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Abstract

With the rapid adoption of robotic systems in our daily lives, robots must operate in the
presence of humans in ways that improve safety and productivity. Currently, in industrial
settings, human safety is ensured through physically separating the robotic system from
the human. However, this greatly decreases the set of shared human-robot tasks that
can be accomplished and also reduces human-robot team fluency. In recent years, robots
with improved sensing capabilities have been introduced and the feasibility of humans and
robots co-existing in shared spaces has become a topic of interest.

This thesis proposes a human-aware motion planning approach building on RRT-
Connect, dubbed Human-Aware RRT-Connect, that plans in the presence of humans.
The planner considers a composite cost function that includes human separation distance
and visibility costs to ensure the robot maintains a safety distance during motion while
being as visible as possible to the human. A danger criterion cost considering two mu-
tually dependent factors, human-robot center of mass distance and robot inertia, is also
introduced into the cost formulation to ensure human safety during planning. A simulation
study is conducted to demonstrate the planner performance. For the simulation study, the
proposed Human-Aware RRT-Connect planner is evaluated against RRT-Connect through
a set of problem scenarios that vary in environment and task complexity. Several human-
robot configurations are tested in a shared workspace involving a simulated Franka Emika
Panda arm and human model.

Through the problem scenarios, it is shown that the Human-Aware RRT-Connect plan-
ner, paired with the developed HRI costs, performs better than the baseline RRT-Connect
planner with respect to a set of quantitative metrics. The paths generated by the Human-
Aware RRT-Connect planner maintain larger separation distances from the human, are
more visible and also safer due to the minimization of the danger criterion. It is also
shown that the proposed HRI cost formulation outperforms formulations from previous
work when tested with the Human-Aware RRT-Connect planner.
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Chapter 1

Introduction

With the fast-growing demand for robotic systems capable of interacting with humans in
a safe, seamless, and intuitive manner, the development and integration of these systems
in interactive and collaborative tasks has seen an extensive research effort in recent years,
e.g., [5], [38]. Although interest in human-robot interaction has grown steadily, robots can
still cause discomfort for humans through their appearance, embodiment, posture, and
other attributes [43].

While factory automation has grown over the years, many manufacturing processes
still require human workers. For assembly tasks that require the dexterity of humans,
robots generally place parts onto specialized jigs or conveyors which the human then works
on. In these scenarios, the robots are physically separated from the human to prevent
collisions or incidents that may cause injury [57]. While this satisfies the objective of
human safety, it generally reduces productivity and fluidity between the human and robot.
To truly harness the productivity increase of robots and humans working together, minimal
limitations should be imposed on the task environment and robot motion. Figure 1.1 shows
an example scenario where a human and robot are interacting in a shared workspace to
assemble a wooden toolbox. The robot is able to sense and pick up parts to handover to
the human while also assisting when the human needs help to hold the wooden parts in
place. The human is able to focus on tasks that require more dexterity while the robot
focuses on the more tedious (but useful) tasks of picking and holding parts in place.

In contexts that require close-proximity human-robot interaction, such as the one shown
in Figure 1.1, two objectives are usually required to be met: the safety and comfort of the
human and the efficient completion of the task. In the work presented by Lasota et al.
[44], results from a close-proximity human-robot collaboration user study showed that
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simply preventing collisions as they are about to occur can lead to inefficient human-robot
interaction while also negatively impacting perceived safety and comfort for the human.
The experiment involved human participants working on a collaborative task with a robot
arm operating in two modes: a standard mode where the robot determined the shortest
path to its goal and employed a pre-collision safety system that reduced velocity or stopped
its motion based on separation distance, and an adaptive mode where the robot used
human-aware motion planning to avoid portions of the shared workspace where it expected
the human to be. The authors found that the human-aware motion planner lead to better
perceived safety and comfort as assessed through questionnaires, while also improving team
fluency assessed through various performance metrics. These results motivate the need for
human-aware motion planning algorithms that can augment low-level control strategies
that are focused on collision prevention and impact reduction.

Figure 1.1: Human and robot interacting in a shared collaborative assembly workspace.

1.1 Problem Definition

Following [48], [36], [10], and [15], we formally define the motion planning problems to be
addressed in this thesis.

The motion planning problem relies on abstracting the workspace of a robotic system
into a configuration space. The configuration space or C-space (C), is the set of all possible
configurations of the robot. A configuration q ∈ C of a robot is a minimal set of variables
that specifies the position and orientation of each rigid body composing the robot.
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The subset of C inducing collisions with obstacles in the workspace is denoted Cobs.
Assuming that C \Cobs is an open set, we denote the obstacle-free space as Cfree = cl(C \
Cobs), where cl(·) denotes the closure of a set.

For a given start configuration, qinit ∈ Cfree, and goal configuration, qgoal ∈ Cfree,
the path planning problem can be defined as a triplet (Cfree, qinit, qgoal). A path over the
configuration space is a continuous function σ : [0, 1]→ C and it is said to be collision-free
if for all τ ∈ [0, 1], σ(τ) ∈ Cfree. Let Σ denote the set of all paths, and Σfree denote the
set of all collision-free paths. The feasible path planning problem is defined as:

Problem 1. Feasible path planning problem. Given a path planning problem
(Cfree, qinit, qgoal), find a feasible path σ(τ) ∈ Cfree such that σ(0) = qinit and σ(1) = qgoal,
if one exists, or report failure otherwise.

For planning on a a continuous-cost space, we define a cost-function c : C → R≥0 such
that a positive real value is assigned to all configurations in C. Then the cost-space path
planning problem is:

Problem 2. Cost-space path planning problem. Given a path planning problem
defined as the quadruplet (Cfree, qinit, qgoal, c), solve the feasible path planning problem while
accounting for the cost function c during exploration of the C-space.

To be specific, methods aimed at solving the cost-space path planning problem perform
a rejection sampling of configurations in the C-space by imposing specific cost constraints
evaluating each configuration on its cost alone, or on the cost variation to move locally
between configurations.

It should be noted that, unlike the optimal path planning problem which aims to find
the minimum cost path in Σfree, the cost-space path planning problem only finds a feasible
low cost path.

1.2 Thesis Contributions

In this thesis, we propose an HRI cost formulation for planning with articulated robot
arms in the presence of humans. The work builds on the formulations in [63] and [50]
and integrates the danger criterion formulation from [41] as a separate cost function term.
A modified RRT-Connect planner, dubbed Human-Aware RRT-Connect, plans using the
proposed HRI cost formulation. The modified planner is compared to the baseline RRT-
Connect planner [34] in a human-robot collaboration simulation study. From the simulation
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results, we show that the proposed HRI cost formulation and Human-Aware RRT-Connect
planner outperform the baseline planner for metrics such as minimum separation distance
from the human, average separation distance from the human, path visibility and average
robot inertia among others. The proposed HRI cost formulation outperforms formulations
from previous work when tested with the Human-Aware RRT-Connect planner.

1.3 Thesis Organization

In Chapter 2, related work on motion planning in high dimensional spaces and motion plan-
ning in the presence of humans is reviewed. In Chapter 3, the description of the proposed
human-aware motion planning method is detailed. Results from simulation experiments
of the human-aware motion planning method in a shared human-robot workspace are de-
scribed in Chapter 4. Conclusions and future work are discussed in Chapter 5.
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Chapter 2

Literature Review

First, we review general techniques for planning in high dimensional spaces. Then, we
move on to previous work in motion planning for human environments.

2.1 Sampling Based Planning Methods

Sampling based planning methods avoid constructing an explicit representation of the
configuration space and instead, rely on probing the C-space with a sampling scheme [47].
This class of planning methods have become popular due to their speed and simplicity,
especially in high-dimensional configuration spaces. Where classical grid-search planners
suffer from the curse of dimensionality, i.e. they become computationally intractable with
the increase of the configuration space dimension [53], sampling-based methods have been
shown to solve planning problems with over 1000 dimensions [60]. Sampling-based planning
methods are probabilistically complete meaning if a path exists, it is guaranteed to be found
as the number of samples tends to infinity.

In this section we cover two of the most popular sampling-based planning algorithms,
Probabilistic Road Maps and Rapidly Exploring Random Trees.

2.1.1 Probabilistic Road Maps

Probabilistic Roadmaps (PRMs) [37] were introduced to overcome the curse of dimension-
ality that exists in classic grid search techniques [49]. The PRM method is split into a
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learning phase and query phase. The learning phase constructs the probabilistic roadmap
by repeatedly sampling random free configurations of the robot and connecting these con-
figurations using a fast local planner. The roadmap is stored as an undirected graph where
nodes comprise of valid configurations in Cfree and edges represent collision-free paths be-
tween configurations. In the query phase, a query asks for a valid path between a start and
goal configuration. First, the start and goal configurations are connected to the roadmap,
followed by a graph search to find a feasible path in the roadmap. PRMs are “multiple-
query” solvers in that the same roadmap can be used to solve multiple motion planning
problems in the same static workspace.

2.1.2 Rapidly Exploring Random Trees

The Rapidly Exploring Random Tree (RRT) planner, originally published in [46], is a
popular single-query motion planner that can solve problem 1, the feasible path planning
problem. Similar to PRMs, they avoid an explicit construction of Cfree by randomly
sampling the configuration space. However, the approach is simplified in that no cycles are
added to the resulting graph. Starting from qinit, the RRT method builds a tree T on the
C-space. At each iteration, a configuration qrand is sampled from C and an extension by
step size ε is attempted from the nearest-neighbor in the tree, qnear, towards qrand. If the
extension succeeds, i.e. there were no collisions, a node qnew is added to T and connected by
an edge to qnear. This process is repeated until a stop condition, such as the reaching of the
goal configuration, qgoal is reached. The procedure is sketched in Algorithm 1. Figure 2.1
visualizes the EXTEND operation showing how a new node is added into the tree, T .

Figure 2.1: The EXTEND operation during the RRT expansion [12].

An extension to the original RRT planner was presented in [34] where two trees are
grown, one from the start configuration and one from the goal configuration. Both trees
follow the original RRT planner’s EXTEND procedure but also include a Connect proce-
dure that tries to grow each tree as far as possible toward qrand, thereby connecting the
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Algorithm 1 RRT

Input: Start and goal configurations
Output: Feasible path or Failure
Parameters: ε is the step size for a motion

1: T .Init(qinit)
2: for i = 1 to K do
3: qrand ← Rand(C)
4: qnear ← Nearest(qrand, T )
5: EXTEND(T , qnear, qrand)
6: Return FAILED
7: function EXTEND(T , qnear, qrand)
8: if NEW CONFIG(q, qnear, qnew) then
9: if DISTANCE(q, qnew) ≤ ε then

10: Return Reached;
11: else
12: Return Advanced;

13: Return Trapped;

14: function NEW CONFIG(q, qnear, qnew)
15: qnew ←UNIT V(q, qnear) ∗ ε
16: if OBSTACLE FREE(qnew) then
17: Return True;

18: Return False
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two trees together. This simple greedy heuristic achieves a speedup over the original RRT
while maintaining the properties of probabilistic completeness and a uniform exploration
of Cfree.

