t=max(1l,r—p+1)
(s=t+p—r)
T—p—r
+ 011 lgﬂoo W Z COV{ X — )(et-i-p - é)7 (Xt+p+r - ﬁ)(etﬂ) - é)}
(S t+p)
T g
lim ———— C X - —e),(Xi_p — —
+af o T—p)(T—1) t;ﬁ ov {(Xe4p — B)(er — €), (Xe—y — H)(er — )}
(s=t—r)
T—max(p,r)
+af Am T=p T =7 t=z1 Cov {(Xeqp — 1)(er — €), (Xeqr — 1) (er — €)}
(s=t)
= a%qPr + 20‘%‘72 (ry|p7r\ + ’Yp-&-r)' (E.25)
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where the second step is due to (E.10), the third step is because of (E.11) and a similar
version to (E.18), the fourth step is because (E.23) and by the definition that

G = Ty, TCov {75 TI2(X, — )Xy — ). 7 S0 (X, — )Xoy — )} amd
the last step is from (E.21) and (E.22).
4°. Finally, we present the derivation of 47, for p # 0,

T—p T—p
* : 1 * * Sk 1 * * 3k
Tipp = Th_rg;o TCov {Tp Z(Xt )Xy, —1"), T—p ;(Xs )X, — 1 )}

= lim T Cov

T—o00

Z {03 (X — 1) (Xigp — 1) + 01 (Xy — i) (€14 — ©)

o1 (Xiyp — u)(et —é)+ (et —€)(et+p — €)},
1

s 3 0K = )Xy = ) + 01 (X = ey =)
s=1

+ o1 (Xopp — 1) (es — €) + (es — €)(essp — €)

. 1 . . — A .
= aj Aim T'Cov {Tp Z(Xt — 1) (Xewp — A), 7 D (Xs — 1) (Xsqp — M)}

T— o0

1 T—p 1 T—p
+ lim TCov { Z a1( Xy — ) (et4p — ©), , Z a1(Xs — 1) (estp — €)

+ lim TCov
T—o0

\
7
A

+ lim TCov S > ar(Xepp — fi)(es — €)

s=1

_ T—p
+ lim TCov { o1 (Xisp — f)(er — @), ! S D (X = i)(essp — e)}

+TlggoTCov{H (e0 — )(ersp — ),Tlpz(es_éxem_a}

t=

1
where the second step is due to (E.10), the third step is because of (E.11) and a similar
version to (E.18),

Because (E.23) and by the definition that

T—p T—p
1 1
i TC — X — 1 X — I XS_A Xs — I )
= lim OV{T_p;( = 1) (Xegp M)’T—p;( 1) (Xsip M)}



we have that

— 1)(eryp — ), (Xi

— )(ersp — )}

— i)(errp =€), (Xigap — 1) (eryp — €)}

(e —e), (Xip — )(er — €)}

Z Cov {(Xiyp — 1) (er — €), (Xiyp — 1) (er — €)}

T-p
T
* 4 2 1:
— lim —— C X
Bipp = C1pp + @7 im (T—p)Q; ov { (X
s=t
T T—-2p
+061111_I>I;O e ; Cov {(X.
s§= t+p
li C X
o lim o T p)? tzl;p oV & =
s=t—p
+ a7 li a ;
a? lim ————
1T—>c><> (T-p)Q —1
s=t
T
+ a2 hm ﬁ\/ar {(es —€)(erp — €)}

= Ofllqpp + 204106 (70 + 72:0) + 037

(E.26)

where the last step is because of (E.24), and (E.21) and (E.22) with ¢ = p

E.5 The proof of Theorem 6.4

Proof of Theorem 6.4(1):

For k = 1,...
T — oo, the estimator 7} converges in probability

V-

Next, we examine ;. By the form of measurement error model (6.9), we have that for

0< k<t
COV(X:7 X;;k)
= COV(BOXtuta BOthkutfk)
= 5§{E(XtUtXt—kUt—k) -

., applying the weak law of large numbers to 75, we obtain that as
to Cov(X/, X} ), which is denoted as

E(Xyu) E(Xi—pui—i)}

= BHE(us) E(us—i)Cov( Xy, Xi_1)}

= B5{Cov(Xy, Xi—1)} = B,
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and by (6.10), Var(X}) = 635 {(c2 + 1)y + o2u?}, which is denoted as 5. Thus, Theo-
rem 6.4(1) follows.

