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Abstract

In shotgun proteomics, de novo peptide sequencing from tandem mass spectrometry
data is the key technology for finding new peptide or protein sequences. It has success-
ful applications in assembling monoclonal antibody sequences and great potentials for
identifying neoantigens for personalized cancer vaccines. In this thesis, I propose a novel
deep neural network-based de novo peptide sequencing model: PointNovo. The proposed
PointNovo model not only outperforms the previous state-of-the-art model by a significant
margin but also solves the long-standing accuracy–speed/memory trade-off problem that
exists in previous de novo peptide sequencing tools. Further, our experiment results show
that even though PointNovo is not trained to distinguish between true and false peptide
spectrum matching, its resulting log probability score can be used as a scoring function
to perform database searching. On several different datasets, we show that PointNovo,
when used as a database search engine, can achieve an identification rate that is at least
comparable to existing popular database search softwares.

We also extend and adapt an existing model to process Data Independent Acquisition
(DIA) data and propose the first de novo peptide sequencing algorithm for DIA tandem
mass spectra.

Finally, we develop a workflow that can identify tumor-specific antigens directly and
purely from mass spectrometry data of tumor tissues and test it on a published dataset of
tumor samples from melanoma patients. Our workflow applies de novo peptide sequencing
to detect mutated endogenous peptides, in contrast to the prevalent indirect approach of
combining exome sequencing, somatic mutation calling, and epitope prediction in existing
methods. More importantly, we develop machine learning models that are tailored to each
patient based on their own MS data. Such a personalized approach enables accurate iden-
tification of neoantigens for the development of personalized cancer vaccines. We applied
the workflow to datasets of five melanoma patients and expanded their immunopeptidomes
by 5% to 15%. Subsequently, we discovered 17 neoantigens of both HLA–I and HLA–II,
including those with validated T cell responses and those novel neoantigens that had not
been reported in previous studies.

Chapter 3 of this thesis is based on the author’s published paper “Deep learning en-
ables de novo peptide sequencing from data-independent-acquisition mass spectrometry,”
Nature methods 16.1 (2019): 63–66. Chapter 4 and Chapter 5 are based on the author’s
preprint paper “DeepNovoV2”1 (conditionally accepted by Nature Machine Intelligence)

1https://arxiv.org/abs/1904.08514
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and “Identifying neoantigens for personalized cancer vaccines by personalized de novo pep-
tide sequencing.”2 (conditionally accepted by Nature Machine Intelligence)

2https://www.biorxiv.org/content/biorxiv/early/2019/04/26/620468.full.pdf
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Chapter 1

Introduction of tandem mass
spectrometry and peptide sequencing

1.1 Tandem Mass Spectrometry

Mass spectrometry (MS) is a popular and powerful tool for chemical analysis. It has
contributed to different areas of research, including, but not limited to, chemistry, physics,
and biochemistry[79]. In MS, samples, typically in liquid or gas form, are loaded into a mass
spectrometer which comprises an ion source, a mass analyzer, and an ion detector. The
process is shown in Figure 1.1. The ion source produces gas phase ions from the sample
being studied, the mass analyzer separates those ions according to their mass-to-charge
ratio (m/z), and the ion detector detects the ions and record their relative abundance.

Figure 1.1: Components of a mass spectrometer

Tandem mass spectrometry (MS/MS) is a technique of utilizing two or more dif-
ferent types of mass analyzers to enhance analysis through fragmentation of the input
molecules[55]. In this approach, the sample first goes through an ion source, a mass an-
alyzer, and an ion detector, as in MS; the output is called MS1 spectrum. Distinct ions
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of interest are then selected and are further fragmented by several different dissociation
methods, e.g., collision-induced dissociation (CID) and higher energy collision dissociation
(HCD). These fragments are then processed by the second mass spectrometer, and the
output is MS2 spectrum.

Figure 1.2: Diagram of tandem mass spectrometry

In MS/MS shotgun proteomics (also known as “bottom-up” proteomics), the biological
sample (e.g., tumor tissues, plasma, and urine) often contains multiple proteins. First, the
sample is pre-processed with certain proteases (e.g., trypsin and Endoproteinase Lys-C),
such that the proteins are cleaved into shorter peptides. These peptides are then fed into a
spectrometer, and the output is denoted as MS1 spectra. Each signal in an MS1 spectrum
is called a precursor ion, which typically represents a certain kind of peptide. Next, the
mass spectrometer selects some precursor ions to perform fragmentation based on certain
strategies. The two commonly used strategies are Data Dependent Acquisition (DDA) and
Data Independent Acquisition (DIA). Their main difference is that only a fixed number of
precursor ions are picked in DDA, while in DIA all ions within a certain m/z range are
fragmented and analyzed. Next, the selected precursor ions are further processed by the
second round of MS and are fragmented into smaller pieces called fragment ions. The final
outputs are denoted as MS2 spectra. From the precursor mass (i.e., the mass of the peptide)
and the fragment ion signals information contained in the MS2 spectrum, it is possible to
recover the exact amino acid sequence of the original peptide. This solution is called
peptide sequencing. In this thesis, I focus on the algorithm part of the peptide sequencing
problem. I develop novel algorithms for MS/MS data generated through different strategies
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and demonstrate real-world applications for identifying tumor-specific antigens with our
proposed models.

1.2 Peptide Sequencing

1.2.1 Definitions and Notations

Denote A = {a1, a2, · · · , av} as the set of amino acid residues with molecular masses
m(a), a ∈ A. A length n peptide P = (p1, · · · , pn), pi ∈ A is a sequence of n amino acids.
The mass of a peptide P can be computed using the following formula:

m(P ) =
n∑
i=1

m(pi) +mH2O (1.1)

where mH2O ≈ 18.0106 Da. A partial peptide P ′ ⊂ P is a substring (pi, · · · , pj) of P , where
either i = 1 or j = n, with mass m(P ′) =

∑
i≤l≤jm(pl). We define the complement of P ′ as

the remaining amino acids of the peptide, denoted by P ′c. For example, if P ′ = (p1, · · · , pj),
then P ′c = (pj, · · · , pn) and m(P ′c) =

∑
j≤l≤nm(pl).

The set of possible fragment ion types is denoted as ∆ = {δ1, · · · , δk}, where each δi is
a R 7−→ R mass transformation (from the mass of a partial peptide to the theoretical mass
over charge value of the fragment ion of this partial peptide) for a specific type of ion. For
example, if δ1 represents the map for b-ion, then δ1(m(P ′)) = m(P ′) + mH , mH = 1.0078
Da is the mass of a hydrogen atom. A spectrum S = {(m/z1, I1), · · · , (m/zs, Is)} is a set
of peaks, where each peak is a tuple of mass over charge ratio (m/z) and intensity (i). A
partial peptide P ′ is said to match a spectrum S if:

∃ j, l s.t. |δj(m(P ′))−m/zl| < t

where t is the fragment ion mass difference tolerance, a parameter related to the resolution
of the mass spectrometer. For MS2 spectra from modern mass spectrometers like Orbitrap
Fusion, the parameter t is usually set to be between 0.02 Da and 0.05 Da. Given the above
notations, the peptide sequencing problem can be defined as: Given the peptide mass mp,
spectrum S, and the set of ion types ∆, finding the peptide of mass mp with maximal
partial peptide matches to spectrum S[19].

In general, existing peptide sequencing algorithms can be classified into three categories:
(1) database searching, (2) spectral library searching, and (3) de novo peptide sequencing.
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1.2.2 Database Searching

In database searching peptide identification, MS2 spectrums are searched against a known
database of proteins. Typically, the database of proteins is built from genome information.
For each MS2 spectrum, the mass of the precursor ion is retrieved from the corresponding
MS1 spectrum. Using the precursor mass, together with the cleavage rule defined by the
protease, we can then search the protein database to find all possible peptides whose mass
difference with the precursor mass is smaller than a certain threshold, e.g., < 15 parts
per million (ppm). Next, the searching algorithm will rank all of these peptide candidates
according to a scoring function for peptide-spectrum matches (PSM). The peptide with
the highest PSM score is returned as the search result.

An important advantage of database searching peptide sequencing algorithms is that it
is easy to control the false discovery rate (FDR) with the target-decoy search strategy[23].
In this strategy, we add some incorrect “decoy” sequences into the search space (i.e., protein
database). By counting the number of decoy peptides identified by the searching algorithm,
we can then estimate the FDR on the MS/MS dataset. Further, we can filter the identified
peptides based on their PSM scores such that only the high confidence ones (e.g., FDR
< 1% ) are kept. In the past 20 years, many tools and software for database searching
have been proposed, including SEQUEST, X!Tandem, Mascot, Comet, MaxQuant, and
PEAKS.

1.2.3 Spectral Library Searching

Spectral library searching is another peptide sequencing method that is gaining more and
more popularity. This approach requires a peptide spectral library, an annotated collection
of MS/MS peptide spectra. For each unidentified MS/MS spectrum, the spectral library
searching algorithm will compare its similarity with all spectra in the spectral library. Then,
the annotated peptide of the most similar spectrum in the library will be reported as the
identification. Compared to the database searching method, spectral library searching al-
gorithms usually run much faster because of the greatly reduced search space. In addition,
these algorithms can better discriminate between true and false matches by taking full ad-
vantage of spectral features like relative fragment intensities[45]. In general, however, it is
trickier to apply the target-decoy quality control strategy for the spectral library searching
method. A commonly used method is to create the decoy spectral library by randomly
permuting peptides and their corresponding fragment ions in the true spectral library.
For some biological samples, especially data acquired by DIA, the spectral library search-
ing method has already shown a higher identification rate than the database searching
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method. Popular tools for spectral library searching include SpectraST[45], Spectronaut[9]
and OpenSWATH[64].

1.2.4 De novo Peptide Sequencing

For both of the aforementioned methods, the FDR of the identification result can be
estimated and controlled with the target-decoy search strategy[23]. This makes them
popular choices for many applications. On the other hand, since both methods require
some level of prior knowledge (e.g., a protein database or a spectral library), they could
not search for unknown peptide sequences. An alternative method is de novo peptide
sequencing, which predicts the peptide sequence directly, and solely from the MS/MS
spectrum. It has shown successful results in applications that require finding novel peptides
and proteins, such as monoclonal antibody(mAb) assembling[76] and identifying tumor-
specific antigens[46].

The basic idea for de novo sequencing is simple and straightforward. Suppose we
start from the left-hand side of the peptide (N-terminal). The first amino acid is among
A = {a1, a2, · · · , av}. Then, for each ai we check if there exists δj ∈ ∆ such that δjm(ai)
matches a peak in the spectrum. If only a1 has a fragment ion match and all other ai
do not, then we are confident that the first amino acid should be a1. We can repeat this
process to keep predicting the next amino acid residue until the mass of the amino acid
sequence matches the precursor mass.

Unfortunately, real-world MS2 spectra are notoriously known for being noisy and in-
complete. The incompleteness of spectra means that often we could not detect fragment
ions for all partial peptides. On the other hand, MS2 spectrum typically contains many
noisy peaks, which means that when predicting the next amino acid, we may find multiple
candidates that all match the spectrum, thus making it difficult to decide which is cor-
rect. In the past 20 years, different algorithms and technologies have been applied to solve
this problems. These include, but are not limited to, the spectrum graph method[19], dy-
namic programming[14, 51], probabilistic network[28] and hidden markov model[27]. More
recently, Tran et al. first introduced deep learning to de novo peptide sequencing and
proposed DeepNovo, a neural network-based de novo peptide sequencing model for DDA
MS/MS data that outperforms the previous state-of-the-art models by a large margin[77].
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1.3 Contribution

The contribution of this thesis lies in the following aspects: In Chapter 3 we propose the
DeepNovo-DIA, the first de novo peptide sequencing model for DIA data, and show that our
model could efficiently detect more peptides of low abundance. In Chapter 4, we propose a
novel de novo sequencing model, PointNovo, that outperforms DeepNovo by at least 15%.
More importantly, our novel method of spectrum representation not only improves the final
peptide accuracy but also solves the accuracy-speed/memory trade-off problem that has
long existed in this area. Unlike DeepNovo or previous spectrum graph-based and dynamic
programming-based tools, PointNovo can directly benefit from the higher resolution data
generated by next-generation mass spectrometers without any increase in computational
complexity. Finally, in Chapter 5, we demonstrate an application of finding neoantigens
with a personalized de novo peptide sequencing model.
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Chapter 2

Background

2.1 DeepNovo

Inspired by the success of the image captioning models[88], DeepNovo integrated two fun-
damental types of neural networks—convolutional neural networks (CNNs) and long short-
term memory networks (LSTM)[34]—in order to extract features from both the spectrum
and the “language model of peptides.” In DeepNovo, each spectrum is represented as a
long intensity vector, and CNNs are applied on segments of this vector to extract fea-
tures and make predictions of the next amino acid. CNNs have been proven effective tools
for pattern recognition in different applications, including image classification, object de-
tection, and sentiment analysis[70, 61, 43]. By applying CNNs to the intensity vector,
DeepNovo can learn from the noisy spectrum. It is reported that DeepNovo outperformed
the past decade’s long-standing, state-of-the-art records of de novo sequencing algorithms
by a large margin of 38.1–64.0% at the peptide level[77]. The structure of DeepNovo is
shown in Figure 2.1

2.1.1 Spectrum Representation

DeepNovo discretizes an MS2 spectrum into an intensity vector, in which masses correspond
to indices and intensities are the values[77]. In the original code published by the authors1,
the default maximum mass is 3,000 Da, and the default spectrum resolution is 10. This
means the intensity vector will be of size 30,000, and every peak within a 0.1 Da bin

1https://github.com/nh2tran/DeepNovo
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Figure 2.1: DeepNovo

will be merged together and represented as an element of the intensity vector. Figure 2.2
demonstrates the discretization method used by DeepNovo.

