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Abstract 

Over 120 million individuals wear contact lenses (CLs) worldwide and compared to 

non CL wearers, they exhibit a higher risks of eye infection and ocular inflammatory events. 

As CLs are evolving towards becoming diagnostic and therapeutic devices, there is a 

growing need for in vitro models that can efficiently assess ocular surface toxicity and 

biocompatibility of the technologies embedded in CL. Hence, understanding the effects of 

CLs on the health and integrity of ocular surface is imperative. While there exists some in 

vitro ocular cell models for the characterization of cellular mechanisms and biocompatibility, 

many of these are too complex and costly for rapid testing or don’t always allow for a 

biomaterial to be present. The aim of this thesis was to explore and develop cell culture 

models that could best mimic some of the interactions between the ocular surface and a 

biomaterial.     

In the first phase of the development of the in vitro model, to investigate the role of 

the ocular surface geometry on corneal cells and understand how curvature affects cell 

response, HPV-immortalized corneal epithelial cells (HCEC) were grown on flat and curved 

surfaces. Next, the effect of artificial tear flow (dynamic conditions) in an in vitro model was 

assessed.  The OcuCell testing platform, an in vitro system which mimics tear flow between 

an “eyelid” and “eyeball” pieces, was used to determine the role of dynamic conditions when 

assessing combination of CL and CL cleaning solutions. The Ocucell eye pieces were made 

of 10% Sylgard 184; the two pieces fit together and permit a CL to be set on the corneal 

surface of the “eyeball” piece. HCEC were grown to confluence on the outer curved eyeball 

surface and on the inner concave surface of the eyelid piece and two CL (Etafilcon A and 
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Balafilcon A) were tested in combination with two CL cleaning solutions, ReNu Fresh (a 

PHMB-based multi-purpose solution) and ClearCare (a hydrogen peroxide based solution). 

Experiments were performed under static (no flow) and dynamic conditions.  Finally, the 

effect of crosstalk between two different corneal cell populations in an in vitro testing for CL 

was investigated.  A coculture system using HCEC and conjunctival (ICONJ) corneal cells 

was implemented, where ICONJ cells were grown on a PET transwell insert and HCEC on 

the well of a tissue culture treated polystyrene plate (TCPS).  When cells reached confluency, 

they were incubated together with the CL combination.  Results were compared to CL 

incubation with single cell population. All experiments were performed for 6 hours and cells 

were harvested and expression of integrin α3 and β1 was characterized by flow cytometry.  

Curvature was shown to have a significant effect on corneal epithelial cells where 

cells grown on the convex and concave pieces exhibited a significant upregulation in a3 and 

β1 integrin expression compared to that of the flat surface.  Using the OcuCell test platform, 

downregulation in integrin expression was observed when HCEC were exposed to various 

CL-solution combinations.  The combination BA-ReNu consistently resulted in significant 

reduction in integrin α3 and β1 when compared to the control lens (lens incubated in PBS), 

suggesting that the release of MPS components on BA, such as PHMB and borate buffer, 

affected HCEC.  In the mono culture model, no difference was observed with any CL-

solution combinations.  In the double culture model (where a contact was placed in between 

the TCPS and insert with same cell population), some downregulation in integrin expression 

was observed with HCEC but not ICONJ.  However, upon co-culture of HCEC with ICONJ, 
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downregulation of integrin expression was observed in all combinations and more 

significantly so with BA-ReNu.      

In this thesis, the effects of curved versus flat surfaces, dynamic versus static 

conditions, and mono versus co-culture models, were investigated to understand their 

potential role when assessing CL biocompatibility.  Our results highlight how each 

experimental in vitro model provides different but complementary information about the 

biocompatibility of the CL and multipurpose cleaning solution combination. The co-culture 

model also provides in vitro evidence of the crosstalk between cells and how this may impact 

ocular cell response to a biomaterial. The in vitro models and methodologies explored in this 

thesis represent news means to test biocompatibility of CLs, and potentially allow for future 

testing for ophthalmic materials and contact lens technologies in in vitro cell models that are 

simple and cost effective to allow for fast prototyping and development.  
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Chapter 1 

Introduction 

The field of contact lens research is one of the fastest growing medical markets 

worldwide. In 2015, the market capitalization was at $1.4B with an expected growth of 6.4% 

every year1. While contact lenses represent the most widely used medical device (estimated 

125M wearers worldwide), surprisingly little research has investigated mechanisms related to 

corneal and conjunctival cell interaction following exposure to contact lens materials2. 

The development of silicone hydrogel (SiHy) contact lens has overcome oxygen 

transmissibility challenges that other contact lens materials have not offered.  However, with the 

change of material and lens wearers seeking fast and convenient way to clean their contact 

lenses, new challenges have arisen.  Cleaning solutions are used with daily wear lenses and 

soaked overnight to remove of any deposits of proteins from the tear film as well as any foreign 

materials from wear.  Two main options currently exist, (1) the multipurpose cleaning solution 

(MPS) which contain specific biocides to kill foreign pathogens during a 4 hour-minimum lens 

treatment and (2) the hydrogen peroxide (H2O2) system which uses H2O2 that is neutralized and 

requires a minimum 6 hour-treatment. There is now evidence that contact lenses have the 

potential to adsorb components of the multipurpose cleaning solutions (MPS), which can then be 

released onto the corneal surface post insertion3,4. The interaction between the contact lens and 

the lens care/lens cleaning system has the potential to result in biocompatibility problems and a 

phenomenon termed solution-induced corneal staining has been observed in vivo with specific 

combinations of contact lens and lens care system. It is difficult to evaluate the effects of contact 

lens materials have on the human cornea in vivo due to the limitations of the clinical techniques 

available, which are mainly imaging and thus cannot provide quantitative physiological 
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information on the health of ocular cells.  To develop better ophthalmic solutions and 

biomaterials, it is important to be able to characterize the interactions between the cleaning 

solution, contact lens and cells of the ocular surface, namely corneal and conjunctival epithelial 

cells.  In vitro models represent an avenue to investigate these interactions in a cost-effective and 

ethical manner compared to animal models.   

Existing in vitro models for CL testing have often been designed as cytotoxicity models 

for lens cleaning solution and provide little information on the biocompatibility of an ophthalmic 

material such as a CL. This is because the most prevalent in vitro testing method in research 

today uses the infinite sink (no cells) or a static single cell model with often no lens. These 

approaches do not allow researchers to model for blinking, tear flow exchange, crosstalk 

between ocular cell population and characterize cell response in the presence of a contact lens5. 

Novel biocompatibility models are being developed to allow us to gain a better understanding of 

cell-material interactions. Furthermore, recent research also demonstrated that human corneal 

epithelial cells (HCEC) respond to mechanical stress6,7. To better understand mechanisms of 

biocompatibility on the ocular surface, it is relevant to be able to study the interactions of CL 

materials with in vitro model of the ocular surface under dynamic conditions8,9.  In an effort to 

design in vitro models that better mimic the interactions that take place at the ocular surface 

during lens wear, the presence of different ocular surface cells in the model also needs to be 

considered. 

To gain a better understanding of the role of in vitro models to assess lens-solution combinations 

and inform the design of in vitro biocompatibility model, the general objectives of this research 

thesis project were to assess contact lens-solution combination using a static and dynamic in 
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vitro model, and explore in vitro the role of crosstalk between corneal and conjunctival epithelial 

cells. This MASc thesis had three overarching hypotheses: 

(1) a change in curvature will lead to cell response which can be assessed with integrin 

expression,  

 (2) a dynamic in vitro model will result in significant differences in HCEC response to 

lens-solution combinations compared to a static incubation model,  

(3) a co-culture model with conjunctival and corneal epithelial cells will lead to 

significant differences in cell response to lens-solution combinations compared to a 

mono-culture model.  

The thesis begins by introducing the structure of the eye, ophthalmic materials such as contact 

lenses and cleaning solution, and various methods of testing ocular biocompatibility. In chapter 

3, the effects of curvature and material on cells are investigated. Chapter 4 presents the study 

with the OucCell system using dynamic and static conditions for testing contact lens-cleaning 

solution combinations. In chapter 5, three different in vitro models (monoculture, double culture 

and co-culture models) are used to investigate the effects of crosstalk between two cell 

populations when testing different combinations of contact lens and cleaning solution. 

Conclusion and recommendations for future work are presented in chapter 6. 
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Chapter 2 

Literature review 

2.1 Cornea anatomy 1 

The cornea is a transparent avascular, non-keratinized epithelial structure, forming one-

sixth of the area of the outer wall of the eye. It represents the optical interface between the eye and 

external environment and functions as an optical element and protective barrier. Together with the 

lens, the primary function of the cornea is to refract light to focus an image on the retina; therefore, 

they must maintain their transparency, optical physiology, and structure.  As depicted in Figure 1, 

the normal human cornea is 500 µm thick and consists of 5 layers: corneal epithelium, Bowman’s 

layer, stroma, Descemet’s membrane, and the corneal endothelial monolayer1. The corneal 

epithelium is a stratified structure, 50 µm thick, consisting of a single layer of squamous superficial 

epithelial cells (SEC) several layers of intermediate wing cells, and a single layer of columnar 

basal epithelial cells (BEC)1 (figure 2.1). Superficial corneal cells provide a substrate for the 

precorneal tear film, which acts as the primary refracting surface of the eye1. 

 

 
1  Sections of this chapter have been published in “Chapter 36: Ocular responses to biomaterials" in the 
“Handbook of biomaterials biocompatibility”, a review chapter to which I contributed to as co-author 
with C. Postnikoff, R. Pintwala and M. Gorbet 72 
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Figure 2.1: Cross-sectional schema of the cornea. Figure reprinted with permission from Chen2 
et al.  
 

The cornea is well protected from pathogens and the external environment by tight 

junctions and the constant cell self-renewal, lacrimation and blinking, antimicrobial enzymes in 

tears, and nearby antigens, cytokines, inflammatory mediators or leukocytes that enter the cornea 

via limbic and/or ciliary body vessels1.  The population of epithelial cells is maintained by the 

balance between cell divisions at the limbus and basal layers and cell loss or sloughing at the 

surface (with an epithelial cell turnover rate of approximately 7 days)1.  The presence of tight 

junctions in the corneal epithelial layer plays a vital role in the barrier function of the cornea, 

protecting intraocular structures against diffusion of substances from the tears, transport of ionic 

or polar molecules, microbial infections, and other environmental stresses3–5 (figure 2). The tight 

junctions are formed of occludin and claudins integral transmembrane proteins as well as 

zonulae occludentes (ZO) membrane-associated proteins (ZO-1, ZO-2, and ZO-3).  As opposed 

to the corneal epithelium, the corneal endothelium has a limited capacity for regeneration.  This 

monolayer of cells plays a key function in regulating water to maintain hydration of the cornea 

and allows diffusion of nutrients. Cells of the ocular surface and endothelium express integrins 
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(cell membrane receptors), which play a role in cell adhesion, migration, and maintenance of 

tissue integrity and which expression can be affected by contact lens biomaterials3,6,7.  Corneal 

and conjunctival epithelial cells, stromal cells, and resident antigen-presenting cells also express 

toll-like receptors (specifically TLR2, 3, 4, 5, and 7), which are involved in inflammatory and 

immune cell activation and recruitment8.  

 

 

Figure 2.2: Cross-sectional schema of the corneal epithelium Figure reprinted with permission 

from Chen2 et al. 

Corneal epithelial cells contain a family of cell surface receptors known as integrins. 

There are 24 known alpha subunits and 9 known beta subunits. These subunits can non-

covalently join together to form heterodimers. Integrins serve to maintain tissue integrity by 

aiding in cell adhesion and the formation of adhesion structures. The integrins are able to carry 

out these functions by ligating with extracellular matrix proteins such as laminin and fibronectin. 

These proteins contain an RGD sequence that serves as an attachment site for integrins as well as 
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extracellular matrix molecules. The following paragraph introduces some of the key integrins in 

the cornea. 

α3β1 aids in cell migration by regulating matrix metalloproteinase expression which is 

responsible for cell movement and spreading9,10. It is also important for the stability of 

hemidesmosomes and maintaining cell-cell junctions7,11.  α6β4 is a factor for cell survival12. It 

regulates the progression of the cell cycle11. This integrin is phosphorylated during cell migration 

to prevent the early assembly of hemidesmosomes11. It is a strong component of 

hemidesmosomes, and its expression is essential for the stable adhesion of the epithelium to the 

basement membrane7,11,13. Decreased levels of this integrin result in the disruption of cell 

adhesion11,14. The absence of the β4 subunit in this integrin results in defective epidermal 

adhesion and assembly of the basement membrane11,14. α5β1 aids in the process of healing 

wounds9,15,16. Healthy cells express this integrin, increasing fibronectin sensitivity and acting as a 

chemotactic migratory stimulus10,15,17. α9β1 also aids in the wound healing process9,11,16. It is 

located in the corneal epithelium. The α9 subunit regulates the protein association of the 

cytoskeleton, assisting with cell migration11. It is an important factor in sustaining cell migration 

after initiation11. αvβ6 is another important factor in wound healing and cell migration11,16,18. 

During wound healing, this integrin is expressed to help maintain the integrity of the tissue11. E-

Cadherin expression is regulated by this integrin11. Decreased levels of αvβ6 lead to a loss of 

junctions11. 

 

2.2 Conjunctiva anatomy 

The conjunctiva is the mucous membrane that is thin, transparent, and vascularized and 

covers the inner surfaces of the eyelids and extends to the cornea.  The conjunctival epithelium 
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has a stratified structure and similarly to the corneal epithelium, its cells express various 

integrins and receptors and tight junctions (in the superficial layers). It is involved in different 

ocular surface diseases, playing an active role in the pathophysiology of common conditions 

such as dry eye19. The conjunctiva covers the anterior sclera by reflecting forwards on the eye at 

the fornix. It consists of two components, namely: a bulbar component and a palpebral 

component20. The bulbar conjunctiva is a thin, semitransparent, colorless tissue21. The sclera up 

to the corneoscleral junction is covered by the bulbar conjunctiva21. The palpebral conjunctiva, 

on the other hand, is a thick, opaque, red tissue. It is divided into three zones which are: 

marginal, tarsal, and orbital zones22. The keratinization is minimal in the marginal zone which 

lay between the skin and the conjunctiva. The tarsal conjunctiva is a fibrous relatively smooth 

layer21. The functional shape of the eyelid is provided by the tarsal conjunctiva. In addition, the 

conjunctiva consists of accessory lacrimal glands, lymphoid tissue, mast cells, and goblet cells. 

The accessory lacrimal glands and the Meibomian glands exist in both the upper and the lower 

tarsal conjunctiva, however, they are concentrated in the upper one. The tarsus and the fornix 

have an abundance of goblet cells (Figure 3)23. Conjunctival epithelial cells synthesize 

inflammatory mediators which will affect both ocular health and vision and play a role in the 

complex inflammatory system/response of the eye.  
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Figure 2.3: Schematic representation of the anatomy of the conjunctiva. Figure reprinted from Lemp24. 

The tear film is responsible for the hydration, lubrication, and nutrition of the ocular surface 

while providing a barrier to pathogens and particulates. The tear film is viewed as layered consisting of 

the outermost non-polar lipid layer, the polar lipid layer, the aqueous-mucin layer, and a glycocalyx layer 

covering the cornea (Figure 4).  Components of the tear film are secreted by different epithelial and 

glandular tissues, such as the meibomian glands (the lipid layer), lacrimal glands (the aqueous layer), and 

the goblet cells within the conjunctiva (the mucin layer)25.  Mucins are highly glycosylated proteins that 

are both secreted and membrane-associated.  
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Figure 2.4: The tear film structure. The left scheme presents the overall structure while the right 

scheme presents a more detailed view of the mucins and galectin of the glycocalyx, soluble mucins, 

and proteins in the mucoaqueous layer.  Figures reprinted from Butovich26 and Willcox et al27 with 

permission from Elsevier. 

