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Abstract

Symbolic reasoning begot Artificial Intelligence (AI). With the recent advances in Deep
Learning, many traditional AI areas such as Computer Vision and Natural Language Pro-
cessing have moved to probabilistic-based approaches. However, in applications where
there is little to no room for uncertainty, such as Compiler or Software verification, sym-
bolic reasoning is still the go-to option. In this thesis, we bring the advantage of data-driven
learnable models into the precise world of symbolic reasoning. In particular, we choose to
tackle two specific problems: Model Checking, in the context of Inductive Generalization,
and Compiler Optimization, in the context of Software Debloating. We implemented our
approach in two tools, named Dopey and DeepOccam, respectively. They both use
traces generated from running a task to learn a better heuristic, and use said heuristic
to improve subsequent runs of the same or similar tasks. Our results show that both
neural-based heuristics outperform handcrafted heuristics.
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Chapter 1

Introduction

Symbolic reasoning predates Computer Science. The word algorithm itself came from
the 9th-century mathematician Muhammad ibn Musa al-Khwarizmi, Latinized Algoritmi.
Logics itself could be traced back to Aristotle in the 300s BC. It is fair to say that the
whole field of Computer Science was born out of symbolic reasoning, with pioneering work
such as Hilbert’s Entscheidungsproblem, Alonzo Church’s Lambda Calculus, and Alan Tur-
ing’s Turing machine. A century has passed since the birth of modern Computer Science,
and nowadays the field is diverse in the use of mathematics: Topology and Geometry
in Computer Graphics, Probability and Linear Algebra in Deep learning, among others.
Nowadays, symbolic reasoning could still be found in Computer Science in its pure form un-
der the research of Programming Languages, Compilers, Formal Methods, and Automated
Reasoning.

Throughout its history, at the heart of all the symbolic reasoning applications are
carefully handcrafted heuristics, tried-and-true by years of human experts’ research. While
those heuristics work wonderfully, they come with the cost of being too specific to the
problem at hand. For example, there is no easy way to transfer all the wisdom learned
in crafting a SAT-solver heuristic or the heuristic itself to create a better heuristic for
a CHC-solver. This raises a natural, practical, and to a certain extend, a philosophical
question: can a heuristic for a symbolic reasoning system be learned automatically?

Just ten years ago, only the most ambitious researchers would answer “yes” for the
above question. While glimpses of learnable heuristics could already be found in ground-
breaking work such as TD-Gammon [82], the whole research direction was practically
halted due to hardware limitation. Then, at the turn of the 2010s, researchers realized
that the heaviest workload in Deep Learning — matrix multiplication — could be done
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very efficiently using GPU — an easy to find and relatively cheap hardware component.
AlexNet [49] — one of the first works that demonstrated the scalability of Deep Neural
Networks using GPUs - blew every other image recognition methods at the time out of
the water, and overnight, old ideas were new again: Convolution Neural Networks, Long-
Short Term Memory (LSTM) Networks, Deep Reinforcement Learning, etc. are all in the
realm of possibility. Nowadays, it is hard to find a field that is not yet “transformed” or
“revolutionized” by Deep learning.

Yet, symbolic reasoning is still one of the less successful applications of Deep learning:
while Deep learning has been able to achieve human-level, or even superhuman-level on
many tasks, such as Image Recognition, Automated Speech Recognition, Game Playing
(Go, Atari), it still fails short of the state-of-the-art heuristics at many symbolic reasoning
tasks, such as solving mathematical equations [51] or solving SAT problems [71]. Ironically,
symbolic reasoning was also the reason for the first AI Winter: Marvin Minsky, founder
of the MIT AI Lab, and Seymour Papert, director of the lab at the time, in 1969 published
the seminal book Perceptrons [59], that discussed perceptron’s inability to learn the simple
boolean function XOR because it is not linearly separable, turning research away from the
perceptron. The history of symbolic reasoning and Deep Learning, as often said, comes
full circle.

We hypothesize that it is possible to learn Deep Learning-based heuristics those are
better than handcrafted one. This thesis offers a glimpse into this possibility, by presenting
two concrete positive results where effective heuristics are indeed learnable from data, in
two particular domains: compiler optimization, and automated reasoning. We choose
to tackle those two domains because we believe the handcrafted heuristics there are not
optimal and there is still a lot of room for improvement, and as shown in the following
chapters, we indeed improved them by a considerable margin.

1.1 Symbolic Model Checking using anti– and co– oc-

currence probabilities

In the automated reasoning domain, we introduce Dopey, a neural-based Symbolic Model
Checker (SMC) / Constraint Horn Clauses (CHC) Solver.

Model checking has been widely used in various important areas such as robustness
analysis of deep neural networks [44], verification of hardware designs [25], software ver-
ification [9], analysis [32] and testing [74], parameter synthesis in biology [11], and many
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others. The central challenge of model checking is to find a concise and sound approxima-
tion of all possible states a given system may reach, which does not cover any undesired
states (i.e. violating given specifications). Tremendous progresses have been made by inno-
vations in efficient data representations [18], scalable SAT solvers [76, 60, 30], and effective
heuristics [24, 23, 56]. Modern model checkers share a common basis, namely, IC3 [15], of
which the key insight is inductive generalization. This idea has been generalized to support
rich theories [39] that are crucial for many verification tasks [47, 34] beyond hardware ver-
ification. The generalized IC3 with rich theories, also known as satisfiability checking for
Constrained Horn Clauses modulo Theory (CHC) [14], becomes the core part of a broad
range of verification tasks.

Existing inductive generalization techniques follow either an enumerative search process
[15, 16] or ad-hoc heuristics [33, 48]. Heuristics are effective but may demand non-trivial
domain-specific (or even problem-specific) expertise. In this work, we aim to automatically
learn such heuristics from the past successful inductive generalizations. We observe that
verification problems as well as associated inductive generalizations are not isolated from
each other. Taking software verification as an example, verifying different properties of
the same program involves similar or same inductive generalizations; different versions of
programs have similar code base; and different software may use same coding convention,
idioms, library or framework, resulting in similar structures.

A natural solution is to train a deep learning model to directly perform inductive
generalization, but this approach also raises many new challenges for deep learning. First
of all, the input and the output of inductive generalization are symbolic expressions, which
are highly structured with rich semantics. Slight syntactic variations can lead to dramatic
changes in semantics. Second, more importantly, inductive generalization has to satisfy
complicated semantic constraints. Third, given deep learning models hardly provide any
reliable guarantees, how to design a neuro-symbolic system that exhibits learnability from
past experiences but still preserves soundness? All these challenges have to be properly
addressed in building a neuro-symbolic reasoning framework.

In Chapter 3, we present a neuro-symbolic engine Dopey, which introduces a neural
component into symbolic model checking. Specifically, we make the following contributions:

• we adapt standard deep learning models to effectively represent symbolic expressions
by incorporating both syntactic and semantic information;

• we design a simple but effective learning objective so that training data can be
collected with nearly no changes of existing model checkers;
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• our integration algorithm achieves the soundness by design, and in the worst case,
the learning component may only hurt the running time performance;

• we implement Dopey on top of Spacer, a state-of-the-art CHC-solver, using an
efficient client-server architecture;

• our empirical evaluations indicate Dopey significantly improves Spacer on chal-
lenging benchmarks from CHC-COMP 2018.

1.2 Compiler Optimization using Reinforcement Learn-

ing

In the compiler optimization domain, we introduce DeepOccam, a reinforcement-learning–
based software debloating tool.

A Software Debloater solves a specific problem: given the known running environment,
can we remove as much unused code (debloat) in the compiled executables and binaries
as possible? A motivating example is the frequently used tool ls. ls has more than 40
arguments, yet for many people, ls -lath covers most of the use-cases. By removing code
of the rest of ls’s arguments, a software debloater hopes to create a smaller, and safer ls.

