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Abstract

In this thesis, we study coherent delocalization in the light-matter interaction: we investigate

how the coherent center of mass delocalization of a first quantized system affects its interaction

with a second quantized field. We develop a suitably generalized Unruh-DeWitt model for the

interaction between a delocalizing particle and a relativistic quantum field. We discuss the

impact which the coherent spreading of the detector’s center of mass wave function has on the

simple processes of absorption, spontaneous emission and vacuum excitation. We find that the

dynamical virtual delocalization process leads to interesting new phenomenology not only for the

interaction of matter systems with the electromagnetic quantum field, but also with other fields

such as a phonon field. For instance, we predict that in a medium, in the case of a supersonic

coherent spreading of the center of mass wave function, a coherently delocalized detector may

get excited and emit Cherenkov-like radiation. We further investigate how the coherent center

of mass delocalization impacts the process of entanglement harvesting and the Unruh effect.
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Introduction

A commonly employed model to explore light-matter interactions is the Unruh-DeWitt (UDW)

detector model [3, 4]. The UDW detector model idealizes small matter systems (such as atoms,

ions, molecules, or even electrons in a magnetic field) as qubit systems with classical center of

mass degrees of freedom. It further idealizes the electromagnetic vector-valued quantum field, by

replacing it by a simpler scalar-valued quantum field. Despite its simplicity, the UDW detector

model qualitatively captures many aspects of the light-matter interaction [5, 6].

Historically, atoms, molecules or ions modeled in this way were called UDW detectors, since

they were originally introduced to qualitatively describe the detection of field quanta, such

as Hawking or Unruh radiation. Hawking discovered in 1974 that the gravitational fields of

black holes formed by gravitational collapse can lead to particle production, referred to as

Hawking radiation [7], while Fulling in 1973, Davies in 1975 and Unruh in 1976 discovered

that in the Minkowski vacuum, that is, in the no-particle state of inertial observers, uniformly

accelerated observers experience a thermal bath of particles, referred to as Unruh radiation

[8, 9, 10, 11, 3, 4, 12, 13]. The UDW detector model turned out to be a powerful technical

tool that could be used to explain particle production for quantum fields in a concrete and

operational way, by allowing the extraction of local information from quantum fields [5, 14, 15, 16].

More recently, UDW detectors have proven to be very useful to explore a variety of topics

in the research field of relativistic quantum information [17], such as for instance the process

of entanglement harvesting [18, 19, 20, 21, 22, 23, 24] and quantum communication through

quantum fields [25, 26, 27].

In this thesis, we ask whether, by employing the simplified UDW detector model to explore

the light-matter interaction, we are missing out on interesting new phenomenology. In particular,

we here focus on the fact that the UDW detector model is limited to the regime in which

the detector’s center of mass follows a classical trajectory. In the light-matter interaction, the

motion of a matter system influences the particle’s emission and absorption properties, e.g.,
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through the Doppler effect or the Unruh effect. In situations where the motion can be described

by a classical probability distribution, these effects can be calculated separately for each possible

state of motion, to then be added up incoherently, and the conventional UDW detector model

is an appropriate tool for doing so. However, the UDW detector model fails to account for

phenomena that arise when the center of mass motion of a matter system is quantum uncertain,

that is, when the center of mass motion is in a coherent superposition.

In chapter 2 of this thesis, we develop a generalized detector model (which we refer to as

coherently delocalized detector model) that includes the quantum mechanical description of

the center of mass degrees of freedom of the detector system [1]. We then investigate how

the coherent spreading of the center of mass wave function of the detector system impacts its

interaction with a quantum field. We do so by employing a technical tool, previously used,

e.g., in [28, 29], that allows to couple quantum fields to first-quantized systems that possess

quantum uncertain positions. Technically, we will work with quantum field operators that take

position operators as their argument. Throughout this thesis, we will work in the non-relativistic

regime, and we will neglect all competing effects, such as higher order quantum field theoretic

corrections.

We show that simple processes, such as the processes of spontaneous emission, absorption

and vacuum excitation, can depend on the center of mass delocalization of the detector system

and on whether the delocalization is coherent or incoherent. For instance, we find that the more

sharply the center of mass of a detector is initially localized, the faster it spontaneously emits.

We further find that new phenomena can arise in media if parts of the center of mass wave

function spread faster than the maximum wave propagation speed in the medium. We show that

the coherent supersonic delocalization of the center of mass can trigger the excitation of the

detector, along with the emission of Cherenkov-like radiation. We refer to this newly discovered

effect as the virtual Cherenkov-like effect. We also discuss the time reversed process, which we

refer to as the inverse virtual Cherenkov-like effect.

We can view the coherently delocalized detector model as an exploratory tool that allows

us to uncover potential new phenomena that may arise with the coherent center of mass

delocalization of a matter system. Whenever we come across a new effect within the coherently

delocalized detector model, we might want to study in detail how the effect manifests itself

for a specific physical system. For instance, in chapter 3, we present a framework that allows

us to make quantitatively predictions for the effects discovered in chapter 2, for a delocalized

hydrogen atom that interacts with the electromagnetic field. Namely, we consider a quantum

delocalized electron and a quantum delocalized proton, which couple with each other via a
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Coulomb potential and which respectively interact with the electromagnetic quantum field via

minimal coupling. We then demonstrate how to calculate the spontaneous emission rate for

this quantum delocalized hydrogen atom, and we find that the rate is indeed affected by the

coherent spreading of the center of mass wave function.

In chapter 4, we qualitatively study the process of entanglement harvesting within our

coherently delocalized detector model. It is a well-studied fact that the vacuum state of a

quantum field is an entangled state [30, 31, 32, 33, 34]. The entanglement of the vacuum

state has been studied extensively in the past, for instance in the context of holography

[35, 36, 37, 38]. It was also shown that the vacuum entanglement can, to a certain extend, be

swapped into a pair of UDW detectors: two initially unentangled detectors can become entangled

with one another, via their respective interaction with the vacuum state of the quantum field

[18, 19, 21, 23, 22, 39, 40, 41], even if the detectors are spacelike separated [33]. Within the

UDW detector model, the process of entanglement harvesting has been studied for detectors

not only interacting with the Minkowski vacuum, but also for instance with general coherent

field states [42, 43], with quantum fields in curved spacetimes [21, 44, 45, 46, 47] and with

quantum fields in spacetimes with non-trivial topology [48, 49]. It was found that the process of

entanglement harvesting depends very sensitively on the detector details [22, 23, 50, 51, 52, 53].

Here, we consider two coherently delocalized detectors that are both initially in their ground

states and that respectively couple to a scalar quantum field. We then study how their ability to

become entangled with each other is affected by their respective mass and initial delocalization.

In the limit of very large detector masses and very sharply localized center of mass degrees

of freedom, we recover the results of vacuum entanglement harvesting for two pointlike UDW

detectors.

In chapter 5, we finally discuss the impact of coherent center of mass delocalization on

the Unruh effect (by which we here mean the possible excitation of an accelerated detector in

the vacuum, along with the emission of radiation, rather than the fact that a detector system

thermalizes when being uniformly accelerated in the vacuum for an infinite amount of time).

Instead of prescribing a trajectory for an accelerated UDW detector, we dynamically account

for the motion of the detector, by coupling the quantized center of mass degrees of freedom of

the detector to a classical electric field. We then study the vacuum excitation process of the

detector, along with the emission of radiation and the quantum recoil of the detector, which we

refer to as the massive Unruh effect. In the limit of infinite detector mass and infinite electric

field strength (in which the center of mass motion can effectively be described by a classical

trajectory with some given finite acceleration), we recover the results obtained for a UDW

3



detector with classical center of mass. For a detector of finite mass, we then study how the

emission of Unruh radiation is impacted by the coherent center of mass delocalization of the

detector, and in particular, by the quantum recoil of the detector. While the recoil caused by

the Unruh effect has been studied before [54, 12, 13], we here, for the first time, describe the

recoil fully quantum mechanically and dynamically.
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Chapter 1

UDW detector model

In this chapter, we briefly review the UDW detector model. The UDW detector model can

be viewed as a simplified model for light-matter interactions [5, 52, 55, 56], in which the

electromagnetic field is replaced by a massless scalar quantum field, and a small matter system

(such as an atom, molecule, ion or even an electron in a magnetic field) is modelled as a simple

first-quantized two-level system with classical center of mass degrees of freedom. Let us here

denote the ground and excited energy eigenstates of the two-level detector system by |g〉 and

|e〉 respectively, and the energy gap between the two levels by Ω. The total Hilbert space of the

coupled system of detector and field factorizes into a Hilbert space for the internal degree of

freedom of the detector, as well as a Hilbert space for the field degrees of freedom, H = HD⊗HF .

The free Hamiltonian, Ĥ0 = ĤD + ĤF , consists of the free Hamiltonian ĤD for the UDW

detector and the free Hamiltonian ĤF of the scalar quantum field, which are respectively given

as

ĤD := Ω |e〉 〈e| and ĤF :=

∫
d3k ck â†kâk , (1.1)

with k := |k|. While c here stands for the speed of light in the vacuum, we will later also consider

media with lower wave propagation speeds. We set ~ = 1 throughout this thesis1. Let us here

briefly review some basics and notational conventions with respect to the free Hamiltonian of

the scalar quantum field (see, e.g., [57, 58]). We refer to â†k and âk respectively as the creation

and annihilation operators of scalar field modes of momentum k. These operators satisfy the

1except in plots in which we consider numeric values, as well as in chapter 3 in which we make quantitative

order of magnitude estimates
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following canonical commutation relations:

[âk1
, â†k2

] = δ(3)(k1 − k2) , [âk1
, âk2

] = [â†k1
, â†k2

] = 0 (1.2)

The vacuum state |0〉 of the scalar field can be defined by requiring that it is annihilated by all

annihilation operators:

âk |0〉 = 0 ∀ k (1.3)

It is easily verified that the vacuum state is the lowest energy eigenstate of the free scalar field

Hamiltonian, ĤF |0〉 = 0 |0〉. By acting with the creation operators â†k on the vacuum state, one

obtains excited field states as follows:

|k〉 := â†k |0〉 (1.4)

Since the energy of these excited field states, ĤF |k〉 = ck |k〉, is in accordance with the dispersion

relation for a massless relativistic particle of 3-momentum k, the states |k〉 are referred to as

single particle states. Acting repeatedly with the creation operators on the vacuum state, we

obtain n−particle states,

|k1, . . . ,kn〉 :=
1√
n!
â†k1

. . . â†kn |0〉 (1.5)

which form an orthonormal basis for the Hilbert space of the field degrees of freedom.

Let us now discuss how to couple a UDW detector to a scalar quantum field. There are

many variations and modifications of the UDW detector model. Which model to employ very

much depends on the desired level of accuracy and on the physical system one wishes to model.

1.1 Standard UDW model

In its simplest form, the UDW detector model considers a pointlike qubit system that interacts

with the quantum field along the detector’s prescribed classical worldline [5]. Throughout this

entire thesis, we will assume the center of mass velocities to be non-relativistic, which allows

us to identify the proper time of the detector with the coordinate time t, and we write x(t)

for the detector’s spatial trajectory. The UDW detector model usually assumes the interaction

Hamiltonian in the Schrödinger picture to take the simple form

Ĥint = λµ̂⊗ φ̂(x(t)) . (1.6)
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Here, λ denotes the coupling strength, µ̂ is the monopole operator of the detector in the

Schrödinger picture,

µ̂ = |e〉 〈g|+ |g〉 〈e| , (1.7)

and φ̂ is the scalar quantum field operator in the Schrödinger picture:

φ̂(x) =

∫
d3k

(2π)3/2

√
c2

2k

(
eikxâk + H.c.

)
(1.8)

In the following, we will study the time evolution of the detector and the scalar field in the

interaction picture (also known as the Dirac picture). We recall that in the interaction picture,

operators evolve under the time evolution operator generated by the free Hamiltonian, while

states evolve under the time evolution operator generated by the interaction Hamiltonian [58].

For an operator Ô in the Schrödinger picture, we obtain its interaction picture representation

Ô(t) according to

Ô(t) = Û0(t) Ô Û †0(t) , (1.9)

with Û0(t) := eiĤ0t. In the interaction picture, the interaction Hamiltonian (1.6) thus reads

Ĥint(t) = λµ̂(t)⊗ φ̂(x(t), t) , (1.10)

where the monopole operator and the scalar field operators evolve according to the free Hamil-

tonian in Eq.(1.1) as follows:

µ̂(t) = eiΩt |e〉 〈g|+ H.c. , (1.11)

φ̂(x, t) =

∫
d3k

(2π)3/2

√
c2

2k

(
e−ickt+ikxâk + H.c.

)
(1.12)

In the interaction picture, the states evolve in time according to the Dyson operator

Û := T exp

(
−i
∫ ∞
−∞

dt′Ĥint(t
′)

)
, (1.13)

with T exp the time-ordered exponential. For small coupling strengths λ, we can treat the

interaction as a small perturbation of the free time evolution of the detector and the field, and

we can perturbatively expand the time evolution operator as

Û =
∞∑
n=0

Û (n) , (1.14)
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where the n−th order of the time evolution operator is explicitly given as follows:

Û (n) := (−i)n
∫ ∞
−∞

dt1Ĥint(t1)

∫ t1

−∞
dt2Ĥint(t2)· · ·

∫ tn−1

−∞
dtnĤint(tn) . (1.15)

The transition probability amplitude for the coupled system to evolve from an initial state |Ψi〉
to a final state |Ψf〉 then becomes, to first perturbative order:

A := −i 〈Ψf |
∫ ∞
−∞

dt Ĥint(t) |Ψi〉 (1.16)

The transition probability follows by taking the modulus squared of the transition probability

amplitude, P := |A|2. Within the standard UDW detector model, we are now equipped to

study the probabilities for various processes in the light-matter interaction to happen, e.g., the

processes of spontaneous emission, stimulated emission or absorption. Before we discuss some of

these effects, let us note that a plethora of modifications of the standard UDW model can be

found in the literature [52, 55, 5]. In the following two sections, we briefly mention two such

modifications, namely a UDW-type model including a switching function, and a UDW-type

model including a smearing profile.

1.2 UDW model including a switching function

The interaction Hamiltonian in Eq.(1.6) is oftentimes extended to include a switching function

χ(t), via which the interaction between the detector and the quantum field can then be switched

on and off:

Ĥint = λχ(t) µ̂⊗ φ̂(x(t)) (1.17)

For χ(t) ≡ 1, the interaction is switched on for all times and we recover the interaction

Hamiltonian of the standard UDW model in Eq.(1.10). For χ(t) = δ(t− t0), the interaction is

switched on only at time t = t0. Common choices for square integrable switching functions (see,

e.g., [22]) are for instance a Gaussian switching function,

χ(t) = exp

(
−(t− t0)2

2σ2

)
, (1.18)

a rectangular switching function,

χ(t) =

1, for t0 ≤ t ≤ tf

0 otherwise ,
(1.19)
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or a compact sine switching function:

χ(t) =

sin (t/σ) , for 0 ≤ t ≤ πσ

0 otherwise
(1.20)

Oftentimes, switching functions are introduced in order to render total transition probabilities

finite, which would otherwise either diverge or vanish. We note that by introducing a switching

function into the interaction, time translation invariance is broken and energy is no longer a

conserved quantity. One way to think about this is to imagine an external agent, who switches

the interaction on and off, and who thereby provides or extracts energy to or from the system.

1.3 UDW model including a smearing profile

Another routinely employed extension of the conventional UDW detector model is obtained by

introducing a spatial smearing profile into the interaction Hamiltonian (see, e.g., [52]), in an

attempt to account for the finite size of the atom. A classical spatial smearing profile ξ(x) can

be included in the interaction Hamiltonian in Eq.(1.10) as follows:

Ĥint(t) = λµ̂(t)

∫
d3x ξ(x− x0)φ̂(x, t) (1.21)

= λχ(t)µ̂(t)

∫
d3k√
2ck

[
âke

−i(ckt−kx0)ξ̃(k) + â†ke
i(ckt−kx0)ξ̃(−k)

]
(1.22)

Here, ξ(x) denotes the spatial smearing profile, ξ̃(k) denotes its Fourier transformation,

ξ̃(k) :=

∫
d3x

(2π)3/2
ξ(x) eikx , (1.23)

and x0 denotes the center of mass position of the spatially smeared UDW detector. We here note

that by introducing a smearing profile, the momentum of the coupled system of detector and

field is no longer conserved. This is analogous to breaking energy conservation by introducing

a switching function. Again, we might want to imagine an external agent, who keeps the

detector in place according to the spatial smearing profile, and who thus compensates any sort

of recoil that the detector would otherwise experience. We can thus view this external agent

as representing a momentum reservoir, thereby allowing certain transitions in the light-matter

interaction (which would otherwise be excluded according to momentum conservation) to happen.
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A widely employed smearing profile is a Gaussian profile such as the following:

ξ(x) =

(
2

πL2

)3/2

e−2x2/L2

, ξ̃(k) =

(
1

2π

)3/2

e−L
2k2/8 (1.24)

We will here refer to L as the width of the smearing profile. The pointlike, standard UDW

detector model in Eq.(1.10) is approached in the limit L→ 0, in which the Gaussian smearing

profile becomes a Dirac delta distribution:

lim
L→0

(
2

πL2

)3/2

e−2x2/L2

= δ(3)(x) (1.25)

Since the smearing profile is normalized,
∫
d3x ξ(x) = 1, one might be tempted to view the

smearing profile ξ(x) as a probability distribution resulting from a wave function, ξ(x) = |ψ(x)|2,

according to which the charge distribution couples to the field. However, in [23] things were

shown to be more subtle than that. The authors showed how to derive a physically motivated

smearing profile for a UDW detector modelling an atom, in terms of the detector’s orbital wave

functions. What is remarkable about these findings is that it showed how to overcome the need

for introducing smearing profiles in an ad hoc fashion into the UDW detector model. Let us

here briefly summarize some of these findings. The authors started their discussion from the

dipole coupling between an electric dipole and the electromagnetic field,

Ĥint = d̂ · Ê = e x̂ · Ê , (1.26)

with Ê the electric field operator, d̂ the dipole moment operator, x̂ the position operator and e

the charge of the electric dipole. The interaction Hamiltonian can be expressed in terms of an

orthonormal basis {|i〉} of the electric dipole as follows:

Ĥint = e
∑
i,j

〈i| x̂ · Ê |j〉 |i〉 〈j| (1.27)

With the simplifying assumption that only two atomic energy levels, denoted by |g〉 and |e〉
respectively, interact with the electric field, the interaction Hamiltonian in the interaction picture

becomes:

Ĥint(t) = e 〈e| x̂ · Ê |g〉 eiΩt |e〉 〈g|+ H.c. (1.28)

Finally, inserting resolutions of the identity in the position eigenbasis, 1 =
∫
d3x |x〉 〈x|, the

interaction Hamiltonian can be rewritten as

Ĥint(t) = e

∫
d3x

[
(ψ∗e(x) xψg(x)) · Ê(x, t)eiΩt |e〉 〈g|+ H.c.

]
, (1.29)
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where ψg(x) = 〈x|g〉 and ψe(x) = 〈x|e〉 denote respectively the ground and excited energy

wave functions of the detector in the position representation. The authors thus succeeded in

identifying a physically motivated spatial smearing profile,

F(x) = ψ∗e(x) xψg(x) , (1.30)

according to which the dipole coupling can be expressed as a coupling with spatial smearing

profile,

Ĥint(t) = e

∫
d3xF(x) · Ê(x, t) eiΩt |e〉 〈g|+ H.c. . (1.31)

Inspired by their findings for the dipole coupling, the authors then proposed to modify the UDW

detector model as follows,

Ĥint(t) = λµ̂(t)

∫
d3xF (x)φ̂(x, t) , (1.32)

with the smearing profile F (x) := ψ∗e(x)ψg(x), such as to account for the finite spatial extent

acquired by a UDW detector via its orbital wavefunctions. An alternative derivation of the

smearing profile F (x) in Eq.(1.32) is the following [29]: considering the interaction between the

scalar field and a quantum mechanical position operator x̂ corresponding to the internal degrees

of freedom of the detector,

Ĥint = λ

∫
d3x φ̂(x) δ(3)(x− x̂) (1.33)

resolutions of the identity in the energy eigenbasis of the internal degrees of freedom can be

inserted, such as to obtain

Ĥint = λ
∑
i,j

∫
d3x

∫
d3y φ̂(x) δ(3)(x− y) 〈i|y〉 〈y|j〉 |i〉 〈j| (1.34)

= λ

∫
d3x φ̂(x)

[
ψ∗e(x)ψg(x) |e〉 〈g|+ ψ∗g(x)ψe(x) |g〉 〈e|

]
(1.35)

= λ

∫
d3x φ̂(x)

∑
i 6=j

Fij(x) |i〉 〈j| , (1.36)

with Fij(x) := ψ∗i (x)ψj(x). We here stress that the quantum mechanical position operator x̂,

which couples to the field operators, is associated with the orbital degrees of freedom of the

detector, and ψg(x) and ψe(x) respectively denote the position representations of the orbital

energy eigenfunctions of the detector. To summarize, the authors found that the finite spatial

extent of an atom due to its electronic orbitals can be reflected within the UDW detector model

via spatial smearing profiles.
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1.4 Simple processes in the light-matter interaction

In this section, we briefly review some simple processes in the light matter interaction, modeled

within the UDW detector model. We will revisit these processes in sections 2.2-2.4 of the next

chapter, when taking into account the coherent delocalization of the detector.

1.4.1 Spontaneous emission process for UDW detectors

Let us start by recalling how to calculate the spontaneous emission rate for an UDW detector.

We consider an initially excited UDW detector, as well as a massless scalar field initially in its

vacuum state:

|Ψi〉 = |e〉 ⊗ |0〉 (1.37)

For simplicity, we will here assume that the detector is at rest, x(t) ≡ x0. To calculate the

transition amplitude to a final state in which the detector is in its ground state and a field

quantum of momentum k has been emitted,

|Ψf〉 = |g〉 ⊗ |k〉 . (1.38)

we first calculate the following matrix elements:

〈g| µ̂(t) |e〉 = e−iΩt (1.39)

〈k| φ̂(x0, t) |0〉 =
1

(2π)3/2

c√
2k
eickt−ikx0 (1.40)

Employing a rectangular switching function as in Eq.(1.19), which turns the interaction on at

the initial time t = ti and turns it off at the final time t = tf , we obtain the following transition

amplitude, up to a complex phase:

A =
λc√
2k

1

(2π)3/2

∫ tf

ti

dt eit(ck−Ω) . (1.41)

In order to eliminate switching effects, we would like to take the limits ti → −∞ and tf →∞,

in which case the energy of the coupled system of detector and field would be conserved,

A =
λc√
4πk

δ(ck − Ω) , (1.42)
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and the detector spontaneously emits a field quantum on resonance, that is, of energy ck = Ω.

However, we note that eliminating the switching function results in time translation invariance,

see, e.g., [5], and consequently in a divergence of the total spontaneous emission probability,

P = |A|2. In order to avoid this divergence, we instead calculate the transition rate, that is, the

transition probability per unit proper time, as outlined for instance in [5, 59]. First, we take

the modulus squared of the transition amplitude in Eq.(1.41) and differentiate the result with

respect to the final time tf , such as to obtain the spontaneous emission rate as a function of the

magnitude k of the momentum of the emitted field quantum:

Rk =
dP

dtf
=

λ2c2

2k(2π)3

(
e−itf (ck−Ω)

∫ tf

ti

dt eit(ck−E) + eitf (ck−Ω)

∫ tf

ti

dt e−it(ck−Ω)

)
(1.43)

Next, we set the initial time to ti = −T/2 and the final time to tf = T/2, such as for the interval

of the interaction to be of length T , and we obtain:

Rk =
λ2c2

2k(2π)3

2 sin (T (ck − Ω))

ck − Ω
=

λ2c2

2k(2π)3

∫ T

−T
dt eit(ck−Ω) (1.44)

As a final step, we take the limit T → ∞, such as to avoid switching effects, and obtain the

spontaneous emission rate, as a function of the momentum k of the emitted field quantum:

Rk =
λ2Ω

2π

1

4πk2
δ

(
k − Ω

c

)
(1.45)

To obtain the total spontaneous emission rate R, irrespective of the momentum of the emitted

field quantum, we trace over the Hilbert space HF of the field degrees of freedom:

R =

∫ ∞
0

dk 4πk2Rk =
λ2Ω

2π
(1.46)

Equipping the UDW detector with a spatial smearing profile ξ(x), the spontaneous emission

probability amplitude becomes, up to a phase,

A =
λc√
2k

1

(2π)3/2

∫ tf

ti

dt eit(ck−Ω)

∫
d3x ξ(x)e−ikx , (1.47)

and the total spontaneous emission rate becomes

R = λ2cπ

∫
d3k
|ξ̃(k)|2

k
δ

(
k − Ω

c

)
. (1.48)

For the Gaussian smearing profile in Eq.(1.24), the spontaneous emission rate further simplifies:

R =
λ2Ω

2π
exp

(
−L

2Ω2

4c2

)
(1.49)
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We here note that in the limit L→ 0, the smearing profile becomes sharper and sharper and

approaches a Dirac delta distribution, and as expected, the spontaneous emission rate indeed

approaches the spontaneous emission rate for pointlike detectors, as given in Eq.(1.46).

1.4.2 Absorption process for UDW detectors

Next, let us recall the absorption process of a photon by a UDW detector. We consider a

to-be-absorbed photon of momentum k and a UDW detector at rest in its ground state,

|Ψi〉 = |g〉 ⊗ |k〉 , |Ψf〉 = |e〉 ⊗ |0〉 . (1.50)

First, we calculate the following matrix elements:

〈0| φ̂(x, t) |k〉 =
1

(2π)3/2

c√
2k
e−ickt+ikx (1.51)

〈e| µ̂(t) |g〉 = eiΩt (1.52)

Let us assume that the detector is pointlike and located at the origin. Without loss of generality,

we assume that the to-be-absorbed field quantum propagates in the z−direction, k = (0, 0, k)T .