 

Over 1500 tear proteins have been identified in tears from healthy subjects, with lysozyme, 

lactoferrin, tear lipocalin, and secretory immunoglobulin A (sIgA) being the main proteins found 

in the tear fluid28. Tears contain cytokines (such as IL-1β, IL-6, IL-8, and IL-12), chemokines 

(such as CCL2, CXCL1, and CXCL8) and growth factors, which are produced by resident cells of 

the ocular surface and infiltrating immune cells and play an essential role in corneal homeostasis 

and inflammatory processes28–30. It is important to note that the composition of the open-eye and 

closed-eye tears are significantly different from each other. Closed-eye tears contain higher levels 
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of albumin, fibronectin, complement proteins, sIgA, and plasmin compared to open-eye tears, with 

sIgA representing up to 80% of the total protein content31,32.  Furthermore, a large number of 

neutrophils have been observed in closed-eye tears33,34.  These differences have the potential to 

impact the ocular response to biomaterials. 

With its lack of blood vessels and inherent protection mechanisms, the cornea is considered an 

immune privilege tissue, whereby to prevent vision loss, minimal inflammation and immune 

response may occur35,36.  However, the presence of a biomaterial, such as a contact lens, may affect 

this protected environment and trigger an inflammatory response that can damage the ocular 

surface34,37,38.  This thesis project is interested in developing in vitro models of biocompatibility 

that consider the interplay between corneal and conjunctival cells when assessing a contact lens.  

 

2.3 Contact lens materials  

Contact lenses (CL) represent the most widely used medical device (with an estimated 125 

million wearers worldwide) and the most common biomaterial to interact with the ocular surface39.  

Soft contact lenses are hydrogel polymers typically made either from poly(2-

hydroxyethylmethacrylate) or silicone hydrogels40.  In order to increase oxygen transmissibility of 

these materials to reduce the risk of corneal hypoxia, all of these polymers are surface treated with 

monomers and wetting agents added to their surface40. Rigid gas-permeable (RGP) contact lenses 

used in orthokeratology or with keratoconus patients were originally manufactured with 

polymethyl methacrylate, which has a low oxygen permeability41. To increase oxygen permeability 

and improve biocompatibility, RGP lenses now use most commonly silicone or fluorosilicone 

acrylate materials41. 
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 About 90% of contact lens wearers use hydrogel or silicone hydrogel lenses. A four-part 

classification system used water content and ionicity to classify contact lenses. This was used to 

facilitate testing of different lens materials with different lens care systems. It is important to 

understand how hydrogel materials react with varying care systems as well as with proteins in 

the tear film. Silicone hydrogel (SiHy) material lenses were originally classified either as group 

1, low water and non-ionic, or group 3, low water content and ionic. A fifth category was created 

to include the unique properties of SiHy lenses and the way they interact with CL solutions and 

tear film. The current classification system differentiates SiHy lenses based on water content, 

ionicity, surface treatment, and the presence of hydrophilic monomers or semi-interpenetrating 

network. Table 1 lists the most common CLs used today and their classifications.  
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Table 0.1: Most Commonly Used Soft Contact Lenses in Today’s Market 

Lens Type  Group 1, Nonionic/Low H2O Group 2, Nonionic/High H2O Group 3, Ionic/Low H2O Group 4,  
Ionic/High H2O 

Hydrogel  Polymacon  
Tetrafilcon A  

Omafilcon A  
Nelfilcon A   
Alphafilcon A  

Phemfilcon A  Ocufilcon D  
Etafilcon A  
Methafilcon A  
  

     
 
 

Lens 
Type  

Group 5A, 
Ionic/No H2O 
Specification  

Group 5B, 
Nonionic/ Low 
H2O 

Group 5Cm, 
Nonionic/Low 
H2O/ST (Surface 
Treatment)   

Group 5C 
Nonionic/Low 
H2O/Non-
ST/Hydrophylic 
Monomer  
  

Group 5 Cr, Nonionic/Low 
H2O/Non-ST/Semi-
Interpenetrating Network   

Silicone 
hydrogel 

*Delefilcon A  Somofilcon A  Balafilcon A  
Lotrafilcon B  
Lotrafilcon A   

Samfilcon A  
Comfilcon A  
Enfilcon A   

Senofilcon A  
Narafilcon A   

*Could also fall into 5C  
 
Table adapted with permission from Kuc42 et al.
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2.4 Cleaning solutions 

Daily disposable lenses are worn and discarded after each use. Daily wear lenses can be 

cleaned after every use and be worn for a week, two weeks, or a month before being discarded. 

Disinfecting these lenses overnight allows for the removal of any deposits of proteins from the 

tear film as well as any foreign materials. Extended wear lenses allow for continuous, overnight 

wear by using a material that allows for more oxygen to reach the ocular surface. Improper care 

of daily wear contacts may result in infection or irritation to the eye, which, in serious cases, can 

be sight-threatening43.  

Multipurpose cleaning solutions (MPS) and hydrogen-based cleaning solutions are used to 

clean, disinfect, and store contact lenses.  MPS are also being designed to improve lens wear and 

some have been reported to increase wettability (when containing poloxamine) and protein 

removal44.   The procedure for disinfecting contact lenses is to remove the lenses from the eye 

with clean hands, drop MPS and each side of the lens, and rub for 2-20 seconds, based on the 

manufacturers’ instructions. This is then followed by rinsing the lens with more MPS, then 

leaving it to disinfect in MPS for 4 to 6 hours.  “No rub” solutions instructed to remove the lens 

from the eye, rinsing on each side, and then leaving it to disinfect in the solution. While no 

evidence showed an increase in infection with no rub solutions, studies have shown that rubbing 

reduces the amount of bacteria that adheres to hydrogel lenses45. There is now evidence that CLs 

have the potential to adsorb and subsequently release components of MPS on the ocular surface.   

The chemical composition of lenses have been shown to result in different levels of adsorption 

and release of various components of MPS 46,47.  Components of MPS and hydrogen-based 

cleaning solutions include biocides, surfactants, chelating buffering agents (see Table 2). They 

are able to remove proteins and lipids and provide broad disinfection against pathogenic 
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microorganisms while in the lens case to prevent transfer onto the ocular surface upon lens re-

insertion. 

 Biocides are a major component of contact lens disinfecting solutions. They are added to 

lens care systems to kill bacteria and fungi. The most common biocides in CL solutions are 

hydrogen peroxide (H2O2), polyhexamethylene biguanide (PHMB), polyquaternium-1 

(Polyquad), myristamidopropyl diametylamie (Aldox), and alexidine. PHMB is a large molecule 

with a strong positive charge. It is effective against both gram-negative and gram-positive 

bacteria. Due to its ionicity and attraction forces, PHMB has a longer “uptake and release time” 

which may cause eye discomfort to the lens user. It has been seen in studies that corneal staining 

increases with PHMB46,47. 

Polyquad is another biocide which, like PHMB, is also cationic, leading to a longer 

uptake and release time. Polyquad is often combined with other biocidal agents, such as 

alexidine dihydrochloride, in disinfecting systems. Alexidine dihydrochloride and Polyquad are 

combined as a dual-acting biocide in RevitaLens OcuTec Abbott Medical Optics (AMO) 

solution. Most hydrogen peroxide systems contain a platinum-coated disk which lowers the 

concentration of hydrogen peroxide from 30000ppm to below 100ppm within 6 hours to reduce 

the likelihood of ocular discomfort.  

Surfactants, also known as “surface-active agents”, have hydrophobic tails and 

hydrophilic heads. This amphiphilic structure allows them to be soluble in both polar and non-

polar. Due to the surfactant’s ability to act as both a surface cleaner and a wetting agent, they can 

remove surface deposits and also enhance contact lens wettability by lowering the amount of 

surface tension applied to it. 
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 Chelating agents improve the disinfection and cleaning abilities of contact lens solutions 

by working with preservatives in the solutions. In current MPS, some common 

chelating/sequestering agents are ethylenediaminetetraacetic acid (ETDA), citrate, and 

hyrdroxyalkylphosphonate (hydranate).  

 To maintain the acidity of a solution, a buffering agent is added. This weak acid or base 

prevents rapid pH changes when another acid or base is added to the solution. Phosphate, borate, 

and citrate are commonly used buffering agents in contact lens solutions. While phosphate 

buffers are more physiologically compatible, this makes them easily contaminable and may 

promote growth to foreign pathogens. On the other hand, borate buffers have a microbiological 

advantage, however, their antimicrobial properties negatively affect cell viability42.  
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Table 0.2: Most commonly used contact lens solutions in today’s market designed for soft contact lenses including peroxide and 

multipurpose systems 

Table adapted with permission from Kuc42 et al.  

Product Preservative/Biocide  Chelating Agent  Surfactant  Buffer  pH 
Clear care plus 

(clear care 
original has no 

added 
hydraglyde)  

H2O2 None Pluronic 174R, Hydraglyde 
(polyoxyethylene 
polyoxybutylene)  

Phosphate 
(stabilizer) 
Phosphonic Acid, 
Sodium chloride 

    6.7 

Oxysept  

 

H2O2  None  

 

HPMC 
(hydroxypropylmethylcellulose)  

Phosphate   

Optifree express  

 

Polyquaternium-1 
(Polyquad)/Aldox 
(myristamidopropyl 
dimethylamine)  

Ethylenediamine- 
Tetraaceticacid, 
(EDTA)/Sodium 
citrate  

Tetronic 1304  Boric acid, Sorbitol 
AMP-95  

7.8 

Optifree 
repleniSH  

 

Polyquaternium-1/Aldox 
0.0005  

Sodium citrate  Tearglyde (Tetronic 1304 + 
Nonanoyl ethylene-
diaminetriacetic acid)  

Boric Acid  7.8 

Optifree pure 
Moist 

Polyquaternium-1/Aldox 
0.0006  

EDTA/Sodium 
citrate  

Tetronic 1304/Hydraglyde  

 

Boric Acid, 
Sodium chloride  

 

Complete 
revitalens ocutec  

alexidine dihydrochloride 
0.00016%/polyquaternium-1 
0.0003% 

EDTA/Sodium 
Citrate  

Tetronic 904  Boric acid, Sodium 
Borate, Purified 
Water  

 

Complete  PHMB  EDTA  Poloxamer 237  Sodium, Phosphate  7.2 
Aquify  PHMB EDTA  Pluronic F127  Sodium Phosphate  7.2 

Biotrue PHMB/PQ-1 PHMB  EDTA  Hyaluronan; poloxamine Boric acid, Sodium 
borate Sodium 
chloride  

7.5 

Renu fresh  PHMB EDTA/Hydranate  Poloxamine  Boric acid, Sodium 
borate, Sodium 
chloride 

7.3 
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2.5 Biocompatibility of contact lens and lens care solutions 

Biocompatibility is defined as a material’s ability to perform without an appropriate host 

response in a specific situation. Biocompatibility is often discussed alongside cytotoxicity, a 

material’s ability to induce host cell death. Although a biomaterial may not be considered 

cytotoxic, it is not necessarily biocompatible as it may poorly integrate into the host environment 

or lose its function. Thus, a new definition of biocompatibility was formed: “a material’s ability 

to perform as desired without negatively affecting the host while generating the most beneficial 

response relevant to that therapy”48.  The cleaning solution and the contact lens have become a 

system that need to be carefully assessed for biocompatibility.  As mentioned above, MPS 

contain biocides which, while killing pathogenic microorganisms in the lens case, may also 

affect cells from the ocular surface upon release from the contact lens.  Thus, lens care solution 

interactions with contact lens should be taken into account when performing biocompatibility 

experiments on MPS and other lens care solutions.  A seminal paper in 2010 by Powell 49 et al. 

demonstrated that the uptake and release of the biocide PHMB was higher in non-silicone 

hydrogel  and/or ionic lenses (Etafilcon A (EA),Alphafilcon A, Balafilcon Al) than in nonionic 

SiHy lenses (Lotrafilcon B, Lotrafilcon (LA), Comfilcon A). Aldox, a biocide used in several 

MPS, was also shown to be uptaken and released at a higher amount than PHMB with all SiHy 

lenses.  Shortly thereafter, Tanti et al showed that SiHy contact lenses soaked in Aldox-

containing solution (Optifree Express) resulted in low corneal epithelial cell viability and 

downregulation of integrin expression, similarly to lenses soaked in PHMB-containing solution 

(ReNu) 50.  It was hypothesized that the biocide release exposed cells to a high concentration of 

preservative and disinfecting agent, causing increased cell death or metabolic dysfunction50.  A 
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following study by Gorbet et al reported that some of the cytotoxic effects of biocides may also 

be compounded by the buffering agents (phosphate versus borate buffer), further highlighting the 

complexity of testing cleaning lens solution/contact lens combinations 51.  

 To demonstrate that the biomaterial or the lens care solution is not cytotoxic, in vitro and 

in vivo tests need to be performed.  One previous requirement was the ocular irritation test using 

the Draize scoring system (with rabbit) and histopathology often followed to determine the 

presence of an inflammatory response, scarring or toxicity.  

The Draize rabbit test, developed in 1944, is the only eye toxicity test officially accepted 

in the Organization for Economic Co-operation and Development (OECD). The in vivo rabbit 

test can only be performed as a last step after in vitro tests have produced negative results. 

However, there are several structural, physiological, and biochemical differences between the 

human and the rabbit eye. Rabbits have relatively low tear production, blink frequency, and 

ocular surface sensitivity. The anatomy of the rabbit eye is also different from the human eye. 

The reproducibility of the Draize test has also been found to be poor within and among 

laboratories52–54. As such, research into developing models to assess biocompatibility of contact 

lens and lens care solutions has shifted to focus on the development of better in vitro and ex vivo 

models of the cornea.  As such, ocular organotypic models avoid sacrificing animals only for eye 

irritation tests by isolating fresh eyeballs and corneas from various animals, such as bovine, 

porcine, chicken, and rabbit, obtained from the slaughterhouse or after euthanasia. For example, 

the bovine corneal opacity permeability tests and the hen’s eggs chorioallantonic membrane tests 

have been used as alternatives for the Draize test54. These tests have been successfully validated 

by the European Center for the Validation of Alternative Methods along with the Interagency 

Coordinating Committee on the Validation of Alternative Methods. However, these tests still fall 
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short with the inability to use human tissue as they do not have predictive capacity for effects on 

the human ocular surface52.  

The Draize test has been used mostly by contact lens and lens care solution 

manufacturers to meet FDA requirements.  Little research has investigated the effects of CL 

cleaning solutions and CL combinations using animals.  A study undertaken by Tchedre55 et al 

evaluated the expression of common eye mucins (MUC1 and MUC16) and the effects of boric 

acid in MPS solution on mucin expression in Wistar rats after drops of MPS were instilled in 

their eyes.  Upon exposure to boric acid for up to 24hrs/10% MPS, MUC1 and MUC16 were 

downregulated and impacted the integrity of the corneal epithelial surface. With contact lens 

material and lens care solutions, a lot of effort has been dedicated to develop better cell culture 

models rather than organotypic models.  While it is recognized that in vivo models provide a 

physiological environment where various responses can be assessed, the challenges around 

developing a contact lens that fits the eye of the animal and the lack of blinking or closed eye 

conditions have also represented significant limitations.  

