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Abstract

Over the years, trapped ion have emerged as one of the premier candidates for universal
quantum simulation due to its long coherence time, low initialization and detection errors,
robust high-fidelity gate sets and fully connected yet tunable spin-graph. In this thesis
we exclusively focus on the generation of the trapping potential in a four-rod trap, one of
the most commonly studied ion-trapping architecture. We elaborate the fabrication of the
trapping electrodes using electro-etching techniques and explore the underlying mechanism
in details. We discuss how these electrodes are powered by DC and RF field to generate
the confining potential responsible for trapping the ions of interest in 3D. We conclude by
studying how this trapping potential can be modified by external means like using an opti-
cal tweezer. Employing such an optical tweezer we propose a new quantum-thermodynamic
protocol which shall allow us to experimentally access the thermal properties of a mixed-
specie ion chain using a single-specie ion chain. The scheme is based on Jarynski’s equality
and obviates the need to trap dual-ionic species as far as illustrating the mechanical prop-
erties of the chain are concerned. We present results ratifying the utility of the proposal.
The scheme is useful to obtain mode-specific thermal properties hitherto unexplored ex-
perimentally.
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Chapter 1

Introduction

Quantum mechanics is entrusted with providing a computational paradigm to investigate
the probabilities of various possible classical outcomes in the event of an observation being
made on the system of interest. The theory envisages protocol for calculating the evolution
of probability amplitudes associated with these outcomes and the post-measurement state
of the system. For a generalized many-body quantum system of N mutually interacting
particles each with m degrees of freedom, such probability amplitudes collectively form
a vector that lives in a state space defined by the span of m” classical configurations|!].
This essentially means that any effort to simulate the physical properties of such systems
would require committing m” complex valued probability amplitudes to the device mem-
ory, and handling linear transformations of dimensions m” x m® (assuming no symmetry
restrictions which is usually present). This explicates clearly that even for modest sys-
tem sizes, the task of simulating both statics and dynamics of many-interacting quantum
systems on a classical computing platform can be daunting or even unrealistic due to the
exponentially scaling resource overhead. An interesting way to solve the problem would be
to harness the power of non-classical features like quantum superposition, entanglement
etc to formulate computing devices. At its very core, such devices would in principle thus
be using quantum-mechanics to gain insightful conclusion into the quantum description of
systems of technological and/or scientific interest. This was proposed by Feynmann[2] and
ever since have gained considerable attention. Over the past-two decades all efforts in this
sub-field of study came to be unified under the broad purview of quantum simulation[3, 1].

For most quantum simulation schemes, the fundamental unit of information is encoded
within a system with two computationally relevant degrees of freedom (m=2). Such a com-
putational subspace is known as a qubit. Various platforms have been identified wherein
universal quantum simulators based on qubits have been encoded and controlled like in



cold atoms|[], trapped ions[5], photonics[6], superconducting qubits|7]to name a few. Other
quantum simulation schemes wherein a qubit is not the fundamental manipulable unit of
information also exists like in the simulation of Bose-Hubbard and Fermi-Hubbard Hamil-
tonian using optical lattices of ultracold atomic ensembles[3, 9]. Such studies are the not
the focus of this thesis and shall not be discussed herein. For more information about
these, an interested reader can refer to [, 10].

Two specific approaches exists in simulating quantum properties of matter in qubit-
based platforms. The first one, known as analog quantum simulation[l1, 12, 13] requires
choosing a simpler auxillary quantum system that can be effectively controlled and ma-
nipulated. The generator of time-translation (either Hamiltonian or the generalized Li-
ouvillian) for the system of interest is then mapped onto that of the auxillary system.
Evolving this auxillary system directly sheds invaluable insight into physical properties of
the target system. Variants of this protocol in which the time translator of the auxillary
sytem is modified slowly in real-time to match that of the target have also been studied and
proposed[14]. The second approach known as digital quantum simulation[15, 16] involves
decomposing the unitary evolution for the closed target system of interest into a sequence
of quantum gates acting on a chosen qubit register. For open systems, wherein the dynam-
ics is non-unitary, one approach involves dilating the generator onto a larger space into
an implementable unitary gate[l7]. Unlike the analog scheme which requires the existence
of a mimic system and hence can be problem-specific, digital schemes are more universal.
However digital schemes suffer from accumulation of errors due to approximate decompo-
sition of the dynamics of the system into an available gate set (digitization error) Both
schemes have been implemented to study a variety of problems [1, 18, 12, 19, 20]

Among the platforms mentioned for quantum simulation in the previous paragraph,
trapped ions have emerged as a leading candidate due to its long coherence times[21],low
initialization and detection errors[22, 23], innate indistinguishability of the ions which offers
protection against fabrication defects unlike in superconducting qubits[24] and its fully
connected yet programmable ion-ion interaction mediated by phonons[25]. Indeed a large
variety of problems like quantum magnetism[20, 5], ground-state electronic structure of
simple molecules[27], lattice gauge theories[25], thermalization vs localization dynamics[29]
have been studied using this platform with reasonable accuracy. Most of the commonly
used ions in this platform are that of the alkaline-earth metal category or heavier elements
which after single-ionization generates a single-lone electron in an outermost shell much
like that in a hydrogen-atom. Two different types of qubits are commonly used in this
platform depending on the choice of electronic energy levels which are used to encode the
information. For protocols using ions like *°Ca™, a narrow quadrupole allowed optical
transition is used for qubit implementation[30]. Unlike that, for the case of ™'Yb™ which



we shall focus on in this thesis, the two hyperfine states of the ground state manifold
generated by interaction of the electronic and nuclear spins is used as qubits [31]. Single-
qubit operations in the latter category can either be initiated by microwave transitions[32,

| between the hyperfine states or by two-photon Raman transitions[33]. For two qubit
interaction, several proposals exists[34, 35, 36] all of which relies on mediation due to
phonons of the crystallized ion chain. At the heart of it, such schemes couples the internal
electronic and the external motional degrees of freedom optically. The protocols generate
spin-dependant forces relayed by the targeted phonon bus[37]. Excellent reviews about
such proposals can be found in Ref[25].

An universal quantum simulator using trapped ions for encoding the qubits can be built
in several architectural designs[38]. Of the ones, a quadrupole blade-trap and a four-rod
trap are more commonly employed and well studied. In this thesis we shall explore the
construction and design of a four-rod trap that has been successfully built in the group
over the past two years with special emphasis on the generation of the trapping potential
by RF and DC fields. We shall also in the last chapter we shall also see how this trapping
potential can be externally controlled/modified using an optical tweezer. In the following
section, we shall study the outline for the various chapters of the thesis and the relevant
contribution by the author.

1.1 Thesis Outline and Major Contributions by the
author

e We shall see in Chapter 2 that a four-rod trap as the name suggests involves four rod
shaped electrodes and two needle shaped electrodes to generate a confining potential
for the ions in 3D. In Chapter 2 we shall study how these four rod-shaped electrodes
and the two-needle shaped electrodes have been fabricated for the construction of
the ion-trapping apparatus in the group. The author has successfully built all 4 of
the rods and have also manufactured a pair of needles following protocol in Ref.[39].
For reasons to be discussed in Chapter 2, a new protocol have also been developed
for generating needle-shaped electrodes from rods by one of the co-worker in the
group[10]. To test the efficacy of the method, the final pair of needles that have been
used in our trapping apparatus have been made using this protocol. The author is
one of the co-developers of the protocol and will be a part of a publication under
preparation elaborating the results. Unlike the needles, however the four rods devel-
oped by the author have been used in the present ion-trapping apparatus operational
in the group.



e We shall learn in Chapter 3 that the four rods will have to be powered by an RF
field to create a confining potential. The needles are powered by DC[11]. The author
shall describe the details of the circuitry that has been implemented in the lab for
powering the rods. One of the principal component of the circuit is an RF resonator
which is a voltage amplifier and a frequency filter. The author has built the RF
resonator that is used in the ion-trapping apparatus operational in the group and
has designed the circuitry powering it. The chapter also has details of simulation
undertaken by the author of the trapping potential created by the RF.

e We shall learn in Chapter 4 how to manipulate and change the trapping potential
using optical tweezers. We shall investigate the effect of such tweezers on the internal
electronic state as well as the external motional modes of the ion. We then propose
an experiment of evaluating thermal properties of a particular trapped ionic species
using optical tweezer on a different ionic species. The proposal is reliant on Jaryn-
ski’s equality[12] and has not been hitherto implemented using optical tweezers on
ion traps. Also the proposal allows computing thermodynamic properties of mixed-
ion species using single-ion chains and can be generalized to obtain mode-specific
properties, a scheme that has never been implemented in experimental ion-trapping
platforms. The proposal is entirely new and the author is responsible for formulat-
ing the initial idea and has done all simulations shown in this chapter to ratify the
proposal. The results of this chapter will appear as a publication under preparation.



Chapter 2

Construction of trapping electrodes

2.1 Chapter at a glance

The basic geometry used for trapping unipositive Yb ions in our experimental setup is that
of a quadrupole trap [13, 44, 15, 16]. The setup is illustrated in Fig.2.1 with the relevant
geometrical parameters of the six electrodes as used in our experiment. It is conventional to
assign the principal symmetry axis (Cy) of the rods (and needles) to z-direction as denoted
in Fig.2.1 . The two orthogonal directions in the transverse plane are assigned x and y
as shown in Fig.2.1. The four cylindrical rod-shaped electrodes in the trap (see Fig.2.1)
provides a time-dependant near-perfect hyperbolic potential in the transverse direction
using AC electric field (see Chapter 3). The effective pseudopotential associated with this
field is confining and harmonic. The two needle electrodes confine the ions along the z-
direction creating a parabolic repulsive potential. For most experiments, the confining
potential provided by the cylindrical rod-shaped electrodes are far higher than that of the
two needles which expounds why multiple ions if trapped crystallizes into a linear chain
along the principal symmetry axis (C4). In this chapter, the following questions will be
answered.

e How are the four rod-shaped electrodes (see Fig2.1) fabricated and what is the un-
derlying mechanism for the process?

e How are the two needle-shaped electrodes (see Fig2.1) fabricated and what is the
underlying mechanism for the process?
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Figure 2.1: The picture of the trapping electrode system used in the actual experiment for
trapping '™Yb' and 'Yb" ions. Set of trapping electrodes consists of 4 tungsten rods
and 2 tungsten needles. The geometric parameters of each of these electrodes are magnified
and highlighted on the left using the representative schematic of a cartoon

2.2 Fabrication and characterization of trap electrodes

The primary material we use for the construction of the rods would be tungsten.

Why use tungsten (W) for fabricating trap electrodes ?

e Tungsten(W) as a metal is very hard. has a Brinell hardness (HB) of 294[17], modulus
of elasticity of 405 GPa[18] and tensile strength of 980 MPa[17]. This quality provides
the electrodes mechanical strength against distortion during fabrication.

e DC electrical conductivity of tungsten is 1.79¢7 S/m[17] at 20 C° with a temperature
coefficient of 0.0045 K~ [19]. The skin depth of W at the frequency of our interest
10-20 MHz (see Chapter 3) is 27.1 um[50] compared to more commonly used metals
like copper(Cu) which has a DC electrical conductivity of 5.96e7 S/m and skin depth
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of 14.6 pm [50] at similar frequencies. From the values indicated it is clear that W
is an inferior electrical conductor unlike Cu(W has 4 times less DC conductivity and
roughly twice as much skin depth over which the electrical energy can penetrate and
be lost as heat). However unlike Cu, tungsten is not as readily oxidizable. The stan-
dard molar free energy of formation (AG$) of copper (II) oxide is -143.368 kJ/mol [51]
and that of copper (I) oxide -142.020 kJ/mol [52] at 25 C°. Kinetically the oxidation
activation energy at low temperature has been found to be 20-50 kJ/mol[53, 54] for
both conversions dependant strongly on the presence of moisture, surface quality of
the metal or dissolved ionic electrolytes. These oxides of copper so formed are semi-
conductors with a bandgap of 1-3 eV[55] and DC electrical conductivity orders of
magnitude less than that of the pure metal. Measurements indicates copper(I) oxide
has a DC electrical conductivity in the range of 1le—6 to 0.1 S/m and for copper(II)
oxide it is 100 to le5 S/m depending on temperature, method of preparation, film
thickness and environmental conditions[55, 56]. For tungsten, several different oxides
are possible of the kind WO3_,. Among these, WO3 is most stable and has a AG;
of -865.531 kJ/mol at 25 C° [51] which makes this oxide more stable with respect
to the metal than the oxides of pure copper. However, kinetically the conversion is
much slower with an activation energy of 90-200 kJ/mol[57, 58] with the lower values
attainable only at higher temperatures. As a result the shelf-life/longevity of pure
tungsten metal at a given pressure of oxygen will be higher than that of copper. DC
electrical conductivity of WO3 has been found to be 10 S/m at 25 C°[59] (depen-
dant on method of preparation and thickness) which is comparable or even superior
than oxides of copper for certain specifications. More noble metals like gold (Au) or
platinum (Pt) too can act as a proxy to tungsten in this regard due to their relative
inertness to oxide formation. However fabricating rods using these metals can be
expensive

The work function of Tungsten is 4.55 eV (272 nm)[60, 61, 62]. For optical addressing
of the trapped Yb ions, we will use wavelengths like 369 nm, 355 nm, 935 nm, 399
nm. The function for W being high, photons of these frequencies will not be able to
provide enough energy to photo-ionize W.

Tunsgten is also vacuum compatible with an outgassing rate of 1.62e-10 Torr L s+

cm™? (obtained after 10 hours of initial pump down at ordinary temperature in [63])

Tunsgten can also be electropolished easily using NaOH /KOH solution[64, 39, 65, 66,
, 08] to improve texture and surface quality of the electrodes thereby eradicating
structural imperfections should there be any.



Why electropolish commercial tungsten rods for fabricating trap electrodes ?

For the aforementioned reasons, commercially available tungsten rods from Midwest
Tungsten Service (MTS) of diameter 0.53-0.55 mm were purchased and then electropolished
for making the 4 rods. Without such electropolishing, the surface texture of the rods is
seen to be dented and hence uneven and rough as is illustrated in Fig.2.2. Such dents as
seen in the picture would be under 50 pum. Dents much smaller than that exists too but
is not resolvable using the imaging setup used herein. Presence of such dents would create
a non-uniform trapping potential for the ions and amplify micromotion. Micromotion
as we shall see in Chapter 3 corresponds to motion induced in the ionic lattice due to
the ’jitters’ caused by directly following the fast RF driving frequency which is used to
create the trapping potential[69]. Signatures of this motion is seen over and above the
slower frequency harmonic motion induced by the trap. Excess micromotion can create
additional sidebands in the excitation spectrum of the transition used for Doppler cooling
of the ions. As a result, if the cooling laser is tuned above any of these sidebands , the ion
would be heated up instead of being cooled irrespective of whether the laser is red-detuned
from the addressed cooling transition[69]. Such heating reduces the lifetime of the ion in
the trap and can aggressively populate the motional modes of these ions which can be
detrimental to gate fidelities [70]. The macor holders responsible for housing the rods are
also machined so as to accommodate the rods of correct diameter. It is hard commercially
to obtain 4 compatible rods with an average diameter of exactly 0.5 mm and excellent
surface quality at the length scale of the trapped ions. Electropolishing commercial rods
of bigger diameters seems to satisfy both the conditions.
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Figure 2.2: Surface quality of purchased rods with highlighted dents thereby illustrating
need for electropolish. Lack of lustre and general roughness of the surface is also evident.
The image is taken from the bare rods with 2.0x zoom

2.2.1 Mechanism of Electropolishing

The basic idea lies in the formation of an electrolytic cell created with a graphite (C)
electrode as cathode(-) and the tunsgten rod to be electroetched as anode(+)[39]. It is im-
portant to have a schematic description of the set-up to understand the process well. The
schematic of the set-up is illustrated in Fig2.3. The set-up uses NaOH solution of 2M
concentration as the electrolytic bath. The tungsten rod to be polished is controlled me-
chanically by a translation stage which allows us to adjust the height of the rod dipped in
the said bath. It is then connected to the positive electrode of a DC power supply thereby
serving as the anode. A graphite rod connected to the negative terminal of the same power
supply is also dipped into the same bath. A milli-ammeter is connected to the circuit in
series to monitor the overall current.
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Figure 2.3: The schematic of the setup used for electropolishing tunsgten (W) electrodes.

Ref[65, 71] investigates the underlying mechanism for the oxidative dissolution of W to
form tungstate ions (WO, ?) in alkaline medium. It proposes the formation of several in-
soluble intermediary tunsgten oxides((WO™, WOy, WO3) and oxo-acids (WOsH, HWO, ™)
which are eventually attacked by the alkali to form the said anionic radical. The reactions
are:

W(s) +20H™ — WO™(s) + Hy0 + 3e. (2.1)
WO™(s) +20H™ — WO, + HyO +e. (2.2)
W02 + OH™ — WOgH +e (23)
WOgH +OH — WOg +e+ HQO (24)
WO3 +OH™ — HWO4_ (25)
HWO,™ + OH™ — WO;? + H,0 (2.6)
(2.7)

At anode(W) : W(s) + 80H™ — WO, + 4H,0 + 6e  Ef, o,z = 105V[72]

The stability of the involved species as a function of pH is elaborated in ref [65]. It claims
that for pH > 8 (which is the case as we use extremely concentrated NaOH beyond the
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range which produces a definable pH in the scale between 0-14), the most stable specie is
(WO, %) and thus all the equilibria from Eq.2.1 to 2.6 all lies to the right. For pH < 8,
WO3; dominates and precipitates as a monohydrate whereas for pH < 4, the pure WOj;
precipitates. The overall reaction in strongly alkaline medium thus can be summarized as
electrolytic dissolution of solid tunsgten from rod to form soluble tungstate ions (WO, ?).
This reaction happens at the oxidation half-cell (anode) as the oxidation state of tunsgten
in the said tungstate radical is +6 (this is indeed oxidation as atomic tunsgten has electronic
configuration of [Xe]4f'4 5d* 6s? and an oxidation state of 0 in elemental state). At the
cathodic half-cell we have a concomitant reduction of H,O to Hy which can be written as.