To explore cost spaces, in [22], the authors propose a threshold based RRT-Connect
planner for rough-terrain navigation. In the Extend procedure, the cost of qnew is checked
and only accepted into the search tree if it is below a cost threshold. This threshold is
initialized to a low value and increased based on the number of planner iterations that have
passed. A drawback of the approach is the non-decreasing cost threshold which degrades
the planner to RRT-Connect in cost topologies containing more than one local maxima
along the trajectory. Transition-based RRT (T-RRT), another work aimed at planning on
cost spaces, integrates a transition test that favours exploration of low cost configurations
in C [32]. The transition test, based on stochastic optimization methods, accepts or rejects
the move from qnear to qnew based on their respective costs. This guides the planner to
follow valleys and saddle points of the cost-space in order to compute low-cost paths.

While the above variants improve different aspects of the original RRT, they do not
provide any guarantees on finding the optimal minimum cost path. RRT* was introduced in
[36] and was shown to be an asymptotically optimal planner, i.e. as the running time of the
planner approaches infinity, the cost of the path approaches the optimal value. However,
RRT* is known to converge slowly to the optimal path, especially in high-dimensional cost
spaces [17].

2.2 Trajectory Optimization Methods

Another class of planners developed recently are trajectory optimization methods. These
planners differ from sampling based planners in that they use continuous optimization
techniques to find high quality paths. These methods generally define a path representation
and a cost function and have to be initialized with an initial path (e.g., a straight line
interpolation from the starting configuration to the goal configuration or the output path
of a sampling based planner). At each iteration, the gradient of the current path cost is used
to determine a new path of lower cost. This process is repeated until the path cost cannot
be updated any further (generally a local minimum of the formulated cost function). These
methods also generally assume fixed time steps between each waypoint in the path and
thus are called trajectory optimization methods (as opposed to path optimization methods).
Some examples of trajectory optimization planners are CHOMP (Covariant Hamiltonian
Optimization for Motion Planning) [56], STOMP (Stochastic Trajectory Optimization for
Motion Planning) [35] and TrajOpt [59].
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2.3 Motion Planning in the Presence of Humans

Sampling based planning methods have, until recently, focused on producing feasible paths
without considering path quality. This has lead to planners that produce paths quickly at
the cost of being less than optimal. In many contexts, such as human-robot interaction,
producing high quality paths with respect to some quality criterion is preferred. In [62], it
is noted that applying and extending classical motion planning techniques to the problem
of human-robot interaction was first done in [64], work that was published in the year 2007.
Since then, the field has grown significantly as summarised in recent reviews [40], [43].

2.3.1 Mobile Robot Motion Planning in Human Environments

Although the focus of this thesis is on planning in the presence of humans for articulated
robot arms, the literature on mobile robot motion planning in the presence of humans is
relevant and informative. In this line of research, many works introduced cost formula-
tions to make robot paths safer, more comfortable and more human-like. Some of these
formulations have also been extended to planning for articulated robot arms.

In [7], Bennewitz et al. presented a robot motion strategy that was modelled after
humans. The mobile robot tries to predict the actions of the people in an environment
and avoids areas where humans are predicted to be. Data recorded with laser rangefinders
are clustered using an expectation minimization algorithm and this data is used to derive
a hidden Markov model that estimates the future positions of people in the environment.
From this, the probabilistic belief about potential trajectories of persons is incorporated
into an A* algorithm to determine the minimum-cost path (that would avoid human areas)
in the three-dimensional configuration time-space of the robot. The results showed that
the approach can reliably learn motion patterns and can be used to improve navigation
behaviour for mobile robots.

In [64], a human aware mobile robot motion planner that integrated a static human’s
accessibility, their vision field and their preferences in terms of relative human-robot place-
ment was introduced. A “safety criterion” is formulated and tries to maintain a separation
distance between the robot and the human. The formulation takes into account differ-
ent human-robot interaction scenarios and also reasons about a human’s preferences when
they are sitting or standing. A “visibility criterion” aims to keep the robot in the human’s
field of view. Finally, a “hidden zones” criterion is introduced to better formulate costs
for robot positions that are occluded from the human’s field of view by obstacles. Similar
formulations are introduced and extended in [63] to produce robot motions that clearly
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show the robot’s intention. One drawback of these works is that the different cost func-
tions are defined on Cartesian grids and the planners employed are based on classic grid
search techniques. This approach may be sufficient in the absence of strong workspace
constraints but may fail in cluttered environments with many obstacles. Moreover the
computation time for high dimensional configuration spaces will likely become intractable
as the dimension increases.

In the domain of autonomous vehicles, Morales et al. studied safe motion planning for
vehicles with human passengers inside [51]. The work developed the Human-Comfortable
Path Planner (HCoPP) system for autonomous passenger vehicles with the aim to improve
the feeling of comfort for human passengers. This was achieved by augmenting the shortest-
path constraint with constraints related to relevant environmental features. A three layer
costmap is integrated into the approach to balance the shortest path constraint along with
the path comfort constraints. Through a user study, the results showed that the HCoPP
system produced paths that were perceived to be more comfortable to humans.

Costmap formulations first introduced for mobile robot navigation have also been
adapted to articulated robot motion planning in the presence of humans.

2.3.2 Articulated Robot Motion Planning in Human Environ-
ments

In this section we review the literature related to human-aware and safe planning for robot
arms.

In the planner proposed by Kulić et al., a danger criterion based on robot inertia
and relative distance between the human and robot center of mass is formulated [41].
The proposed planner uses a two stage approach with the first stage searching for robot
configurations that minimize the danger criterion while the second stage seeks the goal. The
results showed that the formulated danger criterion, paired with the planning approach,
was able to generate safe, feasible paths for interaction. Minimizing the danger criterion
during planning reduces the chance of collision by distancing the robot from the human.
Moreover, for unanticipated collisions, the risk of injury is reduced because the planner
tries to ensure that the robot stays in low inertia configurations when moving from the
start to the goal.

Lacevic et al. propose a safe RRT-Connect planner which modifies the way the start and
goal trees are expanded [42]. They first formulate a cumulative static danger field which
reasons about the distance from a workspace point to points of interest on the robot. This
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formulation is used when selecting nearest neighbors in the trees for expansion. Instead
of selecting neighbors based solely on a distance metric, the cumulative static danger field
is also minimized leading to expansion from safer regions of the configuration space. The
planner is implemented for a 6-DOF robotic arm in two static simulation environments
with multiple cylinders as obstacles. The planner is able to produce paths that remain
far from obstacles. The authors test their algorithm 1000 times for the same environment
and start and goal configurations showing that the average cumulative static danger field
is minimized effectively.

In [50], Mainprice et al. extend the work from [64] and [63] and formulate similar
criteria such as human field of view, safety distance and arm comfort while employing the
T-RRT planner [32] to generate safe motion plans in cluttered environments for a handover
task. The work was later integrated into a control architecture that combined a supervisory
attentional system with a human-aware manipulation planner [9]. Experiments were run
with 5 subjects in different human-robot manipulation tasks such as give, receive, pick and
place. Users generally perceived the interactions as safe, reliable and natural.

In the work by Vahrenkamp et. al. [72], an approach for determining suitable locations
for human-robot interaction tasks is formulated. The method introduces a task specific
Interaction Workspace as a representation of the workspace accessible by both the human
and robot. Several quality measures for both the human and robot are considered during
the construction of the Interaction Workspace such as joint space travel, workspace travel,
visibility, safety distance and effort (energy consumption of arm postures). An exemplar
hand-over task where a robot hands tools to a human and vice versa is described and
implemented. The results showed that the computation time and size of the Interaction
Workspace was inversely proportional to the distance between the human and robot.

Hayne et al. approach the problem of planning in the presence of humans from a differ-
ent perspective. The authors propose cost function formulations that avoid the workspace
previously occupied by humans, and increase consistency of the robot motion so that move-
ments are as predictable as possible for the human [28]. These formulations are used in
the TrajOpt planner for a specific human-robot shared workspace task. Results from sim-
ulations and physical experiments show that the best task success rates occur when using
either cost function term individually or both cost function terms together in comparison to
a baseline method. A similar approach is formulated in [77] where an occupancy cost map
and signed distance field map are used to aid a STOMP planner for a shared human-robot
workspace task.

While most of the works discussed here propose offline planners, Faroni et al. propose
a framework based on a model predictive control approach where trajectory velocities are
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modified online to slow down task execution and the redundancy of the robot system is
exploited to maximize the distance from the human operator [24]. The approach generates
a path using a high-level planner (e.g. STOMP) and then modifies it online. The predictive
horizon is 0.5s and the human position is assumed to be constant during this time. The
results show that the robot is able to successfully slow down and deform its trajectory when
the distance between the robotic system and the human is less than a threshold value.

In [20], Dragan et al. investigate how robot motion can convey intent and model the
problem using mathematical definitions of legibility and predictability of robot motion. In
their work, they found that legible robot motions are often quite different from predictable
motions making predictability and legibility contradictory properties. They evaluated the
validity of their mathematical models through a user study where participants predicted
which goal a robot or human was reaching toward in a set of videos. Trajectories that
were rated as more legible by the participants were generally considered to be more legible
as evaluated by the mathematical formulation developed in the work, but trajectories
with a high mathematical predictability were not always rated as more predictable by
humans. The authors explained that this could be because participants had a wide variety
of expectations of how the robot arm would move and thus emphasized the importance of
considering human expectation when planning robot motions. In later work [21], Dragan
et al. also incorporate the notion of legibility into a trajectory optimization planner and
show that there must be a compromise between legibility and predictability so that the
generated robot motion does not become too surprising or unpredictable for the human.

2.4 Summary

This chapter provided an overview of sampling-based motion planning methods, trajec-
tory optimization planners and motion planning in the presence of humans. Most works
implement cost functions that reason on the human presence and then employ planners to
plan using those cost functions. Early work in the field of human-aware motion planning
defined Cartesian grids and used classic grid search techniques to plan on them. Later
work extended this approach to sampling based planners.