Proof of Theorem 6.4(2):

First, by Theorem 6.4(1), we write

= ﬁ§7 + Op(l)

and

R Bi(os + vo + Booap  Bgm -+ B -1

I = : : + 0,(1)

B3 Bvp-2 -+ Bilon + 1)v0 + Booin®
= 63 {F + 03(70 + #2)[19} + 0p(1),

(B A X

where I = oo . Then the naive estimator ¢* is obtained by replacing 7
/’?;—1 e ;Y\S

in (6.6) with 7%,

a* = [ﬁg {F + Ui(% + ,UQ)IP} + Op(l)]71{537 + Op(l)} = {F + 03(70 + ,U2)[p}_1 v+ Op(l)a
(E.27)
and hence ¢* = {T" + %(yo + LLQ)IP}_I ~ such that ¢* 25 ¢* as T — oc.

Again, by replacing 7 in (6.6) with 7} gives the naive estimator QZZ‘]

N 1 T P 1 T
b= 75 2 X0 - (Z¢:> (T—_pZX:k>

= B(X]) — E(X))Y_ 64 + 0,(1)
= BoB(Xy) — BoB(X0) D> {oh + 0p(1)} + 0,(1),

= Bo(1 =™ - 1)+ 0p(1),
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where qAﬁk and ¢, are respectively the kth element of 5 and ¢, the third step is because
¢r = ¢ + 0,(1) by (E.27) as well as the model form (6.9), and the last step is due to the
stationarity of the time series {X;} such that E(X;) = u

Finally, noting that the native estimator .** is given by 2 = 35 — 2&5”?* + E*Tf*a*
by applying a version similar to (6.6), we obtain that
A*Q _70 25@;}\/* + aﬂf*a*
=05 { (o0 + Do + oup} — 2859{T + ol + 1) I} 1y
+ B3y T + a0 + ) I3 HT + (o + ) IHT + o (0 + 1°) 1} 1y + 0,(1)
=05 { (o0 4+ Do + oup®} — Bev (T + oy + 1)1}y + 0,(1).

Proof of Theorem 6.4(3):

Step 1: We show that as T — oo,

VT (% S0 = ) Xy = ) = 7 S = )Xy ﬁ*)) = o)1), (E28)

t=1 t=1

With some simple algebra,

T—p
ﬁ{};o@* Xy =) = gy S =N - A*)}
T—p

T
1 * * * 1 * * * ~% * * * ~%
=vT (X — )(Xt+p p) = (Xy—p"+p *ﬂ)(XH-p WA pt =)
T—p

T—0p 1
=T -1 X* X* G [ E— X V(X * *
(572 1) 7 S0 iy 4 30 60 =K )
1 2 1 2
+VTE =) | — Y X+ — > X -t (E.29)
( )(T_pt_l t T—p; t+p

é]1+12+[3.
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Now we examine each term in (E.29) as T'— oo separately. First,

>+ Op(l)} 0p(1) as T — oo. (E.30)

Next, we examine the second term /5 in (E.29). Since T*%E[ZtT:Tpr(Xt* WXE, —
)] < T~ 2pVar(X;) (Brockwell et al., 1991, Page 230) and T~ 2pVar(X;) — 0 as T' — oo,

we have that .

hz?%hZ%}W—MWX%rWVZ%U) (E31)

Finally, we examine I3 in (E.29).

