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Abstract

Sentiment analysis has been widely used in the domain of finance. There are two most
common textual sentiment analysis methods in finance: dictionary-based approach and
machine learning approach. The dictionary-based method is the most convenient and
efficient method to extract sentiments from the text, but the words in the dictionary
are limited and cannot capture the full scope of a particular domain. Additionally, it is
expensive and unsustainable to manually create and maintain domain-specific dictionary
using expert opinions. Deep learning models become mainstream methods in sentiment
analysis because of their better performance by utilizing extra information on a larger
corpus and more complex model structures. However, deep learning models often suffer
from the interpretability problem.

This thesis is an attempt to address the issues of both methods. It proposes a ma-
chine learning method to do a corpus-based sentiment lexicon induction, which extends
the sentiment dictionary that is customized to analyze corporate conference calls. The new
extended dictionary is shown to have a better performance than the original dictionary in
terms of the three-day returns of the companies in the MSCI universe. It also proposes a
highly interpretable attention-based multiple-instance learning model to perform sentiment
classification. It also shows that the newly proposed model has comparable accuracy per-
formance to the state-of-the-art sequential models with better interpretability. A keyword
ranking is also generated by the model as a by-product. A new sentiment dictionary is
also generated by the deep learning method and shows even better performance than both
the extended dictionary and the original dictionary.
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Chapter 1

Introduction

This chapter describes the research motivation and presents the contribution of this thesis.
It also details the structure of the paper.

1.1 Research Motivation

Evidence suggests that corporate conference calls1 contain information that can trigger a
significant movement in stock prices. The extraction of sentiment information from confer-
ence calls is consequently of interest to investors. The sentiment analysis of different text
resources (e.g., news, tweets, reviews, disclosures, and conference calls of companies) has
gained significant attention as it can extract signals for examining the effects on the market
in different ways, namely correlation with the price movement [37], volume of trades [19],
and volatilities. Sentiment analysis is a crucial problem in the category of text classifica-
tion. It is also a fundamental task in natural language processing (NLP), which involves
the investigation of people’s opinions or sentiments towards entities such as events, prod-
ucts, institutes, and news. A large number of studies [82, 58] have focused on this subject
using a range of techniques—from rule-based methods, including the exploitation of senti-
ment lexicons, semantic patterns, and grammatical analysis, to the early machine learning
methods such as support vector machine (SVM), näıve Bayes, and random forest, which
combine the bag-of-words representation of the texts. Recent progress on deep learning

1One example of Apple (AAPL) Q3 2020 Earnings Call Transcript can be found in https://www.fool.

com/earnings/call-transcripts/2020/07/31/apple-aapl-q3-2020-earnings-call-transcript.

aspx

1

https://www.fool.com/earnings/call-transcripts/2020/07/31/apple-aapl-q3-2020-earnings-call-transcript.aspx
https://www.fool.com/earnings/call-transcripts/2020/07/31/apple-aapl-q3-2020-earnings-call-transcript.aspx
https://www.fool.com/earnings/call-transcripts/2020/07/31/apple-aapl-q3-2020-earnings-call-transcript.aspx


has further increased the performance by utilizing the large dataset and introducing more
complicated models such as convolutional neural networks [39], long short-term memory
(LSTM) [30], and transformer networks [81].

However, most studies frame the problem as a supervised task that involves a large
amount of data with a ground truth associated with each record in the dataset. In fi-
nance, data are typically unlabeled, which renders the unfeasibility of most supervised
methods. Furthermore, a machine learning model trained on a general dataset usually
performs poorly on a domain-specific (e.g., finance) dataset due to the radically different
distribution of the samples in the domain-specific dataset. As a result, investors still use
a rule-based method by calculating the polarity scores based on the raw counts of the
sentiment words from a pre-defined dictionary. The Loughran-McDonald (LM) dictionary,
which is an extensively used sentiment dictionary in the financial industry, analyzes more
than 50,000 earnings reports during the 1994–2008 period [50]. However, it presents some
limitations; for instance, the word list is small, thus hindering the coverage of the full scope
of language. Moreover, the LM dictionary is constructed on reports (written English), but
the conference text is the transcribed form of speeches (spoken English). Written English
and spoken English have different word distributions. Numerous studies attempted to
tackle this problem by applying more sophisticated deep learning models such as LSTM
[30]. However, the lack of interpretability of deep learning models has slowed down the
progress of the application of the model because investors prefer to know the rationale
behind the prediction before they make a decision based on the prediction.

This thesis is another attempt to extract information from financial text data, and
try to predict the short-term returns by detecting sentiments of financial conference calls.
It explores a method that expands the LM dictionary in a way that fully customizes
conference call data. It also proposes a highly interpretable deep learning method for
sentiment analysis with a by-product of an extensive word list.

1.2 Contributions of this Work

The thesis is an attempt to exploit different sentiment lexicon extraction methods on
financial conference call data. It initially reviews the popular methods that are generally
adopted in the sentiment analysis, with a focus on the recently proposed deep learning
models. The limitations and advantages of each method are subsequently discussed from
the perspective of financial conference call data.

Machine learning models such as word embeddings [56] provide rich representations in
a latent space by learning from a large corpus. This thesis expands the LM dictionary

2



using a sentiment-aware word embedding, and the new dictionary outperforms the LM
dictionary on the correlation test between the sentiment polarity scores and three-day
returns. The better performance is consistently observed in all sections of the conference
call (presentations, analyst questions, and executive answers).

Multiple-instance learning [38] is widely used in imagine classification for learning the
properties of the sub-images that characterize the target scene. This thesis proposes an
attention-based multiple-instance learning model [32] to conduct a sentiment analysis at
the sentence level, and the model reaches a performance that is comparable to the state-of-
art-model on a standard sentiment dataset without sacrificing interpretability. This thesis
consequently provides strong evidence for attention as an “explanation” for predictions
in contrast with previous research [33]. It is also the first work to apply attention-based
multiple-instance learning to text data and use attention scores for extracting sentiment
words. A new sentiment dictionary generated by this method displays significant out-
performances over the state-of-art financial sentiment dictionary on financial conference
calls.

1.3 Structure of the Thesis

This thesis is organized into several chapters. Chapter 2 introduces the background knowl-
edge and presents the previous related studies about sentiment analysis in general and
within the financial domain in particular.

Chapter 3 investigates corpus-based methods (Section 2.9.3) for sentiment lexicon in-
duction. The sentiment-aware word2vec (senti-word2vec) proposed in [92] is implemented
to extract the sentiment lexicons from conference call data by investigating word relations.

Chapter 4 proposes a highly interpretable attention-based multiple-instance learning
(att-MIL) model to perform a sentiment analysis on text data, with the capacity to extract
words that are associated with a sentiment label, which is either positive or negative.

Chapter 5 presents a new dictionary created by the senti-word2vec model. It also pro-
vides a comparison of the performance between the new dictionary and the LM dictionary
[50] on the conference calls of all companies within the MSCI universe from 2008 to 2018.
The improved interpretability of the att-MIL model is also discussed in both IMDb [51]
and the conference call dataset. A new att-MIL sentiment dictionary is also generated and
compared with both the LM dictionary and the extended LM dictionary.

Chapter 6 concludes the thesis and discusses the potential future studies.

3



Chapter 2

Background and Related Research

The work presented in this thesis entails a sentiment analysis within the natural language
process, with a focus on the application to the financial domain. The goal of sentiment
analysis in finance is to assign sentimental polarity scores (positive or negative) to financial
documents with possible explanations. The succeeding section introduces the dataset used
in this work and the requisite background knowledge, followed by a literature review in
this area.

2.1 Dataset

Two datasets are investigated in this thesis: financial conference call dataset and the IMDb
movie review dataset. The datasets are described below.

2.1.1 Financial Conference Call Dataset

For companies, a financial conference call is a means of relaying information to all the
interested parties. A financial conference call is largely conducted immediately after the
release of a company’s financial results for each quarter.

The financial conference call dataset1 contains the transcript versions of all the public
conference calls from 2008 to 2018. Each conference typically comprises two parts. The

1The data are available in this website: https://wrds-www.wharton.upenn.edu/login/?next=

/pages/support/manuals-and-overviews/compustat/capital-iq/transcripts/.

4
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first part includes the presentations about the overview of all the significant issues that
affected the company’s performance in the last quarter. The executives of the company,
including the chairman, CFO, and CEO, normally make such presentations. The second
part of a conference generally ends with a question-and-answer session in which the analysts
from investment banks can raise some questions regarding the company. The work in this
thesis aims to extract domain-specific sentiment information from the dataset.

2.1.2 IMDb Movie Review Dataset

IMDb movie review dataset [51] is designed for the binary sentiment classification, and
it substantially contains more data than previous benchmark datasets. It provides a set
of 25,000 highly polarized movie reviews for training and 25,000 for testing. The IMDb
movie review dataset is a standard dataset for the binary sentiment classification that has
been used in numerous studies. The work in this thesis involves the evaluation of the
methodology against the standard dataset and the comparison of the results with previous
state-of-the-art methods.

2.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are often referred to as simple vanilla feed-forward neural
networks. They are extensively used models created through regression analysis. Multi-
layer perceptions are universal function approximators, as indicated by Cybenko’s theorem
[15]. The network comprises one or more hidden layers, learning a complex hidden rep-
resentation in the latent space before outputting the results. Figures 2.1 1 illustrates an
example of an MLP.

An MLP can approximate any function g(x) by learning the best parameter θ for f(x; θ).
The network consists of many layers chained together, which is represented by a nested
function. For example, a network with three fully connected layers can be represented by
f(x) = f3(f2(f1(x))), and each layer i can be represented by fi(Wi ∗ xi + bi), where fi is
the nonlinear activation function. Here Wi and bi are the parameters and bias, and xi is
the input of the layer.

Activation functions are applied to the output of each layer. This aspect provides
the model with additional power to describe the arbitrary or non-linear relations between
inputs and outputs. Popular activation functions includes sigmoid, tanh, and rectified
linear unit (ReLU), with a softmax function usually applied to the output of the last layer
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Source: https://machinelearningmastery.com/primer-neural-network-models-natural-language-processing//

Figure 2.1: Example of an MLP structure with two hidden layers

for the multi-label classification problem. The softmax layer is a generalized version of the
logistic regression classifier, in which the output of the softmax can be used for representing
generalized bernoulli distribution. The softmax layer is expressed in (2.1).

P (y = j|x) =
ex

Twj∑K
k=1 e

xTwk

(2.1)

where x is the input to the softmax layer, wj is the weights associated with the class j,
and K is the total number of classes.

An MLP classifier is trained by minimizing a loss function between the estimated dis-
tribution q(x) and the ground truth distribution p(x). One popular loss function for
classification problem is the cross entropy loss shown in (2.2)

H(p, q) = −
∑
∀x

p(x)log(q(x)) (2.2)

where x is the discrete variable.
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2.3 Convolutional Neural Networks

A convolutional neural network (CNN) [80] is a regularized version of the aforementioned
MLP: instead of having fully connected layers, a CNN extracts the local features in the data,
such as an object in an image or a phrase in a sentence, by applying different shared-weight
“filters” as an attempt to capture the spatial (images) and temporal (texts) dependencies.
A fully connected layer is impractical to train and prone to overfitting when inputs have
large dimensions (e.g., images where each pixel is a dimension). Figure 2.2 illustrates an
example of a CNN structure for text data.

A filter (or kernel) is the implementation of a convolution. It maps a sub-region of the
image into a single value, and the same filter is applied to all the sub-regions in the image.
Multiple filters with different sizes or weights are usually applied to extract different local
relations. A pooling layer is constantly applied to the output of the filters to reduce the
spatial dimensions, whereby max-pooling or average-pooling is used for outputting the
maximum or average number in every sub-region around which the filter convolves.

The combination of the convolutional layer and pooling layer allows the network to
be translation invariant [94]. In other words, the model can identify the local features
regardless of the location of the features in the input data.

A CNN has been shown to achieve the state-of-the-art performance on numerous tasks
for images [13, 14, 46, 54, 44]. It has also reached the advanced performance on several
NLP tasks such as sentiment analysis [39] and language modeling [34].

2.4 Recurrent Neural Networks

A recurrent neural network (RNN) is a specialized version of a neural network, with its unit
forming a directed graph along a temporal sequence. As a consequence, it usually models
sequential data such as texts and audios, in which the length of the inputs can vary, and
the order of the input features matters. For example, language modeling is a suitable task
for the RNN structure, whereby it models the distribution over sentences p(w1, ..., wT ).
The application of the chain rule of conditional probability enables us to decompose the
distribution into a sequence of conditional probabilities, as shown in (2.3)

p(w1, ..., wT ) =
T∏
t=1

p(wt|w1, ..., wt−1) (2.3)
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Source: https://arxiv.org/pdf/1510.03820.pdf

Figure 2.2: Example of a CNN for text classification

where wt is the word w at position t in the sentence.

An example of an unrolled RNN structure is presented in Figure 2.3

The RNN model functions as a long-term memory cell by adding information flows be-
tween hidden states, thereby allowing the information of the first input to be stored in the
hidden state to contribute to the final prediction. This model is in contrast to the memo-
ryless Markov chain model, which assumes that the conditional probability distribution of
future states only depends on the present state. The RNN and its variants (LSTM [30] and
GRU [11]) have gained considerable attention because of their demonstrated effectiveness
in broad practical applications such as machine translation [74], speech recognition [25],
and hand-writing recognition [26].

2.4.1 Long Short-term Memory

The aforementioned vanilla RNN is incapable of capturing long-term dependency in prac-
tice due to the vanishing gradients problem during the training stage. This drawback makes
the vanilla RNN impossible to train on long sequence data. Therefore, some researchers
attempted to solve the problem using the gradient norm clipping strategy [59]. Hochreiter
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Source: https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Figure 2.3: Example of a fold RNN structure (left) to an unfold RNN structure (right)

and Schmidhuber first proposed an LSTM [30] unit to address the issue by introducing
the gating mechanisms to adaptively decide the specific information to forget or remain at
each time steps.

The structure of an LSTM unit is illustrated in Figure 2.4. Based on the RNN struc-
ture, LSTM unitizes three types of gates—input, forget, and output gates—with cell states
and hidden states to remember the important information while forgetting the noisy infor-
mation along the temporal sequence. In the subsequent formulas, we denote · as the inner
product, σ(·) as the sigmoid function, and � as the element-wise multiplication.

A forget gate (2.4) initially performs a linear combination between the learned weights
of the forget state Wf and ht−1, xt, and the sigmoid function σ then maps the results
to a number between 0 and 1, where 0 represents “totally forget the information” and
1 denotes “keep all the information.” The forget gate is later used for determining the
particular information to keep or forget in the previous cell state Ct−1

ft = σ(Wf · [ht−1, xt] + bf ) (2.4)

The input gate (2.5) and output gate (2.6) follow the same pattern as the forget gate.
It decides on the specific information to keep in the candidate cell state C̃t (2.7) and the
final cell state Ct (2.8).

it = σ(Wi · [ht−1, xt] + bi) (2.5)

ot = σ(Wo · [ht−1, xt] + bo) (2.6)

The candidate cell state C̃t (2.7) is obtained by [ht−1, xt] going through a tanh layer.
The final cell state Ct (2.8) is composed of the previous cell state Ct−1 scaled by the forget
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure 2.4: Structure of an LSTM unit

gateft plus the current candidate state C̃t element-wise multiplied by the input gate it

C̃t = tanh(WC · [ht−1, xt] + bC) (2.7)

Ct = f � Ct−1 + it � C̃t (2.8)

Finally, the output (or current hidden state) ht (2.9) is computed based on the current
cell state Ct, projected by tanh and gated by output gate ot mentioned above.

ht = ot � tanh(Ct) (2.9)

The LSTM is shown to successfully capture long-term dependency. Its auto-regressive
nature makes it the dominant model for sequential data such as language modeling [73, 31].

2.5 Attention

The attention mechanism was first introduced in neural machine translation to learn the
word alignment between different languages [2]. The intuition behind attention is the
notion of relevance. For instance, when one performs a translation task, the only subset
of the words in the sentence is relevant to the prediction of the next word. Similarly, in
sentiment analysis, only certain words are relevant to the final prediction. Attention also
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Source: https://arxiv.org/pdf/1904.02874.pdf

Figure 2.5: Traditional sequence-to-sequence model

relieves the burden for LSTM to learn long dependency, as it utilizes every hidden state of
the LSTM instead of only the last one. Furthermore, each hidden state simply needs to
capture the short-term dependency around the word [48].

2.5.1 Attention for the Sequence-to-sequence Model

As depicted in Figure 2.5, the sequence-to-sequence model (seq2seq) [74] for machine trans-
lation consists of an encoder and a decoder. The encoder (usually an RNN) learns the
representation of the sentences (known as the context vector for sentences) from the source
language as the last hidden state of the RNN, and the decoder (usually an RNN) takes
the last hidden and cell state of the encoder as the initial state based on which it starts to
generate the translated version of texts in the target language.