2.6 In vitro models for lens care solutions and contact lens testing  

Different corneal models using cell culture methods have been developed and vary from 

monolayer cultures to stratified cell cultures, to epithelium-stroma co-cultures, to more complex 

tissue-engineered three-dimensional corneal equivalents. Due to their ease of use and lower costs 

(less than complex stratified or co-culture models), monolayer cell in vitro model have been used 

extensively to characterize cytotoxicity (live/dead assays, cell counts, etc), and investigate 

changes in cellular metabolism, cytoskeleton and cellular function as well as characterize cell 

phenotype.  Note that some of these cell characterization methods are also applicable to stratified 

or 3D models but are more complex to implement. In vitro models have been developed using 
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immortalized and primary corneal epithelial cells from rabbits and in the 1990s human-derived 

cells began being used.  While an ideal reconstruction of a human cornea would contain all 3 

parts of the cornea, technical limitations have only allowed for the reconstruction of corneal-like 

epithelium (HCE). Several models of RCE include EpiOcularTM, SkinEthicTM, and LabCyte 

CORNEA-MODEL and MCTT HCETM.  EpiOcularTM and SkinEthic are commercially available 

stratified epithelium which have structural, morphological, and functional similarities compared 

to the human cornea, they are different in that they use keratinocyte and skin epithelial cells, 

respectively which are a non-corneal cells.  Limitations of these commercially available models 

are the costs per assay as well as the fact the stratified cultures are grown in small inserts (6 mm 

in diameter), thus making it difficult to test with contact lens/lens care solution combinations and 

the lack of dynamic conditions (absence of medium replenishment).  A majority of the research 

investigating lens cleaning solutions and lens cleaning solutions in combination with contact 

lenses has thus been performed on monolayer and stratified in vitro models.  Table 2 summarizes 

the studies published in the past 20 years.  
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Table 0.3: Monolayer and stratified models of the ocular surface using contact lens cleaning solutions and contact lenses 

In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

T-hCEC 
immortalized 
monolayer 

Complete MPS 
Easy Rub, Opti-
Free Express, Opti-
Free Replenish, 
ReNu MultiPlus 
and Hank’s 
Balanced Salt 
Solution as control  

50% dilution  
30 mins – 24 
hours 
 

MTT Cell Viability Assay, 
TUNEL DNA Fragmentation 
Assay, Fluorescein 
Permeability Assay, Tight 
Junction Protein Staining 

Significantly lower cell 
viability, higher rates of 
apoptosis, as well as 
significant disruption of 
ZO-1 and occludin tight 
junction integrity in cells 
Opti-Free Express, Opti-
Free Replenish, and 
ReNu MultiPlus 
compared to controls 
after 6-hour exposure 
 

200856 

Human corneal 
epithelial cells 
(HCEpiC), bovine 
corneal epithelial 
cells (BCEpiC) 

Renu MultiPlus 
(A), Opti-Free 
Express (B), 
AQuify(C), OPTI-
FREE RepleniSH 
(D) 

1 or 2 hours at 
40%, 60%, 80%, 
or 100% 

ATP quantitation, Resazurin 
reduction assay, lactate 
dehydrogenase release 

Cellular ATP reduction 
and resazurin reduction 
in all concentrations of 
MPS B and D and only 
100 % for A and C  
 
 

200957 

Monolayer and 
stratified human 
corneal-limbal 
epithelial cells 
(HCLE) 

 

Opti-Free, Opti-
Free Express, Opti-
Free Replenish, 
ReNu MultiPlus, 
Complete Multi-
Purpose. 
Unisol 4 as control 

10 min, 20 min, 
60 min 
all in 100% 
solution  

Live/dead assay, flow 
cytometry (calcein AM and 
EthD-1), transepithelial 
resistance assay 

Monolayer Culture 
Disruption of cell 
junctions with all MPS at 
60 min treatment).  
Cells recovered after 24 
hours in new medium 
except for Opti-Free. 

200958 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

No cell death with Opti-
Free, ReNu MultiPlus, 
Complete Multi-Purpose 

Monolayer and 
stratified human 
corneal-limbal 
epithelial cells 
(HCLE) 
 

Opti-Free, Opti-
Free Express, Opti-
Free Replenish, 
ReNu MultiPlus, 
Complete Multi-
Purpose. 
Unisol 4 as control 

10 min, 20 min, 
60 min 
all in 100% 
solution  

Live/dead assay, flow 
cytometry (calcein AM and 
EthD-1), transepithelial 
resistance assay 

Stratified Culture 
Stratified HCLE cells did 
not have changed 
morphology or 
attachment after any 
exposure time to MPS 
compared to control 

200958 

Monolayer of 
human corneal 
epithelial SV40 
transformed cell 
line 
 

Biotrue, AQuify, 
Complete Easy 
Rub, Opti-Free 
Express, Opti-Free 
Replenish 

10 or 30 mins at 
50%, 75%, and 
100% 

ZO-1 immunostaining, 
transepithelial electrical 
resistance (TEER), electrical 
cell-substrate impedance 
sensing, scanning electron 
microscopy 

Disruption in ZO-1 
staining for AQuify, 
Complete Easy Rub, and 
Opti-Free Express 
Decreased TEER after 
exposure to Complete 
Easy Rub and Opti-Free 
Express 
Increased TEER after 
exposure to AQuify 

201059 

Monolayer of the 
Wong Kilbourne 
derivative of 
Chang human 
conjunctival cells 
(WKD), ATCC 
CCL-20.2 

Low water soft lens 
(Balafilcon A, BA), 
high water soft lens 
(Vasurflicon A, 
VA), rigid lens 
(Ocellus) 
Opti-Free Express, 
ReNu, Solocare 
Aqua, Menicare 
Plus 

Lenses for 96 
hours of 20 cycles 
of 100mL of 
solution at 100%  
Cells for 24 hours 

Cytotoxicity, cell 
morphology, fluorescence 
microscopy, flow cytometry 
(apoptosis) 
NR Test (cell viability), 
Chromatin Condensation 
Evaluation (Apoptosis), DNA 
Fragmentation Evaluation 
(Apoptosis) 

Both BA and VA lenses 
with Opti-Free Express 
alter morphology to 
round shape, refringent, 
and nonadherent, strong 
decrease in cell viability 
Both BA and VA lenses 
with ReNu decrease cell 
viability 

201060 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

BA lens with Solocare 
Aqua decrease in cell 
viability 
 

Monolayer of 
human corneal 
epithelial SV40 
transformed cell 
line 

PureVision and 
Acuvue Advance 
lenses 
Biotrue (Borate-
buffered solution, 
BBS) and Aquify 
MPS 
 

Lenses incubated 
in solution for 96 
hours 
Cells incubated in 
100% solution for 
24 hours 

Modified MEM elution assay, 
ZO-1 immunostaining, 
transepithelial electrical 
resistance, In vivo 
biocompatibility assessment 

Clinically relevant 
concentrations of boric 
acid are not cytotoxic in 
vitro and did not alter 
ZO-1 distribution of 
TEER in both lenses and 
boric acid combinations 
 

201061 

HPV immortalized 
human corneal 
epithelial cells 
(HCEC) 

Opti-Free Express, 
Opi-Free 
RepleniSH, 
Complete Moisture 
Plus, ReNu fresh, 
and SoloCare Aqua 
 
Balafilcon A, 
Lotrafilcon A, 
Lotrafilcon B, 
Comfilcon A, and 
Galyfilcon A lenses  

18-24 hr CL 
incubation, 24 hr 
culture incubation 
(0.1-10% 
concentration)   

Cell viability, flow cytometry 
(α3 and β1 integrin expression, 
caspase activation) 

Opti-Free Express and 
ReNu (all CL) decreased 
in viability and 
downregulated α3 and β1 

at 5% dilution  
Caspase activation with 
Opti-Free Express in all 
lenses except BA lens 
Complete and Solo 
showed a decrease of 
integrin expression at 
10% dilution 
 

201151 

human corneal– 
limbal epithelial 
(HCLE) cells – 
monolayer/ 
stratified  

A containing no 
H2O2 at pH 7.0, B 
containing 0.01% 
H2O2 at pH 7.0, (C) 
containing no 

10, 20 or 60 min 
(0.1% H2O2) 

Morphology, live/dead assay 
(florescence microscopy/ flow 
cytometry, Fluorescein 
Leakage Test, Transepithelial 
Electrical Resistance Assay  

Swelling was seen in all 
formulation on 
monolayer 

201162 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

 
H2O2 at pH 7.9, and 
(D) containing 
0.01% H2O2  at pH 
7.9 and ClearCare 

 0.1% H2O2 damaged 
cells without recovery to 
stratified HCLE cells. 
ClearCare (<0.01% 
H2O2) had no effect  

Monolayer of 
immortalized 
human corneal 
epithelial cells 

 Lotrafilcon A (LA) 
or balafilcon A 
(BA) lenses in 
Unisol, Opti-Free 
express, ReNu 
Multiplus, and 
Complete Moisture 
Plus 
 
 

CL incubated for 
18 to 24 hrs of 
2mL of 100% 
solutions cells 
incubated for 24 
hrs 

MTT assay (viability), flow 
cytometry (α3, β1, and β4 
integrin expression and 
caspase activation) 
 

Decreased viability for 
ReNu with both BA and 
LA lenses 
Decreased α3 integrin 
expression in ReNu- BA 
lens and OFX BA and 
LA soaked lenses 
No difference in 
Complete for both lenses 
Increase in caspase for 
LA lenses 

201150 

Human corneal 
epithelial cells 
ATCC CRL-
11135 (HCEC)- 
monolayer 

Opti-Free Replenish 
(A), ReNu Fresh 
Multiplus (B), 
Complete 
Multipurpose (C) 

15 min on cells, 
recovery rate 
assessed after 2 hr 
10-40% 
concentration  

Cell integrity after exposure 
and recovery, metabolic rate, 

Annexin V-FITC/7-AAD 
staining and flow cytometry  

A showed strong 
cytopathic effect and 
disruption of monolayer, 
B had slight, C had none.  

201263 

IOBA-NHC 
conjunctival cells 
monolayer 

Complete, Opti-
Free 

12 hours at 0.1, 
0.5, 1, 2.5 % 

Flow cytometry (Apoptosis 
and necrosis)  
SELDI-TOF-MS and MALDI 
TOF-MS (protein profiles) 

Opti-free solution leads 
to more negative side 
effects than Complete 
MPS (lower protein 
expression, increased 
apoptosis and necrosis) 

201264 

HCEpiC 
monolayer, 
stratified layer  

Biotrue (A) 
Retivalens OcuTec 
(B), Opti-Free (OF) 

50% MPS- 2 and 
4 hr 
incubation,  

Viability and apoptosis, ZO-1 
staining, Electric cell-
substrate impedance sensing, 

Monolayer Culture 
MPS B-F were reduced 
in viability 

201265 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

Evermoist (C), OF 
Express (D), OF 
RepleniSH (E), 
Synergi (F), All in 
One Light (G)  

Transepithelial electrical 
resistance,  

B/C showed tight 
junction break down  
 
 

HCEpiC 
monolayer, 
stratified layer  

Biotrue (A) 
Retivalens OcuTec 
(B), Opti-Free (OF) 
Evermoist (C), OF 
Express (D), OF 
RepleniSH (E), 
Synergi (F), All in 
One Light (G)  

50% MPS- 2 and 
4 hr 
incubation,  

Viability and apoptosis, ZO-1 
staining, Electric cell-
substrate impedance sensing, 
Transepithelial electrical 
resistance,  

Stratified Culture 
MPS B-E showed 
reduction in viability  
B-E and G showed tight 
junction break down 
 

201265 

Wong-Kilbourne-
derived human 
conjunctival 
epithelial cells and 
corneal epithelial 
cells from Riken 
Cell Bank – 
separate 
monolayer 

ReNu(A), Menicare 
(B), Regard (C), 
Ephemere (D), 
OptiFree Express 
(E) and Boston 
Simplus (F)  

15, 30 and 60 min 
incubation  

Membrane integrity, Alamar 
Blue, and MTT 

E had greatest reduction 
in viability, others had no 
change  
B,C,D and E induced 
largest decrease in 
neutral red signal of 
membrane integrity  
Cytotoxic ranking: A and 
F<C<B<D<E 

201266 

Immortalized 
human corneal 
limbal epithelial 
cells (HCLE)- 
monolayer  

Opti-Free Express, 
Opti-Free 
RepleniSH 

MPS dilutions 1-
20% for 2,6,18 hr 
on cell culture  

Cell number, metabolic 
activity, confocal imaging, 
apoptosis  

Opti-Free Express 
showed greater reduction 
in metabolic activity, 
change in morphology, 
higher levels of IL-6 and 
IL-8 
 
 

201267 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

 
 

Primary cultured 
HCE cells, 
monolayer 

 

ReNu MultiPlus 
(A), Opti Free 
EverMoist (B), 
Solo-care Aqua( C), 
Complete (D), 
Unica Sensitive (E), 
Options Multi(F), 
Biotrue (G), 
COMPLETE 
RevitaLens (H) 

 

Cells incubated 
for 12 hours at 
30% or 50% 
solution 
 
 

Microscopic observation, 
viability, mitochondria 
enzyme activity, cytokine 
(IL)-I ~ (IL-IB), IL-6, IL-8, 
IL-IO, (TNF-a), and IL-12, 
PCR, cDNA synthesis, and 
PCR  

 

A,B,E,F,H stimulated the 
most pro-inflammatory 
cytokines and cytotoxic 
effects  

C,D,G had less of an 
effect  

H2O2 based cleaning 
solutions was found to be 
less harmful to cells   

201368 

SV040, Chinese 
hamster fibroblast 
cells monolayer 

Complete Clear 
Comfort (1), 
RevitaLens OcuTec 
(2), Opti-Free 
Replenish (3) and 
Biotrue (4) Acuvue 
Advance, Air Optix, 
Biofinity, Pure 
Vision, Acuvue 2  

CL incubation100 
mL of MPS for 
72 hours with 
gentile shaking at 
5%, 25%, 50%, 
75%, or 100% 
Cells incubation 
5mins – 25mins 

AlamarBlue (MPS-treated 
cell viability, cytotoxicity), 
colony formation assay (cell 
viability), Zonula Occludens-
1 immunostaining (tight 
junctions), transepithelial 
electrical resistance 

MPS3 (MAPD+PQ-1) is 
more cytotoxic and less 
compatible with silicone 
hydrogel than standard 
hydrogel   
 
 
 
 
 
 
 
 
 
 
 

201669 
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In vitro 
model 

Materials tested  Incubation time 
(CL/culture) 

Tests performed   Findings  Ref # 
& 
year 

Primary HCEC – 
monolayer 

Opti-Free 
PureMoist, ReNu 
fresh, Biotrue and 
Complete  

24 hr solution 
incubation  
 
18 hours on cells, 
1%, 5%,10% and 
20% 
concentration 
  

Cytokine release of Il-1β, Il-
6, Il-8 and TNF- α, metabolic 
activity 

Opti-Free PureMoist/ 
ReNu fresh – reduction 
in metabolic activity 
(greatest in Opti Free 
Pure Moist), increase in 
IL-1β and decrease in 
IL-6,Il-8 and TNF- α 
Biotrue- reduction in 
metabolic activity 
increase in Il-1β, Il-6, Il-
8 and TNF- α 
Complete- no reduction 
in metabolic activity/ 
cytokine release 
 

201770 

HaCaT epidermal 
keratinocytes cell 
line – 3D model 
(stratified layer) 

Has yet to test with 
MPS/CL  

   201971 
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As presented in Table 2.3, several research groups have investigated the effects of contact 

lens cleaning solution alone as well as the combination of cleaning solutions with contact lenses 

in vitro.  However, most of the work conducted has used monolayer of corneal epithelial cells 

and has not always provided much assessment outside of cytotoxicity. It is also evident that a 

discrepancy exists between data using various models, such as for example between multilayer 

and monolayers as seen with Cavet65 et al.  Furthermore, a majority of the studies have been 

performed with MPS alone.  One problem with such in vitro studies is in selecting the 

concentration of the solution and period of time that cells should be exposed to.  This is 

especially important as it has been recognized that lens composition plays a significant role in 

uptake and release of MPS components.  Very few studies (no more than 2 as shown in the table 

3) have also investigated corneal inflammatory markers (such as integrin expression and 

cytokine release) following exposure to combinations of cleaning solution and contact lenses and 

even fewer have actually studied the response of conjunctival cells64.  These 

studies50,51,56,58,60,62,65,66,68,69 further highlight how our knowledge of cell response has been mostly 

limited to viability and metabolism.  The lack of characterization and understanding of ocular 

cell response to the combination of contact lens and cleaning solution in vitro may prevent 

further development and progress in contact lens technology.  One may note from the table that 

there is also a missing component on all the studies with MPS alone or in combination with 

contact lens: the absence of tear replenishment or of a dynamic system that mimics the 

physiological environment of the ocular surface that is continuously replenished with new tears.  