At cathode(C) : 6H,0 + 6e — 3H, + 60H . Ef} ;i = —2.48V[7] (2.8)
From the above data, the overall cell potential is -1.43 V (Eﬁzo m, T Eld/)I//WO4—2)' This

is close to the conclusion in Fig.4.8,4.9,4.10 of ref[65] where the Pourbaix diagram shows
elemental tungsten to be stable below -1.3 V for high pH but unstable with respect to
tungstate above this value. Hence one requires an external DC power source with an
applied potential of at least 1.43 V to drive the reaction. The evolution of Hy at the cathode
causes turbulence in the bath which may be detrimental to the overall surface quality of the
tungsten rod. The purpose of the steel cylinder in Fig2.3 is to shield the anode from such
disturbances. It has been empirically observed in Ref[39], that the cylindrical symmetry
of the shield is necessary to create a uniform electric field at the tungsten anode thereby
enhancing the final surface quality.

Even though the reaction requires only 1.43 V to be initiated under standard conditions as
seen above, but in reality one needs to provide much higher potential partly to compensate
for the diminishing conductance of the medium with time as the concentration of OH™
depletes. Also Ref[39] have shown that not all values of external potential can lead to a
smooth surface quality of the etched tungsten electrode. In fact four different regimes are
proposed based on the current density vs the applied potential profile as is illustrated in
Fig.2.4.
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Figure 2.4: The plot of current density (J) versus applied potential (V) for the electropol-
ishing tunsgten (W) showing various regimes. The polishing regime is highlighted within
a black oval. The figure is adapted from Ref [39]

In zone I (< 4 V), the electrochemical reaction is initiated even though its rate is
slow. This is the ohmic regime wherein, current density increases linearly with the applied
electric field. In zone II (= 4-5 V), the tungstate ions ((WO4 ?) so formed are attracted
by the increasing positive charge density at the anode thereby resulting in a passivated
electrical double layer. This electrical double layer resists further OH™ from approaching
the electrode thereby slowing down the reaction. This effect along with the decreasing
OH™ concentration is responsible for lowering of conductance and saturation of current
density. In zone IV ( 6 <V < 14), the reaction becomes turbulent and conductivity and
hence current density escalates rapidly due to occurrence of auxillary reactions like

2H,0 — Oy + 4H + 4e

Reactions such as these also introduces turbulence near the anode which may lead to the
appearance of large pits on the final electro-etched tunsgten rod. Moreover we have also
seen that for voltages beyond 10 V, there is a direct colloidal breakdown of the electrolyte
leading to a white residue. It is thus only zone III (=~ 6V) wherein the passivating layer
discussed above saturates and any bulging features on the electrode surface gets dissolved
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smoothly . It is in this regime where best results for polishing is obtained in terms of
surface quality and henceforth we shall continue to set the applied voltage to this value.

2.2.2 Protocol for Electropolishing

The actual experimental set-up used for electropolishing is shown in Fig.2.5. The steps we
followed (similar to that in [39])are:

e The purchased rods are ground to size and carefully cut to 35 mm in length. One
has to ensure that the rod does not show cracks internally or even splinter during
this process

e 700 mL of a 2 M solution of sodium hydroxide (NaOH) is prepared in deionized water
and poured in a pyrex container. Since the molar mass of NaOH is 40 gm/mol, one
would require 28 gm of NaOH to be dissolved in a solution with total volume 700
mL to achieve the said concentration

e The W rod to be electropolished is held with an alligator clip that is connected to a
translation stage

e Using the vertical scale and control of the stage the rod is lowered so as to dip 30
mm of it into the solution. It is important to ensure that the rod is perpendicular to
the solution. This completes the anodic assembly

e An alligator clip is used to hold a commercially purchased graphite cathode (around
30-40 mm in length) perpendicular to the solution like the rod. One has to keep
the rod and cathode on opposite sides of the dish to prevent turbulence from the
cathodic reaction from reaching the rod. This completes the cathodic half cell too.

e The anodic and the cathodic half cells are connected to the DC power supply using
cables and banana clips. A multi-meter in series is also inserted into the circuit.
The power supply is set to constant voltage mode on 5.8-6 volts DC and one needs
to ensure the current density in the solution is 3.5 mA/mm? to be in the polishing
regime (zone III in Fig.2.4). This can be ascertained by monitoring the current in
the multi-meter. Knowing the dimensions of the electrode dipped, current density
can thereby be computed.

e The rod is polished for 2-2.5 minutes. This will yield a diameter of 0.45 mm- 0.48 mm
(the rods initially are 0.51-0.53 mm).It is important to monitor the time spent during
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the electro-etching procedure with a stopwatch as too long would make the rods
thinner and unusable and too short a time spent would require multiple iterations to
reach a desired diameter and surface quality. The chances of erroneously introducing
a surface pit in the latter case would thereby be high.

Using these steps one is able to achieve good surface quality for most of the rods used as
is seen in a comparative study in Fig. 2.6.

|
~ !'_")

2M NaOH solution

Voltage(V)  Current(A)

Figure 2.5: The actual setup used during the electropolishing tunsgten (W) electrodes in
the laboratory (see text for description)
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Figure 2.6: Comparison between polished and unpolished rods with time.

2.2.3 Final results

Once the rods are all polished, the unpolished portions were bent to an angle of 45 degrees.
This will allow spot welding a constantan flap on the rod for electrical communication. The
rods are then stored cleaned in de-ionized water , studied under microscope for imaging of
surface quality. The procedure in the previous section is repeated many times before we
have 4 compatible rods which are usable as electrodes. These rods thereafter were stored
in inert gas (Ng) to prevent oxidative degradation. The picture of the best quadruplet we
achieved is shown in Fig. 2.7.
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t=2-2.5 min

t=2-2.5 min t=2-2.5 min

Figure 2.7: Surface quality of polished rods near the central region of the trap after 2-2.5
mins of electropolishing by the procedure mentioned in previous section. The procedure
had to be repeated many times until we achieved these 4 compatible rods which were used
in the final assembly. We see that all four rods are lustrous and devoid of noticeable surface
defects or roughness unlike that in the unpolished case shown in Fig.2.2. The picture on
the right shows the location and arrangements of these rods inside the vacuum chamber.
The rods are held in place inside the trap holder in holes carved on macor cubes. The
central region which is most important to the ions is highlighted by the black oval.

2.2.4 Fabrication of needles
Even though the basic mechanism for the electrochemical etching was described in section
2.2.1, but it might come as a surprise that the same reaction is capable of producing conical

shaped tips starting from cylindrical rods if done for appropriate amount of time. This
behavior is illustrated schematically in Fig2.8
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Figure 2.8: The actual setup used during the electropolishing tunsgten (W) electrodes in
the laboratory. The electrolytic bath on the right shows a thin, electropolished tungsten
rod due to reasons mentioned in previous sections. However, there is enhanced depletion of
tungsten layer just below the meniscus of the solution (a phenomenon called necking). If
the reaction is allowed to proceed for sufficiently long time, the said region loses the tensile
strength to support the mass of the electrode underneath and hence breaks up revealing a
conical tip.

We shall thus use this reaction to produce a pair of needle-shaped trapping electrodes
for axial confinement (along z-direction) of the ions. The needle tip should be approxi-
mately around 20 pum with a conical radial profile of half-cone angle close to 0.058 rad
(obtained from simulation). Too sharp a radial profile for the needles (as used in STM tip)
is unsuitable for ion-trapping as they may cause arcing due to high-voltages used in these
electrodes. Besides, an extremely sharp tip is susceptible to errors due to misalignment
and may also be vulnerable to being destroyed by minor accidental bumps during fabrica-
tion. We shall see later than the final pair of needles were manufactured using a slightly
modified procedure wherein the profile was parabolic as opposed to being conical [10]
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2.2.5 Cause of necking

The reason for necking can be ascribed to a complex interplay of surface chemistry, ionic
stability and distribution of ions of various species in the electrolytic bath. All the inter-
esting physics happens near the tunsgten electrode i.e. at the anodic half cell and so one
shall focus on this exclusively. The key reasons for this behavior can be summarized as

e Firstly its important to appreciate that the meniscus of water near metallic surfaces
of d-block elements is concave. This has been ratified using DFT calculations as
in Ref [73, 74, 75, 76], which shows how the highest occupied molecular orbitals of
a single monomer of water i.e. the lone pair on the oxygen centre interacts with
the band of orbitals (predominantly of d-type) near the Fermi-level of the metal.
This interaction results in decreased negative charge density at the oxygen (as its
the donor) and hence in turn enhances the positive charge density on the hydrogen
atoms of the monomer. Once a monolayer is formed through interaction of several
such H,O monomers, the oxygen centre of the next layer of water molecules can
now act as hydrogen bond donor to the electron-deficient hydrogen atoms of the first
monomer layer. In this way the molecules of water wets the surface and presents an
acute contact angle. Presence of electrolyte like OH™ and tungstate ions(WO4_2)
only means that these species can too act as an electron pair donor and interact with
the metal in the same way. The presence of positive charge on the metal surface like
in this case further facilitates the process due to electrostatic reasons.
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high reaction rate.
This initiates necking
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. WO,2 the bottom piece drop off. The reaction thus
self-terminates

Figure 2.9: Necking scheme for creation of a conical tip(see text). The vertical grey bar
shows tungsten electrode(anode)

e Even though OH™ can interact with the metal electrode yet the distribution of OH™
along the electrode surface is not homogeneous[5]. This is explicitly experimentally
proven in the work by studying that the Gibbs adsorption isotherm (GAT) for a
mixture of KOH/water was negative. Positive value of GAT curves indicates that
the solute added prefers to stay at the interface whereas the negative value indicates
the solute being repelled from the interface into the bulk. This is due to the fact that
ionic electrolytes like OH™ tends to increase surface tension as within the bulk of the
solution the ion can be stabilized by ion-dipole interaction. In the meniscus, due to
absence of solvent molecules on all sides, the ion does not enjoy uniform interaction
and hence the stabilization energy is weak. This means that OH™ will be distributed
preferably below the meniscus wherein it enjoys a stronger interaction potential (due
to concavity, see above point) compared to at the meniscus.

e One of the reaction by-product is tungstate ion WO, 2. These ions are heavy and

less mobile than OH™. In fact Ref [65] reports the properties and the flow kinetics of
the concentrated fluid of WO, 2 ions obtained from the reaction. They report that
the GAT curves for tungstate ion at low concentration is positive, indicating that it
can preferrentially be located at the air-water interface. However beyond a certain
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concentration, as is in this reaction, the value of GAT dips and become negative like
that in the case for OH™ ions. The tungstate ions in that case would prefer to be in
the bulk. Let us now see why even in the bulk, the distribution of tungstate would
not be uniform. Ref[(5]reports that the reaction products (predominantly WO, 2
ions) emerging from the electrode has an interfacial tension of 0.34 mN/m, a change
in density of 28.59 kg/m? with respect to the surrounding medium. The viscosity of
this jet was also reported to be 0.0018 Pa- s which is higher than that of just alkali
and water. These observations indicates that the reaction products would emerge as
a jet in the downward direction and would not venture too far away from the tungsten
surface due to high viscosity and interfacial tension of the jet. Presence of positive
charges on the tungsten anode only makes this effect worse. Thus the distribution
of tungstate ions in the bulk would preferentially be along the electrode surface and
that too towards the bottom end in the form of an emerging immiscible fluid moving
towards the lowermost surface of the container in which the reaction is occurring.
This can be contrasted with the distribution of OH™ which like WO, 2 also prefers
to remain close to the electrode surface (as mentioned in first point , OH™ acts an
electron donor to the metal d-orbitals much like solvent water and positive charges
on the electrode further aids this). But unlike OH™, the preferential distribution of
WO, 2 is towards the bottom half of the electrode as a viscous emerging jet as shown
in Fig.2.9

The reaction jet containing WO, 2 ions forms a protective double layer around the elec-
trode surface especially towards the bottom half wherein its concentration is high (see
third point) as shown in Fig.2.9. Just below the meniscus but much above the lower end
of the rod, there is a sweet spot which is not surrounded and passivated by WO, 2 and
has continuous access to fresh OH™ from the bulk of the solution. Above this region, there
is not enough OH™ ions due to concavity of the meniscus (see second and first point)
whereas below this region even though there is enough OH™ ions in the bulk to participate
in the etching yet they are prevented from reaching the electrode by the passivating layer
of emerging WO, 2. Whatever OH™ is trapped in this layer between the WO, 2 jet and
the electrode, that performs the usual etching and are consumed in no time. These ions
are not replenished from the bulk as the supply chain is blocked. Thus the reaction in this
sweet spot happens at an unaffected rate which is much more than that at the neighboring
regions along the electrode surface. This region then starts to thin and develop a neck
like feature. After some time when the tensile strength of the region plummets due to its
waning thickness, the electrode off breaks revealing a conical tip as shown in Fig.2.9 unable
to support the of weight of the portion underneath.
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2.2.6 Protocol for making needles

The purchased rods are cut to size to 35 mm length. One has to ensure that the rod
does not show cracks internally or even splinter during this process

700 mL of a 2 M solution of sodium hydroxide (NaOH) is prepared in deionized water
and poured in a pyrex container. Since the molar mass of NaOH is 40 gm/mol, one
would require 28 gm of NaOH to be dissolved in a solution with total volume 700
mL to achieve the said concentration.

The W rod to be electropolished and converted to needle is held with an alligator
clip that is connected to a translation stage.

Using the vertical scale and control of the stage the rod is lowered so as to dip 3-4
mm of it into the solution. It is important to ensure that the rod is perpendicular to
the solution. This completes the anodic assembly

An alligator clip is used to hold a commercially purchased graphite cathode (around
10 mm in length) perpendicular to the solution like the rod. One has to keep the rod
and cathode on opposite sides of the dish to prevent turbulence from the cathodic
reaction from reaching the rod. This completes the cathodic half cell too.

The anodic and the cathodic half cells are connected to the DC power supply using
cables and banana clips. A multi-meter in series is also inserted into the circuit.
The power supply is set to constant voltage mode on 5.8-6 volts DC and one needs
to ensure the current density in the solution is 3.5 mA/mm? to be in the polishing
regime (zone IIT in Fig.2.4). This can be ascertained by monitoring the current in
the multi-meter. Knowing the dimensions of the electrode dipped, current density
can thereby be computed. In case if the desired current density is not reached, one
can vary the length of the cathode dipped

As mentioned before, about 3-4 mm of the rod is dipped at a time. The rod is attached
to a stepper motor control which rotates the rod clockwise (or anticlockwise ) while
electro-etching. A second stepper motor is used to pull the rod out of the solution
at a slowest rate possible. This is repeated until satisfactory needle profile is made
(around 15 dips for a 5 micron tip).

Thereafter 12.6 mm of the whole needle obtained in the previous step is dipped and
etched for 2 minutes following the protocol for the rods. This will allow us to fit the
needle in the macor.
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e The needle so formed is cut down to size so that 7 mm extrudes from the trap holder.

e The needles are then stored in inert gas

2.2.7 Final Results

We obtained the first set of needles from this procedure in collaboration with other members
of the Quantum Information with Trapped Ions team (henceforth called as QITI group with
the principal investigator /supervisor being Dr.K.R.Islam) and also with members of Prof.
Senko’s lab. Fig.2.10 illustrates the quality of a representative needle so obtained. It should
be noted that this is among the best few obtained from this method. Most of the needles
obtained in other attempts had not a symmetric profile. The main problems with this
method are:

e There is no clear directive on the draw rate at which the needles needs to be with-
drawn from solution. Faster draw rates usually produce poorer surface quality while
slower draw rates produces a very long drop-off time.

e The method is extremely sensitive to the precise alignment of the electrodes in so-
lution. If the tungsten rod is not entirely placed perpendicular to the solution, then
the overall profile of the needle so obtained is not symmetric along the cylindrical
axis and hence unusable.

This method thus requires multiple runs to get a compatible pair which makes it incon-
venient. If the pair of needles used are not similar in geometrical profile then the repulsive
electrostatic potential the pair generates need not be symmetric around the midpoint of
the axis connecting the tip of the needles. This can tilt the ion chains towards a particular
needle even when both needles are biased to the same extent with respect to a common
ground. We have even purchased needles from MTS and electro-polished those to improve
the surface quality following the protocol for the rods mentioned before and this worked
fine. A representative result is shown in Fig.2.11. However, ultimately a co-worker from
QITI lab devised a modified version of the needle-making recipe mentioned in previous
section. Since we wanted to test the efficacy of this new method, we generated the final
pair of needles required for our ion-trap from this recipe. The details of the method can
be found in [10] and is being considered for a publication which the author is a part of.
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Figure 2.10: One of the best needle tip fabricated from the method in Ref[39]. See text
for details.

Figure 2.11: Needle tip profile obtained after electropolishing purchased needles from MTS
(see text). This procedure worked fine and we could produce a compatible pair. However
we wanted to test the efficacy of the new improvised method developed by a co-worker[10]
and hence ended up generating the final pair of needles used in our ion-trapping apparatus
from this new recipe.

2.3 Conclusion

In this chapter, the author has demonstrated how the actual trap electrodes used in our ion-
trapping apparatus were generated. Fig.2.12 shows the electrode system as used in our ion-
trap with the respective rods and needle alignments and their corresponding geometrical
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parameters . In the next chapter the author will show how these electrodes are electrically
powered to generate the requisite trapping potential.

Figure 2.12: The exact alignment and geometrical parameters of the six-electrodes as used
in our ion trapping apparatus
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Chapter 3

Powering the trapping electrodes-
Generation of radio-frequency
induced trapping potential

3.1 Chapter at a glance

In the last chapter we studied how the four electrodes were fabricated for our four rod
trapping apparatus. The four rods are powered by an oscillating potential generated using
RF'. The situation for the needles is far more simple and is entirely powered by a positively
charged DC electric field source. The surface of the needles thus generates a repulsive
potential for positively charged ion like "'Yb™ as has been used here thereby confining
it towards the centre of the trap. The choice of a dynamically evolving potential for
the rods stems from the inability to provide confining potential in 3D using DC electric
field[77], a direct consequence of the Maxwell’s equations which requires the divergence of
electric field vector in a source-free region to be zero. For a dynamically varying field, the
potential at each time-step satisfies the Maxwell’s relation and the corresponding electric
field is divergence free away from the electrode. This essentially means that the ion would
still ‘see’ a confining and an anti-confining axis. However due to the changing polarity
of the electrodes, the confining and the anti-confining axis is rapidly switched at a rate
higher than the response time of the ion. This effectively creates a confining pondermotive
potential[78, 69, 11]. Excellent reviews discussing the basic mechanism for trapping can
be found in Ref.[78, 13, 16, 79, 69] and hence is not elaborated herein. We instead focus
primarily on the electrical circuitry responsible for generating such a potential. Specifically
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we shall answer the following questions

e What are the electrical components required to power the rods and needles electrically
? As mentioned above, for powering the needles DC electric field is used which
creates a harmonic confinement along the symmetry axis of the needles (z-direction
in Fig.2.1). The circuitry for the needles has been designed by one of our collaborator
and has been detailed in Ref.[11]. We shall not elaborate it here and henceforth shall
just focus entirely on the rods. We shall see that for the rods which requires an
AC field, one of the essential component is a helical coil RF resonator. An RF-
resonator is essentially a serially connected RLC circuit [30, 81] whose parameters
can be tuned to make it a frequency filter and a voltage amplifier. The chapter details
the construction of the RF resonator as has been used in our ion-trapping apparatus

e We shall also see simulation results for the potential generated by RF field and a
representative trajectory of a trapped ion in that potential.