As indicated in previous research [8], the fixed-length context vector is prone to forget
the first part of the sentence if the sentence is extremely long. Another study [2] sub-
sequently uses the attention mechanism to define the context vector C as the weighted
average of all the hidden states h of the encoder (2.10). The weights, which are referred to
as attention scores αij, are learned using a MLP (2.12) with a softmax layer (2.11) during
training (see Figure 2.6).

Ci =
∑
j

αijhj (2.10)

αij =
exp(eij)∑
j′ exp(eij′)

(2.11)
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Source: https://arxiv.org/pdf/1904.02874.pdf

Figure 2.6: Sequence-to-sequence model with attention

eij = vTa tanh(Wa[si−1;hj]) (2.12)

Here va and Wa are weights in the MLP to be learned.

2.5.2 Self-attention

For tasks such as sentiment analysis or any other classification problem where the output
of the model is a single value instead of a sequence, attention can be used for modeling
the relevance of the hidden states with respect to the final prediction. Yang [89] has
proposed a hierarchical attention network for sentiment analysis using self-attention to
identify important words and sentences that contribute the most to the prediction.

As attention is capable of learning long-term dependency within the sentence, re-
searchers proposed the transformer model [81], which abandons the RNN structures and
only uses attention to model languages. Further works based on transformer and self-
attention such as BERT [17] and XLNet [88] are shown to be the state-of-the-art model
on most NLP tasks.
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2.5.3 Attention as Explanation

Attention is introduced under the hypothesis that the attention scores are highly correlated
to the degree of importance or relevance of the input tokens to the output prediction. Nev-
ertheless, in practice, whether attention scores can be used for explaining the prediction
of the model is still debatable. Some previous works claim that attention provides inter-
pretability to some extent [2, 86, 48, 89, 8] by showing certain use cases of their models.
However, Jain and Wallace [33] evaluated this assumption by conducting extensive exper-
iments on a large number of NLP tasks and concluded that attention could not provide
meaningful explanations.

2.6 Text Representation

2.6.1 Bag-of-words Models

The bag-of-words model is a discrete representation for documents in NLP. In the model,
each document in the corpus is represented as a row in a sparse matrix, and each word is
represented as a column in the matrix; meanwhile, the entry is the term frequency. For
example, the entry M(i,j) = 5 signifies that word j appears five times in the document
i. This basic method provides a pathway of transformation from raw texts to numerical
matrices that the machine can understand. The bag-of-words model ignores the order and
grammar of the texts and represents the document as word frequencies.

Numerous studies have indicated the success of the bag-of-words model. Although this
model remains the mainstream text representation of most machine learning models, it
presents some drawbacks. For example, the bag-of-words model requires careful feature
engineering for optimal results, and the sparsity of the matrix brings challenges to model
training. Some variants of the bag-of-words model, including word-ngrams [7] and TF-IDF
[4], further improve the model by addressing some of the shortcomings.

2.6.2 Distributed Word Representation

Discrete representations such as bag-of-words suffer from limited word vocabulary and
ineffectiveness in capturing the semantic relations between words. Distributed word em-
bedding was introduced to map words into a much lower dimensional space in comparison
to the size of the vocabulary. Information about the semantic relations between words is
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gained by exploiting a large corpus. The distributional hypothesis [28] provides the
theoretical foundation for distributed word embedding. It assumes that the semantic of a
word is defined by its context. Words with a similar context should have similar meanings.
Different methods of creating distributional word embeddings have been proposed, but all
aim to project the words into vector representations in which similar words have similar
vectors. The semantic relationship is usually captured by the distance measurement be-
tween word vectors such as cosine similarity. Mapping the words into vectors is primarily
conducted through two models, namely count models and predict models (more pop-
ularly referred to as neural language model). In an empirical comparison and evaluation
of the two models, one study [3] concludes that predict models outperform count models
with a large margin.

2.6.2.1 Count Model

Count models aim to represent words by the raw co-occurrence counts of other words
in the context of a large corpus with some weighting schemes such as pointwise mutual
information (PMI) [12] (2.13) and log-likelihood ratio. Dimension reduction techniques
such as singular value decomposition (SVD) [24] and latent semantic analysis (LSA) [45]
are usually applied to compress the vector space. Pointwise mutual information is defined
as follows:

PMI(W1 = w1,W2 = w2) = log2
P (w1, w2)

P (w1)P (w2)
(2.13)

where P (w1, w2) is the frequency of word w1 and word w2 appearing together in the corpus
within a window size. P (w1) and P (w2) are the frequency of word w1 and w2 separately.
Moreover, PMI can be interpreted as “observation over expectation,” in which a positive
value signifies that w1 and w2 occur together more than expected under independence
assumption, zero represents independence, and a negative value indicates that w1 is likely
to appear only when the w2 does not appear in the window of a given size.

2.6.2.2 Predict Models (Word2vec)

Predict models frame the vector estimation problem as a self-supervised task, which maxi-
mizes the likelihood of the co-occurrence of the center word and context words. Word2vec
is the first proposed and most well-known predict model that maps the word into a high
dimensional continuous space, in which the representation can also retain the semantic
information that words contain [56, 55]. The two forms of the word2vec model are contin-
uous bag-of-words (CBOW) and continuous skip-gram. The CBOW model aims to predict
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Source: [55]

Figure 2.7: Word2vec embedding model

the current word based on a window of surrounding words, whereas the continuous skip-
gram model seeks to predict the surrounding words given the current words. Both models
attempt to maximize the likelihood of the co-occurrence of the center word and context
words. The structure of the models is illustrated in Figure 2.7. Word2vec model contains
only a simple MLP with one hidden layer. The dimension of the hidden layer is a choice
of the amount of information that one intends to keep in the compressed latent space.
Smaller dimensions indicate a greater loss of information but faster training time, whereas
larger dimensions are characterized by more information but are computationally expen-
sive. Empirically, 300 is the most common choice of dimensions. One study [90] suggests
that the optimal number for dimensions is around 300 both empirically and theoretically.
One variant of word2vec is GloVe [60]. In contrast to word2vec, which only captures the
local relation within the window size, GloVe takes advantage of the global context to learn
the word relations.

Previous work and empirical evidence have revealed that word2vec is capable of learning
rich semantic relationships between words if the model is trained on a large corpus (see
Figure 2.8). One famous example is that the analogy of “man to woman as king to queen”
can be solved by word2vec embeddings.
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Source: https://samyzaf.com/ML/nlp/nlp.html

Figure 2.8: Word2vec latent space

Pre-trained word embeddings such as word2vec and GloVe are currently the standard
inputs for most deep learning models for NLP tasks, as they are trained on a large corpus
that enables the model to learn the rich and universal semantic relationship between words.

2.7 Model Interpretability

Neural network models, especially deep learning models, are black-box models [27]. The
lack of interpretability hinders the progress of deployment of a powerful model for solving
real-world problems. Better interpretability not only increases the user’s confidence about
the model’s decision [67] but also illustrates the strength and weakness of the model [22]. In
finance, a strong interest has been raised in the investigation of the methods for explaining
the black-box models, given the crucial importance of understanding the justification of
the prediction when making a key financial decision. However, most of the deep learning
models provide great predictions but with little explanation.

Gradient-based saliency maps [71] are the most flexible and convenient means of in-
terpreting the neural network model, as they can be applied to all differentiable models.
Saliency maps define the explanation of the model’s prediction through the contribution of
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the model’s input, and the gradients of the loss with respect to the inputs are the natural
tool for measuring the contributions of inputs. A more sophisticated method called inte-
grated gradients [72] was introduced to explain the model. This method initializes baseline
inputs with no information (usually represented by inputs with 0 values). Input contri-
butions are measured by integrating the gradients from baseline inputs into the original
inputs.

The attention mechanism is another popular method for interpreting deep learning
models (mentioned in Section 2.5.3). However, it is limited to only explaining the model
with attention structures.

2.8 Sentiment Analysis in Finance

The most common textual sentiment analysis methods in finance are the dictionary-based
approach and the machine learning approach. These methods are detailed below.

2.8.1 Dictionary-based Approach

The dictionary-based approach calculates the polarity score (often referred to as “tone”)
for each text document by counting the positive words and negative words in a pre-defined
sentiment dictionary [47]. Documents are represented by the “bag-of-words” model (Sec-
tion 2.6.1), which ignores the linear ordering of the words in a text. The most extensively
used sentiment dictionary is Harvard IV-4.2 Numerous financial studies have utilized the
Harvard IV-4 dictionary to derive sentiments from financial texts [76, 42, 16]. However,
nearly three-fourths of the words identified as negative by the Harvard IV-4 dictionary are
typically not considered as negative in the financial context. For example, words such as
“tax” and “liability” are in the negative word list in the Harvard IV-4 dictionary, but they
are not negative in the financial context. To tackle the problem, researchers Tim Loughran
and Bill McDonald manually created the LM dictionary that is specific to the finance do-
main from the 10-K filings [50]. The LM dictionary has become the most widely adopted
dictionary in both the financial industry and academia. The dictionary-based method is
the most convenient and efficient method of extracting sentiments from the text. However,
some drawbacks are apparent. First, the words in the dictionary are limited and incapable
of capturing the entire scope of a particular domain. Despite the availability of domain-
specific dictionaries such as the LM dictionary, the word list is relatively small. Second,

2http://www.wjh.harvard.edu/~inquirer/homecat.htm
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the manual creation and maintenance of domain-specific dictionary using expert opinions
is both expensive and unsustainable.

2.8.2 Machine Learning Approach

Machine learning models usually learn rich information about the distribution of the data
from a large training set and make statistical inferences on the test set. In sentiment analy-
sis, researchers typically formulate the problem as a classification problem with the output
being either positive or negative; the inputs are the text data represented by bag-of-words
(Section 2.6.1). With the introduction of the pre-trained word2vec embeddings (Section
2.6.2.2), deep learning models such as RNN (Section 2.4), and CNN (Section 2.3) become
the mainstream methods for sentiment analysis because of their better performance via
the utilization of extra information on a larger corpus and more complex model struc-
tures. However, as mentioned in Section 2.7, deep learning models often suffer from the
interpretability problem.

2.9 Sentiment Lexicon Generation

There are mainly three methods being investigated in the previous work to generate senti-
ment lexicons. These methods are manually annotated lexicons, thesaurus-based method,
and corpus-based method.

2.9.1 Manually Annotated Lexicons

Most of the early works generated sentiment tokens by manually annotating terms with re-
spect to emotions or sentiments. Dictionaries such as Harvard IV-4 and the LM dictionary
(Section 2.8.1) are both manually developed from different forms of expert knowledge. In
1999, Bradley and Lang [6] developed a set of Affective Norms for English Words (ANEW),
which includes the ratings of 1,034 words. The ratings cover three perspectives according
to the theory of emotions [52]. The first and the most relevant aspect of sentiment is the
valence of the emotion, from unhappy to happy. The second aspect describes the level
of arousal evoked by the word. The third aspect represents the dominance of the word.
Further research [84] extended ANEW to 13,915 English words (E-ANEW) using the same
methodology.
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2.9.2 Thesaurus-based Method

The thesaurus-based method is also known as a graph-based approach. The general idea is
to use the underlying encoded relations between words and a small set of pre-defined seed
words through which new words can be induced. The prevalent graph is WordNet defined
by Millers et al. [57]. Kamps et al. [35] proposed measures for determining the semantic
orientation of adjectives for three factors by exploiting WordNet. The study [64] generated
the sentiment (positive or negative) of a word by re-framing it as a semi-supervised label
propagation problem in WordNet. In the graph, each word is a node with a sentiment
label, and the edges between them describe the relations.

2.9.3 Corpus-based Method

The corpus-based method relies on the processing of a large corpus and the generation of
new sentiment words through co-occurrence statistics. One study [78] combined the co-
occurrence measurement and information retrieval to induce the sentiment of new phrases,
calculating the PMI (2.13) between the new phrase and word “good” or “bad” on the web
search. Other researchers [20] used the deep learning word embeddings (Section 2.6.2.2)
that are enhanced by the crowd-powered filter to classify words into 200 pre-built categories.
Kiritchenko et al. [41] created the sentiment lexicon for social media by exploiting words
that co-occur with sentimental hashtags (e.g., #good or #bad) or emoticons (e.g., :) or
:().

2.10 Multiple-instance Learning

Multiple-instance Learning (MIL) [38] is a variant of supervised learning for weakly an-
notated data [18]. Instead of every instance having an associated label, a single label is
assigned to a bag of instances [53]. The main goal of the MIL model is to predict the label
distribution at the bag level without knowing the label for each instance in the bag. For
example, Keeler [38] used MIL to recognize the handwritten postcode without knowing the
position and value of each individual digits. Research interest in simultaneously inferring
the individual instance labels and bag labels has recently intensified [49, 95, 87, 43, 32], as
detecting the instance-level labels can help with understanding the model prediction. For
example, in finance, stock selection has been examined under the framework of MIL [53].
The process involves the selection of the top 100 stocks with the highest returns in the
positive bag and bottom stocks with the lowest returns in the negative bag. It attempts to
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distinguish among stocks that outperform due to fundamental reasons (positive instances
in the positive bag), stocks that outperform due to flukes (negative instances in the positive
bag), and stocks that underperform (all instance in the negative bag). In the medical field,
MIL has been used for detecting the pixels in cancer cells in the histology image [32].

The MIL primary problem (bag-label inference) may be solved in two ways. The
first approach projects the instances into a low dimensional space, followed by a bag-level
classifier taking the input from the latent space. The second method simply aggregates
the results of the instance-level classifier as the prediction of the bag-level label [63, 65].
Although the second method is capable of inferring the instance-level labels, it suffers from
poor performance on instance classification [36]. The stability of the instance label is also
empirically evaluated [10].
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Chapter 3

Corpus-based Methods for Sentiment
Lexicon Induction on Financial
Conference Calls

In this chapter, we discuss the corpus-based word similarity for domain-specific sentiment
lexicon induction. Inspired by [92], we use the sentiment-aware word2vec (senti-word2vec)
(Section 3.2) model to extend the current state-of-art sentiment dictionary (Loughran-
McDonald dictionary) for financial conference texts. Section 3.1 introduces the general
continuous bag-of-words [55] algorithm for learning the semantic relations between words
and its limitations on the sentiment relations between words. Section 3.2 describes the
process of extending the LM dictionary using senti-word2vec in an unsupervised manner.

3.1 Continuous Bag-of-words for Word Similarity

As mentioned in Section 2.9.3, the corpus-based method for sentiment word induction is
based on the relations between words that have been learned from a large corpus. Continu-
ous bag-of-words (Section 2.6.2.2) is a state-of-art model of learning the semantic relations
between words.
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Source: https://arxiv.org/abs/1411.2738

Figure 3.1: Structure of the continuous bag-of-words model with one word considered in
context

3.1.1 Continuous Bag-of-words

Continuous bag-of-words (CBOW) is the simplest model for learning the probability of a
word based on its context words. For example,

“The cat jumped over the puddle.”

Assume the word “jumped” is the target word. CBOW tries to predict the target word
“jumped” based on its context of five words (or neighbouring words) namely, { “The”,
“cat”, ”over”, “the”, “puddle” }. The size of the context (i.e., the number of the neigh-
bouring words) is a hyper-parameter we can choose based on the data. To illustrate the
model, we start with a simple CBOW model with only one word considered per context.

3.1.1.1 CBOW with One-word Context

Figure 3.1 shows the network model with only one word considered per context. This
means the model will predict one target word given one neighbouring word. In the afore-
mentioned example, the CBOW model tries to predict the target word “jumped” based
on one neighbouring word { “cat” }. In our setting, assume a vocabulary of size V , and
the hidden layer size is N . The adjacent layers are fully connected. Let the input of the
model be the one-hot encoding vector of a word, which means only one unit out of V units,
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(x1, x2, ..., xV ), is 1 for a given neighbouring word, and all others are 0. In this case, we
assume xk is 1 to represent the neighbouring word, wI with index k.

The weights between the input layer and the hidden layer can be represented by a
matrix W ∈ IRVxN. Each row of W is the N -dimension vector representation vw of the
associated word of the input layer. Formally, row i of W is vTw. Given a context with
one word, wI with an index of k in the vocabulary, and x = (x1, x2, ..., xV ) is the one-hot
encoding of the word wI with only unit xk is 1, we have:

h = W Tx := vwI
, (3.1)

which practically copy the k-th row of W to h. vwI
is a vector representation of the input

word wI to be learnt.

The weights between hidden layer and the output layer is a matrix W ′ ∈ IRNxV. After
a linear combination of this matrix W ′ and hidden layer h, we can generate a score uj for
every word in the vocabulary,

uj = v′
T
wj
· h (3.2)

where v′wj
is the j-th column of the matrix W ′. A softmax function then is used to obtain

the posterior distribution over all words in the vocabulary.

p(wj|wI) = yj =
exp(uj)∑V
j′=1 exp(uj′)

(3.3)

where yj is the output of the j-th unit in the output layer. Combining (3.1), (3.2), and
(3.3), we obtain:

p(wj|wI) = yj =
exp(v′Twj

· vwI
)∑V

j′=1 exp(v
′T
wj′
· vwI

)
(3.4)

Note that vw and v′w are two different representations coming from rows of W and columns
of W ′, respectively. In the subsequent analysis, we denote vw as the “input vector” of
the word w, and v′w as the “output vector” of the word w.

