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Abstract

The spread of infectious diseases is one of the biggest challenges that public health faces

nowadays. Their control is often not an easy task. Social behaviour plays an important

role in disease prevention. However, the complex interplay between social behaviour and

transmission dynamics is still not very well understood. This thesis tackles this topic by

introducing a dynamic variable representing social behaviour that is coupled with epidemi-

ological compartmental models. Under certain conditions, social behaviour can greatly

impact the outcomes of an emerging virulent pathogen and thus it is necessary to explic-

itly model social behaviour for better understanding of transmission dynamics, and better

and more accurate predictions.

The Human Immunodeficiency Virus (HIV) is a disease that attacks the immune system

of its host. Since its emergence in the 1970s, it remains an epidemic that disproportion-

ately affects gay and bisexual men who have sex with men (GbMSM). While diagnosis

and treatment procedures kept improving, it still poses a public health concern. The in-

troduction of Pre-Exposure Prophylaxis (PrEP) as a preventive drug in Canada in 2015

was a crucial step to help with decreasing HIV prevalence. PrEP however doesn’t prevent

the transmission of bacterial sexually transmitted infections (STIs). Previous studies have

found a positive correlation between the increase in PrEP use and the decrease of condom

usage. We investigated conditions under which the prevalence of bacterial STIs remains

low under a PrEP regimen and we found that population level annual testing is essential

for risk mitigation.

While PrEP has a great potential in reducing HIV prevalence, its impact might not

be as strong as that created by frequent testing. In a final study, we examined different

strategies, that are season specific and risk level specific, to derive an optimal strategy

that aims to reduce HIV prevalence in Toronto by 2050. Given that higher risk sexual

behaviour is more observed during the summer months, we concluded that testing the

entire population twice during the summer is the most effective way to get a low HIV

prevalence subject to plausible levels of testing and PrEP recruitment.
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Chapter 1

The Basics of Mathematical

Epidemiology

1.1 A brief introduction to epidemiology

Epidemiology is the study of the spread of disease. The word derives from ancient Greek

and Latin and it became a distinct discipline in the earlier part of the 19th century. For a

historical overview of the development of this field, we recommend the second chapter of

the first part of Foundations of Epidemiology [137].

The lexicon of epidemiology is rich. Our focus is on key terms pertaining to the prin-

ciples and mechanisms involved in the spread of infectious diseases. The most important

mechanism is transmission. The transmission of a disease occurs between a host who car-

ries the pathogen and is infectious, and a host who is susceptible to infection. There are

different modes of transmission. A pathogen can either be transmitted through air [57],

through food or water [189], through blood and other bodily fluids [116], or through phys-

ical contact [51]. Transmission rate can vary over the infectivity period [98] and this is

mostly related to the within host dynamics [201]; i.e. the reproductive cycle of the virus in

the host. Another important mechanism that is common to a lot of communicable diseases
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is recovery. Recovery happens when the host clears the virus and is no longer infected or

infectious. Recovery can either happen naturally through the immune system [38], or with

the aid of antibiotics and other pharmaceutical products. For certain diseases, recovery

yields a life long immunity where the host does no longer contract the disease. In other

cases, immunity wanes over time and the host becomes susceptible again to infection [243].

The period of waning immunity can vary depending on the disease itself. The incubation

period is an important epidemiological quantity. It specifies the period from the time the

host gets infected until the host shows symptoms of infection [27]. Symptoms vary from

one disease to another and they are important for clinical diagnosis and commencement

of treatment. The latent period is also an important epidemiological quantity. It specifies

the period from the time the host gets infected until it becomes infectious [230]. The

concept of Herd immunity is popular in the control of infectious diseases and refers to the

mitigation of the transmission due to a vaccinated pool of hosts, or a to a large number

of recovered/immune hosts who practically lower the odds of a susceptible host acquiring

the infection [94].

One of the earliest known mathematical models in epidemiology is that of Daniel

Bernoulli in 1766 on mortality rate for smallpox [69]. Mathematical analysis in epidemiol-

ogy became more prominent in the 20th century through the work of William Kermack and

Anderson McKendrick in their 1927 paper, entitled “A contribution to the mathematical

theory of epidemics” [127]. In their dissertation, they have analyzed basic characteristics

of disease transmission and they came up with approximations to quantities such as the

size of an outbreak, the dynamics of early stages of an outbreak and thresholds for disease

persistence in a population. Perhaps, one of the most famous attributions of their work is

the development of the simple Susceptible-Infected-Recovered (SIR) model [32, 208]. This

approach seeks to divide a population into compartments based on their disease status.

In a human population, each individual can either be susceptible to a disease, infected

by the disease, or recovered from the disease. A susceptible individual can move to the

infected compartment if they acquire the infection and can then progress to the recovered

compartment upon recovery.
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1.2 Analysis of an elementary model

The SIR model is described mathematically by a set of three ordinary differential equation

(ODE)s that track the number of individuals in each compartment over time. The system

is given as follows:

dS

dt
= −β I(t)

N
S(t),

dI

dt
= β

I(t)

N
S(t)− γI(t),

dR

dt
= γI(t),

(1.1)

where S(t) is the number of susceptible individuals at time t, I(t) is the number of infected

individuals at time t, R(t) is the number of recovered individuals at time t, β is the

transmission rate, γ is the recovery rate, N is the total population. Both parameters have

units per unit time. The population is assumed to be constant over the course of the spread

of the disease.

The term β I(t)
N
S(T ) is called the incidence term. In this particular set up, we have

standard incidence due to dividing I(t) by N . This form of incidence is used when the

likelihood of infection increases when surrounded by more infectious individuals. Other

forms of incidence include mass-action incidence, saturated incidence, etc [77].

The assumption of a constant population is justified by the relative short length of the

course of an outbreak to the lifespan of an individual. Therefore, instead of analyzing all

three ODEs, we let R(t) = N − S(t)− I(t) and reduce the system to two equations:

dS

dt
= −β I(t)

N
S(t),

dI

dt
= β

I(t)

N
S(t)− γI(t).

(1.2)

The second equation in particular offers perspective on the evolution of the outbreak.

Suppose S0 = S(0) represents the initial population of susceptible individuals. Factoring

3



the second equation, we get:

dI

dt
= I(t)

(
β
S(t)

N
− γ
)
. (1.3)

If initially β S0

N
− γ < 0 then dI

dt
< 0 and therefore I(t) decreases and there is no outbreak.

On the other hand, if β S0

N
− γ > 0, I(t) increases and reaches a maximum. In the latter

case, we observe an epidemic. An epidemic is characterized by a significant increase in the

number of infected individuals over a relatively short period of time followed by a drop in

that number. Note that at the start of an epidemic we have S0

N
≈ 1. From here, we obtain

a threshold value that is known as the basic reproductive number R0:

R0 =
β

γ
. (1.4)

By definition,R0 is the average number of secondary infections that an infectious individual

generates over the course of their infectivity period in a completely susceptible population.

In a simple scenario, it is the product of the transmission rate by the average length of

infection (the reciprocal of the recovery rate).

Theorem 1. If R0 > 1, an epidemic occurs. If R0 < 1, the number of infected individuals

exponentially decreases to 0.

The proof of this theorem is the analysis conducted on 1.3 in the last paragraph. To

illustrate the above theorem, we present an example in figure 1.1 using the solver ode45 in

MATLAB.
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A simple SIR simulation
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(B) Basic reproductive number equals 0.8
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(A) Basic reproductive number equals 3

Figure 1.1: SIR model with γ = 0.1 per day, N = 10000, S(0) = 9980, I(0) = 20. (A)

The transmission rate is β = 0.3 per day giving a basic reproductive number R0 = 3.

An epidemic occurs that peaks at about 3000 infections after about 40 days. (B) The

transmission rate is β = 0.08 per day giving a basic reproductive number R0 = 0.8. There

is no outbreak and the number of infected individuals decreases exponentially to 0.

Adding vital dynamics to an SIR model allows us to investigate interesting situations

such as an endemic state of a disease. A disease is endemic in a population if it is constantly

present in relatively stable values. The system 1.1 becomes:

dS

dt
= µN − δS(t)− β I(t)

N
S(t),

dI

dt
= β

I(t)

N
S(t)− γI(t)− δI(t),

dR

dt
= γI(t)− δR(t),

(1.5)

where δ represents a natural death rate, µ is a birth rate. Adding up all three equations

5



in 1.5, we obtain an equation that describes changes in total population size:

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= µN − δ

(
S(t) + I(t) +R(t)

)
= (µ− δ)N. (1.6)

If birth rate equals death rate, then the population remains constant. Otherwise, it either

decreases exponentially (if µ < δ) or increases exponentially (if µ > δ). This simplistic

change in population size is based on Malthusian growth and it can be modified to logistic

growth or other growth models as needed.

For the purposes of simplicity, we assume that we are dealing with a constant population

and therefore we can omit R(t) from the analysis. To analyze this complex model, we would

need to obtain equilibria values of the variables S(t) and I(t). We set the first two ODEs

in 1.5 equal to 0. In particular, the second equation can be written as:

dI

dt
= I∞

(
β
S∞
N
− (γ + δ)

)
= 0, (1.7)

where I∞ denotes the number of infected individuals as t approaches infinity (at equi-

librium) and S∞ denotes the number of susceptible individuals as t approaches infinity.

Equation 1.7 has two solutions. The first solution is known as the disease free state where

I∞ = 0. We shall call this equilibrium E0. Substituting 0 for I∞ in the first equation of

1.5 gives S∞ = µN
δ

= N (since we are assuming a constant population and therefore birth

and death rates are equal). The disease free equilibrium is:

E0 = (N, 0). (1.8)

The second solution is known as the endemic state where I∞ 6= 0. We shall call this

equilibrium E1. Solving for S∞ in 1.7, we get S∞ = N
(
γ+δ
β

)
. This equilibrium only

exists provided γ+δ
β
< 1. It is not surprising that the last inequality is related to the basic

reproductive number.

Theorem 2. In an SIR model with vital dynamics with constant population size, we have

two equilibria: a disease free equilibrium E0 and an endemic equilibrium E1. If R0 = β
γ+δ

<

1 then E0 = (N, 0) is the only equilibrium and is always locally asymptotically stable. If

R0 = β
γ+δ

> 1 then E1 =
(
N
R0
, δN
β

(R0 − 1)
)

and is stable.
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Proof. The condition for the existence of the endemic equilibrium is straightforward. We

focus on the stability of equilibria. We compute the Jacobian of the first two equations in

1.5.

J(S, I) =

[
−δ − β I

N
−β S

N

β I
N

β S
N
− (γ + δ)

]
Substituting the disease free equilibrium into the Jacobian gives:

J(E0) =

[
−δ −β
0 β − (γ + δ)

]

The first eigenvalue is λ1 = −δ which is always negative. The second eigenvalue is λ2 =

β − (γ + δ) which is negative if β − (γ + δ) < 1 i.e. R0 < 1, concluding the stability of the

disease free equilibrium.

Substituting the endemic equilibrium into the Jacobian gives:

J(E1) =

[
−δR0 − β

R0

δ(R0 − 1) 0

]

The trace of this matrix is Tr = −δR0 < 0 and the determinant is Det = δβ
(

1− 1
R0

)
> 0

and therefore E1 is stable whenever it exists [75].

We illustrate Theorem 2 with an example. The natural death rate δ is estimated as

the reciprocal of a lifespan of an individual. If we are discussing a disease that adults

are primarily susceptible to then we can assume an average adult life span of 50 years.

Notice that the natural death rate slightly decreases the basic reproductive number but

not significantly so.
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SIR with vital dynamics
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105(A) Short term dynamics
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105(B) Equilibrium dynamics

Figure 1.2: SIR model with vital dynamics. γ = 0.1 per day, N = 1000000, S(0) = 999000,

I(0) = 1000, δ = 1/(50 × 365.25), β = 0.2 per day. The basic reproductive number R0

is approximately 2. (A) Short term dynamics: an epidemic occurs and the spike peaks

at about 150000, roughly 15% of the total population and then the number of infected

individuals decreases as they move to the R class. The number however does not decrease

to 0. (B) Long term dynamics: the system exhibits oscillations on the long run where the

number of infected individuals hovers around 300 (closer to the theoretical value). The

period of the oscillations is roughly 8 years.

In some instances, we might be interested in learning about the sensitivity of an out-

come, such as infection prevalence to a particular parameter. In this case, we perform a

sensitivity analysis [256, 70, 199, 42]. There are different methods, among them the OAT

(one at a time) approach. In this method, we allocate a range for the parameter of interest

centered at the baseline value and we measure outcomes for a set of values of the parame-

ter. The purpose is to determine how sensitive is the outcome of a particular model to a

particular input (usually a parameter). We perform sensitivity analysis in chapters 4 and

5.
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1.3 A selection of other models and tools

The SIR model is suitable for diseases when upon recovery, individuals gain permanent

immunity. A lot of viral diseases can be modelled with the SIR set up such as Measles,

Mumps, Smallpox, Pertussis, etc [83, 112, 48]. However, there are different setups for other

diseases.

The Susceptible-Infected-Susceptible (SIS) model is applicable for diseases when upon

recovery, an individual becomes susceptible immediately again. An example of a disease

that falls under the SIS category is the common cold. The set of differential equations

would have the following form:

dS

dt
= µN − δS(t)− β I(t)

N
S(t) + γI(t),

dI

dt
= β

I(t)

N
S(t)− γI(t)− δI(t).

(1.9)

With a constant population size, we can solve for I(t) analytically by substituting in the

second equation of 1.9, S(t) by (N − I(t)) and then use separation of variables. The

solution is given by

I(t) =

N(R0 − 1)

R0

1−
(

1− N(R0 − 1)

R0I0

)
e
−
β(R0 − 1)t

R0

, (1.10)

where I0 is the initial number of infected individuals andR0 = β
γ+δ

is the basic reproductive

number. The asymptotic behaviour depends on the value of R0 as can be seen from the

exponential term in 1.10. If R0 < 1, then I(t) eventually reaches 0 and we get a disease

free state. On the other hand, if R0 > 1, I(t) approaches the value
N(R0 − 1)

R0

and we

have endemic state. Both cases are portrayed in figure 1.3.
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SIS with vital dynamics
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(B) Basic reproductive number equals 0.8
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(A) Basic reproductive number equals 1.2

Figure 1.3: SIS model with vital dynamics. γ = 0.1 per day, N = 10000, S(0) = 9800,

I(0) = 200, δ = µ = 1/(50 × 365.25). (A) β = 0.12 per day. The basic reproductive

number is greater than 1 and this results in an endemic state with roughly 1666 cases (as

predicted by the limiting value) present at all times. (B) β = 0.08 per day. The basic

reproductive number is less than 1 and there is no outbreak. The number of infected

individuals exponentially decreases to 0.

Another common model is the Susceptible-Exposed-Infected-Recovered (SEIR) model.

The exposed class is added to account for the latent period. When an individual gets

infected, they move to the exposed class where they remain non-infectious and then progress

to the infected class once they become infectious. The system with vital dynamics is given
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by 1.11.

dS

dt
= µN − β I(t)

N
S(t)− δS(t),

dE

dt
= β

I(t)

N
S(t)− σE(t)− δE(t),

dI

dt
= σE(t)− γI(t)− δI(t),

dR

dt
= γI(t)− δR(t),

(1.11)

where σ > 0 is the reciprocal of the latent period. We will not perform a full analysis

of 1.11. However, we refer the reader to the work of Pauline Van den Driessche and

James Watmough [238] on how to compute the basic reproductive number. Using the next

generation matrix method, we get:

R0 =
βσ

(σ + δ)(γ + δ)
.

1.4 Virulence of a pathogen

There are many models that describe the spread of infectious diseases. Every model can

be customized based on the transmission and recovery cycles and possibly other disease

specific mechanisms. Co-infection is a situation where a host can be infected by two

different diseases simultaneously. Super-infection is a situation where often a more virulent

pathogen strain replaces a less virulent pathogen strain in the host. Virulence is a measure

of harm inflicted by the disease on the host. This harm can be characterized by a much

higher transmission rate, a much lower chance of recovery, or other means [40].