One successful approach for software debloating is based on partial evaluation (PE) [42]
in which a partial evaluator takes a program and its known input values and produces a
residual (or specialized) program in which those inputs are replaced with constants. While
PE has been extensively applied to functional and logic programs, it was less successful on
imperative C/C++ programs (with a noteable exception of C-Mix [7] and Tempo [26]).
With the advent of LLVM [52], several new partial evaluators of LLVM bitcode have arisen
during the last few years (e.g., LLPE [77], Occam [54], and Trimmer [73]). These tools
leverage LLVM optimizations such as constant propagation, function inlining, and others
to either reduce the size of the residual program (e.g., Occam and Trimmer) or improve
performance (e.g., LLPE).

The key step of a PE-based debloater is to estimate whether specializing (or inlining) a
function can result in a smaller (or more secure) residual program. Specialization naturally
increases the size of the code since it adds extra functions. However, since some inputs in
the new functions have been replaced by constant values, optimizations such as constant
propagation, might become enabled and result in new optimization opportunities that
reduce the code size. Therefore, the decision whether or not a function should be specialized
for a particular call-site is non-trivial.
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Interestingly, this decision of whether a call-site should be specialized or not resembles
a long-horizon Markov Decision Process, which fits nicely into the Reinforcement Learning
framework: each decision moves the code (state) from one to another, the decision should
depend only on the current state instead of the whole history of transformation, and the
quality of the whole process (reward) is only known at the end.

To realize this insight, we need to solve the challenge of deciding on a good state
representation. While it is tempting to use the source code (or LLVM intermediate rep-
resentation (IR)) as a state, this is not computationally tractable. The IR is typically
hundreds of MBs in size. Instead, an adequate set of features that captures meaningful
information about the code while avoiding state aliasing is required. In particular, these
features must capture the calling context in order to distinguish between call-sites.

In Chapter 4, we present a software debloater DeepOccam, which learns a heuris-
tic for specialization using Reinforcement Learning. Specifically, we make the following
contributions:

• we propose a set of Calling context features that enable RL to find a useful heuristic
for PE-based debloating software;

• we implement our method in a software debloater called DeepOccam;

• we evaluate on the reduction of the program size and number of possible code-reuse
attacks, by comparing our handcrafted features with features learned automatically
via embedding LLVM IR into a vector space using inst2vec [13].

1.3 Organization of the thesis

This thesis proposes two neural-guided heuristics for software debloating — a compiler op-
timization task, and inductive generalization — a model checking algorithm’s components.
The key novelty is in automatically learning useful signals from a discrete logic world using
a differientable framework. The rest of the thesis is structured as follows:

In Chapter 2, we introduce needed background on our domains, which are Symbolic
Model Checking and Software Debloating, our learning paradigms, which are Deep learning
and Reinforcement learning.

In Chapter 3, we present a novel neural-symbolic SMC, called Dopey— inspired by the
learning of co-occurrence probabilities in NLP. Dopey learns offline dependence between
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atoms that do (or do not) appear together in facts (called lemmas) that are learned by the
SMC. The neural net is then used in successive runs of the SMC on different properties of
the same system to guide the inductive generalization heuristic. Thus, in a multi-property
setting, learning from one verification task generalizes to others.

In Chapter 4, we present a neural-guided software debloating tool, called DeepOccam.
DeepOccam uses Reinforcement learning to learn a heuristic for when to or not to apply
specialization – a particular compiler optimization in which known fixed inputs/flags (e.g
a web server that is known to always run using HTTP 2.0) are replaced with their values.
The metrics that DeepOccam tries to optimize are the number of ROP, COP, and JOP
gadgets in the compiled binaries.

Finally, we outline a number of future research directions in Chapter 5, and conclude
in Chapter 6.
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Chapter 2

Background

In this chapter, we present preliminaries needed for the rest of the thesis.

2.1 Symbolic model checking

In this section, we present the Safety problem and the state-of-the-art algorithm IC3/
Spacer. They are needed for understanding Chapter 3.

The Safety problem. We consider first order logic modulo theories, using the stan-
dard notation and terminology. A first-order language modulo theory T is defined over a
signature Σ containing constant, function, and predicate symbols.

A transition system is a tuple 〈Σ, Init ,Tr〉. Σ, Σ′, and Σi are used to present the
pre-state, the post-state, and the state of the system after executing i steps, respectively
(Σ′ = {v′ | v ∈ Σ}, Σi = {vi | v ∈ Σ}). Init is a formula over Σ and Tr is a formula
over Σ ∪ Σ′. For a formula ϕ over variables in Σ, we denote by ϕ′ the formula obtained
by substituting each v ∈ ϕ by v′ ∈ Σ′, and ϕi the formula obtained by substituting each
v ∈ ϕ by vi ∈ Σi. We also denote Tr i a formula obtained by substituting each v ∈ Tr by
vi ∈ Σi and each v′ ∈ Tr ′ by vi+1 ∈ Σi+1.

For simplicity, we omit Σ and use the shorthand 〈Init ,Tr〉 to represent the transition
system whenever the context is clear.

A Safety problem is a triple P = 〈Init ,Tr ,Bad〉, where 〈Init ,Tr〉 is a transition
system and Bad is a formula over Σ representing a set of bad states. P is unsafe if and
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only if there exists a number N such that the following is satisfiable:

Init0 ∧ (
N−1∧
i=0

Tri) ∧ BadN (2.1)

In this case, we also say that P has a counterexample (CEX) of length N . Vice versa, P
is safe if and only if Eq. (2.1) is unsatisfiable.

The Safety problem defined above is an instance of a more general problem, CHC-
SAT, of satisfiability of Constrained Horn Clauses (CHC). With abuse of notation, in this
thesis we use solving CHCs and verifying safety properties interchangeably.

Induction, safe inductive invariant, relative induction, inductive trace. A for-
mula ϕ is called an inductive invariant of a transition system 〈Init ,Tr〉 if and only if:

Init =⇒ ϕ (2.2)

ϕ ∧ Tr =⇒ ϕ′ (2.3)

We also say that a formula ϕ is inductive relative to a formula F if it satisfies initiation
and ϕ ∧ F ∧ Tr =⇒ ϕ′.

An inductive invariant ϕ is safe if:

ϕ =⇒ ¬Bad (2.4)

An inductive trace of a transition system is a list of formulas F = [F0, F1, . . . , FN ] such
that

Init =⇒ F0 (2.5)

∀0 ≤ i < N, Fi ∧ Tr =⇒ Fi+1 (2.6)

We call Fi a frame, and we represent each frame Fi as a set of lemmas, and each lemma
` ∈ Fi is a clause.

Craig Interpolation. Given an unsatisfiable formula A∧B, a Craig interpolant, denoted
ITP(A,B), is a formula I over the shared signature of A and B such that A ⇒ I and
I ⇒ ¬B.
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Figure 2.1: Visualization of inductive generalization.

IC3/Spacer. The current state-of-the-art algorithm to solve CHC is IC3/Spacer [46].
At the high level, the main IC3/Spacer loop tries to find a CEX of length N , and termi-
nates if the CEX is found (unsafe), or the lemma that proves such CEX doesn’t exist is
also a safe inductive invariant (safe).

There are many ways to represent the Spacer algorithm, and in this thesis we borrows
the presentation used in [48].

Fig. 2.2 presents the key ingredients of Spacer as a set of rules. It maintains the
following:

• The current unrolling depth N at which a counterexample is searched (there are no
counterexamples with depth less than N).

• An inductive trace F = [F0, F1, . . .]. Intuitively, each frame Fi is a candidate inductive
invariant s.t. Fi over-approximates states reachable up to i steps from Init .