The training objective as noted in [68] is to maximize (3.4), the conditional probability
of observing the actual output word wO given the input context word wI . We assume that
the index of the output word wO in the output layer is j∗.

max p(wO|wI) = max yj∗ (3.5)
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For optimization purpose, we minimize the negative log probability:

min−log(p(wO|wI)) = min−log(yj∗) (3.6)

Combining (3.4), and (3.6), we have:

min−log(p(wO|wI)) = min−log(yj∗) (3.7)

= −v′TwO
· vwI

+ log

V∑
j′=1

exp(v′Twj′
· vwI

) := E (3.8)

where we try to maximize the log probability logp(wO|wI) over the “input vector”, vwI
, of

input word wI , the “output vector”, v′wO
, of the target word wO, and the “output vectors”,

v′wj′
, of all the words wj′ in the vocabulary. E = −logp(wO|wI) is the loss function to

minimize.

3.1.1.2 Generalized CBOW with Multi-word Context

Figure 3.2 presents the structure of the CBOW model with a multi-word context input,
which means the model will predict one target word given multiple neighbouring words. In
the aforementioned example, the CBOW model tries to predict the target word “jumped”
based on the neighbouring words, { “The”,“cat”, ”over”, “the”, “puddle” }. In this case,
the CBOW model takes the average of the one-hot encodings of the neighbouring words
as the input, and use the inner product of the weight matrix W and the average vector as
the hidden vector h (3.9).

h =
1

C
W T (x1k + x2k + ...+ xCk) (3.9)

=
1

C
(vw1 + vw2 + ...+ vwC

) (3.10)

where C is the number of words in the context, x1k,..., xCk are the one-hot encodings
of words wI,1,..., wI,C in the context ({ “The”,“cat”, ”over”, “the”, “puddle” } in our
example), and vw is the “input vector” of a word w. The loss function is
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Source: http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf

Figure 3.2: Structure of the continuous bag-of-words model with C words considered in
context
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E = −logp(wO|wI,1, ..., wI,C) (3.11)

= −uj∗ + log
V∑
j′=1

exp(uj′) (3.12)

= −v′TwO
· h+ log

V∑
j′=1

exp(v′
T
wj
· h) (3.13)

which is the same as the E in (3.8) except that h is defined in (3.9) instead of (3.1).

3.1.2 Negative Sampling

In the CBOW model, for each training instance, we have to iterate through every word
wj in the vocabulary: computing the net score uj; probability yj; prediction error ej; and
use the error to update all “output vectors” v′j in the weight matrix W ′ ∈ IRNxV (i.e.,
“output vectors” of all words in the vocabulary ). This aspect renders the infeasibility of
training the model in a large corpus with billions of words in the vocabulary. The intuitive
solution is to limit the number of the “output vectors” needed v′j to be updated per training
instance. One paper [56] proposed the use of negative sampling to reduce the computation
cost of the optimization.

The idea of the negative sampling is fairly straight-forward. In order to tackle the
complexity of updating too many “output vectors” per training instance, we only update a
subset of them. The “output vectors” of output word (i.e., the ground truth, the positive
sample) should be kept in our sample and get updated, and we need to sample the “output
vectors” of few words (other than the ground truth) as negative samples. The sample
process needs a probability distribution, and the distribution can be defined arbitrarily.
We call the distribution the noise distribution and denote it as Pn(w).

In the case of CBOW, [55] proposes a simplified training objective of negative sampling
(3.14) and argues that this simplified objective is capable of producing high-quality word
embeddings while reducing optimization cost.

E = −logσ(v′TwO
· h) +

∑
w∈Wneg

logσ(−v′Tw · h) (3.14)

where σ(·) is the sigmoid function, wO is the output word (i.e., the positive sample), and
v′wO

is the “output vector” of the output word, h is the output of the hidden layer where
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h = 1
C

∑C
c=1 vwc , Wneg = {wj|j = 1, ..., K} is the set of negative samples that are sampled

based on Pn(w) where K is the size of the negative samples. The simplified objective
(3.14), compared to the original one (3.13), reduces the computation per training instance
from O(V ) (size of the vocabulary) to O(K) (size of the negative samples). [56] suggests
thatK = 5 is empirically good enough for training this objective. [23] provides a theoretical
analysis as to why we use this simplified objective function.

3.1.3 CBOW as Word2vec Embeddings

The word2vec embeddings are an umbrella term for models that transfer a word index
into a word vector (i.e., word embedding). Formally, given a word index i, the word2vec
embeddings serve as a look-up table to produce the corresponding word vector vi. The
learnt weight matrix W ′ ∈ IRNxV of the CBOW model in Figure 3.2 is normally used in
the word2vec embeddings. Each column in W ′ is the “output vector” v′wi

for the word wi
with the index i. N is the pre-defined size of word vectors and it is also the size of the
hidden layer in CBOW model. V is the vocabulary size. Thus, W ′ ∈ IRNxV contains all
the word vectors in the vocabulary.

The original paper of CBOW [55] shows that the CBOW model can successfully learn
high-quality word vectors from large corpus with billions of words. The resulting vector
representations can preserve similarity between words, meaning words with similar meaning
tend to be close to each other based on the cosine distance between word vectors.

3.1.4 Word2vec on the Conference Call Dataset

Despite the existence of some pre-trained word embeddings such CBOW [55] and GloVe
[60], most are trained on a general corpus such as Wikipedia. To learn rich semantic
relations between words in the financial context, we train the CBOW model on financial
conference call data from 2008 to 2018 and we use the weight matrix W ′ as the word
vectors in word2vec embeddings. We do not conduct any text prepossessing, except for the
tokenization of sentences into words because we intend to retain the semantic information
as much as possible.
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Figure 3.3: Words that are similar to the word “favorite” ranked by cosine similarity
between word2vec embeddings.

3.2 Senti-word2vec

3.2.1 Limitation of the General Word2vec Embeddings

The general word2vec embeddings (i.e., the output weight matrix W ′ of the CBOW model)
are trained under the distributional hypothesis [28], in which the semantic meaning of a
word is defined by its neighbor words (i.e., context words). Under this assumption, the
learned word vectors ignore the sentiment perspective of the word. Prior research [92]
has reported that words with similar vector representations may have opposite sentiment
polarity scores. For example, the words “good” and “bad” are indeed likely to have sim-
ilar neighbor words; thus, they are considered similar by CBOW even though they have
opposite sentiments. We examine the word2vec embeddings trained on a conference call
dataset (Section 2.1.1) using cosine similarity: We calculate the cosine similarity scores
(i.e., inner product) between the word vector of word “favorable” v′wfavorable

, and all others
word vectors in the matrix W ′ corresponding all other words in the vocabulary. We rank
all other words in the vocabulary descendingly based on their associated cosine similarity
scores. A larger score means the word vector generated by the model share more similarity
with the vector of word “favorable”. Figure 3.3 displays top ten words in the rank based
on cosine similarity scores to the word “favorable”. The resulting rank reveals that the
word “unfavorite” ranked second as the most similar word to the word “favorite”, which
provides evidence of the limitation of the word2vec embeddings.

To overcome this problem, some researchers [75] attempted to change the training ob-
jective of the CBOW model to learning the semantic and sentimental meaning of words
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by supervised learning based on the sentiment polarity labels. This thesis adopts another
strategy proposed by [92]. Instead of changing the training objective and re-training the
model on the labeled dataset, we use the same objective of CBOW to learn the semantic
meaning of the words in a self-supervised fashion and subsequently add sentiment informa-
tion to each word as a post-processing step based on a pre-defined sentiment dictionary.

3.2.2 E-ANEW Sentiment Dictionary

The E-ANEW dictionary is a manually annotated sentiment dictionary by 1,827 partic-
ipants in the study [84]. It contains 13,915 sentiment words with three different scores
associated with each word. The three scores are in line with the theory of emotion [52]
to measure the emotion of a word. The first and the most important score is the valence
of the emotion triggered by the word, ranging from unhappy to happy. The second score
describes the level of arousal evoked by the word (from calm to excited), and the third
aspect represents the dominance (power) of the word of which the word denotes something
weak or strong. In this thesis, we use the valence score to measure the word sentiment,
which ranges from 1(extremely unhappy) to 9(extremely happy), and 5 is neutral.

3.2.3 Sentiment Lexicon Induction

The LM dictionary is manually generated based on the annually financial reports so most
of the words in the dictionary are written English. Thus, the words in the dictionary are
limited and cannot fully capture the sentiment of spoken English in transcripted financial
conference calls. Therefore, our goal is to extend the LM dictionary to capture written
and spoken English words.

We use the word2vec embeddings trained on the financial conference call data to identify
the top k most similar words to the target words. In our example, target words are the
words in the LM dictionary because our objective is to extend the LM sentiment word
lists. We use the E-ANEW dictionary to re-rank the top k most similar words based on
the sentiment distance defined as follows:

sentidist(w1, w2) = |v1 − v2| (3.15)

where w1, w2 are the words and v1, v2 are the individual valence scores for w1 and w2

separately. We list the detailed steps and describe word induction:
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1. Tokenize the conference call text into word-level tokens without any text prepossess-
ing steps. For example, the sentence “The cat jumped over the puddle.” is considered
as a list of tokens: [“The”, “cat”, “jumped”, “over”, “the”, “puddle”, “.”].

2. Train a CBOW neural model (Figure 3.2) on the financial conference call data with
300 units in the hidden layer (N = 300), 10 context words for input (C = 10),
and 19,426 distinct words in the vocabulary (V = 19426). Use a negative sampling
(Section 3.1.2) to reduce the training complexity.

3. Construct the word2vec embeddings using the weight matrix W ′ ∈ IRNxV in the
CBOW model as mentioned in Section 3.1.3. In our case N = 300 and V = 19426.

4. Identify the top 15 most similar words to every target word (i.e., words in the original
LM dictionary) based on cosine similarity between word embeddings of the target
words and the rest of the words.

5. Reset the valence scores of the target words to an extreme number (1 for negative
words, 9 for the positive words). By undertaking this step, we assume that the targets
are either extremely positive or extremely negative because we believe that the LM
dictionary is the ground truth in terms of financial texts.

6. Calculate the sentiment distance between the top 15 most similar words and the
target words based on (3.15) and re-rank the word list according to the sentiment
distances (3.15).

7. Remove all the words that have a sentiment distance larger than the threshold of 4
(the midpoint of the distance), as indicated in Figure 3.4

3.2.4 Threshold Tuning

We use 4 as the baseline threshold—given the scores ranging from 1 to 9, the maximum
distance is 8 and the midpoint of the distance is 4. Words with a distance larger than 4
have opposite sentiments. However, based on the baseline, we can further trim the word list
by decreasing the threshold values. The extended positive (or negative) word list consists
of the original LM positive (or negative) words plus the additional words identified. The
performance of the extended word list is measured by the information coefficient (IC),
computed as Kendall’s tau [61], between the three-day excess returns (benchmarked to the
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Figure 3.4: Words that have a large stnidist (3.15) will be removed. Numbers in the
parenthesis are the sentidist

MSCI US Index1) and the quarterly sentiment scores of all the companies across every
sector within the MSCI universe from 2008 to 2018. The three-day returns are calculated
based on the split-adjusted closing price covering the period from one business day before
the earning call date and another business day afterwards. The optimal threshold with
the best performance is identified by exhausting all the possible values from 0 to 4 with
an increment of 0.1 and finalizing the positive and negative extended word lists with each
threshold. The full evaluation metrics and results are presented in Chapter 5.

1The MSCI USA Index is designed to measure the performance of the large and mid-cap segments
of the US market. With 636 constituents, the index covers approximately 85% of the free float-adjusted
market capitalization in the US. The description can be found in: https://www.msci.com/documents/

10199/471d55eb-ca0b-43c8-882c-ee161de1c422
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Chapter 4

Interpretable Sentiment Analysis
with Attention-based
Multiple-instance Learning

4.1 Multiple-instance Learning

4.1.1 Motivation

Multiple-instance learning has been widely applied to various fields (e.g., stock selection
[53], and computer vision [32]), but rarely it has been applied to the field of natural language
processing. The possible reason is that most of the mainstream models are sequential
(i.e., they take the order of the words into considerations), but the nature of the MIL
model ignores the permutation of words. This assumption of independent words is usually
believed to have worse performances. However, with the advancement of deep learning, the
implementations of MIL models also allow the models to capture more complex relations
between words even we assume they are independent. It is also easier to interpret MIL
models than sequential models. Thus, we try to apply the MIL models to solve sentiment
analysis problem.

4.1.2 Problem Formulation

In the case of classical binary supervised learning, the model seeks to predict a label y
based on a given instance x. However, in the setting of a multiple-instance learning, a bag
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of instances X = {x1, x2, ..., xK} is given, in which we assume that every instance in the
bag is independent and that the instances have no ordering between them (Condition 1).
K can be different for diverse bags. Every bag X is also associated with a label Y . We
also assume that every instance xk in the bag has its own label yk where yk ∈ {0, 1}, for
k = 1, ..., K (Condition 2). The individual label yk remains unknown during training, and
we re-define the bag level label Y as follows:

Y =

{
0, iff

∑
k yk = 0

1, otherwise
(4.1)

Conditions 1 and 2 guarantee that the MIL model is permutation-invariant. Further-
more, the preceding equation can be written as

Y = max
k
{yk} (4.2)

However, directly learning the aforementioned objective (4.2) results in two major prob-
lems. First, gradient-based optimization methods encounter vanishing gradients with the
max operator. Second, it is only feasible when an instance-level classifier is present.

To overcome both learning problems, we adopt the MIL problem by optimizing the log-
likelihood function, θ(X), in which the bag label is distributed in the Bernoulli distribution
with parameters. The bag probability θ(X) is the probability of the bag label Y = 1 given
the bag X. Thus, bag-level labels are directly inferred by the model instead of aggregating
the instance-level labels by the max operator.

4.1.3 Multiple-instance Learning Approaches

For MIL, the probability θ(X) must be permutation-invariant because every instance
in the bag is independent and lacking in order. The MIL problem (Section 4.1.2) can be
categorized into a special form of the fundamental theorem of symmetric functions with
monomials given by the following theorems [93]:

Theorem 1: A scoring function for a set of instancesX, S(X) ∈ R, is a symmetric function
(i.e., permutation-invariant to the elements in X), if and only if it can be decomposed in
the following form:

S(X) = g(
∑
x∈X

f(x)) (4.3)

where f(·) and g(·) are suitable transformation functions.
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(4.3) provides a general mechanism to model the bag-level probability S(X).

Theorem 2: For any ε > 0, a Hausdorff continuous function1 S(X) ∈ R can be arbitrarily
approximated by a function in the form of g(maxx∈X f(x)), where f and g are continuous
functions, that is:

|S(X)− g(max
x∈X

f(x))| < ε (4.4)

Both of the theorems frame the MIL into three steps:

1. A transformation of instances using function f(·);

2. A symmetric (permutation-invariant) function σ(·) is applied to aggregate the trans-
formed instances. (e.g.

∑
in Theorem 1 and max in Theorem 2); and

3. A transformation of aggregated instances using g(·).

In the case of MIL, f(·) and g(·) are called transformation functions. The permutation-
invariant function σ(·) is referred to as MIL pooling. Different choices of the functions and
pooling define the various strategies for implementing MIL. The two main strategies are
as follows:

1. Instance-based approach: The transformation f(·) is an instance-based classifier that
obtains a score (1 dimension) for each instance in the bag X, and the θ(X) is obtained
by the MIL pooling over the instance scores. In this case, g(·) is simply an identity
function.

2. Embedding-based approach: f(·) maps every instance into an embedding in a low
dimensional space (usually more than 1 dimension). A bag-level representation is
obtained by the MIL-pooling function aggregating on every unit of instance-level
embeddings, which is independent of the order of the instances in the bags. g(·)
is a bag-level classifier for predicting the label based on the bag-level embedding
(i.e.,aggregated instances-level embeddings).

Previous research indicated that the latter approach performs better in terms of the
bag-level classification because the performance of the former approach is highly dependent
on the quality of the instance-based classifier, whereas the latter integrates the instance
embeddings to reduce the bias of insufficiently trained instance-based classifier. However,

1Defined by [62], a Hausdorff continuous function S(X) ∈ R is a continuous set function w.r.t. Hausdorff
distance dH(·, ·). A proof of Theorem 2 can be found in the supplementary material of [62].
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in contrast to the former approach, which induces the label for each instance in the bag by
using the instance-based classifier, the latter approach fails to give each instance a label
because it maps each instance into an uninterpretable low-dimensional embedding. This
thesis demonstrates the process of modifying the second method to be more interpretable
by using the attention mechanism with neural networks.