One way to model virulence is to define a new parameter that measures the excess

death rate for two different strains of the same pathogen. The more virulent strain would

have a higher virulence. Consider the model in 1.12
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dS

dt
= µN − β1

I1(t)

N
S(t)− β2

I2(t)

N
S(t)− δS(t),

dI1
dt

= β1
I1(t)

N
S(t)− γ1I1(t)− ν1I1(t)− δI1(t),

dI2
dt

= β2
I2(t)

N
S(t)− γ2I2(t)− ν2I2(t)− δI2(t),

dR

dt
= γ1I1(t) + γ2I2(T )− δR(t),

(1.12)

where νi represents the excess death rate due to the pathogen for strain i. Without loss

of generality, we consider I2(t) to be the compartment representing individuals infected

by the more virulent strain, and therefore ν2 > ν1. We compute the basic reproductive

number for each strain as we did in section 1.3 and we get:

R0,1 =
β1

γ1 + ν1 + δ
, R0,2 =

β2
γ2 + ν2 + δ

.

In this very simple model, if we assume both strains have the same transmission rates

and recovery rates (which is not necessarily true), the more virulent strain has a lower

basic reproductive number since individuals infected by that strain exit the I2 class faster

due to a higher death rate, and thus have less time to transmit the strain. In reality,

the dynamics of different strains for the same pathogen are complex and are discussed at

length in the next chapter.

Several approaches to studying the spread of infectious diseases exist. In this chapter so

far, we have considered ordinary differential equations which are deterministic. However,

in real life, random events can occur that can influence the course of an epidemic. In

that case, we can use Markov chains (discrete or continuous) and stochastic differential

equations to analyze a disease outbreak. For a comprehensive formulation in stochastic

differential equations we refer the reader to the work of Linda Allen [8].

ODEs assume homogeneity in a given population. In reality, individuals are unique and

differ in their behaviour. They also have different health conditions and disease resistance

thresholds. This creates heterogeneity in the population of study. From that perspective,
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one can use network models to analyze disease outbreaks in communities [145]. Network

models come with challenges. Computationally, they can be very time consuming. They

also require large data sets.

Every approach and tool utilized in understanding the spread of infectious diseases

is relevant to certain questions we ask. The implementation of ODEs is crucial to under-

standing long term dynamics and is a good approximation for well-mixed large populations.

Every approach comes with uncertainties but also offers a perspective on what needs to be

done to control outbreaks and mitigate threats. Very often, risk mitigation is largely de-

pendent on social behaviour [237, 148, 82]. The next chapter introduces social behaviour in

the context of epidemiology and discusses its influence on the spread of infectious diseases.
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Chapter 2

The Influence of Social Behaviour on

Competition between Virulent

Pathogen Strains

2.1 Publication record

This chapter is based on the paper “The Influence of Social Behaviour on Competition

between Virulent Pathogen Strains”, submitted to the Journal of Theoretical Biology on

the 11th day of November in 2017 and published on the 18th day of June in 2018 (volume

455, pages 47-53).

• Model conceptualization: Chris Bauch.

• Model analysis: Joe Pharaon.

• Manuscript write up: Joe Pharaon and Chris Bauch.

• Edits and Revisions: Joe Pharaon and Chris Bauch.
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2.2 Abstract

Infectious disease intervention like contact precautions and vaccination have proven effec-

tive in disease control and elimination. The priority given to interventions can depend

strongly on how virulent the pathogen is, and interventions may also depend partly for

their success on social processes that respond adaptively to disease dynamics. However,

mathematical models of competition between pathogen strains with differing natural his-

tory profiles typically assume that human behaviour is fixed. Here, our objective is to

model the influence of social behaviour on the competition between pathogen strains with

differing virulence. We couple a compartmental Susceptible-Infectious-Recovered model

for a resident pathogen strain and a mutant strain with higher virulence, with a differen-

tial equation of a population where individuals learn to adopt protective behaviour from

others according to the prevalence of infection of the two strains and the perceived sever-

ity of the respective strains in the population. We perform invasion analysis, time series

analysis and phase plane analysis to show that perceived severities of pathogen strains

and the efficacy of infection control against them can greatly impact the invasion of more

virulent strains. We demonstrate that adaptive social behaviour enables invasion of the

mutant strain under plausible epidemiological scenarios, even when the mutant strain has a

lower basic reproductive number than the resident strain. Surprisingly, in some situations,

increasing the perceived severity of the resident strain can facilitate invasion of the more

virulent strain. Our results demonstrate that for certain applications, it may be necessary

to include adaptive social behaviour in models of the emergence of virulent pathogens, so

that the models can better assist public-health efforts to control infectious diseases.
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2.3 A background on social behaviour in the context

of epidemiology

Modern approaches to developing a theory of the spread of infectious diseases can be

traced to 1927 when Kermack and McKendrick developed an integro-differential equation

model now widely described as the SIR [126]. The model tracks changes in the number of

individuals susceptible to an infection S(t) , the number of infected individuals I(t) , and

(implicitly) the number of recovered individuals R(t) . Compartmental models such as the

SIR model are useful for mechanistic modelling of infection transmission in populations.

They have since been further developed to study the evolution and epidemiology of multiple

species of pathogens in a population or different strains of the same species [88]. Some

models focus on between-host competition while some others on within-host competition

[150]. Bull suggested in the 1990s that coupling inter-host and intra-host dynamics in

models may be desirable [40]. Models linking between-host transmission dynamics to

within-host pathogen growth and immune response are now becoming commonplace [5,

80, 211, 107, 150]. One such approach is to link host viral load (which is a necessary

condition of virulence) to the between-host transmission rate.

Compartmental models have also been used to study the phenomenon of pathogen

virulence- the rate at which a pathogen induces host mortality and/or reduces host fecun-

dity [13, 59, 162, 227]. It was initially believed that hosts and parasites co-evolved to a

state of commensalism (whereby parasites benefit from their host without harming them)

[211, 221] but this hypothesis was later challenged [6]. In mathematical models, virulence

is often treated as a fixed model parameter expressing the excess mortality rate caused

by the pathogen. For instance, virulence has been assumed to depend on the intrinsic

reproductive rate of the parasite [37]. Other research expresses the transmission rate β

and the recovery rate µ in terms of a parameter ν that represents virulence [63]. When

the impact of human behaviour is discussed in such models, it is discussed in terms of

hypothesized effects of human behaviour on the value of the fixed parameter representing
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virulence. HIV virulence model by Massad [144] shows that reducing the number of sexual

partners could possibly drive HIV to be a more benign pathogen. However, the model

assumes that the number of sexual partners can simply be moved up or down as a model

parameter, whereas in reality the number of sexual partners in a population is the outcome

of a dynamic socio-epidemiological process that merits its own mechanistic modelling, and

itself responds to pathogen virulence. In general, these models do not treat human be-

haviour as a dynamic variable that can evolve in response to transmission dynamics and

influence the evolution of virulence. (A few exceptions exist, including work that allows

virulence to be a function of the number of infected hosts, thus capturing a situation where

the magnitude of the epidemics affects the ability of health care services to host patients

[66] ). However, as human responses to both endemic and emerging infectious diseases

show, human behaviour can have a significant influence on how infections get transmitted.

For instance, an early and well-documented example shows how the residents of the village

of Eyam, England quarantined themselves to prevent the spread of plague to neighbour-

ing villages [202]. Individuals moved to less populated areas during the Spanish Influenza

pandemic in the early 20th century [60]. More recently, masks became widely used during

the outbreak of Severe Acute Respiratory Syndrome (SARS) at the beginning of the 21st

century [132], and it has been shown pathogen virulence in Marek’s disease can evolve in

response to how vaccines are used [193].

Theoretical models of the interactions between human behaviour and the spread of

infectious diseases are increasingly studied [19, 21, 18, 79, 91, 172, 207]. For instance,

Bagnoli et al. [16] found that under certain conditions, a disease can be driven extinct

by reducing the fraction of the infected neighbours of an individual. Zanette and Risau-

Gusman [261] showed that if susceptible individuals decide to break their links with infected

agents and reconnect at a later time, then the infection is suppressed. Gross et al. [102]

also shows that rewiring of edges in a network (and thus social interaction) can greatly

influence the spread of infectious diseases. Of the compartmental models, we focus on those

that have used concepts from evolutionary game theory such as imitation dynamics [20]

to describe the evolution of behaviour and its interplay with the epidemics. An example
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of imitation dynamics concerns, as described in detail in [18], the effect of vaccination on

the spread of infectious diseases. Each individual in the population picks one strategy and

adopts it: “to vaccinate”or “not to vaccinate”. The proportion of vaccinators is modelled

using an ordinary differential equation and is coupled with a standard SIR model. An

important aspect of behavioural models is to couple them with epidemiological processes

such as transmission. This coupling creates a feedback loop between behaviour and spread

of the disease.

Given that adaptive social behaviour is important in many aspects of infection trans-

mission, we hypothesize that adaptive social behaviour can also influence selection between

pathogen strains with differing virulence in ways that cannot be captured by assuming it

to be represented by a fixed parameter. Our objective in this paper was to explore how

behaviour and virulence influence one another, in a coupled behaviour-disease differential

equation model. The model allows individuals who perceive an increase in the prevalence

of infection to increase their usage of practices that reduce transmission rates (such as

social distancing and hand washing) and thereby boost population-level immunity. This

approach can help us understand the effects specific social dimensions, such as level of con-

cern for a strain or the rate of social learning, have on the coupled dynamics of pathogen

strain emergence and human behaviour in a situation where virulence imposes evolution-

ary trade-offs and is strain-specific. Instead of considering long-term evolutionary processes

with repeated rounds of mutation and selection, we focus on the case of invasion of a single

mutant strain with a large phenotypical difference compared to the resident strain. In the

next section, we describe a model without adaptive social behaviour as well as a model

that includes it, and in the following Results section we will compare their dynamics.
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2.4 Coupling an epidemiological system with adaptive

social behaviour

We compare dynamics of a two-strain compartmental epidemic model in the presence and

absence of adaptive social behaviour. Individuals are born susceptible (S). They may

be infected either by a resident strain (I1) or a mutant strain (I2). For simplicity, we

assume that co-infection and super-infection are not possible. Infected individuals can

either recover (R) or die from infection. We furthermore assume that recovery from either

strain offers permanent immunity to both strains. The system of differential equations

representing the SI1I2R model in the absence of adaptive social behaviour (we will refer

to this as the “uncoupled model” throughout) is given by 2.1:

dS

dt
= µ− β1I1(t)S(t)− β2I2(t)S(t)− δS(t),

dI1
dt

= β1I1(t)S(t)− (γ1 + ν1 + δ)I1(t),

dI2
dt

= β2I2(t)S(t)− (γ2 + ν2 + δ)I2(t),

dR

dt
= γ1I1(t) + γ2I2(t)− δR(t),

(2.1)

where β1 (β2) represents the transmission rate of the resident (mutant) strain; γ1 (γ2)

represents the recovery rate from the resident (mutant) strain; ν1 (ν2) represents the death

rate from the resident (mutant) strain due to infection (virulence); µ is a birth rate and δ is

the background death rate. All variables represent the proportions of individuals with the

given infection status (for instance, S is the proportion of susceptible individuals). Since

R does not appear in the other equations, we can omit R from the analysis.

The system of differential equations in the presence of adaptive human behaviour cou-

ples the SI1I2R epidemic spread with a differential equation for human behaviour (“coupled

model”). Each individual in the population can choose to accept or reject behaviours that

reduce infection risk (e.g. washing hands, wearing a mask, social distancing), and indi-

viduals imitate successful strategies observed in others. Let x represent the proportion of
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individuals accepting preventive behaviour (we will call these “protectors”). Individuals

sample others in the population at rate κ, representing social learning. The choice is based

on the perceived severity ω1 (resp. ω2 ) from the resident (resp. mutant) strain, where

ω1 (resp. ω2 ) can be quantified as the probability that an infection by the resident (resp.

mutant) strain results in a severe case of disease. The more severe cases the population

observes, the more attractive preventive behaviour becomes: we assume that individuals

respond to the total number of severe cases ω1I1 + ω2I2 they observe at a given time.

Preventive behaviour is not always completely effective. We introduce efficacy of infection

control ε1 (ε2) against the resident (mutant) strain. The efficacy of infection control influ-

ences the transmission process. The more effective infection control is against a strain, the

less likely it will be transmitted.

More formally, the preceding imitation dynamic (or equivalently, replicator dynamic)

assumes that each individual samples others at a fixed rate, and if another person is found

to be playing a different strategy but is receiving a higher payoff, the individual switches to

their strategy with a probability proportional to the expected gain in payoff [113]. These

assumptions give rise to a differential equation of the form dx/dt = κx(1−x)∆U where κ is

the sampling rate and ∆U is the payoff difference between the two strategies. This equation

is derived elsewhere and is used in other socio-ecological and socio-epidemiological models

[18, 170, 109, 25]. The augmented system of differential equations representing the coupled

social-epidemiological SI1I2R−x model with adaptive human behaviour is therefore given

by 2.2:

dS

dt
= µ− β1(1− ε1x)I1(t)S(t)− β2(1− ε2x)I2(t)S(t)− δS(t),

dI1
dt

= β1(1− ε1x)I1(t)S(t)− (γ1 + ν1 + δ)I1(t),

dI2
dt

= β2(1− ε2x)I2(t)S(t)− (γ2 + ν2 + δ)I2(t),

dR

dt
= γ1I1(t) + γ2I2(t)− δR(t),

dx

dt
= κx(1− x)(ω1I1 + ω2I2 − 1).

(2.2)
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We apply the restrictions εi ∈ [0, 1] and ωi ≥ 0. Baseline parameter values are summarized

in Table 2.1.

Parameter Definition Value

δ death rate 1/18250 per day, [20].

µ birth rate 1/18250 per day, [20].

γ1 recovery rate for strain 1 0.2 per day (assumed).

ν1 disease death rate for strain 1 0.0 per day (assumed).

γ2 recovery rate for strain 2 0.2 per day (assumed).

ν2 disease death rate for strain 2 0.05 per day (assumed).

β1 transmission rate for strain 1 0.4 per day (assumed).

β2 transmission rate for strain 2 0.4 per day (assumed.)

κ sampling rate 1/365 per day, [170].

ω1 perceived severity from strain 1 10000 (assumed)

ω2 perceived severity from strain 2 100000 (assumed)

ε1 efficacy of infection control against strain 1 0.7 (assumed)

ε2 efficacy of infection control against strain 2 0.4 (assumed)

Table 2.1: Baseline parameter values. Strain 1 is taken to be an avirulent resident strain,

and strain 2 is taken to be a more virulent mutant strain.

We chose parameter values to represent an emerging infectious disease with a relatively

low basic reproduction number and an acute-self limited infection natural history, as might

occur for viral infections such as Ebola or Influenza. Recruitment is assumed to occur due

to births and immigration at a constant rate µ, while the per capita death rate due to all

causes other than the infection is δ. The values of µ and δ are obtained as the reciprocal

21



of an average human lifespan of 50 years. Note that γi + νi is the reciprocal of the average

time spent in the infected class before the individual recovers or dies from infection. Since

we are assuming that strain 2 is more virulent, ν2−ν1 = 0.05 per day can be considered as

the excess death rate due to infection from the more virulent strain 2. We assume β1 = β2

and therefore R0,2 ≈ 1.6 < 2 ≈ R0,1 . Hence, all else being equal, the more virulent strain

has a lower reproductive number and is therefore at a disadvantage to invade. We note

that R does not appear in the other equations and hence could be omitted.

We identify all equilibria of the uncoupled and coupled systems and determine their

local stability properties. We study conditions under which the mutant strain successfully

invades. Due to the analytical complexity of the coupled model, we rely primarily on

numerical simulations. We used MATLAB to run our simulations and generate parameter

planes (ODE45, ODE23tb, and ODE15s). We also wrote MATLAB code to analyse the

stable regions of all equilibria versus a combination of parameters of interest.

2.5 Invasion analysis of the uncoupled and coupled

systems.

The SI1I2R model has 3 equilibria [31]. One equilibrium is disease free and is stable when

max
{
R0,1,R0,2

}
< 1.

R0,1 (resp. R0,2 ) is the basic reproductive number of the resident (mutant) strain, where

R0,i is given by

R0.i =
βi

γi + νi + δi

The other two equilibria are endemic. Assuming that basic reproductive numbers are not

equal, strains can not co-exist and the strain with the higher basic reproductive number

always invades.
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In contrast, the addition of a dynamic social variable x(t) generates 9 equilibria for the

SI1I2R − x model. Two equilibria are disease free and the other equilibria are endemic.

One of the 7 endemic equilibria represents a state of coexistence of both strains (which

can occur even if basic reproductive numbers are not the same). The analytical expression

and stability criteria for the equilibrium with co-existing strains are difficult to compute

and therefore, we determine them numerically.