This discretization method creates fixed-dimensional vector representations that can
be directly processed by CNNs. It is commonly adopted by other neural networks models,
such as DeepMatch[66]. However, when merging multiple peaks into a single value, we lose
valuable information about the exact mass value of each peak. Also, an MS2 spectrum
usually contains only 300 to 1,000 peaks, which means a spectrum could be stored on the
disk as 2,000 float numbers. But the intensity vector method needs 30,000 float numbers to
represent a spectrum. When experiment scientists build a more accurate mass spectrometer
in the future, the DeepNovo model needs to increase the spectrum resolution to take
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advantage of the improved accuracy. This will result in a significantly longer intensity
vector and will require more memory and time to train the model.

2.1.2 Ion CNN

By default, DeepNovo has a vocabulary of size v = 26, which consists of 20 amino acid
residues, 3 post-translational modification (PTM) residues, and 3 special tokens: “start”,
“end” and “padding”. When predicting sequences from MS2 spectra, DeepNovo starts
with a “start” token, then predicts one token at a time, step by step, until an “end”
token is encountered. At each step of prediction, DeepNovo uses an Ion CNN module to
extract features from spectrum’s vector representation. By default, DeepNovo includes
eight fragment ions types: b, y, b(2+), y(2+), b-H2O, y-H2O, b-NH3, and y-NH3. I denote
these eight ions as ∆ = {δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8}. The transform of each δ is defined by
the following formula:

δ1(m(P ′)) = m(P ′) +mH

δ2(m(P ′c)) = m(P ′c) +mH +mH2O

δ3(m(P ′)) =
m(P ′) + 2×mH

2

δ4(m(P ′c)) =
m(P ′c) + 2×mH +mH2O

2
δ5(m(P ′)) = δ1(m(P ′))−mH2O

δ6(m(P ′c)) = δ2(m(P ′c))−mH2O

δ7(m(P ′)) = δ1(m(P ′))−mNH3

δ8(m(P ′c)) = δ2(m(P ′c))−mNH3

(2.1)

Suppose the model already predicted an amino acid sequence (p1, · · · , pj). The next
amino acid could be one of the 26 tokens. This then leads to 26 potential partial peptide
{P ′i}, i ∈ {1, 2, · · · , 26}, where P ′i = (p1, · · · , pj, ai). For each candidate partial peptide
P ′i, we can then calculate the m/z values of its eight ion types by Equation 2.1. In total
there are 26× 8 m/z values of interest.

The inputs of Ion CNN are thus slices of the intensity vector around these locations of
interest. To be precise, for each m/z value of interest, DeepNovo identifies its corresponding
location index (e.g., as shown in Figure 2.2, the location index of 205.0 Da is 2051), then
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extracts a short sub-vector of length 10 around it. Thus, the input of Ion CNN is a
3-dimensional array (denoted by X) of shape 26× 8× 10.

The Ion CNN module consists of two 2d-convolutional layers and one fully connected
layer. Rectified linear unit (ReLU) is used as the activation function[54]. In the convo-
lution operations, the first dimension of X is treated as the dimension of channels. The
convolutional kernel sizes for the second and third dimensions of X are 1 and 3, respec-
tively. Eventually, the Ion CNN module transforms an input X into a feature vector Fion
of length 512.

2.1.3 LSTM and Spectrum CNN

DeepNovo integrates an LSTM module to learn the sequence patterns of peptides. At each
step of prediction, the previous amino acid will be embedded into a 512-dimensional vector.
The LSTM module then outputs a feature vector Flstm conditioned on its hidden state and
the embedded vector. To achieve a meaningful prediction, the LSTM module should be
initialized with information from the original spectrum. DeepNovo uses a spectrum CNN,
which consists of a max pooling layer followed by two convolutional layers and a fully
connected layer, to extract features from intensity vectors and then uses the extracted
features as the initial states of the LSTM module.

As for the final prediction of the next amino acid, DeepNovo concatenates Fion and Flstm
into a feature vector F of length 1024 and applies a fully connected layer with 26 hidden
neurons and softmax activation on F . The output can be then viewed as a probability
distribution over the 26 tokens.

2.1.4 Training and Searching

DeepNovo uses cross-entropy (CE) loss as the loss function. During training, a forward
model (predicting from the left-hand side, or N-terminal, of the peptide) and a backward
model (predicting from the right-hand side, or C-terminal, of the peptide) are trained
together. Both models are trained with the Adam optimization algorithm[44]. After each
500 training steps, the CE loss on validation is calculated and the weight matrix that has
the smallest validation loss is selected for testing.

During prediction, the knapsack dynamic programming algorithm is applied to reduce
the search space. The beam search algorithm is applied to search for the best amino
acid sequence within a reasonable time. By default, the beam size is set to be 5. The
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forward model and backward models each give a predicted peptide, and the one with the
highest score, defined as length normalized log probability, will be reported as the identified
sequence.

2.1.5 Result

DeepNovo is the first deep neural network-based de novo sequencing model. It is reported
to achieve a 7.7–22.9% higher accuracy at the amino acid level and 38.1–64.0% higher ac-
curacy at the peptide level. Additionally, in the application of mAb assembling, DeepNovo
is shown to be capable of reconstructing the complete sequences of light and heavy chains
of a mouse antibody without assisting databases[77].

2.2 Therapeutic Cancer Vaccines

Typically, vaccines are made from weakened or harmless versions of the disease-causing
microorganism. After being injected into the human body, vaccines stimulate the body’s
immune system and provide the recipient an active acquired immunity to the particular
pathogen. Various preventive vaccines (e.g., flu shots, HPV vaccine) have been used to
provide the infected population immunities against contagious diseases. In the meantime,
vaccines could also be adopted to treat existing disease. These are referred to as therapeutic
vaccines. Therapeutic cancer vaccines are a type of cancer immunotherapy that aims to
treat existing tumors.

In the human immune system, the major histocompatibility complex (MHC) brings
short peptides to the surface of cells. Often referred to as MHC peptides (or HLA peptides,
where HLA is the gene complex that encodes MHC), these peptides are produced from
digested proteins that are broken down in the proteasomes. When a cell is infected by a
virus or grows malignant, non-self MHC peptides (from the virus or mutated proteins) will
be presented on the surface of the cell so that T cells can recognize and subsequently kill
the cell[7]. The MHC peptides on cancer cells (also referred to as antigens) are usually
the main component of cancer vaccines. Choosing effective antigens is the single most
important step in designing a cancer vaccine. Ideally, the antigens should be expressed
specifically by cancer cells (not in normal cells), presented on all cancer cells, and elicit
strong immune response[35].

Many cancer vaccines have taken aim at tumor-associated antigens (TAAs), which are
abnormally expressed self-proteins. For some types of cancers, the same TAAs are observed
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among different patients. With shared TAAs, therefore, it is possible to develop “off-the-
shelf” vaccines that are ready-to-use for any eligible cancer patients[73]. However, several
challenges remain for developing vaccines against TAAs. Since TAAs are self-antigens, the
immune system may develop immune tolerance against the lymphocytes that strongly rec-
ognize these peptides. Thus, a cancer vaccine must break the tolerance by using adjuvants,
co-stimulators, or repeated vaccination. The expression of TAAs in normal cells may also
lead to collateral damage. For example, a recent clinical trial of receptor-engineered T
cell therapy (CAR-T) targeting a shared TAA (the colorectal carcinoembryonic antigen)
caused severe colitis in a high percentage of patients, as this antigen is also expressed in
normal intestinal tissue[57].

Tumor-specific mutated antigens (often referred to as neoantigens) represent another
type of target for therapeutic cancer vaccines. Unlike TAAs, neoantigens are mutated
non-self peptides that are not found in normal tissues. Thus, vaccines against neoantigens
have better specificity and are less likely to elicit collateral damage. Multiple independent
clinical trials have confirmed the potential of personalized neoantigen vaccines for patients
with melanoma[56, 65, 13]. More recent research shows that neoantigen vaccination is
a feasible therapeutic strategy, even for immunological cold tumors with a relatively low
mutational burden (e.g., glioblastoma)[42]. The vaccination was found to generate promi-
nent T cell responses against immunizing neoantigens. In addition to developing cancer
vaccines, neoantigens help to improve the prediction of response to immune checkpoint
inhibitor therapies. Indeed, numerous studies have shown that the response to immune-
mediated therapies often correlates with high numbers of identified neoantigens[35].

Since neoantigens carry mutations unique to each patient, identifying them requires a
personalized approach. The current prevalent approach is a proteogenomics method that
typically involves some of the following steps:

• Sequencing the genome for both tumor and normal tissues of the patient (by whole
exome sequencing and RNA sequencing)

• Identifying mutations with somatic variant calling

• Predicting the likelihood of a mutated peptide to be a neoantigen with pMHC binding
affinity prediction tools(e.g. NetMHCpan[38], Edge[11])

• Validating with MS

This method has been proven efficient and feasible in multiple studies[6, 52, 42]. It is ca-
pable of finding neoantigens that derived from non-synonymous single-nucleotide variants
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(SNVs). However, recent research suggests that the majority of neoantigens might be pep-
tides translated from the non-coding region[46] or resulting from alternative splicing[71, 26].
In both cases, the neoantigens are hard to detect by the aforementioned proteogenomics
method. A workflow that can identify a neoantigen, regardless of whether it is from SNV,
a non-coding region, or alternative splicing, is desirable.

In Chapter 5 we propose a novel pipeline to detect neoantigens by personalized de novo
sequencing models. Since our method focuses on the MS data, neoantigens from all sources
can be identified. Also, by training separate de novo sequencing models for each patient,
our method could take advantage of the T cell epitope recognition patterns with respect
to the patient’s specific HLA alleles.

2.3 Order Invariant Networks

Deep neural networks (DNNs, often referred to as deep learning) have gained tremendous
attention in recent years. DNNs have set new records on multiple supervised learning
tasks and have become the tool of choice in different areas, including, but not limited
to, image classification[32, 37], object detection[61, 47], machine translation[5, 81], and
speech recognition[33]. Aside from doing end-end training with the gradient-based method
on labeled data, DNNs can also serve as a powerful feature detector and be trained with
reinforcement learning (RL) algorithms. By combining deep learning with RL, researchers
are now able to propose solutions to some difficult and important research problems that
could not be solved efficiently before, such as Go playing[68], drug discovery[91], and
protein folding[25].

2.3.1 Carefully Designed Model Leads to Better Performance

The success of DNNs is often explained by the representational power that comes with their
immense number of parameters. It is widely known that a simple feed-forward network
with a single hidden layer containing a finite number of neurons could approximate any
continuous functions on compact subsets of Rn under mild assumptions on the activation
function[18]. However, we currently lack theoretical results about the learnability of DNNs
with different structures. In practice, researchers often find that given the same number
of parameters, a fully connected feed-forward network tends to perform worse than a
carefully hand-crafted network structure. Indeed, many successful applications of DNNs
rely heavily on some specific types of neural networks. For example, CNNs are crucial
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components in almost all DNNs models that process image data. CNNs are inspired by
the biological processes on the animal visual cortex[29] and have the desired characteristics
of local connectivity and translation invariance. These properties make them a perfect
choice for image processing models. Another example would be the attention mechanism
in neural machine translation. Based on the observation that an encoder-decoder model
deteriorates rapidly as the length of an input sentence increases, Bahdanau et al. proposed
to store a vector representation for each input word and let the model jointly learn to
align and translate. This method is often referred to as (soft) attention mechanism. It has
been shown that by applying the attention modules, models based DNNs could perform
significantly better with longer sentences[5, 48]. Thus, the attention mechanism becomes
a standard component for different models in natural language processing[86, 20, 60].

2.3.2 T Net

A point cloud is a set of points in a metric space. Point clouds could be generated by 3D
scanners and are used for different purposes including 3D computer-aided design modeling
and quality control for 3D printing. Figure 2.3 shows a sample point cloud for a 3D ball.

Due to the irregular format of point clouds, most previous research transformed such
data to regular 3D voxel grids and applied 3D CNNs to process them. In 2017, Qi et al.
proposed PointNet, the first order invariant neural network structure for set data such as
point clouds[59]. PointNet was reported to be highly efficient and effective. In the task of
point cloud classification, PointNet outperforms the previous state-of-the-art methods by
a significant margin.

The building block of PointNet is a structure called T Net. In essence, PointNet is a
stack of T Net modules and matrix multiplication operations. The structure of T Net is
shown in Figure 2.4.

Here, N denotes the number of data points in a point cloud, D = H0 is the dimension
of input data, and Hi represents the number of hidden neurons in a layer. The shared
MLP denotes a simple matrix multiplication followed by a non-linear activation function.
Suppose we denote the input N by Hi matrix as X, then a shared MLP layer is:

f(X) = σ(XW ) + b

where W is a Hi by Hi+1 matrix of trainable parameters. b is scalar, also a trainable
parameter, and σ represents a non-linear activation function. The fully connected layer
operates similarly, except that it expects a length Hi row vector v as input:
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f(v) = σ(vW ) + b

Here, W is a Hi by Hi+1 matrix and b is a vector of length Hi+1. The global max pooling
operation takes in a matrix and returns the maximum along its first axis. The inclusion
of a global max pooling operation guarantees that exchanging the orders of input data
points would not affect the output. In popular deep learning frameworks like Tensorflow[1]
and PyTorch[58], the shared MLP module can be implemented as a 1D convolution layer
and the global max pooling operation can be implemented by the maximum function.
Therefore we can build the T Net structure efficiently with built-in functions provided by
these frameworks.