Most of the works presented in this chapter are formulated for specific human-robot
interaction scenarios such as handovers or close-proximity motion planning and present
general path quality criteria such as integral cost or mechanical work. While these quality
criteria show that the algorithms work as intended for the costs that they minimize, more
insight about the algorithms can be gathered from metrics such as average separation
distance, trajectory visibility and others. Moreover, many of the works do not show large
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scale tests of their formulations in a variety of different human-robot shared workspace
scenarios. This thesis aims to test the proposed algorithm in various environments and
shows planner usage for both close-proximity motion planning and handovers. We report
general path quality criteria and metrics such as average separation distance, robot inertia
and path visibility among others.
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Chapter 3

Human-Aware Motion Planning
Formulation

In this chapter the proposed human-aware motion planning method is detailed. A com-
posite cost function is proposed that considers the human and the robot in the shared
workspace. First, a distance cost which aims to keep the closest point on the human away
from certain locations on the robot is introduced. Next, a cost on the human’s visibility of
the robot is introduced which tries to ensure that the robot is within the human’s field of
view during motion. Finally, a danger criterion cost is introduced that reasons on the level
of danger imposed by the robot on the human through relative center of mass distances
and robot inertia. These separate cost terms are combined in a weighted sum and can be
evaluated for a single robot configuration. The cost function is then used within a sam-
pling based planner that plans the robot’s motion by checking whether new configuration
samples are collision free and within certain cost bounds. An overview of the approach is
given in Figure 3.1.
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Figure 3.1: The overall human-aware motion planning approach used in this thesis.

3.1 Human-Aware Cost Formulation

In this section, the various cost function terms are described in detail.

A 32-DOF human model was adapted from [31] to represent the human in the shared
human-robot workspace as shown in Figure 3.2. Using this model, various cost function
terms are formulated based on the human’s position, the human’s head orientation and
the robot’s configuration.

We denote H as the human model configuration. H has 38 terms in its configuration
vector, 32 for the joint degrees of freedom and 6 describing the position of the human
model in the World frame. We denote the vector [i, j, k] as a voxel in the workspace.
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Figure 3.2: 32-DOF Human Model.

3.1.1 Distance Cost

Similar to the formulation in [50], a distance cost, cdist ∈ [0,∞], is introduced. This cost
function tries to ensure the safety of interaction by maximizing the separation distance
between the robot and human, until some maximum threshold where the cost becomes
null. The approach in [50] only considers an approximate bounding volume of the human
body without considering arm geometry. In this work, a Euclidean distance transform on
the entire human model (including all limbs) is calculated. Figure 3.3 shows an example
of a human distance costmap.

The distance cost function is implemented as a repulsive potential function and is given
as:

cdist(H, x) =

0 EDT (H, x) ≥ dmax

γ
(

1
EDT (H,x)

− 1
dmax

)2
otherwise

, (3.1)

where x ∈ [i, j, k], EDT is the Euclidean Distance Transform, dmax is the maximum
extent of the Euclidean Distance Transform and γ is a scaling constant used to scale cdist
such that the cost is one when the distance between the human and the robot is dmin, the
minimum allowable separation distance, and zero when the distance between the human
and robot is dmax or larger. Upon collision between the robot and the human, the cost
evaluates to ∞. γ is given as:
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Figure 3.3: A cross section of the human distance costmap defined on the workspace with
orange indicating high cost and violet indicating low cost.

γ =

(
dmin · dmax

dmin − dmax

)2

. (3.2)

EDT (H, x) provides the closest distance to the human from point x. The human model
is first voxelized before a dynamic brushfire algorithm computes the shortest Euclidean
distance to each voxel. The distance values can be updated incrementally if the human
moves to a different position. The implementation is further detailed in [45], and is directly
used in this work.

3.1.2 Visibility Cost

The visibility cost, cvis ∈ [0, 1] is based on the angle ψ ∈ [0, π], between the human’s
current head orientation, and the line between point p ∈ [i, j, k] in the workspace and the
head.
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To calculate ψ, we assign a head frame denoted Head to the human model as shown in
Figure 3.4. Let TWH be the 4x4 homogenous transformation matrix from the World frame
to the Head frame and let h denote the translational component of the transformation. R
is the 3x3 rotation matrix of the transformation. TWH is given as:

TWH =

[
R h
0 1

]
=


r11 r12 r13 h1
r21 r22 r23 h2
r31 r32 r33 h3
0 0 0 1

 . (3.3)

We model the human’s direction of gaze as the x − axis of the head frame as shown
in Figure 3.4. From this, we take ~g = [r11, r21, r31], the first column of the 3x3 rotation
matrix in TWH . If we let ~x be the vector from the point p to the head frame, i.e. ~x =
[i− h1, j − h2, k − h3], we can calculate ψ as the arccosine of the dot product between the
normalized vectors ~g and ~x:

ψ = arccos

(
~g

‖~g‖ ·
~x

‖~x‖

)
. (3.4)

From the formulation in [76], human attention is more attracted to social and visual cues
in a small central area known as the effective field of view (eFOV) shown in Figure 3.6.
Features that are collected within this region induce higher levels of attention from the
human. Studies conducted in [69] and [73], showed that humans have a tendency to look
towards the center of an image rather than the periphery, regardless of the contents of the
image. Hence, the final visibility cost function is normalized to a value between 0 and 1
and then squared to give smaller angles near the center of the human’s field of view, lower
costs. cvis is given as:

cvis(H, x) =

(
ψ

π

)2

. (3.5)

Since the eFOV is a cone with radius 15◦, raising the cost to a power of 2 has the effect
of making cvis roughly 0 for angles ψ within the eFOV. This is plotted in Figure 3.7.

The costmap is visualized in Figure 3.5 where the direction of gaze is denoted by a red
arrow pointing out from the human head. Violet and blue spheres indicate points of high
visibility and orange spheres denote points of low visibility.

When used during planning, the visibility cost has the effect of producing paths that
are as visible as possible for the human while moving to the goal configuration.
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Figure 3.4: The two vectors ~g and ~x are used to calculate the angle ψ from the point p.
TWH denotes the homogeneous transformation matrix from the World frame to the Head
frame and h denotes the location of the head in the World frame.
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Figure 3.5: A cross section of the human visibility costmap defined with orange indicating
high cost (low visibility) and violet indicating low cost (high visibility).
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Figure 3.6: The human’s effective field of view (eFOV).
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Figure 3.7: The cost cvis is plotted against the angle ψ. The cost for angles within the
eFOV are close to zero as shown by the vertical blue line.

3.1.3 Danger Criterion Cost

To improve human safety, cdc ∈ [0, 1] is introduced to bias the search towards robot con-
figurations that minimize a danger criterion. To accomplish this, a formulation similar to
the product based danger criterion from [41] was used. The criterion is based on the robot
inertia and relative distance between the human and the robot center of mass.

The inertia of a general articulated body is a 3x3 tensor so a scalar value representing
the robot inertia for a configuration q is required. Following [41], since the robot’s inertia
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may be distributed in more than one plane, we take the highest eigenvalue of the inertia
tensor, the largest principal moment of inertia, as the scalar measure. We denote this value
as Is. Figure 3.8 shows three configurations of a robot arm with different scalar inertia
values.

(a) Home configuration (b) Low inertia configuration (c) High inertia configuration

Figure 3.8: Examples of different arm configurations showing the center of mass with a
green sphere relative to the arm’s base frame. The scalar inertia values for each configu-
ration are: a) Is = 2.088, b) Is = 1.652, c) Is = 2.872. The size of the green sphere bears
no significance.

The inertia criterion is given as:

cinertia(Is) =

(
Is
Imax

)4

, (3.6)

where Is is the scalar moment of inertia value about the center of mass and Imax is the
maximum safe inertia of the robot. As noted in [41], Imax can be set based on the largest
force magnitude that does not cause pain and the maximum acceleration of the robot. The
cost is raised to the fourth power in order to give higher scalar inertia values higher costs
relative to lower scalar inertia values.

For the center of mass distance criterion between the human and robot the following
formulation is used:
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ccomdist
(H, dcm) =

0 dcm ≥ dmaxcom

k
(

1
dcm
− 1

dmaxcom

)2
otherwise

, (3.7)

where dcm is the center of mass distance between the human and the robot and dmaxcom

is the maximum center of mass distance. k is a scaling constant used to scale the center of
mass potential function such that the cost is zero when the center of mass distance between
the human and robot is large (greater than dmaxcom) and is one when the center of mass
distance between the human and robot is dmincom . k is calculated as:

k =

(
dmincom · dmaxcom

dmincom − dmaxcom

)2

. (3.8)

The final product-based danger criterion is computed using equations 3.6 and 3.7 as:

cdc(H, q) = cinertia(Is) · ccomdist
(dcm). (3.9)

3.2 Final Cost Function Formulation

The full cost formulation, combining equations 3.1, 3.5 and 3.9 is given as:

c(H, q) = max
j
wdistcdist(H,FK(q, pj)) + max

j
wviscvis(H,FK(q, pj)) + wdccdc(H, q) (3.10)

with FK being the forward kinematics function of the robot, and pj indicating the
jth point of interest. The points of interest can be any of the 7 joints on the robot. For
example, when planning, if it is important for the end effector, wrist and elbow of the
robot to avoid the human, these can be specified as points of interest. The maximum cost
out of the j points of interest is used when more than one point of interest is specified.

wdist, wvis and wdc are the three weighting parameters for the cost function terms.
Depending on the robot behaviour desired, these can be set accordingly.

As a note, cdist and ccomdist
are both distance based costs with the difference being

that the former is a cost for the closest distance between specific points on the robot and
the entire human while the latter is a cost for the center of mass distances. Depending
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on the planner employed and the human-robot interaction context, the weights for these
respective costs can be set to attain different planned paths. For example, if maintaining
a strict clearance between the robot and the human is of priority, wdist should be set
higher than wdc. If minimizing inertia and center of mass distance is more important than
maintaining a minimum separation distance from the human (e.g., for a handover), then
wdc should be set larger than wdist. A weight sensitivity analysis is presented in Section 4.5
where the choice of weights is investigated in more detail.

3.3 Human-Aware RRT-Connect Planner

As the cost function formulation presented in Section 3.2 returns a cost for a single robot
configuration, a sampling-based planner is ideal to plan a geometric path. This work uses
a modified version of RRT-Connect [34].

