# Matrix-Variate Regression with Measurement Error 

by

Junhan Fang

A thesis<br>presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Statistics (Biostatistics)

Waterloo, Ontario, Canada, 2020
(C) Junhan Fang 2020

## Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner: Richard Lockhart<br>Professor (Simon Fraser University)

Supervisor: Grace Y. Yi
Professor (University of Western Ontario)

Internal Member: Pengfei Li
Professor

Leilei Zeng
Associate Professor

Internal-External Member: Fue-Sang Lien
Professor (Department of Mechanical and Mechatronics Engineering)

## Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.


#### Abstract

Matrix-variate regression models are useful for featuring data with a matrix structure, such as brain imaging data. However, those methods do not apply to data with measurement error or misclasscification. While mismeasurement is an inevitable issue in the data collecting process, little research has been available to handle matrix-variate regression with mismeasurement. In this thesis, we explore several important problems concerning matrix-variate regression with error-contaminated data.

In Chapter 1, we provide a brief introduction for matrix-variate data and review relevant topics including logistic regression analysis, measurement error/misclassification mechanisms, regularization methods, and Bayesian inference procedures.

In Chapter 2, we discuss matrix-variate logistic regression for handling error-contaminated data. Measurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data which commonly arise from studies with imaging, spatial-temporal structures. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from the naive analysis which ignores measurement error. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyze a data set arising from a study examining electroencephalography(EEG) correlates of genetic predisposition to alcoholism with the proposed methods.

In Chapter 3, we consider a problem complement to that in Chapter 2. Instead of examining mismeasurement in covariates, here we study mismeasurement in binary responses. We particularly investigate the response misclassification effects on the matrixvariate logistic regression model. Matrix-variate logistic regression is useful in facilitating the relationship between the binary response and matrix-variates which arise commonly from medical imaging research. However, such a model is impaired by the presence of the response misclassification. It is imperative to account for misclassification effects when employing matrix-variate logistic regression to handle such data. In this chapter, we develop two inferential methods which account for misclassification effects. The first method is an imputation method which replaces the response variable with an observed and unbiased pseudo-response variable in the estimation procedure. The second method is derived from the likelihood function for the observed response surrogate. Our development is carried out for two settings where misclassification rates are either known or estimated from validation data. The proposed methods are justified both theoretically and empirically. We analyze the breast cancer Wisconsin prognostic data with the proposed methods.


Chapter 4 is a continuation and extension of Chapter 3. We consider regularized matrixvariate logistic regression with response misclassification, where matrix-variate data may assume a sparsity structure. With a limited sample size, the presence of a large number of redundant parameters entails the difficulty of estimation. In this chapter, we develop inferential methods which account for misclassification effects in combination with the inclusion of penalty functions to deal with the sparsity of matrix-variate data. We examine the biases induced from the naive analysis which ignores the response misclassification. Our development is carried out for two settings where misclassification rates are either known or estimated from validation data. The proposed methods are justified both theoretically and empirically. We analyze the breast cancer Wisconsin prognostic data with the proposed methods.

In Chapter 5, we shift our attention to the Bayesian framework. We consider applying Bayesian analysis to matrix-variate logistic regression. We propose a Bayesian algorithm to estimate the matrix-variate parameters element-wisely in combination with the use of horse-shore shrinkage prior. We investigate the influence on parameter estimation when ignoring the response misclassification and propose an algorithm to accommodate the effects of response misclassification. The performance of the proposed method is evaluated through numerical studies. We analyze the Lee Silverman voice treatment (LSVT) Companion data with the proposed method.

Finally, Chapter 6 summarizes the thesis work and presents some future work.

## Acknowledgements

I wish to acknowledge the support of various individuals and organizations. Firstly, I would like to express my deepest gratitude to my supervisor, Dr. Grace Y. Yi for her patience, encouragement, and support during my Ph.D. studies. Her guidance and support helped me overcome all difficulties throughout my time as her student, and to achieve the goals beyond my imagination at the beginning. It was a real honor for me to share her profound scientific knowledge and rigorous academic attitude.

Besides my supervisor, I wish to show my gratitude to my committee members Drs. Pengfei Li, Fue-Sang Lien, Richard Lockhart and Leilei Zeng for reviewing my thesis and their constructive suggestions. I would like to pay my regards to Drs. Wenqing He, Joseph Sedransk and Mary Thompson for their insightful comments, advice and help to enrich my research knowledge and experience.

I would like to thank all the members of the GW-DS (Grace-Wenqing Data Science) Research Group who have contributed a lot to my personal and professional time at Waterloo. Special thanks to my academic sisters and brothers: Li-Pang Chen, Di Shu, Qihuang Zhang and Haoxin Zhuang for giving me all their supports and joy through good and tough times. I would also thank Ms. Mary Lou Dufton and Mr. Greg Preston for their administrative assistance through my Ph.D. program.

I would like to thank my sincere friends Yilin Chen, Danqiao Guo, Yidan Shi and Meng Yuan for all the protean and funny topics (can be called as encyclopedia) we have been sharing and enjoying during my Ph.D. studies. A special thank to my ten-years friend Lin Qin for her support and being there when needed. I would also like to thank Fangya Mao (who I first met at Waterloo) and Menglu Che for the days that we exchanged thoughts and discussions on the topics such as "the values of life". Thanks go to Ying Lin, for giving me years of fun memory when we were talking. Thank you Roseanne Park for her encouragement and support. I also thank all my friends who are not be listed here for your support and friendship that accompany me through those happy and hard days. Thanks also go to the members of the University of Waterloo Kendo Club for their warm words and different Kendo practice nights. Last, but not least, a deep appreciation and "thank you" to my parents, Kun and Lieyi, for their love and support.

## Dedication

This is dedicated to my parents. For their endless love, support, and encouragement.

## Table of Contents

List of Tables ..... xii
List of Figures ..... xv
1 Introduction ..... 1
1.1 Matrix-Variate Data ..... 2
1.2 Logistic Regression Analysis ..... 3
1.2.1 Logistic Regression Analysis ..... 3
1.2.2 Bayesian Logistic Regression Analysis ..... 4
1.3 Measurement Error/Misclassification ..... 5
1.3.1 Modelling Measurement Error in Continuous Variables ..... 5
1.3.2 Modelling Misclassification in Univariate Binary Response ..... 8
1.4 Regularization Methods ..... 8
1.5 Bayesian Variable Selection Methods ..... 10
1.6 Thesis Topics and the Outline ..... 11
2 Matrix-Variate Logistic Regression with Measurement Error ..... 16
2.1 Notation and Framework ..... 16
2.1.1 Matrix-Variate Logistic Regression Model ..... 16
2.1.2 Estimation of Model Parameters ..... 18
2.2 Bias Analysis ..... 19
2.2.1 Additive Matrix-Variates Measurement Error Model ..... 19
2.2.2 Naive Analysis ..... 20
2.2.3 Refined Expressions for Bias ..... 21
2.3 Corrections for Measurement Error Effects ..... 23
2.3.1 Moment-Based Correction Method ..... 23
2.3.2 Sufficient Statistic Correction Method ..... 24
2.4 Numerical Studies ..... 26
2.4.1 Simulation Design ..... 26
2.4.2 Simulation Results ..... 27
2.4.3 Sensitivity Analysis of the Proposed Methods ..... 28
2.4.4 Data Analysis ..... 29
3 Imputation and Likelihood Methods for Matrix-Variate Logistic Regres- sion with Response Misclassification ..... 34
3.1 Notation and Framework ..... 34
3.2 Imputation Method ..... 36
3.2.1 Estimating Equations with Known Misclassification Probabilities ..... 36
3.2.2 Estimating Equations with Unknown Misclassification Probabilities ..... 37
3.3 Likelihood Method ..... 39
3.3.1 Inference Method with Known Misclassification Probabilities ..... 39
3.3.2 Inference Method with Unknown Misclassification Probabilities ..... 40
3.4 Numerical Studies ..... 42
3.4.1 Simulation Designs ..... 42
3.4.2 Simulation Results ..... 43
3.4.3 Sensitivity Study ..... 44
3.4.4 Analysis of the Breast Cancer Wisconsin Prognostic Data ..... 45
4 Regularized Matrix-Variate Logistic Regression with Response Misclas- sification ..... 58
4.1 Regularized Estimation Equations Method ..... 59
4.1.1 With Known Misclassification Probabilities ..... 59
4.1.2 With Unknown Misclassification Probabilities ..... 62
4.2 Regularized Likelihood Method ..... 64
4.2.1 Inference Method with Known Misclassification Probabilities ..... 64
4.2.2 Inference Method with Unknown Misclassification Probabilities ..... 65
4.3 Numerical Studies ..... 67
4.3.1 Simulation Results ..... 68
4.3.2 Analysis of the Breast Cancer Wisconsin Prognostic Data ..... 69
5 Bayesian Analysis for Matrix-Variate Logistic Regression with/without Response Misclassification ..... 79
5.1 Matrix-variate Logistic Regression Model ..... 79
5.2 Bayesian Inference Procedure ..... 80
5.2.1 Pólya-Gamma Distribution with Logistic Regression ..... 81
5.2.2 Prior Specification ..... 82
5.2.3 Computation of Posterior ..... 83
5.3 Bayesian Estimation Procedure with Missclassification on Response ..... 84
5.4 Simulation Studies ..... 85
5.4.1 Simulation Studies without Misclassification ..... 87
5.4.2 Simulation Studies with Misclassification ..... 87
5.5 Data Analysis of LSVT Data ..... 88
6 Summary and Future Work ..... 102
References ..... 105
APPENDICES ..... 112
A Additional Materials for Chapter 2 ..... 113
A. 1 Regularity Conditions ..... 113
A. 2 Approximations of $p_{k}\left(\theta ; X_{k}^{*}\right)$ and its Functions ..... 115
A. 3 Proof of Theorem 1 ..... 117
A. 4 Proof of Lemma 2.1 ..... 118
A. 5 Proof of Lemma 2.2 ..... 125
A. 6 Proof of (2.12) ..... 131
A. 7 Proof of Theorem 2.3 ..... 133
A. 8 Proof of the Consistency for (2.17) ..... 135
A. 9 Derivation of $\Delta_{k}$ ..... 137
A. 10 Proof of Theorem 2.4 ..... 141
A. 11 Additional Simulation Results for Sections 2.4.1-2.4.2 ..... 154
B Technical Components for Chapter 3 ..... 170
B. 1 Regularity Conditions ..... 170
B. 2 Proof of Theorem 3.1 ..... 171
B. 3 Proof of Theorem 3.2. ..... 172
C Technical Components for Chapter 4 ..... 173
C. 1 Regularity Conditions ..... 173
C. 2 Proof of Theorem 4.1 ..... 174
C. 3 Lemma 4.1 and the Proof. ..... 176
C. 4 Proof of Theorem 4.2 ..... 177
C. 5 Proof of Theorem 4.3. ..... 178
C. 6 Proof of Theorem 4.4 ..... 180
D Technical Components for Chapter 5 ..... 181
D. 1 Full Conditional Distribution of Hyperparameters ..... 181
D. 2 Full Conditional Distribution of $\alpha^{(r)}$ ..... 182
D. 3 Full Conditional Distribution of $\beta^{(r)}$ ..... 183

## List of Tables

2.1 Block relaxation algorithm for maximizing $\ell_{n}(\alpha, \beta, \gamma)$ ..... 19
2.2 Simulation results for the row parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$ ..... 32
2.3 Analysis results for the EEG data using the three methods ..... 33
3.1 Simulation study for the three methods: $\tau_{01}=\tau_{10}=2.5 \%$ with $z_{1 k}$ ..... 47
3.2 Simulation study for the three methods: $\tau_{01}=\tau_{10}=5 \%$ with $z_{1 k}$ ..... 48
3.3 Simulation study for the three methods: $\tau_{01}=\tau_{10}=10 \%$ with $z_{1 k}$ ..... 49
3.4 Simulation study for the three methods: $\tau_{01}=\tau_{10}=20 \%$ with $z_{1 k}$ ..... 50
3.5 Simulation study for the three methods: $\phi_{0}=(3,0.5)^{\top}$ and $\phi_{1}=(-3,0.5)^{\top}$ with $z_{2 k}$ ..... 51
3.6 Simulation study for the robustness of the three methods: Simulation 1 with Setting $1\left(\tau_{01}=5 \%\right.$ and $\left.\tau_{10}=10 \%\right)$ by mis-taking $\tau_{01}$ and $\tau_{10}$ as $2.5 \%, 7.5 \%$ or $10 \%$ when fitting the data ..... 52
3.7 Simulation study for the robustness of the three methods: Simulation 1 with Setting $2\left(\tau_{01}=10 \%\right.$ and $\left.\tau_{10}=5 \%\right)$ by mis-taking $\tau_{01}$ and $\tau_{10}$ as $2.5 \%, 7.5 \%$ or $10 \%$ when fitting the data ..... 53
3.8 Simulation study for the robustness of the three methods: Simulation 2 $\left\{\phi_{0}=(-3,0.5)^{\top}\right.$ and $\left.\phi_{1}=(1.5,0.5)^{\top}\right\}$ by mis-taking $\tau_{01}=5 \%$ and $\tau_{10}=$ $10 \%$, or $\tau_{01}=10 \%$ and $\tau_{10}=5 \%$ when fitting the data ..... 54
3.9 Analysis of the breast cancer Wisconsin prognostic data without accounting for misclassification effects ..... 55
3.10 Sensitivity analyses of the first scenario $\left(\tau_{01}=0\right)$ of the breast cancer Wis- consin prognostic data with different degrees of $\tau_{10}$ accommodated ..... 56
3.11 Sensitivity analyses of the second scenario ( $\tau_{01}=1 \%$ ) of the breast cancer Wisconsin prognostic data with different degrees of $\tau_{10}$ accommodated ..... 57
4.1 The specificity and sensitivity for row and column effects ..... 70
4.2 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=5, \tau_{01}=\tau_{10}=2.5 \%$ ..... 71
4.3 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=5, \tau_{01}=\tau_{10}=5 \%$ ..... 72
4.4 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=5, \tau_{01}=\tau_{10}=10 \%$ ..... 73
4.5 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=10, \tau_{01}=\tau_{10}=2.5 \%$ ..... 74
4.6 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=10, \tau_{01}=\tau_{10}=5 \%$ ..... 75
4.7 Simulation results for the naive, regularized estimation equation, and regu- larized likelihood methods: $p_{x}=10, \tau_{01}=\tau_{10}=10 \%$ ..... 76
4.8 Analysis of the breast cancer Wisconsin data without accounting for mis- classification effects ..... 77
4.9 Sensitivity analyses of the breast cancer Wisconsin data ..... 78
5.1 Model performance for $p_{x}=5$ without misclassifiction ..... 91
5.2 Model performance for $p_{x}=5$ with misclassifiction ..... 91
5.3 Model performance for correctly specified rank when $p_{x}=20$ ..... 92
5.4 Model performance for mis-specified rank when $p_{x}=20$ ..... 93
A. 1 Simulation results for the row parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$ ..... 156
A. 2 Simulation results for the column parameters and covariate parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$ ..... 157
A. 3 Simulation results for the row parameters with $p_{x}=10, \sigma=0.25, E_{k r}$ generated is from the matrix normal distribution, and $n=1000$ ..... 158
A. 4 Simulation results for the row parameters with $p_{x}=10, \sigma=0.5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$ ..... 159

$$
\begin{aligned}
& \text { A. } 5 \text { Simulation results for the row parameters with } p_{x}=10, \sigma=0.75, E_{k r} \text { is } \\
& \text { generated from the matrix normal distribution, and } n=1000 \ldots . \ldots .160
\end{aligned}
$$

A. 6 Simulation results for the column parameters and covariate parameters with $p_{x}=10, \sigma=0.25, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$
A. 7 Simulation results for the column parameters and covariate parameters with $p_{x}=10, \sigma=0.5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$162

A. 8 Simulation results for the column parameters and covariate parameters with
$p_{x}=10, \sigma=0.75, E_{k r}$ is generated from the matrix normal distribution,
and $n=1000$
A. 9 Simulation results for the row parameters with $p_{x}=20, E_{k r}$ is generated from matrix normal distribution, and $n=1000$. ..... 164
A. 10 Simulation results for the column parameters and covariate parameters with $p_{x}=20, E_{k r}$ is generated from matrix normal distribution, and $n=1000$. ..... 165
A. 11 Simulation results for the row parameters with $p_{x}=5$ and $E_{k r}$ is generated from the matrix $t$-distribution ..... 166
A. 12 Simulation results for the column parameters and covariate parameters with $p_{x}=5$, and $E_{k r}$ is generated from the matrix $t$-distribution ..... 167
A. 13 Simulation results for the row parameters with $p_{x}=20, E_{k r}$ is generatedfrom the matrix normal distribution, and $n=2000$168
A. 14 Simulation results for the column parameters and covariate parameters with $p_{x}=20, E_{k r}$ is generated from the matrix normal distribution, and $n=2000169$

## List of Figures

5.1 Designed $\mathcal{B}$ with $p_{x}=5$ (left) and 10 (right). The vertical bar labeled with Beta represents the corresponding values of different color in the figure.
5.2 The estimated posterior means of model parameters for $p_{x}=5$ : Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows $\mathrm{B}, \mathrm{C}$ and D summarize the results for $\rho=0.95$, 0.90 and 0.85 , respectively.
5.3 The estimated posterior means of model parameters for $p_{x}=20$ using True 1-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.
5.4 The estimated posterior means of model parameters for $p_{x}=20$ using True 2-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.
5.5 The estimated posterior means of model parameters for $p_{x}=20$ using True 1-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively. . . . . . . . . . . . . . 97
5.6 The estimated posterior means of model parameters for $p_{x}=20$ using True 2-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.
5.7 The point estimates of model parameters for $\mathcal{B}^{(1)}$ in (A) and $\mathcal{B}^{(2)}$ in (B) using the LASSO method.
5.8 Estimation results for $\mathcal{B}^{(1)}$ : in each sub-figure, (A) shows the $2.5 \%$ posterior quantiles of $\mathcal{B}^{(1)}$, (B) shows the estimated posterior means of $\mathcal{B}^{(1)}$, and (C) shows the $97.5 \%$ posterior quantiles of $\mathcal{B}^{(1)}$.
5.9 Estimation results for $\mathcal{B}^{(2)}$ : in each sub-figure, (A) shows the $2.5 \%$ posterior quantiles of $\mathcal{B}^{(2)}$, (B) shows the estimated posterior means of $\mathcal{B}^{(2)}$, and (C) shows the $97.5 \%$ posterior quantiles of $\mathcal{B}^{(2)}$. . . . . . . . . . . . . . . . . . . 101

## Chapter 1

## Introduction

In this thesis, we focus on topics concerning matrix-variate regression with measurement error from both frequentist and Bayesian aspects. Matrix-variate regression is a useful modelling method for analyzing data with a matrix structure, such as brain imaging data. This model assumes that the elements from the same row or column share the same effect. Many researchers proposed various modeling methods based on generalized linear regression (e.g; Hung and Wang 2013; Li 2014) or Bayesian modelling methods (Carvalho and West 2007; Guhaniyogi et al. 2017). However, those methods do not apply to data with measurement error or misclasscification, an issue which is inevitable in the data collecting process. Li (2014) discussed some issues on this topic from the frequentist viewpoint. But it lacks a solid theoretical support. To fill in this incomplete research area, we investigate the influence of measurement error in matrix-variates and the response misclassification on parameter estimation procedures and propose valid inference models.

Another problem of our interest concerns variable selection with matrix-variate regression. The structure of the matrix-variate data is complex, and the sparsity assumption usually needs to be added to the data. Some existing works considered to include a penalty function to the matrix-variate regression model to conduct inferences (Hung and Wang 2013; Zhou et al. 2013), but the influence of measurement error or misclassification on inferential procedures has not been investigated. In this thesis, we consider the matrixvariate logistic regression model with penalty functions where the response misclassification is accounted for.

Besides the frequentist viewpoint, Bayesian methods can provide useful procedures to model matrix-variate data. With Bayesian methods (Wei and Ghosal 2020), the parameters of the matrix-variate can be obtained by dropping the assumption that each row and
column share the same effect. A shrunk prior can be imposed on the row and column parameters element-wisely to conduct inferences. However, no work has been available to accommodate measurement error or misclassification effects under such settings. Motivated by this, we consider a Bayesian method based on logistic regression with matrix-variate data and response misclassification.

To better understand our development in the following chapters, in this chapter, we review relevant topics. The remainder is organized as follows. In Section 1.1, we introduce basic notation for describing matrix-variate data. In Section 1.2, we introduce logistic regression analysis from both the frequentist and Bayesian aspects. In Section 1.3, we explain the measurement error/misclassificaiton mechanisms and present the basics for correcting measurement error/misclassificaiton. In Sections 1.4 and 1.5 , we discuss commonly used regularization methods for frequentist and Bayesian procedures.

### 1.1 Matrix-Variate Data

For $k=1, \ldots, n$, let $x_{k}$ be a $(p+1) \times q$ dimension matrix, where $x_{k, i j}$ is the $i$ th row and the $j$ th column element in $x_{k}$ for $i=1, \ldots,(p+1)$ and $j=1, \ldots, q$. We name covariate data which has the structure like $x_{k}$ as matrix-variate data. In applications, biomedical data, such as Electroencephalography (EEG) data and anatomical magnetic resonance imaging (MRI), exhibit a natural matrix structure. Traditional modelling methods, such as generalized linear regression (GLM), by vectorizing matrix data, may not be feasible for handling this kind of data due to the complex data structure and computation burdens. The assumption that each row or column shares the same effects is often imposed (Kolda and Bader 2009; Li et al. 2010) for dimension reduction.

To see this, considering the GLM, one may model the matrix-variate data as

$$
\begin{equation*}
g\left(\mu_{k}\right)=\gamma_{0}+\left\langle x_{k}, \mathcal{B}\right\rangle+\gamma_{1}^{\top} z_{k} \tag{1.1}
\end{equation*}
$$

where $\mu_{k}=P\left(Y_{k}=1 \mid x_{k}, z_{k}\right), g(\cdot)$ is the link function, $\gamma_{0}$ is a scalar, $\gamma_{1}$ is a $p_{z} \times 1$ vector parameter, $\mathcal{B}$ is a $(p+1) \times q$ matrix, and $\left\langle x_{k}, \mathcal{B}\right\rangle=\left\langle\operatorname{vec}\left(x_{k}\right), \operatorname{vec}(\mathcal{B})\right\rangle=\sum_{i, j} \mathcal{B}_{i j} x_{k, i j}$.

Using model (1.1), we have to estimate $(p+1) \times q+p_{z}+1$ parameters, which are usually large relative to the usual sample size. The rank-1 matrix decomposition of $\mathcal{B}$, say, $\mathcal{B}=\alpha^{\top} \beta$, separates the matrix-variate coefficients into two vectors of covariates, where $\alpha$ is the $(p+1)$-dimensional row coefficients and $\beta$ is the $q$-dimensional column coefficients. Under this rank-1 matrix decomposition, the number of matrix-variate parameters needed to be estimated decreases from $(p+1) \times q$ to $p+q+1$. The model by Hung and Wang (2013)
used this idea to fit a logistic regression model with an additional constraint that one of the elements in $\alpha$ is set as 1 to overcome the nonidentifiability issue related to the rank- 1 matrix decomposition. Zhou et al. (2013) proposed a more general case using the GLM with penalty functions based on a rank- $R$ parafac decomposition where the covariate data $x_{k}$ is a tensor, where the rank- $R$ parafac decomposition of $\mathcal{B}$ is $\mathcal{B}=\sum_{r=1}^{R} \alpha^{(r)} \circ \beta^{(r)}$, $\alpha^{(r)}$ and $\beta^{(r)}$ for $r=1, \ldots, R$ are column vectors, $\alpha^{(r)} \circ \beta^{(r)}$ is the outer product of $\alpha^{(r)}$ and $\beta^{(r)}$, and $R$ is a positive integer. Zhou and Li (2014) formulated a spectral regularization for matrix-variate regression, which minimizes a function combining a function of the singular values of $\mathcal{B}$ and the loss function of the negative log-likelihood based on the GLM. Recently, Guhaniyogi et al. (2017) proposed a tensor regression method with Bayesian analysis under the rank- $R$ parafac decomposition, where shrinkage priors were assigned to $\alpha^{(r)}$ and $\beta^{(r)}$ under the sparsity assumption on $\mathcal{B}$.

### 1.2 Logistic Regression Analysis

As claimed by Walker and Duncan (1967), the logistic regression model, initially proposed by Cox (1958) to estimate the probability of an event as a function of independent variables, has been widely used for binary responses related to disease classification, risk factor selection, and other aims. In this section, the model is reviewed from the frequentist and Bayesian aspects.

### 1.2.1 Logistic Regression Analysis

For $k=1, \ldots, n$, let $Y_{k}$ be the independent binary response labeled as 1 with an event occurring or 0 otherwise. Given the vector-covariates, $z_{k}$, the logistic model is

$$
\begin{equation*}
\operatorname{logit}\left\{P\left(Y_{k}=1 \mid z_{k}\right)\right\}=\beta_{0}+\beta_{z}^{\top} z_{k} \tag{1.2}
\end{equation*}
$$

for $k=1, \ldots, n$, where $\beta_{0}$ is the scalar parameter, and $\beta_{z}$ is a $p_{z} \times 1$ vector of parameters. Let $\beta=\left(\beta_{0}, \beta_{z}^{\top}\right)^{\top}$ and $\mathbf{z}=\left(z_{1}^{\top}, \ldots, z_{n}^{\top}\right)^{\top}$.

An important concept related to the logistic regression model is the odds ratio which is easy to interpret. The odds of the event occurring is

$$
\frac{P\left(Y_{k}=1 \mid z_{k}\right)}{1-P\left(Y_{k}=1 \mid z_{k}\right)}=\exp \left(\beta_{0}+\beta_{z}^{\top} z_{k}\right) .
$$

Then the odds ratio for a unit change in a specific covariate $j, z_{k j}$, with other covariates kept fixed, is $\exp \left(\beta_{z j}\right)$ for $j=1, \ldots, p_{z}$.

With high dimensional data, the penalized logistic regression model is often employed (Lokhorst 1999; Shevade and Keerthi 2003; Lukas Meier and Bühlmann 2008).

### 1.2.2 Bayesian Logistic Regression Analysis

Bayesian analysis is another useful tool in statistical analysis. As discussed by O'Brien and Dunson (2004), Bayesian approaches have two main advantages over quasi-likelihood and likelihood-based frequentist methods. First, based on the Markov chain Monte Carlo (MCMC) algorithms, the large MCMC iterations can overcome the small sample limitation by using the exact posterior. Secondly, Bayesian methods can impose additional information into estimation processes by using an informative prior distribution. With Bayesian analysis, a prior probability density function (pdf) is assigned to $\beta$ :

$$
\beta \sim \pi\left(\beta \mid I_{0}\right)
$$

where $I_{0}$ denotes the initial information, and $\pi\left(\beta \mid I_{0}\right)$ can be non-informative or informative. Combining with the logistic regression model, the posterior distribution $p\left(\beta \mid D\left(I_{0}, \mathbb{Y}\right)\right)$ is

$$
\begin{equation*}
p\left(\beta \mid D\left(I_{0}, \mathbb{Y}\right)\right)=c \pi\left(\beta \mid I_{0}\right) \ell(\beta \mid \mathbb{Y}) \tag{1.3}
\end{equation*}
$$

where $D\left(I_{0}, \mathbb{Y}\right)$ contains the prior information as well as the sample information, $\ell(\beta \mid \mathbb{Y})$ is the likelihood function derived from the logistic regression model, with $\mathbb{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$, and $c$ is the normalizing constant with the form

$$
c^{-1}=\int \pi\left(\beta \mid I_{0}\right) \ell(\beta \mid \mathbb{Y}) d \beta
$$

Under model (1.2), (1.3) generally does not have a closed form. Thus, Zellner and Rossi (1984) proposed to estimate model (1.2) with the help of a normal approximation to (1.3). To evaluate $c$, they used the importance sampling procedure. A variety of MCMC methods were developed for the Bayesian estimation of the logistic regression model, such as Gibbs sampling or independent Metropolis-Hastings (MH) sampling methods (Zeger and Karim 1991; Gamerman 1997; Rossi et al. 2005), in combination with an approximation to (1.3).

Meanwhile, the data augmentation methods that facilitate Gibbs sampling (Holmes and Held 2006; Gramacy and Polson 2012; Polson et al. 2013) can avoid the approximation
procedure to (1.3). The data augmentation methods for the logistic regression model were extended from the simple latent-variable method of Albert and Chib (1993), who introduced $n$ latent variables, $W=\left(w_{1}, \ldots, w_{n}\right)^{\top}$, where $w_{k} \sim N\left(\beta_{0}+\beta_{z}^{\top} z_{k}, 1\right)$, such that $Y_{k}=1$ if $w_{k}>0$ and $Y_{k}=0$ otherwise. Then the posterior density of $\beta$ given $W, \mathbb{Y}$, and $\mathbf{z}$ is distributed as a multivariate normal distribution, where $\beta$ can be sampled using the Gibbs sampler easily. The Bayesian inference for logistic models using Pólya-Gamma latent variables (Polson et al. 2013) is perhaps the most efficient method, compared to other data augmentation methods. The Pólya-Gamma approach is close to that of the independent MH, whereas the MH jumping distribution needs to be chosen carefully for simple logistic regression models with abundant data and no hierarchical structures.

### 1.3 Measurement Error/Misclassification

In practice, imprecise measurements, or mismeasurements, often exist in data collection procedures with different reasons (Yi and Cook 2005; Carroll et al. 2006). They usually generate new inference problems and need to be corrected for conducting valid inferences. In this section, we review some measurement error models for continuous covariates and misclassification models for univariate binary responses. For $k=1, \ldots, n$, let $x_{k}$ be the $p_{x^{-}}$ dimensional true continuous covariate, and let $X_{k}^{*}$ be its the surrogate, or observed value. Let $z_{k}$ be the $p_{z}$-dimensional true covariate which is precisely measured. We let $Y_{k}$ denote the true binary response, taking value 0 or 1 , and let $Y_{k}^{*}$ denote its surrogate or observed response. Let $h(\cdot)$ and $h(\cdot \mid \cdot)$ denote the true marginal and conditional probability density or mass functions for the random variables indicated by the corresponding arguments, respectively; in the following development, we may loosely use upper case letters for some of their arguments though ideally, lower case letters should be used for clarity.

### 1.3.1 Modelling Measurement Error in Continuous Variables

First, we describe the measurement error/misclassification mechanisms. Given the true covariates $\left\{x_{k}, z_{k}\right\}$, if $Y_{k}$ and $X_{k}^{*}$ are conditionally independent, i.e.,

$$
h\left(Y_{k} \mid X_{k}^{*}, x_{k}, z_{k}\right)=h\left(Y_{k} \mid x_{k}, z_{k}\right)
$$

then we call the measurement error process a nondifferential measurement error mechanism or a nondifferential misclassification mechanism (if $x_{k}$ is discrete). This mechanism implies that the surrogate $X_{k}^{*}$ has no information on inference about the response process if the
true covariates are given (Yi 2017, Section 2.4). To do inferences, we may factorize the joint distribution $h\left(Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right)$ as

$$
h\left(Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right)=h\left(Y_{k} \mid x_{k}, X_{k}^{*}, z_{k}\right) h\left(x_{k}, X_{K}^{*}, z_{k}\right)=h\left(Y_{k} \mid x_{k}, z_{k}\right) h\left(x_{k}, X_{k}^{*}, z_{k}\right)
$$

To describe the measurement error process, we can further factorize $h\left(x_{k}, X_{k}^{*}, z_{k}\right)$ as

$$
h\left(x_{k}, X_{k}^{*}, z_{k}\right)=h\left(X_{k}^{*} \mid x_{k}, z_{k}\right) h\left(x_{k}, z_{k}\right)
$$

or

$$
h\left(x_{k}, X_{k}^{*}, z_{k}\right)=h\left(x_{k} \mid X_{k}^{*}, z_{k}\right) h\left(X_{k}^{*}, z_{k}\right) .
$$

In contrast to the nondifferential error mechanism, if

$$
h\left(Y_{k} \mid X_{k}^{*}, x_{k}, z_{k}\right) \neq h\left(Y_{k} \mid x_{k}, z_{k}\right),
$$

then the mechanism is called a differential measurement error mechanism or a differential misclassification mechanism (if $x_{k}$ is discrete). This mechanism usually arises from retrospective studies, such as case-control studies. In this case, we may decompose $h\left(Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right)$ as

$$
h\left(Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right)=h\left(X_{k}^{*} \mid Y_{k}, x_{k}, z_{k}\right) h\left(Y_{k} \mid x_{k}, z_{k}\right) h\left(x_{k}, z_{k}\right) .
$$

This decomposition allows us to express our interested $h\left(Y_{k} \mid x_{k}, z_{k}\right)$ explicitly, which can be modelled by standard modelling techniques.

In the following, we introduce two widely used measurement error models for scenarios with nondifferential measurement error mechanism, a mechanism that has been mostly considered in the literature of measurement error models (Fuller 1987; Carroll et al. 2006; Yi 2017):

## - Classical Additive Error Model

With the feature that the observed covariate $X_{k}^{*}$ is more variable than the true covariate $x_{k}$, the model is

$$
X_{k}^{*}=x_{k}+e_{k},
$$

where the error term $e_{k}$ is assumed to be independent of $x_{k}$, and the $e_{k}$ have mean zero and covariance matrix, say $\Sigma_{e}$.

- Berkson Model

Viewing that the true observation $x_{k}$ as fluctuating around the surrogate $X_{k}^{*}$, we consider the model

$$
\begin{equation*}
x_{k}=X_{k}^{*}+e_{k}, \tag{1.4}
\end{equation*}
$$

where the error term $e_{k}$ is assumed to be independent of $X_{k}^{*}$, and the $e_{k}$ have mean zero and covaraince matrix, say $\Sigma_{e}$.
Model (1.4) indicates that the true covariate $x_{k}$ is more variable than the surrogate $X_{k}^{*}$. For example in radiation epidemiology, the radiation dose is prescribed for a patient but the actually absorbed dose by the patient is unknown and varies around the prescribed dose.

When the error covariance matrix $\Sigma_{e}$ is unknown, replicates or validation samples are often needed to estimate the error covariance matrix. In the following, we introduce two kinds of data sets discussed by Yi (2017, Section 2.4).

- Validation Subsample

We let $\mathcal{M}$ denote the index set of subjects who are in the main study. Let $\mathcal{D}$ be the data set that collects different types of measurements, say $\mathcal{D}=\left\{W_{k}: k \in \mathcal{V}\right\}$, where $\mathcal{V}$ is the set of subjects indices, and $W_{k}$ may be $\left\{Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right\}$ or $\left\{x_{k}, X_{k}^{*}, z_{k}\right\}$. When $\mathcal{V}$ is a subset of $\mathcal{M}$ with $W=\left\{Y_{k}, x_{k}, X_{k}^{*}, z_{k}\right\}, \mathcal{D}$ is called an internal validation subsample; when $\mathcal{V}$ and $\mathcal{M}$ are disjoint, $\mathcal{D}$ is called an external validation subsample where $W_{k}$ may only contain $\left\{x_{k}, X_{k}^{*}, z_{k}\right\}$.

- Repeated Measurements

In practice, the surrogate measurements may be measured a couple of times such that $W_{k}$ may have a form $\left\{X_{k j}^{*}\right\}$ or $\left\{Y_{k}, X_{k j}^{*}\right\}$, where $X_{k j}^{*}$ is the $j$ th repeated measurement of $x_{k}$ for $k=1, \ldots, n_{k}$ and $n_{k}$ is an integer larger than 1 .

Investigating the measurement error effects has attracted attention long ago (Wald 1940; Madansky 1959). General strategies of handing measurement error include likelihoodbased correction methods (Lindsay 1982; Stefanski and Carroll 1987; Yi et al. 2015), unbiased estimating functions methods (Prentice 1982; Wang and Pepe 2000; Freedman et al. 2004; Yi et al. 2012), and methods of correcting naive estimators (Stefanski and Carroll 1985; Cook and Stefanski 1994; Yi and Reid 2010). More references on different topics can be found in Fuller (1987), Carroll et al. (2006) and Yi (2017).

### 1.3.2 Modelling Misclassification in Univariate Binary Response

We assume that $Y_{k}$ is modeled through a binary regression model within the class of generalized linear models. Let $z_{k}$ be the $p_{z} \times 1$ dimensional precisely measured covariates. The relationship between the response and covariate variables can be featured by the conditional mean response given covariates, $\mu_{k}=E\left(Y_{k} \mid z_{k}\right)$, through various link functions (McCullagh and Nelder 1989, p.31).

To model the response misclassification process, we let

$$
\tau_{01}\left(z_{k}\right)=P\left(Y_{k}^{*}=1 \mid Y_{k}=0, z_{k}\right) \text { and } \tau_{10}\left(z_{k}\right)=P\left(Y_{k}^{*}=0 \mid Y_{k}=1, z_{k}\right)
$$

be the conditional misclassification probabilities, given the covariates $z_{k}$. The sensitivity of the measurement $Y_{k}^{*}$ is given by $1-\tau_{10}\left(z_{k}\right)$, and the specificity of the measurement $Y_{k}^{*}$ is $1-\tau_{01}\left(z_{k}\right)$.

As discussed by Neuhaus (1999) and Yi (2017, Section 8.2), under the condition that the misclassification probabilities are constants, ignoring the response misclassification in the analysis has the same effects as misspecifiying the link function in the analysis for generalized linear models. When the misclassification probabilities are associated with the covariates, the model for $P\left(Y_{k}^{*}=1 \mid z_{k}\right)$ may not be in the family of the generalized linear model (Neuhaus 1999).

### 1.4 Regularization Methods

High dimensional data analysis is a challenging problem because of the computation burden and the complexity of data structures. Under the sparsity assumption that only a few important covariates are non-zeros in the model, various regularization methods have been proposed to overcome these difficulties. A general form of regularization methods under the likelihood method, based on the penalty function $p_{\lambda}(\cdot)$, is given by

$$
\begin{equation*}
\ell(\beta)+\sum_{j=1}^{q} p_{\lambda}\left(\beta_{j}\right) \tag{1.5}
\end{equation*}
$$

where $\ell(\cdot)$ is the log-likelihood function derived from a model, $\beta_{j}$ is the $j$ th component of the $q \times 1$ unknown vector parameter $\beta$, and $\lambda$ is the tuning parameter.

The following are commonly used penalty functions:

- Least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996):

$$
p\left(\beta_{j}\right)=\lambda\left|\beta_{j}\right| .
$$

- Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001):

$$
p_{\lambda_{n}}^{\prime}(\zeta)=\lambda_{n}\left\{I\left(|\zeta| \leq \lambda_{n}\right)+\frac{\left(a \lambda_{n}-|\zeta|\right)_{+}}{(a-1) \lambda_{n}} I\left(|\zeta|>\lambda_{n}\right)\right\} \operatorname{sign}(\zeta),
$$

where the sign function $\operatorname{sign}(\zeta)=-1,0$ and 1 when $\zeta<0,=0$ and $>0$, respectively; $a$ is a constant larger than 2 ; and $I(\cdot)$ is the indicator function.

- Elastic net (Zou and Hastie 2005):

$$
p\left(\beta_{j}\right)=\lambda_{1}\left|\beta_{j}\right|+\lambda_{2} \beta_{j}^{2} .
$$

- Adaptive LASSO (Zou 2006):

$$
p\left(\beta_{j}\right)=\lambda w_{i}\left|\beta_{j}\right|,
$$

where $w_{i}$ is a weight.

The LASSO method with the $\ell_{1}$ penalty function imposed on the regression coefficients does both continuous shrinkage and automatic variable selection simultaneously. However, as discussed by Zou and Hastie (2005), due to the nature of the convex optimization problem, the LASSO method can only select at most $n$ variables if $p>n$. Moreover, the LASSO method tends to select one of a group of variables which are highly correlated with each other. To overcome these problems, they proposed the elastic net method which combines the $\ell_{1}$ and $\ell_{2}$ penalties together to select groups of correlated variables. Later, Zou (2006) proposed the adaptive LASSO method to fix a problem that in some scenarios, the LASSO selection cannot be consistent. Unlike the traditional regularization methods, the SCAD method (Fan and Li 2001) is based on the non-convex penalty functions and possesses the oracle properties.

The regularization methods can be naturally employed under matrix-variate or tensor regression models after different data decomposition processes are implemented. Zhou and Li (2014) proposed regularized matrix regression for the response in the exponential family by penalizing the spectrum of the matrix parameters. Hung and Wang (2013) and Zhou et al. (2013) added penalty functions to the models for matrix-variate data and tensor
data, respectively, based on the rank- $R$ decomposition of the parameters, which has the form

$$
\ell(\gamma, \alpha, \beta)+\sum_{r=1}^{R} \sum_{i=1}^{p+1} p\left(\alpha_{i}^{(r)}\right)+\sum_{r=1}^{R} \sum_{j=1}^{q} p\left(\beta_{j}^{(r)}\right)
$$

where matrix-variate $\mathcal{B}=\sum_{r=1}^{R} \alpha^{(r)} \circ \beta^{(r)}, \alpha_{i}^{(r)}$ is the $i$ th component of $\alpha^{(r)}$ for $i=1, \ldots, p+1$, $\beta_{j}^{(r)}$ is the $j$ th component of $\beta^{(r)}$ for $j=1, \ldots, q$, and $R$ is a positive integer.

### 1.5 Bayesian Variable Selection Methods

Unlike regularization methods, Bayesian variable selection methods address the parameter selection procedure by assigning shrinkage prior to the parameters. These priors have the ability to shrink small coefficients towards zero while minimizing shrinkage of large coefficients. The first type of these priors is the point-mass prior which combines a probability at zero and a non-zero continuous distribution, such as the spike-and-slab prior (George and McCulloch 1993; Ishwaran and Rao 2005) which mixes two normal distributions with one highly concentrated at zero. For example, a popular version of the spike-and-slab model (George and McCulloch 1993) is

$$
\beta_{j} \mid \psi_{j} \sim\left(1-\psi_{j}\right) N\left(0, \delta_{l}^{2}\right)+\psi_{j} N\left(0, c_{j}^{2} \delta_{j}^{2}\right)
$$

where $\beta_{j}$ is the $j$ th component of a $q \times 1$ vector parameter $\beta, c_{j}$ is a constant, $\delta_{l}^{2}$ and $\delta_{j}^{2}$ are hyper-parameters, $\psi_{j}$ is a latent variable with value 0 or 1 , and

$$
P\left(\psi_{j}=1\right)=1-P\left(\psi_{j}=0\right)=p_{j} .
$$

When $\psi_{j}=0$ and $\delta_{l}^{2}$ is assigned to be small, $\beta_{j} \mid \psi_{j} \sim N\left(0, \delta_{l}^{2}\right)$ and $\beta_{j}$ can be estimated as zero. When $\psi_{j}=1$ and $c_{j}$ is assigned to be large, then a non-zero $\beta_{j}$ can be selected in the final model.

Compared to the spike-and-slab prior, Bayesian LASSO (Park and Casella 2008), which uses a double exponential prior distribution on coefficients, and it has good performance for high dimensional models with the sparsity assumption. Park and Casella (2008) considered a conditional Laplace prior for $\beta$ with the form

$$
\pi\left(\beta \mid \sigma^{2}\right)=\prod_{j=1}^{q} \frac{\lambda}{2 \sqrt{\sigma^{2}}} e^{-\lambda\left|\beta_{j}\right| / \sqrt{\sigma^{2}}}
$$

where $\lambda$ is the tuning parameter, and $\sigma^{2}$ is the hyper-parameter.
Another type of Bayesian shrinkage priors uses continuous densities which have a good performance on parameters shrinkage, such as the horseshoe prior (Carvalho et al. 2010) and the Dirichlet-Laplace (DL) prior (Bhattacharya et al. 2015). This type of prior can be written as a global-local scale mixture of Gaussian distributions:

$$
\beta_{j} \sim N\left(0, \lambda_{j} a\right), \quad \lambda_{j} \sim f, \quad a \sim g
$$

where for $j=1, \ldots, q, \lambda_{j}$ is the local scale which follows a distribution $f$, and $a$ is the global scale which follows a distribution $g$.

A few papers address convergence results on Bayesian variable selection methods beyond the linear regression model, such as adaptive density regression (Shen and Ghosal 2016) and logistic regression (Atchadé 2017; Wei and Ghosal 2020). Under the logistic regression model, the horseshoe prior has the best performance than the point-mass prior, the DL prior, Bayesian LASSO, and non-informative priors (Wei and Ghosal 2020). With tensor data, a multiway Dirichlet generalized double Pareto prior (Guhaniyogi et al. 2017) was recently proposed for the generalized linear regression setting, and it performed well under the Gaussian assumption for the response variable.

### 1.6 Thesis Topics and the Outline

While many inference methods have been developed to handle various problems concerning matrix-variate regression or measurement error models, interesting research problems remain unexplored. This thesis investigates several important problems which are described as follows. This thesis contains six chapters with the last chapter concluding the thesis and the appendix including additional materials for Chapters 2-5. The remaining chapters are organized as follows.

## Chapter 2: Matrix-Variate Logistic Regression with Measurement Error

The logistic regression model has been widely used to handle data with binary responses, where the logit link function is used to feature the relationship between the response probability and a vector of associated covariates. With the advent of the new technology of collecting complex-featured data (e.g., electroencephalography(EEG) imaging data which
involve both channel and temporal information), conventional logistic regression models become inadequate to facilitate the dependence of the binary outcome on covariates in a matrix form. Driven by this, matrix-variate logistic regression models were proposed to cover a broader scope of problems than that of the usual logistic regression model. Such models are useful for analyzing brain imaging data which commonly contain a matrixvariate or a tensor structure (e.g., Hung and Wang 2013; Zhou et al. 2013; Li et al. 2018).

While matrix-variate logistic regression models are useful for dealing with brain imaging data, its application hinges on the critical assumption that the variables are precisely measured. Such an assumption is commonly violated in pre-processed imaging data due to various reasons related to cardiac and respiratory activities. Even through scientists attempt to apply different methods to process the data, measurement error in the variables cannot be completely eliminated (Sobel and Lindquist 2014). It has been well understood that measurement error in the variables can seriously bias the inference results derived from the logistic regression model, and many methods have been developed to correct for the measurement error effects accordingly (e.g., Stefanski and Carroll 1985; Gleser 1996; Cook and Stefanski 1994; Buzas and Stefanski 1996). However, little work on matrix-variate logistic regression with measurement error has been available although in an unpublished PhD thesis, Li (2014) discussed some issues on this topic in an ad hoc way.

It is unclear how measurement error in the matrix-variate may affect inference results. In the presence of measurement error, it is imperative to develop valid inference procedures to accommodate measurement error effects in a rigorous manner. In Chapter 2, we target these problems and explore matrix-variate logistic regression models with covariate measurement error. We investigate the asymptotic bias induced from the naive analysis which ignores measurement error, and then develop two methods to correct for the biases of the naive analysis by making or not making a distribution assumption for the measurement error model. To the best of our knowledge, this is the first research which provides a rigorous study on matrix-variate logistic regression with covariate measurement error with the theoretical results carefully established. The work in this chapter has been wrapped up as a research article, Fang and Yi (2020b), and has been accepted by Biometrika.

## Chapter 3: Imputation and Likelihood Methods for Matrix-Variate Logistic Regression with Response Misclassification

In contrast to the challenges presented by error-contaminated covariates discussed in Chapter 2 , response misclassification impairs inference procedures derived from the matrixvariate logistic regression model as well. In the conventional regression context, bias anal-
ysis of response mismeasurements has attracted extensive attention, and many methods of accommodating mismeasurement effects have been developed (e.g., Stefanski and Carroll 1985; Albert et al. 1997; Neuhaus 1999; Neuhaus 2002; Chen et al. 2011; Li 2014; Yi 2017, Chapter 8) However, matrix-variate logistic regression with response error has not received much attention though real data do often possess such features.

Driven by the paucity of such research, in Chapter 3, we study matrix-variate logistic regression with response misclassification. We develop two inferential methods to account for misclassification effects. The first method is an imputation method which replaces the response variable with an unbiased pseudo-response variable, derived from the observed surrogate response measurement, in the estimation procedure. The second method is derived from the likelihood function for the observed response surrogate. Our development is carried out for two settings to address misclassification effects: misclassification rates are either known or estimated from the validation subsample information. The validity of our methods is justified by the establishment of theoretical results. The work in this chapter has been wrapped up as a research paper, Fang and Yi (2020a), that has been invited for a revision by The Canadian Journal of Statistics.

## Chapter 4: Regularized Matrix-Variate Logistic Regression with Response Misclassification

As introduced in Chapter 3, usual logistic regression has been generalized to accommodate covariates with matrix structures which arise commonly from biomedical research concerning cancer classification and brain imaging analysis (e.g., Zhou et al. 2013; Hung and Wang 2013; Zhang et al. 2014). Meanwhile, matrix-variates usually haves the sparsity property and penalty terms are commonly added to estimation procedures for variable selection (e.g., Zhang et al. 2014).

Although we examine the effects of response misclassification on matrix-variate logistic regression and propose valid methods in Chapter 3 to correct for the biases of the naive analysis, the sparsity property is not considered there. Though penalized estimation procedures are commonly used in regression analysis, only a few settings incorporate measurement error (e.g., Ma and Li 2010; Yi et al. 2015). With misclassification in response variables, there has been no work to study error effects under the matrix-variate logistic regression model.

Motivated by the paucity of such research, in Chapter 4, we extend the work in Chapter 3 to further study regularized matrix-variate logistic regression with response misclassification. Our development is carried out for two settings where misclassification rates are
either known or estimated from a validation subsample. The validity of our methods is justified by the establishment of theoretical results. This project has been wrapped up as a paper and submitted to a journal for publication (Fang and Yi 2020c).

## Chapter 5: Bayesian Analysis for Matrix-Variate Logistic Regression with/without Response Misclassification

For statistical models such as linear regression, high dimensional data analysis is challenging due to the computational burden and intrinsic complex data structures. Bayesian variable selection procedures have the advantage of addressing the parameter selection uncertainty automatically by using a prior, such as the spike-and-slab prior (George and McCulloch 1993; Ishwaran and Rao 2005), horseshoe prior (Carvalho et al. 2010), and DirichletLaplace (DL) prior (Bhattacharya et al. 2015). For logistic regression, the Bayesian inference has long been considered as a hard problem due to the lack of closed forms of posterior densities of the model parameters. One useful Bayesian inference method is based on the normal approximation to the posterior density of the parameter of interest (Zellner and Rossi 1984; Zeger and Karim 1991; Gamerman 1997; Rossi et al. 2005), which however, has much computational burden. Data augmentation methods that facilitate Gibbs sampling (Holmes and Held 2006; Gramacy and Polson 2012; Polson et al. 2013) offer an effective alternative.

As introduced in Chapter 4, matrix-variate data has a complex matrix structure and often contains many unimportant components. The Bayesian variable selection procedure is an efficient way to handle such problems. A multiway Dirichlet generalized double Pareto prior (Guhaniyogi et al. 2017) was recently proposed for tensor-variate data with the Gaussian assumption. An interesting problem is to investigate the influence on the parameter estimation of imprecisely measured binary responses with matrix-variate regression models under the Bayesian framework. Although there has some works on investigating the effects of mismeasured covariates (Richardson and Gilks 1993; Dellaportas and Stephens 1993; Gustafson 2003) or binary response misclassification under conventional binary regression settings (Paulino et al. 2003; Gustafson 2003; McInturff et al. 2004; Gerlach and Stamey 2007), Bayesian matrix-variate logistic regression with response misclassification has not been explored.

Motivated by this, in Chapter 5, we propose a Bayesian inference procedure using the horseshoe prior under matrix-variate logistic regression with the help of augmented data from the Pólya-Gamma distribution. We develop an algorithm to accommodate the influence of binary response misclassification on the Bayesian estimation procedure.

Numerical studies are conducted to evaluate the performance of the proposed method.

## Chapter 2

## Matrix-Variate Logistic Regression with Measurement Error

In this chapter, we investigate how measurement error in the matrix-variate affects the parameter inference, and explore matrix-variate logistic regression models with measurement error. The remainder is organized as follows. In Section 2.1, we introduce the matrixvariate logistic regression model and the estimation method for the error-free context. In Section 2.2, we conduct the bias analysis of the naive analysis which ignores measurement error present in matrix-variate logistic regression. In Section 2.3, we develop two inference methods to adjust for measurement error effects by capitalizing on the bias analysis in Section 2.2. In Section 2.4, we conduct simulation studies to assess the performance of the methods developed in Section 2.4 as well as to demonstrate the biased effects of the naive analysis. We also present an application to a EEG data set.

### 2.1 Notation and Framework

### 2.1.1 Matrix-Variate Logistic Regression Model

For subject $k$ with $k=1, \ldots, n$, let $Y_{k}$ be the binary response variable with value 1 for having a disease and 0 otherwise, let $x_{k}=\left[x_{k, i j}\right]_{(p+1) \times q}$ be the associated $(p+1) \times q$ covariate matrix where $x_{k, i j}$ is the observation at row $i$ and column $j$ for subject $k$, and let $z_{k}$ be the associated $p_{z} \times 1$ covariate vector for subject $k$. In this paper for subject $k=1, \ldots, n, x_{k}$ and $z_{k}$ are treated as fixed measurements in the sense that their distributions are unspecified.

Matrix-variate regression is useful for handling data with a matrix structure when the data in the same rows are perceived to share the same effects, and the data in same columns share the same effects. For instance, EEG data involve measurements associated with multiple channels and different time points. Using a matrix, say a $(p+1) \times q$ matrix $x_{k}$ for subject $k$, is most natural and informative to represent EEG measurements for a subject. If we use the conventional regression to study the effects of a combination of a specific channel and a time point on a disease, we would first convert the matrix into a vector by stacking the columns of $x_{k}$ from left to right to form a column vector vec $\left(x_{k}\right)$, and then fit a regression model:

$$
\begin{equation*}
\operatorname{logit}\left\{P\left(Y_{k}=1 \mid x_{k}\right)\right\}=<x_{k}, \mathcal{B}> \tag{2.1}
\end{equation*}
$$

where $\mathcal{B}$ is the matrix-structured coefficients, and $\left\langle x_{k}, \mathcal{B}\right\rangle=\operatorname{vec}\left(x_{k}\right)^{\top} \operatorname{vec}(\mathcal{B})=\sum_{i, j} \mathcal{B}_{i j} x_{k, i j}$, with $\operatorname{vec}(\mathcal{B})$ representing the vectoring form of $\mathcal{B}$ and $\mathcal{B}_{i j}$ standing for element $(i, j)$ of $\mathcal{B}$. As pointed out by Hung and Wang (2013), this modeling scheme introduces $(p+1) \times q$ parameters which can be too large to handle. In addition, limited sample sizes in many problems hinder us from estimating a large number of parameters. Vectorization not only introduces the model a huge number of parameters to estimate but also destroys the natural matrix structure which can be quite informative.

To overcome these issues, we consider the matrix-variate logistic regression model:

$$
\begin{equation*}
\operatorname{logit}\left\{P\left(Y_{k}=1 \mid x_{k}, z_{k}\right)\right\}=\alpha^{\top} x_{k} \beta+\gamma^{\top} z_{k}, \tag{2.2}
\end{equation*}
$$

where $\alpha$ is a $(p+1) \times 1$ parameter vector, $\beta$ is a $q \times 1$ parameter vector, and $\gamma$ is a $p_{z} \times 1$ parameter vector. To distinguish $\alpha$ and $\beta$, we call them the row parameter and the column parameter, respectively. Note that since no intercept is included in model (2.2), $x_{k}$ can be understood as a centered matrix, given by $x_{c k}=x_{k}-\bar{x}$, where $\bar{x}=(1 / n) \sum_{k=1}^{n} x_{k}$; or alternatively, we include 1 as the first element of $z_{k}$. In the following development, we take $x_{k}$ to be a centered version $x_{c k}$ when using model (2.2).

By rank-1 Canonical Polyadic Decomposition (CP-decomposition)(Kolda and Bader 2009), parameters $\alpha$ and $\beta$ in model (2.2) are related to $\mathcal{B}$ in model (2.1): $\mathcal{B}=\alpha \circ \beta$, where - denotes the outer product of two column vectors. We note that the CP-decomposition of $\mathcal{B}$ is not unique. In other words, $\mathcal{B}$ is not identifiable since for any constant $c \neq 0$, $\mathcal{B}=\left(c^{-1} \alpha\right) \circ(c \beta)$. To overcome nonidentifiability issues, constraints are often imposed on the parameter space so that certain values are inadmissible. A convention is to set the first element of $\alpha$ to be 1 (e.g., Hung and Wang 2013), which is also adopted in our development unless stated otherwise. However, for ease of exposition, we still use $\alpha$ to denote the subvector of the rest $p$-dimensional real parameters, and let $\theta=\left(\alpha^{\top}, \beta^{\top}, \gamma^{\top}\right)^{\top}$
denote the vector of parameters of interest with dimension $d=p+q+p_{z}$.
Our model (2.2) generalizes the matrix-variate logistic model (2.1) discussed by Hung and Wang (2013). Model (2.2) is more flexible in featuring the dependence of the binary outcome on covariates which include both a matrix form and a vector form. Parameters in model (2.2) are interpretive in terms of odds ratios. Let $\alpha_{i}$ be the $i$ th element of $\alpha$, for $i=2, \ldots, p+1$; let $\beta_{j}$ be the $j$ th element of $\beta$ for $j=1, \ldots, q$; and let $\gamma_{l}$ be the $l$ th element of $\gamma$ for $l=1, \ldots, p_{z}$. Given $i$ and $j$, let $\tilde{x}_{k}(i, j)$ represent the matrix identical to $x_{k}$ except that the element $(i, j)$ of $\tilde{x}_{k}(i, j)$ is set to be $x_{k, i j}+1$. Then $\alpha_{i} \beta_{j}$ represents the log odds ratio, $\log \left[\operatorname{odds}\left\{\tilde{x}_{k}(i, j)\right\} / \operatorname{odds}\left(x_{k}\right)\right]$, where odds $(A)=\operatorname{pr}\left(Y=1 \mid A, z_{k}\right) / \operatorname{pr}\left(Y=0 \mid A, z_{k}\right)$ with $A=\tilde{x}_{k}(i, j)$ or $x_{k}$. Parameters $\gamma_{l}$ can be interpreted in a similar manner.

### 2.1.2 Estimation of Model Parameters

Estimation of $\theta$ is carried out using the maximum likelihood method with the constraint on $\alpha$ discussed in Section 2.1 imposed. Typically, this can be done using the block relaxing algorithm described by Zhou et al. (2013). Let

$$
\begin{equation*}
\ell_{n}(\alpha, \beta, \gamma)=(1 / n) \sum_{k=1}^{n}\left[Y_{k}\left(\alpha^{\top} x_{k} \beta+\gamma^{\top} z_{k}\right)-\log \left\{1+\exp \left(\alpha^{\top} x_{k} \beta+\gamma^{\top} z_{k}\right)\right\}\right] \tag{2.3}
\end{equation*}
$$

be $1 / n$ times log-likelihood function contributed from the sample which is derived from model (2.2).

Instead of maximizing (2.3) with respect to $\alpha, \beta, \gamma$ simultaneously, we take three steps, or called three blocks, to obtain the estimates of $\alpha, \beta, \gamma$, separately. Shown in Table 2.1, in each block the likelihood function $\ell_{n}(\alpha, \beta, \gamma)$ is maximized with respect to one parameter with other two parameters fixed at the values of the previous iteration, where we use slightly different notation such as $\ell_{n}\left(\alpha \mid \beta^{(t)}, \gamma^{(t)}\right)$ to emphasize that $\ell_{n}(\alpha, \beta, \gamma)$ is treated as a function of $\alpha$ with $\beta$ and $\gamma$ fixed at $\beta^{(t)}$ and $\gamma^{(t)}$, respectively. Any optimization procedure may be applied for this purpose. Zhou et al. (2013) commented that this algorithm works well for generalized linear models, including logistic models with canonical link functions. Multiple initial values for $\alpha$ and $\beta$ may be tried to obtain the global maximum values. We suggest to randomly generate initial values of $\alpha$ and $\beta$ from the uniform distribution $U(0,1)$ and simply set the initial value of $\gamma$ as 0 .

Table 2.1: Block relaxation algorithm for maximizing $\ell_{n}(\alpha, \beta, \gamma)$
Initialize $\gamma^{(0)}=0$, set $\alpha^{(0)}$ and $\beta^{(0)}$ as values generated from the uniform distribution $U(0,1)$, and fix the first element of $\alpha^{(0)}$ as 1.
Repeat for $t=0,1,2, \ldots$
Block 1. $\alpha^{(t+1)}=\operatorname{argmax}_{\alpha} \ell\left(\alpha \mid \beta^{(t)}, \gamma^{(t)}\right)$
Block 2. $\beta^{(t+1)}=\operatorname{argmax}_{\beta} \ell\left(\beta \mid \alpha^{(t+1)}, \gamma^{(t)}\right)$
Block 3. $\gamma^{(t+1)}=\operatorname{argmax}_{\gamma} \ell\left(\gamma \mid \alpha^{(t+1)}, \beta^{(t+1)}\right)$
until
$\left|\ell_{n}\left(\alpha^{(t)}, \beta^{(t)}, \gamma^{(t)}\right)-\ell_{n}\left(\alpha^{(t+1)}, \beta^{(t+1)}, \gamma^{(t+1)}\right)\right|<\epsilon$,
where $\epsilon$ is a pre-specified positive value showing the tolerance level.

### 2.2 Bias Analysis

### 2.2.1 Additive Matrix-Variates Measurement Error Model

In applications, measurements of variables are often subject to error. We consider settings where $z_{k}$ is precisely measured but $x_{k}$ is error-contaminated. Suppose that the precise measurement of $x_{k}$ is unavailable but repeated surrogate measurements for $x_{k}, X_{k r}^{*}$, are observed for $r=1, \ldots, m_{k}$, where $m_{k}$ is a positive integer which may or may not depend on $k$. Assume that

$$
\begin{equation*}
X_{k r}^{*}=x_{k}+E_{k r} \tag{2.4}
\end{equation*}
$$

where $E_{k r}$ is a $(p+1) \times q$ matrix of random noise with mean zero and is independent of $Y_{k}$ and $\left\{x_{k}, z_{k}\right\}$. The independence of $E_{k r}$ of $\left\{Y_{k}, x_{k}, z_{k}\right\}$ implies the nondifferential measurement error mechanism (Carroll et al. 2006, p.36; Yi 2017, p.50). That is, conditional on the true covariates $\left\{x_{k}, z_{k}\right\}, X_{k r}^{*}$ is independent of $Y_{k}$, suggesting that the surrogate measurements $X_{k r}^{*}$ have no predictive value for the outcome variable $Y_{k}$ when $x_{k}$ and $z_{k}$ are controlled.

For $k=1, \ldots, n$, and $r=1, \ldots, m_{k}$, let $\operatorname{vec}\left(E_{k r}\right)$ represents a $(p+1) q$-dimensional vectorized version of $E_{k r}$, and let $\Omega_{0}$ be the covariance matrix of $\operatorname{vec}\left(E_{k r}\right)$, i.e., $\Omega_{0}=$ $E\left\{\operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}$. Let $\bar{X}_{k+}^{*}=\left(1 / m_{k}\right) \sum_{r=1}^{m_{k}} X_{k r}^{*}$ and $\bar{E}_{k+}=\left(1 / m_{k}\right) \sum_{r=1}^{m_{k}} E_{k r}$. Then $\bar{X}_{k+}^{*}=x_{k}+\bar{E}_{k+}$, and the mean and variance of $\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)$ are $\operatorname{vec}\left(x_{k}\right)$ and $\Omega_{0} / m_{k}$, respectively. For $k=1, \ldots, n$, define centered surrogate measurements $X_{k}^{*}: X_{k}^{*}=\bar{X}_{k+}^{*}{ }_{\bar{E}}$ $(1 / n) \sum_{k=1}^{n} \bar{X}_{k+}^{*}$. Equivalently, let $\bar{U}_{k}=\bar{E}_{k+}-\bar{E}$ and $x_{\mathrm{ck}}=x_{k}-\bar{x}$, where $\bar{E}=(1 / n) \sum_{k=1}^{n} \bar{E}_{k+}$ and $\bar{x}=(1 / n) \sum_{k=1}^{n} x_{k}$. Then

$$
\begin{equation*}
X_{k}^{*}=x_{\mathrm{ck} k}+\bar{U}_{k}, \tag{2.5}
\end{equation*}
$$

where $\operatorname{vec}\left(\bar{U}_{k}\right)$ has mean zero and covarariance matrix $\left\{(n-2) /\left(n m_{k}\right)+\left(1 / n^{2}\right) \sum_{k=1}^{n} 1 / m_{k}\right\} \Omega_{0}$.

For ease of exposition, we assume the number of replicates for each subject to be the same, i.e., $m_{k}=m$ for $k=1, \ldots, n$, where $m$ is a positive integer. Let $m_{\mathrm{c}}=m n /(n-1)$, then the covarariance matrix of $\operatorname{vec}\left(\bar{U}_{k}\right)$ is $E\left\{\operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}\right\}=\Omega_{0} / m_{\mathrm{c}}$.

### 2.2.2 Naive Analysis

When matrix-variates are subject to measurement error, naively using the logistic regression model (2.2) with $x_{k}$ replaced by $X_{k}^{*}$ yields the model

$$
\begin{equation*}
\operatorname{logit}\left\{P\left(Y_{k}=1 \mid X_{k}^{*}, z_{k}\right)\right\}=\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}, \tag{2.6}
\end{equation*}
$$

where $\alpha^{*}, \beta^{*}$, and $\gamma^{*}$ are the parameters which may differ from the corresponding parameter in (2.2). Let $\theta^{*}=\left(\alpha^{* \top}, \beta^{* \top}, \gamma^{* \top}\right)^{\top}$.

Estimation of $\theta^{*}$ may proceed by mimicking the maximum likelihood method. That is, we maximize the log likelihood function derived from (2.6),

$$
\begin{equation*}
\ell_{n}^{*}\left(\theta^{*}\right)=(1 / n) \sum_{k=1}^{n} Y_{k}\left(\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}\right)-\log \left\{1+\exp \left(\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}\right)\right\} \tag{2.7}
\end{equation*}
$$

with respect to $\theta^{*}$ and let $\hat{\theta}^{*}=\left(\hat{\alpha}^{* T}, \hat{\beta}^{* T}, \hat{\gamma}^{* \top}\right)^{\top}$ denote the estimator of $\theta^{*}$. While (2.7) is similar to (2.3) in the function form, the meaning of $\theta^{*}$ in (2.7) is not the same as that of $\theta$ in (2.3).

Under regularity conditions (e.g., White 1982), $\hat{\theta}^{*}$ solves

$$
\begin{equation*}
\mathrm{S}_{n}^{*}\left(\hat{\theta}^{*}\right)=0 \tag{2.8}
\end{equation*}
$$

where

$$
\mathrm{S}_{n}^{*}\left(\theta^{*}\right)=\frac{\partial \ell_{n}^{*}}{\partial \theta^{*}} \triangleq\left(\begin{array}{c}
\mathrm{S}_{\alpha, n}^{*}\left(\theta^{*}\right)  \tag{2.9}\\
\mathrm{S}_{\beta, n}^{*}\left(\theta^{*}\right) \\
\mathrm{S}_{\gamma, n}^{*}\left(\theta^{*}\right)
\end{array}\right)=(1 / n) \sum_{k=1}^{n}\left(\begin{array}{c}
C_{t}^{\top} X_{k}^{*} \beta^{*} \\
X_{k}^{* \mathrm{~T}} \alpha^{*} \\
z_{k}
\end{array}\right)\left\{Y_{k}-p_{k}\left(\theta^{*} ; X_{k}^{*}\right)\right\}
$$

$C_{t}=\left[0_{p}, I_{p}\right]^{\top}, 0_{p}$ is the $p \times 1$ vector of zeros, $I_{p}$ is the $p \times p$ identity matrix, and $p_{k}\left(\theta^{*} ; X_{k}^{*}\right)=$ $P\left(Y_{k}=1 \mid X_{k}^{*}, z_{k}\right)$ which equals, by (2.6),

$$
\begin{equation*}
p_{k}\left(\theta^{*} ; X_{k}^{*}\right)=\frac{\exp \left(\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}\right)}{1+\exp \left(\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}\right)} ; \tag{2.10}
\end{equation*}
$$

the dependence on $z_{k}$ is suppressed in the notation $p_{k}\left(\theta^{*} ; X_{k}^{*}\right)$ for ease of exposition. In Appendix A.3, we show the following result.

Theorem 2.1 Assume that Conditions (C.1), (C.3), (C.4) in Appendix A. 1 hold and that $\min (m, n) \rightarrow \infty$. Then

$$
\hat{\theta}^{*}-\theta=o_{p}(1)
$$

While Theorem 2.1 shows that $\hat{\theta}^{*}$ is a consistent estimator of $\theta$ under certain situations, this result does not suggest that the naive method of ignoring measurement error is a valid and practical procedure in applications. The requirement $\min (m, n) \rightarrow \infty$ in Theorem 2.1 essentially says that measurement error in matrix-variates virtually becomes null because the covariance matrix for $\operatorname{vec}\left(\bar{U}_{k}\right)$ in (2.5) approaches a zero matrix. In such an instance, it is not surprising that the estimator $\hat{\theta}^{*}$ would be a consistent estimator for $\theta$. As Theorem 2.1 establishes the asymptotic difference of $\hat{\theta}^{*}-\theta$ when both $m$ and $n$ approach infinity, to complement this result, it is interesting to examine for given $m$ and $n$, what quantities would dominate the difference $\hat{\theta}^{*}-\theta$. Such an exploration allows us to develop estimators of correcting for measurement error effects for settings with a given $m$, and thus establish their asymptotic distributions if only $n$ approaches infinity. In the next subsection, we explore this problem.

### 2.2.3 Refined Expressions for Bias

Let $v_{1, k}(\cdot)=p_{k}(\cdot)\left\{1-p_{k}(\cdot)\right\}$ and $v_{2, k}(\cdot)=p_{k}(\cdot)\left\{1-p_{k}(\cdot)\right\}\left\{1-2 p_{k}(\cdot)\right\}$ where $p_{k}(\cdot)$ is defined by (2.10). Define $\mathrm{S}_{n}=n^{1 / 2} \partial \ell_{n}(\alpha, \beta, \gamma) / \partial \theta$, where $\ell_{n}(\alpha, \beta, \gamma)$ is given by (2.3). Motivated by Stefanski and Carroll (1985, p.1339), we consider the following terms, each corresponding to parameter $\alpha, \beta$ or $\gamma$ :

$$
\begin{aligned}
& \mathrm{J}_{\alpha, n, 1}=-(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right), \\
& \mathrm{J}_{\beta, n, 1}=-(1 / 2 n) \sum_{k=1}^{n} x_{\mathrm{ck}}^{\mathrm{\top}} \alpha \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right), \\
& \mathrm{J}_{\alpha, n, 2}=-(1 / n) \sum_{k=1}^{n} C_{t}^{\top} \Pi_{\alpha} \times\left(\Omega_{0} / m_{c}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J}_{\beta, n, 2}=-(1 / n) \sum_{k=1}^{n} \Pi_{\beta}\left(\Omega_{0} / m_{c}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right), \\
& \mathrm{J}_{\gamma, n}=-(1 / 2 n) \times \sum_{k=1}^{n} z_{k} \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right),
\end{aligned}
$$

where $\Pi_{\alpha}=\left[\begin{array}{llll}\beta_{1} I_{(p+1)} & \beta_{2} I_{(p+1)} & \cdots & \beta_{q} I_{(p+1)}\end{array}\right]$ is a $(p+1) \times\{(p+1) q\}$ matrix, and $\Pi_{\beta}$ is a $q \times\{(p+1) q\}$ block matrix with $\alpha^{\top}$ being the diagonal block vectors and zero elsewhere. Let $\mathrm{J}_{\alpha, n}=\mathrm{J}_{\alpha, n, 1}+\mathrm{J}_{\alpha, n, 2}, \mathrm{~J}_{\beta, n}=\mathrm{J}_{\beta, n, 1}+\mathrm{J}_{\beta, n, 2}$, and $\mathrm{J}_{n}(\theta)=\left(\mathrm{J}_{\alpha, n}^{\top}, \mathrm{J}_{\beta, n}^{\top}, \mathrm{J}_{\gamma, n}^{\top}\right)^{\top}$. Write $\mathrm{H}_{n}(\theta)=$ $-\partial^{2} \ell_{n}(\theta) / \partial \theta \partial \theta^{\top}$.

Theorem 2.2 Under Conditions (C.1)-(C.3), and (C.6) in Appendix A.1, we have that

$$
\begin{equation*}
\hat{\theta}^{*}-\theta=\left(1 / n^{1 / 2}\right) \mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)+\mathrm{H}_{n}^{-1}(\theta) \mathrm{J}_{n}(\theta) \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)+o_{p}\left\{\max \left(1 / m, 1 / n^{1 / 2}\right)\right\} . \tag{2.11}
\end{equation*}
$$

Expression (2.11) shows that the asymptotic bias of $\hat{\theta}^{*}$ involves the terms pertinent to $\mathrm{H}_{n}(\theta), \mathrm{S}_{n}(\theta), \mathrm{J}_{n}(\theta)$ as well as the values of $n$ and $m$. Stefanski and Carroll (1985, Theorem 1) showed that under regularity conditions, $\mathrm{H}_{n}^{-1 / 2}(\theta) \mathrm{S}_{n}(\theta)$ asymptotically follows a normal distribution with mean zero and an identity covariance matrix, and hence, yielding that $\mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)$ in (2.11) has an asymptotic normal distribution with mean zero and covariance matrix $I^{-1}(\theta)$, where $I(\theta)=\mathrm{E}\left\{\mathrm{H}_{n}(\theta)\right\}$. Consequently, (2.11) implies that with $m$ of an order $O(\sqrt{n}), n^{1 / 2}\left\{\hat{\theta}^{*}-\theta-\mathrm{H}_{n}^{-1}(\theta) \mathrm{J}_{n}(\theta) \operatorname{vec}\left(\alpha \beta^{\top}\right)\right\}$ has an asymptotic normal distribution with mean zero and covariance matrix $I^{-1}(\theta)$ as $n \rightarrow \infty$.

The proof of Theorem 2.2 begins with applying the first-order Taylor series expansion to $S_{n}^{*}\left(\hat{\theta}^{*}\right)=0$ around $\theta$ with $X_{k}^{*}$ and $z_{k}$ fixed:

$$
\begin{equation*}
\hat{\theta}^{*}=\theta+\mathrm{H}_{n}^{*-1}(\theta) \mathrm{S}_{n}^{*}(\theta)+o_{p}\left\{\max \left(1 / m, 1 / n^{1 / 2}\right)\right\} \tag{2.12}
\end{equation*}
$$

where $\mathrm{S}_{n}^{*}(\theta)$ is determined by (2.9) with $\theta^{*}$ replaced by $\theta$, and $\mathrm{H}_{n}^{*}(\theta)=-\partial \mathrm{S}_{n}^{*}(\theta) / \partial \theta^{\top}$. The details are given in Appendix A.6.
(2.12) expresses the relationship between $\hat{\theta}^{*}$ and $\theta$ using the surrogate observations $X_{k}^{*}$ for $k=1, \ldots n$, together with the covariate $z_{k}$ and the response variable $Y_{k}$. To obtain (2.11) expressed in terms of the true covariate $x_{c k}$, we need only to examine $\mathrm{S}_{n}^{*}(\theta)$ and $\mathrm{H}_{n}^{*}(\theta)$ using their counterparts based on the true covariates $x_{\mathrm{c} k}$ together with $\left\{z_{k}, Y_{k}\right\}$, which is summarized in the following lemmas whose proofs are placed in Appendices A. 4 and A.5.

Lemma 1 Let $\mathrm{Z}_{n}(\theta)=\left(1 / n^{1 / 2}\right) \mathrm{S}_{n}(\theta)+\mathrm{J}_{n}(\theta) \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)$ which depends on the true covariates $x_{\mathrm{ck}}$ as well as $\left\{z_{k}, Y_{k}\right\}$. Under Conditions (C.1) and (C.3) in Appendix A.1, we have that

$$
\begin{equation*}
\mathrm{S}_{n}^{*}(\theta)=\mathrm{Z}_{n}(\theta)+o_{p}\left\{\max \left(1 / m, 1 / n^{1 / 2}\right)\right\} \tag{2.13}
\end{equation*}
$$

Lemma 2 Under Conditions (C.1)-(C.3) in Appendix A.1, we have that as $\min (m, n) \rightarrow$ $\infty$,

$$
\begin{equation*}
\mathrm{H}_{n}^{*}(\theta)=\mathrm{H}_{n}(\theta)+o_{p}(1) \tag{2.14}
\end{equation*}
$$

### 2.3 Corrections for Measurement Error Effects

In this section, we describe two methods of correcting for measurement error effects on parameter estimation.