Qi et al. reported that PointNet could obtain on par or better results than the previous
state-of-the-art methods on a number of 3D recognition tasks, including object classifica-
tion, part segmentation, and semantic segmentation. The success of PointNet once again
demonstrates that it is meaningful to tailor a model structure for a specific type of data.
By integrating domain-specific expertise into the neural networks structure, researchers
can expect to see a potential improvement in performance.

Here I note that an MS2 spectrum is similar to a point cloud. Indeed, a spectrum is
a set of data points where each data point is a peak with two attributes: m/z value and
intensity. Therefore, I believe order invariant network structures like T Net have great
potential for analyzing mass spectra.
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Figure 2.2: Spectrum representation in DeepNovo
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Figure 2.3: Point clouds for a 3D ball
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Chapter 3

DeepNovo-DIA

As described in Section 1.1, there are two general strategies for selecting features to do
second round MS: DDA and DIA. Comparing to DIA, DDA usually generates MS2 spec-
trums with higher signal-to-noise ratios, i.e. fewer noisy peaks. In DDA, however, only a
proportion of the precursor ions appeared in MS1 spectrum will be selected to do further
fragmentation. This limits the number of peptides that could be identified in the biologi-
cal samples. Recently, advances in DIA strategy allow the fragmentation of all precursor
ions within a certain range of m/z and retention time in an unbiased and untargeted
fashion[82, 64], which means, DIA experiments could produce a complete record of all
peptides that are present in a sample, including those with low abundance. This is an
important property for applications like personalized immunotherapy[56, 65, 30]. Because
in those applications the peptides of interest like TSAs are often of low-abundance.

A remaining question is how to decode these data to extract meaningful information.
MS/MS spectra from DIA are notoriously hard to interpret because they are highly mul-
tiplexed. Each spectrum contains fragment ions from multiple precursor ions, and the link
between a precursor ion and its fragment ions is unknown. This challenge prevents many
DIA database search engines from achieving identification power comparable to that of
their DDA counterparts[64, 22, 78, 74]. The problem is even more acute for the de novo
sequencing approach, and to the best of our knowledge, no method has been proposed to
address it before.

Recently Tran et al. proposed DeepNovo, a deep-learning-based model for de novo
sequencing using DDA data. We have observed that, in contrast to many complicated
optimization algorithms, the iterative sequencing framework of DeepNovo makes it possible
to extend to DIA without any increase in complexity. More importantly, to address the
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problem of highly multiplexed spectra, we restructure the neural networks to utilize the
extra dimensionality of DIA data (m/z and retention time) to identify coeluting patterns
of a precursor ion and its fragment ions, as well as fragment ions across multiple neighbor
spectra. This evidence allows DeepNovo-DIA to pick up the correct signal for de novo
sequencing amid a large amount of noise in a DIA spectrum. Taking all these considerations
into account, we designed DeepNovo-DIA to enable de novo sequencing using DIA data.

Figure 3.1: The workflow of DeepNovo-DIA for de novo sequencing of DIA data.

Our DIA de novo sequencing workflow is shown in Figure 3.1. First, precursor features
are detected together with their m/z, charge, retention time, and intensity profile. Next,
for each precursor, we collect all MS2 spectra so they are within the precursor’s retention-
time range and ensure that their DIA m/z windows cover the precursor’s m/z. Because the
number of spectra collected for a precursor may vary, we select a fixed number of spectra
that are closest to the center of the precursor’s retention time. The closer a spectrum is to
the center, the stronger its fragment ion signals are for de novo sequencing. The correlation
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between the precursor’s intensity profile and its fragment ions is also a good indicator for
de novo sequencing. Thus, we feed the precursor and its associated MS/MS spectra into
DeepNovo-DIA neural networks to learn (1) the 3D shapes of fragment ions along m/z
and retention-time dimensions, (2) the correlation between the precursor and its fragment
ions, and (3) the peptide sequence patterns. Similar to DeepNovo, Our de novo sequencing
framework operates in a recurrent and beam-search fashion: at each iteration, the model
predicts the next amino acid by conditioning on the output of previous steps and keeps
track of only a constant number of top candidate sequences. As a result, its complexity
does not increase with the number of peptides or with the number of ions in the spectrum.

3.1 Method

Because a DIA spectrum is highly multiplexed, it is important to use high resolution to
distinguish fragment ions from different precursors that happen to have similar masses. In
DeepNovo-DIA, we used 50 bins to represent 1.0 Da, that is, a spectrum resolution of 50.
We also defined a maximum mass value of 3,000 Da. Thus, each spectrum was represented
by a vector of length 150,000, in which the mass of an ion corresponded to an index and
the ion intensity was the vector value at that index. For the retention-time dimension, we
fixed this number and selected those spectra closest to the feature’s retention-time mean. If
there were not enough spectra, we appended zeros. In this study, we used five spectra (the
use of ten spectra led to minor improvements). We stacked the spectra along the retention-
time dimension so that the middle one was the closest to the feature’s retention-time mean.
The five selected MS/MS spectra of a feature were stored in a matrix of size 5 × 150,000.
To normalize the intensities, we divided the matrix element-wise by its maximum. We also
extracted the MS1 intensity profile of a given feature at the respective retention times of
those five MS/MS spectra. The resulting normalized 5 × 150,000 matrix, together with
the length 5 MS1 intensity profile vector were then fed to the DeepNovo-DIA model for de
novo sequencing.

In general, the de novo sequencing framework is the same for DDA and DIA data,
except that extra preprocessing is needed to add the retention-time dimension of DIA
data. The DeepNovo-DIA model structure is illustrated in Figure 3.2. At each step, the
input to Ion CNN module is now a four dimensional array X of shape 26 × 8 × 5 × 10.
Thus we change the 2D convolution operation in DeepNovo to 3D convolution. The first
dimension of X is still viewed as the “channel” dimension. To make use of the MS1 intensity
profile information, we also compute its correlation with fragment ions. The output is a
vector of length 26 and is concatenated with the 512 dimensional feature vector returned
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by the convolutional operations. The structure of Ion CNN in DeepNovo-DIA is shown in
Figure 3.3. As for the Spectrum CNN module, we simply change the 2D convolution to
3D.

Previously, DeepNovo used cross-entropy loss as the loss function. For DIA, the pres-
ence of multiple peptides in the same spectrum inspired us to view de novo sequencing as
a multi-label classification problem with dense signals, and hence to apply focal loss[47]
as the suitable objective function for DIA. Our experiment shows that the switch to focal
loss improved DeepNovo-DIA’s performance considerably. Lin et al. proposed focal loss
to solve the class-imbalance issue in object detection[47]. The focal loss down-weights the
contribution of easy predictions and puts more focus on hard predictions, and therefore
could help to address the problems of noisy targets and class imbalance. In object-detection
problems, the neural networks need to classify whether a patch of an image is an object
or background. Because of the nature of this problem, most patches neural networks can
see are background, and this causes problems for end-to-end training with cross-entropy
loss. To deal with this problem, Lin et al. proposed a dynamically scaled cross-entropy
loss that they named focal loss. For a binary classification problem, we denote y ∈ {0, 1}
as the ground-truth class for a data point, and p as the model’s predicted probability for
class 1. Then the focal loss is defined by the following formula:

Focal Loss = −(1− pt)γ log(pt) (3.1)

where pt = p if y is class 1 and pt = 1−p if y is class 0. And γ is a hyperparameter greater
than 1.

From the definition, we can see that, compared with cross-entropy loss, focal loss scales
down the loss by a factor of (1 − pt)

γ. This means that focal loss down-weights the
contribution of easy examples (where 1−pt is small), and the model is likely to focus more
on hard examples.

In our case, we found that the DeepNovo-DIA model also had a class-imbalance prob-
lem, as the frequency for amino acids varies a lot. Therefore, we suspected that focal loss
could help us to better train the DeepNovo-DIA model. During training, we changed the
activation function of the last layer from a softmax function to a sigmoid function, which
led the model to give a probability between 0 and 1 for each of the 26 classes (note that
here the sum of these 26 probabilities might not amount to 1). Then, for each class we
computed the focal loss using the formula above, and used the average of those 26 losses
as the final loss. At inference time, we switched the activation function back to softmax
because we found that this led to better performance. Overall, our experiments show that
the focal loss improved the amino acid accuracy by 20% on the plasma dataset.
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3.2 Results

We trained DeepNovo-DIA on a previously obtained dataset of urine samples from 64
subjects[53]. We evaluated DeepNovo-DIA on two other datasets from different subjects
who had been diagnosed with ovarian cyst (OC; six subjects) or urinary tract infection
(UTI; six subjects). We also tested DeepNovo-DIA on a previously obtained dataset of
plasma samples[74]. The test datasets were not used during model development.

We built an in-house database search tool to generate training data. In particular, we
followed the approach of DIA-Umpire[78] to generate a pseudo-spectrum from each precur-
sor feature and its associated spectra. Then we used a conventional DDA database search
tool, PEAKS DB[90], to search the pseudo-spectra against the Swiss-Prot human database.
The peptides identified at 1% FDR were assigned to the corresponding precursors and
were used as ground-truth labels for training. Our training set included 2,177,667 spectra,
202,114 labeled precursor features, and 14,400 unique peptides. For evaluation, we com-
pared DeepNovo-DIA to DIA database search tools including PECAN[74], Spectronaut[10],
and OpenSWATH[64]. Such comparisons illustrate (1) the accuracy of de novo sequenc-
ing (based on overlapping identifications) and (2) DeepNovo-DIA’s identification of new
peptides not found in the database.

We first calculated the accuracy of DeepNovo-DIA using labeled features from the
in-house database search. For each labeled feature, we compared the de novo peptide
predicted by DeepNovo-DIA with the ground-truth sequence on the basis of the alignment
of their mass fragments. We measured the sequencing accuracy at the amino acid level
(i.e., the ratio of the total number of matched amino acids to the total length of predicted
peptides) and at the peptide level (i.e., the fraction of fully matched peptides). As shown
in Figure 3.4a, DeepNovo-DIA accurately predicted 63.8–68.1% of amino acids and 37.4–
52.4% of peptides of the labeled features. Moreover, DeepNovo-DIA provides a confidence
score for each predicted amino acid. Figure 3.4b shows the distribution of sequencing
accuracy with respect to confidence score that allows one to select high-confidence de novo
peptides with a certain expected accuracy.

We then applied DeepNovo-DIA to all features, labeled and unlabeled, and used the
confidence-score distribution in Figure 3.4b to select high-confidence predicted peptides
with an expected sequencing accuracy of 90%. Figure 3.4c shows the substantial overlap
of precursor features with peptide identifications by the database search and DeepNovo-
DIA. The amino acid accuracy of overlapping features was close to 90%, as expected
(Figure 3.4d), thus demonstrating the reliability of the DeepNovo-DIA confidence score
for quality control. More important, DeepNovo-DIA identified peptides for 33.0–72.6%
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of extra features (e.g., plasma dataset 33% = 2529/(4207 + 3466)). We also observed
that DeepNovo-DIA’s performance was better for the UTI and OC datasets than for the
plasma dataset; we suggest this is because the UTI and OC datasets were more similar to
the training data.

Next, we compared DeepNovo-DIA to PECAN and Spectronaut, using the plasma
dataset[74]. DeepNovo-DIA correctly predicted the full sequences of 1,023 database pep-
tides that were reported by PECAN or Spectronaut (Figure 3.4e). Among 2,091 pep-
tides reported by both PECAN and Spectronaut, which can be considered as high-quality
database search results, DeepNovo-DIA identified 778 (37.2%). This is comparable to the
performance of de novo sequencing tools for DDA data (25-40% at the peptide level[77]).
Among peptides reported only by DeepNovo-DIA, 587 could be found in the database
and 2,011 were de novo. To ensure that the de novo peptides were supported by signifi-
cant peptide–spectrum matches, we augmented the database FASTA file with the de novo
peptides and re-ran the in-house database search. We found that 1,143 de novo peptides
passed 1% FDR after the search was re-run. Thus, 1,730 peptides were identified only by
DeepNovo-DIA.