We obtain for the absorption probability amplitude, up to a phase and to first perturbative

order:

A =
λc√
2k

1

(2π)3/2

∫ tf

ti

dt eit(Ω−ck)t (1.53)

For the absorption probability rate we obtain:

R =
λ2Ω

2π

1

4πk2
δ

(
Ω

c
− k
)

(1.54)

As expected, photons can only be absorbed if they are on resonance with the energy gap of

the detector, ck = Ω. The same holds true for spatially smeared UDW detectors, for which we

obtain the absorption probability rate

R =
λ2c

2k

∣∣∣ξ̃(k)
∣∣∣2 2π δ

(
Ω

c
− k
)
. (1.55)

As we might have expected intuitively, the absorption process now indeed depends on the spatial

smearing profile of the detector absorbing the photon.
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1.4.3 Vacuum excitation process for UDW detectors

Lastly, let us recall the excitation process of a UDW detector in the vacuum. We consider the

initial state

|Ψi〉 = |g〉 ⊗ |0〉 , (1.56)

and study the transition to a final state in which the detector is in its excited state and a field

quantum of momentum k has been emitted,

|Ψ〉f = |e〉 ⊗ |k〉 . (1.57)

Since the probability amplitude for this transition vanishes for a detector at rest that is switched

on at all times,

A =
λc√
4πk

δ(ck + Ω) = 0 , (1.58)

we find that the vacuum excitation probability vanishes. The same holds true also for spatially

smeared detectors,

A =
λc√
2k
ξ̃(k) 2π δ(ck + Ω) = 0 . (1.59)

The reason for this is simple: the detector is at rest, in its ground state and switched on at all

times, while the stress-energy of the quantum field in the vacuum state vanishes. Therefore,

there is simply no energy available for the vacuum excitation process to occur. In order to obtain

a finite vacuum excitation probability, energy must be provided, which means that translation

invariance needs to be broken. One possible way to achieve this is to introduce a switching

function χ(t), as discussed in section 1.2. The excitation probability amplitude then becomes

A =
λc√
2k

1

(2π)3/2

∫ ∞
−∞

dt χ(t)eit(ck+Ω) , (1.60)

and for the total vacuum excitation probability we obtain:

P =
λ2c2

(2π)3

∫
d3k

1

2k

∣∣∣∣∫ ∞
−∞

dt χ(t)eit(ck+Ω)

∣∣∣∣2 (1.61)

For a spatially smeared and temporally switched detector, we obtain the following excitation

probability:

P = λ2c2

∫
d3k

1

2k

∣∣∣∣∫ ∞
−∞

dt χ(t)eit(ck+Ω)

∣∣∣∣2 ∣∣∣ξ̃(k)
∣∣∣2 (1.62)
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As an example, let us consider a Gaussian switching function of width σ, as given in Eq.(1.18),

and a Gaussian spatial smearing profile of width L, as given in Eq.(1.24). We obtain the

following vacuum excitation probability:

P =
λ2y2e−σ

2Ω2

4πΩ2σ2

[
1 +
√
πy e−

L2y2

4c2σ2 +σ2Ω2

[erf (y)− 1]

]
, with y :=

2Ωcσ2

√
L2 + 4c2σ2

(1.63)

Figure 1.1: The vacuum excita-

tion probability for a Gaussian

switched and Gaussian smeared

UDW detector, as a function of

the energy gap Ω of the detector,

for smearing widths L = 5cσ and

L = 10cσ.

In Fig.(1.1), we displayed the vacuum excitation probability given in Eq.(1.63), as a function

of the energy gap Ω of the detector, for different smearing widths (L = 5cσ and L = 10cσ).

Note that, in order to render all quantities in the plot dimensionless, we expressed everything in

terms of the switching width σ and the vacuum speed of light c. We find that for vanishing

energy gaps, Ω→ 0, the vacuum excitation probability approaches a finite value. What we here

observe is radiation emitted by a simple charge, caused by switching the interaction between

the charge and the quantum field on and off: Letting Ω → 0, the free Hamiltonian ĤD of

the internal degrees of freedom of the detector vanishes, and thus commutes with the UDW

interaction Hamiltonian. The dynamics of the internal degree of freedom thus “freeze out”, and

we recover the Hamiltonian for a simple charge interacting with the quantum field. For the case

of a simple charge without excitable internal degrees of freedom, all energy provided by the

switching function can go into the excitation of the field. As the detector’s energy gap increases,

Ω 6= 0, the excitation of the field along with the excitation of the detector becomes energetically

more expensive, and the vacuum excitation probability decreases accordingly. We can further

see that the vacuum excitation probability increases with decreasing smearing widths. For large

energy gaps and large smearing widths, the vacuum excitation probability goes to zero: our

external agent would need to provide larger and larger energy and momentum reservoirs, in

order to enable the excitation of the detector and the field.
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Chapter 2

Coherently delocalized detector model

We will now go beyond the conventional UDW detector model, by dropping the simplifying

assumption that the center of mass of the detector follows a classical worldline. We generalize

the UDW detector model, to take into account effects that arise with the quantum delocalization

of the detector’s center of mass. To this end, instead of prescribing a center of mass trajectory,

we equip the detector with first-quantized center of mass degrees of freedom.

2.1 Setting up the interaction Hamiltonian

Equipping the detector with quantized center of mass degrees of freedom, the total Hilbert

space of the coupled system of detector and quantum field factorizes into a Hilbert space for the

detector’s center of mass degrees of freedom, a Hilbert space for the detector’s internal degree of

freedom, and a Hilbert space for the field degrees of freedom:

H = HCM ⊗HD ⊗HF (2.1)

Let us now write the free Hamiltonian of the UDW detector and the scalar quantum field as

follows:

Ĥ0 = ĤCM + ĤD + ĤF (2.2)

Let us assume that ĤD and ĤF are given as in Eq.(1.1), and that the time evolution of the

quantum center of mass of the detector is given by

ĤCM =
p̂2

2M
, (2.3)
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where p̂ denotes the center of mass momentum operator and M the mass of the detector.

According to the free time evolution of the quantum center of mass, an initially localized center

of mass wave packet dynamically delocalizes and thereby spreads in space. We now again model

the interaction of the detector and the quantum field via the monopole operator coupling:

Ĥint = λµ̂φ̂(x̂) (2.4)

As before, the coupling takes place at the center of mass position of the detector, which now

however is described by the center of mass position operator x̂. How can we make sense of

an operator-valued field φ̂ which takes a position operator x̂ as its argument? To answer this

question, we apply the spectral theorem of functional calculus, as described, e.g., in [28, 29]. An

operator-valued function f̂ can take an operator Â as its argument by expanding the operator

in its eigenbasis and evaluating the function on the operator’s eigenvalues:

f̂(Â) =

∫
da |a〉 〈a| ⊗ f̂(a) , with Â |a〉 = a |a〉 (2.5)

For the interaction Hamiltonian in Eq.(2.4), we first expand the center of mass position operator

x̂ in terms of its eigenbasis,

x̂ =

∫
d3xx |x〉 〈x| , (2.6)

where |x〉 are the position eigenstates and x are the position eigenvalues of the center of mass

of the UDW detector. We then evaluate the quantum field operators on the center of mass

position eigenvalues:

Ĥint = λ

∫
d3x P̂(x)⊗ µ̂⊗ φ̂(x) (2.7)

We here defined the operators P̂(x) := |x〉 〈x| in terms of the position eigenstates. With the

free Hamiltonian in Eq.(2.2), we find that the interaction Hamiltonian in the interaction picture

becomes

Ĥint(t) = λ

∫
d3x P̂(x, t)⊗ µ̂(t)⊗ φ̂(x, t) , (2.8)

where the operators P̂(x, t), the monopole operators µ̂(t) and the field operators φ̂(x, t) evolve

in the interaction picture as follows:

P̂(x, t) =

∫
d3p d3q

(2π)3
e−i(p−q)x+it p

2−q2
2M |p〉 〈q| , (2.9)

µ̂(t) = eiΩt |e〉 〈g|+ H.c. , (2.10)

φ̂(x, t) =

∫
d3k

(2π)3/2

√
c2

2k

(
e−ickt+ikxâk + H.c.

)
(2.11)
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Let us here briefly comment on how to physically motivate the mathematical structure of the

coupling given by Eq.(2.7): the expectation value 〈ϕ| Ĥint |ϕ〉 = λµ̂
∫
d3xϕ∗(x)φ̂(x)ϕ(x), for a

center of mass state |ϕ〉, is structurally of similar form as the expectation value 〈ψ| ĤQED
int |ψ〉 ∝∫

d3xψ∗(x) /̂Aψ(x), for the interaction Hamiltonian ĤQED
int of quantum electrodynamics and a

spinor state of the form |ψ〉 ∝
∫
d3xψ(x)â†(x) |0〉. We can thus understand the coupling given

by Eq.(2.7) as a model for the one-particle sector of a quantum field theory (up to subtleties

related to the localizability of particle states in quantum field theory, see, e.g., [60]).

Another comment worth making here is the following. Oftentimes, the monopole moment

coupling in the UDW detector model is viewed as a simplified version of the dipole coupling.

For the interaction between the electromagnetic field and a hydrogen atom whose center of mass

is described classically, the dipole coupling Hamiltonian arises as the leading order term in a

multipolar expansion of the full interaction Hamiltonian. However, for a coherently delocalized

hydrogen atom, it was pointed out in [61] that an additional term, the so-called Röntgen term,

appears at the same order as the dipole coupling term in the multipole expansion. Therefore,

if one wishes to modify the standard UDW detector model in a way that mimics as closely as

possible the dipole coupling of a coherently delocalized hydrogen atom, then one should include

an additional term in Eq.(2.4), such as to mimic not only the dipole term, but also the Röntgen

term. For our purposes here, however, we do not view the coherently delocalized detector as a

model for one specific matter system. Though a delocalizing hydrogen atom is an example of a

delocalizing matter system, we here merely want to qualitatively discuss effects arising with

interaction Hamiltonians of the form given in Eq.(2.4), and develop methods and intuition that

can then be applied towards studying specific physical situations (for instance, atoms interacting

with Bose-Einstein condensates, ions trapped in a harmonic potential interacting with light,

electrons in a magnetic field interacting with light, etc.). We can thus view our coherently

delocalized detector model as an exploratory tool to uncover potential new phenomena that may

arise due to the coherent spreading of the center of mass wave function of a matter system. To

make qualitative and quantitative predictions about the interaction between a quantum field

and a specific delocalized matter system, we should then of course not rely too much on our

exploratory tool, but rather consult a realistic model tailored towards the particular system

in mind. To give an example, we will discuss in chapter 3 how to apply our methods towards

studying quantitatively how the coherent center of mass delocalization affects the transition

rates of a hydrogen atom.

With all the above being said, we are now prepared to dive into the calculations of transition

amplitudes, probabilities and rates, for detectors with coherently delocalizing center of mass
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degrees of freedom that interact with a scalar quantum field.

2.2 Spontaneous emission process for coherently delocal-

ized detectors

Let us begin by investigating the process of spontaneous emission for a detector with quantized

center of mass degrees of freedom, and compare it to the results we obtained in Subsection 1.4.1

for a UDW detector with classical center of mass. To calculate the spontaneous emission rate for

a coherently delocalized detector, we start by considering an initial state at time ti of the form

|ψi〉 = |ϕ〉 ⊗ |e〉 ⊗ |0〉 , (2.12)

that is, we consider a detector whose center of mass is initially in a state |ϕ〉 and whose internal

degree of freedom is initially excited, and we consider the field to be initially in its vacuum state.

We can express the initial center of mass state both in terms of the initial center of mass wave

function in the position or momentum representation,

|ϕ〉 =

∫
d3xϕ(x) |x〉 =

∫
d3p ϕ̃(p) |p〉 , (2.13)

with |x〉 and |p〉 the center of mass position and momentum eigenvectors. To calculate the

transition probability amplitude for the system to end up in a final state at time tf of the form

|Ψf〉 = |r〉 ⊗ |g〉 ⊗ |k〉 , (2.14)

we first calculate the matrix elements

〈r| P̂(x, t) |ϕ〉 =

∫
d3p

(2π)3
ϕ̃(p)e−i(r−p)x+it r

2−p2
2M (2.15)

〈g| µ̂(t) |e〉 = e−iΩt (2.16)

〈k| φ̂(x, t) |0〉 =
1

(2π)3/2

c√
2k
eickt−ikx , (2.17)

where r denotes the detector’s center of mass recoil momentum. To first perturbative order, the

spontaneous emission transition amplitude then becomes, up to a phase:

A =
λc√
2k

1

(2π)9/2

∫
d3p ϕ̃(p)

∫
d3x e−i(k+r−p)x

∫ tf

ti

dt e
it

(
r2−p2

2M
−Ω+ck

)
(2.18)

=
λc√
2k

1

(2π)3/2
ϕ̃(r + k)

∫ tf

ti

dt e
it
(
− r·k
M
− k2

2M
−Ω+ck

)
(2.19)
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We here note that the transition amplitude does not only depend on the momentum k of

the emitted photon, as it was the case within the UDW detector model, but also on the

recoil momentum r of the detector. As we can see from Eq.(2.18), momentum conservation is

automatically enforced: the momentum k of the emitted photon and the recoil momentum r

of the detector are equal to the initial momentum p of the detector. Energy is conserved as

well, provided that we take the limits ti → −∞ and tf →∞. Finite ti and tf would correspond

to a sudden on and off switching of the interaction by an external agent. As a consequence,

time translation invariance would be broken and energy would not be conserved. As in previous

sections, we again eliminate such switching effects, by taking the limits ti → −∞ and tf →∞
and calculating the spontaneous emission rate. To obtain the total spontaneous emission rate R
(that is, the spontaneous emission rate irrespective of the momentum of the emitted photon or

the recoil momentum of the detector), we take the modulus squared of the transition amplitude

A and trace over the Hilbert space HF of the field and the Hilbert space HCM of the center of

mass:

R =

∫
d3k

∫
d3r |A|2 (2.20)

= λ2c2

∫
d3k

∫
d3r

1

2k

1

(2π)3
|ϕ̃(r + k)|2

∫ ∞
−∞

dt e
it
(
− r·k
M
− k2

2M
−Ω+ck

)
(2.21)

Making the substitution p = r + k and carrying out the time integration, we obtain:

R = λ2c2

∫
d3k

∫
d3p

1

2k

1

(2π)2
|ϕ̃(p)|2 δ

(
−p · k

M
+

k2

2M
− Ω + ck

)
(2.22)

We can further simplify this expression, by writing p · k = pk cos(θ) =: pkz, with θ the angle

between the detector’s initial momentum and the momentum of the emitted photon:

R =
λ2c2M

4π

∫
d3p |ϕ̃(p)|2

∫ ∞
0

dk

∫ 1

−1

dz
1

p
δ

(
z − M

pk

(
k2

2M
− Ω + ck

))
(2.23)

Explicitly carrying out the integrations over k and z, and defining the function

T (p) := 2− 1

p

√
(p+Mc)2 + 2ΩM +

1

p

√
(p−Mc)2 + 2ΩM , (2.24)

we finally obtain the following expression for the spontaneous emission rate for a coherently

delocalized detector:

R =
λ2c2M

4π

∫
d3p |ϕ̃(p)|2T (p) (2.25)
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Since T does not depend on the initial center of mass wave function, we call it the template

function for spontaneous emission. We find that the transition rate does not depend on the

center of mass wave function directly, but only on the probability distribution |ϕ̃(p)|2.

Since within our framework we describe the dynamical evolution of the center of mass via

the Schrödinger equation, we need to ensure that the virtual center of mass velocities are well

within the non-relativistic regime. That is, we need to consider center of mass momentum

probability distributions with contributions only for momenta corresponding to virtual velocities

much smaller than the speed of light, v := p/M � c. This allows us to Taylor expand the

template function around p/(Mc) = 0, such as to obtain to second order:

R =
λ2Mc2

2π

∫
d3p |ϕ̃(p)|2

[
A+B

( p

Mc

)2

+O
(( p

Mc

)4
)]

(2.26)

This equation is valid only in the non-relativistic regime, and we here defined the constants

A := 1−
(

1 +
2Ω

Mc2

)−1/2

and B :=
Ω

Mc2

(
1 +

2Ω

Mc2

)−5/2

. (2.27)

2.2.1 Gaussian center of mass wave packet state

Let us now specify an initial center of mass state of the detector. We could, for instance, consider

a Gaussian center of mass wave packet, centered around the position x = x0, which at time

t = 0 is of the following form:

ϕ(x) =

(
2

πL2

)3/4

e−|x−x0|2/L2

(2.28)

Fourier transforming this wave packet, we obtain the center of mass wave function at time t = 0

in momentum space:

ϕ̃(p) =

∫
d3x

(2π)3/2
ϕ(x) e−ipx =

(
L2

2π

)3/4

e−p
2L2/4−ipx0 (2.29)

According to the Schrödinger equation, a wave packet of this form flows together in space from

past infinity towards t = 0, reaches a finite width L at time t = 0, and then flows apart again

towards future infinity:

ϕ(x, t) =

(
2

πL2

)3/4(
1 +

2it

ML2

)−3/2

e−|x−x0|2(L2+2it/M)
−1

(2.30)
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The center of mass wave packet thus dynamically flows together and then spreads in position

space. Meanwhile, the center of mass wave function in momentum space depends on time only

via a complex phase,

ϕ̃(p, t) =

(
L2

2π

)3/4

e−p
2L2/4−ipx0−itp2/(2M) , (2.31)

so that the center of mass momentum probability distribution is constant in time:

|ϕ̃(p, t)|2 ≡ |ϕ̃(p)|2 =

(
L2

2π

)3/2

e−p
2L2/2 (2.32)

Therefore, no matter at what time we choose the center of mass wave packet to be localized

in space according to Eq.(2.28), the resulting momentum probability distribution will always

be of the form in Eq.(2.32). For the spontaneous emission rate for a delocalized detector, as

we found in Eq.(2.25), all that matters is the initial momentum probability distribution. We

could therefore imagine a wave packet that is localized in space according to Eq.(2.28) at time

t = 0, and which first flows together and then spreads in space, but we could equally well

imagine that the wave packet is localized in space according to Eq.(2.28) at time t→ −∞, and

which coherently spreads at all times. In either case, the center of mass momentum probability

distribution is given by Eq.(2.32), and we obtain the following expression for the spontaneous

emission rate:

R =
λ2Mc2

2π

[
A+

3B

L2
+O

(
(LMc)−4

)]
(2.33)

This approximation is valid for widths L� L0, where L0 := 1/(Mc) is the Compton wavelength

of the detector. This result shows that the faster the delocalization process, (i.e., the smaller

the initial width L of the wave packet), the more the spontaneous emission rate is increased.

A possible experimental setup we might imagine here is the following. Let us consider an

ion that is initially localized in the quadratic potential of an ion trap1 [62, 63, 64]. Let us for

simplicity assume that the center of mass is prepared in one of the energy eigenstates of the

trapping potential, which we recall to be given by Hermite functions in three spatial dimensions.

After switching the ion trap off, the center of mass wave function of the ion starts to coherently

spread in space and the center of mass of the ion dynamically delocalizes. In order to avoid

switching effects, we push the initial time (at which we assume that the ion trap is switched off)

1Of course, to make reliable quantitative predictions, one should consult a more sophisticated model of a

trapped ion interacting with the electromagnetic field.
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to ti → −∞, and we do not include a description of the ion trap and the initial localization

process in our model here. The lowest energy eigenstate of a harmonic trapping potential is

simply a Gaussian of the form we considered in Eq.(2.28). For an ion whose center of mass is

initially prepared in the lowest energy eigenstate of the trapping potential, the spontaneous

emission rate is therefore given by Eq.(2.33). The rate depends on how sharply localized the

center of mass is initially in position space, and therefore ultimately on the width of the trapping

potential via which the ion was initially localized. We can intuitively understand the increased

spontaneous emission rate for sharper initial localization as follows. The sharper the center

of mass distribution is in position space, the wider it is in momentum space and the detector

is thus more likely to have larger initial virtual velocities and correspondingly larger kinetic

energies. Since we did not include a switching function in our detector model here, the energy

for the spontaneous emission of a field quantum, accompanied by the recoil of the detector,

is solely provided by the energy of the initial detector excitation and the quantum uncertain

kinetic energy of the center of mass of the detector. Both by increasing Ω and by decreasing L,

more energy is thus available for the spontaneous emission process to happen. We display this

behaviour in Fig.(2.1): we plot the spontaneous emission rate as a function of the energy gap Ω

of the detector, for different detector masses M and different initial delocalization widths L. As

before, we again want to render all quantities in the plot dimensionless. When we considered

transition probabilities before, we introduced switching functions of compact support, and

the characteristic width σ of the switching function, together with the speed of light c, sets

natural time and length scales. Now that we instead consider transition rates, that is, transition

probabilities per unit time, the unit time interval, which we will denote by τ , together with

the speed of light c, sets natural time and length scales. Further, the Planck constant ~ sets a

natural mass scale. In our plots, we render all quantities dimensionless, by expressing them in

terms of τ , c and ~.

We further observe in Fig.(2.1) that the spontaneous emission rate tends to zero for the case of a

simple charge, Ω→ 0. The initial quantum uncertain kinetic energy of the detector alone is not

enough to excite the field: one could always perform a quantum reference frame transformation

into the quantum uncertain rest frame of the detector, in which the kinetic energy of the detector

vanishes, and in which the spontaneous emission process is thus energetically impossible. Finally,

we see from Fig.(2.1) that the spontaneous emission rate increases for larger detector mass

M . The smaller the detector mass, the more energy is required for the detector to recoil. The

spontaneous emission of a field quantum is always accompanied by the recoil of the detector.

As the detector mass decreases, the spontaneous emission process becomes energetically more
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Figure 2.1: The spontaneous emission rate R, as a function of the energy gap Ω of the detector,

plotted for different detector masses M and initial delocalization widths L.

expensive and consequently, the spontaneous emission rate decreases.

2.2.2 Excited center of mass wave packet states

We might also be interested in the spontaneous emission rates for ions initially prepared in

excited center of mass energy eigenstates of the harmonic trapping potential of an ion trap. For

instance, we could prepare the ion in the first exited eigenstate of the trapping potential in each

direction, described by the product of linear Hermite polynomials and a Gaussian:

|ϕ〉 =

∫
d3x

8

L3
x1x2x3

(
2

πL2

)3/4

e−|x−x0|2/L2 |x〉 (2.34)

Compared to the spontaneous emission rate in Eq.(2.33), within our coherently delocalized

detector model we find an increase in the spontaneous emission rate:

R =
λ2Mc2

2π

[
A+

9B

L2
+O

(
(LMc)−4

)]
(2.35)

This increase is sensible since the excited center of mass wave function in Eq.(2.34) possesses

more energy and momentum than the ground state wave function of the trapping potential in

Eq.(2.28). The center of mass therefore spreads faster and has more kinetic energy, leading to a

larger energy budget for the process of spontaneous emission to happen.

25



2.2.3 Recovering the UDW detector results in the limit of large

detector mass and correspondingly slow delocalization

Intuitively, the dynamical coherent delocalization of matter affects processes such as spontaneous

emission, since the dynamical delocalization process introduces an effective time-dependence into

the interaction. As we discussed, the center of mass of a coherently delocalized matter system

dynamically spreads in space. The virtual velocities at which our detector spreads however

depends on the detector mass. For a given a center of mass momentum probability distribution,

in the limit of larger and larger detector mass, the center of mass wave function spreads more

and more slowly. In the limit of infinite detector mass, the dynamical delocalization process of

the center of mass “freezes out”, and the wave function only phase rotates in time. Provided

a certain initial center of mass delocalization, the center of mass therefore does not delocalize

any further in space. Let us here see what happens to the spontaneous emission rate in the

infinite mass limit. First, we expand the template function T for large detector masses M , i.e.,

for Mc2 � Ω and Mc� p, to obtain to lowest order:

T0 =
2Ω

Mc2
(2.36)

Since the template function to lowest order does not depend on p, and since the center of mass

momentum probability distribution is normalized, we can then carry out the integral in Eq.(2.25)

and obtain, in the limit of infinite detector mass, the following spontaneous emission rate:

R0 =
λ2c2M

4π

∫
d3p |ϕ̃(p)|2 T0 =

λ2Ω

2π
(2.37)

We notice that the rate R0 coincides with the spontaneous emission rate which we obtained in

Eq.(1.46) for a standard UDW detector with classical center of mass degrees of freedom. This

means that for a coherently delocalized detector, as far as the spontaneous emission rate is

concerned, we indeed recover the result for a standard UDW detector in the infinite mass limit.

Consequently, it is not the amount of initial delocalization of the center of mass, but rather the

dynamics of its delocalization process that affects the spontaneous emission rate.
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Figure 2.2: The spontaneous emis-

sion rate as a function of the detector

mass, plotted for a massive detector

with delocalization width L = 100τc

and energy gap Ωτ = 0.1. The dot-

ted line represents the spontaneous

emission rate for a pointlike UDW

detector with energy gap Ωτ = 0.1.

For finite but large detector masses, taking into account the lowest order correction,

T = T0 −
3Ω2

c4M2
+O

((
Ω

Mc2

)2

,
( p

Mc

)2
)
, (2.38)

shows that the spontaneous emission rate decreases, compared to the spontaneous emission rate

for a standard UDW detector. The spontaneous emission rate given in Eq.(2.33) is displayed in

Fig.(2.2) as a function of the detector mass M , for a Gaussian delocalized massive detector with

L = 100τc and Ωτ = 0.1. The plot confirms that the spontaneous emission rate for a standard

UDW detector is approached in the limit of M → ∞. It also confirms that the spontaneous

emission rate decreases for finite detector masses M → 0, for which the detector spreads at

non-zero virtual velocities. We note that for our choice of L = 100τc here, the non-relativistic

expansion breaks down for masses smaller than Mc2τ/~ ≈ 3.5 and we should therefore only

trust the plot for masses Mc2τ/~ & 3.5.