If both basic reproductive numbers are less than 1, then the system evolved to a disease

free state and social behaviour is not relevant. Assume, on the other hand, that 1 < R0,2 <

R0,1 (as in our baseline parameter values, Table 2.1, and where the expressions for R0,1

and R0,2 are the same as in the SI1I2R model and assume x = 0. This corresponds to a

scenario where the resident strain is more transmissible than the mutant strain. As already

noted the mutant strain can not invade in the absence of adaptive social behaviour (SI1I2R

model). However, in the presence of adaptive social behaviour, we can derive necessary

and sufficient conditions for the mutant strain to invade when 1 < R0,2 < R0,1:

ω2 >
β2
δ

1

R0,2 − 1
1−ε2

, ε1 > 1− R0,2

R0,1

(1− ε2).

These results show that a high level of perceived severity from the mutant strain is a

necessary condition for invasion. However, it has to be coupled with a sufficiently high

efficacy of infection control against the resident strain (with ε1 > ε2). A high efficacy

of infection control against the resident strain will effectively reduce its transmission and

therefore creating a larger pool of susceptible individuals for the mutant strain. The two

conditions must be met simultaneously to provide a necessary and sufficient condition for

invasion. The condition that ε1 > ε2 could easily be met in a real population if the two

strains differ in their mode of transmission, and the population has more experience with

controlling the resident strain than with the new mutant strain. Moreover, a high value of

ω2 could easily be met in a real population due to spreading panic about a new and more

virulent strain that public health does not yet know how to best control.

We also consider necessary and sufficient conditions for failure of invasion of the mutant

23



strain:

ω1 >
β1
δ

1

R0,1 − 1
1−ε1

, ε2 > 1− R0,1

R0,2

(1− ε1), ω2 <
β2
δ

1

R0,2 − 1
.

Invasion fails when perceived severity of the mutant strain is low enough but also that of

the resident strain high enough. Note the difference between invasion and failure to invade.

Here, we require conditions on both perceived severities. As predicted, if the efficacy of

infection control against the mutant strain is high enough (relative to that of the resident

strain) then invasion fails. Again, all three conditions must be met jointly. Together, they

create a necessary and sufficient condition for the failure of invasion.

Finally assume that R0,1 < R0,2 (this scenario is not discussed at length in this paper).

In the absence of social behaviour, the mutant strain is bound to invade. However, we

derive necessary and sufficient conditions for the failure of invasion when social behaviour

is added to the system:

ω1 >
β1
δ

1

R0,1 − 1
1−ε1

, ε2 > 1− R0,1

R0,2

(1− ε1).

Note the difference between this case and the case when R0,1 < R0,2: there is no condition-

ing on ω2. If the mutant strain has a higher fitness, it does not matter how severely it is

perceived (since individuals respond to the weighted sum of mutant and resident prevalence

and the mutant is initially rare, hence the early response is dominated by the resident). It

will fail to invade provided that the perceived severity of the resident strain is high enough

and that efficacy of infection control against the mutant strain is high enough relative to

the resident strain (with ε2 > ε1). Once again we require both inequalities to be satisfied

and together they provide necessary and sufficient conditions for the mutant strain to fail

invasion.

We finally turn our attention to the invasion of the mutant strain when it is more

transmissible. The invasion is conditional: necessary and sufficient conditions for the

invasion of the mutant strain are:

ω1 <
β1
δ

1

R0,1 − 1
, ε1 > 1− R0,2

R0,1

(1− ε2).
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In this scenario, a low perceived severity of the resident strain will allow invasion of the

mutant strain provided that the efficacy of infection control against the resident strain is

high enough.

The addition of adaptive social behaviour to the epidemic model introduced four new

parameters, and it is clear that the model permits conditions for the mutant strain to

invade on account of behaviour, even when the mutant strain has a lower basic reproductive

ratio, as long as certain conditions for efficacy of infection control are satisfied and level of

concern about the severity of the mutant strain are satisfied. To gain further insight into

how adaptive social behaviour influences the invasion of the more virulent strain, we turn

to numerical simulation and generation of time series and parameter planes.

2.6 What do time series and parameter plane analysis

tell us?

We use time series of model simulations to illustrate some of the model’s dynamical regimes.

We consider the case where ν1 = 0 and ν2 = 0.25 and therefore R0,1 > R0,2 while assuming

(for simplicity) that β1 = β2 and γ1 = γ2 . Hence, the mutant strain is more virulent and

kills its hosts more quickly, giving it a significantly lower basic reproduction number. We

use a simulation time horizon on the order of hundreds of years–although both pathogen

and social parameters could vary over this period, a long time horizon ensures that the

asymptotic model states are correctly characterized, and thus enables us to meet our

objective of gaining insight into the types of dynamics exhibited by the model.

We first consider a scenario where the mutant strain, on account of its greater virulence,

is perceived to be ten times more severe than the resident strain (ω2 = 105 = 10ω1).

Moreover, infection control against the resident strain is much more effective, on account

of less being known about the modes of transmission of the mutant strain (baseline values:

ε1 = 0.7 > 0.4 = ε2). In this scenario, the mutant strain invades (Fig 2.1a).
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Figure 2.1: Numerical simulations for the SI1I2R−x model at various values for the social

and infection control parameters. (a,b,c) show baseline values where the mutant strain is

perceived to be 10 times more severe (ω2 = 10ω1 = 105) and where efficacy of infection

control against the resident strain is greater ε1 = 0.7 > ε2 = 0.4. The dynamics are shown

at different timescales in (a), (b) and (c). (d) ε1 = 0.4. (e,f) ω2 = 102, ε2 = 0.3. (g,h)

ω1 = 10ω2 = 105. (i) ω1 = ω2 = 104. ε1 = 0.9, ε2 = 0.6. All other parameters are held at

their baseline values. Red line represents prevalence of protectors x. Blue line represents

prevalence of the resident strain I1. Black line represents prevalence of the more virulent

mutant strain I2.
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This agrees with the conditions determined in our invasion analysis. We observe that the

mutant strain quickly displaces the resident strain and converges to an endemic state where

the proportion of protectors x remains relatively high (Fig 2.1a). On shorter timescales, we

see a transient phase at the start of the simulation with a sharp epidemic of the resident

strain, followed by periodic epidemics with much lower incidence of the mutant strain

(Fig 2.1b,c). The numerical simulations agree with the values computed from analytical

expressions at equilibrium (for sufficiently large values of t).

Decreasing the efficacy of infection control against the resident strain and equating it

to that of the more virulent strain (ε1 = ε2 = 0.4 , with all other parameter values at

baseline values) prevents the invasion of the mutant strain (Fig 2.1d). This occurs because

more susceptible individuals will be infected by the resident strain, thereby significantly

decreasing the pool of susceptible individuals available for infection by the mutant strain.

A surprising scenario under which the invasion of the mutant strain fails is when both

perceived severity of the mutant strain and the efficacy of infection control against are

low (Fig 2.1e,f, ω2 = 102, ε2 = 0.3 with other parameter values at baseline). It is worth

noting in this case that we initially have a few outbreaks of the mutant strain with high

incidence. (Fig 2.1f) represents the same dynamics as (Fig 2.1e) but on a longer timescale.

The oscillations in the prevalence of infection and the prevalence of protectors is typical of

coupled behaviour-disease models with adaptive social behaviour [23].

It is difficult for both strains to co-exist without imposing ω1 = 105 > ω2 = 104. If the

resident strain is perceived to be ten times more severe, then co-existence is achieved via

a transient but very long-term pattern of switching between oscillatory regimes before the

system finally converges to an equilibrium of co-existence (Fig 2.1g). The system switches

between a longer-lived regime with relatively small epidemics of the resident strain, and

a shorter-lived regime with very large epidemics of the mutant strain. Changes in the

proportion adopting contact precautions, x , facilitates the switching. As x rises, it allows

a series of periodic outbreaks of the mutant strain which in turn decreases the proportion

of people adopting prevention and starts a series of outbreaks of the resident strain. This
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loop continues with diminishing switching-period as well as amplitude. If we bring back

efficacies of infection control to baseline values, this phenomenon persists but with wilder

oscillations in x . This happens because lower values of ε increase the effective transmission

rate which in turns leads to rapid changes in x. (Fig 2.1h) shows the same dynamics as in

(Fig 2.1g) but on a shorter timescale.

We also allowed the perceived severities to be equally high (ω1 = ω2 = 104) and we

have increased the efficacies from their baseline values (ε1 = 0.9 and ε2 = 0.6) (Fig 2.1i).

We observe that the mutant strain fails to invade and the prevalence of the resident strain

remains relatively close to the initial condition.

In order to refine our understanding of the influence of social parameters on the invasion

of the mutant strain, we proceed in the next subsection with phase plane analysis that

studies the interplay between the parameters determining regions of invasion.

Surprisingly, there are parameter regimes where increasing the perceived severity of the

resident strain (ω1) allows the mutant strain to invade (Fig 2.2a-c). This occurs across

a nontrivial portion of parameter space despite the fact that R0,2 < R0,1. This regime

shift occurs because a sufficiently high perceived severity of the resident strain creates a

large pool of susceptible individuals, and coupled with a higher efficacy of infection control

against the resident strain, this means that the invading mutant strain can take advantage

of the increased pool of susceptible individuals to invade. This effect occurs only when the

efficacy of infection control against the resident strain is relatively high (e.g. ε1 = 0.9 and

ε2 = 0.6). However, this phenomenon does not hold when ε1 and ε2 are low, in which event

the model behaves similar to the SI1I2R model where the strain with the higher basic

reproductive number invades, as expected. Similarly, increasing ω2 can push the system

from a regime of co-existence of the two strains to a region where only strain 2 persists.

In ε1 − ε2 parameter planes we again find parameter regimes where the more virulent

strain can invade due to adaptive social behaviour, despite the fact that R0,2 < R0,1, if

there is an imbalance in the perceived severity of the two strains. When perceived severities
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Figure 2.2: Parameter plane analysis of the SI1I2R − x model. These dynamics are more

complex than those exhibited by the SI1I2R model, which only predicts persistence of

strain 1 for equivalent parameter values. The epidemiological parameters are at baseline

values (Table 2.1). The social parameters are varied. (a) and (d) show no invasion of the

mutant strain when ε1 = 0.2 and ε2 = 0.1 in the ω1 − ω2 parameter plane (a) and when

ω1 = ω2 = 102 in the ε1−ε2 parameter plane (d). (b) and (c) represent similar qualitative

results when for large ε1 = 0.9 we get invasion of the mutant strain in the black region and

co-existence with the resident strain in the red region. The invasion region is bigger when
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ε2 is lower (ε2 = 0.1 in (b) and ε2 = 0.6 in (c) ). Finally, in (e) and (f) we observe

qualitatively different results when we vary ω2 in the ε1 − ε2 parameter plane. In (e) ,

108 = ω2 > ω1, we have invasion of the mutant strain. In (f) , ω1 = 106 > ω2, we have

co-existence of the strains. The light gray region in the lower-left hand corner of subpanel

(b) corresponds to both strains being extinct.

are sufficiently low, the mutant strain can never invade (Fig 2.2d). But when ω2 � ω1, the

mutant strain can invade and remove the resident strain if ε1 is sufficiently large and ε2

is sufficiently small (Fig 2.2e). When ω1 � ω2, the mutant strain and the resident strain

coexist, when ε1 is sufficiently large and ε2 is sufficiently small (Fig 2.2f). Increasing the

efficacy of infection control against the resident strain (ε1) or decreasing efficacy of control

against the mutant strain (ε2) can allow the mutant strain to invade (Fig 2.2e-f). We note

again that, surprisingly, invasion can result in the elimination of the resident strain if the

perceived severity of the mutant strain is significantly higher than that of the resident

strain (ω2 � ω1), but when the opposite applies, coexistence results.

2.7 Human social behaviour can be critical in the mit-

igation of highly virulent strains

We have showed how adaptive social behaviour greatly impacts the evolution of virulence in

a coupled behaviour-disease model. If we neglect social behaviour, the basic reproductive

numbers of the two strains are sufficient to predict which of the strains will invade a

population. However, adding adaptive social behaviour with asymmetric stimulation and

effects on either strain to an epidemiological system completely shifts how we view whether

a more virulent strain will be selected for. As we have seen, social behaviour can either act

in favour or against the invasion of a more virulent strain, and we can describe these effects

with reference to specific social parameters (ω1,2) quantifying how concerned individuals

are about the two strains, and control parameters (ε1,2) quantifying how well infection
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control measures like hand-washing work. Most interestingly, adaptive social behaviour

enables invasion of the mutant strain under plausible epidemiological and social conditions

even when it has a lower basic reproductive number.

Future work can generate further insights into how behaviour and virulence interact

for specific infectious diseases, by building on existing research on the coupled dynamics

of behaviour and infection transmission. For instance, an increase in the average number

of sexual partners of an individual has been predicted by mathematical models to cause

increased HIV virulence [144, 174]. These models use a fixed parameter to quantify the

number of sexual partners, but the number of sexual partners could be made to evolve

dynamically based on the number of infected individuals in a particular population, simi-

lar to seminal work using compartmental models to model core group dynamics [105]. An

increase in the number of sexual partners will decrease the efficacy of infection control

against the more virulent strain and effectively increase its transmission and hence leads

to higher virulence. Other future research could explore how adaptive social behaviour

interacts with evolutionary trade-offs to determine virulence evolution. One of the most

common hypotheses is that a trade-off exists for between-host transmission and virulence.

To increase its probability of transmission, the parasite must replicate within the host.

This replication, on the other hand, must be controlled because otherwise it might lead to

the host’s death and therefore prevent transmission. However, other trade-offs have been

suggested, such as between transmission rate and host recovery rate [4]. Moreover, compli-

cated host life cycles imply that many other types of trade-offs are also possible [65], and

the presence of multiple trade-offs may complicate the relationship between transmission

rate and virulence [7]. Social behaviour could interact with evolutionary trade-offs to alter

the virulence evolution of an emerging pathogen, and this process could be modelled by

building on existing virulence evolution models.

While the model discussed in this paper serves as a general framework for studying the

influence of social behaviour on strain competition and emergence, further research needs

to be carried out to understand the interplay between the epidemiological and social param-

eters. For instance, we did not model virulence evolution explicitly but rather by assuming
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two strains have already emerged due to mutation and addressing conditions under which

the more virulent mutant strain is more fit. Future research could instead model virulence

by defining transmission and recovery rates in terms of a virulence parameter, or by using

an adaptive dynamics approach. Future research could also explore different possible rela-

tionships between the virulence parameters ν1,2 and the perceived severity parameters ω1,2,

or the interaction between social learning timescales and pathogen evolutionary timescales.

We did not study the influence of the social learning parameter κ in this paper, but previ-

ous research on other socio-ecological and socio-epidemiological systems suggests that the

social learning rate can destabilize interior equilibria [25, 109]. A model that accounts for

multiple rounds of mutation would enable studying how pathogen evolutionary timescales

interact with social learning dynamics. Finally, we assumed no specific relationship be-

tween the perceived severity ω1,2 and the virulence ν1,2 although a non-trivial relationship

certainly exists, and future research could explore possible assumptions for their formal

relationship.

In conclusion, our model shows how social behaviour can influence the virulence of

emerging strains under plausible parameter regimes when using standard models for social

and infection dynamics. When analyzing emerging and re-emerging pathogens and con-

tinually evolving infectious diseases such as influenza, it is worthwhile further considering

aspects of social behaviour in efforts to mitigate serious threats.
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Chapter 3

A brief history of the Human

Immuno-deficiency Virus (HIV) and

HIV in MSM populations

3.1 The origins of HIV

The origins of the Human Immuno-deficiency Virus HIV are still debated and several

virologists and HIV specialists keep attempting to trace it back to its earliest days. Jacques

Pepin, a professor at the University of Sherbrooke in Quebec has published the book on

“The Origins of AIDS” [178]. He argued that the colonization of Africa has helped the

circulation of HIV. There have been many pre-pandemic samples that tested positive for

HIV. One of the earliest is a serum sample, tested in 1998, from an adult male from the

Democratic Republic of Congo from 1959 [263]. Samples that have been tested suggest

that an HIV strain was present in several locations in Central Africa in the 1960s and 1970s

[254]. Scientists have looked into the genetic material of related primates of humans and

discovered the Simian Immuno-deficiency Virus (SIV) in chimpanzees in 1989 [92]. They

have analyzed more than 7000 fecal samples from chimpanzees from 90 different field sites,
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where they found SIV and then confirmed that chimpanzees were the reservoir host for

SIV through mitochondrial Deoxyribonucleic acid (DNA) sequencing. Sequencing analysis

of HIV and SIV found that these two viruses are highly related [184].