While some in vitro models of the ocular surface have added a dynamic aspect to their models 

(tear replenishment72; friction73, shear stress9), these models have not yet been used assess to the 

biocompatibility of lens/solution combinations.    
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While in vitro cell models are recognized to be the first steps towards understanding 

mechanisms involved in cell response to drug and biomaterials, current in vitro models of the 

ocular surface have been limited to corneal epithelial cells that poorly mimic the dynamic 

environment of the anterior eye.  This prevents gaining a better understanding of the 

immunology of these interactions and the effective development and testing of medical 

technologies and pharmaceutics.  There is thus a need to develop an in vitro model that can better 

mimic the ocular environment, taking into account the various cells present at the ocular surface 

as well as the dynamic environment provided by tear exchange. 
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Chapter 3 

Effect of curvature on integrin expression of corneal epithelial cells 

3.1 Introduction  

Cells are known to adapt to the environment that they are exposed to and interact with. It 

has been demonstrated that cellular behavior is affected by the chemistry, geometry and 

mechanical properties of their surroundings 1. Physical properties such as material, topography, 

and curvature, as well as  surface chemistry affect cellular behavior in terms of adhesion, growth 

and cell differentiation 2. Mechanical properties such as substrate stiffness and roughness also 

have similar affects 3.  Mechanical stress, such as shear stress, is also able to influence mobility, 

shape, phenotype and cell orientation 4. The biochemical signals of a cell from its interactions 

with the surface  ultimately dictates the decisions of a cell 1. Understanding the response of cells 

is important when it comes to the design of implants, scaffolds and in vitro models.  Once the 

response of cells in different environments has been investigated, the development and 

optimization of tissue engineering and in vitro models are better enabled. 

Corneal tissue is the most transplanted tissue worldwide 5. The cornea is an avascular and 

curved multilayered ocular tissue. It serves as the functional barrier to protect the inner ocular 

tissues from chemical and pathogen incursion and is the major element for maintaining a proper 

light refraction for vision. The conjunctiva is the mucous membrane that that is thin, transparent, 

and vascularized and covers the inner surfaces of the eyelids and extends to the cornea. Being the 

outermost layer of the eye, corneal and conjunctival cells are exposed to various stimuli.   
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In epithelial cells, integrin a3 and integrin b1, are involved in cell migration, adhesion, cell 

spreading and cell-substrate interaction 6. Integrin b1 is also essential for maturation and 

maintenance of corneal structural integrity 7. HLA-Dr is a transmembrane heterodimer detected 

in conjunctival epithelial cells. It is upregulated in response to signaling in the instance of 

inflammatory stimuli and mediators.  

Both human corneal epithelial cells (HCEC) and conjunctival cells (ICONJ) are exposed 

in situ to various curvatures and recent research suggest that they can sense and react to the 

curvature at the cellular and multicellular levels8,9. Aside from Gouveia et al who showed cornea 

cells are able to self-organized in response to surface curvature, limited research exists on the 

effects of curvature on ocular surface cells 10. Postnikoff et al also developed a stratified, curved, 

epithelial model which attempted to assess cytotoxicity 11. However, how curvature may affect 

integrin expression, which are important cell adhesion and migration proteins, was not 

characterized in either studies.  

Understanding how topographical cues can control cell behavior is a fundamental 

question of particular interest for the design of in vitro models that can better mimic the 

physiological environment. Therefore, the purpose of this study was to investigate how the 

geometry of a curved surface and material affects cornea and conjunctival cells using flow 

cytometry as it allows for quantification of protein expression by fluorescent antibody tagging. 

The membrane proteins, integrin β1 and integrin α3 are important in cell attachment, wound 

healing, and cell migration 12 and their levels of expression are also a good indication of substrate 

biocompatibility 13. Cell viability and integrin expression were used to assess the effects of 

curvature on ocular surface cell response.  
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3.2 Materials/Methods 

3.2.1 Reagents and Antibodies 

Keratinocyte medium (KM) Keratinocyte growth supplements (KGS) and 

penicillin/streptomycin (Pen/Strep) solution were purchased from ScienCell (Carlsbad, 

California). All other cell culture reagents, including Dulbecco’s Minimum Essential Medium 

(DMEM), 1∶1 DMEM in Ham’s F12 nutrient medium, fetal bovine serum (FBS) and 

TripLE™Express were purchased from Life Technologies (Burlington, Ontario, Canada). 

Phosphate buffered saline (PBS) was purchased from Lonza (Allendale, New Jersey). 

Monoclonal antibodies to β1 integrin (CD29), α3 integrin (CD49c), ICAM1 (CD54), and HLA-

DR were purchased from Becton Dickinson (Mountain View, CA, USA).  Sylgard 184 was 

purchased from Ellsworth (Stoney Creek, ON, Canada). Collagen, Type I from rat tail was 

purchased from ScienCell.  

 

3.2.2 In vitro cell culture: Immortalized human corneal epithelial cells (HCEC) and human 

conjunctival epithelial cells (ICONJ) 

Immortalized human corneal epithelial cells were cultured in KM supplemented with 

KGS and Pen/Strep. Immortalized human conjunctival epithelial cells (Innoprot, Derio, Spain) 

were cultured in KM supplemented with KGS, Pen/Strep and 5% FBS. Fresh medium was added 

every other day and cells were grown to 90% confluency in a tissue cultured treated flask at 

37°C, 5% CO2, and 95% humidity. Adherent cells were removed using TripLE™Express, a 

dissociation solution. Cells were routinely observed for any morphological changes. Only cells 

below passage eleven were used. 
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3.2.3 Synthesis of Polydimethylsiloxane (PDMS) curved and concave pieces  

Polydimethylsiloxane (PDMS), using Sylgard 184, was synthesized using a 10% ratio (base – 

curing agent) and poured into custom-made moulds. The casting molds for the curved surfaces 

were designed by Dr. Saman Mohammadi and Joyce Zhang.  They were designed to be used on 

the OcuCell platform and thus the specifications of the design were to mimic the dimension of 

the cornea (curvature and diameter) (Figure 3.1).  The molds were also designed to reduce air 

bubble formation during injection of the PDMS.  The convex surface (also referred to as the 

cornea piece/mold) had a diameter of 17 mm and a radius of curvature of 9 mm while the 

concave surface (also referred to as the eyelid piece/mold) had a diameter of 18 mm and a radius 

of curvature of 9.2 mm.       

 

PDMS (1mL) was also added to 12 well plates for the “flat PDMS” samples.  All PDMS 

samples were then degassed for 10 minutes and incubated at 67°C overnight to cure.  Cornea 

(convex) and eyelid (concave) pieces and the flat PDMS wells were cleaned in 70% ethanol for 

30 minutes and then washed with PBS  3 times with a 1-hour incubation each time. PDMS pieces 

were then UV-sterilized for 20 minutes. PDMS pieces were then plasma treated and were 

collagen coated with Type I collagen from rat tail (10% solution) for 1 hour and then washed 

with PBS 3 times and stored under sterile conditions until required for experiments. 
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Figure 3.1: Curved casting molds: Cornea mold (A-D) and Eyelid mold (E-H).  Casting molds 
(A and E), CAD drawings with curvature dimension (B and F) and 3D rendering of curved 
pieces (C and G).  PDMS was added to closed molds and allowed to cure overnight at 67°C and 
PDMS curved surfaces were obtained: cornea piece (convex surface) (D) and eyelid piece 
(concave surface) (H).  Mold design and CAD drawings from Saman Mohammadi and Joyce 
Zhang.   
 

 

3.2.4 Seeding the PDMS Eyelid and Cornea pieces and flat PDMS wells 

      To optimize cell growth on the curved/convex (cornea piece) or concaved (eyelid piece) 

surfaces, eyelids were seeded with 2.5x105 cells resuspended in 210μL of KM and cornea pieces 

were placed on top of the eyelid piece and the system was flipped on one side or the other 
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depending on which surface cells needed to grow on (Figure 3.2). Pieces were submerged in KM 

and incubated at 37°C for 5 hours to allow the cells to attach to the bottom cornea and eyelid 

pieces.  Tops were removed after 5 hours and cells were then allowed to grow on the bottom 

surface of the system for 4 days until confluent. Medium was changed every other day. A similar 

protocol was followed for the flat PDMS in a 12-well plate; the flat PDMS surfaces were seeded 

with 2.5x105 cells and incubated with 2mL of KM, medium was changed every other day for 4 

days.  

  

Figure 3.2:  Schematic of the cell culture on the PDMS Eyelid and Cornea pieces.  Cells were 

seeded on PDMS pieces. A simple flip in the system allowed to select which side the cells would 

initially adhere to and then proliferate on. 

 

3.2.5 Seeding the Flat and Curved Tissue Culture Treated Well Plate  

Wells of a 12-well tissue culture-treated polystyrene plate (TCPS) were curved using an 

aluminum mold. The TCPS was gently heated, and the mold was pressed in to create the shape to 

mimic the curvature of the cornea. TCPS were then plasma treated and were collagen coated 

with Type I collagen from rat tail (10% solution) for 1 hour and then washed with PBS 3 times 

and stored under sterile conditions until required for experiments. The flat and curved 12 well 
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TCPS were seeded at 6x104 cells and incubated with 1mL of KM, medium was changed every 

other day for 4 days until confluent.  

 

3.2.6 Viability Assay 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) is used 

to assess cell viability though a reduction reaction.  After 4 days of incubation, proliferation and 

viability was assessed with the MTT metabolic assay, where thiazoyl blue tetrazolium bromide is 

metabolized by live cells into a solid purple precipitate, formazan crystals. MTT was added to 

eyelid and cornea pieces and incubated for 2 hours at 37°C and 5% CO2 to visualize 

metabolically active cells on the surface (Figure 3.3).  The MTT solution was then removed and 

isopropanol was added to each well and agitated for 2 hours.  Aliquots of the dissolved MTT 

crystal solution was transferred to 96-well plate and read in a UV-Vis spectrophotometer at 595 

nm with a reference wavelength of 650 nm.  All results are expressed as relative viability 

compared to control cells; cells incubated in KM in flat TPCS. Cellular metabolic activity 

determined from the mixed solution is reported in the results section.  
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Figure 3.3: Cell growth on curved surface.  PDMS corneas and eyelids were made; cells were 

grown on pieces. MTT was added to visualize coverage. 

3.2.7 Flow cytometry  

Following the experiments, cells were detached from the PMDS pieces and TCPS in a 

20-min incubation with TripLE™Express. After gentle washing following TripLE™Express 

treatment, cells were incubated with fluorescently labelled antibodies against integrin β1 (CD29), 

integrin-α3 (CD49c) and HLA-DR for 30 minutes at room temperature in the dark. Samples were 

then diluted and fixed using paraformaldehyde (1% final concentration) and analyzed by flow 

cytometry (BD FACSCalibur, BD Biosciences, San Jose, CA, USA) within 5 days. Samples 

were acquired on a FACSVantage flow cytometer using CELLQuest Software. At least 5000 

events were collected per sample. Analysis was performed with CELLQuest post data 

acquisition and the geometric mean of fluorescent intensities were recorded and used for 

statistical analysis 
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3.2.8 Statistical Analysis  

All results are reported as mean ± standard deviation. Samples were compared to cells 

grown on flat TCPS using t-tests. Significant changes were reported. A p-value less than 0.05 

was required for statistical significance.  

 

3.3 Results and Discussion 

3.3.1 PDMS curing agent concentration 

 
In order to create a convex and concave cornea-shaped mold, a bottom-up approach was 

used to identify the best substrate, PDMS samples were synthesized in 6-well TCPS plate. The 

effect of different concentrations of curing agent (from 5 to 25%) on cell viability was assessed.  

As shown in Table 3.1, a small increase, albeit not statistically significant (p=0.07), in 

proliferation and metabolism seemed to occur for the stiffer PDMS (higher concentration of 

curing agent, 25%) compared to the more compliant substrates (lower concentration of curing 

agent, 5%).  Stiffness of a surface has been known to allow cells to move and adhere across the 

surface and may have contributed to the increase in viability 14. The high percentage of viable 

cells on the PDMS indicates that it was not toxic to cells and provided a suitable environment for 

proliferation. Microscopic observation (illustrated in figure 3.4) of cells revealed higher 

confluency of cell grown on the stiffer substrates, although it appeared cells may grow on top of 

each other (as illustrated in figure 3.4B, with darker cells being seen).  Based on the viability 

results and microscopic evaluation (figure 3.4), the 10% curing agent concentration for Sylgard 

184 synthesis was thus selected for the rest of the study. 

 



 

 40 

Table 0.1: Effect of curing agent on corneal epithelial cell viability.  Cells were grown on PDMS 

substrate for 4 days and cell viability was assessed using the MTT assay.  Viability is reported as 

percentage relative to control well (TCPS), mean ± Standard Deviation 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Pictures of cells after growth on PDMS substrates. A: 10% curing agent, collagen 

coated. B: 25% curing agent, collagen coated. 

 

 

 

 

 

Percentage of Curing Agent Viability  
Tissue culture plate 0% 100%  
PDMS 5% 85% ± 3 
PDMS 10% 95% ± 3 
PDMS 15% 87% ± 4 
PDMS 20% 88% ± 3 
PDMS 25% 91% ± 4 

A B 
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3.3.2 Integrin expression on cells grown on different PDMS curvature 

In order to gain an understanding of the effect of curvature (concave and convex) on 

HCEC, the expression of integrin α3 (CD49c) and β1 (CD29) were studied using flow cytometry.  

 

  

 

Figure 3.5: Integrin expression of integrin β1 (A) and integrin a3  (B) on HCEC cells grown to 

confluence on various PDMS geometry: flat, concave and convex PDMS pieces. Fluorescence 

intensities of integrin expression in Arbitrary Fluorescent Unit (AFU) were recorded by flow 

cytometry. N=4, mean ± SD, * statistically significant from flat PDMS, p <0.05  

As shown in Figure 3.5, HCEC grown on the convex and concave pieces showed a 

significant upregulation in a3 and β1 integrin expression compared to that of the flat PDMS.  