2.2.4 Incoherent versus coherent delocalization

The delocalization process of the center of mass can be coherent or in part also incoherent,

depending on the purity of the initial center of mass state. So far we assumed the center of mass

of the detector to be initially in a pure wave packet state |ϕ〉. However, for instance with the

help of a double-slit experiment, one could imagine preparing the center of mass of the detector

in a (coherent or incoherent) superposition of several wave packet states.

For instance, the center of mass could initially be in a coherent superposition, |ϕ〉 ∼ |ξ〉+α |χ〉,
with a phase α ∈ C and with |ξ〉 and |χ〉 Gaussian wave packet states, respectively centered
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around x = x0 and x = −x0. We intuitively expect that the spontaneous emission rate could

be affected by the interference between the two wave packets, except of course in the limits

x0 → 0 and x0 →∞, with x0 := |x0|, in which the overlap of the two wave packets in position

space would be trivial. Indeed, we find that the spontaneous emission rate for the coherent

superposition,

R =
λ2Mc2

2π

[
A+

3B

L2
(1− f(x0, α)) +O

(
(LMc)−4

) ]
, (2.39)

now depends both on the separation 2x0 and on the phase α between the two interfering wave

packets:

f(x0, α) :=
4x2

0

3L2

2 Re(α)e−2x2
0/L

2

1 + |α|2 + 2 Re(α)e−2x2
0/L

2
(2.40)

We can easily confirm that the spontaneous emission rate reduces to the rate for a single Gaussian

wave packet in the limits x0 → 0 and x0 → ∞. We further notice that the rate for a single

Gaussian wave packet is also recovered for a purely imaginary phase, Re(α) = 0, and whenever

the two superposed wave functions are orthogonal to one another, since the spontaneous emission

rate only depends on the modulus squared of the initial center of mass wave function.

Alternatively, the center of mass could initially be in a superposition which is in part also

incoherent. For instance, in a double-slit experiment, one could prepare the center of mass in

the mixed state ρ = 1
2

(|ξ〉 〈ξ|+ |χ〉 〈χ|), by leaving only one of the two slits open at a time. The

spontaneous emission rate for the partly incoherent superposition is the same as the spontaneous

emission rate for a single Gaussian wave packet, as given by Eq.(2.33).

We conclude that the light-matter interaction indeed distinguishes between coherent and

incoherent delocalization.

2.3 Absorption process for coherently delocalized detec-

tors

Let us now study the impact of a detector’s coherent center of mass delocalization on the

absorption process. We consider an initial state at time ti of the form

|ψi〉 = |ϕ〉 ⊗ |g〉 ⊗ |k〉 , (2.41)
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for which the quantum field is in a single particle state, and consider the transition to a final

state at time tf of the form

|Ψf〉 = |r〉 ⊗ |e〉 ⊗ |0〉 . (2.42)

We obtain the following transition amplitude, up to a phase and to first perturbative order:

A =
λc√
2k

1

(2π)3/2
ϕ̃(r− k)

∫ tf

ti

dte
it
(

Ω−ck+ r·k
M
− k2

2M

)
(2.43)

Tracing over the detector’s recoil momentum r, we obtain the absorption probability rate:

R =
λ2c2

2k

1

(2π)3

∫
d3p|ϕ̃(p)|2

∫ ∞
−∞

dte
it
(

Ω−ck+p·k
M

+ k2

2M

)
(2.44)

Let us assume that the to-be-absorbed field quantum propagates along the z−direction, k =

(0, 0, k)T , and that the initial center of mass wave function is a Gaussian wave packet as given

in Eq.(2.29). The absorption rate then simplifies to:

R =
λ2c2

k28π2

ML√
2π

exp

(
−L

2M2

2k2

(
Ω− ck +

k2

2M

)2
)

(2.45)

Let us confirm that in the limit of very large detector mass, we again recover the result we

obtained for a standard UDW detector with classical center of mass degrees of freedom. We use

the fact that we can write a delta distribution as an infinitely peaked Gaussian,

δ(x) = lim
ε→0+

1√
2πε

e−
x2

2ε , (2.46)

to obtain for the absorption rate in the infinite mass limit:

lim
M→∞

(R) =
λ2Ω

2π

1

4πk2
δ

(
Ω

c
− k
)
. (2.47)

This is indeed the absorption rate which we obtained in Eq.(1.54) for a standard UDW detector

at rest. While standard UDW detectors can only absorb photons whose momenta are on-

resonance (i.e., photons whose momenta match the detector’s energy gap, ck = Ω), Eq.(2.45)

shows that quantum delocalized detectors of finite mass M can, to a certain extent, also absorb

off-resonance photons. The absorption rate for off-resonance field excitations is however Gaussian

suppressed. In Fig.(2.3), we plot the absorption rate as a function of the momentum k of the

to-be-absorbed photon, for different detector masses M , where we fixed L = 10τc and Ωτ = 0.2.
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The plot shows that quantum delocalized detectors can absorb off-resonance photons (i.e., for

the parameters we chose here, photons with kτc 6= 0.2)2. We can see that the smaller the

detector mass, that is, the faster the dynamical delocalization process of the detector’s center of

mass, the more off-resonance the absorption process becomes. Intuitively, we can understand

this phenomenon by reminding ourselves that small masses correspond to large virtual velocities

with correspondingly large kinetic energies. Combined with the kinetic energy uncertainty of the

quantum uncertain center of mass, we expect that the spectral distribution of photons which

the detector can absorb becomes wider and shifts towards higher photon momenta k. We find

this intuition confirmed in Fig.(2.3).

Figure 2.3: The absorption rate for

a quantum delocalized detector, as a

function of the momentum k of the to-

be-absorbed photon, plotted for differ-

ent detector masses M (with Ωτ = 0.2

and L = 10τc). The smaller the detec-

tor mass (i.e., the faster the dynami-

cal delocalization process), the more

favorable the absorption of photons

with large momenta becomes.

2.4 Vacuum excitation process for coherently delocal-

ized detectors

Lastly, let us here study the vacuum excitation process for quantum delocalized detectors. As

we discussed in section 1.4.3, a UDW detector at rest, which is switched on at all times, can

not become excited by the vacuum. This is simply because no energy is available for this

vacuum excitation process to happen. The same holds true for an inertial UDW detector which

is switched on at all times: we can always perform a reference frame transformation into the

2Of course, in a sense, the process is still on-resonance. However, the energy balance now includes not only

the detector’s energy gap and the energy of the to-be-absorbed photon, but also the quantum uncertain initial

kinetic energy of the detector, as well as the recoil energy.
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rest frame of the detector, in which we can easily convince ourselves that there is no energy

available for the process to happen. In order to obtain a non-vanishing vacuum excitation

probability for inertial UDW detectors, one needs to introduce a switching function. Taking the

quantum delocalization of the detector’s center of mass into account, we may now ask whether

the quantum uncertainty of the kinetic energy of the detector might make the vacuum excitation

process possible, without needing to introduce a switching function. The answer to this question

is no: employing the formalism of quantum reference frames [65, 66, 67, 68, 69, 70], one can

always transform into the quantum uncertain rest frame of the detector, for which the vacuum

state of the quantum field transforms trivially and thus, again, no energy is available for the

vacuum excitation process to happen.

Even without employing the formalism of quantum reference frames, we can convince

ourselves 3 that the coherent dynamical delocalization process cannot trigger vacuum excitation.

For this purpose, let us consider a UDW detector in its ground state, with quantized center of

mass, coupled to a scalar quantum field in its ground state:

|Ψi〉 = |ϕ〉 ⊗ |g〉 ⊗ |0〉 (2.48)

For the transition probability to a state in which both the detector and the field are excited,

|Ψf〉 = |r〉 ⊗ |e〉 ⊗ |k〉 , (2.49)

we obtain the vacuum excitation rate

R =
λ2c2

4π

∫
d3p |ϕ̃(p)|2 T (p) , (2.50)

where we traced over the momentum k of the emitted photon and the recoil momentum r. We

here again defined a template function, T , as follows:

T (p) :=

∫ ∞
0

dk

∫ 1

−1

dz k δ

(
−pkz
M

+
k2

2M
+ Ω + ck

)
(2.51)

Remembering that δ(ax) = δ(x)/|a|, we rewrite the template function as

T (p) =

∫ ∞
0

dk

∫ 1

−1

dz
M

p
δ

(
z − M

pk

(
k2

2M
+ Ω + ck

))
(2.52)

=:

∫ ∞
0

dk

∫ 1

−1

dz
M

p
δ (f(z, k)) . (2.53)

3... at least in the regime of non-relativistic virtual delocalization speeds. To make a general statement valid

also in the relativistic regime, more sophisticated tools, such as quantum reference frames, are needed (see a

soon-to-be-published paper by Flaminia Giacomini and Achim Kempf).
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The here defined function f has zeros for z = M
pk

(
k2

2M
+ ck + Ω

)
. Since the range of the variable z

is restricted to z ∈ [−1, 1], the conditions for the delta distribution to peak are p ≥Mc+
√

2ΩM

and k− ≤ k ≤ k+, with k± = p− cM ±
√

(p− cM)2 − 2ΩM . We can thus rewrite the template

function as follows:

T (p) =

∫ ∞
0

dk
M

p
Θ(k − k−)Θ(k+ − k)Θ(p−Mc−

√
2ΩM) (2.54)

=
2M

p

√
(p− cM)2 − 2ΩM Θ(p−Mc−

√
2ΩM) . (2.55)

Since c here denotes the speed of light, and the detector’s virtual center of mass velocities are

strictly smaller than the speed of light, p/M < c, the Heaviside step function Θ in Eq.(2.55)

is always zero within the physical region of interest. We conclude that the vacuum excitation

process does not occur.

To obtain a non-vanishing vacuum excitation probability, an external agent needs to provide

the system with energy, for instance by switching the interaction of the detector and the quantum

field on and off. In section 1.4.3, we calculated in Eq.(1.63) the vacuum excitation probability

for a UDW detector, whose interaction with the quantum field is switched on and off via a

Gaussian switching function, and whose spatial profile is modeled via a Gaussian smearing

profile. Let us here compare this result to the vacuum excitation probability for a quantum

delocalized detector, whose interaction with the quantum field is switched on and off via a

Gaussian switching function, and whose center of mass wave function is a Gaussian wave packet.

The interaction Hamiltonian we need to use for this purpose is the following:

Ĥint(t) = λχ(t)

∫
d3xP(x, t)⊗ µ̂(t)⊗ φ̂(x, t) (2.56)

We obtain the following expression for the vacuum excitation probability:

P =
λ2c2

(2π)3

∫
d3p

∫
d3k

2k
|ϕ̃(p)|2

∣∣∣∣∣
∫ ∞
−∞

dt χ(t) e
i

(
Ω+ck+ k2−2pk

2M

)
t

∣∣∣∣∣
2

(2.57)

Inserting the Gaussian switching function given in Eq.(1.18), we obtain:

P =
λ2c2
√
πσM

2

∫ ∞
0

dp p |ϕ̃(p)|2
∫ ∞

0

dk

[
Erf
(
σ
(

Ω + ck + k2+2pk
2M

))
−Erf

(
σ
(

Ω + ck + k2−2pk
2M

))]
(2.58)
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We again Taylor expand the function over which the momentum wave function is integrated,

around non-relativistic center of mass velocities, v := p/M � c, such as to obtain:

P = 2σ2λ2c2

∫ ∞
0

dp

∫ ∞
0

dk kp2 |ϕ̃(p)|2 e−σ
2
(

Ω+ck+ k2

2M

)2

×
[
1 + p2 2k2σ4

3M2

((
Ω + ck + k2

2M

)2

− 1

2σ2

)
+O

(( p

Mc

)4
)]

(2.59)

Inserting the Gaussian center of mass wave packet given in Eq.(2.29), the vacuum excitation

probability finally becomes:

P =
σ2λ2c2

16
√

2πL2M4

∫ ∞
0

dk e
−σ2

(
Ω+ck+ k2

2M

)2[
4kL2M4 + 2k3M2σ2(2σ2Ω2 − 1)

+8k4M2σ4Ω + 4k5Mσ4(M + Ω) + 4k6Mσ4 + k7σ4
]

+O
(
(LMc)−4

)
(2.60)

We can evaluate the remaining integration over the photon momenta k numerically. In Fig.(2.4),

we plot the excitation probability for a quantum delocalized detector as well as for a comparable

classically smeared UDW detector with Gaussian smearing profile. We can clearly see that the

result for a quantum delocalized detector differs from the result we obtain by introducing a

classical spatial smearing profile. For the massive detectors, we chose parameters M and L such

as to keep their product fixed, MLc/~ = 500, which ensures that we compare detectors that

dynamically delocalize according to the same virtual velocity distribution. We find that the

vacuum excitation probability for coherently delocalized detectors of delocalization width L is

larger than the vacuum excitation probability for Gaussian smeared UDW detectors of the same

width L.

Figure 2.4: The vacuum ex-

citation probability as a func-

tion of the energy gap Ωσ, for

Gaussian switching of width σ,

both for massive detectors with

Gaussian delocalized quantum

centers of mass and for Gaus-

sian smeared UDW detectors.
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Let us here again take a moment to comment on the limit of large detector masses. Going

back to Eq.(2.57), we find that the vacuum excitation probability becomes independent of the

center of mass wave function in the limit of infinite detector masses:

lim
M→∞

(P ) =
λ2c2

(2π)3

∫
d3k

2k

∣∣∣∣∫ ∞
−∞

dt χ(t) ei(Ω+ck)t

∣∣∣∣2 (2.61)

We recover the vacuum excitation probability for a pointlike UDW detector with switching profile

χ(t). In section 2.2 we had already observed that in the infinite detector mass limit, in which the

dynamical delocalization process “freezes out”, and the center of mass delocalization becomes

static, we recover the results for pointlike UDW detectors, rather than the results for spatially

smeared UDW detectors. In the following section, let us briefly comment on the difference

between quantum center of mass delocalization on one hand, and detector delocalization modeled

via classical spatial smearing profiles, as discussed in section 1.3, on the other hand.

2.5 Smearing profiles and coherent center of mass delo-

calization

When quantizing the center of mass degrees of freedom instead of introducing a spatial smearing

profile, we found that in the infinite mass limit, processes such as spontaneous emission or

vacuum excitation do not depend on the center of mass wave function. We concluded that

these processes do not depend on the static center of mass delocalization, but rather on the

dynamical delocalization process. However, if we wanted to use the center of mass probability

distribution as a classical smearing function for the UDW detector model, as we saw in sections

1.4.1 and 1.4.3, we would find that the spontaneous emission or vacuum excitation rates depend

explicitly on the classical smearing profile employed—even in the infinite mass limit, in which

the delocalization is static. We can thus conclude that center of mass delocalization cannot be

appropriately described by interpreting the center of mass probability distribution as a spatial

smearing profile.

As we saw in section 1.3, for the delocalization arising from the orbitals of the detector, one

can derive smearing functions from the orbital wave functions of an atom. The such obtained,

physically motivated, spatially smeared UDW detector model then accounts for the spatial

extent of the detector due to its orbital wave functions. Let us now see whether we can perform

a similar calculation for the delocalization arising from the center of mass wave function of the
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detector. To this end, we assume the quantum mechanical position operator x̂ in Eq.(1.33) to be

no longer associated with the position operator corresponding to the detector’s internal degrees

of freedom, but rather with the position operator corresponding to the detector’s quantized

center of mass degrees of freedom. Instead of inserting resolutions of the identity in terms of

the discrete orbital energy eigenfunctions, we now insert resolutions of the identity in terms of

the continuous center of mass momentum eigenfunctions:

Ĥint = λµ̂

∫
d3x φ̂(x) δ(3)(x− x̂) (2.62)

= λµ̂

∫
d3p

∫
d3q

∫
d3x

∫
d3y φ̂(x) δ(3)(x− y) 〈p|y〉 〈y|q〉 |p〉 〈q| (2.63)

= λµ̂

∫
d3x φ̂(x)

∫
d3p

∫
d3q ψ∗p(x)ψq(x) |p〉 〈q| (2.64)

Here, ψp(x) := 〈x|p〉 = (2π)−3/2eip·x denote the momentum eigenfunctions in the position

representation4. We thus find that, in some sense, we can interpret the interaction Hamiltonian

as a spatially smeared interaction:

Ĥint = λµ̂

∫
d3x φ̂(x) F̂ (x) , with F̂ (x) =

∫
d3p

∫
d3q ψ∗p(x)ψq(x) |p〉 〈q| (2.65)

However, now the “smearing profile” F̂ (x) is operator valued. In the center of mass momentum

eigenbasis, it can be expressed in terms of the center of mass energy wave functions that

correspond to the continuous center of mass energy spectrum. We can thus think of the

interaction Hamiltonian as a spatially smeared coupling, where the center of mass momentum

eigenfunctions give rise to an operator valued smearing profile. We now also see why, throughout

this chapter, we obtained different results for the coherently delocalized detector model with an

operator valued smearing profile on one hand, and the UDW detector model with a classical

smearing profile on the other hand.

2.6 Virtual Cherenkov-like effect

In this section, we consider a quantum delocalized detector that couples to a medium. We

investigate whether the dynamical delocalization process of the detector’s center of mass wave

function can trigger the excitation of the detector and the medium.

4Note that the center of mass momentum eigenstates of the detector are also energy eigenstates.
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First, let us recall that a charged classical particle traveling at a constant velocity through

the Minkowski vacuum will not spontaneously emit field quanta, simply because there is no

energy available to create these field quanta in the particle’s rest frame. However, in a medium,

a charged particle traveling at a constant velocity can emit Cherenkov radiation, namely if its

velocity is faster than the wave propagation speed cs in the medium [71, 72, 73]. This is because

in media, boosts are nontrivial, and the ground state of the medium is perceived as an excited

state in the rest frame of a particle travelling at velocities v > cs.

Here, we ask whether merely virtual motion of a quantum delocalized detector in a medium,

due to the coherent spreading of the detector, can trigger the emission of radiation along with

the excitation of the detector. The idea is that this Virtual Cherenkov-like effect could arise

due to those parts of the center of mass momentum wave function that correspond to virtual

center of mass velocities exceeding the wave propagation speed cs of the medium. To investigate

this idea, we here consider a delocalized detector, coupled to a field whose wave propagation

speed is smaller than the speed of light (e.g., a dispersive medium, or a field of quasiparticles or

collective excitations, such as spin waves or phonons in Bose Einstein condensates). We model

these fields in a very simplified manner, namely as scalar quantum fields with wave propagation

speed cs:

φ̂(x, t) =

∫
d3k

(2π)3/2

√
c2
s

2k

(
e−icskt+ikxâk + H.c.

)
(2.66)

We now use these scalar field operators in the interaction Hamiltonian as given in Eq.(2.8),

and assume that the delocalized detector and the scalar quantum field are initially both in

their ground state. Following the same calculations we performed in section 2.4, we obtain the

excitation probability rate

R =
λ2c2

s

4π

∫
d3p |ϕ̃(p)|2 Tcs(p) , (2.67)

where we defined the following template function:

Tcs(p) =
2M

p

√
(p− csM)2 − 2ΩM Θ(p−Mcs −

√
2ΩM) (2.68)

The Heaviside step function Θ in the template function implies that a finite excitation probability

arises, indeed, from those parts of the initial center of mass momentum distribution for which

p ≥Mcs+
√

2ΩM . That is, at least parts of the center of mass wave function must spread faster

than vcrit := cs +
√

2Ω/M . We refer to vcrit as the critical velocity, set by the wave propagation

speed cs in the medium and by the mass M and energy gap Ω of the detector.
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Let us here emphasize that while the usual Cherenkov effect arises for classical charges

coupled to classical fields, the virtual Cherenkov-like effect which we encounter here, due to

virtual motion alone, arises for delocalized detectors coupled to relativistic quantum fields.

Further, unlike usual Cherenkov radiation for simple charges, the Cherenkov-like emission of

radiation is accompanied by the excitation of the detector’s internal degree of freedom, as well as

the recoil of the detector’s center of mass. Concretely, for instance for an atom or ion coupling

to the electromagnetic field in a medium, we expect that sufficiently superluminal virtual center

of mass velocities can lead to the excitation of the atom or ion and the emission of a photon.

In the same way, sufficiently supersonic center of mass virtual velocities of an atom in a Bose

Einstein condensate should lead to the excitation of the atom and the emission of a phonon.

We here note that since we work within the non-relativistic regime as far as the center of mass

motion is concerned, we need to ensure that the supersonic virtual center of mass velocities

are much smaller than the vacuum speed of light. As a potential experimental setup we could

thus for instance imagine localizing an atom in a Bose Einstein condensate, for which the sound

propagation speed could be as low as millimeters per second [74], so that atoms with virtual

velocities above vcrit could still be well within the non-relativistic regime.

We can view the virtual Cherenkov-like effect as a type of friction, which, to some extent,

hinders the particle’s position wave function from spreading supersonically: for supersonic

virtual center of mass velocities, the detector tends to become excited and emit a field quantum,

which causes the detector to recoil, resulting in a slowed down spreading of the detector’s center

of mass wave function. To study this friction effect in more detail, let us here calculate the

excitation probability rate as a function of the detector’s recoil momentum:

R(r) =
λ2c2

4π2

∫
d3k

1

2k
|ϕ̃(r + k)|2 δ

(
Ω + ck − r · k

M
− k2

2M

)
(2.69)

We again consider the spherically symmetric Gaussian center of mass wave packet given in

Eq.(2.29). We further rotate our coordinate system, without loss of generality, in such a way

that the emitted photon propagates in the z−direction, k = (0, 0, k). We finally trace over the

recoil direction, to obtain the excitation rate as a function of the magnitude r of the recoil

momentum:

R(r) =
λ2c L e−L

2(r2+2ΩM)/2

2r(2π)5/2

[
e
−L2cM

(
cM−r+

√
(cM−r)2+2ΩM

)
− e−L

2cM
(
cM+r+

√
(cM+r)2+2ΩM

)]
(2.70)

In order to avoid Gaussian suppression of the excitation rate, we need the width L of the

Gaussian center of mass wave packet to be sufficiently small: as we saw in Eq.(2.68), we need
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the initial center of mass probability distribution |ϕ̃(p)|2 to have contributions for momenta

p ≥Mvcrit, in order for the virtual Cherenkov-like effect to happen, and for the detector’s virtual

center of mass velocities to be slowed down via the recoil. The largest momenta in the Gaussian

center of mass probability distribution are, within 3.5 standard deviations away from the mean,

momenta with pL ≈ 3.5. Thus, for the excitation process to happen, we need an initial wave

packet width L satisfying LMvcrit/~ . 3.5. As an example, let us here choose parameters

cs = 10−3c, Mc2τ/~ = 500 and Ωτ = 10−2, which yields a critical velocity of vcrit ≈ 7.3× 10−3c.

We thus need initial delocalization widths L . τc in order for the virtual Cherenkov-like effect

to occur. Assuming that velocities are non-relativistic if they are smaller than 1% of the vacuum

speed of light, we find that delocalization widths L & 0.7τc correspond to virtual center of mass

velocities within the non-relativistic regime. In Fig.(2.5) we plot the transition rate as a function

of the magnitude r of the recoil momentum. For a range of different initial delocalization

widths L, we find that the excitation rate reaches its maximum for recoil momentum r = 0,

for which the initially supersonically delocalizing detector ends up at rest, as a result of the

virtual Cherenkov-like effect. This confirms that virtual center of mass velocities above the

critical velocity are indeed slowed down, via the emission of Cherenkov-like radiation and the

excitation and recoil of the detector. The plot in Fig.(2.5) moreover confirms that the virtual

Cherenkov-like effect does not occur for detectors whose initial center of mass wave functions

have no contributions above the critical velocity (the curve with L = 1.2τc in our plot), and

their center of mass position wave functions spread unhindered.

Figure 2.5: The vacuum ex-

citation probability rate as a

function of the magnitude r

of the detector’s recoil mo-

mentum, for different ini-

tial delocalization widths L,

where we fixed Ωτ = 10−2

and Mc2τ/~ = 500. We here

considered a wave propaga-

tion speed cs = 10−3c.

For

coherent delocalization above the critical velocity, the virtual Cherenkov-like effect represents

a source of decoherence, which might become important in certain practical applications of
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quantum technologies. Let us imagine, for instance, that a quantum delocalized atom in a

medium absorbs a photon carrying preexisting entanglement with an ancilla. The absorption

process might then localize the atom so strongly that after the absorption process, the atom’s

center of mass wave function contains significant components above the critical velocity. Via the

virtual Cherenkov-like effect, the entanglement transfer would then be vulnerable to decoherence.

However, one could try to eliminate this source of decoherence due to the virtual Cherenkov-like

effect, by externally manipulating the energy gap of the detector, and thus the critical velocity,

e.g. via the Zeeman or Stark effects: depending on the size of the detector gap Ω, the critical

velocity vcrit can be significantly larger than the wave propagation speed cs in the medium. We

close by remarking that the case of a charge without an internal degree of freedom is obtained

as the limiting case Ω → 0, for which the interaction Hamiltonian commutes with the then

vanishing free Hamiltonian of the internal degree of freedom.

2.7 Inverse virtual Cherenkov-like effect

Lastly, let us here consider the transition from an initial state of the form |Ψi〉 = |ϕ〉 ⊗ |e〉 ⊗ |k〉
to a final state of the form |Ψf〉 = |r〉 ⊗ |g〉 ⊗ |0〉. This transition resembles the process of

induced emission: both the field and the detector are initially excited, and the detector ends up

in its ground state. However, while for induced emission the field ends up in a twice excited

state, we here ask whether the field may end up in the vacuum state. In a sense, we could

view this process as an exotic “absorption” process, in which the initial field excitation gets

“absorbed” by an initially excited detector. We will refer to this transition here as the inverse

virtual Cherenkov-like effect, for the following reason: The initial and final field and internal

detector states for the virtual Cherenkov-like effect are respectively the final and initial states

for the inverse virtual Cherenkov-like effect. If it were not for the initial and final center of

mass states, the inverse Cherenkov effect would thus simply be the time-reversed process of the

Cherenkov effect.