1 *

T pt X:—i-p ﬁ*

1 <*

TP IS DR B IP

1
:T—pt: Xiep = E:X* 2: e
————th 13
t:l

=0,(1) as T — 00, (E.32)

where * = %Zthl X7, and 7 >0 X7 = 0p(1) because E(7 Y1, X;) = 7pE(X;) = 0
as T' — oo. In addition, by the weak law of large numbers,

1

T pZX*—u 250 as T — oo. (E.33)

By condition (R2) and the central limit theorem for strictly stationary p-dependent se-
quences (Brockwell et al., 1991, Theorem 6.4.2), we have

V(i = i) = 0,(1). (E.34)
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Therefore, applying (E.30), (E.31), (E.32), (E.33) and (E.34) yields (E.28).

Step 2: We now show that as T' — o0, the asymptotic covariance matrix of

VT {537 = (35, 7"™)"} equals
1 1

TlggoCOV{ DG N ) O m}.
For k <p
\/T(%—%)

T— k
t=1

/—/H
'ﬂ
??‘
’ﬂ
-
5
>
+*
>
=
|
el
(]~

(X7 = ) (X — u*)}

where the last step is due to (E.28).

Hence, the (r,¢) element of matrix Jim Var (\/T {F, 75T - (fyg,’y*T)T}) is given
—00
by

T T
7ll_r)rolO Cov {ﬁ tE:1 (Xt —H )(Xt—i-r o a T § s+q —H )} .

s=1

Step 3: We show certain identities to be used for proving Theorem 6.4(3):
1. By model (6.9), we have that
Xy = p* = BoXeur — Pop
= PoXur — Bourpt + Poupt — Pop
= Bo{ue(Xe — p) + p(ue — 1)}, (E.35)
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where the first step is because p* = E(BoXiu) = BoE(Xy) E(us) = Bop.
2. We have that

lim %Z Z Cov {uf(Xy — p)*, u2(Xs — p)*}
—lim = SN [BLut(X — p)A(X, — i)} — B EG)E{(X, — P E{(X, — 0)*}]

= Jim 2SS (B (X, — w)2(X, — )} — B@ B E{(X, ~ ) B{(X, — )]

=g
+ lim % tZT; [E(u})E{(X, — p)'} — E*(u?) E*{(X, — 1)*}]
= lim % tzT; XT: [B(u?) B (u?)Cov{ (X, — w)*, (X — p)*}] + Jim % XT: B (uf)Var{(X; — 1)}
G =
+ lim % i {E(u) — B*(u)} E{(X; — 1)}
= lim. % ii [_E(u%E(u?)Cov{(Xt — 10)*, (X5 — )*}] (E.36)
b i LS (B - B} B - )Y
=(o% +1)qo0 + {tEl(u?) — (o0 + 1)} E{(X: — 1)}, (E.37)

where the second and third step is due to the independence between u; and X;. In the

T T

last step, we use the definition gy = limy_ee 7 3. > Cov{(X; — p)?, (Xs — p)?}, E(u) =
t=1s=1

02+ 1, and the fact that F(u}) and F{(X; — pu)*} are time-independent which are derived

from Conditions (R1) and (R2) together with independence between u; and Xj.
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3. Similar to the derivation in (E.36), now we derive the summation of Cov{Z3u?(X; —
1)%, Biustisp(Xs — 1) (Xopp — )} for p >0,

hm T Z Z Cov{Bu; (X; — p)? ﬁgusuerp(Xs — 1) (Xstp — 1)}

= Jim G573 (B4 B = (X, = ) (X = )
— B () B () Eutss) (X0 — 1) E{(Xe — 10Xty — )]
= Jim 0SS ) B Bt ) Covd (X, — ), (X, — 1) (X — 1)}
b Jim OSB! Bluery) — B() E) By} BLCX — )Xoy — 1)}
b Jim 20 S L) Bluny) — B B () By} B{(X, ~ 1" (Xeey — )
- 71520 % Z Z(Ui + 1)COV{(Xt - M)27 (Xs - M)(Xs-i-p - M)}
BB — B@)} B{(X — 1) (Xerp — 1)
BB} — Bd)} B{X, - 1) (X — ),
— BB — (02 + 1)} [BLX — 10" Ky — 10} + B{(Xe — 10 (X — )]
+ Bydop(s + 1), (E.38)

where the first step is because X; and wu; are independent, and the second last step is due

to E(u?) = Var(u;) + E(u?) = 02+ 1 and is derived similar to the second and third step in
T T