3.2 Why use an RF resonator?
The reason for using the RF-resonator are the following:

e Impedance matching Directly connecting an amplified signal source to the trap
electrodes through a transmission line may reflect back a lot of energy to the source
port if the impedance of the trap electrodes(which is not usually precisely controlled)
is not matched to the characteristic impedance of the transmission line. Having a
resonator in between solves this issue. Resonator coil parameters can be tuned to
match impedance so as to minimize reflection of power back to the source port. Such
reflection if happen can even damage equipments connected in the circuitry powering
the resonator.

e Frequency filter and voltage amplification As highlighted in the previous sec-
tion, substantial energy transfer between the source and pick-up coil of a high-finesse
(high Q) resonator happens near a particular frequency. As a result output power
of the resonator is sensitive to the input frequency. In this respect the resonator
acts as a frequency filter and protects the ions from unwanted frequencies. If such
frequencies are present they would also titilate the motion of the ion undesirably
making it chaotic and even contribute to motional heating[32]. The resonator also
acts as a voltage amplifier. If the parameters of the resonator like self-inductance of
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the pick-up coil be L, power dissipated be P, the capacitance of the load connected
plus the resonator be C and finesse/Q-factor of resonator be Q, then the amplified
output voltage after the resonator[$1] is

v =(2)VPQ (3.1)

High slew rate Op-amp It is hard to find a high-voltage low impedance amplifier
for the purpose of voltage amplification on the trap electrodes at this frequency of
interest. If Op-amps are used for this purpose, then at the frequency of interest (=&
20 MHz) the slew rate or switching time of the Op-amp will have to be enormous.

All of the aforementioned points illustrates simply why an RF-resonator is useful.
However we shall specifically design a helical-coil balanced drive RF-resonator. A
balanced drive resonator has two open output terminals to be connected to two
terminals of a receiving device. An unbalanced drive on the other hand will have one
of its terminal grounded. The use of balanced drive is due to the fact that the absolute
value of the oscillating potential at each open terminal of the resonator (subsequently
at each electrode connected to it) is low for a given difference in potential. This means
for a unbalanced drive the entire potential difference (say V ) will have to maintained
and supplied through one terminal whereas for a balanced drive one can supply %
across two of the terminals. The reason for using a helical coil resonator is due to
the convenient form-factor and also because of the fact that to maximize Q-factor of
the resonator for a given resonance frequency, we shall see later (see Eq.3.12) that
one has to maximize the self-inductance (L) of the resonator and minimize resistance
(R) and capacitance (C). Helical coil resonators have high self-inductances satisfying
this criterion.[31].

3.3 Importance and assembly of the source/antenna

coil

In this section we will specifically talk about the source/antenna coil which is the primary
metallic winding (in this case made of copper, see Fig.3.1) that receives energy input from
an external device and relays it onto the pick-up coil of the resonator. A lumped circuit
model of the source/antenna coil is given at the bottom of Fig.3.1 following the analysis
in Ref.[81]. We will replicate the arguments of Section III A in Ref[31] in this section. In
the model we will need the following definitions.
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e [, = self-inductance of antenna coil. Here the identifier 'a’ is used to refer to antenna.
This coil is referred to as L; in Section III A in Ref[31]

e 7, = impedance of amplifier /source output

e (L.)= This refers to self-inductance of the pick-up/receiver coil. Here the identifier
¢’ is used to signify the coupled coil. This coil is referred to as Ls in Section 11T A

in Ref[31].

e 71, = the impedance of the load/trap connected to the resonator.

M = the mutual inductance between the antenna and pick-up coil (receiver).

Using these parameters one can write the voltage drop across the antenna-coil (labelled
as V1) and across the pick-up coil (labelled as Vo which is also voltage drop across the
load/trap) as

Vl = iQRFLall + IQRFMIQ
VQ = iQRFLCIQ + IQRFMll
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Figure 3.1: The actual pictures of the antenna coil assembled in the lab(top) and the
associated lumped circuit model (bottom) adapted from Fig.3 (a) in Ref.[$1]. The antenna
coil is made from AWG 14 pure Cu wire with 4 windings and a winding diameter of 1 inch.
The wire diameter is 0.064 inch (1.6256 mm).

Using the fact that Vo = —Z 15, it is possible to write I, from Eq.3.3 in terms of known
parameters as follows:

iQrrpMIy

[, = ——— 71
2 71 + iQrprLe

(3.4)
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Using Eq.3.4 in Eq.3.2 and recognizing that V; = [;Z;, where Z;, is the combined
impedance of the resonator (both coils) and the load/trap (see Fig.3.1 we get

Zin = iQppLa + 57—
Fna ¥ Z1, +iQgpLc

(3.5)
To minimize power reflection and afford a proper impedance match one has to ensure Z;,
= Zo We see Eq.3.5 that for the combined impedance of the resonator + trap/load i.e.Zj,
to be equal to external impedance Zg, one can play with a number of parameters of the
antenna and pick-up coil like L,, L., M etc. However we shall see shortly that L. affects
the resonance frequency of the circuit strongly and also affects M = /L.L,k. For a fixed
choice of resonance frequency, the only available parameter which can be manipulated is
thus L,. L, as mentioned before is the self-inductance of the antenna coil. If one simply
models the antenna-coil winding as a solenoid, then the self-inductance can be expressed
in terms of controllable variables like number of turns of the coil (N), pitch of the coil
winding (p) and area of the coil winding (A) as follows

. AIU()N
P

La (3.6)

This parameter set (N, A, p) can thus be varied until proper impedance match is achieved
(characterized by lowest attainable reflection of input power towards the source). In our
case, we noted experimentally through trial and error that N=4, A= 1 inch, AWG-14 pure
Cu wire (wire diameter is 0.064 inch (1.6256 mm)) can lead to good impedance matching
reflecting about -40 dBm of input power. One end of the coil is soldered to the circular
Cu base (as shown in Fig.3.1). The coil receives input RF power from the source/amplifier
through an N-type connector.

3.4 Importance and assembly of the pick-up/receiver
coil

In this section we will specifically talk about the pick-up/receiver coil which is the secondary
metallic winding (in this case made of copper, see Fig.3.2) that receives energy through
time-varying magnetic flux that couples it to the antenna coil inductively. This in turn
generates an EMF which powers the rods. This is the most important component of the
resonator as it controls the resonance frequency (henceforth referred to as Q%) and also
largely the finesse of the resonator. Fig.3.2 also displays the the lumped circuit model
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of this coil with the trap as load as adapted from Fig. 6 (a), (b), (c) in Ref[81]. We
will replicate the arguments of Section III B in Ref[81] and adopt the following naming
convention following the said reference.

e [, = self-inductance of antenna coil as labelled before. Here the identifier ’a’ is used
to refer to antenna.

e 7, = impedance of amplifier /source output

e (Re, L, C.)- This triplet refers to resistance, self-inductance and capacitance of the
pick-up/receiver coil respectively. L. was named and used in the previous section.
Here the identifier 'c’ is used following the convention in Ref.[81] which names it the
coupled coil.

e (Rg, C) - This doublet corresponds to the resistance and capacitance of the enclosing
shield. The identifier s’ signifies shield.

e (Ry, Cy)- This doublet corresponds to the resistance and capacitance of the trap/load.
The identifier 't’ signifies trap.

e R; is coil to shield resistance

e C,, is connecting wire capacitance

Following Ref.[31], we can now club together the various impedance terms defined above
into two subgroups Zg, Zcoil-

® Zcoi - This subgroup consists of Zy; (see Fig.3.2) connected in series to resistance
R. and the two together connected in parallel to C.. As seen in Fig.3.2, Zy is the
effective impedance due to the antenna-coil self-inductance (iQrpL,), the impedance
of amplifier /source input (Zg), impedance due to the self-inductance of the receiver
coil (iQprrL.) and the mutual inductance between the source and the pick-up coil.
Using the same reasoning as enlisted in the source-coil section and in Ref.[31] we can
arrive at the following expressions

0% M?
It = iQrrLe — RE .
M WIRFLc —Zo+iQRFLa (3 7)
1 )
Zcoil_l ! (38)

- Re+Zy  QrrCe
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e 7g - This is the effective impedance due to serially connected load capacitance (QR;iCt)
and load resistance (R;), impedance due to parallel connected shield capacitance +
wire capacitance which are mutually serially connected as in Fig.3.2 (

The overall impedance associated with Zg subgroup is thus

P T om))
Orr (G Co) )

_1 1 1 1
- -+ Tt i (3.9)
Ry + QrrCt " QrrCw " QrrCs

Zg,

With the two definitions above the lumped-circuit model simplifies considerably and the
equivalent circuit is basically due to the serial connection of Zg, Zei, R, Ry as shown in
the bottom most panel of Fig.3.2. We see that the entire circuit is thus a simple RLC (the
L and C part is present within Zg, Ze). The resonance frequency of the circuit can be
obtained from the condition below

Im(Zeois + Zg + Rj + Rs) = 0 (3.10)

Using Eq.3.10, Eq.3.9, Eq.3.8 and properties of RLC series circuit, we arrive at the following
expression for the resonance frequency (Q%;) and Q-factor

1

0%, = 3.11
RE " (Le(Ce + Cg + Cy + Cy))1/2 (3:11)
= % (3.12)

Regy

where Reg is defined as [31]
a2

Reff = Rj + RC ‘|‘ RS —|— Rtm (313)

Gy
= — 3.14
e (3.14)

In obtaining the above equation Eq.3.13 one has to use the condition for the helical coil
resonator which requires the equivalent impedance of the resonator to be dominant in
inductance (See Ref[31]). We thus see that the properties of this coil influences of the
resonance frequency and Q-factor heavily. The construction of the coil was made following

the empirical conditions enlisted down in Ref[30, 11]. We used N(no.of winding turns)
= 14, diameter of the enclosing shield (D) = 88 mm, and pitch (spacing between coil
winding) = 4.87 mm. As pointed out in Ref.[80], the diameter of the solenoidal core (say

do) will be chosen according to the diameter of the enclosing shield (D) such that % =
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0.55. Following this equation dg is chosen to be 48.4 mm. The coil chosen was pure AWG
12 Cu wire(diameter of wire = 2.05 mm). The coil is wound around a 3D printed PLA
support structure as seen in Fig.3.2. The red coil support rings towards the terminal ends
facilitates the easy mounting of the coil inside the shield.
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d=diameter of wire=2.05 mm

D=diameter of shield=88 mm

R,L,C of pick-up coil Lumped circuit model

™~

R, C of Shi \
R,
M of trap load

2y ~iXg

Figure 3.2: The actual pictures of the receiver/pick-up coil assembled in the lab(top) and
the associated lumped circuit model (bottom) adapted from Ref.[¢1]. The parameters used
in the construction of the coil are enlisted. The diameter of the solenoid is 48.4 mm and is
chosen according to the diameter to the enclosing shield following [30]. The coil is wound
around a 3D printed PLA core (orange). The red support rings helps to mount the coil
within the shield.
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3.5 Final Construction

e The antenna coil is assembled first. It is made from AWG 14 pure Cu wire (wire
diameter 1.6256 mm) with N=4 windings and a winding diameter of 1 inch. The
winding is done around a Thorlabs lens tube. One end of the coil is then soldered to
an N-type connector cap (see Fig.3.1) attached to a Cu base. The outer edges of the
Cu base was gold plated prior to that to prevent oxidative degradation. The other
end is soldered to the Cu base directly as seen in Fig.3.1 and Fig.3.3 (b)

e The receiver/pick-up coil is assembled next. It is wound around a 3D printed PLA
support core (orange) as shown in Fig.3.2. The coil is wound using N=14 turns with a
AWG 12 Cu wire (wire diameter is 2.05 mm) with a pitch of 4.87 mm. The diameter
of the 3D printed solenoidal core was chosen as 48.4 mm [30, 11].Also see Fig.3.3 (c)

e The red support rings at the terminal ends of the receiver coil are placed as seen in
Fig.3.2 and Fig.3.3 (c)

e A Cu shield with a base diameter of 88 mm is gold-plated. This reduces oxidative
degradation. See Fig.3.3 (d)

e The gold-plated Cu shield is placed on the circular Cu base containing the source
coil. Copper fingerstocks are placed on the rims of the Cu base to ensure better
electrical contact between the base and the shield. The pick-up coil with the ring
supports are placed inside the shield maintaining a gap of 22 mm from the top open
end of the shield. See Fig.3.3 (e). The copper fingerstocks used for this circular base
are gold plated.

e Another circular Cu base with perforations to allow the wires the RF of the unbal-
anced drive to reach the trap is attached to the open end of the Cu shield. Copper
fingerstocks placed on the rims of Cu base are used herein as well for good electrical
communication. See Fig.3.3 (a). This circular base with the copper fingerstocks are
gold plated.

e The resonator so assembled is tested for high impedance matching (low power reflec-
tion). If highest desirable impedance match is not attained, one can open the Cu
base for the source coil and change the pitch of the coil or can enhance the mutual
inductance between the source and pick-up coil by changing the separation between
the two manually. The final resonator so obtained is soldered to the trap as seen in
Fig.3.3 (f)
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As mentioned in the above points, the shield, the circular base containing the perforations
for the output terminals of the resonator and the fingerstocks for electrical contact were the
only components that were gold-plated. There is nothing special about these components
at all. Technically it would help if all the components (both the Cu bases and their
respective fingerstocks, the coil wires for both the antenna and receiver coil, the Cu shield)
were all electroplated as being Cu based they are all susceptible to oxidation. However
the selective choice in components has to do with historical reasons as certain components
(those not electro-plated) were already assembled by the time an in-house gold-plating
facility was developed as a resource.

T

hield I

Receiver in S

Figure 3.3: Pictures during the construction of the actual resonator used in our ion-trapping
apparatus.(a) Pictures of the primary resonator metallic cases- the two Cu bases and one
Cu shield. (b) The antenna coil soldered to the first Cu base. (c¢) The receiver coil around
PLA core (orange) with red support rings (d) The gold-plated shield (e) The receiver coil
unit inside the shield (f) The full resonator connected to the ion trap. The three Cu cases
were gold-plated especially towards the rim and the outer-surface. This is done to establish
good electrical contact with the fingerstocks and prevent rapid oxidative degradation.
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3.6 Circuitry powering the resonator

The primary components responsible for providing the RF frequency to the resonator (see
schematic in Fig.3.4)are as follows:

e A RF frequency generator/source- We use Rigol DG4102 (see Fig.3.6). We use the
source to deliver an oscillating potential near the required resonance frequency (=
20 MHz) at 16 dBm of input power and DC offset of 0 V. The choice of 16 dBm of
input power is motivated by the need to set the peak voltages at the rods to near 200
V as elaborated in Ref.[11]. We shall see in the next section that the Q-factor and
hence the voltage amplification factor for our trap is lower than the corresponding
one in Ref.[11]. This would require us to use a higher input power to set the same
voltage (the remaining parameters of our trap like its capacitance is 4-5 pF and the
self-inductance of the resonator to be 12 puH are expected to be similar to Ref.[1]]
as predicted by simulation. However to prevent accidental damage due to electrical
breakdown we continue to operate the trap at this input power. The output from
the source is connected to -40 dBm attenuation ((-10 dBm) + (-30 dBm)).

e The source port provides the oscillating potential near the requisite frequency at
a nett power of -26 dBm (16 dBm - 40 dBm). The signal is first amplified by an
RF amplifier. Initially we were using Mini-Circuits ZHL-5W-1+ which has a 1 dB
compression point (henceforth denoted as P1) = 37 dBm and a gain of 45 dB. However
the amplifier generates a lot of heat. It was replaced later by LNA 700 from RF Bay.
This new amplifier works in the frequency range 10-700 MHz, has a gain of 45 dB,
P1 at 27 dBm. These stats are perfect for our requirements. The amplifier requires
a DC voltage of 5V and draws nearly 180 mA. The Fig.3.6 shows the amplifier. Due
to the attenuators in the source port mentioned in previous point, after the amplifier
amplifies the signal the nett gain is 5 dB from the unattenuated input signal at 16
dBm. Such extreme attenuation followed by amplification is used so as to prevent
accidental damage to the trap. This is ensured by the fact that for the operational
frequency of our trap/resonance frequency of our resonator is 20.28 MHz. For this
frequency the source DG4102 can output a sine wave of maximum amplitude of 18
dBm (5 Vpp). So we park the operating power of the signal generator to 16 dBm close
to its maximum power . This way an experimenter would not be able to inadvertently
increase the power of the signal at the input by a lot to cause a damage to any
electrical component internal to the trap. The signal is then reduced in strength
(using fixed attenuators) before further amplification. Unless these attenuators are
removed from the circuitry which is a rare event any way, chances of excess electrical

37



damage due to enhancement in electrical power at the source is thus mitigated. Well
this also means that with our current circuitry the maximum power we can deliver
is 23 dBm (18 dBm + 5 dBm). If this is insufficient for a specific application, we
have the option of making a deliberate choice of removing the attenuators or using a
better more powerful signal source (or amplifier with enhanced gain).

e The amplifier sends the signal into the in-coupling port of a bi-directional cou-
pler Mini-Circuits ZFBDC20-61HP+ (see Fig.3.6). The transmitted port of the
bi-directional coupler is connected to the resonator directly. The reflection port asso-
ciated with this transmitted port is connected to a spectrum analyzer (after -20 dB
attenuation) to sample the reflected power and check for resonance. The spectrum
analyzer used for the purpose is from Rigol DSA832.

e The resonator is grounded to our optical table using a copper strip.