### 2.3.1 Moment-Based Correction Method

Noticing that $\left(1 / n^{1 / 2}\right) \mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)$ approaches 0 in probability as $n \rightarrow \infty$ as discussed earlier, we are motivated by Theorem 2.2 to consider

$$
\begin{equation*}
\hat{\theta}_{c}^{*}=\hat{\theta}^{*}-\hat{\mathrm{H}}_{n}^{-1}\left(\hat{\theta}^{*}\right) \hat{\mathrm{J}}_{n}\left(\hat{\theta}^{*}\right) \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \mathrm{~T}}\right), \tag{2.15}
\end{equation*}
$$

where $\hat{\mathrm{J}}_{n}\left(\hat{\theta}^{*}\right)$ and $\hat{\mathrm{H}}_{n}\left(\hat{\theta}^{*}\right)$ correspond to $\mathrm{J}_{n}(\theta)$ and $\mathrm{H}_{n}(\theta)$ with $x_{\mathrm{c} k}, \theta$ and $\Omega_{0}$, respectively, replaced by $X_{k}^{*}, \hat{\theta}^{*}$ and $\hat{\Omega}$ for $k=1, \ldots, n$, with $\hat{\Omega}$ representing an estimator of $\Omega_{0}$. In Appendix A.7, we show the following asymptotic properties of $\hat{\theta}_{c}^{*}$.

Theorem 2.3 Suppose that Conditions (C.1)-(C.3) and (C.5)-(C.6) in Appendix A. 1 hold. Assume that as $n \rightarrow \infty$,

$$
\begin{equation*}
n^{1 / 2}\left(\hat{\Omega}-\Omega_{0}\right)=O_{p}(1) \tag{2.16}
\end{equation*}
$$

Then as $n \rightarrow \infty$,
(a) $\hat{\theta}_{c}^{*} \xrightarrow{p} \theta$;
(b) $n^{1 / 2}\left(\hat{\theta}_{c}^{*}-\theta\right) \xrightarrow{d} N\left(0, I^{-1}(\theta)\right)$.

The consistency of $\hat{\theta}_{c}^{*}$ requires the consistency assumption (2.16) for the estimator $\hat{\Omega}$ of the covariance matrix $\Omega_{0}$. With the replicates $X_{k r}^{*}$ following model (2.4), a $\sqrt{n}$-consistent covariance estimator is given by:

$$
\begin{equation*}
\hat{\Omega}=\left[\sum_{k=1}^{n} \sum_{r=1}^{m}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}^{\top}\right] /\{n(m-1)\} ; \tag{2.17}
\end{equation*}
$$

the proof is presented in Appendix A. 8 .

### 2.3.2 Sufficient Statistic Correction Method

Except for the requirement of zero mean of $E_{k r}$ and the additive structure (2.4), the construction of the estimator $\hat{\theta}_{c}^{*}$ has the advantage of not requiring the specification of the full distribution for $E_{k r}$. However, when $p$ and/or $q$ are large, the calculation of $\hat{\theta}_{c}^{*}$ may be time-consuming due to the involvement of the large dimensional covariance matrix $\Omega_{0}$, and the resulting estimator may not be accurate due to a small sample size $n$ relative to the dimension $\{(p+1) q\} \times\{(p+1) q\}$ of $\Omega_{0}$. Driven by these issues, we explore another estimator which capitalizes on imposing the normality distributional form of $E_{k r}$.

Specifically, for $k=1, \ldots, n$ and $r=1, \ldots, m$, we assume that $E_{k r}$ follows a matrix normal distribution with $E_{k r} \sim M N\left(0_{(p+1) \times q}, R, C\right)$, where $M N(\cdot, \cdot, \cdot)$ represents a matrix normal distribution, $R$ represents the $(p+1) \times(p+1)$ row covariance matrix, and $C$ stands for the $q \times q$ column covariance matrix, respectively (Hoff 2011). Equivalently, $\operatorname{vec}\left(E_{k r}\right) \sim N_{(p+1) q}\left(\operatorname{vec}\left(0_{(p+1) \times q}\right), \Omega_{0}\right)$, where $\Omega_{0}=C \otimes R$, where $\otimes$ denotes the Kronecker product (Dutilleu 1999). By (2.5), the observed matrix-variate $X_{k}^{*}$ follows a matrix normal distribution as well, i.e., $\operatorname{vec}\left(X_{k}^{*}\right) \sim N_{(p+1) q}\left(\operatorname{vec}\left(x_{\mathrm{ck}}\right), \Omega_{0} / m_{c}\right)$, where $k=1, \ldots, n$.

Under the assumption that $E_{k r}$ is independent of $Y_{k}$ and $\left\{x_{k}, z_{k}\right\}$ for $k=1, \ldots n$, we have that given $\left\{x_{c k}, z_{k}\right\}$, the joint distribution of $Y_{k}$ and $X_{k}^{*}$ can be written as

$$
\begin{align*}
f_{\mathrm{Y}, \mathrm{X}^{*}}\left(Y_{k}, X_{k}^{*} \mid x_{\mathrm{ck}}, z_{k}, \theta^{*}\right) & =f_{\mathrm{Y}}\left(Y_{k} \mid X_{k}^{*}, x_{\mathrm{ck}}, z_{k}, \theta^{*}\right) \times f_{\mathrm{X}^{*}}\left(X_{k}^{*} \mid x_{\mathrm{ck}}, z_{k}\right)  \tag{2.18}\\
& =f_{\mathrm{Y}}\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}, \theta\right) \times f_{\mathrm{X}^{*}}\left(X_{k}^{*} \mid x_{\mathrm{ck}}\right),
\end{align*}
$$

where $f_{\mathrm{Y}}\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}, \theta\right)$ is determined by (2.2) and $f_{\mathrm{X}^{*}}\left(X_{k}^{*} \mid x_{\mathrm{ck}}\right)$ is determined by (2.5).
With $\theta$ treated as a given constant and $x_{c k}$ regarded as an unknown parameter, using the formulation (2.18), we derive sufficient statistics for the $x_{c k}$, given by

$$
\begin{equation*}
\Delta_{k}=X_{k}^{*}+\left(Y_{k}-1 / 2\right) R \alpha \beta^{\top} C / m_{c} \tag{2.19}
\end{equation*}
$$

the details are included in Appendix A.9. The availability of such sufficient statistics allows us to find a conditional probability to carry out inference about $\theta$ in the absence of the $x_{\mathrm{ck}}$. To be specific, given $\Delta_{k}$ and $z_{k}$, the conditional probability of $Y_{k}$ is

$$
\begin{equation*}
P\left(Y_{k}=1 \mid \Delta_{k}, z_{k}\right)=\exp \left[\left(\eta_{\Delta_{k}}^{*}+\gamma^{\top} z_{k}\right)-\log \left\{1+\exp \left(\eta_{\Delta_{k}}^{*}+\gamma^{\top} z_{k}\right)\right\}\right], \tag{2.20}
\end{equation*}
$$

where $\eta_{\Delta_{k}}^{*}=\alpha^{\top} \Delta_{k} \beta$. Working with the conditional distribution (2.20) yields the likelihood score equation

$$
\begin{equation*}
\sum_{k=1}^{n}\left\{Y_{k}-P\left(Y_{k}=1 \mid \Delta_{k}, z_{k}\right)\right\}\binom{\tilde{\Delta}_{k}^{\top}(\theta)}{z_{k}}=0 \tag{2.21}
\end{equation*}
$$

where $\tilde{\Delta}_{k}(\theta)=\left(\beta^{\top} \Delta_{k}^{\top} C_{t}, \alpha^{\top} \Delta_{k}\right)^{\top}$.
Although the derivation of (2.21) is conceptually straightforward with the availability of the conditional probability (2.20), equation (2.21) cannot be directly used for finding a consistent estimator since it may produce multiple solutions which are not necessarily all consistent, as pointed out by Stefanski and Carroll (1985, p.1341). As an alternative, we maximize (2.3) with $x_{k}$ replaced by $\hat{\Delta}_{k}$ and obtain an estimator of $\theta$, denoted as $\hat{\theta}_{s}^{*}$, where $\hat{\Delta}_{k}$ is determined by (2.19) with $R, C, \alpha, \beta$ replaced by $\hat{R}, \hat{C}, \hat{\alpha}^{*}$ and $\hat{\beta}^{*}$, respectively, with $\hat{R}$ and $\hat{C}$ being the estimators of $R$ and $C$, i.e.,

$$
\begin{equation*}
\hat{\Delta}_{k}=X_{k}^{*}+g_{k} / m_{c}, \tag{2.22}
\end{equation*}
$$

with $g_{k}=\left(Y_{k}-1 / 2\right) \hat{R} \hat{\alpha}^{*} \hat{\beta}^{\top *} \hat{C}$ for $k=1, \ldots, n$.
To obtain the estimator $\hat{\theta}_{s}^{*}$, we need to estimate the unknown row and column covariance matrices $R$ and $C$, which can be done using the fip-flop algorithm (Dutilleu 1999). This algorithm basically applies maximum likelihood estimation to estimate $R$ and $C$ one at a time iteratively to yield $\sqrt{n}$-consistent estimators, where the matrix normality assumption is typically imposed on $E_{k r}$ to allow for manageable computation. Furthermore, we comment that the normality assumption for $E_{k r}$ is needed in the derivation of the estimator $\hat{\theta}_{s}^{*}$. This assumption enables us to work out sufficient statistics (2.19) for the $x_{c k}$, as shown in Appendix A.9. In Appendix A.10, we show that following theorem.

Theorem 2.4 Suppose that Conditions (C.1)-(C.3) and (C.5)-(C.6) in Appendix A. 1 hold. Assume that as $n \rightarrow \infty, n^{1 / 2}\left(\hat{C} \otimes \hat{R}-\Omega_{0}\right)=O_{p}(1)$ and $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$. Then we have that

$$
\begin{equation*}
\hat{\theta}_{s}^{*}=\theta+\left(1 / n^{1 / 2}\right) \mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)+o_{p}\left\{\max \left(1 / m, 1 / n^{1 / 2}\right)\right\}, \tag{2.23}
\end{equation*}
$$

and hence, with $m$ of order $O(\sqrt{n})$, the following results:
(a) $\hat{\theta}_{s}^{*} \xrightarrow{p} \theta$ as $n \rightarrow \infty$;
(b) $n^{1 / 2}\left(\hat{\theta}_{s}^{*}-\theta\right) \xrightarrow{d} N\left(0, I^{-1}(\theta)\right)$ as $n \rightarrow \infty$.

Theorems 2.3 and 2.4 show that both $\hat{\theta}_{c}^{*}$ and $\hat{\theta}_{s}^{*}$ are consistent and have an asymptotic normal distribution. The results offer us two estimators of $\theta$ under different assumptions of the measurement error model. Estimator $\hat{\theta}_{c}^{*}$ is more robust than $\hat{\theta}_{s}^{*}$ since it does not require the normality assumption for the measurement error term $E_{k r}$. Theorem 2.4 also offers a rigorous justification of the validity of $\hat{\theta}_{s}^{*}$ which was heuristically derived by Li's PhD thesis work.

### 2.4 Numerical Studies

### 2.4.1 Simulation Design

We now evaluate the performance of the proposed methods under different settings via simulation studies where we consider settings with $p+1=q$, denoted as $p_{x}$ for ease of exposition. We also demonstrate the impacts of the naive analysis which ignores measurement error. The sample size is set as $n=1000$ when $p_{x}=5,10$ or 20 , and $n=2000$ when $p_{x}=20$. We consider the case with $m=2,5$ or 10 . Five hundred simulations are run for each setting.

For $k=1, \ldots, n$, we simulate $p_{x} \times p_{x}$ matrix-variate data, $x_{k}$, from the matrix normal distribution $M N\left(0, \sigma_{x}^{2} I_{p_{x}}, I_{p_{x}}\right)$, where $\sigma_{x}^{2}$ is set as 1.0. The $z_{k}$ covariates are independently generated from the standard normal distribution. For $k=1, \ldots, n$, the binary response $Y_{k}$ is randomly generated from the Bernoulli distribution with the probability $P\left(Y_{k}=\right.$ $\left.1 \mid x_{\mathrm{ck}}, z_{k} ; \alpha, \beta, \gamma\right)=\exp \left(\alpha^{\top} x_{\mathrm{ck}} \beta+\gamma z_{k}\right) /\left\{1+\exp \left(\alpha^{\top} x_{\mathrm{ck}} \beta+\gamma z_{k}\right)\right\}$, where $\gamma=0.5$. When $p_{x}=5$, we set $\alpha=(0.5,1,-1,-1,1)^{\top}$ and $\beta=(1,0.5,1,-1,-1)^{\top}$; when $p_{x}=10$, we take $\alpha=\left(0.5,1,-1 \times 1_{4}^{\top}, 1 \times 1_{4}^{\top}\right)^{\top}$ and $\beta=(1,0.5,1,-1,-1,1,0.5,1,-1,-1)^{\top}$; when $p_{x}=20$, we take $\alpha=\left(0.5,1,-0.5 \times 1_{4}^{\top}, 0.5 \times 1_{6}^{\top},-0.5 \times 1_{4}^{\top}, 0.5 \times 1_{4}^{\top}\right)^{\top}$ and $\beta=\left(0.5 \times 1_{3}^{\top},-0.5 \times\right.$ $\left.1_{2}^{\top}, 0.5 \times 1_{3}^{\top},-0.5 \times 1_{2}^{\top}, 0.5 \times 1_{3}^{\top},-0.5 \times 1_{2}^{\top}, 0.5 \times 1_{3}^{\top},-0.5 \times 1_{2}^{\top}\right)^{\top}$, where $1_{d}$ represents a $d \times 1$ unit vector. For $k=1, \ldots, n$, repeated surrogate measurements $X_{k r}^{*}$ are generated from model (3.1), where the $\mathrm{E}_{k r}$ are independently generated from the matrix normal distribution, $M N\left(0, \sigma^{2} I_{p_{x}}, I_{p_{x}}\right)$ for $r=1, \ldots, m$. We let $\sigma=0.25,0.5,0.75$ to feature small, moderate and large measurement error, which lead to the signal-to-noise ratio $\sigma_{x}^{2} / \sigma^{2}$ for each covariate component to be 16,4 , and 1.778 , respectively.

We estimate the model parameters $\alpha$ and $\beta$ using different methods. The first analysis is to use the naive approach which fits the data with model (2.7) using the block relaxation algorithm indicated in Table 2.1. To correct for measurement error effects, we conduct two analyses, respectively, called Methods 1 and 2, by using (2.15) and the estimator based on (2.23), respectively.

To use these methods, the covariance matrix $\Omega_{0}$ for the measurement error model needs to be estimated. Since the sample size is not large enough relative to the dimension of the covaraince matrix, the sample covariance matrix $\hat{\Omega}$ may be poorly estimated and may not be invertible. To obtain a stable covaraince estimator of $\Omega_{0}$, we apply the method of Ledoit and Wolf (2004) which uses a linear combination of the sample covariance matrix $\hat{\Omega}$ and the identity matrix $I_{p_{x}}$ to obtain an adjusted covariance matrix $\hat{\Omega}_{L}$.

Specifically, for a given $k=1, . ., n$ and a given $r=1, \ldots, m$, we first vectorize the $p_{x}$ matrix $X_{k r}^{*}$ to create a $p_{x}^{2} \times 1$ column vector $\operatorname{vec}\left(X_{k r}^{*}\right)$. Next, we define a $p_{x}^{2} \times M$ matrix, $X_{M}$, by arranging the vectors $\operatorname{vec}\left(X_{k r}^{*}\right)$ as its columns according to the order from $\operatorname{vec}\left(X_{11}^{*}\right)$ to $\operatorname{vec}\left(X_{n m}^{*}\right)$, where $M=n m$. Then, we calculate the sample covariance matrix $\hat{\Omega}=M^{-1} X_{M} X_{M}^{\top}$ and $r_{M}=\operatorname{tr}\left(\hat{\Omega} I_{p_{x}}^{\top}\right) / p_{x}^{2}$, where $\operatorname{tr}(\cdot)$ is the trace of a matrix. Furthermore, we calculate $d_{M}^{2}=\left\|\hat{\Omega}-r_{M} I_{p_{x}}\right\|^{2}$ and $\mathrm{C}_{M}^{2}=\min \left(\bar{b}_{M}^{2}, d_{M}^{2}\right)$, where $\bar{b}_{M}^{2}=$ $(1 / M) \sum_{i=1}^{M}\left\|x_{. i}^{M}\left(x_{. i}^{M}\right)^{\top}-\hat{\Omega}\right\|^{2}$ with $\|\cdot\|$ being the Frobenius Norm, and $x_{. i}^{M}$ represents the $i$ th column of $X_{M}$ for $i=1, \ldots, M$. Finally, we consider the linear combination $\hat{\Omega}_{L}=$ $a \hat{\Omega}+(1-a) I_{p_{x}}$ of $\hat{\Omega}$ and the identity matrix $I_{p_{x}}$ with $a$ given by $\mathrm{C}_{M}^{2} / d_{M}^{2}$. Such $\hat{\Omega}_{L}$ is a $\sqrt{n}$ consistent covariance estimator (Ledoit and Wolf 2004, Theorem 3.4); its calculation can be realized using a Matlab function available at http://www.econ.uzh.ch/en/people/ faculty/wolf/publications.html\#9.

### 2.4.2 Simulation Results

We summarize the simulation results in the terms of the finite sample relative biases in percent (bias\%), empirical standard errors (ESE), model-based asymptotic standard errors (ASE), and mean squared errors (MSE) as well as the coverage rates in percent (CR\%) for $95 \%$ confidence intervals. Here bias\% is defined as the ratio of the difference between the true parameter value and the average of the estimates obtained from all simulation runs to the true parameter value; ESE is defined to be the sample standard error of the estimates obtained from all simulation runs; MSE represents the average of the squared differences between the estimates and the true parameter value obtained from all simulation runs; ASE is calculated as the square root of the average of all the estimates of the asymptotic
variance in all the simulation runs; CR\% is the coverage rate for $95 \%$ confidence intervals for all the simulations.

Table 2.2 includes the results for the row and column effects for the cases with matrixvariate with small, moderate and severe measurement error when $p_{x}=5$ where only the results for $\alpha_{1}, \alpha_{4}, \beta_{1}, \beta_{5}$, and $\gamma$ are included to save space. Complete results for this case are placed in Tables A.1-A. 2 in Appendices. It is seen that measurement error effects on estimating the row parameters $\alpha$ are not as striking as those for estimating, the column parameters $\beta$ and the covariate parameters, $\gamma$. The performance of the naive method is influenced dramatically by the degree of measurement error. The naive method produces noticeable finite sample biases and the bias increases as the degree of measurement error increases. On the other hand, Methods 1 and 2 significantly improve the performance of the naive method, and the improvement is clearly noticeable for cases with not severe measurement error or a good number of replicates. Mean squared errors of the naive estimators are higher than those of the proposed methods, especially when measurement errors is not minor. Not surprisingly, the performance of the proposed methods deteriorates as measurement error becomes substantial, especially in combination with decreasing the number of replicates. This phenomenon is clearly indicated by the coverage rates of $95 \%$ confidence intervals.

In Tables A.3-A. 10 and A.13-A. 14 in Appendices, we respectively report the simulation results for the cases with $p_{x}=10$ and $p_{x}=20$. We observe patterns similar to those for the case $p_{x}=5$, but the magnitudes of the finite sample biases and standard errors are larger than those with $p_{x}=5$. As $p_{x}$ becomes larger, the performance of the three methods tends to be more sensitive to the increase of measurement error and the number of replicates. Unsurprisingly, with a given sample size, the performance of the three methods deteriorates as $p_{x}$ increases. With a given $p_{x}$, the two proposed methods tend to produce more accurate results as the sample size increases, which is evident from the results in Table A. 10 and Table A. 14 for $p_{x}=20$ and $n=1000$ and 2000, respectively.

### 2.4.3 Sensitivity Analysis of the Proposed Methods

In Sections 2.4.1-2.4.2, we conduct simulations to (1) demonstrate that the naive analysis ignoring the feature of measurement error can lead to seriously biased results, and (2) confirm the good performance of the two proposed methods. Our assessment is carried out for the case where surrogate measurements are generated from model (2.4) with the error term $E_{k r}$ assumed to be normal, an assumption that is required by Method 2. Now we further assess how sensitive the performance of Method 2 is to the violation of the normality assumption for $E_{k r}$. In comparison, we also report results obtained from Method 1.

Specifically, we conduct a simulation study where $E_{k r}$ is generated from a matrix $t$ distribution, $E_{k r} \sim T(\nu, W, R, C)$. Here $T(\cdot, \cdot, \cdot, \cdot)$ represents a matrix $t$-distribution, $W$ is the $p_{x} \times p_{x}$ location matrix, $R$ and $C$ respectively represent the $p_{x} \times p_{x}$ row scale and the $p_{x} \times p_{x}$ column scale matrices, and $\nu$ is the degrees of freedom. This matrix $t$-distribution yields that $\Omega_{0}=(C \otimes R) /(\nu-2)$ for $\nu>2$. We consider the setting $W=0_{p_{x} \times p_{x}}, C=\sigma^{2} I_{p_{x}}$, and $R=I_{p_{x}}$ together with $p_{x}=5$ and $\nu=3$, where $0_{p_{x} \times p_{x}}$ is the $p_{x} \times p_{x}$ zero matrix. Other settings for simulating data are the same as those in Section 2.4.1. We apply the naive approach and the two proposed methods to analyze the simulated data.

The simulation results are reported in Tables A.11-A. 12 in Appendices to save space. It is clear that the naive method still produces biased results with patterns similar to those observed in Section 2.4.2. Method 1 is not sensitive to the change of the distribution of measurement error and its performance under the current setting is similar to that in the setting of Section 2.4.1. However, the performance of Method 2 greatly decays. The estimates of the row parameters $\alpha$ have large finite sample biases when the number of replicates is small. For the column parameters $\beta$ and vector covariate parameters $\gamma$, Method 2 provides a lot larger finite sample biases than Method 1, especially when measurement error is large with a small number of replicates. Such findings are not surprising, because Method 2 is derived based on the model assumption (2.4) with the measurement error following a matrix normal distribution.

In summary, the naive method yields biased results when measurement error is not mild. Thus, it is imperative to accommodate measurement error effects in order to carry out valid inferences. The simulation studies confirm that the proposed methods significantly improve the performance of the naive method, and their performance is reasonably satisfactory for various settings. As described in Section 4, Method 1 is more robust than Method 2 since it does not impose a distributional assumption on the error terms $E_{k r}$. In applications, Method 1 is generally recommended if we are not certain about the feasibility of a normally distributed measurement error assumption.

### 2.4.4 Data Analysis

We apply the two correction methods, in contrast to the naive approach, to analyze the EEG imaging data which are available at the UCI Machine Learning Repository website (http://archive.ics.uci.edu/ml/datasets/EEG+Database). The EEG data include the measurements of 122 subjects who were selected from those exposed to one stimulus experiment. During this experiment, the voltage values were recorded from 64 channels of electrodes at 256 time points (in one second). Those 122 subjects are differentiated by
being in the alcoholic group with 77 patients or the control group with 45 patients. The research interest was to make classification between the alcoholic group and the control group based on voltage values which are subject to measurement error over times and channels.

For $k=1, \ldots, 122$, let $Y_{k}$ be the binary response variable for subject $k$, with 1 for being in the alcoholic group and 0 for being in the control group; the matrix-variate of subject $k$, denoted as $X_{k}^{* *}$, is a $256 \times 64$ matrix with each entry representing the mean voltage value of $r$ replicates for the corresponding time point and channel, where $r=1, \ldots, m_{k}$, and $m_{k}$ is the number of replicates for subject $k$, ranging from 7 to 60 with an average 45 .

Without considering issues of measurement error, Hung and Wang (2013) applied the matrix-variate logistic regression model (2.2) to fit the EEG data set which includes $256+$ $64+1=321$ parameters. This modeling greatly reduces the number of parameters which would be $256 \times 64+1=16285$ if using model (2.1).

While using model (2.2) can significantly reduce the dimension of parameters compared to using model (2.1), we still cannot directly employ model (2.2) to fit the data here because the sample size is 122 , smaller than the dimension of the model parameters. As a result, we have to first reduce the dimension of the matrix-variate $X_{k}^{* *}$ before fitting the model (2.2).

Motivated by the simulation findings that the response model parameters can be well estimated when the sample size is 10 times larger than the number of parameters, here we reduce the initial $256 \times 64$ matrix-variate $X_{k}^{* *}$ to a $5 \times 5$ matrix-variate $X_{k}^{*}$ for $k=1, \ldots, 122$ using the two-directional two-dimensional principal component analysis ( $\left.(2 \mathrm{D})^{2} \mathrm{PCA}\right)$ method of Zhang and Zhou (2005).

We assume that $X_{k}^{*}$ is an observed version of the true matrix-variate $X_{k}$ and they are linked by (2.4) with the measurement error covariance matrix $\Omega_{0}$ estimated using the method of Ledoit and Wolf (2004), as described in Section 2.4.1, where $p_{x}$ is taken as 5 , and the sample variance matrix $\hat{\Omega}$ is obtained using vec $\left(X_{k}^{*}\right)$ across all the subjects using the total $M=5486$ replicates of $n=122$ subjects; this is needed for obtaining the estimator (2.15). The flip-flop algorithm is applied to $X_{k}^{*}$ to find the row and column matrices, $\hat{R}$ and $\hat{C}$ for the sufficient statistics correction method given by (2.22). Consistent with Hung and Wang (2013), we set the second row parameter as 1 because the second row of $X_{k}^{*}$ has the highest correlation with the response.

Table 2.3 reports the estimation results for the EEG data by fitting the model (2.2) with the $5 \times 5$ matrix-variate $X_{k}^{*}$ using the two methods described in Sections 2.3.1 and 2.3.2, together with the naive method which ignores measurement errors. The two correction methods output very similar results. While the estimates for the channel parameters
(i.e., row parameters) produced from the naive analysis are noticeably different from those obtained from the two correction methods, the estimates for the time points (i.e., column parameters) yielded from the naive method are quite similar to those given by the two correction methods. All the three methods reveal the same evidence for the column and row parameters. For the column parameters, time points one, two, three and four are detected to be significant. For the row parameters, the third channel has a significant effect on distinguishing the alcoholic and nonalcoholic status. Finally, we report that the computation times for Methods 1 and 2 are 0.409 and 0.386 seconds, respectively, using a PC equipped with 2.6 GHz Intel Core i5 CPU and 16 GB RAM.
Table 2.2: Simulation results for the row parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

|  | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 0.25 | 2 | 1.192 | 0.062 | 0.063 | 94.4 | 0.004 | 1.232 | 0.063 | 0.062 | 93.8 | 0.004 | 1.206 | 0.063 | 0.061 | 89.6 | 0.004 |
|  |  | 5 | 1.423 | 0.060 | 0.060 | 94.4 | 0.004 | 1.434 | 0.060 | 0.060 | 94.0 | 0.004 | 1.437 | 0.060 | 0.060 | 92.4 | 0.004 |
|  |  | 10 | 1.442 | 0.060 | 0.060 | 93.8 | 0.004 | 1.448 | 0.060 | 0.060 | 93.8 | 0.004 | 1.442 | 0.060 | 0.059 | 93.0 | 0.004 |
|  | 0.5 | 2 | 0.987 | 0.071 | 0.072 | 94.4 | 0.005 | 1.109 | 0.074 | 0.069 | 92.4 | 0.006 | 1.013 | 0.073 | 0.067 | 92.0 | 0.005 |
|  |  | 5 | 1.398 | 0.064 | 0.064 | 95.2 | 0.004 | 1.424 | 0.064 | 0.063 | 94.2 | 0.004 | 1.444 | 0.064 | 0.062 | 94.6 | 0.004 |
|  |  | 10 | 1.495 | 0.063 | 0.062 | 94.6 | 0.004 | 1.529 | 0.063 | 0.061 | 94.2 | 0.004 | 1.501 | 0.063 | 0.061 | 94.4 | 0.004 |
|  | 0.75 | 2 | 0.864 | 0.083 | 0.083 | 94.2 | 0.007 | 0.969 | 0.088 | 0.077 | 91.0 | 0.008 | 0.849 | 0.086 | 0.074 | 90.8 | 0.007 |
|  |  | 5 | 1.385 | 0.069 | 0.070 | 95.0 | 0.005 | 1.412 | 0.071 | 0.068 | 94.6 | 0.005 | 1.450 | 0.071 | 0.066 | 94.0 | 0.005 |
|  |  | 10 | 1.576 | 0.066 | 0.065 | 94.6 | 0.004 | 1.669 | 0.067 | 0.064 | 94.4 | 0.005 | 1.599 | 0.067 | 0.063 | 94.0 | 0.005 |
| $\alpha_{4}$ | 0.25 | 2 | 0.500 | 0.079 | 0.079 | 95.4 | 0.006 | 0.517 | 0.080 | 0.078 | 94.6 | 0.006 | 0.497 | 0.080 | 0.077 | 91.6 | 0.006 |
|  |  | 5 | 0.232 | 0.077 | 0.076 | 94.2 | 0.006 | 0.225 | 0.077 | 0.076 | 93.6 | 0.006 | 0.223 | 0.077 | 0.075 | 92.4 | 0.006 |
|  |  | 10 | 0.330 | 0.077 | 0.075 | 94.8 | 0.006 | 0.329 | 0.077 | 0.075 | 94.6 | 0.006 | 0.326 | 0.077 | 0.075 | 91.6 | 0.006 |
|  | 0.5 | 2 | 0.796 | 0.090 | 0.091 | 94.6 | 0.008 | 0.948 | 0.093 | 0.087 | 93.2 | 0.009 | 0.910 | 0.092 | 0.085 | 92.8 | 0.009 |
|  |  | 5 | 0.216 | 0.082 | 0.081 | 94.2 | 0.007 | 0.177 | 0.083 | 0.080 | 93.4 | 0.007 | 0.180 | 0.083 | 0.078 | 92.6 | 0.007 |
|  |  | 10 | 0.409 | 0.081 | 0.078 | 94.6 | 0.006 | 0.410 | 0.081 | 0.077 | 94.0 | 0.007 | 0.399 | 0.081 | 0.077 | 93.4 | 0.007 |
|  | 0.75 | 2 | 1.105 | 0.106 | 0.106 | 95.6 | 0.011 | 1.318 | 0.112 | 0.098 | 92.0 | 0.013 | 1.337 | 0.109 | 0.095 | 91.6 | 0.012 |
|  |  | 5 | 0.253 | 0.088 | 0.089 | 94.2 | 0.008 | 0.151 | 0.091 | 0.085 | 92.2 | 0.008 | 0.190 | 0.092 | 0.084 | 91.2 | 0.008 |
|  |  | 10 | 0.511 | 0.085 | 0.083 | 95.4 | 0.007 | 0.518 | 0.087 | 0.081 | 94.4 | 0.008 | 0.501 | 0.087 | 0.079 | 93.6 | 0.008 |
| $\beta_{1}$ | 0.25 | 2 | -9.082 | 0.089 | 0.086 | 76.0 | 0.016 | 1.021 | 0.107 | 0.104 | 94.3 | 0.012 | 1.345 | 0.108 | 0.097 | 93.0 | 0.012 |
|  |  | 5 | -2.766 | 0.098 | 0.092 | 89.5 | 0.010 | 2.016 | 0.106 | 0.100 | 93.0 | 0.012 | 2.090 | 0.106 | 0.097 | 91.8 | 0.012 |
|  |  | 10 | -0.656 | 0.098 | 0.093 | 94.0 | 0.010 | 1.866 | 0.103 | 0.097 | 93.8 | 0.011 | 1.891 | 0.103 | 0.096 | 93.0 | 0.011 |
|  | 0.5 | 2 | -30.079 | 0.071 | 0.070 | 2.4 | 0.095 | -8.581 | 0.106 | 0.108 | 83.8 | 0.019 | -7.138 | 0.111 | 0.094 | 80.0 | 0.017 |
|  |  | 5 | -14.297 | 0.087 | 0.082 | 53.8 | 0.028 | -0.299 | 0.112 | 0.107 | 93.6 | 0.013 | 0.305 | 0.114 | 0.098 | 90.0 | 0.013 |
|  |  | 10 | -7.178 | 0.093 | 0.088 | 80.6 | 0.014 | 1.318 | 0.108 | 0.102 | 94.8 | 0.012 | 1.553 | 0.109 | 0.097 | 93.4 | 0.012 |
|  | 0.75 | 2 | -48.331 | 0.057 | 0.056 | 0.0 | 0.237 | -24.022 | 0.095 | 0.096 | 29.6 | 0.067 | -22.216 | 0.102 | 0.081 | 27.8 | 0.060 |
|  |  | 5 | -27.863 | 0.075 | 0.071 | 4.0 | 0.083 | -7.012 | 0.111 | 0.107 | 87.0 | 0.017 | -5.632 | 0.116 | 0.094 | 82.6 | 0.017 |
|  |  | 10 | -16.210 | 0.085 | 0.080 | 49.8 | 0.033 | -1.343 | 0.111 | 0.106 | 93.6 | 0.013 | -0.605 | 0.114 | 0.096 | 90.4 | 0.013 |
| $\beta_{5}$ | 0.25 | 2 | -9.053 | 0.091 | 0.086 | 76.3 | 0.016 | 1.099 | 0.108 | 0.103 | 93.0 | 0.011 | 1.435 | 0.109 | 0.097 | 91.0 | 0.012 |
|  |  | 5 | -2.578 | 0.097 | 0.092 | 90.0 | 0.010 | 2.227 | 0.106 | 0.100 | 95.5 | 0.011 | 2.294 | 0.106 | 0.097 | 94.0 | 0.012 |
|  |  | 10 | -0.552 | 0.098 | 0.093 | 93.3 | 0.009 | 1.977 | 0.102 | 0.098 | 94.0 | 0.011 | 2.001 | 0.102 | 0.096 | 94.0 | 0.011 |
|  | 0.5 | 2 | -30.188 | 0.070 | 0.070 | 2.6 | 0.096 | -8.621 | 0.105 | 0.108 | 83.4 | 0.018 | -7.101 | 0.110 | 0.094 | 80.2 | 0.017 |
|  |  | 5 | -14.281 | 0.087 | 0.082 | 54.2 | 0.028 | -0.239 | 0.112 | 0.107 | 93.4 | 0.013 | 0.369 | 0.114 | 0.098 | 91.2 | 0.013 |
|  |  | 10 | -7.259 | 0.091 | 0.088 | 81.2 | 0.014 | 1.254 | 0.106 | 0.102 | 94.8 | 0.011 | 1.481 | 0.107 | 0.097 | 92.6 | 0.012 |
|  | 0.75 | 2 | -48.523 | 0.056 | 0.056 | 0.0 | 0.058 | -24.226 | 0.093 | 0.096 | 26.2 | 0.067 | -22.379 | 0.100 | 0.081 | 24.2 | 0.060 |
|  |  | 5 | -27.888 | 0.076 | 0.071 | 4.4 | 0.084 | -6.986 | 0.113 | 0.107 | 87.6 | 0.018 | -5.598 | 0.118 | 0.094 | 83.8 | 0.017 |
|  |  | 10 | -16.300 | 0.084 | 0.081 | 44.2 | 0.034 | -1.398 | 0.109 | 0.108 | 94.6 | 0.012 | -0.680 | 0.111 | 0.097 | 91.6 | 0.012 |
| $\gamma$ | 0.25 | 2 | -5.747 | 0.110 | 0.109 | 94.3 | 0.013 | 1.877 | 0.121 | 0.121 | 95.8 | 0.015 | 2.285 | 0.122 | 0.120 | 95.0 | 0.015 |
|  |  | 5 | -1.171 | 0.114 | 0.113 | 94.3 | 0.013 | 2.454 | 0.119 | 0.118 | 93.8 | 0.014 | 2.555 | 0.119 | 0.117 | 93.5 | 0.014 |
|  |  | 10 | 0.363 | 0.115 | 0.114 | 94.5 | 0.013 | 2.277 | 0.118 | 0.117 | 93.5 | 0.013 | 2.306 | 0.118 | 0.116 | 93.5 | 0.013 |
|  | 0.5 | 2 | -20.889 | 0.099 | 0.099 | 80.2 | 0.021 | -5.330 | 0.124 | 0.127 | 95.6 | 0.016 | -3.505 | 0.129 | 0.125 | 94.4 | 0.017 |
|  |  | 5 | -9.686 | 0.106 | 0.107 | 91.0 | 0.014 | 0.655 | 0.121 | 0.123 | 95.0 | 0.015 | 1.363 | 0.123 | 0.122 | 94.4 | 0.015 |
|  |  | 10 | -4.921 | 0.109 | 0.110 | 94.4 | 0.012 | 1.381 | 0.117 | 0.120 | 94.2 | 0.014 | 1.603 | 0.118 | 0.119 | 94.0 | 0.014 |
|  | 0.75 | 2 | -33.506 | 0.089 | 0.090 | 53.0 | 0.036 | -16.864 | 0.118 | 0.127 | 91.0 | 0.021 | -14.352 | 0.126 | 0.123 | 90.2 | 0.021 |
|  |  | 5 | -19.413 | 0.099 | 0.100 | 83.6 | 0.019 | -4.445 | 0.123 | 0.126 | 94.4 | 0.016 | -2.740 | 0.127 | 0.124 | 93.8 | 0.016 |
|  |  | 10 | -11.602 | 0.104 | 0.106 | 91.6 | 0.014 | -0.771 | 0.120 | 0.124 | 94.6 | 0.014 | -0.082 | 0.120 | 0.122 | 94.0 | 0.015 |

Table 2.3: Analysis results for the EEG data using the three methods

| Parameter | Naive Method |  |  | Method 1 |  |  |  | Method 2 |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Est. | SE | $95 \%$ CI | Est. |  | SE | $95 \%$ CI | Est. | SE |  | 95\% CI 9.

## Chapter 3

## Imputation and Likelihood Methods for Matrix-Variate Logistic Regression with Response Misclassification

In this chapter, we target on investigating how response misclassification in the matrixvariate logistic regression affects the parameter inference, and propose imputation and likelihood methods to reduce the response misclassification effects. The remainder is organized as follows. In Section 3.1, we present the response model and introduce the misclassification process for binary response. In Section 3.2, we propose an important method using an unbiased surrogate for the true response. In Section 3.3, we explore the likelihood method based on the observed data. In Section 3.4, we conduct simulation studies to assess the performance of the methods developed in Sections 3.3-3.4 as well as to demonstrate the misclassification effects on the naive analysis which ignores the response misclassification. The proposed methods are also applied to analyze a breast cancer data set.

### 3.1 Notation and Framework

For subject $k$ with $k=1, \ldots, n, Y_{k}, x_{k}$ and $z_{k}$ are defined in the same way as those in Section 2.1.1. Let $\mu_{k}=P\left(Y_{k}=1 \mid x_{k}, z_{k}\right)$. We consider the model

$$
\begin{equation*}
\operatorname{logit} \mu_{k}=\gamma_{0}+\alpha^{\top} x_{k} \beta+\gamma_{1}^{\top} z_{k} \tag{3.1}
\end{equation*}
$$

where $\gamma_{0}$ is the intercept term and $\gamma_{1}$ is a $p_{z} \times 1$ parameter vector. Write $\gamma=\left(\gamma_{0}, \gamma_{1}^{\top}\right)^{\top}$. Model (3.1) differs slightly from model (2.2) in that we explicitly spell out the intercept term here.

As discussed in Section 2.1.1, parameters $\alpha$ and $\beta$ are not identifiable because they are pertinent to a rank-1 CP-decomposition which is not unique. To overcome nonidentifiability issues, we use the same way as in Chapter 2 to set the first element of $\alpha$ to be 1 ; but here we write $\alpha=\left(1, \alpha_{2}, \ldots, \alpha_{p+1}\right)^{\top}=\left(1, \tilde{\alpha}^{\top}\right)^{\top}$. Let $\theta=\left(\tilde{\alpha}^{\top}, \beta^{\top}, \gamma^{\top}\right)^{\top}$, which is the vector of parameters of interest.

Estimation of $\theta$ can be carried out using the likelihood method. For $k=1, \ldots, n$, the log-likelihood function contributed from subject $k$ is

$$
\begin{equation*}
\ell\left(\theta ; Y_{k}\right)=Y_{k}\left(\gamma_{0}+\alpha^{\top} x_{k} \beta+\gamma_{1}^{\top} z_{k}\right)-\log \left\{1+\exp \left(\gamma_{0}+\alpha^{\top} x_{k} \beta+\gamma_{1}^{\top} z_{k}\right)\right\} \tag{3.2}
\end{equation*}
$$

where the dependence on $z_{k}$ and $x_{k}$ is suppressed in the notation $\ell\left(\theta ; Y_{k}\right)$. Let $U\left(\theta ; Y_{k}\right)=$ $\partial \ell\left(\theta ; Y_{k}\right) / \partial \theta$ be the score function, and we write $U\left(\theta ; Y_{k}\right)=\left\{U_{1 k}^{\top}(\theta), U_{2 k}^{\top}(\theta), U_{3 k}^{\top}(\theta)\right\}^{\top}$, where $U_{1 k}(\theta)=\partial \ell\left(\theta ; Y_{k}\right) / \partial \tilde{\alpha}, U_{2 k}(\theta)=\partial \ell\left(\theta ; Y_{k}\right) / \partial \beta$, and $U_{3 k}(\theta)=\partial \ell\left(\theta ; Y_{k}\right) / \partial \gamma$.

Under regularity conditions, a consistent estimator of $\theta$ can be obtained by solving

$$
\begin{equation*}
\sum_{k=1}^{n} U\left(\theta ; Y_{k}\right)=0 \tag{3.3}
\end{equation*}
$$

for $\theta$. Using the block relaxing algorithm in Table 2.1, we solve (3.3) iteratively for $\tilde{\alpha}, \beta$ and $\gamma$ while keeping other components fixed.

In applications, the response $Y_{k}$ may be subject to misclassification, and a surrogate response, $Y_{k}^{*}$, is observed, where $k=1, \ldots, n$. For $i, j=0,1$, let $\tau_{k i j}=P\left(Y_{k}^{*}=j \mid Y_{k}=\right.$ $\left.i, x_{k}, z_{k}\right)$ be the probability that the observed response is $j$ when the true response is $i$, where the dependence on $x_{k}$ and $z_{k}$ is suppressed in the notation $\tau_{k i j}$.

To facilitate the dependence of the $\tau_{k i j}$ on the covariates, we consider the logistic models

$$
\operatorname{logit} \tau_{k 01}=L_{k}^{\top} \phi_{0}
$$

and

$$
\begin{equation*}
\operatorname{logit} \tau_{k 11}=L_{k}^{\top} \phi_{1} \tag{3.4}
\end{equation*}
$$

where $\phi_{0}$ and $\phi_{1}$ are the vectors of associated regression parameters, and $L_{k}$ is a vector of covariates that reflects various misclassification mechanisms. Let $\phi=\left(\phi_{0}^{\top}, \phi_{1}^{\top}\right)^{\top} . L_{k}$ may be specified as various forms to feature different misclassification processes. In some cases, $L_{k}$
is taken as the entire vector covariate $z_{k}$; in the extreme case, $L_{k}$ is taken as the constant 1 to express that the misclassification is independent of the covariates: $\tau_{k 01}=\operatorname{expit}\left(\phi_{0}\right)$ and $\tau_{k 11}=\operatorname{expit}\left(\phi_{1}\right)$, where $\operatorname{expit}(u)=\exp (u) /\{1+\exp (u)\}$ and $\phi_{0}$ and $\phi_{1}$ are scalar.

### 3.2 Imputation Method

### 3.2.1 Estimating Equations with Known Misclassification Probabilities

Define

$$
\begin{equation*}
Y_{k}^{c}=\frac{Y_{k}^{*}-\tau_{k 01}}{\tau_{k 11}-\tau_{k 01}} \tag{3.5}
\end{equation*}
$$

where $\tau_{k 10}=1-\tau_{k 11}$. It is easily seen that $E\left(Y_{k}^{c} \mid Y_{k}, x_{k}, z_{k}\right)=Y_{k}$, i.e., $Y_{k}^{c}$ is an unbiased surrogate for $Y_{k}$, as called by Chen et al. (2014).

Let $U_{1 k}^{c}(\theta)=\partial \ell\left(\theta ; Y_{k}^{c}\right) / \partial \tilde{\alpha}, U_{2 k}^{c}(\theta)=\partial \ell\left(\theta ; Y_{k}^{c}\right) / \partial \beta$, and $U_{3 k}^{c}(\theta)=\partial \ell\left(\theta ; Y_{k}^{c}\right) / \partial \gamma$. Define $U^{c}\left(\theta ; Y_{k}^{c}\right)=\left\{U_{1 k}^{c \top}(\theta), U_{2 k}^{c \top}(\theta), U_{3 k}^{c T}(\theta)\right\}^{\top}$. Then

$$
E\left\{U^{c}\left(\theta ; Y_{k}^{c}\right) \mid Y_{k}, x_{k}, z_{k}\right\}=U\left(\theta ; Y_{k}\right)
$$

suggesting that $U^{c}\left(\theta ; Y_{k}^{c}\right)$ is an unbiased estimating function of $\theta$. When $\phi$ is known, solving

$$
\begin{equation*}
\sum_{k=1}^{n} U^{c}\left(\theta ; Y_{k}^{c}\right)=0 \tag{3.6}
\end{equation*}
$$

for $\theta$ gives a consistent estimator, say $\hat{\theta}_{c}$, for $\theta$, provided regularity conditions.
Let

$$
\begin{aligned}
& M_{1 k}^{c}(\tilde{\alpha} \mid \beta, \gamma)=\frac{\partial U_{1 k}^{c}(\tilde{\alpha} \mid \beta, \gamma)}{\partial \tilde{\alpha}^{\top}} \\
& M_{2 k}^{c}(\beta \mid \tilde{\alpha}, \gamma)=\frac{\partial U_{2 k}^{c}(\beta \mid \tilde{\alpha}, \gamma)}{\partial \beta \top},
\end{aligned}
$$

and

$$
M_{3 k}^{c}(\gamma \mid \tilde{\alpha}, \beta)=\frac{\partial U_{3 k}^{c}(\gamma \mid \tilde{\alpha}, \beta)}{\partial \gamma^{\top}}
$$

Using the block relaxation algorithm, we solve (3.6) via the Fisher Scoring algorithm. At
iteration $(t+1)$, we iteratively update $\tilde{\alpha}, \beta$ and $\gamma$ in each block by

$$
\begin{aligned}
& \tilde{\alpha}^{t+1, r+1}=\tilde{\alpha}^{t+1, r}-\left\{\sum_{k=1}^{n} M_{1 k}^{c}\left(\tilde{\alpha}^{t+1, r} \mid \beta^{t}, \gamma^{t}\right)\right\}^{-1}\left\{\sum_{k=1}^{n} U_{1 k}^{c}\left(\tilde{\alpha}^{t+1, r} \mid \beta^{t}, \gamma^{t}\right)\right\}, \\
& \beta^{t+1, r+1}=\beta^{t+1, r}-\left\{\sum_{k=1}^{n} M_{2 k}^{c}\left(\beta^{t+1, r} \mid \tilde{\alpha}^{t+1}, \gamma^{t}\right)\right\}^{-1}\left\{\sum_{k=1}^{n} U_{2 k}^{c}\left(\beta^{t+1, r} \mid \tilde{\alpha}^{t+1}, \gamma^{t}\right)\right\}, \\
& \gamma^{t+1, r+1}=\gamma^{t+1, r}-\left\{\sum_{k=1}^{n} M_{3 k}^{c}\left(\gamma^{t+1, r} \mid \tilde{\alpha}^{t+1}, \beta^{t+1}\right)\right\}^{-1}\left\{\sum_{k=1}^{n} U_{3 k}^{c}\left(\gamma^{t+1, r} \mid \tilde{\alpha}^{t+1}, \beta^{t+1}\right)\right\},
\end{aligned}
$$

for $r=0,1,2, \ldots$, where $\tilde{\alpha}^{t}, \beta^{t}$ and $\gamma^{t}$ represent the estimates of $\tilde{\alpha}, \beta$ and $\gamma$ at iteration $t$, respectively. Let $\theta_{0}$ be the true value of $\theta$. In Appendix B.2, we show the following asymptotic result of $\hat{\theta}_{c}$.

Theorem 3.1 Assume Conditions (C.1)-(C.2) in Appendix B.1. Then as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{c}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{c}^{-1} \Sigma_{c}\left[\Gamma_{c}^{-1}\right]^{\top}\right),
$$

where

$$
\Gamma_{c}=E\left\{\partial U^{c}\left(\theta_{0} ; Y_{k}^{c}\right) / \partial \theta^{\top}\right\} \text { and } \Sigma_{c}=E\left\{U^{c}\left(\theta_{0} ; Y_{k}^{c}\right) U^{c \top}\left(\theta_{0} ; Y_{k}^{c}\right)\right\} .
$$

To carry out inference such as constructing confidence intervals, we use the asymptotic distribution in Theorem 3.1 by replacing $\Gamma_{c}$ and $\Sigma_{c}$ with their consistent estimates

$$
\hat{\Gamma}_{c}=\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U^{c}\left(\theta ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right|_{\theta=\hat{\theta}_{c}} \text { and } \hat{\Sigma}_{c}=\frac{1}{n} \sum_{k=1}^{n} U^{c}\left(\hat{\theta}_{c} ; Y_{k}^{c}\right) U^{c \top}\left(\hat{\theta}_{c} ; Y_{k}^{c}\right)
$$

respectively, thus, yielding a consistent estimator of the asymptotic covariance matrix of $\hat{\theta}_{c}$, given by $\hat{\Gamma}_{c}^{-1} \hat{\Sigma}_{c}\left[\hat{\Gamma}_{c}^{-1}\right]^{\top}$.

### 3.2.2 Estimating Equations with Unknown Misclassification Probabilities

In Section 3.2.1, we solve (3.6) by assuming that the misclassification parameter $\phi$ is known. However, the misclassification parameters are usually unknown in practice. In this case, a two-stage estimation procedure can be applied to estimate $\theta$ and $\phi$, where an unbiased
estimating function for $\phi$ is constructed in addition to (3.6). Often a validation subsample is needed for estimation of the misclassification parameters (Roy et al. 2005). Here, we describe an inferential procedure by incorporating estimation of the misclassification parameters when an internal validation subsample is available (Chen et al. 2011; Chen et al. 2014).

For $k=1, \ldots, n$, let $\delta_{k}$ be the indicator variable of the $k$ th subject such that when $\delta_{k}=1$, the $k$ th subject is included in validation subsample and $\delta_{k}=0$ otherwise. Then $p_{v}=\sum_{k=1}^{n} \delta_{k} / n$ is the proportion of the subjects that are included in the validation subsample.

For $k=1, \ldots, n$, let $H_{k}$ be the indicator variable $I\left(Y_{k}^{*} \neq Y_{k}\right)$ for the $k$ th subject, taking value 1 if $Y_{k}^{*} \neq Y_{k}$ and 0 otherwise. Thus, $H_{k}=1$ is equivalent to either " $Y_{k}^{*}=1, Y_{k}=0$ " or " $Y_{k}^{*}=0, Y_{k}=1$ ". For ease of notation, for $y_{k}^{*}=0,1$, we let

$$
\ell_{k 0}\left(y_{k}^{*}\right)=\log \left\{\tau_{k 01}^{H_{k}} \times\left(1-\tau_{k 01}\right)^{\left(1-H_{k}\right)}\right\}
$$

denote the logarithm of the conditional probability $P\left(Y_{k}^{*}=y_{k}^{*} \mid Y_{k}=0\right)$ and let

$$
\ell_{k 1}\left(y_{k}^{*}\right)=\log \left\{\tau_{k 10}^{H_{k}} \times\left(1-\tau_{k 10}\right)^{\left(1-H_{k}\right)}\right\}
$$

denote the logarithm of the conditional probability $P\left(Y_{k}^{*}=y_{k}^{*} \mid Y_{k}=1\right)$.
Define $S_{k}(\phi)=\left(\partial \ell_{k 0}\left(y_{k}^{*}\right) / \partial \phi\right)^{1-y_{k}}\left(\partial \ell_{k 1}\left(y_{k}^{*}\right) / \partial \phi\right)^{y_{k}}$, which can be used to estimate $\phi$ using the measurements in the validation subsample. Now we describe a two-stage estimation procedure for estimation of $\phi$ and $\theta$.

Stage 1. Applying $S_{k}(\phi)$ to the validation subsample and solving

$$
\begin{equation*}
\sum_{k=1}^{n} \delta_{k} S_{k}(\phi)=0 \tag{3.7}
\end{equation*}
$$

for $\phi$ gives an estimate, say $\hat{\phi}_{v}$, of $\phi$.
Stage 2. Replace $\phi$ with $\hat{\phi}_{v}$ in (3.6) and solve it for $\theta$ using the block relaxation algorithm.
This two-stage estimation procedure can be expressed as a single procedure for ease of establishing the asymptotic results of the resulting estimator. Let $\eta=\left(\phi^{\top}, \theta^{\top}\right)^{\top}$. Then solving

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{U^{c}\left(\theta, \phi ; Y_{k}^{c}\right)}{\delta_{k} S_{k}(\phi)}=0 \tag{3.8}
\end{equation*}
$$

for $\eta$ gives a consistent estimator, denoted $\hat{\eta}_{v}=\left(\hat{\phi}_{v}^{\top}, \hat{\theta}_{v}^{\top}\right)^{\top}$, for $\eta$, provided regularity conditions.

Applying the first-order Taylor series approximation to the estimating functions in (3.8) around $\eta_{0}$, the true value of $\eta$, we can establish Theorem 3.2 as follows. The details are included in Appendix B.3.

Theorem 3.2 Assume that Conditions (C.1)-(C.4) in Appendix B. 1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$. Then as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{v}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{c}^{-1} \Sigma_{\tau}\left[\Gamma_{c}^{-1}\right]^{\top}\right),
$$

where $\Sigma_{\tau}=E\left\{\Omega_{k}\left(\theta_{0}, \phi_{0}\right) \Omega_{k}^{\top}\left(\theta_{0}, \phi_{0}\right)\right\}$, and

$$
\begin{aligned}
\Omega_{k}\left(\theta_{0}, \phi_{0}\right)= & U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)-\mathrm{E}\left\{\partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \phi\right\} \\
& \times\left[\mathrm{E}\left\{\delta_{k} \times \partial S_{k}\left(\phi_{0}\right) / \partial \phi\right\}\right]^{-1} \times\left\{\delta_{k} S_{k}\left(\phi_{0}\right)\right\}
\end{aligned}
$$

As $n \rightarrow \infty$, the matrix $\Sigma_{\tau}$ can be consistently estimated by $\left.\hat{\Sigma}_{\tau}=\frac{1}{n} \sum_{k=1}^{n} \hat{\Omega}_{k}\left(\hat{\theta}_{v}, \hat{\phi}_{v}\right) \hat{\Omega}_{k}^{\top}\left(\hat{\theta}_{v}, \hat{\phi}_{v}\right)\right\}$, where

$$
\begin{aligned}
\hat{\Omega}_{k}\left(\hat{\theta}_{v}, \hat{\phi}_{v}\right)= & U^{c}\left(\hat{\theta}_{v}, \hat{\phi}_{v} ; Y_{k}^{c}\right)-\left\{\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U^{c}\left(\theta, \phi ; Y_{k}^{c}\right)}{\partial \phi}\right|_{\eta=\hat{\eta}_{v}}\right\} \\
& \times\left[\frac{1}{n}\left\{\left.\sum_{k=1}^{n} \frac{\partial \delta_{k} S_{k}\left(\hat{\phi}_{v}\right)}{\partial \phi}\right|_{\phi=\hat{\phi}_{v}}\right\}\right]^{-1} \times\left\{\delta_{k} S_{k}\left(\hat{\phi}_{v}\right)\right\} .
\end{aligned}
$$

### 3.3 Likelihood Method

### 3.3.1 Inference Method with Known Misclassification Probabilities

The second method of estimation of the parameters is based on the observed likelihood function. Let $\mu_{k}^{*}=P\left(Y_{k}^{*}=1 \mid x_{k}, z_{k}\right)$ be the conditional mean for the surrogate response $Y_{k}^{*}$, given $\left\{x_{k}, z_{k}\right\}$. As discussed in Yi (2017, Chapter 8), the conditional probability $\mu_{k}^{*}$ of the observed measurement $Y_{k}^{*}$, given $\left\{x_{k}, z_{k}\right\}$, is linked with the conditional probability $\mu_{k}$
of the true response $Y_{k}$, given $\left\{x_{k}, z_{k}\right\}$, through

$$
\begin{equation*}
\mu_{k}^{*}=\tau_{k 01}+\left(1-\tau_{k 01}-\tau_{k 10}\right) \mu_{k} \tag{3.9}
\end{equation*}
$$

If the parameters for the misclassification probabilities are known, then the maximum likelihood estimator, say $\hat{\theta}$, of $\theta$ can be obtained by maximizing the log-likelihood for the observed data $\sum_{k=1}^{n} \ell^{o}\left(\theta ; Y_{k}^{*}\right)$ with respect to $\theta$, where for $k=1, \ldots, n$,

$$
\begin{equation*}
\ell^{o}\left(\theta ; Y_{k}^{*}\right)=Y_{k}^{*} \log \mu_{k}^{*}+\left(1-Y_{k}^{*}\right) \log \left(1-\mu_{k}^{*}\right), \tag{3.10}
\end{equation*}
$$

and $\mu_{k}^{*}$ is determined by (3.9) in combination with (3.1) and (3.4).
Under regularity conditions, $\hat{\theta}$ can be equivalently obtained by solving the

$$
\begin{equation*}
\sum_{k=1}^{n} U^{o}\left(\theta ; Y_{k}^{*}\right)=0 \tag{3.11}
\end{equation*}
$$

where $U^{o}\left(\theta ; Y_{k}^{*}\right)=\left\{U_{1 k}^{o \top}(\theta), U_{2 k}^{o \top}(\theta), U_{3 k}^{o \top}(\theta)\right\}^{\top}$ with $U_{1 k}^{o}(\theta)=\partial \ell^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \tilde{\alpha}, U_{2 k}^{o}(\theta)=\partial \ell^{o}(\theta$; $\left.Y_{k}^{*}\right) / \partial \beta$, and $U_{3 k}^{o}(\theta)=\partial \ell^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \gamma$.

Likelihood theory shows that as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Sigma^{-1}\right),
$$

provided regularity conditions, where $\Sigma=E\left\{-\partial U^{o}\left(\theta_{0} ; Y_{k}^{*}\right) / \partial \theta^{\top}\right\}$, which can be consistently estimated by $n^{-1} \sum_{k=1}^{n} U^{o}\left(\hat{\theta} ; Y_{k}^{*}\right) U^{o T}\left(\hat{\theta} ; Y_{k}^{*}\right)$.

### 3.3.2 Inference Method with Unknown Misclassification Probabilities

In this subsection, we consider using an internal validation sample to estimate the parameter vector $\phi$ associated with the misclassification model (3.4). The inference about $\eta$, defined in Section 3.2.2, can be carried out based on the likelihood function for the observed data, given by

$$
L_{v}^{o}(\eta)=\left\{\prod_{\delta_{k}=1} f\left(y_{k}, y_{k}^{*} \mid x_{k}, z_{k}\right)\right\}\left\{\prod_{\delta_{k}=0} f\left(y_{k}^{*} \mid x_{k}, z_{k}\right)\right\}
$$

where the contributions of the subjects in the validation sample are reflected by the model $f\left(y_{k}, y_{k}^{*} \mid x_{k}, z_{k}\right)$ for the conditional distribution of $\left\{Y_{k}, Y_{k}^{*}\right\}$ given $\left\{x_{k}, z_{k}\right\}$, determined by (3.1), (3.4) and (3.9); and the subjects in the main study contribute via the model $f\left(y_{k}^{*} \mid x_{k}, z_{k}\right)$, determined by (3.9). More specifically, $L_{v}^{o}(\eta)$ is given by

$$
\begin{align*}
L_{v}^{o}(\eta)= & \left\{\prod_{\delta_{k}=1}\left[\mu_{k}^{y_{k}}\left(1-\mu_{k}\right)^{1-y_{k}}\left\{a_{k 1}\left(y_{k}^{*}\right)\right\}^{y_{k}}\left\{a_{k 0}\left(y_{k}^{*}\right)\right\}^{1-y_{k}}\right]\right\} \\
& \times \prod_{\delta_{k}=0}\left\{\mu_{k}^{* y_{k}^{*}}\left(1-\mu_{k}^{*}\right)^{1-y_{k}^{*}}\right\} \tag{3.12}
\end{align*}
$$

where for $l=0$ and $1, a_{k l}\left(y_{k}^{*}\right)=P\left(Y_{k}^{*}=y_{k}^{*} \mid Y_{k}=l, X_{k}, z_{k}\right)$, given by

$$
a_{k 0}\left(y_{k}^{*}\right)=\tau_{k 01}^{y_{k}^{*}}\left(1-\tau_{k 01}\right)^{1-y_{k}^{*}} \text { and } a_{k 1}\left(y_{k}^{*}\right)=\tau_{k 10}^{1-y_{k}^{*}}\left(1-\tau_{k 10}\right)^{y_{k}^{*}} .
$$

Maximizing (3.12) with respect to $\eta$ leads to the maximum likelihood estimator for $\eta$. Although directly maximizing (3.12) can provide a statistically efficient estimator for $\eta$, the procedure may be computationally difficult to implement. Alternatively, we describe a two-stage estimation procedure which is computationally easier to implement, especially under the matrix-variate setting.

The two-stage algorithm treats $\theta$ and $\phi$ different. At the first stage, we employ (3.7) to obtain the estimate of $\phi$ using a validation subsample. At the second stage, estimation of $\theta$ is carried out by solving $\sum_{k=1}^{n} U_{v}^{o}(\eta)=0$, or equivalently,

$$
\begin{equation*}
\sum_{\delta_{k}=1} U_{1}^{o}\left(\eta ; y_{k}\right)+\sum_{\delta_{k}=0} U_{2}^{o}\left(\eta ; y_{k}^{*}\right)=0 \tag{3.13}
\end{equation*}
$$

for $\theta$ with $\phi$ replaced by the estimate obtained from the first stage, where $U_{v}^{o}(\eta)=$ $\partial \log \left(L_{v}^{o}\right) / \partial \theta, U_{1}^{o}\left(\eta ; Y_{k}\right)=\left\{\frac{Y_{k}-\mu_{k}}{\mu_{i}\left(1-\mu_{i}\right)}\right\}\left(\frac{\partial \mu_{k}}{\partial \theta T}\right)$, and $U_{2}^{o}\left(\eta ; Y_{k}^{*}\right)=\left\{\frac{Y_{k}^{*}-\mu_{k}^{*}}{\mu_{i}^{*}\left(1-\mu_{i}^{*}\right)}\right\}\left(\frac{\partial \mu_{k}^{*}}{\partial \theta^{T}}\right)$.

This two-stage estimation procedure can be expressed as a single procedure for ease of establishing the asymptotic results of the resulting estimator. Solving

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{U_{v}^{o}\left(\eta ; Y_{k}, Y_{k}^{*}\right)}{\delta_{k} S_{k}(\phi)}=0 \tag{3.14}
\end{equation*}
$$

for $\eta$ gives a consistent estimator, denoted $\hat{\eta}_{o v}=\left(\hat{\phi}_{v}^{\top}, \hat{\theta}_{o v}^{\top}\right)^{\top}$, for $\eta$, provided regularity conditions. The asymptotic property of $\hat{\theta}_{o v}$ can be established similarly to Theorem 3.2 and is presented in Theorem 3.3 as follows.

Theorem 3.3 Assume that Conditions (C.1)-(C.4) in Appendix B. 1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$. Then

$$
\sqrt{n}\left(\hat{\theta}_{o v}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{o}^{-1} \Sigma_{\tau o}\left[\Gamma_{o}^{-1}\right]^{\top}\right) \text { as } n \rightarrow \infty
$$

where $\Gamma_{o}=E\left\{\partial U_{v}^{o}\left(\eta ; Y_{k}, Y_{k}^{*}\right) / \partial \theta^{\top}\right\}, \Sigma_{\tau o}=E\left\{\Omega_{o k}\left(\theta_{0}, \phi_{0}\right) \Omega_{o k}^{\top}\left(\theta_{0}, \phi_{0}\right)\right\}$, and

$$
\begin{aligned}
\Omega_{o k}\left(\theta_{0}, \phi_{0}\right)= & U_{v}^{o}\left(\eta_{0}\right)-\mathrm{E}\left\{\partial U_{v}^{o}\left(\eta_{0}\right) / \partial \phi\right\} \\
& \times\left[\mathrm{E}\left\{\delta_{k} \times \partial S_{k}\left(\phi_{0}\right) / \partial \phi\right\}\right]^{-1} \times\left\{\delta_{k} S_{k}\left(\phi_{0}\right)\right\}
\end{aligned}
$$

As $n \rightarrow \infty, \Sigma_{\tau o}$ and $\Gamma_{o}$ can be consistently estimated by

$$
\hat{\Sigma}_{\tau o}=\frac{1}{n} \sum_{k=1}^{n} \hat{\Omega}_{o k}\left(\hat{\theta}_{o v}, \hat{\phi}_{v}\right) \hat{\Omega}_{o k}^{\top}\left(\hat{\theta}_{o v}, \hat{\phi}_{v}\right) \text { and } \hat{\Gamma}_{o}=\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U_{v}^{o}\left(\eta ; Y_{k}, Y_{k}^{*}\right)}{\partial \theta^{\top}}\right|_{\eta=\hat{\eta}_{o v}}
$$

respectively, where

$$
\begin{aligned}
\hat{\Omega}_{o k}\left(\hat{\theta}_{o v}, \hat{\phi}_{v}\right)= & U_{v}^{o}\left(\hat{\eta}_{o v} ; Y_{k}, Y_{k}^{*}\right)-\left\{\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U_{v}^{o}\left(\eta ; Y_{k}, Y_{k}^{*}\right)}{\partial \phi}\right|_{\eta=\hat{\eta}_{o v}}\right\} \\
& \times\left\{\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial \delta_{k} S_{k}(\phi)}{\partial \phi}\right|_{\phi=\hat{\phi}_{v}}\right\}^{-1} \times\left\{\delta_{k} S_{k}\left(\hat{\phi}_{v}\right)\right\}
\end{aligned}
$$

### 3.4 Numerical Studies

### 3.4.1 Simulation Designs

In this subsection, different simulations are designed to evaluate the performance of the proposed methods as well as the impacts of small, moderate and large degrees of response misclassification on parameter estimation, where we consider settings with $p+1=q$, denoted $p_{x}$ for ease of exposition, and the sample size $n=1000$.

Specifically, $p_{x} \times p_{x}$ matrix-variate data, $x_{k}$, are simulated from the matrix-normal distribution $M N\left(0, I_{p_{x}}, I_{p_{x}}\right)$ for $k=1, \ldots, n$, where $p_{x}=5$. For the vector-covariate $z_{k}$, we consider two cases: (1) the $z_{k}$ are continuous and independently generated from the standard normal distribution; (2) the $z_{k}$ are binary and independently generated from the

Bernoulli distribution with $P\left(z_{k}=1\right)=0.5$. To easily differentiate these two types of $z_{k}$, we use $z_{1 k}$ and $z_{2 k}$ to express the covariate in these two cases, repectively.

For $k=1, \ldots, n$, the binary response $Y_{k}$ is randomly generated from the Bernoulli distribution with the probability

$$
\begin{equation*}
P\left(Y_{k}=1 \mid x_{k}, z_{k}\right)=\frac{\exp \left(\gamma_{0}+\alpha^{\top} x_{k} \beta+\gamma_{1} z_{k}\right)}{1+\exp \left(\gamma_{0}+\alpha^{\top} x_{k} \beta+\gamma_{1} z_{k}\right)}, \tag{3.15}
\end{equation*}
$$

where $\gamma_{0}=\log 2, \gamma_{1}=0.5, \alpha=(0,1,0,0.5,0.5)^{\top}$, and $\beta=(0.5,-0.5,0,0.5,0)^{\top}$.
The misclassification rates are determined by (3.4) and we consider five settings. In the first four settings, we let $L_{k}=1$ and $\tau_{k 01}=\tau_{k 10}$ for simplicity where $\tau_{k 01}$ and $\tau_{k 10}$ are set as $2.5 \%, 5 \%, 10 \%$ and $20 \%$, respectively, to reflect increasing degrees of misclassification. For these settings, the response $Y_{k}$ are generated from (3.15) with $z_{k}$ set as $z_{1 k}$. In the fifth setting, we take $L_{k}=\left(1, z_{2 k}\right)^{\top}$ together with $\phi_{0}=(-3,0.5)^{\top}$ and $\phi_{1}=(3,0.5)^{\top}$ in (3.4) to generate $\tau_{k 01}$ and $\tau_{k 10}$. When $z_{2 k}=0, \tau_{k 01}$ and $\tau_{k 10}$ are roughly $5 \%$; when $z_{2 k}=1, \tau_{k 01}$ and $\tau_{k 10}$ are roughly $7.5 \%$.

For $k=1, \ldots, n$, the observed response, $Y_{k}^{*}$, is independently obtained using (3.4) as specified as one of the five settings with the designed misclassification rates. To apply the proposed methods to fit the data, we consider two scenarios. In Scenario 1, we take the misclassification rates as known and fit the data using the methods described in Sections 3.2.1 and 3.3.1. In Scenario 2, we apply the methods in Sections 3.2 .2 and 3.3.2 by taking the misclassification rates as unknown and estimated from an internal validation sample. To investigate the effect of different sizes of the internal validation data, we randomly take $30 \%$ or $60 \%$ of the data as an internal validation sample.

### 3.4.2 Simulation Results

Tables 3.1-3.5 present the results for the estimators of $\alpha, \beta$ and $\gamma$ where finite sample biases in percent (bias\%), empirical standard errors (ESE), model-based asymptotic standard errors (ASE), and coverage rates (CR) for $95 \%$ confidence intervals are reported.

For the row effects $\alpha$, the imputation methods and the likelihood methods give similar estimate results to those obtained from the naive method, regardless of the degrees of misclassification or the size of internal validation data. However, for the column effects $\beta$ and the vector-covariate effects $\gamma$, we observe that biases resulted from the naive method are much larger than those obtained from the proposed methods even when the misclassification degree is small. The performance of estimators from the naive method becomes worse
as the degree of misclassification increases. On the other hand, the imputation methods and the likelihood methods significantly improve the performance of the naive method. Furthermore, the likelihood methods outperform the imputation methods, although the performance of the imputation methods is fairly satisfactory under various settings. The likelihood methods are more efficient than the imputation methods and tend to be less affected by the size of the validation sample or the degree of misclassification than the imputation methods.

In summary, the naive method produces considerably biased results when misclassification exists in the response variables, suggesting that it is imperative to account for the misclassification effects in statistical inference when facing misclassification problems. The simulation studies confirm that the proposed methods significantly improve the performance of the naive method and satisfactorily accommodate the effects induced from the response misclassification. The likelihood methods have better performance than the imputation methods. It also confirms that when misclassification rates are unknown, the more the internal validation data, the better the results.

Finally, we comment that to improve the accuracy of estimation results for a given dimension of $x_{k}$ and $z_{k}$, increasing the sample size is typically helpful, as noticed by a referee. In our numerical explorations, we found that for the settings considered in this section, reducing the sample size to a small value (such as 200) can generate unstable results with more nonconverging estimates.

### 3.4.3 Sensitivity Study

To investigate the robustness of the proposed methods in Sections 3.2.1 and 3.3.1, we conduct the following two simulation studies. In Simulation 1, we generate the $Y_{k}$ using (3.15) with $z_{k}$ set as $z_{1 k}$ and the $Y_{k}^{*}$ using (3.4) with $L_{k}=1$, yielding that $\tau_{k 01}$ and $\tau_{k 10}$ are common for $k=1, \ldots, n$; let $\tau_{01}$ and $\tau_{10}$ denote them, respectively. We consider one of the two settings to generate the surrogate responses: (1) $\tau_{01}=5 \%$ and $\tau_{10}=10 \%$; (2) $\tau_{01}=10 \%$ and $\tau_{10}=5 \%$. We apply the methods in Sections 3.2.1 and 3.3.1 by mis-taking $\tau_{01}$ and $\tau_{10}$ as $\tau_{01}=\tau_{10}=2.5 \%, 7.5 \%$ or $10 \%$ to fit the data.

In Simulation 2, we generate the $Y_{k}$ from (3.15) with $z_{k}$ set as $z_{2 k}$ and the $Y_{k}^{*}$ from (3.4) with $L_{k}=\left(1, z_{2 k}\right)^{\top}, \phi_{0}=(-3,0.5)^{\top}$, and $\phi_{1}=(1.5,0.5)^{\top}$. However, we fit the data using the methods in Sections 3.2 .1 and 3.3.1 with $\tau_{k 01}$ and $\tau_{k 10}$ misspecified as one of the settings: (1) $\tau_{k 01}=10 \%$ and $\tau_{k 10}=15 \%$; (2) $\tau_{k 01}=5 \%$ and $\tau_{k 10}=10 \%$, for all $k=1, \ldots, n$.

The results are reported in Tables 3.6-3.8. For estimation of the row and column effects, our proposed methods still perform better than the naive method under the misspecification
of the misclassification rates we consider here. However, for estimation of the vector effect, $\gamma$, our methods may perform better than the naive method only when the misspecified misclassification rates are not severe.

### 3.4.4 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast cancer Wisconsin prognostic imaging data which are available at the UCI Machine Learning Repository website (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+ Wisconsin+(Prognostic)). The data set contains 198 breast cancer patients whose cases exhibit invasive breast cancer but no evidence of distant metastases at the time of diagnosis. Ten real features, Radius, Texture, Perimeter, Area, Smoothness, Compactness, Concavity, Concave Points, Symmetry and Fractal Dimension, of the cell nucleus in the digitized image of a fine needle aspirate (FNA) of breast mass of each subject were taken as the row effects. For each feature, the Mean, Standard Error, and Worst (mean of the three smallest values) were computed for the cell nucleus in each breast mass image and treated as the column effects. Besides those measurements, the tumor size for each subject is available.

Those subjects are divided into the recurrent group of 47 patients and the nonrecurrent group of 151 patients. A patient is classified to be in the recurrent group if the disease is observed at some subsequent time to the tumor excision; and the nonrecurrent group includes patients whose cancer has not observed to recur, or may never recur. There is a possibility that the patients may be misclassified due to incorrect diagnosis for the recurrent group or the unknown recurring time for the nonrecurrent group patients (Mangasarian et al. 1995). Here we are interested in using the observed but error-prone data to study how risk factors may be associated with the true status of being in the recurrent or nonrecurrent group, which is postulated by model (3.1).

For $k=1, . ., 198$, let $Y_{k}^{*}$ be the observed binary response variable for subject $k$, with value 1 for being in the recurrent group and 0 for being in the nonrecurrent group. The matrix-variate of the subject $k$, denoted as $x_{k}$, is a $10 \times 3$ matrix with entry $(i, j)$ representing the value of the $j$ th characteristic of the $i$ th feature, where $i=1, \ldots, 10$ and $j=1,2,3$. The breast tumor size of the subject $k$ is denoted as $z_{k}$. Consistent with the notation in Section 3.1, we let $\tau_{10}$ denote the rate of misclassifying a subject who actually is in the recurrent group into the observed nonrecurrent group as $\tau_{10}$, and let $\tau_{01}$ denote the rate of misclassifying a subject who actually is in the nonrecurrent group into the observed recurrent group.

Since our proposed methods require the knowledge of the misclassification mechanism but there are no validation data available, we conduct sensitivity analysis by examining the impacts of different misclassification probabilities on the estimation of the model parameters. In particular, we consider two possible scenarios. In the first scenario, we take $\tau_{01}=0$, reflecting no misclassification in the recurrent group, and set $\tau_{10}=1 \%, 3 \%$, or $5 \%$ to feature increasing misclassification cases. In the second scenario, we set $\tau_{01}=1 \%$ and let $\tau_{10}=1 \%, 3 \%$, or $5 \%$.

Tables 3.9-3.11 report the estimation results for the breast cancer Wisconsin data obtained from the naive analysis by using (3.3) with $Y_{k}$ replaced by $Y_{k}^{*}$, the imputation method (3.6), and the likelihood method (3.11). For the row effects $\tilde{\alpha}$, all analyses show that Radius has the highest negative effect and Perimeter has the highest positive effect. For the column effects, all the methods show that Mean has the highest positive effect and Worst has the highest negative effect. However, only the intercept term is statistically significant under $5 \%$ significant level. As the misclassification rate increases, the size of the effect as well as the standard errors from the proposed methods increases.