Algorithm 2 details the Human-Aware RRT-Connect planner. The function HA-RRT
CONNECT, starting at line 1, is the main planner that is modelled after the original

RRT-Connect algorithm. A cost thresholding approach similar to [22] is introduced with
the main difference being that the threshold is adaptively tuned (similar to [32]) instead
of being a non-decreasing parameter.

The planner maintains two trees, TA and TB and grows them over each iteration until
they become connected and a path from the start to the goal configuration is found. In
each planning iteration, one of the two trees is extended and then an attempt is made to
connect the nearest vertex of the other tree to the newly generated vertex. If no connection
is made, the trees are swapped to reverse their roles and allow both trees to explore Cfree.

In the original RRT-Connect algorithm, a distance metric is used to find the nearest
configuration, qnear, to extend the search tree. In Human-Aware RRT-Connect, following
a similar approach to [42], qnear minimizes ρ(q, qold) +αCOST (qold) that captures both the
distance and cost assessment of the potential nearest neighbour node, qold. In this work, ρ
is the L2-norm metric function (Euclidean distance).

Compared to RRT-Connect, a cost threshold, cthres, is introduced, which imposes an
additional criterion for the acceptance of a configuration into any of the trees along with
collision checking. Line 3 of Algorithm 2 shows the initialization of the parameter cthres,
passed through EXTEND to NEW CONFIG. NEW CONFIG extends the search tree by a
single step ε and produces the configuration qnew. qnew must be obstacle free and below cthres
as described in line 22 of Algorithm 2. Additionally, if this criterion is satisfied, we check
if the cost of qnew is less than it’s nearest neighbor, qnear and accept it if so. Otherwise,
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if qnew is not of lesser cost than qnear, it is accepted into the tree with a probability of
η ∈ [0, 1]. This is done to ensure that the trees continue exploring Cfree instead of getting
trapped at local cost minimas.

Line 15 shows the algorithm termination criterion when a path is found. If the distance
between the new configuration that was added to the current search tree is less than ε away
from the other tree then the two trees are connected and the generated path is returned.
If after K iterations, no path is found, the planner terminates and returns failure.
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Algorithm 2 Human-Aware RRT-Connect Planner

Input: Planning problem (Cfree, qinit, qgoal, c)
Output: Feasible low cost path or Failure
Parameters: ε is the step size for a motion

1: function HA-RRT CONNECT(qinit, qgoal)
2: TA.Init(qinit), TB.Init(qgoal)
3: cthres ← cinit . cost threshold
4: for i = 1 to planner iterations do
5: qrand ← Rand(C)
6: if EXTEND(TA, qrand, cthres) == Trapped then
7: if CONNECT(TB, qnew, cthres) == Reached then
8: Return PATH(TA, TB)

9: SWAP(TA, TB)
10: ψ ← UPDATE THRES(cthres) . update cost threshold

11: Return FAILED
12: function EXTEND(T , q, cthres)
13: qnear ← arg min

qold∈T
{ρ(q, qold) + αCOST (qold)}

14: if NEW CONFIG(q, qnear, cthres, qnew) then
15: if ρ(q, qnew) ≤ ε then
16: Return Reached;
17: else
18: Return Advanced;

19: Return Trapped;

20: function NEW CONFIG(q, qnear, cthres, qnew)
21: qnew ←UNIT V(q, qnear) ∗ ε
22: if OBSTACLE FREE(qnew) & COST(qnew) < cthres then
23: if COST(qnew) < COST(qnear) then
24: Return True;
25: else if rand01() < η then
26: Return True;

27: Return False
28: function CONNECT(T , q, cthres)
29: repeat
30: S ← EXTEND(q, T , cthres)
31: until not S == Advanced
32: Return S;
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Algorithm 3 Cost Threshold Update

Parameters: crate is the rate at which to increase or decrease the threshold, nsuccessmax is
the maximum number of successful additions to the tree, and nfailmax is the maximum
number of unsuccessful tree additions

1: procedure UPDATE THRESHOLD(cthres)
2: if nsuccess > nsuccessmax then
3: cthres −= crate
4: nsuccess = 0

5: if nfail > nfailmax then
6: cthres += crate
7: nfail = 0

This planner inherits the advantages of RRT-like planners such as the exploratory
strength which biases the planning towards large Voronoi regions of the configuration
space. In addition, the cost-based heuristic biases the tree expansion to low cost areas of
the configuration space.

The cthres parameter is updated in Algorithm 3 using a simple heuristic. If nsuccessmax

configurations have been accepted into either search tree, cthres is decreased. If nfailmax

consecutive configurations have been rejected from either search tree, cthres is increased.
This limits the trees from adding too many high cost configurations while also allowing
for the necessary exploration of the configuration space in order to find a path in a short
amount of time.

The cinit parameter can be set to a low starting value (e.g. 0) to bias the search to low
cost configurations. Through Algorithm 3, over a number of iterations the cost will update
and start expanding the tree from low cost regions of Cfree. However, the parameter can
also be set to the starting configuration cost to speed up the Human-Aware RRT-Connect
algorithm. This allows the robot to start exploring the free space around the starting
configuration sooner than if cthres was set to an arbitrary value. Consider a scenario where
the human and robot start very close to each other. If cthres was always initialized to a
standard value, it could take many iterations for the cost threshold to be increased before
being able to move away from the starting configuration. Moreover, in this scenario, if the
human is already close to the robot it can be assumed that they may be more comfortable
with higher cost trajectories (e.g. ones that have closer minimum separation distances
to the human). Thus, setting the cost threshold to the starting configuration cost is
acceptable.
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3.4 Path Post-processing

The geometric path produced by Algorithm 2 is post-processed to improve path quality
and smoothness. A final step is employed to time parametrize the path for execution on
the robot.

3.4.1 Random Cost Shortcutting

First a shortcutting method is applied where for a number of iterations, random config-
uration pairs along the path are selected and a collision free, lower cost, connection is
attempted to be made between them. The method is detailed in Algorithm 4.

For shortcutting, the same cost formulation as described in Section 3.2 is used to
calculate the cost of configurations along the shortcut path. The shortcut segment replaces
the original segment only if the maximum cost out of all configurations along the newly
created path segment is less than the maximum cost of the configurations along the original
path segment. This is done (as opposed to averaging the cost along the path segment) to
ensure that path quality is not adversely effected in the shortcutting phase. As an example,
if we consider the distance cost, the average cost along the path could be lower than the
original path segment along a shortcut path but, the path could still get very close to
the human if a few configurations have large costs. Considering the maximum cost along
the segment ensures that all configurations along the shortcut maintain good separation
distances.

Algorithm 4 Random Cost Shortcutting

Input: Path P , number of iterations smoothing iterations

Output: Path P with shortcutting applied
1: function RANDOM SHORTCUTTING(P )
2: for i = 1 to smoothing iterations do
3: (q1, q2)←P.getTwoRandomConfigs()
4: shortcut←getInterpolatedSegment(q1, q2)
5: if isV alid(shortcut) then
6: if maxCost(shortcut) ≤ maxCost(P.getPathSegment(q1, q2)) then
7: P.replacePathSegment(shortcut, q1, q2)

8: Return P
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3.4.2 Low-pass Filtering of Joint Positions

Additionally, since RRT-based planners tend to produce jagged paths, especially when
travelling around or close to obstacles, low-pass filtering is applied to smooth the path.
After filtering the path, collisions are not checked as the filtering will only remove mild
oscillations along the path without altering the overall motion. An example of the low-pass
filtering is shown in Figure 3.9 for a single joint of the Panda arm. The blue line indicates
the unfiltered positions for the fourth joint of the Panda arm along a path produced by
the Human-Aware RRT-Connect planner and the green line is the filtered path.
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Figure 3.9: Example of low-pass filtering applied to Panda Joint 4 along a path.

3.4.3 Time Parameterization

After shortcutting and low-pass filtering, the path, {qinit, q2, q3, ..., qgoal}, is time parame-
terized with velocity and acceleration data using MoveIt’s implementation of the Iterative
Parabolic Time Parameterization (IPTP) algorithm [3].
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Chapter 4

Simulation Experiments

In this chapter, we detail the stimulation experiments run to assess the quality of the pro-
posed Human-Aware RRT-Connect planner proposed in Chapter 3. We compare Human-
Aware RRT-Connect to RRT-Connect, the standard implementation detailed in [34], using
a set of problem scenarios involving a simulated Franka Emika Panda Arm and a human
in a shared human-robot workspace. We also present an analysis of the cost function
terms and justify the use of robot points of interest. We end this chapter by comparing
Human-Aware RRT-Connect against a variant of T-RRT, Connect T-RRT.

In Section 4.1 the various problem scenarios used to gauge path quality and gather
planner metrics are detailed. Section 4.2 explains the implementation details and the
planner parameters used for all tests (unless otherwise specified). In Section 4.3, the metrics
and path quality criteria are described in detail. In Section 4.4, Human-Aware RRT-
Connect is compared against RRT-Connect and the results are presented and analyzed.
Section 4.5 presents a sensitivity analysis of the cost function formulation by varying the
weights of the cost function terms and the use of points of interest.

4.1 Problem Scenarios

This section details the different testing scenarios used to assess the quality of the proposed
Human-Aware RRT-Connect planner. The scenarios are differentiated based on the level of
environment and task complexity. The three scenarios presented are described in Table 4.1.
The following subsections give more details.
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Problem Scenario Environment Robot Task

Simple Human and robot in a
shared workspace with no
obstacles in the planning
scene.

Plan to various joint space
goals in the presence of the
human.

Cluttered Human and robot in a
shared workspace with var-
ious obstacles in the plan-
ning scene.

Plan to various joint space
goals in the presence of the
human.

Cluttered Handover Human and robot in a
shared workspace with var-
ious obstacles in the plan-
ning scene.

Handover an object to the
human.

Table 4.1: The three problem scenarios used to gauge planner quality.

4.1.1 Problem Scenario 1: Simple Environment

In this scenario, the Franka Emika Panda arm is fixed to a table with the human placed
in front of the table with outstretched arms. The robot generates plans from its home
configuration to various goal configurations that require it to plan around the human. The
environment and scenario are shown in Figure 4.1a. The set of start and goal configurations
for the robot are listed in Table A.1 in Appendix A. The starting configuration was fixed
to qinit while the goal configuration was varied over five different joint space configurations,
qgoal1 through qgoal5 . Similarly, a set of three configurations were chosen for the human,
listed in Table A.2. The configurations were selected such that the robot would have to
plan around the human to reach its goal configuration. The configurations can be seen in
Figure 4.1b. These sets of configurations are iterated over 1000 trials when generating the
planner results.
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(a) Simple scenario environment. (b) Simple scenario top view with human
and robot configurations shown.