• A queue of proof obligations Q, where each proof obligation (pob) in Q is a pair
〈ϕ, i〉 of a cube ϕ and a level number i, 0 ≤ i ≤ N . Each pob 〈ϕ, i〉 in Q corresponds
to a suffix of a potential counterexample that has to be blocked in Fi, i.e., has to be
proven unreachable in i steps.

• An under-approximation U of reachable states, represented as a disjunction.

The Candidate rule adds a pob 〈Bad , N〉 to the queue. If a pob 〈ϕ, i〉 cannot be
blocked because ϕ is reachable from frame (i − 1), Predecessor generates a predecessor
ψ of ϕ using GetPredecessor, and add 〈ψ, i − 1〉 to Q. Successor updates the set
of reachable states if the pob is reachable. If the pob is blocked, Conflict strengthens

9



the trace F by using interpolation to learn a new lemma ` that blocks the pob, i.e.,
` =⇒ ¬ϕ. Induction strengthens a lemma by inductive generalization and Propagate

pushes a lemma to a higher frame. If the Bad state has been blocked at N , Unfold

increments the depth of unrolling N .

Inductive generalization The Induction rule is a crucial optimization to IC3. To
block a pob ϕ, it is enough to learn the clause ¬ϕ. However, most of the time, this clause
is too weak to block any other pob. As illustrated in Fig. 2.1a, to block the orange pob, we
can learn the lemma {lit 0, lit 1, lit 2} (slightly shifted because of the interpolation).
This lemma is too weak, and cannot be used to block the red-lined pob. Since there could
be exponentially many pobs, it is of the utmost importance that a learned lemma could
be reused to block multiple pobs. One way to do so is to try to drop literals in the learned
lemma, and check that the reduced lemma is still inductive relative to the previous frame.
As we can see from Fig. 2.1c, starting from the lemma {lit 0, lit 1, lit 2}, dropping
lit 0 results in a lemma that is no longer inductive, while dropping lit 1 doesn’t affect
its inductiveness, as illustrated in Fig. 2.1b.

2.2 Software debloating

This section presents needed domain background for Chapter 4, which is software debloat-
ing using partial evaluation.

The software debloating problem. Given a problem P that has a set of functional-
ities F = {F0, F1, . . . , FN} and a user-specified subset of necessary functionalities Fspec =
{Fi, Fj, . . . , Fk}, the goal of a software debloater is to produce a new program P ′ that
retains Fspec and gracefully refuses any functionalities in F \ Fspec.

The Python server in Fig. 2.3 has two modes: a fallback mode that doesn’t require a
trained neural network, and a normal mode that requires one. Given the specification in
Fig. 2.4, in which user requires only the first functionality, one possible debloated version
of the server is given in Fig. 2.5. Note that even though line 15 to 20 in Fig. 2.3 are still
in Fig. 2.5, it cannot be triggered, because the main function is not called. Remember
that according to our problem definition, a debloated program is only about reducing
functionalities, and the code itself could actually be more “bloated”.

There are many ways to achieve the debloating goal, such as source-code optimization
[37], binary optimization [73], or compile-time optimization [54]. In this thesis, our fo-
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cus is compile-time optimization, inspired by Occam [54]. Specifically, Occam’s partial
evaluator.

Partial evaluator. A partial evaluator takes a program and some of its input values
and produces a specialized program in which those inputs are replaced with their values.
In Fig. 2.5, main specialized is that specialized version of main.

While PE has been extensively applied to functional and logic programs, it was less
successful on imperative C/C++ programs (with a notable exception of C-Mix [7] and
Tempo [26]). With the advent of LLVM [52], several new partial evaluators of LLVM
bitcode have arisen during the last few years (e.g., LLPE [77], Occam [54], and Trim-
mer [73]). These tools leverage LLVM optimizations such as constant propagation, func-
tion inlining, and others to either reduce the size of the residual program (e.g., Occam
and Trimmer) or improve performance (e.g., LLPE).

The key step of a PE-based debloater is to estimate whether specializing a function
can result in a smaller (or more secure) final binary or library. As we can see in Fig. 2.5,
specialization naturally increases the size of the code since it adds extra copies of functions
into the code. However, since some inputs in the new functions have been replaced by
constant values, optimizations such as constant propagation, might become enabled and
result in new optimization opportunities in subsequent optimization passes. Therefore,
the decision whether or not a function should be specialized for a particular call-site is
non-trivial.

2.3 Deep Learning

This section introduces deep neural networks, recurrent neural networks, and reinforcement
learning. They are the machine learning tools that we use in Chapter 3 and Chapter 4.

2.3.1 Perceptron. Multi-layer Perceptron. The fixed-size com-
puting paradigm.

There are already too many technical texts about the mathematical behind Perceptron
and Multi-layer Perceptron. In this section, we take a pictorial look at it, starting from
matrix multiplication. Multiplying two matrices of size m×n and n×p could be visualized
as in Fig. 2.6a, which resulted in a new matrix of size m× p.
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Perceptron is defined as a function that maps its input x (a real-valued vector) to an
output value y (a single binary value). While there are many ways to define the mapping,
in practice the perceptron function is

y =

{
1 if x×W + bias > 0
0 if otherwise

Fig. 2.6b visualizes the perceptron function. In case of having to classify k classes (k > 2),
a one-vs-all scheme is used: learn k separated perceptron, each perceptron pi predicts
whether (x) is of the class ith.

In the early 60s, it is believed that Single-layer perceptron was all we needed to learn
(approximate) any function. In 1969, Minsky and Papert [59] proved that a single percep-
tron cannot learn the simple XOR function, since XOR is not linear separable. There work
effectively froze AI research for about ten years.

The solution for the XOR function, as it turned out, was very simple: Multi-layer
Perceptrons.

Multi-layer Perceptron. To understand Multi-layer Perceptron, let’s take a step back
and look at what a Single-layer Perceptron does: it computes a linear transformation of
the input (x ×W + bias), then applies a non-linear filter (activation function) over the
results (a branching function). The key insight is that the result is also a matrix, hence can
be feed into another perceptron, which in total, make a non-linear function! In fact, it is
proven [41] that under certain assumptions, 2 layer perceptrons is enough to approximate
arbitrary functions!

Fig. 2.6c visualizes a multi-layer perceptron. Looking at the figure, it is also clear why it
is also called Deep Learning. One way to think about Deep Learning: given a dataset D of
pairs (xi, yi), what is a good architecture (the arrangement of the intermediate matrices),
and what are the values for entries in the matrices?

The fixed-size computing paradigm. Multi-layer perceptrons are great, and could
be used to approximate many functions. But it also forces things to be in the same shape:
once the architecture is fixed, all the matrices in between are also fixed in shape, so all
inputs have to have the same shape, and all outputs also have to have the same shape as
well. For many cases, this is not a big problem: image could be resized into a fixed size,
missing values in an input vector could always be set to a dummy values, for examples.
But in some cases, the whole paradigm just doesn’t work, and requires a different paradigm
altogether.
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2.3.2 Recurrent-neural network. TreeLSTM.

In many tasks, we need to process inputs of arbitrary length, to predict outputs also of
arbitrary length (often called sequence-to-sequence problems). There are multiple ways to
make sequential inputs to work in the fixed-size paradigm, such as padding (add dummy
values to the inputs to make sure they are all of the same length), same length batching
(sort inputs by size and process inputs of the same size together), among others. However,
those approaches doesn’t help with handling sequential outputs. A better approach is
recurrent neural networks (RNNs). An RNN defines a function

ht = f(ht−1,xt) (2.7)

in which f is our linear transformation, followed by a non-linear filter. A typical RNN can
be

f(ht−1,xt) = tanh(xt ×W + ht−1 ×U) (2.8)

This simple RNN is visualized in Fig. 2.6d. Note that W and U are shared. This also
means that the longer the chain, the easier it is for the first input to vanish/explode in the
computation of the current input, since ht has the term x0×W t in it. In practice, vanilla
RNNs rarely can learn for chains longer than 10 time steps.