Applying similar reasoning as we did for the virtual Cherenkov-like effect, we can again

convince ourselves that without introducing a switching function, this process can happen

neither for UDW detectors, nor for quantum delocalized detectors. However, again just like

the virtual Cherenkov-like effect, the inverse virtual Cherenkov-like effect becomes possible if

the detector couples to a medium and undergoes (real or virtual) supersonic motion. Taking

the center of mass delocalization of the detector into account, we obtain for the transition
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probability amplitude, up to a phase and to first perturbative order:

A =
λcs√

2k

1

(2π)3/2
ϕ̃(r− k)

∫ tf

ti

dt e
it
(
− k2

2M
+ r·k
M
−Ω−csk

)
(2.71)

Let us assume that the to-be-absorbed photon propagates in the z−direction, k = (0, 0, k)T ,

and that the initial center of mass wave packet is spherically symmetric, ϕ̃(p) ≡ ϕ̃(p). We trace

over the detector’s recoil, such as to obtain the following expression for the transition probability

rate:

R(k) =
λ2c2

s

2k

1

(2π)3

∫
d3p |ϕ̃(p)|2

∫ ∞
−∞

dt e
it
(
k2

2M
+p·k
M
−Ω−csk

)
(2.72)

=:
λ2c2

sM

4πk2

∫ ∞
pcrit

dp p |ϕ̃(p)|2 (2.73)

We here defined pcrit := M
∣∣Ω
k

+ cs − k
2M

∣∣. We thus find that the inverse virtual Cherenkov-like

effect can happen only if the center of mass wave function has probability amplitudes for

momenta p ≥ pcrit, that is, contributions corresponding to virtual velocities faster than the

critical velocity ṽcrit :=
∣∣Ω
k

+ cs − k
2M

∣∣. Again employing a Gaussian center of mass wave packet,

as given in Eq.(2.29), we obtain for the transition probability rate as a function of the magnitude

k of the momentum of the photon:

R(k) =
λ2c2

sML

2k2(2π)5/2
e
−M

2L2

2k2

(
Ω+csk− k2

2M

)2

(2.74)

We note that for finite delocalization widths L and finite photon momentum k, in the limit

M →∞, the transition probability rate vanishes:

lim
M→∞

(R) =
λ2c2

s

8π2k
δ (Ω + csk) = 0 (2.75)

This behaviour was to be anticipated, since larger and larger detector masses correspond

to smaller and smaller virtual center of mass velocities. In Fig.(2.6), we plot the transition

probability rate for a Gaussian delocalized detector with mass Mc2τ/~ = 100 and energy gap

Ωτ = 0.2, where we set the wave propagation speed to cs = 10−2c. We chose different values

for L, while ensuring that MLc/~ ≥ 350, such as for the detector’s virtual center of mass

velocities to be within the non-relativistic regime. We find that the transition rate peaks for

to-be-absorbed photons of momentum kτc ≈ 20.2. In Fig.(2.7), we plot the transition probability

rate for a Gaussian delocalized detector with energy gap Ωτ = 0.2 and initial delocalization

width L = 10τc, for various detector masses M . We find that for larger and larger masses, in
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order for the inverse virtual Cherenkov-like effect to happen, the to-be-absorbed photon needs

to be of larger and larger momentum.

Figure 2.6: The transition

probability rate as a function

of the magnitude k of the mo-

mentum of the photon, for

different initial delocalization

widths L. We here chose the

parameters Mc2τ/~ = 100,

Ωτ = 0.2 and cs = 10−2.

Figure 2.7: The transition

probability rate as a function

of the magnitude k of the mo-

mentum of the photon, for

different detector masses M .

We here chose the parame-

ters Ωτ = 0.2, L = 10τc and

cs = 10−2c.

Coming back to Eq.(2.73), let us here finally consider the following concrete scenario: let

us consider the wave propagation field to be the vacuum speed of light, cs = c, and let us ask

whether the inverse virtual Cherenkov-like effect might occur for a field quantum of momentum

k = Ω/c. This field excitation could, of course, easily trigger processes such as absorption or

induced emission. However, for the inverse virtual Cherenkov-like effect, this choice of photon

momentum yields pcrit = 2Mc − Ω/(2c). Assuming that Ω < 2Mc2, which is a reasonable

assumption to make for physical detector systems such as atoms, molecules or ions, we find

pcrit > Mc. A photon of momentum k = Ω/c thus cannot trigger the inverse virtual Cherenkov-
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like effect. However, for media with wave propagation speeds significantly lower than the speed

of light in vacuum, cs � c, it would be feasible to have center of mass wave functions with

significant contributions for momenta p�Mc. As we also confirmed in the Figures above, for

supersonically delocalizing detector systems, we thus indeed obtain a non-zero probability for

observing the inverse virtual Cherenkov-like effect.

In this chapter, we discussed how to modify the UDW detector model, such as to incorporate

the detector’s coherent center of mass delocalization. We discussed how a variety of simple

processes are affected by the quantum center of mass delocalization. We discovered new effects,

such as the virtual Cherenkov-like effect, which, as we discussed, resembles the Cherenkov effect,

but is triggered in media merely via virtual supersonic delocalization. Of course, there are

certainly still many more effects to be explored via the delocalized detector model. However, we

now want to move on and go beyond our delocalized detector model: in the next chapter, we

outline how to study the process of spontaneous emission for a realistically modeled, dynami-

cally delocalizing hydrogen atom that interacts with the electromagnetic field. We will make

quantitative order of magnitude predictions for the increase of the spontaneous emission rate

due to the dynamical delocalization process of the hydrogen atom.
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Chapter 3

Quantum delocalized hydrogen atom

interacting with the electromagnetic

field

For detector systems interacting with a scalar quantum field, in chapter 2 we discussed a variety

of new effects that arise due to the detector’s coherent center of mass delocalization. Our

qualitative explorations, within our coherently delocalized detector model, indicate that the

dynamics of the coherent center of mass delocalization of matter systems should impact their

interaction with light. We here demonstrate an example for how to make order of magnitude

estimates for these effects. We apply the methods we developed in the previous chapter towards

calculating the spontaneous emission rate for a hydrogen atom, whose center of mass dynamically

delocalizes, and which interacts with the electromagnetic field through minimal coupling.

3.1 Hydrogen atom with classical center of mass

Before taking the center of mass delocalization of the hydrogen atom into account, let us briefly

review how to calculate the spontaneous emission rate for a hydrogen atom with classical center

of mass. We consider an electron with quantum orbital degrees of freedom, x̂ and p̂, which

is bound to a proton via a Coulomb potential and which couples to the electromagnetic field

via minimal coupling. For now we assume that the proton is much heavier than the electron,

and that the proton can hence be assumed to have classical orbital degrees of freedom. For
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many purposes, given the mass of an electron, me = 9.11 · 10−31kg, and the mass of a proton,

mp = 1.67 · 10−27kg, this assumption is a reasonable one. (However, for the purpose of studying

the effects of sharp center of mass localization on the light-matter interaction, we will go beyond

this assumption in the subsequent section.) The Hilbert space then factors into a Hilbert

space for the electronic degrees of freedom and a Hilbert space for the field degrees of freedom,

H = He ⊗HF . Let the proton now be located at the origin of our coordinate system. In the

Coulomb gauge, the full Hamiltonian of the system reads

Ĥ =

∫
d3k c~k

2∑
s=1

âs†k â
s
k +

(
p̂ + qÂ(x̂)

)2

2me

− q2

4πε0|x̂|
, (3.1)

with q = 1.602 × 10−19C the elementary charge, ε0 = 8.85 × 10−12C2s2/(m3kg) the vacuum

permittivity, ~ = 1.05× 10−34Js the reduced Planck constant and c = 3× 108m/s the vacuum

speed of light. The operators âs†k and âsk are respectively the creation and annihilation operators

of electromagnetic field modes of momentum k and spin s. The operator Â(x) denotes the

electromagnetic field operator,

Â(x) =

∫
d3k

(2π)3/2

√
~

2ε0ck

2∑
s=1

εs(k)
[
âske

ikx + h.c.
]
, (3.2)

and the polarization vectors, εs(k), satisfy the relations εs(k) · k = 0 and εr(k) · εs(k) = δrs in

the Coulomb gauge.

Let us here mention a subtle issue, related to gauge choices, that has been discussed extensively

in the literature (see, e.g., [75, 76, 77, 78, 61]). The gauge invariance of electrodynamics is

broken by coupling the electromagnetic gauge field to a matter system that is described in first

quantization, rather than in relativistic quantum field theory. Thus, the Hamiltonian in Eq.(3.1)

is not invariant under (possibly time-dependent) gauge transformations of the electromagnetic

potentials (see, e.g., [79]). The spectrum of the Hamiltonian thus generically depends on the

choice of gauge—which, of course, is unphysical. Historically, a common strategy to deal with the

gauge dependence of predictions has been the following. It has been shown that the multipolar

Hamiltonian (related to the minimal coupling Hamiltonian via a so-called Power-Zienau-Wolley

transformation [80, 81, 82, 83]), after a dipole approximation, can be expressed entirely in terms

of observable and gauge-independent quantities, namely in terms of the electric and magnetic

field operators. The dipolar Hamiltonian in this way allows one to make “approximately gauge

invariant” predictions for the light-matter interaction, in the sense that gauge transformations

only affect higher order contributions in the multipole approximation, which are controlled by
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the Bohr radius and the electric charge. For the purpose of this chapter, in which we wish to

demonstrate how to obtain order of magnitude estimates, we will not dive into the subtleties

related to gauge invariance of predictions in the light-matter interaction. We here stick with

the minimal coupling Hamiltonian in Coulomb gauge, as given in Eq.(3.1), accepting that our

results will not be invariant under arbitrary gauge transformations. We rewrite the Hamiltonian

as the sum of a free Hamiltonian and an interaction Hamiltonian, Ĥ = Ĥ0 + Ĥint, with

Ĥ0 :=
∑
n

En |n〉 〈n|+
∫
d3k c~k

2∑
s=1

âs†k â
s
k (3.3)

the free Hamiltonians of the hydrogen atom and the electromagnetic field respectively. Dis-

regarding gauge issues, we let |n〉 = |nlm〉 denote the electronic energy eigenstates of energy

En = 13.6eV/n2, with n the principal quantum number, l the orbital quantum number and m

the magnetic quantum number. For the interaction Hamiltonian, we obtain

Ĥint =
q

2me

(
p̂Â(x̂) + Â(x̂)p̂

)
+O(q2) (3.4)

=
q

2me

∫
d3x

(
p̂Â(x) + Â(x)p̂

)
|x〉 〈x|+O(q2) , (3.5)

where the electromagnetic field operators couple to the momentum operator p̂ of the electron,

and |x〉 denote the position eigenvectors of the electron. We here neglect terms of order O(q2),

as these terms do not contribute to the spontaneous emission process at leading order. In the

interaction picture, the interaction Hamiltonian becomes:

Ĥint(t) =
q

2me

∫
d3x

∫
d3p d3q

(2π~)3

∑
n,m

(p + q)e
it
~ (Em−En)− i

~ (p−q)x ψ̃∗n(p)ψ̃m(q)

× |n〉 〈m| ⊗ Â(x, t) +O(q2) (3.6)

We here introduced resolutions of the identity in the energy eigenbasis, 1 =
∑

n |n〉 〈n|, and we

let ψn(x) and ψ̃n(p) denote the electronic energy eigenfunctions respectively in the position and

momentum representation. Let us now calculate the spontaneous emission rate for an initially

excited hydrogen atom, coupled to the vacuum state of the electromagnetic field,

|Ψi〉 = |e〉 ⊗ |0〉 . (3.7)

We assume that the hydrogen atom is in one of its three first excited energy eigenstates:

|e〉 ∈ {|210〉 , |211〉 , |21− 1〉} (3.8)
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For the process of spontaneous emission, we consider the transition to the final state

|Ψf〉 = |100〉 ⊗ |k, s〉 , (3.9)

for which the hydrogen atom is in its energetic ground state and a photon of momentum k

and spin s was emitted. For the energy difference between the ground state and the first

excited energy eigenstates of the hydrogen atom, we write E1 − E2 = 10.2eV =: ~Ω, with

Ω = 1.55× 1016s−1. The transition amplitude for spontaneous emission then becomes, up to a

phase:

A =
1√

2ε0c~k
q

me

∫ tf

ti

dt

∫
d3p

(2π)3/2
e−it(Ω−ck)εs(k) · p ψ̃e(p)ψ̃g(p− ~k) (3.10)

We here let ψ̃g(p) and ψ̃e(p) respectively denote the ground and first excited energy eigenfunctions

in the momentum representation. In the position representation, the ground and excited

electronic wave functions of the hydrogen atom are respectively

ψg(x) =
1√
πa3

exp
(
−x
a

)
, (3.11)

ψ210(x) =
1√

32πa5
x3 exp

(
− x

2a

)
, (3.12)

ψ21±1(x) = ∓ 1√
32πa5

x1 ± ix2√
2

exp
(
− x

2a

)
, (3.13)

with a = 5.29 × 10−11m the Bohr radius, and where we let x = (x1, x2, x3)
T and x := |x|.

Averaging over the three initial first excited states and tracing over the momentum k and spin

s of the emitted photon, we obtain the total spontaneous emission rate:

R =
1

3

∑
e

∫ ∞
−∞

dt

∫
d3k e−it(Ω−ck) 1

2ε0c~k

(
δij −

kikj
k2

)
q2

m2
e

∫
d3p d3P

(2π)3
piPj

×ψ̃g(p− ~k)ψ̃e(p)ψ̃∗g(P− ~k)ψ̃∗e(P) (3.14)

Since there is no preferred direction for the emitted photon, without loss of generality we can

rotate the coordinate system so that the photon is emitted in the z−direction, k = (0, 0, k)T .

We can then straightforwardly carry out the integrations over t and k. Fourier transforming

the electronic wave functions, as well as exploiting isotropy in the plane orthogonal to the
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z−direction, we can then simplify the spontaneous emission rate as follows:

R =
q2Ω

3m2
eε0c

3~π

∫
d3x

∫
d3y

∫
d3x̃

∫
d3ỹ

[∑
e

ψe(y)ψ∗e(ỹ)

]
ψg(x)ψ∗g(x̃)e−i

Ω
c

(x3−x̃3)

×
∫
d3p d3p̃

(2π~)6
e
i
~pxe−

i
~ p̃x̃
(
p1e

i
~py
)(

p̃1e
− i

~ p̃ỹ
)

(3.15)

=
q2~Ω

3m2
eε0c

3π

∫
d3y

∫
d3ỹ

[∑
e

ψe(y)ψ∗e(ỹ)

][
∂

∂y1

ψg(y)

] [
∂

∂ỹ1

ψg(ỹ)

]
ei

Ω
c

(y3−ỹ3) (3.16)

The summation over the three first excited states explicitly reads∑
e

ψe(y)ψ∗e(ỹ) =
y1ỹ1 + y2ỹ2 + y3ỹ3

32πa5
exp

(
−|y|

2a
− |ỹ|

2a

)
, (3.17)

and the derivative of the ground state wave function becomes:

∂

∂y1

ψg(y) = − y1

|y|
1√
πa5

exp

(
−|y|
a

)
(3.18)

Using symmetry arguments in the integrals in Eq.(3.16), we obtain for the spontaneous emission

rate:

R =
q2~Ω

3m2
eε0c

3π

1

32π2a10

(
27c4a4π

(4Ω2a2 + 9c2)2

)2

(3.19)

≈ 6.27× 108s−1 (3.20)

This is indeed the spontaneous emission rate of a hydrogen atom that can be found in the

literature, see, e.g., [84], and that has been measured in experiments. Note that we can repeat

the above calculations using the multipolar Hamiltonian, and making the dipole approximation,

and obtain the same result to the level of accuracy we are concerned with here (see, e.g., [61] for

a detailed discussion of the multipolar approach). We are now prepared to study the effects of

quantum center of mass delocalization on the spontaneous emission rate for a hydrogen atom.

3.2 Hydrogen atom with quantum center of mass

To take the center of mass delocalization of the hydrogen atom into account, we describe both

the electron and the proton fully quantum mechanically, with position operators x̂e and x̂p and

momentum operators p̂e and p̂p respectively. We let both the electron and the proton interact
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with the electromagnetic field via minimal coupling. In the Coulomb gauge, the full Hamiltonian

then reads:

Ĥ =

∫
d3k c~k

2∑
s=1

âs†k â
s
k +

(
p̂p − qÂ(x̂p)

)2

2mp

+

(
p̂e + qÂ(x̂e)

)2

2me

− q2

4πε0|x̂p − x̂e|
(3.21)

Within this model for a coherently delocalized hydrogen atom interacting with the electromagnetic

field, let us now calculate order of magnitude estimates for how the spontaneous emission rate of

a hydrogen atom is affected by the coherent center of mass delocalization process (again, for an

analogous calculation within the multipolar Hamiltonian, in which gauge issues are addressed

carefully, see [61]). We again write the Hamiltonian as the sum of a free Hamiltonian and an

interaction Hamiltonian, Ĥ = Ĥ0 + Ĥint, and define the interaction Hamiltonian as

Ĥint := q
p̂eÂ(x̂e)

2me

− q p̂pÂ(x̂p)

2mp

+ h.c. +O(q2) , (3.22)

where we again neglect terms of order O(q2), which do not contribute to the spontaneous

emission process at leading order. Let us now introduce relative and center of mass position

operators, x̂rel := x̂e − x̂p and x̂CM := me
M

x̂e + mp
M

x̂p, as well as their conjugate momentum

operators, p̂rel and p̂CM, with M the total mass and µ the reduced mass of the atom. The total

Hilbert space factorizes as H = HCM ⊗Hrel ⊗HF. The free Hamiltonian of the field and the

hydrogen atom then becomes

Ĥ0 =

∫
d3k c~k

2∑
s=1

âs†k â
s
k +

p̂ 2
CM

2M
+
∑
n

En |n〉 〈n| , (3.23)

where the dynamics of the center of mass of the hydrogen atom is described via the Hamiltonian

of a free quantum mechanical particle, and the relative motion gives rise to the discrete energy

spectrum {En} of the hydrogen atom. In terms of center of mass and relative coordinates, we

further obtain for the interaction Hamiltonian:

Ĥint =

∫
d3x

∫
d3y p̂CM |x〉 〈x| ⊗ |y〉 〈y| ⊗

[
q

2M
Â
(
x + µ

me
y
)
− q

2M
Â
(
x− µ

mp
y
)]

+

∫
d3x

∫
d3y |x〉 〈x| ⊗ p̂rel |y〉 〈y| ⊗

[
q

2me

Â
(
x + µ

me
y
)

+
q

2mp

Â
(
x− µ

mp
y
)]

+ h.c. (3.24)

Let us calculate the spontaneous emission rate for an initially excited hydrogen atom with

quantized center of mass, coupled to the vacuum state of the electromagnetic field,

|Ψi〉 = |ϕ〉 ⊗ |e〉 ⊗ |0〉 . (3.25)
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We again assume that the hydrogen atom is in one of its three first excited energy eigenstates,

|e〉 ∈ {|210〉 , |211〉 , |21− 1〉}, and we let |ϕ〉 denote the initial center of mass state of the

hydrogen atom. We first calculate the transition probability amplitude for the initial state

to evolve to the final state |Ψf〉 = |r〉 ⊗ |g〉 ⊗ |k, s〉, in which the atom is in its ground state,

|g〉 = |100〉, the center of mass has momentum r, and a photon of momentum k and spin s has

been emitted. We obtain, up to a phase, working in the interaction picture and to first order in

perturbation theory:

A =
1

~
ϕ(r + k)

√
~

2ε0ck
εs(k)

1

(2π)3/2

∫ tf

ti

dt e
i
~

(
−2~rk−~2k2

2M
−~Ω+~ck

)
t

×

(∫
d3y rψg(y)ψe(y)

q

M

[
e−i

µ
me

ky − ei
µ
mp

ky
]

+

∫
d3pp ψ̃g(p)

[
q

me

ψ̃e(p + µ~
me

k) +
q

mp

ψ̃e(p− µ~
mp

k)

])
+O(q2) (3.26)

Here, ψg(y), ψe(y), ψ̃g(p) and ψ̃e(p) are the ground state and first excited state wavefunctions of

the hydrogen atom in the position and momentum representations respectively. We now average

over the three first excited states of the hydrogen atom and trace over the recoil momentum r

of the center of mass, as well as over the momentum k and spin s of the emitted photon, such

as to obtain the spontaneous emission rate:

R =
q2M

3ε0c~

∫ k+

k−

dk

∫ ∞
0

dp p |ϕ(p)|2

×

[(
p2

M2
− G(k)2

k2~2

) ∣∣∣∣∫ d3y ψg(y)ψ210(y)
(
e−i

µ
me

ky3 − ei
µ
mp

ky3

)∣∣∣∣2
+2~2

∫
d3x

∫
d3y

∑
e

ψe(x)ψe(y)

[
∂

∂x1

ψg(x)

] [
∂

∂y1

ψg(y)

]

×
( 1

me

ei
µ
me

kx3 +
1

mp

e
−i µ

mp
kx3

)( 1

me

e−i
µ
me

ky3 +
1

mp

e
i µ
mp

ky3

)]
(3.27)

We here made the following definitions:

k± :=
1

~

(
±p− cM +

√
(±p− cM)2 + 2Ω~M

)
, (3.28)

G(k) :=
~2k2

2M
+ c~k − ~Ω (3.29)
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We are now prepared to insert the electronic wave functions of the hydrogen atom, given in

Eq.(3.11-3.13), such as to obtain for the spontaneous emission rate for a delocalized hydrogen

atom:

R =
q2M

12πε0c~

∫ ∞
0

dp 4πp2 |ϕ(p)|2
∫ k+

k−

dk

[(
p

M2
− G(k)2

pk2~2

)
32215a2k2µ2

(
Fe(k)3

me

+
Fp(k)3

mp

)2

+
210~2

pa2

(
Fe(k)2

me

+
Fp(k)2

mp

)2
]
, (3.30)

with

Fe(k) :=

(
4a2k2 µ

2

m2
e

+ 9

)−1

and Fp(k) :=

(
4a2k2 µ

2

m2
p

+ 9

)−1

. (3.31)

We again carry out the k integration and Taylor expand around small and non-relativistic center

of mass velocities, that is, around p/(Mc) = 0, to obtain:

R = C

∫
d3p |ϕ(p)|2

[
1 +D

( p

Mc

)2

+O
(( p

Mc

)4
)]

(3.32)

Here, we defined the constants

C ≈ 6.27× 108s−1 and D ≈ 1.33 . (3.33)

For center of mass wave packets that delocalize very slowly, we thus recover the spontaneous

emission rate for a hydrogen atom for which the center of mass is assumed classical. Considering

a Gaussian wave packet for the initial center of mass wave function, with probability distribution

|ϕ(p)|2 =

(
L2

2π~2

)3/2

e−p
2L2/(2~)2

, (3.34)

the spontaneous emission rate becomes a function of the initial width L of the Gaussian wave

packet:

R = C
[
1 + 3D(LMc/~)−2 +O

(
(LMc/~)−4

)]
(3.35)

Let us now assume that the center of mass of the hydrogen atom is initially coherently localized

to some moderate extent. Namely, let us assume that the initial Gaussian center of mass wave

packet is of width L = 7.37× 10−14m, which ensures that basically all virtual center of mass

velocities (namely all velocities in the Gaussian probability distribution within 3.5 standard
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deviations from the mean) are smaller than 1% of the speed of light, which in turn ensures that

the virtual center of mass velocities stay well within the non-relativistic regime. From Eq.(3.35),

we obtain that this should lead to an increase of the spontaneous emission rate of 3.26× 10−3%,

compared to the spontaneous emission rate obtained for a harmonic hydrogen atom whose center

of mass dynamically delocalizes infinitely slowly. It should be interesting to explore whether

this increase in the spontaneous emission rate due to the coherent delocalization process of the

hydrogen atom could be observed experimentally.

Along similar lines, it should also be interesting to explore whether there could be a connection

between increased transition rates due to coherent center of mass delocalization on one hand, and

recent experimental findings by researchers at University College London [85]: they confirmed, for

the n = 2 fine structure transition rate of a positronium atom, a deviation from the theoretically

predicted transition rate. As opposed to the hydrogen atom, the positronium atom is considered

a “clean” system, in that it can be described entirely within quantum electrodynamics (QED).

Thus, a persisting discrepancy between theoretical predictions and experimental observations

for transition rates of positronium atoms (see also for instance [86, 87, 88]) seems to indicate

that either QED and thus the Standard Model of Particle Physics requires modification, or

that the theoretical treatment of the positronium atom needs to be revisited. It might be

interesting to study the assumptions made about the center of mass degrees of freedom of the

positronium atom. Especially since the mass of the positronium atom is so small, there is reason

to believe that coherent center of mass delocalization of the positronium atom could lead to the

significantly increased measured transition rates.