Figure 4.1: The simple human-robot environment scenario showing the Franka Emika
Panda mounted on a table with the human statically positioned in the workspace.

4.1.2 Problem Scenario 2: Cluttered Environment

In this scenario, the Franka Emika Panda arm is mounted on a table with the human
positioned over the table similar to Problem 1. However, in this case, the environment
is cluttered with objects. This scenario aims to test the planner in a more challenging
environment where various obstacles are in the robot’s planning scene along with the
human. The RRT-Connect planner treats all objects and the human as obstacles while
the Human-Aware RRT-Connect planner uses the cost function formulation to produce
human-aware paths but merely avoids all other obstacles. The environment and scenario
are shown in Figure 4.2. The same set of configurations for both the human and the
robot were reused from problem scenario 1, with a slight modification made to one of the
robot configurations to avoid collision with a static obstacle in the environment. These
configurations are detailed in Appendix A and similar to problem scenario 1, are iterated
over 1000 trials to generate the planner results.
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(a) Cluttered scenario environment. (b) Cluttered scenario top view with human
and robot configurations shown.

Figure 4.2: The cluttered human-robot environment scenario showing the Franka Emika
Panda mounted on a table with the human statically positioned in the workspace. Various
static obstacles are placed in the environment to simulate a rich HRI scenario.

4.1.3 Problem Scenario 3: Handover in a Cluttered Environment

This scenario uses the same environment as depicted in Figure 4.2a with the task being to
handover the drill to the human. The robot’s starting configuration is qinithandover

and its
goal configuration is qgoal6 , listed in Table A.1. The robot starts with the drill in its end-
effector and then approaches the human’s left hand to perform the handover. The human’s
configuration is listed in Table A.2. This planning problem, (Cfree, qinithandover

, qgoal6 , c), is
iterated over 100 trials comparing Human-Aware RRT-Connect to RRT-Connect.

4.2 Implementation Details

In all problem scenarios, the Human-Aware RRT-Connect planner utilizes the cost-function
formulation from Section 3.2 to plan in the presence of the human while the RRT-Connect
planner only considers the human as an obstacle. The human is assumed to be static
during the planning horizon and execution of the robot trajectory.

The human and robot kinematics and dynamics were defined using the Unified Robot
Description Format (URDF) and the planners were implemented in Python and utilize
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ROS [67] and MoveIt [1]. It should be noted that MoveIt is only used for its Planning
Scene interface, and for its forward kinematics service to compute link poses in the world
frame. The OctoMap library [30] is used to voxelize the human and compute the eu-
clidean distance transform (implementation from [45]) for the distance cost updates and
for collision checking with the human model. The human model voxelization is shown in
Figure 4.6.

The results shown in this section have been obtained from simulations run on a com-
puter with an AMD Ryzen 5 2600 CPU running at 3.4 GHz with 16GB of RAM. All
planner implementations are single-threaded.

In this work, the planners produce paths of the form {qinit, q1, q2, ..., qgoal} ∈ Cfree and in
a final post-processing step are time parameterized with velocity and acceleration data. The
final parameterized trajectory is spline interpolated by a joint trajectory controller

[71] before execution on the (simulated) robot.

Table 4.2 details the various planner parameters common to both Human-Aware RRT-
Connect and RRT-Connect. The maximum distance the robot can travel in the joint space
without collision checking is denoted as ε. The maximum number of iterations that the
planner can use to find a plan is denoted planner iterations. If a plan is not found
within the number of iterations specified by this parameter, the planner returns failure.
The smoothing iterations parameter specifies the number of iterations that Algorithm 4
runs for. It is set to the number of configurations in the path produced by the planner, n.

Parameter Parameter Value

ε 0.02
planner iterations 10000
smoothing iterations n

Table 4.2: Common parameters for both planners that stay constant throughout all tests.

Table 4.3 shows the parameters used in the cost function formulation presented in
Chapter 3. The parameter dmax is set to the maximum extent of the Euclidean distance
transform which is 2.5m in our implementation. The parameter dmaxcom is similarly set
to 2.5m while dmincom is set to 0.8m. Finally, to bias the planner to select configurations
further away from the human, dmin is set to 0.1m. These parameters are held constant
throughout all tests.
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Parameter Parameter Value

Imax 3.0
dmax 2.5
dmin 0.1
dmincom 0.8
dmaxcom 2.5

Table 4.3: Parameters for the cost function formulation.

Table 4.4 shows the Human-Aware RRT-Connect planner weights used for the cost
function and the planner specific parameters. To bias the planner to find paths that
maintain a separation distance of dmin, the wdist weighting term for the distance cost was
set slightly higher than the visibility and danger criterion costs. The cost function weights
are changed in Section 4.5 to illustrate how the parameters affect the planner but for all
other tests the values in Table 4.4 are used.

The term used to weight the configuration cost in the nearest neighbour search, α,
was set to 1.8 empirically. Setting α to larger values generally leads to safer paths that
take longer to plan for. An analysis varying the α parameter and examining various path
metrics is shown in Appendix B.

The expansion probability, η, from the NEW CONFIG function in Algorithm 2 is set
to 0.3 empirically. Setting η higher than 0.1 results in faster expansion of the search trees
but lower quality paths. Setting η to a small value (e.g., below 0.1), leads to long search
times but higher quality paths. An analysis varying the η value and examining various
path metrics is shown in Appendix B.

The parameter nfailmax is set to 10 to allow enough time for the planner to find con-
figurations of low cost around the current node being extended in the tree. With the
strict cost thresholding implemented in the NEW CONFIG function, the planner some-
times takes several iterations to accept a configuration into the current search tree. By
setting nfailmax to a value of 10, a compromise between getting trapped at a local minimum
of the cost space vs. exploring the surrounding regions of Cfree is attained. The parameter
nsuccessmax is set to 2 so that the tree doesn’t expand too many nodes at the current cost.
The rationale is, if the tree can grow successfully at the current cost, since the acceptance
criteria on line 23 of Algorithm 2 follows a downward slope in cost, we want to ensure we
follow the slope down to a local minimum instead of accepting nodes at the same cost. The
updating of nfailmax and nsuccessmax after each planning iteration ensures that the algorithm
moves out of local minima within a reasonable amount of time, finding a path if one exists.
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The cost threshold, cthres is initialized to 0.0 to bias the planner to find high-quality
paths. The crate parameter is set to 0.01.

Parameter Parameter Value

wdist 0.4
wvis 0.3
wdc 0.3
nsuccessmax 2
nfailmax 10
α 1.8
η 0.3
cinit 0.0
crate 0.01

Table 4.4: Human-Aware RRT-Connect weights and planner parameters.

As mentioned in Section 3.2, points of interest can be specified for the cdist and cvis cost
function terms. Figure 4.3 shows the various Panda arm link frames with the points of
interest used during testing highlighted in green. Since many of the frames overlap, only
four points of interest were used: panda gripper center which is effectively the end-effector
frame, panda link7 which covers the wrist area of the arm, panda link4 which is the elbow
of the arm, and panda link2 which is close to the base of the arm. These four frames were
used for both cdist and cvis.

Figure 4.3: The Franka Emika Panda Arm link frames with the points of interest high-
lighted in green.
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4.3 Human-Aware Planning Metrics

To assess planner path quality with regards to human-awareness and safety, a set of metrics
were determined and defined. The metrics and their descriptions are detailed in Table 4.5
followed by descriptions of their formulations. As a note with regards to language, we
use “separation distance” and “clearance” interchangeably. Similarly, “cone of gaze” and
“effective field of view” are used interchangeably.

Metric Metric Description

Minimum clearance
The minimum separation distance between the robot
and the human along the path.

Average clearance
The average separation distance between the robot and
the human along the path.

Path length
The end-effector path length of the robot trajectory in
meters.

Path visibility
The ratio of the number of configurations that stay in
the human’s eFOV to the total number of
configurations along the path.

Planning time The planner planning time.

Number of nodes
The number of nodes produced by the planner during
exploration of Cfree.

Average robot inertia Average Is along the robot path.

Mechanical work Summation of positive cost variations along path.

Integral of the cost Summation of configuration costs along path.

Table 4.5: Path metrics reported for each planner testing scenario.

As a general method to assess planner path quality, let cp := Σfree → R≥0 denote
a path quality criterion where every path in Σfree is assigned a positive real cost value.
There are several ways to define cp with the most common way being the integral of the
cost along a path [15]. If we let n be the number of subdivisions of the path, we can define
the constant step size δ = 1

n
, and the discrete approximation of the integral of the cost can

be defined as:
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cp(σ) =
length(σ)

n

n∑
k=1

c

(
σ

(
k

n

))
. (4.1)

In [32], it was shown that the concept of mechanical work can assess path quality better
than integral cost. Mechanical work sums the positive cost variation between configurations
on the path and can be interpreted as summing the “forces” acting against the motion [15].
If we use the constant step size δ = 1

n
, the discrete approximation of the mechanical work

of a path can be defined as:

cp(σ) =
n∑

k=1

max

{
0, c

(
σ

(
k

n

))
− c

(
σ

(
k − 1

n

))}
. (4.2)

Additionally, the mathematical formulations of some of the other metrics in Table 4.5
are given below. The trajectory length is defined as:

pathlen(σ) =
n∑

i=1

||FK(qi)− FK(qi−1)||, (4.3)

where we denote FK(qi) as the cartesian position of the robot end-effector at the robot
configuration qi and n as the number of configurations on the path σ.

The minimum clearance distance to the human is defined as:

pathminclear
(σ) = min

j
EDT (H,FK(qi, pj)), (4.4)

where we denote EDT (H,FK(qi, pj)) as the nearest euclidean distance to collision
from the robot to the human calculated by the Euclidean Distance Transform, EDT , at
the configuration qi for the points of interest pj. The points of interest for this metric are j ∈
{panda link2, panda link4, panda link7, panda gripper center} as depicted in Figure 4.3.

The average clearance distance to the human is defined as:

pathavgclear(σ) =

∑n
i=0 minj EDT (H,FK(qi, pj))

n
(4.5)

The average robot inertia is defined as:

pathinertia(σ) =

∑n
i=0 Is
n

(4.6)
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4.4 Results

This section summarizes and analyzes the results gathered from each problem scenario
described in Section 4.1.

4.4.1 Problem Scenario 1

The various metrics detailed in Table 4.5 are plotted in Figure 4.4 comparing Human-Aware
RRT-Connect with RRT-Connect for the simple environment depicted in Figure 4.1.