To address this issue, a forget/gating mechanism is added to RNN, most notably in
architecture like LSTM [38] and GRU [21]. Equations to compute the output (update) at
the time step t for LSTM with a forget gate are:

f t = σ(xt ×W f + ht−1 ×U f + biasf ) (2.9)

it = σ(xt ×W i + ht−1 ×U i + biasi) (2.10)

ot = σ(xt ×W o + ht−1 ×U o + biaso) (2.11)

at = tanh (xt ×W a + ht−1 ×U a + biasa) (2.12)

ct = f t ◦ ct−1 + it ◦ at (2.13)

ht = ot ◦ tanh (ct) (2.14)

where σ is the sigmoid activation function, and ◦ is the element-wise product.

TreeLSTM While LSTM works well on a sequence of inputs, it doesn’t explicitly work
with a tree of inputs, such as an Abstract Syntax Tree (AST). One can force LSTM
to work with tree-like inputs by flattening the trees into sequences of tokens, but this
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normally requires adding more separator tokens (like brackets) into the sequence, making it
inefficient. A better way is to directly enforce the tree structure into the update equations,
which was introduced in TreeLSTM[80]. Given a tree, let Cj denote the set of children of
node j. The Child-Sum TreeLSTM update equations are:

sj =
∑
k∈Cj

hk (2.15)

f jk = σ(xj ×W f + hk ×U f + biasf ) (2.16)

ij = σ(xj ×W i + sj ×U i + biasi) (2.17)

oj = σ(xj ×W o + sj ×U o + biaso) (2.18)

aj = tanh (xj ×W a + sj ×U a + biasa) (2.19)

cj = ij ◦ aj +
∑
k∈Cj

f jk ◦ ck (2.20)

hj = oj ◦ tanh (cj) (2.21)

Intuitively, TreeLSTM incorporates the summation of outputs of children (Eq. (2.15)) into
the computation of the parent node (in Eq. (2.17) to Eq. (2.19), TreeLSTM uses s instead
of h as in vanilla LSTM), which enforces the tree structure. Note that TreeLSTM is a
generalized version of vanilla LSTM: if each node has exactly one child, we get the same
equations as in vanilla LSTM.

2.3.3 Reinforcement learning

In many tasks, a dataset of input-output pairs (x, y) is too expensive, or even impossible
to obtain: imagine having to label all the best moves for half of the number of all possible
chess boards! More importantly, in many cases, we do not really need one single correct
output, but many possible outputs are equally good, as long as their cumulative effects
are the same: as long as we reach the destination in time, it doesn’t really matter whether
our speed at time t is 40 or 50 km/h. To solve those two problems, we need to have a
learning paradigm that optimizes for a global goal, while collecting the data all by itself.
Reinforcement learning is such a paradigm, and has achieved remarkable successes in many
difficult tasks, such as Robotics [86] or playing board games [82, 40].

Markov Decision Process. A standard formulation of RL is as a Markov decision
process (MDP), that includes:
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• a set of states S;

• a set of actions A;

• Pa(s, s
′) = Pr(st+1 = s′ | st = s, at = a) is the probability a state s transits to

another state s′, by taking the action a;

• Ra(s, s
′) is the reward after the transition from s to s′ by taking the action a.

At each time step t, the system interacts with its environment and receives the current
state st and the immediate reward rt. The goal of RL is to learn a policy π : A × S 7→
[0, 1], π(a, s) = Pr(at = a|st = s) that defines the probability of taking an action a when in
state s. Note that in this thesis, we only care about finite action spaces (discrete actions).
There are also continuous action spaces, e.g predicting the optimal speed at each time
step. We want π to maximize the expected cumulative reward. In our setting, where P
is deterministic (taking one action results in only one possible new state), the cumulative
reward is defined as:

E =
T−1∑
t=0

Rat(st, st+1) (2.22)

where T could be ∞ if necessary.

The dilemma of RL lies in the fact that we often do not have access to the true reward
function R (if we do, we can simply sample many tuple (s, a, Ra(s, s

′)) and learn it in a
supervised manner), only the final reward at the end of the execution of the policy, yet
in practice RL cannot be trained without intermediate feed backs. For example, imagine
if we can only train a Chess RL system if the only reward is a binary signal at the end!
Hence, a big part of RL research is about crafting adequate proxy rewards, that tells the
agent how well it currently performing. One can directly craft the proxies using domain
knowledge, such as assigning scores for board configurations in Chess, or use best-so-far
random policy as the target (e.g Policy Gradient [84]), or learn the reward function for a
state-action pair instead of the reward for just the state (e.g Deep-Q learning [35]).
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1 function Spacer:
In: 〈Init ,Tr ,Bad〉
Out: 〈safe, Inv〉 or unsafe
Q := ∅ ; // pob queue

N := 0 ; // maximum safe level

F0 := Init , Fi := > for all i > 0 ; // lemma trace

U := Init ; // reachable states

forever do
Candidate [ isSat(FN ∧ Bad) ]

Q := Q ∪ 〈Bad , N〉;
Predecessor [ 〈ϕ, i+ 1〉 ∈ Q, M |= Fi ∧ Tr ∧ ϕ′ ]

Q := Q ∪ 〈GetPredecessor(ϕ,M), i〉;
Successor [ 〈ϕ, i+ 1〉 ∈ Q, M |= F(U) ∧ ϕ′ ]
U := U ∨GetSuccessor(U ,M)[x′ 7→ x];

Conflict [ 〈ϕ, i+ 1〉 ∈ Q, F(Fi)⇒ ¬ϕ′ ]
Fj := (Fj ∧ ITP(F(Fi), ϕ

′)[x′ 7→ x]) for all j ≤ i+ 1;
Induction [ ` ∈ Fi+1, ` = (ϕ ∨ ψ),F(ϕ ∧ Fi)⇒ ϕ′ ]

Fj ← Fj ∧ ϕ for all j ≤ i+ 1;
Propagate [ ` ∈ Fi, Fi ∧ Tr ⇒ `′ ]

Fi+1 ← (Fi+1 ∧ `);
Unfold [ FN ⇒ ¬Bad ]

N := N + 1;
Safe [ Fi+1 ⇒ Fi for some i < N ]

return 〈safe, Fi〉;
Unsafe [ isSat(Bad ∧ U) ]

return unsafe;

Figure 2.2: Spacer algorithm as described in [48], modified to make annotation coher-
ent. x and x′ are constant symbols, which typically represent program variables. We
use the shorthand F(ϕ) = U ′ ∨ (ϕ ∧ Tr).
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1 parser = argparse.ArgumentParser ()

2 parser.add_argument(’-P’, ’--p-model -path’,

3 help=’path to the .pt file of the model’)

4 parser.add_argument(’-F’, ’--fallback -mode’, action=’store_true ’,

5 help=’whether to run in fallback mode’)

6 args = parser.parse_args ()

7 def main():

8 fallback_mode = args.fallback_mode

9
10 if fallback_mode:

11 server_config ={

12 "p_model": None ,

13 "fallback_mode": args.fallback_mode

14 }

15 else:

16 p_model = setup_model(args.p_model_path)

17 server_config ={

18 "p_model": p_model ,

19 "fallback_mode": args.fallback_mode

20 }

21
22 serve(server_config)

23 main()

Figure 2.3: A bloated server server.py.

1 {

2 "main" : "server.py",

3 "args" : ["-F"]

4 }

Figure 2.4: A specification file spec.json for server.py.
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1 parser = argparse.ArgumentParser ()

2 parser.add_argument(’-P’, ’--p-model -path’,

3 help=’path to the .pt file of the model’)

4 parser.add_argument(’-F’, ’--fallback -mode’, action=’store_true ’,

5 help=’whether to run in fallback mode’)

6 args = parser.parse_args ()

7 def main():

8 ’’’

9 The original code for main

10 ’’’

11 ...