Finally, we show an example of DeepNovo-DIA’s application to a DIA spectrum from
the plasma dataset that contained mixed fragment ions from three different peptides (3.4g-
i). DeepNovo-DIA was able to identify all of them. The last two peptides were predicted
by both DeepNovo-DIA and the database search; however, the first one did not exist in
the database. Thus, the combination of DIA and de novo sequencing has the potential
to help scientists discover novel peptides and enable more complete profiling of biological
samples.
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Figure 3.2: DeepNovo-DIA

25



Figure 3.3: DeepNovo-DIA Ion CNN module
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Figure 3.4: DeepNovo-DIA evaluation. (a) Accuracy of DeepNovo-DIA on labeled features.
(b) Distribution of DeepNovo-DIA accuracy and confidence scores. (c) Precursor features
with peptide identifications by in-house database search or DeepNovo-DIA. (d) DeepNovo-
DIA accuracy on overlapping features in (c). (e), Comparison of unique peptides identified
by DeepNovo-DIA, PECAN, and Spectronaut from the plasma dataset. (f), Abundance
distributions of 1,143 de novo peptides identified by DeepNovo-DIA and 1,023 database
peptides identified by DeepNovo-DIA and PECAN or Spectronaut. (g–i), Examples of
a DIA spectrum that contains three different peptides, all of which were predicted by
DeepNovo-DIA. In each panel, the fragment ions supporting the corresponding peptide are
highlighted (red, y ion; blue, b ion).
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Chapter 4

PointNovo

De novo peptide sequencing is the problem of reconstructing the peptide sequence directly
from a tandem mass spectrum and the peptide mass. In the past 20 years different de
novo peptide sequencing tools have been proposed and successful applications have been
shown in assembling monoclonal antibody sequences and identifying tumor specific antigens
(TSA), especially those resulting from noncoding region or alternative splicing. However,
it still remains challenging for a de novo peptide sequencing tool to discriminate between
amino acids pairs that have similar masses, e.g. glutamine (Q) and lysine (K), methionine
sulfoxide (M(Oxi)) and phenylalanine (F). For instance, when evaluating the accuracy of
de novo peptide sequencing, some previous studies [49, 77] considered a predicted amino
acid matching a real amino acid if their mass difference is smaller than 0.1 Da and if the
prefix masses before them differ by less than 0.5 Da. This means, for example, if a de
novo sequencing tool reports a Q for a ground truth K, it will still be labeled as “correct”
by the evaluation criteria since the mass difference between Q and K is smaller than 0.05
Da. However, for applications of antibody sequencing or TSA finding, it is important for
the de novo sequencing tool to be able to reconstruct the exact sequence of a peptide.
Otherwise an amino acid difference could result in an ineffective drug or vaccine. With
recent advances in mass spectrometers, the mass accuracy could be improved to around 1
ppm. For a fragment ion of mass 1000 Da, this means the measurement error is smaller
than 0.001 Da. Such high-resolution data allows accurate de novo peptide sequencing.

On the other hand, most existing de novo sequencing tools were developed back in
the days when the mass error was greater than 100 ppm. It is not trivial for those tools
to take full advantage of the higher precision provided by the latest generation of mass
spectrometers. For spectrum graph-based methods [19, 14, 28], a higher precision means
less nodes shall be merged and the generated spectrum graph would have more vertices.
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This leads directly to a higher computational complexity. Similarly, the complexity of
dynamic programing based methods such as PEAKS [50] and Novor [49] are sensitive with
respect to the spectrum resolution. For instance, the computational complexity of the
dynamic programing proposed by [51] is inversely proportional to the cube of the finest
calibration of the mass spectrometer. In addition, the current existing neural network
based de novo sequencing models, e.g. DeepNovo [77] and SMSNet [41], need to first
discretize a spectrum to an intensity vector. For example, DeepNovo uses a length 150,000
vector to represent a spectrum when the spectrum resolution parameter is set to 50. The
creation and process of the long intensity vectors require significant memory and CPU
time. In fact, in the original implementation of DeepNovo, GPU is often not fully utilized
because the program needs to wait for the CPU to build and process those long vectors. In
order to take advantage of the improved precision offered by spectra of higher resolution,
both DeepNovo and SMSNet need to discretize spectra with a higher spectrum resolution
parameter R. For these models, the computation and memory demands grow linearly with
respect to R (i.e. complexity of O(R)).

To fully benefit from the high precision that the latest mass spectrometers offer, we
present PointNovo, a neural network based de novo peptide sequencing tool that does
not vectorize the mass spectrum. PointNovo is ready to be applied on higher resolution
data that may be generated in the future, without any added complexity. Moreover, our
experiment results show that PointNovo also significantly outperforms previous state of the
art methods. PointNovo achieves this by directly representing a spectrum as a set of m/z
value and intensity pairs, and through the use of an order invariant network structure [59]
to learn from data of such structure. Our extensive experiment results show PointNovo
outperforms existing de novo peptide sequencing tools by capitalizing on the ultra-high
resolution of the latest mass spectrometers.

Further, we demonstrate that the PointNovo model could also be used for database
searching, even though it is not trained to distinguish between true and false peptide
spectrum matching (PSM). Our experiments on several different datasets show that by
using the fragment ion scores predicted by PointNovo, together with other common PSM
features, we can achieve an identification rate at least comparable with other popular
database search tools such as MaxQuant[17].
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4.1 Method

4.1.1 Spectrum Representation

In DeepNovo and SMSNet, spectra are represented as intensity vectors, where each index
of the vectors represents a small m/z bin and the value represents the sum of intensities
of all peaks fall into that bin. This representation of spectra naturally has the problem
of accuracy and speed/memory trade-off. In PointNovo, we propose to directly represent
a spectrum as a set of (m/z, intensity) pairs. For each spectrum we select the top N
most intense peaks (by default N = 1000), and represent the spectrum as {(m/zi, Ii)}Ni=1.
Further, we denote Mobserved = (m/z1, · · · ,m/zN) as the observed m/z vector and I =
(I1, · · · , IN).

4.1.2 Feature Extraction

Aside from the 20 amino acid residues and their PTMs, we include three special tokens—
“start”, “end”, and “padding”—in our model’s vocabulary set. Following the notations
defined in Section 1.2.1, we denote the number of tokens as v and number of ion types as k.
PointNovo use the 12 types of ion (k = 12): b, y, a, b(2+), y(2+), a(2+), b-H2O, y-H2O,
a-H2O, b-NH3, y-NH3, and a-NH3. Their mass transforms are defined by the following
formula:
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δb(m(P ′)) = m(P ′) +mH

δy(m(P ′c)) = m(P ′c) +mH +mH2O

δa(m(P ′)) = m(P ′) +mH −mCO

δb(2+)(m(P ′)) =
m(P ′) + 2×mH

2

δy(2+)(m(P ′c)) =
m(P ′c) + 2×mH +mH2O

2

δa(2+)(m(P ′)) =
m(P ′)−mCO + 2×mH

2
δb-H2O(m(P ′)) = δb(m(P ′))−mH2O

δy-H2O(m(P ′c)) = δy(m(P ′c))−mH2O

δa-H2O(m(P ′)) = δa(m(P ′))−mH2O

δb-NH3(m(P ′)) = δb(m(P ′))−mNH3

δy-NH3(m(P ′c)) = δy(m(P ′c))−mNH3

δa-NH3(m(P ′)) = δa(m(P ′))−mNH3

(4.1)

where mCO ≈ 27.9949 Da. At each prediction step, we compute the theoretical m/z values
for each token and ion type pair. The result is a matrix of shape (v, k) and is denoted
as Mtheoretical. Next we expand the dimension of Mobserved to make it a 3-dimensional
tensor of shape (N, 1, 1), and then repeat Mobserved on second dimension for v times and
on third dimension for k times. The result is denoted as M ′

observed and it is a tensor of
shape (N, v, k). Similarly, we expand Mtheoretical to the shape of (1, v, k), repeat on first
dimension for N times and denote the result as M ′

theoretical. We can then compute the m/z
difference tensor (denoted as D) in which each element represents the difference between
the m/z value for an observed peak and the theoretical m/z for a token and ion type pair.

D = M ′
observed −M ′

theoretical (4.2)

It is worth noting that Equation 4.2 can be computed efficiently by using the “broad-
cast” behavior in popular frameworks like Tensorflow[1] and PyTorch[58].

σ(D) = exp{−|D| ∗ c} (4.3)

Based on expert knowledge of de novo peptide sequencing, we design an activation
function σ, shown in Equation 4.3. Here, the exponential and absolute operations are
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all element-wise operations. The intuition for σ is that an observed peak could only be
considered matching a theoretical m/z location if the absolute m/z difference is small.
For example, if we set c = 100, then an observed peak that is 0.02 Da away from a
theoretical location would generate a signal of e−2 ≈ 0.135, which is only one-seventh of
the signal of a perfect match. In our experiments, we tried setting c to be a trainable
parameter and updating it through backpropagation. It shows similar performance with
setting c = 100. For better model interpretability, we set c = 100 in all experiments
reported in this manuscript. However, setting c to a learnable parameter would require
less prior knowledge about the resolution of training spectra and might be preferable in
certain cases.

F = σ(D)′ ⊕ I ′ (4.4)

Next, we reshape the N by v by k tensor σ(D) to a matrix σ(D)′ of shape N by vk,
reshape I to a N by 1 vector I ′. Finally, the feature matrix F used for predicting the next
amino acid is simply the concatenation of σ(D)′ and I ′, as shown in Equation 4.4. Here ⊕
represents concatenation along the second dimension. The output F is matrix of shape N
by vk + 1

A spectrum is set of (m/z, intensity) pairs, which means the order of peaks should be
irrelevant. Therefore, the prediction network should have order invariant property with
respect to the first dimension of F . To the best of our knowledge, T Net (introduced in
Section 2.3) is the first model designed for this kind of order invariant data. It showed
state-of-the-art performance on the point cloud classification task. Therefore, we apply
T net to learn from the feature matrix F . The global max pooling operation in T Net
guarantees that the output would not change for any row permutations of F .

4.1.3 The Initial state for LSTM

The LSTM module is an optional component in PointNovo. In some applications, e.g.
training an allele aware de novo sequencing model for HLA peptides, it might be desirable
for the model to remember some peptide sequence patterns. In such cases, we can include
an LSTM module in PointNovo. The full model structure of PointNovo (both with and
without an LSTM module) is shown in Figure 4.1.

We need to initialize the hidden states of LSTM with information from the original
spectrum. Inspired by the success of positional embedding introduced by Vaswani et al.
[81], we choose to embed each peak into a vector. In more detail, the input spectrum is
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first discretized at 0.1 Da resolution. When applied to the case of without LSTM, the
discretization step is not needed.

Next, we create a sinusoidal m/z positional embedding matrix E in the way suggested
by [81].

E(loc,2j−1) = sin(loc/10000
2j−2
512 )

E(loc,2j) = cos(loc/10000
2j−2
512 )

∀j ∈ {1, 2, · · · , 256}

Here loc represents the m/z index after discretization. We use El to denote the lth row
vector of E. The sinusoidal embedding has a desired property that for any distance d, Eloc+d
could be represented as a linear function of Eloc. This property is important because in
mass spectra the m/z difference between observed peaks contains useful information that
indicates which amino acids possibly exist. For an input spectrum: {(m/zi, Ii)}Ni=1 we
denote loci to represent the index of m/zi after discretization and we use IiEloci as the
vector representation of the ith peak. A spectrum representation vector S can then be
generated by taking the summation of the vector representations of all peaks:

S =
N∑
i=1

IiEloci (4.5)

We multiplied the intensities with the embedded peak vectors because we think the
effect of a single peak, in the representation of a spectrum, should be proportional to its
intensity. Finally, the hidden states of the LSTM module are initialized to S.

4.1.4 Training and Searching

As suggested by Tran et al.[75], we used focal loss[47] instead cross-entropy loss when
training the model. We train PointNovo with Adam algorithm[44] with an initial learning
rate of 10−3. After every 300 training steps, the loss on the validation set is computed.
If the validation loss has not achieved a new low in the recent ten evaluations, then the
learning rate would be dropped by half. As for the searching part, we applied the beam
search algorithm used by DeepNovo. Similar to DeepNovo, PointNovo also uses knapsack
algorithm to reduce the search space.
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4.1.5 Speed of PointNovo

On an RTX 2080 TI GPU, a training step (batch size 16) takes around 0.4 seconds. And
for inference (i.e. de novo peptide sequencing), PointNovo (with LSTM) could process
around 20 spectra per second. In the without LSTM model, both training and inference
would be faster.

4.1.6 Database Search

For database search experiments, we use PointNovo model without the LSTM component.
This is because that in the training dataset, all labeled sequences are target peptides.
Thus if we train a model with a recurrent neural network component, the model will learn
to remember the sequence pattern of target peptides. Previous research of deep neural
network-based database searching models used a RNN component and did cross-species
training[66]. Here we argue that different species still share some common protein sequences
and peptides, thus using RNN with cross-species training would still break the assumptions
of target-decoy strategy and make evaluation results biased.

Following the notations defined in section 1.2.1, the set of amino acids is denoted as
A = {a1, a2, · · · , av} and v = |A|. We use a one-to-one mapping function e to encode each
amino acid into a unique integer between 1 and v. Given a spectrum S and a prefix mass
mprefix, the PointNovo model is trained to predict a probability distribution for the next
amino acid.

We denote the probability distribution as

pS(mprefix) = (p1
S(mprefix), p2

S(mprefix), · · · , pvS(mprefix))

where piS(mprefix) represents the probability of next amino acid being e−1(i). Then for any
length n peptide p1p2 · · · pn, pi ∈ A, we could define a DeepNovo PSM score using the
following formula:

f(S, p1p2 · · · pn) =
n−1∑
i=0

log p
e(pi+1)
S (mi) (4.6)

where m0 = 0 and

mi =
i∑

j=1

mass(pj), ∀i ∈ {1, 2, · · · , n− 1}
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To compare PSM scores among different candidate peptides, we need to normalize these
scores by the peptides’ length. We choose to include both length normalized scores and
log-length normalized scores.

flength(S, p1p2 · · · pn) =
f(S, p1p2 · · · pn)

n

floglength(S, p1p2 · · · pn) =
f(S, p1p2 · · · pn)

log n

Also, to make these PSM scores comparable across different spectra, we follow the
normalization procedure proposed by PEAKS DB[90]:

f̄length(S, p1p2 · · · pn) =
flength(S, p1p2 · · · pn)− µ(S)

σ(S)

where µ(S) represents the mean flength scores for top 10 candidate peptides of spectrum
S, and σ(S) represents the standard deviation of top nstd candidate peptides’ flength scores.

