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Abstract

This thesis describes two Kalman filters which are usable on semi-explicit index-1 differential-
algebraic equations, prior to which a discussion of linear and nonlinear Kalman filters is
presented. Performance between differential-algebraic equation-compatible Kalman filters
and their ordinary differential equation counterparts is compared in two examples. Basic
existence and uniqueness theory of linear differential-algebraic equations is discussed along
with the process of numerically approximating the solution. Desire to estimate the state
of charge of a lithium ion cell is used as motivation. The electrochemical processes of a
lithium ion cell are discussed. When discretized, the model of a lithium ion cell results in a
differential-algebraic equation.
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Chapter 1

Introduction

Batteries are the basic energy storage unit for many devices in our everyday life, ranging
from cell phones and laptops to medical equipment to hybrid and electric vehicles. They
provide a source of energy for portable and self-propelled equipment that cannot always
be connected to an electrical grid. An important point to consider when operating a self-
powered electrical device is how long it can stay self-powered, that is how much energy is
remaining in its battery.

Electrochemical cells are the elementary units of battery packs. An electricity storage
unit in a hybrid/electric vehicle may be made up of a number of battery packs. State of
charge (SOC) is the amount of energy left inside a cell compared to what is available when
it is at its maximum capacity. It is given as a percentage between 0% and 100% where 0%
is fully discharged and 100% is fully charged. Tracking the SOC is the main objective of a
battery management system, this is done by measuring the voltage and, if available, current
and temperature and using these values to update the SOC estimate. An accurate SOC
estimate is important for the following reasons:

e Cells can be over-charged and over-discharged which can lead to damage. Access to
an accurate SOC estimate can open the possibility of preventative measures which can
prevent usage when the estimate is 0% and stop charging when the estimate is 100%.

e An operator can better plan the use of their equipment if they have access to an
accurate SOC estimate. Conservative use for fear of running out of charge at an
inconvenient time due to inaccurate SOC estimate can be eliminated. This can lead
to more efficient usage and usage of lighter and cheaper batteries.

e During normal operation, battery packs may be discharged at different rates. This will
lead to some packs depleting before others resulting in a drop of voltage and/or am-
perage until these batteries are recharged. A battery management system can balance
battery packs so that they discharge at equivalent rates. This requires an accurate
SOC estimate for each battery pack.

e Each time a battery is recharged, its life cycle decreases. Access to accurate SOC can
lead to less premature charging.



Lithium-ion is a popular choice of battery material, other choices include nickel-cadmium
and nickel-metal hybride. Lithium-ion batteries have some advantages over other materials:
no memory effect, high life cycle, low self-discharge and high power.

The problem addressed in this thesis is that the SOC in a lithium-ion cell, or indeed
in any widely used electrochemical cell, cannot be directly measured. Compare this to a
fuel tank in which the remaining level of fuel can be measured by a simple float. Indirect
methods are the remaining approach, this approach estimates the SOC via measurements
of other values of a battery cell such as voltage. The reader might be familiar with using
voltage to infer the SOC.

The approach taken in this thesis involves using mathematical models to simulate the
battery processes. The processes of the physical cell are simulated with the goal of estimating
the processes inside the physical cell by observing the simulated cell. If we can estimate the
internal state of a cell we can then estimate the SOC. This is the purpose of the mathematical
model.

A limitation of mathematical models is they can become very complicated even when
modelling simple dynamics so simplifications and assumptions have to be made. This of
course leads to errors in the model which can affect its accuracy. These errors compound
with time leading to a bad estimate unless the model is re-calibrated at regular intervals.

One way to address this is to use feedback from the system being modelled as a corrective
input into the model.

It should be noted here, the objective of this thesis is to present an implementation of
a Kalman filter estimator that is applicable on the model of the lithium-ion cell. However,
smartphones and on-board computers in common cars have limited CPU’s which could
not handle expensive on-line computations, this puts a constraint on the complexity of the
estimator.

Before modeling the lithium-ion cell it is important to understand the origin and effect
of the governing equations as well as the working domain. An analysis of this is done in
Chapter 2 as well as a brief explanation of the spectral method of transforming the system
partial differential equations into a system of differential-algebraic equations.

As is shown in Chapter 2, our model is a system of differential-algebraic equations
(DAE’s) and theory for these is not widely known. As such, existence-uniqueness theory
of DAE’s is presented in Chapter 3 for the linear case. Further, theory for the numerical
solution of DAFE’s is also given.

Chapter 4 includes a discussion of Kalman filters for linear and non-linear ODE’s. This
leads into a discussion of non-linear Kalman filters that are applicable on DAE’s. These
Kalman filters are applied on example DAE’s which includes the lithium-ion cell.

A DAE-compatible Kalman filter was first introduced by Becerra et al. [7], this is an
extension of the extended Kalman filter modified to accept DAE’s. Mandela et al. [39]
improved upon this implementation of a DAE-compatible xxtended Kalman filter and in-
troduced a DAE-compatible unscented Kalman filter. Purohit et al. [53] and Puranik et al.
[54] developed a DAE-compatible Ensemble Kalman filter and a DAE-compatible iterative
extended Kalman filter, respectively. An implementation of a DAE-compatible Kalman filter



has been applied on the model of a lithium-ion cell [12].

In this thesis, we examine the performance of DAE-compatible extended and unscented
Kalman filters and their ODE counterparts. The DAE-compatible filters are applied on
the original DAE models and the ODE-compatible filters are applied on the DAE models
converted to ODEs. The performance of the ODE- and DAE-compatible state estimators is
compared for several examples. The process for converting a DAE into an ODE is discussed
in this thesis.

An easy but inaccurate estimate for the SOC can be obtained through measurement of
the terminal voltage of the cell. Examples can be found here [74, 76]. Indeed, the terminal
voltage is proportional to the SOC, however open circuit voltage plotted versus the SOC
forms a hysteresis loop [2, 24, 65, 79] which makes using the terminal voltage as an estimate
difficult. The terminal voltage depends on ambient temperature [24, 74].

Another common approach is known as coulomb counting. This method measures and
integrates the current of the cell. Any errors caused by noise and rounding will grow due
to the cumulative effect of integration. Examples of coulomb counting to produce an SOC
estimate can be found here [50, 52, 70]. The accuracy of coulomb counting methods is affected
by charging/discharging efficiency, self-discharging, capacity loss and memory effects as well
as an accurate initial estimate of the SOC is required [10, 42, 50, 78]. These limitations can
be overcome by book-keeping methods [10].

Model-based estimators are more accurate methods of estimating SOC. They can be di-
vided into two categories, circuit and electrochemical. Circuit models are simple and have
few parameters. Electrochemical models describe the physical and chemical behaviour inside
the cell. They are complex and are limited in their online use due to computation require-
ments however the effects of ambient temperature and aging are easier to implement into
the model. Difficulty in obtaining an accurate SOC measurement leads to conservative SOC
measurement preventing the full cell capacity from being used. Accurate SOC measurement
will allow the user to confidently use the cell to its full potential.

The SOC estimate is evaluated with the use of a Kalman filter where the measurements
are voltage, current, the coloumb-counting estimate or a combination. An overview of elec-
trochemical model-based methods can be found here [24, 57]. In this thesis, the SOC is
estimated using the voltage as the only measurement. Other states of the lithium ion cell,
such as the concentration of lithium ions are infeasible to measure.

The approach in this thesis is to model the lithium-ion cell using partial differential
equations and apply a Kalman filter on it. Examples of a finite element simulation of
the lithium-ion cell can be found here [63], finite difference [8], finite volume [77], spectral
method [12]. Examples of applying a Kalman filter on a lithium-ion cell can be found here
3, 6, 12, 17, 34, 49, 51, 57, 64, 71, 75]. Other methods for estimating SOC include Monte
Carlo [19] and neural networks [33].

There is interest in estimating other states in a cell, such as stress [25, 49], temperature
[41, 44, 1], states of health and power [44] and lifetime [18].



Chapter 2
Model of a Lithium-Ion Cell

From the different methods of estimating SOC of a lithium-ion cell, model-based estimators
are considered here. In this thesis, a model is constructed using equations which describe
the physical and electrochemical processes in a lithium-ion cell. The states of this model are
then used to estimate the state of charge of the electrochemical cell. Voltage measurements
are derived from the model as well as measured from the physical cell and used to provide
corrective forces on the model. An model of an electro-chemical cell is presented in this
chapter. For more information on the model see [2, 66].

In everyday language, when we say battery, we sometimes mean cell. It’s important
to draw a distinction when looking at this on a technical level: a (electrochemical) cell is
device that generates electrical energy from chemical reactions, a battery is a collection of cells
arranged in series, parallel or a combination of the two. This chapter covers several topics:
an explanation of the processes inside a lithium-ion cell, the derivation of the equations
governing the processes inside a lithium ion cell and the process for simulating the resulting
equations.

2.1 Geometry and Electrochemical Processes of a Lithium-
Ion Cell

An electrochemical cell has three main components, a negative electrode, a positive electrode
and an electrolyte. The electrodes are submerged in the electrolyte, have no contact with
each other and are connected to current collectors. Everything is encased except for the
current collectors, also known as terminals, which serve as the connection to the outside
world, see Figure 2.1. The electrodes are made up of a slurry of conductive and porous
material which we call here the solid particles or the solid phase.

In a lithium-ion cell, the positive electrode is a metal oxide, here lithium ferrophosphate
(LFP, LiFePQOy,), and the negative electrode is carbon. However, in practice, the electrodes
are a mix of active materials and electrolyte. The electrodes undergo a reduction-oxidation
reaction or redox reaction to generate electrical energy.



e Reduction: the gain of electrons.

e Oxidation: the loss of electrons.

In a fully charged cell the negative electrode has an abundance of electrons and (positively
charged) lithium ions compared to the positive electrode. When the electrodes are connected
by an external circuit the electrons flow to the positive electrode while the lithium ions
dissolve at the negative electrode, travel through the electrolyte and are absorbed by the
positive electrode. This proceeds until the connection is broken or the electric potential
between the electrodes is zero and the cell is said to be discharged.

During discharge, the negative electrode undergoes ozidation and the positive electrode
undergoes reduction. The electrode that undergoes reduction is called the cathode while
the electrode that undergoes oxidation is called the anode.

When a cell is being charged, external energy is used to force oxidation at the positive
electrode, force reduction at the negative electrode and move lithium ions from the positive
to the negative electrode.

To construct a model of an electrochemical cell it’s critical to understand its physical
and electrochemical processes and how it affects the states of the system. Four states will
be considered: the concentration of lithium-ions in the electrolyte, the concentration of
lithium-ions in the solid, the electric potential of the electrolyte and the electric potential of
the solid.

See figure 2.1 for a visual of the cell and [2, 66] for more information about the assump-
tions.

The mathematical model of a lithium-ion cell models four variables, the concentration of
lithium ions in the electrolyte and the electrodes and the potential energy of the electrolyte
and the electrodes. These are the assumptions for the model:

e The cell has one spatial dimension, &,

e The negative electrode occupies € € [0, L_], the positive occupies ¢ € [L — L, L], and
the electrolyte is everywhere, £ € [0, L], thus the electrode regions are a superposition
of electrode and electrolyte,

e The volume of the electrodes does not change as they produce/consume lithium ions or
electrons and the solid particles release and absorb lithium ions through their bound-
aries,

e The electrodes are a collection of perfectly spherical solid particles,

e The concentration in a solid particles does not depend on angle, ie., for a given radius,
r, the concentration is constant regardless of the angles 6 and ¢.

Butler-Volmer Equation and State of Charge

The Butler-Volmer equation (also known as the Erdey-Griz-Volmer equation) is an im-
portant equation in model electrochemical cells. It describes how the difference in voltage
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Figure 2.1: A picture of a lithium ion cell, [63]. The left- and right-most boundaries are
made up of current collectors which serve as connection points between the cell and the
external world. The left and right parts of the domain consist of a mixture of solid material
and electrolyte. During discharging or charging, the solid materials consume (produce)
lithium ions which condense from (dissolve into) the electrolyte. The middle consists of a
porous separator which allows for the free movement of the electrolyte and lithium ions while
ensuring that the solid material on either ends of the cell never come into contact with one
another.

between the electrode and the electrolyte leads to a redox reaction. Given the difference
in electric potentials between the electrolyte and solid material the Butler-Volmer equation
predicts the dissolution/consumption of lithium ions. In other words, the Butler-volmer
equation describes all interaction between the electrolyte and electrodes.

1 , aF aF . aF
(1) = agig (exp <R_717> — exp (_R_Y?)> = 2a,ig sinh (R_J?) (2.1)

where i''(£,t) is the reaction rate of species k at location & and time ¢,

e jo: exchange current density,

o (&, t) = ¢s(&,t)—de(&,t)—U(0): activation overpotential - required potential difference
to produce a current,

e U(0): open circuit potential - potential of electrode as a function of concentration,

e ;. state of charge in electrode i.



and the rest of the parameters can be found in Table 2.1. The current exchange density is

Jo=kF (" = )" (eT)" (eo)”, (2:2)

s
where
e [: reaction rate constant,
e ' the maximum concentration in the solid particle,
o 3/ the surface concentration at the solid particle,
e c.: the concentration in the electrolyte.

For compactness, let i'(-) = (¢, t).