12
13 def main_specialized ():

14 fallback_mode = True

15 server_config ={

16 "p_model": None ,

17 "fallback_mode": True

18 }

19 serve(server_config)

20 main_specialized ()

Figure 2.5: A debloated version of server.py with respect to spec.json.
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(a) Matrix multiplication.

y

(b) Perceptron

Element-wise nonlinearity

Element-wise nonlinearity

(c) Multi-layer Perceptron

Element-wise nonlinearity Element-wise nonlinearity

(d) Recurrent neural network

Figure 2.6: Visualization of matrix multiplication, perceptron, multi-layer perceptron, and
recurrent neural network.
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Chapter 3

Learning Literal Co- and
Anti-occurrences for Inductive
Generalization

3.1 Introduction

Model checking has been widely used in various important areas such as robustness analysis
of deep neural networks [44], verification of hardware designs [25], software verification [9],
analysis [32] and testing [74], parameter synthesis in biology [11], and many others. The
central challenge of model checking is to find a concise and sound approximation of all
possible states a given system may reach, which does not cover any undesired states (i.e.
violating given specifications). Tremendous processes have been made by innovations in
efficient data representations [18], scalable SAT solvers [76, 60, 30], and effective heuris-
tics [24, 23, 56]. Modern model checkers share a common basis, namely, IC3 [15], of which
the key insight is inductive generalization (IG). This idea has been generalized to support
rich theories [39] that are crucial for many verification tasks [47, 34] beyond hardware ver-
ification. The generalized IC3 with rich theories, also known as satisfiability checking for
Constrained Horn Clauses modulo Theory (CHC) [14], becomes the core part of a broad
range of verification tasks.

Existing IG techniques follow either an enumerative search process [15, 16] or ad-hoc
heuristics [33, 48]. Heuristics are effective but may demand non-trivial domain-specific
(or even problem-specific) expertise. In this work, we aim to automatically learn such
heuristics from the past successful IGs. We observe that verification problems as well as
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associated IGs are not isolated from each other. Taking software verification as an example,
verifying different properties of the same program involves similar or same IGs; different
versions of programs have similar code base; and different software may use same coding
convention, idioms, library or framework, resulting in similar structures.

Our approach is inspired by the recent advances in deep learning, which automatically
learn non-trivial patterns from raw pixels [49] as well as semantic correlations between
natural language texts [57]. A natural solution is to train a deep learning model to directly
perform IG. However, IG raises many new challenges for deep learning. First of all, the
input and the output of IG are symbolic expressions, which are highly structured with rich
semantics. Slight syntactic variations can lead to dramatic changes in semantics. Second,
more importantly, IG has to satisfy complicated semantic constraints. Third, given deep
learning models hardly provide any reliable guarantees, how to design a neuro-symbolic
system that exhibits learnability from past experiences but still preserves soundness? All
these challenges have to be properly addressed in building a neuro-symbolic reasoning
framework. In this work, we share our design choices and empirical findings in building a
neuro-symbolic engine Dopey, which introduces a neural component into symbolic model
checking. Specifically, we make the following contributions:

• we adapt standard deep learning models to effectively represent symbolic expressions
by incorporating both syntactic and semantic information;

• we design a simple but effective learning objective so that training data can be
collected with nearly no changes of existing model checkers;

• our integration algorithm achieves the soundness by design, and in the worst case,
the learning component may only hurt the running time performance;

• we implement Dopey on top of Spacer, a state-of-the-art CHC-solver, using an
efficient client-server architecture;

• our empirical evaluations indicate Dopey significantly improves Spacer on chal-
lenging benchmarks from CHC-COMP 2018.

3.2 Overview

In this section, we give an overview of our technique, outline the challenges involved, and
our key insights to address them. The context is symbolic SMT-based Model Checking
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Figure 3.1: Overview of Symbolic Model Checking and overview of Dopey.

(SMC) [15, 39, 46], also known as satisfiability checking for Constrained Horn Clauses
modulo Theory (CHC) [14]. In Model Checking, the high-level goal is to show that an
infinite state transition system (Tr) does not have an execution/path that reaches a set of
bad states (Bad) by finding a formula Inv that is an inductive invariant of Tr and does
not intersect with Bad . The goal of CHC solving is to show that a set of First Order Logic
formulas Φ that satisfy the Horn restriction [14] is satisfiable by exhibiting a symbolic
formula M that defines an FOL model that satisfies Φ. The two problems are closely
related. Model Checking often reduced to CHC solving. Both problems are in general
undecidable.

Fig. 3.1a shows the basic structure of an SMC algorithm based on IC3 architecture. In
the paper, we use SMC Spacer [46], but the architecture is common to many engines. SMC
iteratively unrolls the Tr , uses an SMT solver to find a bounded counterexamples (which
is usually decidable), and, if no counterexample is found, attempts to create an inductive
invariant. The invariant is constructed as a set of so called lemmas, where each lemma is
disjunction of atomic formulas. An example lemma is x ≤ 0 ∨ y > 0. For convenience, we
often represent lemmas as a set of formulas, writing instead {x ≤ 0, y > 0}. Many of the
details of the algorithm are not important, and we omit them here. The step we focus on in
this paper is inductive generalization (highlighted in blue in Fig. 3.1a), that is responsible
for generalizing learned lemmas. In practice, this step is crucial for the performance of
SMC.

Conceptually, inductive generalization is a simple process, usually done with an algo-
rithm similar to the one we call IterDrop, shown in Fig. 3.2. IterDrop starts with a
valid lemma ` = {l1, . . . , ln}, and proceeds to generalize ` by removing an arbitrary chosen
literal from `, and using an SMT solver to check whether the lemma is still valid (by call-
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In: the original F-inductive lemma L = {l1, l2, ..., ln}
Out: a generalized F-inductive lemma K ⊆ L

1 K ← ∅ // kept literals

2 C ← L // literals to check

3 while C 6= ∅ do
4 K,C ← dropOne(K,C)

5 return K

6 function dropOne(K, C)

7 lit← pick(C)
8 if isInductive(K ∪ C \ {lit}) then
9 C ← C \ {lit}

10 else
11 K ← K ∪ {lit} ; C ← C \ {lit}
12 return K,C

Figure 3.2: IterDrop algorithm.

ing isInductive). The details of isInductive are not important – but it can be quite
expensive. If the call succeeds, the literal is removed, otherwise it is kept. The goal is to
generalize to a valid lemma with fewest literals.

From now on, when the context is clear, we use generalization instead of inductive
generalization.

We illustrate IterDrop with a sample run, shown in Fig. 3.3a. IterDrop proceeds
as follows:

• it tries to drop the first literal, x3 = true, by checking whether `′1 = {x1 = true, x6 =
1, x9 − x10 ≥ 41, x5 = 1} is valid;

• assume that `′1 is valid, then `← `′1, and x1 = true is chosen next;

• now, assume that `′2 = {x6 = 1, x9 − x10 ≥ 41, x5 = 1} is not valid. ` remains as is
and x6 = 1 is chosen next;

• assume that `′3 = {x1 = true, x9 − x10 ≥ 41, x5 = 1} is valid, then ` ← `′3, and
x9 − x10 ≥ 41 is chosen next;
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	and	(x_3	=	True)
					(x_1	=	True)
					(x_6	=	1)
					(x_9	-	x_10	>=41)
					(x_5	=	1)

	and	(x_1	=	True)
					(x_6	=	1)
					(x_9	-	x_10	>=41)
					(x_5	=	1)

	and	(x_6	=	1)
					(x_9	-	x_10	>=41)
					(x_5	=	1)

	and	(x_1	=	True)
					(x_9	-	x_10	>=41)
					(x_5	=	1)

	and	(x_1	=	True)
					(x_5	=	1)

	and	(x_1	=	True)
					(x_9	-	x_10	>=	41)

inductive?