HIV started crossing over from primates to humans multiple times in the early parts of

the 20th century [206]. Four cross-overs happened from chimpanzees and gorillas creating

strain HIV-1. Eight cross-overs happened from sooty mangabeys creating strain HIV-2.

The cut hunter hypothesis is one of the most widely accepted hypotheses on how HIV

crossed over to humans [191, 158, 135]. This theory suggests that the crossover happened

through exposure to chimpanzee blood, or other bodily fluids through bush-meat hunting.

Calculations suggest that in the second decade of the 20th century, there were less than

10 people infected by SIV [178]. The population growth in Kinshasa (formerly known as

Leopoldville) located in the Democratic Republic of Congo likely contributed to the spread

of HIV [78].

In the late 1960s, Haitian physicians came to the Democratic Republic of Congo (known

as the Belgian Congo until 1960) to help treat patients and it is suspected that they brought

back HIV with them to Haiti [255], which then spread to New York and California in the

early 70s.

3.2 The biology and epidemiology of HIV

In the first half of the 20th century, HIV crossed over from primates multiple times creating

two main strains and several groups. The first strain HIV-1 came from SIVcpz (cpz:

chimpanzee). It is very diverse genetically and has four groups: M (Main) is the most

common and accounts for more than 99% of all HIV-1 infections and is further divided

into 9 subtypes [134], while the O (Outlier) group has less than 1% of all HIV-1 infections

and is limited to Cameroon, Gabon and neigbouring countries [72]. Two other groups P

and N are rare and together infect about 15 individuals in Cameroon [236]. The second

strain HIV-2 came from SIVsmm and is not common [64].
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HIV belongs to the genus lentivirus within the family of retroviruses [33]. A retrovirus

is an Ribonucleic Acid (RNA) virus that inserts a copy of its genome into the DNA of the

host that it is invading [39]. A lentivirus is a genus of retroviruses that causes illnesses

characterized by long incubation periods [163]. HIV can be transmitted through sexual

intercourse (anal and vaginal), drug injection and sharing needles and from mother to child

[241]. Once HIV enters the host, it attacks CD4 cells found within the immune system.

Those cells are responsible for helping the body fight infections.

In the earliest stage of infection, a patient would experience flu-like symptoms ranging

in severity. This stage is known as the acute phase. During the acute phase, the presence

of virus particles in the bloodstream can be as high as 106 virions per milliliter of blood

[53]. Within 4 weeks, the patient moves to the chronic phase characterized by no symptoms

shown. This phase can last up to 10 years [89]. During this phase, the viral load decreases

and reaches asymptotically a stable value called the Set-Point Viral Load (SPVL) [89]. The

only way to detect the virus is through testing. Finally, the immune system collapses and

the patient enters the last and final phase known as Acquired Immuno-Deficiency Syndrome

(AIDS) where they become susceptible to opportunistic illnesses leading to death. This

phase can last up to 3 years [155, 186].

About 39 million individuals worldwide live with HIV and there are about 2 million

new infections every year [173]. In Canada, there have been a cumulative of 84,409 cases

since 1985 and the incidence rate in 2016 was 6.4 cases per 100,000 (an increase from 5.4

cases per 100,000 since 2015) [35]. The GbMSM population represents about 44.1% of

total cases reported in Canada.

3.3 HIV in MSM communities

HIV in the GbMSM community was first reported in the Morbidity and Mortality Weekly

Report on the 5th day of June of 1981, titled: “Pneumocystis Pneumonia - Los Angeles”.

The first paragraph reads as follows:
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In the period October 1980-May 1981, 5 young men, all active homosexuals,

were treated for biopsy-confirmed Pneumocystis carinii pneumonia at 3 dif-

ferent hospitals in Los Angeles, California. Two of the patients died. All 5

patients had laboratory-confirmed previous or current cytomegalovirus (CMV)

infection and candidal mucosal infection. Case reports of these patients follow.

The rest of the article can be found here. The report mentioned that five young, oth-

erwise healthy, homosexual men were diagnosed with Pneumocystis Pneumonia, a disease

usually affecting immunosuppressed individuals. HIV was first labeled Gay Related Im-

mune Deficiency (GRID). When it first emerged, it was thought that it only affected gay

men [11, 240].

Prior to the HIV pandemic, there was a prevalence of bacterial Sexually Transmitted

Infection (STI)s in the population and a survey found a strong connection between the

lifetime number of sexual partners and the number of venereal infections in the population

[62]. We now know that infection by one particular STI increases risks of infection by an-

other one [28]. Dale O’Leary discusses other factors that favoured the transmission of HIV

among the GbMSM population [169]. Early HIV models were limited in their knowledge of

the transmission dynamics. In the next section, we present an early mathematical model

of HIV

3.4 An early HIV model

We explore a basic HIV model from 1991 [138]. The model examines the uniqueness

of the endemic equilibria in a heterogeneous population of homosexuals. As such the

author divides the population into n sub-populations and each sub-population to three

epidemiological classes as follows:
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dxi
dt

= Ui − µxi − cixi
n∑
j=1

ρijβij
yi

xj + yj
,

dyi
dt

= −(ki + µ)yi + cixi

n∑
j=1

ρijβij
yi

xj + yj
, (i = 1, . . . , n)

dzi
dt

= kiyi − δizi,

(3.1)

where xi is the number of susceptible individuals in sub-population i, yi is the number of

infected and infectious individuals in sub-population i and zi is the number of individuals

with severe AIDS symptoms. Ui is a recruitment rate to sub-population i. ci is the average

number of sexual partners per person in the ith sub-population per unit time. ρij is the

proportion of contacts of a person in sub-population i with persons in sub-population j.

In their paper, the author uses proportionate mixing, i.e.

ρij =
cj(xj + yj)
n∑
k=1

ck(xk + yk)
.

At this point, we note that the author doesn’t include zi’s in sexual partnership and trans-

mission dynamics due to the fact that persons with severe AIDS symptoms are generally

not involved in sexual acts. βij is the transmission rate between susceptible persons in

sub-population i and infected persons in sub-population j. ki is the transfer rate from yi

to zi. µ is the mortality rate from all other sources except AIDS related. δi is the excess

death rate due to AIDS related illnesses in sub-population i.

The author does not specify the characteristics that define each sub-population. There-

fore, it is left out of the discussion. The main result in the study give conditions (depending

exclusively on the model parameters) under which a unique endemic equilibrium exists.

The case of two sub-populations is considered and it is shown that under certain conditions

(by properly choosing the parameters), there can be at least three endemic equilibria. We

present this case in here.
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Let us consider the case of two sub-populations. The system of differential equations

is given by 3.2.

dx1
dt

= U1 − µx1 − c1x1
(
ρ11β11

y1
x1 + y1

+ ρ12β12
y1

x2 + y2

)
,

dy1
dt

= −(k1 + µ)y1 + c1x1

(
ρ11β11

y1
x1 + y1

+ ρ12β12
y1

x2 + y2

)
,

dz1
dt

= k1y1 − δ1z1,

dx2
dt

= U2 − µx2 − c2x2
(
ρ21β21

y2
x1 + y1

+ ρ22β22
y2

x2 + y2

)
,

dy2
dt

= −(k2 + µ)y2 + c2x2

(
ρ21β21

y2
x1 + y1

+ ρ22β22
y2

x2 + y2

)
,

dz2
dt

= k2y2 − δ2z2.

(3.2)

The variables z1 and z2 only appear in differential equations for z
′
1 and z

′
2, respectively.

Therefore, we will omit them from the analysis. Note that the total population is not

necessarily constant. The reduced system for analytical purpose is given by 3.3.

dx1
dt

= U1 − µx1 − c1x1
(
ρ11β11

y1
x1 + y1

+ ρ12β12
y1

x2 + y2

)
,

dy1
dt

= −(k1 + µ)y1 + c1x1

(
ρ11β11

y1
x1 + y1

+ ρ12β12
y1

x2 + y2

)
,

dx2
dt

= U2 − µx2 − c2x2
(
ρ21β21

y2
x1 + y1

+ ρ22β22
y2

x2 + y2

)
,

dy2
dt

= −(k2 + µ)y2 + c2x2

(
ρ21β21

y2
x1 + y1

+ ρ22β22
y2

x2 + y2

)
.

(3.3)

Note that the model presented in the paper [138] considers standard incidence rates

since we are dividing the number of infected individuals by the total number of (sexually

active) persons in the appropriate sub-population. To prove the existence of at least three
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(positive) endemic equilibria, the author proceeds by defining a new system equivalent to

3.3 and is given by 3.4.

dν1
dt

= −µν1 + k1y1,

dy1
dt

= −(k1 + µ)y1 + c1(U1 − µν1 − µy1)
c1β11y1 + c2β12y2

c1(U1 − µν1) + c2(U2 − µν2)
,

dν2
dt

= −µν2 + k2y2,

dy2
dt

= −(k2 + µ)y2 + c2(U2 − µν2 − µy2)
c1β21y1 + c2β22y2

c1(U1 − µν1) + c2(U2 − µν2)
,

(3.4)

where νi = Ui

µ
− xi − yi. Note that the disease free equilibrium for 3.3: (U1

µ
, 0, U2

µ
, 0)

is equivalent to the disease free equilibrium 3.4: (0, 0, 0, 0). Next, define the following

matrices:

K =

[
k1 0

0 k2

]
, L =

1

c1U1 + c2U2

[
c21U1β11 c1c2U1β12

c1c2β21U2 c22U2β22

]
, A(µ) = −K − µE + L,

where E is the 2 × 2 identity matrix. The Jacobian of system 3.4 at the disease free

equilibrium is given by:

J0 =

[
−µE K

0 A(µ)

]
=


−µ 0 k1 0

0 −µ 0 k2

0 0 A(µ)11 A(µ)12

0 0 A(µ)21 A(µ)22

 .

Thus, the disease free equilibrium is stable if the eigenvalues of A(µ) both have negative

real parts. At this point, the author assumes the existence of µ0 such that s(A(µ0)) = 0,

where s(A) denotes the maximum value of the real part of all eigenvalues of A. For µ < µ0,

s(A(µ)) > 0 (disease free equilibrium unstable) and conversely for µ > µ0, s(A(µ)) < 0

(disease free equilibrium stable). The author presents results from other studies [45, 46]

to define multiple conditions, using different lemmas, under which the (positive) endemic
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equilibrium is unique. However, for the main result, i.e. the case where there exist at least

three positive endemic equilibria, they present a counter example. They first define all

transmission rates in terms of a parameter ε as follows (with the condition that 0 < ε < 1
3
):

β12 =
3

ε
,

β11 = 3(3− ε)− εβ12,

β22 =
9

4
,

β21 =
3ε(3− ε)

4− 3ε
− εβ22.

(3.5)

They also, for simplicity, let Ui = ki = ci = 1 and µ = 1
2
. A lemma is used to state

that the number of positive endemic equilibria for the model in 3.4 (or equivalently 3.3),

is equal to the number of equilibria for an auxiliary system of differential equations, given

by:

dy1
dt

= −3

2
y1 +

(
1− 3

2
y1

) β11y1 + β12
(1− y1) + (1− y2)

,

dy2
dt

= −3

2
y2 +

(
1− 3

2
y2

) β21y1 + β22
(1− y1) + (1− y2)

,

(3.6)

where y1 ∈ (0, 2
3
) and y2 ∈ (0, 2

3
). We would like to point out that y1 and y2 in 3.6 are not

exactly the same as y1 and y2 in 3.3. The region G defined by the intervals for y1 and y2

is required for the lemma to work. It suffices to show, at this point, that 3.6 has at least

three positive equilibria on G. The author shows that y∗ = (1
2
, ε
2
) is an equilibrium and

then proves that there are two other positive equilibria y and ŷ such that:

0 < ŷ < y∗, y∗ < y <
(2

3
,
2

3

)
.

In this case, p < q if all the components of p are strictly less than all the components

of q. Using the concept of cooperative functions and properties of monotone flows, the

author shows that y∗ is a repellor, where as y and ŷ are both attractors.
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The value of this study lies in the fact that the transmission of HIV in a heterogeneous

population of homosexuals can lead to different endemic equilibria and thus it can be

difficult to predict future outcomes. This study is theoretical and requires data to estimate

model parameters to get realistic/applicable results. Moreover, the understanding of HIV

has evolved over the past three decades and thus at this point, HIV models add a lot more

complexity such as individuals who are treated and who no longer transmit the virus [258],

or the use of prophylactic measures (other than condoms) such as PrEP. The next chapter

discusses PrEP in more details, including its awareness, usage and some of consequences

of its usage.
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Chapter 4

The Impact of Pre-exposure

Prophylaxis for Human

Immunodeficiency Virus on

Gonorrhea Prevalence

4.1 Publication record

This chapter is based on the paper “The Impact of Pre-exposure Prophylaxis for Human

Immunodeficiency Virus on Gonorrhea Prevalence”, submitted to the Bulletin of Mathe-

matical Biology on the 20th day of August in 2019 and was published on the 1st day of

July in 2020 (volume 82, issue 7, pages 1-19).

• Model conceptualization: Joe Pharaon and Chris Bauch.

• Model analysis: Joe Pharaon.

• Manuscript write up: Joe Pharaon and Chris Bauch.
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• Edits and Revisions: Joe Pharaon and Chris Bauch.
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4.2 Abstract

PrEP has been shown to be highly effective in reducing the risk of HIV infection in GbMSM.

However, PrEP does not protect against other STI. In some populations, PrEP has also led

to riskier behaviour such as reduced condom usage, with the result that the prevalence of

bacterial STIs like Gonorrhea (GC) has increased. Here we develop a compartmental model

of the transmission of HIV and GC, and the impacts of PrEP, condom usage, STI testing

frequency and potential changes in sexual risk behaviour stemming from the introduction

of PrEP in a population of GbMSM. We find that introducing PrEP causes an increase in

GC prevalence for a wide range of parameter values, including at the current recommended

frequency of STI testing once every three months for individuals on PrEP. Moreover, the

model predicts that a higher STI testing frequency alone is not enough to prevent a rise

in GC prevalence, unless the testing frequency is increased to impractical levels. However,

testing every two months in combination with a 10–25 % reduction in risky behaviour

by individuals on PrEP would maintain GC prevalence at pre-PrEP levels. The results

emphasize that programs making PrEP more available should be accompanied by efforts

to support condom usage and frequent STI testing, in order to avoid an increase in the

prevalence of GC and other bacterial STIs.
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4.3 An overview of HIV in GbMSM communities

Sexually transmitted infections have long been a public-health concern in the GbMSM

community, especially since the sexual liberation movement and the emergence of sex clubs

and bath houses in the late 1970s [216, 29]. At around the same time, HIV started spreading

and the first cases were recorded. HIV patients progressed to AIDS and subsequently died.

An AIDS pandemic began in the 1980s. The origins of HIV are still debated in the scientific

community and multiple theories have been laid out [92, 191]. Nevertheless, it is a virus

that disproportionately affects sexually active gay and bisexual men in Canada and North

America.

HIV has two main types (1 and 2) and several subtypes [191]. The strain that affects

most gay and bisexual men is type 1 subtype B [30]. HIV is a retrovirus—a complex group

of enveloped RNA viruses with common features, including higher mutation rates [54]—

thus making it difficult to cure with antiviral drugs [141]. As the pandemic accelerated,

research began to understand the modes of transmission. HIV virus particles (known as

virions) are mainly found in pre-ejaculatory fluid and semen and are transmitted through

anal intercourse and oral sex [197]. For a long time, condoms have been identified as the

main tool for HIV prevention. Condoms lower the transmission risk of HIV by 60% to 90%

[182, 245].

Testing for HIV became available in 1985 [47]. Public health agencies and physicians

recommend frequent testing, especially for highly sexually active individuals. If an individ-

ual tests positive for HIV, they initiate Higly Active Anti-Retroviral Therapy (HAART),

which consists in taking a daily regimen of several pharmaceutical drugs to bring viral

loads to undetectable levels: lower than 50 copies of virus particles per milliliter of blood.

Once the patient achieves undetectable status, they can no longer transmit the virus [258].