Using the above setup with an input power of 16 dBm from the RF frequency generator
at frequency of 20.286 MHz and the amplifier LNA-700, we were able to generate secular
frequencies in the radial direction (x and y) of ~ 27 x 0.4 — 0.43 MHz. At this point we
have not introduced what secular frequencies are, so we will reserve further discussion for
a later section (Section 3.9.3). The said radial frequency was later modified to ~ 27 x 1.3
MHz by using the maximum power from the RF source and amplifier ZHL-5W1+ with few
attenuators removed.

3.7 Circuitry powering trap after the resonator

For the circuitry powering the trap after the resonator onwards we solder the two copper
terminals of the balanced resonator to electrical feedthroughs in the vacuum chamber. This
electrical feedthrough therefater powers a flexible printed circuit board (FPCB) which in
turn provides the RF field and DC field to the rods and needles. For details see Section
3.3 in Ref.[11].
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Figure 3.4: The scheme of the circuitry providing the RF field to the resonator. The Signal
source (DG4102) provides an oscillating voltage at the frequency of interest of power P;
in dBm. The power of this signal is then traced across all components of the circuitry.
For our current operation the signal strength P; = 16 dBm and the input frequency =
resonance frequency of resonator (%) = 20.28 MHz which resulted in a secular frequency
along the radial directions (x and y) to be ~ 27 x 0.4 —0.43 MHz. The said frequency was
modified to ~ 27 x 1.3 MHz by further increase in RF power at the source. Since we have
not discussed or defined secular frequencies so far, further elaboration about its generation

5V DC, 180 mA

is reserved for Section 3.9.3 and figures therein.

39




Signal source (DG4102 ngol)

CHECK ALL PARAME TE 15 prr, W TURNNG
- =y “ H
= : _ +5V DC source for amplifier

-

——

.

w Y input

A

input B RF amplifier (LNA 700)

Figure 3.5: The circuitry providing the RF field to the resonator. The Signal source
(DG4102) provides an oscillating voltage at the frequency of interest which is fed into the
amplifier (LNA 700). From the amplifier the signal is fed into a bi-directional coupler.
Transmitted port of the bi-directional coupler feeds directly into the resonator. The reflec-
tion port samples the energy reflected and sends it to the Spectrum analyzer (DSA832).
See text for more details
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Figure 3.6: The circuitry providing the RF field to the resonator. The Signal source
(DG4102) provides an oscillating voltage at the frequency of interest which is fed into the
amplifier (ZHL5W1+). From the amplifier the signal is fed into a bi-directional coupler.
Transmitted port of the bi-directional coupler feeds directly into the resonator. The reflec-
tion port samples the energy reflected and sends it to the Spectrum analyzer (DSA832).
See text for more details
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3.8 Properties of the resonator

The resonance frequency and the associated Q-factor of the resonator was measured using
VNA (Rohde and Schwarz 9 kHz - 4 GHz ZVR) in a linear scale. The results are in Fig.3.8

@ ..

. ‘ 1= (36.565 MHz, 34.4 mU)
(L;’r‘gi'n?t‘;‘;'e . | 2=(37.675 MHz, 1.021 U)

3= (36.52 MHz, 491.9 mU)

4= (36.61 MHz, 514.4 mU

fo = 38 MHz (expected)
fo =36.565 MHz (observed)

Q= 36.565 MHz
(36.61 MHz-36.52 MHz)
=406.27

Figure 3.7: The plot of the reflected signal from the resonator constructed under unloaded
conditions as a function of input frequency in VNA (Rohde and Schwarz 9 kHz-4 GHz ZVR)
in linear scale. Several markers are placed to identify important points in frequency space.
Marker 1 identifies the resonance frequency at minimum reflection which is 36.565 MHz.
The slightly lesser frequency than expected is probably due to the additional capacitance
introduced by the PLA core and support rings in congruence with Eq.3.11. Marker 3 and
4 identifies frequency the point at half of the minimum reflection. Using these the Q factor
computed is 406.27

The same resonator when connected to the actual trap as in Fig.3.3(f) and the resonance
frequency is measured using Rigol Spectrum Analyzer DSA832 (9 kHZ - 3.2 GHz) the
resonance frequency is found to be 20.283 MHz and the corresponding Q factor is 150.
The drop in resonance frequency can be explained using the additional capacitance of
the trap of about 4-5 pF [11]. But the Q-factor suffers not only due to additional trap
capacitance but also due to resistive junctions created when the resonator is soldered to
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the trap.

Figure 3.8: The same resonator as in Fig.3.8 connected to the actual trap as load as
in Fig.3.3(f). Its resonance frequency and associated Q-factor is measured using Rigol
Spectrum Analyzer DSA832 (9 kHZ - 3.2 GHz). The resonance frequency is found to be
20.283 MHz due to additional capacitance due to the trap (estimated to be 4-5 pF in
Ref[11]).The drop in Q-factor to 150 is not only due to the trap capacitance but also due
to the resistance introduced into the circuit due to soldered joints of the resonator with
the trap.

3.9 What kind of potential is generated at the elec-
trodes?

In this section we shall study the simulation results conducted by the author for studying
the trajectory and the trapping mechanism for an ion in a trap made from four-rods and
two needles as described in the last chapter.
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3.9.1 Potential due to the rods

For the four-rods we use an alternating potential with a frequency of 20.2 MHz. The
generation of this frequency and the role played by the RF resonator and other components
of the RF circuitry to to relay this frequency to the trapping electrodes have already been
discussed in the previous sections of this chapter. Herein we shall only focus on how this
frequency is responsible for trapping the ion and show simulation results verifying the
claim. Before we start let us recall the co-ordinate system that we are going to use for our
discussion. It is elaborated in Fig.3.9

Z,

Figure 3.9: The co-ordinate frame of the 4 rods and 2 needles to be used for discussing the
simulation results. The length scales ry and zy are marked.

The rods are powered by oscillating RF frequency with an amplitude of Vy with a
frequency of Q%p. The accompanying potential at a given time instant is of the form:
X/Q _ y/2
‘/;"ods(xla y,7 Z, t) = %KCOS(Q%Ft)(—Q)
o

(3.15)
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The quantity x is known as structure factor and accounts for deviations of the actual rod
geometry from hyperbolic rod geometry. Note to satisfy Maxwell’s equation the potential
is anti-confining in one of the two directions (shown along ¢y’ here). To understand the
mathematical reasons as to why this leads to trapping conditions one can Ref[!1]. But let
us go over the physical picture. The sinusoidal time dependance switches the polarity of z’
and y’ at the resonance frequency of RF resonator Q2%,. At a given time when the ion feels
the confining potential along the direction 2’ it also feels the anti-confining potential of the
direction 3" and tends to roll off in that direction. If this switching between the confining
and the anti-confining direction happens at a rate faster than the response time of the ion,
then the ion effectively experiences an average potential which is confining. This is known
as the pondermotive pseudopotential[78, 13, 16, 79, 69, 11]. The ion thus rolls back and
forth near the centre of the xy plane (depending on its initial kinetic energy (K.E.)). To
see the actual results of the simulated potential we will refer to the co-ordinate frame (x,y)
obtained after clockwise rotation by 7. The inter-relationship between (2',3) and (x,y) is

With this substitution Fig.3.11 shows the Vi.qs (X,y,2,t) plotted for z=0 plane. The z=0
plane is shown at the bottom in Fig.3.9 along with the circular cross-sections of the 4 rods.
The actual profile of the rods are used (hence structure factor x is accounted for) with a

diameter of 0.5 mm for the four rods and 7y = 0.5 mm (distance from centre to electrode
as defined in Fig.3.9).Vy is taken to be 1V but can be scaled.Q% is 20.286 MHz.
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Electric potential and field due to rods at z=0 plane

0.6
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-0.88 -0.66 -0.44 -0.22 000 0.22 044 066 088
Electric potential Vix,y,z=0)

Figure 3.10: Simulated potential (and the electric field lines given by the gradient at each
contour of the potential) generated from the 4-rods in the (x,y) plane. See text for further
details
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Electric potential and field due to rods at y=0.5 mm plane

0.6

0.4 Vo=1V
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-0.88 -0.66 -0.44 -0.22 0.00 0.22 0.44 0.66 0.88
Electric potential Vix, y =0, z)

Figure 3.11: Simulated potential (and the electric field lines given by the gradient at each
contour of the potential) generated from the 4-rods in the (x,z) frame for y=0.5 mm plane.
See text for further details
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3.9.2 Potential due to needles

The two needles are powered entirely by DC[11] and hence the accompanying potential is
of the form

7z
Vneedles(xla yla Z) = UU(Z_Q -
0

Note to satisfy Maxwell’s equation the potential is anti-confining along the transverse
direction (x,y) even though it is confining along z. The parameter zy has been marked in
Fig.3.9. Since the term x’? + y? is rotationally invariant, the needle potential can also be
expressed as

Z2 X2+y2
Vnee es\45 Y, = Up(— —
dles (T, Y, 2) D(Z(Q) 272 )

Fig.3.12 shows the simulation of needle potential (and associated electric field in (x,z) for
y=0 plane. The conical profile of the needle is used with a base diameter of 0.5 mm and
a needle to needle tip distance (2zp) of 2.8 mm as is true in our experimental setup.Uy is
taken to be 1V but can be scaled. This potential generates a harmonic confinement for
positive charges along z.
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Electric potential and field due to needles at y=0 plan
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Electric potential Uix, ¥y =0, 2)

Figure 3.12: Simulated potential (and the electric field lines given by the gradient at each
contour of the potential) generated from the needles in (x,z) plane.
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Electric potential and field due to needles at z=0 plan
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T
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Electric potential U(x,y,z=10)

Figure 3.13: Simulated potential (and the electric field lines given by the gradient at each
contour of the potential) generated from the needles in (x,y) plane.
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3.9.3 Trajectories of ion

In this section we discuss the simulation results of the ion motion under the combined effect
of the potential due to rods and needles as discussed in previous sections. The combined
potential is

X2 _ 2 72 x? 4 v
Viotal = Vaceaes (7', 4/, 2) + Vioas (', /', 2,) = v()mCos(QORFw(r—zy) + Us(— — sz )
0 0 0

(3.16)

Fig.3.14 displays such a trajectory along the 2" direction as a function of time. The slower
frequency dynamics is due to the trapping frequency (called secular frequency)[78, 13, 16,

, 09, 11] and the faster ripples are due to unwanted micromotion at the RF drive. The
parameters of (Vg, Up, Q%) are mentioned in figure itself. ro = 0.5 mm and 2z, = 2.8
mm. Note that since the actual profile of the rods and needles as used in our simulation
has been used, the structure factor s is already accounted for internally. The trajectory
is obtained by solving the equation of motion (EOM) for the coupled x and y-motion
using fourth order Runga-Kutta method (commonly known as RK4) . Similar equation
exists for ¢. Initial condition is such that the ion is at the z(,y; = (—0.005, —0.005)mm
with Kinetic energy (KE) = 6Viotal(X(, v, 2 = 0). The excursion of the ion from the mean
position and the amplitude of the ripples can be increased by increasing KE i.e. making
the ions hot. For direction z, the motion is uncomplicated simple-harmonic[11] due to the
potential in Fig.3.12 and hence is not discussed here further. Fig.3.15 studies the motion
in Fourier space (i.e. the Fourier transform of 2’ (t) is taken). We see that apart from the
secular frequency at near 2 MHz, there are two subsidiary peaks near 20.2 MHz due to
micromotion caused by the driving RF frequency.

An analytical expression of the secular frequency along x-direction can be deduced from

the pondermotive potential[78, 13, 16, 79, 69, 11] which is as follows
qrVy ( UO1 /2 )
Wy = —
2mr2Q% . ml/2z

where the last term is due to the anti-confinement by the needle potential in Fig.3.12.
The expression shows the secular frequency w, is linear in Vg, in ﬁ and in % Fig.3.16,
Fig.3.17, Fig3.18 establishes these behavior for the secular frequency obtained from simu-
lation. All our simulation results are for "' Yb™ ion except in Fig.3.18 wherein the mass

of the ion is varied.
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x'(t) vs t trajectory for a trapped particle

Vy=400V, Qf. = 20.286 MHz, Uy =20V
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Figure 3.14: The simulated trajectory for the ion along the x’-direction vs time.
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FT(x'(t)) vs frequency for a trapped particle
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Figure 3.15: The Fast Fourier transform of the plot in Fig.3.14. The secular/trapping
frequency %= is identified to be the dominant peak at 2 MHz whereas the micromotion
sidebands at Q% +w, and Q% —w, are apparent. The amplitude of these sideband peaks

increases with increasing initial KE (kinetic energy) i.e. making the ions hot.

23



2.00 1

02, = 20.286 MHz, Uy = 20 V

175 1

1.50 1

1.25 1

(MHz)

1.00 1

Ly
2m

0.75 1

0.50 1

0.25 1

100 200 300 400 500
Rod RF Voltage (Vp)

Figure 3.16: The variation of the secular frequency for x-motion or trapping frequency as a
function of the input potential (Vy). All relevant parameters are defined within the figure
and ro = 0.5 mm and 2zy = 2.8 mm. Note that since the actual rod parameters were used
in the simulation, so structure factor s is inbuilt and already accounted for. This plot
can be used to determine what is the actual potential at the rods if the secular/trapping
frequency is experimentally determined. Initially the secular frequency achieved along the
x-direction was approximately 27 x 0.4 — 0.43 MHz which corresponds to a rod voltage of
100-140 V as per the above figure. However the secular frequency along the x-direction
was later modified to 27 x 1.0 MHz with a rod voltage of nearly 230-250 V.
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Figure 3.17: The variation of the secular frequency for x-motion or trapping frequency as
a function of the inverse of the input RF driving frequency (Q+RF) All relevant parameters
are defined within the figure and ryp = 0.5 mm and 2zy = 2.8 mm. Note that since the
actual rod parameters were used in the simulation, so structure factor  is inbuilt and
already accounted for. This plot can be used to determine the secular/trapping frequency
at other values of RF drive.
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Figure 3.18: The variation of the secular frequency for x-motion or trapping frequency
as a function of the inverse of the mass of the ion used (1). All relevant parameters
are defined within the figure and ry = 0.5 mm and 2z; = 2.8 mm. Note that since the
actual rod parameters were used in the simulation, so structure factor x is inbuilt and
already accounted for. This plot can be used to determine the secular/trapping frequency

experienced by other ions within the same trap i.e. for a given rod and needle potential.

3.10 Conclusion

In this chapter we discussed how the helical coil balanced RF resonator is built in the
ion-trapping apparatus and what kind of potential it generates at the rod electrodes. An
overview of the setup with the resonator is shown in Fig.3.19.

o6



This is the RF
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relays RF frequency
from source(not
shown) to rods
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achieve and
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Figure 3.19: The picture of the ion-trapping apparatus used constructed in the group for
trapping Yb" ions (both '™Yb" and '™Yb"). The main components which involves the
vacuum chamber containing the trapping electrodes described in previous chapter, the
ion-getter pump for maintaining good vacuum, a helical coil RF resonator (marked within
red circle) is shown along with an enlarged view of the inside of the vacuum chamber
and location of a single trapped '™ Yb"ion (illustrated with a picture taken in the group).
We detailed the construction of the helical-coil RF resonator (encircled in red) and the
circuitry that powers it in this chapter. We also showed the simulation results of potential
generated by the RF field and trajectories of ion in it.

Apart from this the setup has been successful in trapping even multiple ions many
times. A representative picture of 8 ™ Yb%ions is shown in Fig.3.20. Similarly multiple
"l'YbTions have also been trapped successfully very often. It is needless to emphasize
the role played by the RF/DC circuitry in creating a trapping potential for these ions
which highlights the importance of this chapter. In the next chapter we shall see how to
manipulate the trapping potential externally using optical field.
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~ 8um

Figure 3.20: The picture of 8 1" YDb™ ions trapped using our setup. This picture has been
also used in Ref.[33]
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Chapter 4

Manipulating the trapping potential
using optical tweezers

4.1 Chapter at a glance

In the last chapter we saw how the oscillating potential at RF is created on the rod
electrodes and what kind of potential it can generate. We saw that one of the principal
component of the RF circuitry as used in our ion-trapping apparatus is a helical coil
RF resonator. In this chapter we shall see how to manipulate and control this trapping
potential using localized external field like an optical tweezer(ions have been optically
trapped before using a global beam as in[34],[85] but cold atoms have been trapped with
a localized tweezers as in Ref.[80]). Specifically we will seek answers to the following
questions

e What is the effect of an optical tweezer on a single trapped ion 7 We shall discuss its
effect on the electronic structure of the ion as well as its motional modes separately.

e Can we harness the effect to obtain interesting physical quantities? We shall develop a
scheme to realize a quantum thermodynamic protocol wherein dynamically changing
the optical power of the tweezer can provide a window into thermal properties of
different ion species even without having to trap them in the first place. Results in
this chapter from this protocol is being developed as a part of a publication.
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4.2 Effect of external optical field on the atomic struc-
ture of a single ''Yb" ion

We consider only two of the internal electronic levels of the ion in this treatment. Let
them be denoted as |g) with an energy of —hwy/2 and |e) with an energy of hwy/2. For
Yb-171, the choice of |g) could be |g) = |Si/2, F = 1,mp = 0,%1) and choice of |e) could
be |e) = |Pij2, F = 0,mp = 0) as the transitions are dipole allowed. Let us consider a
single mode of a quantized optical field for simplicity with a frequency w;, which is shone on
the ion with a spatial intensity profile as discussed in the previous section. The interaction
between this single mode and the two level ion can be expressed using the Jaynes Cummings
Hamiltonian[37] as follows:

H(r) = h%az + hwrata — hMﬁE(T)(G + GT)(UJr +07) (4.1)
= 120, 4 horala — w(r)(a +a')(o" +07) (42)
where
0. = |9)(g] —le)(e]
o' = |g)(el
o = (oMt

a=(a) =3 Valn—1)(n

() = BO-EC)

where |n) are the Fock states for the photon field with frequency wy. Let us consider
solution of this system on a case by case basis.