In the Butler-Volmer equation, we have sinh (aFn/RT). At 20°C, £ ~ 39.6, since this
is wrapped inside an exponential function, any change in 1 will result in a large change in
i(-). This will likely lead to a computationally stiff dynamic.

The open circuit potential, U(#;) is described by the following equation according to [55]:

0.0172 N 0.0019
0 0;° (2.3)
+0.2808 exp (0.9 — 156;) — 0.7984 exp (0.44656; — 0.4108) .

U(6;) = 0.7222 + 0.13876; + 00296, —

Define the average concentration across the electrode, v,
3 Lio pB g2 3 L B2
e > drd v = / / ~drd 2.4
S AR T A A D

for the anode and cathode, respectively, and v and v} are the values when the concentration
is at minimum and maximum values, respectively
Then the state of charge is [2, 12, 45]:

avg 0
V. — U
_ 7
Vi — v

Concentration of Lithium Ions in the Electrodes

The solid phase’s mass balance of the lithium in a single particle is described by Fick’s second
law in spherical coordinates. ¢4(&,r,t) = ¢, is the concentration of lithium ions at position &,
radius r and time ¢, the D, is the diffusion coefficient, s in the subscript indicates the solid
phase and r € [0, R] where R is the radius of the particle. We assume that the concentration
in the spherical particles is dependent only on the radius and not on the polar or azimuthal

angles thus we have
1
des(6,7, ) 0 (DST2QCS(§, r, t)) : (2.6)

ot  r2or or

7



There is zero flux at » = 0 which leads to a homogeneous Neumann boundary. At the right
boundary, r = R, the flux is dependent on the value of the Butler-Volmer equation at the
spatial dimension &, this means we have a variable Neumann boundary. Thus the boundary
conditions are:

Ocs Oc, it ()
) R = ) 2.7
or or Ir=r asF (2.7)
This equation must be solved at every point along the radius of every particle along the
spatial domain of both electrodes.

|r:0 = Oa

Concentration of Lithium Ions in Electrolyte

Consider the concentration of lithium ions in the electrolyte. When the cell is being charged,
the lithium ions dissolve into the electrolyte at the positive electrode, travel through the
electrolyte and are consumed by the negative electrode.

We assume here that we can ignore the convection of the lithium ions and the volume
change of the electrodes as they gain or lose lithium ions and electrons [66]. We assume the
lithium ions are only subject to the dynamics described by Fick’s law and Butler-Volmer
equation. The electrode regions are a superposition of electrolyte and solid material. Each
lithium ion is assumed to be dissolved in one or the other, neither however, ever changes
volume, by assumption.

For the lithium ions in the electrolyte phase, the lithium ion concentration in the elec-
trolyte phase is defined by

oc 0 oc 1—10
e 2 eff e o Tl
€e 5 o€ (De (ce) 85) + 7 i (") (2.8)

where D¢/ (-) is the effective electrolyte diffusion coefficient and t9 is the transference number

of the lithium ion with respect to the solvent velocity. In (2.8) the term 3% <D§f ! ()g—g) is a

diffusion term due to Fick’s law, and %z“() is a reaction term due to the production and
consumption of lithium ions at the electrodes as modelled by the Butler-Volmer equation
across the electrodes. Note that the reaction term will always be zero in the separator region.

The effective diffusion coeffient is equal to the diffusion coefficient times electrolyte vol-
ume fraction taken to the power of the Bruggeman coefficient,

DY = D,

The diffusion coefficient D, has been shown in [69] to match the following equation:

DOl
D.(c,) = D, Dioce 2.9
(ce) = exp | Do + T T —Tpes + Dioc (2.9)
where
Doy = —4.43, Doy = —54, Dyp=-022,  Tp=229,  Tn=>5,



and T is temperature in Kelvin.

The electrolyte exists in every part of the cell thus (2.8) must be solved in all regions of
the cell, positive and negative electrodes and the separator region.

The electrolyte cannot escape beyond the bounds of the cell, in particular the lithium
ions in the electrolyte cannot escape the bounds of the cell. This zero flux leads to the
Neumann boundary conditions

dc
23
where L is the length of the 1-D cell.

Oc

T (2.10)

=0
¢=L

Electric Potential in Electrolyte

In this thesis, the equation describing the electric potential in the electrolyte, ¢,, is assumed

to be [2, 12, 66]
0 0P, Jln(c.) .
_ ef efrOIn(ce) li(, 2.11
0 o (k 8f+kD o€ )+asz() (2.11)

540
where the diffusional conductivity is kgff = keff w and the effective conductivity k¢

is kosr = ke’ and the ionic conductivity k' has been show in [69] to be equal to

3 2
k= ( Zkijcélle) Ces
=1 j=1

)

where k;; are the entries of

—10.5 0.0740 —6.96e — 5
0.668  —0.0178 2.80e — 5
0.494 —8.86e —4 0

This means that the second derivative of electric potential of the electrolyte is assumed
to be dependent on the concentration of lithium ions in the electrolyte as well as on the
value of the Butler-Volmer equation.

The electric potential is time-independent. This is because it always reflects the present
state its environment. This property results in the appearance of an algebraic constraint in
the system of equations.

In order to ensure that there is a unique solution for the potential energy and since
potential energy is a relative quantity we can assign it a value of zero at one point in the
domain [2], we do this by enforcing a homogeneous Dirichlet boundary condition on the left
boundary and since the potential energy cannot change beyond the boundary of the cell we
have a homogeneous boundary condition on the right. Thus the boundary conditions are

Oe
Pele=0 = o
this completes the derivation of the equation describing the electric potential of the elec-
trolyte.

le=z = 0. (2.12)



Electric Potential in Electrodes

The electric potential in the solid material, ¢s, is described by the following equation, [2, 66]
0 0¢ ,

FIZ72 ) = gyt 2.13

g€ (7775 ) =0 (249)

The second derivative of the electric potential in the electrodes is dependent on the value of
the Butler-Volmer equation. The boundary conditions are

i 8¢5 8¢>s s
" |§ L. — 0= 85 |§ L_+Lsep»

e 8¢5
|§ o=1I(1), " |

eer =1(t). (2.14)
There are no solids in the separator region (§ € (L_, Ls.,)) so ¢, is not defined there,
additionally, there is no flux into or out of that region.

In the above discussion, the four states of interest, concentration of lithium ions in the
electrolyte, c., concentration of lithium ions in the solid material/electrodes, ¢, electric
potential of the electrolyte, ¢., electric potential of the electrode, ¢, were introduced along
with the equations decribing their behaviour.

2.2 Full PDE Model of a Lithium-Ion Cell

The model consists of four partial differential equations that were described in the previous
section. Two of these equations, the electric potentials of the electrolyte and electrode, do
not contain a temporal derivative which results in algebraic constraints within our model.
This means that when the system of PDE’s must be converted into a system of differential-
algebraic equations not a system of ordinary differential equations.

Combining the preceding PDE’s together in one place produces

G- 2 (p0%e) + LR (2150)
%(;s - :2 aar (ﬁDsaaC?f) (2.15h)
0= aag <k@ff a;;e + k7 algg )) + agl(") (2.15¢)
0= 885 <a§ff%is) — agi" (") (2.15d)
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with the following boundary conditions

g—gko =0 g_g|£L =0 (2.16a)
%) o= 0,%%), =~ 1) (2.16D)
Pele=0 = 0 6;2@ le=r, =0 (2.16¢)
o o = 110 L (2.164)
ettty =0 s 115 s = 10, (2.160)

The variable ¢, is the concentration of lithium-ions in the electrolyte at time ¢ and position
&, ¢, is the concentration of lithium-ions in the electrodes at time ¢, position ¢ and radius r,
¢, is the electric potential of the electrolyte at time t and position £ and ¢, is the electric
potential of the electrodes at time ¢ and position &.

The values of all constants and parameters used in the model are in Table 2.1.

The lithium ions are not able to travel through the ends of the cell hence the concen-
tration of lithium ions in the electrolyte has homogeneous Neumann boundary conditions,
(2.16a). The lithium ions in the spherical particles are not able to travel past zero radius
leading to a homogeneous Neumann boundary condition on the left in (2.16b) but they are
able to dissolve into the electrolyte and accumulate from the electrolyte leading to a non-
homogeneous Neumann boundary condition on the right. Since potential energy is a relative
quantity we can set the electric potential to be zero at a single point [2]. We do this on the
left boundary by introducing a homogeneous Dirichlet boundary condition in (2.16¢). On
the right boundary, the potential energy is zero flux leading to a homogeneous Neumann
boundary condition.

The domain for the electric potential in the solid phase is disjoint, it is present in the
electrodes, from 0 to L_ and from L_ + L, to L but not between L_ and L_ + L, this
is because there is no electrode in the separator region, £ € (L_,L_ + Lg,). The electric
potential of the electrodes is undefined outside of where the solid particles are present leading
to homogeneous Neumann boundary conditions at the two inner boundaries, x = L_ and
§ = L_ + L, and non-homogeneous at the outer boundaries where the electrodes are
connected to the current collectors (2.16d) (2.16e).

2.3 Chebyshev Collocation Method for Discretizing PDEs

Solving a partial differential equation using finite difference or finite element method in-
volves approximating the solution in a local domain, the global solution is then obtained by
combining local solutions

u(z) = un(r) = Z@zﬁbz(@ (2.17)

11



Polynomial approximation to Runge function using equidistant interpolation points
8 T T T T T T T T

= Runge Function
—P,x)

Pyx)
—Pgx)
af P ,(x)

Pax)

N
[=}
=
=}
=]
=}
s
=}
=]
=}
=}
h
=}
=
=}
=]
=]
=]
-

Figure 2.2: Runge Function and its interpolating polynomials with equidistant interpolating
points. Runge’s phenomenon is apparent for polynomials of order 12 and 14.

Here 1u; are coefficients and ¢;(z) are polynomials defined on a subdomain, this forms a finite
element approximation to u(zx).

Let the basis functions ¢;(x) in (2.17) instead be defined on the entire domain, this leads
to the method for solving partial differential equations described in [13, 20, 38, 46, 68, 72].
For periodic domains, common choices of basis functions are cos(nx) or sin(nz). In our case
the basis functions will Chebyshev polynomials. In this method it is easy to find approximate
solutions for partial differential equations.

Chebyshev Collocation

Let Py(x) be an N-degree polynomial approximation to a continuous function f(z) where
x € |a, b] and the interpolation points of Py(x) are equidistant. Then for a fixed 2* € [a, b], as
N — o0, Py(x*) — f(x*). However, for some continuous functions it may be the case that as
N — 00 max,eqp € |Py(2)] — 0o . In other words, the polynomial approximation converges
piecewise but diverges uniformly, this is known as Runge’s phenomenom [46, 56, 21]. In
Figure 2.2, Runge’s phenomenom can be seen for high order approximations to the Runge
function (f(z) = (1 + 25x2)71).

To address this issue in polynomial approximation, consider the Chebyshev polynomials
of the first kind.

Definition 2.1. The nth-degree Chebyshev polynomial of the first kind, T,(z), is defined



recursively as

To(z) = 22T, (x) — Th—o(x).

The Chebyshev polynomials of the first kind arise as the basis functions of the solution
to the Chebyshev differential equation. The nth degree Chebyshev polynomial of the first
kind is a solution to

(1—a2)y" — 2y +n*y=0 (2.18)

where n is a constant. In addition to being solutions to equation (2.18), they have found use
as a good choice of basis functions in polynomial approximation.
There exist Chebyshev polynomial of the second kind, they are solutions to

(1—2?)y" — 2y +n(n+2)y =0.
A discussion of these is beyond the scope of this thesis, see [13, 46] for more information.

Example 2.2. The first five Chebyshev polynomials of the first kind are:

To(x) =1,
Ti(x) = x,
Ty(z) = 227
Ts(z) = 42°
Ty(z) = 8" —81: + 1.

The first five Chebyshev polynomials of the first kind are plotted in Figure 2.3.

The Chebyshev polynomials of the first kind are orthogonal to each other with respect
to the weight function w(z) = (1 — 332)_1/2, [46, Chapter 4]. In fact,

Do
[ B, S
—F—axr = ™ It =37=40.
-1 \/1—1’2 - J
2

ifi=7>0

When choosing a set of basis functions, orthogonality between members of the set is a desired
property.

Looking again at Runge’s phenomenom, one way to eliminate it is to use interpolation
points that are more densely distributed near the boundaries of the domain. A common way
to do this is to use points that are the extremas of the Chebyshev polynomials of the first
kind [67],

T; = COS <%7r>, i=0,...,N. (2.19)



First five Chebyshev polynomials of the first kind
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Figure 2.3: A plot of the first five Chebyshev polynomials of the first kind.

The points z,, are the extreme points of Ty (z), the Chebyshev polynomial of the first
kind of degree N. Compare Figures 2.2 and 2.4, the polynomial approximation in the
latter is much better than the polynomial approximation in the former. This is because the
Runge function is approximated with interpolation points located at extremas of Chebyshev
polynomials of the first kind not with equidistant interpolation points.

Solving a PDE using Chebyshev Collocation Method

Let P, be an interpolating polynomial with interpolation points o = 1, x; = —1 and values
f(xo) = yo, f(z1) = yu: . .