3.3 Implications of center of mass delocalization on se-

lection rules

Let us now briefly discuss the impact of center of mass delocalization on selection rules in the

light matter interaction. Electric dipole transitions that would otherwise be omitted by the

selection rules may be allowed to a certain extent when taking the delocalization of the center

of mass of a hydrogen atom into account. As an example, let us consider an atom in its ground

state, which absorbs a photon propagating in the z−direction, k = (0, 0, k)T , with polarization

vector ε = (1, 0, 0)T . For an atom whose center of mass is treated classically, the absorption
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probability amplitude becomes, up to a phase,

A =

∫ tf

ti

dte−it(ck−Ω)

∫
d3p

(2π)3/2

q

me

1√
2ε0c~k

p1ψ̃e(p)ψ̃g(p− ~k) , (3.36)

so that the absorption probability rate becomes:

Rg→e =
q2π

m2
eε0c

2~k
δ(k − Ω/c)

∣∣∣∣∫ d3x

(2π)3/2
ψe(x)eikx3

(
−i~ ∂

∂x1

ψg(x)

)∣∣∣∣2 (3.37)

Because of the symmetry of the integral, we can immediately deduce that after absorbing the

photon, the atom will never be left in the excited state e = 210,

Rg→210 = 0 , (3.38)

which is in accordance with the selection rules. We further find that the transition rates to

either of the two excited states e = 21± 1 are as follows:

Rg→21±1 =
25q2~

m2
eε0cΩ π2a2

(
4a2 Ω2

c2
+ 9
)4 δ(k − Ω/c) (3.39)

We find that the photon can only get absorbed by the atom if the photon momentum matches the

energy gap, k = Ω/c. We also note that the divergence in the absorption rate, for on-resonance

photon momenta, results from assuming a plane wave state for the to-be-absorbed photon. To

regularize this divergence, let us consider a wave packet state instead,
∫
d3k ψ(k) â†k |0〉, with

ψ(k) =
(
L2

2π

)3/2

e−(k−k0)2L2/2 and k0 := (0, 0,Ω/c)T , and consider the limit of L → 0. This

yields the following absorption rates:

Rg→210 = 0 , (3.40)

Rg→21±1 =
27q2~Ω

m2
eε0c

3 πa2
(
4a2 Ω2

c2
+ 9
)4 =

3

4
× 6.27× 108s−1 (3.41)

We note that the sum of the absorption rates is equal to the spontaneous emission rate for an

excited hydrogen atom, 6.27× 108s−1, apart from a symmetry factor arising with averaging over

the three initial first excited states and tracing over the spin of the emitted photon.

Now let us take the quantumness of the center of mass into account. Let us again consider

the absorption of a photon propagating in the z−direction and with polarization ε = (1, 0, 0)T .
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Tracing over the atom’s recoil momentum, we obtain the following absorption rate:

Rg→e =

∫
d3p

∫ ∞
−∞

dt e
it
(
−ck+Ω+p·k

M
+ ~k2

2M

)
q2

2ε0c~k
1

(2π)3
|ϕ(p)|2 ×

×

∣∣∣∣∣
∫
d3y p1ψe(y)ψg(y)

1

M

(
ei

µ
me

ky3 − e−i
µ
mp

ky3

)
+

∫
d3p̃ p̃1 ψ̃e(p̃)

(
1

me

ψ̃g

(
p̃ +

µ~
me

k

)
+

1

mp

ψ̃g

(
p̃− µ~

mp

k

)) ∣∣∣∣∣
2

(3.42)

The first term in the sum vanishes for e = 21± 1, while the second term vanishes for e = 210.

Let us assume that the initial center of mass wave function is given by the Gaussian wave packet

in Eq.(3.34). We obtain for the respective absorption rates:

Rg→210 =
21232a2µ2q2

ε0cπ2
√

2πML

(
Fe(k)3

me

+
Fp(k)3

mp

)2

exp

(
−L

2M2

2~2k2

(
Ω− ck +

~k2

2M

)2
)

(3.43)

Rg→21±1 =
25q2

ε0ck2π2a2

ML√
2π

(
Fe(k)2

me

+
Fp(k)2

mp

)2

exp

(
−L

2M2

2~2k2

(
Ω− ck +

~k2

2M

)2
)

(3.44)

We note that the rate Rg→210 at which the atom transitions to the excited state e = 210 is

generically non-zero. We further note that in the limit M →∞, we recover the results which we

obtained in Eq.(3.38) and Eq.(3.39) for a hydrogen atom with classical center of mass degrees of

freedom. Let us now define ρ as the ratio between the absorption rates Rg→210 and Rg→21±1.

The ratio ρ then gives us a measure for the extent to which the selection rules are violated.

While ρ vanishes for classical center of mass degrees of freedom, we obtain for hydrogen atoms

with quantum delocalized center of mass:

ρ :=
Rg→210

Rg→21±1

=

(
Fe(k)3

me

+
Fp(k)3

mp

)2(
Fe(k)2

me

+
Fp(k)2

mp

)−2
2732a4µ2k2

M2L2
(3.45)

≈ 2732a4µ2k2

M2L2(4a2k2 + 9)2
. (3.46)

For instance, for an atom whose center of mass is initially localized as a Gaussian wave packet

of width L = 7.37 · 10−14m, and for a to-be-absorbed photon of momentum k = Ω/c, we obtain

ρ = 1.6 · 10−5. Thus, for roughly every 105 photons absorbed according to the selection rules,

we predict to observe one absorption violating the selection rules. Similarly, for an atom whose

center of mass is initially localized at the extent of the Bohr radius, L = 5.29 · 10−11m, we

predict to observe one absorption violating the selection rules per roughly every 1011 absorbed

photons of momentum k = Ω/c.
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Not only are selection rules violated, but we can also have absorption of off-resonance

photons. But this was already discussed in section 2.3. We conclude this section by remarking

that it could also be interesting to investigate whether for instance a photon of momentum

k = Ω/c could be absorbed and excite a sharply localized atom to one of its higher than first

excited states. In case of such transitions happening at a significant rate, this new aspect of the

light-matter interaction would also impact the quantum channel capacities of the light-matter

interaction.

3.4 ‘Harmonic’ hydrogen atom with classical center of

mass

In the previous sections, we saw how to obtain quantitative estimates for the effect of delocaliza-

tion on the light-matter interaction, by coupling a hydrogen atom to the electromagnetic field.

Let us now briefly discuss a way to simplify these order of magnitude calculations. Namely, let

us replace the Coulomb potential by a simpler harmonic potential, which is tuned such that

the energy gap between ground and first excited states matches that of the Coulomb potential,

~Ω = 10.2eV . We refer to this model as a harmonic hydrogen atom.

Let us again start by discussing the case of a harmonic hydrogen atom with classical center

of mass. We again let the proton be fixed at the origin, and we consider an electron, with

position operator x̂ and momentum operator p̂, bound to the proton via a harmonic potential.

The free Hamiltonian of the harmonic hydrogen atom and the electromagnetic field becomes

Ĥ0 =
p̂2

2me

+
meΩ

2

2
x̂2 +

∫
d3k c~k

2∑
s=1

âs†k â
s
k (3.47)

=
∑
n

En |n〉 〈n|+
∫
d3k c~k

2∑
s=1

âs†k â
s
k , (3.48)

with |n〉 = |n1 n2 n3〉 the energy eigenstates and En = ~Ω
∑

i(ni + 3/2) the respective energy

eigenvalues of the harmonic oscillator. We again minimally couple the electron to the electro-

magnetic field, so that in the interaction picture, the interaction Hamiltonian is again given by

Eq.(3.6). Let us again calculate the spontaneous emission rate, now for a harmonic hydrogen

atom initially in either one of its three first excited states,

|e〉 ∈ {|100〉 , |010〉 , |001〉} . (3.49)
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The spontaneous emission rate is again given by Eq.(3.16), where now, however, the respective

wave functions are given as follows:

ψg(x) =

(
µΩ

π~

)3/4

e−
µΩ
2~ |x|

2

(3.50)

ψ100(x) =

√
2µΩ

~
x1

(
µΩ

π~

)3/4

e−
µΩ
2~ |x|

2

(3.51)

ψ010(x) =

√
2µΩ

~
x2

(
µΩ

π~

)3/4

e−
µΩ
2~ |x|

2

(3.52)

ψ001(x) =

√
2µΩ

~
x3

(
µΩ

π~

)3/4

e−
µΩ
2~ |x|

2

(3.53)

With the following identities,∑
e

ψe(x)ψ∗e(x̃) =
2

π3/2

(
µΩ

~

)5/2

(x1x̃1 + x2x̃2 + x3x̃3) e−
µΩ
2~ (|x|2+|x̃|2) , (3.54)

∂

∂x1

ψg(x) = − x1

π3/4

(
µΩ

~

)7/4

e−
µΩ
2~ |x|

2

, (3.55)

the spontaneous emission rate then becomes:

R =
q2(~Ω)2

6πmeε0c3~2
e−~Ω/(2mec2) (3.56)

≈ 1.506 · 109s−1 (3.57)

We find that the harmonic hydrogen atom model gives us a prediction for the spontaneous

emission rate which is indeed, approximately up to a factor of two, the spontaneous emission

rate of an excited hydrogen atom. This indicates that our description of the hydrogen atom as

an electron bound to a proton via a harmonic potential, rather than a Coulomb potential, is a

reasonably good quantitative model for our purposes here, in the sense that it yields roughly

the right orders of magnitude for the spontaneous emission rate from the first excited states.

3.5 ‘Harmonic’ hydrogen atom with quantum center of

mass

Let us now again take the delocalization of the harmonic hydrogen atom into account: Let us

consider an electron and a proton, with position operators x̂e and x̂p and momentum operators
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p̂e and p̂p, which are harmonically bound to each other and which respectively interact with the

electromagnetic field via minimal coupling. In the Coulomb gauge, the Hamiltonian becomes

Ĥ =

(
p̂p − qÂ(x̂p)

)2

2mp

+

(
p̂e + qÂ(x̂e)

)2

2me

+

∫
d3k c~k

2∑
s=1

âs†k â
s
k +

µΩ2

2
(x̂p − x̂e)

2 , (3.58)

where the electromagnetic field operators couple respectively to the position operators of the

electron and the proton. We define the free Hamiltonian as follows:

Ĥ0 =
p̂2

CM

2M
+

p̂2
rel

2µ
+
µΩ2

2
x̂2

rel +

∫
d3k c~k

2∑
s=1

âs†k â
s
k . (3.59)

We can now again calculate the spontaneous emission rate for an initially excited atom with

quantized center of mass, averaging over the three first excited states of the three-dimensional

harmonic oscillator. We insert the electronic wave functions of the harmonic hydrogen atom,

given in Eq.(3.51-3.53), into the spontaneous emission rate which we obtained in Eq.(3.27). We

obtain the following spontaneous emission rate for a delocalized harmonic hydrogen atom:

R =
q2MµΩ

12πε0c

∫ ∞
0

dp 4πp2 |ϕ(p)|2 T (p) (3.60)

Here, we defined the template function

T (p) :=
1

p

∫ k+

k−

dk

(
1

me

e
− µ~k2

4Ωm2
e +

1

mp

e
− µ~k2

4Ωm2
p

)2
[

1 +
k2p2

2Ω2M2
− G(k)2

2Ω2~2

]
. (3.61)

We carry out the k integration in the template function and Taylor expand around small and

non-relativistic center of mass velocities (that is, around p/(Mc) = 0), to obtain:

R = C

∫
d3p |ϕ(p)|2

[
1 +D

( p

Mc

)2

+O
(( p

Mc

)4
)]

(3.62)

We here defined the constants

C ≈ 1.506 · 109s−1 and D ≈ 1.33 . (3.63)

We again note that the expansion in Eq.(3.62) is valid in the non-relativistic regime, and that

in the limit of vanishing virtual center of mass velocities, the spontaneous emission rate reduces

to the rate we obtained for a harmonic hydrogen atom with classical center of mass degrees of

freedom.
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Chapter 4

Entanglement harvesting with

coherently delocalized matter

This chapter is based on the publication “Entanglement harvesting with coherently delocalized

matter” [2], which I co-authored with Laura J. Henderson, Valentina Baccetti, Nicolas C.

Menicucci and Achim Kempf (see Statement of Contributions on page iv). Throughout this

chapter, we set ~ = 1, and in the plots we further set c = 1.

The aim of this chapter is to investigate how the quantum nature of the center of mass

degrees of freedom of matter affects the process of entanglement harvesting. Though the

term entanglement harvesting was established to refer to the extraction process of preexisting

entanglement from a quantum field, in more recent literature, it has been used to refer to

the entangling power of quantum fields in general, both due to extraction of preexisting

vacuum entanglement from the field by the detectors, but also due to field-mediated quantum

communication between the detectors. We will use the term entanglement harvesting in this

broader context. In section 4.1, we review the process of entanglement harvesting for both

pointlike and spatially smeared UDW detectors interacting with a scalar quantum field. In

section 4.2, we employ our coherently generalized detector model to describe the interaction

between quantum delocalized, first quantized matter systems and a second quantized field. We

recover the results of vacuum entanglement harvesting for two pointlike UDW detectors, in

the limit of very large detector masses and very sharply localized center of mass degrees of

freedom. We find that there is however no limit in which one recovers the results of vacuum

entanglement harvesting for two UDW detectors with classical smearing profiles, which once

again is in accordance with our findings in section 2.5. Further, we find that vacuum entanglement
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harvesting is Gaussian suppressed in the initial delocalization, and that very delocalized detectors

can not harvest any entanglement from the vacuum. Finally, in section 4.3, we briefly discuss

entanglement harvesting for delocalized detectors in media—which might be of interest not only

for the purpose of experimentally observing entanglement harvesting, but also to potentially

make use of entanglement harvesting in quantum technologies. For the sake of simplicity, we

again model a medium as a scalar quantum field, whose wave propagation speed differs from the

vacuum propagation speed of light. As the wave propagation speed decreases, we find that less

entanglement can be harvested from the phononic ground state. Intuitively, this is because the

phononic ground state transforms non-trivially under a quantum reference frame transformation

into the rest frame of the coherently delocalized detectors, subjecting the detectors to noisy

excitations that make it more difficult for the detectors to harvest entanglement. We conjecture

that matter systems are less likely to become entangled with each other by interacting with a

medium than they are by interacting with the electromagnetic field.

4.1 Review: Entanglement harvested by UDW detectors

from the vacuum

Before taking into account the quantum delocalization of the centers of mass of the detectors, we

briefly review the process of vacuum entanglement harvesting for UDW detectors, whose center

of mass degrees of freedom are described classically. We consider two UDW detectors, labeled

by J = A,B, which interact with a scalar quantum field. We assume that the two detectors

have the same energy gap Ω and that their classical centers of mass are located respectively

at the positions xJ . We let S := |xA − xB| denote the center of mass separation of the two

detectors. In the following, we will work within the interaction picture, in which operators

evolve according to the free Hamiltonian

Ĥ0 =
∑
J=A,B

Ω |eJ〉 〈eJ |+
∫
d3k ck â†kâk . (4.1)

We here let |eJ〉 and |gJ〉 denote the respective excited and ground energy eigenstates of the

two detectors. We classically model the extended spatial profile of the detectors by introducing

smearing profiles ξ(x− xJ) for the two detectors. We let the monopole moment operators of

the two detectors, µ̂J = |eJ〉 〈gJ |+ |gJ〉 〈eJ |, respectively couple to the field operators φ̂(x) via

the linear monopole moment operator coupling. The state of the system then evolves in time
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according to the interaction Hamiltonian

Ĥint(t) =
∑
J=A,B

ĤJ(t) , (4.2)

where the interaction Hamiltonians ĤJ(t) respectively capture the interaction of the two detectors

with the quantum field:

ĤJ(t) := λχ(t)µ̂J(t)

∫
d3x ξ(x− xJ)φ̂(x, t) (4.3)

The monopole moment operators and the field operators evolve according to their free Hamilto-

nians as follows:

µ̂J(t) = eiΩt |eJ〉 〈gJ |+ h.c. , (4.4)

φ̂(x, t) =

∫
d3k

(2π)3/2

√
c2

2k

[
e−ickt+ikxâk + h.c.

]
(4.5)

For small interaction strengths, we remember that we can perturbatively expand the time

evolution operator, Û(t) =:
∑

n Û
(n)(t), with

Û (n)(t) := (−i)n
∫ t

0

dt1Ĥint(t1)

∫ t1

0

dt2Ĥint(t2)· · ·
∫ tn−1

0

dtnĤint(tn) . (4.6)

Perturbatively in the interaction strength, we can now study how much the two detectors become

entangled with each other, via their respective interaction with the quantum field, see, e.g.,

[23, 22]. To this end, we consider the initial state ρ(0) = |gA〉 〈gA| ⊗ |gB〉 〈gB| ⊗ |0〉 〈0|, for which

the two detectors are unentangled and the quantum field is in its vacuum state |0〉. Next, we

perturbatively time evolve this initial density matrix, such as to obtain the density matrix at a

later time t > 0:

ρ(t) =
(
1 + Û (1)(t) + Û (2)(t) + . . .

)
ρ(0)

(
1 + Û (1)(t) + Û (2)(t) + . . .

)†
=: ρ(0) + ρ(1,1)(t) + ρ(2,0)(t) + ρ(0,2)(t) + . . . (4.7)

We employed the notation ρ(i,j) := U (i)ρ(0)U (j)† here. Note that we can disregard all terms ρ(i,j)

with odd i+ j, since they have vanishing vacuum expectation values. Explicitly, we have:

ρ(1,1)(t) =

∫ t

0

dt1

∫ t

0

dt2Ĥint(t1)ρ(0)Ĥint(t2) , (4.8)

ρ(2,0)(t) = −
∫ t

0

dt1

∫ t1

0

dt2Ĥint(t1)Ĥint(t2)ρ(0) , (4.9)

ρ(0,2)(t) = −
∫ t

0

dt1

∫ t1

0

dt2ρ(0)Ĥint(t1)Ĥint(t2) (4.10)
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We now employ the basis {|gA〉 |gB〉 , |gA〉 |eB〉 , |eA〉 |gB〉 , |eA〉 |eB〉}, and take the partial trace

over the field degrees of freedom, such as to obtain the partial state ρAB(t) of the two detectors

after their interaction with the quantum field:

ρAB(t) = ρ(0) + TrF
(
ρ(1,1)

)
+ TrF

(
ρ(2,0)

)
+ TrF

(
ρ(0,2)

)
+ . . .

=:


1− P c

A − P c
B 0 0 M c ∗

0 P c
B L c ∗ 0

0 L c ∗ P c
A 0

M c 0 0 0

+O(λ4) (4.11)

We made the following definitions,

P c
A := 〈eA| 〈gB|TrF

(∫ t

0

dt1

∫ t

0

dt2Ĥint(t1)ρ(0)Ĥint(t2)

)
|eA〉 |gB〉 , (4.12)

P c
B := 〈gA| 〈eB|TrF

(∫ t

0

dt1

∫ t

0

dt2Ĥint(t1)ρ(0)Ĥint(t2)

)
|gA〉 |eB〉 , (4.13)

M c := 〈eA| 〈eB|TrF

(
−
∫ t

0

dt1

∫ t1

0

dt2Ĥint(t1)Ĥint(t2)ρ(0)

)
|gA〉 |gB〉 , (4.14)

where P c
A and P c

A are the excitation probabilities of the detectors A and B respectively andM c

has traditionally been referred to as the entangling term. We here let the superscript c remind

us of the classical nature of the center of mass degrees of freedom of the two UDW detectors.

When considering identical detectors (up to a spatial displacement), the excitation probabilities

of the two detectors are identical and the reduced density matrix simplifies,

ρAB(t) =:


1− 2P c 0 0 M c∗

0 P c L c 0

0 L c P c 0

M c 0 0 0

+O(λ4) , (4.15)

to second perturbative order in the interaction strength. Here, P c
A = P c

B =: P c denotes the

excitation probabilities of the two detectors respectively. In the scenario we are considering

here, the excitation probabilities of the two detectors are equal, since we here consider the same

switching function and the same smearing profile (up to a displacement in space) for the two

detectors.

To measure the entanglement between the internal degrees of freedom of the two detectors,

we will here employ the entanglement negativity [89], which is an entanglement monotone

[90, 91]. The entanglement negativity is defined for a density matrix as the absolute value
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of the sum of the negative eigenvalues of the partially transposed density matrix. To second

perturbative order in the interaction strength, the negativity for the partial state of the two

detectors becomes (see, e.g., [23, 22])

N = max

{
0 ,

1

2

(√
(P c

A − P c
B)2 + 4|M c|2

)
− PA − PB

}
. (4.16)

For detectors with equal excitation probabilities, the negativity simplifies to

N c = max
{

0 , −P c + |M c|
}
. (4.17)

It is worth mentioning here that a rich variety of quantitative entanglement measures have

been established in the literature (see, e.g., [92]). For instance, we could just as well use

concurrence [93] as our measure for entanglement. For two identical detectors and to second

perturbative order, concurrence and entanglement negativity have however been shown to be

equivalent entanglement measures [48]. For the purpose of this chapter, we will restrict our

attention to entanglement negativity.

Let us now consider the sine switching function of compact support given in Eq.(1.20).

Examples for the use of compact switching functions can be found e.g. in [94, 22]. We employ a

compact switching function in order to ensure that the interaction between the detectors and

the field is switched on only during a compact time interval, t ∈ [0, πσ]. The importance of

employing a compact switching function will become apparent in the next section. Integrating

over all times, the excitation probabilities and the entangling term become

P c =
λ2σ2

(2π)3

∫
d3k

2ck
|ξ̃(k)|2A(k) , (4.18)

M c = −λ
2σ2eiπΩσ

c

∫
d3k

k

e2ik·x0 ξ̃(k)2B(k)

1− σ2(Ω + ck)2
, (4.19)

where ξ̃(k) denotes the Fourier transformation of the spatial smearing profile ξ(x) and where

we defined the following functions:

A(k) :=
1 + cos(πσ(Ω + ck))

(σ2(Ω + ck)2 − 1)2 , (4.20)

B(k) :=
i(2Ω + ck) sin(πΩσ)

2Ω(1− Ω2σ2)
+
e−iπΩσ + e−iπckσ

1− σ2(Ω− ck)2
(4.21)

We can now specify a spatial smearing function according to which the detectors couple to the
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Figure 4.1: The negativity as a function of the energy gap Ω and the separation S of the

detectors, plotted (top) for spatially smeared UDW detectors with L = σ and (bottom) for

pointlike UDW detectors. The regions of zero negativity are marked in grey. This Figure was

taken from [2] and all credit goes to Laura J. Henderson for creating the plots.

field. We could for instance model the spatial extent of the detectors via Gaussian smearing

profiles of standard deviation L/2:

ξ(x) =

(
2

πL2

)3/2

e−2x2/L2

(4.22)

Since the smearing profiles are normalized, we may interpret them as classical probability

distributions, according to which the detectors couple to the quantum field. The Fourier

transformed smearing function then reads:

ξ̃(k) =

(
1

2π

)3/2

exp

(
−L

2k2

8

)
(4.23)

We find that the excitation probabilities and the entangling term depend on the width L of the

smearing profiles, the energy gap Ω of the detectors and the total interaction time πσ, and the

entangling term additionally depends on the separation S of the two detectors:

P c
L =

λ2σ2

2π2c

∫ ∞
0

dk k e−
L2k2

4 A(k) , (4.24)

M c
L = −λ

2σ2eiπΩσ

2π2cS

∫ ∞
0

dk
sin(kS)e−

L2k2

4 B(k)

1− σ2(Ω + ck)2
(4.25)
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We here let the subscript L indicate that we employed Gaussian smearing profiles. In the limit

of very sharply peaked smearing profiles (L→ 0), we recover the excitation probabilities and

the entangling term for pointlike UDW detectors:

P c
0 =

λ2σ2

2π2c

∫ ∞
0

dk k A(k) , (4.26)

M c
0 = −λ

2σ2eiπΩσ

2π2cS

∫ ∞
0

dk
sin(kS)B(k)

1− σ2(Ω + ck)2
(4.27)

The negativity for both pointlike and Gaussian smeared UDW detectors is plotted in Fig.(4.1),

as a function of the energy gap Ω of the detectors and their separation S. We can see that the

negativity decreases with increasing widths L of the Gaussian smearing profiles. Intuitively,

we can understand this behaviour as follows: the field amplitudes at different points in space

and time are quantum correlated, which is why two spatially separated detectors can become

entangled with one another in the first place. Spatially smeared UDW detectors average the

quantum field fluctuations over extended spatial regions, and the larger these spatial regions are,

the less entanglement the detectors can harvest from the quantum field. In the negativity plots

in Fig.(4.1) we further observe a resonance-like behaviour, for energy gaps that are multiples

of the switching scale σ, which manifests itself in slight ripples in the negativity for pointlike

UDW detectors, and more pronounced oscillations for spatially smeared UDW detectors.

4.2 Entanglement harvested by coherently delocalized

detectors from the vacuum

The results for entanglement harvesting in the previous section relied on the assumption that

the center of mass degrees of freedom of the matter systems under investigation are classical. In

this section, we study how the process of entanglement harvesting is affected when the centers

of mass of the two detectors respectively undergo quantum uncertain motion.

A possible setup we have in mind here is the following: Let us consider two atoms, which

are respectively initially localized in a certain region of space, for instance via center of mass

position measurements, and which are then both left to evolve freely. Their center of mass wave

functions then spread and the atoms dynamically and coherently delocalize in space. Let us now

imagine that these two coherently delocalizing atoms interact with the electromagnetic vacuum.

How much will the internal degrees of freedom of the atoms become entangled with each other?
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How will the result depend on the mass of the detectors, their initial localization, and their

dynamical delocalization process? How will the results compare to the results for entanglement

harvesting with classical center of mass degrees of freedom?