(E.36), and the last step is because of the definition that go, = limp_ee 7 > > Cov{(X; —
t=1s=1

0%, (X, — ) (X, 1y — )} and the fact that E{(X, —0)*(Xeey— )}, E{(X— )" (X0 i)}

and E(u}) are time-independent, derived from Conditions (R1) and (R2) together with the

independence between u; and X;.
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4. Analogous to the derivation in (E.36) and (E.38), we derive the summation of
Cov{ugteyp( X — p) (Xigp — 1), Ustisir(Xs — 1) (Xspr — )} for p >0, r > 0 and p # r,

50 hm o Z Z Cov{upursp( Xy — 1) (Xisp — 1), tstisir(Xs — 1) (Xopr — 1)}

t=1 s=1
=3 jll_r)rolo T Z Z E(uguerptistisyy ) Cov{(Xy — p) (Xerp — 1), (Xs — 1) (Xspr — p0) }
t=1 s=1
1 T
+ B Am > ABW)E(ursp) Euryr) = 1} B{(X; = 1)*(Xesp — 1) (Xegr — 1)}
t=1

s=t

+ B zlggo% Z {E(u?+p)E<ut)E(ut+P+'f) - 1} B{(Xs — 1)(Xep — 1)*(Xeaper — 1)}

s :?+ D

T
+ B 71520% Z {E(uf)E(qu)E(ut_r) - 1} B{(Xi—r — ) (Xy — p)*(Xeyp — 1)}
=1
+ B hm T Z {E ut+p VE (Utip—r) — 1} B{(X: — 1) (Xesp—r — 1) Xerp — 11)°}
s§= t+p r

:661%7’ + BSUgE{(Xt - N)2(Xt+p — 1) (Xpgr — 1)}
+ Baoa B(Xs — 1) (Xerp — 1)* (Xpaprr — 1)}
B B{( X — 1) (Xs — p)*(Xeyp — 1)}
+ B2 B(X: = 1) Xy — 1)Ky — 1), (E.39)

where the third step is derived analogously to the second step of (E.38), and E(uts4pustisir) =
T T
1, and the last step is due to the definition g, = limy_o0 7 > > Cov{(Xy — p)(Xpsp —
t=1s=1
)

p), (X = 1) (Xogr — p)} and the fact that E{(X; — 1)*(Xepp — ) (Xepr — )}, E{(X; —

1) (Xerp = 10)° Keaper — 1)} B{(Xeer — p)(Xe — 10)*(Xpp — )}, and E{(X; — p)(Xepp —
1)*(Xy42p — )} are time-independent derived from Conditions (R1) and (R2).
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5. Similar to the derivation in (E.36), (E.38), and (E.39), we derive the summation of
Cov{uptiyp(Xe — 1) (Xogp — 1), usttsp(Xs — ) (Xsyp — p) } for p >0,

T T
1
B hm - Z Z Cov{ugtirsp(Xe — 1) (Kirp — 1), ustbsip(Xs — 1) (Xsp — 1)}

tlsl

= 71520 T Z Z E(up) E(tgyp) E(s) E(tsiy) Cov{(Xe — 1) (Xeqp — 1), (Xs — 1) (Xotp — 1)
t=1 s=1
1 T

+ 63 lim =S {B@E ) — 1} Var{ (X — u)(Xisp — 1)}
t=1

s=t

+ By Tlgl;lo% Z {E(uf ) E(u) E(uiiap) — 1} E{(Xy — ) (Xpgp — 11)* (Xeg2p — 1)}

s :?+ D

+ 65 71520% Z {E(u})E(ui—p) E(urp) =1} E{(Xip — 1)(Xe = 1)*(Xewp — 1)}
= Botpp + Bo (0, + 202)Var{(X; — 1) (Xerp — 1)} + 280 E{(Xy — 1) (Xirp — 11)*(Xig2p — 1)},
(E.40)

where the last step is by the definition g, = limy_ 7 Z Z Cov{(Xi—p)(Xptp—p), (Xs—
=1s=1