Pi(z) = 5(1 + x)yo + 5(1 —z)y1.
The derivative is:

1 1

P{(-T) = 53/0 - 591-

Let U be a vector of values of a polynomial interpolant and consider the matrix

1/2 —1/2
D= HQ _1/2] | (2.20)

If U = DU, then U’ is a vector of values of the derivative of a polynomial approximation.

Example 2.3. Let



Polynomial approximation to Runge function using non-equidistant interpolation points
1 T T T T T T T T

= Runge Function
—P,(x)

P,(x)
—Pg(x)
—P,(x) :

Figure 2.4: Runge Function and its interpolating polynomials with non-equidistant interpo-
lating points. The interpolating points are located at extremas of Chebyshev polynomials of
the first kind. Notice the lack of Runge’s phenomenom.

be a vector of values at xo = 1 and x; = —1 of a polynomial approximation, the associated
polynomial is

1 1 1
The derivative of the polynomial is

Pi(z) =

N

We can obtain the values of the derivative at 2o = 1 and z; = —1 by multiplying U by the
differentiation matrix in equation (2.20)

1
oo [i]
4

Let U be a vector of coefficients of an interpolating polynomial Py (x). Then the vector
U’ such that the elements of U’ are the coefficients of dPy(z)/dx can be easily calculated.
This is done by obtaining the differentiation matrix D and and using the formula U’ =
DU [68]. A library of Matlab code for generating differentiation matrices can be found
at http://appliedmaths.sun.ac.za/~weideman/research/differ.html. The theory for
the functions in the library is provided in [72].
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Exact solution

sl =% -Approximation with 3 points| |
’ -+ Approximation with 5 points

25

35

Figure 2.5: Solution of Poisson’s equation where the forcing function is f(x) = 23 + ¢* and
boundary conditions are homogeneous Dirichlet on the left and homogeneous Neumann on
the right. The exact solution is u(z) = (2° — 5z — 4) /20 — e(x + 1) + exp(x) — e~ !. Solution
is approximated with 3 and 5 points.

Example 2.4. For example, consider the Poisson equation

0*u 3
52 = ¢ +e* = f(z), xe€l[-1,1],
y B 8u|

r=—1 — 856 rx=1

An approximate solution U can be calculated

U= (D*)"'F
where ' is the values of f(x) at the Chebyshev interpolation points. Solutions with different
amount of points can be seen in Figure 2.5.

The boundary conditions are incorporated into the differentiation matrices, this is done
using the cheb2dif function found in the aforementioned Matlab library located at http:
//appliedmaths.sun.ac.za/~weideman/research/differ.html. The theory behind this
approach is beyond the scope of this thesis but more information can be found in [72].

Example 2.5. We seek an approximate solution to the heat equation

ou  FPu 4,

52@4—3& +e*, wzel[-1,1], te]0,10]
ou

lezf :Oz%lx—h

U|t=0:0
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Temperature

05

-1 Spatial

Figure 2.6: Approximate solution of the heat equation Ou/dt = 0%u/0z* + 2* + €® for
t € [0, 10] with a homogeneous Dirichlet boundary condition on the left and a homogeneous
Neumann condition on the right and the temperature is identically zero as the zero condition.
The number of interpolation points used is 9, these points are located at the extremas of the
8th degree Chebyshev polynomial of the first kind.

If U is a vector of coefficients of an interpolating polynomial then the ODE

oU
— =D? F
5 U+

produces an approximate solution at the Chebyshev interpolation points where D is the dif-
ferentiation matrix and F is the values of 23 +¢e® at the interpolation points. An approximate
solution can be seen in Figure 2.6.

We can use the tools discussed in this subsection to discretize and approximately solve
the system of PDE’s which model the lithium ion cell discussed earlier in the chapter.

We approximate the solution of the lithium ion model defined by equations (2.15a)-(2.16¢)
using Chebyshev collocation outlined in this subsection. Discretize equations (2.15a)-(2.15d)
and let C,, C, ®., @, be the vectors of values of approximate solutions at the discrete points.
We need to solve the following system of equations

%Ce D%e Ce FCe(Cea Cs; (bea (I)s)

a 2

¢, _ ng, Co| | |Fes(CeiCoy @, @) | (221)
0 D(I>e q)e F@e(cea Cs; CI)67 (I)s)
0 Dés q)s F@s(cea Osa q)67 CI)S)

The matrices D2, DZ%,, D3, D3, are appropriate differentiation matrices with boundary
conditions incorporated as described earlier in this subsection (Matlab library located at

17



http://appliedmaths.sun.ac.za/~weideman/research/differ.html) and Fee(-), Fee(:),
Foe(+), Fos(-) are forcing functions. An approximate solution of equation (2.21) can be found
in Chapter 4.

Notice the absence of a time derivative for . and ®,, this means that the discretization
is a system of differential-algebraic equations as opposed to the familiar system of ordinary
differential equations. The contents of the next chapter include a discussion of existence
and uniqueness theory for differential-algebraic equations as well as how one can numerically
approximate a differential-algebraic equation.

In this chapter, the equations describing the electrochemical processes inside a lithium
ion cell were presented and a method for simulating the equations was discussed.

18
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Symbol Description Value
Constants
R Gas constant 8.3145 JK 'mol~!
F Faraday’s constant 96485.33212 Cmol !
4.1 in the anode
b Bruggeman coefficient 2.3 in the separator
1.5 in the cathode
t?r Transference number 0.435
Q@ Charge transfer coefficient 0.5
, {1.7646 — 11 m*®mol=%%s~! in the anode
k Reaction rate constant
6.667¢ — 11 m>®mol=%5s~! in the cathode
Cell Geometry
L_ Length of anode 73.5e — 6 m
Lyep Length of separator region 25.0e — 6 m
L, Length of cathode 70.0e — 6 m
Electrolyte
0.4382 in the anode
€e Volume fraction of the electrolyte 0.45 in the separator
0.3 in the cathode
Solid Particles
R, Radius of solid particles {12'56 —om ?n the anode
8.5e —6 m  in the cathode
Dy Diffusivity in the solid particles {5'56 - Mm?s! Tn the anode
1.0e — 11 m?s™! in the cathode
€s Volume fraction of solid particles {0'0566 ?n the electrodes
0.5 in the separator
Qs Specific interfacial area of the electrode 3es/ R
. {30555 mol m~3 in the anode
crar Max concentration
° 51555 mol m™3 in the cathode
O Conductivity of solid particles {100 Sm! ?n the anode
10 Sm~!  in the cathode
ocl! Effective conductivity of solid particles o€

Table 2.1: Parameter values for the model of a lithium-ion cell.
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Chapter 3

Differential Algebraic Equations

Differential-algebraic equations are a useful tool when it comes to modelling, they can arise
when modelling, for example, conservation laws such as Kirchoff’s law in electrical systems
40].

This chapter provides the basic theory of differential-algebraic equations (DAE’s), only
linear DAE’s are considered in this chapter. At the end of the chapter a numerical method
for solving DAE’s is presented along with the associated theory.

A differential-algebraic equation combines differential equations with algebraic equations.
The most general form of a differential-algebraic equation is

0=F(t,z, ) (3.1)
where F': R x R" x R"* — R™.

Example 3.1. A simple example of a differential-algebraic equation is a description of a
simplified Robertson problem

i1 (t) = —0.04x1(t) + 10%25(t),

where z(t) and x4(t) are populations of species 1 and 2, respectively. This can be rewritten

in linear form as:
[ 5E- 0 e 1)
3.1 Theory of Linear DAE’s with Constant Coefficients

This subsection covers the basic existence-uniqueness theory for linear DAE’s with constant
coefficients. First some preliminaries are introduced then the main results are proven.

Definition 3.2. A linear DAE with constant coefficients is a differential-algebraic equation
of the form

Ei(t) = Ax(t) + f(t) (3.2)

20



where £, A € C™" f:R — C™ and F is singular. We also have an initial condition

The work in this subsection is mostly sourced from Differential-Algebraic Equations by
Kunkel and Mehrmann [40, Section 2.1]. See there for more information.

Definition 3.3. Two pairs of matrices (E1, A1), (Eq, Ag) are strongly equivalent if there
exist nonsingular matrices P € C™*™ ) € C™*" such that

EQ - PElQ AQ - PAlQ (34)
We can write (Ey, A1) ~ (Ea, As).

Example 3.4. Given square matrices A and B of equal dimensions, there exists a QZ
decomposition that produces two unitary matrices () and Z such that

A=QAZ B=QBZ

where A and B are upper-triangular [22, Theorem 7.7.1]. Thus (A, B) ~ (A, B) and the QZ
decomposition produces a strong equivalence.

Example 3.5. Consider the matrices

1 2 3 4 4 -1 =1 0
5 6 7 8 -1 4 0 -1
By = 9 10 11 12 A= -1 0 4 -1
13 14 15 16 0 —1 —1 4

Calculating the QZ decomposition of these matrices provides the following left and right
non-singular transform matrices

0.1412  0.3441  0.5470  0.7499 0.3191 —0.7734 —0.5477 0
0= —0.8247 —0.4261 —-0.0276 0.3710 7_ 0.4294 —0.3400 0.7303  0.4082

—0.5430 0.6708  0.2875 —0.4153 0.5397 0.0934  0.1826 —0.8165

—0.0714 0.5000 —0.7857 0.3571 0.6500 0.5268 —0.3651 0.4082

along with Fy = QF1Z and Ay = QA Z

38.2113 —5.6140 8.6964e — 15  1.5320e — 14 ]
B | 0 —20936 17946e —15 3.2503¢ — 15
0 0 1.3190e —16 —8.4178¢ — 16
0 0 0 1.1598¢ — 15 |
21749 1.3190 —1.6392¢ — 15 —1.5331e — 15]
A _ | O 36783 63862 —16  1.3240c— 15
0 0 5.7155 ~1.3041
0 0 0 41991 |
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The purpose of strong equivalency is that it allows the transformation of the given system
into a different (and simpler) form without distorting the original problem. The simpler form
that we will be looking for is called a Weierstrass canonical form which will be introduced
in Definition 3.9.

Lemma 3.6. [0, Lemma 2.2/ Strong equivalence is an equivalence relation, i.e. strong
equivalence satisfies the following three properties:

o (E,A) ~ (E,A) (reflexivity),

o if (F1, A1) ~ (Ey, Ag) then (Fa, Ay) ~ (Ey, Ay) (symmetry),

o if (F1,A)) ~ (Ey, As) and (Es, Ay) ~ (Es3, A3) then (Ey1, A1) ~ (Es3, A3) (transitivity).
The relation introduced in Definition 3.3 is an equivalence relation.

Proof. e Reflexivity: Let P and () in Definition 3.3 be equal to the identity matrices of
appropriate sizes.

e Symmetry: Given Ey; = PE;QQ and Ay = PA;(Q) with non-singular P and () then
E, = PilEQQil and A1 = PilAQQil 1mphes (EQ,AQ) ~ (El,Al).

[ Transitivity: Given E2 = PlElQla A2 = PlAlQl and E3 = PQEQQQ, A3 = PQAQQQ
then E3 = P2P1E1Q1Q2 and Ag = P2P1A1Q1Q2 where P2P1 and QQQl are non—singular

implies (Eg, A3) ~ (El, Al)
O

Definition 3.7. Let E; A € C™*". The matrix pair (F,A) is regular if m = n and the
characteristic polynomial p(\) = det(AE — A) is not the zero polynomial.

Lemma 3.8. [0, Lemma 2.6] Every matriz pair that is strongly equivalent to a reqular
matrix pair is reqular.

Proof. Let Ey = PE;Q and Ay = PA;(Q) with non-singular P and (), we can assume the
matricies are square. Then consider the characteristic polynomial of (Es, As)

pg(/\) = det()\Eg — Ag)
— det(APE,Q — PA,Q)

= det Pdet(AE; — A;) det Q)
= det Pp;(\) det @

Since det P # 0 and det Q # 0 then py(\) is not the zero polynomial if and only if py(\) is
not the zero polynomial. O]
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Definition 3.9. Let £, A € C™*". If

I 0 J 0
E—{O N] and A—{O ]}.

where J is a matrix in Jordan normal form and N is a nilpotent matrix then we say that
(E, A) is in Weierstrass canonical form. It is allowed that either J or N is equal to zero.

Theorem 3.10. [/0, Theorem 2.7] Let E, A € C™™ and (E, A) be regular. Then

T

where J is a matriz in Jordan normal form and N is a nilpotent matriz also in Jordan normal
form.

Proof. Since (E, A) is regular, there exists a Ay € C with det(AgFE — A) # 0 implying that
Ao FE — A is nonsingular. Hence,
(E,A) ~ (E,A— M\E + MFE)
~((A=XE)'E, I+ X(A—XE)'E)
Definition 3.3 with P = (A — A FE), @ = I. Next, there exists a non-singular matrix S
such that S7'[(A — N E) 'E|S = J = diag(J', N’) where J is the Jordan normal form of
(A—XNE)"LE, J' consists of Jordan blocks of nonzero eigenvalues and is non-singular and N’

consists of Jordan blocks of zero eigenvalues and is nilpotent and strictly upper triangular.
Furthermore,

STHI 4+ XM(A = XNE)'E]S = ST'S + MS™HA = MM) T ES = I + odiag(J', N').