However, interestingly, HCEC grown on the convex PDMS exhibited an upregulation in 

integrin β1 but a downregulation of integrin a3 when compared to cells on the concave PDMS.  

Integrin- a3  and β1 are two important membrane receptors involved in epithelial cell adhesion 

and spreading 15.  Changes in integrin β1 may be attributed to the mechanoreceptors 16 and 

cytoskeletal reorganization 17 in cells. The changes in expression seen between convex and 
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concave geometry could be attributed to the stress cells might be exposed to when trying to grow 

upwards on the curve. The upregulation in a3 on cells growing on the concave piece may have be 

due to a decrease of cell spreading. The cells may have been forced by their surroundings to 

grow towards the bottom of the curve and unable to spread outwards which may have caused the 

upregulation.   

No changes in ICAM-1 expression were observed (data not reported). This also confirms 

previous studies that were conducted in the lab, which indicate that PDMS does not appear to 

activate corneal epithelial cells 13. 

It is also important to note the effect (or lack thereof in this case) of the material between 

TCPS and PDMS on the corneal epithelial cells. Difference in AFU values were observed 

between TCPS flat and PDMS flat. Integrin values were 24 ± 2 and 16 ± 3 for α3, and 29 ± 4 and 

67 ± 8 for β1 for TCPS flat and PDMS flat respectively. All experiments were also performed the 

same days with the same cell passages.  The changes in integrin expression between PDMS and 

TCPS uggests there may be a change in biomaterial compatibility.   

 

3.3.3 Integrin expression on cells grown on different TCPS curvature 

The effect of curvature was also studied on a TCPS plate to remove the potential 

confounding effect of molds being used which may also have a micro-patterning surface effect. 

The response of conjunctival and corneal epithelial cells was investigated by measuring integrin 

expression as well as HLA-DR and presented in Table 2. Note that actin staining was also 



 

 43 

performed.  It was however difficult to acquire clear images due to the curvature of the surface.  

Images collected can be found in appendix.   

Table 3.2: Integrin expression of HCEC and ICONJ cells on flat and convex TCPS surfaces. 

Fluorescence intensities of integrin expression in Arbitrary Fluorescent Unit (AFU) were 

recorded by flow cytometry. N=5, mean± SD * statistically significant from flat TCPS, p <0.05 

 Integrin β 1 Integrin a3 HLA-DR 
ICONJ Flat 39.0 ± 2.9 29.5 ± 3.1 12.8 ± 1.8 
ICONJ Convex 47.0 ± 4.4* 24.8 ± 2.8 17.8 ± 1.6* 
HCEC Flat 28.8 ± 4.4 23.7 ± 2.1  
HCEC Convex 59.4 ± 1.1* 44.5 ± 3.9*  

 

Similar trends as seen with convex PDMS and upregulation of integrin expression were 

observed on the convex TCPS.  For HCECs on convex TCPS, both integrin a3 and β 1 expression 

were significantly upregulated (p=0.02).  For ICONJ cells, expression of β 1 (p=0.01) and HLA-

DR (p=0.02) also demonstrated a significant difference in upregulation between flat and convex 

plates. The MHC class II cell surface receptor HLA-DR was also upregulated in ICONJ cells, 

suggesting that change in curvature may lead to cell activation and induce an inflammatory 

response in conjunctival cells.  Increase in HLA-DR is known to be associated with 

inflammatory stimulus 17 but had not yet been reported to change with curvature.  This warrants 

further investigation as this would have important implications in the ocular environment where 

changes in curvatures may occur.    While integrin β1 expression was significantly upregulated on 

ICONJ cells on the convex surface, no significant changes in α3 expression were observed in 

ICONJ cells, which was different from HCEC cells where upregulation of both α3 and β1 

occurred on HCEC grown on the convex surfaces.  These results may suggest that in 

conjunctival epithelial cells, β1 may be more on its own rather than in a dimer with α3 18 and/or 
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that HCEC express more β1. Naylor et al. has reported the importance of β1 in morphology and 

focal adhesion in epithelial cells 19, which would further support our upregulation results for 

corneal epithelial cells as morphological changes occur due to the curvature of TCPS (or 

PDMS). The HCEC adjusted and grew to confluency to fit the curvature of the plate.  

Topography is generally referring to surface geometry. This includes curvature as well as micro- 

and nano-scale roughness and topography of the surface.  There was an apparent change in AFU 

signals for the different materials, it could be that the heat-pressed TCPS had the imprint of the 

micro-topography found on the mold and caused the same reaction in the TCPS as the PDMS. 

Causing the rise in integrin expression between flat and curved models.  

Morphological changes and integrin expression changes related to curvature is essential 

to explore as keratoconus is an ocular disease that relates to the progressive thinning of the 

Bowman layer and change in curvature of the cornea to a conical shape 8. While recent clinical 

studies have reported increased apoptosis corneal epithelial cells from patients suffering from 

keratoconus, very few in vitro studies have investigated how change in curvature in the eye 

affect ocular cells 20.  A recent review by Callens et al highlight the important role that curvature 

plays in tissue repair and pathology 21. Taken together with our results, this would support the 

importance of further investigation with ocular cells both from a disease perspective and from in 

vitro model design. 

 

3.4 Conclusion  

Our study provide evidence that curvature has an effect on corneal and conjunctival cells 

with cells showing significant changes in integrin expression between flat, concave and convex 
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surfaces.  Our results suggest that geometry should be taken into account when designing new in 

vitro models, and that in vitro models may be used to better understand how change in ocular 

surface geometry (such as during keratoconus or following keratoprosthesis) may affect cell 

behavior.  In future studies, cell apoptosis and necrosis as well as cytokine synthesis should be 

characterized to evaluate the influence of curvature on cell cycle and the inflammatory response 

of ocular cells.  
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Chapter 4 

Testing Contact Lens and Cleaning Solution Combinations in Dynamic In 

Vitro Model 

4.1 Introduction  

The cornea is an avascular multilayered ocular tissue. It serves as the functional barrier 

to protect the inner ocular tissues from chemical and pathogen incursion and is the major 

element for maintaining a proper light refraction for vision. Over 125 million individuals wear 

contact lenses (CL) worldwide 1 and they exhibit a higher rate of eye infection and 

inflammatory complications compared to non CL wearers2. Hence, understanding the effects 

of CLs on the health and integrity of the cornea is imperative. In the last decade, silicone 

hydrogel (SiHy) contact lenses were introduced to the market along with several multipurpose 

solutions (MPS) for ease and effective cleaning and disinfection. To disinfect lenses, biocides 

such as polyhexamethylene biguanide (PHMB), Aldox or polyquad have been used in MPS 

while hydrogen peroxide is used in hydrogen peroxide-based lens care systems.  Clinical and 

epidemiological studies have shown that certain combinations of SiHy lenses and MPS are 

more biocompatible than others3–6. There is also evidence that corneal epithelial cell exposure 

to MPS can cause cell death in vitro, either through apoptosis or necrosis 7. However, with the 

current methods and technologies available, it remains difficult to evaluate the effects of 

CL/MPS combinations on the human eye.  

Corneal staining with sodium fluorescein (NaFl) is used clinically to assess 

biocompatibility of lens-solution combinations. However, there is currently a poor 
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understanding of why hyper-fluorescence and hyper-reflectivity are observed with certain 

combinations in the eye8. In vivo methods to assess biochemical changes or biocompatibility 

in the cornea include the Draize test and in vivo models with rats and rabbits wearing contact 

lens. Animal models provide the in vivo ocular environment and more tests are permissible on 

animals in vivo than in human clinical trials 9. However, animal studies have also been 

criticized due to poor repeatability, poor sensitivity, and lack of objectivity 9. Animal studies 

have prompted the development of in vitro models to test for biocompatibility. Existing in vitro 

models have often been designed as cytotoxicity models for lens cleaning solution and provide 

little information on the biocompatibility of an ophthalmic material such as a contact lens.  

Most of the work conducted has used monolayer of cornea cells and has provided varying 

results across labs. 10,11 

The OcuCell model was developed to address these limitations.  Using the initial design 

from the OcuFlow 12, a simple in vitro dynamic model for contact lens testing, the system was 

modified to allow for cell culture (note that protocol development and initial testing of the 

model were performed prior to my MASc and are provided in Appendix 1).  The OcuCell uses 

a silicone-based 3D shaped cornea model that is made in a 3D-aluminum mold. The curvature 

of the model allows the contact lens to be worn in the in vitro model similarly to what occurs 

in vivo. The curved monolayer on the cornea model is then mounted on the OcuCell model 

where medium flows slowly over the system. 

We hypothesized that the OcuCell dynamic testing platform may provide a more 

accurate testing platform to investigate biocompatibility of cleaning solutions and contact 

lenses.   The objective of this study was thus to assess the response of human corneal epithelial 
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cells when exposed to combinations of contact lens and cleaning solutions under dynamic 

conditions using the OcuCell testing platform.  A SiHy lens (Balaficon A) and a conventional 

lens (Etafilcon A) were tested with a MPS containing polyhexamethylene biguanide (PHMB 

(ReNu Fresh) and a hydrogen peroxide cleaning system (Clear Care Triple Action Cleaning).  

Following a 6-hr exposure to lens-solution combinations, the level of integrin expression on 

HCEC was characterized using flow cytometry.  The membrane proteins, integrin β1 and 

integrin α3 were chosen as they play an important role in cell attachment, wound healing, and 

cell migration 13 and their levels of expression have also been previously used as an indicator 

for in vitro biocompatibility 7,14–19.  

 

4.2 Methods 

4.2.1 Reagents and Antibodies 

Keratinocyte medium, keratinocyte growth supplements (KGS) and 

penicillin/streptomycin (Pen/Strep) solution were purchased from ScienCell (Carlsbad, 

California). All other cell culture reagents, including Dulbecco’s Minimum Essential Medium 

(DMEM), 1∶1 DMEM in Ham’s F12 nutrient medium, fetal bovine serum (FBS) and 

TripLE™Express were purchased from Life Technologies (Burlington, Ontario, Canada). 

Phosphate buffered saline (PBS) was purchased from Lonza (Allendale, New Jersey). 

Monoclonal antibodies to β1 integrin (CD29), α3 integrin (CD49c) and ICAM1 (CD54) were 

purchased from Becton Dickinson (Mississauga, ON, Canada).  Sylgard 184 kit was obtained 

from Ellsworth Adhesives Canada (Stoney Creek, ON, Canada).  
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4.2.2 In vitro cell culture: Immortalized human corneal epithelial cells (HCEC)  

HPV-immortalized human corneal epithelial cells (HCEC) were cultured in 

keratinocyte medium supplemented with KGS and Pen/Strep (KM). Fresh medium was added 

every other day and cells were grown to 90% confluency in a tissue cultured treated flask at 

37°C, 5% CO2, and 95% humidity. Adherent cells were removed using TripLE™Express, a 

dissociation solution. Cells were routinely observed for any morphological changes. Only cells 

below passage eleven were used. 

 

4.2.3 Synthesis of OcuCell Samples  

Polydimethylsiloxane (PDMS) was synthesized using the Sylgard 184 kit with a 10% 

ratio (base – curing agent) and then poured into custom-made moulds. The molds were 

designed to reduce air bubble formation during injection of the PDMS.   Samples were then 

degassed for 10 minutes and cured at 67°C overnight.  The next day, cornea and eyelid pieces 

were soaked in 70% ethanol for 30 minutes and solution was replaced with PBS and changed 

3 times for 1 hour each time. PDMS pieces were UV-sterilized for 20 minutes and stored 

under sterile and dry conditions until required for experiments. 

 

4.2.4 Seeding the Eyelid and Cornea pieces 

The OcuCell cornea and eyelid pieces were incubated together at 37°C for 30 minutes 

with a small volume of PBS (210µL) in between the pieces.  PBS was aspirated from OcuCell 
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cornea and eyelid pieces. To optimize cell growth on the curved/convex (cornea piece) or 

concave (eyelid piece) surfaces, OcuCell eyelids were seeded with 2.5x105 cells resuspended 

in 210μL of KM.  OcuCell corneas were placed on top of the eyelid piece and the system was 

flipped on one side or the other depending on which surface cells needed to grow on (chapter 

3). Pieces were submerged with KM and incubated at 37°C for 5 hours to allow the cells to 

attach to the OcuCell corneas and eyelids.  Tops were removed after 5 hours and cells were 

allowed to grow for 4 days until confluent, medium was changed every other day.  The cell-

laden OcuCell pieces were then used on day 5 for experiments.  

 

4.2.5 Contact Lens and Lens Cleaning Solutions 

Silicone hydrogel Balafilcon A (BA; Bausch & Lomb, Rochester, NY, USA) and 

Etafilcon A (EA; Johnson and Johnson, New Brunswick, New Jersey, USA) were tested. All 

lenses were obtained in their original manufacturer packaging. Both BA and EA lenses had a 

base curvature of 8.6 mm, 14.0 mm diameter, and power of 3.00 dioptres. All lenses were used 

before their expiry date. Whole lenses were used and were not cut before placement in the in 

vitro model. ReNu Fresh (ReNu, Bausch & Lomb, Rochester, NY, USA) and Clear Care 

Cleaning & Disinfection Solution (CC, Alcon Canada, Mississauga, ON, Canada) were used 

under sterile conditions and before their expiry date.  The detailed composition of the lens 

cleaning solutions as reported by the manufacturers can be found in Chapter 5.   
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The day before the experiment, BA and EA lenses were added to wells containing in 

1mL of ReNu or PBS or to the lens basket of Clear Care lens case containing CC solution filled 

to the line (as per use instructions).  Lens treatment was performed for 12 hours aseptically. 

EA lenses soaked in Phosphate buffered saline was used as a negative control 20.  Previous 

work has also shown that there was no difference between PBS-soaked EA and BA lenses 7,20 

and to accommodate for the number of lenses that could be tested simultaneously with the 

OcuCell platform, only one lens control was used.   

 

4.2.6 OcuCell Experimental Setup (dynamic testing conditions)         

Syringes (10 mL) were filled with KM, connected to the pump with tubing Dow 

Corning Silastic Laboratory Tubing (0.062” ID x 0.125” OD and 0.032 wall thickness, VWR) 

and to the syringe pump (Cole-Parmer 75900-50 programmable 6-channel syringe pump) 

(Figure 4.1) in the incubator (5% CO2, 90% humidity).  The setting up of the OcuCell pieces 

in the OcuCell testing platform (previously cleaned with 70% ethanol) was performed under 

sterile conditions.  Using sterile tweezers, the cell-laden OcuCell eyelid and cornea pieces were 

removed from the wells containing KM and carefully inserted in their holders on the Ocuflow 

module. Contact lenses were added and the cell-laden OcuCell cornea and eyelid pieces on the 

OcuCell module were then slowly brought closer together and a small drop of KM was added 

to the system.  The tubes were then connected to the OcuCell module and the testing platform 

was transferred into a plexiglass box and then to the incubator.  The pump was placed into the 

incubator. Then the syringes connected to the tubes were added to the pump and the pump was 
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started to deliver “tear” flow to the OcuCell module.  At a flow rate of 10μL/min.  Prior 

experiments determined this to be the most appropriate flow rate for cell viability (see appendix 

1).   