To conclude, we point out that caution should be taken when interpreting the results here. As noted in Section 3.4.2, a small sample size does not ensure reliable estimation results as the asymptotic results do not come into the play. The analysis here can be more regarded as an illustration of the utility of the proposed methods than taken as a sound revealing of new scientific findings for such a study.
Table 3.1: Simulation study for the three methods: $\tau_{01}=\tau_{10}=2.5 \%$ with $z_{1 k}$

| Parameters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  | Naïve Method |  |  |  | Known misclassification rates |  |  |  | Internal Validation |  |  |  |  |  |  |  |
|  |  |  |  |  | 60\% internal validation | 30\% internal validation |  |  |  |
| $\alpha_{4}$ | -0.912 | 0.105 | 0.102 | 94.6 |  |  |  |  | -0.926 | 0.105 | 0.102 | 94.8 | -0.920 | 0.105 | 0.102 | 94.6 | -0.916 | 0.105 | 0.102 | 94.8 |
| $\alpha_{5}$ | -0.284 | 0.098 | 0.102 | 96.7 | -0.282 | 0.098 | 0.102 | 96.7 | -0.283 | 0.098 | 0.102 | 96.7 | -0.284 | 0.098 | 0.102 | 96.7 |
| $\beta_{1}$ | -5.800 | 0.068 | 0.068 | 93.0 | 3.151 | 0.076 | 0.076 | 95.3 | 3.110 | 0.076 | 0.076 | 94.8 | 3.366 | 0.078 | 0.082 | 94.6 |
| $\beta_{2}$ | -6.564 | 0.071 | 0.068 | 89.7 | 2.324 | 0.080 | 0.076 | 93.8 | 2.286 | 0.079 | 0.076 | 94.0 | 2.495 | 0.081 | 0.081 | 93.2 |
| $\beta_{4}$ | -6.395 | 0.072 | 0.068 | 88.2 | 2.511 | 0.080 | 0.076 | 94.2 | 2.470 | 0.080 | 0.076 | 94.2 | 2.709 | 0.082 | 0.081 | 93.6 |
| $\gamma_{0}$ | -6.435 | 0.076 | 0.076 | 91.3 | 2.031 | 0.085 | 0.084 | 94.8 | 2.057 | 0.084 | 0.084 | 95.7 | 2.404 | 0.095 | 0.123 | 92.2 |
| $\gamma_{1}$ | -6.627 | 0.079 | 0.077 | 90.7 | 2.252 | 0.088 | 0.085 | 94.8 | 2.212 | 0.088 | 0.086 | 95.3 | 2.437 | 0.089 | 0.092 | 95.3 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Known misclassification rates |  |  |  | 60\% internal validation |  |  |  | lidation |  |  |  |
|  |  |  |  |  |  |  |  |  | 30\% internal validation |
| $\alpha_{4}$ |  |  |  |  | -0.942 | 0.106 | 0.116 | 96.1 |  |  |  |  | -0.738 | 0.103 | 0.102 | 94.7 | -0.813 | 0.103 | 0.108 | 95.3 |
| $\alpha_{5}$ |  |  |  |  | -0.023 | 0.098 | 0.115 | 98.0 | -0.030 | 0.094 | 0.102 | 96.3 | -0.194 | 0.096 | 0.107 | 96.5 |
| $\beta_{1}$ |  |  |  |  | 2.979 | 0.076 | 0.086 | 96.7 | 2.682 | 0.071 | 0.075 | 95.3 | 3.029 | 0.075 | 0.081 | 96.1 |
| $\beta_{2}$ |  |  |  |  | 2.450 | 0.079 | 0.085 | 96.3 | 2.513 | 0.075 | 0.075 | 95.1 | 2.715 | 0.079 | 0.080 | 95.5 |
| $\beta_{4}$ |  |  |  |  | 2.074 | 0.079 | 0.085 | 95.7 | 1.859 | 0.073 | 0.075 | 95.3 | 2.059 | 0.077 | 0.080 | 96.3 |
| $\gamma_{0}$ |  |  |  |  | 1.763 | 0.084 | 0.084 | 94.7 | 1.730 | 0.084 | 0.082 | 94.5 | 1.929 | 0.092 | 0.086 | 94.1 |
| $\gamma_{1}$ |  |  |  |  | 1.944 | 0.088 | 0.096 | 95.3 | 1.387 | 0.084 | 0.084 | 93.9 | 1.769 | 0.087 | 0.090 | 94.5 |

Table 3.2: Simulation study for the three methods: $\tau_{01}=\tau_{10}=5 \%$ with $z_{1 k}$

| Parameters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  | Naïve Method |  |  |  | Known misclassification rates |  |  |  | Internal Validation |  |  |  |  |  |  |  |
|  |  |  |  |  | 60\% internal validation | 30\% internal validation |  |  |  |
| $\alpha_{4}$ | -0.173 | 0.115 | 0.110 | 94.2 |  |  |  |  | -0.192 | 0.115 | 0.110 | 94.0 | -0.195 | 0.115 | 0.110 | 94.0 | -0.190 | 0.115 | 0.110 | 94.2 |
| $\alpha_{5}$ | -0.332 | 0.107 | 0.110 | 95.8 | -0.332 | 0.107 | 0.110 | 95.6 | -0.336 | 0.107 | 0.110 | 95.6 | -0.329 | 0.107 | 0.110 | 95.6 |
| $\beta_{1}$ | -13.922 | 0.068 | 0.067 | 79.0 | 3.131 | 0.084 | 0.083 | 95.4 | 3.205 | 0.084 | 0.083 | 95.6 | 3.454 | 0.088 | 0.084 | 94.4 |
| $\beta_{2}$ | -14.806 | 0.069 | 0.067 | 76.8 | 2.081 | 0.086 | 0.083 | 95.4 | 2.157 | 0.087 | 0.083 | 95.0 | 2.436 | 0.092 | 0.084 | 93.4 |
| $\beta_{4}$ | -14.547 | 0.068 | 0.067 | 77.0 | 2.396 | 0.085 | 0.083 | 94.0 | 2.471 | 0.086 | 0.083 | 94.0 | 2.756 | 0.090 | 0.084 | 93.0 |
| $\gamma_{0}$ | -13.991 | 0.072 | 0.074 | 73.3 | 2.208 | 0.089 | 0.092 | 95.4 | 2.187 | 0.088 | 0.092 | 96.2 | 2.378 | 0.107 | 0.093 | 90.8 |
| $\gamma_{1}$ | -14.858 | 0.078 | 0.075 | 82.0 | 2.022 | 0.096 | 0.093 | 94.2 | 2.049 | 0.095 | 0.093 | 94.0 | 2.292 | 0.098 | 0.093 | 94.4 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Known misclassification rates |  |  |  | 60\% internal validation ${ }^{\text {Internal }}$ |  |  |  | lidation |  |  |  |
|  |  |  |  |  |  |  |  |  | $30 \%$ internal validation |
| $\alpha_{4}$ |  |  |  |  | -0.950 | 0.107 | 0.118 | 96.1 |  |  |  |  | -0.882 | 0.103 | 0.103 | 94.3 | -0.800 | 0.104 | 0.109 | 95.7 |
| $\alpha_{5}$ |  |  |  |  | -0.082 | 0.099 | 0.117 | 97.8 | -0.007 | 0.094 | 0.103 | 96.6 | -0.285 | 0.096 | 0.108 | 97.0 |
| $\beta_{1}$ |  |  |  |  | 3.145 | 0.076 | 0.088 | 97.0 | 2.735 | 0.072 | 0.076 | 95.5 | 3.113 | 0.075 | 0.082 | 96.1 |
| $\beta_{2}$ |  |  |  |  | 2.336 | 0.080 | 0.086 | 96.6 | 2.475 | 0.075 | 0.075 | 95.5 | 2.624 | 0.080 | 0.080 | 94.7 |
| $\beta_{4}$ |  |  |  |  | 2.074 | 0.080 | 0.087 | 95.7 | 1.883 | 0.073 | 0.075 | 95.5 | 2.062 | 0.077 | 0.081 | 96.6 |
| $\gamma_{0}$ |  |  |  |  | 1.869 | 0.085 | 0.086 | 94.7 | 1.752 | 0.085 | 0.082 | 94.5 | 1.819 | 0.096 | 0.087 | 93.5 |
| $\gamma_{1}$ |  |  |  |  | 1.950 | 0.090 | 0.098 | 95.7 | 1.310 | 0.085 | 0.084 | 93.7 | 1.696 | 0.087 | 0.091 | 94.3 |

Table 3.3: Simulation study for the three methods: $\tau_{01}=\tau_{10}=10 \%$ with $z_{1 k}$

| Parameters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  | Naïve Method |  |  |  | Known misclassification rates |  |  |  | Internal |  |  |  | lidation |  |  |  |
|  |  |  |  |  | 30\% internal validation |  |  |  |  |
| $\alpha_{4}$ | 0.147 | 0.136 | 0.128 | 93.4 |  |  |  |  | 0.110 | 0.136 | 0.128 | 93.6 | 0.105 | 0.136 | 0.128 | 93.6 | 0.124 | 0.136 | 0.128 | 93.6 |
| $\alpha_{5}$ | -0.263 | 0.125 | 0.128 | 96.0 | -0.251 | 0.125 | 0.128 | 95.6 | -0.249 | 0.125 | 0.128 | 95.4 | -0.230 | 0.125 | 0.128 | 95.6 |
| $\beta_{1}$ | -27.302 | 0.065 | 0.064 | 42.0 | 4.645 | 0.101 | 0.099 | 94.6 | 4.645 | 0.100 | 0.100 | 94.6 | 5.319 | 0.108 | 0.101 | 94.8 |
| $\beta_{2}$ | -28.582 | 0.068 | 0.064 | 40.2 | 2.828 | 0.106 | 0.099 | 92.6 | 2.771 | 0.103 | 0.099 | 93.8 | 3.516 | 0.112 | 0.101 | 93.2 |
| $\beta_{4}$ | -27.880 | 0.066 | 0.064 | 41.6 | 3.818 | 0.102 | 0.099 | 94.2 | 3.824 | 0.101 | 0.099 | 95.4 | 4.533 | 0.109 | 0.101 | 95.4 |
| $\gamma_{0}$ | -27.171 | 0.070 | 0.071 | 24.8 | 3.172 | 0.108 | 0.109 | 95.6 | 2.952 | 0.098 | 0.110 | 98.0 | 3.663 | 0.136 | 0.112 | 91.4 |
| $\gamma_{1}$ | -28.288 | 0.073 | 0.072 | 49.2 | 3.246 | 0.112 | 0.110 | 94.2 | 3.171 | 0.109 | 0.111 | 95.0 | 3.741 | 0.114 | 0.112 | 93.6 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Known misclassification rates |  |  |  | 60\% internal validation ${ }^{\text {Internal }}$ |  |  |  | lidation |  |  |  |
|  |  |  |  |  |  |  |  |  | 30\% internal validation |
| $\alpha_{4}$ |  |  |  |  | -0.783 | 0.115 | 0.124 | 96.1 |  |  |  |  | -0.761 | 0.105 | 0.104 | 93.7 | -0.571 | 0.109 | 0.112 | 95.1 |
| $\alpha_{5}$ |  |  |  |  | -0.580 | 0.101 | 0.123 | 97.4 | -0.255 | 0.096 | 0.104 | 96.3 | -0.678 | 0.099 | 0.111 | 96.3 |
| $\beta_{1}$ |  |  |  |  | 3.476 | 0.080 | 0.094 | 97.0 | 2.596 | 0.073 | 0.076 | 95.1 | 3.000 | 0.077 | 0.083 | 95.7 |
| $\beta_{2}$ |  |  |  |  | 2.354 | 0.085 | 0.092 | 96.1 | 2.413 | 0.075 | 0.076 | 95.5 | 2.411 | 0.081 | 0.082 | 95.1 |
| $\beta_{4}$ |  |  |  |  | 2.741 | 0.083 | 0.093 | 95.7 | 2.157 | 0.074 | 0.076 | 95.3 | 2.324 | 0.078 | 0.082 | 96.6 |
| $\gamma_{0}$ |  |  |  |  | 2.189 | 0.089 | 0.090 | 94.9 | 1.737 | 0.086 | 0.083 | 93.9 | 1.610 | 0.099 | 0.089 | 92.7 |
| $\gamma_{1}$ |  |  |  |  | 2.384 | 0.092 | 0.104 | 96.1 | 1.371 | 0.085 | 0.085 | 93.9 | 1.673 | 0.088 | 0.093 | 95.1 |

Table 3.4: Simulation study for the three methods: $\tau_{01}=\tau_{10}=20 \%$ with $z_{1 k}$

| Parameters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  | Naïve Method |  |  |  | Known misclassification rates |  |  |  | Internal Validation |  |  |  |  |  |  |  |
|  |  |  |  |  | 60\% internal validation | 30\% internal validation |  |  |  |
| $\alpha_{4}$ | -0.790 | 0.189 | 0.181 | 94.2 |  |  |  |  | -0.861 | 0.189 | 0.181 | 94.0 | -0.873 | 0.189 | 0.181 | 94.2 | -0.841 | 0.189 | 0.181 | 94.4 |
| $\alpha_{5}$ | -0.201 | 0.194 | 0.182 | 95.0 | -0.194 | 0.193 | 0.182 | 94.8 | -0.164 | 0.193 | 0.182 | 95.0 | -0.185 | 0.193 | 0.182 | 94.8 |
| $\beta_{1}$ | -50.040 | 0.061 | 0.060 | 3.8 | 7.392 | 0.151 | 0.149 | 95.8 | 7.731 | 0.147 | 0.151 | 96.2 | 11.902 | 0.177 | 0.167 | 96.0 |
| $\beta_{2}$ | -50.803 | 0.063 | 0.060 | 2.6 | 5.751 | 0.153 | 0.148 | 94.6 | 6.294 | 0.152 | 0.150 | 95.2 | 10.629 | 0.191 | 0.168 | 94.2 |
| $\beta_{4}$ | -50.417 | 0.060 | 0.060 | 2.4 | 6.667 | 0.148 | 0.148 | 96.2 | 7.197 | 0.148 | 0.150 | 95.6 | 11.398 | 0.181 | 0.167 | 95.2 |
| $\gamma_{0}$ | -49.381 | 0.065 | 0.067 | 0.2 | 5.574 | 0.159 | 0.164 | 96.2 | 6.081 | 0.145 | 0.167 | 98.8 | 10.788 | 0.256 | 0.190 | 87.4 |
| $\gamma_{1}$ | -50.987 | 0.068 | 0.068 | 3.2 | 5.367 | 0.160 | 0.164 | 97.0 | 5.872 | 0.161 | 0.167 | 96.4 | 9.821 | 0.188 | 0.182 | 96.4 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Known misclassification rates |  |  |  | 60\% internal validation |  |  |  | lidation |  |  |  |
|  |  |  |  |  |  |  |  |  | $30 \%$ internal validation |
| $\alpha_{4}$ |  |  |  |  | -1.221 | 0.187 | 0.544 | 97.6 |  |  |  |  | -1.410 | 0.118 | 0.115 | 95.0 | -1.211 | 0.147 | 0.145 | 94.6 |
| $\alpha_{5}$ |  |  |  |  | -0.132 | 0.187 | 0.669 | 97.6 | 0.609 | 0.108 | 0.115 | 96.6 | 0.001 | 0.137 | 0.147 | 97.4 |
| $\beta_{1}$ |  |  |  |  | 6.807 | 0.144 | 0.947 | 98.6 | 3.177 | 0.084 | 0.085 | 94.8 | 3.977 | 0.104 | 0.110 | 95.2 |
| $\beta_{2}$ |  |  |  |  | 6.138 | 0.148 | 0.363 | 98.6 | 2.627 | 0.085 | 0.085 | 95.4 | 3.342 | 0.110 | 0.110 | 93.6 |
| $\beta_{4}$ |  |  |  |  | 6.339 | 0.145 | 0.645 | 97.4 | 3.242 | 0.085 | 0.085 | 95.4 | 3.984 | 0.108 | 0.111 | 95.8 |
| $\gamma_{0}$ |  |  |  |  | 5.482 | 0.155 | 0.386 | 96.6 | 3.269 | 0.094 | 0.094 | 94.2 | 4.300 | 0.142 | 0.118 | 89.0 |
| $\gamma_{1}$ |  |  |  |  | 5.159 | 0.160 | 2.105 | 97.4 | 1.604 | 0.095 | 0.096 | 95.2 | 1.764 | 0.115 | 0.124 | 95.0 |

Table 3.5: Simulation study for the three methods: $\phi_{0}=(3,0.5)^{\top}$ and $\phi_{1}=(-3,0.5)^{\top}$ with $z_{2 k}$

| Parameters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  | Naïve Method |  |  |  | Known misclassification rates |  |  |  | Internal |  |  |  | lidation |  |  |  |
|  |  |  |  |  | 30\% internal validation |  |  |  |  |
| $\alpha_{4}$ | 1.313 | 0.118 | 0.112 | 92.6 |  |  |  |  | 1.301 | 0.118 | 0.112 | 92.6 | 1.326 | 0.118 | 0.112 | 92.6 | 1.326 | 0.118 | 0.112 | 92.6 |
| $\alpha_{5}$ | -0.327 | 0.115 | 0.111 | 93.8 | -0.321 | 0.115 | 0.111 | 94.0 | -0.335 | 0.115 | 0.111 | 94.2 | -0.325 | 0.115 | 0.111 | 94.0 |
| $\beta_{1}$ | -12.614 | 0.072 | 0.068 | 81.4 | 2.728 | 0.088 | 0.083 | 94.8 | 2.763 | 0.088 | 0.083 | 94.2 | 3.082 | 0.092 | 0.084 | 92.8 |
| $\beta_{2}$ | -13.788 | 0.076 | 0.068 | 78.2 | 1.348 | 0.092 | 0.083 | 93.2 | 1.383 | 0.092 | 0.083 | 92.6 | 1.596 | 0.092 | 0.084 | 92.0 |
| $\beta_{4}$ | -12.984 | 0.068 | 0.068 | 81.2 | 2.298 | 0.083 | 0.083 | 95.0 | 2.344 | 0.084 | 0.083 | 95.6 | 2.619 | 0.086 | 0.084 | 94.4 |
| $\gamma_{0}$ | -12.794 | 0.101 | 0.102 | 84.4 | 1.803 | 0.122 | 0.122 | 95.8 | 1.851 | 0.122 | 0.123 | 95.8 | 2.444 | 0.142 | 0.124 | 93.0 |
| $\gamma_{1}$ | 9.044 | 0.143 | 0.149 | 95.2 | 1.139 | 0.168 | 0.175 | 95.8 | 2.249 | 0.172 | 0.176 | 94.2 | 1.358 | 0.203 | 0.177 | 91.8 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Known misclassification rates |  |  |  | 60\% internal validation |  |  |  | lidation |  |  |  |
|  |  |  |  |  |  |  |  |  | $30 \%$ internal validation |
| $\alpha_{4}$ |  |  |  |  | 1.245 | 0.118 | 0.125 | 93.8 |  |  |  |  | 1.121 | 0.110 | 0.108 | 93.4 | 1.323 | 0.113 | 0.116 | 93.8 |
| $\alpha_{5}$ |  |  |  |  | -0.199 | 0.115 | 0.125 | 96.0 | -0.250 | 0.105 | 0.107 | 94.4 | -0.296 | 0.109 | 0.115 | 95.4 |
| $\beta_{1}$ |  |  |  |  | 2.527 | 0.088 | 0.094 | 96.4 | 1.590 | 0.080 | 0.083 | 94.8 | 1.932 | 0.083 | 0.102 | 97.0 |
| $\beta_{2}$ |  |  |  |  | 1.254 | 0.092 | 0.093 | 94.4 | 0.666 | 0.082 | 0.084 | 94.4 | 0.887 | 0.087 | 0.104 | 95.0 |
| $\beta_{4}$ |  |  |  |  | 2.058 | 0.083 | 0.094 | 96.8 | 1.325 | 0.077 | 0.084 | 96.0 | 1.702 | 0.080 | 0.104 | 97.0 |
| $\gamma_{0}$ |  |  |  |  | 1.646 | 0.121 | 0.128 | 97.2 | 0.796 | 0.117 | 0.127 | 95.8 | 1.232 | 0.122 | 0.161 | 98.6 |
| $\gamma_{1}$ |  |  |  |  | 1.072 | 0.167 | 0.193 | 97.4 | 1.411 | 0.161 | 0.170 | 95.8 | 1.469 | 0.165 | 0.189 | 96.6 |

Table 3.6: Simulation study for the robustness of the three methods: Simulation 1 with Setting 1 ( $\tau_{01}=5 \%$ and $\tau_{10}=10 \%$ ) by mis-taking $\tau_{01}$ and $\tau_{10}$ as $2.5 \%, 7.5 \%$ or $10 \%$ when fitting the data

| Paramaters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Naïve Method |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 2.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 7.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as $10 \%$ |  |  |  |
| $\alpha_{4}$ | -0.040 | 0.128 | 0.120 | 94.6 | -0.048 | 0.128 | 0.120 | 94.6 | -0.067 | 0.128 | 0.120 | 94.6 | -0.077 | 0.128 | 0.120 | 94.4 |
| $\alpha_{5}$ | -0.280 | 0.118 | 0.120 | 95.8 | -0.279 | 0.118 | 0.120 | 95.6 | -0.276 | 0.118 | 0.120 | 95.8 | -0.274 | 0.118 | 0.120 | 95.8 |
| $\beta_{1}$ | -22.753 | 0.066 | 0.065 | 55.4 | -16.621 | 0.072 | 0.070 | 75.0 | -0.168 | 0.090 | 0.088 | 94.8 | 11.387 | 0.103 | 0.101 | 93.8 |
| $\beta_{2}$ | -24.123 | 0.068 | 0.064 | 52.6 | -18.100 | 0.074 | 0.070 | 70.4 | -1.935 | 0.092 | 0.087 | 94.2 | 9.420 | 0.106 | 0.101 | 92.6 |
| $\beta_{4}$ | -23.481 | 0.065 | 0.064 | 53.4 | -17.408 | 0.072 | 0.070 | 73.8 | -1.112 | 0.089 | 0.087 | 93.8 | 10.334 | 0.103 | 0.101 | 93.0 |
| $\gamma_{0}$ | -13.038 | 0.106 | 0.071 | 64.4 | -34.320 | 0.076 | 0.077 | 13.8 | -21.787 | 0.093 | 0.095 | 63.4 | -13.038 | 0.106 | 0.108 | 85.0 |
| $\gamma_{1}$ | 10.099 | 0.115 | 0.073 | 75.4 | -17.598 | 0.081 | 0.079 | 78.8 | -1.330 | 0.101 | 0.098 | 93.4 | 10.099 | 0.115 | 0.112 | 93.2 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 2.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 7.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as $10 \%$ |  |  |  |
| $\alpha_{4}$ |  |  |  |  | -0.089 | 0.127 | 0.133 | 95.6 | -0.223 | 0.127 | 0.139 | 96.4 | -0.320 | 0.127 | 0.145 | 96.6 |
| $\alpha_{5}$ |  |  |  |  | -0.281 | 0.117 | 0.132 | 96.4 | -0.293 | 0.115 | 0.138 | 96.6 | -0.298 | 0.115 | 0.144 | 96.8 |
| $\beta_{1}$ |  |  |  |  | -16.100 | 0.072 | 0.077 | 78.6 | 0.383 | 0.089 | 0.100 | 96.8 | 10.833 | 0.099 | 0.118 | 96.0 |
| $\beta_{2}$ |  |  |  |  | -17.508 | 0.074 | 0.075 | 74.2 | -1.025 | 0.091 | 0.097 | 95.8 | 9.490 | 0.102 | 0.115 | 95.2 |
| $\beta_{4}$ |  |  |  |  | -16.855 | 0.072 | 0.075 | 78.2 | -0.415 | 0.088 | 0.098 | 95.2 | 10.016 | 0.099 | 0.116 | 95.2 |
| $\gamma_{0}$ |  |  |  |  | -33.852 | 0.076 | 0.077 | 15.0 | -20.843 | 0.092 | 0.094 | 65.2 | -12.490 | 0.104 | 0.106 | 86.2 |
| $\gamma_{1}$ |  |  |  |  | -17.081 | 0.082 | 0.086 | 82.2 | -0.723 | 0.101 | 0.111 | 94.8 | 9.680 | 0.114 | 0.131 | 94.8 |

Table 3.7: Simulation study for the robustness of the three methods: Simulation 1 with Setting 2 ( $\tau_{01}=10 \%$ and $\left.\tau_{10}=5 \%\right)$ by mis-taking $\tau_{01}$ and $\tau_{10}$ as $2.5 \%, 7.5 \%$ or $10 \%$ when fitting the data

| Paramaters | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Naïve Method |  |  |  | Imputation Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 2.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 7.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 10\% |  |  |  |
| $\alpha_{4}$ | 0.038 | 0.122 | 0.117 | 94.2 | 0.029 | 0.122 | 0.117 | 94.0 | 0.009 | 0.123 | 0.117 | 94.0 | -0.001 | 0.123 | 0.117 | 93.8 |
| $\alpha_{5}$ | -0.292 | 0.113 | 0.117 | 95.8 | -0.291 | 0.113 | 0.117 | 95.8 | -0.286 | 0.113 | 0.117 | 95.8 | -0.282 | 0.113 | 0.117 | 95.8 |
| $\beta_{1}$ | -18.346 | 0.067 | 0.067 | 69.6 | -11.071 | 0.074 | 0.074 | 87.0 | 9.421 | 0.095 | 0.095 | 93.6 | 24.836 | 0.114 | 0.114 | 86.4 |
| $\beta_{2}$ | -19.150 | 0.069 | 0.067 | 67.8 | -11.943 | 0.076 | 0.074 | 83.8 | 8.362 | 0.098 | 0.095 | 93.8 | 23.645 | 0.117 | 0.114 | 84.8 |
| $\beta_{4}$ | -18.831 | 0.069 | 0.066 | 68.0 | -11.593 | 0.076 | 0.073 | 83.4 | 8.802 | 0.099 | 0.095 | 94.2 | 24.154 | 0.118 | 0.114 | 84.6 |
| $\gamma_{0}$ | 46.250 | 0.129 | 0.074 | 6.4 | 6.433 | 0.080 | 0.082 | 93.2 | 29.270 | 0.106 | 0.108 | 55.2 | 46.250 | 0.129 | 0.132 | 26.8 |
| $\gamma_{1}$ | 23.355 | 0.127 | 0.075 | 61.8 | -12.162 | 0.084 | 0.083 | 86.8 | 8.100 | 0.108 | 0.106 | 93.2 | 23.355 | 0.127 | 0.126 | 87.6 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 2.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 7.5\% |  |  |  | Mis-taking $\tau_{01}=\tau_{10}$ as 10\% |  |  |  |
| $\alpha_{4}$ |  |  |  |  | -0.026 | 0.122 | 0.130 | 95.4 | -0.182 | 0.122 | 0.137 | 96.0 | -0.264 | 0.123 | 0.146 | 97.2 |
| $\alpha_{5}$ |  |  |  |  | -0.263 | 0.112 | 0.129 | 97.4 | -0.230 | 0.111 | 0.137 | 97.6 | -0.212 | 0.112 | 0.146 | 97.6 |
| $\beta_{1}$ |  |  |  |  | -10.847 | 0.074 | 0.082 | 90.4 | 7.404 | 0.092 | 0.113 | 97.0 | 18.830 | 0.104 | 0.140 | 95.8 |
| $\beta_{2}$ |  |  |  |  | -11.644 | 0.075 | 0.081 | 85.8 | 6.758 | 0.093 | 0.111 | 97.2 | 18.334 | 0.104 | 0.140 | 96.0 |
| $\beta_{4}$ |  |  |  |  | -11.286 | 0.077 | 0.082 | 86.8 | 7.126 | 0.096 | 0.113 | 97.4 | 18.681 | 0.109 | 0.141 | 94.8 |
| $\gamma_{0}$ |  |  |  |  | 6.528 | 0.080 | 0.083 | 93.6 | 27.142 | 0.100 | 0.106 | 58.8 | 40.205 | 0.114 | 0.127 | 37.4 |
| $\gamma_{1}$ |  |  |  |  | -11.921 | 0.084 | 0.092 | 89.8 | 6.313 | 0.105 | 0.125 | 95.6 | 17.795 | 0.119 | 0.153 | 95.4 |


| Paramaters | Bias\% | SEE | ASE | CR\% | Bias\% | SEE | ASE | CR\% | Bias\% | SEE | ASE | CR\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Naïve Method |  |  |  | Imputation Methods |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=5 \%$ and $\tau_{10}=10 \%$ |  |  |  | Mis-taking $\tau_{01}=10 \%$ and $\tau_{10}=5 \%$ |  |  |  |
| $\alpha_{4}$ | 1.798 | 0.164 | 0.157 | 93.4 | 1.750 | 0.164 | 0.157 | 93.4 | 1.773 | 0.164 | 0.157 | 93.4 |
| $\alpha_{5}$ | 0.472 | 0.175 | 0.156 | 92.6 | 0.428 | 0.175 | 0.156 | 92.6 | 0.449 | 0.175 | 0.156 | 92.6 |
| $\beta_{1}$ | -40.211 | 0.065 | 0.063 | 11.2 | 9.409 | 0.134 | 0.129 | 95.0 | 3.032 | 0.124 | 0.120 | 93.8 |
| $\beta_{2}$ | -41.085 | 0.067 | 0.062 | 11.8 | 7.788 | 0.135 | 0.129 | 95.2 | 1.478 | 0.125 | 0.119 | 94.8 |
| $\beta_{4}$ | -41.185 | 0.064 | 0.062 | 11.2 | 7.688 | 0.131 | 0.129 | 94.8 | 1.402 | 0.122 | 0.119 | 93.8 |
| $\gamma_{0}$ | -58.648 | 0.094 | 0.095 | 1.4 | -30.072 | 0.165 | 0.168 | 73.4 | -10.903 | 0.156 | 0.159 | 91.0 |
| $\gamma_{1}$ | 17.681 | 0.134 | 0.139 | 91.8 | 113.292 | 0.263 | 0.274 | 44.0 | 101.626 | 0.247 | 0.257 | 48.0 |
|  |  |  |  |  | Likelihood Methods |  |  |  |  |  |  |  |
|  |  |  |  |  | Mis-taking $\tau_{01}=5 \%$ and $\tau_{10}=10 \%$ |  |  |  | Mis-taking $\tau_{01}=10 \%$ and $\tau_{10}=5 \%$ |  |  |  |
| $\alpha_{4}$ |  |  |  |  | 1.552 | 0.142 | 0.168 | 95.8 | 1.613 | 0.143 | 0.156 | 94.8 |
| $\alpha_{5}$ |  |  |  |  | 0.287 | 0.148 | 0.169 | 96.2 | 0.105 | 0.148 | 0.157 | 95.6 |
| $\beta_{1}$ |  |  |  |  | 0.588 | 0.104 | 0.119 | 96.0 | -17.415 | 0.082 | 0.087 | 77.8 |
| $\beta_{2}$ |  |  |  |  | -0.628 | 0.111 | 0.115 | 93.2 | -18.565 | 0.088 | 0.085 | 74.2 |
| $\beta_{4}$ |  |  |  |  | -1.173 | 0.104 | 0.115 | 95.4 | -18.907 | 0.082 | 0.085 | 77.2 |
| $\gamma_{0}$ |  |  |  |  | -84.104 | 0.138 | 0.156 | 2.4 | -87.906 | 0.114 | 0.125 | 0.0 |
| $\gamma_{1}$ |  |  |  |  | 66.741 | 0.201 | 0.250 | 78.8 | 38.743 | 0.166 | 0.191 | 85.8 |

Table 3.9: Analysis of the breast cancer Wisconsin prognostic data without accounting for misclassification effects

| Parameter | Est. | SE | $95 \%$ CI |
| :--- | :---: | :---: | ---: |
| Radius | -4.790 | 3.778 | $(-12.195,2.614)$ |
| Texture | -0.122 | 0.115 | $(-0.348,0.104)$ |
| Perimeter | 3.909 | 3.951 | $(-3.835,11.654)$ |
| Smoothness | 0.242 | 0.233 | $(-0.214,0.698)$ |
| Compactness | 0.073 | 0.273 | $(-0.463,0.609)$ |
| Concavity | -0.372 | 0.293 | $(-0.945,0.202)$ |
| Concave Points | 0.117 | 0.251 | $(-0.376,0.610)$ |
| Symmetry | -0.041 | 0.119 | $(-0.276,0.193)$ |
| Fractal Dimension | -0.411 | 0.266 | $(-0.933,0.111)$ |
| Mean | 3.089 | 1.791 | $(-0.422,6.599)$ |
| SE | 0.276 | 0.388 | $(-0.484,1.037)$ |
| Worst | -0.773 | 0.660 | $(-2.066,0.520)$ |
| Tumor Size | 0.267 | 0.167 | $(-0.060,0.594)$ |
| Intercept | -1.371 | 0.205 | $(-1.772,-0.969)$ |

Table 3.10: Sensitivity analyses of the first scenario $\left(\tau_{01}=0\right)$ of the breast cancer Wisconsin prognostic data with different degrees of $\tau_{10}$ accommodated

| Parameter | Imputation Method |  |  | Likelihood Method |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Est. | SE | 95\% CI | Est. | SE | 95\% CI |
| Scenario (i): assuming $\tau_{10}=1 \%$ |  |  |  |  |  |  |
| Radius | -4.740 | 3.728 | $(-12.048,2.567)$ | -5.128 | 4.273 | (-13.504, 3.247) |
| Texture | -0.121 | 0.114 | (-0.344, 0.102) | -0.137 | 0.133 | (-0.397, 0.124) |
| Perimeter | 3.855 | 3.898 | $(-3.785,11.496)$ | 4.273 | 4.454 | (-4.456, 13.003) |
| Smoothness | 0.237 | 0.229 | (-0.212, 0.687) | 0.268 | 0.271 | (-0.263, 0.798) |
| Compactness | 0.074 | 0.227 | (-0.457, 0.603) | 0.064 | 0.286 | (-0.496, 0.624) |
| Concavity | -0.368 | 0.289 | (-0.934, 0.199) | -0.395 | 0.342 | (-1.066, 0.276) |
| Concave Points | 0.119 | 0.249 | (-0.370, 0.608) | 0.111 | 0.290 | (-0.457, 0.678) |
| Symmetry | -0.041 | 0.118 | (-0.273, 0.190) | -0.041 | 0.122 | (-0.280, 0.197) |
| Fractal Dimension | -0.407 | 0.263 | (-0.923, 0.109) | -0.432 | 0.333 | (-1.086, 0.220) |
| Mean | 3.139 | 1.817 | (-0.422, 6.701) | 3.025 | 2.153 | (-1.196, 7.245) |
| SE | 0.280 | 0.392 | (-0.490, 1.049) | 0.286 | 0.428 | (-0.553, 1.125) |
| Worst | -0.788 | 0.671 | (-2.103, 0.528) | -0.748 | 0.742 | (-2.203, 0.707) |
| Tumor Size | 0.268 | 0.168 | (-0.061, 0.597) | 0.277 | 0.171 | (-0.062, 0.609) |
| Intercept | -1.357 | 0.206 | (-1.760, -0.954) | -1.442 | 0.215 | (-1.863, -1.021) |
| Scenario (ii): assuming $\tau_{10}=3 \%$ |  |  |  |  |  |  |
| Radius | -4.636 | 3.627 | (-11.745, 2.472) | -5.993 | 5.394 | (-16.565, 4.579) |
| Texture | -0.118 | 0.111 | (-0.335, 0.099) | -0.179 | 0.180 | (-0.532, 0.174) |
| Perimeter | 3.743 | 3.791 | (-3.686, 11.173) | 5.207 | 5.650 | (-5.867, 16.280) |
| Smoothness | 0.229 | 0.223 | (-0.208, 0.666) | 0.338 | 0.358 | (-0.364, 1.040) |
| Compactness | 0.075 | 0.264 | (-0.443, 0.593) | 0.048 | 0.335 | (-0.608, 0.704) |
| Concavity | -0.360 | 0.282 | (-0.913, 0.194) | -0.459 | 0.421 | (-1.285, 0.367) |
| Concave Points | 0.122 | 0.245 | (-0.358, 0.603) | 0.094 | 0.322 | (-0.538, 0.7250) |
| Symmetry | -0.041 | 0.115 | (-0.267, 0.185) | -0.042 | 0.145 | (-0.327, 0.242) |
| Fractal Dimension | -0.399 | 0.256 | (-0.902, 0.103) | -0.425 | 0.430 | (-1.331, 0.336) |
| Mean | 3.248 | 1.873 | (-0.423, 6.920) | 2.862 | 2.273 | (-1.593, 7.317) |
| SE | 0.286 | 0.403 | (-0.504, 1.076) | 0.304 | 0.446 | (-0.570, 1.177) |
| Worst | -0.820 | 0.696 | (-2.183, 0.544) | -0.689 | 0.728 | (-2.117, 0.739) |
| Tumor Size | 0.271 | 0.171 | (-0.063, 0.606) | 0.292 | 0.265 | (-0.066, 0.650) |
| Intercept | -1.329 | 0.207 | (-1.735, -0.923) | -1.617 | 0.183 | (-2.135, -1.098) |
| Scenario (iii): assuming $\tau_{10}=5 \%$ |  |  |  |  |  |  |
| Radius | -4.528 | 3.523 | (-11.433,2.376) | -7.410 | 7.631 | (-22.368, 7.548) |
| Texture | -0.116 | 0.108 | (-0.327, 0.095) | -0.255 | 0.283 | (-0.810, 0.230) |
| Perimeter | 3.627 | 3.679 | $(-3.854,10.839)$ | 6.734 | 8.047 | (-9.038, 22.507) |
| Smoothness | 0.220 | 0.216 | (-0.204, 0.644) | 0.455 | 0.537 | $(-0.598,1.508)$ |
| Compactness | 0.077 | 0.258 | (-0.429, 0.582) | 0.031 | 0.405 | (-0.763, 0.826) |
| Concavity | -0.351 | 0.276 | (-0.891, 0.189) | -0.570 | 0.590 | (-1.726, 0.586) |
| Concave Points | 0.126 | 0.241 | (-0.346, 0.597) | 0.074 | 0.380 | (-0.671, 0.820) |
| Symmetry | -0.040 | 0.112 | (-0.260, 0.180) | -0.048 | 0.1876 | (-0.414, 0.318) |
| Fractal Dimension | -0.250 | 0.545 | (-0.881, 0.098) | -0.617 | 0.623 | (-1.839, 0.605) |
| Mean | 3.367 | 1.936 | (-0.426, 7.161) | 2.617 | 2.463 | (-2.211, 7.445) |
| SE | 0.293 | 0.414 | (-0.519, 1.106) | 0.310 | 0.460 | $(-0.593,1.212)$ |
| Worst | -0.855 | 0.723 | $(-2.272,0.562)$ | -0.609 | 0.716 | (-2.012, 0.794) |
| Tumor Size | 0.275 | 0.173 | $(-0.065,0.614)$ | 0.320 | 0.198 | (-0.068, 0.708) |
| Intercept | -1.301 | 0.209 | (-1.709, -0.892) | -1.866 | 0.363 | (-2.579, -1.154) |

Table 3.11: Sensitivity analyses of the second scenario ( $\tau_{01}=1 \%$ ) of the breast cancer Wisconsin prognostic data with different degrees of $\tau_{10}$ accommodated

| Parameter | Imputation Method |  |  | Likelihood Method |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Est. | SE | 95\% CI | Est. | SE | 95\% CI |
| Scenario (i): assuming $\tau_{10}=1 \%$ |  |  |  |  |  |  |
| Radius | -4.963 | 3.973 | (-12.751, 2.825) | -4.796 | 3.884 | (-12.409, 2.817) |
| Texture | -0.126 | 0.120 | (-0.361, 0.109) | -0.122 | 0.118 | (-0.354, 0.110) |
| Perimeter | 4.094 | 4.158 | (-4.056, 12.243) | 3.918 | 4.041 | (-4.003, 11.839) |
| Smoothness | 0.255 | 0.244 | (-0.224, 0.733) | 0.244 | 0.243 | (-0.233, 0.721) |
| Compactness | 0.068 | 0.282 | (-0.486, 0.621) | 0.071 | 0.267 | (-0.451, 0.594) |
| Concavity | -0.385 | 0.303 | (-0.979, 0.210) | -0.370 | 0.317 | (-0.991, 0.251) |
| Concave Points | 0.112 | 0.254 | $(-0.386,0.610)$ | 0.113 | 0.278 | (-0.432, 0.657) |
| Symmetry | -0.041 | 0.123 | (-0.282, 0.201) | -0.041 | 0.113 | (-0.263, 0.182) |
| Fractal Dimension | -0.421 | 0.279 | (-0.967, 0.125) | -0.410 | 0.305 | (-1.008, 0.188) |
| Mean | 3.167 | 1.882 | (-0.523, 6.856) | 3.097 | 2.118 | (-1.055, 7.249) |
| SE | 0.290 | 0.408 | (-0.509, 1.089) | 0.279 | 0.423 | (-0.551, 1.109) |
| Worst | -0.787 | 0.681 | (-2.122, 0.548) | -0.775 | 0.753 | (-2.251, 0.701) |
| Tumor Size | 0.277 | 0.173 | $(-0.062,0.616)$ | 0.270 | 0.169 | (-0.061, 0.600) |
| Intercept | -1.426 | 0.222 | (-1.860, -0.991) | -1.357 | 0.199 | (-1.748, -0.966) |
| Scenario (ii): assuming $\tau_{10}=3 \%$ |  |  |  |  |  |  |
| Radius | -4.856 | 3.867 | (-12.435, 2.722) | -4.806 | 3.887 | (-12.424, 2.812) |
| Texture | -0.123 | 0.117 | (-0.352, 0.105) | -0.120 | 0.118 | (-0.352, 0.112) |
| Perimeter | 3.980 | 4.044 | (-3.947, 11.906) | 3.933 | 4.046 | (-3.997, 11.864) |
| Smoothness | 0.246 | 0.237 | (-0.219, 0.710) | 0.248 | 0.246 | (-0.234, 0.729) |
| Compactness | 0.069 | 0.276 | (-0.472, 0.610) | 0.068 | 0.268 | (-0.458, 0.594) |
| Concavity | -0.376 | 0.296 | (-0.956, 0.204) | -0.367 | 0.317 | (-0.987, 0.254) |
| Concave Points | 0.115 | 0.250 | (-0.374, 0.605) | 0.104 | 0.278 | (-0.442, 0.649) |
| Symmetry | -0.040 | 0.120 | (-0.276, 0.196) | -0.039 | 0.113 | (-0.260, 0.183) |
| Fractal Dimension | -0.413 | 0.271 | $(-0.945,0.119)$ | -0.409 | 0.306 | (-1.009, 0.191) |
| Mean | 3.276 | 1.940 | (-0.527, 7.080) | 3.117 | 2.140 | (-1.077, 7.311) |
| SE | 0.297 | 0.418 | $(-0.523,1.117)$ | 0.284 | 0.429 | (-0.558, 1.125) |
| Worst | -0.818 | 0.706 | (-2.201, 0.565) | -0.778 | 0.759 | (-2.267, 0.710) |
| Tumor Size | 0.280 | 0.176 | $(-0.065,0.624)$ | 0.276 | 0.172 | (-0.062, 0.613) |
| Intercept | -1.398 | 0.223 | (-1.835, -0.961) | -1.329 | 0.200 | (-1.722, -0.937) |
| Scenario (iii): assuming $\tau_{10}=5 \%$ |  |  |  |  |  |  |
| Radius | -4.746 | 3.757 | (-12.111, 2.618) | -4.814 | 3.885 | (-12.430, 2.801) |
| Texture | -0.121 | 0.113 | (-0.343, 0.102) | -0.118 | 0.118 | (-0.349, 0.113) |
| Perimeter | 3.861 | 3.928 | $(-3.837,11.559)$ | 3.947 | 4.047 | (-3.985, 11.879) |
| Smoothness | 0.236 | 0.230 | $(-0.215,0.687)$ | 0.251 | 0.247 | (-0.234, 0.736) |
| Compactness | 0.071 | 0.269 | (-0.457, 0.598) | 0.065 | 0.270 | (-0.465, 0.594) |
| Concavity | -0.367 | 0.289 | (-0.933, 0.199) | -0.363 | 0.316 | (-0.983, 0.257) |
| Concave Points | 0.119 | 0.245 | (-0.361, 0.599) | 0.094 | 0.279 | (-0.453, 0.641) |
| Symmetry | -0.039 | 0.117 | (-0.269, 0.190) | -0.037 | 0.113 | (-0.258, 0.184 |
| Fractal Dimension | -0.405 | 0.264 | (-0.923, 0.113) | -0.408 | 0.307 | (-1.009, 0.193) |
| Mean | 3.396 | 2.005 | (-0.534, 7.326) | 3.141 | 2.164 | (-1.101, 7.383) |
| SE | 0.305 | 0.430 | (-0.538, 1.148) | 0.289 | 0.436 | $(-0.565,1.143)$ |
| Worst | -0.853 | 0.733 | (-2.289, 0.583) | -0.783 | 0.767 | (-2.285, 0.720) |
| Tumor Size | 0.283 | 0.179 | (-0.067, 0.633) | 0.283 | 0.176 | (-0.063, 0.628) |
| Intercept | -1.370 | 0.225 | (-1.810, -0.929) | -1.301 | 0.202 | (-1.696, -0.906) |

## Chapter 4

## Regularized Matrix-Variate Logistic Regression with Response Misclassification

Chapter 4 is a continuation and extension of Chapter 3. In this chapter, we consider regularized matrix-variate logistic regression with response misclassification. The remainder is organized as follows. In Section 4.1, we propose the first set of methods based on regularized unbiased estimating functions, and establish the asymptotic results for the resulting estimators. In Section 4.2, we develop the second set of methods which employ regularized observed likelihood functions. In Section 4.3, we conduct simulation studies to assess the performance of the proposed methods. We also present an application to the breast cancer Wisconsin prognostic data discussed in Section 3.4.4.

Specifically, the notation and model setup are the same as those in Chapter 3. The only difference is that the covariates contained in $x_{k}$ may be unimportant in explaining the mean response. We are interested in carrying out variable selection to exclude those irrelevant covariates in inferential procedures.

### 4.1 Regularized Estimation Equations Method

### 4.1.1 With Known Misclassification Probabilities

Refer to Chapter 3, the method based in model (3.1) applies when the dimensions of $x$ and $z$ are small or when $x$ and $z$ do not include unimportant covariates. In settings with unimportant covariates, it is imperative to perform variable selection when estimating the model parameters. Let $p_{\lambda_{n}}(\cdot)$ denote the penalty function with the tuning parameter $\lambda_{n}$ which often depends on $n$, where the argument of $p_{\lambda_{n}}(\cdot)$ is a scalar. For ease of exposition, we let $p_{\lambda_{n}}(\tilde{\alpha}), p_{\lambda_{n}}(\beta)$ and $p_{\lambda_{n}}(\gamma)$ represent the vectors $\left\{p_{\lambda_{n}}\left(\alpha_{2}\right), \ldots, p_{\lambda_{n}}\left(\alpha_{p+1}\right)\right\}^{\top}$, $\left\{p_{\lambda_{n}}\left(\beta_{1}\right), \ldots, p_{\lambda_{n}}\left(\beta_{q}\right)\right\}^{\top}$ and $\left\{p_{\lambda_{n}}\left(\gamma_{0}\right), p_{\lambda_{n}}\left(\gamma_{1}\right), \ldots, p_{\lambda_{n}}\left(\gamma_{p_{z}}\right)\right\}^{\top}$, respectively, by using a vector as the argument of $p_{\lambda_{n}}(\cdot)$ to avoid possible confusion with $p_{\lambda_{n}}(\cdot)$ having a scalar argument. Here we propose the penalized estimating equations method by solving a modified version of (3.6) using the unbiased surrogate $Y_{k}^{c}$ defined in (3.5):

$$
\sum_{k=1}^{n}\left(\begin{array}{c}
U_{1 k}^{c}\left(\theta ; Y_{k}^{c}\right)-p_{\lambda_{n}}^{\prime}(\tilde{\alpha})  \tag{4.1}\\
U_{2 k}^{c}\left(\theta ; Y_{k}^{c}\right)-p_{\lambda_{n}}^{\prime}(\beta) \\
U_{3 k}^{c}\left(\theta ; Y_{k}^{c}\right)-p_{\lambda_{n}}^{\prime}(\gamma)
\end{array}\right)=0,
$$

where $p_{\lambda_{n}}^{\prime}(\tilde{\alpha}), p_{\lambda_{n}}^{\prime}(\beta)$ and $p_{\lambda_{n}}^{\prime}(\gamma)$ represent the first derivative of $p_{\lambda_{n}}(\tilde{\alpha}), p_{\lambda_{n}}(\beta)$ and $p_{\lambda_{n}}(\gamma)$, respectively.

Following Ma and Li (2010), we choose the SCAD penalty as the penalty function with the derivative function

$$
\begin{equation*}
p_{\lambda_{n}}^{\prime}(\zeta)=\lambda_{n}\left\{I\left(|\zeta| \leq \lambda_{n}\right)+\frac{\left(a \lambda_{n}-|\zeta|\right)_{+}}{(a-1) \lambda_{n}} I\left(|\zeta|>\lambda_{n}\right)\right\} \operatorname{sign}(\zeta) \tag{4.2}
\end{equation*}
$$

where $I(\cdot)$ is the indicator function, $\operatorname{sign}(\zeta)=-1,0$ and 1 when $\zeta<0,=0$ and $>0$, respectively, and $a$ is a constant larger than 2 with a recommended value $a=3.7$.

To establish the asymptotic results for the resulting estimators, we let

$$
\begin{equation*}
a_{n}=\max \left\{\left|p_{\lambda_{n}}^{\prime}\left(\left|\theta_{j 0}\right|\right)\right|: \theta_{j 0} \neq 0\right\} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}=\max \left\{\left|p_{\lambda_{n}}^{\prime \prime}\left(\left|\theta_{j 0}\right|\right)\right|: \theta_{j 0} \neq 0\right\}, \tag{4.4}
\end{equation*}
$$

where $\theta_{j 0}$ is the $j$ th component of $\theta_{0}$. In Appendix C. 2 we show the following theorem.

Theorem 4.1 Assume Conditions (C.1)-(C.3) in Appendix C.1. If $a_{n}$ and $b_{n}$ tend to 0 as $n \rightarrow \infty$, then, there exists a solution to (4.1), $\hat{\theta}_{c}$, such that

$$
\left\|\hat{\theta}_{c}-\theta_{0}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+a_{n}\right)
$$

where $\|A\|$ denotes the Euclidean norm if $A$ is a vector.
This result shows the dependence of the convergence rate of $\hat{\theta}_{c}$ on the tuning parameter $\lambda_{n}$ as well as the penalty function. To obtain a $\sqrt{n}$-consistent estimator, it suffices to take a small tuning parameter so that $a_{n}=O\left(\frac{1}{\sqrt{n}}\right)$.

Next, we discuss the oracle property for $\hat{\theta}_{c}$ whose proof is included in Appendix C.4. Write $\tilde{\alpha}_{0}=\left(\tilde{\alpha}_{\mathrm{I} 0}^{\top}, \tilde{\alpha}_{\mathrm{II} 0}^{\top}\right)^{\top}, \beta_{0}=\left(\beta_{\mathrm{I} 0}^{\top}, \beta_{\mathrm{II} 0}^{\top}\right)^{\top}$, and $\gamma_{0}=\left(\gamma_{\mathrm{I} 0}^{\top}, \gamma_{\mathrm{II} 0}^{\top}\right)^{\top}$ so that elements in $\tilde{\alpha}_{\mathrm{I} 0}^{\top}$, $\beta_{\mathrm{I} 0}^{\top}$ and $\gamma_{\mathrm{I} 0}^{\top}$ are all not zero, and elements of $\tilde{\alpha}_{\mathrm{II} 0}^{\top}, \beta_{\mathrm{II} 0}^{\top}$ and $\gamma_{\mathrm{II} 0}^{\top}$ are all zero. Write $\theta_{0}=\left(\theta_{\mathrm{I} 0}^{\top}, \theta_{\mathrm{II} 0}^{\top}\right)^{\top}$, where $\theta_{\mathrm{I} 0}=\left(\tilde{\alpha}_{\mathrm{I} 0}^{\top}, \beta_{\mathrm{I} 0}^{\top}, \gamma_{\mathrm{IO}}^{\top}\right)^{\top}$ and $\theta_{\mathrm{II} 0}=\left(\tilde{\alpha}_{\mathrm{II} 0}^{\top}, \beta_{\mathrm{II} 0}^{\top}, \gamma_{\mathrm{II} 0}^{\top}\right)^{\top}$. Similar notation is defined for $\theta=\left(\theta_{\mathrm{I}}^{\top}, \theta_{\mathrm{II}}^{\top}\right)^{\top}$ with $\theta_{\mathrm{I}}=\left(\tilde{\alpha}_{\mathrm{I}}^{\top}, \beta_{\mathrm{I}}^{\top}, \gamma_{\mathrm{I}}^{T}\right)^{\top}$ and $\theta_{\mathrm{II}}=\left(\tilde{\alpha}_{\mathrm{II}}^{\top}, \beta_{\mathrm{II}}^{\top}, \gamma_{\mathrm{II}}^{\top}\right)^{\top}$. Denote the dimension of $\tilde{\alpha}_{\mathrm{I} 0}^{\top}, \beta_{\mathrm{I} 0}^{\top}$ and $\gamma_{\mathrm{I} 0}^{\top}$ as $d_{1 \alpha}, d_{1 \beta}$ and $d_{1 \gamma}$, respectively, and the dimension of $\tilde{\alpha}_{\text {IIO }}^{\top}, \beta_{\text {II } 0}^{\top}$ and $\gamma_{\text {II0 }}^{\top}$ as $d_{2 \alpha}, d_{2 \beta}$ and $d_{2 \gamma}$ respectively. Let $d_{\alpha}=d_{1 \alpha}+d_{2 \alpha}$, $d_{\beta}=d_{1 \beta}+d_{2 \beta}$, and $d_{\gamma}=d_{1 \gamma}+d_{2 \gamma}$, which are all assumed to be fixed. Let $U_{k \alpha, \mathrm{I}}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the first $d_{1 \alpha}$ components of $U_{1 k}^{c}\left(\theta ; Y_{k}^{c}\right)$, let $U_{k \beta, \mathrm{I}}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the first $d_{1 \beta}$ components of $U_{2 k}^{c}\left(\theta ; Y_{k}^{c}\right)$, and let $U_{k \gamma, \mathrm{I}}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the first $d_{1 \gamma}$ components of $U_{3 k}^{c}\left(\theta ; Y_{k}^{c}\right)$. Let $U_{k \alpha, \text { II }}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the last $d_{2 \alpha}$ components of $U_{1 k}^{c}\left(\theta ; Y_{k}^{c}\right)$, let $U_{k \beta, \mathrm{II}}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the last $d_{2 \beta}$ components of $U_{2 k}^{c}\left(\theta ; Y_{k}^{c}\right)$, and let $U_{k \gamma, \mathrm{II}}^{c}\left(\theta ; Y_{k}^{c}\right)$ denote the last $d_{2 \gamma}$ components of $U_{3 k}^{c}\left(\theta ; Y_{k}^{c}\right)$. Write $U_{k, \mathrm{I}}^{c}\left(\theta ; Y_{k}^{c}\right)=\left\{U_{k \alpha, \mathrm{I}}^{c \tau}\left(; Y_{k}^{c}\right), U_{k \beta, \mathrm{I}}^{c \tau}\left(\theta ; Y_{k}^{c}\right), U_{k \gamma, \mathrm{I}}^{c \tau}\left(\theta ; Y_{k}^{c}\right)\right\}^{\top}$ and $U_{k, \mathrm{II}}^{c}\left(\theta ; Y_{k}^{c}\right)=$ $\left\{U_{k \alpha, \mathrm{II}}^{c \top}\left(; Y_{k}^{c}\right), U_{k \beta, \mathrm{II}}^{c \tau}\left(\theta ; Y_{k}^{c}\right), U_{k \gamma, \mathrm{II}}^{c \top}\left(\theta ; Y_{k}^{c}\right)\right\}^{\top}$.

Let

$$
\begin{gathered}
g_{\alpha}=\left\{p_{\lambda_{n}}^{\prime}\left(\tilde{\alpha}_{10}\right), \ldots, p_{\lambda_{n}}^{\prime}\left(\tilde{\alpha}_{d_{1 \alpha} 0}\right)\right\}^{\top}, \\
g_{\beta}=\left\{p_{\lambda_{n}}^{\prime}\left(\beta_{10}\right), \ldots, p_{\lambda_{n}}^{\prime}\left(\beta_{d_{1 \beta} 0}\right)\right\}^{\top}, \\
g_{\gamma}=\left\{p_{\lambda_{n}}^{\prime}\left(\gamma_{10}\right), \ldots, p_{\lambda_{n}}^{\prime}\left(\gamma_{d_{1 \gamma} 0}\right)\right\}^{\top}, \\
\Sigma_{\alpha}=\operatorname{diag}\left\{p^{\prime \prime}{ }_{\lambda_{n}}\left(\tilde{\alpha}_{10}\right), \ldots, p_{\lambda_{n}}^{\prime \prime}\left(\tilde{\alpha}_{d_{1 \alpha} 0}\right)\right\}, \\
\Sigma_{\beta}=\operatorname{diag}\left\{p_{\lambda_{n}}^{\prime \prime}\left(\beta_{10}\right), \ldots, p_{\lambda_{n}}^{\prime \prime}\left(\beta_{d_{1 \beta} 0}\right)\right\},
\end{gathered}
$$

and

$$
\Sigma_{\gamma}=\operatorname{diag}\left\{p^{\prime \prime}{ }_{\lambda_{n}}\left(\gamma_{10}\right), \ldots, p_{\lambda_{n}}^{\prime \prime}\left(\gamma_{d_{1 \gamma} 0}\right)\right\}
$$

Write $g_{\theta}=\left(g_{\alpha}^{\top}, g_{\beta}^{\top}, g_{\gamma}^{\top}\right)$ and $\Sigma_{\theta}=\operatorname{diag}\left(\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}\right)$. With the SCAD penalty, $g_{\alpha}, g_{\beta}, g_{\gamma}, \Sigma_{\alpha}$, $\Sigma_{\beta}$ and $\Sigma_{\gamma}$ become zero when $\lambda_{n}$ is sufficiently small.

Theorem 4.2 Let $\hat{\theta}_{c}=\left(\hat{\theta}_{c, \mathrm{I}}^{\top}, \hat{\theta}_{c, \text { II }}^{\top}\right)^{\top}$ denote $a \sqrt{n}$-consistent solution of (4.1), where $\hat{\theta}_{c, \mathrm{I}}=$ $\left(\hat{\tilde{\alpha}}_{c, \mathrm{I}}^{\top}, \hat{\beta}_{c, \mathrm{I}}^{\top}, \hat{\gamma}_{c, \mathrm{I}}^{\top}\right)^{\top}$ and $\hat{\theta}_{c, \mathrm{II}}=\left(\hat{\tilde{\alpha}}_{c, \mathrm{II}}^{\top}, \hat{\beta}_{c, I I}^{\top}, \hat{\gamma}_{c, \mathrm{II}}^{\top}\right)^{\top}$ which correspond to the subvectors of $\theta_{\mathrm{II} 0}$ and $\theta_{\text {IIO }}$, respectively. Under Conditions (C.1)-(C.4) in Appendix C.1, if

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0^{+}} \sqrt{n} p_{\lambda_{n}}^{\prime}(\theta)=\infty \tag{4.5}
\end{equation*}
$$

then with the probability tending to one, the following results hold:
(a) $\hat{\theta}_{c, \text { II }}=0$;
(b) as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{c, \mathrm{I}}-\theta_{\mathrm{I} 0}-\Gamma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right)^{-1} g_{\theta}\right) \xrightarrow{d} N\left(0, \Gamma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right)^{-1} \Sigma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right) \Gamma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right)^{-1 \top}\right),
$$

where $\Gamma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right)=E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{10} ; Y_{k}^{c}\right)}{\partial \theta \theta^{\top}}\right\}-\Sigma_{\theta}$ and $\Sigma_{\mathrm{U}}\left(\theta_{\mathrm{I} 0}\right)=E\left\{U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right) U_{k, \mathrm{I}}^{c \tau}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)\right\}$.
Theorem 4.2(a) shows that the proposed method can correctly identify the significant row and column parameters as well as the vector covariate effects with the unimportant parameters excluded. That is, the resulting estimator possesses the oracle property. Theorem 4.2(b) establishes the asymptotic distribution for the estimators of the parameters corresponding to the important covariates, which offers the basis for performing inferences.

Finally, we comment that solving (4.1) can be implemented by modifying the block relaxation algorithm, by adding the penalty functions to (3.6) (e.g., Zhang et al. 2014). In implementing (4.1), it is critical to select a suitable value of the tuning parameter $\lambda_{n}$. We now describe an algorithm for selecting an optimal tuning parameter within a given set of candidates. Let

$$
I_{\mathrm{F}}=E\left\{-\frac{\partial \ell_{k}^{2}\left(\theta ; Y_{k}\right)}{\partial \theta \partial \theta^{\top}}\right\}
$$

be the Fisher information matrix of the likelihood function (3.2). Define the degree of freedom for the selected model to be

$$
\mathrm{DF}_{\lambda}=\operatorname{trace}\left\{I_{\mathrm{F}}\left(I_{\mathrm{F}}+\Sigma_{\theta}\right)^{-1}\right\}
$$

To emphasize the dependence of $\lambda_{n}$, we let $\hat{\theta}_{c}\left(\lambda_{n}\right)$ denote the estimate of $\theta$. Since $Y_{k}$ is unavailable, we approximate $I_{\mathrm{F}}$ by

$$
\hat{I}_{\mathrm{F}}=-\left.\frac{1}{n} \sum_{k=1}^{n} \frac{\partial \ell_{k}^{2}\left(\theta ; Y_{k}^{c}\right)}{\partial \theta \partial \theta^{\top}}\right|_{\theta=\hat{\theta}_{c}\left(\lambda_{n}\right)}
$$

and approximate $\mathrm{DF}_{\lambda}$ by $\widehat{\mathrm{DF}}_{\lambda}=\operatorname{trace}\left\{\hat{I}_{\mathrm{F}}\left(\hat{I}_{\mathrm{F}}+\hat{\Sigma}_{\theta}\right)^{-1}\right\}$, where $\hat{\Sigma}_{\theta}$ is the estimate of $\Sigma_{\theta}$ with $\theta$ given by $\hat{\theta}_{c}\left(\lambda_{n}\right)$. Let $\hat{\mu}_{k \lambda}$ denote the value of $\mu_{k \lambda}$ with $\theta$ specified as $\hat{\theta}_{c}\left(\lambda_{n}\right)$ and $\hat{\sigma}_{\lambda}^{2}=\frac{1}{n} \sum_{k=1}^{n}\left|Y_{k}^{c}-\hat{\mu}_{k \lambda}\right|^{2}$. Similar to Wang et al. (2007), we define an objective function

$$
\begin{equation*}
\mathrm{BIC}\left(\lambda_{n}\right)=\log \hat{\sigma}_{\lambda}^{2}+\widehat{\mathrm{DF}}_{\lambda} \log (n) / n \tag{4.6}
\end{equation*}
$$

Then the optimal tuning parameter, denoted $\lambda_{n}^{*}$, is selected as the one that minimizes $\operatorname{BIC}\left(\lambda_{n}\right)$, and the corresponding estimate $\hat{\theta}_{c}\left(\lambda_{n}^{*}\right)$, denoted $\hat{\theta}_{c}$, is taken as the estimate of parameter $\theta$.

### 4.1.2 With Unknown Misclassification Probabilities

The procedure described in Section 4.1.1 applies if the misclassification parameter $\phi$ is known. In applications, the values of the misclassification parameters are usually unknown and they need to be estimated from additional data sources. In this section, we consider the case with an internal validation subsample available (e.g., Chen et al. 2011, 2014) and describe the inferential procedure by incorporating estimation of the misclassification parameters. Thus, we write $U_{k}^{c}\left(\theta ; Y_{k}^{c}\right)$ in Section 4.1.1 as $U_{k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ to emphasis that $\phi$ is unknown parameter in these estimation equations. We apply the two-stage estimation procedure described in Section 3.2.2, $\hat{\phi}_{v}$ is obtained by solving (3.7).

Next, solve (4.1) for $\theta$ with $\phi$ replaced by $\hat{\phi}_{v}$ using the block relaxation algorithm. Let $\hat{\theta}_{v}$ denote the resulting estimator for $\theta$. Analogous to the estimator described in Section 4.1.1, the estimator $\hat{\theta}_{v}$ is consistent and possesses the oracle property, shown as follows.

Theorem 4.3 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$. If $a_{n}$ and $b_{n}$ tend to 0 as $n \rightarrow \infty$, then, there exists a solution of (4.1) combined with (3.7), $\hat{\theta}_{v}$, such that

$$
\left\|\hat{\theta}_{v}-\theta_{0}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+a_{n}\right) .
$$

The proof of the theorem is outlined in Appendix C.5. This theorem shows that, similarly to $\hat{\theta}_{c}$, the convergence rate of $\hat{\theta}_{v}$ depends on the tuning parameter $\lambda_{n}$ as well as the choice of a penalty function. Taking a small tuning parameter to ensure $a_{n}=O\left(\frac{1}{\sqrt{n}}\right)$ can yield a $\sqrt{n}$-consistent estimator of $\theta_{0}$.

Let $U_{k \alpha, \mathrm{I}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \beta, \mathrm{I}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ and $U_{k \gamma, \mathrm{I}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ denote the first $d_{1 \alpha}$, the first $d_{1 \beta}$ and the first $d_{1 \gamma}$ components of $U_{1 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right), U_{2 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ and $U_{3 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$, respectively. Let $U_{k \alpha, \mathrm{II}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \beta, \mathrm{II}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ and $U_{k \gamma, \mathrm{II}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ denote the last $d_{2 \alpha}$, the last $d_{2 \beta}$ and the first $d_{2 \gamma}$ components of $U_{1 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right), U_{2 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$ and $U_{3 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)$, respectively. Write $U_{k, \mathrm{I}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)=\left\{U_{k \alpha, \mathrm{I}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \beta, \mathrm{I}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \gamma, \mathrm{I}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right)\right\}^{\top}$ and $U_{k, \mathrm{II}}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)=$ $\left\{U_{k \alpha, \mathrm{II}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \beta, \mathrm{II}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right), U_{k \gamma, \mathrm{I}}^{c \top}\left(\theta, \phi ; Y_{k}^{c}\right)\right\}^{\top}$. Let $\hat{\theta}_{v}=\left(\hat{\theta}_{v, \mathrm{I}}^{\top}, \hat{\theta}_{v, \mathrm{II}}^{\top}\right)^{\top}$, where $\hat{\theta}_{v, \mathrm{I}}=\left(\hat{\tilde{\alpha}}_{v, \mathrm{I}}^{\top}, \hat{\beta}_{v, \mathrm{I}}^{\top}\right.$, $\left.\hat{\gamma}_{v, \mathrm{I}}^{\top},\right)^{\top}$ and $\hat{\theta}_{v, \mathrm{II}}=\left(\hat{\tilde{\alpha}}_{v, \mathrm{II}}^{\top}, \hat{\beta}_{v, \mathrm{II}}^{\top}, \hat{\gamma}_{v, \mathrm{II}}^{\top}\right)^{\top}$ which correspond to the subvectors of $\theta_{\mathrm{I} 0}$ and $\theta_{\mathrm{II} 0}$, respectively.

Theorem 4.4 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$, if

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0^{+}} \sqrt{n} p_{\lambda_{n}}^{\prime}(\theta)=\infty \tag{4.7}
\end{equation*}
$$

then with the probability tending to one, the following results hold:
(a) $\hat{\theta}_{v, \mathrm{II}}=0$;
(b) as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{v, \mathrm{I}}-\theta_{\mathrm{I} 0}-\Gamma_{\mathrm{U}^{v}}\left(\theta_{0}, \phi_{0}\right)^{-1} g_{\theta}\right) \xrightarrow{d} N\left(0, \Gamma_{\mathrm{U}^{v}}\left(\theta_{0}, \phi_{0}\right)^{-1} \Sigma_{\mathrm{U}^{v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right) \Gamma_{\mathrm{U}^{v}}\left(\theta_{0}, \phi_{0}\right)^{-1 \mathrm{~T}}\right),
$$

where $\Gamma_{\mathrm{U}^{v}}\left(\theta_{0}, \phi_{0}\right)=E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\mathrm{T}}}\right\}-\Sigma_{\theta}, \Sigma_{\mathrm{U}^{v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)=E\left\{U_{k, \mathrm{I}}^{* c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right) U_{k, \mathrm{I}}^{* c \mathrm{~T}}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)\right\}$ and

$$
\begin{aligned}
U_{k, \mathrm{I}}^{* c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)= & U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)- \\
& \left\{\frac{1}{n} \sum_{k=1}^{n} \partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \phi\right\} \times\left\{\frac{1}{n} \sum_{k=1}^{n} \delta_{k} \times \partial S_{k}\left(\phi_{0}\right) / \partial \phi\right\}^{-1} \times\left\{\delta_{k} S_{k}\left(\phi_{0}\right)\right\} .
\end{aligned}
$$

The proof of Theorem 4.4 is outlined in Appendix C.6. Theorem 4.4(a) shows that the oracle property is retained for $\hat{\theta}_{v}$, just like that of $\hat{\theta}_{c}$ established in Theorem 4.2(a). Theorem 4.4(b) establishes that the estimator $\hat{\theta}_{v, \mathrm{I}}$ has the asymptotic normal distribution, similar to that of the estimator $\hat{\theta}_{c, \mathrm{I}}$ reported in Theorem 4.2(a). However, the asymptotic covariance of $\hat{\theta}_{v, \mathrm{I}}$ differs from that of $\hat{\theta}_{c, \mathrm{I}}$; the inclusion of the second term in $U_{k, \mathrm{I}}^{* c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)$ reflects the variability induced from estimation of $\phi$.

### 4.2 Regularized Likelihood Method

### 4.2.1 Inference Method with Known Misclassification Probabilities

We now consider an alternative method to estimate the parameter using the observed likelihood function. Here we assume that the parameters for the misclassification probabilities are known and develop an estimation method for $\theta$. An estimator, say $\hat{\theta}$, of $\theta$ can be obtained by maximizing the penalized $\log$-likelihood $\sum_{k=1}^{n} \ell_{k}^{o}\left(\theta ; Y_{k}^{*}\right)-n p_{\lambda_{n}}(\theta)$, where $p_{\lambda_{n}}(\theta)$ is a penalized function with a tuning parameter $\lambda_{n}$. For $k=1, \ldots, n$, the log-likelihood for the observed data contributed from subject $k$ is

$$
\begin{equation*}
\ell_{k}^{o}\left(\theta ; Y_{k}^{*}\right)=Y_{k}^{*} \log \mu_{k}^{*}+\left(1-Y_{k}^{*}\right) \log \left(1-\mu_{k}^{*}\right) \tag{4.8}
\end{equation*}
$$

where $\mu_{k}^{*}$ is determined by (3.9) in combination with (3.1) and (3.4).
Under regularity conditions, $\hat{\theta}$ can be equivalently obtained by solving

$$
\sum_{k=1}^{n}\left(\begin{array}{l}
U_{1 k}^{o}\left(\theta ; Y_{k}^{*}\right)-p_{\lambda_{n}}^{\prime}(\tilde{\alpha})  \tag{4.9}\\
U_{2 k}^{o}\left(\theta ; Y_{k}^{*}\right)-p_{\lambda_{n}}^{\prime}(\beta) \\
U_{3 k}^{o}\left(\theta ; Y_{k}^{*}\right)-p_{\lambda_{n}}^{\prime}(\gamma)
\end{array}\right)=0 .
$$

where $U_{1 k}^{o}\left(\theta ; Y_{k}^{*}\right)=\partial \ell_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \tilde{\alpha}, U_{2 k}^{o}\left(\theta ; Y_{k}^{*}\right)=\partial \ell_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \beta, U_{3 k}^{o}\left(\theta ; Y_{k}^{*}\right)=\partial \ell_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \gamma$.
Let $U_{k}^{o}\left(\theta ; Y_{k}^{*}\right)=\left\{U_{1 k}^{o \top}\left(\theta ; Y_{k}^{*}\right), U_{2 k}^{o \top}\left(\theta ; Y_{k}^{*}\right), U_{3 k}^{o \top}\left(\theta ; Y_{k}^{*}\right)\right\}^{\top}$. Let $U_{k \alpha, \mathrm{I}}^{o}\left(\theta ; Y_{k}^{*}\right), U_{k \beta, \mathrm{I}}^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{\mathrm{k} \gamma, \mathrm{I}}^{o}\left(\theta ; Y_{k}^{*}\right)$ denote the first $d_{1 \alpha}$, the first $d_{1 \beta}$ and the first $d_{1 \gamma}$ components of $U_{1 k}^{o}\left(\theta ; Y_{k}^{*}\right)$, $U_{2 k}^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{3 k}^{o}\left(\theta ; Y_{k}^{*}\right)$, respectively. Write $U_{k, \mathrm{I}}^{o}\left(\theta ; Y_{k}^{*}\right)=\left\{U_{k \alpha, \mathrm{I}}^{o \top}\left(\theta ; Y_{k}^{*}\right), U_{\mathrm{k} \beta, \mathrm{I}}^{o \top}\left(\theta ; Y_{k}^{*}\right)\right.$, $\left.U_{k \gamma, \mathrm{I}}^{o \top}\left(\theta ; Y_{k}^{*}\right)\right\}^{\top}$. Let $\hat{\theta}=\left(\hat{\theta}_{\mathrm{I}}^{\top}, \hat{\theta}_{\mathrm{II}}^{\top}\right)^{\top}$ where $\hat{\theta}_{\mathrm{I}}=\left(\hat{\tilde{\alpha}}_{\mathrm{I}}^{\top}, \hat{\beta}_{\mathrm{I}}^{\top}, \hat{\gamma}_{\mathrm{I}}^{\top}\right)^{\top}$ and $\hat{\theta}_{\mathrm{II}}=\left(\hat{\tilde{\alpha}}_{\mathrm{II}}^{\top}, \hat{\beta}_{\mathrm{II}}^{\top}, \hat{\gamma}_{\mathrm{II}}^{\top}\right)^{\top}$ corresponding to the subvectors of $\theta_{\mathrm{I} 0}$ and $\theta_{\mathrm{II} 0}$, respectively. Adapting the proofs of Fan and Li (2001), We establish the following asympotitic results.

Theorem 4.5 If the Conditions (C.1)-(C.5) in Appendix C.1 hold, and $a_{n}$ and $b_{n}$ tend to 0 as $n \rightarrow \infty$, then, there exists a solution to (4.9), $\hat{\theta}$, such that

$$
\left\|\hat{\theta}-\theta_{0}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+a_{n}\right) .
$$

Theorem 4.5 suggests that the estimator $\hat{\theta}$ has similarity to $\hat{\theta}_{c}$ in that choosing a small tuning parameter to ensure $a_{n}=O\left(\frac{1}{\sqrt{n}}\right)$ can make $\hat{\theta}$ be a $\sqrt{n}$-consistent estimator of $\theta$.

Theorem 4.6 Under Conditions (C.1)-(C.6) in Appendix C.1, if

$$
\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0^{+}} \sqrt{n} p_{\lambda_{n}}^{\prime}(\theta)=\infty
$$

then with the probability tending to one, the following results hold:
(a) $\hat{\theta}_{\mathrm{II}}=0$;
(b) as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{\mathrm{I}}-\theta_{\mathrm{I} 0}-\Gamma_{\mathrm{U}^{o}}^{-1} g_{\theta}\right) \xrightarrow{d} N\left(0, \Gamma_{\mathrm{U}^{o}}^{-1} \Sigma \Gamma_{\mathrm{U}^{o}}^{-1}\right),
$$

where $\Sigma=-E\left\{\partial U_{k, \mathrm{I}}^{o}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{*}\right) / \partial \theta^{\top}\right\}$ and $\Gamma_{\mathrm{U}^{o}}=-\Sigma-\Sigma_{\theta}$.

Theorem 4.6 shows that like for the estimating equation method described in Section 4.1.1, the oracle property is retained by the likelihood based method. Although both $\hat{\theta}_{c, \mathrm{I}}$ and $\hat{\theta}_{\mathrm{I}}$ have asymptotic normal distributions after certain transformations, shown in Theorems 4.2(b) and 4.6(b), their asymptotic covariance matrices are different, suggesting that they differ in efficiency, which is confirmed from the simulation studies in Section 4.3.

### 4.2.2 Inference Method with Unknown Misclassification Probabilities

In this subsection we extend the development in Section 4.2.1 to accommodating settings where misclassification probabilities are unknown. We consider the same setting as Section 4.1.2 where a random internal validation subsample is available.