Hence,

J0T [I+XxJ 0

Next, left multiply by diag(J'~!, (I + \oN')™!)

s~ (e )

The inverse of an upper triangular matrix is upper triangular so J1 (I+XoN')~1 is upper
triangular. Upper triangular matrix times strictly upper triangular matrix is strictly upper
triangular so (I + M\gN')"!N’ is strictly upper triangular. Perform Jordan decomposition
on both J~! + X\l and (I + \gN’')"'N’ to produce their Jordan normal forms, J and N,
respectively. J is non-singular and NN is strictly upper triangular hence nilpotent. Finally,

e 410 9

as required. O
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Definition 3.11. Consider a regular matrix pair (F, A) with a corresponding Weierstrass
canonical form as in Definition 3.9. Let v be the index of nilpotency of N, i.e. N¥ =0 and
Nv=t£0orif N=0let v =1. The index of (E, A) is v, denoted by ind(E, A) = v.

Lemma 3.12. [40, Lemma 2.10] Suppose that the pair (E, A) has two Weierstrass canonical

forms
N

where d; is the size of block J;. Then di = dy and, N = 0 and N{™" # 0 if and only if
NY =0 and Ny~ ' #0.

Lemma 3.12 shows that the index of (E, A) does not depend on the transformation ma-
trices so long as the transformation matrices are non-singular and do result in a Weierstrass
canonical form.

Now, given (3.2) where (F,A) is regular there exist P and @ such that (E,A) ~

(diag(I, N),diag(J, I)). Let {2]

= Pf where f; has as many rows as J has columns.
Then (3.2) is equivalent to

£1(1) = Jaa(6) + (1) (3.60)
Nio(t) = xa(t) + fa(t) (3.6b)

L1
where () L } = z and x; has as many rows as J has columns.
2

Initial value problems such as (3.6a) are solvable for continuous f; and uniquely solvable
if fi is Lipschitz. Let’s consider (3.6b).

Lemma 3.13. Consider (3.6b) with fo € C*(R,C"), that is, f is v times differentiable and
maps a value in R to a value C". The index of nilpotency of N is v. Then (3.6b) has the
unique solution

v—1
Ty =—Y Nif (3.7)
=0

Proof. Rewrite (3.6b) as (I — Nd/dt)xs + fo = 0 then

— d_l_oo di_y_lz'(i)
Iz——(I—Na) f2——Z(N£) f2——zz_;Nf2

=0
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by the Maclaurin series of (1 — z)~!. Substituting this into (3.6b)

v—1 v—1
Nis s fy= SN S g
=0 =0

v—1 v—1
==Y NN YN - o
i=1 =1

v—1 v—1
:_ZNif(i)+ZNif2(l)+If2_f2
i=1 i=1
=0+0=0.
Thus (3.7) is a solution of (3.6b). O

This provides us with a complete solution, however notice that from Lemma 3.13 the
solution x5 is determined without an initial condition. This tells us that unlike linear ODEs,
linear DAE’s do not guarantee a solution for all initial conditions, the initial conditions need
to satisfy the algebraic constraint. Also, x5 is only continuously differentiable if ! is
continuously differentiable.

Definition 3.14. Given a linear DAE
Ei = Ax + f(t)

and an initial condition xg. The initial condition is consistent if the initial value problem
given by the linear DAE and initial condition has at least one solution.

Putting together the results leads to the following theorem.

Theorem 3.15. [/0, Theorem 2.12] Let the pair (E, A) of square matrices be reqular and let
P and @ be non-singular matrices that transform (3.2) and (3.3) to Weierstrass canonical
form so that

era=lo ] ol =[]

and define

e e

Zo,2
Furthermore, assume f € C¥(R,C") where v =ind(E, A). Then:
1. The differential-algebraic equation (3.2) is solvable.

2. An initial condition (3.3) is consistent if and only if
v—1 )
02 =— Y N7 (t).
i=0
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3. The set of consistent initial values xq s non-empty.

4. Fvery initial value problem with a consistent initial condition is uniquely solvable.

Theorem 3.16. [40, Theorem 2.14] Let E; A € C™*" if (E, A) is not a reqular matrix pair
then the homogeneous initial value problem

Ei= Az, x(ty) =0
has a nontrivial solution.

Proof. Since (E, A) is not regular, rank(AE—A) < nforall A € C. Let \;,;i =1,...,n+1be
pairwise different complex numbers. For every \;, there is a v; € C"\ {0} where (\;F—A)v; =
0 and v;’s are linearly dependent. Hence, there exist complex numbers «;, ¢ = 1,...,n+ 1

such that
n+1

E a;0; = 0
=1

where not all «;’s are zero. Let
n+1

z(t) = Z av; exp (Ai(t — to))

then x(tp) = 0 and

n+1 n+1
Ei(t) =Y aNEviexp (\i(t —to)) = Y i Av;exp (Ai(t — t)) = Ax(t),
i=1 =1

Since x(t) is not the zero function we have a nonzero solution of the homogeneous value
problem. ]

What if the initial condition is xy # 0 but consistent with the algebraic constraint? Then
define y = = — xy and consider Ey = Ay + Axy with y(t9) = 0 which is equivalent to
Ei = Az, x(ty) = xo. If we linearize then we obtain Ey = Ay with y(ty) = 0 to which the
above theorem applies.

Example 3.17. [40] Consider the differential-algebraic equation of the form Ex(t) = Az(t)+
f(t) where

010 010 fi
E=10 0 1 A=10 0 0 f=1fl. (3.8)
000 100 s

The characteristic polynomial p(\) = det(AE — A) = X\ — A? is not the zero polynomial
so (E,A) is regular. Additionally, assume that f € C'(R,R?). To put into Weierstrass
canonical form use

00 1
P=1 Q=110 0
010
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and obtain

100 100 i
PEQ=10 1 0 PAQ=10 0 0 Pf_{}]
00 0 00 1 f2

where f; = [fl], fo=fa, &1 = {?] and Z9 = x1. By Theorem 3.15, this DAE is solvable.
3

fo
The nilpotent matrix, N, has nilpotency index v = 1 and is equal to 0, so we have a
consistent solution if 7o = —N°f, (i.e. @1 = —f3). Thus if we have a consistent initial
condition (x¢; = —f3(to)) then we have a unique solution.
Write equation (3.8) as a system of equations
To = 29 + f1,
T3 = fo, (3.9)
=T + f3.
Clearly equation (3.9) has a unique solution if z; = —f3, this is consistent with the

statement provided by theorem 3.15.
In this thesis, we are interested in semi-explicit index-1 DAE’s

Definition 3.18. A differential-algebraic equation is called semi-explicit index-1 if it can
be written in the form

.I"D = fD(t,ZED,l'A), (310&)
0= fA(t,ID,IA). (310b)

where fp : RXR" xR" — R™, f4 : RxR"> xR"4 — R"4, In this form, the derivative, 2p,
is isolated and the equations describing the differential and algebraic processes are separated.
The subscripts D and A indicate differential and algebraic, respectively. xp and x4 are
referred to as the differential and algebraic states, respectively. Additionally, the Jacobian
of the algebraic constraint evaluated with respect to the algebraic state is non-singular,

det (%> # 0.

ox A
Semi-explicit index-1 DAE’s are also known as Hessenberg index-1 DAE’s.

Consider a semi-explicit index-1 DAE, since det (0fa/0x4) # 0 then by the Implicit
Function Theorem, given time ¢ and differential state xp, we can solve for the algebraic
state, T 4.

In this section, we discussed existence-uniqueness theory for linear differential-algebraic
equations and used Theorem 3.15 to show that a linear DAE has a unique solution. We also
defined semi-explicit index-1 differential equations. Theory of nonlinear DAE’s is beyond
the scope of this thesis but can be found in [40].
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3.2 Numerical Solution of DAE’s using BDF

This section covers one numerical method for solving DAE’s - backward differential formulae
method. This method is the focus since it is suitable for stiff differential equations, indeed
it’s A-stable for orders 1 and 2 [29, Theorem 4.10], also it’s available for use in Matlab as
odel5s. A-stability means that no matter the step size that a method uses, the numerical
solution of &(t) = kx(t) approaches 0 for £ < 0. This is a desirable property for solving stiff
equations.

Definition 3.19. A k-step linear multi-step method for the numerical solution of an ordinary
differential equation & = f(¢, x) is defined by

k b
S g =hY_ Beif(tio, wis) (3.11)
=0 (=0

where h is the step size, «;, 5; € R are coefficients. We also assume that ay # 0.

Definition 3.20. Let the true solution of a system at time ¢,, be z(¢,) and the numerical
solution at the same time be x,, where h is the time step used by the numerical method.
Suppose the initial conditions satisfy

Je(to) — aol| < CI?

for some positive integer p where C is a constant independent of h, x(to) is the initial
condition and x( is the initial state of the numerical solution. Then a numerical method
is said to be convergent of order p if the error between the exact solution, z(t,), and the
numerical solution, z,,, at time ¢,, can be bounded in the following way

[2(tn) — nll < CR?
where C' is a constant independent of h.

Definition 3.21. A k-step linear multi-step method is a backward differentiation formulae
(BDF) method if

Bo=...=bk—1=0, [r=1

and a’s are found in Table 3.1.
Note: The 1-step BDF method is the backward Euler method.

Theorem 3.22. [23] A k-step BDF method is convergent if and only if 1 < k < 6.
We now apply the BDF on a linear DAE.

Theorem 3.23. [/0, Theorem 5.24] If (E, A) is reqular with ind(E, A) = 1 then the k-step
BDF methods with 1 < k < 6 applied to the system Ei(t) = Ax(t) + f(t), x(to) = xo are
convergent of order k.
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oy | =0 [I=11=2 [=3 =4 [=5 [=6

k=1] 1 —1

k=2| 3/2 -2 1/2

k=3| 116 -3 3/2 -1/3
k=4| 25/12 -4 3  —4/3 1/4

k=5|137/60 -5 5 —10/3 5/4 —1/5
k=6|147/60 -6 15/2 —20/3 15/4 —6/5 1/6

Table 3.1: Values of «a for k-step BDF methods where 1 < k <6
[40, Table 5.3]

Proof. Applying the BDF method to E4 = Ax + f(t) produces

k
Z Qi = Az + f(L;).

=0

E

S|

We know that the system decouples into two parts, given by the Weierstrass canonical form.

k
1
E Z Qg1 T145—1 = JZELZ' + f1 (tz) (312&)
=0
1 k
NE ; Qp_1To—) = To; + fo(t;) (3.12b)

The theory for the differential part (3.12a) is beyond the scope of this thesis but can be
found in numerical methods textbooks such as [29], it is convergent of order k. We focus on
the algebraic part (3.12b). By assumption, the matrix N has degree of nilpotency equal to
1 so N is the zero matrix. Thus the numerical solution to the algebraic part at time ¢; is

To; = — fa(ti).

Since (3.12a) is convergent of order k and (3.12b) can be solved exactly then the BDF applied
to Ex(t) = Ax(t) + f(t) is convergent of order k.
[l

This thesis provides a proof only for the case that the matrix pair (E, A) is index 1,
although a proof is possible for higher index however that is beyond the scope of this thesis,
find the proof in [40].

Given a semi-explicit index-1 DAE

tp = fp(t,xp,xa),
0= fa(t,zp,x4).

29



Introduce a small value €

'j;D = fD(trTDal‘A)a

Ei’A = fA(t,SL’D,IL’A).

Apply a k-step linear multi-step method (3.11) to obtain

k k
E ag—1Tp,i—; = h E be—1fo(tizt, Tpi—i, Ta,i—1),
1=0 1=0

k k
€ E Ap—1TA;—1 = h E b1 fa(ti—i, Tpi—i, T A1)
=0 1=0

Now set €e =0

k k
Z x—1Tpi— = h Z b—1fp(ti=t, Tp,i—1, Tai-1), (3.16a)
=0 1=0
k
0=nh Z be—ifatizi, Tpizt1, T ai—1)- (3.16b)

=0

Equation (3.16) defines the direct approach for solving semi-explicit index-1 DAE using a
k-step linear multi-step method. If we replace equation (3.16b) with the algebraic constraint

k k
> akwpi=hY bpifo(tionxpi,vain), (3.17a)
=0 (=0

0= fA(ti,$D7i7$A7i). (317b)

then equation (3.17) defines the indirect approach. When solving DAE’s Matlab uses the
direct approach except when solving semi-explicit problems in Simulink [59].

We now have a method for numerically solving differential-algebraic equations. To use a
BDF method in MATLAB choose odel5s as your ODE/DAE solver and set "BDF" to "on"
in the options structure. Maximum order can be controlled with "MaxOrder", acceptable
values are 1 through 5. Other solver choices are ode23t and odel5i, odel5s and ode23t
can be used only for semilinear DAE’s (DAE’s of the form Ei = f(¢,x) where E may be
singular) and ode15i can be used to solve DAE’s of the general form F (¢, z, %) = 0.

For more information on solving index-1 DAE’s in Matlab see [59], Solve Differential
Algebraic Equations (DAEs), Solve Semilinear DAE System and Solve DAEs Using Mass
Matrix Solvers.