 

Figure 4.1: Cole-Parmer 75900-50 programmable 6-channel syringe pump 

 

Figure 4.2: Schematic of OcuCell.  The OcuCell system includes 2 silicone pieces: the cornea 

(A) and the eyelid (B) piece with cells grown on each. Artificial tear (KM) (C) flow is 

introduced through a syringe (D) and rate can be adjusted by setting the pump. 
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Figure 4.3: Features of the OcuCell in vitro eye model: (A) corneal eyepiece and lid housing 

the contact lens, (B) inlet for tear flow and (C) Collecting plate 

 

4.2.7 OcuCell Experimental Setup (static testing conditions)     

 

Similarly, to the dynamic testing conditions, OcuCell eyelid pieces were set in a 6-

well plate, contact lenses were placed in each and 200mL of media was added. A cornea 

piece was then added on top of the eyelid piece and the pieces were flipped to the cornea side 

on the bottom. 2mL of media was added and plates were placed in the incubator.  
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4.2.8 Flow cytometry 

Following experiments, cells were detached for 20 minutes from the eyelid and 

cornea pieces with TripLE™Express, transferred to a centrifuge tube, washed once and 

resuspended in DMEM/FBS. Cells were then incubated with fluorescently labelled 

antibodies against integrin β1 (CD29) and integrin-α3 (CD49c) and ICAM-1 for 30 minutes at 

room temperature in the dark. Samples were then diluted with Hepes tyrode buffer and fixed 

with paraformaldehyde (1% final concentration).  Samples were analyzed by flow cytometry 

(BD FACSCalibur, BD Biosciences, San Jose, CA, USA) within 5 days.  At least 5000 

events were collected per sample. Analysis was performed with CELLQuest post data 

acquisition and the geometric mean of fluorescent intensities were recorded and used for 

statistical analysis 

 

4.2.9 Statistical Analysis  

All results are reported as means ± standard deviation. an ANOVA was performed, 

followed by multiple pair-wise comparisons using the Fisher LSD test using Statistica V13 

(StatSoft, Tulsa, OK).  A p value of <0.05 was required for statistical significance. The 

number of experiments was equal to or greater than four with different cell passages.  

 

4.3 Results 

As shown in Figure 4.4, with cells on the eyelid piece under dynamic conditions (flow), 

exposure to BA-ReNu led to significant reduction (p<0.02) in integrin β1 expression when 
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compared to both EA-PBS (control lens) and EA-ReNu. A significant downregulation in α3 

(p=0.03) was also observed with BA-ReNu when compared to the control lens.  Under static 

conditions (no flow), a non-statistically significant reduction in β1 was observed with BA-

ReNu and BA-CC when compared to the control (EA-PBS). No changes in α3 expression were 

noted under static conditions on cells from the eyelid piece.  Regardless of conditions and lens-

solution combinations, no changes in ICAM-1 expression were observed (data not reported).  

When comparing α3 and β1 expression between flow and no flow conditions for the same lens-

solution combinations, no statistical differences were observed. 

Under dynamic conditions for the cornea piece (Figure 4.5), ReNu-cleaned lenses led 

to receptor downregulation.  A significant downregulation of integrin β1 expression was 

observed when cells were exposed to BA-ReNu when compared to control (p=0.004); the 

difference almost reached statistical significance with BA-CC (p=0.058).  Exposure to BA-

ReNu also resulted in significant a3 downregulation (p<0.04) compared to control, BA-CC and 

EA-CC, while almost significant with EA-ReNu (p=0.06).  EA-ReNu also significantly 

reduced β1 expression on HCEC when compared to both control and EA-CC (p<0.01).  Under 

static conditions, similar observations were noted with ReNu.  Expression of α3 and β1 were 

significantly reduced in the presence BA-ReNu (p<0.04) compared to EA-Renu, EA-CC and 

control.  The conditions (dynamic versus static) had a significant effect and when comparing 

α3 and β1 expression between flow and no flow conditions for the same lens-solution 

combinations, statistical differences were observed with EA-ReNu (for α3 and β1), EA-CC (for 

α3) and BA-CC (for β1).     
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Figure 4.4: Integrin expression (A: Integrin β1, and B: Integrin α3) on HCEC on the eyelid 

piece following exposure to combinations of lens cleaning solution/contact lenses. Contact 

lenses were incubated with lens cleaning solutions for 12 hrs and placed within OcuCell pieces. 

HCEC were exposed to lens cleaning solution/contact lens for 6 hours under dynamic 

conditions in the OcuCell testing platform (flow rate of 10 mL/min) and static conditions (no 

flow). β1 and α3 expressions were measured by flow cytometry and are reported as Arbitrary 

Fluorescent Units.  N= 5, mean ± SD. * statistically significant from control, p <0.03.  # 

statistically significant from EA-ReNu, & statistically significant from EA-CC    
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Figure 4.5: Integrin expression (A: Integrin β1 and B: Integrin a3) on HCEC on the cornea 

piece following exposure to combinations of lens cleaning solution/contact lenses. Contact 

lenses were incubated with lens cleaning solutions for 12 hrs and placed within OcuCell 

pieces. HCEC were exposed to lens cleaning solution/contact lens for 6 hours under dynamic 

conditions in the OcuCell testing platform (flow rate of 10 mL/min) and static conditions (no 

flow). β1 and α3 expressions were measured by flow cytometry and are reported as Arbitrary 

Fluorescent Units.  N= 5, mean ± SD.    * statistically significant from control, p <0.03.  # 

statistically significant from EA-ReNu, & statistically significant from EA-CC.  
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 To further compare the models and have a more objective view of the importance of 

dynamic conditions, changes in integrin expression were ranked.  Table 4.1 provides a 

summary of the rankings of the lens-solution combinations based on changes in α3 and β1 

expression under dynamic and static conditions for both the eyelid and cornea pieces.  The 

most compatible lens and solution combination are associated with a rank of 1 and the least as 

4.  If combinations rank similar to another combination, their positions would be added and 

divided by two. The results highlight the consistent trends compared to EA-PBS with reduced 

integrin expression observed following exposure to ReNu-soaked BA lenses.  Most reduced 

BA-ReNu > EA-RENU> BA-CC > EA-CC least reduced in the dynamic model.  In static 

system the order follows BA-ReNu = BA-CC > EA-CC > EA-ReNu. It further identifies 

difference that occurs between the two conditions.    

Table 4.1: Ranking of integrin downregulation for CL and cleaning solution combinations 

compared to EA-PBS.  

 
 

 

 
  EA-CC BA-CC EA-ReNu BA-ReNu 

Dynamic Eyelid 3 4.5 4.5 8 

  Cornea 2.5 4 6 7.5 

  Total  5.5 8.5 10.5 15.5 

Static Eyelid 4.5 6.5 2.5 6.5 

  Cornea 4 6 4 6 

  Total 8.5 12.5 6.5 12.5 
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4.4 Discussion 

The OcuCell testing platform was developed to provide a simple dynamic in vitro 

model to investigate biocompatibility of new lens technologies and lens cleaning solution-

contact lens combination.  The in vitro model was previously evaluated using PBS and 

Benzalkonium chloride (BAK)-soaked lenses and as expected, significant changes in integrin 

expression and viability were observed with BAK-soaked lenses, suggesting that the OcuCell 

may be a useful tool to assess cytotoxicity and biocompatibility in a dynamic environment. It 

was hypothesized that the dynamic conditions would impact ocular cell response in vitro as 

the constant flow would affect the release of compounds that have been adsorbed in the lens 

during the cleaning cycle as well as expose the cells to a dynamic flow of the compounds being 

released.   

There has been significant controversy around the combination of BA-ReNu due to the 

solution-induced corneal staining noted clinically 21,22. The biocide PHMB is part of the 

chlorhexidine pharmaceutical family that has the ability to fight against a wide range of gram 

positive and negative bacteria and is the main preservative component in ReNu 23. The ocular 

response observed in vivo has been hypothesized to be associated with PHMB that has been 

adsorbed on the lens and its interactions with corneal epithelial cells 24. It is now well 

recognized that the contact lens absorbs MPS components when soaked overnight, which are 

then released onto the ocular surface post-insertion 25,26.  PHMB has been investigated in a 

variety of conditions in vitro and has been shown to reduce viability, cause higher rates of 

apoptosis, disrupt tight junction integrity, down regulate integrin expression and increase of 

proinflammatory cytokines 7,18,20,27–31. Our results show that under dynamic conditions, ReNu 
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induced statistically significant changes in integrin β1 expression in BA and EA lenses 

compared to PBS-EA lenses.   

The decrease in integrin expression of the BA-ReNu combination that is seen in static 

and dynamic conditions but less so with EA-ReNu and CC combinations can likely be 

attributed to the variation in the chemical formulas of solutions that affect the uptake and 

release of biocides and other solutions components from the lens. Studies have shown that 

PHMB-containing solutions combined with BA contact lenses result in the greatest amounts 

of biocide absorption. PHMB is a large molecule with a positive charge and has been shown 

to have a higher absorption along with a slower release rate in ionic lenses than in non-ionic 

lenses.  EA is ionic and high in water content while BA is also high in water content but non-

ionic.  A study conducted by Powell et al. showed PHMB release of 0.17mg with EA and 

0.43mg with BA lenses over 2 hours 32. This study can thus shed some light on our results as 

more PHMB being released from BA lenses would likely result in HCEC changes such as 

reduced integrin expression when comparing different lens types.  Furthermore, while PHMB 

release from EA lenses may be lower, our results indicate that in vitro this also resulted in 

downregulation of integrin.  Another contributing factor to the downregulation of integrin 

induced by ReNu-soaked lenses may be due to the fact that ReNu is a borate-buffered MPS 

and borate buffer has been shown to impact corneal epithelial cells both in vitro 19 and in vivo 

33.     

The continuous flow of medium being pumped through the OcuCell system may also 

contribute to some of the difference seen within lens-combinations between the static and 

dynamic conditions. The constant renewal of medium creates a change in equilibrium in terms 
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of MPS in the contact lens compared to its surrounding. The environmental osmolarity is 

constantly renewed by the medium allowing for a continuous/dynamic exchange with the MPS 

solution in the contact lens and therefore the release of MPS components from the lenses, 

which can have then affected HCEC in our in vitro model. This may be the reason for the 

toxicity of ReNu being more apparent in the dynamic versus the static system. The dynamic 

system seems to magnify the effect of ReNu-BA combination compared to EA-PBS than the 

static system. As BA lenses releases more ReNu, the dynamic system also provides an extra 

push compared to the static system.  The dynamic system also shows the difference between 

CC and ReNu and shows a significant difference in integrin α3 and for β1 (expect for ReNu-

EA cornea).  

Under static conditions, it was noted that BA-CC also induced a downregulation in 

integrin expression.  This was unexpected as Clear Care is a phosphate buffered solution with 

H2O2 as the active ingredient and  previous studies have shown that Clear Care does not reduce 

viability, nor induce cytokine release or morphological changes 11,34.  H2O2 is believed to be 

quickly metabolized on the ocular surface due to its small molecular weight and is less likely 

for form a cytotoxic complex 4.  We hypothesized for our results in the static system are likely 

due to H2O2 adsorbed on the contact lens which was not neutralized in the AOSept disc system 

and is now directly contacting the corneal epithelial cells or being released in a small volume 

in the static system.  As there is no replenishment of this small volume, the active H2O2 may 

damage cells, leading to downregulation of integrin expression 4. Another hypothesis may be 

that Pluronic- F127, found in ClearCare, may affect cells.  Pluronic F-127 may preferentially 

absorb on BA and upon release may lead to cell membrane disruption. 
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4.5 Conclusion  

Overall, our results present a novel in vitro model, where corneal cells can be exposed 

to a contact lens-cleaning solution combination in the presence of artificial tear flow using the 

OcuCell system.  This study provides a proof-of-concept of the OcuCell to assess lens-solution 

biocompatibility, testing two lenses and two lens cleaning solutions.  Downregulation in 

integrin expression was consistently observed with lenses cleaned in the MPS ReNu, which 

may be due to the release of the biocide PHMB.  Future testing with other combinations of 

contact lenses and lens cleaning solution will also bring further insights into in vitro 

biocompatibility testing.  The OcuCell model provides a simple dynamic in vitro model of the 

ocular surface, mimicking some of the dynamic interactions that occur at the interface of 

corneal epithelial cells and contact lens.  This in vitro model offers new opportunities for 

toxicological evaluation of therapeutic, diagnostic and conventional contact lenses and may be 

able to support the development and testing of new diagnostic lens materials. In the future, the 

OcuCell system can be further developed to allow extending testing time (such as 12 to 24hrs) 

and the biocompatibility response with conjunctival cells could also be investigated. 
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Chapter 5 

Effect of crosstalk between cell population: testing contact lens and 

cleaning solution combination in a monoculture, double culture and co-

culture model. 

5.1 Introduction 

The cornea is a stratified ocular tissue serving as the functional and physical barrier to 

protect inner ocular tissues from chemical and pathogen incursion and is the major element 

for maintaining proper light refraction for vision. The eye harbors many bacteria and 

pathogens that may become infectious to the eye upon loss of epithelium integrity1 and it is 

thus important to maintain a healthy ocular environment when a biomaterial, such as a 

contact lens, is present.  Over 125 million individuals wear contact lenses worldwide2. While 

contact lenses are arguably the most successful biomaterial available to the public, lens 

wearers have been reported  to be at increased risk of sight threatening infections and 

inflammatory events such as microbial keratitis, Acanthamoeba infection, and fungal 

keratitis3.  With daily disposable lenses, the contact lenses are discarded each day; however, 

daily wear contact lenses are worn on a weekly, biweekly, or monthly basis and need to be 

cleaned daily. By disinfecting the daily wear lenses overnight, proteins, foreign materials or 

deposits that build up are being removed. Improper care for daily wear contacts may result in 

infection or irritation to the eye 4. 

Multi-purpose solution (MPS) and hydrogen peroxide based (H2O2) lens care systems  
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are used to clean, disinfect, and store contact lenses. Components of MPS include buffers, 

preservatives, and antimicrobial agents. They are convenient as they require limited contact 

time with the lenses to provide broad disinfection against pathogenic microorganisms and 

additive components such as poloxamine have been shown to potentially improve lens wear 

and protein removal 5–9. When using a H2O2 based lens care system, it is necessary to 

neutralize the solution to ensure no harm is caused to the eye, which requires a minimum of 6 

hrs in the lens disinfection cycle. 

There is now evidence that contact lenses have the potential to adsorb components of 

multipurpose cleaning solutions (MPS) and packaging solutions, which has also been shown 

a deleterious effects on the ocular surface 10.  The release of adsorbed MPS compounds onto 

the corneal surface post lens insertion has been hypothesized to be linked to corneal staining 

and conjunctival hyperaemia following several clinical and epidemiological studies 

comparing different combinations of SiHy and MPS 11–17. The concept of lens-MPS 

biocompatibility has been difficult to define and evaluate clinically as in vivo measurements 

of biocompatibility remain mostly qualitative (through slit lamp observation) and the 

mechanisms of corneal staining are not yet well understood 12,13,17,18.  In particular, Solution 

Induced Corneal Staining (SICS) has been associated more predominantly with one lens-

solution combination (Balafilcon A and ReNu/ReNu Fresh) 19.  ReNu Fresh is a MPS which 

uses dymed (polyaminopropyl biguanide) 0.0001% also known as PHMB as a biocide.  The 

“gold standard” of care has often been recommended to be a solution using hydrogen 

peroxide (3%) (ClearCare) 20.  
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In vitro models represent a means to gain a better understanding of lens-cleaning 

solution interactions.   Furthermore, contact lens and MPS effects are mainly studies using 

corneal epithelial cells, to investigate their effects on the ocular barrier, rather than 

conjunctival cells. However, studies have shown that corneal cells and conjunctival cells 

react differently to lens care systems 21–23. There is thus a need to develop a better 

understanding of the effects of contact lenses and MPS on the health and integrity of ocular 

surface cells (namely corneal and conjunctival epithelial cells) and for an in vitro model that 

enable testing in the presence of both cell types.   