Other STIs such as GC, Syphilis and Chlamydia are also mainly transmitted through

anal intercourse and oral sex. The three aforementioned diseases are bacterial and are

usually treated with antibiotics [253]. However, if they are not diagnosed in their early

45



stages, they can lead to complications resulting in severe health issues [225]. Condoms

also act as a prophylactic measure against them. Individuals can be co-infected by HIV

and other STIs [123]. If an individual is already infected by one STI, it is easier to

contract another STI. GC is becoming resistant to antibiotics [225] and drug-resistant GC

is becoming a public health concern.

In recent years, a treatment protocol based on antiviral drugs called PrEP has been

implemented, and has been shown to strongly reduce the transmission of HIV [177, 120].

Recent studies have shown that PrEP efficacy exceeds 90% [147]. However, PrEP doesn’t

protect against other STIs, such as GC. Studies have associated the use of PrEP with an

increase in risky sexual behaviour (such as reduced condom usage) [239, 2, 129] as well as an

increase in bacterial STIs including GC [231]. Physicians or nurse practitioners prescribe

PrEP in intervals of three months. Before renewing a prescription, the patient has to get

tested negative for STIs (including HIV). PrEP is currently on the market and is being

prescribed to individuals deemed at risk, as determined by their sex practices. It is covered

by most health-insurance companies and provincial and federal governments [118].

HIV transmission and the impact of interventions such as antiviral drugs, condoms,

and hypothetical vaccines have been a frequent topic of mathematical modelling efforts

[205, 139, 188, 210, 233, 232, 247, 217]. A few of these models have also considered inter-

actions between HIV and other infections, such as the effects of tuberculosis co-infection

with HIV [205]. Mathematical models can be useful for anticipating undesirable dynamics

that emerge in the wake of infectious disease interventions, and how to best counter them,

such as exemplified by increases in congenital rubella syndrome incidence under certain

rubella vaccination policies [93]. The observed increase in GC due to use of PrEP in some

populations is another example of an undesirable side effect of increased PrEP recruitment.

Here, we develop a model of HIV and GC transmission in a population of GbMSM, in-

cluding STI testing, condom usage, and PrEP adoption. The model is parameterized with

data from Canadian and United States GbMSM populations. We use the model to study

the relationship between STI testing frequency and GC prevalence after the introduction

of PrEP, with a particular focus on how much STI testing frequency needs to be increased
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in order to counter a potential rise in GC due to reduced condom usage among individuals

taking PrEP. Given the challenges in increasing condom usage in the GbMSM community

in the PrEP era, [108, 231, 260, 157] we also seek strategies that can maintain GC preva-

lence at pre-PrEP levels by combining more frequency testing with a smaller (and thus

more achievable) increase in condom usage acting in synergy. The model is described in

the following section, followed by the results and finally a discussion section.

4.4 Constructing the model and its parametrization

We introduce a system of ODEs that describes the spread of HIV and GC in the presence

of a PrEP regimen in a population of gay and bisexual men. The population is divided

into eight compartments and each individual can belong to only one compartment at a

time. The compartments and the possible transfers between them appear in Fig 4.1.

S(t) represents the proportion of individuals who are susceptible to HIV and GC in-

fection but are not on PrEP. P (t) represents the proportion of individuals who are both

susceptible to GC infection and are also on PrEP. We assume that PrEP users strongly

adhere to the regimen recommended by their physicians. The most popular recommended

dosage is a daily pill of Tenofovir(TDF)/Emtricitabine(FTC). Studies have shown that

strong adherence reduces the transmission of HIV by 94% [147, 218]. A more recent study

of HIV transmission among serodiscordant couples (an HIV negative individual in a part-

nership with an HIV positive individual) has shown 0 cases of transmission when PrEP was

administered as recommended [196]. We therefore assume that strong adherence prevents

the transmission of HIV. We furthermore assume that PrEP patients stay on PrEP and

do not discontinue its use.
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Figure 4.1: Diagram representing model structure. The eight compartments represent

possible infection and treatment status for HIV and GC, while arrows represent trans-

fers between those states. See main text and Table 4.1 for definitions of variables and

parameters.

Pg(t) is the proportion of individuals who are infected by GC while on PrEP. They

can recover when they test positive for GC and start medication with efficacy εg. Ig(t)

represents the proportion of individuals who are infected by GC only. Ih(t) is the proportion

of individuals who are infected by HIV only. Igh(t) represents the proportion of individuals

who are infected by both HIV and GC. Even though simultaneous co-infection is a possible

outcome of a sexual act, we will neglect this outcome and assume that individuals are first

infected by one pathogen, and then independently infected by the other.

T (t) represents the proportion of individuals who are on treatment for HIV infection.

Individuals who are on an HIV treatment protocol do not transmit HIV [258]. They can,

however, contract GC and move to the Tg(t) class. We assume that individuals infected

by HIV do not progress to AIDS due to the availability of HIV medication provided by

governments and the fact that it can take up to 10 years for HIV to progress into AIDS
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[185]. The system of differential equations describing the transfers between these eight

compartments is:

dS

dt
= µ− δS − ρS − βhS(Ih + Igh)− βgS(Ig + Igh + Pg + Tg) + fεgIg.

dP

dt
= ρS − δP − αpβgP (Ig + Tg + Pg + Igh) + fpεgPg.

dPg
dt

= αpβgP (Ig + Tg + Pg + Igh)− δPg − fpεgPg.

dIg
dt

= βgS(Ig + Igh + Pg + Tg)− δIg − fεgIg − βghIg(Ih + Igh).

dIh
dt

= βhS(Ih + Igh)− βhgIh(Igh + Pg + Tg + Ig)− δIh − fεhIh + f(1− εh)εgIgh.

dIgh
dt

= βghIg(Ih + Igh)− δIgh + βhgIh(Igh + Pg + Tg + Ig)− fεgεhIgh

− f(1− εg)εhIgh − f(1− εh)εgIgh.
dT

dt
= fεhIh − δT − αtβgT (Ig + Igh + Tg + Pg) + ftεgTg + fεgεhIgh.

dTg
dt

= αtβgT (Ig + Igh + Tg + Pg)− ftεgTg − δTg + f(1− εg)εhIgh,

(4.1)

where the parameter values are defined in Table 4.1. We note that these equations osten-

sibly represent a mass-action incidence assumption, where individuals mix homogeneously

in the population and infection risk βI is proportional to the number of infected individu-

als. However, the standard incidence assumption βI/N [204] is arguably more realistic for

sexually transmitted infections in most settings, since infection risk is better approximated

as depending on the proportion of infected personal contacts. In our model, the population

size is constant and an individual’s infection status does not influence their mortality rate.

Hence, standard incidence and mass-action incidence are formally identical (related only

by a scaling constant) since βS I
N
≡ β0SI where β0 = β/N .

Five parameters (ρ,αp,αt,βg and βh) were fitted to empirical values of disease prevalence

to generate the baseline parameter values listed in Table 4.1 (all parameters that represent

time rates are in units of per day, unless otherwise specified). The calibration process was

carried out in two steps. The first step sets ρ = αp = 0 and P (0) = Pg(0) = 0. HIV
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Parameter Description Value (per day) Reference

βh Transmission rate of HIV 0.001275 Calibrated

βg Transmission rate of GC 0.001475 Calibrated

αp GC transmission risk factor for

PrEP users

12.75 Calibrated

αt GC transmission risk factor for

HART patients

3.875 Calibrated

βhg Transmission rate of GC with

HIV infection

3βg [175]

βgh Transmission rate of HIV with

GC infection

3βh [175]

ρ PrEP recruitment rate 0.000002375 Calibrated

δ Natural death rate 1/20075 Assumed

µ Migration rate 1/20075 Assumed

f Testing frequency for HIV/GC 0.54/365 [153]

fp Testing frequency for HIV/GC

for PrEP users

1/90 [224]

ft Testing frequency for HIV/GC

for HAART patients

1/180 Assumed

εh Efficacy of HAART treatment 0.9 (unitless) [209]

εg Efficacy of GC treatment 0.83 (unitless) [104, 213]

Table 4.1: Baseline parameter values. The assumed values of δ and µ are based on an aver-

age lifespan of 50 years. The parameters βh and βg and αt were first calibrated neglecting

all parameters and variables related to PrEP. Finally, αp and ρ were calibrated.
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prevalence in Canada among Men who have Sex with Men (MSM) is roughly 19%. This

number was obtained after weighing the prevalence of HIV in the main three metropolitan

cities in Canada: Toronto, Vancouver and Montreal [85, 222]. Therefore, at equilibrium,

we set Ih + Igh + T + Tg = 0.19. The same studies reported that roughly two-thirds

of HIV-positive individuals are on HAART, and therefore we set Ih + Igh = 0.06 and

T + Tg = 0.13. We note that estimates of HIV prevalence are subject to a significant

degree of statistical uncertainty and that our quantitative model projections could change

under different assumptions for HIV prevalence.

GC prevalence in MSM populations was more difficult to obtain, mostly due to disease

surveillance being performed at the level of the general population (i.e., not specific to

MSM). However a clinical study in California [125] reported that 15% of patients visiting

a sexual health clinic were infected by GC. At equilibrium, we set Ig + Igh + Tg = 0.15.

The study also filters GC infection by HIV status. Taking into account only HIV negative

individuals (we discarded unknown HIV status), we obtained, at equilibrium Ig = 0.10.

We are left with Igh + Tg = 0.05. Finally, at equilibrium S = 1− 0.19− 0.1 = 0.71.

We first identified a region of parameter space in αt, βh, and βg where the model equi-

librium values were close to target data. As a result the parameter ranges were narrowed

down to αt ∈ [3, 4], βh ∈ [0.0012, 0.0014], and βg ∈ [0.0014, 0.0016]. We then conducted

a three-dimensional grid sweep across these ranges. We used the method of least-square

error to identify a single set of parameter values for αt, βh, and βg for our baseline analysis.

This involved determining which parameter combination of αt, βh, and βg in the grid sweep

resulted in the smallest value of the squared difference between the model equilibrium value

and the target data value. The grid sweep was performed in MATLAB using ODE45. We

also tested the model with other solvers (ODE23S, ODE15S) and obtained very similar

results. Initial conditions (aside from P and Pg) were randomly selected, since our focus

was on equilibrium values.

We are left with calibrating ρ and αp. We started by replacing S = 0.71 by S+P = 0.71

at equilibrium. We have also replaced Ig+Igh+Tg = 0.15 by Ig+Igh+Tg+Pg = 0.15 and Ig =
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0.1 by Ig+Pg = 0.1. Current estimates of PrEP users average to 5% [192, 160, 106, 97, 176].

Therefore, we added P + Pg = 0.05. When calibrating ρ and αp, we fixed the previously

found baseline values for αt = 3.875, βg = 0.001475 and βh = 0.001275. The baseline

parameter values appear in Table 4.1.

In addition to the calibration of parameters, we perform a univariate parameter sensi-

tivity analysis. The results are added to the appendix and, in most parts, show sensitivity

of outcomes (Gonorrhea infections) with respect to parameters due to high correlation fac-

tors. In the case of f , βh and βg, there are sub-intervals in the range where the outcomes

are not sensitive to, in particular there would be zero prevalence at equilibrium.

4.5 Increasing PrEP recruitment rate increases Gon-

orrhea prevalence.

While PrEP prevents the transmission of HIV, it is ineffective against other STIs. There-

fore, we examined the equilibrium prevalence of GC (Ig + Igh +Pg + Tg) for different rates

of PrEP recruitment. In particular, we were interested in optimal combinations of testing

frequency for PrEP users (fp), and condom use or other preventive strategies (αp) in order

to minimize the prevalence of GC.

We ran a two dimensional grid 101 × 101 of values for fp ranging from 0.001 (testing

roughly once every 3 years) to 0.04 (testing once every 25 days), and for αp ranging from

0.0 (abstinence from sex, very high condom use or any other preventive strategy) to 20.0

(less precautions, lower condom use). We conducted this simulation for 4 different values

of ρ: 0.0 (no PrEP recruitment), 2.375× 10−6 (baseline value), 3.562× 10−6 (50% higher

than baseline value) and 1.1875× 10−5 (5 times higher than baseline value).

For the baseline parameter value of PrEP recruitment (Fig 4.2a), we observe that

an increase in risky behaviour (αp) causes a significant increase in GC prevalence. For

example, a decline in condom usage sufficient to cause an almost 13-fold increase in the
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transmission rate (corresponding to an increase of αp from 1 to 12.75) causes an increase

in GC prevalence by approximately 60%. On the other hand, an increase in the testing

frequency (fp) causes a decrease in GC prevalence (for αp unchanged). This happens

due to the fact that more frequent testing implies less window for transmission. Lines of

constant GC prevalence run approximately linearly across the parameter plane, such that

the baseline increase in αp would need to be accompanied by an increase in fp far in excess

of 0.04
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(a) Baseline value PrEP recruitment rate
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(b) No PrEP recruitment
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(c) PrEP recruitment rate 1.5x baseline value
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Figure 4.2: Gonorrhea prevalence heatmaps. Testing frequency for PrEP users (fp) and

gonorrhea transmission risk factor for PrEP users (αp) are varied and all other parameters

are held at baseline values. Different values of PrEP recruitment rate (ρ) are considered.

(a) PrEP recruitment rate baseline value: ρ = 2.375×10−6. The white dot locates baseline

values for αp and fp. (b) No PreP recruitment: ρ = 0.0. (c) PrEP recruitment rate 50%

greater than baseline value: ρ = 3.562× 10−6. (d) PrEP recruitment rate 5 times greater

than baseline value: ρ = 1.1875× 10−5. Black regions represent regions of lower gonorrhea

prevalence. Yellow regions represent regions of higher gonorrhea prevalence. Note the

difference in the ranges of the colour bars.
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(testing every 25 days). Unfortunately, this suggests that an increase in GC prevalence

in a population where PrEP is widespread is very difficult to prevent, for realistic testing

intervals.

When ρ = 0 (no PrEP recruitment, Fig 4.2b), we observe a slight variation of about

0.5% in the prevalence of GC in the (fp, αp) plane, as expected (note the range of the

colour bar of subpanel 2b). This is due to the fact that we have chosen non-zero initial

conditions for P and Pg. In particular, we have set P (0) = 0.08 and Pg(0) = 0.02. We

have examined the case when P (0) = Pg(0) = ρ = 0 and there was no variation in the

levels of GC in the population.

With information propagating through social media and awareness campaigns, more

individuals are becoming aware of PrEP and its efficacy in HIV prevention. We suspect that

the PrEP recruitment rate will be on the rise within the next decade. We have therefore

investigated scenarios where the recruitment rate is increased by 50% from the baseline

value (Fig 4.2c) and is 5 times higher than the baseline value (Fig 4.2d). This inevitable

increase in ρ can be potentially problematic since greater increases in the prevalence of GC

are observed for higher values of ρ. For instance, when ρ is 5 times larger than the baseline

value, GC levels can reach 35% of the entire population if no precautions are carefully

taken into account (yellow regions in Fig 4.2c,d).

On the other hand, this increase in the recruitment rate offers a wider area in the

(fp, αp) parameter plane where GC prevalence remains low (compare black regions in Fig

4.2c and Fig 4.2d). In fact, under these scenarios of higher PrEP recruitment, the testing

frequency does not need to be increased as much as under the baseline PrEP recruitment,

in order for GC prevalence to remain unchanged. This flexibility allows for better control

and the prevention of outbreaks. If αp is too high, the focus would be on increasing the

testing frequency to maintain sub-epidemic levels of GC in the population.

We also noticed a linear border between regions of higher and lower GC prevalence.

The border separating yellow regions from red regions is much steeper than that separating

red regions from black regions. This is an indication of the importance in maintaining a
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minimum testing frequency to keep GC from infecting a greater proportion of the popula-

tion.

4.6 Sufficiently frequent STI testing controls Gonor-

rhea prevalence.

Before starting a PrEP regimen, every individual needs to go through a series of tests.

The individual should test negative for HIV as a first step to qualify. They also have

to test for common STIs such as GC, chlamydia, and syphilis. If the results come back

positive for any of the STIs, an anti-bacterial treatment is prescribed first, and pending

recovery, PrEP qualification is revisited. Finally, testing the liver and kidney functions is

also essential before starting PrEP. The pills can have damaging effects on the liver [226].

If ALT (alanine aminotransaminase) and AST (aspartate transaminase) levels are too high,

a nurse practitioner (or a physician) recommends lowering the levels before starting PrEP.