Example 3.24. Consider a semi-explicit index-1 DAE

tp = fp(t,zp,xa),
0 = fA(t,SL’D,IA).
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where zp € R™ and x4 € R"4. If we want to approximately solve this equation in Matlab
for t € [0, 1] given a consistent initial condition z¢ = [x po X A,O] T, then define a mass matrix

E
E — |:[TLD><T7,D OTLDXHA:|

OnAXnD OTLAXTLA

and let
opts = odeset(’Mass’,E)

and combine the differential and algebraic equations into one function

Flt o) = {fD(t’ ”’”D’“)} where 7 — {ﬂ |

fa(t,zp,za) TA
Use odelbs to numerically solve the initial value problem
[t,x] = odelbs(@(t,x) F(t,x), [0 1], x0, opts).
The 7th row in x contains approximate solution at time equal to the ith element in t.

Example 3.25. Consider equation (3.8) in Example 3.17, let

0 -1
f(t) = |stsin(t) |, xo = |0.0001
cos(t) 1
Notice that zo1 = —f5(0), so we have a consistent initial condition. We can use Matlab’s

ode15s function to numerically solve this DAE. An approximate solution is plotted in Figure
3.1.

In this chapter, theory and numerics for linear DAE’s were discussed. The theory pro-
vided a way to check for existence and uniqueness of linear differential-algebraic equations
and introduced the concept of consistent intial conditions. An example of approximate so-
lution to a simple DAE was presented. Numerics for the lithium ion model discussed in the
previous chapter are in the next chapter.
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Approximate solution of example linear DAE
T T T T T

6 T T

_X1

5
__.X2

X

3 i

State values

Figure 3.1: Approximate solution of equation (3.8) and initial condition defined in Example
3.25. The equation is solved numerically in the time domain ¢ € [0,10] using odel5s in

Matlab.
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Chapter 4

Kalman Filtering of ODE’s and DAE’s

State estimation methods for ordinary differential equations have been well studied. The
Kalman filter (KF), first introduced in [37], is widely used and is an optimal estimator
for linear systems under the assumption that we seek to minimize the mean square error
and that the system noise is Gaussian. Extended Kalman filter (EKF) and the Unscented
Kalman filter (UKF) are common filtering techniques for nonlinear systems. EKF uses
the linearization of the system whereas UKF uses sample points to predict the mean and
covariance. The Kalman filter is named after Rudolf Emil Kalman.

The Kalman filter works in two phases, a predict phase in which the KF produces an
estimate of the state variables along with their uncertainty matrix. In the next phase, the
update phase, the estimate is corrected using a weighted average with more weight given to
estimates and measurements with lower uncertainty.

To apply KF, which has been developed for linear systems, on nonlinear systems one can
linearize the state transition and measurement functions around the current state estimate.
This is the approach used in EKF. EKF only works well for nonlinear systems that are
‘almost’ linear [31].

Instead of linearizing the system, UKF estimates the state mean and covariance using
sample points. The sample points, called sigma points, are systematically generated around
the mean with deviation based on the covariance and propagated through the nonlinear
functions from which new mean and covariance is achieved. UKF does not discard the non-
linearities of the system. Instead of propagating a single estimate like EKF, UKF propagates
all sigma points, the number of which grows linearly with the size of the system. This can
become very computationally expensive.

The Kalman filter has applications in biology [28, 43, 47|, chemistry [14], GPS [4, 35],
meteorology [27, 26, 58|, neurology [73], stock market [11] and others [5, 48].

The next section describes the Kalman filter algorithm for a linear system, the section
after provides two Kalman filter algorithms for nonlinear systems. The third section provides
an extension of the two Kalman filter algorithms to semi-explicit index-1 DAE systems.
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4.1 Estimation of Linear Systems

4.1.1 Least Squares Estimation

Before considering the Kalman filter it is useful to discuss how to estimate a constant vec-
tor given linear but noisy measurements. A portion of the contents of this subsection are
referenced from [62, Section 3.1].

Suppose z is a constant but unknown vector of length n and y is a noisy measurement
vector of length m where each element of y is a linear combination of the elements of = plus
noise. Defining H to be the measurement matrix, we have:

Y1 Hyxri+ ...+ Hyop U1
= : s
Ym Hoo1+ ...+ Hypnxyp U
y=Hx+v.

Define & to be the estimate of x and let ¢, be the measurement residual between the mea-
surement and Hx vectors:

€y =y — H.
It has been shown that the most probable value of x is the value of & that minimizes the
sum of squares between y and Hz [62]. Equivalently, the best estimate & minimizes

=€, €y (4.1)
Since ¢, =y — HZ,

J=(y—Hi)"(y - Hi)
=yly—2"H'y —y"Hi +2"H Hz.

To find the minimum calculate the derivative of J with respect to & and set it to zero,

aJ
—=—y'H—y"H+2:"H"H =0.
oz
If we assume that the nullspace of H is trivial then HT H is positive definite. This leads to
H'y=HTHz:
&= (H"H)'H"y. (4.2)
The second derivative of J is
o) 2H"H
02

which is positive definite thus (4.2) is the unique minimum of (4.1).
In this subsection, it is shown how to calculate the best estimate given a noisy measure-
ment.
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4.1.2 Weighted Least Squares Estimation

Suppose we again have the problem of finding an estimate given a noisy measurement but
the covariance of the noise may be different for each element of y. A portion of the contents
of this subsection are referenced from [62, Section 3.2]. Given

U1
y=Hx+ | : |,
U,

E(v?):cr?, 1=1,....,m

Assume that the noises are zero-mean and independent. The covariance matrix is

01 0
R=E(w") =
0 Om
The measurement covariance matrix R is assumed to be positive definite. Enforce that by

requiring that R is a diagonal matrix with positive diagonal entries.
Now we seek to minimize the weighted sum of squares of the elements of ¢,

62 €
J=2 4 4 4.3
= -+ +0’3n (4.3)

The reason for minimizing the weighted sum of squares is that it allows us to put more trust
into the less noisy variables. If, for example, oy is relatively large then y; is a relatively noisy
measurement thus minimizing €,; is not as valuable as minimizing the other elements of ¢,.
Rewriting equation (4.3),

J = egR_ley
=(y—Hi)'R™'(y - H)
—y"R Yy —32"TH"R 'y —y"R'Hz + 2" H"R ' H3. (4.4)
If we assume that the nullspace of H is the trivial nullspace and combine this with the

assumption that R is a diagonal matrix with positive diagonal entries then HT R™'H is
positive definite. Let a be a vector and b = Ha, consider

o H'R'Ha = (Ha)" R"'Ha
=b'R'b.

Since the nullspace of H is trivial then a =0 <= b = 0. Since R is positive definite then
R~ is positive definite, so if b # 0 then b R~ > 0. Thus if a # 0 then a’ H' R"1Ha > 0
which is the definition of positive definiteness.
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Take the derivative of equation (4.4), set it equal to zero:

g‘{ = —2"R™'H +2i"H"R™'H =0,
€T

y'R'H =3"H"R'H,
H'R'w=H"R'Hz,
= (H'R'H) " H"R'y.

The second derivative of J is
0%J

012

=2H"R'H. (4.5)
This is positive definite thus & = (HTR_U’-I)_1 HT R~y is the unique minimum of (4.3).

4.1.3 Recursive Estimation

Consider the situation where we are provided measurements y; in discrete-time and we
update the estimate whenever a new measurement arrives. The vector which we are trying
to estimate is constant; an evolving estimation target is considered in the next subsection.
We can use (4.5) to calculate the new estimate, however there is a more efficient to obtain a
new estimate. When a new measurement arrives we obtain a new estimate by updating the
latest estimate. This is recursive estimation. A portion of the contents of this subsection
are referenced from [62, Section 3.3].
A linear recursive estimator has the form

Yo = Hpw + vg, (4.6a)
Tp = Tp_1+ Kk(yk — Hkik—l)- (46b)

The measurement y; is provided according to (4.6a) where Hj, is known but x; and vy are
unknown. A new estimate 7y is calculated by (4.6b). The matrix K} is to be determined, it
is called the estimator gain matrix or the Kalman gain matrix and (yx — HpZg_1) is called
the correction term. We assume that E(vg) = 0 V k where E(+) is the expected value.
Before considering the gain matrix let us examine the mean of the estimation error of
the linear recursive estimator. The estimation error is €, =  — Zj, the mean of which is:

E(ez ) = E(x — &)
=E(z — 231 + Ki(yp — HpZp—1))
(€xp—1 + Kip(Hpx + v — HiZp—1))
(€xp1+ KipHp(z — 1) + Kyog)
(€xp—1 + KpHypeyp -1 + Kivg)
(€xx—1) + K HpE(ez 1) + KpE(vy,)

([ - KkaﬂE(ew,kfl) -+ Kk]E(’Uk)

E
E
=E
E
E
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If E(ey—1) = 0 and E(vg) = 0 then E(e, ) = 0, that is if the initial estimate is equal to
the expected value of = (o = E(x)) then the expected value of the estimate will always be
equal to the expected value of true value. If this is satisfied then (4.6) is called an unbiased
estimator since the expected estimate will be equal to the true value. Notice that an unbiased
estimator will be unbiased for any gain matrix Kj.

Let us turn our attention to the cost function. We will seek to minimize the expected
value of the square of the Euclidean norm between the estimate and the true value, if R is
a diagonal matrix then this is the same cost function as used in the previous subsection,

Jr = E(||lz — @ 13)
E((x1 — &51)* + - + (20 — T0)?)
E( € T oot ink)
E(E K€ )
E(Tr(éx ko)
Tr(E(ex,keik))
= Tr(F) (4.7)

where P, = E(el €, 1) is the covariance of the estimation error. We desire a recursive formula
for calculating Py:

Pk = E(ek,nein)

= E((([ — Kka>€:v,k*1 — Kk'l}k) ((I — Kk:Hk)Ex,kfl — Kkvk)T)

= (I = Ke H)E(erp-1655-) (T — KpHy)"

— KiE(ver ) (I — KpHy)" — (I = KpHy)E(egm1v) K}

+ KL E(vpod ) K (4.8)

The measurement at time k is not incorporated into the estimate at time £ — 1 so the
estimation error at time k — 1 is independent of the measurement noise at time k. Thus

E(vres 1) = E()E (e, )

since both are zero-mean, the second and thirds terms in (4.8) are zero. Thus,
Py = (I — KyHy)Pyo1(I — KiHy,)" + Ky Ro K (4.9)

where Ry, = E(vgv}) is the covariance of the measurement noise at time k. This establishes
the recursive formula for the covariance of the error, notice that if P,_; and R}, are symmetric
and positive definite (as is required) then P; will be positive definite.

Let us now find a gain matrix K} that minimizes the trace of the covariance (4.7).
Substitute (4.9) into (4.7) and take the derivative, note that OTr(ABAT)/0A = 2AB if B is
symmetric:

0Jy

—= =2(I — KiHy)Po_1(—HF) + 2K, Ry.. (4.10)
0K,
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Set (4.10) to zero:

KiRy = (I — KyRy) P HF
KyRy = Py H — Ky Ry Py 1 H}
KiRy + Ky Ry Py Hl = P, H}
Ky (Ry + H Py 1H]) = P H}
Ky = P, HI (H.P, HI + R;,)™* (4.11)

The second derivative is

P _ 2(—HFVPL (—HY) + 2R,
8[(?( k k—1 k
=2H P H! +2R;.

With the assumptions that P,_; and R; are positive definite the second derivative is positive
definite thus (4.11) is the unique minimum.
Let S, = (HpPy_1HF + Ry,) and substitute (4.11) into (4.9),

_ _ T
Py = (I — P HS, ' Hy) Pooy (I — Pooi HE S, Hy) + KRRy KL
=P, — Pk—ngsingkPk—l - PklegS}}lHkPkfl
+ P HES "Hy Py HY S, Hy Py + P HE S, RS, P H Py

Notice the middle of the fourth term contains HyPj,_1H/ and the middle of the fifth term
contains Ry, the other variables in the last two terms are the same.

Py =Py — 2P, HI S, ' Hy Py + P HE S, Sk, P Hy Pr,
=Py — 2P 1 H S " Hy Py + Py H S, Hy Py,
=Py — Po 1 H S, 'Hy Py,
— Py — KyHyPyy by (4.11),
= (I — KyHy) Pp. (4.12)

It is common to see the correction of the covariance written as (4.12).

4.1.4 Propagating Mean and Error

Before discussing the Kalman filter, there is still one more matter to address. Previously, we
discussed how to filter noise given noisy measurements assuming the true state is constant,
in this subsection, we assume that the true state is subject to a noisy process. A portion of
the contents of this subsection are referenced from [62, Section 4.1].