The inference about $\eta$, defined in Section 4.1.2, can be carried out based on the likelihood function for the observed data, given by (3.12). Correspondingly, the log-likelihood function with penalty terms is

$$
\begin{align*}
\ell_{v}^{o}(\eta)= & {\left[\sum_{\delta_{k}=1} Y_{k} \log \left(\mu_{k}\right)+\left(1-Y_{k}\right) \log \left(1-\mu_{k}\right)+Y_{k} \log \left\{\left(a_{k 1}\left(Y_{k}^{*}\right)\right\}+\left(1-Y_{k}\right) \log \left\{a_{k 0}\left(Y_{k}^{*}\right)\right\}\right]\right.} \\
& +\left\{\sum_{\delta_{k}=0} Y_{k}^{*} \log \left(\mu_{k}^{*}\right)+\left(1-Y_{k}^{*}\right) \log \left(1-\mu_{k}^{*}\right)\right\}-n p_{\lambda_{n}}(\theta) \tag{4.10}
\end{align*}
$$

The log-likelihood score equation for $\theta$ can be derived using (4.10),

$$
\begin{equation*}
\sum_{k=1}^{n} U_{k}^{o v}(\eta)=\sum_{\delta_{k}=1} U_{1 k}^{o v}\left(\eta ; Y_{k}\right)+\sum_{\delta_{k}=0} U_{2 k}^{o v}\left(\eta ; Y_{k}^{*}\right)=0 \tag{4.11}
\end{equation*}
$$

where

$$
U_{1 k}^{o v}\left(\eta ; Y_{k}\right)=\left\{\frac{Y_{k}-\mu_{k}}{\mu_{i}\left(1-\mu_{i}\right)}\right\}\left(\frac{\partial \mu_{k}}{\partial \theta^{\top}}\right)
$$

and

$$
U_{2 k}^{o v}\left(\eta ; Y_{k}^{*}\right)=\left\{\frac{Y_{k}^{*}-\mu_{k}^{*}}{\mu_{i}^{*}\left(1-\mu_{i}^{*}\right)}\right\}\left(\frac{\partial \mu_{k}^{*}}{\partial \theta^{\top}}\right) .
$$

Then estimation of the parameter $\eta$ can be carried out by a two-stage procedure. At the first stage, we employ (3.7) to obtain the estimate of $\phi$ using the validation subsample. At the second stage, estimation of $\theta$ is carried out by solving

$$
\begin{equation*}
\sum_{k=1}^{n} U_{k}^{o v}(\eta)-n p_{\lambda_{n}}^{\prime}(\theta)=0 \tag{4.12}
\end{equation*}
$$

for $\theta$, where $U_{k}^{o v}(\eta)$ is defined in (4.11), with $\phi$ replaced by the estimate for $\phi$ obtained from the first stage. Let $\hat{\theta}_{v o}$ denote the resultant estimator of $\theta$. Asymptotic properties of $\hat{\theta}_{v o}$ can be established following the same arguments as for Theorems 4.3 and 4.4 but with different technical details.

Theorem 4.7 Assume Conditions (C.1)-(C.5) in Appendix C.1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$. If $a_{n}$ and $b_{n}$ tends to 0 as $n \rightarrow \infty$, then, there exists a solution to (4.12), $\hat{\theta}_{v o}$, such that

$$
\left\|\hat{\theta}_{v o}-\theta_{0}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+a_{n}\right) .
$$

To show the oracle property of $\hat{\theta}_{v o}$, let $U_{k \alpha, \mathrm{I}}^{o v}(\theta, \phi)$ denote the first $d_{1 \alpha}$ components of $U_{k}^{o v}(\eta)$, let $U_{k \beta, \mathrm{I}}^{o v}(\theta, \phi)$ denote the components from $\left(d_{\alpha}+1\right)$ to $\left(d_{\alpha}+d_{1 \beta}\right)$ of $U_{k}^{o v}(\eta)$, and let $U_{k \gamma, \mathrm{I}}^{o v}(\theta, \phi)$ denote the components from $\left(d_{\beta}+1\right)$ to $\left(d_{\beta}+d_{1 \gamma}\right)$ of $U_{k}^{o v}(\eta)$. Write $U_{k, \mathrm{I}}^{o v}(\theta, \phi)=\left\{U_{k \alpha, \mathrm{I}}^{o v \top}(\theta, \phi), U_{k \beta, \mathrm{I}}^{o v \top}(\theta, \phi), U_{k \gamma, \mathrm{I}}^{o v \top}(\theta, \phi)\right\}^{\top}$. Let $\hat{\theta}_{v o}=\left(\hat{\theta}_{v o, \mathrm{I}}^{\top}, \hat{\theta}_{v o, \mathrm{II}}^{\top}\right)^{\top}$, where $\hat{\theta}_{v o, \mathrm{I}}=$ $\left(\hat{\tilde{\alpha}}_{v o, \mathrm{I}}^{\top}, \hat{\beta}_{v o, \mathrm{I}}^{\top}, \hat{\gamma}_{v o, \mathrm{I}}^{\top},\right)^{\top}$ and $\hat{\theta}_{v o, \mathrm{II}}=\left(\hat{\tilde{\alpha}}_{v o, \mathrm{II}}^{\top}, \hat{\beta}_{v o, \mathrm{II}}^{\top}, \hat{\gamma}_{v o, \mathrm{II}}^{\top}\right)^{\top}$ which correspond to the subvectors of $\theta_{\mathrm{I} 0}$ and $\theta_{\mathrm{II} 0}$, respectively.

Theorem 4.8 Assume Conditions (C.1)-(C.6) in Appendix C.1 hold and that $p_{v}$ approaches a positive constant as $n \rightarrow \infty$, if

$$
\liminf _{n \rightarrow \infty} \liminf _{\theta \rightarrow 0^{+}} \sqrt{n} p_{\lambda_{n}}^{\prime}(\theta)=\infty
$$

then with the probability tending to one, the following results hold:
(a) $\hat{\theta}_{v o, \mathrm{II}}=0$;
(b) as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\theta}_{v o, \mathrm{I}}-\theta_{\mathrm{I} 0}-\Gamma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)^{-1} g_{\theta}\right) \xrightarrow{d} N\left(0, \Gamma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)^{-1} \Sigma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right) \Gamma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)^{-1 \mathrm{~T}}\right) .
$$

where $\Gamma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)=E\left\{\frac{\partial U_{k, I}^{o v}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}, \Sigma_{\mathrm{U}^{o v}}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)=E\left\{U_{k, \mathrm{I}}^{* o v}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right) U_{k, \mathrm{I}}^{* o v \top}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)\right\}$, and

$$
U_{k, \mathrm{I}}^{* o v}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)=U_{k, \mathrm{I}}^{o v}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)-E\left\{\frac{\partial U_{k, \mathrm{I}}^{o v}\left(\theta_{\mathrm{I} 0}, \phi_{0}\right)}{\partial \phi}\right\} \times E\left\{\frac{\partial \delta_{k} S_{k}\left(\phi_{0}\right)}{\partial \phi}\right\}^{-1} \times\left\{\delta_{k} S_{k}\left(\phi_{0}\right)\right\} .
$$

### 4.3 Numerical Studies

In this section, we design different simulations to evaluate the performance of the proposed methods, in addition to assessing the impact of various degrees of response misclassification on parameter estimation. We consider settings with $p+1=q$, denoted as $p_{x}$ for ease of exposition. The sample size is set as $n=1000$. Five hundred simulations are run for each setting.

For $k=1, \ldots, n$, we simulate $x_{k}, z_{k}$ and $Y_{k}$ using the same design as those in Section 3.4.1, but set $p_{x}$ to be 5 or 10 . When $p_{x}=5$, we consider the same values of $\alpha$ and $\beta$ as those in Section 3.4.1; when $p_{x}=10$, we take $\alpha=(0,1,0,0.5,0,-0.5,0,0.5,0,0.5)^{\top}$ and $\beta=(0.5,-0.5,0,0.5,0,0,-0.5,0,0.5,0)^{\top}$. The surrogate responses $Y_{k}^{*}$ are generated from model (3.4) with $L_{k}$ set to be constant 1 . We set $\tau_{01}=\tau_{10}=2.5 \%, 5.0 \%$, or $10.0 \%$ to feature increasing misclassification rates. We estimate the model parameters $\alpha, \beta$ and $\gamma$ using six methods. The two naive methods (called "Naive 1" and "Naive 2") discard the difference between the $Y_{k}^{*}$ and the $Y_{k}$ and fit data with model (3.1) using the block relaxation algorithm. Naive 1 employs (4.1) by replacing $U_{j k}^{c}\left(\theta ; Y_{k}^{c}\right)$ with $U_{j k}\left(\theta ; Y_{k}^{*}\right)$ for $j=1,2,3$ and Naive 2 implements (3.3) with the $Y_{k}$ replaced by $Y_{k}^{*}$. To correct for the misclassification
effects, we conduct the two regularized estimation equation methods described in Sections 4.1.1 and 4.1.2 (respectively called Methods 1 and 2) and the regularized likelihood methods described in Sections 4.2.1 and 4.2.2 (respectively called Methods 3 and 4). For the methods in Sections 4.1.2 and 4.2.2, we take the internal validation sample to include $30 \%$ or $60 \%$ randomly selected subjects from the initial sample. Finally, we use the simulated true values of $Y_{k}, x_{k}$ and $z_{k}$ to fit model (3.1), and we call this the "Reference" method.

### 4.3.1 Simulation Results

Table 4.1 presents the results obtained from Naive 1 and Methods 1-4 for the settings with $p_{x}=5$ (case 1) and $p_{x}=10$ (case 2), where we report the differences for the specificity and sensitivity obtained from each of Naive 1 and Methods 1-4 minus those obtained from the reference method for the row and column parameters. The specificity is defined as the average of those proportions of zero coefficients that are correctly estimated to be zeros in those 500 simulations; the sensitivity is the average of those proportion of non-zero coefficients that are estimated to be non-zeros in those 500 simulations. It is interesting that Naive method 1 works reasonably well and produces comparable results to those obtained from Methods 1-4, suggesting that misclassification effects do not seem profound in shrinking unimportant coefficients or retaining parameters. All the methods yield fairly close values for the specificity and almost identical values for the sensitivity. As the degree of misclassification increases, the performance of all the methods tends to deteriorate. Method 3 seems to slightly outperform Method 1, and Method 4 tends to perform better than Method 1.

Furthermore, we report the simulation results for the estimators obtained from the two naive methods and Methods 1-4 in the terms of the finite sample biases in percent (bias\%), empirical standard errors (ESE), model-based asymptotic standard errors (ASE), and coverage rates in percent (CR\%) for $95 \%$ confidence intervals. The results for $p_{x}=5$ are displayed in Tables 4.2-4.4, and the results for $p_{x}=10$ are displayed in Tables 4.5-4.7.

Regarding estimation of the row coefficients $\alpha$, all the methods yield similar results, regardless of the degrees of the misclassification or the size of internal validation data. However, for the column parameter $\beta$ and the vector-covariate parameter $\gamma$, these methods perform differently. When misclassification is minor, the two naive methods do not seem to produce noticeably biased results. However, as the degree of misclassification increases, the two naive methods yield considerable biases. Methods 1-4 all improve the results obtained from the two naive methods. Method 3 tends to be more efficient than Method 1, and Method 4 is more efficient than Method 2, which agrees with the expectation because

Methods 3 and 4 are likelihood-based. Unsurprisingly, the performance of Methods 1-4 would deteriorate as misclassification becomes more substantial. Furthermore, we observe that Methods 1-4 perform better for $p_{x}=5$ than for $p_{x}=10$.

In summary, although response misclassification may not show serious effects on variable selection in our simulation studies, estimation results can be seriously biased if response misclassification is ignored in inferential procedures. The proposed methods significantly improve the performance of the naive methods and effectively account for the effects of response misclassification.

### 4.3.2 Analysis of the Breast Cancer Wisconsin Prognostic Data

We apply the proposed methods, in contrast to the naive approach, to analyze the breast cancer Wisconsin imaging data which we introduced in Chapter 3.

Tables 4.8 and 4.9 report the estimation results for the breast cancer Wisconsin prognostic data by fitting model (3.1) using the two naive methods as well as Methods 1 and 3. While there is no obvious pattern between the point estimates for the two naive methods, unsurprisingly, Naive method 1 yields smaller standard errors than Naive method 2. Radius, Perimeter, Concavity and Fractal Dimension are all found to be significant by Naive method 1 but not by Naive method 2. The two methods with misclassification effects accounted for yield very close point estimates, whereas the associated standard errors differ noticeably. Method 3 seems to involve more variability and tends to be less stable than Method 1. The evidence shown from Method 3 may vary with different degrees of misclassification. But Method 1 reveals the same evidence of the significance or insignificance for all the covariates, regardless of the misclassification rate.

Table 4.1: The specificity and sensitivity for row and column effects


The entries for the naive method 1 and Methods 1-4 are the difference between those method with reference method. Negative value means the method preforms worse result than reference model.
Table 4.2: Simulation results for the naive, regularized estimation equation, and regularized likelihood methods: $p_{x}=5, \tau_{01}=\tau_{10}=2.5 \%$

|  | Naîve Method 1 |  |  |  | Method 1 |  |  |  | Method 2 with $60 \%$ internal validation |  |  |  | Method 2 with $30 \%$ internal validation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameters | Bias\% | SEE | ASE | CR\% |
| $\alpha_{4}$ | -0.927 | 0.105 | 0.102 | 94.4 | -0.964 | 0.105 | 0.102 | 94.6 | -0.939 | 0.105 | 0.102 | 94.4 | -0.953 | 0.105 | 0.102 | 94.4 |
| $\alpha_{5}$ | -0.344 | 0.097 | 0.102 | 96.7 | -0.334 | 0.097 | 0.102 | 96.7 | -0.322 | 0.097 | 0.102 | 96.7 | -0.339 | 0.097 | 0.102 | 96.7 |
| $\beta_{1}$ | -5.836 | 0.068 | 0.068 | 92.6 | 3.121 | 0.076 | 0.076 | 95.5 | 3.070 | 0.076 | 0.076 | 94.8 | 3.332 | 0.078 | 0.082 | 94.6 |
| $\beta_{2}$ | -6.554 | 0.071 | 0.068 | 89.9 | 2.323 | 0.080 | 0.076 | 93.8 | 2.286 | 0.079 | 0.076 | 94.0 | 2.499 | 0.081 | 0.081 | 93.0 |
| $\beta_{4}$ | -6.414 | 0.072 | 0.068 | 88.7 | 2.486 | 0.080 | 0.076 | 94.0 | 2.437 | 0.080 | 0.076 | 94.4 | 2.677 | 0.082 | 0.081 | 93.6 |
| $\gamma_{0}$ | -6.452 | 0.076 | 0.076 | 91.3 | 2.007 | 0.085 | 0.084 | 94.8 | 2.033 | 0.084 | 0.084 | 95.7 | 2.380 | 0.095 | 0.123 | 91.8 |
| $\gamma_{1}$ | -6.661 | 0.079 | 0.077 | 90.3 | 2.217 | 0.088 | 0.085 | 94.8 | 2.167 | 0.088 | 0.085 | 95.3 | 2.391 | 0.089 | 0.091 | 95.3 |
|  | Naïve Method 2 |  |  |  | Method 3 |  |  |  | Method 4 with 60\% internal validation |  |  |  | Method 4 with $30 \%$ internal validation |  |  |  |
| $\alpha_{4}$ | -0.912 | 0.105 | 0.102 | 94.6 | -0.988 | 0.106 | 0.114 | 96.1 | -0.703 | 0.103 | 0.099 | 94.1 | -0.813 | 0.103 | 0.105 | 95.3 |
| $\alpha_{5}$ | -0.284 | 0.098 | 0.102 | 96.7 | -0.032 | 0.098 | 0.113 | 97.6 | -0.013 | 0.094 | 0.099 | 95.9 | -0.194 | 0.096 | 0.104 | 96.1 |
| $\beta_{1}$ | -5.800 | 0.068 | 0.068 | 93.0 | 2.946 | 0.076 | 0.084 | 96.5 | 2.625 | 0.071 | 0.071 | 93.9 | 3.029 | 0.075 | 0.076 | 94.7 |
| $\beta_{2}$ | -6.564 | 0.071 | 0.068 | 89.7 | 2.454 | 0.079 | 0.083 | 96.1 | 2.460 | 0.075 | 0.071 | 93.3 | 2.715 | 0.079 | 0.075 | 92.9 |
| $\beta_{4}$ | -6.395 | 0.072 | 0.068 | 88.2 | 2.042 | 0.079 | 0.084 | 95.5 | 1.821 | 0.073 | 0.071 | 94.1 | 2.059 | 0.077 | 0.076 | 93.5 |
| $\gamma_{0}$ | -6.435 | 0.076 | 0.076 | 91.3 | 1.745 | 0.084 | 0.084 | 94.5 | 1.694 | 0.084 | 0.078 | 93.9 | 1.929 | 0.092 | 0.083 | 92.3 |
| $\gamma_{1}$ | -6.627 | 0.079 | 0.077 | 90.7 | 1.896 | 0.088 | 0.094 | 95.3 | 1.346 | 0.084 | 0.080 | 92.7 | 1.769 | 0.087 | 0.085 | 93.5 |

Table 4.3: Simulation results for the naive, regularized estimation equation, and regularized likelihood
methods: $p_{x}=5, \tau_{01}=\tau_{10}=5 \%$

| Parameters | Naïve Method 1 |  |  |  | Method 1 |  |  |  | Method 2 with $60 \%$ internal validation |  |  |  | Method 2 with $30 \%$ internal validation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bias\% | SEE | ASE | CR\% |
| $\alpha_{4}$ | -0.169 | 0.115 | 0.110 | 94.2 | -0.155 | 0.115 | 0.110 | 94.0 | -0.156 | 0.115 | 0.110 | 94.2 | -0.146 | 0.115 | 0.110 | 94.2 |
| $\alpha_{5}$ | -0.389 | 0.106 | 0.110 | 95.8 | -0.399 | 0.106 | 0.110 | 95.6 | -0.393 | 0.106 | 0.110 | 95.6 | -0.384 | 0.106 | 0.110 | 95.6 |
| $\beta_{1}$ | -13.915 | 0.067 | 0.067 | 79.4 | 3.102 | 0.084 | 0.083 | 95.8 | 3.186 | 0.084 | 0.083 | 95.6 | 3.428 | 0.088 | 0.084 | 94.4 |
| $\beta_{2}$ | -14.806 | 0.069 | 0.067 | 76.8 | 2.063 | 0.086 | 0.083 | 95.6 | 2.149 | 0.087 | 0.083 | 95.2 | 2.421 | 0.092 | 0.084 | 93.6 |
| $\beta_{4}$ | -14.588 | 0.068 | 0.067 | 77.2 | 2.343 | 0.085 | 0.083 | 94.2 | 2.407 | 0.085 | 0.083 | 94.4 | 2.701 | 0.090 | 0.084 | 93.0 |
| $\gamma_{0}$ | -14.018 | 0.072 | 0.074 | 73.1 | 2.161 | 0.089 | 0.092 | 95.4 | 2.141 | 0.088 | 0.092 | 96.4 | 2.333 | 0.107 | 0.092 | 90.2 |
| $\gamma_{1}$ | -14.880 | 0.078 | 0.075 | 82.0 | 1.987 | 0.096 | 0.093 | 94.2 | 2.009 | 0.095 | 0.093 | 94.0 | 2.255 | 0.098 | 0.093 | 94.6 |
|  | Naïve Method 2 |  |  |  | Method 3 |  |  |  | Method 4 with $60 \%$ internal validation |  |  |  | Method 4 with $30 \%$ internal validation |  |  |  |
| $\alpha_{4}$ | -0.173 | 0.115 | 0.110 | 94.2 | -0.980 | 0.107 | 0.116 | 95.9 | -0.858 | 0.103 | 0.099 | 93.1 | -0.800 | 0.104 | 0.106 | 95.5 |
| $\alpha_{5}$ | -0.332 | 0.107 | 0.110 | 95.8 | -0.058 | 0.098 | 0.115 | 97.2 | -0.009 | 0.094 | 0.099 | 96.1 | -0.285 | 0.096 | 0.105 | 96.6 |
| $\beta_{1}$ | -13.922 | 0.068 | 0.067 | 79.0 | 3.103 | 0.076 | 0.086 | 96.6 | 2.675 | 0.072 | 0.071 | 93.3 | 3.113 | 0.075 | 0.076 | 94.3 |
| $\beta_{2}$ | -14.806 | 0.069 | 0.067 | 76.8 | 2.333 | 0.080 | 0.084 | 96.1 | 2.430 | 0.075 | 0.070 | 93.1 | 2.624 | 0.080 | 0.075 | 92.5 |
| $\beta_{4}$ | -14.547 | 0.068 | 0.067 | 77.0 | 2.035 | 0.080 | 0.086 | 95.5 | 1.836 | 0.073 | 0.070 | 94.5 | 2.062 | 0.077 | 0.076 | 93.3 |
| $\gamma_{0}$ | -13.991 | 0.072 | 0.074 | 73.3 | 1.850 | 0.085 | 0.086 | 94.5 | 1.716 | 0.085 | 0.078 | 92.9 | 1.819 | 0.096 | 0.083 | 91.5 |
| $\gamma_{1}$ | -14.858 | 0.078 | 0.075 | 82.0 | 1.908 | 0.090 | 0.096 | 95.7 | 1.267 | 0.085 | 0.079 | 92.3 | 1.696 | 0.087 | 0.086 | 93.3 |

Table 4.4: Simulation results for the naive, regularized estimation equation, and regularized likelihood methods: $p_{x}=5, \tau_{01}=\tau_{10}=10 \%$

| Parameters | Naîve Method 1 |  |  |  | Method 1 |  |  |  | Method 2 with 60\% internal validation |  |  |  | Method 2 with $30 \%$ internal validation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bias\% | ESE | ASE | CR\% |
| $\alpha_{4}$ | 0.113 | 0.136 | 0.128 | 93.4 | 0.083 | 0.136 | 0.128 | 93.4 | 0.109 | 0.136 | 0.128 | 93.4 | 0.095 | 0.136 | 0.128 | 93.2 |
| $\alpha_{5}$ | -0.299 | 0.125 | 0.128 | 96.0 | -0.231 | 0.125 | 0.128 | 95.8 | -0.182 | 0.125 | 0.128 | 95.8 | -0.188 | 0.125 | 0.128 | 95.8 |
| $\beta_{1}$ | -27.300 | 0.065 | 0.064 | 42.0 | 4.605 | 0.101 | 0.099 | 94.6 | 4.598 | 0.100 | 0.100 | 94.4 | 5.275 | 0.108 | 0.101 | 94.6 |
| $\beta_{2}$ | -28.582 | 0.068 | 0.064 | 39.6 | 2.796 | 0.106 | 0.099 | 92.6 | 2.722 | 0.104 | 0.099 | 93.8 | 3.464 | 0.112 | 0.101 | 93.0 |
| $\beta_{4}$ | -27.924 | 0.066 | 0.064 | 41.8 | 3.745 | 0.102 | 0.099 | 94.0 | 3.740 | 0.101 | 0.099 | 95.6 | 4.460 | 0.109 | 0.101 | 94.8 |
| $\gamma_{0}$ | -27.207 | 0.070 | 0.071 | 24.4 | 3.090 | 0.108 | 0.109 | 95.6 | 2.864 | 0.098 | 0.110 | 98.0 | 3.571 | 0.136 | 0.112 | 91.4 |
| $\gamma_{1}$ | -28.312 | 0.073 | 0.072 | 49.2 | 3.171 | 0.112 | 0.110 | 94.2 | 3.101 | 0.109 | 0.111 | 95.0 | 3.665 | 0.114 | 0.112 | 93.6 |
|  | Naive Method 2 |  |  |  | Method 3 |  |  |  | Method 4 with $60 \%$ internal validation |  |  |  | Method 4 with $30 \%$ internal validation |  |  |  |
| $\alpha_{4}$ | 0.147 | 0.136 | 0.128 | 93.4 | -0.853 | 0.115 | 0.122 | 95.9 | -0.773 | 0.105 | 0.099 | 92.9 | -0.571 | 0.109 | 0.107 | 94.7 |
| $\alpha_{5}$ | -0.263 | 0.125 | 0.128 | 96.0 | -0.596 | 0.100 | 0.121 | 97.0 | -0.262 | 0.096 | 0.099 | 95.9 | -0.678 | 0.099 | 0.106 | 96.1 |
| $\beta_{1}$ | -27.302 | 0.065 | 0.064 | 42.0 | 3.453 | 0.080 | 0.092 | 96.8 | 2.539 | 0.073 | 0.070 | 92.9 | 3.000 | 0.077 | 0.077 | 93.7 |
| $\beta_{2}$ | -28.582 | 0.068 | 0.064 | 40.2 | 2.352 | 0.085 | 0.090 | 96.1 | 2.372 | 0.075 | 0.070 | 93.1 | 2.411 | 0.081 | 0.076 | 92.5 |
| $\beta_{4}$ | -27.880 | 0.066 | 0.064 | 41.6 | 2.705 | 0.083 | 0.091 | 95.5 | 2.107 | 0.074 | 0.070 | 93.7 | 2.324 | 0.078 | 0.076 | 92.5 |
| $\gamma_{0}$ | -27.171 | 0.070 | 0.071 | 24.8 | 2.168 | 0.089 | 0.089 | 94.7 | 1.696 | 0.086 | 0.078 | 92.1 | 1.610 | 0.099 | 0.084 | 90.9 |
| $\gamma_{1}$ | -28.288 | 0.073 | 0.072 | 49.2 | 2.344 | 0.092 | 0.102 | 95.9 | 1.313 | 0.085 | 0.079 | 93.1 | 1.673 | 0.088 | 0.086 | 93.9 |

Table 4.5: Simulation results for the naive, regularized estimation equation, and regularized likelihood methods: $p_{x}=10, \tau_{01}=\tau_{10}=2.5 \%$

| Parameters | Naïve Method 1 |  |  |  | Method 1 |  |  |  | Method 2 with $60 \%$ internal validation |  |  |  | Method 2 with 30\% internal validation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bias\% | SEE | ASE | CR\% |
| $\alpha_{4}$ | -0.720 | 0.090 | 0.085 | 94.14 | -0.709 | 0.090 | 0.085 | 94.17 | -0.710 | 0.090 | 0.085 | 94.17 | -0.713 | 0.090 | 0.085 | 94.17 |
| $\alpha_{6}$ | 0.684 | 0.087 | 0.085 | 93.51 | 0.650 | 0.087 | 0.085 | 93.54 | 0.653 | 0.087 | 0.085 | 93.54 | 0.654 | 0.087 | 0.085 | 93.33 |
| $\alpha_{8}$ | 1.884 | 0.085 | 0.085 | 94.98 | 1.892 | 0.085 | 0.085 | 95.21 | 1.878 | 0.085 | 0.085 | 95.21 | 1.898 | 0.085 | 0.085 | 95.00 |
| $\alpha_{10}$ | 0.791 | 0.087 | 0.085 | 95.61 | 0.812 | 0.087 | 0.085 | 95.63 | 0.819 | 0.087 | 0.085 | 95.63 | 0.812 | 0.087 | 0.085 | 95.63 |
| $\beta_{1}$ | -7.848 | 0.069 | 0.065 | 86.40 | 3.549 | 0.080 | 0.075 | 93.13 | 3.695 | 0.080 | 0.075 | 93.96 | 3.939 | 0.081 | 0.078 | 93.13 |
| $\beta_{2}$ | -7.920 | 0.069 | 0.065 | 87.87 | 3.528 | 0.080 | 0.075 | 92.71 | 3.650 | 0.079 | 0.075 | 92.92 | 3.898 | 0.081 | 0.078 | 93.75 |
| $\beta_{4}$ | -7.518 | 0.065 | 0.065 | 88.91 | 3.944 | 0.076 | 0.075 | 94.58 | 4.143 | 0.077 | 0.075 | 95.00 | 4.413 | 0.079 | 0.078 | 93.13 |
| $\beta_{7}$ | -8.015 | 0.065 | 0.064 | 89.12 | 3.356 | 0.075 | 0.075 | 95.21 | 3.521 | 0.076 | 0.075 | 95.21 | 3.741 | 0.077 | 0.077 | 95.00 |
| $\beta_{9}$ | -7.240 | 0.065 | 0.065 | 88.91 | 4.219 | 0.075 | 0.075 | 95.21 | 4.397 | 0.076 | 0.075 | 95.00 | 4.630 | 0.077 | 0.078 | 96.04 |
| $\gamma_{0}$ | -8.124 | 0.084 | 0.082 | 88.08 | 2.851 | 0.097 | 0.095 | 94.58 | 3.365 | 0.099 | 0.095 | 93.54 | 3.660 | 0.112 | 0.109 | 91.04 |
| $\gamma_{1}$ | -7.075 | 0.087 | 0.082 | 91.21 | 4.346 | 0.100 | 0.094 | 94.58 | 4.547 | 0.101 | 0.094 | 93.75 | 4.765 | 0.102 | 0.096 | 93.96 |
|  | Naïve Method 1 |  |  |  | Method 3 |  |  |  | Method 4 with $60 \%$ internal validation |  |  |  | Method 4 with $30 \%$ internal validation |  |  |  |
| $\alpha_{4}$ | -0.696 | 0.090 | 0.085 | 94.17 | -0.404 | 0.089 | 0.085 | 94.09 | -0.589 | 0.084 | 0.076 | 92.46 | -0.703 | 0.087 | 0.078 | 93.48 |
| $\alpha_{6}$ | 0.620 | 0.087 | 0.085 | 93.33 | 0.621 | 0.087 | 0.085 | 94.30 | 0.538 | 0.083 | 0.076 | 92.67 | 0.456 | 0.085 | 0.078 | 92.67 |
| $\alpha_{8}$ | 1.895 | 0.085 | 0.085 | 95.42 | 1.816 | 0.086 | 0.085 | 94.91 | 1.671 | 0.082 | 0.077 | 93.48 | 1.662 | 0.084 | 0.078 | 93.48 |
| $\alpha_{10}$ | 0.818 | 0.087 | 0.085 | 95.63 | 1.198 | 0.088 | 0.085 | 95.52 | 1.255 | 0.085 | 0.077 | 93.48 | 1.073 | 0.086 | 0.078 | 93.08 |
| $\beta_{1}$ | -7.802 | 0.069 | 0.065 | 86.46 | 3.496 | 0.080 | 0.074 | 94.09 | 3.242 | 0.073 | 0.063 | 90.02 | 3.636 | 0.078 | 0.065 | 89.21 |
| $\beta_{2}$ | -7.835 | 0.069 | 0.065 | 88.13 | 3.107 | 0.079 | 0.074 | 92.67 | 3.072 | 0.074 | 0.063 | 89.61 | 3.483 | 0.077 | 0.065 | 89.21 |
| $\beta_{4}$ | -7.469 | 0.065 | 0.065 | 89.58 | 4.003 | 0.076 | 0.074 | 94.30 | 3.520 | 0.074 | 0.063 | 90.43 | 4.028 | 0.076 | 0.065 | 89.41 |
| $\beta_{7}$ | -7.953 | 0.065 | 0.065 | 89.38 | 2.876 | 0.074 | 0.074 | 95.72 | 2.594 | 0.070 | 0.063 | 91.45 | 3.068 | 0.075 | 0.065 | 91.04 |
| $\beta_{9}$ | -7.201 | 0.065 | 0.065 | 88.96 | 3.979 | 0.077 | 0.074 | 95.11 | 3.407 | 0.073 | 0.063 | 90.02 | 3.811 | 0.075 | 0.065 | 89.82 |
| $\gamma_{0}$ | -8.142 | 0.084 | 0.082 | 88.54 | 3.003 | 0.097 | 0.094 | 94.50 | 2.996 | 0.092 | 0.080 | 89.61 | 3.190 | 0.105 | 0.083 | 86.97 |
| $\gamma_{1}$ | -7.120 | 0.087 | 0.082 | 90.63 | 4.480 | 0.099 | 0.093 | 93.48 | 3.849 | 0.093 | 0.081 | 89.61 | 4.425 | 0.097 | 0.083 | 89.61 |



Table 4.8: Analysis of the breast cancer Wisconsin data without accounting for misclassification effects

|  | Naive Method 1 |  |  | Naive Method 2 |  |  |
| :--- | :---: | :---: | ---: | :---: | :---: | ---: |
| Parameter | Est. | SE | $95 \%$ CI | Est. | SE | $95 \%$ CI |
| Radius | -4.551 | 0.344 | $(-5.225,-3.877)$ | -4.790 | 3.778 | $(-12.195,2.614)$ |
| Texture | -0.048 | 0.032 | $(-0.110,0.014)$ | -0.122 | 0.115 | $(-0.348,0.104)$ |
| Perimeter | 3.732 | 0.319 | $(3.107,4.356)$ | 3.909 | 3.951 | $(-3.835,11.654)$ |
| Smoothness | 0.268 | 0.144 | $(-0.015,0.551)$ | 0.242 | 0.233 | $(-0.214,0.698)$ |
| Compactness | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.073 | 0.273 | $(-0.463,0.609)$ |
| Concavity | -0.315 | 0.149 | $(-0.607,-0.022)$ | -0.372 | 0.293 | $(-0.945,0.202)$ |
| Concave Points | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.117 | 0.251 | $(-0.376,0.610)$ |
| Symmetry | 0.000 | 0.000 | $(-0.000,0.000)$ | -0.041 | 0.119 | $(-0.276,0.193)$ |
| Fractal Dimension | -0.342 | 0.125 | $(-0.587,-0.096)$ | -0.411 | 0.266 | $(-0.933,0.111)$ |
| Mean | 3.481 | 0.998 | $(1.524,5.438)$ | 3.089 | 1.791 | $(-0.422,6.599)$ |
| SE | 0.313 | 0.300 | $(-0.274,0.900)$ | 0.276 | 0.388 | $(-0.484,1.037)$ |
| Worst | -0.818 | 0.418 | $(-1.638,0.001)$ | -0.773 | 0.660 | $(-2.066,0.520)$ |
| Tumor Size | 0.271 | 0.165 | $(-0.054,0.595)$ | 0.267 | 0.167 | $(-0.060,0.594)$ |
| Intercept | -1.357 | 0.196 | $(-1.741,-0.974)$ | -1.371 | 0.205 | $(-1.772,-0.969)$ |

-0.000 are negative and very close to zero.

Table 4.9: Sensitivity analyses of the breast cancer Wisconsin data

| Parameter | Method 1 |  |  | Method 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Est. | SE | 95\% CI | Est. | SE | 95\% CI |
| Scenario (i): assuming $\tau_{10}=1 \%$ |  |  |  |  |  |  |
| Radius | -4.534 | 0.351 | (-5.222, -3.846) | -4.555 | 5.008 | (-14.370, 5.260) |
| Texture | -0.049 | 0.032 | $(-0.112,0.014)$ | -0.052 | 0.320 | (-0.680, 0.576) |
| Perimeter | 3.714 | 0.327 | (3.073, 4.354) | 3.735 | 5.237 | (-6.529, 13.999) |
| Smoothness | 0.266 | 0.143 | (-0.015, 0.547) | 0.266 | 0.253 | (-0.229, 0.761) |
| Compactness | 0.000 | 0.000 | (-0.000, 0.000) | 0.000 | 0.000 | (-0.000, 0.000) |
| Concavity | -0.312 | 0.149 | (-0.603, -0.021) | -0.312 | 0.363 | (-1.024, 0.400) |
| Concave Points | 0.000 | 0.000 | (-0.000, 0.000) | 0.000 | 0.000 | (-0.000, 0.000) |
| Symmetry | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.000 | 0.000 | (-0.000, 0.000) |
| Fractal Dimension | -0.340 | 0.124 | (-0.583, -0.096) | -0.341 | 0.410 | $(-1.146,0.463)$ |
| Mean | 3.518 | 1.006 | (1.546, 5.489) | 3.503 | 3.928 | $(-4.196,11.202)$ |
| SE | 0.317 | 0.302 | $(-0.276,0.910)$ | 0.317 | 0.563 | (-0.785, 1.420) |
| Worst | -0.828 | 0.421 | (-1.653, -0.002) | -0.825 | 1.247 | (-3.269, 1.619) |
| Tumor Size | 0.272 | 0.167 | (-0.054, 0.599) | 0.274 | 0.170 | (-0.059, 0.608) |
| Intercept | -1.344 | 0.196 | (-1.729, -0.959) | -1.345 | 0.202 | (-1.740, -0.950) |
| Scenario (2): assuming $\tau_{10}=3 \%$ |  |  |  |  |  |  |
| Radius | -4.499 | 0.366 | (-5.218, -3.781) | -4.566 | 0.578 | (-5.699, -3.432) |
| Texture | -0.050 | 0.033 | $(-0.116,0.015)$ | -0.056 | 0.376 | (-0.794, 0.681) |
| Perimeter | 3.677 | 0.343 | (3.004, 4.350) | 3.745 | 0.551 | (2.665, 4.824) |
| Smoothness | 0.262 | 0.142 | (-0.016, 0.540) | 0.264 | 0.163 | $(-0.055,0.584)$ |
| Compactness | 0.000 | 0.000 | (-0.000, 0.000) | 0.000 | 0.000 | (-0.000, 0.000) |
| Concavity | -0.307 | 0.147 | (-0.596, -0.019) | -0.308 | 0.193 | (-0.686, 0.070) |
| Concave Points | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.000 | 0.000 | (-0.000, 0.000) |
| Symmetry | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.000 | 0.000 | (-0.000, 0.000) |
| Fractal Dimension | -0.336 | 0.122 | (-0.576, -0.096) | -0.342 | 0.124 | (-0.585, 0.099) |
| Mean | 3.595 | 1.021 | $(1.594,5.597)$ | 3.540 | 1.275 | (1.040, 6.039) |
| SE | 0.324 | 0.308 | $(-0.280,0.929)$ | 0.324 | 0.351 | $(-0.363,1.011)$ |
| Worst | -0.847 | 0.428 | (-1.686, -0.008) | -0.835 | 0.467 | (-1.751, 0.081) |
| Tumor Size | 0.276 | 0.169 | $(-0.056,0.608)$ | 0.283 | 0.176 | $(-0.062,0.627)$ |
| Intercept | -1.317 | 0.198 | (-1.706, -0.929) | -1.318 | 0.201 | (-1.712, -0.925) |
| Scenario (iii): assuming $\tau_{10}=5 \%$ |  |  |  |  |  |  |
| Radius | -4.464 | 0.366 | (-5.183, -3.746) | -4.531 | 0.334 | (-5.187, -3.876) |
| Texture | -0.052 | 0.033 | $(-0.118,0.013)$ | -0.053 | 0.141 | $(-0.330,0.225)$ |
| Perimeter | 3.640 | 0.343 | (2.968, 4.313) | 3.707 | 0.303 | (3.113, 4.301) |
| Smoothness | 0.258 | 0.142 | $(-0.020,0.535)$ | 0.262 | 0.027 | ( $0.210,0.314$ ) |
| Compactness | 0.000 | 0.000 | (-0.000, 0.000) | 0.000 | 0.000 | (-0.000, 0.000) |
| Concavity | -0.302 | 0.147 | (-0.591, -0.014) | -0.303 | 0.037 | (-0.376, -0.230) |
| Concave Points | 0.000 | 0.000 | (-0.000, 0.000) | 0.000 | 0.000 | (-0.000, 0.000) |
| Symmetry | 0.000 | 0.000 | $(-0.000,0.000)$ | 0.000 | 0.000 | (-0.000, 0.000) |
| Fractal Dimension | -0.332 | 0.122 | (-0.572, -0.092) | -0.339 | 0.015 | (-0.369, -0.309) |
| Mean | 3.677 | 1.021 | $(1.676,5.679)$ | 3.609 | 1.626 | (0.422, 6.797) |
| SE | 0.332 | 0.308 | $(-0.273,0.937)$ | 0.326 | 0.123 | (0.085, 0.567) |
| Worst | -0.867 | 0.428 | (-1.706, -0.028) | -0.850 | 0.218 | (-1.277, -0.422) |
| Tumor Size | 0.280 | 0.169 | $(-0.052,0.612)$ | 0.291 | 0.031 | (0.230, 0.351) |
| Intercept | -1.289 | 0.198 | (-1.678, -0.901) | -1.289 | 0.040 | (-1.368, -1.210) |

Entries of $95 \%$ CI with the form 0.000 are positive and very close to zero; entries with the from -0.000 are negative and very close to zero.

## Chapter 5

## Bayesian Analysis for Matrix-Variate Logistic Regression with/without Response Misclassification

In this chapter, we propose a Bayesian inference procedure to the matrix-variate logistic regression using horseshoe prior under matrix-variate logistic regression with the help of augmented data from Pólya-Gamma distribution. Meanwhile, we develop a Bayesian estimation procedure with missclassification on response. The remainder is organized as follows. In Section 5.1, we introduce the model setup related to model (2.1). In Section 5.2 , we propose the Bayesian inference method for the error-free context. In Section 5.3, we develop the Bayesian estimation procedure with missclassification on response. In Section 5.4, we conduct simulation studies to assess the performance of the methods developed in Sections 5.2 and 5.3, as well as to demonstrate the biased effects of ignoring response missclassification. We also present an application to a LSVT data set in Section 5.5.

### 5.1 Matrix-variate Logistic Regression Model

For subject $k$ with $k=1, \ldots, n, Y_{k}$ is defined in the same way as in Section 2.1.1. Write $\mathbb{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$. Let $x_{k}=\left[x_{k, i j}\right]_{p \times q}$ be the associated $p \times q$ covariate matrix where $x_{k, i j}$ is the observation at row $i$ and column $j$ for subject $k$.

Employing an assumed rank- $R$ parafac decomposition (Guhaniyogi et al. 2017) to $\mathcal{B}$ in
model (2.1) gives

$$
\begin{equation*}
\mathcal{B}=\sum_{r=1}^{R} \alpha^{(r)} \circ \beta^{(r)}, \tag{5.1}
\end{equation*}
$$

where $\circ$ denotes the outer product, $\alpha^{(r)}$ is a $p \times 1$ row parameter vector, $\beta^{(r)}$ is a $q \times 1$ column parameter vector, and $R$ is the positive integer so that $\mathcal{B}$ cannot be written as a sum of less than $R$ outer products (Zhou et al. 2013).

With (5.1), model (2.1) becomes

$$
\begin{equation*}
\operatorname{logit} P\left(Y_{k}=1 \mid x_{k}\right)=\left\langle x_{k}, \sum_{r=1}^{R} \alpha^{(r)} \circ \beta^{(r)}\right\rangle . \tag{5.2}
\end{equation*}
$$

When a rank-1 (i.e., $R=1$ ) parafac decomposition is applied to $\mathcal{B}$, model (5.2) reduces to the matrix-variate logistic regression model (2.2) with $\gamma=0$, the model considered by Hung and Wang (2013).

Finally, we comment that in model (5.2), the coefficients $\alpha^{(r)}$ and $\beta^{(r)}$ are not identifiable for $r=1, \ldots, R$. For instance, respectively scaling $\alpha^{(r)}$ and $\beta^{(r)}$ by any nonzero constant $c$ and its reciprocal $1 / c$ makes (5.2) hold. However, if our interest focuses on $\mathcal{B}$ itself, nonidentifiability of the coefficients $\alpha^{(r)}$ and $\beta^{(r)}$ does not pose a concern, especially in the context of Bayesian analysis, as discussed by Guhaniyogi et al. (2017).

### 5.2 Bayesian Inference Procedure

We are interested in inference about $\mathcal{B}$ in model (2.1) via the formulation model (5.2) through a Bayesian approach. We denote the conditional probability density function (p.d.f.) of the response variable $Y_{k}$, given $x_{k}$, as $p_{Y_{k} \mid x_{k}}\left(y_{k}, x_{k} ; \mathcal{B}, \gamma\right)$ or $p_{k}$ for simplicity, i.e.,

$$
\begin{equation*}
p_{k}=\frac{\exp \left(<x_{k}, \mathcal{B}>\right)}{1+\exp \left(<x_{k}, \mathcal{B}>\right)} . \tag{5.3}
\end{equation*}
$$

In this subsection, we describe a Bayesian approach based on a family of Pólya-Gamma distributions (Polson et al. 2013), where the Gibbs sampler procedure is used, together with the specification of the prior distribution for parameters $\alpha^{(r)}$ and $\beta^{(r)}$ in model (5.2) for $r=1, \ldots, R$.

Let $\pi\left(\alpha^{(r)}\right)$ and $\pi\left(\beta^{(r)}\right)$ denote the prior densities for $\alpha^{(r)}$ and $\beta^{(r)}$, respectively, and write
the posterior densities of $\alpha^{(r)}$ and $\beta^{(r)}$, given the observed data $\{\mathbb{Y}, x\}$, as $\pi\left(\alpha^{(r)} \mid \mathbb{Y}, x ; \beta^{(r)}, \mathcal{B}_{-r}\right)$ and $\pi\left(\beta^{(r)} \mid \mathbb{Y}, x ; \alpha^{(r)}, \mathcal{B}_{-r}\right)$, respectively, where $\mathcal{B}_{-r}=\left\{\mathcal{B}^{l}: l \neq r\right\}$ for $r=1, \ldots, R$.

With the prior densities for $\alpha^{(r)}, \beta^{(r)}$ and model (2.1) together with (5.1), the posterior density for $\mathcal{B}$, given the data, is possible to construct, at least in principle. However, the actual calculation of the posterior density is not trivial due to the lack of its closed form; even with the application of approximations, such as the Markov chain Monte Carlo (MCMC) method, this can be computationally difficult. To get around these issues, Polson et al. (2013) developed a data augmentation algorithm for logistic regression which is simple and fast to implement. The idea is to introduce an independent random variable, say $W$, as an intermediate tool to form a Pólya-Gamma distribution, then the posterior densities of $\alpha$ and $\beta$, given the data and $W$, have a normal distribution which is easy to handle.

### 5.2.1 Pólya-Gamma Distribution with Logistic Regression

Here we describe the connection between the Pólya-Gamma distribution and the logistic regression model. A random variable $U$ follows a Pólya-Gamma distribution, $\operatorname{PG}(1, c)$ for $c \geq 0$, if it has the density function

$$
f(u \mid c)=\cosh \left(\frac{1}{2}\right) \exp \left(-\frac{c^{2} u}{2}\right) g(u)
$$

where $g(u)$ is given by

$$
g(u)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 k+1)}{\sqrt{2 \pi u^{3}}} \exp \left\{-\frac{(2 k+1)^{2}}{8 u}\right\} \mathbf{I}_{(0, \infty)}(u)
$$

with $\mathbf{I}_{(0, \infty)}(u)$ defined as 1 for $0<u<\infty$ and 0 otherwise (Biane et al. 2001).
Next, we make a connection of the Pólya-Gamma Distribution with model (5.2) via (2.1) and (5.1). Let $W_{1}, \ldots, W_{n}$ be independent of each other and of the $Y_{k}$, each having a Pólya-Gamma distribution with $W_{k} \sim P G\left(1, c_{k}\right)$ where $c_{k}=\left|\left\langle x_{k}, \mathcal{B}\right\rangle\right|$ with covariates $x_{k}$ fixed. Then the joint probability density function for $W=\left(W_{1}, \ldots W_{n}\right)^{\top}, f(w \mid \mathcal{B})$, indexed by $\mathcal{B}$, is given by $\prod_{k=1}^{n} f\left(w_{k} \mid c_{k}\right)$.

Using the intermediate variables $W_{k}$, we augment the observed data $\{\mathbb{Y}, x\}$ with $W$ and construct the augmented posterior densities for the parameters by combining model (5.2) with the priors of $\alpha^{(r)}$ and $\beta^{(r)}$, which are straightforward to analyze (Tanner and Wong
1987). For example, given the covariates, the posterior density for $\alpha^{(r)}$ is determined by

$$
\pi\left(\alpha^{(r)} \mid \mathbb{Y}, x ; \beta^{(r)}, \mathcal{B}_{-r}\right)=\int_{R_{+}^{n}} \pi\left(\alpha^{(r)}, w \mid \mathbb{Y}, x ; \beta^{(r)}, \mathcal{B}_{-r}\right) d w
$$

where

$$
\begin{equation*}
\pi\left(\alpha^{(r)}, w \mid \mathbb{Y}, x ; \beta^{(r)}, \mathcal{B}_{-r}\right)=\frac{\left\{\prod_{k=1}^{n} P\left(Y_{k}=y_{k} \mid \mathcal{B}\right)\right\} f(w \mid \mathcal{B}) \pi\left(\alpha^{(r)} \mid \mathcal{B}_{-r}, \beta^{(r)}\right)}{c(\{\mathbb{Y}, x\})} \tag{5.4}
\end{equation*}
$$

with $c(\{\mathbb{Y}, x\})$ being the normalizing constant.
In the appendix, we show that the augmented posterior distribution for the coefficients for $\alpha^{(r)}$ is

$$
\begin{equation*}
\pi\left(\alpha^{(r)} \mid \mathbb{Y}, x, w ; \beta^{(r)}, \mathcal{B}_{-r}\right) \propto\left\{\prod_{k=1}^{n} P\left(Y_{k}=y_{k} \mid \mathcal{B}\right)\right\} f(w \mid \mathcal{B}) \pi\left(\alpha^{(r)} \mid \beta^{(r)}, \mathcal{B}_{-r}\right) \tag{5.5}
\end{equation*}
$$

which is a multivariate normal distribution if the prior distribution for $\alpha^{(r)}$ is specified as a normal distribution (Choi and Hobert 2013), let $m_{\alpha}(w)$ and $\Sigma_{\alpha}(w)$ denote the mean and covariance matrix of the posterior normal distribution of $\alpha^{(r)}$. Thus, the Bayesian inference can proceed with sampling from $f(w \mid \mathcal{B}), \pi\left(\alpha^{(r)} \mid \mathbb{Y}, x, w ; \beta^{(r)}, \mathcal{B}_{-r}\right)$ and $\pi\left(\beta^{(r)} \mid \mathbb{Y}, x, w ; \alpha^{(r)}, \mathcal{B}_{-r}\right)$ iteratively.

### 5.2.2 Prior Specification

Guhaniyogi et al. (2017) discussed an adequate global-local shrinkage prior distribution for $\alpha^{(r)}$ and $\beta^{(r)}$, which typically suits high dimensional linear regression models. However, under the logistic regression, the horseshoe shrinkage prior performs better, suggested by Wei and Ghosal (2020). Thus, in our framework, we employ the horseshoe shrinkage priors for $\alpha^{(r)}$ and $\beta^{(r)}$ marginally to deal with the sparsity problem.

Assuming that the $\alpha_{i}^{(r)}$ and $\beta_{j}^{(r)}$ are conditionally independent, for $r=1, \ldots, R, i=$ $1, \ldots, p, j=1, \ldots, q$, and $l=1, \ldots, p_{z}$, we specify the priors as:

$$
\begin{align*}
& \pi\left(\alpha_{i}^{(r)} \mid \lambda_{\alpha_{i}^{(r)}}, a\right) \sim N\left(0, \lambda_{\alpha_{i}^{(r)}}^{2} a^{2}\right) \\
& \pi\left(\beta_{j}^{(r)} \mid \lambda_{\beta_{j}^{(r)}}, a\right) \sim N\left(0, \lambda_{\beta_{j}^{(r)}}^{2} a^{2}\right) \\
& \pi\left(\lambda_{\alpha_{i}^{(r)}}\right) \sim C^{+}(0,1) ;  \tag{5.6}\\
& \pi\left(\lambda_{\beta_{j}^{(r)}}\right) \sim C^{+}(0,1) ; \\
& \pi(a) \sim C^{+}(0,1)
\end{align*}
$$

where $C^{+}(0,1)$ is the half-Cauchy distribution, and hyperparameter $a>0$ controls the global shrinkage.

### 5.2.3 Computation of Posterior

The details of the posterior distribution of each parameter are included in Appendix D. Here we describe estimation procedures using the MCMC algorithm with Gibbs sampling, which consist of three blocks. At iteration $(t+1)$ :

Block 1. Sample the hyperparameters $\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}$ and $a$ using slice sampling based on the algorithm from of Polson et al. (2014). Here we provide the steps for obtaining $\lambda_{\alpha^{(r)}}^{(t+1)}=\left(\lambda_{\alpha_{1}^{(r)}}^{(t+1)}, \ldots, \lambda_{\alpha_{p}^{(r)}}^{(t+1)}\right)$, given a fixed rank $r$ and $\lambda_{\alpha^{(r)}}^{(t)}$ :

Step 1: sample $u_{\alpha_{i}^{(r)}} \mid \psi_{\alpha_{i}^{(r)}}$ uniformly from interval $\left(0, \frac{1}{1+\psi_{\alpha_{i}^{(r)}}}\right)$, where $\psi_{\alpha_{i}^{(r)}}=\frac{1}{\substack{\lambda_{\alpha_{i}^{(t)}}^{(t)}}}$,
Step 2: sample $\left(\psi_{\alpha_{i}^{(r)}} \mid u_{\alpha_{i}^{(r)}}, \alpha_{i}^{(r),(t)}\right)$ from the exponential density $\operatorname{Exp}\left(\frac{2}{\alpha_{\mathrm{i}}^{(r),(t)}}\right)$, truncated to have a zero probability outside the interval $\left(0, \frac{1-u{ }_{\alpha_{i}}^{(r)}}{u_{\alpha_{i}}^{(r)}}\right)$,
Step 3: transform back to $\lambda_{\alpha_{i}^{(r)}}^{(t+1)}$ using $\psi_{\alpha_{i}^{(r)}} ; \lambda_{\beta}^{(t+1)}$ and $\lambda_{\gamma}^{(t+1)}$ are generated using the same process as $\lambda_{\alpha_{i}}^{(t+1)}$.

Block 2. Generate the random variables $W_{1}, \ldots, W_{n}$ independently using

$$
W_{k} \sim P G\left(1, c_{k}\right)
$$

and write the sampled value as $w^{(t)}=\left(w_{1}^{(t)}, \ldots, w_{n}^{(t)}\right)$.

Block 3. Given $\mathcal{B}_{-r}^{(t)}$, sample the coefficients $\alpha^{(r)}$ and $\beta^{(r)}$ by three steps:
Step 1: sample $\alpha^{(r),(t+1)}$ from $N_{p}\left\{m_{\alpha^{(r)}}\left(w^{(t)}\right), \Sigma_{\alpha^{(r)}}\left(w^{(t)}\right)\right\}$, where

$$
\begin{gathered}
m_{\alpha^{(r)}}\left(w^{(t)}\right)=\Sigma_{\alpha^{(r)}}\left(w^{(t)}\right) x_{\beta^{(r)}}^{(t)} y\left(w^{(t)}\right), \\
\Sigma_{\alpha^{(r)}}\left(w^{(t)}\right)=\left\{x_{\beta^{(r)}}^{(t)} \Omega\left(w^{(t)}\right) x_{\beta^{(r)}}^{(t)}+\Sigma_{\alpha^{(r)}}^{(t+1),-1}\right\}^{-1}, \\
\left.x_{\beta^{(r)}}^{(t)}=\left(x_{1} \beta^{(r),(t)}, \ldots, x_{n} \beta^{(r),(t)}\right)^{\top}, y=\left(y_{1}, \ldots, y_{n}\right)^{\top}, y\left(w^{(t)}\right)=y-\frac{1}{2} \mathbf{1}_{n}-x_{\mathcal{B}_{-r}^{(t)}\left(w^{(t)}\right)}\right), \\
x_{\mathcal{B}_{-r}^{(t)}}\left(w^{(t)}\right)=\left\{\left(<x_{1}, \mathfrak{B}_{-r}^{(t)}>\right) w_{1}^{(t)}, \ldots,\left(<x_{n}, \mathfrak{B}_{-r}^{(t)}>\right) w_{n}^{(t)}\right\}^{\top}, 1_{n} \text { is an } n \times 1 \text { unit } \\
\text { vector, } \Omega\left(w^{(t)}\right)=\operatorname{diag}\left(w^{(t)}\right) \text { and } \Sigma_{\alpha^{(r)}}^{(t+1)}=\operatorname{diag}\left\{\left(\lambda_{\alpha^{(r)}}^{(t+1)} a^{(t+1)}\right)^{2}\right\} ;
\end{gathered}
$$

Step 2: sample $\beta^{(r),(t+1)}$ from $N_{q}\left\{m_{\beta^{(r)}}\left(w^{(t)}\right), \Sigma_{\beta^{(r)}}\left(w^{(t)}\right)\right\}$, where

$$
\begin{gathered}
m_{\beta^{(r)}}\left(w^{(t)}\right)=\Sigma_{\beta^{(r)}}\left(w^{(t)}\right) x_{\alpha^{(r)}}^{(t+1)} y\left(w^{(t)}\right), \\
\Sigma_{\beta^{(r)}}\left(w^{(t)}\right)=\left\{x_{\alpha^{(r)}}^{(t+1), \top} \Omega\left(w^{(t)}\right) x_{\alpha^{(r)}}^{(t+1)}+\Sigma_{\beta^{(r)}}^{(t+1),-1}\right\}^{-1}, \\
x_{\alpha^{(r)}}^{(t+1)}=\left(x_{1}^{\top} \alpha^{(r),(t+1)}, \ldots, x_{n}^{\top} \alpha^{(r),(t+1)}\right)^{\top}, \text { and } \Sigma_{\beta^{(r)}}^{(t+1)}=\operatorname{diag}\left\{\left(\lambda_{\beta^{(r)}}^{(t+1)} a^{(t+1)}\right)^{2}\right\} ;
\end{gathered}
$$

The MCMC samples are generated by repeating the three blocks many times after discarding the early generated samples for a certain burn-in period.

### 5.3 Bayesian Estimation Procedure with Missclassification on Response

In applications, the true response $Y_{k}$ for $k=1, \ldots, n$ may be subject to misclassification, and a surrogate response, $Y_{k}^{*}$, is observed. Let $O_{k}$ be an indicator variable for the $k$ th subject such that $O_{k}=1$ if $Y_{k}^{*}=Y_{k}$ and $O_{k}=0$ otherwise. We denote $\mathbb{Y}^{*}=\left(Y_{1}^{*}, \ldots, Y_{n}^{*}\right)^{\top}$ and $\mathcal{O}=\left(O_{1}, \ldots, O_{k}\right)^{\top}$. Let $\rho=P\left(O_{k}=1 \mid Y_{k}=y_{k}\right)$ be the probability of observing $Y_{k}$ correctly, which is assumed to known for now. The variables $O_{k}, Y_{k}^{*}$, and the true response, $Y_{k}$ are connected via

$$
\begin{equation*}
Y_{k}=O_{k} \times Y_{k}^{*}+\left(1-O_{k}\right) \times\left(1-Y_{k}^{*}\right) \tag{5.7}
\end{equation*}
$$

The conditional distribution of $O_{k}$ is given by

$$
\begin{equation*}
P\left(O_{k}=1 \mid \mathcal{B}, Y_{k}^{*}, \rho\right)=\frac{1}{C_{k}} \rho \times p_{k}^{Y_{k}^{*}} \times\left(1-p_{k}\right)^{1-Y_{k}^{*}} \tag{5.8}
\end{equation*}
$$

where $C_{k}=\rho \times p_{k}^{Y_{k}^{*}} \times\left(1-p_{k}\right)^{1-Y_{k}^{*}}+(1-\rho) \times p_{k}^{1-Y_{k}^{*}} \times\left(1-p_{k}\right)^{Y_{k}^{*}}$ is the normalization constant. Then $O_{k}$ can be sampled based on a binomial distribution with the probability (5.8).

To carry out inference about $\mathcal{B}$ using the surrogate measurements $Y_{k}^{*}$, we modify the procedure in Section 5.2.3, by bridging $Y_{k}^{*}$ and $Y_{k}$. To be specific, this posterior density, denoted $P\left(\mathcal{B} \mid \rho, \mathbb{Y}^{*}, \mathcal{O}\right)$, can be derived from (2.1), (5.7) and the Bayesian hierarchical model of Rekaya et al. (2001):

$$
\begin{equation*}
P\left(\mathcal{B} \mid \rho, \mathbb{Y}^{*}, \mathcal{O}\right) \propto \Pi_{\tau}(\mathcal{B}) \times \prod_{k=1}^{n} p_{k}^{\left(1-O_{k}\right) Y_{k}^{*}+O_{k}\left(1-Y_{k}^{*}\right)} \times\left(1-p_{k}\right)^{1-\left(1-O_{k}\right) Y_{k}^{*}-O_{k}\left(1-Y_{k}^{*}\right)} \tag{5.9}
\end{equation*}
$$

where $p_{k}$ is given by $(5.3), \Pi_{\tau}(\mathcal{B})=\prod_{r=1}^{R}\left\{\prod_{i=1}^{p} \pi_{\tau}\left(\alpha_{i}^{r}\right)\right\}\left\{\prod_{j=1}^{q} \pi_{\tau}\left(\beta_{j}^{r}\right)\right\}$ denotes the product of the prior distributions for the $\alpha^{(r)}$ and $\beta^{(r)}$, and $\tau$ represents the set of hyper-parameters that are suppressed in the notation $\pi_{\tau}\left(\alpha_{i}^{r}\right)$ and $\pi_{\tau}\left(\beta_{j}^{r}\right)$.

Then we modify the algorithm described in Section 5.2 .3 by replacing its Block 2 with:
Block 2*. Given $\mathcal{B}^{(t)}, x_{k}, Y_{k}^{*}$ and $\rho$,
Step 1: generate the random variables $W_{1}, \ldots, W_{n}$ independently using

$$
W_{k} \sim P G\left(1, c_{k}\right)
$$

and let $w=\left(w_{1}, \ldots, w_{n}\right)$ denote the sampled values.
Step 2: generate $O_{k}$ from the Bernoulli distribution with the probability (5.8), and then recover $Y_{k}$ based on (5.7). Let $Y_{k}^{s}$ denote the resulting value which is used for the implementation of Block 3 in Section 5.2.3, where $Y_{k}$ is replaced by $Y_{k}^{s}$.

### 5.4 Simulation Studies

In this subsection, various simulations are designed to evaluate the performance of the proposed methods, together with the impacts of different degrees of misclassification on parameter estimation. We consider settings with $p=q$, and denote this to be $p_{x}$ for ease of exposition. We consider the case with the sample size $n=1000$ or $n=2000$. Matrixvariate data, $x_{k}$, from the matrix-normal distribution $M N\left(0, I_{p_{x}}, I_{p_{x}}\right)$, for $k=1, \ldots, n$, where $p_{x}$ is taken as 5 or 20 .


Figure 5.1: Designed $\mathcal{B}$ with $p_{x}=5$ (left) and 10 (right). The vertical bar labeled with Beta represents the corresponding values of different color in the figure.

For the parameter $\mathcal{B}$, we design it as a rank-1 or rank-2 matrix. In details, let $\mathcal{B}_{i, j}$ denote the $i$ th row and the $j$ th column element of $\mathcal{B}$. For $p_{x}=5$ cases, we set $\mathcal{B}$ to be a rank-2 matrix-variate where $\mathcal{B}_{2,2}, \mathcal{B}_{2,4}, \mathcal{B}_{3,3}, \mathcal{B}_{4,2}, \mathcal{B}_{4,4}$ to be 1 and other entries of $\mathcal{B}$ to be 0 ; for $p_{x}=20$ cases, we consider two different ranks: (1) for the case with a rank-1 matrix-variate, we set $\mathcal{B}_{5,5}, \mathcal{B}_{3,3}, \mathcal{B}_{16,16}$ to be $1, \mathcal{B}_{5,16}, \mathcal{B}_{15,5}$ to be -1 , and other entries of $\mathcal{B}$ to be 0 ; (2) for the case with a rank-2 matrix-variate, we set $\mathcal{B}_{5,5}, \mathcal{B}_{10,10}, \mathcal{B}_{3,3}, \mathcal{B}_{16,16}$ to be 1 , $\mathcal{B}_{5,16}, \mathcal{B}_{15,5}$ to be -1 , and the rest entries of $\mathcal{B}$ to be 0 . Figure 5.1 displays the designed $\mathcal{B}$ of the cases with $p_{x}=5$ and 10 , where blue and red squares show negative and positive values in the range $[-1,1]$, respectively. For $k=1, \ldots, n$, the binary response $Y_{k}$ is independently generated from the Bernoulli distribution with the probability (5.3).

We evaluate the accuracy of the estimates in the terms of the $L_{2}$-error:

$$
\|\mathcal{B}-\hat{\mathcal{B}}\|=\sqrt{\sum_{i=1}^{p} \sum_{j=1}^{q}\left(\mathcal{B}_{i, j}-\hat{\mathcal{B}}_{i, j}\right)^{2}}
$$

where $\hat{\mathcal{B}}$ represents the estimated posterior mean of $\mathcal{B}$. We also monitor the coverage of $95 \%$ and $90 \%$ credible intervals. We compare the variable selection performance using the average proportion of including zero effects (FP) and the average proportion of excluding non-zero effects (FN), where the covariate is excluded if zero is covered by its $95 \%$ credible interval.

### 5.4.1 Simulation Studies without Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.2.3 where the precisely measured outcome $Y_{k}$ is available, and call this method as "Method 1 ". In the implementation of Method 1 , when fitting the data, the rank of $\mathcal{B}$ is set as that for generating the data. We apply the LASSO method as a reference method and call it "LASSO". After the burn-in period consisting of 1,000 Markov chain Monte Carlo (MCMC) iterations, we generate 5,000 posterior samples and save the samples of model parameters at every 5 iterations to reduce autocorrelation between the samples. Table 1 records the results for the cases with $p_{x}=5$. Method 1 outperforms the LASSO method.

To also investigate the effect of a potentially misspecified rank, when fitting the simulated data with the case $p_{x}=20$, we consider two methods by setting the rank of $\mathcal{B}$ to be 1 or 2 , and call the resulting method "True $R_{T}$-Fit $R_{F}$ ", where $R_{T}$ represents the true rank of coefficients of $\mathcal{B}$, and $R_{F}$ represents the user specified rank when fitting the data. The results are presented in Tables 3-4, showing that Method 1 provides better performance than the LASSO method in both correctly specified or misspecified rank situations. Comparing Tables 3 and 4, as we expected, True 1-Fit 1 and True 2-Fit 2 yield better results than those obtained in the presence of rank misspecification. With rank misspecification involved, True 1-Fit 2 outperforms True 2-Fit 1, suggesting that engaging a lower rank to estimate a higher rank of $\mathcal{B}$ has worse performance than the opposite way.

To reduce the risk of rank misspecification, we recommend to use the LASSO method as a start to first decide a suitable rank of the matrix-variate and then apply our proposed methods. A. 1 and A. 2 in Figures 5.2-5.6 give the estimated posterior means of model parameters using Method 1 and the LASSO, showing the same patterns as we observed from Tables 5.1-5.3.

### 5.4.2 Simulation Studies with Misclassification

In this subsection, we evaluate the performance of the procedure proposed in Section 5.3 where only the surrogate response, $Y_{k}^{*}$, of $Y_{k}$ is available, and we call this "Method 2". We consider three misclassification situations with $\rho=0.95,0.90$ or 0.85 , to reflect an increasing degree of misclassification in $Y_{k}$, where $\rho$ is defined in Section 5.3. We are interested in not only the misclassification effects, but also the effects of potential rank misspecification. Thus, when fitting the simulated data with the case $p_{x}=20$, we consider "True $R_{T}$-Fit $R_{F}$ ", where $R_{T}=1,2$ and $R_{F}=1,2$ as well. The LASSO method is also applied as a reference method.

The simulation results for the case $p_{x}=5$ with different $\rho$ are summarized in Table 5.2. For comparison, we also present in this table the results obtained from naively applying the LASSO method and Method 1 by ignoring the response misclassification, denoted "LASSOnaive" and "Method-1-naive", respectively. We observe that the two naive methods provide biased results, and the LASSO-naive method performs worse than Method-1-naive does. Method 2 yields reasonable results. Tables $3-4$ report the simulation results for the case with $p_{x}=20$, showing similar patterns observed for the case with $p_{x}=5$. For the influence of rank misspecification of $\mathcal{B}$, we find that Method 2 shows similar patterns as observed in Section 5.4.1. Misclassification effects do not seem dramatic in shrinking unimportant coefficients or retaining parameters.

In Figures 5.2-5.6, we report the estimated posterior means of $\mathcal{B}$ using the LASSOnaive, Method-1-naive, and Method 2 with different values for $\rho$. These figures show similar results to those of Tables 5.2-5.4. Figures 2-4 are obtained $\hat{\mathcal{B}}$ with the correctly specified rank of $\mathcal{B}$, and they show that Method 2 (in Column 3) provides the most precise $\hat{\mathcal{B}}$ under different $\rho$ settings (in Rows B-D). Two naive methods (in Columns 1-2) display biased estimates with lighter red or blue squares. All the methods correctly select the non-zero $\mathcal{B}_{i, j}$ when the rank of $\mathcal{B}$ is correctly specified. Figures 5.5-5.6 summarize the results when the rank of $\mathcal{B}$ is misspecified for $p_{x}=20$. Method 2 still provides the less biased $\hat{\mathcal{B}}$ compared to the two naive methods. Especially, in Figure 5.6, although Method 2 cannot find $\mathcal{B}_{10,10}$ like the LASSO-naive method, it provides the most precise estimates of the selected $\mathcal{B}_{i, j}$. That is the reason we suggest using the LASSO method to investigate the rank of $\mathcal{B}$ first when $\mathcal{B}$ has a large dimension.

### 5.5 Data Analysis of LSVT Data

In this subsection, we apply the proposed method, in contrast to the LASSO approach, to analyze a subset of the Lee Silverman voice treatment (LSVT) Companion data, available at the UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/ datasets/LSVT+Voice+Rehabilitation. The study investigates the potential of using sustained vowel phonations for Parkinson's diseased (PD) patients whose voice is classified as "acceptable" or "unacceptable" during an in-person rehabilitation treatment. Each subject is originally instructed to produce phonations categorized into one of the nine combinations of pitch and amplitude, where the pitch is defined as "comfortable", "high" and "low"; and the amplitude is considered to be "acceptable", "too loud", or "too soft". The data set contains a total of 126 phonations for the 14 subjects, where each subject contributes nine phonations. The details of the study can be found in Tsanas et al. (2013).

The study processes the speech signals and extracts the features of 126 phonations into two groups of features which are suitably displayed in matrix form. Specifically, in the analysis of Tsanas et al. (2013), the first group of features is formed wavelet measures where 17 wavelet coefficients are calculated for a 10 level wavelet decomposition of the fundamental frequency time series (F0), resulting in a vector-covariate with 170 attributes. The second group of the features uses the dysphonia measures, jitter and shimmer, resulting in three features quantifying F0, the pitch deviations, and the amplitude deviations. Given that 13 characteristics of the three features are calculated, Tsanas et al. (2013) created a vector-covariate of 39 attributes for their analysis. However, such an approach of reporting data obscures the inherent relations among the features and characteristics. It is more reasonable to display the measurements in the first group as a matrix-variate with 10 levels and 17 features treated as rows and columns, respectively, and the measurements in the second group as a matrix-variate with 13 characteristics and 3 features treated as rows and columns, respectively.

A phonation is assessed by the LSVT clinicians to be acceptable ( setting $Y=1$ ) or unacceptable (setting $Y=0$ ), where the assessment largely depends on the experience of a rater. Thus, there is a possibility that phonations may be misclassified due to no solid criteria can be applied for the assessment. For $k=1, . ., 126$, let $Y_{k}^{*}$ denote the observed value for the true binary variable for phonation $k$, with value 1 for being in the acceptable group and 0 otherwise. The matrix-variate of phonation $k$, for the features in group 1 , denoted as $x_{k}^{(1)}$, is a $10 \times 17$ matrix with entry $(i, j)$ representing the value of the $j$ th wavelet coefficient of the $i$ th level, where $i=1, \ldots, 10$ and $j=1, . ., 17$; for the features in group 2, denoted as $x_{k}^{(2)}$, is a $13 \times 3$ matrix with entry $(i, j)$ representing the value of the $j$ th feature of the $i$ th characteristic, where $i=1, \ldots, 13$ and $j=1, . ., 3$. Correspondingly, we let $\mathcal{B}^{(1)}$ and $\mathcal{B}^{(2)}$ denote the parameters for $x_{k}^{(1)}$ and $x_{k}^{(2)}$, respectively. Consistent with the notation in Section 5.3, we let $\rho$ denote the probability of assessing a phonation correctly.

While it is interesting to understand the possible impacts of misclassification on the analysis, there is no information on the degree of misclassification in this data set. Consequently, we conduct sensitivity analyses by specifying different magnitudes of misclassification probabilities. In particular, we take $\rho=0.95,0.90$, or 0.85 to feature increasing degrees of misclassification.

Figure 5.7 shows the point estimators of $\mathcal{B}^{(1)}$ and $\mathcal{B}^{(2)}$ using the LASSO method. Figures 5.8 and 5.9 show the lower and upper bounds of $95 \%$ Credible Interval (CI) and estimated posterior means for $\mathcal{B}^{(1)}$ and $\mathcal{B}^{(2)}$ by applying Methods 1 and 2 described in Section 5. For $x^{(1)}$, there is no significant $\mathcal{B}_{i, j}^{(1)}$ selected for all the proposed methods, but the LASSO method selects two variables. For $x^{(2)}, \mathcal{B}_{3,1}^{(2)}, \mathcal{B}_{4,1}^{(2)}, \mathcal{B}_{4,2}^{(2)}, \mathcal{B}_{12,2}^{(2)}, \mathcal{B}_{5,3}^{(2)}, \mathcal{B}_{11,3}^{(2)} \mathcal{B}_{12,3}^{(2)}$ are selected as
significant parameters by Method 1. However, no characteristic of feature F0 is selected, three characteristics of the pitch deviation and three more characteristics of the amplitude deviation are selected in the model by the LASSO method. As the misclassification rate increases, the magnitude of the posterior means of the model parameters increases, and the $95 \%$ CIs become wider.

Table 5.1: Model performance for $p_{x}=5$ without misclassifiction

| Model | LASSO | Method 1 |
| :--- | :---: | :---: |
| $L_{2}$ error | $2.368(0.168)$ | $0.361(0.078)$ |
| $95 \%$ Coverage |  | $93.6 \%$ |
| $90 \%$ Coverage |  | $88.6 \%$ |
| FP | $0.476(0.065)$ | $0.040(0.054)$ |
| FN | $0(0)$ | $0(0)$ |
| Numbers in () |  |  |

Table 5.2: Model performance for $p_{x}=5$ with misclassifiction

| Model | $\rho=0.95$ |  |  | $\rho=0.90$ |  |  | $\rho=0.85$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LASSO-naive | Method-1-naive | Method 2 | LASSO-naive | Method-1-naive | Method 2 | LASSO-naive | Method-1-naive | Method 2 |
| $L_{2}$ error | 2.190(0.169) | 0.585(0.099) | 0.368(0.068) | 2.109(0.209) | 0.912(0.099) | 0.543(0.137) | 2.08 | 1.178(0.091) | 0.679(0.195) |
| 95\% Coverage |  | 25.4\% | 96.2\% |  | 0.4\% | 93.8\% |  | 0.0\% | 92.6\% |
| 90\% Coverage |  | 16.7\% | 92.3\% |  | 0.1\% | 87.9\% |  | 0.0\% | 87\% |
| FP | $0.423(0.175)$ | 0.040(0.053) | 0.027(0.042) | 0.399(0.170) | 0.044(0.058) | 0.050(0.060) | $0.375(0.164)$ | 0.043(0.052) | 0.052(0.057) |
| FN | 0 (0) | $0(0)$ | 0 (0) | 0 (0) | 0 (0) | $0(0)$ | 0 (0) | 0 (0) | 0 (0) |

Table 5.3: Model performance for correctly specified rank when $p_{x}=20$

|  | True 1-Fit 1 |  |  | True 2-Fit 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Without Misclassification |  |  |  |  |  |
|  | LASSO | Method 1 | Method 2 | LASSO | Method 1 | Method 2 |
| $L_{2}$ error | 2.332(1.022) | 0.378(0.050) |  | 2.630(0.999) | 0.565(0.053) |  |
| 95\% Coverage |  | 94.2 |  |  | 91.6 |  |
| 90\% Coverage |  | 89.2 |  |  | 86.0 |  |
| FP | 0.059(0.030) | 0.011(0.009) |  | 0.078(0.036) | 0.017(0.009) |  |
| FN | 0(0) | $0(0)$ |  | $0(0)$ | 0(0) |  |
|  | With Misclassification |  |  |  |  |  |
|  | LASSO-naive | Method-1-naive | Method 2 | LASSO-naive | Method-1-naive | Method 2 |
|  | $\rho=0.95$ |  |  |  |  |  |
| $L_{2}$ error | $2.238(0.732)$ | 0.538(0.0668) | 0.461(0.066) | 2.502(0.679) | 0.711(0.067) | 0.732(0.099) |
| 95\% Coverage |  | 6.3 | 92.9 |  | 6.6 | 83.5 |
| 90\% Coverage |  | 3.6 | 86.5 |  | 3.5 | 74.1 |
| FP | 0.050(0.029) | 0.011(0.009) | 0.012(0.009) | 0.064(0.032) | 0.016(0.009) | 0.018(0.009) |
| FN | 0(0) | 0(0) | $0(0)$ | $0(0)$ | $0(0)$ | $0(0)$ |
|  | $\rho=0.90$ |  |  |  |  |  |
| $L_{2}$ error | 2.169(0.520) | 0.801(0.070) | $0.565(0.100)$ | 2.415 (0.462) | 0.999(0.070) | 1.008(0.197) |
| 95\% Coverage |  | 0 | 90 |  | 0 | 67.4 |
| 90\% Coverage |  | 0 | 83 |  | 0 | 56.5 |
| FP | 0.047(0.029) | 0.012(0.100) | 0.012(0.011) | 0.057(0.030) | 0.017(0.010) | 0.020(0.011) |
| FN | 0(0) | 0(0) | 0(0) | 0 (0) | 0(0) | 0(0) |
|  | $\rho=0.85$ |  |  |  |  |  |
| $L_{2}$ error | 2.116(0.356) | 1.034(0.066) | $0.717(0.148)$ | 2.353(0.304) | 1.259(0.066) | 1.858(0.790) |
| 95\% Coverage |  | 0 | 87 |  | 0 | 41.3 |
| 90\% Coverage |  | 0 | 80.6 |  | 0 | 32 |
| FP | 0.043(0.028) | 0.012(0.010) | 0.015(0.012) | 0.050(0.029) | 0.017(0.010) | 0.027(0.018) |
| FN | $0(0)$ | $0(0)$ | $0(0)$ | 0(0) | $0(0)$ | $0(0)$ |

Numbers in (.) represents standard error.