To answer these questions, we once again employ our coherently delocalized detector model:

We again replace the electromagnetic field by a simpler scalar field, we model the atoms as

two-level detector systems, and in order to allow both detectors to coherently delocalize, we

let their respective center of mass degrees of freedom be quantized. We let x̂J and p̂J denote

the center of mass position and momentum operators of the two detectors respectively. We will

here assume that the two detectors are of equal mass M . In the interaction picture, operators

then evolve according to the free Hamiltonian

Ĥ0 =
∑
J=A,B

[
p̂ 2
J

2M
+ Ω |eJ〉 〈eJ |

]
+

∫
d3k ck â†kâk . (4.28)

We again couple the detectors to the quantum field via the monopole moment coupling. However,

the field operators now take the center of mass position operators of the two detectors as their

argument:

Ĥint(t) = λχ(t)
∑
J=A,B

µ̂J(t)φ̂(x̂J , t) (4.29)

We again make sense of the field operators depending on position operators, φ̂(x̂J , t), as follows,

φ̂(x̂J , t) :=

∫
d3xJ P̂(xJ , t)φ̂(xJ , t) , (4.30)

where we defined the operators P̂(xJ , t) as

P̂(xJ , t) :=

∫
d3p d3q

(2π)3
e−i(p−q)·xJ+it p

2−q2
2M |p〉 〈q| . (4.31)

As in section 4.1, we again assume that initially the two detectors are in their ground states and

the field is in its vacuum state. We further let |ϕJ〉 denote the initial center of mass states of

the two detectors. The initial state of the system then reads:

ρ(0) = |ϕA〉 〈ϕA| ⊗ |gA〉 〈gA| ⊗ |ϕB〉 〈ϕB| ⊗ |gB〉 〈gB| ⊗ |0〉 〈0| (4.32)

We can express the initial center of mass states both in terms of the initial center of mass wave

functions in the position and in the momentum representation:

|ϕJ〉 =

∫
d3xϕJ(x) |x〉 =

∫
d3p ϕ̃J(p) |p〉 (4.33)
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We again want to investigate how entangled the internal degrees of freedom become with each

other via the interaction of the detectors with the quantum field. To this end, we evolve the

initial state in time and trace over both the field and the center of mass degrees of freedom. To

second perturbative order, we again obtain the partial state of the two detectors:

ρAB(t) = ρ(0) + TrF,COM

(
ρ(1,1)

)
+ TrF,COM

(
ρ(2,0)

)
+ TrF,COM

(
ρ(0,2)

)
+ . . .

=:


1− PA − PB 0 0 M∗

0 PB L 0

0 L PA 0

M 0 0 0

+O(λ4) (4.34)

We again calculate the entanglement negativity for this density matrix, as a quantitative measure

for how much entanglement the internal degrees of freedom of the two coherently delocalizing

detectors can harvest from the vacuum:

N = max

{
0 ,

1

2

(√
(PA − PB)2 + 4|M|2 − PA − PB

)}
(4.35)

We find the excitation probabilities PJ of the two detectors to be

PA := 〈eA| 〈gB|Trfield,COM

(∫ t

0

dt1

∫ t

0

dt2ĤA(t1)ρ(0)ĤA(t2)

)
|eA〉 |gB〉 (4.36)

=
λ2

(2π)3

∫ t

0

dt1

∫ t

0

dt2χ(t1)χ(t2)

∫
d3p

∫
d3k

2ck
|ϕ̃A(p )|2 e

i(t1−t2)

(
Ω+ck+ k2−2pk

2M

)
, (4.37)

PB := 〈gA| 〈eB|Trfield,COM

(∫ t

0

dt1

∫ t

0

dt2ĤB(t1)ρ(0)ĤB(t2)

)
|gA〉 |eB〉 (4.38)

=
λ2

(2π)3

∫ t

0

dt1

∫ t

0

dt2χ(t1)χ(t2)

∫
d3p

∫
d3k

2ck
|ϕ̃B(p )|2 e

i(t1−t2)

(
Ω+ck+ k2−2pk

2M

)
, (4.39)

and we note that the excitation probabilities of the two detectors depend on their center of

mass states only via their respective momentum probability distributions |ϕ̃J(p)|2. Unlike the

excitation probabilities, we find that the entangling term M also depends on the phases of the
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initial center of mass momentum wave functions:

M := −
∫ t

0

dt1

∫ t1

0

dt2 〈eA| 〈eB|TrF,COM

((
ĤA(t1)ĤB(t2) + ĤB(t1)ĤA(t2)

)
ρ(0)

)
|gA〉 |gB〉

= − λ2

(2π)3

∫ t

0

dt1

∫ t1

0

dt2 χ(t1)χ(t2)

∫
d3p1

∫
d3p2

∫
d3k

2ck
ϕA(p1 + k)ϕB(p2 − k)×

×ϕ∗A(p1)ϕ∗B(p2)e
−i(t1+t2)

(
k2

2M
−Ω
)
e−ick(t1−t2)eik(p2t−p1t′)/M + (A↔ B)

= −λ2

∫ t

0

dt1

∫ t1

0

dt2 χ(t1)χ(t2)

∫
d3p1d

3p2

(2π)3

∫
d3k

2ck
ϕ̃A(p1 + k) ϕ̃B(p2 − k) ϕ̃ ∗A(p1)

× ϕ̃ ∗B(p2)e
i(t1+t2)

(
Ω−k(p1−p2)

2M
− k2

2M

)[
e
−i(t1−t2)

(
ck−k(p1+p2)

2M

)
+ e

−i(t1−t2)
(
ck+

k(p1+p2)
2M

)]
(4.40)

The phases of the momentum wave functions carry the position information of the two wave

functions, and as expected, the entangling term thus depends on the spatial locations of the two

center of mass wave packets. While the excitation probabilities of the detectors respectively only

depend on the properties of one detector, the entangling term thus depends on the properties of

both detectors. As suggested e.g. in [23], we can thus think of the excitation of the respective

detectors according to PJ as local noise, while the nonlocal entangling term M describes

entangling excitations that are shared by the two detectors.

Let us now again consider the sine switching function in Eq.(1.20), and let us assume that

the initial COM wave functions of the two detectors respectively are spherically symmetric,

that is, ϕJ(p ) ≡ ϕJ(p). As far as the excitation probabilities are concerned, our setup does not

single out a preferred spatial direction. Thus, we can always rotate our coordinate system such

that the photon is emitted along the z− axis, k = (0, 0, k)T , which simplifies our calculation as

follows:

PJ =
λ2

(2π)3

∫
d3p |ϕJ(p)|2

∫ ∞
0

dk
2πk

c

∣∣∣∣∫ πσ

0

dt sin

(
t

σ

)
eit(F (k)− kp

M
cos(θp))

∣∣∣∣2
=

λ2σ2

(2π)3

∫ ∞
0

dp

∫ 1

−1

dz 2πp2 |ϕJ(p)|2
∫ ∞

0

dk
2πk

c

∣∣∣∣∣ eiπσ(F (k)− kpz
M ) + 1

σ2
(
F (k)− kpz

M

)2 − 1

∣∣∣∣∣
2

=
λ2σ2

πc

∫ ∞
0

dp

∫ 1

−1

dz p2 |ϕJ(p)|2
∫ ∞

0

dk k
1 + cos

(
πσ
(
F (k)− kpz

M

))[
σ2
(
F (k)− kpz

M

)2 − 1
]2 (4.41)

We can now specify the initial center of mass wave functions for the two detectors. Let us here

consider detectors whose center of mass position wave functions are Gaussian wave packets of
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initial width L, respectively centered around xJ , at a separation S := |xA − xB|:

ϕJ(x ) =

(
2

πL2

)3/4

e−
|x+xJ |

2

L2 , (4.42)

ϕ̃J(p ) =

(
L2

2π

)3/4

e−
p2L2

4
+ip·xJ (4.43)

The momentum probability distributions resulting from these momentum wave functions are

the same for both detectors, |ϕ̃J(p )|2 = L3/(2π)3/2e−p
2L2/2. We thus find that the excitation

probabilities of the two detectors are equal, PA = PB =: P , and the negativity reduces to

N = max
{

0 , |M| − P
}
. (4.44)

In order for the two detectors to harvest entanglement from the vacuum, the nonlocal entangling

excitations thus need to dominate over the local excitation of the respective detectors [23].

We can now see why it is important to employ a switching function of compact support.

Under the free quantum mechanical time evolution, the wave packets in Eq.(4.43) start out

completely delocalized in space for t→ −∞, then flow together to Gaussians of width L at time

t = 0, and then spread again into completely delocalized states for t→∞. If we employed a

switching function of non-compact support, such as a Gaussian switching function, we would

need to consider the completely delocalized center of mass wave packets at time t → −∞ as

the initial center of mass states. However, we want to consider the localized wave packets in

Eq.(4.43) as the center of mass states at the initial time t = 0, since our aim here is to study

how entanglement harvesting is affected by the center of mass spreading of initially localized

detectors. We therefore need to ensure that the interaction with the quantum field is switched

on precisely at time t = 0, which in turn is why we need to employ a switching function of

compact support. Let us here again employ the compact sine switching function in Eq.(1.20).

We obtain

P =
λ2σ2

πc

∫ ∞
0

dp p2 |ϕ̃J(p )|2 U(p) (4.45)

for the excitation probabilities. We here defined the template function

U(p) :=

∫ 1

−1

dz

∫ ∞
0

dk k

[
1 + cos

(
πσ

(
F − kpz

M

))][
σ2

(
F − kpz

M

)2

− 1

]−2

, (4.46)

where p is the detector’s recoil momentum and where we defined F := Ω + ck + k2/(2M) for

convenience of notation. We refer to U(p) as a “template function” due to the fact that the
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function is independent of the center of mass states of the detectors. For the entangling term,

we obtain

M =
λ2L6

(2π)6

∫
d3p

∫
d3P

∫
d3k

2ck
e−2ik·x0I(k,p,P)e−

L2

2 (p2+P 2+k2+(p−P)k) , (4.47)

with p := |p| and P := |P| and where we defined I as the time integrals,

I(k,p,P) :=

∫ πσ

0

dt

∫ t

0

dt′ sin

(
t

σ

)
sin

(
t′

σ

)
e
i(t+t′)

(
Ω−k(p−P)

2M
− k2

2M

)
×

×
(
e−i(t−t

′)(ck−k(p+P)
2M ) + e−i(t−t

′)(ck+
k(p+P)

2M )
)

(4.48)

We can again rotate the coordinate system so that the momentum of the emitted photon is aligned

with the z−axis, that is k = (0, 0, k)T . We write p = (px, py, pz)
T as well as P = (Px, Py, Pz)

T .

As opposed to when we calculated the excitation probabilities, there is now a preferred direction

set by xA and xB. Thus, in order to make up for fixing k to be aligned with the z−axis (even

though the photon could be emitted in any direction), we now integrate over all xA − xB of

fixed length (i.e. we keep the separation S := |xA − xB| between the two detectors fixed). We

can write xA− xB = S(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T and integrate over all θ ∈ [0, π] and

φ ∈ [0, 2π]. Instead of integrating over all k, that is
∫
d3k, we now only need to integrate over∫∞

0
dk k2 and not over the angles of the emitted photon:

M =
λ2L6

(2π)6

∫
d3p

∫
d3P

∫ ∞
0

dk
k

2c

∫ π

0

dθ 2π sin(θ) I(k,p,P) e−ikS cos(θ) ×

×e−
L2

2 (p2+P 2+k2+k(pz−Pz))

=
λ2L6

c(2π)5

∫
d3p

∫
d3P

∫ ∞
0

dk
sin(kS)

S
I(k,p,P) e−

L2

2 (p2+P 2+k2+k(pz−Pz)) (4.49)

Finally, changing variables, p1 := pz + 1
2
k and p2 := Pz − 1

2
k, we obtain for the entangling term:

M =
λ2σ2L2

c(2π)3

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫ ∞
0

dk
sin(kS)

S
e−L

2(p2
1+p2

2)/2e−L
2k2/4 V(k, p1, p2) (4.50)

We here defined the template function

V(k, p1, p2) :=
1∑
j=0

eiπασ

1− σ2(α + βj)2

(
i(2α + βj) sin(πασ)

2α (1− α2σ2)
+
e−iπασ + e−iπβjσ

1− σ2(α− βj)2

)
, (4.51)

with α(k, p1, p2) := Ω− k(p1 − p2)/(2M) and βj(k, p1, p2) := ck + (−1)jk(p1 + p2)/(2M).
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Figure 4.2: The transition probability of a massive detector (with L = 1000σ), (left) as a

function of its mass and for different energy gaps, where the dotted lines represent the excitation

probabilities of pointlike UDW detectors with the same energy gaps as the respective massive

detectors and (right) as a function of its energy gap, for different masses.

Since we work within a framework in which the center of mass dynamics are described by

the Schrödinger equation, we once again need to ensure that the virtual center of mass velocities

are well within the non-relativistic regime. That is, we need to ensure that the momentum

probability distributions |ϕ̃J(p )|2 have contributions only for momenta corresponding to virtual

velocities much smaller than the speed of light. Let us again restrict the virtual velocities to

velocities no larger than one percent of the vacuum speed of light, v := p/M ≤ 0.01c. The

Gaussian momentum probability distributions of the detectors have a standard deviation of 1/L.

We can thus assume to a very good approximation (within 3.5 standard deviations away from

the mean) that the center of mass momenta p in the probability distributions satisfy pL . 3.5.

The non-relativistic regime therefore corresponds to parameters L and M satisfying

LMc & 3.5× 102 . (4.52)

The center of mass wave function of a coherently delocalized detector spreads faster for smaller

L and M , that is, for initially more sharply localized detectors and for smaller detector masses.

Consequently, for a given detector mass, there is a minimal initial delocalization width we can

consider while staying within the non-relativistic regime for the virtual center of mass velocities.

Provided that we chose appropriate parameters M and L, we can expand the template

functions U and V for non-relativistic virtual center of mass velocities. We Taylor expand U
around p/(Mc) = 0, and we Taylor expand V around both p1/(Mc) = 0 and p2/(Mc) = 0. To

second order, we then obtain the following simplified expressions for the excitation probabilities
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and the entangling term:

P =
λ2σ2

4π2c

[
U(0) +

3

2L2

∂2U
∂p2

(0) +O
(
(LMc)−4

) ]
, (4.53)

M =
λ2σ2

4π2c

∫ ∞
0

dk
sin(kS)

S
e−L

2k2/4

[
V(k, 0, 0) +

1

2L2

[
∂2V
∂p2

1

(k, 0, 0) +
∂2V
∂p2

2

(k, 0, 0)

]
+O

(
(LMc)−4

) ]
(4.54)

Note that from a physical standpoint we should always ensure that M > Ω, as the energy gap

of an atom contributes to the atom’s rest mass.

As displayed in Fig.(4.2), we find that the excitation probabilities decrease, both for increasing

energy gaps Ω and decreasing detector masses M .
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Figure 4.3: The absolute

value of the entangling term,

|M|, for pointlike UDW de-

tectors as well as for massive

detectors, as a function of the

detector’s separation S and

with Ωσ = 0.1. For the mas-

sive detectors, we chose dif-

ferent values for M and L

such as to keep their product

constant (ML = 500), which

fixes the virtual velocities at

which the detectors dynami-

cally delocalize.

Intuitively, this behavior can be explained as follows: switching the interaction on and off

breaks time translation invariance and therefore provides energy for the excitation and the

recoil of the detectors and the excitation of the field. The kinetic energy of the recoil becomes

larger for smaller detector masses. Since the excitation of the detector is always accompanied by

the emission of a field quantum and the recoil of the detector, the excitation process becomes

energetically more expensive for larger energy gaps and smaller detector masses. In the limit
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of infinitely small energy gaps, the detectors essentially turn into simple charges and all the

switching energy can go into the recoil of the detectors and the excitation of the field. Similarly,

in the limit of infinitely large detector masses, the kinetic recoil energy tends to zero and all

the switching energy can go into the excitation of the field and the internal degrees of freedom.

For the excitation probability of a very massive detector, it is therefore justifiable to neglect

the recoil of the detector and to model the center of mass degrees of freedom classically. As

can be seen in Fig.(4.2), the excitation probability in the limit of large detector masses indeed

approaches the excitation probability of a pointlike UDW detector.

As displayed in Fig.(4.3), we further find that the entangling term is suppressed both in the

separation of the two detectors and in the initial center of mass delocalization widths. Intuitively,

this is because the amplitude of the quantum field fluctuations (which correlate the quantum

field amplitudes at different points in space and time) decrease with the fluctuation size. The

more delocalized the detectors are initially, the larger are the spatial regions in which the two

detectors probe the quantum field fluctuations, and the smaller is thus the entangling term. In

fact, as we can see from Eq.(4.54), the entangling term for coherently delocalized detectors is

Gaussian suppressed in the initial delocalization width—contrary to the excitation probabilities,

whose leading order term does not depend on the initial delocalization width at all, as we can see

from Eq.(4.53). Therefore, the ability of quantum delocalized detectors to harvest entanglement

from the vacuum is Gaussian suppressed in the initial center of mass delocalization.

Let us now see whether we can find a limit in which we recover the entanglement harvesting

results for UDW detectors, that is, for detectors with classical center of mass degrees of

freedom. We start by exploring the negativity in the limit of very large detector masses

(M →∞), while keeping the initial delocalization width L fixed. One might expect to recover

the classical behaviour of UDW detectors in this limit, since the dynamical quantum center

of mass delocalization process becomes very slow: the virtual center of mass velocities satisfy

v . 3.5/(LM) and thus tend to zero in this limit. Even though the detectors each have a finite

initial delocalization width, their center of mass wave packets do not coherently spread any

further. We indeed find that the excitation probabilities and the entangling term respectively

reduce to the excitation probabilities and the entangling term for UDW detectors. However,

there is a twist: The excitation probabilities reduce to the excitation probabilities for pointlike

UDW detectors, P → P c
0 , while the entangling term reduces to the entangling term for Gaussian

smeared UDW detectors, M→M c
L. Thus, in the limit of very large detector masses and for

finite initial delocalization widths L, the negativity neither reduces to the negativity for a pair of

pointlike UDW detectors, nor to the negativity for a pair of Gaussian smeared UDW detectors.
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Intuitively, we can understand this behavior as follows. In the infinite mass limit, the kinetic

energy of the recoil of the detectors tends to zero. The center of mass degrees of freedom no

longer play a role in the energy balance of the excitation process of the detectors, and the

recoil of the detector becomes negligible. We can thus effectively interpret the center of mass

probability distributions as classical probability distributions, of finite and constant width, for

the positions of two pointlike UDW detectors. Since the excitation probability of a pointlike

UDW detector is independent of the position of the detector, we recover the results for pointlike

UDW detectors for the excitation probabilities. On the other hand, the nonlocal entangling

excitations shared by two pointlike UDW detectors depend on the detector separation, and

therefore they also depend on the classical position probability distributions for the two detectors.

Consequently, the entangling term for incoherently delocalized detectors does not reduce to the

entangling term for pointlike UDW detectors, but rather to the entangling term for spatially

smeared UDW detectors.

Let us now recall that Gaussians of width L approach delta distributions in the limit L→ 0.

Clearly, we should be able to recover the entanglement harvesting results for a pair of pointlike

UDW detectors, in the limit of very large detector masses and center of mass distributions which

are very sharply peaked (and thus essentially completely localized) at all times. However, we

need to approach this limit in a way that ensures that the virtual center of mass velocities stay

within the non-relativistic regime identified in Eq.(4.52). To this end, we define M =: m/γ and

L =: lγ, with γ a regularization factor and with m and l constants satisfying lmc & 3.5× 102.

Letting γ → 0 then lets the initial center of mass localization become very sharp (L→ 0) and

the detector masses become very large (M → ∞), while keeping the virtual center of mass

velocities fixed and therefore non-relativistic. In the limit γ → 0, the excitation probabilities

and the entangling term reduce to

P → P c
0 +

λ2σ2

4π2c(lmc)2

∫ ∞
0

dk
σ2c2k3

((Ω + ck)2σ2 − 1)4

(
20(Ω + ck)2σ2 + 4 + cos(πσ(Ω + ck))

×
[
20(Ω + ck)2σ2 + 4− π2((Ω + ck)2σ2 − 1)2

]
+8(Ω + ck)πσ[(Ω + ck)2σ2 − 1] sin(πσ(Ω + ck))

)
+O

(
(lmc)−4

)
, (4.55)

M →M c
0 +

λ2σ2

4π2c(lmc)2

∫ ∞
0

dk
sin(kS)

S
D(k) +O

(
(lmc)−4

)
. (4.56)

By letting the virtual center of mass velocities go to zero, we can then describe two detectors

whose center of mass degrees of freedom are localized very sharply at all times. Indeed, taking the

limit γ → 0 first and then taking the limit 1/(lmc)→ 0, we recover the excitation probabilities
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Figure 4.4: The negativity N for two coherently delocalizing detectors, plotted as a function

of the energy gap Ω and the separation S of the two detectors. Regions of zero negativity are

marked in grey. We chose the detector masses M and the initial center of mass localization

widths L so that γ decreases from left to right and from top to bottom. In the first three

plots we fixed 1/(lmc) = 2.5 × 10−3, while in the fourth plot we chose parameters satisfying

1/(lmc) = 5×10−4, such as to see what happens to the negativity as we further decrease 1/(lmc).

As expected, as we approach the limit γ → 0 and 1/(lmc) → 0, we find that the negativity

resembles more and more the negativity displayed in Fig.(4.1) for two pointlike UDW detectors.

73



and the entangling term for two pointlike UDW detectors, P → P c
0 and M→M c

0 . We hence

identified the limit in which entanglement harvesting for a pair of coherently delocalized detectors

reduces to entanglement harvesting for a pair of pointlike UDW detectors. On the other hand,

we find that there is no limit in which the results reduce to entanglement harvesting for a pair of

spatially smeared UDW detectors. This once again confirms what we mentioned before, namely

that classical smearing profiles are appropriate to model the finite spatial extent of atoms due

to their electronic orbitals [23], but not to model the coherent center of mass delocalization of

an atom.

In Fig.(4.4), we plot the entanglement negativity for two coherently delocalizing detectors,

as a function of the energy gap and the separation of the detectors. We can clearly see how the

negativity reduces to the negativity for a pair of pointlike UDW detectors, when first letting

γ → 0 and then also letting 1/(lmc) → 0. We also observe that entanglement harvesting is

indeed highly suppressed in the initial center of mass delocalization width.

Overall, we find that entanglement harvesting is suppressed for coherently delocalized

detectors (and thus for actual physical matter systems such as atoms, ions or molecules),

compared to entanglement harvesting for UDW detectors, whose center of mass degrees of

freedom are assumed to be classical. An intuitive explanation for this suppression might be the

following. We here focused on the entanglement harvested by the internal degrees of freedom

of the two detectors. However, further entanglement could potentially build up between the

respective internal and center of mass degrees of freedom of the two detectors. This entanglement,

which remains to be calculated, might build up at the expense of entanglement between the

internal degrees of freedom of the two coherently delocalized detectors.

Here we did not aim to distinguish between extraction of preexisting vacuum entanglement

and entanglement production through interaction. However, it would certainly be interesting

to investigate which one of these two harvesting effects is the dominant one in the setup we

considered here. It might also be interesting to study whether there is a difference in how

coherent delocalization respectively impacts these two harvesting effects. It might however

require some clever tricks and gymnastics to distinguish the two effects, since one cannot

straightforwardly define spacelike, null and timelike separation for the two quantum delocalizing

detectors.
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4.3 Entanglement harvested by coherently delocalized

detectors from the ground state of a medium

Experimentally verifying entanglement harvesting from the vacuum is a difficult task [95, 96,

50, 51]. It might be more feasible to experimentally observe entanglement harvesting from

the ground state of a medium, e.g., by sending atoms through a thin foil or a Bose-Einstein

condensate. We here want to shed some light on whether the internal degrees of freedom

of quantum delocalized atoms might become entangled with each other, via their respective

interaction with the entangled ground state of a medium.
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Figure 4.5: We consider

two detectors (with de-

tector masses Mσ = 900

and initial localization

widths Lσ = 4/9) in a

medium with wave prop-

agation speed cs = 0.26c.

The first plot (top) shows

the transition probability

P , the entangling term

M and the negativity N ,

as function of the energy

gap Ω and for a detec-

tor separation S = σ/10.

The second plot (bottom)

shows the negativity N
as a function of the en-

ergy gap Ω and the de-

tector separation S. The

region of zero negativity

is marked in grey.
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In the previous sections, we modeled the electromagnetic field via a simple scalar quantum

field with dispersion relation ω = ck, where c stands for the vacuum propagation speed of light.

We will here model a medium via a scalar quantum field with dispersion relation ω = csk, with

cs < c the wave propagation speed in the medium. The propagation of waves in the scalar field

could then for instance model the propagation of light in a medium, or the propagation of sound

in a phononic field, both of which are known to propagate slower than light in the vacuum. For

concrete experimental setups, it will be very interesting to pursue analogous calculations with

the there relevant realistic dispersion relation. Repeating the calculations we performed in the

previous section, we obtain the excitation probabilities

P =
λ2σ2

4π2cs

[
U(0) +

3

2L2

∂2U
∂p2

(0) +O
(
(LMc)−4

) ]
(4.57)

and the entangling term

M =
λ2σ2

4π2cs

∫ ∞
0

dk
sin(kS)

S
e−L

2k2/4

[
V(k, 0, 0) +

1

2L2

[
∂2V
∂p2

1

(k, 0, 0) +
∂2V
∂p2

2

(k, 0, 0)

]
+O

(
(LMc)−4

) ]
, (4.58)

where U and V are defined as in Eq.(4.46) and Eq.(4.51), with the exception that c is being

replaced by cs in the definitions of U and βj.

In Fig.(4.5) we plot the excitation probability, the entangling term and the negativity for a

pair of coherently delocalized detectors in a medium with wave propagation speed cs = 0.26c.

Compared to detectors in the vacuum, we find that both the excitation probabilities and the

entangling term increase significantly. Intuitively, this behavior can be explained as follows:

transforming into the quantum uncertain rest frame of the delocalizing detectors, the phononic

ground state transforms non-trivially into an excited field state that might be more entangled

than the phononic ground state. The entangling excitations thus potentially increase, but at

the same time, also the local “noisy” excitations increase. In Fig.(4.5), we further observe that

the increase in the excitation probabilities is much larger than the increase in the entangling

term, leading to a significant decrease in the negativity (compared to the negativity in Fig.(4.4),

in which the detectors were in the vacuum). It should be interesting to further explore this

behaviour and to develop more intuition for it.