When sequencing peptide against a target protein database, we first create a decoy
protein database by reversing all protein sequences in the target database. We then com-
bine the target and decoy database. Next, for each spectrum S, we retrieve all candidate
peptides (with a mass close to the precursor mass) from the combined database. Then
for each candidate peptides, we compute the PointNovo scores flength, floglength, f̄length and
f̄loglength together with other features such as peptide length, charge state, mass difference
and number of variable modifications. The top 10 candidate peptides with the highest
f̄length scores will be saved for re-ranking by percolator[39]. Finally, percolator will report
the list of identified peptides at 1% FDR.

4.2 Results

4.2.1 De novo Sequencing Results

We downloaded the nine species data used by the original publication of DeepNovo (MSV000081382)
and applied our model to this data. We implement the same leave-one-out cross-validation
scheme as described in [77], i.e. all except one of the nine datasets were used to train
PointNovo and the trained model is tested on the remaining dataset. When calculating
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the amino acid precision, amino acid recall, and peptide recall, we used the same evaluation
metric adopted by DeepNovo and Novor, i.e., a predicted amino acid matching a real amino
acid if their mass difference is smaller than 0.1 Da and if the prefix masses before them are
different by less than 0.5 Da. To make a fair comparison, we used PointNovo with a long
short-term memory (LSTM) module [34] in this experiment, because by default DeepNovo
includes an LSTM module. The test results and comparison with DeepNovo are shown
in Figure 4.2. PointNovo outperforms DeepNovo consistently on peptide level by a large
margin of 13.01%–23.95%. We note out here that in the cross-species training for humans,
DeepNovo reports a slightly lower amino acid recall but a higher peptide recall rate than
PEAKS. Similar results are also observed for PointNovo. We suggest this is because in the
cross-species training scheme, some peptides in the test set also appear in the training set.
The LSTM modules in PointNovo and DeepNovo will be trained to predict the sequences
that existed in the training set. It might be a desired property in some applications (e.g.
training an allele aware de novo sequencing model for HLA peptides), for evaluating ma-
chine learning models it is not the best practice. To better compare our proposed model
with DeepNovo, SMSNet [41] and pNovo3 [89], we collected three high-resolution MS/MS
spectra datasets provided by different labs (Hela samples from ABRF3, PXD008844 [92]
and PXD010559 [67]). On each of the three datasets, we first ran a database search using
PEAKS X. The post translational modifications (PTMs) settings are included in the online
Method. The identified PSMs at 1% FDR, on each dataset, are split into train, validation
and test set in the ratio of 8:1:1. During the split, we made sure that no common peptide
sequences are shared among the train, validation and test sets. Then for each of the three
high resolution MS/MS spectra datasets, two PointNovo models (with and without LSTM)
and two DeepNovo models (with and without LSTM) are trained from scratch on the train
set. The weights that show the best validation loss during training are saved as the trained
model weights. Finally, trained models are evaluated on the test set. The mean value and
standard deviation of metrics from 5 independent runs on the three test datasets are shown
in Table 4.1–4.3 and in Figure 4.3. In the case of including an LSTM module, PointNovo
improves on peptide level recall by 15.05%–23.32%. And in the case of not including an
LSTM module, PointNovo outperformed DeepNovo by 25.61%–31.94%.

In a procedure similar to the above experiments, we also compared PointNovo with
SMSNet. The results are shown in Figure 1d. In this comparison, we applied SMSNet
without re-scoring [41]. Because PointNovo does not contain any post-processing. Due to
a limitation of SMSNet, all PSMs that contain PTMs other than carbamidomethylation
of C or oxidation of M are removed from our datasets. As a result, the train, valida-
tion and test sets are slightly different from previous experiments and that is the reason
why accuracies of PointNovo reported in Figure 1d are different from those reported in
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DeepNovo
without lstm

DeepNovo
with lstm

PointNovo
without lstm

PointNovo
with lstm

AA recall 66.44%(±0.18%) 67.81%(±0.21%) 71.59%(±0.18%) 72.46%(±0.15%)
AA precision 66.42%(±0.22%) 67.67%(±0.25%) 71.65%(±0.24%) 72.25%(±0.20%)
peptide recall 30.33%(±0.15%) 32.96%(±0.31%) 38.10%(±0.06%) 39.24%(±0.29%)

Table 4.1: ABRF DDA dataset. Carbamidomethylation of C was set as a fixed modifica-
tion. Oxidation of M and deamidation of N or Q were set as a variable modification.

DeepNovo
without lstm

DeepNovo
with lstm

PointNovo
without lstm

PointNovo
with lstm

AA recall 66.98%(±0.17%) 67.31%(±0.33%) 73.22%(±0.14%) 73.45%(±0.45%)
AA precision 66.51%(±0.15%) 66.65%(±0.45%) 73.03%(±0.14%) 72.66%(±0.25%)
peptide recall 40.37%(±0.31%) 42.03%(±0.48%) 52.07%(±0.31%) 51.83%(±0.09%)

Table 4.2: PXD008844 dataset. Carbamidomethylation of C was set as a fixed modification.
Oxidation of M was set as a variable modification.

Figure 4.4. We notice that in the case of without re-scoring, SMSNet sometimes pre-
dicts exceptionally long sequences for spectra of poor quality. The existence of such long
sequences undermines the amino acid level accuracy. Therefore, the peptide level recall
metric shows a better comparison of the performance of the two models. Nevertheless,
PointNovo outperforms SMSNet (without re-scoring) on peptide level by over 17%. We
want to point out here that the contribution of sequence-mask-search made by SMSNet
is orthogonal to the improvement made by PointNovo. A similar post-processing could
be applied to the output of PointNovo. In Figure 4.5 we show the comparison results
between PointNovo and pNovo3. Because pNovo3 is distributed as pretrained software, we
cannot adopt the same training procedure as the previous experiments since that would
give PointNovo an unfair advantage. To make a fair comparison, we collected four other
high-resolution MS/MS spectra datasets: PXD008808 [72], PXD011246 [8], PXD012645
[69] and PXD012979 [31]. We trained a PointNovo without an LSTM model on the identi-
fied PSMs of these four datasets and applied the trained model on the test sets of ABRF,
PXD008844 and PXD010559. In this experiment, we again exclude all PSMs that con-
tain PTMs other than carbamidomethylation of C or oxidation of M from the train and
test sets because we need to apply the same trained model on all three test sets. Figure
4.5 shows that our trained PointNovo without LSTM model outperforms pNovo3 by more
than 25.5% on peptide level. More interestingly, the performance gap of PointNovo be-
tween Figure 4.4 and Figure 4.5 gives us an estimate of the generalizability of our proposed
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DeepNovo
without lstm

DeepNovo
with lstm

PointNovo
without lstm

PointNovo
with lstm

AA recall 69.03%(±0.11%) 73.94%(±0.12%) 74.62%(±0.17%) 79.00%(±0.14%)
AA precision 68.71%(±0.17%) 73.63%(±0.13%) 74.60%(±0.18%) 78.92%(±0.10%)
peptide recall 38.26%(±0.24%) 52.48%(±0.40%) 50.48%(±0.15%) 60.73%(±0.27%)

Table 4.3: PXD010559 dataset. Carbamidomethylation of C was set as a fixed modification.
Oxidation of M, deamidation of N or Q and phosphorylation of S, T, or Y were set as
variable modifications.

model. The metrics reported in Figure 4.4 represent the performance in the best-case sce-
nario, where the training spectra are acquired in the same experiment setting as the test
spectra (e.g. different fractions of the same sample). As well, Figure 4.5 results represent
the performance in the normal scenario, where training spectra are collected from multiple
experiments conducted by different labs. Above all, our results as shown in Figure 4.2–
4.5 demonstrate that PointNovo consistently outperforms DeepNovo, SMSNet (without
rescoring) and pNovo3 on all three different test sets. Here we want to explain again that,
even though the results shown in Figure 4.3–4.5 are from the same test datasets, these
results cannot be merged because the three experiments are conducted in different settings
(i.e. different PTMs included, different training datasets) for the purpose of making a fair
comparison.

To further demonstrate that our proposed PointNovo model could take full advantage
of the high-resolution data and better discriminate between amino acids pairs that have
similar masses, we calculate the precision and recall for amino acid pairs F and M(Oxi) (the
mass difference is smaller than 0.035 Da), Q and K. In this analysis, a predicted amino acid
is considered as matching the ground truth amino acid in the target sequence if and only if
the amino acids are exactly the same and the prefix masses before them are different by less
than 0.5 Da. Both DeepNovo and PointNovo are trained without the LSTM modules, since
we want to compare their ability of learning from spectra, not their ability to remember the
sequence patterns. The precision-recall curves for two datasets are shown in Figure 4.6 and
4.7. PointNovo improves the Average Precision (AP) for all four amino acids, which are
widely known for being hard to discriminate. Specifically, for amino acid Q and M(Oxi),
we observe a significant improvement of more than 15%. Figure 4.8 shows Venn diagrams
of the peptide sets identified by PEAKS X (database search), predicted by PointNovo, and
predicted by DeepNovo on ABRF, PXD008844 and PXD010559 datasets. Following the
practice introduced by [75], we filtered the de novo peptides based on their peptide scores
given by the models. Peptide score cutoffs are selected so that the amino acid accuracy is
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90%. The intersection between two sets represents peptides of the exact same amino acid
sequence. As can be seen from the Venn diagrams, PointNovo’s prediction always covers
more peptides identified by PEAKS X as compared to DeepNovo’s prediction.

Finally, to show that PointNovo can potentially benefit from the improved precision
of higher-resolution spectra generated in the future, we simulate low-resolution spectra
of ABRF, PXD008844 and PXD010559 datasets and report PointNovo’s performance on
these spectra in Figure 4.9. The low-resolution spectra are generated by adding random
parts per million (ppm) errors ε ∼ U(−10, 10) to the m/z value of every peak in original
spectra datasets. PointNovo is then trained and tested on the jittered train and test
spectra. The comparison results in Figure 4.9 demonstrate that, with PointNovo, we could
indeed expect better performance on spectra of higher resolution.

The above results demonstrate that PointNovo outperforms previous state-of-the-art
de novo peptide sequencing tools by a significant margin and could better discriminate
between similar amino acids pairs. Also, unlike previous neural network based de novo
peptide sequencing tools, PointNovo does not include any spectrum vectorization, thus is
ready to be applied on the more precise MS data generated in the future.

4.2.2 Database Search Result

For database search experiments, we collected the training spectra from PXD008844(Mouse),
PXD012979(Mouse) and PXD008808(Dolphin) and train a PointNovo model without the
LSTM component. After training, we test our model on three human dataset: PXD008999,
PXD007890, and PXD009021. Due to computational limitations, we select one fraction
(one raw file) per each dataset for testing. In all three experiments, the Swiss-Prot human
protein database[16] is used as the reference database and precursor tolerance is set to
be 20 ppm. Under this setting, there are often more than 1000 candidate peptides for a
given precursor mass. It is too expensive to compute the PointNovo scores for all of these
candidates. To speed up the experiment, we use the number of matching partial peptides
as a quick scorer to filter candidate peptides. Only the top 150 candidate peptides are
fed into the PointNovo model and have their scores computed. After applying the quick
filtering step, our proposed database search by PointNovo method could process more than
6000 spectra per hour on two GTX 1070 GPUs.

We compare PointNovo’s performance with PEAKS DB[90], MaxQuant[17] and Comet[24].
The decoy database is generated by each software’s default method. And for PointNovo, we
generate the decoy database by reversing all protein sequences in the reference database.
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As for the evaluation criteria, we compare the number of identified PSMs and unique
peptides under 1% FDR.

Identified PSMs Identified peptides
PEAKS 2462 1296
Comet + Percolator 1248 676
MaxQuant 1601 917
PointNovo + Percolator 2190 1104

Table 4.4: Database search on Sclera IG 20.raw, PXD008899. Carbamidomethylation of
C was set as a fixed modification. Oxidation of M was set as variable modifications.

Identified PSMs Identified peptides
PEAKS 39897 23752
Comet + Percolator 30442 17624
MaxQuant 39524 23625
PointNovo + Percolator 40102 22889

Table 4.5: Database search on B02 06.raw, PXD007890. Carbamidomethylation of C was
set as a fixed modification. Oxidation of M was set as variable modifications.

Identified PSMs Identified peptides
PEAKS 7977 5832
Comet + Percolator 7478 4841
MaxQuant 4834 3518
PointNovo + Percolator 7062 4904

Table 4.6: Database search on liver 20.raw, PXD009021. Carbamidomethylation of C was
set as a fixed modification. Oxidation of M, deamidation of N and Q were set as variable
modifications.