Table 5.4: Model performance for mis-specified rank when $p_{x}=20$

|  | True 1-Fit 2 |  |  | True 2-Fit 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Without Misclassification |  |  |  |  |  |
|  | LASSO | Method 1 | Method 2 | LASSO | Method 1 | Method 2 |
| $L_{2}$ error | 2.333(1.024) | 0.497(0.068) |  | 2.630(0.999) | 1.101(0.023) |  |
| 95\% Coverage |  | 87.2 |  |  | 24.2 |  |
| 90\% Coverage |  | 79 |  |  | 16 |  |
| FP | 0.060(0.031) | 0.012(0.01) |  | 0.078(0.036) | $0.0125(0.010)$ |  |
| FN | 0(0) | $0(0)$ |  | 0(0) | 0 (0) |  |
|  | With Misclassification |  |  |  |  |  |
|  | LASSO-naive | Method-1-naive | Method 2 | LASSO | Method-1-naive | Method 2 |
|  | $\rho=0.95$ |  |  |  |  |  |
| $L_{2}$ error | $2.238(0.732)$ | 0.564(0.063) | 0.666(0.106) | 2.502(0.679) | $1.222(0.0395)$ | 1.118(0.030) |
| 95\% Coverage |  | 19.2 | 70.8 |  | 0 | 43.1 |
| 90\% Coverage |  | 11.9 | 58.8 |  | 0 | 34.1 |
| FP | 0.050(0.029) | 0.013(0.010) | 0.0146(0.012) | 0.064(0.032) | 0.013(0.010) | 0.013(0.010) |
| FN | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | $0(0)$ |
|  | $\rho=0.90$ |  |  |  |  |  |
| $L_{2}$ error | 2.169(0.520) | 0.803(0.071) | 0.956(0.197) | 2.415(0.462) | 1.367(0.045) | $1.145(0.035)$ |
| 95\% Coverage |  | 0 | 47.4 |  | 0 | 57.8 |
| 90\% Coverage |  | 0 | 35.3 |  | 0 | 48.8 |
| FP | 0.047(0.029) | 0.013(0.011) | 0.018(0.015) | 0.057(0.030) | 0.012(0.010) | 0.013(0.010) |
| FN | $0(0)$ | $0(0)$ | 0(0) | $0(0)$ | $0(0)$ | $0(0)$ |
|  | $\rho=0.85$ |  |  |  |  |  |
| $L_{2}$ error | $2.116(0.356)$ | 1.032(0.065) | $1.925(0.875)$ | 2.353(0.304) | 1.512(0.048) | 1.191(0.044) |
| 95\% Coverage |  | 0 | 19.4 |  | 0 | 67.2 |
| 90\% Coverage |  | 0 | 12.1 |  | 0 | 61.7 |
| FP | 0.043(0.028) | 0.012(0.010) | 0.029(0.024) | 0.050(0.029) | 0.013(0.010) | $0.014(0.011)$ |
| FN | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) |

[^0]

Figure 5.2: The estimated posterior means of model parameters for $p_{x}=5$ : Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows $\mathrm{B}, \mathrm{C}$ and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.


Figure 5.3: The estimated posterior means of model parameters for $p_{x}=20$ using True 1-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.


Figure 5.4: The estimated posterior means of model parameters for $p_{x}=20$ using True 2-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.


Figure 5.5: The estimated posterior means of model parameters for $p_{x}=20$ using True 1-Fit 2:Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.


Figure 5.6: The estimated posterior means of model parameters for $p_{x}=20$ using True 2-Fit 1: Columns 1-3 record the results obtained from Method-1-naive, the LASSO-naive method and Method 2, respectively. Row A displays the results for the case with no misclassification, and Rows B, C and D summarize the results for $\rho=0.95,0.90$ and 0.85 , respectively.


Figure 5.7: The point estimates of model parameters for $\mathcal{B}^{(1)}$ in (A) and $\mathcal{B}^{(2)}$ in (B) using the LASSO method.


Figure 5.8: Estimation results for $\mathcal{B}^{(1)}$ : in each sub-figure, (A) shows the $2.5 \%$ posterior quantiles of $\mathcal{B}^{(1)}$, (B) shows the estimated posterior means of $\mathcal{B}^{(1)}$, and (C) shows the $97.5 \%$ posterior quantiles of $\mathcal{B}^{(1)}$.


Figure 5.9: Estimation results for $\mathcal{B}^{(2)}$ : in each sub-figure, (A) shows the $2.5 \%$ posterior quantiles of $\mathcal{B}^{(2)}$, (B) shows the estimated posterior means of $\mathcal{B}^{(2)}$, and (C) shows the $97.5 \%$ posterior quantiles of $\mathcal{B}^{(2)}$.

## Chapter 6

## Summary and Future Work

In this chapter, we present a summary for the previous chapters, together with discussions on possible future work or extensions.

## Chapter 2:

Matrix-variate logistic regression models are useful in handling complex-structured covariates which commonly arise from imaging data. However, these models cannot be directly used when the number of model parameters is larger then the sample size. Furthermore, little discussion is available for using such models to analyze error-contaminated matrix-variate data. It is even unclear the impact would be if measurement error effects were ignored in such a setting. In Chapter 2, we study this important problem and develop two valid inference methods for accommodating measurement error effects in matrix-variate logistic regression. These two methods are developed under different distributional assumptions of the measurement error model; one makes a normality assumption for the measurement error while the other makes no assumptions. We establish theoretical results for the proposed methods and numerical studies demonstrate satisfactory finite sample performance.

In Chapter 2, we apply the (2D) ${ }^{2}$ PCA method (Zhang and Zhou 2005) to solve the inestimable problem where the sample size is smaller than the number of parameters; this method seems easier to implement than other matrix dimension reduction methods, such as generalized low rank approximations of matrices (GLRAM) (Ye 2005) and 2DPCA (Yang et al. 2004). Other dimension reduction methods can be considered as well prior to using the methods developed in Sections 2.3.1 and 2.3.2. For instance, one may consider to add a penalty function to the likelihood (2.3) in
combination with the adjustment for the measurement error effects, and then employ the penalized likelihood function to reduce the dimension of the covariates. It would be interesting to explore this method in depth with some technical details here modified accordingly.

## Chapter 3:

Vector-Matrix-variate logistic regression models are useful in characterizing the relationship between binary responses and matrix-expressed covariates as well as vectorexpressed covariates. However, inference based on such models is challenged by the presence of response misclassification. In Chapter 3, we propose two valid methods, the imputation and likelihood methods to accommodate response misclassification effects in matrix-variate logistic regression. These two methods are developed for two settings where the misclassification rates are known or estimated from validation data. We establish theoretical results for the proposed methods and conduct numerical studies which demonstrate satisfactory finite sample performance of the methods.

In Chapter 3, we impose a constraint on the row effects to deal with the model identifiability problem, which allows us to focus on explaining the row and column effects separately. It is interesting to consider other types of constraint to express the effects of different combinations of row and column directly.

## Chapter 4:

Regularized Matrix-variate logistic regression models are useful in characterizing the relationship between binary responses and matrix-expressed covariates, which commonly have sparsity property, as well as vector-expressed covariates. However, inference based on such models is challenged by the presence of response misclassification. In Chapter 4, we propose two valid methods, the imputation and likelihood methods to accommodate response misclassification effects in matrix-variate logistic regression combined with the SCAD penalty function. These two methods are developed for two settings where the misclassification rates are either known or estimated from validation data. We establish theoretical results for the proposed methods and conduct numerical studies which demonstrate satisfactory finite sample performance of the methods.

In Chapter 4, we still impose a constraint on the row effects to deal with the model identifiability problem. It is interesting to applying different inference methods to express the effects of different combinations of row and column directly. This is an ongoing project we are working with based on the Bayesian analysis. Moreover, we
also add the SCAD penalty in the estimation procedure to deal with the sparsity property. Other penalty functions can be added as well to deal with this property.

## Chapter 5:

Matrix-variate logistic regression models are newly emerging tools that are useful in featuring the relationship between binary responses and covariates in a matrix form as we shown in previous chapters. However, it is challenging due to the computational burden and intrinsic complex data structures under frequentist frame. In Chapter 5, we propose a Bayesian estimation procedure to analyze data that are facilitated by matrix-variate logistic regression. Furthermore, a modified Bayesian estimation procedure is proposed to deal with data with response misclassification. Numerical studies demonstrate satisfactory finite sample performance of the proposed methods.

The development in Chapter 5 focuses on the implementation procedures coupled with numerical studies. It is useful to develop rigorous theoretical results for the methods, which is a future project. Another interesting problem is to explore Bayesian methods to handle measurement error existing in matrix covariates; a similar problem is investigated by Fang and Yi (2020b) who focused on the frequentist framework.

## References

Albert, J. H. and S. Chib (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669-679.

Albert, P. S., S. A. Hunsberger, and F. M. Biro (1997). Modeling repeated measures with monotonic ordinal responses and misclassification, with applications to studying maturation. Journal of the American Statistical Association 92, 1304-1311.

Atchadé, Y. F. (2017). On the contraction properties of some high-dimensional quasiposterior distributions. The Annals of Statistics 45, 2248-2273.

Bhattacharya, A., D. Pati, N. S. Pillai, and D. B. Dunson (2015). Dirichlet-Laplace priors for optimal shrinkage. Journal of the American Statistical Association 110, 1479-1490.

Biane, P., J. Pitman, and M. Yor (2001). Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bulletin of the American Mathematical Society 38, 435-465.

Buzas, J. S. and L. A. Stefanski (1996). Instrumental variable estimation in generalized linear measurement error models. Journal of the American Statistical Association 91, 999-1006.

Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu (2006). Measurement Error in Nonlinear Models: A Modern Perspective. Chapman and Hall/CRC.

Carvalho, C. M., N. G. Polson, and J. G. Scott (2010). The horseshoe estimator for sparse signals. Biometrika 97, 465-480.

Carvalho, C. M. and M. West (2007). Dynamic matrix-variate graphical models. Bayesian analysis 2, 69-97.

Chen, Z., G. Y. Yi, and C. Wu (2011). Marginal methods for correlated binary data with misclassified responses. Biometrika 98, 647-662.

Chen, Z., G. Y. Yi, and C. Wu (2014). Marginal analysis of longitudinal ordinal data with misclassification in both response and covariates. Biometrical Journal 56, 69-85.

Choi, H. M. and J. P. Hobert (2013). The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic. Electronic Journal of Statistics 7, 2054-2064.

Cook, J. R. and L. A. Stefanski (1994). Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association 89, 13141328.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B 20, 215-242.

Dellaportas, P. and D. A. Stephens (1993). Bayesian analysis of errors-in-variables regression models. Biometrics 51, 1085-1095.

Dutilleu, P. (1999). The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation 64, 105-123.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.

Fang, J. and G. Y. Yi (2020a). Imputation and likelihood methods for matrix-variate logistic regression with response misclassification. Revised for The Canadian Journal of Statistics.

Fang, J. and G. Y. Yi (2020b). Matrix-variate logistic regression with measurement error. To be appear in Biometrika.

Fang, J. and G. Y. Yi (2020c). Regularized matrix-variate logistic regression with response misclassification. Submitted for Publication.

Freedman, L. S., V. Fainberg, V. Kipnis, D. Midthune, and R. J. Carroll (2004). A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 172-181.

Fuller, W. A. (1987). Measurement Error Models. John Wiley \& Sons.

Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing 7, 57-68.

George, E. I. and R. E. McCulloch (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association 88, 881-889.

Gerlach, R. and J. Stamey (2007). Bayesian model selection for logistic regression with misclassified outcomes. Statistical Modelling 7, 255-273.

Gleser, L. J. (1996). Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. Contemporary Mathematics 112, 99-114.

Gramacy, R. B. and N. G. Polson (2012). Simulation-based regularized logistic regression. Bayesian Analysis 7, 567-590.

Guhaniyogi, R., S. Qamar, and D. B. Dunson (2017). Bayesian tensor regression. The Journal of Machine Learning Research 18, 2733-2763.

Gustafson, P. (2003). Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments. CRC Press.

Hoff, P. D. (2011). Separable covariance arrays via the Tucker product, with applications to multivariate relational data. Bayesian Analysis 6, 179-196.

Holmes, C. C. and L. Held (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis 1, 145-168.

Hung, H. and C.-C. Wang (2013). Matrix variate logistic regression model with application to EEG data. Biostatistics 14, 189-202.

Ishwaran, H. and J. S. Rao (2005). Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics 33, 730-773.

Kolda, T. G. and B. W. Bader (2009). Tensor decompositions and applications. SIAM review 51, 455-500.

Ledoit, O. and M. Wolf (2004). A well conditioned estimator for large dimensional covariance matrices. Journal of Multivariate Analysis 88, 365-411.

Li, B., M. K. Kim, and N. Altman (2010). On dimension folding of matrix-or array-valued statistical objects. The Annals of Statistics 38, 1094-1121.

Li, X. (2014). Tensor Based Statistical Models with Applications in Neuroimaging Data Analysis. Ph.D. Thesis, North Carolina State University, United States.

Li, X., H. Zhou, and L. Li (2018). Tucker tensor regression and neuroimaging analysis. Statistics in Biosciences 10, 520-545.

Lindsay, B. (1982). Conditional score functions: some optimality results. Biometrika 69, 503-512.

Lokhorst, J. (1999). The Lasso and generalised linear models. Honors Project. University of Adelaide, Adelaide.

Lukas Meier, S. v. d. G. and P. Bühlmann (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B 70, 53-71.

Ma, Y. and R. Li (2010). Variable selection in measurement error models. Bernoulli 16, 274-300.

Madansky, A. (1959). The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association 54, 173-205.

Mangasarian, O., W. Street, and W. Wolberg (1995). Breast cancer diagnosis and prognosis via linear programming. Operations Research 43, 570-577.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. Chapman and Hall/CRC, London.

McInturff, P., W. O. Johnson, D. Cowling, and I. A. Gardner (2004). Modelling risk when binary outcomes are subject to error. Statistics in Medicine 23, 1095-1109.

Neuhaus, J. M. (1999). Bias and efficiency loss due to misclassified responses in binary regression. Biometrika 86, 843-855.

Neuhaus, J. M. (2002). Analysis of clustered and longitudinal binary data subject to response misclassification. Biometrics 58, 675-683.

O'Brien, S. M. and D. B. Dunson (2004). Bayesian multivariate logistic regression. Biometrics 60, 739-746.

Park, T. and G. Casella (2008). The Bayesian Lasso. Journal of the American Statistical Association 103, 681-686.

Paulino, C. D., P. Soares, and J. Neuhaus (2003). Binomial regression with misclassification. Biometrics 59, 670-675.

Polson, N. G., J. G. Scott, and J. Windle (2013). Bayesian inference for logistic models using Pólya-Gamma latent variables. Journal of the American statistical Association 108, 1339-1349.

Polson, N. G., J. G. Scott, and J. Windle (2014). The Bayesian bridge. Journal of the Royal Statistical Society: Series B 76, 713-733.

Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342.

Rekaya, R., K. A. Weigel, and D. Gianola (2001). Threshold model for misclassified binary responses with applications to animal breeding. Biometrics 57, 1123-1129.

Richardson, S. and W. R. Gilks (1993). A Bayesian approach to measurement error problems in epidemiology using conditional independence models. American Journal of Epidemiology 138, 430-442.

Rossi, P. E., G. M. Allenby, and R. McCulloch (2005). Bayesian Statistics and Marketing. John Wiley \& Sons.

Roy, S., T. Banerjee, and T. Maiti (2005). Measurement error model for misclassified binary responses. Statistics in Medicine 24, 269-283.

Shen, W. and S. Ghosaĺ (2016). Adaptive Bayesian density regression for high-dimensional data. Bernoulli 22, 396-420.

Shevade, S. K. and S. S. Keerthi (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253.

Sobel, M. E. and M. A. Lindquist (2014). Causal inference for fmri time series data with systematic errors of measurement in a balanced on/off study of social evaluative threat. Journal of the American Statistical Association 109, 967-976.

Stefanski, L. A. and R. J. Carroll (1985). Covariate measurement error in logistic regression. The Annals of Statistics 13, 1335-1351.

Stefanski, L. A. and R. J. Carroll (1987). Conditional scores and optimal scores for generalized linear measurement-error models. Biometrika 74, 703-716.

Tanner, M. A. and W. H. Wong (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82, 528-540.

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B 58, 267-288.

Tsanas, A., M. A. Little, C. Fox, , and L. O. Ramig (2013). Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering 22, 181-190.
van der Varrt, A. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
Wald, A. (1940). The fitting of straight lines if both variables are subject to error. The Annals of Mathematical Statistics 11, 284-300.

Walker, S. H. and D. B. Duncan (1967). Estimation of the probability of an event as a function of several independent variables. Biometrika 54, 255-273.

Wang, C. and M. S. Pepe (2000). Expected estimating equations to accommodate covariate measurement error. Journal of the Royal Statistical Society: Series B 62, 509-524.

Wang, H., R. Li, and C.-L. Tsai (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94, 553-568.

Wei, R. and S. Ghosal (2020). Contraction properties of shrinkage priors in logistic regression. Journal of Statistical Planning and Inference 207, 215-229.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Journal of the Econometric Society 50, 1-25.

Yang, J., D. Zhang, A. Frangi, and J. Yang (2004). Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 5, 131-137.

Ye, J. (2005). Generalized low rank approximations of matrices. Machine Learning 61, 167-191.

Yi, G. Y. (2017). Statistical Analysis with Measurement Error or Misclassification: Strategy, Method and Application. Springer-Verlag, New York.

Yi, G. Y. and R. J. Cook (2005). Errors in the measurement of covariates. Encyclopedia of Biostatistics 4, 1741-1748.

Yi, G. Y., Y. Ma, and R. J. Carroll (2012). A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error. Biometrika 99, 151-165.

Yi, G. Y., Y. Ma, D. Spiegelman, and R. J. Carroll (2015). Functional and structural methods with mixed measurement error and misclassification in covariates. Journal of the American Statistical Association 110, 681-696.

Yi, G. Y. and N. Reid (2010). A note on misspecified estimating functions. Statistica Sinica 20, 1749-1769.

Yi, G. Y., X. Tan, and R. Li (2015). Variable selection and inference procedures for marginal analysis of longitudinal data with missing observations and covariate measurement error. The Canadian Journal of Statistics 43, 498-518.

Zeger, S. L. and M. Karim (1991). Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association 86, 79-86.

Zellner, A. and P. E. Rossi (1984). Bayesian analysis of dichotomous quantal response models. Journal of Econometrics 25, 365-393.

Zhang, D. and Z.-H. Zhou (2005). (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69, 224-231.

Zhang, X., L. Li, H. Zhou, and D. Shen (2014). Tensor generalized estimating equations for longitudinal imaging analysis. arXiv preprint arXiv:1412.6592.

Zhou, H. and L. Li (2014). Regularized matrix regression. Journal of the Royal Statistical Society: Series B 76, 463-483.

Zhou, H., L. Li, and H. Zhu (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association 108, 540-552.

Zou, H. (2006). The Adaptive Lasso and its oracle properties. Journal of the American statistical Association 101, 1418-1429.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B 67, 301-320.

## APPENDICES

In this part, we report supplementary materials associated with Chapters 2-5, including regularity conditions, the proofs of the theoretical results, additional numerical results, and details of calculations.

## Appendix A

## Additional Materials for Chapter 2

## A. 1 Regularity Conditions

(C.1) a) $\sup _{n}\left\{(1 / n) \sum_{k=1}^{n}\left\|\operatorname{vec}\left(x_{\mathrm{ck}}\right)\right\|^{2}\right\}<\infty, \max _{1 \leq k \leq n}\left\|x_{\mathrm{ck}}\right\|=o\{\max (m, \sqrt{n})\}$;
b) $\sup _{n}\left\{(1 / n) \sum_{k=1}^{n}\left\|\operatorname{vec}\left(z_{k}\right)\right\|^{2}\right\}<\infty, \max _{1 \leq k \leq n}\left\|z_{k}\right\|=o\{\max (m, \sqrt{n})\}$;
where $\|A\|$ denotes the Frobenius norm if $A$ is a matrix and the Euclidean norm if $A$ is a vector, and $m$ is the number of replicates defined in the end of Section 2.3.1.
(C.2) $\sum_{k=1}^{n}\left\|x_{c k}\right\|^{2}=o\left(n^{2}\right)$ and $\sum_{k=1}^{n}\left\|z_{k}\right\|^{2}=o\left(n^{2}\right)$.
(C.3) $E\left\{\operatorname{vec}\left(E_{k r}\right)\right\}=0$ and $E\left\{\left\|\operatorname{vec}\left(E_{k r}\right)\right\|^{2+\kappa}\right\}<\infty$ for some constant $\kappa>0$.
(C.4) Let

$$
\begin{equation*}
G_{n}\left(\theta^{*}\right)=(1 / n) \sum_{k=1}^{n} Y_{k}\left(\alpha^{* \top} x_{\mathrm{ck}} \beta^{*}+\gamma^{* \top} z_{k}\right)-\log \left\{1+\exp \left(\alpha^{* \top} x_{\mathrm{ck}} \beta^{*}+\gamma^{* \top} z_{k}\right)\right\} \tag{A.1}
\end{equation*}
$$

Assume that there exists a real-valued function $G(\cdot)$ such that for any $\epsilon>0$

$$
\begin{gathered}
\sup _{\theta^{*} \in \Theta}\left|G_{n}\left(\theta^{*}\right)-G\left(\theta^{*}\right)\right| \rightarrow 0 \text { in probability as } n \rightarrow \infty ; \\
\sup _{\theta^{*}: d\left(\theta^{*}, \theta\right) \geq \epsilon} G\left(\theta^{*}\right)<G(\theta)
\end{gathered}
$$

where $d(a, b)$ is the distance function in a Euclidean space, say, $\mathbb{R}^{d}$, defined as $d(a, b)=$ $\|a-b\|$ for $a, b \in \mathbb{R}^{d}$.
(C.5) There exist a positive definite matrix $M_{1}$ and constants $\delta>0$ and $0<N_{0}<\infty$, such that $H_{n}\left(\theta^{*}\right) \geq M_{1}$ whenever $n \geq N_{0}$ and $\left\|\theta^{*}-\theta\right\| \leq \delta$, where the operation $\geq$ is the Loewner order, i.e., for two matrices $A$ and $B$, if $A-B$ is semi-positive definite, then we write $A \geq B$.
(C.6) Define

$$
\mathrm{S}_{k}^{*}\left(\theta^{*}\right)=\binom{\tilde{X}_{k}^{* \top}\left(\theta^{*}\right)}{z_{k}}\left\{Y_{k}-p_{k}\left(\theta^{*} ; X_{k}^{*}\right)\right\},
$$

where $\tilde{X}_{k}^{*}(\theta)=\left(\beta^{\top} X_{k}^{* \top} C_{t}, \alpha^{\top} X_{k}^{*}\right)^{\top}$. Assume that the second derivative of $\mathrm{S}_{k}^{*}\left(\theta^{*}\right)$ with respect to $\theta^{*}$ exists and that the entries of $\mathrm{S}_{k}^{*}\left(\theta^{*}\right)$ are uniformly bounded by a random variable which may be a function of $X_{k}^{*}$ and $z_{k}$, say $M_{2}\left(X_{k}^{*}, z_{k}\right)$, in a neighborhood of $\theta$. In addition, $\mathrm{E}\left\{M_{2}\left(X_{k}^{*}, z_{k}\right)\right\}<\infty$ for all $k=1, \ldots, n$.

Remark 1: In Condition (C.1) will be used to prove the approximation form of $S_{n}^{*}(\theta)$, the consistency of $\mathrm{H}_{n}^{*}(\theta)$, and Theorem 2.4. Condition (C.2) is used to prove the consistency of $\mathrm{H}_{n}^{*}(\theta)$ in Appendix A. 5 and Theorem 2.4 in Appendix A.10. Condition (C.4), also made by van der Varrt (1998, Theorem 5.7) and Zhou et al. (2013, Theorem 1), is used to show the consistency of the naive estimator $\hat{\theta}^{*}$. This assumption can be regarded as an analogue of Condition (C.1) required by Stefanski and Carroll (1985, p.1337) for logistic regression where only vector-covariates are involved. van der Varrt (1998, p.46) discussed a set of sufficient conditions, including the compactness of the parameter space, that make Condition (C.4) hold. Condition (C.5) is a regularity condition that is needed for the establishment of the asymptotic normal distribution for $H_{n}^{-1 / 2}(\theta) L_{n}(\theta)$ (Stefanski and Carroll 1985, p.1338). Condition (C.6) guarantees that the reminder terms of the Taylor series expansion (A.26) of $S_{k}^{*}\left(\theta^{*}\right)$ in Appendix A. 6 are bounded and ignorable when deriving the equation (2.12).

Condition (C.3) characterizes that measurement error cannot be arbitrarily large and must be bounded. This assumption immediately implies that $E\left\{\operatorname{vec}\left(\bar{U}_{k}\right)\right\}=0$,

$$
\begin{equation*}
(1 / n) \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}=O_{p}(1 / m) \text { and }(1 / n) \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|=O_{p}\left(1 / m^{1 / 2}\right) . \tag{A.2}
\end{equation*}
$$

Conditions (C.1)-(C.5) are made in the same spirit of Stefanski and Carroll (1985), but these assumptions generalize the requirements for settings with vector-form covariates to accommodating problems with both vector-form covariates and matrix-form covariates. One may notice that the proofs of our results share the same ideas of Stefanski and Carroll
(1985) to certain extent. For instance, modifications of Lemmas 5.1 and 5.2 in Stefanski and Carroll (1985) are used in our proofs to show the relationships between $\mathrm{S}_{n}^{*}(\theta)$ and $\mathrm{Z}_{n}(\theta)$ and between $\mathrm{H}_{n}^{*}(\theta)$ and $\mathrm{H}_{n}(\theta)$. However, our derivations are a lot more technically involved where a key challenge is to figure out how to split $\alpha$ and $\beta$ in order to establish the results for $\alpha$ and $\beta$ separately. The presence of matrix-form covariates considerably complicates the derivations of new theoretical results.

## A. 2 Approximations of $p_{k}\left(\theta ; X_{k}^{*}\right)$ and its Functions

Here we derive the first and second order Taylor expansions of $p_{k}\left(\theta ; X_{k}^{*}\right)$ or its function to be used to find the approximation of $S_{n}^{*}(\theta)$ in Appendix A.4. To this end, we adapt the derivations for Lemma 5.2 of Stefanski and Carroll (1985).

Let $\eta\left(X_{k}^{*}\right)=\alpha^{\top} X_{k}^{*} \beta+\gamma^{\top} z_{k}$ and $\eta\left(x_{\mathrm{ck}}\right)=\alpha^{\top} x_{\mathrm{c} k} \beta+\gamma^{\top} z_{k}$ with the dependece on $z_{k}$ suppressed in the symbols $\eta\left(X_{k}^{*}\right)$ and $\eta\left(x_{\mathrm{ck}}\right)$. By (2.5), $X_{k}^{*}=x_{\mathrm{ck}}+\bar{U}_{k}$ and $E\left(\bar{U}_{k}\right)=0$. Now we write $p_{k}\left(\theta ; X_{k}^{*}\right)$ as $p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}$ and $p_{k}\left(\theta ; x_{\mathrm{ck}}\right)$ as $p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}$, and consider the following four approximations.
$1^{\circ}$. Given $x_{\mathrm{c} k}$ and $z_{k}$ as well as a realization of $X_{k}^{*}$, we derive the first-order Taylor series expansion of $p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}$ around $\eta\left(x_{\mathrm{ck}}\right)$ :

$$
\begin{equation*}
p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}=p_{k}\left\{\eta\left(x_{\mathrm{c} k}\right)\right\}+p_{k}^{(1)}\left\{\eta\left(x_{k, \xi}\right)\right\}\left\{\eta\left(X_{k}^{*}\right)-\eta\left(x_{\mathrm{c} k}\right)\right\}, \tag{A.3}
\end{equation*}
$$

where $\eta\left(x_{k, \xi}\right)=\alpha^{\top} x_{k, \xi} \beta+\gamma^{\top} z_{k}$ with $x_{k, \xi}$ "between" $X_{k}^{*}$ and $x_{c k}$ in the sense that $\| x_{k, \xi}-$ $X_{k}^{*}\|\leq\| X_{k}^{*}-x_{c k} \|$ and $\left\|x_{k, \xi}-x_{c k}\right\| \leq\left\|X_{k}^{*}-x_{c k}\right\|$.

By definition of $p_{k}(\cdot)$ and $\eta(\cdot)$, and $\eta\left(x_{k, \xi}\right)=\eta\left(x_{\mathrm{ck}}\right)+o_{p}(1)$, we write (A.3) as

$$
\begin{align*}
p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\} & =p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+p_{k}\left\{\eta\left(x_{k, \xi}, z_{k}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{k, \xi}\right)\right\}\right] \times\left(\alpha^{\top} X_{k}^{*} \beta-\alpha^{\top} x_{\mathrm{ck}} \beta\right) \\
& =p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+p_{k}\left\{\eta\left(x_{k, \xi}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{k, \xi}\right)\right\}\right] \times \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(X_{k}^{*}-x_{\mathrm{ck}}\right)  \tag{A.4}\\
& =p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+v_{1, k}\left\{\eta\left(x_{k, \xi}\right)\right\} \times \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right),
\end{align*}
$$

where we use the fact that $a^{\top} A b=\operatorname{vec}\left(a b^{\top}\right)^{\top} \operatorname{vec}(A)$ for a $p \times q$ matrix $A$, a $p \times 1$ vector $a$
and $q \times 1$ vector $b$, and $v_{1, k}(\cdot)=p_{k}(\cdot)\left\{1-p_{k}(\cdot)\right\}$, as defined in Section 2.3.
$2^{\circ}$. Similarly, the first-order Taylor series expansion of $p_{k}\left\{\eta\left(\hat{\Delta}_{k}\right)\right\}$ around $\eta\left(x_{\mathrm{c} k}\right)$, where $\hat{\Delta}_{k}$ is defined in (2.22), is

$$
\begin{equation*}
p_{k}\left\{\eta\left(\hat{\Delta}_{k}\right)\right\}=p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left\{\operatorname{vec}\left(\bar{U}_{k}\right)+\operatorname{vec}\left(g_{k}\right)^{\top}\right\} v_{1, k}\left\{\eta\left(\Delta_{k, \xi}\right) / m_{c}\right\} \tag{A.5}
\end{equation*}
$$

where $\eta\left(\Delta_{k, \xi}\right)=\alpha^{\top} \Delta_{k, \xi} \beta+\gamma^{\top} z_{k}$ with $\Delta_{k, \xi}$ "between" $\hat{\Delta}_{k}$ and $x_{c k}$ in the sense that $\left\|\Delta_{k, \xi}-\hat{\Delta}_{k}\right\| \leq\left\|\hat{\Delta}_{k}-x_{c k}\right\|$ and $\left\|\Delta_{k, \xi}-x_{c k}\right\| \leq\left\|\hat{\Delta}_{k}-x_{c k}\right\|$.

Then, taking the differece of (A.4) and (A.5), we obtain that

$$
\begin{align*}
\left\|p_{k}\left(\theta, X_{k}^{*}\right)-p_{k}\left(\theta, \hat{\Delta}_{k}\right)\right\|= & \| \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)\left[v_{1, k}\left\{\eta\left(x_{k, \xi}\right)\right\}-v_{1, k}\left\{\eta\left(\Delta_{k, \xi}\right)\right\}\right] \\
& -\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) v_{1, k}\left\{\eta\left(\Delta_{k, \xi}\right) / m_{c} \|\right. \\
\leq & \left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)\left[v_{1, k}\left\{\eta\left(x_{k, \xi}\right)\right\}-v_{1, k}\left\{\eta\left(\Delta_{k, \xi}\right)\right\}\right]\right\|  \tag{A.6}\\
& +\left\|\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) v_{1, k}\left\{\eta\left(\Delta_{k, \xi}\right)\right\} / m_{c}\right\| \\
\leq & \left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)\right\|+\left\|\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) / m_{c}\right\|
\end{align*}
$$

where the last step is due to the boundedness of $v_{1, k}(\cdot)$ in $[0,1]$.
$3^{\circ}$. The first-order Taylor series expansion of $p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\left[1-p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\right]$ around $\eta\left(x_{\mathrm{ck}}\right)$ :

$$
\begin{align*}
& p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\left[1-p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\right] \\
& =p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\right]+ \\
& \left.\quad \frac{\partial}{\partial \eta\left(x_{\mathrm{ck}}\right)}\left(p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\right]\right)\right|_{x_{c k}=x_{k, \xi_{2}}} \times\left\{\eta\left(X_{k}^{*}\right)-\eta\left(x_{\mathrm{ck}}\right)\right\}  \tag{A.7}\\
& =v_{1, k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+v_{2, k}\left\{\eta\left(x_{k, \xi_{2}}\right)\right\} \times \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)
\end{align*}
$$

where $v_{2, k}(\cdot)=p_{k}(\cdot)\left\{1-p_{k}(\cdot)\right\}\left\{1-2 p_{k}(\cdot)\right\}$, as defined in Section 2.3, and $x_{k, \xi_{2}}$ is "between" $X_{k}^{*}$ and $x_{\mathrm{ck}}$ in the sense that $\left\|x_{k, \xi_{2}}-X_{k}^{*}\right\| \leq\left\|X_{k}^{*}-x_{c k}\right\|$ and $\left\|x_{k, \xi_{2}}-x_{c k}\right\| \leq\left\|X_{k}^{*}-x_{c k}\right\|$.

We comment that (A.7) differs from the expression obtained from directly plugging
(A.4) into $p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\left[1-p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}\right]$, and the former expression is simpler the latter case.
$4^{\circ}$. The first-order Taylor series expansion of $p_{k}\left\{\eta\left(\hat{\Delta}_{k}\right)\right\}\left[1-p_{k}\left\{\eta\left(\hat{\Delta}_{k}\right)\right\}\right]$ around $\eta\left(x_{\mathrm{c} k}\right)$ :

$$
\begin{align*}
& p_{k}\left\{\eta\left(\hat{\Delta}_{k}\right)\right\}\left[1-p_{k}\left\{\left(\hat{\Delta}_{k}\right)\right\}\right] \\
& =p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\right]+ \\
& \left.\quad \frac{\partial}{\partial \eta\left(x_{\mathrm{ck}}\right)}\left(p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\left[1-p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}\right]\right)\right|_{x_{c k}=\Delta_{k, \xi 2}} \times\left\{\eta\left(\hat{\Delta}_{k}\right)-\eta\left(x_{\mathrm{ck}}\right)\right\}  \tag{A.8}\\
& =v_{1, k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+v_{2, k}\left\{\eta\left(\Delta_{k, \xi 2}\right)\right\} \times \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left\{\operatorname{vec}\left(\bar{U}_{k}\right)+\operatorname{vec}\left(g_{k}\right)^{\top} / m_{c}\right\},
\end{align*}
$$

where $\Delta_{k, \xi 2}$ is "between" $\hat{\Delta}_{k}$ and $x_{c k}$ in the sense that $\left\|\Delta_{k, \xi 2}-X_{k}^{*}\right\| \leq\left\|\hat{\Delta}_{k}-x_{c k}\right\|$ and $\left\|\Delta_{k, \xi 2}-x_{c k}\right\| \leq\left\|\hat{\Delta}_{k}-x_{c k}\right\|$.
$5^{\circ}$. Furthermore, we derive the second-order Taylor series expansion of $p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}$ around $\eta\left(x_{\mathrm{ck}}\right)$ :

$$
\begin{align*}
p_{k}\left\{\eta\left(X_{k}^{*}\right)\right\}= & p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+p_{k}^{(1)}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\} \times\left\{\eta\left(X_{k}^{*}\right)-\eta\left(x_{\mathrm{ck}}\right)\right\} \\
& +\frac{1}{2!} p_{k}^{(2)}\left\{\eta\left(x_{k, \xi_{3}}\right)\right\} \times\left\{\eta\left(X_{k}^{*}\right)-\eta\left(x_{\mathrm{ck}}\right)\right\}^{2}  \tag{A.9}\\
= & p_{k}\left\{\eta\left(x_{\mathrm{ck}}\right)\right\}+\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{1, k}\left\{\eta\left(x_{k, \xi_{3}}\right)\right\} \\
& +\frac{1}{2} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{2, k}\left\{\eta\left(x_{k, \xi_{3}}\right)\right\} \operatorname{vec}\left(\bar{U}_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right),
\end{align*}
$$

where $x_{k, \xi_{3}}$ is "between" $X_{k}^{*}$ and $x_{c k}$ in the sense that $\left\|x_{k, \xi_{3}}-X_{k}^{*}\right\| \leq\left\|X_{k}^{*}-x_{c k}\right\|$ and $\left\|x_{k, \xi_{3}}-x_{c k}\right\| \leq\left\|X_{k}^{*}-x_{c k}\right\|$.

## A. 3 Proof of Theorem 1

In contrast to (2.7), we consider function (A.1) in Appendix A. 1 which is identical to (2.7) with $X_{k}^{*}$ replaced by $x_{\mathrm{ck}}$.

Let

$$
\begin{aligned}
R_{n, 1}= & \ell_{n}^{*}\left(\theta^{*}\right)-G_{n}\left(\theta^{*}\right) \\
= & \frac{1}{n} \sum_{k=1}^{n}\left[Y_{k}\left(\alpha^{* \top} X_{k}^{*} \beta^{*}-\alpha^{* \top} x_{\mathrm{ck}} \beta^{*}\right)-\log \left\{1+\exp \left(\alpha^{* \top} X_{k}^{*} \beta^{*}+\gamma^{* \top} z_{k}\right)\right\}\right. \\
& \left.+\log \left\{1+\exp \left(\alpha^{* \top} x_{\mathrm{ck}} \beta^{*}+\gamma^{* \top} z_{k}\right)\right\}\right] .
\end{aligned}
$$

Since $X_{k}^{*}=x_{\mathrm{ck}}+\bar{U}_{k}$, and $E\left(\bar{U}_{k}\right)=0$, then by Conditions (C.1), (C.3) and the Weak Law of Large Numbers (WLLN), $X_{k}^{*} \rightarrow x_{\mathrm{c} k}$ in probability as $m \rightarrow \infty$. Thus, by the Continuous Mapping Theorem, as $\min (n, m) \rightarrow \infty, R_{n, 1}=o_{p}(1)$. That is, $\ell_{n}^{*}\left(\theta^{*}\right)-G_{n}\left(\theta^{*}\right)=o_{p}(1)$. Then, by Condition (C.4), Theorem 1 of Zhou et al. (2013) and Theorem 5.7 of van der $\operatorname{Varrt}$ (1998), $\hat{\theta}^{*}$ is converges to $\theta$ in probability as $\min (m, n) \rightarrow \infty$.

## A. 4 Proof of Lemma 2.1

To show (2.13), we examine each term at a time by the following three parts.
Part I: Show that $S_{\alpha, n}^{*}(\theta)=\frac{1}{\sqrt{n}} Z_{\alpha, n}+\left(J_{\alpha, n, 1}+J_{\alpha, n, 2}\right) \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}$.
By (2.9),

$$
\mathrm{S}_{\alpha, n}^{*}(\theta)=\mathrm{T}_{n, \alpha, 1}+\mathrm{T}_{n, \alpha, 2},
$$

where

$$
\mathrm{T}_{n, \alpha, 1}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\} \text { and } \mathrm{T}_{n, \alpha, 2}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \bar{U}_{k} \beta\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}
$$

We now separately derive the approximation of $\mathrm{T}_{n, \alpha, 1}$ and $\mathrm{T}_{n, \alpha, 2}$ as follows.

## 1. Show that $T_{n, \alpha, 1}=\frac{1}{\sqrt{n}} Z_{\alpha, n}+J_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}$.

By (A.9), we write $\mathrm{T}_{n, \alpha, 1}$ as sum of individual terms each with one particular feature:

$$
\begin{equation*}
\mathrm{T}_{n, \alpha, 1}=\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, \mathrm{n}}+\frac{1}{\sqrt{\mathrm{n}}} \mathrm{Q}_{\alpha, \mathrm{n}, 1}+\mathrm{J}_{\alpha, \mathrm{n}, 1} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+\mathrm{D}_{\alpha, \mathrm{n}, 1}+\mathrm{R}_{\alpha, \mathrm{n}, 1}, \tag{A.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{S}_{\alpha, \mathrm{n}}=\frac{1}{\sqrt{\mathrm{n}}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{t}}^{\mathrm{T}} \mathrm{x}_{\mathrm{ck}} \beta\left\{\mathrm{Y}_{\mathrm{k}}-\mathrm{p}_{\mathrm{k}}\left(\theta ; \mathrm{x}_{\mathrm{ck}}\right)\right\} \\
& \mathrm{Q}_{\alpha, n, 1}=-\frac{1}{\sqrt{n}} \sum_{k=1}^{n} C_{t}^{\mathrm{\top}} x_{\mathrm{c} k} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck} k}\right) \\
& \mathrm{J}_{\alpha, n, 1}=-\frac{n}{2} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{c} k} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \frac{\Omega_{0}}{m_{c}} v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right) \\
& \mathrm{D}_{\alpha, n, 1}=-\frac{n}{2} \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{c} k} \beta\left[\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left\{\operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\frac{\Omega_{0}}{m_{c}}\right\} \operatorname{vec}\left(\alpha \beta^{\top}\right) v_{2, k}\left(\theta ; x_{\mathrm{c} k}\right)\right] \\
& \mathrm{R}_{\alpha, n, 1}=-\frac{n}{2} \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{c} k} \beta\left[\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right)\left\{v_{2, k}\left(\theta ; x_{k, \xi_{3}}\right)-v_{2, k}\left(\theta ; x_{\mathrm{c} k}\right)\right\}\right]
\end{aligned}
$$

Now we examine each term of (A.8) separately by the following three steps to show that the approximation form of $T_{n, \alpha, 1}$ is

$$
\mathrm{T}_{n, \alpha, 1}=\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, \mathrm{n}}+\mathrm{J}_{\alpha, \mathrm{n}, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+\mathrm{o}_{\mathrm{p}}\left\{\max \left(\frac{1}{\mathrm{~m}}, \frac{1}{\sqrt{\mathrm{n}}}\right)\right\}
$$

Step1: Show that $Q_{\alpha, n, 1}=o_{p}(1)$.
For $\mathrm{Q}_{\alpha, n, 1}$, we modify the discussion of the $Q_{n, 1, \sigma}$ term in Lemma 5.2 of Stefanski and Carroll (1985, p.1347) and obtain that $Q_{\alpha, n, 1}$ has mean zero, and

$$
\begin{aligned}
\operatorname{Var}\left(\mathrm{Q}_{\alpha, n, 1}\right) & =\frac{1}{n^{2}} \sum_{k=1}^{n} \operatorname{Var}\left\{C_{t}^{\top} x_{\mathrm{c} k} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{1, k}\left(\theta ; x_{\mathrm{c} k}\right)\right\} \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n} v_{1, k}^{2}\left(\theta ; x_{\mathrm{c} k}\right) \times\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\|^{2} \times\left\|x_{\mathrm{c} k}\right\|^{2} \times \operatorname{Var}\left\{\operatorname{vec}\left(\bar{U}_{k}\right)\right\} \\
& \leq \frac{1}{n^{2}} \sum_{k=1}^{n}\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\|^{2} \times\left\|x_{\mathrm{c} k}\right\|^{2} \times\left\|\bar{U}_{k}\right\|^{2} \\
& \leq\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{c} k}\right\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}
\end{aligned}
$$

where the third step comes from that $v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)$ is bounded between $[0,1]$, and the last
step is because that

$$
\frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}=\frac{1}{n^{2}} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\|^{2} \times\left\|\bar{U}_{k}\right\|^{2}+\frac{1}{n^{2}} \sum_{k=1}^{n} \sum_{j \neq k}^{n}\left\|x_{\mathrm{ck}}\right\|^{2} \times\left\|\bar{U}_{j}\right\|^{2}
$$

According to Condition (C.1) and the derivation of Condition C.3, we have $\frac{1}{n} \sum_{k=1}^{n}\left\|x_{c k}\right\|^{2}$ $=O(1)$ and $\frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}=O_{p}\left(\frac{1}{m}\right)$. As a result, $\operatorname{Var}\left(\mathrm{Q}_{\alpha, n, 1}\right)=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$, thus $\mathrm{Q}_{\alpha, n, 1}=o_{p}(1)$ and $\frac{1}{\sqrt{n}} \mathrm{Q}_{\alpha, n, 1}=o_{p}\left(\frac{1}{\sqrt{n}}\right)$.

Step2: Show that $D_{\alpha, n, 1}=o_{p}\left(\frac{1}{m}\right)$.
To examine $\mathrm{D}_{\alpha, n, 1}$, we adapt the derivations of the $D_{n, 1}$ in Lemma 5.2 of Stefanski and Carroll (1985, p.1347) and obtain that

$$
\begin{align*}
\left\|\mathrm{D}_{\alpha, n, 1}\right\|= & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times\left\|v_{2, k}\left(\theta ; x_{\mathrm{c} k}\right)\right\| \times \frac{n}{2} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \\
& \times\left\|\operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\frac{\Omega_{0}}{m_{c}}\right\| \\
\leq & \text { Constant } \times \frac{1}{m_{c}}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\|^{2}\right)^{1 / 2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|m_{c} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\Omega_{0}\right\|^{2}\right)^{1 / 2} . \tag{A.11}
\end{align*}
$$

By (A.1), $\frac{1}{n} \sum_{k=1}^{n}\left\|x_{c k}\right\|^{2}=O(1)$, and by the Markov Inequality, we have that for any scalar $\epsilon>0$,

$$
\begin{equation*}
P\left\{\frac{1}{n} \sum_{k=1}^{n}\left\|m_{c} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\Omega_{0}\right\|^{2}>\epsilon\right\} \leq \frac{\sum_{k=1}^{n} E\left\{\left\|m_{c} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\Omega_{0}\right\|^{2}\right\}}{n \epsilon} \tag{A.12}
\end{equation*}
$$

Now for the numerator of the right-hand-side of (A.12), we have that, by the definition of $\bar{U}_{k}$,

$$
\begin{aligned}
& E\left\{\left\|m_{c} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\Omega_{0}\right\|^{2}\right\} \\
& =E\left\|\frac{n}{m(n-1)}\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}^{\top}-\Omega_{0}\right\|^{2} \\
& =\sqrt{\frac{n}{m(n-1)}} E\left[\|\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}\right. \\
& \\
& \left.\times\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}^{\top}-\frac{m(n-1)}{n} \Omega_{0} \|^{2}\right] \\
& =O_{p}\left(\frac{\sqrt{n}}{\sqrt{m} \sqrt{(n-1)}}\right)=o_{p}(1)
\end{aligned}
$$

as $\min (m, n) \rightarrow \infty$, where in the second last step we use the fact that

$$
E\left[\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)-\frac{\sum_{k=1}^{n} \sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right)}{n}\right\}^{\top}-\frac{m(n-1)}{n} \Omega_{0}\right]=0
$$

Thus, by (A.12),

$$
P\left\{\frac{1}{n} \sum_{k=1}^{n}\left\|m_{c} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}-\Omega_{0}\right\|^{2}>\epsilon\right\}=o_{p}(1)
$$

as $\min (m, n) \rightarrow \infty$. Thus (A.11) implies that $\mathrm{D}_{\alpha, n, 1}=o_{p}\left(\frac{1}{m}\right)$.
Step3: Show that $R_{\alpha, n, 1}=o_{p}\left(\frac{1}{m}\right)$.
To examine $\mathrm{R}_{\alpha, n, 1}$, we first note that $v_{2, k}\{\cdot\}$ is defined in Section 2.2.3 with $p_{k}(\cdot) \in[0,1]$, it is readily to show that $v_{2, k}\{\cdot\}$ has the maximum value $\frac{\sqrt{3}}{18}$ and the minimum value $-\frac{\sqrt{3}}{18}$, i.e., $v_{2, k}(\cdot) \in\left[-\frac{\sqrt{3}}{18}, \frac{\sqrt{3}}{18}\right]$. Thus, $\left|v_{2, k}\left(\theta ; x_{k, \xi_{3}}\right)-v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)\right|<1$ because of the boundedness of $v_{2, k}(\cdot)$. Then we obtain that

$$
\begin{aligned}
\left\|\mathrm{R}_{\alpha, n, 1}\right\| \leq & \frac{n}{2} \sum_{k=1}^{n} \| C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left\{\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right)\right\} \\
& \times\left|v_{2, k}\left(\theta ; x_{k, \xi_{3}}\right)-v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)\right| \| \\
\leq & \frac{n}{2} \sum_{k=1}^{n}\left\|C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left\{\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right)\right\}\right\| \\
\leq & \frac{n}{2}\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \times\left\{\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)\right\}^{2} \\
\leq & \frac{1}{2}\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \frac{1}{m_{c}^{2}} \max _{1 \leq k \leq n}\left\|x_{\mathrm{ck}}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\{\operatorname { v e c } ( \alpha \beta ^ { \boldsymbol { \top } } ) ^ { \top } \operatorname { v e c } \left(\sum_{r=1}^{m} E_{k r}\right.\right. \\
& \left.\left.-\frac{1}{n} \sum_{k=1}^{n} \sum_{r=1}^{m} E_{k r}\right)\right\}^{2} \\
\leq & \frac{1}{2}\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \frac{n^{2}}{(n-1)^{2}} \times o\left(\frac{1}{m}\right) \times \frac{1}{n} \sum_{k=1}^{n}\left\{\operatorname { v e c } ( \alpha \beta ^ { \top } ) ^ { \top } \operatorname { v e c } \left(\sum_{r=1}^{m} E_{k r}\right.\right. \\
& \left.\left.-\frac{1}{n} \sum_{k=1}^{n} \sum_{r=1}^{m} E_{k r}\right)\right\}^{2} \\
= & o_{p}\left(\frac{1}{m}\right)
\end{aligned}
$$

where Condition (C.1) is used in the second last step, and the last step comes from that

$$
\frac{1}{n} \sum_{k=1}^{n}\left\{\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\sum_{r=1}^{m} E_{k r}-\frac{1}{n} \sum_{k=1}^{n} \sum_{r=1}^{m} E_{k r}\right)\right\}^{2}=O_{p}(1)
$$

Finally, applying the results of Steps 1-3 to (A.10), we obtain that

$$
\begin{equation*}
\mathrm{T}_{n, \alpha, 1}=\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, n}+\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} . \tag{A.13}
\end{equation*}
$$

2. Show that $T_{n, \alpha, 2}=J_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}$.

By (A.4), we write $\mathrm{T}_{n, \alpha, 2}$ as the sum of individual terms each with one particular
feature:

$$
\begin{equation*}
\mathrm{T}_{n, \alpha, 2}=-\frac{1}{\sqrt{n}} \mathrm{Q}_{\alpha, n, 2}+\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\top}\right)+\mathrm{D}_{\alpha, n, 2}+\mathrm{R}_{\alpha, n, 2} \tag{A.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{Q}_{\alpha, n, 2}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} C_{t}^{\mathrm{\top}} \bar{U}_{k} \beta\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck} k}\right)\right\} \\
& \mathrm{J}_{\alpha, n, 2}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\mathrm{\top}} \Pi_{\alpha} \frac{\Omega_{0}}{m_{c}} v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) \\
& \mathrm{D}_{\alpha, n, 2}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \Pi_{\alpha}\left\{\operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{T}-\frac{\Omega_{0}}{m_{c}}\right\} v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) \operatorname{vec}\left(\alpha \beta^{\top}\right) \\
& \mathrm{R}_{\alpha, n, 2}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \Pi_{\alpha}\left[\operatorname{vec}\left(\bar{U}_{k}\right) \operatorname{vec}\left(\bar{U}_{k}\right)^{\top}\left\{v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)\right] ;
\end{aligned}
$$

and $\Pi_{\alpha}=\left[\begin{array}{llll}\beta_{1} I_{(p+1)} & \beta_{2} I_{(p+1)} & \cdots & \beta_{q} I_{(p+1)}\end{array}\right]$ is a $(p+1) \times\{(p+1) q\}$ matrix.
Now we examine each term of (A.14) separately to show that the approximation form of $T_{n, \alpha, 2}$ is

$$
\begin{equation*}
\mathrm{T}_{n, \alpha, 2}=\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \tag{A.15}
\end{equation*}
$$

Like $\mathrm{Q}_{\alpha, n, 1}$ discussed in the preceding Step 1, $\mathrm{Q}_{\alpha, n, 2}$ has mean zero and $\operatorname{Var}\left(\mathrm{Q}_{\alpha, n, 2}\right)=$ $o_{p}(1)$ as $\min (m, n) \rightarrow \infty$, thus $\mathrm{Q}_{\alpha, n, 2}=o_{p}(1)$. To examine $\mathrm{D}_{\alpha, n, 2}$, we adapt the derivations of $\mathrm{D}_{\alpha, n, 1}$ in (A.11) to obtain that $\mathrm{D}_{\alpha, n, 2}=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. To examine $\mathrm{R}_{\alpha, n, 2}$, we note that both $v_{1, k}\left\{\eta\left(x_{k, \xi}\right)\right\}$ and $v_{1, k}\left\{\eta\left(x_{c k}\right)\right\}$ are in $[0,1]$, thus yielding that their difference is bounded. Similar to the derivation of $\mathrm{R}_{\alpha, n, 1}$, we obtain that $\mathrm{R}_{\alpha, n, 2}=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. Thus, applying these results of $\mathrm{Q}_{\alpha, n, 2}, \mathrm{D}_{\alpha, n, 2}$ and $\mathrm{R}_{\alpha, n, 2}$ to (A.14), we obtain (A.15).

Finally, combining (A.13) and (A.15) gives

$$
\begin{align*}
\mathrm{S}_{\alpha, n}^{*}(\theta) & =\mathrm{Z}_{\alpha, n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \\
& =\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, n}+\left(\mathrm{J}_{\alpha, n, 1}+\mathrm{J}_{\alpha, n, 2}\right) \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \tag{A.16}
\end{align*}
$$

## Part II: Show that

$$
S_{\beta, n}^{*}(\theta)=\frac{1}{\sqrt{n}} Z_{\beta, n}+\left(J_{\beta, n, 1}+J_{\beta, n, 2}\right) \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} .
$$

By (2.9),

$$
\mathrm{S}_{\beta, n}^{*}(\theta)=\mathrm{T}_{n, \beta, 1}+\mathrm{T}_{n, \beta, 2},
$$

where

$$
\mathrm{T}_{n, \beta, 1}=\frac{1}{n} \sum_{k=1}^{n} x_{\mathrm{ck}}^{\mathrm{\top}} \alpha\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\} \text { and } \mathrm{T}_{n, \beta, 2}=\frac{1}{n} \sum_{k=1}^{n} \bar{U}_{k} \alpha\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\},
$$

Analogous to Part I, we separately examine $\mathrm{T}_{n, \beta, 1}$ and $\mathrm{T}_{n, \beta, 2}$ and obtain that

$$
\begin{align*}
\mathrm{S}_{\beta, n}^{*}(\theta) & =\mathrm{Z}_{\beta, n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}  \tag{A.17}\\
& =\frac{1}{\sqrt{n}} \mathrm{~S}_{\beta, n}+\left(\mathrm{J}_{\beta, n, 1}+\mathrm{J}_{\beta, n, 2}\right) \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{S}_{\beta, n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} x_{\mathrm{ck}}^{\top} \alpha\left\{y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}, \\
& \mathrm{J}_{\beta, n, 1}=-\frac{n}{2} \sum_{k=1}^{n} x_{\mathrm{ck}}^{\top} \alpha \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \frac{\Omega_{0}}{m_{c}} v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right), \\
& \mathrm{J}_{\beta, n, 2}=-\frac{1}{n} \sum_{k=1}^{n} \Pi_{\beta} \frac{\Omega_{0}}{m_{c}} v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right),
\end{aligned}
$$

and

$$
\Pi_{\beta}=\left[\begin{array}{llll}
\alpha^{\top} & & & \\
& \alpha^{\top} & & \\
& & \ddots & \\
& & & \alpha^{\top}
\end{array}\right]_{q \times\{(p+1) q\}}
$$

Part III: Show that $S_{\gamma, n}^{*}(\theta)=\frac{1}{\sqrt{n}} Z_{\gamma, n}+J_{\gamma, n} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}$.

By (2.9) and (A.8),

$$
\begin{align*}
\mathrm{S}_{\gamma, n}^{*}(\theta) & =\mathrm{Z}_{\gamma, n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}  \tag{A.18}\\
& =\frac{1}{\sqrt{n}} \mathrm{~S}_{\gamma, n}+\mathrm{J}_{\gamma, n} \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{S}_{\gamma, n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} z_{k}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} \\
& \mathrm{J}_{\gamma, n}=-\frac{n}{2} \sum_{k=1}^{n} z_{k} \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)^{\top} \frac{\Omega_{0}}{m_{c}} v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right) .
\end{aligned}
$$

Combining (2.9), (A.16), (A.17) and (A.18) yields the approximation of $\mathrm{S}_{n}^{*}(\theta)$ as

$$
S_{n}^{*}(\theta)=\mathrm{Z}_{n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} .
$$

## A. 5 Proof of Lemma 2.2

To examine $\mathrm{H}_{n}^{*}(\theta)$, which is defined for (2.12), we first write it in a block matrix with each block submatrix corresponding to one type of parameters, and we examine each block submatrix one at a time. To be precise, we write

$$
\mathrm{H}_{n}^{*}(\theta) \triangleq-\left(\begin{array}{cc}
\mathrm{H}_{\alpha, \beta, n}^{*}(\theta) & \mathrm{H}_{\alpha \beta, \gamma, n}^{*}(\theta) \\
\mathrm{H}_{\alpha \beta, \gamma, n}^{\top}(\theta) & \mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)
\end{array}\right),
$$

where

$$
\begin{aligned}
\mathrm{H}_{\alpha, \beta, n}^{*}(\theta) & =\frac{\partial\left\{\mathrm{S}_{\alpha, n}^{*}(\theta), \mathrm{S}_{\beta, n}^{*}(\theta)\right\}^{\top}}{\partial\left(\tilde{\alpha}^{\top}, \beta \top\right)} \\
\mathrm{H}_{\alpha \beta, \gamma, n}^{*}(\theta) & =\frac{\partial\left\{\mathrm{S}_{\alpha, n}^{*}(\theta), \mathrm{S}_{\beta, n}^{*}(\theta)\right\}^{\top}}{\partial \gamma^{T}} \\
\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta) & =\frac{\partial\left\{\mathrm{S}_{\gamma, n}^{*}(\theta)\right\}}{\partial \gamma^{T}}
\end{aligned}
$$

Similarly write $\mathrm{H}_{n}(\theta)$ (defined for (2.14)) as

$$
\mathrm{H}_{n}(\theta) \triangleq-\left(\begin{array}{cc}
\mathrm{H}_{\alpha, \beta, n}(\theta) & \mathrm{H}_{\alpha \beta, \gamma, n}(\theta) \\
\mathrm{H}_{\alpha \beta, \gamma, n}^{\top}(\theta) & \mathrm{H}_{\gamma, \gamma, n}(\theta)
\end{array}\right)
$$

where

$$
\begin{aligned}
& \mathrm{H}_{\alpha, \beta, n}(\theta)=\frac{\partial\left\{\mathrm{Z}_{\alpha, n}(\theta), \mathrm{Z}_{\beta, n}(\theta)\right\}^{\top}}{\partial\left(\tilde{\alpha}^{\top}, \beta \beta^{\top}\right)} \\
& \mathrm{H}_{\alpha \beta, \gamma, n}(\theta)=\frac{\partial\left\{\mathrm{Z}_{\alpha, n}(\theta), \mathrm{Z}_{\beta, n}(\theta)\right\}^{\top}}{\partial \gamma^{T}} \\
& \mathrm{H}_{\gamma, \gamma, n}(\theta)=\frac{\partial\left\{\mathrm{Z}_{\gamma, n}(\theta)\right\}}{\partial \gamma^{T}}
\end{aligned}
$$

In the following three parts, we show that each entry of $\mathrm{H}_{n}^{*}(\theta)$ differs from the corresponding part of $\mathrm{H}_{n}(\theta)$ with a small magnitude.

Part I: Show that $H_{\alpha, \beta, n}^{*}(\theta)-H_{\alpha, \beta, n}(\theta)=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.
The difference between $\mathrm{H}_{\alpha, \beta, n}^{*}(\theta)$ and $\mathrm{H}_{\alpha, \beta, n}(\theta)$, we write it as the sum of three terms so we can look at one term at a time:

$$
\mathrm{H}_{\alpha, \beta, n}^{*}(\theta)-\mathrm{H}_{\alpha, \beta, n}(\theta)=\mathrm{H}_{\alpha, \beta, n, 1}+\mathrm{H}_{\alpha, \beta, n, 2}+\mathrm{H}_{\alpha, \beta, n, 3},
$$

where $\mathrm{H}_{\alpha, \beta, n, 1}$ includes entries depended only on $p_{k}\left(\theta ; X_{k}^{*}\right)$ and $\tilde{U}_{k}(\theta)=\left(\beta^{\top} \bar{U}_{k} C_{t}, \alpha^{\top} \bar{U}_{k}^{\top}\right)$, $\mathrm{H}_{\alpha, \beta, n, 2}$ includes entries depended on $p_{k}\left(\theta ; X_{k}^{*}\right), p_{k}\left(\theta ; x_{k}^{*}\right)$ and $\tilde{x}_{c k}(\theta)$, and $\mathrm{H}_{\alpha, \beta, n, 3}$ contains the rest terms. The details of the three terms are given and examined as follows.

## 1. Show that $H_{\alpha, \beta, n, 1}=o_{p}(1)$.

Let $\tilde{x}_{\mathrm{c} k}(\theta)=\left(\beta^{\top} x_{\mathrm{ck}}^{\top} C_{t}, \alpha^{\top} x_{\mathrm{ck}}\right)^{\top}$ and $\tilde{X}_{k}^{*}(\theta)=\left(\beta^{\top} X_{k}^{* \top} C_{t}, \alpha^{\top} X_{k}^{*}\right)^{\top}$. The term $\mathrm{H}_{\alpha, \beta, n, 1}$ is defined as

$$
\mathrm{H}_{\alpha, \beta, n, 1}=\frac{1}{n} \sum_{k=1}^{n} v_{1, k}\left(\theta ; X_{k}^{*}\right)\left\{\tilde{X}_{k}^{* \top}(\theta) \tilde{X}_{k}^{*}(\theta)-\tilde{x}_{\mathrm{ck}}^{\mathrm{\top}}(\theta) \tilde{x}_{\mathrm{ck}}(\theta)\right\}
$$

which by (2.5), equals

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n} v_{1, k}\left(\theta ; X_{k}^{*}\right) \tilde{U}_{k}^{\top}(\theta) \tilde{U}_{k}(\theta)+\frac{1}{n} \sum_{k=1}^{n} v_{1, k}\left(\theta ; X_{k}^{*}\right)\left\{\tilde{U}_{k}^{\top}(\theta) \tilde{x}_{\mathrm{ck}}(\theta)+\tilde{x}_{\mathrm{ck}}^{\top}(\theta) \tilde{U}_{k}(\theta)\right\} \\
& \triangleq \mathbf{A . 1 9 + \mathbf { A . 2 0 }}
\end{aligned}
$$

Then following the derivation regrading Condition (C.3) in Remark, we have that by $v_{1, k}(\cdot) \in[0,1]$,

$$
\begin{aligned}
\|\mathbf{A . 1 9}\| & \leq \frac{1}{n} \sum_{k=1}^{n}\left\|\tilde{U}_{k}^{\top}(\theta) \tilde{U}_{k}(\theta)\right\| \leq \frac{1}{n} \sum_{k=1}^{n}\left\|\tilde{U}_{k}^{\top}(\theta)\right\|^{2} \\
& \leq \frac{1}{n} \sum_{k=1}^{n}\left(\left\|\beta^{\top}\right\|^{2} \times\left\|\bar{U}_{k}\right\|^{2} \times\left\|C_{t}\right\|^{2}+\left\|\alpha^{\top}\right\|^{2} \times\left\|\bar{U}_{k}^{\top}\right\|^{2}\right) \\
& =O_{p}\left(\frac{1}{m}\right) \\
& =o_{p}(1)
\end{aligned}
$$

as $\min (m, n) \rightarrow \infty$, where the second last step is due to (A.2).
A. 20 has same structure as $\mathrm{Q}_{\alpha, n, 1}$ in Appendix A. 4 and we use the similar steps to derive $\mathbf{A . 1 8}=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. Thus, $\mathrm{H}_{\alpha, \beta, n, 1}=o_{p}(1)$, as $\min (m, n) \rightarrow \infty$.

## 2. Show that $H_{\alpha, \beta, n, 2}=o_{p}(1)$.

The term $\mathrm{H}_{\alpha, \beta, n, 2}$ is defined as

$$
\mathrm{H}_{\alpha, \beta, n, 2}=\frac{1}{n} \sum_{k=1}^{n}\left[v_{1, k}\left(\theta ; X_{k}^{*}\right)-v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\right] \tilde{\mathrm{c}}_{\mathrm{ck}}^{\mathrm{T}}(\theta) \tilde{x}_{\mathrm{ck}}(\theta)
$$

Using (A.7), we obtain that

$$
\begin{equation*}
\mathrm{H}_{\alpha, \beta, n, 2}=\frac{1}{n} \sum_{k=1}^{n} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{2, k}\left(\theta ; x_{k, \xi_{2}}\right) \tilde{x}_{\mathrm{ck}}^{\top}(\theta) \tilde{x}_{\mathrm{ck}}(\theta) . \tag{A.21}
\end{equation*}
$$

By the boundedness of $v_{2, k}(\cdot)$ which we showed in Appendix A.4, Conditions (C.1), (C.2) and (C.3) together with Lemma 5.1 in Stefanski and Carroll (1985), we have that

$$
\begin{aligned}
\|\mathrm{A} .21\| \leq & \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) \tilde{x}_{\mathrm{ck}}^{\top}(\theta) \tilde{x}_{\mathrm{ck}}(\theta)\right\| \\
= & \left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\bar{U}_{k}\right) \times\left(\beta^{\top} x_{\mathrm{ck}}^{\top} C_{t} \times C_{t}^{\top} x_{\mathrm{ck}} \beta+\alpha^{\top} x_{\mathrm{ck}} \times x_{\mathrm{ck}}^{\top} \alpha\right)\right\| \\
\leq & \left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times\|\beta\|^{2} \times\left\|C_{t}\right\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
& +\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times\|\alpha\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
= & o_{p}(1)
\end{aligned}
$$

when $\min (m, n) \rightarrow \infty$. Thus, $\mathrm{H}_{\alpha, \beta, n, 2}=o_{p}(1)$, as $\min (m, n) \rightarrow \infty$.

## 3. Show that $H_{\alpha, \beta, n, 3}=o_{p}(1)$.

$\mathrm{H}_{\alpha, \beta, n, 3}$ contains the rest terms of $\mathrm{H}_{\alpha, \beta, n}^{*}(\theta)-\mathrm{H}_{\alpha, \beta, n}(\theta)$ that are not included in $\mathrm{H}_{\alpha, \beta, n, 1}$ or $\mathrm{H}_{\alpha, \beta, n, 2}$. It is

$$
\mathrm{H}_{\alpha, \beta, n, 3}=\left(\begin{array}{cc}
0 & \mathbf{A} .22 \\
\mathbf{A . 2 3} & 0
\end{array}\right)
$$

where

$$
\mathbf{A . 2 2}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} X_{k}^{*}\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}-C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}
$$

and

$$
\mathbf{A . 2 3}=\frac{1}{n} \sum_{k=1}^{n} X_{k}^{* \top} C_{t}\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}-x_{\mathrm{ck}}^{\top} C_{t}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} .
$$

Plugging (A.4) into A.22, we obtain that

$$
\mathbf{A . 2 2}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}}\left\{\operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}} \operatorname{vec}\left(\bar{U}_{k}\right) v_{1, k}\left(\theta ; x_{k, \xi}\right)\right\}
$$

Then

$$
\begin{aligned}
\|\mathbf{A . 2 2}\|=\|\mathbf{A . 2 1}\| & =\|-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}}\left\{\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) v_{1, k}\left(\theta ; x_{k, \xi}\right) \|\right. \\
& \leq\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| .
\end{aligned}
$$

By Conditions (C.2) and (C.3), when $\min (n, m) \rightarrow \infty, \mathrm{H}_{\alpha, \beta, n, 3}=o_{p}(1)$.
Finally, Combining the results of $\mathrm{H}_{\alpha, \beta, n, 1}, \mathrm{H}_{\alpha, \beta, n, 2}$ and $\mathrm{H}_{\alpha, \beta, n, 3}$, we conclude that

$$
\mathrm{H}_{\alpha, \beta, n}^{*}(\theta)-\mathrm{H}_{\alpha, \beta, n}(\theta)=o_{p}(1) \text { as } \min (m, n) \rightarrow \infty .
$$

Part II: Show that $H_{\alpha \beta, \gamma, n}^{*}(\theta)-H_{\alpha \beta, \gamma, n}(\theta)=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.
First, we write

$$
\mathrm{H}_{\alpha \beta, \gamma, n}^{*}(\theta)-\mathrm{H}_{\alpha \beta, \gamma, n}(\theta)=\binom{\mathrm{H}_{\alpha, \gamma, n}}{\mathrm{H}_{\beta, \gamma, n}}
$$

to indicate the two subvectors corresponding to $\alpha$ and $\beta$, where

$$
\mathrm{H}_{\alpha, \gamma, n}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top} \bar{U}_{k} \beta v_{1, k}\left(\theta ; X_{k}^{*}\right)+\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta v_{2, k}\left(\theta ; X_{k}^{*}\right) z_{k}^{\top}
$$

and

$$
\mathrm{H}_{\beta, \gamma, n}=-\frac{1}{n} \sum_{k=1}^{n} \alpha^{\top} \bar{U}_{k} v_{1, k}\left(\theta ; X_{k}^{*}\right)+\frac{1}{n} \sum_{k=1}^{n} \alpha^{\top} x_{\mathrm{ck}} v_{2, k}\left(\theta ; X_{k}^{*}\right) z_{k}^{\top} \triangleq \mathbf{A . 2 4}+\mathbf{A . 2 5}
$$

We observe that $\mathrm{H}_{\alpha, \gamma, n}$ and $\mathrm{H}_{\beta, \gamma, n}$ have a similar structure, thus we examine $\mathrm{H}_{\alpha, \gamma, n}$ only here. $\mathrm{H}_{\beta, \gamma, n}$ can be examined via the same techniques.

By Conditions (C.1), (C.3) and the boundedness of $v_{1, k}\left(\theta ; X_{k}^{*}\right)$, we have

$$
\begin{aligned}
\|\mathbf{A . 2 2}\| & \leq \frac{1}{n} \sum_{k=1}^{n}\left\|C_{t}^{\top} \bar{U}_{k}^{\top} \beta z_{k}^{\top}\right\| \\
& \leq\|\beta\| \times\left\|C_{t}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left(\left\|\bar{U}_{k}\right\| \times\left\|z_{k}^{\top}\right\|\right) \\
& \leq\|\beta\| \times\left\|C_{t}\right\| \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}\right)^{1 / 2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|z_{k}^{\top}\right\|^{2}\right)^{1 / 2} \\
& \leq\|\beta\| \times\left\|C_{t}\right\| \times O_{p}\left(\frac{1}{\sqrt{m}}\right) \times O(1)=o_{p}(1)
\end{aligned}
$$

where the second step and the third step are due to the Cauchy-Schwarz inequality, and the second last step is due to (A.2).

Plugging the (A.4) into A.25, we obtain that

$$
\mathbf{A . 2 5}=\frac{1}{n} \sum_{k=1}^{n} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) p_{k}\left(\theta ; x_{k, \xi}\right)\left\{1-p_{k}\left(\theta ; x_{k, \xi}\right)\right\}^{2} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta z_{k}^{\top} .
$$

Then by the boundedness of $p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\left\{1-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}^{2}$, we obtain that

$$
\begin{aligned}
\|\mathbf{A . 2 5}\| & \leq \mathrm{C}_{0}\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times\|\beta\| \times\left\|C_{t}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times\left\|x_{\mathrm{ck}}\right\| \times\left\|z_{k}^{\top}\right\| \\
& \leq \mathrm{C}_{0}\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times\|\beta\| \times\left\|C_{t}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times \max \left(\left\|x_{\mathrm{ck}}\right\|,\left\|z_{k}^{\top}\right\|\right)^{2}
\end{aligned}
$$

where $\mathrm{C}_{0}$ is a bound of $p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\left\{1-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}^{2}$, and the first step is due to the Cauchy-Schwarz inequality.

Condition (C.1) implies that $\sum_{k=1}^{n} \max \left(\left\|x_{c k}\right\|,\left\|z_{k}^{\top}\right\|\right)^{2}=O(n)$, and Condition (C.2) implies that $\max _{1 \leq k \leq n}\left\{\max \left(\left\|x_{c k}\right\|,\left\|z_{k}^{\top}\right\|\right)^{2}\right\}$ is $o(n)$. Thus, by Lemma 5.1 of Stefanski and Carroll (1985), A. 25 is $o_{p}(1)$. Thus, $\mathrm{H}_{\alpha, \gamma, n}=o_{p}(1)$. Similarly, we can show that $\mathrm{H}_{\beta, \gamma, n}=$ $o_{p}(1)$. As a result,

$$
\mathrm{H}_{\alpha \beta, \gamma, n}^{*}(\theta)-\mathrm{H}_{\alpha \beta, \gamma, n}(\theta)=o_{p}(1) \text { as } \min (m, n) \rightarrow \infty .
$$

Part III: Show that $H_{\gamma, \gamma, n}^{*}(\theta)-H_{\gamma, \gamma, n}(\theta)=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.
By the definitions of $\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)$ and $\mathrm{H}_{\gamma, \gamma, n}(\theta)$, we obtain that

$$
\begin{equation*}
\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)-\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)=-\frac{1}{n} \sum_{k=1}^{n}\left[v_{1, k}\left(\theta ; x_{k}^{*}\right)-v_{1, k}\left(\theta ; x_{\mathrm{c} k}\right)\right] z_{k} z_{k}^{\top} . \tag{A.26}
\end{equation*}
$$

Similar to the steps for obtaining (A.21), by plugging (A.7) into (A.26), the boundedness of $v_{2, k}(\cdot)$, and Conditions (C.1), (C.2) and (C.3) together with Lemma 5.1 in Stefanski and Carroll (1985), we obtain that

$$
\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)-\mathrm{H}_{\gamma, \gamma, n}^{*}(\theta)=o_{p}(1) \text { as } \min (m, n) \rightarrow \infty
$$

Finally, combining the results of Parts I-III, we obtain that

$$
\mathrm{H}_{n}^{*}(\theta)-\mathrm{H}_{n}(\theta)=o_{p}(1) \text { as } \min (m, n) \rightarrow \infty .
$$

## A. 6 Proof of (2.12)

We applied the first-order Taylor series expansion to $S_{n}^{*}\left(\hat{\theta}^{*}\right)$ around $\theta$, with $X_{k}^{*}$ and $z_{k}$ given, and obtain that

$$
\mathrm{S}_{n}^{*}(\theta)-\mathrm{H}_{n}^{*}(\theta)\left(\hat{\theta}^{*}-\theta\right)+e_{n}=0
$$

where $e_{n}$ is the reminder term, given by:

$$
\begin{equation*}
e_{n}=\frac{1}{2!} \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial^{2} \mathrm{Z}_{n}\left(\theta_{m}\right)}{\partial \theta_{i} \partial \theta_{j}}\left(\hat{\theta}_{i}^{*}-\theta_{i}\right)\left(\hat{\theta}_{j}^{*}-\theta_{j}\right) \tag{A.27}
\end{equation*}
$$

with the vector $\theta_{m}=\left(\tilde{\alpha}_{m}^{\top}, \beta_{m}^{\top}, \gamma_{m}^{\top}\right)^{\top}$ "between" $\hat{\theta}^{*}$ and $\theta$ in the sense that $\left\|\theta_{m}\right\|$ is between $\left\|\hat{\theta}^{*}\right\|$ and $\|\theta\|, \theta_{i}$ and $\theta_{j}$ are the $i$ th and $j$ th elements in $\theta$, respectively, and $d$ is the dimension of $\theta$.