The results show that the robot is able to maintain a larger minimum and average sepa-
ration distance when planning with the Human-Aware RRT-Connect planner (Figure 4.4a
and Figure 4.4b). The minimum separation distance for Human-Aware RRT-Connect is
just under the dmin value of 0.1m. As a note, some robot goal configurations brought the
robot closer than 0.1m (dmin) to the human. Other than these situations, the robot is
able to adhere to the parameter constraints. The robot is able to maintain a large aver-
age separation distance of around 0.21m when executing paths using the Human-Aware
RRT-Connect planner.

The robot is also more visible to the human, as shown in Figure 4.4c, when planning
with Human-Aware RRT-Connect as opposed to RRT-Connect. Among the set of robot
goal configurations chosen for this test, some are completely outside of the human’s field of
view, but the Human-Aware RRT-Connect planner biases the robot towards the effective
field of view of the human before approaching its goal.

Integral cost and mechanical work are minimized when planning with Human-Aware
RRT-Connect as shown in Figure 4.4h and Figure 4.4i. Although Human-Aware RRT-
Connect produces longer paths than RRT-Connect (as shown in Figure 4.4d), the average
integral cost of the paths is still smaller than that of RRT-Connect. Mechanical work is
roughly five times lower for Human-Aware RRT-Connect as compared to RRT-Connect
partly due to line 23 of Algorithm 2 that tries to accept configurations only if they are of
lesser cost than their nearest neighbor.

From Figure 4.4e, a drawback of the Human-Aware RRT-Connect planner is the in-
crease in planning time as compared to RRT-Connect. Since more nodes need to be
generated to find configurations of acceptable cost that can form a path, Human-Aware
RRT-Connect is in general slower than RRT-Connect.

The average robot inertia between the two planners is roughly the same with Human-
Aware RRT-Connect being slightly lower. A larger difference is likely not seen due to
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the weighting priority put on wdist. For some goal configurations, this has the effect of
extending the arm out of compact low inertia configurations in order to maintain larger
minimum separation distances.
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Figure 4.4: The nine metrics calculated for the two planners for problem scenario 1, the simple environment.
Each graph shows the average and standard error of the mean (SEM) over 1000 trials.
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4.4.2 Problem Scenario 2

In problem scenario 2, several objects are placed in and around the shared human-robot
workspace. These range from objects that are represented as simple primitive shapes to
more complex meshes as shown in Figure 4.2a. As noted in Section 4.1, problem scenario 2
used the same human configurations as problem scenario 1 and the same robot configura-
tions as problem scenario 1 with slight modifications made to qgoal2 to avoid static obstacles
in the environment.

The results for this scenario, shown in Figure 4.5, when comparing Human-Aware
RRT-Connect to RRT-Connect are similar to the simple scenario. The Human-Aware
RRT-Connect planner performs better than RRT-Connect in terms of minimum separation
distance, average separation distance and path visibility. The integral cost and mechanical
work of paths generated by Human-Aware RRT-Connect in this scenario are also not
adversely affected by the clutter on the table. Planning time is slightly increased with a
larger standard error of the mean.

From this problem scenario, we see that the additional clutter added into the envi-
ronment has little effect on the overall performance of the Human-Aware RRT-Connect
planner in terms of the cost function formulation used. The primary objective of the plan-
ner is to expand the start and goal trees from safer regions with respect to the human and
the static objects simply reduce the size of Cfree. While narrow passages due to static
obstacles are not tested, some goal configurations present a narrow cost passage due to
their proximity to static obstacles. Configuration qgoal1 reaches under the human arm and
requires the robot to maintain a separation distance of around 0.11m which it is able to
do even in the presence of obstacles such as the cinder block and cylinders.
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Figure 4.5: The nine metrics calculated for the two planners for problem scenario 2, the cluttered environ-
ment. Each graph shows the average and standard error of the mean (SEM) over 1000 trials.
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4.4.3 Problem Scenario 3

For the cluttered handover, the environment is the same as depicted in Figure 4.2a and
is represented through the MoveIt Planning Scene in Figure 4.6. The OctoMap voxelized
human representation from the Planning Scene is also shown. The robot transfers the drill
to the human’s left hand.

Figure 4.6: An example path generated by Human-Aware RRT-Connect for problem sce-
nario 3, a cluttered handover. The blue path denotes RRT-Connect and the orange path
denotes Human-Aware RRT-Connect. The robot path trail is shown for Human-Aware
RRT-Connect.

For this particular start and goal configuration pair, the planning time for Human-
Aware RRT-Connect is only around one second higher than RRT-Connect as shown in
Figure 4.7e. Human-Aware RRT-Connect is able to maintain better performance for the
minimum separation distance and average separation distance metrics while maintaining
roughly the same path length as compared to RRT-Connect. The blue path denotes RRT-
Connect and as can be seen, the path takes a very direct approach and brings the drill
close to the human’s torso. Human-Aware RRT-Connect first moves upwards from the start
configuration and keeps the center of mass of the robot as far as possible from the human
before approaching the handoff position. Overall, the results shown in Figure 4.7 show
that the Human-Aware RRT-Connect planner can successfully plan a handover (where the
robot moves quite close to the human) while minimizing the cost function formulation from
Section 3.2.
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Figure 4.7: The nine metrics calculated for the two planners for problem scenario 3, the cluttered handover.
Each graph shows the average and standard error of the mean (SEM) over 100 trials.
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4.5 Human-Aware RRT-Connect Planner Sensitivity

Analysis

To illustrate the effects of the planner weights, some exemplar paths and metrics are shown
in this section with weights altered from those listed in Table 4.4. Additionally, the distance
and visibility cost function formulations from this work are compared with the formulation
presented in [50]. More specifically, in this work we consider several links on the robot arm
as points of interest for the distance and visibility to the human while [50] only considers
the end effector.

4.5.1 Planner Weights Sensitivity Analysis

In order to illustrate the effects of each cost function term, three weight sets were created
with each giving priority to one of the cost function terms. The weights are shown in
Table 4.6. We compare each weight set for the Human-Aware RRT-Connect planner with
the baseline RRT-Connect. All tests were performed in the simple environment.

Parameter Weight Set 1 Weight Set 2 Weight Set 3

wdist 0.8 0.1 0.1
wvis 0.1 0.8 0.1
wdc 0.1 0.1 0.8

Table 4.6: Human-Aware RRT-Connect weight sets for the sensitivity analysis.

Weight Set 1

For this test, wdist is set larger than wvis and wdc to explore the effects of the distance cost
function term on the overall formulation. The human configuration was set to Config.1
listed in Table A.2 and the robot planned from qinit to qgoal1 listed in Table A.1. This test
was run for 100 trials. Figure 4.8 shows an exemplar trial with the RRT-Connect path
shown in blue and the Human-Aware RRT-Connect path shown in orange.

From Figure 4.9b we see that wdist has the effect of quickly biasing the planner to low
cost configurations (that achieve high separation distance from the human) even if the
start and goal configurations are close to the human. The average separation distance
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maintained by the Human-Aware RRT-Connect planner is around 0.21m, well above that
of RRT-Connect as shown in Figure 4.9a.

Figure 4.8: Example paths showing Human-Aware RRT-Connect (orange) and RRT-
Connect (blue) for Weight Set 1 which has wdist >> wvis + wdc.
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Figure 4.9: The average separation distance and separation distance along the path for
Weight Set 1 listed in Table 4.6. The error shown is the standard error of the mean
(SEM).
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Weight Set 2

Weight Set 2 sets wvis larger than wdist and wdc in order to test the effect of the visibility
cost on the overall cost formulation. The human configuration was set to Config.3 listed
in Table A.2 and the robot planned from qinit to qgoal1 listed in Table A.1. This test was
run for 100 trials and exemplar robot paths are shown in Figure 4.10.

From Figure 4.11b we see that the wvis weight biases the planner to stay in the cone
of gaze region (effective field of view) for a longer portion of the trajectory before moving
toward the goal. RRT-Connect quickly exits the cone of gaze region whereas the Human-
Aware RRT-Connect planner enters it deliberately from the starting configuration. From
Figure 4.11a, we see that Human-Aware RRT-Connect is able to maintain around 40% of
its path within the human’s cone of gaze.

Figure 4.10: Example paths showing Human-Aware RRT-Connect (orange) and RRT-
Connect (blue) for Weight Set 2 which has wvis >> wdist + wdc.
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Figure 4.11: The path visibility and visibility angle along the path for Weight Set 2 listed
in Table 4.6. The error shown is the standard error of the mean (SEM).

Weight Set 3

Weight Set 3 sets wdc larger than wdist and wvis in order to observe the effect of the danger
criterion cost cdc. The human configuration was set to Config.1 listed in Table A.2 and
the robot planned from qinit to qgoal2 listed in Table A.1. This test was run for 100 trials
and exemplar robot paths are shown in Figure 4.12. This configuration poses a challenging
problem for the robot as it has to plan to a position underneath the robot’s arm.

From Figure 4.13a we see that Human-Aware RRT-Connect reduces the average robot
inertia and CoM distance effectively across the 100 trials. From Figure 4.13b, we see that
the human-robot center of mass distance is larger for Human-Aware RRT-Connect along
the path. Finally, Figure 4.13c shows that the robot inertia is effectively reduced along
the path for Human-Aware RRT-Connect. The robot selects low inertia configurations
in the middle portions of the path improving safety for the human in case of unexpected
collisions.
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Figure 4.12: Example paths showing Human-Aware RRT-Connect (orange) and RRT-
Connect (blue) for Weight Set 3 which has wdc >> wdist + wvis.
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Figure 4.13: The path visibility and visibility angle along the path for Weight Set 3 listed
in Table 4.6. The error shown is the standard error of the mean (SEM).
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4.5.2 Distance Cost Formulation Analysis

For the planning tests presented in this section, the distance cost function considers all
joints of the robot arm as points of interest (POI) when computing the distance to human.
In this subsection we show that this is more effective than only considering the end-effector
distance to the human as was done in [50].

For this test, the robot started at qinit and planned to qgoal2 while the human was
positioned using Config.1. These configurations are listed in Table A.1 and Table A.2.
The weights and planner parameters were set to Weight Set 1 from Table 4.6 to bias the
planner to search for configurations that maintain a large separation distance from the
human. The test was run for 100 trials.