Both light and sound can be slowed down significantly in media (e.g. light in crystals or

sound in Bose-Einstein condensates), to the extreme of being stopped completely [97, 74]. The

detectors in such media could coherently delocalize with virtual velocities that are comparable
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to, or even larger than, the propagation speed in the medium, v & cs, while remaining well

within the non-relativistic regime, v ≤ 0.01c. Gaussian center of mass wave packets with

support for supersonic virtual center of mass velocities are ones for which LMcs & 3.5, while

the non-relativistic regime is characterized by LMc & 3.5 × 102. In Fig.(4.6) we plot the

excitation probabilities, the entangling term and the negativity for two detectors in a medium

whose wave propagation speed is 1% of the vacuum speed of light. We chose the parameters

so that the maximal virtual center of mass velocities in the Gaussian wave packet are close to

the speed of sound in the medium (LMcs = 4), while staying well within the non-relativistic

regime (LMc = 400). We find that both the entangling term and the excitation probabilities for

detectors in the medium are significantly enhanced, but again the excitation probabilities are

much more enhanced than the entangling term, and we find that overall the negativity vanishes.

We thus find that if the wave propagation speed in the medium is too small, the internal degrees

of freedom of a pair of coherently delocalizing detectors cannot become entangled with each

other.

We conjecture that it is generally harder for detectors to harvest entanglement from a

medium than from the vacuum. Entanglement harvesting experiments in media might however

still be worth considering, given that they may be more easily conducted than the harvesting of

entanglement from the vacuum.
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Figure 4.6: We consider two detec-

tors (with detector masses Mσ =

900, initial localization widths

Lσ = 4/9 and detector separation

S = σ/10) in a medium with wave

propagation speed cs = 0.01c. We

plot the transition probability P

and the entangling termM as func-

tion of the energy gap, and we find

that the negativity N vanishes for

this choice of parameters.
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Chapter 5

Unruh effect for a coherently

delocalized detector in an electric field

This chapter is based on ideas and results obtained in collaboration with Vivishek Sudhir and

Achim Kempf (see Statement of Contributions on page iv).

A UDW detector travelling on a prescribed trajectory with non-vanishing acceleration can

experience effects according to counter-rotating wave terms in the light-matter interaction

Hamiltonian. For instance, in the vacuum, the detector can become excited and at the same

time emit a field quantum. When the detector is uniformly accelerated at all times, it reaches

thermal equilibrium according to a temperature proportional to the acceleration [3, 4, 7, 5], and

the detector is said to experience the Unruh effect. We here use the term Unruh effect to refer

to the excitation and radiation process due to non-vanishing acceleration of a detector system

in the vacuum, and we do not require the detector to be accelerated at all times.

Provided that both the detector and the field are in their energetically lowest states, one

might wonder where the energy for the excitation of detector and field originates from. Here it is

again helpful to imagine an “external agent”, who keeps the detector on its prescribed spacetime

trajectory, and who, in order to do so, needs to provide the system with energy. However, the

standard UDW detector model does not include a description of such accelerating agent. By

prescribing a spacetime trajectory, the UDW detector model consequently does not account

for the recoil of the detector, which accompanies the Unruh effect experienced by a realistic

physical detector system.

In this chapter, our aim is to dynamically account for the acceleration of the detector. We
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describe the center of mass position of the detector quantum mechanically, within our coherently

delocalized detector model, and we couple the quantum center of mass to a classical electric

field. Within this fully quantum mechanical framework, we study the vacuum excitation process

for a detector whose center of mass is coherently delocalized, and we refer to this process as the

massive Unruh effect. We study the impact of coherent center of mass delocalization on the

vacuum excitation process, and in particular, the recoil of the detector.

We start by reviewing in section 5.1 the Unruh effect for a UDW detector coupling to a

massless scalar quantum field. Since we wish to stay within the non-relativistic regime as far as

the center of mass motion of the detector is concerned, we assume that the detector is uniformly

accelerated only during a finite time interval, while otherwise travelling inertially. In sections

5.2 - 5.4, we then discuss the massive Unruh effect for a coherently delocalized detector in an

electric field that is switched on only during a finite time interval, such as to ensure that all

virtual center of mass velocities stay within the non-relativistic regime. In section 5.5, we finally

recover the Unruh effect as a limiting case of the massive Unruh effect.

5.1 Review: Unruh effect for a UDW detector

First, let us briefly review the Unruh effect for a UDW detector which travels, at non-relativistic

velocities, along a prescribed spatial trajectory x(t). The restriction to non-relativistic detector

velocities allows us to identify the detector’s proper time with the coordinate time t, which

significantly simplifies our calculations (and it also allows us to employ the Schrödinger equation

when considering virtual detector velocities in the next section, which is our primary motive

for working within the non-relativistic regime here). As in chapter 1, we again work in the

interaction picture, in which operators evolve according to the free Hamiltonian given by Eq.(1.1).

We again model the interaction between the detector and the field via the linear monopole

moment operator coupling between the detector’s monopole moment operator and the scalar

quantum field operators. We evaluate the coupling of the monopole moment operator and

the field operators along the detector’s prescribed spatial trajectory, µ̂⊗ φ̂(x(t)). The state of

the detector and the field then evolves in the interaction picture according to the interaction

Hamiltonian

Ĥint(t) := q µ̂(t)⊗ φ̂(x(t), t) , (5.1)
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with q the detector’s charge. The interaction picture representations of the monopole moment

operator and the field operators are given as follows:

µ̂(t) = eiΩt |e〉 〈g|+ H.c. , (5.2)

φ̂(x(t), t) =

∫
d3k

(2π)3/2

√
c2

2k

(
e−ickt+ik·x(t)âk + H.c.

)
(5.3)

Let us now study the vacuum excitation process of the detector and the field: we assume

that the detector is initially in its ground state and the field is in its vacuum state, and we

let |ψi〉 = |g〉 ⊗ |0〉 denote the initial state of the coupled system. Given the structure of the

monopole moment coupling, it is clear that in order for the detector to become excited, the

quantum field has to become excited as well. More concretely, the field has to transition to a

single photon state |k〉. Contrary to resonance effects such as absorption, the Unruh effect is

thus caused by counter-rotating wave terms in the light-matter interaction. In order to obtain

the Unruh excitation probability, we start by calculating the probability amplitude for the

system to transition to the final state |ψf〉 = |e〉 ⊗ |k〉,

AUnruh := 〈ψf |
∫ ∞
−∞

dt Ĥint(t) |ψi〉 . (5.4)

Via straightforward calculation of the respective matrix elements, we obtain the excitation

probability amplitude,

AUnruh =:
qc

2π
√

4πk
I , (5.5)

where we defined I as the following time integral:

I :=

∫ ∞
−∞

dt eit(ck+Ω)−ik·x(t) (5.6)

The modulus squared of the transition probability amplitude then yields the probability for the

detector to get excited and a field quantum of momentum k to be emitted:

PUnruh(k) := |AUnruh|2 (5.7)

In order to obtain the total excitation probability, irrespective of the momentum of the emitted

photon, we further trace over the Hilbert space of the quantum field:

PUnruh :=

∫
d3k |AUnruh|2 . (5.8)
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We can now easily verify that inertial detector trajectories, x(t) = x0 +vt, with x0 the detector’s

initial position and v the detector’s constant velocity, do not lead to the excitation of the

detector and the field:

AUnruh =
qc

2π
√

4πk

∫ ∞
−∞

dt eit(ck+Ω−k·v)−ik·x0 (5.9)

=
qc√
4πk

e−ik·x0δ(Ω + ck − k · v) (5.10)

= 0 (5.11)

In order to obtain a non-vanishing excitation probability, the detector needs to travel along a

non-inertial trajectory, that is, it needs to be accelerated for a non-vanishing amount of time.

Let us here consider a UDW detector that is uniformly accelerated in the z−direction during

the time interval t ∈ [0, T ], and that otherwise moves inertially. We can write the detector’s

acceleration as

a(t) = aΘ(t) Θ(T − t) ez , (5.12)

with ez = (0, 0, 1)T , and where Θ denotes the Heaviside step function. Assuming that the

detector is initially at rest, the detector’s velocity becomes:

v(t) = [atΘ(t) Θ(T − t) + aTΘ(t− T )] ez . (5.13)

Further assuming that the detector’s initial position coincides with the origin of our coordinate

system, the detector’s spatial trajectory becomes:

x(t) =

[
at2

2
Θ(t) Θ(T − t) +

aT

2
(2t− T ) Θ(t− T )

]
ez (5.14)

We now need to restrict the regime of the parameters a and T such as to ensure that the

detector’s velocities stay well within the non-relativistic regime. A detector moving along the

trajectory given in Eq.(5.14) reaches its maximal velocity at time t = T . We will here consider

velocities to be non-relativistic if they are smaller than 1% of the speed of light c. Provided

that the parameters a and T satisfy the following relation,

|v(T )| = |a|T
!

≤ 10−2c , (5.15)

assuming the detector’s motion to be non-relativistic is then well justified. For the spatial

trajectory in Eq.(5.14), together with the restriction in Eq.(5.15) on the parameters a and T ,
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we obtain the following expression for the time integral given in Eq.(5.6):

I =

∫ 0

−∞
dt eit(Ω+ck) +

∫ T

0

dt eit(Ω+ck)−iakz
2
t2 + eiT(Ω+ck−akz

2
T)
∫ ∞

0

dt eit(Ω+ck−kzaT ) (5.16)

=
1

iβ
+ πδ(β) +

√
π

2iakz
ei

β2

2akz

[
Erf

(
iβ√
2iakz

)
− Erf

(
iγ√
2iakz

)]
+eiT(Ω+ck−akz

2
T)
(
i

γ
+ πδ(γ)

)
, (5.17)

For notational convenience, we here defined the functions β := Ω + ck and γ := Ω + ck − akzT .

We further let kz denote the z−component of the momentum of the emitted Unruh photon,

k = (kx, ky, kz)
T = (k sin(θ) cos(φ), k sin(θ) sin(φ), k cos(θ))T , with θ and φ respectively the polar

and azimuthal angle. Since both the energy gap of the detector and the absolute value of the

momentum of the emitted photon are strictly positive, Ω > 0 and k > 0, we find that the delta

distribution δ(β) in Eq.(5.17) can be omitted. Further, since the detector’s velocity is strictly

smaller than the speed of light, we find γ > 0, and consequently, the delta distribution δ(γ) in

Eq.(5.17) can be omitted as well. For the excitation probability we then obtain

PUnruh =
q2c2

8π2

∫ 1

−1

dz

∫ ∞
0

dk k |I|2 , (5.18)

where we defined a new variable, z := cos(θ) ∈ [−1, 1]. Instead of tracing over the entire Hilbert

space HF of the quantum field, we could also consider tracing only over the direction of the

emitted photon, such as to obtain the excitation probability density

PUnruh(k) :=
q2c2k

8π2

∫ 1

−1

dz |I|2 , (5.19)

or we could trace out only the azimuthal angle φ, such as to obtain the excitation probability

density

PUnruh(k, z) :=
q2c2k

8π2
|I|2 . (5.20)

In Fig.(5.1), we plot the excitation probability density PUnruh(k, z) for a range of different photon

emission angles (that is, for different values of z, where z = 1, z = 0 and z = −1 respectively

correspond to emission along, orthogonal, and opposite the direction of acceleration). In Fig.(5.2),

we plot the excitation probability density PUnruh(k), where we carried out the z−integration

in Eq.(5.19) numerically.1 We find that photons are emitted preferably along the axis of

1When specifying numeric values for our parameters, it is sensible to render all quantities dimensionless. In

our plots, we thus expressed all quantities involved in terms of c, T and ~ (while in our calculations we fixed

~ = 1), which set natural length, time and mass scales.
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acceleration, and no radiation is emitted orthogonal to the z−direction. It is worth noting

that the here observed angular distribution of the emitted Unruh radiation is characteristic

to considering a scalar valued quantum field. In order to make realistic predictions about the

angular distribution of emitted Unruh radiation for physical systems such as atoms or ions,

the above calculations should be performed for such matter systems coupling to the vector

valued electromagnetic field. The excitation probability density shows oscillations when plotted

as a function of k, and for certain values of k, the excitation probability even vanishes. This

characteristic behaviour results from having the detector accelerate only during the compact

time interval t ∈ [0, T ]. Mathematically, we can trace the oscillatory behaviour back to the

complex error functions in the time integral given in Eq.(5.17). These error functions appear due

to the changes of the trajectory from inertial to accelerated at time t = 0 and from accelerated

to inertial at time t = T . As mentioned before, the energy for accelerating the detector can be

viewed as provided by an external agent not included within the UDW detector framework, and

the oscillatory behaviour could be interpreted as a sort of resonance phenomenon in accordance

with this energy.

Figure 5.1: Excitation probability

density PUnruh(k, z)/(cTq
2) for a

UDW detector, for different val-

ues of z, and plotted as a func-

tion of the dimensionless variable

kcT . We here chose ΩT = 0.2,

aT/c = 8 · 10−3.
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Figure 5.2: Excitation probabil-

ity density PUnruh(k)/(cTq2) for a

UDW detector, obtained by trac-

ing over z, plotted as a function

of the dimensionless variable kcT .

We again chose ΩT = 0.2 and

aT/c = 8 · 10−3.

Figure 5.3: Difference between

synchrotron radiation emitted by

a simple charge and Unruh radia-

tion emitted by a UDW detector

with energy gap ΩT = 0.2, plot-

ted as a function of the dimension-

less variable kcT . We here again

chose aT/c = 8 · 10−3.

While Unruh radiation is notoriously difficult to observe experimentally [11, 98, 99, 100, 101,

102, 103], radiation emitted by a simple accelerated charge in the form of synchrotron radiation

(or acceleration radiation, depending on the terminology employed, and not to be confused with

William Unruh’s use of the term) is a well-studied and easily observable phenomenon, see, e.g.,

[104]. The crucial difference is that for the Unruh effect, the accelerated and charged system

needs to have excitable internal degrees of freedom. However, as we mentioned earlier, the case

of a simple charge interacting with a quantum field can be recovered from the UDW detector

model in the limit of Ω→ 0. In order to really see the fingerprint of the Unruh effect in our plots,

we might therefore find it useful to subtract the excitation probability density PUnruh(k)/q2 for

a UDW detector from the “background contribution” caused by synchrotron radiation emitted

by a simple charge, Psync(k)/q2, which we obtain by setting Ω = 0 in Eq.(5.19). The plot of

the excitation probability density, [Psync(k) − PUnruh(k)]/q2, is displayed in Fig.(5.3). With
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these baseline plots at hand, let us now turn towards the massive Unruh effect for coherently

delocalized detectors.

5.2 Setting up the interaction Hamiltonian

Instead of prescribing a classical trajectory, we now want to dynamically model the acceleration

of the detector. To this end, let us consider a massive detector with quantum center of mass

degrees of freedom and that couples to a quantum scalar field φ̂, as described in chapter 2.

While in previous chapters we allowed the detector’s center of mass degrees of freedom to evolve

freely, we here want to couple the detector’s center of mass to a classical electric field E, which

allows us to dynamically model the acceleration of the detector. We consider the following total

Hamiltonian for the coupled system:

Ĥ =
p̂2

2M
− qE · x̂ + Ω |e〉 〈e|+

∫
d3k ck â†kâk + q

∫
d3x P̂(x)⊗ µ̂⊗ φ̂(x) , (5.21)

As we outlined in chapter 2, the interaction Hamiltonian in the interaction picture reads

Ĥint(t) = q

∫
d3x P̂(x, t)⊗ µ̂(t)⊗ φ̂(x, t) , (5.22)

with P̂(x, t), µ̂(t) and φ̂(x, t) given by Eq.(2.9), (2.10) and (2.11). In order to obtain a setup

that is comparable to the situation we considered in the previous section, let us consider an

electric field of the following form:

E(t) = E Θ(t) Θ(T − t)ez (5.23)

The field is switched on exclusively during the time interval t ∈ [0, T ], so that the detector’s

center of mass degrees of freedom follow their free time evolution for t /∈ [0, T ]. During the time

interval t ∈ [0, T ] however, the electric field is aligned with the z−axis and of constant strength

E . Before we can study the vacuum excitation process for the delocalized massive detector, we

first need to calculate the time evolved operators P̂(x, t). To this end, let us explicitly calculate

the time evolved position eigenvectors |x(t)〉 in the Heisenberg picture, for a quantum particle

with position operator x̂(t) which couples to the electric field in Eq.(5.23). The Heisenberg

equations for the position and momentum operators in the Heisenberg picture read

d

dt
x̂(t) =

p̂(t)

M
,

d

dt
p̂(t) = qE(t)ez . (5.24)
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Solving these coupled equations of motion, we obtain the following time dependent position

operator,

x̂(t) = x̂(0) + p̂(0)t/M + f(t) ez , (5.25)

where we defined the following function

f(t) :=
a

2

[
t2Θ(t) Θ(T − t) + T (2t− T )Θ(t− T )

]
, (5.26)

with a := qE/M . We note that f(t) is of the same form as the z−component of the classical

trajectory which we prescribed in Eq.(5.14) for the UDW detector with classical center of mass.

We let the position and momentum operators in the Heisenberg picture coincide at time t = 0

with the position and momentum operators in the Schrödinger picture, so that x̂(0) and p̂(0)

are represented as x̂(0)ψ(x) = xψ(x) and p̂ (0)ψ(x) = −i∇ψ(x) respectively. To find the time

dependent position eigenfunction ψξ (x, t) = 〈x|ψξ (t)〉 for a given position eigenvalue ξ, we need

to solve the differential equation(
x + f(t)ez −

it

M
∇
)
ψξ (x, t) = ξ ψξ (x, t) . (5.27)

By imposing the initial condition |ψξ (0)〉 = |ξ〉, and enforcing the following normalization

condition for the position eigenfunctions,∫
d3xψ∗ξ (x, t)ψχ (x, t)

!
= δ(3)(ξ − χ) , (5.28)

we obtain for the time dependent position eigenvectors:

|ψξ (t)〉 =

∫
d3p

(2π)3/2
e−ip·ξ+itp2/2M+ipzf(t) |p 〉 (5.29)

Coming back to Eq.(5.22), for the time evolved operators P̂(x, t) in the interaction picture we

thus explicitly obtain:

P̂(x, t) =

∫
d3p1d

3p2

(2π)3
exp

(
i
p2

2 − p2
1

2M
t− i(p2 − p1)x− i(p2,z − p1,z)

qEt2

2M

)
|p2〉 〈p1| (5.30)

We are now fully equipped to study what we refer to as the massive Unruh effect, that is, the

excitation process both of a coherently delocalized massive detector initially in its ground state

and of a scalar quantum field initially in its vacuum state.

86



5.3 Transition amplitude, transition probability and tran-

sition probability densities

To study the massive Unruh effect, let us consider initial and final states of the form

|ψi〉 = |ϕ〉 ⊗ |g〉 ⊗ |0〉 and |ψf〉 = |r〉 ⊗ |e〉 ⊗ |k〉 , (5.31)

with |ϕ〉 =
∫
d3p ϕ̃(p) |p〉 the initial center of mass state and r the detector’s recoil momentum.

We obtain the following transition probability amplitude, up to a complex phase:

AMassive =
qc

2π
√

4πk
ϕ̃(r + k)J (r) (5.32)

We here defined J (r) as the following time integral:

J (r) :=

∫ ∞
−∞

dt e
it
(
− k2

2M
− r·k
M

+ck+Ω
)
−ikzf(t)

(5.33)

The modulus squared of the transition amplitude in Eq.(5.32) then yields the probability density

for the detector to get excited, to recoil with momentum r and to emit a field quantum of

momentum k:

PMassive(k, r) :=
q2c2

(2π)24πk
|ϕ̃(r + k)|2 |J (r)|2 (5.34)

To study the recoil of the detector, we trace over the Hilbert space of the field degrees of freedom,

such as to obtain the excitation probability density, irrespective of the momentum of the emitted

photon and as a function of the recoil momentum r of the detector:

PMassive(r) =

∫
d3k

q2c2

(2π)24πk
|ϕ̃(r + k)|2 |J (r)|2 (5.35)

To obtain the total excitation probability, irrespective of the momenta of the emitted photon

and the recoil of the detector, we trace over the Hilbert spaces of both the field and the center

of mass degrees of freedom:

PMassive :=

∫
d3k

∫
d3p

q2c2

(2π)24πk
|ϕ̃(p)|2 |J (p− k)|2 (5.36)

Since we integrate over all momenta, we here made the substitution p := r + k, which

simplifies working with the expression in practice. Let us again write k = (kx, ky, kz)
T =

(k sin(θ) cos(φ), k sin(θ) sin(φ), k cos(θ))T , with φ the azimuthal angle and with θ the polar angle,
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that is, the angle between the momentum of the emitted photon and the direction of the electric

field lines. Let us further again introduce the variable z = cos(θ). In the following we will refer

to both z and θ as the polar angle of the emitted photon. Tracing over the recoil momentum as

well as over the angle of the emitted photon, we obtain the excitation probability density

PMassive(k) :=

∫ 1

−1

dz

∫ 2π

0

dφ

∫
d3k

∫
d3p

q2c2k

(2π)24π
|ϕ̃(p)|2 |J (p− k)|2 , (5.37)

as a function of the magnitude k of the momentum of the emitted photon. Similarly, we obtain

the excitation probability density as a function of both the magnitude k and polar angle z of

the emitted photon:

PMassive(k, z) :=

∫ 2π

0

dφ

∫
d3p

q2c2k

(2π)24π
|ϕ̃(p)|2 |J (p− k)|2 (5.38)

Let us now explicitly calculate the time integral J . Defining the functions

F (k) :=
k2

2M
+ ck + Ω , A(p,k) := F (k)− p · k

M
, B(kz) := akz (5.39)

for notational convenience, we obtain the following expression:

J (p− k) =

∫ ∞
−∞

dt e
it
(
k2

2M
−p·k
M

+ck+Ω
)
−ikzf(t)

(5.40)

=
1

iA
+ eiT(A−BT2 ) i

A−BT
+

√
π

2iB
e
iA2

2B

[
Erf
(

iA√
2iB

)
− Erf

(
i(A−BT )√

2iB

)]
(5.41)

We here omitted two terms, respectively involving delta distributions δ(A) and δ(A − BT ),

which we are justified to do for the following reason. First, let us write p · k = pk cos(κ), with

κ the angle between p and k. The delta distribution δ(A) then peaks only for cos(κ) = MF
pk

.

Furthermore, the delta distribution δ(A − BT ) peaks only for cos(κ) = M
pk

(F − aTkz). But

since cos(κ) ∈ [−1, 1], a necessary condition for δ(A) to peak is p ≥ Mc, which translates to

saying that the initial virtual center of mass velocities would have to be superluminal, which is

of course not possible. Similarly, a necessary condition for δ(A−BT ) to peak is p+MaT ≥Mc,

which would require the virtual center of mass velocities to be superluminal by the end of the

accelerated phase. For these reasons, the delta distributions can be omitted in the physical

region of interest. Physically, the delta distributions δ(A) and δ(A−BT ) have their origin in

the virtual inertial motion of the detector, respectively for the times t < 0 and t > T during

which the electric field is switched off. Inertial virtual motion (just like inertial real motion)

should not cause excitation of the detector and the field, which is reflected in the vanishing of

these delta distributions.
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5.4 Gaussian center of mass wave packet

In order to be able to concretely plot the transition probability densities for the massive Unruh

effect which we discussed above, we now need to specify an initial wave function, ϕ̃(p), for the

detector’s center of mass. Let us again consider a Gaussian initial center of mass wave packet of

the form given in Eq.(2.28), which flows together from past infinity to time t = 0, and which

then flows apart again from time t = 0 towards future infinity. In this way, we ensure that when

we interrupt the free time evolution of the center of mass, by switching on the electric field at

time t = 0, the detector’s center of mass is localized in the form of a Gaussian wave packet of

width L.

Figure 5.4: The difference

∆P (k, z)/(cTq2), plotted as

a function of the dimension-

less variable kcT , for differ-

ent emission angles z and with

Mc2T/~ = 100, ΩT = 0.2,

aT/c = 8 · 10−3 and L/(cT ) =

100.

Figure 5.5: The difference

∆P (k)/(cTq2), plotted as a

function of the dimension-

less variable kcT , for various

choices for the detector mass

(i.e., various choices for the di-

mensionless variable Mc2T/~)

and with ΩT = 0.2, aT/c =

8 · 10−3 and L/(cT ) = 100.

Again, since we describe the dynamics of the detector’s center of mass via the Schrödinger

equation, we need to choose the parameters L, M , T and a in a way that ensures that the
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detector’s virtual center of mass velocities stay within the non-relativistic regime. The initial

momentum of the detector in the z−direction, i.e., parallel to the electric field, is Gaussian

distributed around pz = 0, with a standard deviation of
√

2/L. Initial momenta that are

3.5 standard deviations away from the mean then correspond to initial virtual center of mass

velocities, vz(0), of magnitude 7
√

2/(LM). Let us consider a fixed length T of the time interval

during which the electric field is switched on. We can obtain an estimate for how small we

should choose the electric field strength E to be, by calculating the velocity that a classical

particle of initial velocity vz(0) = 7
√

2/(LM) and acceleration a would have at time T , and by

then requiring this velocity to be smaller than 1% of the speed of light:

vz(T ) =
7
√

2

LM
+ Ta

!