Our results in Table 4.4–4.6 demonstrate that even though PointNovo was not designed
and trained to discriminate between true and false PSM, it can achieve an identification
rate that is at least comparable to popular database search tools such as MaxQuant.
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Figure 4.1: Structure of PointNovo
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Figure 4.2: Amino acid recall, amino acid precision and peptide recall of DeepNovo and
PointNovo
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Figure 4.3: Amino acid recall, amino acid precision, and peptide recall of DeepNovo and
PointNovo on three test datasets
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Figure 4.4: Amino acid recall, amino acid precision, and peptide recall of SMSNet and
PointNovo on three test datasets
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Figure 4.5: Amino acid recall, amino acid precision, and peptide recall of SMSNet and
PointNovo on three test datasets

45



Figure 4.6: Precision recall curve for certain amino acid on PXD008844
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Figure 4.7: Precision recall curve for certain amino acid on PXD010559

47



 

 a 

 

b 

 

c 

 

Figure 4.8: Set of peptides predicted by PointNovo and DeepNovo, comparing with the set
of peptides identified by PEAKS DB. Both DeepNovo and PointNovo are trained without
the LSTM modules.Peptide score cutoff is applied to the results given by PointNovo and
DeepNovo. We select the cutoff scoresso that the amino acid accuracy of the remaining
predicted peptides is 90%.Here, the overlap between two sets represents the peptides that
are exactly the same (i.e. same amino acid residue sequence).
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Figure 4.9: Performance of PointNovo on jittered spectra. To jitter the spectra, we add
uniformly distributed random ppm errors to the m/z value of every peak in the original
datasets. These jittered spectra could be considered as spectra of lower resolution
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Chapter 5

Identifying Neoantigens by
Personalized De Novo Peptide
Sequencing

Neoantigens are tumor-specific mutated peptides that are brought to the cancer cell surface
by major histocompatibility complex (MHC) proteins for T-cell recognition. As neoanti-
gens carry tumor-specific mutations that are not found in normal tissues, they represent
ideal targets for the immune system to distinguish cancer cells from non-cancer ones [36, 84].
The potential of neoantigens for cancer vaccines is supported by multiple evidences, in-
cluding the correlation between mutation load and response to immune checkpoint in-
hibitor therapies[80, 63], neoantigen-specific T cell responses detected even before vacci-
nation (naturally occurring)[56, 65, 13]. Indeed, three independent studies have further
demonstrated successful clinical trials of personalized neoantigen vaccines for patients with
melanoma[56, 65, 13]. The vaccination was found to reinforce pre-existing T cell responses
and to induce new T cell populations directed at the neoantigens. In addition to developing
cancer vaccines, neoantigens may help to identify targets for adoptive T cell therapies, or
to improve the prediction of response to immune checkpoint inhibitor therapies.

The current prevalent approach to identifying candidate neoantigens often includes two
major phases: (1) exome sequencing of cancer and normal tissues to find somatic mutations
and (2) predicting which mutated peptides are most likely to be presented by MHC proteins
for T-cell recognition. The first phase is strongly backed by high-throughput sequencing
technologies and bioinformatics pipelines that have been well established through several
genome sequencing projects during the past decade. The second phase, however, is still
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facing challenges due to our lack of knowledge of the MHC antigen processing pathway:
how mutated proteins are processed into peptides; how those peptides are delivered to the
endoplasmic reticulum by the transporter associated with antigen processing; and how they
bind to MHC proteins. To make it further complicated, human leukocyte antigens (HLA),
those genes that encode MHC proteins, are located among the most genetically variable
regions and their alleles basically change from one individual to another. The problem is
especially more challenging for HLA class II (HLA–II) peptides than HLA class I (HLA–I),
because of the more complicated heterodimer-based nature of MHC–II molecules and the
limited understanding of peptide binding properties in the cleavage process.

Current in silico methods focus on predicting which peptides bind to MHC proteins
given the HLA alleles of a patient, e.g., NetMHC[4, 38]. usually very few, less than a
dozen from thousands of predicted candidates are confirmed to be presented on the tumor
cell surface and even less are found to trigger T cell responses, not to mention that real
neoantigens may not be among top predicted candidates[36]. In addition, binding predic-
tion models do not perform equally well on different HLA alleles and the binding affinities
of some less common HLA alleles still remain poorly characterized. Several efforts have
been made to improve the MHC binding prediction, including using mass spectrometry
data in addition to binding affinity data for more accurate prediction of MHC antigen
presentation[2, 11]. Recently, proteogenomic approaches have been proposed to combine
mass spectrometry and exome sequencing to identify neoantigens directly isolated from
MHC proteins, thus overcoming the limitations of MHC binding prediction[6][46]. In those
approaches, exome sequencing was performed to build a customized protein database that
included all normal and mutated protein sequences. The database was further used by a
search engine to identify endogenous peptides, including neoantigens, that were obtained
by immunoprecipitation assays and mass spectrometry.

Existing database search engines, however, are not designed for MHC peptides and are
biased towards tryptic peptides[17, 90]. They may have sensitivity and specificity issues
when dealing with a very large search space created by (i) all mRNA isoforms obtained
from exome sequencing and (ii) unknown digestion rules for HLA peptides. Furthermore,
recent proteogenomic studies reported a weak correlation between proteome- and genome-
level mutations, where the number of identified mutated HLA peptides was three orders of
magnitudes less than the number of somatic mutations that were provided to the database
search engines[6, 46]. A large number of genome-level mutations were not presented at the
proteome level, while at the same time, some mutated peptides might be difficult to detect
at the genome level. For instance, Faridi et al. found evidence of up to 30% of HLA–I
peptides that were cis- and trans-splicing, which couldn’t be detected by exome sequencing
nor protein database search[26]. Thus, an independent approach that does not rely heavily
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on genome-level information to identify mutated peptides directly from mass spectrometry
data is needed, and de novo sequencing is the key to address this problem.

In this study, we propose, for the first time, a personalized de novo sequencing work-
flow to identify HLA–I and HLA–II neoantigens directly and solely from mass spectrometry
data. De novo sequencing is the process of reconstructing the amino acid sequence of a
peptide from its tandem mass spectrum and its molecule mass, without an assisting pro-
tein database. This technique is invented for the purpose of discovering novel peptides and
proteins, genetic variants or mutations. Thus, its application to identify neoantigens is a
perfect match. Since both tumor mutations and HLA alleles are specific to each individual
patient, a personalized approach is desirable to detect mutated HLA peptides. We bring de
novo sequencing to the “personalized” level by training a specific machine learning model
for each individual patient using her/his own data. In particular, we use the collection
of normal HLA peptides, i.e. the immunopeptidome, of a patient to train a model and
then use it to predict mutated HLA peptides of that patient. Learning an individual’s
immunopeptidome is made possible by our recent deep learning model, DeepNovo[77][75],
which uses an LSTM to capture sequence patterns in peptides or proteins, in a similar
way to natural languages. This personalized learning workflow significantly improves the
accuracy of de novo sequencing for comprehensive and reliable identification of neoanti-
gens. Furthermore, our de novo sequencing approach predicts peptides solely from mass
spectrometry data and does not depend on genomic information as existing approaches.
We applied the workflow to the datasets of five melanoma patients Mel-5, Mel-8, Mel-12,
Mel-15, and Mel-16, which were published recently by Bassani-Sternberg et al. [6]. The
datasets were selected because of the availability of mass spectrometry data, RNA-Seq and
T-cell assay information together to validate the results of our workflow. HLA peptides
were purified from the patients’ tumor tissues and their mass spectrometry data were made
publicly available by the authors in [6].

5.1 Results

5.1.1 Personalized De novo Sequencing of Individual Immunopep-
tidomes

Figure 5.1 describes five steps of our personalized de novo sequencing workflow to pre-
dict HLA peptides of an individual patient from mass spectrometry data: (1) build the
immunopeptidome of the patient; (2) train personalized machine learning model; (3) per-
sonalized de novo sequencing; (4) quality control of de novo peptides; and (5) neoantigen
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Neoantigen discovery workflow HLA–I HLA–II
Step 1: Build the immunopeptidome of the patient
Number of identified peptide-spectrum matches 341,216 67,021
Number of identified database peptides 35,551 9,664
Number of unlabeled spectra 596,915 135,490
Step 2: Train personalized machine learning model
Number of training PSMs 307,058 60,822
Number of validation PSMs 17,217 2,999
Number of test PSMs 16,941 3,200
Step 3: Personalized de novo sequencing
Number of raw de novo peptides 441,274 93,983
Step 4: Quality control
Number of high-confidence de novo peptides 16,226 2,717
Number of de novo peptides at 1% FDR 5,320 863
Step 5: Neoantigen selection Binding affinity for pa-
tient’s HLA alleles; Missense mutation against wild-
types; Neoepitope expression level

158 37

Table 5.1: Personalized workflow of neoantigen discovery for patient Mel–15

selection. The step-by-step results on five melanoma patients Mel–5, Mel–8, Mel–12, Mel–
15, and Mel–16 from [13] are provided in Table 5.1–5.3

In step 1 of the workflow, to build the immunopeptidome of the patient, we searched the
mass spectrometry data against the standard Swiss-Prot human protein database. Normal
HLA peptides and their PSMs at 1% FDR were identified. Note that the immunopep-
tidome included both normal and mutated HLA peptides, and only normal HLA peptides
were identified at this step. Mutated HLA peptides were not presented in the protein
database, so they were not detected, and their spectra remained unlabeled. We identified
from 36,369–341,216 PSMs and from 10,068–35,551 peptides of HLA–I per patient (Table
5.1–5.3). The numbers of PSMs and peptides indicated a wide range of depth between the
immunopeptidomes of five patients. We also noticed that, for the same patient, the num-
bers of PSMs and peptides of HLA–II were 3–5 times lower than those of HLA–I (Mel–15
and Mel–16). Most importantly, for all five patients, the number of unlabeled spectra was
much higher than the number of identified PSMs, thus highlighting the need of de novo
peptide sequencing to improve the identification rate.

In step 2, we used the identified normal HLA peptides and PSMs of each patient as
patient-specific training data to train DeepNovo. In addition to capturing fragment ions in
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Neoantigen discovery workflow HLA–I HLA–II
Step 1: Build the immunopeptidome of the patient
Number of identified peptide-spectrum matches 207,332 39,630
Number of identified database peptides 25,274 6,171
Number of unlabeled spectra 487,233 102,615
Step 2: Train personalized machine learning model
Number of training PSMs 185,823 35,315
Number of validation PSMs 10,900 2,364
Number of test PSMs 10,609 1,951
Step 3: Personalized de novo sequencing
Number of raw de novo peptides 327,415 77,480
Step 4: Quality control
Number of high-confidence de novo peptides 6,444 2,257
Number of de novo peptides at 1% FDR 1,259 722
Step 5: Neoantigen selection Binding affinity for pa-
tient’s HLA alleles; Missense mutation against wild-
types; Neoepitope expression level

80 23

Table 5.2: Personalized workflow of neoantigen discovery for patient Mel–16

tandem mass spectra, DeepNovo learns sequence patterns of peptides by modeling them as
a special language with an alphabet of 20 amino acid letters. This unique advantage allowed
us to train a personalized model to adapt to a specific immunopeptidome of an individual
patient and achieved much better accuracy than a generic model (results are shown in a
later section). At the same time, it was essential to apply counter-overfitting techniques
so that the model could predict new peptides that it had not seen during training. We
partitioned the PSMs into training, validation, and test sets (ratio 90-5-5, respectively) and
restricted them not to share common peptide sequences. We stopped the training process
if there was no improvement on the validation set and evaluated the model performance
on the test set. As a result, our personalized model was able to both achieve very high
accuracy on an individual immunopeptidome and detect mutated peptides. This approach
is particularly useful for missense mutations (the most common source of neoantigens)
because they still preserve most patterns in the peptide sequences.

In step 3, we used the personalized DeepNovo model to perform de novo peptide se-
quencing on both labeled spectra (i.e., the PSMs identified in step 1) and unlabeled spectra.
Results from labeled spectra were needed for accuracy evaluation and calibrating predic-
tion confidence scores. Peptides identified from unlabeled spectra and not presented in the
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Neoantigen discovery workflow Mel–8
HLA–I

Mel–12
HLA–I

Step 1: Build the immunopeptidome of the patient
Number of identified peptide-spectrum matches 42,644 36,369
Number of identified database peptides 13,635 10,068
Number of unlabeled spectra 142,794 221,532
Step 2: Train personalized machine learning model
Number of training PSMs 38,372 32,620
Number of validation PSMs 2,200 1,802
Number of test PSMs 2,072 1,947
Step 3: Personalized de novo sequencing
Number of raw de novo peptides 126,813 142,052
Step 4: Quality control
Number of high-confidence de novo peptides 2,109 2,632
Number of de novo peptides at 1% FDR 1,235 1,354
Step 5: Neoantigen selection Binding affinity for pa-
tient’s HLA alleles; Missense mutation against wild-
types; Neoepitope expression level

135 169

Table 5.3: Personalized workflow of neoantigen discovery for patient Mel–8 and Mel–12,
HLA–I

protein database were defined as “de novo peptides” and would be further analyzed in the
next steps to find candidate neoantigens of interest.

In step 4, a quality control procedure was designed to select high-confidence de novo
peptides and to estimate their FDR. We first calculated the accuracy of de novo sequencing
on the test set of PSMs by comparing the predicted peptide to the true one for each
spectrum. DeepNovo also provides a confidence score for each predicted peptide, which
can be used as a filter for better accuracy. Since the test set did not share common peptides
with the training set, we expected the distribution of accuracy versus confidence score on
the test set to be close to that of de novo peptides which the model had not seen during
training. Thus, we calculated a score threshold at a precision of 95% on the test set and
used it to select high-confidence de novo peptides (Figure 5.2b). Finally, to estimate the
FDR of high-confidence de novo peptides, we performed a second-round PEAKS X search
of all spectra against a combined list of those peptides and the database peptides (i.e.
normal HLA peptides identified in step 1). Only de novo peptides identified at 1% FDR
were retained. Table 5.4 shows the number of de novo HLA peptides identified at 1% FDR,

55



Table 1. Number of de novo and database HLA peptides identified at 1% FDR.