From Figure 4.15a we see that Human-Aware RRT-Connect using points of interest
performs better than only using the end effector for the minimum separation distance,
average separation distance and average path length metrics. The path length is reduced
when using points of interest because the planner works to keep away different portions of
the robot from the human such as the elbow or the wrist. For this specific pair of start and
goal configurations, the effect of using points of interest is seen near the end of the path
where the robot is able to keep its wrist away from the human’s body. This can be seen
visually in Figure 4.14 and quantitatively in Figure 4.15b where the separation distance
along the path is plotted. Starting from roughly waypoint index 70, the Human-Aware
RRT-Connect planner using points of interest maintains a larger separation distance from
the human as compared to the Human-Aware RRT-Connect planner that only uses the
end effector for the distance cost calculation.
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Figure 4.14: Example paths showing the use of points of interest (orange) vs. only using
the end effector (red) for Weight Set 1.
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Figure 4.15: The a) minimum separation distance, average separation distance and average
path length and b) separation distance along the path when planning with Human-Aware
RRT-Connect using points of interest (orange) vs. Human-Aware RRT-Connect using only
the end effector (red). The error shown is the standard error of the mean (SEM).
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4.5.3 Visibility Cost Formulation Analysis

We similarly analyze the use of points of interest against only using the end-effector for
the visibility cost. For this test, the robot started at qinit and planned to qgoal1 while the
human was positioned using Config.3. These configurations are listed in Table A.1 and
Table A.2. The weights and planner parameters were set to Weight Set 2 from Table 4.6
to bias the planner to search for configurations that are more visible to the human. The
test was run for 100 trials.

From Figure 4.17 and the exemplar paths shown in Figure 4.16, we see that the use of
points of interest biases the planner to stay in the cone of gaze region longer than using
only the end-effector. This start and goal configuration pair is a good example because the
goal configuration is much outside the human’s field of view.

Figure 4.16: Example paths showing the use of points of interest (orange) vs. only using
the end effector (red) for Weight Set 2.
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Figure 4.17: The path visibility and visibility angle along the path when planning with
Human-Aware RRT-Connect using points of interest (orange) vs. Human-Aware RRT-
Connect using only the end effector (red). The error shown is the standard error of the
mean (SEM).

4.6 Comparison with Connect T-RRT

To make a more direct comparison with related work, we also evaluated Human-Aware
RRT-Connect against a variant of T-RRT [32], the planner used in [50]. As a note, in [50],
the cost function involved a distance cost, visibility cost and a human comfort cost. This
thesis involved variants of the distance and visibility costs but the human comfort cost
was not used since the cost function developed here was not specific to a handover task.
As such, the comparison here is more directly between Human-Aware RRT-Connect and
the T-RRT variant. This is a useful comparison since T-RRT (and its variants) have been
shown to be able to plan using cost functions defined over many different configuration
spaces [32].

For this comparison, we use the variant Connect T-RRT [16] to more closely match the
Human-Aware RRT-Connect planner. The cost function formulation detailed in Section 3.2
was used within both planners. The original T-RRT algorithm, a planner introduced to
solve general cost space planning problems, grew one tree rooted at the start configuration
and differed from the original RRT algorithm by introducing a transition test that aimed
to filter configurations based on stochastic optimization techniques. Connect T-RRT uses
the same techniques as the original T-RRT algorithm but grows two trees, one from the
starting configuration and one from the goal configuration, and tries to connect the trees
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by iterating the tree extension and transition test as long as there are no collisions and the
transition test passes. This planner variant is detailed in Appendix C, Algorithm 5.

As noted in [16], the Trate ∈ (0, 1] parameter determines the trade-off between low
computation time and high path quality. A value not too small, such as 0.1, leads to a
greedy search while a value such as 0.01, leads to higher quality paths. Through empirical
testing, we found that a value of 0.01 produces high quality paths at the expense of very
long planning times. As such, to trade-off between path quality and planning time, we
used a value of 0.1 for Trate. From the results presented later in this section, we see that
this value produces high quality paths within reasonable planning times.

The Connect T-RRT planner parameters are described in Table 4.7. The temperature,
T , is initialized to a small value Tinit. The Connect T-RRT planner used the same cost
function parameters and weights as described in Table 4.3 and Table 4.4. Human-Aware
RRT-Connect also used all the same parameters as were detailed in Table 4.3 and Table 4.4.

Parameter Parameter Value

ε 0.02
cmax 0.9
Tinit 1e−6

Trate 0.1

Table 4.7: Connect T-RRT planner parameters.

When comparing Connect T-RRT to Human-Aware RRT-Connect we used problem
scenario 1, detailed in Subsection 4.1.1, where a simple environment was instantiated, and
3 different human configurations and 5 different robot configurations were cycled through
for 1000 iterations. Figure 4.18 shows the results for this test.
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From the results presented in Figure 4.18 we can see that both Connect T-RRT and
Human-Aware RRT-Connect produce paths of similar quality with Connect T-RRT having
a slightly lower mechanical work (better path quality) as shown in Figure 4.18i. Path
visibility is also similar with Human-Aware RRT-Connect having a slightly higher average
visibility. The average separation distance for Connect T-RRT is around 3cm higher than
Human-Aware RRT-Connect while the minimum separation distance is roughly the same
among the two planners.

From the reported metrics, there are a few major differences. First, the average path
length for Human-Aware RRT-Connect is around 25cm shorter than Connect T-RRT. This
is noteworthy since the shorter path length did not have too much of a negative impact
on other metrics with relation to Connect T-RRT. Second, the average planning time for
Human-Aware RRT-Connect is roughly half of what is reported for Connect T-RRT. This
may be because the planner parameters used for Human-Aware RRT-Connect lead to a
more greedy search (and thus results in a slightly lower path quality than Connect T-RRT)
but this result shows promise in that high path qualities can be achieved at lower planning
times when using Human-Aware RRT-Connect.

As a note, these results are presented for a specific setting of the Trate parameter
and a variant of the original T-RRT algorithm. While efforts were made to optimize the
planner for a fair comparison with Human-Aware RRT-Connect, further investigation may
be needed to more closely match the various parameters in Human-Aware RRT-Connect.
Overall, Human-Aware RRT-Connect could be a viable alternative to Connect T-RRT
(and other T-RRT variants) where high quality paths are required at reasonable planning
times and shorter path lengths.
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Chapter 5

Conclusions

5.1 Insights from Implementation

This thesis introduced an HRI cost formulation and sampling-based planner to plan in the
presence of humans. The cost formulation included a distance cost, visibility cost and dan-
ger criterion cost. The distance cost ensured that the robot maintained a safe distance from
the human during planning. The visibility cost aimed to bias the robot toward the human’s
effective field of view. The danger criterion cost was based on the robot inertia and the rel-
ative human-robot centre of mass distance. These individual cost terms were combined in
a weighted sum. We proposed and implemented the Human-Aware RRT-Connect planner
which plans in the presence of a human using the proposed cost formulation. The planner
is based on the original RRT-Connect algorithm with modifications made to the way the
search trees are expanded (taking inspiration from [42] and [32]). Configurations are ac-
cepted or rejected based on a cost threshold and a mechanism to update this threshold is
outlined.

The proposed Human-Aware RRT-Connect planner produced high quality paths in
terms of general path quality criteria (i.e., integral cost and mechanical work) and in terms
of metrics related to human-robot collaboration such as minimum separation distance,
average separation distance, visibility and robot inertia. We also showed that the use of
points of interest on the robot performed better than solely using the end-effector while
planning with Human-Aware RRT-Connect using the proposed cost formulation. Human-
Aware RRT-Connect was compared with Connect T-RRT and it was found that Human-
Aware RRT-Connect had faster average planning times with similar path qualities.
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5.2 Limitations

While Human-Aware RRT-Connect produces high quality paths with respect to the HRI
cost formulation presented in Section 3.2, there are several limitations of the proposed
human-aware planning approach. One limitation is that there are no guarantees that the
planner will find the optimal solution since the algorithm returns after finding an initial
path that connects the start and goal trees. Planning time is another limitation of the
current approach. Since, on average, planning takes several seconds, usage in a real time
system would not be possible. Moreover, this work assumed the human was static during
the planning horizon and trajectory execution. This is generally not the case in real world
applications.

Motion consistency is also an issue. Ideally, when queried with the same planning
problem, (Cfree, qinit, qgoal, c), the planner should return the same path. However, this is
not the case with sampling-based planners. In a human-robot shared workspace, this could
be an important criteria for human comfort and trust in the robot.

Finally, the planner requires several parameters to be set and while some guidelines
have been given in this thesis, a more in depth study into the interaction between them
should be investigated.

5.3 Future Work

To make motions more consistent, approaches such as the one used in [28] can be employed
where previously occupied workspace voxels are used to inform the planner on which areas
of the workspace to avoid and which areas to reuse. Approaches involving motion databases
and Experience Based Motion Planners [14] can be used to save and recall previously
planned trajectories. In this approach, a fast planner can be used to repair stored paths
online based on the human’s current position in the workspace.

In this work we extended RRT-Connect to develop the Human-Aware RRT-Connect
planner. However, even though RRT-Connect is known to produce paths quickly, imposing
cost constraints during sampling slows it down significantly. One alternate approach to
speed up the nearest-neighbor search shown in line 13 of Algorithm 2 is to maintain a
k -d tree of all the search tree nodes and then use it to find the nearest neighbor of lowest
cost within a radius of the returned nearest neighbor. While this is not equivalent to the
current implementation, the trade off between speed and path quality can be investigated.
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The weights of the cost function formulation in Section 3.2 were set empirically based
on the desired planning behaviour. In order to set the weights more optimally based
on the context and desired behaviour, Inverse Optimal Control can be used. However,
since the cost formulation is a min-max problem (for the distance and visibility cost),
the non-differentiability of the max function presents some difficulty in finding an optimal
solution. A technique such as the one presented in [23] can be used to formulate a smooth
approximation of the problem to find an optimal solution.

An important item to address for future work is the planner’s use in a real world
task. The techniques presented in this thesis can ensure safety and robot human-awareness
during motion planning, but whether this translates to increased productivity and efficiency
for the human-robot team should be investigated. A study similar to [44] can be conducted
with the proposed planner to observe its effect in a real human-robot shared workspace
task. Taking on this endeavour will require integration work to accurately capture the
human pose, center of mass and gaze direction. The metrics reported in this thesis are
useful in assessing the planner path quality but additional metrics relevant to evaluating
fluency [29] in human-robot collaboration should be reported when running a user study
with the proposed planner.

62



References

[1] Moveit. http://moveit.ros.org. Accessed: 2020-03-23.

[2] rosbag. http://wiki.ros.org/rosbag. Accessed: 2020-03-23.