4.2.1 «(r)=0
In this case, Eq.4.2 reduces to a sum of two non-interacting Hamiltonian as

H(r)

K

w
o= h;oaz + hwpala (4.3)

Using the Hamiltonian in 4.3, we see that any product state of the kind |g,n) is an energy
eigenstate of the Hamiltonian. Let us compute the energies of of some of these states.
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hw
E(g,n) = (g.0[H(r),_olg,n) = nhwr — ==

2
ho 1
Y + (n — é)th (4.4)
hew
E(g.n+1) = (g.n+1H@)lg 0+ 1) = (n+ Dy, — —-
ho 1
= =5+ (n+H)hor (4.5)
huwq
E(e,n—1) = (e,n — 1|H(x), _,le,n — 1) = (n — 1)hwy, + -
hd 1
= ? + (TL - §>th (4'6)
Ee,n) = (e, n[H(r),_ole,n) = nfw, + @
hd 1

where we have introduced 6 = wy—wy, . With these definition (Eq.3.4-3.7), we immediately
see that the energy space will be lumped in 2D manifolds of |g,n) and |e,n — 1). This is
under the assumption that § < wr,wy. Each such manifold has a mean energy difference
of hwr, as can be seen from above equations. The spacing between the energy levels of a
given manifold is hd. The pictorial description of the levels is given in Fig.4.1.
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Figure 4.1: The 2D manifold formed from the Fock states of light (such states are labelled
with n) and the two energy levels |e) and g) of a two level atom is shown on the extreme left
(k(r) = 0 case). Each pair of states within the 2D manifold (say state |e,n — 1) and |g,n)
are inter-separated by Ad with ¢ being the detuning is defined as wy — wy,. wy is the atomic
transition frequency and wy, is the laser frequency. The states |g,n) and |g,n + 1) of two
subsequent manifold is separated by hw;. The right hand figure shows the case when such
pair of states within the 2D manifold is coupled (x(r) # 0). Since we are considering the
case of red-detuning (6 > 0) we see that the state |g,n) decreases in energy and the state
le,n — 1) increases in energy. This shift is called as AC Stark shift (iglduced by oscillating
hQ(r)

electric field of applied laser with frequency wz) and is equal to =5~

4.2.2 k(r)#0

In this case we have to use the entire Hamiltonian in Eq.4.2. To get rid of the cross-terms
in Eq.4.2 we make the following transformation
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H(r,t) = exp(—iH(r), _,t)H(r) exp(iH(r), _,t)
= exp(—z’h%azt — ihwpatat)H(r) exp(ih%azt + ifwralat) (4.8)

To proceed further it will be instructive to have the following:

a(t) = exp(—ih%azt — ihwpalat)a exp(ih%azt + ihwpalat)

— exp(—ihwpalat)a exp(ifiwalat)
da(t)

dt

= —iwy exp(—ifwpa'at)(ala)(a) exp(ihwga’at) (4.9)
4wy exp(—ihwralat)(a)(afa) exp(ifwgalat)

a'a)] exp(ifuwpalat)

—~

— iwy, exp(—ihwpa'at)[a,

= —iwra(t)
a(t) = aexp(—iwrt) (4.10)
al(t) = al exp(iwrt) (4.11)

Similarly for the spin-space, one can also establish
o~ (t) = 0~ exp(—iwpt) (4.12)
ot (t) = o exp(iwpt) (4.13)

With these relations and using Eq.4.8, Eq.4.10, Eq.4.11, Eq.4.12, Eq.4.13 one can write

H(r,t) = h%az + hwpa'a — he(r)(ao™ exp(—i(wy, — wo)t) + a'o exp(i(wy, + wo)t)
+ ao™ exp(i(wy, + wo)t) + a'o™ exp(i(wr — wo)t)) (4.14)
Now for our case the, detuning 6 = w;, — wy will be in GHz but the term w;, + wy will
be THz, so it is safe to discard the terms oscillating with such fast frequencies. We will
mainly be interested in the dynamics at the frequency scale 6 = w;, —wy and terms moving

significantly faster can thus be disregarded (Rotating wave approximation or RWA). If we
drop those terms from Eq.4.14 then we get a simplified Hamiltonian H(r, t)

H(r,t) = h%az + hwra'a — hi(r)(ao™ exp(—i(wy, — wo)t) + alo™ exp(i(wy — wo)t))
(4.15)
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If we transform back i.e. invert the unitary back and do the following transformation then
we get

H(r) = exp(iH(r)ﬁzOt)I:I(r, t) exp(—iH(r),_,t)
= exp(ih%azt + ithaTat)(h%az + hwpala — hk(r) (aoc™ exp(—i(wy, — wo)t)
+ a'o™ exp(i(wy, — wy)t))) exp(—ih%azt — ihwalat)

= h%az + hwpala — hk(r)(ac™ +alo™) (4.16)

We shall use Eq.4.16 for further analysis only. We can express this Hamiltonian in the
basis of |g,n) and |e,n — 1) which are the uncoupled states of the initial 2D manifold.

(g nlH() g m) =~ 4 (0= 2 (117)
(.0 — 1[H(r)|e,n — 1) = %54—(71— %)rm (4.18)
(g,n|H(r)|e,n — 1) = —hx(r)*v/n/h (4.19)
{(e,n — 1|H(r)|g,n) = —hr(r)v/n/h (4.20)

Let us make the substitution hik(r)y/n/h = —w. This substitution is valid be-
cause in general the quantity hx(r)y/n/h would be a complex number i.e. € C. Thus it
should be expressible both as an amplitude and a phase. In this substitution h)(r) acts as
the amplitude and ¢(r) acts as the phase of the term firk(r)y/n/h. Since the Hamiltonian is
hermitian , the phase ¢(r) only appears in the two off-diagonal elements. The eigenvalues
of the 2 x 2 matrix being entirely controlled by the trace and determinant of the matrix
is insensitive to the phase ¢(r). However the eigenvectors will depend on it. Since for our
further discussion we will focus only on the eigenvalues and not on the eigenvectors, to see

the effect of the amplitude AQ(r) or the phase ¢(r) on the eigenvectors one can refer to

Ref[37]. The matrix form of the above equations due to this substitution are:
) 1 hQ(r) exp(—i¢(r))
-2+ (n—3)hw, — : ; ‘
2 2 2 The eigenvalues of this matrix are
( _Iew@O) By (y %)th> &
1 hn/ 62 4 Q(r)?
Bi(r) = (n — iy, — 200 (1.21)
1 h/ 0% + §)(r)?



For most calculations below, we work in the limit of § > Q(r) to prevent exciting the

target transition. In this limit the eigenvalues in above equation reduces to

Ey(r)=(n- %)th - %5 _ %
_ R (r)?
= Blen) ==

Ey(r) = (n - %)th + %5 + hgi(g)
=E(e,n—1)+ hig)

(4.23)

(4.24)

Fig.4.1 has the AC Stark shift created by the optical potential for x(r) # 0 case shown
on extreme right. We specifically show the example of a red-detuned laser beam for a

two-level atom with electronic energy states denoted as |g) and |e).

65



(0,0,0)

)]

Optical Potential ( ) against 0, optical power

(.00

Wnﬂ“m

—(.01
{5[]. = 100 THz

Ef‘; o éo = 0.005383 V
—0.03 —o— Power=0.100 Watt
*— Power=0.500 Watt
—*—  Power=1.000 Watt
—UH —*— Power=1.500 Watt

(0.5 1.0 1.5 2.0 2.0 3.0 3.0 4.0

1] _ 2meppel 1
by fﬂlﬂl(?‘n »'"-fr*}l

Figure 4.2: The optical potential (denoted here as ®(x,y, z) is plotted as a function of §
and intensity (Q(r)). We focus on the red-detuned case (6 > 0) where the potential is
confining for the state |g, n) as seen in Eq.4.23. The focal point of the Gaussian beam used
is at (0,0,0) which is also the location of maximum magnitude of the optical potential. The
ion ''Yb" is considered to be located at the focal point and hence ®(0,0,0) is used for
the analysis. The beam waist (o) of the Gaussian beam propagating along x direction is 1

pm
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4.3 Effect of external optical field on motional modes
of a single !"'Yb" ion

In this section we analyze the Hey(r) that was neglected in the discussion for the previous
section. This Hey(r) has the following form in the ground state of ion+field combined
system i.e. when the internal electronic state of the ion is |¢g) and that of the field is the
Fock state |n). The Hamiltonian reads

2 2 2 2
D mw:(r — o) hQ(r)
H = — E —
o (r) r=x,Y,2 2m ! T=,Y,2 2 4(5
2 2 2 2
B D mw:(r —19)°  h§)
— % + E 9 — 45 I(l") (4.25)
r=x,Y,z =Y,z HV/—/

where we have defined Q = \/SI% and ry denotes the equilibrium position of the ion in

absence of optical field i.e. in presence of only the RF and DC potential (discussed in last
chapter) from the trap electrodes. It is reasonable to assume that the mean position of
the ion along all three directions in presence of the optical field would be different. Let us
call this new set of equilibrium co-ordinates as roq to signify that they are different from
ro. Now for small displacements of the trapped ion about this new equilibrium position req
we will only retain till the 2nd-order term in the Taylor expansion of the optical potential
(optical). To do this let us compute the following

Vopt (r) = Vom(r = req) + VV0pt‘r=req (r— req) + V2VOI>t’r=req (r— r601)2 + O((r — req)g)

hO? hO? hO? hO2 ) X
4—51(f) = 4—51(1”eq) + 4—5VI(Y) req (I = Teq) + 4—5V [(1) [r=req (T = Teq)™ + O((r — 1eq)”)
(4.26)
Vore {xyz}

v 1neq € {Xeqayeqazeq}

We shall now use Eq.4.26 to perform certain simplications on the optical potential. Hence-
forth we shall disregard the O((r — 7,)?) term completely and focus only on the 1st three
terms which entails the quadratic expansion.

Using Eq.4.26 in Eq.4.25 and defining Hey (1) = Hexe (r) — 2 P we get

I=X,y,z 2m
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T

20 o \2 2
ext(r): Z mwr(r TO) _hQ(T) See Eq425

2 40
r=m,y,2
mw?(r — ro)? h)?2
— Z — Z 4—51(req) See Eq.4.26
r=x,Y,2 =Y,z
h$)? hQ?
- Z _VI Teq( reCI) - Z EVZI( >|r:req(r - reQ)2
T=I,Y,2 I=X,y,z
mwz (T - Teq)Q mw3<r6q — TO)Z
=2 gt X 5
r=x,Y,2 T=x,Y,%
)
+ Z mw?(req - TO)(T - T“Q) - Z El(req)
r=x,y,2 r=,y,2
hQ? hQ)
r:xzyz —ﬁVI(T) req (T = Teq) T‘:zzyz EVQI(r)h:req(r Toq)”
mw2(r — 1e4)? mw?(req — 70)? hQ)2
Ly o, 5 melnl M
r=x,Y,2 T=x,Y,2 =Y,z
hQ?
_ Z _V I(r)|,= 1feq(r—req)2 (4.27)
r=x,Y,2

where in the last line we have used the fact that the sum of the terms in red vanishes
for each r as it defines the gradient of the overall potential. The overall potential is the
sum of optical and conventional trapping potential generated by RF and DC as discussed
in previous chapter. This conventional trapping potential engenders the initial trapping
frequency w, as used above. The overall potential is minimized to obtain the equilibrium
position of the ion which requires setting the gradient of the overall potential to zero. The
gradient of the overall potential is defined as

hQ? mw?(r — ro)?

Tl + TR (1.28)
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Setting Eq.4.28 to zero we get

(4.29)

hQ? mw?(r — rg)?
V(_ 45~I(r) + 2 )‘T_Teq - 0
h$? 9
—4—5V1(r)\req +mw;(Teq — 1) =0 VYV 1re {x,y,2}
) 9%
Mw; (Teq — 70) (1 — Teq) — 4—5V1(r) (T =1eq) =0V 1€ {x,,2}
hQ)2
3 2l — 1) 1) — VI () = 0

r=x,Y,z

The Eq.4.29 explains why the sum of the terms in red vanishes. Now if we disregard the
constant terms in blue i.e set the scale of energy to zero at the sum of these constant terms

then the final external Hamiltonian we get

2 2 2 2
Py mw; (1 — Teq) hY o
Hoo(r) = Y0 2= 30 Pl S ) o (1)
r=xX,y,Z r=x,Y,% T=x,Y,2
- m hO?
Hoa() = 3 22 = 3P0 hor ) — reg)?
r=x,y,2
m ~
R T
r=x,Y,2
2
P; m -~
Hext(r) = % -+ Z 5&),’2,(7“ — Teq)Z
r=x,y,2 r=x,Y,2
Eq.4.30 indicates that the effective trap frequency is
2= - g, Ve fxy.2)
= - T)lr=r r X,Y,2
Yro = 20mw? e ‘ Y
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Figure 4.3: The change in the square of the trapping frequency of the motional mode along
all three directions for a single '"*Yb™ ion. The diagram is constructed using a red-detuned
beam of wavelength = 375 nm (the detuning in frequency space 4 is non-negative as defined
for the red-detuned beam but the detuning in wavelength space is negative and for this
case is -5.5 nm.) We use a Gaussian beam focused to a beam waist(defined as the distance
from the focal point over which the Gaussian beam intensity falls to e% of its maximum
value) of 1ym. We see while the transverse (y,z) mode changes by equal amount from their
respective initial trapping frequencies, the change in the trapping strength for x mode is

very little.
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Few points are apparent from Fig.4.3 which can be summarized as follows

e The plot for w? vs Power is linear in conformity with Eq.4.30.

e While the change in w? for the y and z mode happens to be with equal extent , the w?
for the x-mode does not change much. This is a consequence of the fact that we used
a Gaussian beam propagating along the x-direction to generate the optical potential.
It is a well-known fact that for a Gaussian mode of EM field, the beam intensity along
the two transverse directions (directions perpendicular to direction of propagation of
the beam) diminishes exponentially radially from the centre of the beam which is
the focal point. For the axial direction (along the of propagation of the beam) beam
intensity changes quadratically from the focal point. As a result, the curvature of the
intensity along the transverse direction is high as the beam intensity is concentrated
and squeezed over a shorter length scale. We see that Eq.4.30 indicates that the
change in trapping frequency happens due to the curvature of the intensity hence
for the transverse mode (y,z) the change in trapping frequency in our case would be
higher than the axial mode (x).
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Figure 4.4: The optical potential (denoted here as ®(x,y, z) is plotted as a function of y
and z for x=0. We focus on the red-detuned case (§ > 0) where the potential is confining
for the state |g,n) as seen in Eq.4.23 which explains the negative sign of the ®(z = 0,y, z)
scale .A Gaussian beam of A = 375 nm (propagating along x direction) is used for the
calculation with a beam waist(wg) of 1 um. The location of the '"*Yb™ ion is at the centre
of the beam i.e. at (0,0,0). We see that the potential ®(z = 0,y, z) nearly drops by 100%
within a span of & 1 um in either axis.
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Figure 4.5: The optical potential (denoted here as ®(z,y, 2) is plotted as a function of x
only for y=2z=0. We focus on the red-detuned case (§ > 0) where the potential is confining
for the state |g,n) as seen in Eq.4.23 which explains the negative sign of the ®(z = 0,y, z)
scale .A Gaussian beam of A\ = 375 nm (propagating along x direction) is used for the
calculation with a beam waist(wg) of 1 m. The location of the 1™'Yb™ ion is at the centre
of the beam i.e. at (0,0,0). We see that the potential ®(z,y = 0,z = 0) drops only by 50%
within a span of 1 zr (Rayleigh range) which for this wavelength is 8.37 pwm. Thus the
change in the potential along x (the direction of propagation of the beam) is weaker than
in y and z which explains why the x-mode is affected less.

4.4 Quantum Thermodynamics with Trapped Ions

Quantum description of thermal properties of matter have garnered attention in recent
years due to its ability to unravel the origin of irreversibility from a microscopic lens[35],

73



in designing devices for heatronics and thermal transport [39, 90, 91, 92, 93], in construc-
tion of measurement driven thermal engines[91, 95] or in resource-theoretic formulation
of thermodynamics[96, 97]. In the next few section we shall develop a quantum thermo-
dynamic protocol to extract free energy and other thermal properties of mixed-ion chain
using optical tweezer on single-species ion chains. But before we move into the proposal,
let us define the necessary terms and a prove a key theorem due to Jarynski[98] which will
be the centre piece of our scheme.

4.4.1 Definition of heat, work and Free energy

Let us consider an arbitrary transformation in which the Hamiltonian of the system is
changing as a function of time. The energy of the system at any time t is obtainable from
the state as

(E(t)) = Tr(p(t)H(t))

The derivative of the energy (E(t)) is then given by

d@?lit» d,(()i(tt) H(t)) + Tr(%it)p(t)) (4.32)

Then the nett change in energy of the system is

AE(t) = / d<E(t)>dt (4.33)

= Tir(

at
_ / Tr(dfl—(tt)H(t))dtJr / Tr(diit)p(t))dt (4.34)

Ref.[09] defines work and heat as the following
W= / Tr(dI;IPEt) o))t (4.35)
Q= / Tr(dZ—PH(t))dt (4.36)

It is easy to see that for conservative, unitary evolution wherein equation of motion of the
state is

(4.37)
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Q=0 which we can see from the following

Q::L/Yn(dgg)ﬂ(o)dt (4.38)
= /Tr(i[H(t), p(t)]H(t))dt (4.39)

— [ TG, B0 (4.40)
~0 (4.41)
Thus from Eq.4.35 and Eq.4.34 we have from simple conservation of energy W = A(E)(t).

Also by free energy in this work, we will always refer to the Helmholtz free energy which
for a thermal state at inverse temperature [ is defined as

F(8) = —87"In(Z(B)) (4.42)

where Z() is the partition function of the system. As we shall see in the next couple of
sections that there exists interesting relations between W and F(3) even for non-equilibrium
processes through a specific Fluctuation theorem called Jarynski’s equality[98].

4.4.2 Jarynski’s equality

The statement of the equality[98] is the following:
{exp(=pW)) = exp(=BAF(S)) (4.43)

Several different ways of proving the equality exists[100, , , , | however we
shall follow the version outlined in Ref.[12] due to Talkner etal. We shall reconstruct the
arguments from Ref.[12] herein. The proof uses the following scenario. Let us consider a
situation in which the initial density matrix of the system is a thermal state characterized

by
exp(—GH(0
L0 - PO
Z(0)
where H(0) denotes the Hamiltonian of the system of interest at t=0 and Z(0) is the

associated partition function. Let us consider another generalized Hamiltonian dependant
on a parameter say A(¢) which can be tuned dynamically to attain the following.