4.2 Multiple-instance Learning with Neural Networks

In most MIL classification problems, each feature is treated as an instance; f(·) is simply
the identity function. For text data, however, the representation of a document can have
a large number of dimensions. Thus, additional feature extraction is required. A feed-
forward neural network fψ(·) with parameters ψ is used for parameterizing the function
f(·) in Theorems 1 and 2. It transforms every instance xk in the bag X into a lower-
dimensional embedding hk = fψ(xk) where hk ∈ H. In the instance-based approach,
H = [0, 1]; Meanwhile, in the embedding-based approach, H = RM , where M is the
embedding dimension. After aggregating all instance-level embeddings into one bag-level
embedding z ∈ H, the g(·) function is also parameterized by a feed-forward neural network
gφ(·) with parameters φ to predict the bag label Y . In the embedding-based approach, it
maps the bag-level embedding z, into [0, 1]. In the instance-based approach, the gφ(·) is
an identity function, as z ∈ H and H = [0, 1]. An example of a model structure for text
sentiment classification is illustrated in Figures 4.1a and 4.1b; Figure 4.1a is the structure
for the instance-based MIL, whereas Figure 4.1b is the embedding-based approach.

4.3 Multiple-instance Learning Pooling

The definition of MIL requires that the pooling function σ(·) must be permutation-invariant.
Theorems 1 and 2 provide examples of such pooling function, namely the max operator
and the mean operator. Other operators such as convex max operator [63], noisy-or, and
noisy-and [53], can replace the max operator in the Theorem 2; and a detailed proof of the
replacement is presented in [62]. All of these alternative operators to the max operator are
differential, which is suitable for any deep learning architecture.
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(a) Structure of the instance-based MIL model

(b) Structure of the embedding-based MIL model

Figure 4.1: Structures of the different types of MIL models
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4.4 Attention-based Multiple-instance Learning Pool-

ing

As mentioned in [32], the preceding operators are characterized by some performance dis-
advantages because they are pre-defined and not trainable. For example, in binary classifi-
cation, the max operator may be suitable for the instance-based approach because the bag
will be positive (label 1) as long as any instance in the bag is positive, which aligns with the
MIL assumption in (4.1). However, the max operator might fail in the embedding-based
approach because every dimension in the hidden space is interpretable; simply selecting
the max value among all the instances for every dimension to construct the bag-level em-
bedding might not be adequately sophisticated. We use the attention mechanism as the
new adaptive pooling function, which can learn a better pooling according to the specific
data and task and potentially provide more interpretability than the pre-defined operators.

We use self-attention mentioned in Section 2.5.2 to replace the pooling function. It
serves as the weighted average of the transformed instances (i.e., instance-level embed-
dings). Weights are learned by optimization training, and a final softmax layer is used to
ensure that all the weights are summed up to one, which is invariant to the number of
instances. Let HK = {h1, h1, ..., hK} be a bag of K embeddings:

z =
K∑
k=1

αkhk (4.5)

where

αk =
exp(vT tanh(WhTk ))∑K
j=1 exp(v

T tanh(WhTj ))
(4.6)

where v and W are weights in MLP to be learned. The weighted average of hk (4.5)
satisfies Theorem 1 where akhk can been seen as a part of the f(·) function and the value
of z (i.e., the bag-level embedding) does not depend on the permutation of hk in bag HK

(i.e., permutation-invariant). The neural network structure is depicted in Figure 4.2. This
proposed self-attention mechanism has been largely used for LSTM and transformer for
text data. All the previous models take the sequence into consideration, but we assume that
words are independent of each other (i.e., one-gram assumption). This assumption allows us
to perform MIL models on text data. Moreover, the later analysis (see Chapter 5) suggests
that it provides better interpretability and comparable performances with sequence models
(i.e.,LSTMs)
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4.4.1 Gated Attention Mechanism

The tanh(·) used in the aforementioned attention mechanism can be insufficient for learn-
ing the complexity because tanh(x) is almost linear for x ∈ [−1, 1]. A gated attention
mechanism[32] is proposed to add a more learnable non-linearity to the original tanh(·).
The new attention score is calculated as follows:

αk =
exp(vT tanh(WhTk )� sigm(UhTk ))∑K
j=1 exp(v

T tanh(WhTj )� sigm(UhTj ))
(4.7)

where � is the element-wise multiplication, and sigm(·) is the sigmoid function. However,
in practice, the gated attention mechanism does not necessarily outperform the original
one. Their comparison is presented in the experiment in Chapter 5.

4.4.2 Interpretability

As mentioned in Section 2.5.3, attention should provide some explanation for the model
decision. In the case of MIL for the positive classification of the bag (Y = 1), high
attention weight should be given to the instance that is most likely to be positive (yk = 1).
The attention scores naturally provide the interpretability for the deep learning models
by giving the positive instances in the bag more weights. For example, in the case of
sentiment analysis, if a sentence is predicted to be positive (bag label is positive, Y = 1
), then positive words in the sentence should be given higher attention weights. Contrary
to the instance-based approach, the attention-based MIL does not give an explicit label to
each instance in the bag, but it provides some level of interpretability that the embedding-
based approach does not offer.

4.4.3 Sentiment Analysis as Multiple-instance Learning

Although an ample number of studies have investigated multiple-instance learning, only
few were conducted in the context of text data, in which the assumption is that each word
is an instance and each sentence is a bag. The potential reason is that MIL makes the
assumption that every instance in the bag is independent of each other, whereby the permu-
tation of the instances does not matter (similar to the one-gram assumption); meanwhile,
mainstream deep learning language models take the sequence of words into account. For ex-
ample, LSTM learns the probability of a sentence by learning the accumulated conditional
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probability of all the words in order within the sentence. Language models effectively work
in tasks such as text generation (i.e., generation of the next words based on the previous
words), in which the sequence of the words plays an essential part of the task.

However, in the context of explainable sentiment analysis, we argue that the MIL
model is better than sequence-based models because first, the sequence of the word is not as
essential in the sentiment classification task as in most other NLP tasks; traditional bag-of-
words models (no sequence) perform as effectively as the sequence-based model with much
less computational resource. For example, in the IMDb movie review challenge (Section
2.1.2), Doc2vec with the bag-of-words method [77](no word sequence) ranks first in the
competition, beating all the sequential language models with complicated structures and a
large number of parameters such as BERT and LSTM.2 Second, assuming the independence
of each word in the sentences can provide more interpretability. Most language models use
a complicated model structure to learn the interrelation between words, which makes the
models difficult to explain. For example, the hidden state of LSTM at each time step
contains not only the information of the current word but also all the words that are
before it, causing difficulty in explaining the contribution of each word. However, in MIL,
every instance only represents one word, which consequently facilitates the confirmation of
the contribution of each word.

In this case, we propose MIL, as illustrated in Figure 4.2. Words in a sentence are
presented by pre-train word embeddings, and an MLPs model transfers the representa-
tions to instance-level embeddings, followed by a self-attention layer to form a contextual
vector to represent the bag (i.e., the bag-level embedding) by aggregating all instance-level
embeddings; a bag-level classifier then is used for classifying the bag.

2The ranking can be found in https://paperswithcode.com/sota/sentiment-analysis-on-imdb.
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Figure 4.2: Structure of the attention-based MIL model; the MIL pooling is implemented
by self-attention mechanisms
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Chapter 5

Computational Results

5.1 Evaluation of the Extended Sentiment Lists

Generated by the sentiment lexicon induction (Section 3.2.3) using the senti-word2vec
model (Section 3.2) with a baseline threshold of 4, the word list has 517 positive words
and 465 negative words. We generate different sentiment lists for various thresholds. The
word counts of each list are presented in Appendix A.1. This section describes the metrics
used in this work and presents the results for every new dictionary.

5.1.1 MSCI Dataset

Companies of interest are in the MSCI universe. The target companies’ quarterly con-
ference calls from 2008 to 2018 are selected; companies with less than 10 conference calls
during the period are omitted. The final list comprises 579 companies. The breakdown of
the companies into each sector is presented in Table 5.1. For every conference call, we only
keep Answers from Executives in the Q & A Session. Text pre-proposing includes
tokenization, removal of special characters, and deletion of stop words.1

1Stop words are generally words that are not considered to add information content to the question at
hand. The stop word list used here is the GeneraricLong list provided by the University of Notre Dame:
https://sraf.nd.edu/textual-analysis/resources/.
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Table 5.1: Company count for each sector in the MSCI universe

MSCI Sectors Company Count
Communication services 30
Consumer discretionary 68

Consumer staples 32
Energy 31

Financials 80
Health care 73
Industrials 80

Information technology 86
Materials 28

Real estate 38
Utilities 30

Total 579

5.1.2 Polarity Scores

The quantification of the sentiment of a sentence as a polarity score is a common approach
in sentiment analysis. The polarity score is calculated by some combination of the number
of positive words, negative words, and all the words in a sentence. In this work, we delineate
three different polarity scores to quantify the sentiment of a conference call of company i at
event time t: pos pcentit, neg pcent

i
t, and posneg diff it . These scores are defined in (5.1).

pos pcentit =
PW i

t

TW i
t

neg pcentit =
NW i

t

TW i
t

posneg diff it =
PW i

t −NW i
t

TW i
t

(5.1)

where PW i
t is the number of positive words in the conference call of company i at event

time t, NW i
t is the number of negative words in the conference call of company i at event

time t, and TW i
t is the total number of words in the conference call of company i at event

time t. We calculate all three scores for each conference call as the sentiment scores for
the call.
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5.1.3 Three-day Returns

Three-day excess return Ei
t at the event time t for the company i is defined in (5.2), where

Ri
t is the three-day return at the event time t for the company i (5.3), and Ît is the three-day

MSCI U.S. Index at time t (5.4).
Ei
t = Ri

t − Ît (5.2)

Ri
t =

(P i
t+1 − P i

t−1)

P i
t−1

(5.3)

Ît =
(It+1 − It−1)

It−1
(5.4)

where P i
t+1 is the stock price of the company i on one business day after time t, P i

t−1 is the
stock price of company i on one business day before time t, It+1 is the MSCI US Index on
one business day after time t, and It−1 is the MSCI US Index on one business day before
time t.

We believe that the three-day excess returns can capture the stock performance trig-
gered by a certain event in excess of the benchmark (MSCI U.S. Index). The three-day
excess returns Ei

t (5.2) of companies in MSCI universe on their quarterly conference call
dates are calculated. We later use the three-day excess returns Ei

t to tune the threshold of
the dictionary (Section 5.1.5) because it requires less computation. The three-day returns
Ri
t (5.3) of all available conference calls in the dataset are calculated. We later use the

three-day returns Ri
t as one variable of the correlation analysis with the polarity scores.

5.1.4 Kendall’s τ Coefficient

Kendall’s τ coefficient is a correlation measure for ordinal data. It measures the similarities
of the ranks of the data when ranked based on their values [61]. The score will be high if
the two observations being measured have a similar or the same ranking, and vice versa.

Let (x1, y1), (x2, y2),...,(xn, yn) be a set of observations of the joint random variables X
and Y respectively. Any pair (xi, yi) and (xj, yj) is called concordant if and only if both
xi < xj and yi < yj or if both xi > xj and yi > yj; however, it is discordant if and only
if both xi < xj and yi > yj or if both xi > xj and yi < yj. The Kendall’s τ is defined
in (5.5). An explicit expression for Kendall’s τ is defined in (5.6).

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

) (5.5)
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τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj) (5.6)

where sgn(z) is the sign of z.

Note that the range of scores is between -1 and 1, where 1 suggests that x and y have
a perfect positive correlation, -1 suggests that x and y have a perfect negative correlation,
and 0 suggests that x and y are independent from each other.

5.1.5 Optimal Threshold

For every threshold, we calculated the Kendall’s τs between three-day excess returns and
two polarity scores: the pos pcent and neg pcent separately for each conference call of all
the target companies. The result is shown in Table 5.2. From the results, we can observe
that the threshold of 3.5 provides the best result for the Negative list and the threshold
of 2.8 provides the best result for the Positive list. We combine the two optimal lists in
addition to the original LM dictionary as the extended LM dictionary.

Table 5.2: Correlations between excess three-day returns and the sentiment scores calcu-
lated by the new dictionary with different thresholds

Threshold Neg pcent Pos pcent PosNeg diff

0 -5.86% 6.76% 8.05%
0.1 -5.86% 6.76% 8.05%
0.2 -5.86% 6.76% 8.05%
0.3 -5.86% 6.76% 8.05%
0.4 -5.86% 6.76% 8.05%
0.5 -5.86% 6.76% 8.05%
0.6 -5.86% 6.76% 8.05%
0.7 -5.79% 6.80% 8.04%
0.8 -5.79% 6.81% 8.04%
0.9 -5.78% 6.75% 8.05%
1.0 -5.79% 6.80% 8.13%
1.1 -5.80% 6.81% 8.15%
1.2 -5.79% 6.85% 8.18%

Continued on next page
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Table 5.2 – continued from previous page
Threshold Neg pcent Pos pcent PosNeg diff
1.3 -5.81% 6.89% 8.45%
1.4 -5.82% 6.95% 8.45%
1.5 -5.82% 6.91% 8.46%
1.6 -5.86% 7.03% 8.53%
1.7 -5.88% 7.04% 8.55%
1.8 -5.81% 6.99% 8.51%
1.9 -5.79% 7.17% 8.58%
2.0 -5.86% 7.12% 8.56%
2.1 -5.87% 7.38% 8.70%
2.2 -5.79% 7.51% 8.49%
2.3 -5.83% 7.37% 8.48%
2.4 -5.86% 7.30% 8.50%
2.5 -5.79% 7.22% 8.33%
2.6 -5.79% 7.37% 8.55%
2.7 -5.82% 7.30% 8.41%
2.8 -5.79% 7.55% 8.41%
2.9 -5.87% 7.54% 8.36%
3.0 -6.18% 7.51% 8.38%
3.1 -6.21% 7.37% 8.61%
3.2 -6.23% 7.33% 8.56%
3.3 -6.31% 6.86% 8.14%
3.4 -6.21% 6.93% 8.19%
3.5 -6.34% 6.97% 8.32%
3.6 -6.28% 6.91% 8.29%
3.7 -6.13% 6.94% 8.24%
3.8 -6.22% 6.94% 8.22%
3.9 -5.95% 6.83% 8.12%
4.0 -6.16% 6.86% 8.21%
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5.1.6 Word Comparison With the LM Dictionary

The extended LM dictionary consists of the original LM dictionary and 275 new positive
words and 324 negative words. Furthermore, we stem2 all the extra words and words in
the LM dictionary into their word forms (e.g., “depressed”, “depression”, “depressing”,
and “depresses” are all stemmed into the form “depress”). The LM dictionary contains
151 distinct positive word roots and 916 distinct negative word roots, while the new words
generated contain 275 distinct positive word roots (See full list in Appendix A.2.1) and
269 distinct negative word roots (See full list in Appendix A.2.2). fourteen of the positive
word roots and fifteen of the negative word roots are shared by the original LM dictionary
as well. Table 5.3 displays the common word roots shared by both of the word lists.

Table 5.3: Word roots shared by both the new words and the words in the LM dictionary

Postive Word Negative Word
excit fatal
prosper victim
pleas depress
beauti wast
inspir neg
encourag worri
desir ban
profit ridicul
effect neglig
inspir sever
insight shock
confid dispos
attract turbul
solv drop
advanc inact
advanc

2stemming is the process of reducing inflected (or sometimes derived) words to their word stem, base
or root form—generally a written word form.
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5.1.7 Cross-sectional Analysis

We also conduct cross-sectional analysis to investigate the correlation between the three-
day returns and the polarity scores on monthly bases.

5.1.7.1 Test Dataset

To evaluate the general performance of the dictionary, we decide to use data beyond just the
companies within the MSCI universe. We use all conference calls available in the dataset
(Section 2.1.1) from 2010 to 2018. For every conference call, we keep all sections namely,
(1) presentation sections; (2) question sections; and (3) answer sections. There are a total
249,194 observations in presentation sections, 232,438 observations in question sections,
and 243,785 observations in answer sections. Text proposing includes tokenization, removal
of special characters, and deletion of stop words.3

5.1.7.2 Sample Groups

Each month’s conference calls are categorized into different sample groups:

• All samples: all the conference calls;

• Positive samples: all the conference calls with positive posneg diff (Section 5.1.2)
calculated by LM dictionary, resulting in 29,611 observations in presentations sec-
tions, 138,564 observations in question sections, and 43,677 observations in answer
sections;

• Negative samples: all the conference calls with negative posneg diff (Section 5.1.2)
calculated by LM dictionary, resulting in 215,742 observations in presentations sec-
tions, 78,007 observations in question sections, and 191,760 observations in answer
sections;

• Top-bottom samples: all the conference calls with the top 10% and bottom 10%
posneg diff (Section 5.1.2) calculated by LM dictionary, resulting in 115,389 obser-
vations in presentations sections, 41,701 observations in question sections, and 65,790
observations in answer sections.

3Stop words are generally words that are not considered to add information content to the question at
hand. The stop word list used here is the GeneraricLong list provided by the University of Notre Dame:
https://sraf.nd.edu/textual-analysis/resources/.
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In each sample group, conference calls are divided into three sections based on contents:
presentations, questions, and answers. To evaluate the effectiveness of the extended LM
dictionary relative to the LM dictionary, we calculate the Kendall’s τ correlations between
three-day returns and the polarity scores calculated by two different dictionaries.