Public-health agencies in Canada have set testing frequency for PrEP users to be once

every three months [224]. This is standard follow up procedure and PrEP is only prescribed

for three months only with no refills. A PrEP user needs to visit their physician and test

negative for all STIs before they receive another three months prescription. Testing is usu-

ally subsidized by local governments or paid for by insurance companies (in the case of very

specific tests). In this section, we examine several scenarios of testing frequency ranging

from once every 2 months (more frequent than the current recommended frequency), twice

per year, and once every 5 years. We run a 2-dimensional 101× 101 grid sweep of the two

parameters ρ and αp. The parameter ρ ranges from 10−6 to 5 × 10−5. The parameter αp

ranges from 0 to 20.
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(a) Testing frequency once every 3 months
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(b) Testing frequency twice per year
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(c) Testing frequency once every 2 months
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(d) Testing frequency once every 5 years
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Figure 4.3: Gonorrhea prevalence heatmaps. PrEP recruitment rate (ρ) and gonorrhea

transmission risk factor for PrEP users (αp) are varied and all other parameters are held

at baseline values. Different values of testing frequency for PrEP users (fp) are considered.

(a) Testing frequency once every three months (baseline value): fp = 1/90 ≈ 0.0111. The

white dot locates baseline values for αp and ρ. (b) Testing frequency twice every year:

fp = 1/182 ≈ 0.0055. (c) Testing frequency once every two months: fp = 1/60 ≈ 0.0167.

(d) Testing frequency once every 5 years: fp = 1/1825 ≈ 0.0005. Black regions represent

regions of lower gonorrhea prevalence. Yellow regions represent regions of higher gonorrhea

prevalence. Note the difference in vertical scale between the four subpanels.
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The parameter planes illustrate that frequent testing is essential in order to maintain

a lower prevalence of GC. GC infections can reach levels as high as 60% of the population

when individuals on PrEP are tested only once every 5 years (Fig 4.3d) and 50% when

tested twice every year (Fig 4.3b). Under both testing scenarios, black regions are very

thin and therefore we would require extreme measures to control the propagation of the

disease.

On the other hand, testing once every 2 months (Fig 4.3c) not only minimizes GC

infections but allows for more flexibility in parameter combinations to maintain low GC

prevalence. The black region in Fig 4.3c indicates that despite lower than necessary levels

of condom use, we can still keep GC in control and prevent outbreaks at baseline PrEP

recruitment, as long as risky behaviour does not increase too much under PrEP (αp . 8).

However, more frequent testing may be cost prohibitive for ministries of health. Also, more

frequent testing may reduce adherence since PrEP users would be required to visit their

physician more often and do more blood work, in this case 6 times per year (versus 4 times

per year under current recommendation).

The barrier between darker regions and lighter regions is nonlinear in these parameter

planes. Moreover, the parameter planes show a region of rapid increase in GC prevalence

as risky behaviour (αp) increases from the pre-PrEP value to the baseline PrEP value

of 12.8, for realistic testing frequencies. This shows that small increases in sexually risky

behaviour may not change GC prevalence very much although a further increase could shift

the system into a region where GC prevalence increases suddenly. Hence we expect that

increases in GC prevalence under PrEP may be highly dependent on the population under

consideration. Also, this emphasizes the importance of increasing the usage of preventive

strategies such as condoms.
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4.7 A 10–25 % decrease in risky behaviour on PrEP

combined with increased testing frequency pre-

vents gonorrhea prevalence from rising.

Figure 4.3 showed that reducing risk behaviour by 10—25% in individuals on PrEP in

combination with an increase in testing frequency is sufficient to maintain GC prevalence

at its pre-PrEP levels: the benefits of a reduction in risky behaviour act in synergy with an

increase in the testing frequency. Our ρ− fp parameter planes (Fig 4.4) also reflect these

observations. Here we constructed a 101×101 grid for ρ ranging from 10−6 to 5×10−5 and

fp ranging from 0.001 to 0.04 under four different scenarios for the value of αp, representing

the increase in risky behaviour after introduction of PrEP due to decreased condom usage,

for instance. Recall that αp = 1 corresponds to no change in risky behaviour due to PrEP,

while αp > 1 represents an increase in risky behaviour. αp = 6.375 represents an increase

in condom use (or other preventive strategies) by 50% compared to the baseline value

αP = 12.8, whereas αp = 25.5 represents a 50% decrease. αp = 63.75 represents a 5 times

decrease in condom use.

For instance, GC prevalence decreases sharply for an intermediate range of values for

the testing frequency fp. Most importantly, the parameter planes show that a combination

of decreasing risky behaviour through greater condom usage relatively to the baseline

scenario, and changing testing frequency to once every two months (Fig 4.4b), can keep

GC prevalence close to pre-PrEP levels. This is crucial since, as pointed out in the previous

subsection, high frequency testing may be cost prohibitive and/or may incur low adherence

rates. An interesting feature of Fig 4.4b is the switch of location of black regions from lower

ρ and higher fp values when αp is greater than the baseline value to higher ρ and lower fp

values when αp is lower than the baseline value (Figure 4.4a,b versus Figure 4.4c,d). This

furthermore indicates that condom use can be very critical in determining optimal policies

to reduce GC prevalence.
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(a) Baseline value for risk factor p
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(b) Risk factor reduced by a factor of 2
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(c) Risk factor augmented by a factor of 2
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(d) Risk factor augmented by a factor of 5
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Figure 4.4: Gonorrhea prevalence heatmaps. PrEP recruitment rate (ρ) and testing fre-

quency for PrEP users (fp) are varied and all other parameters are held at baseline values.

Different values of gonorrhea transmission risk factor for PrEP users (αp) are considered.

(a) gonorrhea transmission risk factor for PrEP users baseline value: αp = 12.75. The

white dot locates baseline values for fp and ρ. (b) gonorrhea transmission risk factor for

PrEP users reduced by a factor of 2: αp = 6.375. (c) gonorrhea transmission risk factor

for PrEP users augmented by a factor of 2: αp = 25.5. (d) gonorrhea transmission risk

factor for PrEP users multiplied by 5: αp = 63.75. Black regions represent regions of lower

gonorrhea prevalence. Yellow regions represent regions of higher gonorrhea prevalence.

Note the difference in vertical scale between the four subpanels.
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Contrariwise, very low rates of condom usage (high αp, Fig 4.4c,d) result in very high

prevalence of GC, unless the testing frequency is impractically high. Hence, condom use

remains essential in the prevention of other transmitted STIs such as GC, despite increased

STI testing frequency when individuals start PrEP.

4.8 A deeper look with time series analysis.

Time series indicate the temporal evolution of HIV and GC prevalence, showing that

changes in prevalence unfold on different time scales depending on both the diseases and

the intervention scenarios (Figs 4.5, 4.6). Upon the introduction of PrEP, HIV preva-

lence decreases exponentially from 4% to lower than 0.1% within 50 years, consistent with

experience on the ground with PrEP programs (Fig 4.6a).

Exponential behaviour, as opposed to oscillatory behaviour, is also observed for GC. All

simulations have resulted in a spike in GC followed by an exponential decrease to stable

values (Fig 4.5,4.6). The values depend on the choice of social parameters. There are

exceptions to this trend. When PrEP recruitment rate is five times greater than baseline

value, GC prevalence increases steadily until it reaches a stable value of about 22% (Fig

4.5f). The baseline value for PrEP recruitment rate reflects the current trends in PrEP

awareness. PrEP awareness is increasing with information being spread through social

networks. Immediate decline in GC prevalence, despite current PrEP recruitment rate, is

obtained when the efficacy of GC treatment is 100% (Fig 4.6f). The efficacy of treatment

is related to early diagnosis and other biological factors. Interestingly, there is a situation

under which we observe oscillatory behaviour in GC prevalence. If condom use is doubled

for individuals who are treated for HIV, or if they get tested twice as often, GC prevalence

oscillates (Fig 4.6d,e black curves).
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Figure 4.5: Time series of gonorrhea prevalence over different time scales. In each subfigure,

all parameters but one are kept at baseline values. (a,d) gonorrhea transmission risk factor

for PrEP users (αp) is varied: baseline value in red (12.75), reduced by a factor of 2 in

black (6.375), augmented by a factor of 3 in yellow (38.25). (b,e) Testing frequency

for PrEP users (fp) is varied: baseline value in red (1/90: once every three months),

testing once every 1.5 months in black (1/45), testing twice per year in yellow (1/182).

(c,f) PrEP recruitment rate (ρ) is varied: baseline value in red (2.375 × 10−6), No PrEP

recruitment in black (0), PrEP recruitment rate 5 times greater than baseline value in

yellow (1.1875× 10−5).
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Figure 4.6: Time series of gonorrhea and HIV prevalence over long time scales. In the

first row, we compute HIV prevalence. We vary (a) PrEP recruitment rate ρ (no PrEP

recruitment ρ = 0, basline value PrEP recruitment rate and 5 times baseline value), (b)

testing frequency for individuals in the susceptible class f (once every two years, once every

year, twice per year), (c) efficacy of HIV treatment εh (90% effective:baseline value, 100%

effective, 60% effective). In the second row, we compute gonorrhea prevalence. We vary

(d) gonorrhea transmission risk factor for individuals who are treated for HIV (αt = 3.875

baseline value, twice lower than baseline value, three times higher than baseline value), (e)

testing frequency for individuals who are treated for HIV ft (twice per year, once per year,

once every three months), (f) efficacy of gonorrhea treatment εg (83% effective: baseline

value, 100% effective, 60% effective).
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GC prevalence increases to a maximum within a decade and then it starts dropping

to a stable value (Fig 4.5,4.6). The maximum increase depends on the combination of

parameters. Highest levels of GC prevalence range between 20% and 25%. This represents

an increase of up to 60% from current values. Those levels are observed if people on PrEP

get tested less frequently, for example twice per year (Fig 4.5b,e) or if their condom use

is reduced by a factor of 3 (Fig 4.5a,d). The interesting observation, however, is that the

period of time until GC prevalence decreases is uniform for many parameter combinations.

Even if people on PrEP get tested once every month and a half or they start using condoms

more often, we still observe an initial spike in GC prevalence (black curves in Fig 4.5a,b).

There exist a value of PrEP recruitment rate somewhere between the baseline value and

5 times the baseline value where the qualitative behaviour of GC prevalence changes (Fig

4.5c,f). This indicates, that under current social behaviour, if PrEP recruitment increases,

then there would be a 70% increase in GC prevalence (from 16% to 22%) at equilibrium

value.

Testing frequency is essential to maintain lower levels of GC prevalence. Individuals

on PrEP, as well as those who are treated for HIV, must get tested frequently otherwise

GC prevalence rises (Fig 4.6e). While there are no testing policies and requirements for

individuals treated for HIV, simulations show that when they get tested once every three

months versus once per year, GC prevalence falls by 60%. This shows that GC prevalence

is not only affected by individuals on PrEP but by other members of the community as

well. The average testing frequency for gay and bisexual men is roughly once every two

years in some populations, which is considered very low. PrEP is not the only way to

prevent the transmission of HIV. Even though HIV is experiencing a decline [164, 50, 228],

if members of the community are tested on average once per year (Fig 4.6b red curve),

HIV will decline further.
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4.9 Sensitivity Analysis

We perform a sensitivity analysis to study the effect of parameter ranges on one of the

model outputs. We focus our attention on all GC infections as this is the main goal of this

study. We begin with defining an interval for each parameter value centered roughly at its

baseline value. We pick equidistant points in each interval and measure the proportion of

GC infections at equilibrium. The results are presented in Fig 4.7.

Surprisingly, GC infections are not sensitive to PrEP as seen in Fig 4.7 (F). It could be

that the values in the range of ρ are small enough to not create any sensitivity. Similarly,

GC infections are not sensitive to testing frequency for PrEP users or levels of condom

usage (Fig 4.7 (A,E)). We think that PrEP users are testing frequently enough (at the

rate of once every three months). On the other hand, GC infections are highly sensitive to

testing frequency to the general population.

There exists a threshold testing frequency f (about once every two months) after which,

GC prevalence falls to zero at equilibrium, as seen in Fig 4.7 (C). This is a bifurcation point,

and for any values of f less than roughly 0.018 (equivalent to once every 2 months), GC

prevalence can be as high as 50%. A similar qualitative behaviour behaviour is observed

in the transmission rate of GC Fig 4.7 (G).

Interestingly, we observe output sensitivity to the testing frequency of individuals who

are treated for HIV. While this category represents a small proportion of the population

(usually less than 15%), low enough testing frequency can increase GC prevalence above

50%.
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Figure 4.7: Sensitivity analysis for model parameters. For each parameter, an interval cen-

tered at the baseline value is considered and the equilibrium value of Gonorrhea infections

is measured and plotted.
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4.10 No drastic measures are needed to prevent a

Gonorrhea outbreak

Here we developed and analyzed a compartmental model of HIV and GC transmission

including allowances for behavioural changes upon the introduction of PrEP against HIV

infection. We found that GC prevalence increases for a wide range of parameter assump-

tions, due to a likely increase in risky behaviour from the introduction of PrEP. Our results

show that STI testing for individuals on PrEP once every three months is not enough to

prevent an increase in GC prevalence, for our baseline assumptions about the impact of

PrEP on risky behaviour. Moreover, increased STI testing frequency alone is not enough to

prevent a rise in GC prevalence because the testing frequency would have to be increased to

impractical levels in order to be effective. However, testing somewhat more frequently than

every three months, in combination with sufficient condom usage by individuals on PrEP,

would be successful in maintaining GC prevalence at pre-PrEP levels. We developed this

model for GC, although the model assumptions are similar to those that would be made

for other bacterial STIs such as Chlamydia or Syphilis. Hence, we expect qualitatively

similar findings for all bacterial STIs.

Our model highlighted the importance of testing frequency. Testing frequency in many

populations without mechanisms for recall (e.g. phone reminders about when it is time

to get tested) can be as low as once every two years. Our model predictions show that

massive reductions in prevalence are possible when moving from testing every two years

to testing every year. This suggests it might be worthwhile to better incentivise frequency

STI testing.

Increasing condom usage in the GbMSM community is a challenge, especially in the

PrEP era [108, 231, 260, 157]. However, our model emphasises that condom usage rates

would not have to change across the entire GbMSM community in order for benefits to

accrue, in terms of stemming the rise of GC. The GbMSM population is heterogeneous

with respect to both risk perception and willingness to change condom usage. For instance,

67



recent studies show that 9% of the GbMSM community consistently uses condoms, even

in the PrEP era [157]. This suggests that a non-negligible GbMSM sub-population might

respond to risk communication efforts to boost condom usage. Perhaps more importantly

our model shows that all-or-none behaviour change is not required for benefits to accrue.

In particular, Figure 4.3 shows that reductions in risk behaviour on the order of 10–25%

in combination with an increase in testing frequency are enough to keep GC prevalence

at its pre-PrEP levels, and that any reduction in risky behaviour has benefits that are

compounded with an increase in the testing frequency. Hence, even a modest increase in

condom usage could have benefits. This provides a useful target for public-health author-

ities to work toward.

Our findings about the importance of both condoms and STI testing to keep GC under

control in the PrEP era do not replace other good advice. For instance, STI testing once

every six months is recommended for individuals being treated for HIV infection every

time they have a follow up with their physician on their viral loads and overall health.

Other preventive strategies include having regular partners, asking sexual partners about

their testing frequency and sexual habits, abstinence, adhering to treatment protocol when

infected by an STI, and informing sexual partners when infected with an STI.

Our model made simplifying assumptions that could influence its predictions. For

instance, GC and HIV, like many pathogens, are currently developing more drug resistance

[3, 143, 52, 61, 195]. GC treatment efficacy is connected to early diagnosis and adherence

to the medication [235]. Hence if treatment for GC becomes less effective due to drug

resistance, GC prevalence in many populations will rise more than our model has predicted.

Our model assumes a homogeneous population reaction to the introduction of PrEP, but

we speculate that the quantitative predictions of a future version of the model accounting

for a heterogeneous population might differ.

Similarly, both social dynamics and contact network structure can play a significant

role in the spread of infectious diseases, including HIV and GC [233, 232, 90, 90, 159, 17,

26, 41, 146, 18, 73]. In future work, our study design could be refined by using network
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simulations that account for social dynamics concerning HIV and GC transmission. The

continued persistence of HIV in the gay and bisexual men’s community, along with the

resurgence of GC and other bacterial STIs, suggests a continued and urgent need for

mathematical modelling studies that can help inform recommendations to result in better

infection control.
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Chapter 5

Toward a reduction in HIV

prevalence in the GbMSM

population of Toronto by 2050
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5.2 Abstract

BACKGROUND: The Human Immunodeficiency Virus (HIV) continues to infect the

GbMSM population at disproportionate rates. Despite prophylactic and diagnostic tools,

there continues to be a significant incidence of the disease. We develop testing and PrEP

recruitment strategies to reduce HIV prevalence in the GbMSM population of Toronto by

2050.