Similar to Parts I-III in Appendix A. 4 which express $S_{n}^{*}(\theta)$ as the sum of two terms based on $x_{\mathrm{ck}}$ and $\bar{U}_{k}$, here we apply the same process to obtain that

$$
\begin{equation*}
\mathrm{S}_{n}^{*}\left(\theta_{m}\right)=\frac{1}{\sqrt{n}}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} A_{k}\left(\theta_{m}\right)+\frac{1}{m \sqrt{n}} \sum_{k=1}^{n} \sum_{r=1}^{m} B_{k r}\left(\theta_{m}\right)\right\}\left\{y_{k}-p_{k}\left(\theta_{m} ; X_{k}^{*}\right)\right\} \tag{A.28}
\end{equation*}
$$

where

$$
A_{k}\left(\theta_{m}\right)=\left(\begin{array}{c}
C_{t}^{\top} x_{\mathrm{ck}} \beta_{m} \\
x_{\mathrm{ck}}^{\top} \alpha_{m} \\
z_{k}
\end{array}\right) \text { and } B_{k r}\left(\theta_{m}\right)=\left(\begin{array}{c}
C_{t}^{\boldsymbol{\top}}\left(E_{k r}-\frac{1}{n} \sum_{k=1}^{n} E_{k r}\right) \beta_{m} \\
\left(E_{k r}-\frac{1}{n} \sum_{k=1}^{n} E_{k r}\right) \alpha_{m} \\
0
\end{array}\right)
$$

Thus, differentiating (A.28) and taking sums gives that

$$
\begin{aligned}
\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial^{2} \mathrm{~S}_{n}^{*}\left(\theta_{m}\right)}{\partial \theta_{i} \theta_{j}}= & \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial A_{k}\left(\theta_{m}\right)\left\{y_{k}-p_{k}\left(\theta_{m} ; X_{k}^{*}\right)\right\}}{\partial \theta_{i} \partial \theta_{j}} \\
& +\frac{1}{m n} \sum_{k=1}^{n} \sum_{r=1}^{m} \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial B_{k r}\left(\theta_{m}\right)\left\{y_{k}-p_{k}\left(\theta_{m} ; X_{k}^{*}\right)\right\}}{\partial \theta_{i} \partial \theta_{j}}
\end{aligned}
$$

By Condition (C.6), we obtain that for $i, j=1, \ldots, d$,

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{\partial A_{k}\left(\theta_{m}\right)\left\{y_{k}-p_{k}\left(\theta_{m} ; X_{k}^{*}\right)\right\}}{\partial \theta_{i} \partial \theta_{j}}=O_{p}(1)=\frac{1}{\sqrt{n}} \mathrm{O}_{p}(\sqrt{n})
$$

and

$$
\frac{1}{m n} \sum_{k=1}^{n} \sum_{r=1}^{m} \frac{\partial B_{k r}\left(\theta_{m}\right)\left\{y_{k}-p_{k}\left(\theta_{m} ; X_{k}^{*}\right)\right\}}{\partial \theta_{i} \partial \theta_{j}}=O_{p}(1)=\frac{1}{m \sqrt{n}} \mathrm{O}_{p}(m \sqrt{n})
$$

Thus,

$$
\left|\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial^{2} \mathrm{~S}_{n}^{*}\left(\theta_{m}\right)}{\partial \theta_{i} \partial \theta_{j}}\right| \leq \frac{1}{\sqrt{n}} \mathrm{O}_{p}(\sqrt{n})+\frac{1}{m \sqrt{n}} \mathrm{O}_{p}(m \sqrt{n})
$$

due to the triangle inequality and fixed $d$.
Combining this with $\hat{\theta}^{*}-\theta=o_{p}(1)$, we obtain, by (A.27), that

$$
\left|e_{n}\right| \leq o_{p}\left\{\max \left(1 / m, 1 / n^{1 / 2}\right)\right\}
$$

Thus, (2.12) follows.

## A. 7 Proof of Theorem 2.3

First, we consider the terms of $\hat{\mathrm{J}}_{n}\left(\hat{\theta}^{*}\right)$ which is defined in (2.15), and show that as $\min (m, n) \rightarrow$ $\infty$,

$$
\begin{align*}
& \hat{\mathrm{J}}_{\hat{\alpha}^{*}, n}-\mathrm{J}_{\alpha, n}=o_{p}\left(\frac{1}{m}\right),  \tag{A.29}\\
& \hat{\mathrm{J}}_{\hat{\beta}^{*}, n}-\mathrm{J}_{\beta, n}=o_{p}\left(\frac{1}{m}\right), \tag{A.30}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{J}}_{\hat{\gamma}^{*}, n}-\mathrm{J}_{\gamma, n}=o_{p}\left(\frac{1}{m}\right), \tag{A.31}
\end{equation*}
$$

where $\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n}, \hat{\mathrm{~J}}_{\hat{\beta}^{*}, n}$ and $\hat{\mathrm{J}}_{\hat{\gamma}^{*}, n}$ correspond to $\mathrm{J}_{\alpha, n}, \mathrm{~J}_{\beta, n}$ and $\mathrm{J}_{\gamma, n}$ with $x_{\mathrm{ck}}, \theta$ and $\Omega_{0}$ replaced by $X_{k}^{*}, \hat{\theta}^{*}$ and $\hat{\Omega}$, respectively. Here we show (A.29). The proof of (A.30) and (A.31) is similar.

By definition,

$$
\mathrm{J}_{\alpha, n}=\mathrm{J}_{\alpha, n, 1}+\mathrm{J}_{\alpha, n, 2} \text { and } \hat{\mathrm{J}}_{\hat{\alpha}^{*}, n}=\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 1}+\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 2} .
$$

We need only to prove that $\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 1}-\mathrm{J}_{\alpha, n, 1}=o_{p}\left(\frac{1}{m}\right)$; the proof of $\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 2}-\mathrm{J}_{\alpha, n, 2}=o_{p}\left(\frac{1}{m}\right)$ carries through in a similar manner.

Indeed,

$$
\begin{align*}
\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 1}-\mathrm{J}_{\alpha, n, 1}= & -(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} X_{k}^{*} \beta \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)^{\top}\left(\hat{\Omega} / m_{c}\right) v_{2, k}\left(\hat{\theta}^{*} ; x_{\mathrm{ck}}\right) \\
& -\left\{-(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} \\
= & -(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)^{\top}\left(\hat{\Omega} / m_{c}\right) v_{2, k}\left(\hat{\theta}^{*} ; x_{\mathrm{ck}}\right) \\
& -\left\{-(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} \\
& -(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} \bar{U}_{k} \beta \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)^{\top}\left(\hat{\Omega} / m_{c}\right) v_{2, k}\left(\hat{\theta}^{*} ; x_{\mathrm{ck}}\right) \\
= & -(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)^{\top}\left(\hat{\Omega} / m_{c}\right) v_{2, k}\left(\hat{\theta}^{*} ; x_{\mathrm{ck}}\right) \\
& +(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)+o_{p}\left(\frac{1}{m}\right) \\
= & \frac{1}{m_{c}}\left\{-(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \mathrm{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)^{\top} \hat{\Omega} v_{2, k}\left(\hat{\theta}^{*} ; x_{\mathrm{ck}}\right)\right.  \tag{A.32}\\
& \left.+(1 / 2 n) \sum_{k=1}^{n} C_{t}^{\top} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \Omega_{0} v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}+o_{p}\left(\frac{1}{m}\right)
\end{align*}
$$

where the second step is due to model (2.5); the last term in the third step is of order $o_{p}\left(\frac{1}{m}\right)$ using the same technique of showing the order of $Q_{\alpha, n, 1}$ in Step 1 of Appendix A.4. By Theorem 2.1 and that $\hat{\Omega}$ is a $\sqrt{n}$-consistent estimator of $\Omega_{0}$, (A.32) yields that $\hat{\mathrm{J}}_{\hat{\alpha}^{*}, n, 1}-\mathrm{J}_{\alpha, n, 1}=o_{p}\left(\frac{1}{m_{c}}\right)+o_{p}\left(\frac{1}{m}\right)=o_{p}\left(\frac{1}{m}\right)$.

Secondly, combining (2.15) with (2.11) gives that

$$
\begin{align*}
\hat{\theta}_{c}^{*}= & \hat{\theta}^{*}-\hat{\mathrm{H}}_{n}^{-1}\left(\hat{\theta}^{*}\right) \hat{\mathrm{J}}_{n}\left(\hat{\theta}^{*}\right) \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \mathrm{~T}}\right) \\
= & \theta+\frac{1}{\sqrt{n}} \mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)+\mathrm{H}_{n}^{-1}(\theta) \mathrm{J}_{n}(\theta) \operatorname{vec}\left(\alpha \beta^{\mathrm{\top}}\right)-\hat{\mathrm{H}}_{n}^{-1}\left(\hat{\theta}^{*}\right) \hat{\mathrm{J}}_{n}\left(\hat{\theta}^{*}\right) \operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right)  \tag{A.33}\\
& +o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}
\end{align*}
$$

where the relevant quantities are defined in Section 2.2.
By Theorem 2.1 and the assumption in Theorem 2.3 that $\hat{\Omega}$ is a $\sqrt{n}$-consistent estimator of $\Omega_{0}$, we obtain that by the Continuous Mapping Theorem, $\operatorname{vec}\left(\hat{\alpha}^{*} \hat{\beta}^{* \top}\right) \rightarrow \operatorname{vec}\left(\alpha \beta^{\top}\right)$ in probability and $\hat{\mathrm{H}}_{n}^{-1}\left(\hat{\theta}^{*}\right)-\mathrm{H}_{n}^{-1}(\theta)=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. Therefore, combining these results with (A.29), (A.30) and (A.31), we can express (A.33) as

$$
\begin{equation*}
\hat{\theta}_{c}^{*}=\theta+\frac{1}{\sqrt{n}} \mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \tag{A.34}
\end{equation*}
$$

Finally, Stefanski and Carroll (1985) showed that under Conditions (C.1) and (C.5), $\mathrm{H}_{n}^{-1 / 2}(\theta) \mathrm{S}_{n}(\theta)$ has the asymptotic normal distribution whose mean is zero and covariance matrix is the identity matrix. Thus, by (A.34), we obtain Theorem 2.3(a). Applying Slutsky's theorem to (A.34) gives Theorem 2.3(b), where the asymptotic covariance of $\sqrt{n}\left(\hat{\theta}_{c}^{*}-\theta\right)$ is determined by that of $\mathrm{H}_{n}^{-1}(\theta) \mathrm{S}_{n}(\theta)$, which equals $I^{-1}(\theta)$, where $I(\theta)=E\left\{\mathrm{H}_{n}(\theta)\right\}$.

## A. 8 Proof of the Consistency for (2.17)

We prove that (2.17) is a $\sqrt{n}$-consistent covariance estimator for $\hat{\Omega}$. Indeed, we write (2.17) as

$$
\hat{\Omega}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{(m-1)} \sum_{r=1}^{m}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}^{\top},
$$

and let

$$
\hat{\Omega}_{k}=\frac{1}{(m-1)} \sum_{r=1}^{m}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}\left\{\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)\right\}^{\top}
$$

By the definition of $X_{k r}^{*}$ and $\bar{X}_{k+}^{*}$, we obtain that

$$
\operatorname{vec}\left(X_{k r}^{*}\right)-\operatorname{vec}\left(\bar{X}_{k+}^{*}\right)=\operatorname{vec}\left(E_{k r}-\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right) .
$$

Thus,

$$
\begin{align*}
E\left(\hat{\Omega}_{k}\right)= & \frac{1}{(m-1)} \sum_{r=1}^{m} E\left\{\operatorname{vec}\left(E_{k r}-\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right) \operatorname{vec}\left(E_{k r}-\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right)^{\top}\right\} \\
= & \frac{1}{(m-1)} \sum_{r=1}^{m}\left[E\left\{\operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}-2 E\left\{\operatorname{vec}\left(\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}\right. \\
& \left.+E\left\{\operatorname{vec}\left(\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right) \operatorname{vec}\left(\frac{1}{m} \sum_{r=1}^{m} E_{k r}\right)^{\top}\right\}\right] \\
= & \frac{1}{(m-1)} \sum_{r=1}^{m}\left[E\left\{\operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}-\frac{2}{m} E\left\{\operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}\right. \\
& -\frac{2}{m} \sum_{j \neq r}^{m} E\left\{\operatorname{vec}\left(E_{k j}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\}+\frac{1}{m^{2}} E\left\{\sum_{r=1}^{m} \operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k r}\right)^{\top}\right\} \\
& \left.+\frac{1}{m^{2}} E\left\{\sum_{r=1}^{m} \sum_{j \neq r}^{m} \operatorname{vec}\left(E_{k r}\right) \operatorname{vec}\left(E_{k j}\right)^{\top}\right\}\right] \\
= & \frac{1}{(m-1)} \sum_{r=1}^{m}\left(\Omega_{0}-\frac{2}{m} \Omega_{0}+\frac{1}{m} \Omega_{0}\right) \\
= & \Omega_{0}, \tag{A.35}
\end{align*}
$$

where the third step is due to the independence assumption of $E_{k r}$ and $E_{k j}$ for $r \neq j$, together with $E\left\{\operatorname{vec}\left(E_{k r}\right)\right\}=0$ and the definition of $\Omega_{0}$.

By Condition (C.3), $\operatorname{var}\left(\hat{\Omega}_{k}\right)$ exists. Let $\hat{\sigma}_{k, i j}$ and $\sigma_{0, i j}$ denote the $(i, j)$ element of $\hat{\Omega}_{k}$ and $\Omega_{0}$, respectively. Then by (A.35) and the Central limit theorem, as $n \rightarrow \infty$, $\sqrt{n}\left(\frac{1}{n} \sum_{k=1}^{n} \hat{\sigma}_{k, i j}-\sigma_{0, i j}\right)$ converges in distribution to a normal distribution for any $(i, j)$ element for $\hat{\Omega}_{k}$. Thus, we have $\sqrt{n}\left(\frac{1}{n} \sum_{k=1}^{n} \hat{\sigma}_{k, i j}-\sigma_{0, i j}\right)=O_{p}(1)$ for any $(i, j)$ element for $\hat{\Omega}_{k}$. Writing these in the matrix form gives that $\frac{1}{n} \sum_{k=1}^{n} \hat{\Omega}_{k}-\Omega_{0}=O_{p}(1 / \sqrt{n})$.

## A. 9 Derivation of $\Delta_{k}$

Here we derive why $\Delta_{k}=X_{k}^{*}+\left(y_{k}-1 / 2\right) R \alpha \beta^{\boldsymbol{\top}} C / m_{c}$, discussed in Section 2.3.2, is a sufficient statistic for $x_{\mathrm{ck}}$. The derivations start with working out the joint distribution of $Y_{k}$ and $X_{k}^{*}$ using the model setup in Section 2.2.1 and 2.3.2. Then we work out the joint distribution of $Y_{k}$ and $\Delta_{k}$ in order to derive the conditional distribution of $Y_{k}$ given $\Delta_{k}$ and $\left\{x_{\mathrm{ck}}, z_{k}\right\}$. The details are presented in three parts.

Part I: Find $f_{\mathrm{Y}, \mathrm{X}^{*}}\left(Y_{k}, X_{k}^{*} \mid x_{\mathrm{ck}}\right)$, the joint distribution of $Y_{k}$ and $X_{k}^{*}$, given $\left\{x_{\mathrm{ck}}, z_{k}\right\}$.

We treat $\theta=\left(\alpha^{\top}, \beta^{\top}, \gamma^{\top}\right)^{\top}$ as given. We rewrite (2.2) as

$$
\begin{equation*}
f_{\mathrm{Y}}\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}\right)=h_{1}\left(x_{\mathrm{ck}}\right) \times \exp \left\{Y_{k}\left(\alpha^{\top} x_{\mathrm{ck}} \beta+\gamma^{\top} z_{k}\right)\right\} \tag{A.36}
\end{equation*}
$$

where $h_{1}\left(x_{\mathrm{ck}}, z_{k}\right)=\left\{1+\exp \left(\alpha^{\top} x_{\mathrm{ck}} \beta+\gamma^{\top} z_{k}\right)\right\}^{-1}$.
The probability density function (2.5) of $X_{k}^{*}$, given $x_{\mathrm{ck}}$ is rewritten as

$$
\begin{align*}
f_{\mathrm{X} *}\left(X_{k}^{*} \mid x_{\mathrm{ck}}\right) & =\text { constant } \times \exp \left[-\frac{m_{c}}{2} \operatorname{tr}\left\{C^{-1}\left(X_{k}^{*}-x_{\mathrm{ck}}\right)^{\top} R^{-1}\left(X_{k}^{*}-x_{\mathrm{ck} k}\right)\right\}\right]  \tag{А.37}\\
& =h_{2}\left(x_{\mathrm{ck}}\right) \times \exp \left\{\operatorname{tr}\left(m_{c} C^{-1} X_{k}^{* \top} R^{-1} x_{\mathrm{ck}}\right)-\frac{m_{c}}{2} \operatorname{tr}\left(C^{-1} X_{k}^{* \top} R^{-1} X_{k}^{*}\right)\right\}
\end{align*}
$$

where $h_{2}\left(x_{\mathrm{ck}}\right)=$ constant $\times \exp \left\{-\frac{1}{2} \operatorname{tr}\left(C^{-1} x_{\mathrm{ck}}^{\top} R^{-1} x_{\mathrm{ck}}\right)\right\}$.
Combining (A.36) and (A.37), we write the joint distribution of $Y_{k}$ and $X_{k}^{*}$, given $\left\{x_{\mathrm{ck}}, z_{k}\right\}$, as

$$
\begin{align*}
f_{\mathrm{Y}, \mathrm{X} *}\left(Y_{k}, X_{k}^{*} \mid x_{\mathrm{ck}}\right)= & h_{3}\left(x_{\mathrm{ck}}, z_{k}\right) \times \exp \left\{Y_{k}\left(\alpha^{\top} x_{\mathrm{c} k} \beta+\gamma^{\top} z_{k}\right)\right\} \\
& \times \exp \left\{\operatorname{tr}\left(m_{c} C^{-1} X_{k}^{* \top} R^{-1} x_{\mathrm{ck}}\right)-\frac{m_{c}}{2} \operatorname{tr}\left(C^{-1} X_{k}^{* \top} R^{-1} X_{k}^{*}\right)\right\}, \tag{A.38}
\end{align*}
$$

where $h_{3}\left(x_{\mathrm{ck}}, z_{k}\right)=h_{1}\left(x_{\mathrm{ck}}, z_{k}\right) \times h_{2}\left(x_{\mathrm{ck}}\right)$.

Part II: Find $f_{\mathrm{Y}, \Delta}\left(y_{k}, \Delta_{k} \mid x_{\mathrm{ck}}, z_{k}\right)$, the joint probability density/mass function for $Y_{k}$ and $\Delta_{k}$.

In the following we want to work out the joint distribution of $Y_{k}$ and $\Delta_{k}$, given $\left\{x_{\mathrm{ck}}, z_{k}\right\}$, using (A.38). Because $Y_{k}$ is binary, our discussion here is slightly different from the setting
of Stefanski and Carroll (1987, p.4) who applied the variable transformation method to find the joint distribution of continuous variables $Y_{k}$ and $\Delta_{k}$. We consider the joint cumulative distribution function of $\left\{Y_{k}, X_{k}^{*}\right\}$, given $\left\{x_{\mathrm{ck}}, z_{k}\right\}$. For any $(y, \delta)$,

$$
\begin{align*}
\operatorname{pr}\left(Y_{k}=y, \Delta_{k} \leq \delta \mid\left\{x_{\mathrm{c} k}, z_{k}\right\}\right) & =\operatorname{pr}\left(Y_{k}=y, \left.X_{k}^{*}+\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\top} C / m_{c} \leq \delta \right\rvert\,\left\{x_{\mathrm{c} k}, z_{k}\right\}\right) \\
& =\operatorname{pr}\left(Y_{k}=y, \left.X_{k}^{*} \leq \delta-\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\top} C / m_{c} \right\rvert\,\left\{x_{\mathrm{c} k}, z_{k}\right\}\right) \\
& =\int_{-\infty}^{\delta-\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\top} C / m_{c}} f_{\mathrm{Y}, \mathrm{X}^{*}}\left(y, x_{k}^{*} \mid x_{\mathrm{ck}}, z_{k}\right) d x_{k}^{*} \tag{A.39}
\end{align*}
$$

where the integrand is determined by (A.38).
Thus, the joint probability density/mass function for $Y_{k}$ and $\Delta_{k}$ is given by the derivative of (A.39) with respect to $\delta$. That is,

$$
\begin{align*}
f_{\mathrm{Y}, \Delta}\left(y_{k}, \Delta_{k} \mid x_{\mathrm{ck}}, z_{k}\right)= & f_{\mathrm{Y}, \mathrm{X}^{*}}\left\{y_{k}, \left.\Delta_{k}-\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\top} C / m_{c} \right\rvert\, x_{\mathrm{ck}}, z_{k}\right\} \\
& \times \frac{d}{d \Delta_{k}}\left\{\Delta_{k}-\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\boldsymbol{\top}} C / m_{c}\right\} \\
= & f_{\mathrm{Y}, \mathrm{X}^{*}}\left\{y_{k}, \left.\Delta_{k}-\left(y_{k}-\frac{1}{2}\right) R \alpha \beta^{\top} C / m_{c} \right\rvert\, x_{\mathrm{c} k}, z_{k}\right\} \\
= & h_{3}\left(x_{\mathrm{c} k}, z_{k}\right) \times \exp \left\{Y_{k}\left(\alpha^{\top} x_{\mathrm{c} k} \beta+\gamma^{\boldsymbol{\top}} z_{k}\right)\right\}  \tag{A.40}\\
& \times \exp \left[\operatorname{tr}\left\{C^{-1}\left(m_{c} \Delta_{k}-y_{k} R \alpha \beta^{\boldsymbol{\top}} C+\frac{1}{2} R \alpha \beta^{\boldsymbol{\top}} C\right)^{\top} R^{-1} x_{\mathrm{c} k}\right\}\right. \\
& -\frac{1}{2} \operatorname{tr}\left\{C ^ { - 1 } \left(m_{c} \Delta_{k}-y_{k} R \alpha \beta^{\boldsymbol{\top}} C\right.\right. \\
& \left.\left.\left.+\frac{1}{2} R \alpha \beta^{\boldsymbol{\top}} C\right)^{\boldsymbol{\top}} R^{-1}\left(\Delta_{k}-y_{k} R \alpha \beta^{\boldsymbol{\top}} C / m_{c}+\frac{1}{2 m_{c}} R \alpha \beta^{\boldsymbol{\top}} C\right)\right\}\right]
\end{align*}
$$

where we purposefully use upper case letters in the arguments to emphasize the random variables to which the distribution corresponds, and the last step comes from plugging in (A.38).

Part III: Show that $\Delta_{k}$ can be treated as a sufficient statistic of $x_{c k}$.
To simplify (A.40), we individually examine each term using the following matrix or
vector identities:

$$
\begin{aligned}
& \operatorname{tr}\left(\beta \alpha^{\top} x_{\mathrm{ck}}\right)=\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(x_{\mathrm{ck}}\right)=\alpha^{\top} x_{\mathrm{ck}} \beta ; \\
& \operatorname{tr}\left(\beta \alpha^{\top} \Delta_{k}\right)=\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\Delta_{k}\right)=\alpha^{\top} \Delta_{k} \beta ; \\
& \operatorname{tr}\left(C^{-1} \Delta_{k}^{\top} \alpha \beta^{\top} C\right)=\operatorname{tr}\left(C C^{-1} \Delta_{k}^{\top} \alpha \beta^{\top}\right)=\operatorname{tr}\left(\Delta_{k}^{\top} \alpha \beta^{\top}\right)=\alpha^{\top} \Delta_{k} \beta ;
\end{aligned}
$$

which are obtained from direct calculations and the fact that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for two square matrice A and B which have the same dimension.

The first term of (A.40) is simplified as

$$
\begin{align*}
& \operatorname{tr}\left[C^{-1}\left(m_{c} \Delta_{k}-Y_{k} R \alpha \beta^{\top} C\right)^{\top} R^{-1} x_{\mathrm{ck}}\right]+\frac{1}{2} \operatorname{tr}\left\{C^{-1}\left(R \alpha \beta^{\top} C\right)^{\top} R^{-1} x_{\mathrm{ck}}\right\} \\
= & \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} x_{\mathrm{ck}}-Y_{k} \beta \alpha^{\top} x_{\mathrm{ck} k}\right)+\frac{1}{2} \operatorname{tr}\left(\beta \alpha^{\top} x_{\mathrm{ck}}\right)  \tag{A.41}\\
= & \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} x_{\mathrm{ck}}\right)-Y_{k} \alpha^{\top} x_{\mathrm{ck}} \beta+\frac{1}{2} \alpha^{\top} x_{\mathrm{ck}} \beta,
\end{align*}
$$

and the second term of (A.40) becomes

$$
\begin{align*}
& \frac{1}{2} \operatorname{tr}\left\{C^{-1}\left(m_{c} \Delta_{k}-Y_{k} R \alpha \beta^{\top} C+\frac{1}{2} R \alpha \beta^{\top} C\right)^{\top} R^{-1}\left(\Delta_{k}-Y_{k} R \alpha \beta^{\top} C / m_{c}+\frac{1}{2 m_{c}} R \alpha \beta^{\top} C\right)\right\} \\
= & \frac{1}{2} \operatorname{tr}\left[C^{-1}\left\{m_{c} \Delta_{k}^{\top}-Y_{k}\left(C \beta \alpha^{\top} R\right)+\frac{1}{2}\left(C \beta \alpha^{\top} R\right)\right\} R^{-1}\left(\Delta_{k}-Y_{k} R \alpha \beta^{\top} C / m_{c}+\frac{1}{2 m_{c}} R \alpha \beta^{\top} C\right)\right] \\
= & \frac{1}{2} \operatorname{tr}\left\{\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1}-Y_{k} \beta \alpha^{\top}+\frac{1}{2} \beta \alpha^{\top}\right)\left(\Delta_{k}-Y_{k} R \alpha \beta^{\top} C / m_{c}+\frac{1}{2 m_{c}} R \alpha \beta^{\top} C\right)\right\} \\
= & \frac{1}{2} \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} \Delta_{k}-Y_{k} \beta \alpha^{\top} \Delta_{k}-Y_{k} C^{-1} \Delta_{k}^{\top} \alpha \beta^{\top} C\right. \\
& \left.+\frac{1}{2} \beta \alpha^{\top} \Delta_{k}^{\top}+\frac{1}{4 m_{c}} \beta \alpha^{\top} R \alpha \beta^{\top} C+\frac{1}{2} C^{-1} \Delta_{k}^{\top} \alpha \beta^{\top} C\right) \\
= & \frac{1}{2} \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} \Delta_{k}+\frac{1}{4 m_{c}} \beta \alpha^{\top} R \alpha \beta^{\top} C\right)-Y_{k} \alpha^{\top} \Delta_{k} \beta+\frac{1}{2} \alpha^{\top} \Delta_{k} \beta, \tag{A.42}
\end{align*}
$$

where we use the fact that $Y_{k}^{2}=Y_{k}$ for the binary variable $Y_{k}$ taking value 0 or 1 .

Then plugging (A.41) and (A.42) into (A.40) gives

$$
\begin{align*}
f_{\mathrm{Y}, \Delta}\left(Y_{k}, \Delta_{k} \mid x_{\mathrm{ck}}, z_{k}\right)= & h_{3}\left(x_{\mathrm{c} k}, z_{k}\right) \times \exp \left\{-\frac{1}{2} \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} \Delta_{k}+\frac{1}{4 m_{c}} \beta \alpha^{\top} R \alpha \beta^{\top} C\right)\right. \\
& +Y_{k} \alpha^{\top} \Delta_{k} \beta-\frac{1}{2} \alpha^{\top} \Delta_{k} \beta+\frac{1}{2} \alpha^{\top} x_{\mathrm{ck}} \beta+\operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} x_{\mathrm{ck}}\right) \\
& \left.-Y_{k} \alpha^{\top} x_{\mathrm{ck}} \beta+Y_{k} \alpha^{\top} x_{\mathrm{ck}} \beta\right\} \times \exp \left(Y_{k} \gamma^{\top} z_{k}\right) \\
= & h_{4}\left(\Delta_{k}, x_{\mathrm{ck}}, z_{k}\right) \times \exp \left(Y_{k} \alpha^{\top} \Delta_{k} \beta\right) \times \exp \left(Y_{k} \gamma^{\top} z_{k}\right) \\
& \times \exp \left\{-\frac{1}{2} \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} \Delta_{k} \beta+\frac{1}{4 m_{c}} \beta \alpha^{\top} R \alpha \beta^{\top} C\right)\right. \\
& \left.+\operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} x_{\mathrm{ck}}\right)\right\} \\
= & h_{4}\left(\Delta_{k}, x_{\mathrm{ck}}, z_{k}\right) \times \exp \left\{Y_{k}\left(\alpha^{\top} \Delta_{k} \beta+\gamma^{\top} z_{k}\right)\right\} \tag{A.43}
\end{align*}
$$

where $h_{4}\left(\Delta_{k}, x_{c k}, z_{k}\right)=h_{3}\left(\Delta_{k}, x_{c k}, z_{k}\right) \times \exp \left\{-\frac{1}{2} \operatorname{tr}\left(m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} \Delta_{k} \beta+\frac{1}{4 m_{c}} \beta \alpha^{\top} R \alpha \beta^{\top} C\right)+\right.$ $\left.m_{c} C^{-1} \Delta_{k}^{\top} R^{-1} x_{\mathrm{ck}}-\frac{1}{2} \alpha^{\top} \Delta_{k} \beta+\frac{1}{2} \alpha^{\top} x_{\mathrm{ck}} \beta\right\}$.

Noting that (A.43) can be expressed as the product of two functions each involving $Y_{k}$ or $\Delta_{k}$ alone, together with other variables, we obtain the conditional distribution of $Y_{k}$ given $\Delta_{k}$ as well as $\left\{x_{\mathrm{ck}}, z_{k}\right\}$,

$$
\begin{equation*}
\operatorname{pr}\left(Y_{k}=y_{k} \mid \Delta_{k}, x_{\mathrm{ck}}, z_{k}\right)=\mathfrak{C} \times \exp \left\{y_{k}\left(\alpha^{\top} \Delta_{k} \beta+\gamma^{\top} z_{k}\right)\right\}, \tag{A.44}
\end{equation*}
$$

where

$$
\mathfrak{C}=\frac{1}{h_{4}\left(\Delta_{k}, x_{\mathrm{ck}}, z_{k}\right)\left\{1+\exp \left(\alpha^{\top} \Delta_{k} \beta+\gamma^{\top} z_{k}\right)\right\}} .
$$

Non-involvement of $x_{c k}$ in the right-hand side of (A.40) shows that $\Delta_{k}$ can be treated as a sufficient statistic of $x_{\mathrm{ck}}$.

## Remark:

The preceding derivations basically focus on verifying the "sufficiency" for $\Delta_{k}$ which is given before hand. In contrast, a simple way to find a sufficient statistic of $x_{\mathrm{ck}}$ by directly applying the Factorization Theorem to the joint distribution (A.38). Specifically, by treating $x_{\mathrm{ck}}$ as an unknown parameter and $\theta$ as a given constant, we write (A.38) as

$$
\begin{aligned}
f_{Y, X^{*}}\left(Y_{k}, X_{k}^{*} \mid x_{c k}\right) & \propto \exp \left\{Y_{k}\left(\alpha^{\top} x_{c k} \beta\right)\right\} \times \exp \left\{\operatorname{tr}\left(m_{c} C^{-1} X_{k}^{* \top} R^{-1} x_{c k}\right\}\right. \\
& =\exp \left[\operatorname{tr}\left\{\left(Y_{k} \alpha \beta^{\top}+m_{c} R^{-1} X_{k}^{*} C^{-1}\right)^{\top} x_{c k}\right\}\right] \\
& =\exp \left[\operatorname{tr}\left[\left\{R^{-1}\left(\frac{1}{m_{c}} Y_{k} R \alpha \beta^{\top} C+X_{k}^{*}\right) C^{-1}\right\}^{\top}\right] x_{c k}\right],
\end{aligned}
$$

implying that $\frac{1}{m_{c}} Y_{k} R \alpha \beta^{\top} C+X_{k}^{*}$ is a sufficient statistic for $x_{c k}$. Write $\Delta_{k}^{*}=\frac{1}{m_{c}} Y_{k} R \alpha \beta^{\top} C+$ $X_{k}^{*}$.

Note that the difference between $\Delta_{k}^{*}$ and $\Delta_{k}$ is a constant, indicating the equivalence of them. While $\Delta_{k}^{*}$ may be used in the same way as $\Delta_{k}$ in Section 2.3.2 to derive a consistent estimator of $\theta$, in our development we choose to use $\Delta_{k}=X_{k}^{*}+\left(Y_{k}-1 / 2\right) R \alpha \beta^{\top} C / m_{c}$; this quantity can be regarded as "symmetric" around the surrogated measurement $X_{k}^{*}$ because the centered version $Y_{k}-1 / 2$ for the binary variable $Y_{k}$ is either $1 / 2$ or $-1 / 2$. In addition, $\Delta_{k}$ shares similarity to the sufficient statistics considered by Stefanski and Carroll (1985).

## A. 10 Proof of Theorem 2.4

Corresponding to $\mathrm{S}_{n}^{*}(\theta)$ and $\mathrm{H}_{n}^{*}(\theta)$ in (2.12), we let $\mathrm{S}_{n}\left(\theta, \hat{\Delta}_{k}\right)=\left(\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}^{\top}\left(\theta, \hat{\Delta}_{k}\right)\right.$, $\left.\mathrm{S}_{\hat{\beta}_{s}^{*}, n}^{\top}\left(\theta, \hat{\Delta}_{k}\right), \mathrm{S}_{\hat{\gamma}_{s}^{*}, n}^{\top}\left(\theta, \hat{\Delta}_{k}\right)\right)^{\top}$ and $\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right)$ be $\mathrm{S}_{n}^{*}(\theta)$ and $\mathrm{H}_{n}^{*}(\theta)$, respectively, with $X_{k}^{*}$ replaced by $\hat{\Delta}_{k}$, where $\hat{\Delta}_{k}$ is defined by (2.22). To show Theorem 2.4, we examine $S_{n}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right)$ separately in the following two parts using similar techniques to those in Appendix A. 4 and A. 5.

Part I: Show that $S_{n}\left(\theta, \hat{\Delta}_{k}\right)=\frac{1}{\sqrt{n}} S_{n}(\theta)+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\}$.
Since $\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right), \mathrm{S}_{\hat{\beta}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{S}_{\hat{\gamma}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)$ have similar structures, here we provide only the examination of $\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)$; the rest two terms can be shown similarly.

By the definition of $\mathrm{S}_{n}\left(\theta, \hat{\Delta}_{k}\right)$ and (2.9) as well as (2.22), we have that

$$
\begin{align*}
\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right) & =\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top} \hat{\Delta}_{k} \beta\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\} \\
& =\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top}\left(X_{k}^{*}+g_{k} / m_{c}\right) \beta\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}  \tag{A.45}\\
& =\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top}\left(X_{k}^{*}+g_{k} / m_{c}\right) \beta\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)+p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\} \\
& \triangleq \mathrm{S}_{\alpha, n}^{*}(\theta)+\mathrm{W}_{n 1}+\mathrm{W}_{n 2}+\mathrm{W}_{n 3}
\end{align*}
$$

where by (2.5), we set

$$
\begin{aligned}
& \mathrm{W}_{n 1}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}}\left(\bar{U}_{k}+g_{k} / m_{c}\right) \beta\left\{p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}, \\
& \mathrm{W}_{n 2}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} g_{k} \beta\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\} / m_{c},
\end{aligned}
$$

and

$$
\mathrm{W}_{n 3}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left\{p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}
$$

To examine $\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)$, it sufficies to check $\mathrm{W}_{n 1}, \mathrm{~W}_{n 2}$ and $\mathrm{W}_{n 3}$ individually. In the following, we examine $\mathrm{W}_{n 1}, \mathrm{~W}_{n 2}$ and $\mathrm{W}_{n 3}$ separately and show they are of order $o_{p}(1 / m)$. Before doing so, we introduce two expressions.

Replacing $X_{k}^{*}$ with $x_{\mathrm{ck}}$ in $\mathrm{W}_{n 2}$, we define

$$
\mathrm{b}_{2}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\mathrm{T}}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} g_{k} \beta / m_{c},
$$

and we define

$$
\mathrm{b}_{3}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(g_{k}\right)^{\boldsymbol{\top}} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) / m_{c}
$$

By the fact that $\hat{\theta}^{*}-\theta=o_{p}(1)$, and $n^{1 / 2}\left(\hat{C} \otimes \hat{R}-\Omega_{0}\right)=O_{p}(1)$, we obtain that

$$
\begin{aligned}
\mathrm{b}_{2} & =\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top}\left[\left(y_{k}-\frac{1}{2}\right)\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right] R \alpha \beta^{\top} C \beta / m_{c}+o_{p}(1) \\
& =\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\mathrm{\top}}\left[\left(y_{k}-\frac{1}{2}\right)\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right] \Pi_{\alpha} \Omega_{0} \operatorname{vec}\left(\alpha \beta^{\top}\right) / m_{c}+o_{p}(1),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{b}_{3} & =-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left(y_{k}-\frac{1}{2}\right) \operatorname{vec}\left(R \alpha \beta^{\boldsymbol{\top}} C\right)^{\boldsymbol{\top}} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) / m_{c}+o_{p}(1) \\
& =-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left(y_{k}-\frac{1}{2}\right) \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}} \Omega_{0} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) / m_{c}+o_{p}(1)
\end{aligned}
$$

where $\Pi_{\alpha}$ is defined in (A.14).
Furthermore, using $\mathrm{J}_{\alpha, n, 1}$ and $\mathrm{J}_{\alpha, n, 2}$, which are defined in Section 2.2.3, with $\mathrm{b}_{2}$ and $\mathrm{b}_{3}$, we obtain that

$$
\begin{align*}
\mathrm{b}_{2}= & \frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \Pi_{\alpha} \frac{\Omega_{0}}{m_{c}}\left[\left(y_{k}-\frac{1}{2}\right)\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right] \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)-\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right) \\
& +\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1) \\
= & \frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \Pi_{\alpha} \frac{\Omega_{0}}{m_{c}}\left\{Y_{k}^{2}-Y_{k} p_{k}\left(\theta ; x_{\mathrm{ck}}\right)-\frac{1}{2} Y_{k}+\frac{1}{2} p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right) \\
& -\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1)  \tag{A.46}\\
= & \frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} \Pi_{\alpha} \frac{\Omega_{0}}{m_{c}}\left[Y_{k}\left\{1-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}-\frac{1}{2}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right. \\
& \left.-v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\right] \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)-\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1) \\
= & -\mathrm{J}_{\alpha, n, 2} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1)
\end{align*}
$$

where the last step is due to $E\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}\right)=p_{k}\left(\theta ; x_{\mathrm{ck}}\right)$, and

$$
\begin{align*}
& \mathrm{b}_{3}=-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)^{\top} \frac{\Omega_{0}}{m_{c}} \operatorname{vec}\left(\alpha \beta^{\top}\right)\left(y_{k}-\frac{1}{2}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) \\
& +\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)-\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1) \\
& =-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \frac{\Omega_{0}}{m_{c}} \operatorname{vec}\left(\alpha \beta^{\top}\right)\left(y_{k}-\frac{1}{2}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) \\
& -\frac{n}{2} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left(\Omega_{0} / m_{c}\right) v_{2, k}\left(\theta ; x_{\mathrm{ck}}\right)-\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}(1) \\
& =-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}} \frac{\Omega_{0}}{m_{c}} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)\left[\left(y_{k}-\frac{1}{2}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\right.  \tag{A.47}\\
& \left.-v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\left\{p_{k}\left(\theta ; x_{\mathrm{ck}}\right)-\frac{1}{2}\right\}\right]-\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}(1) \\
& =-\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \frac{\Omega_{0}}{m_{c}} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\} v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) \\
& -\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\boldsymbol{\top}}\right)+o_{p}(1) \\
& =-\mathrm{J}_{\alpha, n, 1} \operatorname{vec}\left(\alpha \beta^{\top}\right)+o_{p}(1),
\end{align*}
$$

where the third step is because of the definition $v_{1, k}(\cdot)$, given in Section 2.2.3, and the last step is due to $E\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}\right)=p_{k}\left(\theta ; x_{\mathrm{ck}}\right)$.

Now we examine $W_{n 2}, W_{n 3}$ and $W_{n 1}$ by the following three steps:

Step1: Show that $\left\|W_{n 2}-b_{2}\right\|=o_{p}\left(\frac{1}{m}\right)$.

$$
\begin{aligned}
\left\|\mathrm{W}_{n 2}-b_{2}\right\| & =\left\|\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top} g_{k}\left\{p_{k}\left(\theta ; x_{\mathrm{ck}}\right)-p_{k}\left(\theta ; X_{k}^{*}\right)\right\} / m_{c}\right\| \\
& \leq \frac{1}{m_{c} n}\left\|C_{t}^{\boldsymbol{\top}}\right\| \sum_{k=1}^{n}\left\|p_{k}\left(\theta ; x_{\mathrm{c} k}\right)-p_{k}\left(\theta ; X_{k}^{*}\right)\right\| \times\left\|g_{k}\right\| \\
& \leq \frac{1}{m_{c} n}\left\|C_{t}^{\top}\right\| \sum_{k=1}^{n}\left|p_{k}\left(\theta ; x_{\mathrm{ck}}\right)-p_{k}\left(\theta ; X_{k}^{*}\right)\right| \times\left\|g_{k}\right\| \\
& \leq\left\|C_{t}^{\boldsymbol{\top}}\right\| \times \frac{1}{m_{c} n} \sum_{k=1}^{n}\left\|g_{k}\right\| \\
& \leq \frac{1}{m_{c}}\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2}\right)^{1 / 2} \\
& =o_{p}\left(\frac{1}{m}\right)
\end{aligned}
$$

where the second step is due to the Cauchy-Schwarz inequality; and the fourth step is because that between $p_{k}\left(\theta ; x_{\mathrm{ck}}\right)$ and $p_{k}\left(\theta ; X_{k}^{*}\right)$ the absolute value of the difference is bounded between $[0,1]$; and the fifth step is due to the Cauchy-Schwarz inequality; and the last step is due to the assumption that $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$, and the definition $m_{c}=\frac{n m}{n-1}$.

Step2: Show that $\left\|W_{n 3}-b_{3}\right\|=o_{p}\left(\frac{1}{m}\right)$.

$$
\begin{align*}
\left\|\mathrm{W}_{n 3}-b_{3}\right\|= & \| \frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\left[\left\{p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}\right. \\
& \left.+\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) / m_{c}\right] \| \\
\leq & \left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \times\left\|p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\| \\
& +\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right) / m_{c}\right\|  \tag{A.48}\\
\leq & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{c} k}\right\| \times\left\|p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\| \\
& +\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) / m_{c}\right\|
\end{align*}
$$

where the last second step is due to the Cauchy-Schwarz inequality, and the last step by that $v_{1, k}(\cdot)$ is bounded by 0 and 1 .

Then plugging (A.6) into (A.48), we obtain that

$$
\begin{align*}
(\mathrm{A} .48) \leq & \left.2\left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\{\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\|\right\}+\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(g_{k}\right)\right\| / m_{c}\right\} \\
= & 2\left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\{\left\|x_{\mathrm{ck}}\right\| \times\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\|\right\} \\
& +2\left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\{\left\|x_{\mathrm{c} k}\right\| \times\left\|\operatorname{vec}\left(g_{k}\right)\right\| / m_{c}\right\} . \tag{A.49}
\end{align*}
$$

By Conditions (C.2) and (C.3), the first term of (A.49) is $o_{p}\left(\frac{1}{m}\right)$; by Condition (C.2), definition of $m_{c}$, and the assumption $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$, the second term of (A.49) is $o_{p}\left(\frac{1}{m}\right)$. As a result, we obtain that $\left\|\mathrm{W}_{n 3}-b_{3}\right\|=o_{p}\left(\frac{1}{m}\right)$.

Step3: Show that $W_{n 1}=o_{p}\left(\frac{1}{m}\right)$.

$$
\begin{align*}
\left\|\mathrm{W}_{n 1}\right\|= & \left\|\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta\left\{p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}\right\| \\
\leq & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\frac{1}{n} \sum_{k=1}^{n}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \times\left\{p_{k}\left(\theta ; X_{k}^{*}\right)-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}\right\| \\
= & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times \| \frac{1}{n} \sum_{k=1}^{n}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \times\left(\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right)\left[v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right]\right. \\
& \left.-\operatorname{vec}\left(g_{k}\right)^{\top} \operatorname{vec}\left(\alpha \beta^{\top}\right) / m_{c}\right) \| \\
\leq & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\frac{1}{n} \sum_{k=1}^{n} \bar{U}_{k} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\bar{U}_{k}\right) \times\left[v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right]\right\| \\
& +\frac{\left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\|}{n m_{c}} \times \sum_{k=1}^{n}\left\{\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times\left\|\operatorname{vec}\left(g_{k}\right)\right\|\right. \\
& \left.\times\left\|v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right\|\right\}+\left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \\
& \times \frac{1}{n} \sum_{k=1}^{n}\left\{\frac{\left\|\operatorname{vec}\left(g_{k}\right)\right\|^{2}}{m_{c}^{2}}+\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times \frac{\left\|\operatorname{vec}\left(g_{k}\right)\right\|}{m_{c}}\right\} \\
\leq & \left\|C_{t}^{\top}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \max _{1 \leq k \leq n}^{2}\left\|\bar{U}_{k}\right\| \times\left\|\frac{1}{n} \sum_{k=1}^{n} v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right\| \\
& +\left\|C_{t}^{\boldsymbol{\top}}\right\| \times\|\beta\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\{\frac{\left\|\operatorname{vec}\left(g_{k}\right)\right\|^{2}}{m_{c}^{2}}+2\left\|\operatorname{vec}\left(\bar{U}_{k}\right)\right\| \times \frac{\left\|\operatorname{vec}\left(g_{k}\right)\right\|}{m_{c}}\right\} \\
= & o_{p}\left(\frac{1}{m}\right), \tag{A.50}
\end{align*}
$$

where the second step and the fourth step are due to the Cauchy-Schwarz inequality, the third step is due to plug in the difference between (A.4) and (A.5); in fifth step, we apply the facts that $\max _{1 \leq k \leq n}\left\|\bar{U}_{k}\right\|=O_{p}\left(\frac{1}{\sqrt{m}}\right)$ and $\frac{1}{n} \sum_{k=1}^{n} v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)=o_{p}(1)$; in
last step using (A.2) and $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$ again, we obtain that $(\mathrm{A} .47)=o_{p}\left(\frac{1}{m}\right)$.

Thus, using the results in Steps 1-3 and by (A.45), we obtain that

$$
\begin{aligned}
\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right) & =\mathrm{S}_{\alpha, n}^{*}(\theta)+b_{2}+b_{3}+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \\
& =\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, n}+\left(\mathrm{J}_{\alpha, n, 1}+\mathrm{J}_{\alpha, n, 2}\right) \operatorname{vec}\left(\alpha \beta^{\top}\right)+b_{2}+b_{3}+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\} \\
& =\frac{1}{\sqrt{n}} \mathrm{~S}_{\alpha, n}+o_{p}\left\{\max \left(\frac{1}{m}, \frac{1}{\sqrt{n}}\right)\right\},
\end{aligned}
$$

where in the second step, we plug in (A.16) to instead of $\mathrm{S}_{\alpha, n}^{*}(\theta)$ directly, and third step is due to (A.45) and (A.47).

Part II: Show that $H_{n, s}\left(\theta, \hat{\Delta}_{k}\right)-H_{n}(\theta)=o_{p}(1)$.
Similar to the treatment of $\mathrm{H}_{n}^{*}(\theta)$ in Appendix A.5, we write $\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right)$ as

$$
\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right) \triangleq-\left(\begin{array}{cc}
\mathrm{H}_{\alpha, \beta, n, s}\left(\theta, \hat{\Delta}_{k}\right) & \mathrm{H}_{\alpha \beta, \gamma, n, s}\left(\theta, \hat{\Delta}_{k}\right) \\
\mathrm{H}_{\alpha \beta, \gamma, n, s}^{\top}\left(\theta, \hat{\Delta}_{k}\right) & \mathrm{H}_{\gamma, \gamma, n, s}\left(\theta, \hat{\Delta}_{k}\right)
\end{array}\right)
$$

so that each element is identical to the corresponding part of $\mathrm{H}_{n}^{*}(\theta)$ with $X_{k}^{*}$ replaced by $\hat{\Delta}_{k}$.

To show that $\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{n}(\theta)=o_{p}(1)$, it suffices to show that

$$
\begin{equation*}
\mathrm{H}_{\alpha, \beta, n, s}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{\alpha, \beta, n}(\theta)=o_{p}(1), \tag{A.51}
\end{equation*}
$$

as well as $\mathrm{H}_{\alpha \beta, \gamma, n, s}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{\alpha \beta, \gamma, n, s}(\theta)=o_{p}(1)$ and $\mathrm{H}_{\gamma, \gamma, n, s}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{\gamma, \gamma, n, s}(\theta)=o_{p}(1)$. Here we show only (A.51) using same techniques in Appendix A.6; the other two expressions can be shown similarly.

Let

$$
\mathrm{H}_{n, \hat{\alpha}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)=\frac{\partial\left\{\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right), \mathrm{S}_{\hat{\beta}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)\right\}^{\top}}{\partial \tilde{\alpha}^{\top}}
$$

and

$$
\mathrm{H}_{n, \hat{\beta}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)=\frac{\partial\left\{\mathrm{S}_{\hat{\alpha}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right), \mathrm{S}_{\hat{\beta}_{s}^{*}, n}\left(\theta, \hat{\Delta}_{k}\right)\right\}^{\top}}{\partial \beta \top}
$$

and let

$$
\mathrm{H}_{n, \alpha}\left(\theta, x_{\mathrm{ck}}\right)=\frac{\partial\left\{\mathrm{Z}_{\alpha, n}(\theta), \mathrm{Z}_{\beta, n}(\theta)\right\}^{\top}}{\partial \tilde{\alpha}^{\top}}
$$

and

$$
\mathrm{H}_{n, \beta}\left(\theta, x_{\mathrm{ck}}\right)=\frac{\partial\left\{\mathrm{Z}_{\alpha, n}(\theta), \mathrm{Z}_{\beta, n}(\theta)\right\}^{\top}}{\partial \beta^{\top}}
$$

Then
and

$$
\mathrm{H}_{\alpha, \beta, n}\left(\theta, x_{\mathrm{ck}}\right)=\left(\mathrm{H}_{n, \alpha}\left(\theta, x_{\mathrm{ck}}\right) \quad \mathrm{H}_{n, \beta}\left(\theta, x_{\mathrm{ck}}\right)\right) .
$$

To compare $\mathrm{H}_{\alpha, \beta, n, s}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{H}_{\alpha, \beta, n}\left(\theta, x_{\mathrm{ck}}\right)$, it suffices to compare $\mathrm{H}_{n, \hat{\alpha}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{H}_{n, \alpha}\left(\theta, x_{\mathrm{ck}}\right)$ and to compare $\mathrm{H}_{n, \hat{\beta}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{H}_{n, \beta}\left(\theta, x_{\mathrm{ck}}\right)$ separately. Due to the similarity in comparison, we examine only the difference between $\mathrm{H}_{n, \hat{\alpha}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)$ and $\mathrm{H}_{n, \alpha}\left(\theta, x_{c k}\right)$ here.

We now write

$$
\begin{equation*}
\mathrm{H}_{n, \hat{\alpha}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{n, \alpha}\left(\theta, x_{\mathrm{ck}}\right)=\mathrm{H}_{s, \alpha, 1}(\theta)+\mathrm{H}_{s, \alpha, 2}(\theta)+\mathrm{H}_{s, \alpha, 3}(\theta), \tag{A.52}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{H}_{s, \alpha, 1}(\theta)=\frac{1}{n} \sum_{k=1}^{n}\left\{\left(C_{t}^{\boldsymbol{\top}} \hat{\Delta}_{k} \beta\right)^{\boldsymbol{\top}} C_{t}^{\boldsymbol{\top}} \hat{\Delta}_{k} \beta-\left(C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\right)^{\boldsymbol{\top}} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\right\} v_{1, k}\left(\theta ; \hat{\Delta}_{k}\right) \\
& \left.\mathrm{H}_{s, \alpha, 2}(\theta)=\frac{1}{n} \sum_{k=1}^{n}\left(C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta\right)^{\boldsymbol{\top}} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}} \beta \times v_{1, k}\left(\theta ; \hat{\Delta}_{k}\right)-v_{1, k}\left(\theta ; x_{\mathrm{ck}}\right)\right] \\
& \mathrm{H}_{s, \alpha, 3}(\theta)=\left(\begin{array}{ll}
0_{p \times p} & \left.\frac{1}{n} \sum_{k=1}^{n}\left[C^{\boldsymbol{\top}} \hat{\Delta}_{k}\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}-C^{\top} x_{\mathrm{ck}}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right]\right),
\end{array},=\right.\text {, }
\end{aligned}
$$

where $0_{p \times p}$ represents the $p \times p$ zero matrix.
In the following three steps, we show that all the terms in (A.52) are $o_{p}(1)$ as $\max (m, n) \rightarrow$ $\infty$.

Step1: Show that $\left\|H_{s, \alpha, 1}(\theta)\right\|=o_{p}(1)$ when $\min (m, n) \rightarrow \infty$.

$$
\begin{aligned}
\left\|\mathrm{H}_{s, \alpha, 1}(\theta)\right\| \leq & \| \frac{1}{n} \sum_{k=1}^{n}\left[\left\{C_{t}^{\top}\left(x_{\mathrm{ck}}+\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta\right\}^{\top} C_{t}^{\top}\left(x_{\mathrm{ck}}+\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta\right. \\
- & \left.\left(C_{t}^{\top} x_{\mathrm{c} k} \beta\right)^{\top} C_{t}^{\top} x_{\mathrm{ck}} \beta\right] \| \\
= & \| \frac{1}{n} \sum_{k=1}^{n}\left[\left(C_{t}^{\top} x_{\mathrm{ck}} \beta\right)^{\top} C_{t}^{\top}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta+\left\{C_{t}^{\top}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta\right\}^{\top} C_{t}^{\top} x_{\mathrm{ck}} \beta\right. \\
& \left.+\left\{C_{t}^{\top}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}} B i g\right) \beta\right\}^{\top} C_{t}^{\top}\left(\bar{U}_{k}+\frac{g_{k}}{m_{c}}\right) \beta\right] \| \\
\leq & \frac{2}{n}\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times \sum_{k=1}^{n}\left\{\left\|x_{\mathrm{c} k}\right\| \times\left(\left\|\bar{U}_{k}\right\|+\left\|\frac{g_{k}}{m_{c}}\right\|\right)+\left\|\bar{U}_{k}\right\|^{2}+\left\|\frac{g_{k}}{m_{c}}\right\|^{2}\right. \\
& \left.+\left\|\bar{U}_{k}\right\| \times\left\|\frac{g_{k}}{m_{c}}\right\|\right\} \\
\leq & 2\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times \frac{1}{n} \sum_{k=1}^{n}\left(\left\|x_{\mathrm{ck}}\right\| \times\left\|\bar{U}_{k}\right\|+\left\|\bar{U}_{k}\right\|^{2}+\left\|\frac{g_{k}}{m_{c}}\right\|^{2}\right) \\
& +\frac{2}{m_{c}}\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{c} k}\right\|^{2}\right)^{1 / 2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2}\right)^{1 / 2} \\
& +\frac{2}{m_{c}}\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}\right)^{1 / 2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

where the first step is due to the definition of $\hat{\Delta}_{k}$ and the boundedness of $v_{1, k}(\cdot)$ which is between $[0,1]$; and the last two steps are due to the Cauchy-Schwarz inequality. By Conditions (C.2), (C.3), (A.2) and $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$, we obtain that $\left\|\mathrm{H}_{s, \alpha, 1}(\theta)\right\|=o_{p}(1)$ when $\min (m, n) \rightarrow \infty$.

Step2: Show that $\left\|H_{s, \alpha, 2}(\theta)\right\|=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.

Plugging (A.8) into $\mathrm{H}_{s, \alpha, 2}(\theta)$, we obtain that

$$
\begin{align*}
\left\|\mathrm{H}_{s, \alpha, 2}(\theta)\right\|= & \left\|\frac{1}{n} \sum_{k=1}^{n}\left(C_{t}^{\top} x_{\mathrm{ck}} \beta\right)^{\top} C_{t}^{\top} x_{\mathrm{ck}} \beta \times v_{2, k}\left(\theta ; \Delta_{k, \xi 2}\right) \times \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\left\{\operatorname{vec}\left(\bar{U}_{k}\right)+\operatorname{vec}\left(g_{k}\right)^{\top} / m_{c}\right\}\right\| \\
\leq & \left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left(\left\|\bar{U}_{k}\right\|+\left\|\frac{g_{k}}{m_{c}}\right\|\right) \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
= & \left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\| \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
& +\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\frac{g_{k}}{m_{c}}\right\| \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
\leq & \left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\| \times\left\|x_{\mathrm{ck}}\right\|^{2} \\
& +\left(\left\|C_{t}^{\top}\right\|^{2} \times\|\beta\|^{2} \times \frac{\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\|}{m_{c}}\right)\left(\max _{1 \leq k \leq n}\left\|x_{\mathrm{ck}}\right\|\right) \\
& \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\|^{2}\right)^{1 / 2} \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2}\right)^{1 / 2}, \tag{A.53}
\end{align*}
$$

where the second step is due to the boundedness of $p_{k}(\cdot)$ and $v_{2, k}(\cdot)$, and the Cauchy-Schwarz inequality; and the last step is because of the Cauchy-Schwarz inequality. By Conditions (C.2), (C.3) and Lemma 5.1 in Stefanski and Carroll (1985), the first product term of (A.53) is $o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. Using Conditions (C.1), (C.2) and $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$, the second product term of $(\mathrm{A} .53)$ is $o_{p}(1)$ as $\min (m, n) \rightarrow \infty$. Thus, $\left\|\mathrm{H}_{s, \alpha, 2}(\theta)\right\|=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.

Step3: Show that $\left\|H_{s, \alpha, 3}(\theta)\right\|=o_{p}(1)$.
Since, in Appendix A.5, we obtain $\|\mathbf{A . 2 2}\|=o_{p}(1)$, as a result, we have that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}=\frac{1}{n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} X_{k}^{*}\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}+o_{p}(1) . \tag{A.54}
\end{equation*}
$$

Plugging (A.54) into $\mathrm{H}_{s, \alpha, 3}(\theta)$, we obtain that

$$
\begin{align*}
& \mathrm{H}_{s, \alpha, 3}(\theta)=\left(0_{p \times p} \frac{1}{n} \sum_{k=1}^{n}\left[C_{t}^{\boldsymbol{\top}} \hat{\Delta}_{k}\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}-C_{t}^{\boldsymbol{\top}} x_{\mathrm{ck}}\left\{Y_{k}-p_{k}\left(\theta ; x_{\mathrm{ck}}\right)\right\}\right]\right) \\
& =\left(0_{p \times p} \quad \frac{1}{n} \sum_{k=1}^{n}\left[C_{t}^{\boldsymbol{\top}} \hat{\Delta}_{k}\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}-C_{t}^{\boldsymbol{\top}} X_{k}^{*}\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}\right]+o_{p}(1)\right) \\
& =\left(\begin{array}{ll}
0_{p \times p} & M_{s}+o_{p}(1)
\end{array}\right), \tag{A.55}
\end{align*}
$$

where by plugging (A.4) and (A.5) into (A.55), we obtain that

$$
\begin{aligned}
M_{s}= & \frac{1}{n} \sum_{k=1}^{n}\left[C_{t}^{\top} \hat{\Delta}_{k}\left\{Y_{k}-p_{k}\left(\theta ; \hat{\Delta}_{k}\right)\right\}-C_{t}^{\top} X_{k}^{*}\left\{Y_{k}-p_{k}\left(\theta ; X_{k}^{*}\right)\right\}\right] \\
= & \frac{1}{n} \sum_{k=1}^{n} C_{t}^{\top} X_{k}^{*} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(\overline{\mathbf{U}}_{k}\right)\left[v_{1, k}\left(\theta ; x_{k, \xi}\right)-v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right] \\
& -\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} X_{k}^{*} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right) \\
& -\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} g_{k} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)-\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\boldsymbol{\top}} g_{k}\left\{Y_{k}-p_{k}\left(\theta ; x_{c k}\right)\right\} .
\end{aligned}
$$

By Condition (C.3), the first term of $M_{s}$ is $o_{p}(1)$; and the last term of $M_{s}$ is $o_{p}(1)$ is due to $E\left(Y_{k} \mid x_{\mathrm{ck}}, z_{k}\right)=p_{k}\left(\theta ; x_{\mathrm{ck}}\right)$. Now it remains to examine the middle term of $M_{s}$. Let

$$
A_{s}=-\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\top} g_{k} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)
$$

and

$$
B_{s}=-\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\top} X_{k}^{*} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)
$$

Then,

$$
\begin{aligned}
\left\|A_{s}\right\| & =\left\|-\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\top} g_{k} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right\| \\
& \leq\left\|C_{t}^{\top}\right\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| \times \frac{1}{m_{c} n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2},
\end{aligned}
$$

By the assumption that $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$ and the boundedness of $v_{1, k}(\cdot)$, we obtain that $\left\|A_{s}\right\|=o_{p}(1)$ as $\min (m, n) \rightarrow \infty$.

Similarly,

$$
\begin{aligned}
\left\|B_{s}\right\| & =\left\|-\frac{1}{m_{c} n} \sum_{k=1}^{n} C_{t}^{\top} X_{k}^{*} \operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top} \operatorname{vec}\left(g_{k}\right) v_{1, k}\left(\theta ; \Delta_{k, \xi}\right)\right\| \\
& \leq\left(\left\|C_{t}^{\top}\right\| \times\left\|\operatorname{vec}\left(\alpha \beta^{\top}\right)^{\top}\right\| / m_{c}\right) \times\left(\frac{1}{n} \sum_{k=1}^{n}\left\|X_{k}^{*}\right\|^{2}\right)^{1 / 2}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|g_{k}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

By Conditions (C.2) and (C.3) in Appendix A.1, we know that $\frac{1}{n} \sum_{k=1}^{n}\left\|x_{\mathrm{ck}}\right\|^{2}=O(1)$, and $\frac{1}{n} \sum_{k=1}^{n}\left\|\bar{U}_{k}\right\|^{2}=o_{p}(1)$ when $\min (m, n) \rightarrow \infty$. Consequently,

$$
\left(\frac{1}{n} \sum_{k=1}^{n}\left\|X_{k}^{*}\right\|^{2}\right)^{1 / 2} \leq\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{c k}\right\|^{2}+2\left\|x_{c k}\right\| \times\left\|\bar{U}_{k}\right\|+\left\|\bar{U}_{k}\right\|^{2}\right)^{1 / 2}=O_{p}(1)
$$

By the assumption $\sum_{k=1}^{n}\left\|g_{k}\right\|^{2}=O_{p}(n)$, we obtain that $\left\|B_{s}\right\|=o_{p}(1)$. As a result, $\left\|\mathrm{H}_{s, \alpha, 3}(\theta)\right\|=o_{p}(1)$ when $\min (m, n) \rightarrow \infty$.

Combining the results of Steps 1-3, we obtain that $\mathrm{H}_{n, \hat{\alpha}_{s}^{*}}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{n, \alpha}\left(\theta, x_{\mathrm{ck}}\right)=o_{p}(1)$. Following the same steps as Steps 1-3, we obtain that $\mathrm{H}_{n, \hat{\beta}_{s}^{*}}^{*}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{n, \beta}\left(\theta, x_{\mathrm{ck}}\right)=o_{p}(1)$. These two results show (A.51), and thus by the comments after (A.51), we obtain that

$$
\mathrm{H}_{n, s}\left(\theta, \hat{\Delta}_{k}\right)-\mathrm{H}_{n}(\theta)=o_{p}(1) .
$$

Finally, using the results we showed in Part I and Part II and following the same steps in Appendix A.7, we can show Theorem 2.4(a) by Conditions (C.1), (C.5), the Continuous Mapping Theorem and the asymptotic normal distribution of $\mathrm{H}_{n}^{-1 / 2}(\theta) \mathrm{S}_{n}(\theta)$ (Stefanski and Carroll, 1985). Theorem 2.4(b) is obtained by applying Slutsky's theorem.

## A. 11 Additional Simulation Results for Sections 2.4.12.4.2

The following tables record simulation results for different settings described in Section 2.4 .

- Table A. 1 records the simulation results for the row effects with $p_{x}=5, E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 2 records the simulation results for the column effects and covariate effects with $p_{x}=5, E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 3 records the simulation results for the row effects with $p_{x}=10, \sigma=0.25$, $E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 4 records the simulation results for the row effects with $p_{x}=10, \sigma=0.5$, $E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 5 records the simulation results for the row effects with $p_{x}=10, \sigma=0.75$, $E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 6 records the simulation results for the column effects and covariate effects with $p_{x}=10, \sigma=0.25, E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 7 records the simulation results for the column effects and covariate effects with $p_{x}=10, \sigma=0.5, E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 8 records the simulation results for the column effects and covariate effects with $p_{x}=10, \sigma=0.75, E_{k r}$ generated from the matrix normal distribution, and $n=1000$;
- Table A. 9 records the simulation results for the row effects with $p_{x}=20, E_{k r}$ generated from matrix normal distribution, and $n=1000$;
- Table A. 10 records the simulation results for the column effects and covariate effects with $p_{x}=20, E_{k r}$ generated from matrix normal distribution, and $n=1000$;
- Table A. 11 records the simulation results for the row effects with $p_{x}=5$, and $E_{k r}$ generated from the matrix t-distribution;
- Table A. 12 records the simulation results for the column effects and covariate effects with $p_{x}=5$, and $E_{k r}$ generated from the matrix t-distribution;
- Table A. 13 records the simulation results for the row effects with $p_{x}=20, E_{k r}$ generated from the matrix normal distribution, and $n=2000$;
- Table A. 14 records the simulation results for the column effects and covariate effects with $p_{x}=20, E_{k r}$ generated from the matrix normal distribution, and $n=2000$;
Table A.1: Simulation results for the row parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | $\sigma$ | m | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 0.25 | 2 | 1.192 | 0.062 | 0.063 | 94.4 | 0.004 | 1.232 | 0.063 | 0.062 | 93.8 | 0.004 | 1.206 | 0.063 | 0.061 | 89.6 | 0.004 |
|  |  | 5 | 1.423 | 0.060 | 0.060 | 94.4 | 0.004 | 1.434 | 0.060 | 0.060 | 94.0 | 0.004 | 1.437 | 0.060 | 0.060 | 92.4 | 0.004 |
|  |  | 10 | 1.442 | 0.060 | 0.060 | 93.8 | 0.004 | 1.448 | 0.060 | 0.060 | 93.8 | 0.004 | 1.442 | 0.060 | 0.059 | 93.0 | 0.004 |
|  | 0.5 | 2 | 0.987 | 0.071 | 0.072 | 94.4 | 0.005 | 1.109 | 0.074 | 0.069 | 92.4 | 0.006 | 1.013 | 0.073 | 0.067 | 92.0 | 0.005 |
|  |  | 5 | 1.398 | 0.064 | 0.064 | 95.2 | 0.004 | 1.424 | 0.064 | 0.063 | 94.2 | 0.004 | 1.444 | 0.064 | 0.062 | 94.6 | 0.004 |
|  |  | 10 | 1.495 | 0.063 | 0.062 | 94.6 | 0.004 | 1.529 | 0.063 | 0.061 | 94.2 | 0.004 | 1.501 | 0.063 | 0.061 | 94.4 | 0.004 |
|  | 0.75 | 2 | 0.864 | 0.083 | 0.083 | 94.2 | 0.007 | 0.969 | 0.088 | 0.077 | 91.0 | 0.008 | 0.849 | 0.086 | 0.074 | 90.8 | 0.007 |
|  |  | 5 | 1.385 | 0.069 | 0.070 | 95.0 | 0.005 | 1.412 | 0.071 | 0.068 | 94.6 | 0.005 | 1.450 | 0.071 | 0.066 | 94.0 | 0.005 |
|  |  | 10 | 1.576 | 0.066 | 0.065 | 94.6 | 0.004 | 1.669 | 0.067 | 0.064 | 94.4 | 0.005 | 1.599 | 0.067 | 0.063 | 94.0 | 0.005 |
| $\alpha_{3}$ | 0.25 | 2 | 0.488 | 0.078 | 0.079 | 94.4 | 0.006 | 0.534 | 0.079 | 0.078 | 94.2 | 0.006 | 0.520 | 0.079 | 0.077 | 91.8 | 0.006 |
|  |  | 5 | 0.348 | 0.079 | 0.076 | 94.4 | 0.006 | 0.362 | 0.079 | 0.076 | 94.2 | 0.006 | 0.361 | 0.079 | 0.075 | 91.6 | 0.006 |
|  |  | 10 | 0.404 | 0.078 | 0.075 | 95.0 | 0.006 | 0.412 | 0.078 | 0.075 | 95.0 | 0.006 | 0.410 | 0.078 | 0.075 | 92.6 | 0.006 |
|  | 0.5 | 2 | 0.574 | 0.087 | 0.090 | 95.8 | 0.008 | 0.690 | 0.090 | 0.087 | 93.6 | 0.008 | 0.645 | 0.090 | 0.085 | 93.4 | 0.008 |
|  |  | 5 | 0.317 | 0.084 | 0.082 | 93.6 | 0.007 | 0.331 | 0.086 | 0.080 | 93.0 | 0.007 | 0.344 | 0.086 | 0.079 | 93.2 | 0.007 |
|  |  | 10 | 0.414 | 0.081 | 0.078 | 93.2 | 0.007 | 0.449 | 0.081 | 0.077 | 93.4 | 0.007 | 0.438 | 0.081 | 0.077 | 93.2 | 0.007 |
|  | 0.75 | 2 | 0.735 | 0.100 | 0.106 | 96.4 | 0.010 | 0.928 | 0.107 | 0.098 | 93.6 | 0.011 | 0.808 | 0.106 | 0.094 | 93.0 | 0.011 |
|  |  | 5 | 0.348 | 0.091 | 0.089 | 94.2 | 0.008 | 0.314 | 0.095 | 0.086 | 92.2 | 0.009 | 0.373 | 0.095 | 0.084 | 92.0 | 0.009 |
|  |  | 10 | 0.422 | 0.085 | 0.082 | 92.8 | 0.007 | 0.489 | 0.086 | 0.081 | 93.8 | 0.007 | 0.468 | 0.086 | 0.079 | 93.6 | 0.007 |
| $\alpha_{4}$ | 0.25 | 2 | 0.500 | 0.079 | 0.079 | 95.4 | 0.006 | 0.517 | 0.080 | 0.078 | 94.6 | 0.006 | 0.497 | 0.080 | 0.077 | 91.6 | 0.006 |
|  |  | 5 | 0.232 | 0.077 | 0.076 | 94.2 | 0.006 | 0.225 | 0.077 | 0.076 | 93.6 | 0.006 | 0.223 | 0.077 | 0.075 | 92.4 | 0.006 |
|  |  | 10 | 0.330 | 0.077 | 0.075 | 94.8 | 0.006 | 0.329 | 0.077 | 0.075 | 94.6 | 0.006 | 0.326 | 0.077 | 0.075 | 91.6 | 0.006 |
|  | 0.5 | 2 | 0.796 | 0.090 | 0.091 | 94.6 | 0.008 | 0.948 | 0.093 | 0.087 | 93.2 | 0.009 | 0.910 | 0.092 | 0.085 | 92.8 | 0.009 |
|  |  | 5 | 0.216 | 0.082 | 0.081 | 94.2 | 0.007 | 0.177 | 0.083 | 0.080 | 93.4 | 0.007 | 0.180 | 0.083 | 0.078 | 92.6 | 0.007 |
|  |  | 10 | 0.409 | 0.081 | 0.078 | 94.6 | 0.006 | 0.410 | 0.081 | 0.077 | 94.0 | 0.007 | 0.399 | 0.081 | 0.077 | 93.4 | 0.007 |
|  | 0.75 | 2 | 1.105 | 0.106 | 0.106 | 95.6 | 0.011 | 1.318 | 0.112 | 0.098 | 92.0 | 0.013 | 1.337 | 0.109 | 0.095 | 91.6 | 0.012 |
|  |  | 5 | 0.253 | 0.088 | 0.089 | 94.2 | 0.008 | 0.151 | 0.091 | 0.085 | 92.2 | 0.008 | 0.190 | 0.092 | 0.084 | 91.2 | 0.008 |
|  |  | 10 | 0.511 | 0.085 | 0.083 | 95.4 | 0.007 | 0.518 | 0.087 | 0.081 | 94.4 | 0.008 | 0.501 | 0.087 | 0.079 | 93.6 | 0.008 |
| $\alpha_{5}$ | 0.25 | 2 | -0.075 | 0.078 | 0.079 | 93.8 | 0.006 | -0.044 | 0.079 | 0.078 | 94.0 | 0.009 | -0.041 | 0.079 | 0.077 | 91.2 | 0.006 |
|  |  | 5 | -0.110 | 0.077 | 0.076 | 95.0 | 0.006 | -0.100 | 0.077 | 0.076 | 94.6 | 0.007 | -0.093 | 0.077 | 0.075 | 92.6 | 0.006 |
|  |  | 10 | -0.040 | 0.077 | 0.075 | 93.8 | 0.006 | -0.034 | 0.077 | 0.075 | 94.0 | 0.006 | -0.035 | 0.077 | 0.075 | 93.4 | 0.006 |
|  | 0.5 | 2 | -0.087 | 0.089 | 0.090 | 94.8 | 0.008 | 0.014 | 0.093 | 0.087 | 92.8 | 0.012 | 0.015 | 0.091 | 0.085 | 92.8 | 0.008 |
|  |  | 5 | -0.124 | 0.082 | 0.081 | 95.2 | 0.007 | -0.103 | 0.082 | 0.080 | 95.0 | 0.008 | -0.066 | 0.083 | 0.079 | 93.6 | 0.007 |
|  |  | 10 | 0.020 | 0.080 | 0.078 | 94.4 | 0.006 | 0.050 | 0.080 | 0.077 | 94.8 | 0.007 | 0.038 | 0.080 | 0.077 | 94.4 | 0.006 |
|  | 0.75 | 2 | -0.059 | 0.103 | 0.105 | 96.0 | 0.011 | 0.033 | 0.110 | 0.097 | 90.8 | 0.012 | 0.041 | 0.108 | 0.094 | 90.8 | 0.012 |
|  |  | 5 | -0.100 | 0.089 | 0.089 | 95.2 | 0.008 | -0.093 | 0.092 | 0.086 | 92.6 | 0.008 | 0.000 | 0.092 | 0.084 | 92.2 | 0.008 |
|  |  | 10 | 0.084 | 0.084 | 0.082 | 94.8 | 0.007 | 0.160 | 0.086 | 0.081 | 94.4 | 0.007 | 0.129 | 0.086 | 0.080 | 93.6 | 0.007 |