YES

NO

NO

YES

inductive?

inductive?

inductive?

	and	(x_1	=	True)
					(x_9	-	x_10	>=	41)

inductive?
YES

(a) IterDrop example.

	and	(x_3	=	True)
					(x_1	=	True)
					(x_6	=	1)
					(x_9	-	x_10	>=41)
					(x_5	=	1)

QUICKDROP

	and	(x_1	=	True)
					(x_9	-	x_10	>=	41)

	and	(x_1	=	True)
					(x_9	-	x_10	>=	41)

inductive?
YES

(b) QuickDrop example.

Figure 3.3: Examples of IterDrop and QuickDrop.

• assume that `′4 = {x1 = true, x5 = 1} is not valid, then ` is unchanged, and x5 = 1 is
chosen next;

• assume that `′5 = {x1 = true, x9 − x10 ≥ 41} is valid, then `′5 is the final generalized
lemma.

The example highlights the difficulty of inductive generalization. First, each call to checkInductive
is potentially very expensive. Thus, reducing the number of the calls is highly desirable.
Second, many of the calls, like steps 2 and 4 are “useless” – no new lemma is learned from
them. Thus, reducing such “useless” calls is also highly desirable. Finally, a solver makes
many (up to thousands) such inductive generalization calls per run.

Our key insight is that since generalization happens frequently, and, while the lemmas
are different, the literals are similar, it is possible to learn the co-occurrence between literals
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Figure 3.4: Architectures of QuickDrop.

that do and do not occur in the same lemma together. We conjecture that once such a co-
occurrence is known, it can be used to guide IterDrop to make fewer “useless ” choices,
and, ultimately, increase performance of SMC. Furthermore, to avoid the difficulties of
online learning, we rely on the fact that many systems come with multiple properties (i.e.,
Bad states), and learning from solving one property can be transferred to solving another.

Concretely, we propose a new SMC, called Dopey. As shown in Fig. 3.1b, Dopey
combines symbolic reasoning with guidance by a neural network. The core of Dopey is a
new neural-based generalization algorithm called QuickDrop. Its pseudo-code is shown
in Fig. 3.7. QuickDrop uses two neural networks, denoted by M+ and M−, to predict
whether a currently chosen literal should be kept in the lemma or dropped. The prediction
is based on past co- and anti-occurrences of pairs of literals in lemmas.

We illustrate a run of QuickDrop on the same example as IterDrop. Recall that
the initial lemma is ` = {x3 = true, x1 = true, x6 = 1, x9 − x10 ≥ 41, x5 = 1}. Assume that
x1 = true is checked and kept, QuickDrop proceeds as follows:

• it runs M+ and predicts that {x9 − x10 ≥ 41} should be kept;

• it runs M− and predicts that {x3 = true, x6 = 1} should be dropped;
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• it combines the results from steps 1 and 2 and suggests a candidate `cand = {x1 =
true, x9 − x10 ≥ 41};

• it checks the inductiveness of `cand.

Note that QuickDrop runs only one inductiveness check, compared to 5 used by Iter-
Drop.

The key idea of QuickDrop is to use the co-occurrence and anti-occurrence between
literals in lemmas to predict which literals are likely to be together in future lemmas. This
intuition comes from an observation that in many generalizations either: (a) a literal is
always got removed whenever another literal is kept (anti-occurrence) or (b) a literal is
kept whenever another literal is also kept (co-occurrence). We believe that a) happens
because the state space of a typical system under analysis can be partitioned into disjoint
components, and many lemmas reference only a few of the components at a time; and b)
happens because those literals are part of the same piece-wise linear function.

To learn the desired anti- and co-occurrence, we use two neural networks, called M−

and M+, respectively. The networks are trained based on a run of an SMC on a problem
instance. We gather the set of all lemmas and their generalizations, and use the data to
train the network. Each network predicts, given a literal li the likelihood that a literal lj
appears in a lemma together with li. The details of the training are given in Section 3.4.

Challenges. To make Dopey a practical verification engine, we have to address chal-
lenges in three aspects: (a) machine learning, (b) logical soundness, and (c) engineering.
For machine learning, the challenge is in representing symbolic expressions as vectors, while
maintaining their rich semantic structure to enable to learn and generalize co-occurrences
between them. For logical soundness, the challenge is to use the neural nets in a way
that guarantees the soundness of a verification engine. For engineering, the challenge is to
integrate ML and symbolic components in an effective way.

Representation learning of symbolic formula. Unlike raw images or natural lan-
guage text, for which there are standard deep learning models including convolutional and
recurrent neural networks, a literal in a lemma is a symbolic formula, which is structured
and meaning of which is sensitive to small changes. Simply viewing a literal as a sequence
of tokens, as in NLP, fails to capture the subtle semantic differences between structurally
similar literals.
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Figure 3.5: An example of an AST and its semantic features.

We incorporate both syntactic and semantic information of a literal into its represen-
tation. Our approach views a literal as a directed acyclic graph (DAG), which is post-
processed from its abstract syntax tree (AST), and then adapts TreeLSTM [80] to embed
such a DAG structure. Our approach also takes semantic level information into consid-
eration so that specific properties of values are respected. For instance, embedding of
numerical values should preserve their relative order and equality.

Learning for inductive generalization. Directly using machine learning to address
the generalization problem is a non-trivial structure prediction problem. It takes in a set
of symbolic formulas and outputs another set of symbolic formulas that are more general
and more concise. Though in principle, sequence-to-sequence models [51] are applicable,
they are unlikely to accomplish such a complicated reasoning task with existing ML mod-
els. In fact, even predicting equivalence between two simple symbolic expressions remains
challenging [4]. Rather than having an end-to-end ML solution, we embed a learning
component in a classic symbolic approach of generalization. Specifically, the learning com-
ponent captures the co-occurrence between literals appearing in past runs and predicts the
likelihood of keeping or dropping a literal in the current run. Furthermore, uncertainties
introduced by the learning component have to be carefully controlled, which otherwise
could lead to unsound conclusion. Dopey is designed to make sound progress no matter
what predictions the learning component provides. Bad predictions may be harmful to the
performance, but not to soundness!

Integrating machine learning with logical reasoning. ML models and logical rea-
soning framework are implemented in very different programming environments and rely
on different hardware. Their integration unavoidably involves communication overhead
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Token ::= Var | 〈NUM〉 | Op

Var ::= variable name

Op ::= + | − |<| · · ·
Kind ::= 〈BOOL OP〉 | 〈REAL OP〉 | 〈BOOL VAR〉

CEn(p) ::= s d1 · · · d2n+1 s ∈ R, di ∈ {0, 1}

Figure 3.6: Grammar for AST node features.

among different runtimes and hardware. This may offset performance gains of fast predic-
tion, posing a significant engineering challenge.

3.3 Representation learning

Representing symbolic formulas. We represent logical formulas as Abstract Syntax
Trees (ASTs): operators label nodes of the tree, operands are children, constants (boolean
and numeric) and variables are leaves. An example of an AST is shown in Fig. 3.5.

ASTs are natural representations of formulas that are traditionally used in parsing and
compilers. They preserve the key structure of the formula, while hiding (or abstracting)
unnecessary details such as white space, commas and parentheses. Alternative represen-
tations, for example, as a sequence of tokens, abstract too much of the structure of the
formula, while highlighting unnecessary differences.