) (X — 1)} and B{(X— )Xoy — 12 (Xes2g — 1)} = BA Xy — )Xy — 10 (Xip— )}
due to the stationarity of the time series and the fact that Var{(X; — p)(X¢:, — )} and

F{(X; — u)(Xi1p — )*(Xi19p — p)} are time-independent, resulted from the Conditions
(R1) and (R2).

6. For any ¢, s and p, we have that
Cov{(Xy — 1) (Xi—p — 1), (Xs — )}

—B{(X; — W) (Xiy — (X, — 0)} = B{(X; — 1) (X — )} E(X, — 1)
“B{(X, - 1)(Xp — )X, — )}, (E.41)

where the last step is because E(X; — p) = 0.
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7. For any ¢t and s, we have that

Covi{ug(ur — 1)(Xy — p), us(us — 1)(Xs — p)}

—E{us(uy — 1)(X, — (g — 1)(X, — 1)} — Bfug(uy — 1)(X; — )} E{us(ug — 1)(X, — )}
— B{uy(uy — 1)(X; — puy(u, — 1)(X, — )}
— B{us(ug — Dy (uy — DYE{(X; — p) (X, — )}, (E42)

where the second step is because of the independence between u; and X; and that E(X; —
w) = 0. Then, E{us(u; — Dus(us — 1)} = ol for t # s and E{u?(u; — 1)*} = E(uj) —
2E(u}) + o2 +1 for any .

By (E.42), we have that

lim =373 Cov {ug(ur = DX — 1), (g = DX — )}
= lim =% 7 B {u(u — Dug(us = DIE{X — p)(Xs — )}
= Jim DY onE{(X - p)(X, - p)}

—l—hm—Z{E“t —2B(uf) + 05 + 1 — 0, } B{(X; — p)*}

=0y >+ {BEuf) = 2Eu) + 02 +1— )}, (E.43)

h=—o00

where the last is because limy_q 7 S ST E{(X = ) (X =)y =320y (Brock-
well et al., 1991, Theorem 7.1.1).

8. For any ¢, s and p > 0, we have that

Cov{uy(uy — 1)(Xy — p1), usyp(us — 1) (Xsrp — p)}
=E{u(ue — 1)(Xs — pusip(us — 1)(Xsyp — p)}
— E{u(ue — 1)(Xe — p) FE{usrp(us — 1)(Xsyp — 1)}
oo — Dty — DYEL(X, — )Xoy — )}
=E{u(uy — 1)“8-&-1?(“5 - 1)}'7\s+p—t|’ (E.44)
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where the second step is because of the independence between u; and X; and that E(X; —
) = 0. Then, E{uy(u; — Nugip(us — 1)} = 0 for t # s and E{uy(uy — 1)*upyp,} =
F{ui(u; — 1)?} = E{(u; — 1)3} + 02 for any s = t.

9. By independence of u; and uy, for ¢t # s, we have that
Cov{ui(X; — p)?, (us — 1)} = 0, (E.45)
and for any ¢,

Cov{ui(X; — p)?, (ur — 1)}
=E{ui(u — 1)*(Xy — 0)*} — E{ui (X; — p)*} E{(u, — 1)*}
= [E{ui (ue — 1)*} = E(u) E(uy — 1)°] B{(X; — 1)}
= {E(uf) —2B(ud)+ o2 +1—0t — O’Z} Yo
={E(y}) —2E(u}) +1— 0} } 7. (E.46)

10. By independence of u; and usg, for s # t, s # t + p and any p, we have that
Cov{usep( Xy — 1) (Xerp — 1), (us — 1)°} = 0. (E.47)
For any ¢t and p > 0,

Cov{ugttp(Xe — 1) (Xirp — ), (we — 1)%}
=E{usupip(us — 1)2(Xs — 1) (Xewp — 1)} — Bl p(Xy — 1) (X — )} E{ (ur — 1)},
= [E{usueip(us — 1)°} = B(ustisp) E{(ur — 1)*}] E{(X; — 1) (X — 1)}
=E {(u — 1)’} (E.48)

and
Cov{uguyp(Xe = ) (Xi—p — 1), (uy = 1)*} = E{(us = 1)*} .