The objective of this study was to evaluate of the effects of MPS and contact lens 

combinations on human corneal epithelial cells (HCEC) and immortalized conjunctival 

fibroblast (ICONJ) cells using three different in vitro models: (1) a monolayer of HCEC or 

ICONJ on a tissue culture treated polystyrene (TCPS) well, (2) a monolayer of HCEC or 

ICONJ on TCPS well with an insert of the same cell type (double culture) and (3) a coculture 

model with HCEC on TCPS well and ICONJ on insert. This study used the in vitro contact 

“onlay” model with two different contact lenses and cleaning solutions with a 6-hr incubation 

time.  As integrin β1 and integrin α3 are membrane proteins important in cell attachment, 

wound healing, and cell migration 24 (see chapter 1) and have been previously reported to 

change upon in vitro incubation with contact lenses 21,25–28, their levels of expression 

following exposure to MPS-soaked lenses were assessed through flow cytometry.  Based on 

previous data and available literature, the hypothesis of this study was that lenses soaked in a 

PHMB-containing lens cleaning solution will result in altered cell response, all the more so 

in the co-culture model.  
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5.2 Materials/Methods 

5.2.1 Reagents and Antibodies 

Keratinocyte medium (KM) Keratinocyte growth supplements (KGS) and 

penicillin/streptomycin (Pen/Strep) solution were purchased from ScienCell (Carlsbad, 

California). All other cell culture reagents, including Dulbecco’s Minimum Essential 

Medium (DMEM), 1∶1 DMEM in Ham’s F12 nutrient medium, fetal bovine serum (FBS) 

and TrypLE Express were purchased from Life Technologies (Burlington, Ontario, Canada). 

Phosphate buffered saline (PBS) was purchased from Lonza (Allendale, New Jersey). 

Monoclonal antibodies to β1 integrin (CD29), α3 integrin (CD49c) and ICAM1 (CD54 were 

purchased from Becton Dickinson (Mountain View, CA, USA).  24 mm diameter 

polyethylene terephthalate (PET) hanging inserts, 1 μm pore size, were purchased from 

Millipore (USA).  

 

5.2.2 Contact Lens and Lens Cleaning Solutions 

Daily-wear silicone hydrogel balafilcon A (BA; Bausch & Lomb, Rochester, NY, 

USA) and etafilcon A (EA; Johnson and Johnson, Vistakon, FL, USA) were tested. All 

lenses were obtained in their original manufacturer packaging. Both BA and EA lenses had a 

base curvature of 8.6 mm, 14.0 mm diameter, and power of 3.00 dioptres. All lenses were 

used before their expiry date. Whole lenses were used and were not cut before placement on 

the cultures.  
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Phosphate buffered saline was used as a negative control “lens solution” and had been 

previously evaluated as being biocompatible in vitro 29. Contact lenses were incubated 

overnight (12 hours) in ReNu Fresh (Bausch & Lomb, Rochester, NY, USA), 1mL in wells 

of TCPS, or Clear Care (Alcon, Forth Worth, Texas, USA), in the AO disc lens case filled to 

the line.  The composition of the two lens cleaning solutions is presented in Table 5.1.  

Table 0.1: Composition of lens cleaning solutions 

Product Preservative/Biocide Chelating Agent Surfactant Buffer pH 
Clear 
Care 
Plus 

H2O2 (3%) None Pluronic 174R, 
Hydraglyde 
(polyoxyethylene, 
polyoxybutylene) 

Phosphate 
(stabilizer) 
Phosphonic 
Acid, 
Sodium 
chloride, 

6.7 

ReNu 
Fresh 

PHMB aka 
DYMED 0.0001% 

EDTA/Hydranate Poloxamine Boric acid, 
Sodium 
borate, 
Sodium 
chloride 

7.3 

 

5.2.3 In vitro cell culture: Immortalized human corneal epithelial cells (HCEC) and 

human conjunctival epithelial cells (ICONJ) 

Immortalized human corneal epithelial cells (HCEC) were cultured in KM 

supplemented with KGS and Pen/Strep. Immortalized human conjunctival epithelial cells 

(ICONJ, Innoprot, Derio, Spain) were cultured in KM supplemented with KGS, Pen/Strep 

and 5% FBS. Fresh medium was added every other day and cells were grown to 90% 

confluency in a tissue cultured treated flask at 37°C, 5% CO2, and 95% humidity.  Adherent 

cells were then detached using the dissociation solution TripLE™Express (Sigma-Aldrich, 
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Oakville, Ontario, Canada) and seeded as described below. Cells were routinely observed for 

any morphological changes. Only cells below passage eleven were used. 

 

5.2.4 Seeding of insert and wells and incubation with contact lens 

For individual cell culture plate (ie, one cell type only in plate, either HCEC or 

ICONJ), HCEC and ICONJ cells were seeded in a 12-well tissue culture treated polystyrene 

(TCPS) at 6x104 cells per well with 1mL of their respective cell medium.  Medium was 

changed every other day for 4 days. On the 5th day, when cell had reached confluence, media 

was changed, and contact lenses soaked in MPS or PBS were added face-down (concave 

surface facing upwards); lenses were fully immersed in media (1mL) (Figure 5.1).  MPS-

soaked lenses were incubated with cells for 6 hours.  

For double culture (HCEC+HCEC or ICONJ+ICONJ) or co-culture (HCEC-plate +ICONJ -

insert), HCEC and ICONJ cells were seeded onto a 12-well TCPS and cells were also seeded 

on inverted PET inserts at 6x104 cells (Figure 5.2).  Cells on inverted inserts were allowed to 

adhere for 5 hours before being flipped into the respected well culture (Figures 5.2). As with 

the monoculture TCPS model, medium (1mL) was changed every other day between plate 

and insert for 4 days until the cells reached confluence. On the 5th day, media was changed, 

the insert was quickly lifted and MPS or PBS soaked lenses was added face-down (concave 

surface facing upwards), the cell-laden insert was carefully lowered, and the system was 

incubated for 6 hours (Figure 5.1B and 5.1C). 
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Figure 5.1: Flow chart of steps. The 3 different models being used, monoculture of ICONJ 

or HCEC cells (A), double culture of both ICONJ or HCEC cells on PET insert and TCPS 

well (B) or co-culture model with HCEC cells on TCPS well and ICONJ cells on PET insert 

(C). 
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Figure 5.2: Inverted seeding and flip of PET insert into TCPS well 

 

5.2.5 Flow cytometry  

Following incubation, cells were detached for 20 minutes from the TCPS wells and 

PET inserts (TripLE™Express (Sigma-Aldrich, Oakville, Ontario, Canada).  After gentle 

washing following TripLE™Express treatment, cells were incubated with fluorescently 

labelled antibodies against integrin β1 (CD29), integrin-α3 (CD49c), ICAM-1 (CD54) and 

HLA-Dr (BD Biosciences, USA) for 30 minutes at room temperature in the dark. Samples 

were then diluted and fixed using paraformaldehyde (1% final concentration) and analyzed 

by flow cytometry (BD FACSCalibur, BD Biosciences, San Jose, CA, USA) within 5 days. 

Samples were acquired on a FACSVantage flow cytometer using CELLQuest Software. At 

least 5000 events were collected per sample. Analysis was performed with CELLQuest post 

data acquisition and the geometric mean of fluorescent intensities were recorded and used for 

statistical analysis 
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5.2.6 Statistical Analysis  

All results are reported as means ± standard deviation. an ANOVA was performed, 

followed by multiple pair-wise comparisons using the Fisher LSD test using Statistica V13 

(StatSoft, Tulsa, OK).  A p value of <0.05 was required for statistical significance. The 

number of experiments was equal to or greater than three with different cell passages.  

 

5.3 Results and Discussion 

As shown in Table 5.2, cells exposed to PBS-soaked Etafilcon A lens showed no 

significant difference in integrin expression when compared to no-lens.  Similar results have 

been observed with other contact lenses soaked in PBS 25 and suggest that the results 

presenting herein indicate that the changes expression of cells is induced by the products 

released from the cleaning solution-soaked lenses and not the presence of a lens itself. It is 

also important to note the marginal difference between TCPS and PET material. There is a 

small but not statistically significant increase in integrin expression seen in all integrin 

expression. This could be due to difference in cell interactions with the material (tissue-

culture treated polystyrene versus polyethylene terephthalate), or to cells being exposed to 

growing against gravity (growing on the bottom of the insert) or cells being exposed the air-

liquid interface as no medium was added to the top of the insert. A noteworthy change is 

present in α3 integrin expression in the co-culture itself where a significant downregulation 

was observed on HCEC when cultured in the presence of ICONJ cells.  Conversely a 

significant downregulation in β1 integrin expression was observed on ICONJ cells co-

cultured with HCEC.  This suggests that even in the absence of inflammatory stimulus or 
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foreign material, mediators are being released and cross talk within the co-culture is 

happening and leading to significant changes in cell membrane receptor expression. 

 

Table 5.2: Integrin expression on cells grown on TCPS (cell culture plate) and PET (insert) 

in the presence or absence of a PBS-soaked lens Etafilcon A lens (PBS-EA). Results are 

reported as Arbitrary Fluorescent Units (AFU), mean ± standard deviation, N=4 

 
  β1 integrin α3 integrin 

Condition  Substrate 
No lens 
(AFU) 

PBS-EA 
(AFU) 

No lens 
(AFU) 

PBS-EA 
(AFU) 

HCEC TCPS 44 ± 3 46 ± 2 37 ± 2 42 ± 4 
            +HCEC PET 55 ± 5 54 ± 4 47 ± 5 45 ± 2 
ICONJ TCPS 62 ± 7 57 ± 5 14 ± 2 16 ± 4 
           +ICONJ PET 71 ± 3 69 ± 7 27 ± 3 32 ± 3 
HCEC TCPS 38 ± 5 35 ± 2 21 ± 3* 23 ± 4* 
           +ICONJ PET 46 ± 7* 44 ± 5* 25 ± 4 28 ± 4 

 
* significantly different from same cells grown in a double culture model, p<0.03 
 

Upon cell interactions with contact lenses, some changes in cell morphology were 

observed during incubation with BA- ReNu for both HCEC and ICONJ cells, as illustrated in 

Figure 5.3. Cells appeared more round than the control and with ICONJ cells, empty space 

was visible, indicating the potential loss of cells.  This was also noted with EA-ReNu and 

ICONJ cells.  Microscopically, it appears that ReNu is more toxic to cells in both EA and BA 

lenses. It should also be noted that the in combination with BA lenses, both CC and ReNu 

seem to harm cells more than with EA lenses. It is important to note the difference of integrin 

expression between TCPS and PET material. Overall, there is an increase in both integrin 

expression in both HCEC and ICONJ cells between TCPS and PET. This is likely attributed 
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to the change in material surface chemistry, topography and materials rigidity between PET 

versus TCPS. The increase may also be attributed to gravity acting on cells growing upside 

down on the PET insert.  
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Figure 5.3: Microscopic pictures taken of double culture models. Solution soaked contact 

lenses were incubated with cells for 6 hours. Control: no lens/no solution  
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The response of HCEC to lens solution combinations in the three in vitro models is 

reported in Figure 5.4.  In the HCEC monoculture, regardless of contact lens material or lens 

cleaning solution, no change in integrin β1 and α3 expression were observed.  This is in 

contrast to what was previously observed in Tanti 27 et al, where after an 8hr incubation with 

BA-ReNu, a 25% reduction in integrin expression was observed.  Such a difference in results 

can likely be explained by the shorter contact time (6hrs versus 8hrs) as well as the difference 

in the surface area of exposure (12 well plate versus 24 well plate) and volume of medium 

added and thus dilution of potential cytotoxic compounds.  On the other hand, in the double 

culture model (where a lens was inserted between cells grown on TCPS and a transwell 

insert), significant changes in α3 integrin expression on HCEC on TCPS (p<0.0001) were 

observed for all combinations. Significant downregulation in β1 integrin (p<0.003) was also 

induced by the presence of EA-ReNu and BA-CC.  Furthermore, exposing HCEC to lens 

solution combination in the presence of ICONJ cells (in the co-culture model) resulted in a 

significant downregulation of both integrins β1 and α3 when compared to control (EA-PBS).  

More than a 30% reduction in expression was observed on HCEC exposed to BA-ReNu.   

When comparing mono and double culture to the co-culture model, it is evident that the 

presence of ICONJ in the in vitro model had a significant impact on HCEC response to the 

lens-solution combination.  In all cases, a significant downregulation in integrin expression 

on HCEC was present when comparing mono to co-culture system.  This suggests that the 

conjunctival cells present in the model may be releasing inflammatory mediators, which 

result in the downregulation of integrin expression.  The change in integrin expression in the 

co-culture model during incubation with contact lenses provides further evidence of crosstalk 
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between ICONJ and HCECs (which had been observed in Table 5.2).  Paduch et al30 

investigated corneal and conjunctival cell response in co-culture and also found a change in 

inflammatory cytokine and nitric oxide secretion between mono and co-culture models. Upon 

co-culture in a similar setup than our model (HCEC on TCPS and ICONJ on PET insert), 

their results suggests that a situation of inflammation may lead to increase release of IL-1β , 

IL-6 and IL-1030.  How the release of potential inflammatory mediators leads to 

downregulation in integrin expression will require further investigation as there is currently 

limited research reporting quantitative evaluation of integrin expression on HCEC and 

ICONJ. Noteworthy is the fact that the downregulation was mostly observed in HCEC (see 

Figure 5.5 for integrin expression on ICONJ cells) which also suggests that different 

mechanisms regulated integrin expression in HCEC and ICONJ cells.  
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Figure 0.4:  Integrin expression (A: Integrin β1, and B: Integrin α3) on HCEC on TCPS following 

exposure to combinations of lens cleaning solution/contact lenses in various cell culture models. 

Contact lenses were incubated with lens cleaning solutions for 12 hrs. HCEC were exposed to lens 

cleaning solution/contact lens for 6 hours in mono, double culture or co-culture (with ICONJ) model. 

β 1 and α3 expressions were measured by flow cytometry and are reported as a percentage relative to 
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geometric mean expression of cells exposed to control lens (EA-PBS).  N= 3 to 5 mean ± SD.  * 

statistically significant from control, p <0.03., # statistically significant from EA-ReNu, & 

statistically significant from BA-CC.  