H(A(t = 0)) = H(0) (4.45)
H(A(t = 7)) = H(r) (4.46)

(4.44)
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We shall envision the process in which the parameter A(¢) is tuned from t=0 to t=7y. At t=0
when the initial system was in a thermal state a projective measurement in the eigenbasis
of H(0) was made and then let the projected state be |n)(n|. This state is obtained
with probability P(n, 3) sampled from the initial thermal distribution. Similarly after the
protocol terminates, when the final Hamiltonian is H(7¢), another projective measurement
is made which results in the final state say |m)(m|. Considering the evolution is unitary,
then from the definition of work done in the previous section, it is easy to see that

W =E, — E, (4.47)
P(W) =Y 6(W — (Eq — Eu))P(m|n; 71)P(n, beta) (4.48)

where W is the work done on the system and P(W) is the probability of obtaining that
value of work. We shall return to Eq.4.48 again (say for example Eq.4.81 with slight
modification of the definition of work to make it dimensionless). The meaning of Eq.4.48 is
clear. P(m|n;7¢) is the transition probability of collapsing in state |m)({m/| starting at state
|n)(n| and P(n,beta) is the probability for sampling that state |n)(n| from the thermal
distribution. Now for conservative unitary evolution P(m|n;7¢) is given by

P(mln; 7¢) = Tr(|Jm) (m|U(7) ) (n|U(7r)")
= [(m|U (7)) ? (4.49)
We will also return to this expression time and again (say Eq.4.76). Now Talkner etal

defined a new function G(u) which is the fourier transform of the work distribution as
follows

G(u) = /P(W) exp(iuW)dW (4.50)
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Using Eq.4.50 and Eq.4.47, Eq.4.48 one can arrive at the following
= exp(i(Em — Ea)u)P(mn; 71)P(n, B)
=Y exp(i(Euw — Ea)u)|[(m|U(71) [n)[*P(n, 8)

= 3 epli(en - En>u>r<m!U<n>1n>P%§E‘” - EqA44
= 3 exp(i(Bn — B0l U S

= Z m|U(7) exp(—iuH(0))p(0)[n) (n|U(7)" exp(iuH (7)) m)

= X:WIU(Tf)T exp(iuH (7)) U(7¢) exp(—iuH(0)) p(0)[m)
= Tr(U (71)" exp(iuH (71))U(7¢) exp(—iut(0)p(0)))

Now from Eq.4.50 if we substitute v = i3 then

Glu=iB) = / P(W) exp(—FW)dW
= (exp(—SW))

From Eq.4.53 with u =18 we get

G(u=i8) = Tr(U(r)" exp(—BH(7))U(7) exp(BH(0) p(0)))

- Z%O)Tr(exP(_5H(Tf>)U(Tf)U(Tf)T) Eq.4.44
Z(1y)

Z(O)

= exp(—B(F(B,7) — F(5,0)))
xp(~BAF(3))

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

Using Eq.4.54 and Eq.4.55 we complete the proof of the theorem. The theorem has been

extended to open systems [105] and to generalized observables too [100, ].
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4.4.3 Central Idea of the Proposal

We propose here an experiment that can allow us to determine the thermal free energy of
a crystallized mixed species ion chain, hitherto unexplored, by the application of optical
tweezer on a single-species chain alone at various temperatures. At the heart of it, our
proposal thus obviates the need to trap a mixed-ion crystal for analyzing its concomitant
mechanical properties. The choice of the property to be free energy is motivated by its
central character in equilibrium statistical mechanics[108] from which other characteristic
features of the system can be evaluated as will be elaborated shortly. The scheme opens
up plethora of opportunities for engineering and simulating novel mechanical degrees of
freedom that are inaccessible to un-modulated conventional single-species ion chains.

4.4.4 Newness and Utility of the Proposal

The use of optical tweezer in our scheme has many-fold advantage. First the effect of the
tweezer can be made to be localized on a single ion on which the beam is being focused.
This allows individual control without disturbing neighboring ions. One application of this
local control is illustrated in Fig.4.6 wherein we have a chain of 3 '"'Yb™ ions in an RF/DC
induced trapping potential on the extreme left. Use of an optical tweezer on the central ion
changes the local trapping strength such that the 3 '"*Yb™ ion crystal is now mechanically
equivalent to a mixed ion crystal of 2 terminal '"*Yb™ ions and one central '**Ba™ ion
(shown on extreme right). For such a mixed ion crystal, the central Ba ion anyway feels an
enhanced trapping strength due to its higher effective mass even in absence of any optical
potential. To replicate this effect using just 3 Yb ions, one can 'pin’ the central Yb with an
optical tweezer (red-detuned hence trapping in ground state). We shall see that this idea
is the cornerstone of our scheme and shall return to it shortly. Also, the potential created
by the optical tweezer is dependant on the internal electronic state of the ion unlike in the
case of RF/DC. This essentially means that if the ion is excited to other state other than
the ground state, the effect of the potential will be different (the potential can even become
anti-trapping). The use of optical field for creating a trapping frequency also essentially
means better dynamic control and free from RF induced micromotion as discussed in
previous chapters. Now let us specifically talk about our scheme. Our protocol relies on
the Jarynski’s equality[98] for extracting the Free energy change of the target ion specie
in its corresponding thermal state at a given temperature. The newness of our proposal
is many-fold. Unlike previous experimental work [109] which required changing the mean
position of the trapping potential electronically using RF field, ours involves changing the
frequency of the trapping potential using an optical tweezer that affords individual local
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control as discussed. Besides, other proposals were mainly concerned with verification of
the Jarynski’s equality[109, 110] on a single-specie trapped ion platform. Our proposal on
the other hand uses the Jarynski’s equality on a conventionally trapped single-specie ion
(*"'Yb* in this case) to compute thermal properties of ion of some other specie (}**Bat in
this case) by compensating for the residual trapping strength using optical tweezer. The
protocol is useful to the experimental physicists in the ion-trapping community as it can
be extended to multiple ions of both single and mixed species too to obtain mode-specific
properties. One specific example would be in evaluating mode-specific thermal capacity
experimentally. This insight is necessary so as to know the contribution of the various
normal modes to motional heating i.e. how much energy is stored within each mode for a
given change in their thermal occupation within a time §,. With this information it should
be possible to specifically target and cool certain modes so that their average occupation
stays low.

Potential due to RF/DC alone

—
—
—

Q0D —— DB D DD

e Total Potential due to RF/DC on all ions.
Total Potential due to RF/DC The central ion Ba anyway feels an enhanced potential

and optical tweezer on central ion due to its lighter mass even w/o any optical force

Figure 4.6: The extreme left shows a crystal of 3 1"'Yb™ ions. Using a red-detuned optical
tweezer on the central Yb ion (red-detuned so as to create a confining potential) we can
pin the Yb ion and modify the effective potential seen or experienced by this ion. Use of
optical tweezer guarantees this local control unlike DC/RF discussed in previous chapter
which changes the effective potential experienced by all the ions. It is thus possible to an
establish an equivalence (in terms of mechanical frequency dependant properties) between
a crystal of 3 ''Yb™ ions and between a mixed specie crystal of 2 terminal '"'Yb™ ions
and a central *3Ba™ ion (shown on extreme right). The central Ba ion in such a mixed
specie crystal anyways feels an enhanced trapping potential even in absence of an optical
tweezer due to its mass difference.
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4.4.5 Protocol for extracting Free energy for mixed species using
single-specie

Using optical tweezers of specific intensity on target ions, the scheme entails modifying
the local potential of a single-ion chain so as to compensate for the different effective
masses of a mixed-ion chain. As mentioned in the previous two sections, our goal is to
compute the mechanical properties of mixed-ion crystals in its thermal state with a single
ion crystal alone. The best property to choose from as mentioned before is the free energy
as every other equilibrium property of the system (like heat capacity, entropy etc) can
be directly obtained from it. A specific example to convert the free energy changes in
our scheme to mode-specific equilibrium properties was mentioned in the previous section.
Since work done and free energy are intimately related by the Jarynski’s equality[93] as
proven in a previous section, here we shall thereby elaborate how to obtain the work done
in "converting’ (establishing mechanical equivalence only) a single 1'Yb™ ion into a single
133Ba™. The choice of single ion is as a proof of concept demonstration of the idea (note
that the thermodynamic protocol is on the phonon distribution which in a given mode
can still many even for a single ion) and the choice of ’converting’ single-ion crystals to
mixed ion crystals is due to the fact that this is achievable only with local control (unlike
global controls like DC and RF discussed in previous chapter) and hence have never been
attempted in literature before. The following scheme can be experimentally adopted for
computing the work done (hence the free energies) for mixed species using single-species
trapped ion crystals.

e We use the axial normal mode (labelled as the z-mode) of a single ™'Yb™ ion for
illustration and show how application of optical tweezer can allow us to calculate the
properties of the axial-mode of single ®3Ba™ ion in its thermal state without even
trapping the latter. Fig4.7 illustrates the scheme. We start with a conventionally
trapped '"'Yb™ ion using a transverse trapping strength of 22 = 1MHz and an
axial trapping strength of $= = wy = 0.2MHz. For electrodynamically trapped ion-
apparatus, the trapping frequencies (w) have an inverse power-law dependance (%)
on the inertial mass of the species being trapped|[7%]. For the transverse mode (along
x and y) the pseudopotential created by the radio-frequency is inverse-linear (s=1)
whereas for the axial-mode (z), the DC confinement is such that s=0.5. This would
mean that the above trapping strengths would be intensified if the '"*Yb™ ion centre
was replaced by a 33Ba% ion by a factor of 1.13 in the axial-direction (z) and 1.28
in the transverse directions (x or y). To modify the curvature of the "'Yb™ ion so
as to compensate for this differing mass, one can use a red-detuned trapping laser
field as has been discussed in the previous sections. The choice of axial-mode (z) for
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our protocol is justified as its sub-inverse linear dependence mandates lesser optical
power to attain the target frequency which in turn minimizes the chance for motional
heating due to off-resonant scattering. For the specific case being discussed, we see
from Fig4.7 that the intersection with the curve for w, p, happens for a power P=
0.028 W achieved for a detuning § = 5.8 nm (red-detuned) created using A = 375 nm
targeting the 6%Sy/2 to 6°P2 transition in '™ Yb™ ion. The beam spot size used is
1 pm which is conveniently achievable using a NA < 0.5 in a focusing lens system.

The first step of the protocol involves creation of a Fock-state (labelled by index
n henceforth) in the said motional direction in the initially trapped "'Yb* ion.
To achieve this, one can use the scheme in [109]. The idea is to create a ther-
mal state of phonons in the initial trapping potential in the hyperfine ground state
|S1/2,F = 0,mp = 0). One then performs a carrier transition (defined below) with a
IT pulse followed by a blue-side band transition (defined below) with another II pulse
. These transitions are going to shuttle the population of the ion between the hyper-
fine qubit levels [S1 /2, F = 0, mp = 0) and |Sy /2, F = 1, mp = 0) back and forth. Such
transitions can be induced by a two-photon Raman process (using the intermediary
P, /, manifold) or by using direct microwave transitions. A carrier transition and a
blue-sideband transitions for '"*Yb™ ion is defined as the following

Carrier II pulse : [Sy/2,F = 0,mp = 0,n) = [S1/2,F = 1,mp = 0,n)
Blue — sideband II pulse : |[Si/2,F = 1,mp = 0,n) = [S1/2,F =0,mp =0,n — 1)
where n € Z*

The blue-sideband transition thus would only return the ion to the ground state
|S1/2,F = 0,mp = 0) and kill a phonon in the process provided there is atleast one
phonon to kill in the initial/starting state. In other words if the initial state is
|S1/2,F = 0,mp = 0, 0) it would be unaffected by the blue-sideband II pulse and hence
would be locked in state |Si/2, F =1, mp = 0,0) after the initial carrier pulse. Now
one can use the detection sequence wherein one turn on a resonant 369.5 nm beam
to make the state |S;/5, F = 1, mp = 0) transition to state |Py/,F = 1, mp = 0,%1).
Since the lifetime of the state |Py/,F =1, mp = 0,%£1) would be of the order of
nanoseconds. The ion would decay and in the process fluoresce[33]. The popu-
lation in state |Sij2, F =0, mp = 0) would not participate in fluorescence due to
detuning of 12.6 GHz from the initial exciting beam[33]. Thus detection of flu-
orescence indicates that the initial state before the starting carrier II pulse was
|S1/2,F = 0,mp = 0,0). If the state from the thermal state projected is an arbi-
trary Fock state like [Si/2, F = 0,mp = 0,n) then it would take n cycles of carrier

81



+ blue-sideband pulses to kill all phonons in it and make the ion reside in state
|S1/2,F = 0,mp = 0,0). At the n+1 th step fluorescence will be detected. After know-
ing this value of n one can now deterministically prepare the state |S; /2, F = 0, mp = 0, n)
by repeated application of blue-sideband + carrier transition (note reversal in order
which actually now creates a phonon in the ground hyperfine state) n times. This
will be the beginning Fock state of the protocol. The entire protocol is described in
detail in [109] (see Fig. 3 in the reference)

Starting with the Fock state in the initial trapping potential we raise the optical
power using a red-detuned optical tweezer (0 = 5.8 nm, red-detuned) on the ion until
the target strength is reached. In our case to achieve the trapping strength of a single
133Bat we will have to change the optical power from P=0 to P=0.028 W within a
switching time 7¢. Thereafter following the same protocol of state-determination
as discussed in the previous point [109] on the final Hamiltonian attained one can
project the final state on a Fock state (hereafter indexed by m).

Work (W) performed on the system will be difference of the energy of the finally
projected state and the initial starting state (E,, — E,).

To construct the probability distribution of attaining this value of work, the entire
experiment will have to be repeated many times with different switching times 7
(relative to w,,) and sampling different initial states |n)(n| from the thermal distri-
bution characteristic of 5. Due to quantum fluctuation the projected state of the
final Hamiltonian may be different. The entire sequence of experiment will have to
repeated now for various initial inverse temperatures 8 which will affect the sampling
distribution for the initial state.
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Figure 4.7: The scheme explaining the protocol for obtaining the thermal free energy
change AF(j) as a function of inverse temperature 3. We start with a trapped 1"Yb™"
ion trapped conventionally by using a combination of DC and RF field as described in
previous chapter. Let the trapping frequencies in the transverse directions (x,y) be w’” Yo
= 1 MHz, 42 = 1 MHz whereas the trapping strength in the axial z-direction “2* = 0 2
MHz. For us "the axial trapping strength is important. In the same trap is if 13*Ba™ were
to be trapped the corresponding trapping frequencies would be w“” *t — 1.28 MHz “y;b =
1.28 MHz and %2 = 0.226 MHz due to the differing mass. The ﬁgure shows that for an
optical tweezer of power P(7¢) = 0.028 W on the 'Yb™ ion one can compensate for the
residual trapping strength and make the trapped '™ Yb™ ion 'behave’ equivalent to that
of a 133Ba® ion in terms of mechanical properties along z-direction. Turning the optical
tweezer on to the said power dynamically at a variable switching rate 7, and temperature
$ can allow us to compute thermal properties of ¥3Ba™ ion without even trapping it in
the first place (see protocol). Note that the fggure displays the z-trapping strength in rad/s
with the 27 factor built in.




4.4.6 Results of Simulation

4.4.6.1 Simulation of the Hamiltonian- generator of the time translation for
the dynamics

As described above, we start with the axial (z) directional motional mode of a single-
trapped '"'Yb™ jon. We shall then change the motional-frequency of that mode by using
the optical tweezer as described in the previous section. Our protocol thus requires the
simulation of dynamics generated by the undermentioned Hamiltonian.

_ ;| mw(t)(z — 7)”

H(t) = 3% + > (4.56)

In the above equation, m is the mass of the trapped "*Yb™ ion, p, is its linear momentum,
(z — 2) is the displacement of the ion relative to the mean-position zg and w,(t) is the
time-dependant z-directional motional trapping frequency which is varied using the optical
tweezer. w,(t) will have to satisfy the following properties.

wz(t) = Wy = szb(P = 0) t=20

w.(t) = wr, = woyp(P = P(7))
= sza(P = 0) t=rt

To express the Hamiltonian in Eq.4.56 in second-quantization, let us define the following

operators
mwo 1p,
b=4/——2—-2) + ——
\ “2n (2~ 20) 2mwoh

mwo ip,
bf = 7 — 7)) — ——
on 4~ %) 2mwoh

Note that the operators b, bT are defined in terms of wy and not any w(t). Substituting the
operators p., 7, in terms of operators b, b into Eq.4.56 we get the following expression.

H(t) = m;(t) (wugz) - :E(t)))(b2 +Db'?) + M;t) (wufz) + ;‘Z‘;))(bbT +Db'b) (4.57)
To tidy Eq.4.57 one can define,
In(2W
r(t) = (2w° ) (4.58)
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With this definition we get

exp(2r(t)) + exp(—2r(t))

Cosh(2r(t)) = 5
CLw(t)  wo
=30, "L’
Sinh(2:(t)) = exp(2r(t)) —Qexp(—Qr(t))
1 w(t) wo
=30 )
Thus the Hamiltonian in Eq.4.57 simplifies to
H(t) = hw(t)Sinh(2r(t))(b? + b?) 4 Aiw(t)Cosh(2r(t)) (bb' 4 b'b) (4.59)

Note that the Hamiltonian in Eq.4.59 is expressed entirely in terms of operators b and
b and hence can be resolved in the eigenbasis of the initial Hamiltonian at t=0. Let the
two specific eigenvectors of this Hamiltonian at t=0 be labelled as |n) and |n’). Then using
Eq.4.59, the Hamiltonian matrix elements used in the simulation is

(W IH(0) ) = /00— s + v/ F D0 F Db +204 Db (4:60)

The only thing which needs to be explicated at this point is what should be the upper
limit to |n). Theoretically n is lower bounded to 0 but there is no strict upper bound.
However in a numerical simulation one has to construct finite-dimensional matrices and
hence one needs to chose an upper bound to n. We choose an upper bound of n,,, = 67.
This choice is 10 times the (n),.; at the highest temperature used for our simulation at the
initial frequency (wp) which is lowest of all frequencies encountered during time evolution.
The highest temperature chosen in our simulation is 0.3 mK and the lowest is 0.1 mK.
With npax = 67, (n)gm matches the (n),. to 5 decimal places at all temperatures.