11. For any t and s, and r # p and r > 0, we have that
Cov{urtesy (X — 1) (Xeep — 1), (s — 1){utes, — 1)} = 0. (E49)
By independence of u; and ug, for ¢t # s and any p, we have that

Cov{uptrp(Xe — 1) (Xerp — 1), (us — 1)(ussp — 1)} =0, (E.50)
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and for any ¢t and p > 0,

Cov{ugtupsp(Xe = 1) (Xeap — 1), (ue = 1) (uerp — 1)}

=E{usupyp(ue — 1) (tap — 1)(Xe — ) (Xegp — p)} (E.51)
— E{upuryp(Xe — ) (Xeqp — ) FE{ (ue — 1) (ursp — 1)}

=E{uy(uy — 1)} E{ugip (e — D) IE{(Xy — ) (Xigp — 1)}

=02, (E.52)

12. For any t, we have that

Cov{u(uy — 1)(Xy — ), (ug — 1)%}
= E{u(u — 1)(Xy = ) (us = 1)*} = E{ug(u — 1)(X; — )} E{(us — 1)%}
= [B{us(u — 1)(us — 1} — Blug(ue — D}E{(y — 12} B(X, —p) =0, (E.53)

where the last step is because E(X; — p) = 0.
13. By independence assumption between {u;}, if ¢t # s or p # r, we have that
Cov {(us — 1)(wgp — 1), (us — 1) (usr — 1)} = 0. (E.54)
In addition, for any ¢ and p we have that
Var {(u; — 1)(u4p — 1)}

=F {(ut —1)*(uggp — 1)2}
=F {(ut — 1)2} E{(Ut+p - 1)2}

=0 (E.55)
and for any ¢, we have that
Var(u; — 1)
=B{(u; — 1)'} = E*{(us — 1)°}
=F{(u; — 1)*} — ol (E.56)

Step 4: Now we prove the results in (3).
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1°. We first show the derivation of ¢}, as follows:

T T
. H 1 * *)2 1 * *\2
Q200—T1520TCOV{T;<Xt — 1) 7?2()(5 — i) }

s=1
gt I E
:711_{{.10 N lelCov {uf (Xe — p1)? + 2pu (uy — 1)(Xy — p) + pP(ug — 1)%,
uy (X — p)? + 2pus (us — 1)(X — p) + i (us — 1)}
gt LI
2
= Jim 7 523 Con {06 (X, — )
pr LI
+ lim TO ; lCov{ut Jus (g — 1)(X, — )}
T
2( 2 2
T—)oo oy Xt_,u) 7(“5_1) }
T T
+Th%0 Cov {ur(ur — 1)( Xy — p), us(us = 1)(Xs — 1)}
t=1 s=1
gt I T
M Bo 2
+Th_r>{.lO lelCov{ut—l - 1)*},
t=1 s

= Byl + 1)%q0 + Bo{ E(u}) — (07 + 1)*YE{(X; — p)*}
+ 4pByoa(on + Dvgo + 4uBo{ E(u)) — E(uf) — op(on + 1)} E{(X; — p)*}
+ 20”8 { E(w)) — 2E(u}) + 1 — 0y} %0

+ 4765 (o >+ {Euf) = 2E(uf) + 02+ 1 -3} 0

h=—00

+ By [E{(w = 1)"} = 0],

where the second step is due to (E.35), the third step is because of (E.53), the last step is
by (E.36), (E.41), (E.43), (E.45), (E.46), and (E.56).
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2°. Then we derive the value of g3,:

T T
* : 1 * *\ 2 1 * * * *
@30 = lim TCov {T;(Xt — ) ,T;(XS — WXL, — )}
4 T T
= Th_r)réo T ; ;COV {ut (Xy — p)? 4 2pup (g — 1)( Xy — p) 4+ p2(ug — 1),

Usus-i—p(Xs - M)(Xs—‘rp - N) + Mus(us—i-p - 1)(Xs - N)
s p(ts — 1)(Xspp — 1) + P (us — 1)(ustp — 1)}

T T
= Th—?go ; Z Z Cov {Ut “suerp(Xs = 1) (Xsp — ,u)}
t=1 54 lT .
+ Th—IEO TO ;; Cov {ut (Xe — US(Uerp = D(Xs = 1) + usqp(us — 1) (Xoqp — N)}
gt I T
+ Th_rﬁo TO ; ;COV {ustisrp(Xs — ) (Xowp — 1), we(ue — 1)(Xe — )}
gt I T
+Thf§o N 2 1; [Cov {u?(X; — )2, (us — 1) (usip — 1)}
+ COV{ uy — 1)2uusus+p(X — 1) (Xotp — N)}]
g I T
+Tlgréo % tzlszlcov {ue(ue — 1)(Xe — p), us(usgp — 1)(Xs — ) }
g LT
+T1Loo 2P ;;COV {ue(ue — D)Xy — 1), wsqp(us — 1) (Xop — 1)}
T

T
+Tlgx;O“TB0 ZZ Cov {(ur — 1), (s — 1) (uayp — 1)},
= Boqop(os +1) + 50 {E up) = (o0 + D} [B{(X: — 1)* (Xerp — )} + E{(Xs — p)*(Xi—p — 1)}]
+ By E{u — ui} [B{(Xs — p)*(Xe—p — )} + E{(Xs — 1)*(Xi1p — 1)}]
+ 2uBgovop + 2B B{ui — ui — on} [E{(X; — 1)*(Xi—p — )} + B{(Xe — 11)* (Xesp — )}]
+ 202 B3 B (uy — 1)y + 412 By { E(us — 1)* + 0}y + 11 By,
= Boap(on + 1)+ Bo { E(u}) — (00 + 1)} [E{(Xe — 11)*(Xeap — )} + B{(Xs — 1)*(Xe—p — 1) }]
+ 2uByonvp + pBy E{3u; — 3ui — 207} [E{(X: — p)*(Xe—p — )} + B{(Xs — 1)*(Xep — 1) }]
+ 6> By Eur — 1)>y, + 4> Bi o,
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where the second step is by (E.35), the third step is because (E.41) and (E.53), and the
second last step is because (E.38), (E.49), (E.48), (E.44), and (E.54).

3°. Then we derive the value of g3, for r # p

T T
* : 1 * * * * 1 * * * *
Q2pr ZTII_IJ;OTCOV{T ;(Xt — K )(Xter_M )af;(Xs —H )(Xerr_M )}
g L&
= Tlgﬂoo - ; ; Cov {upuesp(Xe — p) (Xep — 1) + pruse (ueqp — 1)(Xe — p1)

+ e p(ue = 1) (Xep — 1) + 1% (up = 1) (uip — 1),
Ustis 1 (Xs — 1) (Xopr = 1) + ptts (wspr — D(Xs — ) + prugpr(us — 1) (Xopr — 1) + 42 (us = 1) (ugyr — 1)}

g I
= jm o % DY Cov{upursp(Xe = ) (Xesp — 1), stissr (X — 1) (Xosr — 1)}
t=1 s=1
g LT
+ Th_{{l)o — ZZCOV {ustusr(Xs — ) (Xspr — 1) ue(ueyp — 1)(Xe — p) }
t=1 s=1
1B -
+ Th_rgo TO Z Z Cov {ustssr (Xs — ) (Xotr — 1), pp(ue — 1)(Xegp — p) }
t=1s=1