5.1.7.3 Significant Out-performances

108 months (from 2010 to 2018) are analyzed using the aforementioned steps. We compare
the mean and median of the correlation scores. T-test[70] and Mann–Whitney U-test[85]
are also performed to determine if the out-performances of mean and median are statisti-
cally significant, respectively. Below, we only report statistically significant results.

5.1.7.3.1 All Samples

Question section: Table 5.4 illustrates that neg pcent scores generated by the ex-
tended dictionary outperform the benchmark’s mean by 1.15% and median by 0.95%.

Table 5.4: Comparison of the correlations generated by two dictionaries from the question
section for all samples

neg pcent
LM mean (benchmark) -4.85%
Extended LM mean -6.00%
Outperform percentage 1.15%
P value (t-test) 0.63%
LM median (benchmark) -4.87%
Extended LM median -5.82%
Outperform percentage 0.95%
P value (u-test) 0.40%

5.1.7.3.2 Positive Samples

Question Section: Table 5.5 illustrates that neg pcent scores generated by the ex-
tended dictionary outperform the benchmark’s mean by 2.20% and median by 1.95%;
pos pcent scores generated by the extended dictionary outperform the benchmark’s me-
dian by 1.12%; and posneg diff scores generated by the extended dictionary outperform
the benchmark’s mean by 1.40% and median by 1.67%.
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Table 5.5: Comparison of the correlations generated by two dictionaries from the question
section for positive samples

neg pcent pos pcent posneg diff
LM mean (benchmark) 0.11% 3.39% 3.80%
Extended LM mean -2.09% 4.52% 5.20%
Outperform percentage 2.20% 1.13% 1.40%
P value (t-test) 0.00% 12.75% (not significant) 4.04%
LM median (benchmark) 0.38% 3.71% 3.35%
Extended LM median -1.57% 4.83% 5.97%
Outperform percentage 1.95% 1.12% 1.67%
P value (u-test) 0.00% 4.28% 1.90%

5.1.7.3.3 Negative Samples

Question Section: Table 5.6 illustrates that neg pcent scores generated by the ex-
tended dictionary outperform the benchmark’s mean by 1.69% and median by 1.34%; and
posneg diff scores generated by the extended dictionary outperform the benchmark’s me-
dian by 0.50%.

Table 5.6: Comparison of the correlations generated by two dictionaries from the question
section for negative samples

neg pcent posneg diff
LM mean (benchmark) -0.86% 4.29%
Extended LM mean -2.56% 4.93%
Outperform percentage 1.69% 0.64%
P value (t-test) 0.05% 19.43% (not significant)
LM median (benchmark) -0.83% 4.89%
Extended LM median -2.17% 5.38%
Outperform percentage 1.34% 0.50%
P value (u-test) 0.03% 8.28%

Presentation Section Table 5.7 illustrates that pos pcent scores generated by the
extended dictionary outperform the benchmark’s median by 2.15%.
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Table 5.7: Comparison of the correlations generated by two dictionaries from the presen-
tation section for negative samples

pos pcent
LM mean (benchmark) 1.55%
Extended LM mean 2.52%
Outperform percentage 0.98%
P value (t-test) 47.01%
LM median (benchmark) 0.78%
Extended LM median 2.93%
Outperform percentage 2.15%
P value (u-test) 9.64%

5.1.7.3.4 Top-bottom Samples

Question Section: Table 5.8 illustrates that neg pcent scores generated by the ex-
tended dictionary outperform the benchmark’s median by 0.79%; and posneg diff scores
generated by the extended dictionary outperform the benchmark’s median by 1.47%.

Table 5.8: Comparison of the correlations generated by two dictionaries from the question
section for top-bottom samples

neg pcent posneg diff
LM mean (benchmark) -0.19% 2.59%
Extended LM mean -1.44% 3.73%
Outperform percentage 1.25% 1.14%
P value (t-test) 24.33% (not significant) 25.46% (not significant)
LM median (benchmark) 0.05% 2.24%
Extended LM median -0.85% 3.67%
Outperform percentage 0.79% 1.42%
P value (u-test) 9.59% 1.47%

5.1.7.4 Discussion

The out-performance of neg pcent scores is consistently significant in the question section
for every sample group. The out-performance of pos pcent scores is significant in the
question section of the positive samples, and in the presentation section of the negative
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samples; and the out-performance of posneg diff scores is significant in the question
section of the positive samples, negative samples, and top-bottom samples.

Overall, the extended LM dictionary shows its edge over the benchmark dictionary on
the question section of positive samples. Furthermore, neg pcent scores of the extended
dictionary also display advantages across every sample group.

5.1.7.5 Sensitivity Test

To evaluate the sensitivity of the dictionary in terms of different threshold, we construct
a new dictionary based on the second highest correlation of pos pcent, and neg pcent
scores in Table 5.2, namely threshold 3.3 for Negative list, and threshold 2.9 for positive
list. We denote the new dictionary as the extended LM-sec dictionary. We perform the
same cross-sectional evaluation on this new dictionary. Below, we only report statistically
significant results.

5.1.7.5.1 All Samples

Question section: Table 5.9 illustrates that neg pcent scores generated by the ex-
tended dictionary outperform the benchmark’s mean by 1.03% and median by 0.81%.

Table 5.9: Comparison of the correlations generated by two dictionaries from the question
section for all samples

neg pcent
LM mean (benchmark) -4.85%
Extended LM-sec mean -5.88%
Outperform percentage 1.03%
P value (t-test) 1.50%
LM median (benchmark) -4.87%
Extended LM-sec median -5.68%
Outperform percentage 0.81%
P value (u-test) 0.77%

5.1.7.5.2 Positive Samples

Question Section: Table 5.10 illustrates that neg pcent scores generated by the
extended dictionary outperform the benchmark’s mean by 1.88% and median by 1.34%;
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pos pcent scores generated by the extended dictionary outperform the benchmark’s median
by 1.40%; and posneg diff scores generated by the extended dictionary outperform the
benchmark’s mean by 1.18% and median by 1.55%.

Table 5.10: Comparison of the correlations generated by two dictionaries from the question
section for positive samples

neg pcent pos pcent posneg diff
LM mean (benchmark) 0.11% 3.39% 3.80%
Extended LM-sec mean -1.98%% 4.42% 4.98%
Outperform percentage 1.88% 1.02% 1.18%
P value (t-test) 0.02% 16.86% (not significant) 7.48%
LM median (benchmark) 0.38% 3.71% 3.35%
Extended LM-sec median -1.72% 5.11% 4.91%
Outperform percentage 1.34% 1.40% 1.55%
P value (u-test) 0.00% 5.99% 2.21%

5.1.7.5.3 Negative Samples

Question Section: Table 5.11 illustrates that neg pcent scores generated by the
extended dictionary outperform the benchmark’s mean by 1.65% and median by 1.59%.

Table 5.11: Comparison of the correlations generated by two dictionaries from the question
section for negative samples

neg pcent
LM mean (benchmark) -0.86%
Extended LM-sec mean -2.51%
Outperform percentage 1.65%
P value (t-test) 0.09%
LM median (benchmark) -0.83%
Extended LM-sec median -2.42%
Outperform percentage 1.59%
P value (u-test) 0.03%

Presentation Section Table 5.12 illustrates that pos pcent scores generated by the
extended dictionary outperform the benchmark’s median by 2.15%.
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Table 5.12: Comparison of the correlations generated by two dictionaries from the presen-
tation section for negative samples

pos pcent
LM mean (benchmark) 1.55%
Extended LM-sec mean 2.52%
Outperform percentage 0.98%
P value (t-test) 47.01%
LM median (benchmark) 0.78%
Extended LM-sec median 2.93%
Outperform percentage 2.15%
P value (u-test) 9.64%

5.1.7.5.4 Top-bottom Samples

Question Section: Table 5.13 illustrates that neg pcent scores generated by the
extended dictionary outperform the benchmark’s median by 1.11%; and posneg diff scores
generated by the extended dictionary outperform the benchmark’s median by 1.39%.

Table 5.13: Comparison of the correlations generated by two dictionaries from the question
section for top-bottom samples

neg pcent posneg diff
LM mean (benchmark) -0.19% 2.59%
Extended LM-sec mean -1.46% 3.78%
Outperform percentage 1.27% 1.19%
P value (t-test) 23.71% (not significant) 23.09% (not significant)
LM median (benchmark) 0.05% 2.24%
Extended LM-sec median -1.16% 3.64%
Outperform percentage 1.11% 1.39%
P value (u-test) 9.45% 3.07%

The extended LM-sec dictionary generated by choosing the second highest thresholds,
outlines similar significant out-performances with the extended LM dictionary. Both out-
perform the original LM dictionary in the same sections of the same sample groups with
similar out-perform percentage. This illustrates that this method of extending the LM
dictionary is not sensitive to a slight threshold change.
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5.2 Evaluation of the Attention-based Multiple-instance

Learning for Sentiment Analysis

In this section, we demonstrate the experiments to evaluate the attention-based multiple-
instance learning model (att-MIL) (Section 4.4) on two different datasets, namely IMDB
movie reviews (Section 2.1.2), and financial conference calls (Section 2.1.1). The evaluation
tackles two major research questions: (1) Will the model have a analogous performance
compared to the current state-of-the-art model on the binary bag-level classification (docu-
ment sentiment classification where labels are 1s for positive documents and 0s for negative
documents)? (2) Will the attention scores successfully capture the important words in the
document? To answer the first question, we will use several metrics:

• Classification Accuracy = TP+TN
TP+TN+FN+FP

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 score = 2 · Precision·Recall
Precision+Recall

• ROC curve (receiver operating characteristic curve)4

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives.

All of the metrics are evaluated to show the comparison between att-based MIL, bi-
directional LSTM, and bi-directional LSTM with self-attention. To answer the second
question, we present the visualization of the document with the attention score for each
word to ascertain whether the model is capable of capturing the most important word in a
sentence. Finally, as a byproduct of the model, we can rank the words by their attention
scores to construct an important word list in the corpus in terms of sentiment.

5.2.1 IMDb Dataset

Previous literature investigated the usefulness of the att-MIL model on the image dataset
[32]. In this work, we examine how the model performs in the context of sentiment analysis

4The ROC curve is produced by plotting the true positive rate (TPR) against the false positive rate
(FPR) at various classification threshold settings, where TPR = TP

TP+FN , and FPR = FP
FP+FN .
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on the text data. We test our model on the standard sentiment dataset: the IMDb movie
review dataset described in Section 2.1.2. The IMDb movie review dataset contains 25,000
polarized movie reviews in both training and testing datasets. The ground truths are
labeled based on the scores associated to the reviews. A negative review has a score ≤ 4
out of 10, and a positive review has a score ≥ 7 out of 10. Each score is entered by the
user who writes the review in the IMDb website.

We test the following four models in the experiment:

1. Bi-directional LSTM (Bi-LSTM) with 200 hidden neurons and 200 time steps imple-
mented the same as in [25];

2. Bi-directional LSTM with self-attention Bi-LSTM-att) with 200 hidden neurons and
200 time steps implemented the same as in [21];

3. Attention-based multiple-instance learning(att-MIL) described in Section 4.4 (Figure
4.2); and

4. Gated attention-based multiple-instance learning (gated-att-MIL) described in Sec-
tion 4.4.1 (Figure 4.2).

An exhaustive hyperparameter searching is impossible to conduct due to the limited
computational resource. We use pre-train GloVe [60] word embeddings with 300 dimensions
as the input layer to all models. The first two models (i.e., Bi-LSTM, and Bi-LSTM-att)
are sequential models which consider the order of elements in inputs. In our case, the
models take a movie review as an input with the correct permutation of words. For
example, a review like “The movie is so good.“ has to be the exact permutation of (“The”,
“movie”, “is”, “so”, “good”, “.”). Any change on the order of the words will result different
prediction scores. Meanwhile, the last two models (att-MIL, and gated-att-MIL) treat the
input review as a set (or bag) of words, which ignores the order of words. The models
produce the same prediction scores regardless of the positions of words in a input like
{“The”, “ movie”, “is”, “so”, “good”, “.”}.

Adam [40] is used for optimizing the models. Dropout layers with a rate of 0.5 are
also used to prevent overfitting. The evaluation of the models is performed on the same
test dataset with 25,000 examples of polarized movie reviews. We use the classification
accuracy, precision, recall, F1 score, and ROC curve as the evaluation metrics.

The results are displayed in Table 5.14. The ROC curves are depicted in Figure 5.1.
The results indicate that the gated-att-MIL and att-MIL can have a comparable perfor-
mance with mainstream sequential models (i.e., LSTM) across all of the metrics. Such
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results represent evidence that the sequence of the words is not as important in the text
classification task as the other NLP tasks, and the gated attention mechanism does not
show significant advantages than the normal attention mechanism.

Table 5.14: Results on the IMDb test dataset

METHOD ACCURACY PRECISION RECALL F-SCORE

Bi-LSTM 0.8855 0.8878 0.8856 0.8854
Bi-LSTM-att 0.8874 0.8883 0.8874 0.8873

att-MIL 0.8856 0.8862 0.8856 0.8855
gated-att-MIL 0.889 0.8891 0.889 0.889

Figure 5.1: ROC curves for all the models

5.2.2 Highly Ranked Words

One unique feature of the att-MIL and gated-att-MIL is the capacity to generate an im-
portant word list based on the attention scores associated with each word. Most of the
attention mechanisms in the previous literature are context-dependent; that is, a word
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will have different attention scores based on the context the word is in and the position
the word is at in the sentence. For instance, the attention scores in the Bi-LSTM-att
are non-deterministic. The same word will be assigned different attention scores based on
its position in the inputs of the LSTM. However, our model att-MIL assumes that every
instance (word) in the bag (sentences) is independent (one-gram assumption); thus, the
model gives each word in the corpus a unique score regardless of the context. We assume
that the attentions represent how important the model thinks the word is. We are able to
rank the words based on the attention scores. Table 5.15 displays the top 10 most negative
words ranked by the models. Appendix B.1 lists the top 500 words ranked by the attention
scores. Both models can successfully extract the negative words. This feature is highly
useful for binary classification problems for applications such as keyword extraction and
interpretation of the model.

Table 5.15: Top 10 negative words ranked by att-MIL and gated-att-MIL based on the
attention scores

Rank att-MIL gated-att-MIL
1 forgettable unwatchable
2 unfunny forgettable
3 unwatchable unfunny
4 insipid 4/10
5 4/10 uninspired
6 uninspired disappointing
7 disappointing tedious
8 lackluster lackluster
9 3/10 worst
10 tedious underwhelming

5.2.3 Visualization

This section evaluates whether the attentions trained by the att-MIL and gated-attMIL
are useful for explaining the decision of the model by highlighting the important words
in the sentence. It also presents a comparison of the results of this work with the pop-
ular visualization methods proposed in the previous literature. Furthermore, this section
provides the results of the four different methods for explaining the model, namely (1)
gradient-based method (simple gradients) proposed by [83]; (2) LSTM self-attention [48];
(3) attention-based MIL (Section 4.4); and (4) gated attention-based MIL (Section 4.4.1).
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(a) Negative reviews interpreted by the simple gradients

(b) Negative reviews interpreted by LSTM self attention

(c) Negative reviews interpreted by attention-based MIL

(d) Negative reviews interpreted by gated-attention-based MIL

Figure 5.2: Comparison of the different interpretation methods; each score is rescaled as
sk = (sk −min(S))/(max(S)−min(S))

A negative example and a positive example are given in Figure 5.2 and Figure 5.3 respec-
tively. Each method assigns a score to each word in the sentence, that is associated with
the contribution of the word for making the prediction. We visualize sentences using red
highlights based on the scores. Higher scores result in a darker highlight, and vice versa.

The simple gradient method (Figures 5.2a, 5.3a) scatteredly assigns the scores to most
words in the sentence, hence failing to focus on the most important words for the decision
making. The LSTM self-attention (Figures 5.2b, 5.3b) can successfully highlight some
sentiment words in the sentence, but the interpretability is still unsatisfactory. Both att-
MIL and gated-att-MIL (Figures 5.2c, 5.3c, 5.2d, 5.3d) can successfully assign higher scores
to sentiment words that contribute to the decision of the models.

5.2.4 Multiple-instance Learning on Financial Conference Calls

This section investigates the performance, and use cases of att-MIL models on the financial
conference calls. An att-MIL sentiment dictionary is generated for financial conference
calls, and a correlation analysis is performed to compare the performance of the att-MIL
dictionary with the LM dictionary and the extended LM dictionary.
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(a) Positive reviews interpreted by the simple gradients

(b) Positive reviews interpreted by the LSTM self-attention

(c) Positive reviews interpreted by the attention-based MIL

(d) Positive reviews interpreted by the gated attention-based MIL

Figure 5.3: Comparison of the different interpretation methods; each score is rescaled as
sk = (sk −min(S))/(max(S)−min(S))
.

5.2.4.1 Dataset Construction

Quarterly conference calls (Section 2.1.1) from 2010 to 2018 are ranked based on their three-
day returns (5.3) immediately after the conference call dates. The top 10% and bottom
10% of the sorted conference calls are selected to construct the new dataset. The top 10%
conference calls are assigned to be positive samples, and the bottom 10% conference calls
are assigned to be negative samples. To investigate the different predicting powers of each
section of the conference calls to the three-day returns, we divide each conference call into
three sections: presentations, questions, and answers, resulting in three different datasets.
The presentation section has 25,035 observations with 20,028 observations for training, and
5,007 observations for testing. The question section has 24,930 observations with 19,944
observations for training, and 4,986 observations for testing. The answer section has 25,409
observations with 20,327 observations for training, and 5,082 observations for testing.