Table A.2: Simulation results for the column parameters and covariate parameters with $p_{x}=5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 0.25 | 2 | -9.082 | 0.089 | 0.086 | 76.0 | 0.016 | 1.021 | 0.107 | 0.104 | 94.3 | 0.012 | 1.345 | 0.108 | 0.097 | 93.0 | 0.012 |
|  |  | 5 | -2.766 | 0.098 | 0.092 | 89.5 | 0.010 | 2.016 | 0.106 | 0.100 | 93.0 | 0.012 | 2.090 | 0.106 | 0.097 | 91.8 | 0.012 |
|  |  | 10 | -0.656 | 0.098 | 0.093 | 94.0 | 0.010 | 1.866 | 0.103 | 0.097 | 93.8 | 0.011 | 1.891 | 0.103 | 0.096 | 93.0 | 0.011 |
|  | 0.5 | 2 | -30.079 | 0.071 | 0.070 | 2.4 | 0.095 | -8.581 | 0.106 | 0.108 | 83.8 | 0.019 | -7.138 | 0.111 | 0.094 | 80.0 | 0.017 |
|  |  | 5 | -14.297 | 0.087 | 0.082 | 53.8 | 0.028 | -0.299 | 0.112 | 0.107 | 93.6 | 0.013 | 0.305 | 0.114 | 0.098 | 90.0 | 0.013 |
|  |  | 10 | -7.178 | 0.093 | 0.088 | 80.6 | 0.014 | 1.318 | 0.108 | 0.102 | 94.8 | 0.012 | 1.553 | 0.109 | 0.097 | 93.4 | 0.012 |
|  | 0.75 | 2 | -48.331 | 0.057 | 0.056 | 0.0 | 0.237 | -24.022 | 0.095 | 0.096 | 29.6 | 0.067 | -22.216 | 0.102 | 0.081 | 27.8 | 0.060 |
|  |  | 5 | -27.863 | 0.075 | 0.071 | 4.0 | 0.083 | -7.012 | 0.111 | 0.107 | 87.0 | 0.017 | -5.632 | 0.116 | 0.094 | 82.6 | 0.017 |
|  |  | 10 | -16.210 | $0.085$ | $0.080$ | $49.8$ | $0.033$ | -1.343 | 0.111 | 0.106 | 93.6 | $0.013$ | $-0.605$ | 0.114 | $0.096$ | $90.4$ | $0.013$ |
| $\beta_{2}$ | 0.25 | 2 | -9.744 | 0.062 | 0.061 | 84.8 | 0.006 | 0.259 | 0.072 | 0.070 | 95.3 | 0.005 | 0.591 | 0.072 | 0.068 | 94.0 | 0.005 |
|  |  | 5 | -3.367 | 0.068 | 0.064 | 90.5 | 0.005 | 1.397 | 0.072 | 0.068 | 91.8 | 0.005 | 1.479 | 0.073 | 0.067 | 91.5 | 0.005 |
|  |  | 10 | -1.050 | 0.069 | 0.065 | 94.3 | 0.005 | 1.466 | 0.071 | 0.067 | 95.3 | 0.005 | 1.491 | 0.071 | 0.067 | 95.0 | 0.005 |
|  | 0.5 | 2 | -30.756 | 0.051 | 0.052 | 17.8 | 0.026 | -9.485 | 0.071 | 0.072 | 87.4 | 0.007 | -8.020 | 0.074 | 0.067 | 86.2 | 0.007 |
|  |  | 5 | -15.170 | 0.061 | 0.059 | 72.0 | 0.010 | -1.251 | 0.076 | 0.072 | 91.2 | 0.006 | -0.573 | 0.077 | 0.068 | 89.2 | 0.006 |
|  |  | 10 | -7.738 | 0.064 | 0.062 | 86.0 | 0.006 | 0.728 | 0.073 | 0.070 | 95.2 | 0.005 | 0.964 | 0.073 | 0.068 | 94.8 | 0.005 |
|  | 0.75 | 2 | -48.876 | 0.043 | 0.043 | 0.0 | 0.062 | -24.866 | 0.066 | 0.065 | 50.6 | 0.020 | -23.071 | 0.071 | 0.060 | 47.2 | 0.018 |
|  |  | 5 | -28.757 | 0.055 | 0.052 | 23.0 | 0.024 | -8.107 | 0.076 | 0.071 | 88.6 | 0.007 | -6.552 | 0.080 | 0.067 | 85.2 | 0.007 |
|  |  | 10 | -16.656 | 0.059 | $0.058$ | 67.0 | 0.010 | -1.807 | $0.075$ | 0.072 | 93.2 | 0.006 | -1.068 | 0.077 | $0.067$ | 91.2 | $0.006$ |
| $\beta_{3}$ | 0.25 | 2 | -8.872 | 0.091 | 0.086 | 74.8 | 0.016 | 1.295 | 0.109 | 0.104 | 94.0 | 0.012 | 1.628 | 0.110 | 0.097 | 92.8 | 0.012 |
|  |  | 5 | -2.564 | 0.099 | 0.092 | 90.0 | 0.010 | 2.246 | 0.108 | 0.100 | 93.3 | 0.012 | 2.322 | 0.108 | 0.097 | 92.5 | 0.012 |
|  |  | 10 | -0.361 | 0.101 | 0.093 | 92.5 | 0.010 | 2.176 | 0.105 | 0.097 | 93.3 | 0.011 | 2.202 | 0.106 | 0.096 | 92.8 | 0.011 |
|  | 0.5 | 2 | -29.961 | 0.070 | 0.070 | 2.6 | 0.095 | -8.350 | 0.105 | 0.108 | 83.0 | 0.018 | -6.855 | 0.111 | 0.094 | 81.0 | 0.017 |
|  |  | $5$ | $-14.260$ | $0.087$ | 0.082 | 56.4 | $0.028$ | $-0.197$ | 0.113 | 0.107 | 93.8 | $0.013$ | 0.416 | 0.115 | 0.098 | 90.6 | $0.013$ |
|  |  | 10 | -6.912 | $0.093$ | 0.088 | 84.2 | 0.014 | 1.632 | 0.109 | 0.102 | 94.2 | 0.012 | 1.861 | 0.110 | 0.097 | 92.8 | 0.012 |
|  | 0.75 | 2 | -48.355 | 0.056 | 0.057 | 0.0 | 0.237 | -23.991 | 0.094 | 0.099 | 30.4 | 0.066 | -22.143 | 0.101 | 0.082 | 27.6 | 0.059 |
|  |  | $5$ | $-27.939$ | $0.075$ | $0.071$ | $3.2$ | $0.084$ | $-6.981$ | 0.112 | 0.107 | 88.2 | $0.018$ | -5.577 | 0.118 | 0.094 | 82.2 | $0.017$ |
|  |  | $10$ | $-15.961$ | $0.086$ | $0.081$ | $47.6$ | $0.033$ | $-0.992$ | $0.113$ | 0.108 | $93.6$ | $0.013$ | $-0.274$ | 0.115 | 0.098 | 92.4 | $0.013$ |
| $\beta_{4}$ | 0.25 | 2 | -8.910 | 0.085 | 0.086 | 76.8 | 0.015 | 1.228 | 0.101 | 0.103 | 97.3 | 0.011 | 1.559 | 0.102 | 0.097 | 95.8 | 0.011 |
|  |  | 5 | $-2.595$ | 0.093 | 0.091 | 93.0 | 0.009 | 2.192 | 0.101 | 0.099 | 94.8 | 0.011 | 2.272 | 0.101 | 0.096 | 93.8 | 0.011 |
|  |  | 10 | -0.472 | 0.094 | 0.093 | 93.5 | 0.009 | 2.051 | 0.098 | 0.097 | 95.0 | 0.010 | 2.078 | 0.099 | 0.096 | 94.8 | 0.010 |
|  | 0.5 |  | -29.879 |  |  | 1.8 |  | -8.249 |  |  |  |  | -6.769 | 0.106 |  |  |  |
|  |  | $5$ | $-14.119$ | $0.086$ | $0.082$ | $55.6$ | $0.027$ | $-0.097$ | $0.110$ | $0.106$ | $93.6$ | $0.012$ | $0.545$ | $0.112$ | $0.097$ | $90.2$ | $0.013$ |
|  |  | 10 | -7.024 | 0.091 | 0.088 | 82.8 | 0.013 | 1.463 | 0.105 | 0.102 | 94.4 | 0.011 | 1.697 | 0.106 | 0.097 | 92.6 | 0.011 |
|  | 0.75 | 2 | -48.241 | 0.054 | 0.056 | 0.0 | 0.236 | -23.813 | 0.090 | 0.098 | 30.4 | 0.065 | -21.962 | 0.096 | 0.083 | 26.8 | 0.058 |
|  |  | 5 | -27.700 | 0.076 | 0.070 | 4.0 | 0.082 | -6.787 | 0.112 | 0.104 | 86.8 | 0.017 | -5.339 | 0.116 | 0.091 | 82.8 | 0.016 |
|  |  | 10 | -16.030 | 0.084 | 0.079 | 45.8 | 0.033 | -1.153 | 0.110 | 0.105 | 92.8 | 0.012 | -0.438 | 0.111 | 0.095 | 90.0 | 0.012 |
| $\beta_{5}$ | 0.25 | 2 | -9.053 | 0.091 | 0.086 | 76.3 | 0.016 | 1.099 | 0.108 | 0.103 | 93.0 | 0.011 | 1.435 | 0.109 | 0.097 | 91.0 | 0.012 |
|  |  | 5 | $-2.578$ | 0.097 | 0.092 | 90.0 | 0.010 | 2.227 | 0.106 | 0.100 | 95.5 | 0.011 | 2.294 | 0.106 | 0.097 | 94.0 | 0.012 |
|  |  | 10 | -0.552 | 0.098 | 0.093 | 93.3 | 0.009 | 1.977 | 0.102 | 0.098 | 94.0 | 0.011 | 2.001 | 0.102 | 0.096 | 94.0 | 0.011 |
|  | 0.5 | 2 | -30.188 | 0.070 | 0.070 | 2.6 | 0.096 | -8.621 | 0.105 | 0.108 | 83.4 | 0.018 | -7.101 | 0.110 | 0.094 | 80.2 | 0.017 |
|  |  | $5$ | $-14.281$ | $0.087$ | $0.082$ | $54.2$ | $0.028$ | $-0.239$ | $0.112$ | $0.107$ | $93.4$ | $0.013$ | $0.369$ | $0.114$ | $0.098$ | $91.2$ | $0.013$ |
|  |  | 10 | -7.259 | 0.091 | 0.088 | 81.2 | 0.014 | 1.254 | 0.106 | 0.102 | 94.8 | 0.011 | 1.481 | 0.107 | 0.097 | 92.6 | 0.012 |
|  | 0.75 | 2 | -48.523 | 0.056 | 0.056 | 0.0 | 0.239 | -24.226 | 0.093 | 0.096 | 26.2 | 0.067 | -22.379 | 0.100 | 0.081 | 24.2 | 0.060 |
|  |  | 5 | -27.888 | 0.076 | 0.071 | 4.4 | 0.084 | -6.986 | 0.113 | 0.107 | 87.6 | 0.018 | -5.598 | 0.118 | 0.094 | 83.8 | 0.017 |
|  |  | 10 | -16.300 | 0.084 | 0.081 | 44.2 | 0.034 | -1.398 | 0.109 | 0.108 | 94.6 | 0.012 | -0.680 | 0.111 | 0.097 | 91.6 | 0.012 |
| $\gamma$ | 0.25 | 2 | -5.747 | 0.110 | 0.109 | 94.3 | 0.013 | 1.877 | 0.121 | 0.121 | 95.8 | 0.015 | 2.285 | 0.122 | 0.120 | 95.0 | 0.015 |
|  |  | 5 | -1.171 | 0.114 | 0.113 | 94.3 | 0.013 | 2.454 | 0.119 | 0.118 | 93.8 | 0.014 | 2.555 | 0.119 | 0.117 | 93.5 | 0.014 |
|  |  | 10 | 0.363 | 0.115 | 0.114 | 94.5 | 0.013 | 2.277 | 0.118 | 0.117 | 93.5 | 0.013 | 2.306 | 0.118 | 0.116 | 93.5 | 0.013 |
|  | 0.5 | 2 | -20.889 | 0.099 | 0.099 | 80.2 | 0.021 | -5.330 | 0.124 | 0.127 | 95.6 | 0.016 | -3.505 | 0.129 | 0.125 | 94.4 | 0.017 |
|  |  | $5$ | $-9.686$ | $0.106$ | $0.107$ | 91.0 | $0.014$ | 0.655 | $0.121$ | $0.123$ | 95.0 | $0.015$ | $1.363$ | 0.123 | $0.122$ | $94.4$ | $0.015$ |
|  |  | 10 | -4.921 | 0.109 | 0.110 | 94.4 | 0.012 | 1.381 | 0.117 | 0.120 | 94.2 | 0.014 | 1.603 | 0.118 | 0.119 | 94.0 | 0.014 |
|  | 0.75 | 2 | -33.506 | 0.089 | 0.090 | 53.0 | 0.036 | -16.864 | $7^{0.118}$ | 0.127 | 91.0 | 0.021 | -14.352 | 0.126 | 0.123 | 90.2 | 0.021 |
|  |  | 5 | -19.413 | 0.099 | 0.100 | 83.6 | 0.019 | -4.445 | $7_{0.123}$ | 0.126 | 94.4 | 0.016 | -2.740 | 0.127 | 0.124 | 93.8 | 0.016 |
|  |  | 10 | -11.602 | 0.104 | 0.106 | 91.6 | 0.014 | -0.771 | 0.120 | 0.124 | 94.6 | 0.014 | -0.082 | 0.120 | 0.122 | 94.0 | 0.015 |

Table A.3: Simulation results for the row parameters with $p_{x}=10, \sigma=0.25, E_{k r}$ generated is from the matrix normal distribution, and $n=1000$

| Parameter | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 2 | 1.767 | 0.071 | 0.069 | 93.6 | 0.005 | 1.766 | 0.075 | 0.068 | 92.4 | 0.006 | 1.588 | 0.074 | 0.069 | 93.8 | 0.006 |
|  | 5 | 1.353 | 0.065 | 0.064 | 94.8 | 0.004 | 1.306 | 0.067 | 0.063 | 93.4 | 0.004 | 1.318 | 0.067 | 0.064 | 94.0 | 0.004 |
|  | 10 | 1.368 | 0.063 | 0.061 | 94.2 | 0.004 | 1.369 | 0.063 | 0.061 | 93.6 | 0.004 | 1.369 | 0.063 | 0.061 | 93.6 | 0.004 |
| $\alpha_{3}$ | 2 | 1.179 | 0.090 | 0.088 | 95.0 | 0.008 | 1.008 | 0.094 | 0.087 | 92.6 | 0.009 | 0.954 | 0.095 | 0.088 | 92.0 | 0.009 |
|  | 5 | 1.187 | 0.084 | 0.081 | 92.8 | 0.007 | 1.158 | 0.086 | 0.080 | 91.8 | 0.008 | 1.133 | 0.087 | 0.080 | 92.4 | 0.008 |
|  | 10 | 1.138 | 0.081 | 0.078 | 93.2 | 0.007 | 1.109 | 0.082 | 0.078 | 93.2 | 0.007 | 1.107 | 0.082 | 0.078 | 93.2 | 0.007 |
| $\alpha_{4}$ | 2 | 0.640 | 0.091 | 0.087 | 93.4 | 0.008 | 0.495 | 0.096 | 0.086 | 92.0 | 0.009 | 0.502 | 0.097 | 0.087 | 92.6 | 0.009 |
|  | 5 | 0.766 | 0.085 | 0.081 | 93.0 | 0.007 | 0.780 | 0.088 | 0.080 | 92.4 | 0.008 | 0.765 | 0.088 | 0.080 | 92.2 | 0.007 |
|  | 10 | 0.686 | 0.079 | 0.078 | 94.4 | 0.006 | 0.672 | 0.080 | 0.077 | 93.6 | 0.006 | 0.673 | 0.080 | 0.077 | 92.8 | 0.006 |
| $\alpha_{5}$ | 2 | 0.768 | 0.088 | 0.087 | 95.0 | 0.008 | 0.667 | 0.094 | 0.086 | 93.2 | 0.009 | 0.604 | 0.094 | 0.087 | 92.8 | 0.009 |
|  | 5 | 0.855 | 0.082 | 0.080 | 93.4 | 0.007 | 0.909 | 0.086 | 0.080 | 90.6 | 0.008 | 0.874 | 0.086 | 0.080 | 91.0 | 0.007 |
|  | 10 | 0.679 | 0.078 | 0.078 | 95.0 | 0.006 | 0.689 | 0.080 | 0.077 | 94.6 | 0.006 | 0.680 | 0.080 | 0.077 | 95.0 | 0.007 |
| $\alpha_{6}$ | 2 | 1.186 | 0.088 | 0.087 | 94.2 | 0.008 | 0.984 | 0.091 | 0.086 | 91.6 | 0.008 | 0.866 | 0.092 | 0.087 | 92.4 | 0.008 |
|  | 5 | 1.332 | 0.084 | 0.081 | 93.8 | 0.007 | 1.316 | 0.087 | 0.080 | 92.8 | 0.008 | 1.317 | 0.087 | 0.080 | 92.6 | 0.008 |
|  | 10 | 1.044 | 0.080 | 0.078 | 94.0 | 0.006 | 1.011 | 0.081 | 0.078 | 93.2 | 0.007 | 1.008 | 0.081 | 0.078 | 93.0 | 0.007 |
| $\alpha_{7}$ | 2 | 1.289 | 0.088 | 0.087 | 95.0 | 0.008 | 1.096 | 0.094 | 0.086 | 91.8 | 0.009 | 0.982 | 0.094 | 0.087 | 92.4 | 0.009 |
|  | 5 | 1.353 | 0.082 | 0.081 | 94.0 | 0.007 | 1.359 | 0.084 | 0.081 | 93.2 | 0.007 | 1.392 | 0.085 | 0.081 | 93.0 | 0.007 |
|  | 10 | 1.293 | 0.079 | 0.078 | 94.2 | 0.006 | 1.272 | 0.080 | 0.077 | 93.6 | 0.007 | 1.273 | 0.080 | 0.077 | 93.4 | 0.007 |
| $\alpha_{8}$ | 2 | 1.154 | 0.086 | 0.087 | 95.4 | 0.008 | 1.101 | 0.091 | 0.086 | 94.0 | 0.008 | 1.025 | 0.092 | 0.087 | 93.2 | 0.009 |
|  | 5 | 1.120 | 0.081 | 0.081 | 95.0 | 0.007 | 1.170 | 0.083 | 0.081 | 94.0 | 0.007 | 1.158 | 0.083 | 0.081 | 93.6 | 0.007 |
|  | 10 | 1.047 | 0.078 | 0.078 | 94.2 | 0.006 | 1.060 | 0.079 | 0.078 | 93.2 | 0.006 | 1.070 | 0.080 | 0.078 | 93.8 | 0.006 |
| $\alpha_{9}$ | 2 | 1.213 | 0.094 | 0.088 | 93.6 | 0.009 | 1.143 | 0.099 | 0.087 | 91.2 | 0.010 | 1.037 | 0.098 | 0.088 | 91.6 | 0.010 |
|  | 5 | 1.007 | 0.086 | 0.080 | 93.2 | 0.007 | 0.978 | 0.087 | 0.080 | 91.2 | 0.008 | 0.978 | 0.087 | 0.080 | 92.0 | 0.008 |
|  | 10 | 0.852 | 0.084 | 0.078 | 92.8 | 0.007 | 0.815 | 0.084 | 0.078 | 92.8 | 0.007 | 0.817 | 0.085 | 0.078 | 92.4 | 0.007 |
| $\alpha_{10}$ | 2 | 1.071 | 0.092 | 0.087 | 93.6 | 0.009 | 0.957 | 0.097 | 0.086 | 90.4 | 0.009 | 0.911 | 0.097 | 0.087 | 91.4 | 0.009 |
|  | 5 | 1.030 | 0.088 | 0.081 | 91.8 | 0.008 | 1.100 | 0.091 | 0.081 | 90.6 | 0.008 | 1.059 | 0.090 | 0.081 | 90.0 | 0.008 |
|  | 10 | 0.881 | 0.079 | 0.077 | 94.2 | 0.006 | 0.867 | 0.081 | 0.077 | 94.6 | 0.007 | 0.866 | 0.081 | 0.077 | 93.8 | 0.007 |

Table A.4: Simulation results for the row parameters with $p_{x}=10, \sigma=0.5, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 2 | 0.113 | 0.091 | 0.088 | 93.4 | 0.008 | -0.359 | 0.104 | 0.085 | 89.2 | 0.011 | -0.455 | 0.102 | 0.087 | 88.4 | 0.010 |
|  | 5 | -0.492 | 0.077 | 0.073 | 94.0 | 0.006 | -1.053 | 0.084 | 0.073 | 90.8 | 0.007 | -0.891 | 0.083 | 0.074 | 92.0 | 0.007 |
|  | 10 | -0.466 | 0.074 | 0.067 | 91.6 | 0.006 | -0.720 | 0.077 | 0.066 | 89.4 | 0.006 | -0.633 | 0.075 | 0.067 | 91.8 | 0.006 |
| $\alpha_{3}$ | 2 | 0.491 | 0.121 | 0.111 | 93.8 | 0.015 | 0.256 | 0.133 | 0.108 | 89.8 | 0.018 | 0.672 | 0.133 | 0.112 | 89.6 | 0.018 |
|  | 5 | 0.946 | 0.098 | 0.094 | 95.6 | 0.010 | 0.936 | 0.104 | 0.093 | 92.2 | 0.011 | 1.036 | 0.106 | 0.095 | 91.8 | 0.011 |
|  | 10 | 0.965 | 0.087 | 0.085 | 93.2 | 0.008 | 0.949 | 0.090 | 0.085 | 92.0 | 0.008 | 1.019 | 0.092 | 0.085 | 92.0 | 0.009 |
| $\alpha_{4}$ | 2 | 0.382 | 0.116 | 0.111 | 93.0 | 0.014 | 0.139 | 0.123 | 0.107 | 91.2 | 0.015 | 0.194 | 0.122 | 0.111 | 93.6 | 0.015 |
|  | 5 | 0.138 | 0.099 | 0.093 | 91.8 | 0.010 | 0.062 | 0.108 | 0.092 | 88.2 | 0.012 | 0.118 | 0.109 | 0.094 | 86.6 | 0.012 |
|  | 10 | 0.449 | 0.086 | 0.085 | 93.4 | 0.008 | 0.472 | 0.091 | 0.085 | 90.8 | 0.008 | 0.493 | 0.092 | 0.085 | 92.8 | 0.008 |
| $\alpha_{5}$ | 2 | 0.527 | 0.113 | 0.112 | 94.6 | 0.013 | -0.145 | 0.125 | 0.108 | 89.0 | 0.016 | 0.284 | 0.122 | 0.111 | 91.2 | 0.015 |
|  | 5 | 0.561 | 0.098 | 0.093 | 93.2 | 0.010 | 0.700 | 0.110 | 0.092 | 88.6 | 0.012 | 0.694 | 0.108 | 0.094 | 89.0 | 0.012 |
|  | 10 | 0.117 | 0.084 | 0.085 | 94.6 | 0.007 | 0.137 | 0.089 | 0.084 | 94.4 | 0.008 | 0.303 | 0.089 | 0.085 | 94.8 | 0.008 |
| $\alpha_{6}$ | 2 | 1.042 | 0.106 | 0.111 | 94.6 | 0.011 | 0.890 | 0.111 | 0.108 | 94.0 | 0.012 | 1.067 | 0.112 | 0.111 | 92.6 | 0.013 |
|  | 5 | 1.783 | 0.102 | 0.095 | 95.0 | 0.011 | 1.807 | 0.109 | 0.094 | 90.0 | 0.012 | 1.934 | 0.112 | 0.096 | 88.2 | 0.013 |
|  | 10 | 0.959 | 0.085 | 0.086 | 96.0 | 0.007 | 0.865 | 0.088 | 0.085 | 94.4 | 0.008 | 0.749 | 0.089 | 0.086 | 94.0 | 0.008 |
| $\alpha_{7}$ | 2 | 0.501 | 0.108 | 0.111 | 95.0 | 0.012 | 0.513 | 0.118 | 0.108 | 91.2 | 0.014 | 0.473 | 0.120 | 0.111 | 90.2 | 0.015 |
|  | 5 | 0.881 | 0.099 | 0.094 | 93.6 | 0.010 | 1.027 | 0.107 | 0.093 | 93.2 | 0.012 | 1.174 | 0.107 | 0.096 | 93.2 | 0.012 |
|  | 10 | 0.187 | 0.087 | 0.085 | 94.0 | 0.008 | 0.228 | 0.090 | 0.085 | 92.8 | 0.008 | 0.280 | 0.090 | 0.086 | 92.4 | 0.008 |
| $\alpha_{8}$ | 2 | 0.133 | 0.108 | 0.110 | 95.6 | 0.012 | 0.094 | 0.119 | 0.107 | 88.6 | 0.014 | 0.164 | 0.117 | 0.110 | 93.2 | 0.014 |
|  | 5 | 0.320 | 0.092 | 0.094 | 95.8 | 0.008 | 0.621 | 0.102 | 0.093 | 94.4 | 0.010 | 0.646 | 0.101 | 0.095 | 95.0 | 0.010 |
|  | 10 | -0.259 | 0.082 | 0.085 | 95.2 | 0.007 | -0.098 | 0.086 | 0.084 | 93.8 | 0.007 | -0.039 | 0.088 | 0.085 | 94.8 | 0.008 |
| $\alpha_{9}$ | 2 | 1.497 | 0.133 | 0.112 | 87.0 | 0.018 | 1.488 | 0.144 | 0.109 | 84.6 | 0.021 | 1.989 | 0.142 | 0.114 | 88.2 | 0.021 |
|  | 5 | 1.249 | 0.108 | 0.094 | 90.8 | 0.012 | 1.473 | 0.115 | 0.092 | 87.4 | 0.013 | 1.267 | 0.114 | 0.095 | 87.6 | 0.013 |
|  | 10 | 0.676 | 0.085 | 0.085 | 94.4 | 0.007 | 0.568 | 0.087 | 0.084 | 94.2 | 0.008 | 0.608 | 0.089 | 0.085 | 94.4 | 0.008 |
| $\alpha_{10}$ | 2 | 0.182 | 0.114 | 0.112 | 94.6 | 0.013 | 0.029 | 0.122 | 0.109 | 91.0 | 0.015 | 0.360 | 0.120 | 0.113 | 91.6 | 0.014 |
|  | 5 | 0.694 | 0.103 | 0.094 | 92.6 | 0.011 | 1.011 | 0.111 | 0.094 | 90.2 | 0.013 | 0.866 | 0.110 | 0.096 | 90.6 | 0.012 |
|  | 10 | 0.239 | 0.084 | 0.085 | 94.6 | 0.007 | 0.260 | 0.088 | 0.084 | 91.6 | 0.008 | 0.224 | 0.090 | 0.085 | 92.6 | 0.008 |

Table A.5: Simulation results for the row parameters with $p_{x}=10, \sigma=0.75, E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 2 | 2.654 | 0.107 | 0.109 | 94.8 | 0.012 | 3.355 | 0.120 | 0.103 | 90.6 | 0.015 | 3.025 | 0.120 | 0.103 | 89.6 | 0.015 |
|  | 5 | 1.504 | 0.087 | 0.086 | 95.4 | 0.008 | 1.515 | 0.100 | 0.085 | 90.6 | 0.010 | 1.319 | 0.101 | 0.087 | 92.0 | 0.010 |
|  | 10 | 1.211 | 0.076 | 0.076 | 94.2 | 0.006 | 1.441 | 0.082 | 0.075 | 92.2 | 0.007 | 1.311 | 0.081 | 0.077 | 92.0 | 0.007 |
| $\alpha_{3}$ | 2 | 2.002 | 0.145 | 0.140 | 94.6 | 0.021 | 1.911 | 0.160 | 0.132 | 89.6 | 0.026 | 2.108 | 0.159 | 0.133 | 90.0 | 0.026 |
|  | 5 | 1.210 | 0.107 | 0.110 | 96.0 | 0.012 | 1.138 | 0.117 | 0.108 | 92.0 | 0.014 | 1.420 | 0.119 | 0.111 | 92.2 | 0.014 |
|  | 10 | 1.267 | 0.098 | 0.096 | 93.6 | 0.010 | 1.154 | 0.104 | 0.095 | 91.6 | 0.011 | 1.186 | 0.103 | 0.097 | 93.6 | 0.011 |
| $\alpha_{4}$ | 2 | 1.603 | 0.146 | 0.139 | 94.0 | 0.022 | 1.409 | 0.166 | 0.132 | 89.4 | 0.028 | 1.405 | 0.164 | 0.133 | 90.2 | 0.027 |
|  | 5 | 0.645 | 0.114 | 0.110 | 93.6 | 0.013 | 0.898 | 0.127 | 0.108 | 90.8 | 0.016 | 0.973 | 0.128 | 0.111 | 90.2 | 0.016 |
|  | 10 | 0.526 | 0.093 | 0.096 | 96.0 | 0.009 | 0.575 | 0.102 | 0.095 | 93.4 | 0.010 | 0.560 | 0.101 | 0.097 | 93.4 | 0.010 |
| $\alpha_{5}$ | 2 | 1.667 | 0.141 | 0.139 | 94.2 | 0.020 | 1.373 | 0.162 | 0.132 | 89.0 | 0.026 | 1.229 | 0.158 | 0.133 | 89.6 | 0.025 |
|  | 5 | 0.832 | 0.111 | 0.110 | 94.4 | 0.012 | 0.948 | 0.128 | 0.108 | 89.6 | $0.017$ | 1.121 | 0.126 | 0.111 | 90.0 | $0.016$ |
|  | 10 | 0.481 | 0.095 | 0.096 | 95.2 | $0.009$ | 0.452 | 0.105 | 0.095 | 91.8 | 0.011 | 0.597 | 0.107 | 0.097 | 92.4 | 0.011 |
| $\alpha_{6}$ | 2 | 2.235 | 0.142 | 0.139 | 95.0 | 0.021 | 1.836 | 0.156 | 0.132 | 92.2 | 0.025 | 2.068 | 0.156 | 0.134 | 91.8 | 0.025 |
|  | 5 | 1.862 | 0.117 | 0.111 | 93.2 | 0.014 | 1.940 | 0.132 | 0.108 | 90.8 | 0.018 | 2.348 | 0.133 | 0.112 | 88.6 | 0.018 |
|  | 10 | 1.062 | 0.098 | 0.096 | 95.8 | 0.010 | 1.006 | 0.106 | 0.095 | 92.6 | 0.011 | 0.960 | 0.104 | 0.097 | 92.6 | 0.011 |
| $\alpha_{7}$ | 2 | 2.045 | 0.142 | 0.139 | 95.6 | 0.021 | 1.947 | 0.162 | 0.132 | 90.0 | 0.027 | 1.701 | 0.153 | 0.132 | 91.6 | 0.024 |
|  | 5 | 1.292 | 0.111 | 0.110 | 95.2 | 0.012 | 1.323 | 0.120 | 0.108 | 91.4 | 0.015 | 1.658 | 0.122 | 0.111 | 92.8 | 0.015 |
|  | 10 | 1.201 | 0.099 | 0.096 | 93.6 | 0.010 | 1.203 | 0.108 | 0.094 | 90.4 | 0.012 | 1.042 | 0.107 | 0.096 | 90.0 | 0.012 |
| $\alpha_{8}$ | 2 | 1.854 | 0.141 | 0.139 | 94.8 | 0.020 | 1.855 | 0.157 | 0.131 | 89.0 | 0.025 | 1.772 | 0.156 | 0.132 | 89.4 | 0.024 |
|  | 5 | 0.883 | 0.115 | 0.110 | 94.2 | 0.013 | 1.163 | 0.127 | 0.108 | 91.2 | 0.016 | 1.216 | 0.123 | 0.111 | 92.6 | 0.015 |
|  | 10 | 0.843 | 0.098 | 0.097 | 95.6 | 0.010 | 1.014 | 0.106 | 0.096 | 92.0 | 0.011 | 1.075 | 0.108 | 0.098 | 92.6 | 0.012 |
| $\alpha_{9}$ | 2 | 1.968 | 0.139 | 0.140 | 95.0 | 0.020 | 2.044 | 0.155 | 0.132 | 89.4 | 0.024 | 2.067 | 0.149 | 0.133 | 91.6 | 0.023 |
|  | 5 | 1.075 | 0.116 | 0.110 | 94.2 | 0.013 | 1.209 | 0.125 | 0.108 | 92.0 | 0.016 | 1.275 | 0.127 | 0.110 | 90.2 | 0.016 |
|  | 10 | 0.764 | 0.100 | 0.096 | 93.4 | 0.010 | 0.675 | 0.106 | 0.095 | 91.4 | 0.011 | 0.724 | 0.107 | 0.097 | 92.2 | 0.012 |
| $\alpha_{10}$ | 2 | 1.908 | 0.137 | 0.139 | 96.2 | 0.019 | 1.979 | 0.157 | 0.132 | 90.6 | 0.025 | 1.926 | 0.155 | 0.134 | 90.4 | 0.024 |
|  | 5 | 1.000 | 0.116 | 0.110 | 93.8 | 0.014 | 1.340 | 0.131 | 0.108 | 90.4 | 0.017 | 1.379 | 0.130 | 0.112 | 91.2 | 0.017 |
|  | 10 | 0.854 | 0.093 | 0.095 | 95.4 | 0.009 | 0.800 | 0.101 | 0.094 | 93.0 | 0.010 | 0.646 | 0.100 | 0.096 | 94.2 | 0.010 |

Table A.6: Simulation results for the column parameters and covariate parameters with $p_{x}=10, \sigma=0.25$, $E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 2 | -22.270 | 0.086 | 0.086 | 28.2 | 0.058 | 0.646 | 0.144 | 0.154 | 95.8 | 0.018 | 5.362 | 0.172 | 0.138 | 89.8 | 0.027 |
|  | 5 | -7.806 | 0.115 | 0.103 | 80.8 | 0.019 | 6.956 | 0.158 | 0.146 | 93.8 | 0.028 | 8.594 | 0.169 | 0.134 | 88.4 | 0.033 |
|  | 10 | -0.734 | 0.123 | 0.112 | 91.2 | 0.014 | 8.384 | 0.151 | 0.138 | 93.0 | 0.028 | 8.911 | 0.154 | 0.129 | 89.8 | 0.030 |
| $\beta_{2}$ | 2 | -22.057 | 0.056 | 0.058 | 49.8 | 0.015 | 0.874 | 0.084 | 0.092 | 97.2 | 0.007 | 5.481 | 0.095 | 0.087 | 93.6 | 0.009 |
|  | 5 | -7.560 | 0.069 | 0.067 | 86.4 | 0.006 | 7.222 | 0.090 | 0.089 | 95.0 | 0.009 | 8.812 | 0.095 | 0.084 | 91.4 | 0.011 |
|  | 10 | -0.509 | 0.077 | 0.072 | 91.6 | 0.006 | 8.691 | 0.092 | 0.085 | 93.2 | 0.010 | 9.176 | 0.094 | 0.082 | 91.2 | 0.011 |
| $\beta_{3}$ | 2 | -21.780 | 0.088 | 0.087 | 28.4 | 0.057 | 1.264 | 0.144 | 0.155 | 96.4 | 0.019 | 5.909 | 0.167 | 0.138 | 90.4 | 0.028 |
|  | 5 | -7.475 | 0.113 | 0.104 | 81.4 | 0.018 | 7.318 | 0.157 | 0.147 | 94.2 | 0.027 | 8.926 | 0.167 | 0.134 | 86.8 | 0.032 |
|  | 10 | -0.351 | 0.122 | 0.113 | 94.2 | 0.014 | 8.822 | 0.149 | 0.139 | 93.2 | 0.028 | 9.298 | 0.152 | 0.131 | 90.2 | 0.030 |
| $\beta_{4}$ | 2 | -21.881 | 0.086 | 0.087 | 30.6 | 0.057 | 1.106 | 0.143 | 0.155 | 97.4 | 0.019 | 5.827 | 0.169 | 0.138 | 90.0 | 0.028 |
|  | 5 | -7.299 | 0.113 | 0.104 | 81.4 | 0.018 | 7.530 | 0.156 | 0.147 | 94.8 | 0.028 | 9.197 | 0.167 | 0.134 | 88.0 | 0.034 |
|  | 10 | -0.270 | 0.120 | 0.113 | 92.8 | 0.014 | 8.905 | 0.148 | 0.139 | 92.6 | 0.028 | 9.407 | 0.151 | 0.131 | 90.0 | 0.030 |
| $\beta_{5}$ | 2 | -22.028 | 0.092 | 0.087 | 29.4 | 0.058 | 0.999 | 0.150 | 0.155 | 95.4 | 0.020 | 5.605 | 0.175 | 0.139 | 89.8 | 0.028 |
|  | 5 | -7.541 | 0.113 | 0.104 | 81.6 | 0.018 | 7.271 | 0.156 | 0.147 | 95.6 | 0.026 | 8.895 | 0.167 | 0.135 | 88.6 | 0.032 |
|  | 10 | -0.411 | 0.121 | 0.113 | 92.2 | $0.014$ | 8.767 | 0.148 | 0.139 | 93.0 | 0.028 | 9.260 | 0.151 | 0.131 | 89.6 | $0.029$ |
| $\beta_{6}$ | 2 | -21.878 | 0.087 | 0.087 | 31.6 | 0.057 | 1.045 | 0.142 | 0.154 | 95.4 | 0.018 | 5.653 | 0.167 | 0.138 | 90.0 | 0.027 |
|  | 5 | -7.520 | 0.112 | 0.103 | 81.4 | 0.018 | 7.231 | 0.153 | 0.146 | 95.0 | 0.027 | 8.817 | 0.163 | 0.134 | 87.4 | 0.032 |
|  | 10 | -0.274 | 0.120 | 0.113 | 93.0 | 0.014 | 8.870 | 0.147 | 0.139 | 93.2 | 0.028 | 9.361 | 0.150 | 0.130 | 89.4 | 0.030 |
| $\beta_{7}$ | 2 | -22.354 | 0.063 | 0.059 | 48.0 | 0.017 | 0.507 | 0.094 | 0.093 | 92.8 | 0.008 | 4.904 | 0.104 | 0.087 | 90.2 | 0.011 |
|  | 5 | -7.928 | 0.075 | 0.067 | 84.0 | 0.007 | 6.762 | 0.096 | 0.088 | 94.2 | 0.010 | 8.331 | 0.101 | 0.084 | 88.8 | 0.011 |
|  | 10 | -0.905 | 0.082 | 0.072 | 90.4 | 0.007 | 8.206 | 0.096 | 0.085 | 91.6 | 0.011 | 8.700 | 0.098 | 0.081 | 89.2 | 0.011 |
| $\beta_{8}$ | 2 | -22.098 | 0.087 | 0.087 | 31.0 | 0.058 | 0.894 | 0.145 | 0.155 | 95.6 | 0.018 | 5.563 | 0.172 | 0.138 | 90.2 | 0.027 |
|  | 5 | -7.715 | 0.107 | 0.103 | 81.2 | 0.017 | 6.984 | 0.148 | 0.146 | 95.4 | 0.025 | 8.600 | 0.159 | 0.133 | 89.8 | 0.030 |
|  | 10 | -0.396 | 0.117 | 0.113 | 93.0 | 0.013 | 8.798 | 0.144 | 0.139 | 94.0 | 0.027 | 9.294 | 0.148 | 0.130 | 90.0 | 0.028 |
| $\beta_{9}$ | 2 | -22.361 | 0.089 | 0.086 | 30.6 | 0.059 | 0.510 | 0.144 | 0.154 | 95.6 | 0.019 | 5.276 | 0.169 | 0.138 | 90.6 | 0.028 |
|  | 5 | -7.864 | 0.112 | 0.103 | 80.0 | 0.019 | 6.866 | 0.153 | 0.145 | 94.8 | 0.026 | 8.556 | 0.165 | 0.133 | 87.6 | 0.032 |
|  | 10 | -0.868 | 0.119 | 0.112 | 91.2 | 0.014 | 8.241 | 0.145 | 0.138 | 92.8 | 0.027 | 8.762 | 0.149 | 0.129 | 89.4 | 0.029 |
| $\beta_{10}$ | 2 | -22.086 | 0.090 | 0.087 | 29.8 | 0.058 | 0.943 | 0.148 | 0.155 | 95.4 | 0.019 | 5.561 | 0.172 | 0.139 | 91.2 | 0.027 |
|  | 5 | -7.738 | 0.113 | 0.103 | 81.4 | 0.019 | 7.009 | 0.155 | 0.146 | 95.0 | 0.026 | 8.596 | 0.164 | 0.133 | 88.0 | 0.031 |
|  | 10 | -0.443 | 0.126 | 0.113 | 92.2 | 0.015 | 8.753 | 0.154 | 0.139 | 92.0 | 0.029 | 9.252 | 0.157 | 0.131 | 87.6 | 0.031 |
| $\gamma$ | 2 | -18.586 | 0.141 | 0.144 | 90.4 | 0.029 | 2.541 | 0.188 | 0.193 | 95.8 | 0.035 | 7.041 | 0.204 | 0.200 | 94.2 | 0.043 |
|  | 5 | -6.714 | 0.159 | 0.157 | 94.2 | 0.026 | 6.544 | 0.192 | 0.186 | 95.4 | 0.038 | 8.039 | 0.197 | 0.187 | 95.4 | 0.040 |
|  | 10 | 0.243 | 0.166 | 0.164 | 94.0 | 0.028 | 8.672 | 0.185 | 0.181 | 94.2 | 0.036 | 9.080 | 0.187 | 0.181 | 94.0 | 0.037 |

Table A.7: Simulation results for the column parameters and covariate parameters with $p_{x}=10, \sigma=0.5$, $E_{k r}$ is generated from the matrix normal distribution, and $n=1000$

| Parameter | Naive Estimator |  |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $m$ | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | SE | CR\% | ISE |
| $\beta_{1}$ | 2 | -52.666 | 0.056 | 0.057 | 0.0 | 0.280 | -28.457 | 0.103 | 0.121 | 30.8 | 0.093 | -21.440 | 0.141 | 0.113 | 42.6 | 0.066 |
|  | 5 | -32.473 | 0.082 | 0.076 | 5.0 | 0.112 | -7.924 | 0.144 | 0.148 | 84.0 | 0.027 | -1.934 | 0.183 | 0.134 | 84.4 | 0.029 |
|  | 10 | -18.415 | 0.097 | 0.091 | 43.0 | 0.042 | 2.192 | 0.151 | 0.151 | 96.0 | 0.020 | 5.662 | 0.171 | 0.135 | 89.2 | 0.028 |
| $\beta_{2}$ | 2 | -52.429 | 0.04 | 0.042 | 0.0 | 0.071 | -28.072 | 0.067 | 0.076 | 49.6 | 0.025 | -21.224 | 0.085 | 0.0 | 60. | 0.019 |
|  | $5$ | -32.211 | 0.052 | 0.053 | 17.4 | 0.030 | -7.476 | 0.085 | 0.089 | 88.6 | 0.009 | -1.494 | 0.102 | 0.086 | 88.4 | 0.009 |
|  | 10 | -18.340 | 0.064 | 0.061 | 60.2 | 0.013 | 2.495 | 0.095 | 0.092 | 95.4 | 0.008 | 5.874 | 0.105 | 0.087 | 91.6 | 0.010 |
| $\beta_{3}$ | 2 | -52.294 | 0.058 | 0.057 | 0.0 | 0.279 | -27.878 | 0.107 | 0.122 | 34.4 | 0.092 | -20.906 | 0.144 | 0.11 | 46.2 | 0.067 |
|  | 5 | -32.270 | 0.080 | 0.076 | 2.6 | 0.111 | -7.693 | 0.139 | 0.148 | 84.6 | 0.025 | -1.752 | 0.172 | 0.133 | 8 ¢ 8 | 0.026 |
|  | 10 | -18.175 | 0.094 | 0.091 | 45.6 | 0.042 | 2.496 | 0.147 | 0.152 | 97.0 | 0.020 | 5.826 | 0.164 | 0.13 | 91.0 | 0.027 |
| $\beta_{4}$ | 2 | -52.379 | 0.056 | 0.057 | 0.0 | 0.279 | -28.192 | 0.104 | 0.121 | 32.8 | 0.094 | -21.047 | 0.148 | 0.11 | 43.0 | 0.068 |
|  | 5 | -32.030 | 0.081 | 0.076 | 4.2 | 0.109 | -7.417 | 0.141 | 0.148 | 85.4 | 0.025 | -1.264 | 0.177 | 0.1 | 84 | 0.027 |
|  | 10 | -18.075 | 0.094 | 0.091 | 46.4 | 0.041 | 2.580 | 0.147 | 0.152 | 96.6 | 0.019 | 6.024 | 0.166 | 0.13 | 89. | 0.026 |
| $\beta_{5}$ | 2 | -52.587 | 0.060 | 0.057 | 0.0 | 0.284 | -28.256 | 0.111 | 0.122 | 31.4 | 0.096 | -21.159 | 0.155 | 0.114 | 43.2 | 0.071 |
|  | 5 | -32.334 | 0.080 | 0.076 | 3.2 | 0.111 | -7.729 | 0.141 | 0.148 | 86.6 | 0.025 | -1.675 | 0.180 | 0.134 | 85.2 | 0.026 |
|  | 10 | -18.244 | 0.095 | 0.091 | 44.4 | 0.041 | 2.463 | 0.149 | 0.152 | 95.6 | 0.019 | 5.906 | 0.167 | 0.136 | 90.6 | 0.026 |
| $\beta_{6}$ | 2 | -52.342 | 0.059 | 0.057 | 0.0 | 0.278 | -28.041 | 0.108 | 0.122 | 35.4 | 0.092 | -21.189 | 0.140 | 0.113 | 46.0 | 0.066 |
|  | 5 | -32.359 | 0.081 | 0.076 | 4.6 | 0.110 | -7.809 | 0.141 | 0.148 | 86.0 | 0.025 | -1.868 | 0.176 | 0.133 | 86 | 0.027 |
|  | 10 | -18.040 | 0.094 | 0.09 | 46.0 | 0.042 | 2.638 | 0.147 | 0.152 | 97.0 | 0.020 | 6.077 | 0.167 | 0.1 | 89.4 | 0.0 |
| $\beta_{7}$ | 2 | -52.702 | 0.045 | 0.042 | 0.0 | 0.070 | -28.498 | 0.077 | 0.076 | 47.2 | 0.02 | -22.055 | 0.093 | 0.075 | 58.2 | 0.020 |
|  | $5$ | -32.531 | 0.057 | 0.053 | 18.4 | 0.028 | -8.047 | 0.091 | 0.089 | 85.8 | 0.009 | -2.233 | 0.107 | 0.086 | 86.4 | 0.010 |
|  | 10 | -18.582 | 0.069 | 0.061 | 60.0 | 0.013 | 2.036 | 0.099 | 0.092 | 93.0 | 0.009 | 5.435 | 0.111 | 0.086 | 89.4 | 0.012 |
| $\beta_{8}$ | 2 | -52.643 | 0.057 | 0.057 | 0.0 | 0.282 | -28.411 | 0.106 | 0.121 | 33.0 | 0.094 | -21.462 | 0.147 | 0.113 | 42.2 | 0.067 |
|  | 10 | -32.484 | 0.077 | 0.076 | 3.6 | 0.110 | -8.022 | 0.136 | 0.147 | 84.6 | 0.023 | -2.009 | 0.174 | 0.133 | 83.6 | 0.024 |
|  | 10 | -18.253 | 0.091 | 0.091 | 43.6 | 0.040 | 2.505 | 0.143 | 0.152 | 97.0 | 0.018 | 5.971 | 0.162 | 0.135 | 92. | 0.026 |
| $\beta_{9}$ | 2 | -52.724 | 0.059 | 0.057 | 0.0 | 0.284 | -28.556 | 0.108 | 0.121 | 32.4 | 0.09 | -21.404 | 0.147 | 0.113 | 45.2 | 0.070 |
|  | 5 | -32.494 | 0.081 | 0.076 | 3.6 | 0.113 | -7.928 | 0.139 | 0.147 | 85.6 | 0.026 | -1.832 | 0.176 | 0.133 | 85.6 | 0.028 |
|  | 10 | -18.595 | 0.094 | 0.090 | 44.8 | 0.043 | 1.964 | 0.144 | 0.151 | 96.2 | 0.020 | 5.412 | 0.163 | 0.134 | 90.0 | 0.028 |
| $\beta_{10}$ | 2 | -52.535 | 0.058 | 0.057 | 0.0 | 0.281 | -28.187 | 0.107 | 0.122 | 35.4 | 0.093 | -21.184 | 0.147 | 0.114 | 45.0 | 0.066 |
|  | 5 | -32.471 | 0.080 | 0.076 | 4.2 | 0.112 | -7.952 | 0.140 | 0.147 | 86.2 | 0.026 | -2.083 | 0.174 | 0.132 | 82.8 | 0.026 |
|  | 10 | -18.220 | 0.099 | 0.091 | 44.2 | 0.043 | 2.571 | 0.156 | 0.153 | 95.4 | 0.022 | 6.015 | 0.174 | 0.136 | 89.6 | 0.030 |
| $\gamma$ | 2 | -45.479 | 0.112 | 0.115 | 47.4 | 0.066 | -24.041 | 0.168 | 0.176 | 89.2 | 0.046 | -16.506 | 0.200 | 0.194 | 91.4 | 0.051 |
|  | 5 | -28.972 | 0.134 | 0.134 | 79.6 | 0.038 | -7.191 | 0.195 | 0.190 | 94.4 | 0.034 | -1.634 | 0.220 | 0.202 | 92.6 | 0.039 |
|  | 10 | -16.182 | 0.148 | 0.147 | 88.2 | 0.028 | 2.534 | 0.194 | 0.190 | 95.0 | 0.036 | 5.755 | 0.209 | 0.196 | 94.0 | 0.0 |

0.75 , $=10, \sigma$

| Parameter | m | Naive Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias\% | ESE | ASE | CR\% | MSE | ns\% | ESE | ASE | CR\% | MS | ias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 2 | -69.007 | 0.043 | 0.043 | 0.0 | 0.478 | -49.632 | 0.081 | 0.088 | 0.4 | 0.254 | -45.330 | 0.098 | 0.081 | 1.8 | 0.217 |
|  | 5 | -50.538 | 0.063 | 0.059 | 0.0 | 0.261 | -26.463 | 0.118 | 0.124 | 37.8 | 0.086 | -19.865 | 0.159 | 0.115 | 47.4 | 0.064 |
|  | 10 | -34.915 | 0.077 | 0.073 | 2.2 | 0.130 | -10.144 | 0.136 | 0.145 | 80.8 | 0.028 | -4.092 | 0.171 | 0.130 | 81.4 | 0.026 |
| $\beta_{2}$ | 2 | -68.763 | 0.032 | 0.033 | 0.0 | 0.120 | -49.206 | 0.057 | 0.058 | 5.2 | 0.065 | -45.125 | 0.065 | 0.058 | 9.4 | 0.056 |
|  | 5 | -50.317 | 0.042 | 0.043 | 0.0 | 0.066 | -26.009 | 0.073 | 0.077 | 54.2 | 0.023 | -19.267 | 0.091 | 0.077 | 66.2 | 0.018 |
|  | 10 | -35.040 | 0.052 | 0.052 | 12.0 | 0.034 | -10.077 | 0.087 | 0.088 | 85.2 | 0.010 | -4.023 | 0.106 | 0.0 | 85.8 | 0.009 |
| $\beta_{3}$ | 2 | -68.699 | 0.044 | 0.043 | 0.0 | 0.475 | -49.108 | 0.083 | 0.089 | 0.8 | 0.250 | -44.886 | 0.103 | 0.081 | 2.4 | 0.215 |
|  | 5 | -50.409 | 0.061 | 0.059 | 0.0 | 0.260 | -26.336 | 0.113 | 0.124 | 40.4 | 0.085 | -19.708 | 0.149 | 0.114 | 49.8 | 0.062 |
|  | 10 | -34.754 | 0.074 | 0.074 | 1.2 | 0.129 | -9.959 | 0.130 | 0.145 | 83.4 | 0.027 | -4.090 | 0.160 | 0.130 | 83.8 | 0.024 |
| $\beta_{4}$ | 2 | -68.712 | 0.043 | 0.043 | 0.0 | 0.477 | -49.304 | 0.081 | 0.088 | 0.8 | 0.254 | -45.066 | 0.103 | 0.08 | 2.0 | 0.218 |
|  | 5 | -50.134 | 0.061 | 0.059 | 0.0 | 0.258 | -25.961 | 0.114 | 0.124 | 41.0 | 0.083 | -19.119 | 0.155 | 0.115 | 48.2 | 0.060 |
|  | 10 | -34.648 | 0.074 | 0.074 | 1.8 | 0.130 | -9.862 | 0.132 | 0.145 | 85.2 | 0.027 | -3.891 | 0.164 | 0.130 | 84.4 | 0.024 |
| $\beta_{5}$ | 2 | -68.995 | 0.046 | 0.043 | 0.0 | 0.481 | -49.603 | 0.085 | 0.088 | 1.2 | 0.257 | -45.263 | 0.107 | 0.081 | 3.0 | 0.220 |
|  | - | -50.448 | 0.061 | 0.059 | 0.0 | 0.261 | -26.332 | 0.113 | 0.124 | 39.0 | 0.085 | -19.579 | 0.158 | 0.116 | 46.6 | 0.063 |
|  | 10 | -34.851 | 0.075 | 0.073 | 1.8 | 0.130 | -10.035 | 0.133 | 0.145 | 82.0 | 0.027 | -3.966 | 0.165 | 0.130 | 82 | 0.024 |
| $\beta_{6}$ | 2 | -68.722 | 0.046 | 0.043 | 0.0 | 0.475 | -49.215 | 0.085 | 0.089 | 1.0 | 0.251 | -45.056 | 0.100 | 0.081 | 0.8 | 0.216 |
|  | 5 | -50.546 | 0.062 | 0.059 | 0.0 | 0.261 | -26.542 | 0.114 | 0.124 | 41.4 | 0.086 | -19.957 | 0.153 | 0.115 | 48.4 | 0.064 |
|  | 10 | -34.618 | 0.075 | 0.074 | 1.2 | 0.128 | -9.769 | 0.132 | 0.145 | 83.0 | 0.027 | -3.676 | 0.168 | 0.130 | 83.4 | 0.025 |
| $\beta_{7}$ | 2 | -68.983 | 0.035 | 0.033 | 0.0 | 0.120 | -49.594 | 0.062 | 0.058 | 5.2 | 0.066 | -45.641 | 0.073 | 0.058 | 9.4 | 0.058 |
|  | 5 | -50.577 | 0.046 | 0.043 | 0.6 | 0.066 | -26.571 | 0.078 | 0.077 | 51.0 | 0.024 | -19.855 | 0.098 | 0.077 | 60.4 | 0.019 |
|  | 10 | -35.054 | 0.057 | 0.051 | 13.0 | 0.035 | -10.301 | 0.092 | 0.088 | 83.4 | 0.011 | -4.267 | 0.113 | 0.085 | 83.6 | 0.012 |
| $\beta_{8}$ | 2 | -69.019 | 0.043 | 0.043 | 0.0 | 0.479 | -49.631 | 0.081 | 0.088 | 0.4 | 0.254 | -45.488 | 0.101 | 0.080 | 1.6 | 0.219 |
|  | 5 | $-50.574$ | 0.059 | 0.059 | 0.0 | 0.261 | -26.606 | 0.110 | 0.123 | 37.8 | 0.085 | -19.904 | 0.155 | 0.115 | 46.0 | 0.063 |
|  | 10 | -34.895 | 0.073 | 0.074 | 1.2 | 0.130 | -10.029 | 0.129 | 0.145 | 83.2 | 0.027 | -3.949 | 0.160 | 0.130 | 84.0 | 0.023 |
| $\beta_{9}$ | 2 | -68.999 | 0.045 | 0.043 | 0.0 | 0.479 | -49.675 | 0.084 | 0.088 | 0.8 | 0.255 | -45.331 | 0.104 | 0.081 | 2.2 | 0.219 |
|  | 5 | -50.546 | 0.063 | 0.059 | 0.0 | 0.262 | -26.426 | 0.115 | 0.124 | 39.4 | 0.086 | -19.641 | 0.153 | 0.115 | 48.4 | 0.063 |
|  | 10 | -35.113 | 0.076 | 0.073 | 1.4 | 0.132 | -10.385 | 0.131 | 0.144 | 81.0 | 0.028 | -4.367 | 0.162 | 0.129 | 83.0 | 0.025 |
| $\beta_{10}$ | 2 | -68.909 | 0.043 | 0.043 | 0.0 | 0.477 | -49.391 | 0.081 | 0.089 | 1.0 | 0.252 | -45.131 | 0.101 | 0.081 | 2.6 | 0.216 |
|  | 5 | $-50.558$ | 0.061 | 0.059 | 0.0 | 0.260 | -26.523 | 0.114 | 0.124 | 40.0 | 0.085 | -19.998 | 0.152 | 0.114 | 47.2 | 0.063 |
|  | 10 | -34.833 | 0.078 | 0.074 | 2.0 | 0.130 | -9.871 | 0.140 | 0.145 | 82.8 | 0.029 | -3.753 | 0.176 | 0.131 | 82.4 | 0.027 |
| $\gamma$ | 2 | -59.099 | 0.095 | 0.098 | 15.8 | 0.098 | -43.031 | 0.144 | 0.154 | 69.0 | 0.069 | -37.993 | 0.169 | 0.167 | 76.4 | 0.066 |
|  | 5 | -44.715 | 0.116 | 0.117 | 52.0 | 0.064 | -24.008 | 0.178 | 0.177 | 86.2 | 0.046 | -17.515 | 0.218 | 0.196 | 89.0 | 0.051 |
|  | 10 | -31.124 | 0.132 | 0.131 | 77.6 | 0.042 | -9.332 | 0.189 | 0.187 | 91.8 | 0.038 | -3.616 | 0.218 | 0.201 | 92.6 | 0.047 |

Table A.9: Simulation results for the row parameters with $p_{x}=20, E_{k r}$ is generated from matrix normal distribution, and $n=1000$

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 0.25 | 2 | 0.002 | 0.065 | 0.065 | 93.6 | 0.004 | -0.006 | 0.067 | 0.064 | 92.8 | 0.005 | -0.026 | 0.067 | 0.063 | 93.2 | 0.004 |
|  |  | 5 | -0.203 | 0.064 | 0.062 | 92.0 | 0.004 | -0.183 | 0.065 | 0.061 | 92.0 | 0.004 | -0.199 | 0.065 | 0.061 | 91.6 | 0.004 |
|  |  | 10 | -0.299 | 0.064 | 0.061 | 93.8 | 0.004 | -0.288 | 0.064 | 0.060 | 93.8 | 0.004 | -0.298 | 0.064 | 0.060 | 93.8 | 0.004 |
|  | 0.5 | 2 | 0.377 | 0.076 | 0.076 | 93.4 | 0.006 | 0.295 | 0.082 | 0.073 | 91.0 | 0.007 | 0.463 | 0.079 | 0.073 | 91.0 | 0.006 |
|  |  | 5 | -0.180 | 0.069 | 0.067 | 93.6 | 0.005 | -0.194 | 0.073 | 0.066 | 91.0 | 0.005 | -0.144 | 0.072 | 0.065 | 90.0 | 0.005 |
|  |  | 10 | -0.369 | 0.067 | 0.064 | 93.6 | 0.004 | -0.372 | 0.068 | 0.063 | 92.6 | 0.005 | -0.388 | 0.068 | 0.062 | 92.4 | 0.005 |
|  | 0.75 | 2 | 0.741 | 0.089 | 0.090 | 94.8 | 0.008 | 0.661 | 0.099 | 0.084 | 89.8 | 0.010 | 0.927 | 0.094 | 0.083 | 89.8 | 0.009 |
|  |  | 5 | -0.068 | 0.077 | 0.075 | 93.6 | 0.006 | -0.181 | 0.084 | 0.072 | 89.2 | 0.007 | -0.030 | 0.083 | 0.072 | 89.8 | 0.007 |
|  |  | 10 | -0.405 | 0.071 | 0.068 | 93.8 | 0.005 | -0.470 | 0.074 | 0.067 | 91.4 | 0.006 | -0.436 | 0.073 | 0.066 | 91.2 | 0.005 |
| $\alpha_{5}$ | 0.25 | 2 | 0.666 | 0.067 | 0.065 | 95.4 | 0.004 | 0.622 | 0.068 | 0.064 | 94.8 | 0.005 | 0.630 | 0.068 | 0.063 | 94.0 | 0.005 |
|  |  | 5 | 0.864 | 0.066 | 0.062 | 94.4 | 0.004 | 0.832 | 0.066 | 0.061 | 93.8 | 0.004 | 0.863 | 0.066 | 0.061 | 93.4 | 0.004 |
|  |  | 10 | 0.777 | 0.065 | 0.061 | 92.8 | 0.004 | 0.772 | 0.065 | 0.060 | 92.4 | 0.004 | 0.779 | 0.065 | 0.060 | 92.2 | 0.004 |
|  | 0.5 | 2 | 0.772 | 0.079 | 0.076 | 94.8 | 0.006 | 0.668 | 0.083 | 0.073 | 92.2 | 0.007 | 0.847 | 0.083 | 0.072 | 91.4 | 0.007 |
|  |  | 5 | 1.173 | 0.072 | 0.067 | 93.8 | 0.005 | 1.080 | 0.075 | 0.066 | 91.4 | 0.006 | 1.203 | 0.076 | 0.066 | 90.8 | 0.006 |
|  |  | 10 | 0.875 | 0.069 | 0.064 | 92.8 | 0.005 | 0.862 | 0.071 | 0.063 | 92.2 | 0.005 | 0.883 | 0.071 | 0.062 | 91.4 | 0.005 |
|  | 0.75 | 2 | 0.906 | 0.096 | 0.090 | 94.0 | 0.009 | 0.490 | 0.103 | 0.084 | 89.4 | 0.011 | 1.070 | 0.101 | 0.082 | 89.2 | 0.010 |
|  |  | 5 | 1.545 | 0.080 | 0.075 | 93.8 | 0.007 | 1.459 | 0.088 | 0.072 | 90.0 | 0.008 | 1.579 | 0.087 | 0.072 | 89.4 | 0.008 |
|  |  | 10 | 0.974 | 0.073 | 0.068 | 92.8 | 0.005 | 0.897 | 0.078 | 0.067 | 90.2 | 0.006 | 0.978 | 0.078 | 0.066 | 89.6 | 0.006 |
| $\alpha_{15}$ | 0.25 | 2 | -0.437 | 0.066 | 0.065 | 94.2 | 0.004 | -0.440 | 0.067 | 0.064 | 93.6 | 0.005 | -0.382 | 0.067 | 0.063 | 93.6 | 0.005 |
|  |  | 5 | -0.031 | 0.064 | 0.062 | 92.6 | 0.004 | 0.003 | 0.065 | 0.061 | 92.0 | 0.004 | 0.050 | 0.065 | 0.061 | 91.0 | 0.004 |
|  |  | 10 | -0.366 | 0.062 | 0.061 | 93.6 | 0.004 | -0.362 | 0.062 | 0.061 | 93.8 | 0.004 | -0.343 | 0.062 | 0.060 | 93.8 | 0.004 |
|  | 0.5 | 2 | -0.489 | 0.076 | 0.076 | 93.8 | 0.006 | -0.590 | 0.081 | 0.073 | 91.2 | 0.007 | -0.507 | 0.081 | 0.072 | 91.2 | 0.007 |
|  |  | 5 | 0.203 | 0.070 | 0.067 | 92.6 | 0.005 | 0.345 | 0.073 | 0.066 | 91.2 | 0.005 | 0.447 | 0.073 | 0.066 | 90.6 | 0.005 |
|  |  | 10 | -0.367 | 0.064 | 0.064 | 94.0 | 0.004 | -0.343 | 0.065 | 0.063 | 93.4 | 0.004 | -0.294 | 0.065 | 0.063 | 93.4 | 0.004 |
|  | 0.75 | 2 | -0.386 | 0.091 | 0.090 | 93.6 | 0.008 | -0.773 | 0.098 | 0.084 | 89.6 | 0.010 | -0.636 | 0.098 | 0.082 | 90.2 | 0.010 |
|  |  | 5 | 0.398 | 0.077 | 0.075 | 92.8 | 0.006 | 0.679 | 0.084 | 0.072 | 90.2 | 0.007 | 0.717 | 0.084 | 0.072 | 88.6 | 0.007 |
|  |  | 10 | -0.377 | 0.068 | 0.068 | 94.4 | 0.005 | -0.294 | 0.071 | 0.067 | 92.8 | 0.005 | -0.225 | 0.071 | 0.066 | 92.4 | 0.005 |
| $\alpha_{17}$ | 0.25 | 2 | 0.249 | 0.068 | 0.065 | 93.0 | 0.005 | 0.184 | 0.069 | 0.063 | 91.6 | 0.005 | 0.105 | 0.069 | 0.063 | 91.8 | 0.005 |
|  |  | 5 | 0.474 | 0.066 | 0.062 | 93.2 | 0.004 | 0.526 | 0.066 | 0.062 | 92.8 | 0.004 | 0.490 | 0.066 | 0.061 | 92.8 | 0.004 |
|  |  | 10 | 0.505 | 0.065 | 0.061 | 93.8 | 0.004 | 0.524 | 0.065 | 0.061 | 93.6 | 0.004 | 0.496 | 0.065 | 0.061 | 93.4 | 0.004 |
|  | 0.5 | 2 | -0.051 | 0.081 | 0.076 | 94.2 | 0.006 | -0.483 | 0.085 | 0.073 | 90.6 | 0.007 | -0.486 | 0.084 | 0.072 | 89.6 | 0.007 |
|  |  | 5 | 0.401 | 0.072 | 0.068 | 93.0 | 0.005 | 0.463 | 0.074 | 0.066 | 91.8 | 0.005 | 0.415 | 0.074 | 0.066 | 91.0 | 0.005 |
|  |  | 10 | 0.581 | 0.068 | 0.064 | 94.0 | 0.005 | 0.617 | 0.069 | 0.063 | 93.0 | 0.005 | 0.509 | 0.068 | 0.063 | 92.4 | 0.005 |
|  | 0.75 | 2 | -0.232 | 0.096 | 0.090 | 92.4 | 0.009 | -0.984 | 0.105 | 0.084 | 88.0 | 0.011 | -0.821 | 0.102 | 0.082 | 87.0 | 0.010 |
|  |  | 5 | 0.356 | 0.080 | 0.075 | 93.0 | 0.006 | 0.429 | 0.085 | 0.072 | 88.8 | 0.007 | 0.336 | 0.084 | 0.072 | 89.4 | 0.007 |
|  |  | 10 | 0.698 | 0.073 | 0.068 | 93.8 | 0.005 | 0.682 | 0.075 | 0.067 | 90.8 | 0.006 | 0.503 | 0.074 | 0.066 | 91.2 | 0.006 |

Table A.10: Simulation results for the column parameters and covariate parameters with $p_{x}=20, E_{k r}$ is generated from matrix normal distribution, and $n=1000$

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 0.25 | 2 | -5.318 | 0.068 | 0.065 | 89.4 | 0.005 | 11.888 | 0.090 | 0.085 | 93.2 | 0.012 | 13.599 | 0.095 | 0.080 | 87.6 | 0.014 |
|  |  | 5 | 4.042 | 0.074 | 0.070 | 94.4 | 0.006 | 12.894 | 0.086 | 0.080 | 90.0 | 0.012 | 13.225 | 0.086 | 0.077 | 87.8 | 0.012 |
|  |  | 10 | 8.187 | 0.077 | 0.072 | 91.8 | 0.008 | 13.122 | 0.084 | 0.078 | 88.6 | 0.011 | 13.189 | 0.084 | 0.076 | 87.8 | 0.011 |
|  | 0.5 | 2 | -32.826 | 0.052 | 0.051 | 13.2 | 0.030 | -4.330 | 0.085 | 0.085 | 92.6 | 0.008 | 1.835 | 0.100 | 0.080 | 88.8 | 0.010 |
|  |  | 5 | -13.194 | 0.064 | 0.061 | 75.4 | 0.008 | 8.560 | 0.090 | 0.086 | 95.2 | 0.010 | 11.434 | 0.095 | 0.081 | 88.8 | 0.012 |
|  |  | 10 | -2.197 | 0.070 | 0.066 | 92.4 | 0.005 | 12.799 | 0.089 | 0.084 | 89.8 | 0.012 | 13.935 | 0.092 | 0.079 | 86.6 | 0.013 |
|  | 0.75 | 2 | -52.880 | 0.042 | 0.041 | 0.0 | 0.072 | -25.355 | 0.073 | 0.073 | 54.2 | 0.021 | -19.527 | 0.087 | 0.069 | 58.6 | 0.017 |
|  |  | 5 | -30.474 | 0.056 | 0.052 | 20.8 | 0.026 | -2.713 | 0.088 | 0.086 | 91.2 | 0.008 | 2.820 | 0.098 | 0.080 | 89.0 | 0.010 |
|  |  | 10 | -14.951 | 0.062 | 0.060 | 70.6 | 0.009 | 8.347 | 0.090 | 0.088 | 94.8 | 0.010 | 11.715 | 0.098 | 0.081 | 87.0 | 0.013 |
| $\beta_{7}$ | 0.25 | 2 | -6.380 | 0.070 | 0.065 | 88.4 | 0.006 | 10.599 | 0.093 | 0.084 | 91.6 | 0.011 | 12.269 | 0.097 | 0.080 | 88.0 | 0.013 |
|  |  | 5 | 2.891 | 0.074 | 0.070 | 93.4 | 0.006 | 11.604 | 0.085 | 0.079 | 90.4 | 0.011 | 11.913 | 0.086 | 0.077 | 87.8 | 0.011 |
|  |  | 10 | 6.492 | 0.076 | 0.072 | 92.6 | 0.007 | 11.308 | 0.083 | 0.077 | 90.2 | 0.010 | 11.365 | 0.083 | 0.076 | 88.6 | 0.010 |
|  | 0.5 | 2 | -33.324 | 0.054 | 0.051 | 14.0 | 0.031 | -4.973 | 0.090 | 0.085 | 89.2 | 0.009 | 1.437 | 0.107 | 0.081 | 86.2 | 0.012 |
|  |  | 5 | -13.841 | 0.064 | 0.061 | 73.8 | 0.009 | 7.740 | 0.089 | 0.086 | 94.4 | 0.009 | 10.451 | 0.095 | 0.080 | 89.0 | 0.012 |
|  |  | 10 | -3.777 | 0.069 | 0.066 | 91.8 | 0.005 | 10.830 | 0.087 | 0.083 | 92.0 | 0.010 | 11.898 | 0.090 | 0.079 | 88.0 | 0.012 |
|  | 0.75 | 2 | -53.136 | 0.043 | 0.041 | 0.0 | 0.072 | -25.644 | 0.077 | 0.073 | 52.6 | 0.022 | -19.221 | 0.095 | 0.069 | 59.2 | 0.018 |
|  |  | 5 | -30.787 | 0.054 | 0.052 | 20.0 | 0.027 | -3.091 | 0.086 | 0.086 | 93.4 | 0.008 | 2.215 | 0.097 | 0.080 | 89.0 | 0.010 |
|  |  | 10 | -16.325 | 0.061 | 0.060 | 68.2 | 0.010 | 6.393 | 0.087 | 0.087 | 95.8 | 0.009 | 9.594 | 0.096 | 0.081 | 89.4 | 0.011 |
| $\beta_{18}$ | 0.25 | 2 | -5.482 | 0.069 | 0.065 | 89.2 | 0.006 | 11.856 | 0.092 | 0.085 | 91.8 | 0.012 | 13.478 | 0.096 | 0.080 | 86.8 | 0.014 |
|  |  | 5 | 3.740 | 0.072 | 0.070 | 93.6 | 0.006 | 12.599 | 0.083 | 0.080 | 90.6 | 0.011 | 12.899 | 0.084 | 0.077 | 88.4 | 0.011 |
|  |  | 10 | 7.642 | 0.076 | 0.073 | 91.8 | 0.007 | 12.559 | 0.082 | 0.078 | 89.2 | 0.011 | 12.609 | 0.082 | 0.076 | 88.4 | 0.011 |
|  | 0.5 | 2 | -32.966 | 0.054 | 0.051 | 15.0 | 0.030 | -4.212 | 0.090 | 0.086 | 90.2 | 0.009 | 1.946 | 0.108 | 0.081 | 87.2 | 0.012 |
|  |  | 5 | -13.472 | 0.062 | 0.061 | 74.8 | 0.008 | 8.308 | 0.086 | 0.087 | 95.4 | 0.009 | 11.191 | 0.092 | 0.081 | 89.4 | 0.012 |
|  |  | 10 | -2.843 | 0.069 | 0.067 | 93.0 | 0.005 | 12.067 | 0.088 | 0.084 | 91.8 | 0.011 | 13.156 | 0.090 | 0.080 | 87.2 | 0.013 |
|  | 0.75 | 2 | -53.059 | 0.043 | 0.041 | 0.2 | 0.072 | -25.376 | 0.077 | 0.074 | 52.4 | 0.022 | -19.330 | 0.095 | 0.069 | 58.6 | 0.018 |
|  |  | 5 | -30.767 | 0.053 | 0.052 | 16.8 | 0.026 | -3.101 | 0.083 | 0.085 | 92.8 | 0.007 | 2.634 | 0.095 | 0.080 | 91.0 | 0.009 |
|  |  | 10 | -15.689 | 0.062 | 0.060 | 68.4 | 0.010 | 7.400 | 0.090 | 0.088 | 94.4 | 0.009 | 10.690 | 0.097 | 0.082 | 89.4 | 0.012 |
| $\gamma$ | 0.25 | 2 | -2.627 | 0.141 | 0.128 | 92.0 | 0.020 | 11.683 | 0.170 | 0.153 | 92.2 | 0.032 | 13.283 | 0.176 | 0.152 | 90.6 | 0.035 |
|  |  | 5 | 5.026 | 0.147 | 0.134 | 93.2 | 0.022 | 12.518 | 0.162 | 0.146 | 92.4 | 0.030 | 12.766 | 0.162 | 0.145 | 91.4 | 0.030 |
|  |  | 10 | 8.488 | 0.152 | 0.136 | 92.0 | 0.025 | 12.661 | 0.161 | 0.143 | 91.0 | 0.030 | 12.690 | 0.161 | 0.142 | 90.8 | 0.030 |
|  | 0.5 | 2 | -24.324 | 0.117 | 0.110 | 78.6 | 0.028 | -1.557 | 0.166 | 0.158 | 93.8 | 0.027 | 4.628 | 0.192 | 0.163 | 91.6 | 0.038 |
|  |  | 5 | -9.146 | 0.131 | 0.123 | 93.6 | 0.019 | 8.871 | 0.167 | 0.156 | 93.4 | 0.030 | 11.595 | 0.176 | 0.156 | 91.2 | 0.034 |
|  |  | 10 | -0.090 | 0.144 | 0.129 | 92.8 | 0.021 | 12.340 | 0.169 | 0.151 | 92.0 | 0.032 | 13.367 | 0.172 | 0.150 | 91.0 | 0.034 |
|  | 0.75 | 2 | -39.361 | 0.100 | 0.097 | 48.6 | 0.049 | -18.064 | 0.148 | 0.149 | 89.0 | 0.030 | -11.826 | 0.177 | 0.155 | 89.2 | 0.035 |
|  |  | 5 | -22.959 | 0.116 | 0.111 | 80.2 | 0.027 | -0.878 | 0.161 | 0.157 | 96.2 | 0.026 | 4.557 | 0.180 | 0.162 | 93.0 | 0.033 |
|  |  | 10 | -10.420 | 0.133 | 0.121 | 90.6 | 0.020 | 8.353 | 0.172 | 0.157 | 93.2 | 0.031 | 11.517 | 0.181 | 0.157 | 91.2 | 0.036 |

Table A.11: Simulation results for the row parameters with $p_{x}=5$ and $E_{k r}$ is generated from the matrix $t$-distribution