Given a linear discrete-time system:
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where wy, is zero-mean Gaussian noise with covariance matrix Q).
The expected value of (4.13) is

E(l’k) = ZIATk
= ApZr_1. (4.14)

So the expected value is propagated by applying the linear transformation.
To obtain the formula for propagating the covariance, take the outer product of x; — Ty
with itself:

)T = (Akl‘k_l + wg — i"k)(AkZEk_l + w — fk)T
= (Ap(zp_1 — Zp1) + wp) (Ap(wp_1 — Tp1) +wp)”
= Ap(Th1 — Fp1) (w1 — )T AT

+ Ap(zpo1 — Tp_)wf, + wp(ze—y — Ep-1)T AL + wpwf,

(2 — Tg) () — T

Now take the expected value of both sides

E((zx — 25) (@ — 2)") = E (Ap(@p1 — Zoo1) (@rm1 — 1) A7)
+ E (Ak(xk_l - ik_l)wg) + E (wk.(xk_l - ik_l)TAf) + E (wkwg)
(4.15)

As in the previous subsection, the measurement at time k is not incorporated into the
estimate at time k—1 so the estimation error at time k—1 is independent of the measurement
noise at time k, so

E ((zh-1 — Ep—1)wy ) = E(zp—1 — Z4—1)E(w},)
g O,

Define P, as in the previous subsection, the covariance of the estimation error. Thus
(4.15) is equivalent to

Py = AE ((mpo1 — Tpm1) (@1 — 2e-1)") Af + Qe
P, = AP, 1 A} + Q. (4.16)

In the case that A and () are constant, the steady state covariance of the error, if it
exists, may be of interest, the formula for which is

P = APAT +Q. (4.17)

This is known as the discrete Lyapunov equation. If all eigenvalues of A are less than 1 in
magnitude and @ is symmetric and positive (semi-)definite then the solution to (4.17) exists
and is unique, symmetric and positive (semi-)definite [62, Theorem 21]. To solve the discrete
Lyapunov equation (4.17) in Matlab use dlyap.
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4.1.5 Kalman Filter for Linear Systems

The linear discrete-time Kalman filter combines the material in the above two sections to
produce an algorithm that is optimal for filtering noise. This subsection presents the Kalman
filter algorithm for a linear discrete-time system. There exists a Kalman filter which can be
applied on linear continuous-time systems and hybrid systems. A system is called hybrid if
the process is continous and the measurements are available at discrete times, these systems
are also known as continuous-discrete. It should be noted that a system with a continuous
process may be transformed into a discrete system. Given

1= Aw, IB(O) = Zinitial
then a discrete-time system is defined as
T = exp (htA) Tp—1,  To = Tinitial,

where the time between z;, and z;_; is h = ¢, — ti_1.
Given a linear discrete-time system:

T = ApTp_1 + wy

Yr = Hyxyp + vy,

where x;, € R" is the state at time k, Ay € R™™" is the process matrix at time k, y, € R™ is
the measurement at time k, H;, € R™*" is the measurement matrix at time k£. The noises,
wy, and vy, are white, zero-mean, uncorrelated and have known covariance matrices (), and

Ry,

wkNN(O7Qk)
’UkNN(O,Rk)
Qi k=]
E[wkwﬂ:{ok k4
R, k=3
E[vkvﬂ:{ok k#j'
]E[wkvﬂzo.

The discrete-time Kalman filter can be applied on the above system to filter out the
noise and provide an optimal estimate of the true state. After initialization, the algorithm
progresses one time step at a time, using only the updated estimates from the previous step,
along with the given information about the system. Each time step has two phases, the
predict phase and the update phase.

The predicted (pre-updated) estimates are indicated by a minus sign in the superscript
and the updated estimates are indicated by a plus sign in the superscript.

Below is the Kalman filter algorithm:
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Initialize:

1. Predict phase:

(a) Predict state estimate, (4.14),
T, = Apf_,
(b) Predict estimate covariance, (4.16),
Pr = AR AL+ Qy
2. Update phase:
(a) Obtain the optimal Kalman gain, (4.11),
K= Py HE | (Hy  PCHE 4+ Ry) ™
(b) Update state estimate, (4.6b),
if =@, + Ky (yu — Hi2y,)
(c) Update estimate covariance, (4.12),

Pl = (I — K Hy) Py

The Kalman filter is applied recursively to produce state estimates z], x3, ... at times
t = 1,2,.... The outputs of the Kalman filter can be tuned by changing the covariance

matrices () and R. If the measurement is to be trusted more than the model then the norm
| R|| should be lower than ||@|| and vice versa, the greater the trust in the measurement over
the model the greater the ratio ||Q||/||R||-

The formula for P, may be replaced by the so-called Joseph stabilized version

This is the original equation for covariance derived in (4.9). The Joseph stabilized version is
more robust and stable [62, Section 5.1] and guarantees that despite numerical inaccuracies
P;f will symmetric and positive-definite as long as P, and Ry, are. For more information see
(62, Sections 5.1, 5.4, 9.1].
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4.2 Kalman Filters for Nonlinear Systems

The algorithm presented in the previous section is only applicable on linear systems. How-
ever, many systems are nonlinear. This section discusses two generalizations of the standard
Kalman filter: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF).
Other such generalizations exist such as Particle Filter/Sequential Monte Carlo, Ensemble
Kalman Filter and Iterative Extended Kalman Filter.

4.2.1 Extended Kalman Filter

The Extended Kalman filter is a generalization of the KF to nonlinear systems. The EKF
requires the Jacobian matrices of the nonlinear process and measurement functions with
respect to the state and noise to be available. The idea of the EKF' is to linearize at each
time step and treat the system as a time-varying linear system.

Suppose we have a non-linear discrete time system:

Tp = f(tr, o1, W),
Yk = h(tg, T, vg),
wy, ~ N(0, Q)

v ~ N(0, Ry).

The noises, w; and vy, are allowed to act nonlinearly on the process and measurement.
Below is the Extended Kalman filter algorithm:
Initialize:
Ty = E(wo)

Py =E [(zo — ) (z0 — 2)"] -
1. Predict phase:

(a) Predict state estimate,
i, = [(tr, #_1,0).

(b) Compute the Jacobians to linearize the process,

_of

i
_ax( T ow

A
F 8w(

and Ly

tk, wz_p 0) ti, x;_l, 0)

(c) Predict estimate covariance,
Py = AP AL + LiQu Ly

2. Update phase:
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(a) Compute the Jacobians to linearize the measurement,

:@ and Mk:%
ax(

Hy ow (

th, T, 0) th, @}, 0) '
(b) Obtain the optimal Kalman gain,
Ky, = PCHF | (HoPy HE + MRy M) ™"
(c) Update state estimate,
af =& + Ky, (ye — h(ty, 3,0)) .
(d) Update estimate covariance,

P} = (I — K H,) P}

The EKF uses a first-order approximation to obtain a linear estimate to the system. This
is a clear limitation and as it may fail to provide a good estimate when the system is highly
nonlinear. Higher order approximations exist and can be used to obtain better estimates.
This is the idea behind the Iterated EKF and the Second-Order EKF, a discussion of these
is beyond the scope of this thesis but for more information see [62, Section 13.3].

4.2.2 Unscented Kalman Filter

This subsection discusses a different Kalman filter-based approach to estimating nonlinear
systems. The Unscented Kalman Filter [31] does not linearize or approximate the nonlinear
system, instead it aims to capture the mean and covariance of the nonlinear system through
the use of unscented transformations. An unscented transform is a function that estimates
the result of applying a (non-linear) function on a probability density function given a finite
set of samples [31, 62], for more information see [62, Section 14.2]. The UKF was intended
to be more accurate than the EKF and indeed the use of UKF can provide improvement
over the EKF [62]. The cost of using UKF over EKF is greater computation time.

Unscented transformation works on two principles: (1) it is easy to carry out a nonlinear
transformation on a single point and (2) it is easy to generate a set of sample points in
state space whose sample probability distribution function approximates the true probability
distribution function.

Given the mean T and covariance P of a vector x, generate a set of sample points called
sigma points whose mean and covariance equals mean x and covariance P, respectively. Next,
apply the nonlinear function y = f(x) to each of the sigma points to obtain the transformed
vectors. The effectiveness of the unscented transformation relies on the idea that the mean
and covariance of the transformed vectors will be a good approximation of the true mean
and covariance. The increased computational cost of the UKF comes from computing many
points through the nonlinear transformation.
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Suppose we have n-state nonlinear discrete time system

T = f(tr, Th—1) + Wi,
Yk = h(ty, Tr) + g,
wy ~ N(0,Qy),

v ~ N(0, R).

Notice that here we assume the noise acts linearly on the system. Below is the Unscented
Kalman filter algorithm:
Initialize:

25 = E(zo)
Py =E [(xo — 7)) (zo — &5 )]
1. Predict phase:

(a) Generate 2n + 1 sigma points, o4, around Z;_,,

- A4
Oro = Trp—1>

and 2n + 1 weights,

1
. 3 m:—7 2217
n+k 2(n+ k)

W(]: ...,2n+1,

where < (n+ R)P]:—_1>‘ is the i-th column of \/(n+ £)P, | and & is a tuning
parameter. ’

(b) Propagate the sigma points,
O_I—cti:f(tk70k_,i)a Z:O,,Qn

(c) Combine the sigma points in a weighted average to predict state estimate,
2n
b= Wioy,.
i=0

(d) Predict estimate covariance,

2n

Pr=Qu+ Y Wil(of, —a7) (o, —37)"
=0
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2. Update phase:

(a)

(h)

Generate 2n + 1 sigma points, 7, ; around Z,

Transform the sigma points into predicted estimates,

oy = h(ty,7;), i=0,...,2n.

X3

Predict measurement at time ¢,
2n
g =) Wil
i=0
Estimate the covariance of the predicted measurement,
2n
N N\T
Py=Rp+ Y Wilnh =) (nh =) -
=0

Estimate the cross covariance between z, and g,

2n
Poy =D Wi (7 = 25) (il — )
=0
Obtain the optimal Kalman gain,
Ky, = Py, P,
Update state estimate,
wf =y + Ki (e — ui) -

Update estimate covariance,

Pl =P, — K,P,K}.

The tuning parameter x can be used to vary the estimates, any value of x is allowable
as long as n + k # 0. It is possible reduce higher-order errors in the mean and covariance
approximation by adjusting . For example, if x is Gaussian then x = 3 — n will reduce
fourth-order error terms in the approximation of the mean and covariance [30, 32].
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Symbol ‘ Description ‘ Value

0o Air density at sea level 1.225 kg/m?

g Acceleration due to gravity 9.8 m/s?

k Constant describing the relation between altitude and air density 20 000 m

b Ballistic coefficient 0.1 m?/kg
Efw?(t)] Process covariance of position 0
E[w3(t)] Process covariance of velocity 0

a Altitude of angle-measuring device 200 000 m

M Horizontal distance between angle-measuring device and falling mass | 50 000 m

Table 4.1: Parameter values for falling mass example.

Example 4.1. Consider a mass falling towards the surface of the Earth and suppose we are
trying to estimate its vertical position and velocity. Suppose we have a device which can
measure the angle between the mass and the horizontal. The device is at altitude a and
the horizontal distance between the device and the falling mass is M. The equations and
parameters used here are:

$'1:I2+w1

, b
Ty = —% exp (—z1/k) xa|xe| — g + wo
y(t,) = arctan (1’1]\; a) + v

The parameter values can be found in Table 4.1. The measurement is obtained every 0.5

seconds. The term —’%b exp (—x1/k) xo|xs| accounts for drag due to air resistance.

The initial conditions of the true state are

o = [300 000 —300]"
and the Kalman filters are initialized with
. T 500 000 O
=10 0", P = { 0 0.02}, Kk =0.5.

The results are displayed in Figures 4.1 and 4.2. Figure 4.1 shows the true state along
with its estimates and Figure 4.2 shows the covariances. The UKF performs better, this
is clear in both figures. It is closer to the true states and its covariance for position and
velocity are smaller at the end of the simulation. At the end of the simulation, the position
covariance of UKF is 5.75x10%, which is large but the true position at that time is 6.96x10%.
The position covariance of EKF is 1.28x10°, significantly larger. However, the computation
time of EKF was 0.3366 seconds and 1.1252 seconds for UKF, this is 3.3 times longer.
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Figure 4.1: The true state and its estimates of free falling mass. The intial position is
3 x 10° m and the initial velocity is —300 m/s.

Subplot 1: the true position of the falling mass (blue solid line), the EKF estimate of the
position (red dashed line) and the UKF estimate of the estimate (yellow dash-dot line).
Subplot 2: the true velocity of the falling mass (blue solid line), the EKF estimate of the
velocity (red dashed line) and the UKF estimate of the velocity (yellow dash-dot line).
After 250 seconds, the UKF estimate closely approximates the true position and velocity
whereas there’s a larger error in the EKF estimate of the position.
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Covariance

Covariance

Subplot 1: Position covariance
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Figure 4.2: The covariances of the estimates of free falling mass.

Subplot 1: the covariance of the EKF position estimate (blue dashed line) and the covariance
of the UKF position estimate (red dash-dot line).

Subplot 2: the covariance of the EKF velocity estimate (blue dashed line) and the covariance
of the UKF velocity estimate (red dash-dot line).

The UKF covariances are significantly lower than the EKF covariances by the end of the
simulation, however the UKF velocity covariance has a hump before both the UKF position
and velocity covariances drop significantly below the EKF covariances.
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4.3 Kalman Filters for semi-explicit index-1 DAE

It is possible to convert a DAE into an ODE and apply a well known state estimation method.
There are three problems with this approach [39]:

1. Converting a DAE into an ODE and simulating it using an ODE solver can introduce
significant errors.

2. The updated estimates produced by the state estimator will not necessarily satisfy the
algebraic constraints.

3. If the DAE is reduced to a model containing only the differential states then measure-
ments which are dependent on algebraic states may not be easily used.