METHODS: We build a system of stochastic differential equations with testing and

PrEP recruitment interventions, that divides the population into two groups based on their

sexual risk behaviour: low and high. We vary testing frequencies and PrEP recruitment

rates over different risk groups and times of the year. We use MATLAB 2019a to calculate

HIV prevalence in 2050, as well as average number of PrEP users and tests every year.

We conclude with an optimal strategy that balances a low HIV prevalence with plausible

testing and PrEP uptake rates.

RESULTS: Testing the entire GbMSM population once every year is essential to re-

duce HIV prevalence. Prevalence as low as 1.1 cases per 10,000 (95% confidence interval

1.0-1.3) can be achieved when the general population is tested four times per year and

PrEP recruitment rate is 20% per year. Summer focused interventions, in some cases,

present similar results to year long interventions. Optimal strategy is testing the entire

population twice during the summer while maintaining PrEP recruitment at current rates.

INTERPRETATION: We advise heavy testing campaigns during the summer time.

We also recommend incentives to individuals to increase guidelines set out by Public-Health

Ontario for better compliance.
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5.3 HIV in numbers

The Human Immunodeficiency Virus (HIV) has emerged in the 1980s as a pandemic af-

fecting disproportionately the Gay and Bisexual Men who have Sex with Men (GbMSM)

population [121, 87]. Since its discovery a few decades ago, there have been many ad-

vancements in the diagnosis, treatment, and prevention of the rapidly mutating virus. The

Enzyme-Linked ImmunoSorbent Assay (ELISA) test was developed in 1985 [122]. The first

treatment protocol was developed in 1987 [154]. Condoms have been, up until recently,

the most effective way to protect individuals against HIV [182, 86]. In 2016, Pre-Exposure

Prophylaxis (PrEP) was approved in Canada for preventive use [119], with studies showing

that it can prevent HIV transmission by up to 99% [12]. Based on estimates from 2016

[167], the number of recorded HIV cases in Canada is 63110, with half of those GbMSM. It

is estimated that roughly 14% of HIV cases are undiagnosed [167]. Once an individual is

diagnosed, they immediately begin their Anti-Retroviral Therapy (ART) where they take

a combination of pharmaceutical drugs to lower the concentration of the virus in their

bodily fluids (such as blood, and semen) to undetectable levels [183, 117]. An individual

achieving the undetectable status does not transmit HIV [76, 196].

Despite the efforts to decrease the burden of HIV on public health, the virus still re-

mains a threat [167], with over half of new infections (incidence) in Canada in the GbMSM

population. Several mathematical models have been developed in an attempt to under-

stand the underlying complex dynamics between HIV transmission and sexual (or social)

behaviour [159, 100, 101, 249, 58]. Preventative and diagnostic tools are available but the

question remains on how to implement them and how to incentivise them [131, 179, 128].

A recent study [223] showed that PrEP uptake in Ontario is still lower than suggested by

Canadian guidelines. Optimal implementation of PrEP is targeting high risk individuals

which helps with reducing HIV prevalence [140]. However, PrEP alone is not enough to

reduce HIV prevalence. For instance, it was shown that targeting low risk individuals

can prevent new HIV infections based on testing frequency [252]. Risky sexual behaviour

including, but not limited to, a decrease in condom usage, is more common during the
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months of summer [55, 114], and previous models have not included seasonal testing as an

option.

We are interested in addressing the effect of summer months interventions for different

risk groups. We are thus looking for an effective strategy that would help significantly

reduce HIV prevalence in the GbMSM population of Toronto by 2050. As such, we divide

the GbMSM population of Toronto into two risk groups based on their sexual behaviour:

low risk and high risk. Strategies combine different testing frequencies and different PrEP

recruitment rates at different times of the year targeting a specific risk group. We then,

estimate average testing rates and average PrEP uptake for each strategy considered. We

conclude by finding an optimal strategy that quantifies trade-offs between season specific

interventions and year long interventions, and trade-offs between risk group interventions

versus population level interventions.

5.4 A Stochastic framework to predict HIV preva-

lence

We develop a system of stochastic differential equations that describes the mechanisms of

HIV transmission, diagnosis and treatment, demographic processes, and PrEP uptake. The

model diagram is shown below in Fig 5.1. The equations are given in 5.1 and parameter

baseline values in Table 5.1.
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Figure 5.1: Diagram depicting the dynamics of the stochastic model presented in this paper.

There are 12 continuous random variables. Arrows represent transition probabilities per

time step.

Each individual either adopts a low risk sexual behaviour or a high risk sexual be-

haviour. The rate at which an individual transitions from low risk to high risk, peaks

halfway through the month of June. The rate at which an individual transitions from high

risk to low risk peaks in September. The equations for the transition rates are given below.

In addition, every individual can be either susceptible to HIV, on PrEP and thus protected
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from HIV, infected by HIV or treated for HIV. Furthermore, we divide infected individu-

als into three classes reflecting all three infection phases: acute phase, chronic phase, and

clinical AIDS phase. The acute phase is the primary stage of infection and it lasts about

four weeks [151]. The chronic phase is the second stage of HIV infection also known as the

asymptomatic stage and lasts up to 10 years [198]. The clinical AIDS phase is the final

stage of infection. An individual clinically enters this phase when their CD4+ T cell count

drops below 200 per ml of blood. At this point, they become vulnerable to opportunistic

infections that may result in severe illness, or death. Under no treatment, an individual

can stay alive for up to three years [133]. In our model, we reduce the average period

in this phase to two years under the assumption that during the last year, the individual

gets severely sick and is practically no longer involved in the transmission dynamics. The

system equations are given by:

dS1
dt

=µ1 + ψ1πSφ(t)− δS1 − r12(t)S1 − ρS1 + ωP1 − S1
3∑
j=1

αj

(
β11
I1j
N1

+ β12
I2j
N2

)
+ r21(t)S2 +

12∑
k=1

B1k
dW1k

dt
,

dP1

dt
=ψ1πPφ(t)− δP1 − r12(t)P1 + ρS1 − ωP1 + r21(t)P2 +

12∑
k=1

B2k
dW2k

dt

dI11
dt

=ψ1πI1φ(t)− δI(t)I11 − r12(t)I11 − γ1I11 + S1
3∑
j=1

αj

(
β11
I1j
N1

+ β12
I2j
N2

)
+ r21(t)I21 − εf1I11 +

12∑
k=1

B3k
dW3k

dt

dI12
dt

=ψ1πI2φ(t)− δI(t)I12 − r12(t)I12 + γ1I11 − γ2I12 − εf1I12 + r21(t)I22 +
12∑
k=1

B4k
dW4k

dt
,

dI13
dt

=ψ1πI3φ(t)− δI(t)I13 − r12(t)I13 + γ2I12 − γ3I13 − εf1I13 + r21(t)I23 +
12∑
k=1

B5k
dW5k

dt
,

(5.1)
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dT1
dt

=ψ1πTφ(t)− δT1 + εf1

3∑
j=1

I1j − r12(t)T1 + r21(t)T2 +
12∑
k=1

B6k
dW6k

dt
,

dS2
dt

=µ2 + ψ2πSφ(t)− δS2 − r21(t)S2 − ρS2 + ωP2 − S2
3∑
j=1

αj

(
β21
I1j
N1

+ β22
I2j
N2

)
+ r12(t)S1 +

12∑
k=1

B7k
dW7k

dt
,

dP2

dt
=ψ2πPφ(t)− δP2 − r21(t)P2 + ρS2 − ωP2 + r12(t)P1 +

12∑
k=1

B8k
dW8k

dt

dI21
dt

=ψ2πI1φ(t)− δI(t)I21 − r21(t)I21 − γ1I21 + S2
3∑
j=1

αj

(
β21
I1j
N1

+ β22
I2j
N2

)
+ r12(t)I11 − εf2I21 +

12∑
k=1

B9k
dW9k

dt
,

dI22
dt

=ψ2πI2φ(t)− δI(t)I22 − r21(t)I22 + γ1I21 − γ2I22 − εf2I22 + r12(t)I12 +
12∑
k=1

B10k
dW10k

dt
,

dI23
dt

=ψ2πI3φ(t)− δI(t)I23 − r21(t)I23 + γ2I22 − γ3I23 − εf2I23 + r12(t)I13 +
12∑
k=1

B11k
dW11k

dt
,

dT2
dt

=ψ2πTφ(t)− δT2 + εf2

3∑
j=1

I2j − r21(t)T2 + r12(t)T1 +
8∑

k=1

B12k
dW12k

dt
,

where B = (Bik) is a 12× 12 matrix defined as: B =
√
V and V is the Covariance matrix

[8]. Wik are 144 Wiener processes. Si(t) is the continuous random variable representing the

number of susceptible individuals in risk group i. Pi(t) is the continuous random variable

representing the number of individuals on PrEP in risk group i. Iij(t) is the continuous

random variable representing the number of infected individuals in risk group i in stage j

of infection. Ti(t) is the continuous random variable representing the number of treated

individuals in risk group i.
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φ(t) is given by:

φ(t) = δ(S1(t)+S2(t)+P1(t)+P2(t)+T1(t)+T2(t))+δI(t)(I11(t)+I12(t)+I13(t)+I21(t)+I22(t)+I23(t))

+γ3(I13(t) + I23(t))

The transition rate from low risk to high risk is given by:

r12(t) =


1

365.25×2 0 ≤ mod(t, 365.25) < 121

− 2
1687455

t2 + 104
241065

t− 1712
51135

121 ≤ mod(t, 365.25) < 213

1
365.25×2 213 ≤ mod(t, 365.25) < 365.25,

The transition rate from high risk to low risk is given by:

r21(t) =


1

365.25
0 ≤ mod(t, 365.25) < 212

− 4
468007

t2 + 1944
468007

t− 693212
1404021

212 ≤ mod(t, 365.25) < 274

1
365.25

274 ≤ mod(t, 365.25) < 365.25,

Transition rates are plotted in appendix A.2.

The death rate for individuals in the infected classes changes over time, due to enhanced

diagnosis and treatment since the beginning of the pandemic. It is given by:

δI(t) =



1
4∗365.25 0 < t < 7 years

1
10∗365.25 7 years < t < 15 years

1
20∗365.25 15 years < t < 25 years

1
50∗365.25 t > 25 years

The calibration process of model parameters is based on HIV incidence and prevalence

data between 1980 and 2016 [167]. Fitting model parameters to data is depicted in Fig 5.2.

In our model, transmission rates vary with respect to time and risk group. The difference in
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rates was based on the number of sexual partnerships and levels of condom usage [96, 215].

Diagnosis and treatment are added to the model at the t = 7 year mark. The obtained

calibrated value for low risk testing frequency is roughly 0.25 per year (equivalent to once
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Parameter Description Value (per day) Source

β11 low-low HIV transmission rate 0.000082/
√

65 Calibrated

β12 low-high HIV transmission rate
√

65(0.000082) Calibrated

β21 high-low HIV transmission rate 0.000082/
√

65 Calibrated

β22 high-high HIV transmission rate
√

65(0.000082) Calibrated

α1 acute phase HIV transmission factor 26 (unitless) [115]

α2 chronic phase HIV transmission factor 1 (unitless) [115]

α3 AIDS phase HIV transmission factor 7 (unitless) [115]

f1 low risk testing frequency 0.25/365.25 Calibrated

f2 high risk testing frequency 0.125/365.25 Calibrated

ε efficacy of HIV treatment 0.91 [209]

ρ PrEP recruitment rate 0.0075/365.25 Calibrated

ω PrEP quitting rate 1/(24× 30.5) Assumed

γ1 acute-chronic transition rate 1/28 [151]

γ2 chronic-AIDS transition rate 1/(365.25× 10) [198]

γ3 AIDS death rate 1/(365.25× 2) [133]

δ natural death rate 1/(50× 365.25) [181]

πS proportion of migration to S classes 0.95 (unitless) [30, 187]

πP proportion of migration to P classes 0.02 (unitless) [30, 187, 234]

πI1 proportion of migration to Ii1 classes 0.0000978 (unitless) [30, 187]

πI2 proportion of migration to Ii2 classes 0.0127518 (unitless) [30, 187]

πI3 proportion of migration to Ii3 classes 0.0025504 (unitless) [30, 187]

πT proportion of migration to T classes 0.0146 (unitless) [30, 187]

µ1 pop. increase (low risk) due to pop. growth 1.926 (persons/day) [44, 165, 1]

µ2 pop. increase (high risk) due to pop. growth 0.214 (persons/day) [44, 165, 1]

r12,r21 transition rates variable *

S1(0) Initial number of low risk susceptible 45280 [167, 166]

S2(0) Initial number of high risk susceptible 10000 [167, 166]

Pi(0) Initial number of PrEP users 0 [167, 166]

Ii1(0) Initial number of low/high risk acute HIV+ 10 [167, 166]

Ii2(0) Initial number of low/high risk chronic HIV+ 50 [167, 166]

Ii3(0) Initial number of low/high risk HIV+ in AIDS 5 [167, 166]

Ti(0) Initial number of treated individuals 0 [167, 166]

ψ1 proportion of low risk population 0.9 [194]

ψ2 proportion of high risk population 0.1 [194]

Table 5.1: Baseline parameter values.
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every four years) and the value was halved for high risk individuals. Note that the cali-

brated testing frequencies represent average values for the time period between 1987 and

2016. Finally, the calibration of PrEP recruitment rate is based on Global PrEP Tracker

available on www.PrEPwatch.org. The value we obtain is 0.75% per year which agrees

with previously computed estimates [160, 192]. Note that based on risk transition rates,

we include a PrEP discontinuity rate where on average an individual discontinues PrEP

within two years.

1985 1990 1995 2000 2005 2010 2015

0

1000

2000

3000

4000

5000

6000

7000

HIV prevalence: Data fitting 1980-2016

Simulation

Data

Figure 5.2: HIV prevalence: fitting of epidemiological parameters (transmission rates,

testing frequencies, and PrEP recruitment rate) to data on HIV from 1980-2016 in Toronto.

Data reflects both diagnosed and undiagnosed cases.
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We consider strategies focusing only on individuals adopting a low risk sexual be-

haviour, strategies focusing only on individuals adopting a high risk sexual behaviour, and

strategies that target both risk groups. Some strategies consider varying PrEP recruit-

ment rates while keeping testing frequencies at baseline values. Other strategies consider

varying testing frequencies while keeping PrEP recruitment rate at baseline value. Certain

strategies combine variations to both interventions. Finally, to understand the potential

effect of intervention during the summer season, we consider strategies with varying inter-

vention rates depending on the time of the year. One set of strategies has uniform rates

all year long. Another set of strategies has baseline rates outside of the summer months

and increased rates during the summer months. One final set of strategies has high rates

only during the summer months and no intervention during the rest of the year. Details

on strategies can be found in the appendix.

For each strategy, we use MATLAB 2019a and measure the rate of undiagnosed HIV

cases by 2050 (cases per 10000 individuals) with a 95% confidence interval based on the

simulation of 50 sample paths. We also estimate the average number of tests administered

on a yearly basis between 2020 and 2050, as well as the average number of individuals on

PrEP every year. We construct a function that seeks to pick an optimal strategy where

HIV infection rate is minimized subject to minimal testing and PrEP uptake rates.

5.5 Optimal Strategy for HIV Reduction is Testing

Everyone Twice during the Summer

We report the results in number of undiagnosed cases per 10,000 individuals. Tables in

the appendix also give a percentage of undiagnosed cases with their confidence intervals.

The results are reported for the year 2050.

Frequent testing is essential to reduce HIV prevalence. Investigating all 106

strategies in total shows that merely increasing testing frequency leads to a lower HIV
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prevalence than merely increasing PrEP recruitment rates (Fig 5.3,5.4). In addition, when

a higher PrEP recruitment rate is considered, we do not observe a significant difference

in HIV prevalence (Fig 5.3,5.5). Furthermore, we notice a notable decrease in prevalence

when testing frequency increases from once every two years to once every year: 13.1 cases

per 10,000 (12.1-14) to 5.4 cases per 10,000 (4.9-5.9), respectively (Fig 5.3C). Increasing

population level testing frequency to four times every year (equivalent to testing frequency

for PrEP users) produced the lowest prevalence of HIV: 1.2 cases per 10,000 (1.0-1.3) (Fig

5.3C).