4T T
+ lim MTBP 3> Cov {ustiyp(Xr — ) (Xegp — 1), tis (o — 1)(Xs — 1)}

T—o0

t=1 s=1
58 T T
+ Tlg%o e ; ; Cov {urupp(Xe — ) (Xegp — 1), uspr (us — 1)(Xoqr — p)}
gt LI
+ Tlggo &l ; ; Cov {uuep(Xe — p) (Xeap — 1), (us — 1)(tsyr — 1)}

1268
+ lim TO Z Z Cov {u(ussp — D(Xe — 1), s (Ussr — 1)(Xs — )}

T—o0

t=1 s=1
1288 N\
+ lim = ; z; Cov {ug(syp — 1)(Xe = 1), uspp (s — 1) (Xogr — 1)}

+ Jim 28 S5 Cor i 1 — 1)Koy — )t — (s — 1))

T—o00
t=1 s=1
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T
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where the second step is by (E.35), the third step is because (E.41) and (E.53). Then

because (E.38), (E.49), (E.44), and (E.54), we have that

Ghpr = Bty + 5302 | B{(Xe = 12Xy — 1)(Xir — 1)}

+ B{(Xy — 11)(Xigp — 1)*(Xspar — 1)}
+ E{(Xir — ) (Xy = 10)*(Xeyp — 1)}

+ E{(X; — ) (Xpgpr — 1) (Xpp — 1)?}

+ pfyon | E{(Xe — ) (Xerp — 1) (Xpr — 1)}

+ E{(Xs — ) (Xegp — 1) (Xegpir — 1)}
+ E{(Xi—r — ) (X — 1) (Xegp — 1)}

+ E{(Xt - N)(Xt-&-p—r - M)(Xt-&-p - H)}
+ 20 By (Vpr| + Vpir)-

(E.57)

4°. Finally, similar to the derivation of g3,,, now we derive the value of ¢;,,. By (E.35),

T

T—o0

T
* : 1 * * * * 1 * *
Qopp = lim TCov {T Z(Xt —H )(Xt+p — i), T Z(Xs )(Xerp
t=1 s=1

4TT

T—o0 T

u*)}

= lim == Z Z Cov{utqu (Xe = 1) (Xeap — 1) + pwe (s — 1)(Xy — p)

t=1 s=1
+ ity (uy — 1) (X — ) 4 p2* (w — 1) (g — 1),
Ut (X — M)(XS-Fp — ) + ﬂu8<us+p — 1)(Xs — )

+ psp(us — 1) (Xopp — p) + p? (s — 1) (ustp — 1)}

Then, because (E.41) and (E.53), we have that,
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4TT

Gapp = Th_r)n Z Z Cov {wrusyp(Xe — 1) (Xeap — 1)y Ustlssp(Xs — ) (Xosgp — p)}
t=1 s=1

+ lim 2 BO Z Z Cov {uuep(Xe — ) (Xeap — 1), (us = 1)(tsyp — 1)}

T—00
t=1 s=1

T T
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+ lim “70 DD~ Cov {usursp(Xe = 1) (K = 1) tsipltts = 1)(Xagp = 1)}

T=o0 t=1 s=1
4 T T
4 Jim B S Cov funiny — DX — ), (s — DX, — )
t=1 s=1
5 T T
+ Thj%o TO Z Z Cov {u(upp — 1)(Xp — 1), wsyp(us — 1)(Xsyp — 1)}
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Then, because (E.40), (E.50), (E.51) and (E.55), we have that,

opp = Botpp + B0 (0 + 200 ) Var{(X; — p)( Xy — 1)}
+ 234E{(Xt — 1) (Xpap — 1)* (Xpsop — 1)}

+ Mﬁ E{(X; — ) (Xigp — )2} + 2E{(X; — 1) (Xegp — 1) (Xiyop — 1) }
+ B{(X; = 0)*(Xep — 1)}
+ 202 By + 2182 B0 (Yo + Yap) + 11 B0 (E.58)
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