Nonetheless, multiple semantically equivalent formulas can be represented by different
trees. For example, the formulas x + y > 0 and y + x > 0 are semantically equivalent,
yet differ in the concrete syntax, and have different ASTs. To mitigate this, we put
each formula in a “normal” form by simplifying all expressions that we can (for example,
rewriting x+0 into x), and ordering all associative operators. While there are many ways to
normalize formulas (while not achieving a true normal form), we adopt a simple heuristic by
using a simplification engine of the SMT solver Z3 [28]. The normalizer cannot handle deep
semantic equivalences, such as normalizing 2/7·x9−4/7·x10 ≥ 0 into 1/7·x9−2/7·x10 ≥ 0.
However, we believe it is good enough for our setting.

Note that semantically equivalent rewriting and normalization make our representations
of symbolic formulas essentially directed acyclic graphs (DAGs) modulo semantic equiva-
lence, because semantically equivalent subtrees share the exact same embedding. Indeed,
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representations of symbolic formulas in our implementation are DAGs, although they are
viewed as if they were trees by the embedding model. Without further notice, when we
refer to a node in a tree, we actually mean its corresponding node in the DAG.

We use TreeLSTM [80] to aggregate information at each node in the tree into a fixed-
length vector before feeding it to our subsequent networks. The process is illustrated in
Fig. 3.4b. In the rest of this section, we describe the features that are used to encode each
AST node into a vector to be combined by a TreeLSTM.

AST node features. We assume that the reader is familiar with the basics of the
TreeLSTM neural networks. One of the main requirements is that each node N of the
input tree must be represented by a fixed-length vector in Rn.

A common technique to map a node N to a vector is to first map the infinite (or
simply large) set Σ of all possible nodes into a finite set T of tokens (a.k.a. tokenization),
and then have a dictionary E that maps each token in T into a fixed-length vector (a.k.a.
embedding). During tokenization, many nodes have to be mapped into the same token. For
example, in NLP applications, all out-of-vocabulary words are mapped into a token <UNK>.
Similarly in Programming Language applications, all variable and function names and all
numeric constants are mapped into three tokens: <VAR>, <FUNC>, and <NUM>, respectively.

Unfortunately, this tokenization scheme is not applicable to our setting. We believe
that both the variable names and the values of the numeric constants are highly relevant!
For example, consider two pairs of formulas:

x1 − 2x3 + 7x5 ≥ 10 x1 − 2x3 + 7x5 ≥ 14 (3.1)

x1 − 2x3 + 7x5 ≥ 10 x1 + x3 − x5 ≥ 0 (3.2)

Pair (3.1) represents two parallel hyperplanes, with the first subsuming the second. Pair (3.2)
represents two intersecting hyperplanes and cannot be simplified any further. The differ-
ence between the two pairs disappears when all numeric constants are mapped to a small
finite set of tokens. Yet, this difference is crucial for successful learning in our context!

Instead, we represent each AST node by a vector of features that captures the necessary
semantic information. Specifically, a nodeN is first represented by a tuple 〈Token,Kind,CE〉.
The grammar for each feature is shown in Fig. 3.6, where angled brackets are used to rep-
resent terminals (e.g., 〈NUM〉 is a symbol <NUM>). At the embedding step, Token and
Kind are mapped into fixed-length vectors T and K, while CE is not embedded further.
The final feature vector is the concatenation of T , K, and CE.
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Token captures the symbol of the node. For variables and operations this is their
syntactic representation; for real valued constants, it is a single token 〈NUM〉. Note that
each variable is kept as a separated token. This is possible because in our setting, each
system has finitely many variables.

Kind captures the type (or sort) of the expression rooted at the AST node. The value
is one of a fixed pre-defined values such as 〈BOOL OP〉, for a Boolean operator, etc. In
principle, the sort can be learned automatically, similar to how heads in BERT [22] seems
to be able to learn part-of-speech for words in an unsupervised manner. However, we see
no benefit of learning the sort since this information is already easily available.

CE (constant encoding) captures the numeric value of the node for real valued con-
stants, and is a vector of 0 for other nodes. The encoding of each number p ∈ R is
parameterized by an encoding constant n (in our experiments, n = 6) that determines the
bounds of the magnitude of p.

Concretely, for each numerical constant p that is represented as s× 10e in the scientific
notation, we encode the significant s by its float representation and encode the exponent
e using a one-hot encoding vector. To one-hot encode e, we put e in the range [−n, n]. If
e is out of range, we set it to either the upper or lower bound. For example, CE2(41) =
[4.1 0 0 0 1 0], and CE0(41) = [4.1 1]. Our motivation for CE is to help Dopey to quickly
extract magnitudes of real constants along with their value.

We conclude this section with an example. Fig. 3.5 shows an AST for x9 − x10 > 41
and its transformation into a tree of feature vectors. The tree is further embedded and fed
into a standard TreeLSTM model.

3.4 Learning co-occurrence probabilities

Recall from Section 3.2 that in this work, instead of having an end-to-end ML solution,
we learn to predict whether a literal could be dropped from a lemma, based on its co-
occurrences with other literals in the training data. Concretely, we want to learn how likely
a literal is kept, given the existence of another literal in the solution. While calculating
the exact probability of this event in the training data and learn a neural network to
approximate it in a regression manner seems like a natural approach, it is actually not
desirable: the exact probabilities, even with binning, are not consistent between different
properties of the same system. Fortunately, we observe that pairs with co-occurrence
probabilities above a certain threshold are consistent across different properties!

Thus, we frame our problem into a classification problem:
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Problem 1 (Literal Co- and Anti-occurrence Classification) Given a set of literals
L and a scoring function f : L × L 7→ [0, 1], train a classifier M s.t. M(liti, litj) ≈
f(liti, litj).

We use two scoring functions:

f+(liti, litj) =

{
0 if P+

ij < threshold

1 if P+
ij ≥ threshold

f−(liti, litj) =

{
0 if P−ij < threshold

1 if P−ij ≥ threshold

where P+ and P− are co- and anti-occurrence matrices that capture the likelihood that two
literals appear or do not appear in the same generalized lemma, respectively. To define
P+ and P− formally, assume that there is a a finite set of original lemmas Lem, and
a corresponding set of generalized lemmas GLem. Inductive generalization is a function
indgen : Lem 7→ GLem. The sets of all literals in GLem and Lem are GLit and Lit ,
respectively. A generalized lemma is indicated by a prime, so that lemma `′ = indgen(`)
is the generalization of lemma `. Then, the co- and anti-occurrence matrices are defined
as follows:

P+
ij = Pr(litj ∈ `′ | liti ∈ `′)

P−ij = Pr(litj 6∈ `′ | liti ∈ `′, liti ∈ `, litj ∈ `)

That is, P+
ij is the probability that a literal litj appears in a lemma `′ ∈ GLem that contains

liti, and P−ij is the probability that a literal litj does not appear in a lemma `′ given that
literal liti ∈ `′ and both liti and litj are in `. P+ is of the size |GLit | × |GLit |, and P− is of
the size |Lit | × |Lit |. They are not complimentary: P+

ij + P−ij 6= 1. Neither is symmetric:
P+
ij 6= P+

ji and P−ij 6= P−ji .

• Let F be a literal-frequency matrix of size |1 × GLit |. Fi is the number of times a
literal liti appears in a generalized lemma. Formally, Fi = |{` ∈ GLem | liti ∈ `}|.

• Let X be a literal co-occurrence matrix of size |GLit | × |GLit |. Xij is the number
of times both liti and litj are in some generalized lemma in GLem. Formally, Xij =
|{` ∈ GLem | liti ∈ `, litj ∈ `}|. Note that Xij = Xji. For consistency, we let
Xii = Fi.

• P+ is a literal co-occurrence probability matrix of size |GLit | × |GLit |. P+
ij is the

probability that litj appears in a generalized lemma `′ given that liti is in `′. Formally,
P+
ij = Pr(litj ∈ `′ | liti ∈ `′) = Xij/Fi if Fi 6= 0, and 0 otherwise.
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The definition of the anti-occurrence matrix P− is similar.