Patient ID

Database De novo Database De novo

Mel-5 12,998 1,272

Mel-8 13,635 1,235

Mel-12 10,068 1,354

Mel-15 35,551 5,320 9,664 863

Mel-16 25,274 1,259 6,171 722
(FDR: False Discovery Rate; MS: Mass Spectrometry)

HLA-I HLA-II

MS data not available

MS data not available

MS data not available

Table 5.4: Number of de novo and database HLA peptides identified at 1% FDR.

on top of the corresponding number of database peptides for each of the five patients. Our
de novo peptide sequencing results expanded the immunopeptidomes by 5%–15% (Mel–
16 HLA–I: 5%=1,259/25,274; Mel–15 HLA–I: 15%=5,320/35,551; other cases were within
that range).

5.1.2 Advantages of Personalized Model over Generic Model

To demonstrate the advantages of our personalized approach, we compared the personalized
model of patient Mel–15’s HLA–I to a generic model, which had the same neural network
architecture but was trained on a combined HLA–I dataset of 9 other patients from the
same study[6]. All datasets were derived from the same experiment and instrument, the
only difference is the immunopeptidomes of the patients. The combined dataset has 477,482
PSMs, which is 39.9% larger than the Mel–15 dataset. Figure 5.2a shows the accuracy of
the personalized model versus the generic model on the Mel–15 test set. As mentioned
earlier, this test set did not share common peptides with the Mel–15 training set, so both
models had not seen the test peptides during training. The personalized model achieved
14.3% higher accuracy at the peptide level (0.6939 / 0.6070 = 1.143) and 3.8% higher
accuracy at the amino acid level (0.8668 / 0.8349 = 1.038), despite its smaller training
set. The superiority of the personalized model over the generic one can also be seen from
the accuracy-versus-score distribution in Figure 5.2b. At the same level of amino acid
accuracy, e.g., 95%, the personalized model required a lower score cutoff, thus allowing
more de novo peptides to be identified. Indeed, Figure 5.2c shows that the personalized
model identified 87.8% more high-confidence de novo peptides (16,226 / 8,642 = 1.878)
and 38.9% more de novo peptides at 1% FDR (5,320 / 3,829 = 1.389). More importantly,
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the personalized model was able to capture 6 of 8 target neoantigens of patient Mel–15,
while the generic model only recovered 3 of them. Those results demonstrate that our
personalized approach substantially improves the accuracy and identification rate of de
novo peptides by adapting to a specific immunopeptidome of an individual patient.

5.1.3 Analysis of Immune Characteristics of De novo HLA pep-
tides

In this section, we studied common immune features of de novo HLA peptides and com-
pared them to normal HLA peptides, i.e. those identified by the database search engine
in step 1 of the workflow. We also compared to previously reported human epitopes from
the Immune Epitope Database (IEDB)[83].

Figure 5.2d shows the distribution of PEAKS X identification scores of de novo PSMs
against those of database and decoy PSMs for HLA–I peptides of patient Mel–15. The dis-
tributions confirm that the de novo peptides have strong supporting PSMs as the database
peptides and are clearly distinguishable from the decoy ones.

Next, we compared de novo and database HLA–I peptides of patient Mel–15 to 18,022
IEDB epitopes, which were retrieved according to the patient’s six alleles (HLA–A03:01,
HLA–A68:01, HLA–B27:05, HLA–B35:03, HLA–C02:02, HLA–C04:01). The Venn dia-
gram in Figure 5.2e shows that 56 de novo peptides have been reported as epitopes in
earlier studies. Note that the de novo peptides were specific to an individual patient and
were not presented in the protein database, so the chance to find them in IEDB is rare.
Even 81.4% (28,943 / 35,551) of the database peptides were not found in IEDB. This is
due to the large variation of HLA peptides and further emphasizes the importance of our
personalized approach. Figure 5.2f further shows that both de novo and database pep-
tides have the same characteristic length distribution as IEDB epitopes. For the other
four patients Mel–5, Mel–8, Mel–12, and Mel–16, we also found that the length distribu-
tions of their de novo HLA–I peptides are very similar to those of database peptides, as
shown in Figure 5.3a–d. However, for HLA–II, the de novo peptides tend to be longer
than the database ones (Figure 5.3e, f). We hypothesize that it might be challenging for
the database search engine to identify long HLA–II peptides when the digestion rule is
unknown.

One of the most widely used measures to assess HLA peptides is their binding affinity
to MHC proteins. We used NetMHCpan[38] to predict the binding affinity of the de novo,
database, and IEDB peptides for HLA–I alleles of patient Mel–15. Figures 5.2g shows the
binding affinity distribution of de novo peptides, database peptides and IEDB peptides.
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From Mann-Whitney U test (p-value> 0.23), we could not reject the null hypothesis that de
novo peptides have the same binding affinity distribution as IEDB peptides. Furthermore,
the majority of the de novo peptides were predicted as good binders by multiple criteria:
79.3% (4,220 / 5,320) weak-binding, 51.8% (2,757 / 5,320) strong-binding, and 74.0%
(3,938 / 5,320) with binding affinity less than 500 nM (Figure 5.4). Similar results were
observed for de novo peptides of different HLA–I alleles of the other four patients.

We also applied GibbsCluster[3], an unsupervised alignment and clustering method
to identify binding motifs without the need of HLA allele information. We found that
the de novo peptides of patient Mel–15 were clustered into four groups, of which motifs
corresponded exactly to four alleles of the patient (Figure 5.2h). Note that both de novo
sequencing and unsupervised clustering methods do not use any prior knowledge such as
protein database or HLA allele information, yet their combination still revealed the correct
binding motifs of the patient. This suggests that our workflow can be used to identify
novel HLA peptides of unknown alleles. Results from the database peptides also yielded
the same binding motifs (Figure 5.5).

Finally, we used an IEDB tool1[12] to predict the immunogenicity of de novo HLA–I
peptides and then compared to database, IEDB, and human immunogenic peptides that
were used in that original study (Figure 5.2i). We found that 38.8% (2,065 / 5,320) of the de
novo peptides had positive predicted immunogenicity (log-likelihood ratio of immunogenic
over non-immunogenic[12]). The de novo peptides had lower predicted immunogenicity
than the database and IEDB peptides. This was expected because the tool had been
developed on a limited set of a few thousand well-studied peptides. The predicted im-
munogenicity of de novo HLA–I peptides of the other four patients are provided in Figure
5.6.

Overall, our analysis results confirmed the correctness—and, more importantly—the
essential characteristics of de novo HLA peptides for immunotherapy. The remaining
question is to select candidate neoantigens from de novo HLA peptides based on their
characteristics.

5.1.4 Neoantigen Selection and Evaluation

We considered several criteria that had been widely used in previous studies for neoantigen
selection[56, 65, 13, 6, 42]. Specifically, we checked whether a de novo HLA peptide car-
ried one amino acid substitution by aligning its sequence to the Swiss-Prot human protein

1http://tools.iedb.org/immunogenicity/
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database, and whether that substitution was caused by one single nucleotide difference in
the encoding codon. In this paper, we refer to those substitutions as “missense-like mu-
tations.” For each mutation, we recorded whether the wild-type peptide was also detected
and whether the mutated amino acid was located at a flanking position. For expression
level information of a peptide, we calculated the number of its PSMs, their total identi-
fication score, and their total abundance. Finally, we used NetMHCpan and IEDB tools
to predict the binding affinity and the immunogenicity of a peptide. As a result, we find
10,440 HLA–I and 1,585 HLA–II de novo peptides of five patients.

To select candidate neoantigens, we focused on de novo HLA peptides that carried one
single missense-like mutation. This criterion reduced the number of peptides considerably,
e.g. from 5,320 to 328 HLA–I and from 863 to 154 HLA–II peptides of patient Mel–15. We
further filtered out peptides with only one supporting PSM or with mutations at flanking
positions because they were more error prone and less stable to be effective neoantigens.
On average, we obtained 154 HLA–I and 47 HLA–II candidates per patient. Expression
level, binding affinity, and immunogenicity can be further used to prioritize candidates for
experimental validation of immune response; we avoided using those information as hard
filters.

Table 2. Identified neoantigens for patient Mel-15.Green rows: MHC class 1; yellow row: MHC class 2; red letters: mutated amino acids.

Table 2. Identified neoantigens for patient Mel-15.Green rows: MHC class 1; yellow row: MHC class 2; red letters: mutated amino acids.Position Ref Allele Alt Allele Genename Transcript ID Effect Aa change wildtype peptide de novo peptide

X 100687163 G A SYTL4 ENST00000263033 missense_variant Ser363Phe GRIAFSLKY GRIAFFLKY

14 32822259 G A AKAP6 ENST00000280979 missense_variant Met1482Ile KLKLPMIMK KLKLPIIMK

10 17229543 G A VIM ENST00000224237 missense_variant Gly41Ser SLGSALRPSTSRSLY SLSSALRPSTSRSLY

7 158680743 G A NCAPG2 ENST00000441982 missense_variant Pro134Leu KPILWRGLK KLILWRGLK

8 30474849 C T RBPMS ENST00000517860 missense_variant Pro46Leu RPFKGYEGSLIK RLFKGYEGSLIK

Table 5.5: Identified neoantigens for patient Mel–15.Green rows: MHC class 1; yellow
row: MHC class 2; red letters: mutated amino acids.

We cross-checked our de novo HLA peptides against the nucleotide mutations and
mRNA transcripts in the original publication[6]. We identified seven HLA–I and ten HLA–
II candidate neoantigens that matched missense variants detected from exome sequencing
(Table 5.5 and Table 5.6). The first seven were among eleven neoantigens reported by
the authors using proteogenomic approach that required both exome sequencing and pro-
teomics database search. Two HLA–I neoantigens, “GRIAFFLKY” and “KLILWRGLK”,
had been experimentally validated to elicit specific T-cell responses. We indeed observed
that those two peptides had superior immunogenicity, and especially, expression level of
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…SYVTTSTRTYSLGSALRPSTSRSLY… binding % num_psm total_score total_abundance

YVTTSTRTYSLSSALRPSTS 8 573.18 4.26E+06

VTTSTRTYSLSSALRPSTS 5 290.37 2.25E+06

SLSSALRPSTSRSLY 0.08 8 351.79 1.70E+07

SLSSALRPSTSRSLY.1 0.08 11 622.22 3.44E+07

SYVTTSTRTYSLSSALRPSTS 8 666.41 9.78E+06

VTTSTRTYSLSSALRPS 3 115.28 3.03E+06

TTSTRTYSLSSALRPS 6 340.06 1.10E+07

YVTTSTRTYSLSSALRPST 2 104.34 3.68E+05

TTSTRTYSLSSALRPSTS 3 120.71 7.46E+05

YVTTSTRTYSLSSALRPS 2 121.59 8.45E+05

TSTRTYSLSSALRPS 0.43 12 498.53 1.26E+07

Table 3. Alignment of candidate mutated peptides against the reference sequence from the MHC class 2 dataset of patient Mel-15. The mutated 
site is highlighted in green and yellow colors, for  reference and mutated amino acids respectively. The columns provide supporting evidence of 
binding affinity rank (lower is better), number of peptide-spectrum matches (PSMs), the total confidence score of PSMs, and the total abundance 
of PSMs. Two candidate neoantigens “SLSSALRPSTSRSLY” and “TSTRTYSLSSALRPS” are highlighted in red color. “SLSSALRPSTSRSLY.1” shows the 
identification of this peptide from the MHC class 1 dataset.

Table 5.6: Alignment of candidate mutated peptides against the reference sequence from
the MHC class 2 dataset of patient Mel–15. The mutated site is highlighted in green and
yellow colors, for reference and mutated amino acids respectively. The columns provide
supporting evidence of binding affinity rank (lower is better), number of PSMs, the total
confidence score of PSMs, and the total abundance of PSMs. Two candidate neoanti-
gens “SLSSALRPSTSRSLY” and “TSTRTYSLSSALRPS” are highlighted in red color.
“SLSSALRPSTSRSLY.1” shows the identification of this peptide from the MHC class 1
dataset.

up to one order of magnitude higher than the other neoantigens (Table 5.5). This obser-
vation confirms the critical role of peptide-level expression for effective immunotherapy, in
addition to immunogenicity and binding affinity.

The ten HLA–II candidate neoantigens were novel and had not been reported in [6].
They were clustered around a single missense mutation and were a good example to il-
lustrate the complicated digestion of HLA–II peptides (Table 5.6). Eight of them were
predicted as strong binders by NetMHCIIpan (rank ≤ 2%), two as weak binders (rank ≤
10%). The peptide located at the center of the cluster, “TSTRTYSLSSALRPS”, showed
both highest expression level and binding affinity, thus representing a promising target for
further experimental validation. Interestingly, another peptide, “SLSSALRPSTSRSLY”,
showed up in both HLA–I and HLA–II datasets with very high expression level (Tables 5.5
and Table 5.6). Using a consensus method of multiple binding prediction tools from IEDB
to double-check, we found that this peptide had a binding affinity rank of 0.08%, instead of
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4.5% as predicted by NetMHCIIpan, and exhibited a different binding motif from the rest
of the cluster. Thus, given its superior binding affinity and expression level, this peptide
would also represent a great candidate for immune response validation.