4.4.6.2 Simulation of the dynamics

We use the expression for H(t) given in Eq.4.59, to simulate the dynamics of the system
using the following channel for the density matrix.

p(t) = U(t,0;7)p(0)U(t, 0; 7¢)" (4.61)
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One can choose p(0) to be a Fock state in the initial Hamiltonian designated as |n)(n|. In
Eq.4.61 the equation of motion for U(t,0;7¢) is

dU(tJ 07 ; Tf)

7 = —iH(t)U(t, 0, ; 7¢) (4.62)
U(0,0;7¢) = Z. The following quantities are then computed from the dynamics.

e Motional excitations and conditional probability P(m|n, 7¢). To compute this quan-
tity one projects the expression for the final state in Eq.4.61 in the eigenbasis of
the final Hamiltonian. Let the projector for the eigenbasis for the finally attained
Hamiltonian be |m)(m/|, then the probability for cross excitation P(m|n, 7¢) is defined
as

P(mn, 7¢) = Tr(fm) (m|p(t)) (4.63)

One has to now repeat the calculation for many different choices of initial and final
states and for different choices of 7¢

e The work done in the process will be counted from the energy change as

Em_En_ wa
Wr w
=—m—n+05(-—"2— 4.64
- 05(22 - 1) (164

e The work distribution P(W) is then computed from P(m|n, 74) using the following
expression

P(W;7) = > P(m|n, 7)P(n, 3) 6(W — ) (4.65)

where P(n, ) is the probability for sampling an initial state characteristic of an inverse
temperature 3. In next few sections, we shall elaborate on each of these quantities and
show computational results.
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4.4.6.3 Motional excitations and conditional probability P(m|n,7y)

Figure4.8 shows the scheme for cross-excitation starting from a given initial state (say n=2)
in the starting Hamiltonian with frequency wy to various nearby states of the final Hamil-
tonian indexed by m=n, m=n+2, m=n-2 etc. These transition probabilties are P(m|n;7y).
This probability is parametrically dependant on the switching time 7;. Transitions to
m#n are more for a switching event with smaller 7; but low otherwise. To appreciate
this point, we have to resort to adiabatic theorem [111, , 113]. This can also be estab-
lished semi-classically. From Hamiltonian dynamics one can easily recall that the action
integral (¢ pdq) is an adiabatic invariant quantity if the temporal rate of change of the
parameters within the Hamiltonian is slower than the time scale of the internal dynamics
of the system[!12]. From the phase-space representation of the dynamics, it is easy to
see that f pdq is the overall area under the p — ¢ curve representing the trajectory of the
system. Since, the phase space trajectory of a harmonic oscillator is an ellipse the overall
area under the ellipse is proportional to the energy (E(t)/w(t)) directly. Hence adiabatic
invariance of the area implies (E(t)/w(t)) would be a constant of motion for all times 't’.
The semi-classical part kicks in if we replace E(t) with hw(t)(n+0.5), then we immediately
see that n is a constant of motion for V t i.e. the final state of the system under these
conditions would be m=n after t = 7;. However, a more rigorous quantum version of the
proof would be instructive and we will follow the treatment given in Ref [111].
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Figure 4.8: The scheme for cross-excitation starting with an initial motional frequency (52
= 0.2 MHz) and terminating the protocol at a final frequency (o% = 0.226 MHz). P(m|n;
7¢) denotes the cross-excitation for the phonon (marked in red circle) from an initial state of
n=2 to a final state of m=0,2,4. The text describes why the switching time 7 is important
in ascertaining which final state will be attained. It also explains the selection rule for a
transition from an even-valued n to an even-valued m exclusively.

Let us consider a situation in which we interpolate between a series of generalized
Hamiltonians defined by the set oy characterized by s = t/7¢

on = {H(s) | H(s) € Hn,s € [0,1]} (4.66)

Since H,, corresponds to the space of Hermitian matrices, each of the operators in the set
oy is diagonalizable and hence has an associated spectrum.

H(s)p"(s) = Eap™(s) (4.67)

where p%(s) is the eigen-projector onto state indexed by « and E, is the associated energy.
The central goal of adiabatic theorem is to express ||p(s) — p®(s)|| where p(s) is the instan-
taneous state of the system obtained during the time evolution with the initial condition
that p(0) = p*(0) and determine under what conditions is this L2 norm minimal. We shall
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compute the cross-excitations between state p®(s) and p*(s) as a function of switching
rate 1/77. In our model where the initial and final states are labelled by n and m respec-
tively, this will be P(m|n; 77). We shall see what the switching rate 1/7; should be to
reduce/amplify these cross-excitations. The (i,j)th element of the density operator (p;;(s))
specifying the instantaneous state evolves according to Liouville Von-Neumann equation
as follows.

dpij(s
aul) —wa ()it — 0acH (3):5)pra(5)

=17y Z Lijripr(s) (4.68)

k.l

Let us the dimension of the system be N i.e. p(s) is an N x N matrix. One can vectorize
this matrix and consider p(s);; to be a component of a vector of dimension N?. Note in
Eq.4.68 , L;j i is a N? x N? matrix as each of the four indices (i,j,k,1) characterizing it runs
from 1,2....N. Thus in the language of exterior algebra L = H AZ. Now let us consider the
diagonal form of the matrix L;;

> Lijuapiy(s) = 1(s)p5i(s) (4.69)

Ref[111] (and Ref[18] in Ref[111]) clarifies that if L;; 4 is a normal matrix (matrix commut-
ing with its adjoint) then its corresponding eigenvectors can be orthogonalized. The L;; 4
from Eq.4.68 is normal as its wedge product of two normal matrices (H and Z respectively).
Since the number of eigenvectors will be N? (as the matrix is N2 x N? dimensional) so
together with orthogonality it forms a complete set and hence it is possible to express the
(i,j) th element of an arbitrary density matrix p(s) in terms of the i,j the element eigenmode
set pf; of L;; i as an ansatz as follows

Eq.4.67 as follows:

pis(s an )98 (s) exp(ry / F, (s)ds) (4.70)

Using the arguments in Ref.[111], we appear at the following equation for the time-evolution
of C*(s) which is the reason for the cross-excitations in the first place.
dCB $)[0sLIp"(s)) '
C(s exp(T / Ea(s) — Es(s) ds) (4.71)
-2 Tf Eﬂ $)—Ea(3) 7 ’

Several points are apparent from Eq.4.71. They are
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e We see from the Eq.4.71, that the time-evolution of C*(s) can be reduced to zero if

W;—L‘gﬁ(? kept very small. In that scenario dojs(s) ~ 0 and hence C“(s)

~ C*(0) V a. So we see that quantum index of the state would remain a constant of
motion (like the semi-classical treatment above).

the term

e Since from Eq.4.70, the absolute magnitude of C(s) is O(1) to preserve normaliza-

tion of the instantaneous density matrices, we can assume that a safe metric for the
PEUOLP ) < |

Tf(EB(S) Ea(s)) —

the switching time as

term would be < |. This automatically gives us a restriction on

(p%(s)10 Llp (s))
7r(Es(s) — Ea(s))
{p ( )I0:LIp"(s))

Eg(s) = Eal(s)

> (4.72)

e It is easy to see why maximizing the switching time 7y (minimizing switching rate)
might pose an issue for H(s) wherein the spectral gap between the states may be zero
(degeneracy) Eg(s)—E,(s) ~ 0. Indeed the breakdown of the adiabatic approximation
under such cases has been discussed at length in [112].

e This also stands to reason why our choice of switching time (7¢) to be > wlo would
expected to mimic the adiabatic transition closely. This is because in the transfor-
mation proposed w; is increasing continuously with time. So the smallest energy gap
would be when t = 0 i.e. for the initial state for which w;, = wy. So choosing a
switching time bigger than inverse of wy would be slower than the slowest dynamics
in the whole trajectory.

90



P(m|n;T¢)

-0.92

- 0.69

- 0.46

-0.23

)

Figure 4.9: The P(m|n; 77) distribution for all values of (m,n) ((Nmaz, Mmaz) < 60) . The
distribution is plotted for three different values of 74. 75 = 0.5/wq corresponds to the
non-adiabatic limit wherein cross-excitations are predominant i.e. excitation into m near
n along the diagonal are seen. 7 = 20/wy is the adiabatic limit wherein the transition
probability is non-zero for m=n only along the diagonal. 74 = 2/wy is a point in between
showing continuity of the transition. The diagonal elements are marked in red. The initial
frequency is ¢ = (0.200 MHz and final terminal frequency is U;% = 0.226 MHz

o =
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Fig.4.9 shows the plot of these transition amplitudes (P(m|n; 74) against all values of
m and n for m,n < 60. We see this plotted for two different switching times (7;). We see
that for 7, < wio, P(m|n; 7¢) for a given n is also non-zero for values of m near that n i.e.
close to diagonal. In line with our expectation, the values of P(m| n) for case of 7, > wio
has appreciable value only along the diagonal and is nearly zero elsewhere. A second more
important observation can be made from Fig.4.10 and seen more clearly from Fig.4.11 is
that for a given n, the transition occurs to only values of m which are of the same parity.
In other words, P(m|n; 77) is non-zero for a given n iff m+n=2k V £k € {0,1,2,3...} ie.
both m and n are either even or both are odd. This can be best appreciated from the fact
that parity is a conserved quantity of the transformation as proven below.
Let us define an operator 1I such that

jn) = (=1)"|n) (4.73)

Using Eq.4.73 the following properties about bosonic-creation and anihilation operators
can be verified easily

IIbII" = —b
b = —b' (4.74)

Using Eq.4.74 and Eq.4.59 one can deduce the following

ITH (t)IT" = T1(Aw(t)Sinh(2r(t))(b? + b'?) + Aw(t)Cosh(2r(t))(bb' + bib))IT!

= hw(t)Sinh(2r(t))(ITH?IIT + I + Aw(t)Cosh(2r(t))(IIbb I + IIbTHIIT)
= hw(t)Sinh(2r(t))(ITbITIILITT 4 IIb T IL I

+ hw(t)Cosh(2r(t) ) (ITLITTILTIY + ML I TIHITY)

= hw(t)Sinh(2r(t))(b* 4 b?) 4 hw(t)Cosh(2r(t))(bb' +bib) - Eq.4.74

= H(t) (4.75)
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Figure 4.10: The P(m|n; 7;) distribution for all values of switching time 7; for different
(n,m) pairs. Apart from transition to m n for non-adiabatic switching at low 7, the plot
also demonstrates that P(m|n;7¢) =0 if (m+n) # 2k Vk € {0,1,2,3...}. At high 7,

transition to n=m=8 is absolutely certain. The initial frequency is 52 = 0.200 MHz and

final terminal frequency is %{ = 0.226 MHz
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P(m|n, 7¢) = Tr(jm)(m|U(t, 0; 7t)p(0)U(t, 0; 7)") (4.76)
= Tr(jm)(m|U(t, 0; 7¢)[n) (n| U(t, 0; 7¢)")
= Tr(|m)(m|U(t, 0; 71)[n) (n[U(t, 05 7¢)")
= Tr(jm)(m|f(H(t), t)n) (n|f(H(t),t)") - U(t,0;7) = f(H(t), t; 7r) as evolution is unitary
= (mlf(H(t), t)|n) (m|f(H(t), t)  [m)
= |(mlf(H(t), t) ) * (4.77)

Now that we have explicitly written P(m|n, 7¢) in Eq.4.77, let us see what Eq.4.75 can
tell us about the magnitude of this quantity.

(mlf(H(t), t)[n) = (mlIE(H(D), T n) - Eq.4.75
= (I, ) - T =11
= (~1)™ " (mf(H(t). t) n) (4.78)

From Eq.4.78, it is apparent that
(m|f(H(t),t))n) =0 if (m+n) #2k Vk € {0,1,2,3...} (4.79)
Thus combining Eq.4.79 and Eq.4.77 it is clear that

P(mln;7¢) =0 if (m+n) #2k Yk € {0,1,2,3...} (4.80)

This establishes that the dynamic evolution of our Hamiltonian has parity allowed
selection rules i.e. transitions of particular parity are only allowed. If one starts with an n
which is even(odd), then one can only get an m which is also even(odd) at the end of the
protocol.
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Figure 4.11: The P(m|n; 77) distribution for all values of m (my,q,; < 67) for (a) n=5, (b)
n=25. The bars(blue) corresponds to transition in non-adiabatic limit and the bars(orange)
corresponds to the case in the adiabatic limit. The orange bars are shifted by 1.00 for better
visualization. The plot also shows P(m|n;7¢) =0 if (m+n) #2k vk € {0,1,2,3...}
and also highlights that in the non-adiabatic case the transitions are more pronounced
for higher n than starting at a low n. The initial frequency is 5¢ = 0.200 MHz and final

terminal frequency is C%f = 0.226 MHz



The last point which needs to be stressed based on Fig.4.11 is that for 'fast switching’
ie. at 7y = SJ—'E’ we see that starting with an initial state of high value of n, the chances of
cross-excitation is higher compared to starting for a lower value of n . This is due to the
fact that in the regime of higher n, the wavefunction for the initial and final harmonic well
sharply peaks towards the end of the well and hence differences between m, m + 2, m — 2
are washed away and they become alike.

4.4.6.4 Work probability distribution P(W,7y)

Let us now discuss the work distribution that is obtained by repeating the protocol many
time and collecting statistics. For a conservative evolution like being treated here, the work
probability distribution is obtainable directly from the conditional probability distribution
(P(m|n; 7¢) introduced in the previous section. It is defined as

P(W,7) = ) P(m|n;m)P(n, 5) 6(W — (= 7—)) (4.81)

The quantity "W’ defined in Eq.4.81 is the work done defined in Eq.4.64. In Eq.4.81,
P(n, ) is the probability of sampling the initial state with a quantum index 'n’. Since, we
start with an initial thermal distribution at inverse temperature g, P(n, f) is

exp(—FE,)
>_nexp(—SEy)

P(m|n) has been defined in previous section in Eq.4.76.

P(n, 5) =

(4.82)

4.4.6.5 W >0

From Eq.4.64, we see that this case is achieved if m > ™% — 0.5 (subject to constraints

T

m+n= 2k Vk € {0,1,2,3...}. We see from Fig.4.12 that the likelihood or the probability
associated with transitions of this kind is higher than in the reverse case (to be discussed
below) as in Fig.4.12. There are two categories of work for which this condition is true.
The first being the case when n = m This case is represented as blue bars in the central
top region of Fig.4.12 and in the four panels of Fig.4.13. We see from Fig.4.13, the blue
bars decreases exponentially in height for higher n in congruence with the property of the
sampling thermal distribution. This is also evident from the fact that when temperature
is raised the distribution becomes shallower(left vs right panel in Fig.4.13). Substituting
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m=n in Eq.4.64 and using the ratio of > to be ii‘i’gg, we see that for n=10, W 1.2395

and for n=15 , W~ 1.8298. However, the hlghest temperature used in the simulation is 0.3
mK for which the probability for sampling an initial state indexed by n where n> 15 is <
6 % of the ground state population (n=0). This explains why P(W,7,) which is sensitive
to P(n,5) drops sharply for large positive values of work. Also with switching time the
distribution is practically unchanged as P(m|n, 7f) of such processes is close to 1 anyway
(see Fig.4.9. We also see from the same figure that the gap A = %TFW decreases with

increasing temperature and switching time. Let us now move onto the next case (n < m)
as discussed in Fig.4.14. The green bars in Fig.4.14 decreases in amplitude when we move
to the adiabatic limit (see y-scale of top left vs bottom left panel in the same figure) in
agreement with Fig.4.9. Also with temperature we see the very blue bars as seen in Fig.4.13
starts to appear for large values of n.

4.4.6.6 W <0

From Eq.4.64, we see that if m < 220 — 0.5 (subject to constraints m+n= 2k Vk €

{0,1,2,3...}. Coupled with the fact that 'm’ needs to be a non-negative integer, this places
a restriction on the accessible value of n especially for an initial state indexed by low n.
The latter is true because the range of temperature accessible in the simulation is 0.1
mK-0.3 mK for which only low values of n are likely to be sampled. We thus see from
right bottom most panel in Fig.4.12 that the likelihood or the probability associated with
transitions of this kind is very lower than for W > 0. In Fig.4.15, we plot the red bars
showing such transitions in detail. We see just like with the green bars in the previous
case, the red bars decreases in amplitude with increasing switching time (See y-scale of top
left and bottom left panel of Fig.4.15. The sensitivity to temperature is mild as it only
changes the sampling probability of the starting state n

4.4.6.7 Variation with switching time and temperature

In Fig.4.12 we see the plot of P(W,7;) wherein several important regions are highlighted.
The details of each region along with their respective dependancies on switching time
and temperature are plotted in Fig.4.13, Fig.4.14 and Fig.4.15. From these plots, two
observations are imminent.

e For 'fast’ switching times i.e. when 7 < =- we are in the non-adiabatic regime. We
see that in such cases, the probability of obtamlng ’high” magnitudes of W for W >
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0 and m # n and as well as W < 0 and m # n are both high. These probabilities
slowly decline as we approach the adiabatic limit as discussed before

e At a given switching time, on decreasing temperature (or increasing inverse tempera-
ture (), the distribution attains the same feature as that for moving to the adiabatic
limit. In other words, probability for attaining higher magnitudes of work (W) be-
comes negligeble. This is due to the fact, that at lower temperature , the probability
of sampling an initial state indexed by a high value of n exponentially decreases
(characteristic of thermal distribution). We have already seen before in Fig.4.11 that
P(m|n; 7¢) for high n is higher compared to for lower n, so chances of cross-excitation
(which if happened could have created a higher W in absolute magnitude) decreases
with decreasing temperature.