≤ 10−2c (5.42)

Provided that we choose appropriate parameters E , T , L and M , we can now Taylor expand the

modulus squared of the time integral in Eq.(5.36) for non-relativistic virtual detector velocities,

v/c = p/(Mc) � 1, that is, Taylor expand |J (p − k)|2 around p/(Mc) = 0. Due to the

symmetry of the integral in Eq.(5.36), we only need to calculate the following Taylor coefficients:

C :=
(
|J (p− k)|2

) ∣∣∣∣
A=F

and D :=
1

2

∂2
(
|J (p− k)|2

)
∂A2

∣∣∣∣
A=F

(5.43)

Expressing C and D in terms of the variables k and z, we then obtain for the excitation

probability densities we introduced above:

PMassive(k, z) =
q2c2k

8π2

[
C(k, z) +D(k, z)k2/(M2L2) +O

(
(LMc)−4

)]
, (5.44)

Pmassive(k) =

∫ 1

−1

dz
q2c2k

8π2

[
C(k, z) +D(k, z)k2/(M2L2) +O

(
(LMc)−4

)]
, (5.45)

PMassive(r, ζ) =
L3q2c2

2(2π)5/2

∫ ∞
0

dk

∫ 1

−1

dz k e−(r2+k2+2rkζ)L2/2

×
[
C(k, z) +D(k, z)

(
rkζ + k2

)2
/M2

]
+O

(
(LMc)−4

)
, (5.46)

PMassive(r) =
L3q2c2

2(2π)5/2

∫ 1

−1

dζ r2 e−rkζL
2

∫ ∞
0

dk

∫ 1

−1

dz k e−(r2+k2)L2/2

×
[
C(k, z) +D(k, z)

(
rkζ + k2

)2
/M2

]
+O

(
(LMc)−4

)
(5.47)

We here defined r as the magnitude of the recoil momentum and α as the angle between the

recoil momentum r and the momentum k of the emitted photon, r · k = rk cos(α). We further

defined the variable ζ := cos(α).
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We are now prepared to plot the excitation probability densities, e.g., for different detector

masses M and different energy gaps Ω, and study the dependence of the excitation process

on the angle and the magnitude of the momentum of the emitted photon, as well as on the

magnitude of the recoil momentum and the angle between the recoil of the detector and the

emitted photon. The remaining integrations over z, k and ζ in Eq.(5.44)-(5.47) can be carried

out numerically.

The plots for PMassive(k, z) and PMassive(k) look qualitatively extremely similar to the plots

we obtained in section 5.1 for PUnruh(k, z) and PUnruh(k), for a UDW detector with a classical

and prescribed spatial trajectory. In order to visibly resolve how the plots for coherently

delocalized, massive detectors differ from the plots for UDW detectors, in Fig.(5.4) we plot

the difference between the excitation probability density for UDW and massive detectors,

∆P (k, z) := PUnruh(k, z) − PMassive(k, z), for different emission angles z, in terms of the

magnitude k of the momentum of the emitted photon. Further, in Fig.(5.5), we numerically

integrate over the emission angle and plot the difference ∆P (k) := PUnruh(k)− PMassive(k), as

a function of the magnitude k of the momentum of the emitted photon. We find that, taking

the quantum delocalization of the detector’s center of mass into account, there are some values

of k for which the excitation process becomes less likely (∆P (k) > 0), and some for which the

excitation process becomes more likely (∆P (k) < 0), compared to the Unruh effect for a UDW

detector. We can intuitively understand this effect as follows: by studying the Unruh effect

for a coherently delocalized detector, we expect that the different superposed virtual paths

of the detector coherently interfere with each other. For ∆P (k) > 0, destructive interference

effects dominate overall, while for ∆P (k) < 0, constructive interference effects dominate. For

the purpose of measuring the effects of delocalization on the Unruh effect (provided that the

Unruh effect itself becomes measurable at some point), these different regions of destructive

and constructive interference might be a crucial fingerprint to look for in the Unruh radiation

spectrum.

In Fig.(5.6), we depict polar plots for both the excitation probability density PUnruh(k, z),

as well as the excitation probability densities PMassive(k, z) for a range of different detector

masses M . We fixed the magnitude of the momentum of the emitted photon to be kcT = 5

in the plot on the left and kcT = 7 in the plot on the right. The radial axes of the plots show

the excitation probability densities, while the polar angle represents the emission angle θ of

the photon momentum. We find that for smaller and smaller detector masses (that is, faster

and faster virtual center of mass delocalization), the difference between the Unruh and the

massive Unruh effect becomes more and more significant. We further find that the probability
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Figure 5.6: Polar plots of the excitation probability density in terms of the polar angle θ of the

emitted photon, where we fixed kcT = 5 (left) and kcT = 7 (right). The radial axes of the plots

show the excitation probability densities (according to the respective legends to the right of

each plot), while the polar angle represents the polar emission angle θ. In both plots, we chose

parameters ΩT = 0.2, aT/c = 8 · 10−3 and L/(cT ) = 100.
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for the detector to emit a photon of certain momentum magnitudes, such as e.g. for kcT = 5, is

suppressed by taking the quantum nature of the detector’s center of mass into account, while

for other photon momentum magnitudes, such as e.g. for kcT = 7, the probability becomes

enhanced by it. We further find that depending on the magnitude of the photon momentum,

radiation is sometimes preferably emitted in the forward direction, and sometimes preferably

in the backwards direction. For all magnitudes of the photon momentum and for all detector

masses, as well as for UDW detectors, we find however that no radiation is emitted orthogonal

to the direction of acceleration (that is, for θ = 90◦ and θ = 270◦).

Let us now again remember that accelerated charges emit radiation in the form of synchrotron

radiation. This is the case for charges following a prescribed trajectory, as well as for charges

with delocalized center of mass degrees of freedom. In Fig.(5.7), we displayed polar plots of the

difference both between the Unruh effect and synchrotron radiation for a simple charge, as well as

between the massive Unruh effect and synchrotron radiation for a delocalized charge. Concretely,

the red dotted line represents a polar plot of [Psync(k, z) − PUnruh(k, z)]/q2, for kcT = 5 and

where Psync(k) is obtained from PUnruh(k) by setting Ω = 0. The colored solid lines represent

polar plots of [PMassive, sync(k, z)− PMassive(k, z)]/q
2, for kcT = 5 and where PMassive, sync(k, z)

is obtained from PMassive(k, z) by setting Ω = 0. By subtracting the background synchrotron

contribution, the plot thus shows the angular distribution of radiation emitted merely due to

the (massive) Unruh effect.
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Figure 5.7: The red dotted line rep-

resents a polar plot of the difference

[Psync(k, z) − PUnruh(k, z)]/(cTq
2),

for a simple charge and a UDW

detector with energy gap ΩT = 0.2

and a simple charge. The col-

ored solid lines represent the

difference [PMassive, sync(k, z) −
PMassive(k, z)]/(cTq

2), for a de-

localized charge and delocalized

detectors of various masses and with

energy gap ΩT = 0.2. We here

fixed kcT = 5 and chose parameters

aT/c = 8 · 10−3 and L/(cT ) = 100.

In Fig.(5.8), we display a polar plot for the excitation probability density PMassive(r, ζ), for

a range of different fixed values of r. The radial axis again shows the excitation probability

density, while the polar angle represents the angle α between the detector’s recoil and the

emitted photon. We find that the probability density for small recoil momenta is fairly isotropic,

which is plausible since we assumed an isotropic initial center of mass momentum distribution.

For larger recoil momenta however, the radiation is distorted towards the direction opposite to

the direction in which the photon is emitted. This is also plausible, given that most photons are

emitted preferably in the acceleration direction. We thus find that due to the massive Unruh

effect and the resulting recoil of detector, the detector resists the acceleration to a certain extent,

and we can interpret this result as a sort of friction, causing the detector to slow down.
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Figure 5.8: The excita-

tion probability density

PMassive(r, ζ)/(cTq
2), plot-

ted against the radial axis,

as a polar plot in terms

of the angle α = arccos(ζ)

between the recoil momen-

tum and the momentum of

the emitted photon. We

chose to show polar plots

for a range of different val-

ues of the dimensionless

variable rcT , and we let

Mc2T/~ = 500, ΩT =

0.2, aT/c = 8 · 10−3 and

L/(cT ) = 100.

5.5 The Unruh effect as a limiting case of the massive

Unruh effect

Finally, let us see how to recover the traditional Unruh effect in Eq.(5.18), for a UDW detector

with a prescribed classical center of mass trajectory, from the “massive Unruh effect” in Eq.(5.36),

which we obtained for a detector whose quantum center of mass is subject to an electric field.

In order to recover the traditional Unruh effect for a detector experiencing a uniform

acceleration a, let us consider the limit of infinite detector mass, in which the center of mass

wave function coherently delocalizes infinitely slowly and in which the center of mass degrees of

freedom thus essentially behave classically. A classical particle of charge q and mass M in a

constant electric field E experiences an acceleration a := qE/M . Defining M =: mγ and E =: εγ

and letting γ →∞ allows us to keep the acceleration a experienced by the detector constant,
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while considering the infinite mass limit:

lim
γ→∞

PMassive = PUnruh (5.48)

Starting from our quantum mechanical framework, in which we dynamically account for the

acceleration of the detector via an electric field, we can thus indeed recover the “classical” Unruh

effect for a UDW detector with uniform acceleration a during a finite time interval and with

non-relativistic velocities. We thus, once again, find that it is not the static center of mass

delocalization, but rather the dynamical coherent center of mass delocalization process, which

affects the interaction of matter and light.
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Conclusions

The UDW detector model can be viewed as a simplified model of the light-matter interaction,

in which the electromagnetic field is modeled as a simple scalar field, and matter systems

are modeled as simple first-quantized qubit systems, whose classical center of mass degrees of

freedom follow a prescribed trajectory. In the past, the UDW detector model has proven to

be a powerful tool to explore a wide range of phenomena in the field of relativistic quantum

information. It has been used not only to study the Unruh effect, but also, for instance, to

explore the vacuum entanglement of quantum fields and how to swap it into a pair of detectors,

as well as simple processes such as the absorption, emission and vacuum excitation processes.

We here developed a generalized detector model, which we refer to as the coherently delocalized

detector model, such as to include the quantumness of the center of mass of the detector.

In chapter 1 of this thesis we reviewed the UDW detector model and some of its variations, as

well as its application to the study of simple processes in the light-matter interaction. In chapter

2, we then introduced our coherently delocalized detector model, by dropping the simplifying

assumption underlying the UDW detector model that the center of mass of the detector is

classical, and by instead quantizing the center of mass degrees of freedom.

We discovered that the dynamics of the coherent center of mass delocalization of a detector

influences its interaction with a quantum field. For instance, we discovered that emission and

absorption rates are modified by the dynamical center of mass delocalization process, and we

found that it makes a difference whether the delocalization is coherent or in part also incoherent.

Looking forward, these modifications might be of interest not only for instance in view of laser

cooling and the Doppler effect, but also in the context of quantum information theory. Let us

here just mention some of the questions worth exploring in the future: What happens when

a coherently delocalized detector system absorbs a photon that is entangled with an ancilla

system? To what extent can the preexisting entanglement be preserved, that is, how much
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of the preexisting entanglement can be acquired by a delocalized detector system absorbing

the photon? To what extent will the detector’s internal degrees of freedom become entangled

with the ancilla upon the absorption of the photon, and to what extent will the center of mass

degrees of freedom become entangled with the ancilla or the internal degrees of freedom? The

answers to these questions will likely depend on the amount by which the photon was entangled

with the ancilla via its polarization and via its orbital degrees of freedom respectively, as well as

on the detector’s initial center of mass state. Understanding the quantum channel capacities of

the light-matter interaction, for quantum delocalized matter systems, could become particularly

important with regard to modular quantum computing. It would be very interesting to study

protocols such as the quantum teleportation protocol or the superdense coding protocol, within

our delocalized detector model.

In section 2.5 we found that the smeared UDW detector model, which we discussed in section

1.3, is fundamentally different from our coherently delocalized detector model. While classical

smearing profiles are appropriate to model the finite spatial extent of a detector system due

to its orbital wave functions, operator-valued smearing profiles are needed to model coherent

delocalization due to the quantum nature of the center of mass degrees of freedom.

In sections 2.6 and 2.7 we found that in a medium, the virtual motion of a detector system, due

to the coherent dynamical delocalization process, can induce interesting new effects. Namely,

on the one hand, a delocalized detector in its ground state, coupled to the ground state of

the quantum field, can become excited, while at the same time emitting a field quantum. We

referred to this effect as a virtual Cherenkov-like effect. Just like the Cherenkov effect can occur

for charges undergoing superluminal real motion in a medium, we found here that the virtual

Cherenkov-like effect can occur whenever the virtual motion of the center of mass possesses

probability amplitudes for velocities faster than the critical velocity vcrit = cs +
√

2Ω/M ,

determined by maximum wave propagation speed cs in the medium, as well as the mass M and

the energy gap Ω of the detector. We found that the supersonic spreading of the detector’s center

of mass is slowed down, to some extent, by the energy loss due to the emission of Cherenkov-like

radiation and the excitation of the detector. We concluded that the virtual Cherenkov-like effect

represents a source for decoherence and can be viewed as a source of friction. On the other hand,

we found that a field excitation can be ‘absorbed’ by a delocalized detector in its excited state,

leaving both the field and the detector in their respective ground states. This inverse virtual

Cherenkov-like effect can occur whenever the virtual motion of the center of mass possesses

probability amplitudes for velocities faster than the critical velocity ṽcrit =
∣∣Ω
k

+ cs − k
2M

∣∣.
These newly discovered effects might be experimentally observable, e.g., for an atom or molecule
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left to delocalize freely in a Bose Einstein condensate. The sound propagation speed can be as

low as mm/s for certain Bose Einstein condensates [74]. The (inverse) virtual Cherenkov-like

effect might thus well be observable, provided that the matter system coherently delocalizes

faster than the critical velocity vcrit (or the critical velocity ṽcrit), determined by the phononic

propagation speed cs in the Bose Einstein condensate. However, before setting up an experiment

to measure these effects, we should of course first make quantitatively accurate predictions. That

is, instead of the qubit detectors we considered here, we should consider accurate quantitative

models for the matter systems, and instead of the simple Klein-Gordon scalar field we considered

here, we should model the medium using a more realistic field description, including a more

realistic dispersion relation.

Similarly to our studies that led us to discover the virtual Cherenkov-like effect, it should also be

interesting to investigate whether or not a Cherenkov-Zeno-like effect could occur in media for a

detector whose center of mass wave function spreads in momentum space. For instance, we could

imagine a detector exposed to an external potential that induces the coherent spreading of its

momentum wave function, such as an electric field or an inverted harmonic oscillator potential,

see, e.g., [62, 63, 64]. The external potential would cause the momentum wave function to

spread, and the center of mass of the detector would “accelerate”. Given our findings related

to the virtual Cherenkov-like effect, it would be reasonable to anticipate the occurrence of a

Cherenkov-Zeno-like effect: as the center of mass momentum wave function tries to spread into

larger and larger momenta, we might again find a critical velocity, above which the detector

might undergo a radiation and excitation effect. We predict that the medium would continually

‘measure’ whether or not the detector has probability amplitudes for virtual velocities above the

critical velocity, and the spreading of the momentum wave function into these high momenta

might be be slowed down.

In chapter 3, we proposed a model for a specific physical situation involving a delocalized

matter system, namely for a hydrogen atom with quantum delocalized center of mass degrees of

freedom, coupled to the vector-valued electromagnetic field via minimal coupling. Within this

model, we then made qualitative predictions for the increase of the spontaneous emission rate for

an excited hydrogen atom, due to the dynamical coherent delocalization process of the center of

mass of the hydrogen atom. We further discussed how center of mass delocalization can lead to

violations of the selection rules in the light-matter interaction. Ultimately, these violations might

have profound information theoretic consequences. As a technical tool to simplify the order

of magnitude estimate calculations, we finally discussed a simplified model for a delocalized
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hydrogen atom, obtained by replacing the Coulomb potential by a simpler harmonic potential.

It should be interesting to study further concrete physical scenarios in which delocalized matter

systems interact with quantum fields, to propose realistic models, and to then make quantitative

predictions for the effects of coherent delocalization in these scenarios.

In chapter 4, we studied the ability of two quantum delocalized detectors to become entangled

with each other, via their respective interaction with the ground state of a scalar quantum

field. We calculated the entanglement negativity for the internal degrees of freedom of the

two quantum delocalized detectors, and thereby studied the impact of quantum center of mass

delocalization on the process of entanglement harvesting. We found that delocalized detectors

harvest less entanglement than detectors whose center of mass degrees of freedom are assumed

to behave classically. We further identified the limit in which the results for entanglement

harvesting for coherently delocalized detectors reduce to the results for detectors with classical

external degrees of freedom: for two detectors of very large mass, whose center of mass wave

functions are initially very sharply peaked and which dynamically delocalize very slowly, we

recover the negativity for two pointlike UDW detectors. This limit corresponds to detectors

whose centers of mass are essentially completely localized at all times. Moreover, we confirmed

once again that center of mass delocalization is fundamentally different from the finite extent of

a detector’s charge distribution arising from the electronic orbitals. While the finite extent due

to the electronic orbitals can be modeled separately through the use of smearing functions, we

here restricted ourselves to modelling only the delocalization due to the detector’s quantum

center of mass. Finally, we discussed entanglement harvesting in media, where we found that

entanglement harvesting for coherently delocalized detectors decreases with decreasing wave

propagation speeds.

We focused on the entanglement harvested by the internal degrees of freedom of quantum

delocalized detectors. It will be interesting to investigate to what extent the center of mass

degrees of freedom of coherently delocalized detectors can harvest entanglement from the vacuum.

In addition, the center of mass degrees of freedom can become entangled with the internal

degrees of freedom in the harvesting process. We conjecture, for example, that for faster virtual

recoil velocities, the center of mass degrees of freedom harvest larger amounts of entanglement,

while, possibly due to entanglement monogamy, the internal degrees of freedom then might

harvest less. It will be technically difficult, however, to calculate entanglement measures, such as

the negativity, for the center of mass degrees of freedom, since they possess infinite dimensional

Hilbert spaces. We anticipate that this can be addressed, for example, by either post-selecting
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for specific recoil momenta, by discretizing the momentum space, e.g., by placing the detectors

in a confining potential or cavity and placing an energy cutoff, or by binning momenta into a

finite number of momentum regions. Such methods could then allow one, for example, to study

whether preexisting entanglement between the center of mass degrees of freedom would help or

hinder the harvesting of entanglement.

When studying processes within the UDW detector model, oftentimes more intuition and insights

can be gained by performing a Lorentz transformation into the detector’s rest frame. In our

case here, however, the quantum center of mass motion possesses a range of potential velocities

in coherent superposition. To transform into the quantum uncertain rest frame of the detector,

one needs to perform coordinate changes to quantum uncertain reference frames via quantum

uncertain Lorentz transformations. A formalism of such quantum reference frames has been

developed, e.g., in [65, 66, 67, 68, 69, 70]. Adapting and applying the formalism of quantum

reference frames to our studies of the light-matter interaction for coherently delocalized matter

systems may be useful not only to better understand the effects which we discussed in this

thesis. But also, these methods may allow us to extend our studies to relativistic virtual center

of mass velocities.

Finally, in chapter 5, we studied the effects of coherent center of mass delocalization on the

Unruh effect. We considered a detector whose quantum center of mass is accelerated by an

external electric field, and we studied how the quantum uncertain center of mass state affects

the emission of radiation along with the excitation of the massive detector. We here coined the

term massive Unruh effect for the emission effect along with the excitation of the coherently

delocalized detector. We studied, in particular, the quantum recoil of the detector. We found

that the Unruh effect can be recovered from the massive Unruh effect, in the limiting case of

very large detector masses and very large electric field strengths.

Here, we assumed the presence of two different fields, namely a classical field causing the

delocalized detector to accelerate, and a quantum field which becomes excited via the massive

Unruh effect. This assumption is well justified in scenarios in which the acceleration is, for

instance, caused by a gravitational field, and the quantum field is the electromagnetic field.

However, when considering an electric field causing the acceleration, this field of course has its

origin in the quantum electromagnetic field. Looking forward, it would therefore be interesting

to study the massive Unruh effect in a unified setup in which we consider a delocalized detector

coupling to only one quantum field.

Further, we here only considered initial center of mass wave packets of Gaussian shape. It
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should be interesting to tune the shape of the initial wave function in different ways, and explore

whether there are certain wave function shapes which are more or less suited for the purpose of

measuring the massive Unruh effect.

Looking forward, it might also be interesting to study the “inverse massive Unruh effect”:

similarly to the inverse virtual Cherenkov-like effect, which we discussed in section 2.7, we

could consider the transition form an initial state of the form |Ψi〉 = |ϕ〉 ⊗ |e〉 ⊗ |k〉 to a final

state of the form |Ψf〉 = |r〉 ⊗ |g〉 ⊗ |0〉. Apart from the initial and final center of mass states,

this transition represents the time-reversed process of the massive Unruh effect. The inverse

massive Unruh effect might be more easily measurable than the Unruh effect, provided that we

could fine-tune both the center of mass wave function and the excited field state in a way that

maximizes the transition probability. Further, the probability for the inverse Unruh effect to

happen might increase by considering a coherent beam of photons with a high flux, instead of a

single particle initial field state. We could then measure the detector’s recoil, such as to detect

the inverse massive Unruh effect. It should be interesting to investigate whether measuring the

inverse massive Unruh effect could indeed be more viable than measuring the Unruh effect.

Throughout our discussion of the massive Unruh effect, we restricted ourselves to non-relativistic

center of mass velocities. For an electric field of the form we considered in Eq.(5.23), the

non-relativistic restriction requires the time interval during which the electric field is switched

on to be appropriately short. In order to maximize the time of acceleration, while staying

within the non-relativistic regime, we could alternatively consider, for instance, the oscillatory

motion of a detector in an electric field, whose field lines are periodically flipped from pointing

in one direction to pointing in the opposite direction. We expect that a setup like this would

significantly enhance the measurability of the massive Unruh effect. A related scenario involving

oscillatory acceleration, for a detector system in an electromagnetic cavity, was discussed, e.g.,

in [105, 106, 107], and the term oscillatory Unruh effect was coined for the excitation and

radiation effect for such detector systems. While the Unruh effect requires extremely high

accelerations in order to be observable, the accelerations required for the oscillatory Unruh effect

to be observable were shown to be much more viable. The authors of [105] further showed that

the oscillatory Unruh effect may be significantly enhanced, via a coherent enhancement effect

similar to the superradiance effect, by considering a dense cloud of detector systems. In a similar

spirit, it should be extremely interesting to study the massive Unruh effect for a periodic time

dependent electric field, first for a coherently delocalized detector, and then also for a cloud of

coherently delocalized detectors. Performing these calculations may well lead the way towards

measurability of the massive Unruh effect.
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Another possibility worth exploring, in order to possibly enhance the measurability of the

massive Unruh effect, is to study the excitation and radiation effect for a coherently delocalized

detector in a constant magnetic field. We could straightforwardly apply the methods developed

in this thesis towards studying this “circular massive Unruh effect”, that is, the radiation effect

caused by circular acceleration, as well as the quantum recoil of the detector. Experimentally,

we could imagine trapping an electron in a constant magnetic field. In order to trap the

electron along the direction of the magnetic field lines, we could apply electric potentials. The

electron’s center of mass would be quantum delocalized, and we could use the quantized spin

eigenstates of the electron in the constant magnetic field as the qubit states. Conceivably, the

quantum recoil experienced by the electron could then be used in order to detect the circular

massive Unruh effect. The advantage of considering circular acceleration, rather than uniform

acceleration, is that we could leave the constant magnetic field on at all times (since detectors

with virtual center of mass velocities initially within the non-relativistic regime would stay

within the non-relativistic regime at all times). We could thus eliminate any switching effects

interfering with the acceleration effects.

Of course, it would be extremely intriguing to study the massive Unruh effect for a coherently

delocalized detector experiencing uniform acceleration at all times. However, uniform acceleration

at all times causes the detector to experience relativistic virtual center of mass velocities. In

order to conduct such studies, more sophisticated tools, such as quantum reference frames, will

need to be employed first. It would then be exciting to investigate whether, due to the impact

of the quantum recoil, quantum delocalized detectors still thermalize according to a thermal

bath, and if so, how the temperature of this thermal bath would be affected by the detector’s

mass and initial localization.
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[55] D. Hümmer, E. Mart́ın-Mart́ınez, and A. Kempf, “Renormalized Unruh-DeWitt particle

detector models for boson and fermion fields,” Phys. Rev. D, vol. 93, p. 024019, Jan 2016.

[56] E. Mart́ın-Mart́ınez and P. Rodriguez-Lopez, “Relativistic quantum optics: The relativistic

invariance of the light-matter interaction models,” Phys. Rev. D, vol. 97, p. 105026, May

2018.

[57] D. Tong, Quantum Field Theory, University of Cambridge Part III Mathematical Tripos.

Lecture notes, DAMTP, Cambridge University, 2006.

[58] M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory (Frontiers

in Physics). Westview Press, 1995.

[59] R. Blaga, “The response of a Unruh-DeWitt particle detector in a thin-shell wormhole

spacetime,” 2017.

[60] M. Papageorgiou and J. Pye, “Impact of relativity on particle localizability and ground

state entanglement,” Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 37,

p. 375304, 2019.

[61] R. Lopp and E. Mart́ın-Mart́ınez, “Quantum delocalization, gauge and quantum optics:

The light-matter interaction in relativistic quantum information,” 2020.
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[69] F. Giacomini, E. Castro-Ruiz, and Č. Brukner, “Quantum mechanics and the covariance

of physical laws in quantum reference frames,” Nature Communications, vol. 10, 2019.

[70] C. E. Wood and M. Zych, “Minimum uncertainty states for free particles with quantized

mass-energy,” arXiv:1911.06653, 2019.

[71] P. A. Cherenkov, “Visible emission of clean liquids by action of γ radiation,” Compt. Rend.

Acad. Sci. URSS, vol. 8, p. 451, 1934.

[72] I. M. Frank and I. E. Tamm, “Coherent visible radiation of fast electrons passing through

matter,” Compt. Rend. Acad. Sci. URSS, vol. 14, no. 3, p. 109, 1937.

[73] P. A. Cherenkov, “Visible radiation produced by electrons moving in a medium with

velocities exceeding that of light,” Phys. Rev., vol. 52, p. 378, 1937.

[74] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye,

and W. Ketterle, “Propagation of sound in a Bose-Einstein condensate,” Phys. Rev. Lett.,

vol. 79, pp. 553–556, 1997.
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