This section explores semi-explicit index-1 DAE-compatible Kalman filters. A reminder
of the of definition of semi-explicit index-1 DAE’s is presented followed by a discussion on
the filters presented in [39] then some examples.

A semi-explicit index-1 DAE-compatible EKF was introduced in [7] but this filter is
limited in that it can only process systems where no algebraic states are measured. This
filter was expanded upon in [39], allowing measurement of algebraic variables. Also intro-
duced in [39] is a formulation for semi-explicit index-1 DAE-compatible UKF. The two filters
introduced in [39] are the focus of this section.

Recall: a semi-explicit index-1 DAE has the form

:i:D:fD(t,xD,:cA), (418&)
0= falt,wp,2.4), (4.18b)

det (%) # 0.

ZA

where

Differentiate equation (4.18b) with respect to ¢

_Ofa  Ofa. Ofa .
0= T au, ot g, i

4= — <%)_ (% + a%j:l)) . (4.19)

(99(;A

This is the formula for transforming a semi-explicit index-1 DAE into an ODE. This allows
numerical methods for ODE’s to be applied on a DAE, however, reasons for not doing this
can be found above.

Some define the index of a DAE as the number of differential operations needed to
transform a DAE into an ODE, specifically this is referred to as the differential index, see
[15, 16, 40]. This is consistent with the index-1 in semi-explicit index-1 DAE as it can be
transformed into an ODE with one differential operation as done in equation (4.19).
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4.3.1 EKF for semi-explicit index-1 DAE

The EKF presented here was first introduced in [39] which is a modification of the EKF
introduced in [7]. The EKF in [7] is semi-explcit index-1 DAE-compatible however it is not
compatible with systems where the measurement function is dependent on an algebraic state.

This EKF propagates the state estimate using a DAE solver and propagates the covari-
ance by converting the DAE into an ODE and linearizing about the state estimate, then the
matrix exponential of the Jacobian is obtained and the formula used is

Pyipp = AP AT +Q

where P is the covariance, A is the matrix exponential of the Jacobian and () is the process
noise. The covariance has dimensions equal to the amount of the differential states.

The EKF introduced in [39] is able the handle semi-explicit index-1 DAE’s where the
measurement depends on algebraic states. The covariance has dimensions equal to the
amount of differential states plus the amount of algebraic states.

Consider a semi-explicit index-1 DAE with noise and measurements taken at discrete
intervals

tp = fp(t,zp,xa) +w (4.20a)
0= fat,zp,xa) (4.20D)
Yr = h(ty, Tp g, Tak) + Uk (4.20¢)

where w and v, are Gaussian noise with covariance matrices () and R respectively. Notice
that here we assume that noise is injected linearly into the system as opposed to the system
used in the EKF.

Linearize (4.20a) and (4.20b) to obtain

Tp = [Ak Bk] [fcﬂ = Apxp + Brra (4.21a)
0= [Ck Dk} |:§Z:| = Ckl’D + DkIA (421b)
where
0 0
Ay Byl %(tkaxD,k,fEA,k) %(tk,xD,kawA,k)
Cr Dy %(tk Dk, TAk) %(tk TD g, TAk)
81‘D ) SR 8]}14 ) Y

Differentiate the linearized algebraic constraint (4.21b)
0= Ck.i’D + ijlA
i4=—D;'Cpip
i’A = —D,;l(Jk (Ak[L'D + BkJZA)
Tq = —DlzlckAkilJD — D,;lekaA
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Writing this together with the linearized differential part (4.21a)
.TD . Ak Bk TD
Tal —DlzlckAkl'D —D,;lOkBk Tl

" =Dy 'CLAL —D; OBy

and define the transition matrix as
¢ = exp(AtyLy)

where Aty is the size of a time step from t;,_; to t;, i.e. Aty =t — tr_1.

Given state estimates and covariance Zp p—1jk—1, Lak—1jk-1, Pe-1jk—1 € R(p+na)x(nptna)
we wish to progress the estimate from time t;_; to tx. At time t;, measurement y,, is available.
Below is the process for progressing according to EKF method introduced in [39, Section 4].

1. Predict phase:

(a) Propagate the state estimate from time ¢;_; to t; with Tpr—1k—1 and T4 p—1jk—1
as the initial conditions using a DAE solver such as Matlab’s odel5s. Obtain
iﬁD,k|k71 and Z%A,k\kfl-

(b) Obtain new covariance,

T
Pijp1 = ¢pPr1jp10f + [_IE’:{Z@J Q {_[%D:l%k]
where [ is an identity matrix and an element of R">*"D,
2. Update phase:
(a) Compute the Kalman gain,

Ky = Pag 1 HE (HPe 1 HY + R) ™
oh oh

where Hy = | ———(tr, Tork-1, Takk—1) 75—tk TDklk—1, Takk—-1)| 1S the lin-
8$D a:L'A
earized measurement at time ;.
(b) Update the state estimate,
TD |k TD k- N .
{AD’ | } = {AD’ | 1} + K (yr, — h(tkaxD,k|k—1axA,k|k—1))-
T A K|k T A klk—1
(c) Solve
0= falti, ZTo .k Takk)
for 4 k% to obtain a consistent updated algebraic state.

(d) Calculate the updated covariance,
Pk = (Itnptna)xnptna) — KeHr) Prjr—1.

We now have the next state estimates xp ), and x4k, and covariance matrix Py
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4.3.2 UKEF for semi-explicit index-1 DAE

Given state estimates and covariance Zp p_1jk—1, Lak—1k—1, Pr—1jk—1 € R"?*"P we wish to
progress the estimate from time t;_; to t;. At time t;, measurement g, is available. Below is
the process for progressing according to UKF method introduced in [39, Section 5]. Notice
that here the covariance matrix is of dimension np X np whereas it was (np+mn4) X (np+mna)
for EKF.

1. Predict phase:

. . D A
(a) Choose 2np + 1 sigma points, Op k1, around Zp p_1je—1

D oA
Ok—1k—1,0 — TD,k—1|k—15

D N .
Ok—1)k—1,i — TDk—1]k—1 + (\/(n + F«')Hz—l\k—l) 5 = 1,...,np
7

D o .
Ol 1|k—1npti = TDE—1k—1 — <\/(n + H)Pkfl\k71>i7 i=1...,np

with associated weights

K 1
Wi=—— =1, 2np+1
n+ K’ 2(n+ k) ! o+

Wy =

and where (\/(n + “)Pk—llk—l)i is the i-th column of \/(n + K)Py_1jg—1 and K is
a tuning parameter.

(b) Solve 0 = fA(tk—l’O-I?—l|k—1,i70-1?—l|k—l,i) for O-I?—l|k—1,i7 i =20,...,2np. Obtain the
sigma points for the algebraic state.

(c) Propagate the sigma points from time #;_; to t; using a DAE solver such as
Matlab’s odel5s. Obtain ‘71?|k71,¢ and af‘kfl’i fort=0,...,2np.

(d) Predict the differential state,

2TLD

D _ D
Llk—1 = E I/Vio-ldkfl,i'
i=0

(e) Get covariance,

21’LD

D . D . T
Prjp—1 = Q@+ Z Wi (Uklkfl,i - xk\k—l) (Ukwcfu - xk\k—l) :
i=0

(f) Repeat step la with ka|1§—1 and Pyx—; instead of Zp p_1jx—1 and Py_y,—;. Obtain
0/]3—1|k—1,i fori=0,...,2np.
(g) Re-solve 0 = fA(tk,l,a,?_llk_l’i,a,f_llk_l’i) for O’,?_llk_l,i, 1 =20,...,2np. Obtain

the sigma points for the algebraic state.
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2. Update phase:
(a) Predict differential and algebraic state states,
FD,klkl] _ %ZDWZ [Jﬁkl,z} ‘
T A k|k—1 Py Oklk—1,i

(b) Calculate the observation of the sigma points, the mean, the covariance and the
cross-covariance with the state sigma points.

Yy _ D A .
Oki = h(t, Oklk—1,i> Ok:\k—l,i) 1=0,...,2np
2np
N Y
Y = E Wigm
i=0
2np
Y N Y W \T
Sk =R+ E W; (J,w- — yk) (U,m. — yk)
i=0
2np
_ D A Y ~\T
Cr = Z Wi (Uk’lk—l,i - xklk—l) (Uk\k—l,i - yk)
i=0

(¢) Compute the Kalman gain,
Kk — C’kS,;l

and let KPP be the first np rows of Kj.
(d) Compute the corrected differential states,

Tp ik = Tp k-1 + Kk (Y — 1) -

(e) Compute the corrected algebraic states by solving 0 = fa(ty, Zp ik, Takk) for
T Ak
(f) Correct the covariance matrix of the differential states,

Py = Pt — KL Sk(KP)"

We now have the next state estimates xp j, and x4, and covariance matrix Py, An
DAE-compatible Ensemble Kalman filter can be found here [53] and a DAE-compatible
Iterative Extended Kalman filter can be found here [54].

4.4 Numerical Example - Chemical Reactor

This example taken from [40, Example 1.4] with a modification on the dynamics of the
temperature, add periodic heating. Consider a model of a chemical reactor

10 0]]c ki(cg —c)—
01 0| |T| = |ki(Ta—=T)4+ kor — ks(T — Tcx) + 10(sin(0.17t) + 1)
00 0] |7 r — kyexp(—ky/T)c
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where ¢ is concentration, 7' is temperature and r is reaction rate per unit volume and
co, To, Tc, ki1, ks, k3, k4 are constants.
Rewrite the model to split the differential and algebraic parts,

cl kl (Ca - C) -r _ T
H - [kl(Ta CT) 4 kar — k(T — Tor) + 10(sin(0.1mt) 4+ 1) | — /216 717 (4.22)
0 =1 —kyexp(—ky/T)c = falt,[c, T|", 7).
Here the differential states are ¢ and T and the only algebraic state is . To determine
if this DAE is index-1 check if the Jacobian of the algebraic constraint with respect to the

algebraic state is non-singular. The Jacobian 0f4/0r = 1, so this DAE is index-1 and
DAE-compatible Kalman filters are applicable.

Example 4.2. Given the DAE (4.22), with constants

o = 100,
T, = 2, Tc = 9,
]Cl - 02, 1{72 - ].7 ]{33 == 0257 ]C4 - ].0,

and initial conditions

co = 200
TO = 10
ro = kg exp(—ky/To)co ~ 18.39
notice this initial condition is consistent with the algebraic constraint. Suppose we can only

measure the temperature 7', set the measurement covariance to 0.1 and let the UKF tuning
parameter, x, be equal to 1. Thus,

C=1[01 0],
R=0.1,
k= 1.

Measurements are available every 5 seconds. The initial state will be the zero vector:

Top=1[0 0 O}T (consistent with algebraic constraint).

In addition to using the index-1 DAE-compatible EKF and UKF, we convert this DAE
to an ODE by changing the algebraic constrant into a differential equation as in equation
(4.19). Apply the common ODE-compatible EKF and UKF as defined in Section 4.2 on this
ODE. The four filters used here require the process covariances and initial covariances to be
defined with different dimensions. For the filters applied on ODE we have:

Q = diag(0.01,0.01,0.01), Pojo = diag(0.01,0.01,0.01).
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Figure 4.3: Plot of the chemical reactor in Example 4.2. The true state (black dotted line)
and the state estimates produced by EKF on the ODE (blue solid line), EKF on DAE
(red dashed line), UKF on ODE (yellow dash-dot line) and UKF on DAE (purple dotted
line). The temperature is measured with no noise. The computation times of ODE-EKF,
DAE-EKF, ODE-UKF, DAE-UKF are 0.0336 s, 0.0513 s, 0.1820 s and 0.1814 s, respectively.

For the EKF applied on the DAE we have
Q = diag(0.01,0.01), Pyjo = diag(0.01,0.01,0.01).
For the UKF applied on the DAE we have
Q = diag(0.01,0.01), Pojo = diag(0.01,0.01).

The estimate provided by the EKF applied on the ODE is labelled ODE-EKF, the esti-
mate provided by EKF applied on the DAE is labelled DAE-EKF, similarly for UKF.

Executing a simulation of this model from time equals 0 to 50 we can see in Figure 4.3
that all filters follow the true state of the temperature (black dotted line) almost exactly.
The estimates for the other variables track the true state well. The computations are done
in Matlab 2019b using an Intel i5-8265 CPU at 1.60 GHz.

Let’s change the measurement matrix C' from [O 1 O] to [1 0 0}, now measure the
concentration not the temperature. See Figure 4.4 for plot. Now the estimates for the
concentration follows the true state almost exactly and the other estimates take time to
converge to the true state.

Let’s again change the measurement matrix C' from [1 0 O} to [0 0 1}, Nnow measure
the reaction rate. Contrary to what was seen in the previous two figures, here the estimate
of the measured variable does not jump to the true estimate after one iteration but like the
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Figure 4.4: Plot of the chemical reactor in Example 4.2. The true state (black dotted line)
and the state estimates produced by EKF on the ODE (blue solid line), EKF on DAE
(red dashed line), UKF on ODE (yellow dash-dot line) and UKF on DAE (purple dotted
line). The concentration is measured with no noise. The computation times of ODE-EKF,
DAE-EKF, ODE-UKF, DAE-UKF are 0.0295 s, 0.0477 s, 0.2151 s and 0.1962 s, respectively.

rest of the estimates takes a few iterations to converge. See Figure 4.5. This suggests that it
might be best to rely on the measurement of the differential values as opposed to algebraic
ones.