As shown in Figure 5.5, similarly to HCEC results, exposing ICONJ cells in 

monoculture to contact lenses cleaned in ReNu or Clear Care did not lead to any significant 

changes in integrin expression (only β1 integrin expression are reported as α3 expression was 

not recorded in mono culture in these experiments). In the double culture model of ICONJ 

(ICONJ on TCPS and insert with lens in between), a small non-statistically significant 

downregulation was observed in some cases with ICONJ cells on the insert. Note that similar 

results were observed with ICONJ cells on TCPS but are not reported as the ICONJ cells 

response on the insert is more relevant for comparison with the co-culture system where 

ICONJ cells are present on the insert and not on TCPS.  As observed with HCEC and 

discussed earlier, crosstalk between conjunctival and corneal epithelial cells is present in the 

co-culture system and interactions with contact lens material soaked in lens cleaning solution 

appears to lead to significant cell disruption in the co-culture model, especially in the case of 

BA-ReNu. Results indicate a 30% downregulation of integrin expression in co-culture versus 

non-significant downregulation in other models: mono culture (no downregulation) or double 

culture (a 10% decrease). As previously discussed in Chapter 4, the downregulation in 

integrin expression is likely induced by the release of PHMB and borate buffer present in the 

ReNu MPS solution and that is adsorbed by the BA lenses during the cleaning cycle and 

released upon contact/incubation in the in vitro model31.  Based on our knowledge, this is the 

first time that such results are reported in a co-culture in vitro model.       
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Figure 5.5: Integrin expression (A: Integrin β1, and B: Integrin α3) on ICONJ cells on PET 

insert (double and co-culture) and TCPS (mono culture) following exposure to combinations 

of lens cleaning solution/contact lenses in various cell culture models. Contact lenses were 

incubated with lens cleaning solutions for 12 hrs. ICONJ cells were exposed to lens cleaning 
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solution/contact lens for 6 hours in mono, double culture or co-culture (with HCEC) model. β1 

and α3  expressions were measured by flow cytometry and are reported as a percentage relative 

to geometric mean expression of cells exposed to control lens (EA-PBS).  N= 3 to 5 mean ± 

SD.  * statistically significant from control, p <0.03., # statistically significant from EA-ReNu, 

& statistically significant from BA-CC 

As a control, experiments were also performed with exposing cells to diluted 

solutions.  ReNu and ClearCare (following an overnight cycle in the lens case system as 

previously described for lenses) were added to the monoculture (10% final concentration).  

No significant changes in integrin expression were observed with ClearCare, further 

confirming that during the cleaning cycle, the H2O2 in solution was fully neutralized by the 

AOSept disc.  This further indicates that the downregulation in integrin expression is due to 

the interaction with the lens and compounds released by the lenses during the incubation in 

the various models.  HCEC exposure to ReNu resulted in a 20% downregulation in integrin 

expression (Table 5.3).  Previous studies, including our own25, have reported similar results.  

Tanti et al reported a greater downregulation in downregulation, however incubation was 

performed for 24 hours while in our study, cells were only exposed to ReNu (10%) for 6 

hours27.  It is interesting to note that neither ReNu nor Clear Care affect ICONJ cells.  This 

further highlight the difference in inflammatory mechanisms in ocular cells and the needs for 

further testing in co-culture models to gain a better understanding of the potential 

inflammatory response of ocular cells as a system.  
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Table 5.3: Cell response to exposure to lens cleaning solution (10% final dilution). ReNu 

and Clear Care (after cycle in the AOSEPt system) solutions were added to cells for 6 hours 

compared to no solution, and integrin expression was assessed by flow cytometry. N=2± SD 

 Condition Integrin α3 Integrin β1 
HCEC ReNu 10% 78% ± 5 80% ± 3 
HCEC Clear Care 10% 98% ± 2 96% ± 6 
ICONJ ReNu 10% 98% ± 5 97% ± 6 
ICONJ Clear Care 10% 105% ± 4 93% ± 4 

 

5.4 Conclusion 

Currently, there is no single in vitro test that has been accepted as an alternative to the 

Draize test and the prospect of eliminating whole animal testing remains a challenge as in vitro 

models that can better mimic interaction with the ocular surface are being developed. This 

study is the first step to building a more complete in vitro model with including two cell 

population present on the ocular surface. Our results provide evidence that a co-culture model 

using conjunctival and corneal epithelial cells may be better able to assess biocompatibility of 

lens-cleaning solution combination compared to a mono-culture cell model. Significant 

downregulation in integrin expression was observed with the BA-ReNu combination, 

suggesting that the uptake and release of PHMB may play a role in the observed cell response. 

Future work should focus on the crosstalk between corneal and conjunctival cell response to 

identify the inflammatory mediators inducing changes in conjunctival and corneal epithelial 

cells.  It would also be important to characterize cell death and apoptosis.  Further studies 

should also be performed with other lens-solution combinations to confirm the effect observed 

in the co-culture system with the two lens-solution combination studied. This novel co-culture 
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incubation model may allow to better understand the inflammatory response induced by 

contact lens and lens cleaning solutions.   
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Chapter 6 

Conclusion and recommendation for future work 

6.1 Conclusion 

In chapter 3, the hypothesis was that a change in curvature would result in increased 

stress on cells and inlead to cell response which can be assessed by measuring integrin 

expression. In this chapter, the importance of material and curvature as it relates to corneal 

and conjunctival epithelial cells was demonstrated. An upregulation in integrin expression 

was observed with cells grown on convex versus concave or flat surfaces, with no difference 

between TCPS and PDMS material.  These results have important implications in the design 

of in vitro model (ie the geometry of the model matters) as well as for research in disease 

such as keratoconus where the curvature of the cornea changes over time.   

For chapter 4, it was hypothesized that a dynamic in vitro model would result in 

significant difference in HCEC response to lens-solution combinations compared to a static 

incubation model. This led testing the OcuCell platform under dynamic and static conditions. 

The dynamic model led to a greater difference when testing combination of contact lens-

cleaning solution combination compared to the static model.  

Lastly, in chapter 5, it was hypothesized that a co-culture model with conjunctival 

and cornea cells would result in significant difference in HCEC and ICONJ responses to 

lens-solution combinations compared to single cell population model. The experiments 

presented in Chapter 5 with monoculture, double culture and co-culture models demonstrated 

the importance of cell crosstalk in response to a biomaterial.  Integrin expression showed a 
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greater downregulation in integrin expression when exposed to the same combination of 

contact lens-cleaning solution compared to mono and double culture.  These results highlight 

that to gain a better understanding of lens-solution interactions at the ocular surface, co-

culture models should be further explored.   

In all our in vitro models, the combination of BA-ReNu consistently led to reduced 

integrin expression compared to our control lens.  This is in agreement with many other in 

vitro studies and suggest that the release of PHMB and other components of ReNu 

significantly affect corneal and conjunctival epithelial cells in vitro.  Our studies also 

identified that under certain experimental conditions, lens combination with ClearCare were 

not as biocompatible as expected in vitro, suggesting that H2O2 adsorbed on contact lens 

material may not have been neutralized during the overnight treatment with the AOSEPT 

disk. 

6.2 Future Work  

One of the limitations of this study was from only characterizing integrin expression. 

While flow cytometry allows for rapid analysis of multiple characteristics for each cell by 

quantification of fluorescence intensities. Cytokine synthesis and cell apoptosis and necrosis 

should be measured to further understand how curvature may affect the cell cycle and 

inflammatory response of the ocular surface. Microtopography also needs to be assessed on 

the curve samples. Further research is also needed with the co-culture model to better 

characterize the cell response and identify the inflammatory mediators that are being released 

and lead to a downregulation of integrin expression.  It would also be worthwhile to 
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determine if the co-culture leads to change in cell apoptosis as well as changes in tight 

junctions.  In terms of building a more accurate static model of the ocular surface, it may also 

be important to consider the role of neutrophils in the eye and how they interact with 

conjunctival and corneal cells as well as ophthalmic materials. The current in vitro model can 

be used with neutrophils as they could be easily added to the co-culture model. 

The OcuCell platform represent a simple and cost-effective system for dynamic 

conditions.  From a design perspective, to help during experimental setup, it would be 

important to consider the following modifications: 

• Changing the hole tear fluid comes out from to be a diagonal instead of 

horizontal. This would allow easier insertion and potentially less cells to be 

washed off by flow.  

• Decreasing the size of cornea and eyelid slightly to fit into a 12 well plate, this 

would allow for easier growth for cells as well as less media used.  

• Find a material better than PDMS that allows for greater cell growth and 

adherence 

 

To better mimic the ocular surface, the OcuCell platform could also be used to grow 

conjunctival cells on the eyelid piece of the OcuCell and would thus provide a co-culture 

model to test ophthalmic materials in a dynamic system.  Flow time should also be extended 

for 12-24 hours and test various ophthalmic materials and combinations of CL and cleaning 

solutions. 
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Further investigation should also be performed for contact lens and cleaning solution 

combination.  First, it would be important to test other lens-solution combinations, such as 

other SiHy and conventional lenses as well as other MPS (with or without PHMB as the 

biocide) to investigate how our models are able to characterize cell interaction with CL 

combination in vitro.  Future work could look at Clear Care to understand the mechanisms 

for integrin downregulation when in combination with BA lenses, especially since cells 

exposed only to ClearCare solution exhibited no decrease in integrin expression. It would 

also be useful to characterize the rate release for components of cleaning solutions such as 

PHMB and pluronic from the contact lens to better able to correlate the cell response to the 

release in the in vitro model.  This could provide answers to the difference of BA-CC to EA-

CC when compared to EA-PBS, since H2O2 cleaning solution is considered the gold standard 

and non-toxic to the eye. 
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Appendices 

APPENDIX 1  

PROOF OF CONCEPT OF OCUCELL DYNAMIC SYSTEM 

 

Cells were grown on OcuCell pieces for 4 days. The OcuCell was run for 2 and 6 hours at 2 and 

10µl/min. Etafilcon A contact lenses were soaked in PBS and then 0.001% BAK (diluted in PBS) for 24 

hours to remove any remnants of their packaging solution. BAK was used as a positive control as it is 

known to be cytotoxic. On day 4 of cell growth, the PBS or BAK soaked lens were put on the cornea and 

eye lid piece for 2 or 6 hours. The control was no lens and only medium was changed for these OcuCell 

pieces. Experiments were performed under dynamic conditions (using the OcuCell platform platform) and 

statically. 

 

Viability Assay: MTT is used to assess cell viability though a reduction reaction. After 4 days of 

incubation, Proliferation and viability was assessed with the MTT metabolic assay, where thiazoyl blue 

tetrazolium bromide is metabolized by live cells into a solid purple precipitate, formazan crystals. MTT 

was added to eyelid and cornea pieces and incubated for 2 hours at 37°C and 5% CO2 to visualize 

metabolically active cells. Confluency of cell growth was observed. The MTT solution was then removed 

and isopropanol was added and agitated for 2 hours. The solutions in was read in a UV-Vis 

spectrophotometer at an optical density of 595 nm with a reference at 650 nm. All results are expressed 

as relative viability compared to control cells; cells incubated in KM and in the absence of flow from 

OcuCell and a contact lens. 
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Flow cytometry (refer to chapter 4 for methodology). Note AFU can not be directly 

compared with chapter 4 as different flow cytometry settings were used during this preliminary 

work which took place in 2018-early 2019. 

 Preliminary testing of OcuCell Cornea and Eyelid with lens soaked in PBS on static model 

 

 

 

Figure 1: HCEC viability on OcuCell pieces (Static Conditions (no flow). Contact lenses 
soaked in PBS were added to the OcuCell pieces for 2 hours and Viability was assessed by MTT 
and is expressed relative to no lens. N=3 average ± SD. 

 

 

Figure 2: Integrin expression on HCEC grown on OcuCell pieces (Static Conditions, no flow). 
Contact lenses soaked in PBS were added to the OcuCell pieces for 2 hours and integrin expression 
(A: a3 and B:b1 ) was measured using flow cytometry N=4 ± SD. 
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In this proof of concept study, the OcuCell pieces were not placed on the OcuCell dynamic 

platform, they were tested under static conditions. Viability was also tested at 6 hours and the same trend 

is seen (data not shown). Viability of the PBS soaked lenses confirms that PBS is biocompatible with 

cells and we are able to continue testing using this model. While there is a slight elevation of integrin 

expression in the no lens control and PBS lens, these were not significant. 

 

Preliminary testing of OcuCell Cornea and Eyelid under dynamic conditions (no lens)  
 

 
 
 

Figure 3: HCEC viability on OcuCell pieces under static and flow conditions. Viability was 
assessed by MTT and is expressed relative to no flow. N=3 average ± SD. 

 
 
Due to large variations with lower flow, 10 µl/min was chosen for dynamic conditions.
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Testing with positive and negative controls: BAK and PBS lens 
 

 

Figure 4: HCEC viability on OcuCell pieces under static and flow conditions (10 µl/min) in 
presence of BAK-soaked lenses. Viability was assessed by MTT and is expressed relative to PBS-
soaked lens. N=3 average ± SD. 

 
 
Table 1: Integrin expression on HCEC on OcuCell pieces exposed to PBS and BAK-soaked lenses 
under static and flow conditions. Cells on the OcuCell cornea pieces were subjected to a flow rate of 
10 μL/min (flow conditions) or incubated statically (no flow conditions) for 2hrs in the presence of 
a PBS and BAK soaked lens. Integrin b1 and integrin a3 were measured using flow cytometry. 
 

 Integrin a3 Integrin b1 

Flow Eyelid BAK 33 ± 4. 50 ± 8 
Flow Back PBS 29 ± 8 66 ± 10 
Flow Cornea BAK 31 ± 5 62 ± 12 
Flow Cornea PBS 29 ± 5 71 ± 12 
No Flow Eyelid BAK 27 ± 5 44 ± 9 
No Flow Eyelid PBS 30 ± 2 68 ± 9 
No Flow Cornea BAK 32 ± 7 58 ± 12 
No Flow Cornea PBS 33 ± 10 96 ± 36 
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Figure 5: Integrin expression on HCEC on OcuCell pieces exposed to PBS and BAK-soaked 
lenses under static and flow conditions. Cells on the OcuCell cornea pieces were subjected to a 
flow rate of 10 μL/min (flow conditions) or incubated statically (no flow conditions) for 2hrs in 
the presence of a PBS and BAK soaked lens. Integrin a3 (A) and integrin b1 (B) were measured 
using flow cytometry.
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APPENDIX 2 

 
PILOT EXPERIMENTS FOR ACTIN STAINING ON FLAT AND CURVED SURFACES 

 

Figure 1: A: ICONJ B: HCEC cells grown on flat TCPS. Fixed cells were stained with FITC- 
Phalloidin to view actin filaments and microscopic pictures were taken. 

 

A 

B 
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Figure 2: A: ICONJ B: HCEC cells grown on curved TCPS. Fixed cells were stained with 
FITC-Phalloidin to view actin filaments and microscopic pictures were taken. Microscope 
was unable to focus properly on the curved surface. 
 

 

A 
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APPENDIX 3 

PIOLT STUDY USING INFLMATORY MARKERS AND IL-8 IN COCULTURE 
 
 
Table 1: Cells were grown on TCPS and insert as mentioned in Chapter 5. 
Lipopolysaccharide (LPS), interferon-α (IFNα) and Interleukin-8 (IL-8) stimulation was 
added to cells for 2 hours and an Elisa for Il-8 was performed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preliminary analysis shows LPS as an inflammatory activator for IL-8 and is stronger for 

ICONJ cells than HCEC.  INFα shows no change in expression for monocultures compared 

to their respective controls. However, an increase is seen in the co-culture model. This study 

indicated crosstalk between ICONJ and HCEC cells as more of a difference is seen in co-

culture than monoculture models. More testing is needed to understand the reason for this 

change.  

 

 

 

Condition Values 
HCEC Control 0.80 
ICONJ Control 0.92 
LPS + HCEC + ICONJ (5ug) 1.73 
LPS HCEC 1.14 
LPS ICONJ 2.10 
INFα HCEC 0.81 
INFα ICONJ 0.84 
INFα + HCEC + ICONJ (5ug) 1.61 
INFα + HCEC + ICONJ (10ug) 1.66 
IL-8 + HCEC + ICONJ (10ug) 1.41 
HCEC + ICONJ (co-culture) control  1.20 