Interventions should be implemented for both low risk individuals and high

risk individuals for optimal results. According to our model, focusing interventions

on high risk individuals only did not lead to a substantive decrease in HIV prevalence

(Fig 5.3,5.5 B,E,H). If a strategy targets high risk individuals only, the lowest prevalence

observed is 23.3 cases per 10,000 (22.5-25.0) when testing is performed at the rate of four

times per year and PrEP recruitment rate is 20% all year round (Fig 5.5B). Targeting only

low risk individuals produces a negligible increase in HIV prevalence compared to targeting

both risk groups (Compare Fig 5.3,5.4,5.5 A,D,G to Fig 5.3,5.4,5.5 C,F,I).

Variability in outcomes is higher when increasing PrEP recruitment rate is

the main focus. If testing frequency is kept at baseline value and PrEP recruitment rate

is increased from 1% per year up to 20% per year, confidence intervals are wider (Fig 5.4).

This suggests that there is a greater uncertainty when PrEP recruitment strategies are a

priority. While a greater PrEP recruitment rate produces lower HIV prevalence (Fig 3C),

it is not enough to bring down the number of undiagnosed HIV cases to minimal values.

For instance, a PrEP recruitment rate of 20% per year all year long to both risk groups

results in 35.7 cases per 10,000 (33.3-38.1). This happens with baseline testing frequencies,

and once again, emphasizes the essential role of testing.

Seasonal focused interventions can help decrease HIV prevalence. Even

though summer testing yields, in many cases, a lower amount of total tests, we still get a

comparable HIV prevalence to year long uniform frequencies. This stems from the fact that
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risky behaviour is increased during the summer time and thus there is a higher probability

of diagnosing then and eliminating potential transmissions. For instance, if HIV testing

is conducted during the summer only for the entire population, a prevalence as low as 3.8

cases per 10,000 (3.6-4.1) can be achieved when, on average, an individual is tested once

at the beginning of the summer and once toward the end of the summer.

An optimal strategy is testing the entire population four times every year

during the summer only while keeping PrEP at baseline values. In the search of

an optimal strategy, we included criteria such as balancing a lower HIV prevalence with

a not very high number of tests or PrEP users. Of course, if extremely frequent testing

and an abnormally high PrEP recruitment rate are possible, this would certainly generate

a minimal prevalence (1.1 cases per 10,000 (1.0-1.3)). However, it is not practical. As a

first step, we eliminated all the strategies that resulted in more than 10 cases per 10,000.

This reduced the number of strategies from 106 strategies to just 24. For each qualifying

strategy, we normalized HIV prevalence, the average number of yearly tests administered,

and the average number of yearly PrEP users. By doing so, we assign each variable an

equal weight of 1/3. The strategy that resulted in the lowest value of our function is testing

the entire population at the rate of four times every year during the summer months (see

Table in the appendix). We also consider different weights to determine whether or not

the same strategy is optimal. It turns out that doubling the weight of the average number

of yearly tests administered, yielded the same optimal strategy. The same happened when

we double the weight for the average number of yearly PrEP users. However, if we double

the weight for HIV prevalence, the optimal strategy is testing twice every year, all year

round, the entire population.
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Figure 5.3: HIV prevalence (%) for different testing strategies. PrEP recruitment is at

baseline value. Labels on the horizontal axes denote testing frequency. (D-F) Testing

frequency is at baseline outside the summer months.
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Figure 5.4: HIV prevalence (%) for different testing strategies. Testing frequency is at

baseline value. Labels on the horizontal axes denote PrEP recruitment rates. (D-F) PrEP

recruitment rate is at baseline value outside the summer months.
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Figure 5.5: HIV prevalence (%) for different testing and PrEP recruitment strategies.

Labels on the horizontal axes denote testing frequencies and PrEP recruitment rates, re-

spectively. (D-F) PrEP recruitment rate and test frequency are at baseline value outside

the summer months. 86



5.6 Sensitivity Analysis

We perform parameter sensitivity analysis to study the effect of a particular parameter on

the output of the model. In our case, the output is the total number of HIV undiagnosed

cases, measured as the sum of all the I classes. We start by fixing all parameters at

baseline values and calculate the median of the total number of undiagnosed HIV cases

by 2050 of 100 sample paths. We pick each parameter at baseline value and create an

interval centered at its baseline value with the left end half the parameter’s baseline value

and its right end one and half of it. For example for the parameter a3, the interval would

be (3.5, 10.5). We vary each parameter one at a time and record the output of the model

in every case. The results are presented in a Tornado diagram in Fig 5.6.

Note that we didn’t include parameters such that ε because it is multiplied by testing

frequency in the model: a variation of f1 (or f2) can be viewed as a variation of ε. In most

cases, output response to parameters was linear: output strictly increases (or decreases)

with respect to an increase in parameter value. However, we did observe in particular that

two parameters namely ω and β21 did not create a linear response. The reason could be

either because we did not take enough sample paths, or that the response is truly non-

linear. Both parameters in the figure are accompanied by an encircled negative sign. In

most cases, the lowest value of a parameter produced the lowest output while the highest

value produced the highest output. This, of course, depends on the biological interpretation

of the parameter. For some parameters, on the other hand, the opposite was observed.

For example, lower values of f1 produced higher values of HIV cases. Those parameters

are accompanied by a star, in the figure.

Testing frequency for low risk group produced the highest sensitivity to model output.

Transmission rate between a susceptible individual and an infected individual both in

the low risk group, produced the lowest sensitivity to model output. Out of all four

transmission rates, β12 produced the highest sensitivity. This indicates that uncertainty in

the transmission rate between a susceptible low risk individual and an infected high risk

individual produces less reliable results. Model output is insensitive to PrEP recruitment
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rate, possibly due to the fact of low levels of recruitment (interval right end is 1.5%).
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Figure 5.6: Sensitivity analysis for model parameters. 100 sample paths were produced

for each parameter value. For each parameter, three values were considered one at a time:

baseline value, half baseline value (lower end), one and a half baseline value (upper end).
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5.7 Recommendations to Public Health Units in On-

tario about the Reduction of HIV Prevalence

The reduction, and subsequently the elimination, of HIV in the GbMSM population can be

challenging when interventions are not appropriately implemented. Understanding trends

in risky behaviour is fundamental to tackling the situation. Our study shows that inter-

ventions conducted at increased rates during the summer months, can lead to a substantial

decrease in HIV prevalence in Toronto. While more testing has shown to be more effective

than simply increasing PrEP uptake (Fig 5.3,5.4), both measures combined together are

essential for a successful reduction.

Based on our results, we recommend heavy testing campaigns for the summer months

and we suggest that individuals get tested on average twice during the summer, regardless

of their sexual risk level. Engaging the general population does not have to be challenging.

The idea of universal testing, where an individual gets checked for HIV during a regular

medical exam, is promising [67]. Making HIV self-testing an option would lead to higher

testing frequency and thus a decline in transmission [124].

While PrEP uptake protects individuals against HIV, our studies show that a signifi-

cant increase in PrEP recruitment doesn’t have the same effect as a significant increase in

frequent testing (Fig 5.3,5.4). We advise the continuation of PrEP awareness, and recom-

mend the delivery of PrEP to high risk individuals [168]. This recommendation is based

on how accessible high risk individuals are, compared to low risk individuals. We advise

public health to develop programs to bring PrEP awareness to those individuals who get

tested, who frequent bathhouses, and those who are involved in the night life. Incentivising

testing and PrEP uptake can play an important role in increasing uptake rates. Offering

financial incentives to club goers, such as a discounted admission fee, or a free drink upon

showing a recent negative HIV test or a recent PrEP prescription is one way to go about it.

Similarly, Public health can use platforms such as social apps to encourage interventions.

Trends in using social apps to meet other individuals for sexual purposes keep increasing
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[103]. Incentives to get tested can range from decreasing membership fee to mandatory

testing for joining the network. We also recommend mandatory testing and PrEP uptake

for individuals sexually engaging in public spaces such as bathhouses.

Compliance with public health guidelines can be problematic at times. Conducting

surveys to discover what incentives individuals prefer can help increase testing rates and

the uptake of PrEP, once those incentives are implemented. This study offers a perspec-

tive to the direction in which a cost-effectiveness analysis might take. Public health has

budgetary limitations and as such a cost-effectiveness analysis would be informative to the

implementation of an optimal strategy seeking to reduce HIV prevalence among GbMSM

individuals, while meeting budgets.

There are several limitations to keep in mind. Our results present statistical uncer-

tainties based on parameter values. In this sense, we acknowledge that exact quantitative

outcomes might be hard to achieve. The presentation of only two risk groups does not

reflect the reality of the situation. Human behaviour is very heterogeneous and it plays

a big role in the spread of infectious diseases. However, approximations are necessary to

paint a qualitative picture.

HIV has been persistent in GbMSM populations for over 40 years now. While inter-

ventions are helping with a decrease in transmission rates and contracting the virus, the

virus is also building drug resistance [214, 34, 49]. It is a race to end the HIV epidemic in

the GbMSM population and we have to act now.
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Chapter 6

Conclusions

Societies’ responses to emerging pathogens have always been critical in the control of

their spread. In the absence of medical intervention, we have to rely on behavioural

strategies that help mitigate or reduce risks of severe outbreaks. Currently, the global

pandemic caused by the novel Coronavirus proves once again that the implementation

of social strategies (such as social distancing, quarantining, and wearing face masks) is

essential in the fight against an imminent public health threat [15, 152, 56]. Historically,

this has always been the case. From the times of the bubonic plague in the 14th century

[95], to last century’s Spanish Influenza [229], to most recently in 2020, COVID-19.

Adding social components to the mathematical modelling of infectious diseases can help

better guide public health response and give better predictions of outbreak probability

and outbreak sizes. As we have learned in the second chapter of this thesis, the basic

reproductive number is not necessarily the one and only reference to quantify the severity

of an emergent virulent strain. Under certain (behavioural) conditions, a deadly outbreak

can be prevented. This shows that complex systems such as those used in this thesis can

offer insight that are, otherwise, not very obvious (or sometimes intuitive). Feedback loops

created in nonlinear dynamics help inform experts about the effect of certain strategies

and the success or failure of certain preventive measures.
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Social behaviour that accompanies sexual partnership in the GbMSM population has

always been important in the prevention of HIV transmission. From wearing condoms, to

frequent testing, to uptaking PrEP, and to limiting the number of sexual partners; this

combination of prophylactic measures aims to reduce the prevalence of HIV and other STIs

(such as Gonorrhea) in the population. However, the disease is yet not eliminated. Other

than the fact that no effective cure has yet been developed, the surveys and statistics we

cited in chapters four and five show that compliance to public health guidelines is not

optimal. Of course, this favours the continual transmission of the virus. The model we

developed in chapter four informed us that drastic measures to increase condom usage is

not necessary to avoid outbreaks in bacterial STIs so long the population is getting tested

frequently. The same results were obtained in chapter five, even though we addressed a

slightly different question and used a slightly different method. This is encouraging, be-

cause no matter the methodology, we came up to the same conclusion about the important

of frequent STI testing. This is supported by conclusions from other studies [248, 71, 171]

Future work should focus on social behaviour and expand on the effect of social be-

haviour on the spread of disease. As we have seen throughout this thesis that social

behaviour plays an essential role in determining the course of an emerging pathogen. This

thesis doesn’t consider within-host dynamics. By including this layer, we can certainly

get a better understanding of an even more complex model, and the connection between

inter-host and intra-host dynamics. We addressed our questions by building compartmen-

tal models but there are other useful tools such as network epidemiology for instance.

Comparing outcomes from different methodologies can help strengthen the robustness (or

lack thereof) of results.

The mathematical modelling of infectious diseases has helped understand complex dy-

namics of disease transmission in communities. The continual development and improve-

ment of tools and techniques is important to enhance our assessments of real life situations,

and to better inform public health about the efficacy of safety measures. The communica-

tion of scientific findings is also important. The messages should be delivered in a clear and

concise way so that officials are able to successfully apply the findings in real life settings.
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The public’s role is important as well. Educating the public about the risks associated

with neglecting guidelines helps with infection control and subsequently saves lives.
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Kalengayi, Eric Van Marck, et al. Direct evidence of extensive diversity of hiv-1 in

kinshasa by 1960. Nature, 455(7213):661–664, 2008.

[255] Michael Worobey, Thomas D Watts, Richard A McKay, Marc A Suchard, Timothy

Granade, Dirk E Teuwen, Beryl A Koblin, Walid Heneine, Philippe Lemey, and

Harold W Jaffe. 1970s and ‘patient 0’hiv-1 genomes illuminate early hiv/aids history

in north america. Nature, 539(7627):98–101, 2016.

[256] Jianyong Wu, Radhika Dhingra, Manoj Gambhir, and Justin V Remais. Sensitiv-

ity analysis of infectious disease models: methods, advances and their application.

Journal of The Royal Society Interface, 10(86):20121018, 2013.

[257] Yanni Xiao, Sanyi Tang, Yicang Zhou, Robert J Smith, Jianhong Wu, and Ning

Wang. Predicting the HIV/AIDS epidemic and measuring the effect of mobility in

mainland China. Journal of theoretical biology, 317:271–285, 2013.

[258] Ashley York. Undetectable equals untransmittable, 2019.

[259] Tunde T Yusuf and Francis Benyah. Optimal strategy for controlling the spread

of HIV/AIDS disease: a case study of south africa. Journal of biological dynamics,

6(2):475–494, 2012.

[260] I Zablotska, S Vaccher, M Bloch, et al. No hiv infections despite high-risk behaviour

and sti incidence among gay/bisexual men taking daily pre-exposure prophylaxis

(prep): the prelude demonstration project. In Program and abstracts of the 9th IAS

Conference on HIV Science, Paris, France, 2017.

125



[261] Damián H Zanette and Sebastián Risau-Gusmán. Infection spreading in a population

with evolving contacts. Journal of biological physics, 34(1-2):135–148, 2008.

[262] Lei Zhang, David G Regan, Eric PF Chow, Manoj Gambhir, Vincent Cornelisse,

Andrew Grulich, Jason Ong, David A Lewis, Jane Hocking, and Christopher K

Fairley. Neisseria gonorrhoeae transmission among men who have sex with men:

an anatomical site-specific mathematical model evaluating the potential preventive

impact of mouthwash. Sexually transmitted diseases, 44(10):586–592, 2017.

[263] Tuofu Zhu, Bette T Korber, Andre J Nahmias, Edward Hooper, Paul M Sharp, and

David D Ho. An african hiv-1 sequence from 1959 and implications for the origin of

the epidemic. Nature, 391(6667):594–597, 1998.

126



APPENDICES

127



Appendix A

Tables and Codes

A.1 Sample MATLAB code for heat-maps in chapter

4

options2 = odeset(’NonNegative’,[1 2 3 4 5 6 7 8]);

global mu delta eg f bh eh ft ap bg at

mu=1/20075.0;

delta=1/20075.0;

bh=0.001275;

eg=0.83;

f=0.54/365;

eh=0.9;

ft=1/180.0;

ap=12.75;

bg=0.001475;

at=3.875;
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fp=0.001:0.00039:0.04;

rho=0.000001:0.00000049:0.00005;

A=zeros(length(fp),length(rho));

for i=1:length(rho)

for j=1:length(fp)

[t,y]=ode45(@(t,Y)HIVGCPREP_HeatMap_fprho(t,Y,rho(i),fp(j)),[0 100000],[0.7

0.08 0.02 0.06 0.03 0.01 0.09 0.01],options2);

A(j,i)=y(end,3)+y(end,4)+y(end,6)+y(end,8);

end

end

colormap(’hot’)

imagesc(A)

set(gca,’YDir’,’normal’)

set(gca,’FontSize’,16)

set(gca,’YTickLabelRotation’,90)

ax=gca;

ax.XTick=[1 20 40 60 81 101];

ax.XTickLabel={’0.1’,’1’,’2’,’3’,’4’,’5’};

ax.YTick=[1 24 50 75 101];

ax.YTickLabel={’0.001’,’0.01’,’0.02’,’0.03’,’0.04’};

xlabel(’\rho (x10^{-5})’)

ylabel(’f_p’)

colorbar
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A.2 Transition rates for Chapter 5
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Figure A.1: Transition rate from low risk to high risk
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Figure A.2: Transition rate from high risk to low risk
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A.3 Tables for Chapter 5
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