We also investigated the four HLA–I neoantigens that had been reported in [6] but
were not detected by our method. Three of them were not supported by good PSMs, and,
in fact, DeepNovo and PEAKS X identified alternative peptides that better matched the
corresponding spectra (Figure 5.7–5.9). The remaining neoantigen was missed due to a de
novo sequencing error. We noticed that all four peptides had been originally identified at
5% FDR in stead of 1%, so their signals were possibly too weak for identification. DeepNovo
model, and other de novo peptide sequencing tools in general, rely mainly on fragment ions
in a spectrum to predict its peptide. Thus, the model may miss potential neoantigens that
have low MS signals but are still capable of triggering T cell response. However, DeepNovo
also includes a recurrent neural network to learn sequence patterns of the peptides to assist
the signals from fragment ions, especially when the signals are weak[77]. This aspect of
the model can be improved to address the problem of low sensitivity in MS data.

Since exome sequencing only covers 1% of the human genome, many de novo HLA
peptides that did not match nucleotide variants reported in [6] could have originated from
non-coding regions. For instance, Laumont et al. suggested that non-coding regions were
the main source of neoantigens[46].

5.2 Discussion

In this study, we proposed a personalized de novo peptide sequencing workflow to identify
HLA neoantigens directly and solely from mass spectrometry data. The key advantage of
our method is the ability of its deep learning model to adapt to a specific immunopeptidome
of an individual patient. This personalized approach greatly improved the performance of
de novo peptide sequencing and allowed accurate identification of mutated HLA peptides.
We applied the workflow to five melanoma patients and expanded their immunopeptidomes
by 5%–15%. Our analysis also demonstrated that the de novo HLA peptides exhibited
the same immune characteristics as previously reported human epitopes, including binding
affinity, immunogenicity, and expression level, which are essential for effective immunother-
apy. On the Mel–15 dataset, we cross-checked our de novo HLA peptides against exome
sequencing results and discovered 15 neoantigens of both HLA–I and HLA–II, including ten
novel HLA–II neoantigens that had not been reported earlier. This result demonstrated
the capability of our de novo peptide sequencing approach to overcome the challenges of
unknown degradation and binding prediction for HLA-II peptides. Last but not least, our
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de novo peptide sequencing workflow directly predicted neoantigens from mass spectrom-
etry data and required neither genome-level information nor the patient’s HLA alleles, as
in existing approaches.

Our current workflow focuses on neoantigens carrying missense mutations. However,
there is emerging interest and evidence of neoantigens that result from other sources such as
frameshift mutations, non-coding regions, or cis- and trans-splicing events [46, 26]. Thus,
our workflow needs further improvement to address those cases. In the cases of frameshift
mutations and non-coding regions, integrating genomic information to the current workflow
may be needed since it is difficult to confirm those types of mutations if we only look at
the protein-level information. For cis- and trans-spliced peptides, while some de novo HLA
peptides could be explained by cis- or trans-splicing events, the more important question
is to establish the statistical significance of such events.

In conclusion, our personalized de novo peptide sequencing workflow to predict mu-
tated HLA peptides from mass spectrometry data presents a simple and direct solution to
discover neoantigens for cancer immunotherapy. As Newton said, “nature is pleased with
simplicity”.
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Step 1 
Build the immunopeptidome of the patient
• Standard database search engines
• UniProt/Swiss-Prot human database
• No enzyme specificity

Step 2 
Train personalized machine learning model
• Neural networks to learn peptidome
• Counter overfitting to detect mutations

Step 3 
Personalized de novo sequencing
• labeled spectra for quality control
• unlabeled spectra for mutated peptides

LC-MS/MS

Unlabeled spectra

Identified mutated peptides

Step 5 
Neoantigen selection
• Binding affinity for patient’s HLA alleles
• Missense mutations against wild-types
• Neoantigen expression level

Step 4 
Quality control
• De novo confidence score
• Second-round search with FDR control

Identified normal HLA peptides 
and peptide-spectrum matches

Figure 5.1: Personalized de novo sequencing workflow
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Figure 5.2: Accuracy and immune characteristics of de novo HLA–I peptides from patient
Mel-15 dataset. (a) Accuracy of de novo peptides predicted by personalized and generic
models. (b) Distribution of amino acid accuracy versus DeepNovo confidence score for
personalized and generic models. (c) Number of de novo peptides identified at high-
confidence threshold and at 1% FDR by personalized and generic models. (d) Distribution
of identification scores of de novo, database, and decoy peptide-spectrum matches. The
dashed line indicates 1% FDR threshold. (e) Venn diagram of de novo, database, and
IEDB peptides. (f) Length distribution of de novo, database and IEDB peptides. (g)
Distribution of binding affinity ranks of de novo, database, and IEDB peptides. Lower rank
indicates better binding affinity. The two dashed lines correspond to the ranks of 0.5% and
2%, which indicate strong and weak binding, respectively, by NetMHCpan. (h) Binding
sequence motifs identified from de novo peptides by GibbsCluster. (i) Immunogenicity
distribution of de novo, database, IEDB, and Calis et al.’s peptides[12].
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Supplementary Figure S1. Length distributions of HLA de novo and database peptides. (a) Mel-5 HLA-I; (b) Mel-8 HLA-I; (c) Mel-12 
HLA-I; (d) Mel-16 HLA-I; (e) Mel-15 HLA-II; (f) Mel-16 HLA-II.

Figure 5.3: Length distributions of HLA de novo and database peptides. (a) Mel–5 HLA–
I;(b) Mel–8 HLA–I; (c) Mel–12 HLA–I; (d) Mel–16 HLA–I; (e) Mel–15 HLA–II; (f) Mel–16
HLA–II
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Supplementary Figure S2. Binding affinity distributions of de novo, database, and IEDB HLA-I peptides 
of patient Mel-15. The dashed line indicates the value of 500 nM, a common threshold to select good 
binders.

Figure 5.4: Binding affinity distributions of de novo, database and IEDB HLA–I peptides
of patient Mel–15. The dashed line indicates the value of 500 nM, a common threshold to
select good binders.
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HLA-A03:01 HLA-A68:01

HLA-B27:05 HLA-B35:03

Supplementary Figure S4. Binding motifs of database HLA-I peptides of patient Mel-15.
Figure 5.5: Binding motifs of database HLA–I peptides of patient Mel–15
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Mel-5 Mel-8

Mel-12 Mel-16

Supplementary Figure S5. Immunogenicity of de novo and database HLA-I peptides.
Figure 5.6: Immunogenicity of de novo and database HLA–I peptides
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MaxQuant DeepNovo

Fraction: 20141208_QEp7_MiBa_SA_HLA-I-p_MM15_4_B.raw
Scan ID: 49534
Retention time: 82.974
M/z: 564.327
Charge: 2

Figure S7. Peptide-spectrum matches of MaxQuant and DeepNovo for 3 candidate neoantigens that are likely to be false positives.

Figure 5.7: MaxQuant and DeepNovo spectrum identification difference 1

MaxQuant DeepNovo & PEAKS DB

Fraction: 20141210_QEp7_MiBa_SA_HLA-I-p_MM15_2_B_1.raw
Scan ID: 21931
Retention time: 37.371
M/z: 331.854
Charge: 3

Figure 5.8: MaxQuant and DeepNovo spectrum identification difference 2
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MaxQuant DeepNovo

Fraction: 20141208_QEp7_MiBa_SA_HLA-I-p_MM15_3_B.raw
Scan ID: 2606
Retention time: 6.317
M/z: 334.217
Charge: 3

Figure 5.9: MaxQuant and DeepNovo spectrum identification difference 3
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Chapter 6

Conclusions and Future Research

6.1 Impact of this Thesis

In Chapter 3, we developed the first de novo peptide sequencing tool for DIA data. Our
proposed DeepNovo-DIA model could identify peptides for more features, especially those
of low abundance. Thus, the combination of DIA and de novo sequencing has the potential
to help scientists discover novel peptides and enable more complete profiling of biological
samples.

In Chapter 4, we developed PointNovo, a de novo sequencing model that does not suffer
from the accuracy-speed trade-off and outperforms the previous state-of-the-art method,
DeepNovo, by a significant margin of at least 15%. Our proposed PointNovo model could
directly benefit from the higher resolution data generated by next-generation mass spec-
trometers, without any increase in computation complexity. We demonstrated that Point-
Novo could better discriminate between pairs of amino acids that have similar mass (like
M(Oxidation) and F). The predicted log probability could be used as PSM scores for doing
database searching and the identification rate is at least comparable with existing database
search tools. Our novel method of spectrum representation and feature extraction have
great potentials for other important problems in MS. The promising results given by Point-
Novo further confirm that domain-specific expertise is still important and valuable in the
era of deep learning. Even though the commonly used DNNs structures are powerful fea-
ture extractors, researchers could still expect to observe improvements by proper feature
engineering and a carefully designed model structure.

Finally, in Chapter 5, we developed the first personalized sequencing workflow that finds
neoantigens directly and solely from mass spectrometry data. Compared to the current
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prevalent proteogenomics method, our approach could find more candidate neoantigens,
including those resulting from non-coding region or alternative splicing.

6.2 Future Research

Our following research interests are as follows:

• Aside from the mass spectrum, liquid chromatography MS provides another dimen-
sion of data: retention time (RT). Previous research on spectral library search and
database search showed that including the RT information significantly improved the
performance. However, since RT is a peptide property, it is generally hard to use RT
in de novo sequencing. One approach is to use Monte Carlo tree search to replace the
current beam search strategy in PointNovo. This way, we may guide the searching
process to favor a de novo sequence with the desired RT.

• In Chapter 4, I used a T Net structure to process the order invariant feature matrix.
Recent research on point clouds classification showed that including graph structures
of the point clouds helps the model to make better predictions. On the other hand,
an MS2 spectrum could be represented as a graph (often referred to as the spectrum
graph) and de novo peptide sequencing problems could be organized as finding the
best path on the spectrum graph[19]. So far my experiments of using Graph Neural
Networks (GNNs) to process mass spectra have not shown any improvements on the
task of de novo peptide sequencing. Nevertheless, it is worth putting more effort in
investigating the use of GNNs in MS.

• In Chapter 5, our workflow found a list of candidate neoantigens in which only
very few are reported by the existing proteogenomic approach. Possible explanation
are that some neoantigens might be from a non-coding region of the genome[46],
or they might be results of trans or cis splicing[21]. Next, we plan to generate
immunopeptidomics MS dataset, together with whole genome and RNA sequencing
results to validate our hypothesis. Hopefully, clinical trials will validate the candidate
neoantigens identified in our workflow.
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Jean-Philippe Laverdure, Patrick Gendron, Mathieu Courcelles, Marie-Pierre Hardy,
Caroline Côté, et al. Noncoding regions are the main source of targetable tumor-
specific antigens. Science translational medicine, 10(470):eaau5516, 2018.

[47] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[48] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[49] Bin Ma. Novor: real-time peptide de novo sequencing software. Journal of the Amer-
ican Society for Mass Spectrometry, 26(11):1885–1894, 2015.

[50] Bin Ma, Kaizhong Zhang, Christopher Hendrie, Chengzhi Liang, Ming Li, Amanda
Doherty-Kirby, and Gilles Lajoie. Peaks: powerful software for peptide de novo se-
quencing by tandem mass spectrometry. Rapid communications in mass spectrometry,
17(20):2337–2342, 2003.

[51] Bin Ma, Kaizhong Zhang, and Chengzhi Liang. An effective algorithm for peptide
de novo sequencing from ms/ms spectra. Journal of Computer and System Sciences,
70(3):418–430, 2005.

[52] Spencer D Martin, Scott D Brown, Darin A Wick, Julie S Nielsen, David R Kroeger,
Kwame Twumasi-Boateng, Robert A Holt, and Brad H Nelson. Low mutation burden
in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PloS one,
11(5):e0155189, 2016.

[53] Jan Muntel, Yue Xuan, Sebastian T Berger, Lukas Reiter, Richard Bachur, Alex
Kentsis, and Hanno Steen. Advancing urinary protein biomarker discovery by data-
independent acquisition on a quadrupole-orbitrap mass spectrometer. Journal of pro-
teome research, 14(11):4752–4762, 2015.

[54] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[55] Russell P Newton, A Gareth Brenton, Chris J Smith, and Edward Dudley. Plant
proteome analysis by mass spectrometry: principles, problems, pitfalls and recent
developments. Phytochemistry, 65(11):1449–1485, 2004.

80



[56] Patrick A Ott, Zhuting Hu, Derin B Keskin, Sachet A Shukla, Jing Sun, David J
Bozym, Wandi Zhang, Adrienne Luoma, Anita Giobbie-Hurder, Lauren Peter, et al.
An immunogenic personal neoantigen vaccine for patients with melanoma. Nature,
547(7662):217, 2017.

[57] Maria R Parkhurst, James C Yang, Russell C Langan, Mark E Dudley, Debbie-Ann N
Nathan, Steven A Feldman, Jeremy L Davis, Richard A Morgan, Maria J Merino,
Richard M Sherry, et al. T cells targeting carcinoembryonic antigen can mediate
regression of metastatic colorectal cancer but induce severe transient colitis. Molecular
Therapy, 19(3):620–626, 2011.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

[59] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017.

[60] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1(8),
2019.

[61] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[62] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[63] Naiyer A Rizvi, Matthew D Hellmann, Alexandra Snyder, Pia Kvistborg, Vladimir
Makarov, Jonathan J Havel, William Lee, Jianda Yuan, Phillip Wong, Teresa S Ho,
et al. Mutational landscape determines sensitivity to pd-1 blockade in non–small cell
lung cancer. Science, 348(6230):124–128, 2015.
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