In the next section we shall discuss few moments of this distribution. Note that in this
section we have identified the (n,m) pairs of only the dominant transitions (n=m and
n =m=2) in all the plots. There are other transitions (like the kind n = m+4,6,8....etc)
which are present but smaller in amplitude and farther away in the x-scale (work axis).
They can also be identified and analyzed similarly. However while computing the moments
in the next section, the full distribution including such transitions are taken into account
so as to preserve normalization of probability to high decimal places.
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Figure 4.12: The full work distribution P(W, 7¢) computed for a specific value of temper-
ature and switching time as indicated in the plot. The important regions of the plot are
blown up to account for the differing scale. The central region (blown up in the top panel
corresponds to transitions of the kind n = m (see Fig.4.13). The lower left panel (h%f <0)

corresponds to transitions of the kind n > m (see Fig.4.15) and the lower right panel cor-
responds to transition of the kind n < m (see Fig.4.14). To be specific as is evident from
Fig.4.15 and Fig.4.14 we consider transitions of the kind n = m 4 2 only. Apart from this
there are other transitions (regimes in the plot) too on either side (n = m+2kVk € 2,3, ...)
but they have not been discussed due to insignificant probability of occurrence. However
while computing the moments as in the next section, the full distribution is taken into

account. The initial frequency is

0.226 MHz
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2w
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Figure 4.13: The work distribution P(W, 7¢) computed for different values of temperature
and switching time as indicated in the plot for values of 0.0 < % < 1.2. Thus the

ﬁwa —

central region in Fig.4.12 which corresponds to n = m type transitions are focused and
discussed in this plot only as is evident from the x-scale. The (n,m) pairs responsible
for creating the corresponding transition for centre of each bar is highlighted on top of
the bar. The exponential fall for higher n is attributable to the fact that the initial state
is sampled from a thermal distribution of characteristic inverse temperature hw, (. For
higher temperature hw,, 8 = 0.55, the distribution is thus shallower as is seen from the
right panels of the plot. The plots are 'nearly’ insensitive to the switching time 7 as
for transitions of the kind P(m|n, 7¢) will be very close to 1 anyway as is seen in Fig.4.9.
The average work value (computed from the full distribution) and the AML‘:“ values are

also indicated. We see the gap A = % is always non-negative (more on this later)

and decreases when switching time is increased (adiabatic limit) and also decreases with
e ey . . . Wr
temperature.The initial frequency is £¢ = 0.200 MHz and final terminal frequency is -+

2 2w
= 0.226 MHz
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Figure 4.14: The work distribution P(W, 7¢) computed for different values of temperature
and switching time as indicated in the plot for values of 1.2 < V‘i < 4.0. Thus the bottom
rightmost region in Fig.4.12 which corresponds to n < m and algo n = m type transitions
are focused and discussed in this plot only as is evident from the x-scale. The (n,m) pairs
responsible for creating the corresponding transition for centre of each bar is highlighted on
top of the bar. The transitions shown in green corresponds to n < m specifically n=m-2
here. The transitions shown in blue are the n = m discussed in Fig.4.13 for very high
values of n. For higher switching time (adiabatic limit), we see the transitions in green
decreases in amplitude (see y-scale of bottom left panel vs top left panel) in consequence
with Fig.4.9. On increasing temperature, we see the blue transitions (n = m) increases in
amplitude as the high values of n becomes accessible( see top left and right panel). The
green transitions also increases slightly as the probability of the starting value of n increases

with temperature too. The exponential fall of the green transitions towards Mi — 4.0 is
7
due to the property of thermal distribution for accessing higher values of n. The initial

frequency is $2 = 0.200 MHz and final terminal frequency is -+ = 0.226 MHz
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Figure 4.15: The work distribution P(W, 7¢) computed for different values of temperature
and switching time as indicated in the plot for values of —2.5 < h%f < 0.0. Thus the
bottom leftmost region in Fig.4.12 which corresponds to n > m type transitions are focused
and discussed in this plot only as is evident from the x-scale. The (n,m) pairs responsible
for creating the corresponding transition for centre of each bar is highlighted on top of the
bar. The transitions shown in red corresponds to n > m specifically n=m+2 here. For
higher switching time (adiabatic limit), we see the transitions in red decreases in amplitude
(see scale of bottom left panel vs top left panel) in consequence with Fig.4.9. On increasing
temperature, we see the red transitions (n = m) increases slightly in amplitude as the high
values of n becomes accessible(see top left and right panel). The exponential fall of the red
transitions towards % — 0 is due to the property of thermal distribution for accessing

higher values of n. The initial frequency is 52 = 0.200 MHz and final terminal frequency
is 52 = 0.226 MHz
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4.4.6.8 Two important moments of P(W,7y)

4.4.6.9 1)(exp(—SW))

The first moment which we shall discuss is the moment of the Jarynski’s function exp(—SW)
computed from the probability distribution P(W,7¢) as

(exp (— W) = / P(W, 71) exp (— BW)dW (4.83)

Fig.4.16(b) plots the RHS of Eq.4.83 as a function of switching time (7). We see that this
moment is independent of switching rate. This result is powerful as it gives an important
route to compute thermodynamic properties like AF(f) i.e. Free energy change even
by performing the protocol elaborated in section4.4.5 without resorting to the adiabatic
limit. In other words, one can initiate the experimental protocol and vary the Hamiltonian
arbitrarily fast yet we can get the quantity of interest. Fast switching has a couple of
advantages, the most important of which is that during the execution of the protocol, the
ion is exposed to optical tweezer for a very short span of time only and hence it is less
vulnerable to decoherence induced by motional heating and/or photon back-scattering. We
see that is strongly dependant on temperature.

This temperature dependance can be removed if we define a new quantity

W — W,
A= ——— 4.84
- (434)
One can compute the average of Eq.4.84 such that the following condition is true
(exp (—BlusnA)) = 1 (4.85)

Then from Eq.4.54 and Eq.4.55, we see that for Eq.4.85 to be true, Wy = AF i.e. it should
be equal to the thermal free energy change. In Fig.4.16(b), we see that the deviation of the
RHS of Eq.4.85 from 1 with W being chosen to be the free energy change at the respective

temperature. The error is independent of switching time and temperature and is of the
order of 1071,
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4.4.6.10 (2)((¥20)) s.t. Wo = AF(f) from (1)

The second moment which we shall discuss now is the following

<A>:<(Wh;—(?7%)>:<(wh;—()A1?)> .+ obtained from Eq.4.85
= / p(w,Tf)(—Wh;fF)dw (4.86)

The RHS in Eq.4.86 is actually non-negative. To prove this let us consider the following
situation. Let the final state of the system after the termination of the protocol be denoted
by p(7¢) = |m)(m|. By final state we mean the state of the system after being projected
onto the eigenbasis of the final Hamiltonian. Note that our protocol consists of three
steps- an initial projective measurement onto the eigenbasis of the initial Hamiltonian, a
dynamical evolution to change a Hamiltonian, a final projective measurement to get any of
the Fock state of the final Hamiltonian. In general after the dynamical evolution, the state
of the system will be a superposition of the Fock states of the final Hamiltonian but the
final projective measurement will pick out a particular Fock state. It is worth noting as has
been said before, that this state is not the thermal state of the final Hamiltonian (H(7¢))
(thermal states are incoherent superposition). Let the thermal state of this Hamiltonian
be denoted by pi,(H(7¢)). Now let us compute the quantum relative entropy between p(7y)

and py,(H(7y)).

S(p(r)llpm(H(7r))) = Tr(p(s)In(p(71))) = Tr(p(7e)In(pn(H(71)))) (4.87)

Care should be taken in defining the quantum relative entropy|[l11]. For any two state o
and o', S(o ||0’) need not be defined until the supp(o) C supp(o’) where

supp(X) = {v|Xv #0 Vv e C", X € L(C")} (4.88)

Luckily, for us since we are following the two-point measurement scheme wherein the final
state of the system p(7y) is projected on to the eigenbasis of the final Hamiltonian H(7y)
and [py,(H(7¢)), H(7¢)]=0 for being the state at thermal equilibrium, we immediately have
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supp(p(7t)) € supp(pwm(H(7%))). Thus continuing from Eq.4.87 we have

S(p(rp)llpm(H (7)) = Tr(p(re)n(p(7))
(p(7)In(p(7¢))

|
o
)
—~
=
~—
—
=
—
>
=
—~
-
—~
=
~—
~—
~—
~—

= B(F(0) = F(7e) + Tr(p(r)H(7)) — Tr(p(0)H(0))

)
_ MOB<F(O) — F(7) + Tr(p(r)H(7)) — Tr(p(0)H(0)))

heg
(—AF(3) + W)
= hw,
T
(W — AF(5))
= hw 4.89
s (1.89)
Using Fq.4.89 and Eq.4.86, one can say the following
W — AF(8) W — AF(8)
A VA VY [ & W2
(C = [P aw
1
= g | POWL TSl ()W
>0 (4.90)
The last line i.e. Eq.4.89 follows from the usage of Klein’s inequality [115] which can be

used to prove non-negativity of quantum relative entropy. This Eq.4.90 is powerful. To
. . . W-A
appreciate this point, let us relate ((

TF(’B))) to the entropy changes in the system and
. . . 0 . . .
the surroundings during the execution of the process. Since hwy is a non-negative constant
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energy scale factor, we just have to focus our discussion on (W — AF(/3))

(W —AF(f)) = (W) — AF(f)

= (W) — AE(B) + AﬂST(B@ (F =E — % process considered at fixed T or f3)
— (W) - (@) - (W) + 0

g+ 250

_ —ﬁk3<%>k Z AS(8) o

(F(p)) in the above equations pertains to the system only and is the free energy change
between the thermal states of our initial and final Hamiltonian. (W) pertains to the average
work done on the system by the agent (henceforth called work reservoir) dynamically
changing the Hamiltonian over many realization of the protocol. Care must be taken
in interpreting (Q) and AS(S) as we have just said that our evolution is unitary and
conservative and hence does not exchange any heat nor creates any entropy in the system.
However as seen in set of equations both (Q) and AS(J) originates from the (F(3)) term.
(Q) is equal to the average heat that the system 'will exchange’ if after the termination
of the protocol it is connected to a heat reservoir (at inverse temperature § same as the
inverse temperature of the thermal state of initial Hamiltonian) and made to equilibriate
to the thermal state of the final Hamiltonian. Similarly AS(/) is the entropy change in the
system during this final leg of equilibriation (after termination of our protocol) when it is
connected to the heat reservoir. Now for a heat reservoir, the following conditions hold

Asres(ﬁ) = <Qres>BkB
<Qres> = _<Q>

The first condition is due to the large extent and infinitely many degrees of freedom of the
heat reservoir. Any energy exchange with the heat reservoir is unable to change the overall
energy content of the heat reservoir and hence also keeps its temperature fixed. The last
condition follows due to energy conservation as after the termination of our protocol the
only mode of energy exchange with the heat reservoir is heat. The work reservoir only
exchanges work with the system during the protocol and hence there is no other work
done when the system is equilibriating to the thermal state of the final Hamiltonian. That
happens solely by exchanging heat with the heat reservoir. So using these conditions in
Eq.4.91 we see the following
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((w - ar(s)) - 250
_ Bhn(Qus) + AS(H)
Bk
_ ASw(8) + AS(H)
Bk

From Eq.4.90 and from Eq.4.92 it is clear that non-negativity of (W — AF(5)) as we
have proven for a conservative process under unitary evolution guarantees the following

_ ASw(B) + AS(H)
Bks

(4.92)

(W —AF(B))

>0
= ASes(f) + AS(B) 2 0 (4.93)

Eq.4.93 guarantees the non-negativity of entropy change of the universe during the
operation (the operation is our protocol to perform work followed by thermal equilibriation
with heat reservoir) which takes us from the thermal state of the initial to that of the final
Hamiltonian. This is essentially the crux of the second law of thermodynamics and hence
Eq.4.90 is basically the quantum deduction of the second law of thermodynamics|[!10] for
systems wherein the evolution is conservative and thus will not result in change in Von-
Neumann entropy. Often the quantity (W — AF(5)) is interpreted as dissipated work.
This is because the amount of work which the work reservoir puts into the system is always
greater than or equal to the maximum amount recoverable (free energy change). Equality
is only under slow reversible conditions hence for most processes (irreversible operations)
the extra work put in is always lost to create entropy in the universe as is seen from above
set of equations.

In Fig.4.16(a), we plot ((%f(ﬁ))) obtained from P(W,7;) in the previous section for

different values of switching time. We see the following

e Unlike (exp (—fhwoAw)), this moment is sharply dependant on switching time 7
and hence to use (W) as a proxy for AF(/3) one has to initiate the protocol at
extremely low switching speed. This makes a protocol reliant on this inconvenient
and unrealistic. Furthermore in our case the system for such longer exposure to
optical tweezer enhances the chances of motional heating and decoherence due to
photon-scattering.
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e The moment is also dependant on temperature. Increasing temperature increases
not only the free energy and hence W — AF increases but the work distribution
which is parameterically dependant on temperature also changes and becomes more
prominent towards the average. This only increases the value of the moment.

(a) (b)
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o
- Aw.B=0.562 — 20
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Figure 4.16: The two important moments of the work distribution P(W). (a) The mean
of P(W) relative to AF,.. We see that this moment is dependant both on switching time
and temperature (see text for discussion). Only way to use this moment as a proxy for
AF(f3) is in the true adiabatic limit when (w,, 7 is high). For the best adiabatic switching
used in the simulation wherein w, 7y =30, even then the error of (W) from the actual
value of AF, is about 1072. This makes a protocol reliant on this moment unrealistic and
inconvenient. Furthermore for such high switching time, the ion is exposed to the optical
tweezer longer which enhances its chances of motional heating due to photon scattering.(b)
The Jarynski’s moment which shows clearly that the function is independent of switching
time and temperature with the error/deviation from true value of the order of 107!, This
moment is used in the simulation/protocol for obtaining the Free energy and mode-specific
property. The initial frequency is $2 = 0.200 MHz and final terminal frequency is u;%rf =
0.226 MHz
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4.4.6.11 Properties of interest

4.4.6.12 1)Free energy of '3*Ba' ion as a function of temperature
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-0.79

-1.43
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® computed
-3.36 —— actual

0.32 0.4 0.48 0.55 0.62

Bthf

Figure 4.17: The plot of the thermal free energy (F,, p.(3)) of '**Ba™ ion as a function
of temperature obtained from the protocol. The curve underneath is the actual values
computed from the partition function at the respective temperatures. The initial frequency
is 5¢ = 0.200 MHz and final terminal frequency is U;% = 0.226 MHz
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4.4.6.13 2)Thermal Entropy and Internal Energy of **Ba’ ion as a function
of temperature

40.0
33.0
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K,
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I
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19.29
12.86
6.43
0.32 0.4 0.48 0.55 0.62
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Figure 4.18: The plot of thermal entropy (S, pBa(f)) and thermal internal energy
(U, Ba(B)) of 1¥3Ba™ ion as a function of temperature obtained from the protocol. This
information is obtainable from the thermal free energy. The curve underneath is the actual
values computed from the partition function at the respective temperatures. The initial
frequency is 2 = 0.200 MHz and final terminal frequency is u;% = 0.226 MHz
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4.5 Conclusion

In this chapter we studied the effect of using optical tweezers on a trapped ion and devel-
oped a scheme to dynamically change the power of the optical tweezer and obtain a thermal
property of a mixed/dual specie system. The protocol can be extended to multiple ions to
obtain mode-specific property and is the subject of current investigation by the author.
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Chapter 5

Summary and Outlook

In summary, we have illustrated in the thesis, how to fabricate the trapping electrodes - the
four rods and two needles for the assembly of the four-rod trap. These electrodes have been
constructed by the author by electro-etching tungsten. We revisited in detail how electro-
etching happens mechanistically and also elaborated the causes of the necking behavior seen
during the formation of the needles. A new recipe[10] developed by one of the co-worker
in the group was used to generate the needles from the rods. The recipe as elaborated in
Chapter 2 has a well-defined draw rate for withdrawal of the electrode from the solution and
robust against small geometric imperfections in the alignment of the needles with respect
to the solution surface. The recipe is still under development and will be a publication soon
with the author of this thesis being one of the co-authors. In the following chapter (Chapter
3) we studied how these electrodes are powered. For the rods, a confining potential is
generated using a RF source. We elaborated the construction of a balanced helical coil
RF resonator that has been used in the currently operational ion-trapping apparatus in
the group. We studied the role of each of the key components of the RF resonator and
how they contribute towards its voltage amplification and frequency filtering properties.
The author not only constructed the RF resonator from scratch, but also simulated the
electrode potential and the trajectory of a trapped ion in the RF frequency relayed by the
resonator to the rod electrodes. This simulation was done using a home-built code by the
author with geometrical parameters from the electrode system actually used in our trapping
apparatus. An extension of the RF resonator project is currently underway in the group
wherein a sampling and stabilization circuit is being made that will stabilize a fluctuation
in the resonance frequency and/or the peak voltage of signal supplied to the trap without
the objective of preventing motional heating and constructing better gate sets. In Chapter
4 we study how the trapping potential generated by the RF field can be manipulated using
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an optical tweezer. For our specific case we target the target the | S/, F' = 1,mp = 0,%1)
and |Pije, F = 0,mp = 0) transition in Yb" using a 375 nm laser beam focused to
1 pm spot size. The beam stabilizes the energy of the ground state of the "Yb™ ion
and leads to additional trapping confinement. Using the optical tweezer we demonstrate
how changing the power of the optical tweezer can have a profound effect on the motional
mode frequency. This can be harnessed to even compensate for the mass-dependance of
the trapping frequency and make the trapping strength of "*Yb™ equivalent to that of
133Bat . This change if done dynamically at various switching times can be used to infer
the thermodynamic properties of a mixed specie ion-system starting from a single-specie
ion system as we demonstrate. Using Jarynski’s equality[98] we devise a protocol that
allows us to infer the thermal free energy at various temperatures of the 3*Ba™ ion using
only information from '"'Yb™ ion. This scheme can be used to even obtain mode-specific
properties for multiple ion chains. For example for a 3-ion chain consisting of all "*Yb™
ions, shining the beam onto the second Yb-ion in the chain can allow us to simulate the
thermal properties of 3 ion mixed species crystal consisting of two terminal "'Yb™ ions
and a central 1*3*Ba™ ion. For such systems, due to presence of many motional modes along
a given direction, it would not be possible to obtain a single optical power at which all of
the modes of 3 ion ' Yb™ chain (with beam on second Yb ion) come into resonance with a
T1yp T 133Ba® 177YbT ion chain. Instead one has to carry out the protocol multiple times
terminating at various optical powers. Each such set of experiments would yield a Free
energy function. One can then interpolate the Free energy function so as to obtain the
thermal Free energy at the specific mode frequency. Using this information it is possible
to obtain other thermodynamics properties. For example thermal state heat capacity can
be obtained experimentally for each of the mode which will provide insight into motional
heating due to fluctuating electric field within a given span of time. Such protocols would
be undertaken for future extension of this project.
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