[3] Time parameterization. http://docs.ros.org/kinetic/api/moveit_tutorials/

html/doc/time_parameterization/time_parameterization_tutorial.html. Ac-
cessed: 2020-06-30.

[4] Daphne Aeraiz-Bekkis, Gowrishankar Ganesh, Eiichi Yoshida, and Natsuki Yamanobe.
Robot movement uncertainty determines human discomfort in co-worker scenarios.
pages 59–66, 04 2020.

[5] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-Schäffer,
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Appendix A

Human and Robot Configurations

This section provides the robot and human configurations used for the different problem
scenarios in Chapter 4.

A.1 Configurations Used in the Problem Scenarios
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Configuration q1 q2 q3 q4 q5 q6 q7

qinit 0 -0.78 0.0 -2.36 0 1.57 0.78

qinithandover
-0.81 -0.11 0.09 -2.32 0.013 2.21 0.06

qgoal1 -0.12 -1.09 1.39 -2.11 1.07 1.67 1.67

qgoal2 -0.94 -1.62 (+0.75) 2.14 -2.80 (-0.2) 0.55 3.41 0.26

qgoal3 -0.32 0.44 -0.16 -1.00 0.07 1.43 0.33

qgoal4 -1.98 0.95 1.50 -2.03 0.63 1.54 -2.66

qgoal5 2.37 -1.76 -1.4 -1.32 -1.87 1.58 1.30

qgoal6 (handover) 0.52 -0.31 -0.41 -1.89 -0.12 1.59 -1.88

Table A.1: The start and goal configurations for the robot used to test the planners in problem scenarios
1, 2, and 3. For qgoal2 , the values in brackets indicate the changes made to the configuration for problem
scenario 2 (to avoid a collision with an obstacle on the table). qgoal1 through qgoal5 are used for problem
scenarios 1 and 2 while qgoal6 is used for problem scenario 3.
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Joint Config.1 Config.2 Config.3 Handover

spine 0 -0.38 0 0.22 0.02
spine 1 0.26 0.48 0.64 0.17
spine 2 0.36 -0.10 -0.09 0.0
neck 0 0 0 0.02 0.0
neck 1 0 0 -0.34 0.36
neck 2 0 0 -0.36 0.13
right shoulder 0 1.08 0.89 0.12 0.82
right shoulder 1 1.56 1.67 0.52 0.24
right shoulder 2 0.16 0.19 1.08 -0.58
right elbow 0 0.89 0.44 1.63 1.08
right wrist 0 0 0.3 0.25 0.18
right wrist 1 0 0 -0.31 -0.66
right wrist 2 0 0 -0.25 -1.29
left shoulder 0 0 1.09 0.16 0.0
left shoulder 1 -1.52 -1.76 -1.82 -1.52
left shoulder 2 0 0.02 0.20 -0.22
left elbow 0 -0.71 -0.59 -0.53 -0.55
left wrist 0 0 0 0 0.07
left wrist 1 0 0 0 0.14
left wrist 2 0 0 0 -1.51

Table A.2: The joint values for the three human configurations used in the Problem Scenarios. The set
of hip and leg configurations are not listed as they were all set to their respective zero configurations for
both problem scenarios.
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Appendix B

Human-Aware RRT-Connect
Sensitivity Analysis

This section aims to provide further analysis with regards to a few Human-Aware RRT-
Connect planner parameters.

B.1 Nearest Neighbor Configuration Cost Weight

On line 13 of Algorithm 2, the nearest neighbor search aims to minimize the distance and
cost of the nearest neighbor node (i.e., arg min

qold∈T
{ρ(q, qold) + αCOST (qold)}). In this section,

we aim to vary α, the weighting term for the cost of the potential nearest neighbor. To test
the parameter, we use the simple environment depicted in Figure 4.1a, put the human in
Config.3 listed in Table A.2 and let the robot plan from qinit to qgoal1 listed in Table A.1.
The parameter α is varied from 0.0 to 3.0 in increments of 0.2 and 100 trials are generated
for each value.

From Figure B.1, we see that larger α yields safer paths due to the decreasing nature of
the mechanical work metric shown in Figure B.1d and the increase in average separation
distance shown in Figure B.1c. However, for these gains in path quality, the number of
nodes added to the search tree and the planning time increases significantly past α values of
1.8 as shown in Figure B.1a and Figure B.1b. This is because, for large α, the expression
arg min{ρ(q, qold) + αCOST (qold)} is more biased to select the lowest cost node in the
search tree with little priority given to the distance metric. Since there is no mechanism
to prune the tree based on the number of nearest neighbours for a node, the tree starts
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expanding near local minima instead of a more uniform search of the configuration space.
To compromise, α was set to 1.8 in this thesis to ensure that the nearest-neighbour search
took into account configuration costs (to increase path quality) but didn’t require long
planning times.
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Figure B.1: Varying α against a) Average Number of Nodes, b) Average Planning Time,
c) Average Separation Distance, and d) Mechanical Work for the Human-Aware RRT-
Connect Planner.
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B.2 Expansion Probability

On line 25 of Algorithm 2, a parameter η, the expansion probability, is introduced to allow
the search tree to expand even if the new configuration, qnew is not of lesser cost than its
nearest neighbor. This is done by accepting qnew with a probability of η, as long as its
cost is at least less than the cost threshold cthres. To test the parameter, we use the simple
environment depicted in Figure 4.1a, put the human in Config.3 listed in Table A.2 and
let the robot plan from qinit to qgoal1 listed in Table A.1. The parameter is varied from 0.1
to 1.0 in increments of 0.1 and 100 trials are generated for each value. As a note, an η
value of 0.0 takes longer than 10000 iterations to solve the planning problem because the
search trees are restricted to adding new configurations that are strictly of lesser cost than
their nearest neighbors. For that reason, η = 0.0 is excluded from these results.

From the plots in Figure B.2d and Figure B.2c we can see that path quality is highest
for lower values of η. This is because lower values reject configurations that are not of lesser
cost than their nearest neighbors more often. As η is increased, path quality decreases but
planning time improves. However, beyond an η value of 0.6, the planning time slightly
increases. This may be because the planner is able to sample Cfree with more lenient
constraints (i.e., only collision checking and COST (qnew < cthres) and thus adds more nodes
into the search tree thereby increasing the nearest neighbor search time. This also motivates
the need for lines 23-26 in Algorithm 2 and the η parameter as regularization terms that
keep the number of expanded nodes within the search tree small, so that planning time is
reduced.

From the presented analysis, an η value of 0.3 was settled on as a compromise between
planning time, number of nodes generated and path quality.
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Figure B.2: Varying η against a) Average Number of Nodes, b) Average Planning Time,
c) Average Separation Distance, and d) Mechanical Work for the Human-Aware RRT-
Connect Planner.
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Appendix C

Connect T-RRT Algorithm

This section provides the details of the T-RRT variant used in Section 4.6, Connect T-RRT
[16]. The algorithm and transition test are outlined below.
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Algorithm 5 Connect T-RRT Planner

Input: Planning problem (Cfree, qinit, qgoal, c)
Output: Feasible path or Failure
Parameters: ε is the step size for a motion

1: function CONNECT T-RRT(qinit, qgoal)
2: TA.Init(qinit), TB.Init(qgoal)
3: for i = 1 to planner iterations do
4: qrand ← Rand(C)
5: if EXTEND(TA, qrand, cthres) == Trapped then
6: if CONNECT(TB, qnew, cthres) == Reached then
7: Return PATH(TA, TB)

8: SWAP(TA, TB)

9: Return FAILED
10: function EXTEND(T , q, cthres)
11: qnear ←arg min

qold∈T
{ρ(q, qold)}

12: if NEW CONFIG(q, qnear, cthres, qnew) then
13: if ρ(q, qnew) ≤ ε then
14: Return Reached;
15: else
16: Return Advanced;

17: Return Trapped;

18: function NEW CONFIG(q, qnear, cthres, qnew)
19: qnew ←UNIT V(q, qnear) ∗ ε
20: if OBSTACLE FREE(qnew) &

TRANSITION TEST(T , COST(qnew), COST(qnear)) then
21: Return True;

22: Return False
23: function CONNECT(T , q, cthres)
24: repeat
25: S ← EXTEND(q, T , cthres)
26: until not S == Advanced
27: Return S;
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Algorithm 6 Transition Test

Input: Search tree T , nearest neighbour configuration cost ci, new configuration cost cj
Output: True if transition is accepted, False if transition is rejected
Parameters: the cost threshold cmax, the current temperature T , the temperature in-

crease rate Trate
1: procedure TRANSITION TEST(T , ci, cj)
2: if cj > cmax then
3: Return False
4: else if cj < ci then
5: Return True
6: else if exp(−(cj − ci)/T ) > 0.5 then
7: T ← T/2(cj−ci)/(0.1·T .costRange())

8: Return True
9: else

10: T ← T · 2Trate

11: Return False

81


	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Thesis Contributions
	Thesis Organization

	Literature Review
	Sampling Based Planning Methods
	Probabilistic Road Maps
	Rapidly Exploring Random Trees

	Trajectory Optimization Methods
	Motion Planning in the Presence of Humans
	Mobile Robot Motion Planning in Human Environments
	Articulated Robot Motion Planning in Human Environments

	Summary

	Human-Aware Motion Planning Formulation
	Human-Aware Cost Formulation
	Distance Cost
	Visibility Cost
	Danger Criterion Cost

	Final Cost Function Formulation
	Human-Aware RRT-Connect Planner
	Path Post-processing
	Random Cost Shortcutting
	Low-pass Filtering of Joint Positions
	Time Parameterization


	Simulation Experiments
	Problem Scenarios
	Problem Scenario 1: Simple Environment
	Problem Scenario 2: Cluttered Environment
	Problem Scenario 3: Handover in a Cluttered Environment

	Implementation Details
	Human-Aware Planning Metrics
	Results
	Problem Scenario 1
	Problem Scenario 2
	Problem Scenario 3

	Human-Aware RRT-Connect Planner Sensitivity Analysis
	Planner Weights Sensitivity Analysis
	Distance Cost Formulation Analysis
	Visibility Cost Formulation Analysis

	Comparison with Connect T-RRT

	Conclusions
	Insights from Implementation
	Limitations
	Future Work

	References
	Appendices
	Human and Robot Configurations
	Configurations Used in the Problem Scenarios

	Human-Aware RRT-Connect Sensitivity Analysis
	Nearest Neighbor Configuration Cost Weight
	Expansion Probability

	Connect T-RRT Algorithm