5.2.4.2 Models

Three attention-based MIL models (Section 4.4) are trained on three datasets, respectively,
resulting in three different models: att-MIL on presentations, att-MIL on questions, and
att-MIL on answers. The inputs of models are the pre-train GloVe embeddings[60] of the
raw texts.
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5.2.4.3 Out-of-sample Accuracy

Table 5.16 illustrates the out-of-sample accuracy of the models trained on different datasets.
From the results, the question section offers the most information regarding the three-day
returns. Surprisingly, the presentation section is relatively more correlated than the answer
section regarding three-day returns. The presentation section is usually believed to have
less predicting power because it is prepared by executives in advance.

Models Test accuracy
att-MIL on presentations 65.0%
att-MIL on questions 67.4%
att-MIL on answers 62.5%

Table 5.16: The out-of-sample accuracy of att-MIL models on different datasets

5.2.4.4 Highly Ranked Words

We use the same method in Section 5.2.2 to rank the words for different sections of confer-
ence calls. The results of the word ranks after stemming are displayed in Table 5.17. It is
noticeable that the presentation and answer sections share similar word distributions and
ranks, as they both come from executives of companies while the question section is from
financial analysts. Another interesting observation is that the model highly ranks posi-
tive words for the question section, but highly ranks negative words for the presentation
and answer section. This observation may suggest that presentation and answer sections
from executives generally have positive tones. This makes negative words more critical
attributes to determine the actual labels of the text, while the general negative tones of
the question section make positive words more critical for predicting labels.

Table 5.17: Top 50 words ranked by att-MIL models on different sections

Rank Presentation section Question section Answer section

1 disappoint delay sustain
2 shortfal shortfal strength
3 delay disappoint impress
4 impact caus nice
5 challeng soft remark

Continued on next page
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Table 5.17 – continued from previous page
Rank Presentation section Question section Answer section
6 issu paus strong
7 slower issu gain
8 neg impact help
9 unfortun cancel outperform
10 slow miss improv
11 caus blame upsid
12 adasuv disrupt benefit
13 underestim weak congrat
14 frustrat exacerb phenomen
15 disrupt sm congratul
16 slowdown resolv excel
17 face lose accomplish
18 temporarili felt terrif
19 overcom unfavor drove
20 weak formulari disappoint
21 inabl slow weak
22 soft 3q slowdown
23 unplan temporari soft
24 underperform declin weaker
25 pressur feedback delay
26 advers anticip shortfal
27 improv impress hope
28 sever slip lose
29 suspend settl slow
30 affect combat issu
31 lack inabl caus
32 momentum action deterior
33 unexpect push lost
34 exacerb error underperform
35 shutdown impair difficulti
36 declin inflict declin
37 setback breach coven
38 overrun reset awesom

Continued on next page
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Table 5.17 – continued from previous page
Rank Presentation section Question section Answer section
39 eros frustrat slower
40 stall upset unexpect
41 strong react challeng
42 pleas imbal wors
43 record instabl struggl
44 habit slowdown weaken
45 obes materi confus
46 quicksilv lost softer
47 decreas sluggish disconnect
48 encount pronounc deceler
49 runoff coven stronger
50 touch urgenc reacceler

5.2.4.5 Att-MIL Sentiment Dictionary

Section 5.2.4.4 illustrates that the att-MIL models can successfully rank the sentiment
words regarding models’ decisions. However, the word ranks also face limitations in distin-
guishing between positive and negative words. The observation from Table 5.17 shows that
highly ranked words are a combination of positive and negative words. Thus, we manually
divide the top 1,000 words in each section into positive and negative words. In the presen-
tation section, we find 180 positive word roots (43 of them also found in the LM dictionary)
and 248 negative word roots (138 of them also found in the LM dictionary); in the question
section, we find 181 positive word roots (48 of them also found in the LM dictionary) and
191 negative word roots (91 of them also found the LM dictionary); and in the answer
section, we find 139 positive word roots (26 of them also found in the LM dictionary) and
213 negative word roots (105 of them also found in the LM dictionary). The three sections
above comprise our att-MIL sentiment dictionary for which every section of the conference
calls has a customized corresponding sentiment word lists. Table 5.18 displays the top 50
sentiment word roots of each section in out att-MIL sentiment dictionaries.

62



Table 5.18: Top 50 word roots ranked by att-MIL models on different sections. We manu-
ally classify them into positive or negative words.

Rank
Presentation

positive
Presentation

negative
Answer
positive

Answer
negative

Question
positive

Question
negative

1 overcom disappoint resolv delay sustain disappoint
2 improv shortfal settl shortfal strength weak
3 strong delay pronounc disappoint impress slowdown
4 pleas impact ramp caus awesom soft
5 terrif challeng rebound soft nice weaker
6 benefit issu address paus remark delay
7 strength slower promot issu strong shortfal
8 exceed neg lightn impact gain hope
9 congratul unfortun valid cancel help lose
10 profound slow recov miss outperform slow
11 excel caus fix blame improv drag
12 deliv adasuv deleverag disrupt upsid issu
13 outperform underestim buildup weak benefit caus
14 strongest frustrat epic exacerb congrat deterior
15 correct disrupt acknowledg lose phenomen lost
16 impress slowdown decis unfavor congratul underperform
17 standout weak goodwil formulari excel difficulti
18 remark inabl kickoff slow accomplish declin
19 delight soft balloon declin terrif slower
20 favor unplan desir slip drove unexpect
21 address underperform activ inabl stronger challeng
22 regain pressur expedit action reacceler wors
23 resili advers experienc push confid struggl
24 rais sever purpos error recoup weaken
25 struggl suspend clear impair persist confus
26 resolv affect undertak inflict increas softer
27 stronger lack weaken breach pronounc disconnect
28 upbeat unexpect smoothli reset epic deceler
29 overperform exacerb allevi frustrat revis disagre
30 achiev shutdown discoveri upset leap sluggish
31 strengthen declin progress imbal reinsur impact

Continued on next page

63



Table 5.18 – continued from previous page

Rank
Presentation

positive
Presentation

negative
Answer
positive

Answer
negative

Question
positive

Question
negative

32 handl setback deliber instabl ration miss
33 nice overrun hope slowdown deleverag cancel
34 gain eros upsel materi fix ineffici
35 grew stall energ lost except nonrecur
36 great obes instal sluggish amaz burn
37 robust decreas understand urgenc clariti slip
38 solidli encount warmer litig contribut compens
39 help runoff wake disput reconcil falloff
40 surpass miss explan ineffici special pressur
41 recov mistak outright bottom fantast push
42 pride critic logic headwind regain disput
43 increas obstacl commit apolog permit harp
44 enjoy abus environment flowback favor linger
45 fantast sluggish confid distract top overrun
46 posit unaccept correct affect sure noncash
47 score failur complianc challeng wealth mistaken
48 incred loss permit termin achiev decreas
49 tailwind problemat programmat hurt honestli incur
50 accomplish outag pass softer stabil hurt

5.2.4.6 Att-MIL Dictionaries Excluding LM Dictionary

Table 5.19 displays the ranks of the top 50 word roots of the att-MIL Dictionaries, excluding
the words in the LM dictionary. As discussed, the words in the LM dictionary are generated
based on companies’ financial reports. The new words generated are less formal when
compared to the words in the LM dictionary due to the different word distributions between
quarterly conference calls and the financial reports (i.e., conference calls consist of spoken
English, while financial reports consist of written English). For example, new words such
as “nice”, “awesome”, and “epic” are unusual for formal writing English, but they do carry
sentimental meaning in spoken English when used in conference calls.
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Table 5.19: Top 50 word roots of the att-MIL dictionaries excluding the word roots in the
LM dictionary

Rank
Presentation

positive
Presentation

negative
Answer
positive

Answer
negative

Question
positive

Question
negative

1 overcom shortfal resolv shortfal sustain soft
2 improv impact settl caus awesom shortfal
3 terrif challeng pronounc soft nice hope
4 exceed issu ramp paus remark issu
5 congratul neg address issu help caus
6 profound unfortun promot impact improv deterior
7 excel caus lightn blame upsid difficulti
8 deliv adasuv valid exacerb congrat declin
9 correct underestim recov unfavor phenomen unexpect
10 standout frustrat fix formulari congratul challeng
11 remark inabl deleverag declin excel wors
12 favor soft buildup slip terrif struggl
13 address unplan epic inabl drove confus
14 resili pressur acknowledg action reacceler softer
15 rais advers decis push confid disconnect
16 struggl affect goodwil inflict recoup deceler
17 resolv unexpect kickoff reset increas disagre
18 upbeat exacerb balloon frustrat pronounc impact
19 overperform declin desir imbal epic ineffici
20 achiev eros activ instabl revis nonrecur
21 handl stall expedit materi leap burn
22 nice obes experienc urgenc reinsur slip
23 grew decreas purpos litig ration compens
24 robust encount clear disput deleverag falloff
25 solidli runoff undertak ineffici fix pressur
26 help mistak smoothli bottom except push
27 recov critic allevi headwind amaz disput
28 pride obstacl discoveri apolog clariti harp
29 increas abus deliber flowback contribut linger
30 fantast unaccept hope affect reconcil noncash
31 posit failur upsel challeng special decreas

Continued on next page
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Table 5.19 – continued from previous page

Rank
Presentation

positive
Presentation

negative
Answer
positive

Answer
negative

Question
positive

Question
negative

32 score problemat energ termin fantast incur
33 incred outag instal softer permit pushout
34 tailwind hurdl understand pain favor whatsoev
35 underpin tremend warmer downtick top forc
36 advoc struggl wake compound sure postpon
37 enviabl bump explan underestim wealth avoid
38 respond protract outright adjust achiev unabl
39 brisk devast logic correct honestli belabor
40 unriv shortag commit wors stabil downgrad
41 keen worri environment spillov buyback reiter
42 fortun softer confid unfortun save lower
43 top apolog correct rocki tremend reduc
44 steadili postpon complianc postpon solid overcapac
45 subsid undevelop permit hiccup mutual absent
46 except modif programmat varianc pass unclear
47 propel wors pass burst respons contract
48 healthi unexpectedli lift burn definit uncertainti
49 prestig lawsuit elev mute exceed redempt
50 energ isol respons deterior intrigu apolog

5.2.4.7 Evaluation of att-MIL Sentiment Dictionaries

We follow the same steps in Section 5.1.7 to evaluate the Kendall’s τ correlations (Sec-
tion 5.1.4) between the polarity scores (Section 5.1.2) and the three-day returns (5.3)
within same sets of sample groups (Section 5.1.7.2) on conference calls from 2010 to 2018.
However, we removed the top-bottom 10%-return observations (All observations from the
dataset in Section 5.2.4.1) from the evaluation dataset to avoid the self-attribution problem
since we construct the att-MIL dictionary based on the three-day returns of the top-bottom
10%-return observations. We compare the mean and median of the correlation scores. T-
test[70] and Mann–Whitney U-test[85] are also performed to determine if out-performances
are statistically significant. Below, we only report statistically significant results.
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5.2.4.7.1 All Samples

Question section: Table 5.20 illustrates that neg pcent scores generated by the att-
MIL dictionary outperform the LM’s mean by 3.35%, and median by 3.11%. The scores
also outperform the extended LM’s mean by 2.68%, and median by 2.40%. In addition,
posneg diff scores generated by the att-MIL dictionary outperform the LM’s mean by
2.84%, and median by 2.99%. The scores also outperform extended LM’s mean by 2.51%,
and median 2.64%.

Table 5.20: Comparison of the correlations generated by three dictionaries in the question
section for all samples

neg pcent posneg diff
LM mean (benchmark 1) -2.85% 5.46%
Extended LM mean (benchmark 2) -3.53% 5.79%
att-MIL mean -6.21% 8.30%
Outperform percentage to LM 3.35% 2.84%
P value (t-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 2.68% 2.51%
P value (t-test) to extended LM 0.00% 0.00%
LM median (benchmark 1) -2.71% 5.43%
Extended LM median (benchmark 2) -3.42% 5.77%
att-MIL median -5.82% 8.41%
Outperform percentage to LM 3.11% 2.99%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 2.40% 2.64%
P value (u-test) to extended LM 0.00% 0.00%

Presentation Section: Table 5.21 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 1.62%, and median by 1.73%. The
scores also outperform extended LM’s mean by 1.33%, and median by 1.44%. In addition,
pos pcent scores generated by the att-MIL dictionary outperform LM’s mean by 1.79%,
and median by 1.81%. The scores also outperform extended LM’s mean by 2.43%, and
median by 2.48%. Furthermore, posneg diff scores generated by the att-MIL dictionary
outperform the LM’s mean by 2.63%, and median by 2.62%. The scores also outperform
extended LM’s mean by 3.28%, and median 3.40%.
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Table 5.21: Comparison of the correlations generated by three dictionaries in the presen-
tation section for all samples

neg pcent pos pcent posneg diff
LM mean (benchmark 1) -4.70% 4.21% 5.92%
Extended LM mean (benchmark 2) -4.99% 3.57% 5.26%
att-MIL mean -6.32% 6.00% 8.55%
Outperform percentage to LM 1.62% 1.79% 2.63%
P value (t-test) to LM 0.09% 0.00% 0.00%
Outperform percentage to extended LM 1.33% 2.43% 3.28%
P value (t-test) to extended LM 0.54% 0.00% 0.00%
LM median (benchmark 1) -4.32% 4.27% 5.97%
Extended LM median (benchmark 2) -4.61% 3.60% 5.19%
att-MIL median -6.05% 6.08% 8.59%
Outperform percentage to LM 1.73% 1.81% 2.62%
P value (u-test) to LM 0.00% 0.00% 0.00%
Outperform percentage to extended LM 1.44% 2.48% 3.40%
P value (u-test) to extended LM 0.00% 0.00% 0.00%

Answer Section: Table 5.22 illustrates that neg pcent scores generated by the att-
MIL dictionary outperform the LM’s mean by 3.04%, and median by 2.82%. The scores also
outperform extended LM’s mean by 3.21%, and median by 3.11%. In addition posneg diff
scores generated by the att-MIL dictionary outperform the LM’s mean by 2.75%, and
median by 2.90%. The scores also outperform extended LM’s mean by 3.16%, and median
2.85%.
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Table 5.22: Comparison of the correlations generated by three dictionaries in the answer
section for all samples

neg pcent posneg diff
LM mean (benchmark 1) -2.52% 4.17%
Extended LM mean (benchmark 2) -2.45% 3.97%
att-MIL mean -4.11% 5.61%
Outperform percentage to LM 1.60% 1.45%
P value (t-test) to LM 0.11% 0.32%
Outperform percentage to extended LM 1.66% 1.64%
P value (t-test) to extended LM 0.08% 0.06%
LM median (benchmark 1) -2.37% 3.94%
Extended LM median (benchmark 2) -2.30% 3.57%
att-MIL median 3.99% 5.71%
Outperform percentage to LM 1.62% 1.76%
P value (u-test) to LM 0.00% 0.02%
Outperform percentage to extended LM 1.69% 2.14%
P value (u-test) to extended LM 0.00% 0.00%

5.2.4.7.2 Positive Samples

Question Section: Table 5.23 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 3.52%, and median by 3.15%. The
scores also outperform extended LM’s mean by 3.41%, and median by 3.35%. In addition,
pos pcent scores generated by the att-MIL dictionary outperform LM’s mean by 2.05%,
and median by 2.57%. The scores also outperform extended LM’s mean by 1.09%, and
median by 1.88%. Furthermore, posneg diff scores generated by the att-MIL dictionary
outperform the LM’s mean by 4.29%, and median by 5.28%. The scores also outperform
extended LM’s mean by 3.33%, and median 3.58%.
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Table 5.23: Comparison of the correlations generated by three dictionaries in the question
section for positive samples

neg pcent pos pcent posneg diff
LM mean (benchmark 1) 0.66% 2.83% 2.72%
Extended LM mean (benchmark 2) -0.78% 3.79% 3.67%
att-MIL mean -4.18% 4.88% 7.01%
Outperform percentage to LM 3.52% 2.05% 4.29%
P value (t-test) to LM 0.00% 1.33% 0.00%
Outperform percentage to extended LM 3.41% 1.09% 3.33%
P value (t-test) to extended LM 0.00% 1.65% 0.00%
LM median (benchmark 1) 0.63% 3.12% 2.12%
Extended LM median (benchmark 2) -0.42% 3.81% 3.82%
att-MIL median -3.77% 5.69% 7.40%
Outperform percentage to LM 3.15% 2.57% 5.28%
P value (u-test) to LM 0.00% 0.06% 0.00%
Outperform percentage to extended LM 3.35% 1.88% 3.58%
P value (u-test) to extended LM 0.00% 1.50% 0.00%