Let’s switch C' back to [0 1 O] and introduce measurement noise into the system, the
noise is Gaussian with variance equal to v/5. In Figure 4.6, there is a plot of the state
estimates and the absolute error between the estimates and the true state. It is clear from
both plots that applying a DAE-compatible filter on the original DAE provides a better
estimate than transforming the DAE into an ODE and applying a standard ODE filter. The
output covariance is not discussed here because the filters produce covariance matrices of
different sizes thus a comparison between them may not be fair.

4.5 Numerical Example - Chemical Akzo Nobel Prob-
lem

Example 4.3. Consider the model of the chemical Akzo Nobel problem [36]. This is a
model of a chemical process in which two species, FLB and ZHU, are mixed while carbon
dioxide is continuously added. Use a Kalman filter to track the states of this model.
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Figure 4.5: Plot of the chemical reactor in Example 4.2. The true state (black dotted line)
and the state estimates produced by EKF on the ODE (blue solid line), EKF on DAE (red
dashed line), UKF on ODE (yellow dash-dot line) and UKF on DAE (purple dotted line).
The reaction rate per unit volume is measured with no noise. The computation times of
ODE-EKF, DAE-EKF, ODE-UKF, DAE-UKF are 0.0312 s, 0.0466 s, 0.1788 s and 0.1824 s,
respectively.
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line).

Figure 4.6: Plot of the chemical reactor in Example 4.2. The measured state is temperature,
the variance of the measurement noise is equal to v/5. The computation times of ODE-EKF,
DAE-EKF, ODE-UKF, DAE-UKF are 0.0342 s, 0.0562 s, 0.2153 s and 0.1853 s, respectively.
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The differential and algebraic states are

[FLB]
[CO,)
tp = |[FLBT] 4 = [FLB.ZHU]
[ZHU]
ZLA|

where the square brackets denote concentration. For simplicity, define the following

4 0.5
r = kle,lxD,27

Ty = ko p 3T p.a,

ko
r3 = El‘D,lxD,Sa
2
Ty = kSZCD,liCDAa

205
T5 = k4T3 Tp,

cO
En =klA <p(TZ) — xD,Q) .

The forcing function is

—2T1—|—7“2—?"3—7’4
—0.5ry —ry — 0.5r5 + Fy,
fo(t,zp,xa) = ri—1Te+ 713 )
—To + 13— 21y
ro — T3+ 75

and the algebraic constraint is
fa(t,zp,xa) = Kxp12p 4 — T4

The Jacobian of the constraint with respect to the algebraic state is equal to -1 thus this
system is index 1. The constants are

k=[187 058 009 042]",
K =344, kIA =33, p(COy) = 0.9, H = 737,

and the initial conditions are

ro = [0.444 0.00123 0 0.007 0 0.003108K]" .
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Here we measure two states zp3 = [FFLBT| and xp 5 = [ZHU], the meausrement covariance
matrix is diag(5e — 3, 1le — 6) and the UKF tuning parameter, &, is equal to 1. Thus,

001000
¢= {0 0001 o} !
R = diag(5e — 3,1e — 6),
k=1
The measurements are obtained every 20 seconds. The initial state of the estimator is

Zop = [0.5 0.001 0.8 0.001 0.001 0.0005K]" (consistent with algebraic constraint)

In addition to using the index-1 DAE-compatible EKF and UKF, we convert this DAE to an
ODE by changing the algebraic constrant into a differential equation as in equation (4.19).
Apply the common ODE-compatible EKF and UKF as defined in Section 4.2 on this ODE.
The four filters used here require the process covariances and initial covariances to be defined
with different dimensions. For the filters applied on ODE we have:

Q = 10" "Iy, Pojo = 10" " Ig 6.
For the EKF applied on the DAE we have

Q = 10""I5ys, Pojo = 107 Igxs.
For the UKF applied on the DAE we have

Q = 10" "I5ys, Pojo = 10" Isys.

Executing a simulation of this model from time equals 0 to 100 000. The results are in
Figure 4.7. We can see that all filters converge to the true state, however, for state 3 and 6
the filters which use the DAE converge to a much smaller error.

Let’s add measurement noise, the measurement of the third state will have white noise
with a variance of 9 x 10~* and the measurement of the fifth state will have white noise with
a variance of 1078, The plot is in Figure 4.8, the estimate of the algebraic state provided by
the DAE-compatible filters is much better compared to the estimate provided by the ODE
filters.

In this section, we introduced a pair of Kalman filters, EKF and UKF, which can be
applied on semi-explicit index-1 differential-algebraic equations. Then, two examples were
considered, in both we attempted to track the states of a given DAE. In both examples, this
was done in four ways, applying the DAE-compatible filters, DAE-EKF and DAE-UKF | on
the original DAE model and transforming the DAE into an ODE using equation (4.19) then
applying well known ODE-compatible filters, ODE-EKF and ODE-UKF.

The DAE-compatible filters performed as good or better than the ODE-compatible filters.
In noisy and noise-less cases, they performed noticeably better in estimating the value of the
algebraic state. In estimating the measured states, all filters performed about the same. The
run-time of the EKF filters is a fraction of the run-time of the UKF filters. Despite this, the
performances of DAE-EKF and DAE-UKF was about the same. To the author’s knowledge,
comparisons between DAE- and ODE-compatible filters have not been previously made.
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(a) The true state (black dotted line) and the state estimates produced by EKF on the ODE (blue
solid line), EKF on DAE (red dashed line), UKF on ODE (yellow dash-dot line) and UKF on DAE
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(b) The absolute error of the state estimates produced by EKF on the ODE (blue solid line), EKF
on DAE (red dashed line), UKF on ODE (yellow dash-dot line) and UKF on DAE (purple dotted

line).

Figure 4.7: Plot of the chemical reactor in Example 4.3. The measured states are the third
and the fifth, there is no measurement noise. The computation times of ODE-EKF, DAE-
EKF, ODE-UKF, DAE-UKF are 6.6442 s, 15.5019 s, 184.2725 s and 138.3562 s, respectively.
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Figure 4.8: Plot of the chemical reactor in Example 4.3. The measured states are the third
and the fifth, the variances of the measurement noises are 9x 10~ and 1078, respectively. The
computation times of ODE-EKF, DAE-EKF, ODE-UKF, DAE-UKF are 7.5082 s, 16.4353
s, 178.7342 s and 138.5590 s, respectively.
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4.6 Numerical Example - Estimating Lithium-ion Cell
SOC using a Kalman filter

In this section, the state of charge (SOC) of the lithium ion cell model is estimated using
the DAE-compatible EKF with voltage as the only measurement. The DAE is semi-explicit
index-1 and is a discretization of a system of partial differential equations. The value of
the SOC is a value derived from the concentration of lithium ions in the anode. Measuring
other states, such as the concentration of the lithium ions is infeasible in practice. Indeed,
the terminal voltage is proportional to the SOC, however open circuit voltage plotted versus
the SOC forms a hysteresis loop [2, 24, 65, 79] which makes using the terminal voltage as an
estimate difficult.

The DAE modelling the lithium-ion cell is high dimensional, thus neither the ODE- or
DAE- UKF filter is used, the computation time would be too great. As already stated,
converting a semi-explicit index-1 DAE into an ODE requires the derivation of the Jacobian
of the algebraic constraint. For this model, the computation time of computing the inverse
Jacobian is too great and thus the ODE-EKF is not presented either.

The estimation is tested under different current inputs and different variance values for
measurement noise, in all cases the estimate performs well. In Figure 4.9, the input current
is equal to zero and the measurement noise is equal to zero, the estimate converges to the
true state. At convergence, the absolute value of the difference between the true state and
the estimate is about 1073. In each figure, the absolute error is shown, this is the absolute
value of the difference between the true SOC and the estimated SOC.

In Figures 4.10 and 4.11, the input current is equal to zero but the measurement noise
has variance equal to 107* and 9 x 1074, respectively. In both cases the estimate converges.
At convergence the absolute values of the difference between the true state and the estimate
is about 1072 and 107!, respectively.

In Figure 4.12, a charging current and a discharging current is applied and the measure-
ment noise is equal to zero, the estimate converges to the true state. At convergence, the
absolute value of the difference between the true state and the estimate is about 1073.

In Figure 4.13, a charging current is applied and the measurement noise is equal to zero,
the estimate converges to the true state. At convergence, the absolute value of the difference
between the true state and the estimate is about 1073,

In Figure 4.14, a charging current is applied and the measurement noise has variance
equal 1078, the estimate converges to the true state. At convergence, the absolute value of
the difference between the true state and the estimate is about 1073.

In this section, simulation results are presented when the model is subjected to different
current inputs and different standard deviation values of measurement noise. In all cases
the estimator performs well. When the noise is small the absolute value of the difference
between the estimate and the true state settles below 0.01. In the cases where the variance
of the noise is large the estimator performs well also.
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Figure 4.9: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. There is no measurement noise in the system, the absolute error converges to

about 7 x 10™*. There is no current being applied on the cell.
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Figure 4.10: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. The measurement is noisy, the variance of the noise is 10~*. The absolute error

converges to about 9 x 1073. There is no current being applied on the cell.
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Figure 4.11: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. The measurement is noisy, the variance of the noise is 9 x 10~%, the absolute
error converges to about 2 x 1072. There is no current being applied on the cell.
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Figure 4.12: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. The estimate is given time to converge to the true state after which the cell is
charged and discharged. There is no measurement noise. After the current is applied, the
absolute error does not exceed 1073,
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Figure 4.13: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. The cell is charged for a period of time, prior and after which the estimate is
given time to converge to the true state. There is no measurement noise. After the current
is applied, the absolute error does not exceed 1073,
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Figure 4.14: The top plot displays the true SOC (blue solid line) and the estimated SOC
(dashed red line). The bottom plot displays the absolute error between the true and esti-
mated SOC. The cell is charged for a period of time, prior and after which the estimate is
given time to converge to the true state. Measurement noise has variance equal to 1075.
There is a charging current being applied on the cell. After the current is applied, the
absolute error does not exceed 1073
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Chapter 5

Conclusion

In the second chapter, a lithium ion cell consisting of four coupled partial differential equa-
tions was presented, two equations modelled the lithium ion concentration in the electrolyte
and electrodes and two modelled the electric potential in the electrolyte and electrodes. The
electric potential equations did not contain a temporal derivative. When discretized, this
produced algebraic constraints as opposed to the usual differential equation, thus the overall
discretization generated a DAE.

Existence-uniqueness theory of DAE’s was discussed for a linear DAE. The theory pro-
vided a way to check if a unique solution to a DAE is available. The concept of consistent
initial conditions was introduced, this requires that for a DAE to be solvable the initial con-
ditions have to satisfy the algebraic constraint, a concept not present in ordinary differential
equations.

Numerical theory of solving differential-algebraic equations was presented in Chapter 3.
This theory showed that it is possible to solve DAE’s using backward differention formulae.
Steps for approximately solving index-1 DAE’s in Matlab were presented. An example was
solved numerically to demonstrate the capability of the numerical method.

Chapter 4 was centred on Kalman filters. Basic theory of recursive least-squares estimator
was discussed then the Kalman filter was presented. Two non-linear Kalman filters, the
extended Kalman filter and unscented Kalman filter, were discussed and implemented in
an example. Then their DAE-compatible counterparts were examined and applied on two
examples, along with the ODE-compatible filters. The performance of the different filters
was compared by studying the computation times and the absolute errors of the estimates.
The DAE-compatible filters estimated the true state more accurately. In the presence of
measurement noise, the accuracy of the DAE-estimates over the ODE-estimates is magnified.
To the author’s knowledge, comparisons between DAE- and ODE-compatible filters have not
been made.

The semi-explicit index-one differential-algebraic equation-compatible extended Kalman
filter was used on the disctretized model of the lithium ion cell with satisfactory results with
voltage as the only measurement. The filter was able to track the state of charge in the
presence of measurement noise.

An implementation of a conservation law into the lithium-ion model could be a way to
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improve to model. The lithium ions are restricted to the inside of the electrochemical cell,
either as particles dissolved in the electrolyte or as part of the electrolyte. The total amount
of lithium ions inside the cell remains constant thus an improvement one could make to the
model would be to enforce this with an algebraic constraint.

Some attempts at estimating the state of charge of a lithium-ion cell using a Kalman
filter can be found here [2, 3, 6, 57]. A DAE-compatible Kalman filter has been applied on
a model of a lithium ion cell [12] with the goal of estimating the SOC.

Future work can include:

e comparing the already developed DAE-compatible ensemble Kalman filter [53] and
DAE-compatible iterative extended Kalman filter [54] with their ODE counterparts,

e developing a DAE-compatible H,, filter or developing DAE-compatible counterparts
of other Kalman filters such as second-order EKF,

e developing a filter which is compatible with higher order DAE’s, higher order DAE’s
appear in constrained multi-body systems [9, 60] and vehicle dynamics [61].

Developing Kalman filters for DAE’s allows us to perform estimation directly on the
given system without introducing errors by converting it into an ODE.
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