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 0.25 | 2 | 0.800 | 0.063 | 0.063 | 95.2 | 0.004 | 0.851 | 0.064 | 0.062 | 94.4 | 0.004 | -57.518 | 6.518 | 106.238 | 93.8 | 42.570 |
|  |  | 5 | 0.977 | 0.061 | 0.060 | 94.6 | 0.004 | 0.964 | 0.061 | 0.060 | 94.6 | 0.004 | 0.933 | 0.061 | 0.060 | 94.2 | 0.004 |
|  |  | 10 | 0.908 | 0.061 | 0.059 | 93.4 | 0.004 | 0.887 | 0.061 | 0.059 | 93.6 | 0.004 | 0.925 | 0.062 | 0.059 | 93.6 | 0.004 |
|  | 0.5 | 2 | 0.834 | 0.071 | 0.072 | 96.2 | 0.005 | 0.892 | 0.083 | 0.069 | 91.8 | 0.007 | -10.776 | 1.328 | 0.367 | 92.4 | 1.767 |
|  |  | 5 | 1.110 | 0.065 | 0.064 | 95.8 | 0.004 | 1.027 | 0.066 | 0.063 | 93.6 | 0.004 | -10.047 | 1.234 | 7.733 | 93.0 | 1.525 |
|  |  | 10 | 0.961 | 0.064 | 0.062 | 94.4 | 0.004 | 0.876 | 0.064 | 0.061 | 94.4 | $0.004$ | -8.662 | 1.064 | 0.237 | 94.0 | 1.135 |
|  | 0.75 | 2 | 1.266 | 0.083 | 0.086 | 96.4 | 0.007 | 1.640 | 0.139 | 0.109 | 86.8 | 0.019 | -80.595 | 6.507 | 75.014 | 90.0 | 42.508 |
|  |  | 5 | 1.285 | 0.071 | 0.071 | 94.8 | 0.005 | 1.097 | 0.074 | 0.068 | 92.4 | 0.006 | -17.377 | 1.580 | 27.154 | 92.0 | 2.503 |
|  |  | 10 | 1.066 | 0.068 | 0.065 | 94.6 | 0.005 | 0.887 | 0.070 | 0.063 | 93.4 | 0.005 | 6.977 | 0.683 | 0.490 | 93.2 | 0.468 |
| $\alpha_{3}$ | 0.25 | 2 | 0.451 | 0.082 | 0.079 | 92.8 | 0.007 | 0.356 | 0.082 | 0.078 | 92.2 | 0.007 | -32.012 | 7.242 | 117.808 | 92.0 | 52.547 |
|  |  | 5 | 0.348 | 0.077 | 0.076 | 94.6 | 0.006 | 0.339 | 0.077 | 0.076 | 95.0 | 0.006 | 0.341 | 0.077 | 0.075 | 94.4 | 0.006 |
|  |  | 10 | 0.280 | 0.077 | 0.075 | 93.8 | 0.006 | 0.278 | 0.077 | 0.075 | 93.8 | 0.006 | 0.253 | 0.077 | 0.075 | 93.8 | 0.006 |
|  | 0.5 | 2 | 0.642 | 0.095 | 0.093 | 93.2 | 0.009 | 0.274 | 0.106 | 0.088 | 89.8 | 0.011 | -6.398 | 1.555 | 0.441 | 90.8 | 2.421 |
|  |  | 5 | 0.401 | 0.081 | 0.082 | 94.6 | 0.007 | 0.331 | 0.082 | 0.080 | 95.0 | 0.007 | -14.692 | 3.354 | 21.097 | 94.2 | 11.274 |
|  |  | 10 | 0.236 | 0.080 | 0.078 | 93.6 | 0.006 | 0.220 | 0.081 | 0.077 | 92.8 | 0.006 | -3.376 | 0.803 | 0.187 | 92.2 | 0.647 |
|  | 0.75 | 2 | 0.919 | 0.111 | 0.110 | 93.8 | 0.012 | 0.095 | 0.175 | 0.118 | 87.2 | 0.031 | -44.541 | 7.075 | 83.471 | 89.2 | 50.255 |
|  |  | 5 | 0.565 | 0.088 | 0.089 | 94.8 | 0.008 | 0.391 | 0.091 | 0.086 | 93.6 | 0.008 | -37.394 | 6.355 | 108.463 | 91.6 | 40.530 |
|  |  | 10 | 0.212 | 0.085 | 0.082 | 93.2 | 0.007 | 0.160 | 0.086 | 0.080 | 91.8 | 0.007 | 2.201 | 0.470 | 0.335 | 92.0 | 0.221 |
| $\alpha_{4}$ | 0.25 | 2 | 0.297 | 0.082 | 0.079 | 93.4 | 0.007 | 0.249 | 0.084 | 0.078 | 93.6 | 0.007 | -40.525 | 9.128 | 148.741 | 93.4 | 83.490 |
|  |  | 5 | 0.231 | 0.078 | 0.076 | 93.6 | 0.006 | 0.219 | 0.079 | 0.075 | 94.0 | 0.006 | 0.185 | 0.079 | 0.075 | 93.8 | 0.006 |
|  |  | 10 | 0.208 | 0.078 | 0.075 | 92.8 | 0.006 | 0.214 | 0.078 | 0.075 | 93.0 | 0.006 | 0.276 | 0.080 | 0.075 | 92.6 | 0.006 |
|  | 0.5 | 2 | 0.464 | 0.092 | 0.092 | 95.0 | 0.009 | 0.261 | 0.115 | 0.088 | 92.0 | 0.013 | -3.865 | 0.990 | 0.286 | 91.0 | 0.982 |
|  |  | $5$ | $0.287$ | $0.083$ | $0.081$ | $93.6$ | $0.007$ | $0.221$ | $0.085$ | $0.079$ | $93.6$ | $0.007$ | $-3.914$ | $0.934$ | $5.783$ | 93.0 | 0.873 |
|  |  | 10 | 0.184 | 0.081 | 0.078 | 93.4 | 0.007 | 0.200 | 0.082 | 0.077 | 93.0 | 0.007 | -14.752 | 3.333 | 0.725 | 92.0 | 11.129 |
|  | 0.75 | 2 | 0.621 | 0.106 | 0.109 | 96.4 | 0.011 | -0.013 | 0.209 | 0.139 | 87.8 | 0.044 | -48.374 | 7.884 | 94.127 | 89.4 | 62.395 |
|  |  | 5 | 0.401 | 0.091 | 0.089 | 94.2 | 0.008 | 0.226 | 0.096 | 0.086 | 91.6 | 0.009 | -23.895 | 5.121 | 94.935 | 92.2 | 26.283 |
|  |  | 10 | 0.194 | 0.085 | 0.082 | 92.8 | 0.007 | 0.207 | 0.089 | 0.080 | 92.2 | 0.008 | 21.815 | 4.841 | 3.370 | 91.4 | 23.482 |
| $\alpha_{5}$ | 0.25 | 2 | 0.525 | 0.081 | 0.080 | 96.4 | 0.007 | 0.463 | 0.082 | 0.078 | 94.4 | 0.007 | -13.274 | 3.069 | 49.558 | 95.0 | 9.437 |
|  |  | 5 | 0.395 | 0.076 | 0.076 | 96.2 | 0.006 | 0.404 | 0.076 | 0.076 | 96.2 | 0.006 | 0.426 | 0.076 | 0.075 | 96.0 | 0.006 |
|  |  | 10 | 0.331 | 0.075 | 0.075 | 95.8 | 0.006 | 0.334 | 0.075 | 0.075 | 95.4 | 0.006 | 0.319 | 0.075 | 0.075 | 95.4 | 0.006 |
|  | 0.5 | 2 | 0.692 | 0.096 | 0.094 | 95.4 | 0.009 | 0.503 | 0.120 | 0.088 | 90.6 | 0.014 | 2.029 | 0.348 | 0.146 | 90.8 | 0.121 |
|  |  | 5 | 0.483 | 0.081 | 0.081 | 95.4 | 0.007 | 0.512 | 0.083 | 0.080 | 94.6 | 0.007 | -19.266 | 4.424 | 28.006 | 93.6 | 19.613 |
|  |  | 10 | 0.330 | 0.078 | 0.078 | 95.8 | 0.006 | 0.333 | 0.078 | 0.077 | 95.0 | 0.006 | 2.758 | 0.555 | 0.155 | 94.6 | 0.308 |
|  | 0.75 | 2 | 0.738 | 0.112 | 0.112 | 95.2 | 0.013 | 0.155 | 0.245 | 0.148 | 87.8 | 0.060 | -38.500 | 7.562 | 94.497 | 88.8 | 57.327 |
|  |  | 5 | 0.639 | 0.089 | 0.089 | 96.0 | 0.008 | 0.698 | 0.096 | 0.086 | 93.0 | 0.009 | -74.278 | 13.108 | 231.923 | 93.0 | 172.360 |
|  |  | 10 | 0.390 | 0.083 | 0.082 | 95.0 | 0.007 | 0.397 | 0.083 | 0.080 | 93.8 | 0.007 | 3.302 | 0.674 | 0.493 | 92.8 | 0.455 |

Table A.12: Simulation results for the column parameters and covariate parameters with $p_{x}=5$, and $E_{k r}$ is generated from the matrix $t$-distribution

| Parameter | $\sigma$ | $m$ | Naive Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 0.25 | 2 | -7.712 | 0.097 | 0.089 | 81.4 | 0.015 | 2.657 | 0.114 | 0.109 | 93.6 | 0.014 | 4.197 | 0.299 | 12.283 | 89.8 | 0.091 |
|  |  | 5 | -1.664 | 0.098 | 0.093 | 92.4 | 0.010 | 3.164 | 0.106 | 0.101 | 93.2 | 0.012 | 3.362 | 0.106 | 0.098 | 92.6 | 0.012 |
|  |  | 10 | 0.610 | 0.099 | 0.094 | 93.4 | 0.010 | 3.164 | 0.103 | 0.098 | 93.8 | 0.012 | 3.305 | 0.105 | 0.097 | 93.4 | 0.012 |
|  | 0.5 | 2 | -27.410 | 0.084 | 0.077 | 9.4 | 0.082 | -4.163 | 0.128 | 0.147 | 90.8 | 0.018 | -1.953 | 0.353 | 0.111 | 83.6 | 0.125 |
|  |  | 5 | -13.034 | 0.089 | 0.084 | 63.1 | 0.025 | 1.224 | 0.113 | 0.110 | 94.4 | 0.013 | 1.824 | 0.125 | 0.101 | 90.2 | 0.016 |
|  |  | 10 | -5.924 | 0.093 | 0.089 | 85.8 | 0.012 | 2.708 | 0.108 | 0.104 | 94.4 | 0.012 | 2.691 | 0.134 | 0.098 | 92.0 | 0.019 |
|  | 0.75 | 2 | -44.550 | 0.071 | 0.067 | 0.2 | 0.203 | -15.745 | 0.189 | 13.524 | 66.9 | 0.060 | -16.907 | 0.194 | 0.145 | 53.9 | 0.066 |
|  |  | 5 | -26.147 | 0.078 | 0.075 | 9.0 | 0.075 | -4.423 | 0.115 | 0.117 | 90.6 | 0.015 | -3.833 | 0.136 | 0.102 | 85.8 | 0.020 |
|  |  | 10 | -14.652 | 0.086 | 0.082 | 53.7 | 0.029 | 0.662 | 0.114 | 0.110 | 94.4 | 0.013 | 1.228 | 0.128 | 0.100 | 90.2 | 0.016 |
| $\beta_{2}$ | 0.25 | 2 | -8.190 | 0.061 | 0.062 | 87.4 | 0.005 | 1.998 | 0.071 | 0.072 | 94.0 | 0.005 | 3.399 | 0.134 | 4.437 | 92.8 | 0.018 |
|  |  | 5 | -2.173 | 0.063 | 0.065 | 94.4 | 0.004 | 2.582 | 0.067 | 0.069 | 95.4 | 0.005 | 2.767 | 0.067 | 0.068 | 94.8 | 0.005 |
|  |  | 10 | 0.109 | 0.064 | 0.066 | 94.6 | 0.004 | 2.642 | 0.066 | 0.068 | 95.0 | 0.005 | 2.748 | 0.066 | 0.067 | 94.8 | 0.005 |
|  | 0.5 | 2 | -27.621 | 0.055 | 0.055 | 30.9 | 0.022 | -4.760 | 0.080 | 0.085 | 90.6 | 0.007 | 0.344 | 0.441 | 0.075 | 88.8 | 0.194 |
|  |  | 5 | -13.387 | 0.058 | 0.060 | 78.0 | 0.008 | 0.663 | 0.072 | 0.074 | 96.2 | 0.005 | 1.196 | 0.076 | 0.070 | 93.2 | 0.006 |
|  |  | 10 | -6.280 | 0.061 | 0.063 | 89.8 | 0.005 | 2.304 | 0.069 | 0.070 | 95.2 | 0.005 | 2.369 | 0.074 | 0.068 | 94.6 | 0.006 |
|  | 0.75 | 2 | -44.606 | 0.048 | 0.048 | 0.8 | 0.052 | -16.581 | 0.091 | 4.349 | 74.7 | 0.015 | -16.567 | 0.126 | 0.091 | 67.5 | 0.023 |
|  |  | 5 | -26.308 | 0.053 | 0.055 | 32.5 | 0.020 | -4.911 | 0.075 | 0.077 | 92.6 | 0.006 | -4.184 | 0.084 | 0.072 | 90.2 | 0.008 |
|  |  | 10 | -14.895 | 0.058 | 0.059 | 72.5 | 0.009 | 0.351 | 0.074 | 0.073 | 94.6 | 0.005 | 0.885 | 0.078 | 0.069 | 93.2 | 0.006 |
| $\beta_{3}$ | 0.25 | 2 | -8.125 | 0.093 | 0.089 | 81.2 | 0.015 | 2.215 | 0.110 | 0.108 | 95.0 | 0.013 | 3.043 | 0.193 | 7.308 | 92.0 | 0.038 |
|  |  | 5 | -1.990 | 0.096 | 0.092 | 93.0 | 0.010 | 2.806 | 0.103 | 0.100 | 94.6 | 0.011 | 3.031 | 0.103 | 0.098 | 93.0 | 0.011 |
|  |  | 10 | 0.250 | 0.099 | 0.094 | 94.0 | 0.010 | 2.784 | 0.103 | 0.098 | 93.8 | 0.011 | 2.943 | 0.106 | 0.097 | 92.2 | 0.012 |
|  | 0.5 | 2 | -27.809 | 0.079 | 0.076 | 7.8 | 0.084 | -4.622 | 0.120 | 0.131 | 89.8 | 0.016 | -4.177 | 0.135 | 0.109 | 85.2 | 0.020 |
|  |  |  | -13.294 | 0.085 | 0.084 | 60.3 | 0.025 | 0.856 | 0.107 | 0.110 | 95.4 | 0.011 | 1.484 | 0.119 | 0.101 | 91.6 | 0.014 |
|  |  | 10 | -6.295 | 0.094 | 0.089 | 84.8 | 0.013 | 2.263 | 0.108 | 0.103 | 94.8 | 0.012 | 2.239 | 0.143 | 0.098 | 92.0 | 0.021 |
|  | 0.75 | 2 | -44.931 | 0.066 | 0.066 | 0.0 | 0.206 | -16.508 | 0.135 | 7.287 | 65.7 | 0.045 | -18.277 | 0.156 | 0.129 | 50.5 | 0.058 |
|  |  | 5 | -26.303 | 0.076 | 0.075 | 8.4 | 0.075 | -4.733 | 0.109 | 0.117 | 92.0 | 0.014 | -4.035 | 0.132 | 0.103 | 86.4 | 0.019 |
|  |  | 10 | -15.017 | 0.087 | 0.082 | 51.1 | 0.030 | 0.162 | 0.113 | 0.109 | 95.0 | 0.013 | 0.866 | 0.129 | 0.099 | 90.0 | 0.017 |
| $\beta_{4}$ | 0.25 | 2 | -7.965 | 0.089 | 0.089 | 81.2 | 0.014 | 2.366 | 0.105 | 0.109 | 96.2 | 0.012 | 3.126 | 0.174 | 6.468 | 92.8 | 0.031 |
|  |  | 5 | -2.015 | 0.091 | 0.092 | 93.2 | 0.009 | 2.766 | 0.099 | 0.100 | 96.0 | 0.011 | 3.003 | 0.098 | 0.098 | 94.8 | 0.011 |
|  |  | 10 | 0.405 | 0.094 | 0.094 | 95.8 | 0.009 | 2.957 | 0.098 | 0.098 | 96.6 | 0.010 | 3.109 | 0.100 | 0.097 | 95.8 | 0.011 |
|  | 0.5 | 2 | -27.664 | 0.077 | 0.076 | 7.0 | 0.082 | -4.530 | 0.119 | 0.148 | 91.2 | 0.016 | -6.099 | 0.400 | 0.108 | 85.8 | 0.163 |
|  |  | 5 | $-13.444$ | $0.081$ | $0.084$ | 60.3 | 0.025 | $0.609$ | 0.104 | 0.109 | 96.6 | 0.011 | 1.262 | 0.114 | 0.100 | 93.8 | 0.013 |
|  |  | 10 | $-6.063$ | $0.089$ | 0.089 | 86.0 | 0.012 | 2.583 | 0.105 | 0.104 | 97.2 | 0.012 | 2.462 | 0.146 | 0.099 | 95.0 | 0.022 |
|  | 0.75 | 2 | -44.797 | 0.066 | 0.067 | 0.2 | 0.205 | -16.167 | 0.181 | 13.330 | 65.5 | 0.059 | -18.528 | 0.193 | 0.127 | 50.3 | 0.072 |
|  |  | $5$ | $-26.525$ | $0.072$ | $0.075$ | $6.6$ | $0.076$ | -5.175 | 0.106 | $0.116$ | 92.2 | $0.014$ | -4.451 | 0.126 | 0.103 | 88.8 | 0.018 |
|  |  | 10 | -14.757 | 0.084 | 0.082 | 52.7 | 0.029 | 0.596 | 0.114 | 0.110 | 97.0 | 0.013 | 1.191 | 0.127 | 0.100 | 93.4 | 0.016 |
| $\beta_{5}$ | 0.25 | 2 | -7.912 | 0.091 | 0.089 | 82.4 | 0.015 | 2.465 | 0.106 | 0.108 | 95.4 | 0.012 | 3.795 | 0.250 | 9.859 | 92.8 | 0.064 |
|  |  | 5 | -1.691 | $0.094$ | 0.093 | $94.4$ | 0.009 | 3.136 | 0.101 | 0.101 | 94.6 | 0.011 | 3.409 | 0.102 | 0.098 | 93.2 | 0.012 |
|  |  | 10 | 0.577 | 0.095 | 0.094 | 95.4 | 0.009 | 3.144 | 0.100 | 0.099 | 95.0 | 0.011 | 3.253 | 0.101 | 0.097 | 94.2 | 0.011 |
|  | 0.5 | 2 | -27.650 | 0.080 | 0.076 | 7.0 | 0.083 | -4.411 | 0.121 | 0.134 | 91.0 | 0.017 | -2.982 | 0.262 | 0.112 | 84.8 | 0.070 |
|  |  | $5$ | $-13.066$ | $0.084$ | $0.084$ |  | $0.024$ | $1.165$ | $0.107$ | $0.110$ | $95.4$ | $0.011$ | $1.915$ | $0.124$ | $0.102$ |  | $0.016$ |
|  |  | 10 | -5.942 | 0.091 | $0.089$ | 86.0 | 0.012 | 2.747 | 0.105 | 0.104 | 95.0 | 0.012 | $2.790$ | 0.122 | 0.099 | 92.6 | $0.016$ |
|  | 0.75 | 2 | -44.794 | 0.068 | 0.066 | 0.0 | 0.205 | -16.168 | 0.147 | 9.086 | 65.9 | 0.048 | -17.895 | 0.166 | 0.118 | 51.3 | 0.059 |
|  |  | $5$ | $-26.134$ | 0.075 | 0.076 | 9.8 | 0.074 | -4.449 | 0.108 | 0.117 | 92.4 | 0.014 | -3.751 | 0.134 | 0.110 | 88.8 | 0.019 |
|  |  | 10 | -14.687 | 0.085 | 0.082 | 54.5 | 0.029 | 0.735 | 0.113 | 0.110 | 94.0 | 0.013 | 1.277 | 0.126 | 0.100 | 90.6 | 0.016 |
| $\gamma$ | 0.25 | 2 | -5.858 | 0.112 | 0.110 | 92.6 | 0.013 | 1.638 | 0.122 | 0.122 | 95.2 | 0.015 | 2.940 | 0.165 | 5.709 | 93.4 | 0.028 |
|  |  | 5 | -1.226 | 0.112 | 0.113 | 94.2 | 0.013 | 2.335 | 0.116 | 0.118 | 94.6 | 0.014 | 2.520 | 0.117 | 0.118 | 94.2 | 0.014 |
|  |  | 10 | 0.814 | 0.114 | 0.114 | 94.4 | 0.013 | 2.718 | 0.117 | 0.117 | 94.4 | 0.014 | 2.793 | 0.117 | 0.116 | 94.4 | 0.014 |
|  | 0.5 | 2 | -20.298 | 0.103 | 0.100 | 81.4 | 0.021 | -4.354 | 0.129 | 0.134 | 94.0 | 0.017 | -3.651 | 0.139 | 0.130 | 91.6 | 0.020 |
|  |  | $5$ | $-9.749$ | $0.105$ | $0.107$ | 91.4 | $0.013$ | $0.474$ | 0.119 | 0.124 | 95.0 | 0.014 | 1.092 | 0.120 | 0.123 | 94.8 | 0.014 |
|  |  | 10 | -3.979 | 0.111 | 0.111 | 93.6 | 0.013 | 2.393 | 0.120 | 0.121 | 94.4 | 0.015 | 2.635 | 0.120 | 0.119 | 94.2 | 0.015 |
|  | 0.75 | 2 | -32.267 | 0.095 | 0.091 | 55.5 | 0.035 | -13.815 | 0.131 | 3.989 | 91.4 | 0.022 | -14.373 | 0.144 | 0.154 | 88.0 | 0.026 |
|  |  | 5 | -19.159 | 0.099 | 0.101 | 83.8 | 0.019 | -4.042 | 0.120 | 0.129 | 95.0 | 0.015 | -3.225 | 0.123 | 0.168 | 94.4 | 0.015 |
|  |  | 10 | -10.350 | 0.107 | 0.106 | 91.4 | 0.014 | 0.751 | 0.124 | 0.125 | 95.0 | 0.015 | 1.438 | 0.126 | 0.123 | 94.0 | 0.016 |

Table A.13: Simulation results for the row parameters with $p_{x}=20, E_{k r}$ is generated from the matrix normal distribution, and $n=2000$

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\alpha_{1}$ | 0.25 | 2 | 0.113 | 0.047 | 0.046 | 93.6 | 0.002 | 0.182 | 0.048 | 0.045 | 93.6 | 0.002 | 0.157 | 0.047 | 0.045 | 93.6 | 0.002 |
|  |  | 5 | -0.027 | 0.044 | 0.044 | 93.2 | 0.002 | -0.005 | 0.045 | 0.043 | 92.8 | 0.002 | 0.000 | 0.045 | 0.043 | 92.4 | 0.002 |
|  |  | 10 | -0.076 | 0.045 | 0.043 | 93.4 | 0.002 | -0.064 | 0.045 | 0.043 | 93.2 | 0.002 | -0.073 | 0.045 | 0.043 | 93.0 | 0.002 |
|  | 0.5 | 2 | 0.301 | 0.054 | 0.054 | 94.2 | 0.003 | 0.421 | 0.058 | 0.052 | 90.8 | 0.003 | 0.441 | 0.058 | 0.051 | 91.8 | 0.003 |
|  |  | 5 | -0.004 | 0.048 | 0.047 | 93.6 | 0.002 | 0.027 | 0.050 | 0.047 | 92.4 | 0.002 | 0.091 | 0.050 | 0.046 | 92.4 | 0.002 |
|  |  | 10 | -0.077 | 0.047 | 0.045 | 93.4 | 0.002 | -0.057 | 0.048 | 0.045 | 92.8 | 0.002 | -0.096 | 0.048 | 0.044 | 93.2 | 0.002 |
|  | 0.75 | 2 | 0.419 | 0.063 | 0.064 | 94.8 | 0.004 | 0.522 | 0.070 | 0.059 | 89.0 | 0.005 | 0.707 | 0.069 | 0.058 | 90.2 | 0.005 |
|  |  | 5 | 0.033 | 0.053 | 0.053 | 93.4 | 0.003 | 0.014 | 0.057 | 0.051 | 91.2 | 0.003 | 0.155 | 0.057 | 0.051 | 92.0 | 0.003 |
|  |  | 10 | -0.056 | 0.051 | 0.048 | 92.8 | 0.003 | -0.071 | 0.053 | 0.047 | 91.2 | 0.003 | -0.146 | 0.052 | 0.047 | 91.2 | 0.003 |
| $\alpha_{5}$ | 0.25 | 2 | 0.222 | 0.047 | 0.046 | 94.8 | 0.002 | 0.090 | 0.048 | 0.045 | 94.0 | 0.002 | 0.084 | 0.049 | 0.045 | 93.0 | 0.002 |
|  |  | 5 | 0.074 | 0.045 | 0.044 | 94.0 | 0.002 | 0.032 | 0.045 | 0.043 | 93.6 | 0.002 | 0.030 | 0.045 | 0.043 | 93.4 | 0.002 |
|  |  | 10 | -0.120 | 0.044 | 0.043 | 93.6 | 0.002 | -0.148 | 0.044 | 0.043 | 93.6 | 0.002 | -0.142 | 0.044 | 0.043 | 93.4 | 0.002 |
|  | 0.5 | 2 | 0.633 | 0.055 | 0.054 | 95.4 | 0.003 | 0.336 | 0.060 | 0.052 | 91.6 | 0.004 | 0.318 | 0.060 | 0.052 | 90.4 | 0.004 |
|  |  | 5 | 0.266 | 0.049 | 0.048 | 94.6 | $0.002$ | 0.189 | 0.050 | 0.047 | 92.8 | $0.002$ | 0.152 | 0.050 | 0.046 | $92.2$ | $0.003$ |
|  |  | 10 | -0.144 | $0.046$ | $0.045$ | 93.8 | $0.002$ | $-0.239$ | $0.046$ | 0.045 | 93.2 | $0.002$ | -0.220 | 0.047 | $0.044$ | $93.0$ | $0.002$ |
|  | 0.75 | 2 | 1.012 | 0.064 | 0.064 | 95.2 | 0.004 | 0.598 | 0.071 | 0.060 | 89.2 | 0.005 | 0.621 | 0.071 | 0.058 | 89.6 | 0.005 |
|  |  | 5 | 0.462 | 0.054 | 0.053 | 93.8 | 0.003 | 0.410 | 0.057 | 0.051 | 91.8 | 0.003 | 0.365 | 0.057 | 0.051 | 91.6 | 0.003 |
|  |  | 10 | -0.121 | 0.049 | 0.048 | 94.6 | 0.002 | -0.271 | 0.050 | 0.047 | 92.6 | 0.003 | -0.240 | 0.050 | 0.047 | 92.2 | 0.003 |
| $\alpha_{15}$ | 0.25 | 2 | 0.153 | 0.048 | 0.046 | 93.0 | 0.002 | 0.160 | 0.048 | 0.045 | 93.6 | 0.002 | 0.140 | 0.048 | 0.045 | 93.6 | 0.002 |
|  |  | 5 | 0.032 | 0.045 | 0.044 | 94.4 | 0.002 | 0.051 | 0.045 | 0.043 | 94.2 | 0.002 | 0.045 | 0.045 | 0.043 | 94.2 | 0.002 |
|  |  | 10 | -0.247 | 0.045 | 0.043 | 93.6 | 0.002 | -0.245 | 0.045 | 0.043 | 93.4 | 0.002 | -0.246 | 0.045 | 0.043 | 93.4 | 0.002 |
|  | 0.5 | 2 | 0.304 | 0.057 | 0.054 | 92.2 | 0.003 | 0.331 | 0.059 | 0.052 | 91.0 | 0.004 | 0.254 | 0.058 | 0.051 | 91.6 | 0.003 |
|  |  | $5$ | $-0.024$ | $0.048$ | $0.048$ | $93.8$ | $0.002$ | $0.018$ | $0.049$ | $0.047$ | 92.8 | $0.002$ | $0.019$ | 0.049 | 0.046 | 93.2 | $0.002$ |
|  |  | 10 | -0.514 | 0.047 | 0.045 | 93.8 | 0.002 | -0.545 | 0.048 | 0.045 | 93.2 | 0.002 | -0.540 | 0.048 | 0.044 | 92.8 | 0.002 |
|  | 0.75 | 2 | 0.452 | 0.068 | 0.064 | 92.0 | 0.005 | 0.426 | 0.073 | 0.059 | 88.2 | 0.005 | 0.497 | 0.070 | 0.058 | 90.2 | 0.005 |
|  |  | 5 | -0.086 | 0.054 | 0.053 | 93.6 | 0.003 | -0.070 | 0.056 | 0.051 | 91.4 | 0.003 | 0.013 | 0.055 | 0.051 | 92.0 | 0.003 |
|  |  | 10 | -0.711 | 0.050 | 0.048 | 95.0 | 0.003 | -0.834 | 0.052 | 0.047 | 92.0 | 0.003 | -0.817 | 0.052 | 0.047 | 91.6 | 0.003 |
| $\alpha_{17}$ | 0.25 | 2 | 0.242 | 0.044 | 0.046 | 94.8 | 0.002 | 0.139 | 0.045 | 0.045 | 94.8 | 0.002 | 0.155 | 0.045 | 0.045 | 94.6 | 0.002 |
|  |  | $5$ | $0.290$ | $0.044$ | $0.044$ | $94.8$ | $0.002$ | $0.276$ | $0.044$ | $0.044$ | $94.0$ | $0.002$ | $0.272$ | $0.044$ | $0.043$ | $94.0$ | $0.002$ |
|  |  | 10 | 0.152 | 0.043 | 0.043 | 95.4 | 0.002 | 0.149 | 0.043 | 0.043 | 95.6 | 0.002 | 0.145 | 0.043 | 0.043 | 95.6 | 0.002 |
|  | 0.5 | 2 | 0.495 | 0.051 | 0.054 | 96.2 | 0.003 | 0.287 | 0.055 | 0.052 | 94.4 | 0.003 | 0.296 | 0.054 | 0.052 | 93.4 | 0.003 |
|  |  | 5 | 0.511 | 0.048 | 0.048 | 93.6 | 0.002 | 0.436 | 0.049 | 0.047 | 93.0 | 0.002 | 0.446 | 0.049 | 0.046 | 93.0 | 0.002 |
|  |  | 10 | 0.187 | 0.045 | 0.045 | 95.2 | 0.002 | 0.172 | 0.046 | 0.045 | 94.8 | 0.002 | 0.150 | 0.046 | 0.044 | 94.4 | 0.002 |
|  | 0.75 | 2 | 0.704 | 0.060 | 0.064 | 96.4 | 0.004 | 0.556 | 0.066 | 0.060 | 93.6 | 0.004 | 0.561 | 0.064 | 0.058 | 92.8 | 0.004 |
|  |  | 5 | 0.794 | 0.054 | 0.053 | 93.8 | 0.003 | 0.621 | 0.057 | 0.051 | 91.8 | 0.003 | 0.677 | 0.056 | 0.051 | 91.8 | 0.003 |
|  |  | 10 | 0.229 | 0.049 | 0.048 | 95.0 | 0.002 | 0.163 | 0.050 | 0.047 | 93.6 | 0.002 | 0.133 | 0.050 | 0.047 | 94.4 | 0.002 |

Table A.14: Simulation results for the column parameters and covariate parameters with $p_{x}=20, E_{k r}$ is generated from the matrix normal distribution, and $n=2000$

| Parameter | $\sigma$ | $m$ | Naïve Estimator |  |  |  |  | Method 1 Estimator |  |  |  |  | Method 2 Estimator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE | Bias\% | ESE | ASE | CR\% | MSE |
| $\beta_{1}$ | 0.25 | 2 | -10.595 | 0.042 | 0.043 | 74.2 | 0.005 | 3.374 | 0.052 | 0.053 | 95.2 | 0.003 | 4.240 | 0.053 | 0.051 | 91.8 | 0.003 |
|  |  | 5 | -1.839 | 0.048 | 0.046 | 93.4 | 0.002 | 5.265 | 0.054 | 0.051 | 92.8 | 0.004 | 5.466 | 0.054 | 0.050 | 91.4 | 0.004 |
|  |  | 10 | 1.417 | 0.047 | 0.047 | 95.2 | 0.002 | 5.272 | 0.050 | 0.050 | 93.0 | 0.003 | 5.335 | 0.050 | 0.049 | 92.6 | 0.003 |
|  | 0.5 | 2 | -35.970 | 0.034 | 0.034 | 0.2 | 0.034 | -11.690 | 0.052 | 0.053 | 77.0 | 0.006 | -8.514 | 0.056 | 0.049 | 80.0 | 0.005 |
|  |  | 5 | -17.336 | 0.042 | 0.041 | 43.6 | 0.009 | 0.944 | 0.057 | 0.054 | 94.6 | 0.003 | 2.555 | 0.059 | 0.051 | 91.6 | 0.004 |
|  |  | 10 | -7.845 | 0.044 | 0.044 | 81.2 | 0.003 | 4.151 | 0.052 | 0.053 | 94.4 | 0.003 | 4.822 | 0.053 | 0.050 | 93.0 | 0.003 |
|  | 0.75 | 2 | -54.839 | 0.029 | 0.028 | 0.0 | 0.076 | -30.599 | 0.048 | 0.046 | 14.2 | 0.026 | -27.578 | 0.052 | 0.043 | 16.8 | 0.022 |
|  |  |  | -33.423 | 0.036 | 0.035 | 1.6 | 0.029 | -9.366 | 0.055 | 0.054 | 80.8 | 0.005 | -6.271 | 0.059 | 0.050 | 83.2 | 0.004 |
|  |  | 10 | -19.378 | 0.039 | 0.040 | 32.4 | 0.011 | -0.190 | 0.053 | 0.054 | 96.0 | 0.003 | 1.683 | 0.056 | 0.051 | 93.8 | 0.003 |
| $\beta_{7}$ | 0.25 | 2 | -9.698 | 0.046 | 0.043 | 74.8 | 0.004 | 4.378 | 0.056 | 0.054 | 92.4 | 0.004 | 5.233 | 0.057 | 0.051 | 90.0 | 0.004 |
|  |  | 5 | -1.327 | 0.049 | 0.046 | 93.4 | 0.002 | 5.800 | 0.054 | 0.051 | 92.8 | 0.004 | 6.006 | 0.055 | 0.050 | 91.2 | 0.004 |
|  |  | 10 | 2.022 | 0.050 | 0.047 | 94.6 | 0.003 | 5.899 | 0.053 | 0.050 | 91.8 | 0.004 | 5.961 | 0.053 | 0.049 | 91.2 | 0.004 |
|  | 0.5 | 2 | -35.004 | 0.036 | 0.035 | 1.4 | 0.032 | -10.349 | 0.055 | 0.054 | 78.4 | 0.006 | -7.291 | 0.060 | 0.050 | 80.2 | 0.005 |
|  |  | 5 | -16.922 | 0.044 | 0.041 | 43.6 | 0.009 | 1.417 | 0.058 | 0.055 | 94.2 | 0.003 | 3.022 | 0.059 | 0.051 | 91.6 | 0.004 |
|  |  | 10 | -7.287 | 0.047 | 0.044 | 83.8 | 0.003 | 4.777 | 0.056 | 0.053 | 94.0 | 0.004 | 5.452 | 0.057 | 0.051 | 91.0 | 0.004 |
|  | 0.75 | 2 | -53.947 | 0.029 | 0.028 | 0.0 | 0.074 | -29.202 | 0.049 | 0.047 | 14.6 | 0.024 | -26.254 | 0.053 | 0.043 | 18.8 | 0.020 |
|  |  | 5 | -33.083 | 0.038 | 0.035 | 0.8 | 0.029 | -8.926 | 0.056 | 0.054 | 81.8 | 0.005 | -5.870 | 0.060 | 0.050 | 82.8 | 0.004 |
|  |  | 10 | -18.885 | 0.042 | 0.040 | 36.2 | 0.011 | 0.398 | 0.057 | 0.054 | 94.4 | 0.003 | 2.294 | 0.059 | 0.051 | 92.2 | 0.004 |
| $\beta_{18}$ | 0.25 | 2 | -10.403 | 0.042 | 0.043 | 72.4 | 0.004 | 3.574 | 0.053 | 0.053 | 95.6 | 0.003 | 4.373 | 0.054 | 0.051 | 93.0 | 0.003 |
|  |  | 5 | -1.981 | 0.044 | 0.046 | 94.8 | 0.002 | 5.063 | 0.049 | 0.051 | 95.6 | 0.003 | 5.244 | 0.049 | 0.050 | 93.6 | 0.003 |
|  |  | 10 | 1.421 | 0.046 | 0.047 | 95.6 | 0.002 | 5.260 | 0.049 | 0.050 | 95.0 | 0.003 | 5.313 | 0.049 | 0.049 | 94.0 | 0.003 |
|  | 0.5 | 2 | -35.660 | 0.033 | 0.035 | 0.0 | 0.033 | -11.242 | 0.052 | 0.053 | 77.0 | 0.006 | -8.275 | 0.056 | 0.050 | 79.6 | 0.005 |
|  |  | 5 | -17.452 | 0.038 | 0.041 | 43.0 | 0.009 | 0.647 | 0.051 | 0.054 | 96.4 | 0.003 | 2.161 | 0.053 | 0.051 | 95.2 | 0.003 |
|  |  | 10 | -7.761 | 0.043 | 0.044 | 82.6 | 0.003 | 4.190 | 0.052 | 0.053 | 95.8 | 0.003 | 4.840 | 0.053 | 0.051 | 92.2 | 0.003 |
|  | 0.75 | 2 | -54.537 | 0.027 | 0.028 | 0.0 | 0.075 | -30.127 | 0.047 | 0.047 | 15.6 | 0.025 | -27.181 | 0.051 | 0.043 | 19.8 | 0.021 |
|  |  | 5 | -33.454 | 0.033 | 0.035 | 0.6 | 0.029 | -9.587 | 0.050 | 0.054 | 82.2 | 0.005 | -6.682 | 0.053 | 0.050 | 84.8 | 0.004 |
|  |  | 10 | -19.223 | 0.040 | 0.040 | 33.0 | 0.011 | -0.105 | 0.054 | 0.054 | 94.4 | 0.003 | 1.740 | 0.057 | 0.051 | 91.6 | 0.003 |
| $\gamma$ | 0.25 | 2 | -6.621 | 0.090 | 0.086 | 92.4 | 0.009 | 4.834 | 0.103 | 0.100 | 92.6 | 0.011 | 5.540 | 0.105 | 0.099 | 92.0 | 0.012 |
|  |  | 5 | 0.133 | 0.097 | 0.089 | 92.4 | 0.009 | 5.936 | 0.104 | 0.096 | 91.6 | 0.012 | 6.122 | 0.104 | 0.095 | 91.0 | 0.012 |
|  |  | 10 | 3.142 | 0.098 | 0.091 | 92.6 | 0.010 | 6.347 | 0.101 | 0.094 | 92.4 | 0.011 | 6.404 | 0.102 | 0.094 | 91.8 | 0.011 |
|  | 0.5 | 2 | -26.726 | 0.076 | 0.075 | 56.6 | 0.024 | -7.680 | 0.102 | 0.103 | 94.0 | 0.012 | -4.815 | 0.109 | 0.103 | 93.2 | 0.012 |
|  |  | 5 | -12.416 | 0.090 | 0.083 | 85.6 | 0.012 | 2.209 | 0.109 | 0.101 | 92.4 | 0.012 | 3.783 | 0.113 | 0.101 | 90.4 | 0.013 |
|  |  | 10 | -4.370 | 0.094 | 0.087 | 92.2 | 0.009 | 5.557 | 0.106 | 0.099 | 92.4 | 0.012 | 6.217 | 0.107 | 0.098 | 91.2 | 0.012 |
|  | 0.75 | 2 | -40.955 | 0.066 | 0.067 | 14.2 | 0.046 | -22.922 | 0.093 | 0.098 | 77.6 | 0.022 | -19.894 | 0.101 | 0.098 | 79.2 | 0.020 |
|  |  | 5 | -25.012 | 0.082 | 0.076 | 61.6 | 0.022 | -6.290 | 0.109 | 0.103 | 92.4 | 0.013 | -3.041 | 0.117 | 0.103 | 90.6 | 0.014 |
|  |  | 10 | -13.691 | 0.088 | 0.082 | 84.0 | 0.013 | 1.926 | 0.108 | 0.102 | 93.8 | 0.012 | 3.868 | 0.113 | 0.101 | 92.4 | 0.013 |

## Appendix B

## Technical Components for Chapter 3

## B. 1 Regularity Conditions

The following standard regularity conditions are required for the establishment of the asymptotic results for the estimators described in Chapter 3.
(C.1) The expectations of the first derivative of $U^{c}\left(\theta ; Y_{k}^{c}\right), U^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{v}^{o}(\eta)$ with respect to $\theta$ exist and are not singular at $\theta_{0}$.
(C.2) The second derivatives of $U^{c}\left(\theta ; Y_{k}^{c}\right), U^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{v}^{o}(\eta)$ with respect to $\theta$ exist and are continuous and bounded in a neighborhood of $\theta_{0}$.
(C.3) The expectation of the first derivative of $\delta_{k} S_{k}(\phi)$ with respect to $\phi$ exists and is not singular at $\phi_{0}$.
(C.4) The second derivatives of $U^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{v}^{o}(\eta)$ with respect to $\phi$ exist and are continuous and bounded in a neighborhood of $\phi_{0}$.

## B. 2 Proof of Theorem 3.1

Noting that $\hat{\theta}_{c}$ is the solution of (3.6), i.e., $\sum_{k=1}^{n} U^{c}\left(\hat{\theta}_{c} ; Y_{k}^{c}\right)=0$, we apply the first-order Taylor series expansion to the equation around $\theta_{0}$ :

$$
\begin{align*}
0= & \frac{1}{\sqrt{n}} \sum_{k=1}^{n} U^{c}\left(\hat{\theta}_{c} ; Y_{k}^{c}\right) \\
= & \frac{1}{\sqrt{n}} \sum_{k=1}^{n} U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)+\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}\left\{\sqrt{n}\left(\hat{\theta}_{c}-\theta_{0}\right)\right\}  \tag{B.1}\\
& +o_{p}\left(\sqrt{n}\left\|\hat{\theta}_{c}-\theta_{0}\right\|\right) .
\end{align*}
$$

By Condition (C.2) and the Central Limit Theorem, we have that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} U^{c}\left(\theta_{0} ; Y_{k}^{c}\right) \xrightarrow{d} N\left(0, \Sigma_{c}\right) \text { as } n \rightarrow \infty \tag{B.2}
\end{equation*}
$$

thus, $\frac{1}{\sqrt{n}} \sum_{k=1}^{n} U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)=O_{p}(1)$, where $\Sigma_{c}=\mathrm{E}\left\{U^{c}\left(\theta_{0} ; Y_{k}^{c}\right) U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)^{\top}\right\}$. By Condition (C.1) and the Law of Large Numbers, we obtain that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}} \xrightarrow{p} \Gamma_{c} \text { as } n \rightarrow \infty, \tag{B.3}
\end{equation*}
$$

thus, $\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U^{c}\left(\theta_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}=O_{p}(1)$, where $\Gamma_{c}=\mathrm{E}\left\{\partial U^{c}\left(\theta_{0} ; Y_{k}^{c}\right) / \partial \theta^{\top}\right\}$. Then (B.1) shows that

$$
\begin{equation*}
O_{p}(1)+O_{p}(1) \times \sqrt{n}\left\|\hat{\theta}_{c}-\theta_{0}\right\|+o_{p}\left(\sqrt{n}\left\|\hat{\theta}_{c}-\theta_{0}\right\|\right)=O_{p}(1), \tag{B.4}
\end{equation*}
$$

implying that $\left\|\hat{\theta}_{c}-\theta_{0}\right\|$ is of order $O_{p}\left(\frac{1}{\sqrt{n}}\right)$.
Combining (B.1), (B.2) and (B.3), then by the Slutsky's Theorem, we obtain that

$$
\sqrt{n}\left(\hat{\theta}_{c}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{c} \Sigma_{c}\left(\Gamma_{c}^{-1}\right)^{\top}\right) \text { as } n \rightarrow \infty .
$$

## B. 3 Proof of Theorem 3.2.

Noting that $\hat{\eta}_{v}=\left(\hat{\phi}_{v}^{\top}, \hat{\theta}_{v}^{\top}\right)^{\top}$ is the solution of (3.8), we apply the first-order Taylor series expansion around $\eta_{0}$ to (3.8) with $\eta$ replaced by $\hat{\eta}_{v}$ :

$$
\begin{align*}
\sqrt{n}\binom{\hat{\theta}_{v}-\theta_{0}}{\hat{\phi}_{v}-\phi_{0}}= & -\left(\begin{array}{cc}
\frac{1}{n} \sum_{k=1}^{n} \partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \theta^{\top} & \frac{1}{n} \sum_{k=1}^{n} \partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \phi^{\top} \\
0 & \frac{1}{n} \sum_{k=1}^{n} \delta_{k} \times \partial S_{k}\left(\phi_{0}\right) / \partial \phi^{\top}
\end{array}\right)^{-1}  \tag{B.5}\\
& \times \frac{1}{\sqrt{n}} \sum_{k=1}^{n}\binom{U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\delta_{k} S_{k}\left(\phi_{0}\right)}+o_{p}(1)
\end{align*}
$$

By Conditions (C.1)-(C.4), applying the Central Limit Theorem to the right-hand-side of (B.5) leads to the asymptotic distribution of $\sqrt{n}\left(\hat{\eta}_{v}-\eta_{0}\right)$ as

$$
\sqrt{n}\left(\hat{\eta}_{v}-\eta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{U}^{-1}\left(\eta_{0}\right) \Sigma_{U}\left(\eta_{0}\right)\left[\Gamma_{U}^{-1}\left(\eta_{0}\right)\right]^{\top}\right) \text { as } n \rightarrow \infty,
$$

where

$$
\Gamma_{U}\left(\eta_{0}\right)=\left(\begin{array}{cc}
E\left\{\partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \theta^{\top}\right\} & E\left\{\partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \phi^{\top}\right\} \\
0 & E\left\{\delta_{k} \times \partial S_{k}\left(\phi_{0}\right) / \partial \phi^{\top}\right\}
\end{array}\right)
$$

and

$$
\Sigma_{U}\left(\eta_{0}\right)=E\left\{\binom{U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\delta_{k} S_{k}\left(\phi_{0}\right)}\binom{U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\delta_{k} S_{k}\left(\phi_{0}\right)}^{\top}\right\} .
$$

Since $\theta$ is of primary interest, we explicitly express the asymptotic distribution of the estimator $\hat{\theta}_{v}$ by calculating the product of the corresponding block matrices:

$$
\sqrt{n}\left(\hat{\theta}_{v}-\theta_{0}\right) \xrightarrow{d} N\left(0, \Gamma_{c}^{-1} \Sigma_{\tau}\left[\Gamma_{c}^{-1}\right]^{\top}\right) \text { as } n \rightarrow \infty,
$$

where $\Gamma_{c}=\mathrm{E}\left\{\frac{\partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}, \Sigma_{\tau}=\mathrm{E}\left\{\Omega_{k}\left(\theta_{0}, \phi_{0}\right) \Omega_{k}\left(\theta_{0}, \phi_{0}\right)^{\top}\right\}$ and

$$
\begin{aligned}
\Omega_{k}\left(\theta_{0}, \phi_{0}\right)= & U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)-\mathrm{E}\left\{\partial U^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right) / \partial \phi\right\} \\
& \times\left[\mathrm{E}\left\{\partial \delta_{k} S_{k}\left(\phi_{0}\right) / \partial \phi\right\}\right]^{-1} \times\left\{\delta_{k} S_{k}\left(\phi_{0}\right)\right\}
\end{aligned}
$$

## Appendix C

## Technical Components for Chapter 4

## C. 1 Regularity Conditions

(C.1) Assume that $\lambda_{n} \rightarrow 0, a_{n}=O\left(\frac{1}{\sqrt{n}}\right)$ and $b_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(C.2) The expectations of $\partial U_{k}^{c}\left(\theta ; Y_{k}^{c}\right) / \partial \theta, \partial U_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \theta$ and $\partial U_{k}^{o v}(\eta) / \partial \eta$ exist and are not singular at $\theta_{0}$.
(C.3) $\partial^{2} U_{k}^{c}\left(\theta ; Y_{k}^{c}\right) / \partial \theta \partial \theta^{\top}, \partial^{2} U_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \theta \partial \theta^{\top}$ and $\partial^{2} U_{k}^{o v}(\eta) / \partial \eta \partial \eta^{\top}$ exist and are continuous and bounded in a neighborhood of $\theta_{0}$.
(C.4) The variance-covariance matrices of $U_{k, \mathrm{I}}^{c}\left(\theta ; Y_{k}^{c}\right), U_{k, \mathrm{I}}^{o}\left(\theta ; Y_{k}^{*}\right)$ and $U_{k, \mathrm{I}}^{o v}(\eta)$ are positive definite at $\theta_{0}$.
(C.5) The expectations of $\partial\left\{\delta_{k} S_{k}(\phi)\right\} / \partial \phi, \partial U_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \phi$ and $\partial U_{k}^{o v}(\eta) / \partial \phi$ exist and are not singular at $\phi_{0}$.
(C.6) $\partial^{2}\left\{\delta_{k} S_{k}(\phi)\right\} / \partial \phi \partial \phi^{\top}, \partial^{2} U_{k}^{o}\left(\theta ; Y_{k}^{*}\right) / \partial \phi \partial \phi^{\top}$ and $\partial^{2} U_{k}^{o v}(\eta) / \partial \phi \partial \phi^{\top}$ exist and are continuous and bounded in a neighborhood of $\phi_{0}$.

## C. 2 Proof of Theorem 4.1

Here, we show that given Conditions (C.1)-(C.5), there exists a solution to (4.1), $\hat{\theta}_{c}$, such that $\left\|\hat{\theta}_{c}-\theta_{0}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}+a_{n}\right)$, if $a_{n}$ and $b_{n}$ tend to 0 as $n \rightarrow \infty$. We adapt the techniques of Ma and Li (2010) to do this.

Define

$$
J_{1}=\left[\left.E\left\{\frac{\partial U_{k}^{c}\left(\theta ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}\right|_{\theta_{0}}\right]^{-1}, \quad \phi_{k}^{*}(\theta)=J_{1} U_{k}^{c}\left(\theta ; Y_{k}^{c}\right), \text { and } q_{\lambda_{n}}^{\prime}(\theta)=J_{1} p_{\lambda_{n}}^{\prime}(\theta)
$$

Write $\alpha_{n}=\frac{1}{\sqrt{n}}+a_{n}$ and $U_{k}^{c}(\theta)=U_{k}^{c}\left(\theta ; Y_{k}^{c}\right)$. Then we consider

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta)=0 \tag{C.1}
\end{equation*}
$$

To show Theorem 4.1, it suffices to show that $\hat{\theta}_{c}$ is a solution for (C.1) that satisfies $\left\|\hat{\theta}_{c}-\theta_{0}\right\|=O_{p}\left(\alpha_{n}\right)$ by the Brouwer fixed-point theorem.

Given Conditions (C.1) and (C.5), for any $\theta$ with $\left\|\theta-\theta_{0}\right\|=C \alpha_{n}$ for some positive constant $C$, we apply the first-order Taylor-series expansion to left-hand-side of (C.1) around $\theta_{0}$ and obtain that

$$
\begin{align*}
& \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta) \\
= & \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}\left(\theta_{0}\right)-\sqrt{n} q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)  \tag{C.2}\\
& +\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{\partial \phi_{k}^{*}\left(\theta_{0}\right)}{\partial \theta^{\top}}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\}-\sqrt{n} \frac{\partial q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)}{\partial \theta^{\top}}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\},
\end{align*}
$$

By Condition (C.5), we have that

$$
\begin{align*}
& \sqrt{n}\left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial \phi_{k}^{*}\left(\theta_{0}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \sqrt{n}\left(\theta-\theta_{0}\right)^{\top} J_{1}\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U_{k}^{c}\left(\theta_{0}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\}  \tag{C.3}\\
= & \sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\left\{1+o_{p}(1)\right\},
\end{align*}
$$

where the second step is due to the definition of $\phi_{k}^{*}(\cdot)$ and the last step is due to the definition of $J_{1}$ and the law of large numbers.

Furthermore, we have that

$$
\begin{align*}
& \left(\theta-\theta_{0}\right)^{\top} \sqrt{n}\left\{\frac{\partial q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \left(\theta-\theta_{0}\right)^{\top} \sqrt{n} J_{1} p_{\lambda_{n}}^{\prime \prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\}  \tag{C.4}\\
= & \left(\theta-\theta_{0}\right)^{\top} \sqrt{n} O\left(b_{n}\right)\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right),
\end{align*}
$$

where the first step is due to the definition of $q_{\lambda_{n}}^{\prime}(\theta)$, the second step is due to Condition (C.5) and the definition of $b_{n}$, and the last step is from Condition (C.1).

Then combining (C.2), (C.3) and (C.4), we obtain that for $\theta$ with $\left\|\theta-\theta_{0}\right\|=C \alpha_{n}$,

$$
\begin{align*}
& \left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta)\right\} \\
= & \left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}\left(\theta_{0}\right)-\sqrt{n} q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)\right\}+\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\left\{1+o_{p}(1)\right\}+o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right) \\
= & \left(\theta-\theta_{0}\right)^{\top} \times \operatorname{Constant}+\sqrt{n} C^{2} \alpha_{n}^{2}+o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right) \\
= & O_{p}\left(C \alpha_{n}\right)+\sqrt{n} C^{2} \alpha_{n}^{2}+o_{p}\left(\sqrt{n} C^{2} \alpha_{n}^{2}\right) \tag{C.5}
\end{align*}
$$

As long as $C$ is large enough, the second term in (C.5) dominates the first and third terms in (C.5). Thus, for any $\epsilon>0$, as long as $C$ is large enough, we have

$$
P\left[\left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{*}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta)\right\}>0\right] \geq 1-\epsilon,
$$

where $\left\|\theta-\theta_{0}\right\|=C \alpha_{n}$. By the Brouwer fixed-point theorm, with probability at least $1-\epsilon$, there exists at least one solution, $\hat{\theta}_{c}$ for (C.1) that satisfies $\left\|\hat{\theta}_{c}-\theta_{0}\right\|=O_{p}\left(\alpha_{n}\right)$.

## C. 3 Lemma 4.1 and the Proof.

Lemma 4.1. Let $U_{\mathrm{II}}^{c}(\theta)=\sum_{k=1}^{n} U_{k, \mathrm{II}}^{c}\left(\theta ; Y_{k}^{c}\right)$, where $U_{k, \mathrm{II}}^{c}\left(\theta ; Y_{k}^{c}\right)$ is defined in Section 4.1. If the conditions in Theorem 4.1 hold, then with the probability tending to one, for any $\theta$ satisfying $\left\|\theta-\theta_{0}\right\|=O\left(\frac{1}{\sqrt{n}}\right)$, we have that $\theta_{\mathrm{II}}=0$ are the solutions to $U_{\mathrm{II}}^{c}(\theta)=0$, where $\theta_{\mathrm{II}}=\left(\tilde{\alpha}_{\mathrm{II}}^{\top}, \beta_{\mathrm{II}}^{\top}, \gamma_{\mathrm{II}}^{\top}\right)^{\top}$ is subvector of $\theta$ defined in Section 4.1.

Let $d_{\theta}=\left(d_{\alpha}+d_{\beta}+d_{\gamma}\right)$ and $d_{2 \theta}=\left(d_{2 \alpha}+d_{2 \beta}+d_{2 \gamma}\right)$. For $j=1, \ldots, d_{2 \theta}, U_{\mathrm{II} j}^{c}(\theta)$ denote the $j$ th equation in $U_{\mathrm{II}}^{c}(\theta)$ and let $\theta_{\mathrm{II} j}$ denote the $j$ th component of $\theta_{\mathrm{II}}$. Then applying the first-order Taylor series expansion to $U_{\mathrm{II} j}^{c}(\theta)-n p_{\lambda_{n}}^{\prime}\left(\theta_{\mathrm{II} j}\right)$ around $\theta_{\mathrm{II} 0}$, we obtain that

$$
\begin{align*}
U_{\mathrm{I} j}^{c}(\theta)-n p_{\lambda_{n}}^{\prime}\left(\theta_{\mathrm{II} j}\right) & =U_{\mathrm{II} j}^{c}\left(\theta_{0}\right)+\sum_{k=1}^{d_{\theta}} \frac{\partial U_{\mathrm{II} j}^{c}(\theta)}{\partial \theta_{k}}\left(\theta_{k}-\theta_{k 0}\right) \\
& +\frac{1}{2} \sum_{k=1}^{d_{\theta}} \sum_{l=1}^{d_{\theta}} \frac{\partial^{2} U_{\mathrm{I} j}^{c}\left(\theta^{*}\right)}{\partial \theta_{k} \partial \theta_{l}}\left(\theta_{k}-\theta_{k 0}\right)\left(\theta_{l}-\theta_{l 0}\right)-n p_{\lambda_{n}}^{\prime}\left(\left|\theta_{\mathrm{II} j}\right|\right) \operatorname{sign}\left(\theta_{\mathrm{II} j}\right), \tag{C.6}
\end{align*}
$$

where $\theta^{*}$ lies between $\theta$ and $\theta_{0}$.
Now we examine the terms on the right hand side of (C.6) using the assumption that $\left\|\theta-\theta_{0}\right\|=O\left(\frac{1}{\sqrt{n}}\right)$. The first term has order $O_{p}(\sqrt{n})$ by Condition (C.4), the second term has order $O_{p}(\sqrt{n})$ due to Condition (C.6), and the third term has order $O_{p}(\sqrt{n})$ by Condition (C.5). Hence (C.6) becomes

$$
U_{\mathrm{II} j}^{c}(\theta)-n p_{\lambda_{n}}^{\prime}\left(\theta_{\mathrm{II} j}\right)=-\sqrt{n}\left\{\sqrt{n} p_{\lambda_{n}}^{\prime}\left(\left|\theta_{\mathrm{II} j}\right|\right) \operatorname{sign}\left(\theta_{\mathrm{II} j}\right)+O_{p}(1)\right\} .
$$

By Condition (C.1), $\lambda_{n}$ is sufficiently small, $a_{n}=O\left(\frac{1}{\sqrt{n}}\right)$ when $n$ is large enough, then $\sqrt{n} p_{\lambda_{n}}^{\prime}\left(\left|\theta_{\mathrm{II} j}\right|\right)=\infty$ by Condition (4.5). Thus the $\operatorname{sign}$ of $U_{\mathrm{II} j}^{c}(\theta)-n p_{\lambda_{n}}^{\prime}\left(\theta_{\mathrm{II} j}\right)$ is decided by the negative of $\operatorname{sign}\left(\theta_{\mathrm{II} j}\right)$. By the continuity of $U_{\mathrm{II} j}^{c}(\theta)-n p_{\lambda_{n}}^{\prime}\left(\theta_{\mathrm{II} j}\right)$, we obtain that it is zero at $\theta_{\mathrm{II} j}=0$.

## C. 4 Proof of Theorem 4.2

Theorem 4.2(a) comes from Lemma 4.1 immediately. To show Theorem 4.2(b), let $U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{I}}\right)$ denote the $\sum_{k=1}^{n} U_{k, \mathrm{I}}^{c}\left\{\theta ; Y_{k}^{c}\right\}$, where $U_{k, \mathrm{I}}^{c}\left\{\theta ; Y_{k}^{c}\right\}$ is defined in Section 4.1. Then we we apply the Taylor series expansion to

$$
0=U_{\mathrm{I}}^{c}\left(\hat{\theta}_{c, \mathrm{I}}\right)-n p_{\lambda_{n}, \mathrm{I}}^{\prime}\left(\hat{\theta}_{c, \mathrm{I}}\right)
$$

and obtain that

$$
\begin{aligned}
0= & U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{IO}}\right)+\left\{\frac{\partial U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}\right)}{\partial \theta_{\mathrm{I}}^{\top}}+o_{p}(n)\right\}\left(\hat{\theta}_{c \mathrm{I}}-\theta_{\mathrm{I} 0}\right)-n g_{\theta}-n\left\{\Sigma_{\theta}+o_{p}(1)\right\}\left(\hat{\theta}_{c \mathrm{I}}-\theta_{\mathrm{IO}}\right) \\
= & U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}\right)+n\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]\left(\hat{\theta}_{c \mathrm{I}}-\theta_{\mathrm{IO} 0}\right) \\
& -n\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right] \times\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]^{-1} g_{\theta}+o_{p}(\sqrt{n}) \\
= & U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}\right)+n\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]\left[\hat{\theta}_{c \mathrm{I}}-\theta_{\mathrm{I} 0}-\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]^{-1} g_{\theta}\right] \\
& +o_{p}(\sqrt{n})
\end{aligned}
$$

where in the first step, the first two terms and the last two terms, respectively, come from the Taylor series expansion of $U_{\mathrm{I}}^{c}\left(\hat{\theta}_{c, \mathrm{I}}\right)$ and of $n p_{\lambda_{n}, \mathrm{I}}^{\prime}\left(\hat{\theta}_{c, \mathrm{I}}\right)$ with $g_{\theta}$ and $\Sigma_{\theta}$ defined after Theorem 1.

Consequently,

$$
\begin{aligned}
& \sqrt{n}\left[\hat{\theta}_{c, \mathrm{I}}-\theta_{\mathrm{I} 0}-\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]^{-1} g_{\theta}\right] \\
& \quad=-n^{-1 / 2}\left[E\left\{\frac{\partial U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}\right]^{-1} U_{\mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}\right)+o_{p}(1),
\end{aligned}
$$

and Theorem 4.2(b) thus follows from the central limit theorem together with Condition (C.6).

## C. 5 Proof of Theorem 4.3.

We show Theorem 4.3 using similar techniques in Appendix C.2. Let $\eta=\left(\theta^{\top}, \phi^{\top}\right)^{\top}$. Combining (4.1) and (3.7), this two-stage estimation procedure can be expressed as a single procedure for ease of establishing the asymptotic results of the resulting estimator, $\hat{\eta}_{v}$. Solving

$$
\sum_{k=1}^{n}\left(\begin{array}{c}
U_{1 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)-n p_{\lambda_{n}}^{\prime}(\tilde{\alpha})  \tag{C.7}\\
U_{2 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)-n p_{\lambda_{n}}^{\prime}(\beta) \\
U_{3 k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)-n p_{\lambda_{n}^{\prime}}^{\prime}(\gamma) \\
\delta_{k} S_{k}(\phi)
\end{array}\right)=0
$$

gives a consistent estimator for $\eta$, say $\hat{\eta}_{v}=\left(\hat{\theta}_{v}^{\top}, \hat{\phi}_{v}^{\top}\right)^{\top}$, provided regularity conditions. Then, we obtain
$\sqrt{n}\left(\hat{\theta}_{v}-\theta_{0}\right)=-\sqrt{n}\left[E\left\{\frac{\partial U_{k}^{c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}^{*}\right]^{-1} E\left\{U_{k}^{* c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)-p_{\lambda_{n}}^{\prime}(\theta)\right\}+o_{p}(1)$,
where $\Sigma_{\theta}^{*}=\operatorname{diag}\left\{p_{\lambda_{n}}^{\prime \prime}(\tilde{\alpha}), p_{\lambda_{n}}^{\prime \prime}(\beta), p_{\lambda_{n}}^{\prime \prime}(\gamma)\right\}$,

$$
\begin{aligned}
U_{k}^{* c}\left(\theta, \phi ; Y_{k}^{c}\right)= & U_{k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right)- \\
& \left\{\frac{1}{n} \sum_{k=1}^{n} \partial U_{k}^{c}\left(\theta, \phi ; Y_{k}^{c}\right) / \partial \phi\right\} \times\left[\frac{1}{n}\left\{\sum_{k=1}^{n} \delta_{k} \times \partial S_{k}(\phi) / \partial \phi\right\}\right]^{-1} \times\left\{\delta_{k} S_{k}(\phi)\right\} .
\end{aligned}
$$

Now we denote

$$
J_{2}=\left[E\left\{\frac{\partial U_{k}^{* c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}-\Sigma_{\theta}^{*}\right]^{-1} \quad \text { and } \quad q_{\lambda_{n}}^{\prime}(\theta)=J_{2} p_{\lambda_{n}}^{\prime}(\theta)
$$

and define

$$
\phi_{k}^{* c}(\theta)=J_{2} \times U_{k}^{* c}\left(\theta, \phi ; Y_{k}^{c}\right),
$$

where we treat $\phi$ as fixed. Denote $\alpha_{n}=\frac{1}{\sqrt{n}}+a_{n}$.
Then to prove Theorem 4.3, it suffices to show that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{* c}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta)=0 \tag{C.8}
\end{equation*}
$$

has a solution, $\hat{\theta}_{v}$ that satisfies $\left\|\hat{\theta}_{v}-\theta_{0}\right\|=O_{p}\left(\alpha_{n}\right)$.

For any $\theta$ with $\left\|\theta-\theta_{0}\right\|=C \alpha_{n}$ for some positive constant $C$, given Conditions (C.1) and (C.5), we apply the first-order Taylor series expansion to (C.7) around $\theta_{0}$ and obtain that

$$
\begin{align*}
& \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{* c}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta) \\
= & \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{* c}\left(\theta_{0}\right)-\sqrt{n} q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)  \tag{C.9}\\
& +\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{\partial \phi_{k}^{* c}\left(\theta_{0}\right)}{\partial \theta^{\top}}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\}-\sqrt{n} \frac{\partial q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)}{\partial \theta^{\top}}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} .
\end{align*}
$$

By Condition (C.5), we have that

$$
\begin{align*}
& \sqrt{n}\left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial \phi_{k}^{* c}\left(\theta_{0}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \sqrt{n}\left(\theta-\theta_{0}\right)^{\top} J_{2}\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U_{k}^{* c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \sqrt{n}\left(\theta-\theta_{0}\right)^{\top}\left[E\left\{\frac{\partial U_{k}^{* c}\left(\theta_{0}, \phi_{0} ; Y_{k}^{c}\right)}{\partial \theta^{\top}}\right\}+o_{p}(1)\right]^{-1}\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{\partial U_{k}^{* c}\left(\theta_{0}, \phi_{0} ; Y_{k}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\left\{1+o_{p}(1)\right\} . \tag{C.10}
\end{align*}
$$

Furthermore, we have that

$$
\begin{align*}
& \left(\theta-\theta_{0}\right)^{\top} \sqrt{n}\left\{\frac{\partial q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)}{\partial \theta^{\top}}\right\}\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & \left(\theta-\theta_{0}\right)^{\top} \sqrt{n} J_{2} p_{\lambda_{n}}^{\prime \prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\}  \tag{C.11}\\
= & \left(\theta-\theta_{0}\right)^{\top} \sqrt{n} O\left(b_{n}\right)\left(\theta-\theta_{0}\right)\left\{1+o_{p}(1)\right\} \\
= & o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right)
\end{align*}
$$

Then combining (C.9), (C.10) and (C.11), we obtain that

$$
\begin{align*}
& \left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{* c}(\theta)-\sqrt{n} q_{\lambda_{n}}^{\prime}(\theta)\right\} \\
= & \left(\theta-\theta_{0}\right)^{\top}\left\{\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \phi_{k}^{* c}\left(\theta_{0}\right)-\sqrt{n} q_{\lambda_{n}}^{\prime}\left(\theta_{0}\right)\right\}+\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\left\{1+o_{p}(1)\right\}+o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right) \\
= & \left(\theta-\theta_{0}\right)^{\top} \times \operatorname{Constant}+\sqrt{n} C^{2} \alpha_{n}^{2}+o_{p}\left(\sqrt{n}\left\|\theta-\theta_{0}\right\|^{2}\right) \\
= & O_{p}\left(C \alpha_{n}\right)+\sqrt{n} C^{2} \alpha_{n}^{2}+o_{p}\left(\sqrt{n} C^{2} \alpha_{n}^{2}\right) . \tag{C.12}
\end{align*}
$$

As long as C is large enough, the second terms in (C.12) dominates the first and third terms in (C.12). Thus, for any $\epsilon>0$, as long as C is large enough, the probability of (C.12) larger than zero is at least $1-\epsilon$. By the Brouwer fixed-point theorem, with probability at least $1-\epsilon$, there exists at least one solution, $\hat{\theta}_{v}$ for (C.7) that satisfies $\left\|\hat{\theta}_{v}-\theta_{0}\right\|=O_{p}\left(\alpha_{n}\right)$.

## C. 6 Proof of Theorem 4.4

Lemma 4.2 Let $U_{\mathrm{II}}^{c}(\theta, \phi)$ denote $\sum_{k=1}^{n} U_{k, \text { II }}^{c}\left\{\theta, \phi ; Y_{k}^{c}\right\}$, where $U_{k, \text { II }}^{c}\left\{\theta, \phi ; Y_{k}^{c}\right\}$ is defined before Theorem 4.4 in Section 4.2. If the conditions in Theorem 4.4 hold, then with the probability tending to one, for any $\theta$ satisfying $\left\|\theta-\theta_{0}\right\|=O\left(\frac{1}{\sqrt{n}}\right)$, we have that $\theta_{\text {II }}=0$ are the solutions to $U_{\mathrm{II}}^{c}(\theta, \phi)=0$.

The proof is similar to that of Lemma 4.1 in Appendix C. 3 with $U_{\mathrm{II} j}^{c}(\theta)$ replaced by $U_{\mathrm{I} j}^{c}(\theta, \phi)$.

Theorem 4.4(a) comes from Lemma 4.2 immediately. Then, similar to the proof of Theorem 4.2(b) in Appendix D, based on Condition (C.6), we apply the Taylor series expansion to $0=\sum_{k=1}^{n} U_{k, \mathrm{I}}^{c}\left(\theta_{\mathrm{I} 0}, \phi_{0} ; Y_{k}^{c}\right)-p_{\lambda_{n}, \mathrm{I}}^{\prime}\left(\theta_{\mathrm{I}}\right)$ to obtain the Theorem 4.4(b).

## Appendix D

## Technical Components for Chapter 5

## D. 1 Full Conditional Distribution of Hyperparameters

As we defined in (5.6), the prior distribution for hyperparameters, $\lambda_{\alpha_{i}}, \lambda_{\beta_{i}}, \lambda_{\gamma_{i}}$ and $a$ are half-Cauchy distribution. It suffices to show the full conditional distribution of $\lambda_{\gamma_{i}}$ only, and all full conditional distribution of other hyperparameters can be derived using same techniques:

$$
\begin{aligned}
\pi\left(\lambda_{\alpha_{i}} \mid \alpha, \beta, \gamma, a\right) & =\pi\left(\lambda_{\alpha_{i}} \mid \alpha_{i}, a\right) \\
& \propto \pi\left(\lambda_{\alpha_{i}}\right) \times \pi\left(\alpha_{i} \mid \lambda_{\alpha_{i}}, a\right) \\
& \propto \frac{2}{\pi} \frac{1}{1+\lambda_{\alpha_{i}}^{2}} \times \exp \left(-\frac{\alpha_{i}^{2}}{2 \lambda_{\alpha_{i}}^{2} a^{2}}\right) .
\end{aligned}
$$

The density function of $\pi\left(\lambda_{\alpha_{i}} \mid \alpha, \beta, \gamma, a\right)$ cannot be identified as any known distribution. Thus, Slice-sampling algorithm (Polson et al. 2014) is used to generate $\lambda_{\alpha_{i}}$ as we present in Section 5.2.3.

## D. 2 Full Conditional Distribution of $\alpha^{(r)}$

As we claimed in (5.5), the full conditional distribution of $\alpha^{(r)}$ is

$$
\begin{align*}
\pi\left(\alpha^{(r)} \mid w, \beta^{(r)}, \mathcal{B}_{-r},\{\mathbb{Y}, x\}\right) \propto & \left\{\prod_{k=1}^{n} P\left(Y_{k}=y_{k} \mid \mathcal{B}\right)\right\} f(w \mid \mathcal{B}) \pi\left(\alpha^{(r)} \mid \beta^{(r)}, \mathcal{B}_{-r}\right) \\
\propto & \prod_{k=1}^{n}\left\{\frac{\exp \left(<x_{k}, \mathfrak{B}>\right)^{y_{k}}}{1+\exp \left(<x_{k}, \mathfrak{B}>\right)}\right\} \cosh \left(\frac{\left|<x_{k}, \mathfrak{B}>\right|}{2}\right) \\
& \times \exp \left\{-\frac{\left(<x_{k}, \mathfrak{B}>\right)^{2} w_{k}}{2}\right\} \pi\left(\alpha^{(r)} \mid \lambda_{\left.\alpha^{(r)}, a\right)}^{n}\right. \\
= & 2^{-n} \pi\left(\alpha^{(r)} \mid \lambda_{\alpha^{(r)}}, a\right) \prod_{k=1}^{n} \exp \left\{y_{k}\left(<x_{k}, \mathfrak{B}>\right)-\frac{<x_{k}, \mathfrak{B}>}{2}\right. \\
& \left.-\frac{\left(<x_{k}, \mathfrak{B}>\right)^{2} w_{k}}{2}\right\} \\
\propto & \exp \left\{-\frac{1}{2} \alpha^{(r) \top} \Sigma_{\alpha^{(r)}}^{-1} \alpha^{(r)}+\sum_{k=1}^{n}\left(y_{k}-\frac{1}{2}\right) \alpha^{(r) \top} x_{k} \beta^{(r)}\right. \\
& \left.-\frac{\left(\alpha^{(r) \top} x_{k} \beta^{(r)}\right)^{2}}{2} w_{k}-\alpha^{(r) \top} x_{k} \beta^{(r)}\left(<x_{k}, \mathfrak{B}_{-r}>\right) w_{k}\right\} \\
= & \exp \left[-\frac{1}{2} \alpha^{(r) \top} \Sigma_{\alpha^{(r)}}^{-1} \alpha^{(r)}-\frac{1}{2} \alpha^{(r) \top} x_{\beta^{(r)}}^{\top} \Omega(w) x_{\beta^{(r)}} \alpha^{(r)}\right. \\
& +x_{\left.\beta^{(r)}\left\{y-\frac{1}{2} \mathbf{1}_{n}-x_{\mathcal{B}_{-r}}(w)\right\} \alpha^{(r)}\right]}^{=} \\
= & \exp \left[-\frac{1}{2} \alpha^{(r) \top}\left\{x_{\beta^{(r)}}^{\top} \Omega(w) x_{\beta^{(r)}}+\Sigma_{\alpha^{(r)}}^{-1}\right\} \alpha^{(r)}+x_{\beta^{(r)}} y(w) \alpha^{(r)}\right] \tag{D.1}
\end{align*}
$$

where the third step is from the fact that $\cosh (\mathrm{u})=\frac{1+\exp (2 \mathrm{u})}{2 \exp (\mathrm{u})}, x_{\beta^{(r)}}=\left(x_{1} \beta^{(r)}, \ldots, x_{n} \beta^{(r)}\right)^{\top}$, $y=\left(y_{1}, \ldots, y_{n}\right)^{\top}, y(w)=y-\frac{1}{2} \mathbf{1}_{n}-x_{\mathcal{B}_{-r}}(w), x_{\mathcal{B}_{-r}}(w)=\left\{\left(<x_{1}, \mathfrak{B}_{-r}>\right) w_{1}, \ldots,\left(<x_{n}, \mathfrak{B}_{-r}>\right.\right.$ $\left.) w_{n}\right\}^{\top}, \mathbf{1}_{n}$ is an $n \times 1$ unit vector, $\Omega(w)=\operatorname{diag}(w)$ and $\Sigma_{\alpha^{(r)}}=\operatorname{diag}\left(\lambda_{\alpha(r)}^{2} a^{2}\right)$. We can observe that (D.1) is the kernel of a multivariate normal with mean $m_{\alpha^{(r)}}(w)$ and covariance $\Sigma_{\alpha^{(r)}}(w)$ such that

$$
\begin{aligned}
& m_{\alpha^{(r)}}(w)=\Sigma_{\alpha^{(r)}}(w) x_{\beta^{(r)}} y(w), \\
& \Sigma_{\alpha^{(r)}}(w)=\left\{x_{\beta^{(r)}}^{\top} \Omega(w) x_{\beta^{(r)}}+\Sigma_{\alpha^{(r)}}^{-1}\right\}^{-1} .
\end{aligned}
$$

## D. 3 Full Conditional Distribution of $\beta^{(r)}$

The full conditional distribution of $\beta^{(r)}$ is

$$
\begin{align*}
\pi\left(\beta^{(r)} \mid w, \alpha,\{\mathbb{Y}, x\}\right) \propto & \left\{\prod_{k=1}^{n} P\left(Y_{k}=y_{k} \mid \mathcal{B}\right)\right\} f(w \mid \mathcal{B}) \pi\left(\beta^{(r)} \mid \alpha^{(r)}, \mathcal{B}_{-r}\right) \\
\propto & \prod_{k=1}^{n}\left\{\frac{\exp \left(<x_{k}, \mathfrak{B}>\right)^{y_{k}}}{1+\exp \left(<x_{k}, \mathfrak{B}>\right)}\right\} \cosh \left(\frac{\left|<x_{k}, \mathfrak{B}>\right|}{2}\right) \\
& \times \exp \left\{-\frac{\left(<x_{k}, \mathfrak{B}>\right)^{2} w_{k}}{2}\right\} \pi\left(\beta^{(r)} \mid \lambda_{\left.\beta^{(r)}, a\right)}\right. \\
= & 2^{-n} \pi\left(\beta^{(r)} \mid \lambda_{\beta^{(r)}}, a\right) \prod_{k=1}^{n} \exp \left\{y_{k}\left(<x_{k}, \mathfrak{B}>\right)-\frac{<x_{k}, \mathfrak{B}>}{2}\right. \\
& \left.-\frac{\left(<x_{k}, \mathfrak{B}>\right)^{2} w_{k}}{2}\right\}  \tag{D.2}\\
\propto & \exp \left\{-\frac{1}{2} \beta^{(r) \top} \Sigma_{\beta^{(r)}}^{-1} \beta^{(r)}+\sum_{k=1}^{n}\left(y_{k}-\frac{1}{2}\right) \alpha^{(r) \top} x_{k} \beta^{(r)}\right. \\
& \left.-\frac{\left(\alpha^{(r) \top} x_{k} \beta^{(r)}\right)^{2}}{2} w_{k}-\alpha^{(r) \top} x_{k} \beta^{(r)}\left(<x_{k}, \mathfrak{B}_{-r}>\right) w_{k}\right\} \\
= & \exp \left[-\frac{1}{2} \beta^{(r) \top} \Sigma_{\beta^{(r)}}^{-1} \beta^{(r)}-\frac{1}{2} \beta^{(r) \top} x_{\alpha^{(r)}}^{\top} \Omega(w) x_{\alpha^{(r)}} \beta^{(r)}\right. \\
& \left.+x_{\alpha^{(r)}}\left\{y-\frac{1}{2} \mathbf{1}_{n}-x_{\mathcal{B}_{-r}}(w)\right\} \beta^{(r)}\right] \\
= & \exp \left[-\frac{1}{2} \beta^{(r) \top}\left\{x_{\alpha^{(r)}}^{\top} \Omega(w) x_{\alpha^{(r)}}+\Sigma_{\beta^{(r)}}^{-1}\right\} \beta^{(r)}+x_{\alpha^{(r)}} y(w) \beta^{(r)}\right]
\end{align*}
$$

where $x_{\alpha^{(r)}}=\left(x_{1}^{\top} \alpha^{(r)}, \ldots, x_{n}^{\top} \alpha^{(r)}\right)^{\top}$, and $\Sigma_{\beta^{(r)}}=\operatorname{diag}\left(\lambda_{\beta^{(r)}}^{2} a^{2}\right)$. We can observe that (D.2) is the kernel of a multivariate normal with mean $m_{\beta^{(r)}}(w)$ and covariance $\Sigma_{\beta^{(r)}}(w)$ such that

$$
\begin{aligned}
& m_{\beta^{(r)}}(w)=\Sigma_{\beta^{(r)}}(w) x_{\alpha^{(r)}} y(w), \\
& \Sigma_{\beta^{(r)}}(w)=\left\{x_{\alpha^{(r)}}^{\top} \Omega(w) x_{\alpha^{(r)}}+\Sigma_{\beta^{(r)}}^{-1}\right\}^{-1} .
\end{aligned}
$$


[^0]:    Numbers in $(\cdot)$ represents standard error.