Presentation Section: Table 5.24 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 1.71%, and median by 1.72%. The
scores also outperform extended LM’s mean by 1.32%, and median by 1.33%. In addition,
pos pcent scores generated by the att-MIL dictionary outperform LM’s mean by 2.03%
and median by 2.06%. The scores also outperform extended LM’s mean by 2.70%, and
median by 2.83%. Furthermore, posneg diff scores generated by the att-MIL dictionary
outperform the LM’s mean by 2.72%, and median by 3.05%. The scores also outperform
extended LM’s mean by 3.50%, and median 3.82%.
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Table 5.24: Comparison of the correlations generated by three dictionaries in the presen-
tation section for positive samples

neg pcent pos pcent posneg diff
LM mean (benchmark 1) -4.18% 3.62% 5.48%
Extended LM mean (benchmark 2) -4.57% 2.95% 4.70%
att-MIL mean -5.90% 5.65% 8.21%
Outperform percentage to LM 1.71% 2.03% 2.72%
P value (t-test) to LM 0.12% 0.00% 0.00%
Outperform percentage to extended LM 1.32% 2.70% 3.50%
P value (t-test) to extended LM 1.20% 0.00% 0.00%
LM median (benchmark 1) -3.51% 3.50% 5.21%
Extended LM median (benchmark 2) -3.89% 2.74% 4.45%
att-MIL median -5.23% 5.56% 8.26%
Outperform percentage to LM 1.72% 2.06% 3.05%
P value (u-test) to LM 0.00% 0.00% 0.00%
Outperform percentage to extended LM 1.33% 2.83% 3.82%
P value (u-test) to extended LM 0.24% 0.00% 0.00%

Answer Section: Table 5.25 illustrates that neg pcent scores generated by the att-
MIL dictionary outperform the LM’s mean by 1.93%, and median by 2.19%. The scores also
outperform extended LM’s mean by 1.93%, and median by 2.05%. In addition, posneg diff
scores generated by the att-MIL dictionary outperform the LM’s mean by 1.96%, and
median by 2.05%. The scores also outperform extended LM’s mean by 2.19%, and median
2.45%.
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Table 5.25: Comparison of the correlations generated by three dictionaries in the answer
section for positive samples

neg pcent posneg diff
LM mean (benchmark 1) -1.86% 3.39%
Extended LM mean (benchmark 2) -1.86% 2.15%
att-MIL mean -3.79% 5.35%
Outperform percentage to LM 1.93% 1.96%
P value (t-test) to LM 0.02% 0.01%
Outperform percentage to extended LM 1.93% 2.19%
P value (t-test) to extended LM 0.03% 0.00%
LM median (benchmark 1) -1.84% 3.39%
Extended LM median (benchmark 2) -1.98% 2.99%
att-MIL median -4.03% 5.44%
Outperform percentage to LM 2.19% 2.05%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 2.05% 2.45%
P value (u-test) to extended LM 0.00% 0.00%

5.2.4.7.3 Negative Samples

Question Section: Table 5.26 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 5.49%, and median by 4.86%. The
scores also outperform extended LM’s mean by 4.47%, and median by 3.87%. In addition,
posneg diff scores generated by the att-MIL dictionary outperform the LM’s mean by
4.37% and median by 3.76%. The scores also outperform extended LM’s mean by 3.88%,
and median 3.67%.
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Table 5.26: Comparison of the correlations generated by three dictionaries in the question
section for negative samples

neg pcent posneg diff
LM mean (benchmark 1) -0.31% 2.67%
Extended LM mean (benchmark 2) -1.32% 3.16%
att-MIL mean -5.80% 7.04%
Outperform percentage to LM 5.49% 4.37%
P value (t-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 4.47% 3.88%
P value (t-test) to extended LM 0.00% 0.00%
LM median (benchmark 1) -0.18% 3.10%
Extended LM median (benchmark 2) -1.17% 3.19%
att-MIL median -5.04% 6.86%
Outperform percentage to LM 4.86% 3.76%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 3.87% 3.67%
P value (u-test) to extended LM 0.00% 0.00%

Presentation Section: Table 5.27 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 4.24%, and median by 4.93%. The
scores also outperform extended LM’s mean by 3.67%, and median by 4.87%. In addition,
pos pcent scores generated by the att-MIL dictionary outperform LM’s mean by 3.09%,
and median by 4.45%. The scores also outperform extended LM’s mean by 3.80%, and
median by 4.07%. Furthermore, posneg diff scores generated by the att-MIL dictionary
outperform the LM’s mean by 6.75%, and median by 6.49%. The scores also outperform
extended LM’s mean by 7.11%, and median 6.77%.
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Table 5.27: Comparison of the correlations generated by three dictionaries in the presen-
tation section for negative samples

neg pcent pos pcent posneg diff
LM mean (benchmark 1) -0.03% 0.00% -0.11%
Extended LM mean (benchmark 2) -0.61% -0.72% -0.47%
att-MIL mean -4.28% 3.09% 6.64%
Outperform percentage to LM 4.24% 3.09% 6.75%
P value (t-test) to LM 0.00% 0.00% 0.00%
Outperform percentage to extended LM 3.67% 3.80% 7.11%
P value (t-test) to extended LM 0.00% 0.00% 0.00%
LM median (benchmark 1) -0.66% -0.89% 0.58%
Extended LM median (benchmark 2) -0.72% -0.50% 0.30%
att-MIL median -5.59% 3.56% 7.07%
Outperform percentage to LM 4.93% 4.45% 6.49%
P value (u-test) to LM 0.00% 0.00% 0.00%
Outperform percentage to extended LM 4.87% 4.07% 6.77%
P value (u-test) to extended LM 0.00% 0.00% 0.00%

Answer Section: Table 5.28 illustrates that neg pcent scores generated by the att-
MIL dictionary outperform the LM’s mean by 4.40%, and median by 3.63%. The scores also
outperform extended LM’s mean by 3.71%, and median by 4.12%. In addition, posneg diff
scores generated by the att-MIL dictionary outperform the LM’s mean by 3.14%, and
median by 3.54%. The scores also outperform extended LM’s mean by 1.95%, and median
by 1.98%.
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Table 5.28: Comparison of the correlations generated by three dictionaries in the answer
section of for samples

neg pcent posneg diff
LM mean (benchmark 1) 0.14% 0.88%
Extended LM mean (benchmark 2) -0.83% 2.08%
att-MIL mean -4.54% 4.03%
Outperform percentage to LM 4.40% 3.14%
P value (t-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 3.71% 1.95%
P value (t-test) to extended LM 0.00% 0.00%
LM median (benchmark 1) 0.86% 0.24%
Extended LM median (benchmark 2) 0.37% 1.81%
att-MIL median -4.49% 3.79%
Outperform percentage to LM 3.63% 3.54%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 4.12% 1.98%
P value (u-test) to extended LM 0.00% 0.00%

5.2.4.7.4 Top-bottom Samples

Question Section: Table 5.29 illustrates that neg pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 5.59%, and median by 4.23%. The
scores also outperform extended LM’s mean by 5.10%, and median by 5.36%. In addition,
posneg diff scores generated by the att-MIL dictionary outperform the LM’s mean by
4.24%, and median by 3.68%. The scores also outperform extended LM’s mean by 3.62%,
and median 1.85%.
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Table 5.29: Comparison of the correlations generated by three dictionaries in the question
section for top-bottom samples

neg pcent posneg diff
LM mean (benchmark 1) 0.14% 1.55%
Extended LM mean (benchmark 2) -0.63% 2.17%
att-MIL mean -5.73% 5.79%
Outperform percentage to LM 5.59% 4.24%
P value (t-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 5.10% 3.62%
P value (t-test) to extended LM 0.00% 0.00%
LM median (benchmark 1) 1.17% 1.49%
Extended LM median (benchmark 2) -0.03% 3.32%
att-MIL median -5.40% 5.17%
Outperform percentage to LM 4.23% 3.68%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 5.36% 1.85%
P value (u-test) to extended LM 0.00% 0.00%

Presentation Section: Table 5.30 illustrates that pos pcent scores generated by the
att-MIL dictionary outperform the LM’s mean by 2.64%, and median by 1.70%. The
scores also outperform extended LM’s mean by 2.89%, and median by 2.04%. In addition,
posneg diff scores generated by the att-MIL dictionary outperform LM’s mean by 3.16%,
and median by 2.97%. The scores also outperform extended LM’s mean by 3.46%, and
median by 4.76%.
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Table 5.30: Comparison of the correlations generated by three dictionaries in the presen-
tation section for top-bottom samples

pos pcent posneg diff
LM mean (benchmark 1) 2.49% 3.57%
Extended LM mean (benchmark 2) 2.24% 3.28%
att-MIL mean 5.13% 6.74%
Outperform percentage to LM 2.64% 3.16%
P value (t-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 2.89% 3.46%
P value (t-test) to extended LM 0.00% 0.00%
LM median (benchmark 1) 3.53% 4.55%
Extended LM median (benchmark 2) 3.19% 2.76%
att-MIL median 5.23% 7.52%
Outperform percentage to LM 1.70% 2.97%
P value (u-test) to LM 0.00% 0.00%
Outperform percentage to extended LM 2.04% 4.76%
P value (u-test) to extended LM 0.00% 0.00%

Answer Section: Table 5.31 illustrates that posneg diff scores generated by the
att-MIL dictionary outperform the LM’s mean by 1.91%, and median by 2.67%. The
scores also outperform extended LM’s mean by 1.73%, and median by 2.00%.
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Table 5.31: Comparison of the correlations generated by three dictionaries in the answer
section for top-bottom samples

posneg diff
LM mean (benchmark 1) 5.63%
Extended LM mean (benchmark 2) 5.80%
att-MIL mean 7.53%
Outperform percentage to LM 1.91%
P value (t-test) to LM 7.25%
Outperform percentage to extended LM 1.73%
P value (t-test) to extended LM 1.40%
LM median (benchmark 1) 5.64%
Extended LM median (benchmark 2) 6.21%
att-MIL median 8.21%
Outperform percentage to LM 2.67%
P value (u-test) to LM 5.99%
Outperform percentage to extended LM 2.00%
P value (u-test) to extended LM 0.01%

5.2.4.8 Discussion

The att-MIL sentiment dictionary shows noticeable advantages over both the LM dic-
tionary and the extended LM dictionary in predicting the three-day returns based on
conference calls in each sample group. It reaches its highest correlation in presentation
sections of the all samples with an average 8.55% correlation between posneg diff scores
and three-day returns. It outperforms benchmarks the most on presentation sections of
the negative samples with an average 6.64% correlation between posneg diff scores and
three-day returns while that of the LM dictionary is only -0.11% and that of the extended
LM dicitonary is -0.47%. These results are also strong evidences that the att-MIL mod-
els can successfully pay more attentions to the important features highly related to the
ground truths. In our case, the att-MIL models can rank the important sentiment words
which are highly correlated to the three-day returns. This quality makes the model highly
interpretable when most of the advanced deep learning models are black-box methods.
Furthermore, the att-MIL sentiment dictionary illustrates this model can be effectively
used to perform corpus-based sentiment lexicon induction.
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5.2.5 Visualization for Conference Calls

Applying the same att-MIL visualization method in Section 5.2.3, we use the attention
scores to explain the model’s decision by highlighting the important words in the sentence.
We visualize sentences using red highlights based on the scores. Higher scores result in
a darker highlight, and vice versa. This section provides examples of visualizations from
different sections in conference calls, namely (1) the results of a presentation section are
given in Figure 5.4; (2) the results of a question section are given in Figure 5.5; and (3)
the results of an answer section are given in Figure 5.6.

The results of both positive examples (see Figures 5.4a, 5.5a and 5.6a) and negative
examples (see Figures 5.4b, 5.5b and 5.6b) demonstrate that att-MIL model can assign
higher attention scores to sentiment words that contribute to the decision of the model.
This level of interpretability can help investors know the rationales behind the algorithm-
based prediction when they make financial investment decisions based on conference calls.
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(a) A positive example interpreted by the attention-based MIL

(b) A negative example interpreted by the attention-based MIL

Figure 5.4: Examples of the presentation section interpreted by attention scores; each score
is rescaled as sk = (sk −min(S))/(max(S)−min(S))
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(a) A positive example interpreted by the attention-based MIL

(b) A negative example interpreted by the attention-based MIL

Figure 5.5: Examples of the question section interpreted by attention scores; each score is
rescaled as sk = (sk −min(S))/(max(S)−min(S))
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(a) A positive example interpreted by the attention-based MIL

(b) A negative example interpreted by the attention-based MIL

Figure 5.6: Examples of the answer section interpreted by attention scores; each score is
rescaled as sk = (sk −min(S))/(max(S)−min(S))
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Sentiment analysis is a highly active research field with numerous valuable applications in
different domains. With the recent rapid progress of deep learning, more advanced method-
ologies have been successfully developed to improve sentiment analysis performance. How-
ever, in the finance domain, the industry still primarily uses the dictionary-based method
for sentiment analysis for purposes of efficiency and interpretability. The sentiment dictio-
nary method is highly domain-specific and expensive to manually create. The dictionary-
based method’s performance is also inferior to the performance of deep learning models.
However, deep learning models are characterized by poor interpretability, whereby they
typically fail to explain algorithm-based decision making. This thesis is an attempt to
resolve the two problems in the finance domain.

We first trained the word2vec on company quarterly earning calls to learn the rich
semantic relations between words in the corpus. We added sentiment information using an
existing sentiment dictionary. This approach allowed us to extend the original dictionary
to a more extensive one that is tailored to company quarterly earning calls. We also
proposed a highly interpretable deep learning model to classify sentiment of documents
with attentions associated with each word as the importance of the word for the decision
making.

In the evaluation, we demonstrated that the sentiment polarity scores of the corpo-
rate quarterly conference calls calculated by the extended new dictionary have a higher
correlation with three-day returns than the scores generated by the Loughran-McDonald
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dictionary. The att-MIL model proposed in Section 4.4 also exhibits a better performance
in terms of sentiment classifications. Moreover, it successfully highlights the essential words
in the sentences that help to explain the decision of the model. The att-MIL model can
likewise generate a rank of the essential words in terms of the classification task. The new
att-MIL sentiment dictionary generated based on the att-MIL model outperforms both
the LM dictionary and the extended LM dictionary significantly on every sample group
regarding three-day returns.

6.2 Potential Future Work

This work can be further developed in various directions. For the extended sentiment dic-
tionary, only the word2vec embedding and one additional sentiment dictionary are used.
Different word embedding algorithms and sentiment dictionaries can be used for generat-
ing broader sentiment lists. For the att-MIL model, we assumed that every instance in
the bag is independent. However, a more reasonable assumption is that the words in a
sentence depend on each other (the assumption of the language model [73]). Thus, future
research can combine attention-based multiple-instance learning with the assumption of
the dependent instances in the bag [95].

The new dictionaries in this thesis can be further evaluated. We can construct a monthly
re-balanced long-short portfolio based on the polarity scores and the performance can be
measured by backtesting. The results can show how beneficial the new dictionaries are to
the real-world investment.
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multiple instance problem with axis-parallel rectangles. Artif. Intell., 89(1–2):31–71,
January 1997.

[19] Joseph E Engelberg and Christopher A Parsons. The causal impact of media in
financial markets. The Journal of Finance, 66(1):67–97, 2011.

86



[20] Ethan Fast, Binbin Chen, and Michael S. Bernstein. Empath: Understanding topic
signals in large-scale text. CoRR, abs/1602.06979, 2016.

[21] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. Us-
ing millions of emoji occurrences to learn any-domain representations for detecting
sentiment, emotion and sarcasm. arXiv preprint arXiv:1708.00524, 2017.

[22] Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and Jor-
dan Boyd-Graber. Pathologies of neural models make interpretations difficult. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 3719–3728, Brussels, Belgium, October-November 2018. Association for
Computational Linguistics.

[23] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[24] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse
of a matrix. Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis, 2(2):205–224, 1965.

[25] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures. Neural networks, 18(5-6):602–610,
2005.

[26] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with mul-
tidimensional recurrent neural networks. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages
545–552. Curran Associates, Inc., 2009.

[27] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for explaining black box models.
ACM computing surveys (CSUR), 51(5):1–42, 2018.

[28] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[29] Vasileios Hatzivassiloglou and Kathleen R. McKeown. Predicting the semantic ori-
entation of adjectives. In 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 174–181, Madrid, Spain, July 1997. Association for Com-
putational Linguistics.

87



[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9:1735–80, 12 1997.

[31] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classifica-
tion. arXiv preprint arXiv:1801.06146, page 194, 2018.

[32] Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple
instance learning. CoRR, abs/1802.04712, 2018.

[33] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint
arXiv:1902.10186, 2019.

[34] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[35] Jaap Kamps, Maarten Marx, Robert J Mokken, Maarten De Rijke, et al. Using
wordnet to measure semantic orientations of adjectives. In LREC, volume 4, pages
1115–1118. Citeseer, 2004.

[36] Melih Kandemir, Chong Zhang, and Fred A Hamprecht. Empowering multiple in-
stance histopathology cancer diagnosis by cell graphs. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 228–235.
Springer, 2014.

[37] Siavash Kazemian, Shunan Zhao, and Gerald Penn. Evaluating sentiment analysis
evaluation: A case study in securities trading. In Proceedings of the 5th Workshop
on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
pages 119–127, Baltimore, Maryland, June 2014. Association for Computational Lin-
guistics.

[38] James D. Keeler, David E. Rumelhart, and Wee Kheng Leow. Integrated segmentation
and recognition of hand-printed numerals. In R. P. Lippmann, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 557–
563. Morgan-Kaufmann, 1991.

[39] Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014.

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

88



[41] Svetlana Kiritchenko, Xiaodan Zhu, and Saif Mohammad. Sentiment analysis of short
informal text. The Journal of Artificial Intelligence Research (JAIR), 50, 08 2014.

[42] Sabino P Kothari, Xu Li, and James E Short. The effect of disclosures by management,
analysts, and business press on cost of capital, return volatility, and analyst forecasts:
A study using content analysis. The Accounting Review, 84(5):1639–1670, 2009.

[43] Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. From group
to individual labels using deep features. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 597–606,
2015.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.

[45] Thomas K. Landauer and Susan T. Dumais. A solution to plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
1997.

[46] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition:
A convolutional neural-network approach. IEEE transactions on neural networks,
8(1):98–113, 1997.

[47] Feng Li. The information content of forward-looking statements in corporate fil-
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Appendix A

Statistics of the Extended Sentiment
Lists

A.1 Word counts for lists of different thresholds

Table A.1: Word counts for the new lists with different threshold. Each list contains only
the extra words(words that does not appear in the LM Dictionary)

Threshold Positive List Negative List

0 0 0
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 1
0.7 1 3
0.8 2 4
0.9 3 7
1.0 7 11
1.1 9 16
1.2 14 18

Continued on next page
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Table A.1 – continued from previous page
Threshold Positive List Negative List
1.3 19 21
1.4 29 27
1.5 44 34
1.6 57 37
1.7 71 43
1.8 84 52
1.9 103 67
2.0 121 85
2.1 136 92
2.2 149 105
2.3 169 112
2.4 188 124
2.5 206 135
2.6 226 152
2.7 250 164
2.8 275 181
2.9 301 200
3.0 336 225
3.1 353 236
3.2 368 253
3.3 405 287
3.4 421 298
3.5 447 324
3.6 457 341
3.7 477 367
3.8 496 397
3.9 509 446
4.0 517 465
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A.2 Extended dictionary

A.2.1 Extra Positive Words

This section will displays all the extra positive words in the new extended dictionary. All
words in this section does not include the words in the current LM dictionary.

Index Word Root Word Example

1 fun fun
2 joy joy
3 honest honest
4 comedi comedy
5 bonu bonus
6 prize prize
7 entertain entertaining
8 knowledg knowledgeable
9 talent talented
10 award award
11 awesom awesome
12 celebr celebrate
13 fabul fabulous
14 relationship relationship
15 excit excite
16 thank thankful
17 healthi healthy
18 amaz amazing
19 pretti pretty
20 save savings
21 comfort comfortable
22 courag courage
23 prosper prosper
24 well wellness
25 pleas pleasing
26 love loved
27 care care
28 mom mom
29 inexpens inexpensive
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Index Word Root Word Example

30 intellig intelligent
31 beauti beauty
32 energet energetic
33 glad glad
34 harmoni harmony
35 passion passion
36 independ independence
37 bacon bacon
38 geniu genius
39 warm warm
40 bless blessed
41 grate grateful
42 educ educate
43 respect respectful
44 extraordinari extraordinary
45 hope hopeful
46 fresh freshness
47 help helpful
48 gener generous
49 accur accurate
50 sexi sexy
51 inspir inspire
52 wonder wonderful
53 adventur adventure
54 optimum optimum
55 dedic dedication
56 brave brave
57 stimul stimulate
58 fascin fascinating
59 product productive
60 clever clever
61 fortun fortunate
62 fulfil fulfill
63 congratul congratulations
64 champion champion
65 fashion fashionable
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Index Word Root Word Example

66 uniqu unique
67 reliabl reliable
68 ambit ambition
69 gift gift
70 clariti clarity
71 thought thoughtful
72 relax relaxed
73 reliev relieve
74 luxuri luxury
75 admir admired
76 famili family
77 movi movie
78 optim optimism
79 imagin imagine
80 discov discover
81 loyalti loyalty
82 remark remarkable
83 simpl simple
84 encourag encourage
85 conveni convenient
86 safeti safety
87 nurtur nurture
88 appreci appreciative
89 upbeat upbeat
90 terrif terrific
91 applaus applause
92 fruit fruitful
93 phenomen phenomenal
94 partner partner
95 rose rose
96 upgrad upgrade
97 teach teach
98 simplic simplicity
99 mentor mentor
100 desir desire
101 invit invitation
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Index Word Root Word Example

102 incent incentive
103 spirit spirit
104 superb superb
105 donat donation
106 earn earn
107 eleg elegant
108 embrac embrace
109 storytel storytelling
110 abil ability
111 intimaci intimacy
112 commend commend
113 proud proud
114 jewelri jewelry
115 support supportive
116 credibl credible
117 kudo kudos
118 profit profit
119 promis promising
120 magnific magnificent
121 nice nice
122 neat neat
123 son son
124 custom customized
125 authent authentic
126 replenish replenish
127 flexibl flexibility
128 surviv survive
129 effect effectiveness
130 father father
131 legendari legendary
132 potenti potential
133 sincer sincere
134 qualiti quality
135 chariti charity
136 mileston milestone
137 creation creation
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Index Word Root Word Example

138 festiv festival
139 import important
140 cool cool
141 thrive thrive
142 friend friend
143 vision vision
144 interest interesting
145 engag engaged
146 instrument instrumental
147 insight insight
148 agreement agreement
149 organ organize
150 soft softness
151 expert expert
152 championship championship
153 keen keen
154 sophist sophistication
155 confid confidence
156 wife wife
157 worthwhil worthwhile
158 complement complement
159 applaud applaud
160 steadfast steadfast
161 adopt adoption
162 gratitud gratitude
163 steadi steady
164 fragranc fragrance
165 gratifi gratifying
166 profound profound
167 readi ready
168 capabl capability
169 relief relief
170 cooper cooperative
171 remedi remedy
172 emot emotion
173 connect connect
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Index Word Root Word Example

174 visionari visionary
175 signific significant
176 accept acceptable
177 contribut contribution
178 produc produce
179 soften soften
180 agil agility
181 promot promote
182 reassur reassure
183 articul articulate
184 possibl possibility
185 intrigu intriguing
186 open openness
187 club club
188 drive drive
189 pride pride
190 partnership partnership
191 score score
192 kid kids
193 perform perform
194 activ active
195 reput reputable
196 graduat graduation
197 power powerful
198 awar awareness
199 realiz realize
200 tribut tribute
201 bubbl bubble
202 footwear footwear
203 acknowledg acknowledge
204 consist consistent
205 attent attentive
206 recoveri recovery
207 elev elevate
208 recov recover
209 savvi savvy
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Index Word Root Word Example

210 expans expansion
211 broaden broaden
212 certainti certainty
213 rebuild rebuild
214 attract attract
215 reviv revival
216 eager eager
217 wealthi wealthy
218 orderli orderly
219 lean lean
220 accommod accommodate
221 simplifi simplify
222 sensit sensitive
223 holist holistic
224 build build
225 classic classic
226 recogniz recognizable
227 vital vitality
228 solv solve
229 showcas showcase
230 maintain maintain
231 grow grow
232 cultur culture
233 commun communicate
234 fellow fellow
235 decent decent
236 instruct instructive
237 essenti essential
238 prefer preferable
239 teamwork teamwork
240 retain retain
241 nimbl nimble
242 allevi alleviate
243 seek seek
244 motiv motivation
245 stun stunning
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Index Word Root Word Example

246 magazin magazine
247 leader leader
248 astut astute
249 revolutionari revolutionary
250 athlet athlete
251 bridal bridal
252 maxim maximize
253 beneficiari beneficiary
254 acceler acceleration
255 familiar familiar
256 brother brother
257 guarante guarantee
258 profession professionalism
259 invest invest
260 disciplin disciplined
261 compet competence
262 charact character
263 adept adept
264 advanc advanced
265 divers diversity
266 transform transformation
267 time timely
268 substanti substantial
269 entrepreneur entrepreneur
270 straightforward straightforward
271 comeback comeback
272 reestablish reestablish
273 person personality
274 fix fix
275 address address

A.2.2 Extra Negative Words

This section will displays all the extra negative words in the new extended dictionary. All
words in this section does not include the words in the current LM dictionary.
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Index Word Root Word Example

1 terror terrorism
2 diseas disease
3 nausea nausea
4 viru virus
5 kill kill
6 unhappi unhappy
7 death death
8 infect infection
9 pollut pollution
10 fatal fatal
11 victim victim
12 epidem epidemic
13 diarrhea diarrhea
14 terribl terrible
15 sad sad
16 steal steal
17 breakup breakup
18 asbesto asbestos
19 afraid afraid
20 sick sick
21 obes obese
22 tsunami tsunami
23 horribl horrible
24 terrorist terrorist
25 toxic toxic
26 anxieti anxiety
27 mean mean
28 depress depression
29 asthma asthma
30 constip constipation
31 ugli ugly
32 outbreak outbreak
33 hangov hangover
34 hell hell
35 pain painful
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36 theft theft
37 wast waste
38 fake fake
39 pneumonia pneumonia
40 handicap handicap
41 disabl disabled
42 uncomfort uncomfortable
43 suppress suppress
44 emerg emergency
45 trash trash
46 neg negativity
47 inflamm inflammation
48 flood flood
49 scare scared
50 overwhelm overwhelmed
51 audit audit
52 cathet catheter
53 stupid stupid
54 agit agitation
55 chao chaos
56 hypertens hypertension
57 lawsuit lawsuit
58 monsoon monsoon
59 missil missile
60 dementia dementia
61 fee fee
62 gambl gambling
63 crash crash
64 orphan orphan
65 relaps relapse
66 inflat inflation
67 blame blame
68 meaningless meaningless
69 awkward awkward
70 combat combat
71 nasti nasty
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Index Word Root Word Example

72 creep creep
73 lesion lesion
74 cigarett cigarette
75 debilit debilitating
76 struggl struggle
77 scari scary
78 foolish foolish
79 messi messy
80 allerg allergic
81 dire dire
82 earthquak earthquake
83 nicotin nicotine
84 meltdown meltdown
85 anemia anemia
86 seizur seizure
87 brutal brutal
88 aggress aggressive
89 contamin contamination
90 rumor rumor
91 warfar warfare
92 overweight overweight
93 lousi lousy
94 tear tear
95 expir expire
96 hurrican hurricane
97 explos explosion
98 desper desperate
99 lockup lockup
100 old old
101 deadlin deadline
102 crowd crowded
103 noisi noisy
104 bureaucraci bureaucracy
105 congest congestion
106 fibrosi fibrosis
107 worri worried
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Index Word Root Word Example

108 uncertainti uncertainty
109 bacteria bacteria
110 radiat radiation
111 inject inject
112 casualti casualty
113 symptom symptom
114 dropout dropout
115 irrelev irrelevant
116 expens expensive
117 nois noise
118 tobacco tobacco
119 scarc scarce
120 plaqu plaque
121 ban ban
122 regret regret
123 mortgag mortgage
124 oncologist oncologist
125 liabil liability
126 anem anemic
127 bug bug
128 regress regression
129 hesit hesitant
130 restrict restrict
131 irrat irrational
132 addict addiction
133 leakag leakage
134 alarm alarming
135 court court
136 dent dent
137 fight fight
138 legisl legislation
139 legislatur legislature
140 nervou nervous
141 pressur pressure
142 skeptic skeptical
143 subdu subdued
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144 tension tension
145 oversight oversight
146 uncertain uncertain
147 steroid steroid
148 mute muted
149 tornado tornado
150 insignific insignificant
151 economi economy
152 strict strict
153 gout gout
154 ridicul ridiculous
155 unclear unclear
156 bacteri bacterial
157 takeov takeover
158 depend dependency
159 blackout blackout
160 dump dump
161 surrend surrender
162 cardiac cardiac
163 forget forget
164 sellout sellout
165 resist resistance
166 lumpi lumpy
167 disord disorder
168 empti empty
169 rundown rundown
170 pend pending
171 drain drain
172 anxiou anxious
173 offens offensive
174 neglig negligible
175 unlik unlikely
176 hefti hefty
177 handout handout
178 extract extraction
179 redund redundancy
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180 elimin elimination
181 chronic chronic
182 edema edema
183 nonexist nonexistent
184 sever severance
185 drainag drainage
186 judg judge
187 temper temper
188 shock shock
189 undergo undergo
190 pessimist pessimistic
191 execut execute
192 issu issue
193 hit hit
194 residu residue
195 slump slump
196 overlap overlap
197 dissect dissect
198 symptomat symptomatic
199 liabl liable
200 polit politics
201 leak leak
202 differenti differential
203 fabric fabrication
204 judici judicial
205 presum presume
206 compress compressed
207 friction friction
208 shrink shrink
209 hook hook
210 immigr immigration
211 unsolicit unsolicited
212 dispos disposal
213 reloc relocate
214 rush rush
215 departur departure
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216 remedi remedial
217 lull lull
218 repetit repetitive
219 merger merger
220 arbitr arbitration
221 absent absent
222 chunki chunky
223 withdraw withdraw
224 alcohol alcohol
225 trivial trivial
226 collater collateral
227 drug drug
228 outpati outpatient
229 mutat mutation
230 intervent intervention
231 unfamiliar unfamiliar
232 arbitrari arbitrary
233 regul regulation
234 decreas decrease
235 turbul turbulent
236 teas tease
237 trough trough
238 stroke stroke
239 solicit solicitation
240 undertak undertake
241 complex complex
242 rule ruling
243 spike spike
244 juri jury
245 drop drop
246 exhaust exhaustive
247 inact inactive
248 transmit transmit
249 dilemma dilemma
250 compli comply
251 intens intensive
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252 republican republican
253 preemptiv preemptive
254 remov removal
255 supervis supervision
256 collagen collagen
257 indiffer indifferent
258 redirect redirect
259 thyroid thyroid
260 remiss remiss
261 vagu vague
262 spotti spotty
263 prohibit prohibit
264 congression congressional
265 tire tired
266 intraven intravenous
267 substanc substance
268 assumpt assumption
269 bumpi bumpy
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Appendix B

Additional Results for
Attention-based Multiple Instance
Learning

B.1 The top 100 words ranked by the att-MIL models

Rank att-MIL gated-att-MIL

1 forgettable unwatchable
2 unfunny forgettable
3 unwatchable unfunny
4 insipid 4/10
5 4/10 uninspired
6 uninspired disappointing
7 disappointing tedious
8 lackluster lackluster
9 1/10 worst
10 tedious underwhelming
11 awful 2/10
12 mediocre waste
13 uninteresting unoriginal
14 5/10 1/10
15 lousy poorly
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Rank att-MIL gated-att-MIL

16 poorly uninspiring
17 uninspiring insipid
18 worst lousy
19 underwhelming disappointment
20 disjointed amateurish
21 dreadful mildly
22 unappealing monotonous
23 unimaginative unimaginative
24 disappointment dull
25 bland unremarkable
26 flimsy ineffective
27 pointless flimsy
28 monotonous unappealing
29 atrocious abysmal
30 laughable pointless
31 whiny mediocre
32 amateurish awful
33 incoherent bland
34 unconvincing uninteresting
35 lacklustre atrocious
36 lifeless disjointed
37 dull dreadful
38 0/10 appalling
39 unoriginal unconvincing
40 unremarkable wasted
41 overlong horrid
42 horrid laughable
43 horrible tiresome
44 overpriced shoddy
45 unexciting pathetic
46 godawful unpleasant
47 pathetic unimpressive
48 drivel dreary
49 uncreative embarrassment
50 tiresome muddled
51 trite woeful
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Rank att-MIL gated-att-MIL

52 appallingly sluggish
53 miscast drivel
54 woeful 5/10
55 waste embarrassing
56 overcooked worthless
57 unmemorable lifeless
58 embarrassing wretched
59 mess vacuous
60 ineffective unmemorable
61 mildly overlong
62 abysmal unexciting
63 listless wasting
64 appalling pitiful
65 unimpressive lukewarm
66 anemic dismal
67 subpar lacks
68 abysmally tasteless
69 woefully tripe
70 wretched woefully
71 badly inane
72 incompetent horrible
73 cloying uneventful
74 overused lethargic
75 sucky mess
76 pitiful 0/10
77 craptastic uninvolving
78 clunky embarrassingly
79 tripe terrible
80 shoddy downright
81 uneventful dreck
82 terrible redeeming
83 yawn incoherent
84 ludicrous unprofessional
85 inane godawful
86 interminable badly
87 miserably nauseating
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Rank att-MIL gated-att-MIL

88 inadequate lacklustre
89 irritating lamest
90 wasting substandard
91 worse trite
92 embarrassment clunky
93 risible irritating
94 talentless inept
95 unlikeable useless
96 dreary incompetent
97 dreck worse
98 inept boring
99 slipshod appallingly
100 gimmicky miscast
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