• Let Xcor be a literal co-occurrence matrix of size |Lit | × |Lit |, such that Xcor
ij is the

number of times liti and litj are in a lemma ` ∈ Lem. Formally, Xcor
ij = |{` ∈ Lem |

liti ∈ `, litj ∈ `}|. Clearly, Xcor
ij = Xcor

ji .

• Let Xanti be a literal anti-occurrence matrix of size |Lit | × |Lit |, such that Xanti
ij is

the number of times a pair (liti, litj) satisfies the following conditions: (a) liti and
litj are in in some lemma ` ∈ Lem, (b) liti is in the corresponding generalized lemma
`′ ∈ GLem, and (c) litj is not in `′. For consistency, we set Xanti

ii = 0. Formally,
Xanti

ij = |{` ∈ Lem | `′ = indgen(`), liti, litj ∈ `, liti ∈ `′, litj 6∈ `′|}.

• A literal anti-occurrence probability matrix P− of size |Lit | × |Lit | is defined such
t hat P−ij is the probability that litj is not the generalized lemma given that liti is
in the generalized lemma. Formally, P−ij = Xanti

ij /Xcor
ij if Xcor

ij 6= 0, and 0 otherwise.
Note that, like P+, P− is not symmetric.

Dataset creation and Model training. Our goal is to learn the two classifiers M+

and M− that approximate f+ and f−, respectively. To create the sets Lem and GLem,
we run Spacer on an instance and collect all generalization steps. This data is used to
compute P− and P+ based on their definitions. We then fix a threshold and convert the
matrices into a binary classification dataset.

We train both classifiers using the architecture shown in Fig. 3.4b. It consists of a
TreeLSTM network followed by two fully connected layers. To enforce the asymmetry
in the learned classifier, we take the dot product of the TreeLSTM output vectors and
concatenate them together before feeding them to the first fully connected layer. Since
both P+ and P− are sparse, we employ a negative sampling rate, directly inspired by work
on learning word co-occurrence probability [63].

Discussion. There are many alternative ways to guide generalization using a neural
component than the one we chose. Perhaps most desirable is to have an end-to-end solution
in which the neural component takes an original lemma as input and produces a generalized
lemma as output. However, the symbolic reasoning required for this is so complex that we
believe that such a solution is much harder to train and scale up. Another alternative is to
learn an approximation of the inductive check, i.e., the function isInductive(Context , `) 7→
{true, false} that determines whether a candidate lemma ` is inductive in the current
context. We have tried such an approach, but could not make it effective. The difficulty
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In: the original F-inductive lemma L = {l1, l2, ..., ln}
Out: a generalized F-inductive lemma K ⊆ L

1 K ← initKeep(L) // kept literals

2 C ← L // literals to check

3 while C 6= ∅ do
4 ∆K ← {l | l ∈ C ∧M+(K, l)}
5 ∆C ← {l | l ∈ C \∆K ∧M−(K ∪∆K, l)}
6 if ∆K = ∆C = ∅ then
7 K,C ← dropOne(K,C)

8 else
9 if isInductive(K ∪ C ∪∆K \∆C) then

10 K ← K ∪∆K
11 C ← C \∆C \∆K

12 else
13 K,C ← dropOne(K,C)

14 return K

Figure 3.7: QuickDrop algorithm.

is that the Context that is used by the inductive checker is a large symbolic formula. This
makes training the network difficult. We suspect it is as hard as learning a neural SMT-
solver [72, 70]. We have also considered using just the co- or anti-occurrence matrices, but
the results are not as good, as shown by our empirical evaluation (Section 3.6).

3.5 Dopey: Spacer with QuickDrop

With a positive model M+ and a negative model M−, we next illustrate the design and
implementation of Dopey.

Inductive generalization with M+ and M−. Dopey uses M+ and M− to guide
IterDrop, resulting in a new algorithm named QuickDrop (shown in Fig. 3.7). The key
differences of QuickDrop from IterDrop are highlighted in blue. Instead of iteratively
checking if each literal should be kept or dropped, QuickDrop makes a more aggressive
decision – keep and drop many at once (line 4-5).
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Figure 3.8: Comparing Dopey’s and Spacer’s running time, where blue dot (•) indicates
an instance with unsafe property, orange cross (x) indicates an instance with safe property,
top (right) most place are instances Spacer (Dopey) timed out.

Given that deep learning models could make arbitrary predictions, special care need
to be taken in order to preserve soundness. Line 1 makes sure that the initial set of kept
literals is not empty. The initKeep can be a process similar to IterDrop except for
terminating immediately when the first literal to keep is found. Lines 6 and 9 assure that
the aggressive decisions by the algorithm always result in a valid generalization; otherwise,
a fallback mechanism is triggered. In the worst case, QuickDrop should be effectively the
same as IterDrop. More formally, we have the following important yet straightforward
theorem.

Theorem 1 QuickDrop is sound and terminating.
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Figure 3.9: Dopey vs. using only either M+ or M−.

Implementation and optimizations. QuickDrop is implemented in Python using
PyTorch [62], while Spacer is implemented in C++. The communication overhead be-
tween these two could diminish the performance gain by fast inductive generation, creating
an engineering challenge. Simply exchanging information via file IO is too expensive. In-
stead, we implement a client-server architecture in which QuickDrop is wrapped in a
gRPC server connects to a gRPC client inside Spacer. As communicating and parsing
over gRPC dominates the overhead, we explore further optimizations.

First, we use caching. Generalizing a lemma triggers multiple requests to QuickDrop.
For each request, Dopey sends over a lemma, the server parses it and runs M− and M+.
Since multiple requests over a period share the same lemma, we can parse it once and
cache the result until a flag indicating QuickDrop needs to handle a new lemma.

Second, we use parallel precomputation. Instead of invoking M− and M+ once for each
literal pair, we precompute the full co- and anti-occurrence matrices at once, and use them
for all subsequent requests. As long as the matrices fit into the GPU memory, computing
the full matrices take the same time as computing one pair of literals.

Together, the two optimizations reduce overhead by up to 50%. Although gRPC com-
munication and parsing still dominates the inference time, empirically it is good enough
to achieve absolute speedups.
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All Unsafe Safe

Solving + infer. time 1.51 1.50 1.58

Solving time 2.16 2.46 2.02

SMT solving time 2.25 2.71 2.08

Generalization time 3.26 3.63 1.67

Table 3.1: Dopey’s speed up compared to Spacer on instances solved by both.

3.6 Empirical Evaluation

3.6.1 Setup.

We collect benchmarks from CHC-COMP 2018 [2] with a particular focus on benchmarks
that corresponds to verification of hybrid systems, which are known to be challenging for
inductive generalization, and for which Spacer behaves poorly. We train Dopey on
execution traces of 17 benchmarks (or hybrid systems) and test Dopey on other 170
verification tasks (i.e., 10 different properties for each benchmark).

Training details.

We train our model using Adam optimizer [45], with embedding dimension of 16 and
TreeLSTM’ hidden size of 64, dropout rate 0.5, negative sampling rate 5, threshold set to
0.8 for both P+ and P−. Each model is trained up to 3,000 epochs. All experiments are
done using an Ubuntu 20.04 PC with an Nvidia 1050 Ti.

3.6.2 Comparing Dopey with Spacer.

Dopey successfully solved 41 instances on which Spacer failed.1 On instances solved by
both, the speedups achieved by Dopey are summarized in Table 3.1. The first column
lists the running time of different phases of Dopey, of which the distribution is illustrated
in Fig. 3.9a. The “All”, “Unsafe”, “Safe” columns show the average speedups for all
instances, instances with unsafe properties (i.e. a counterexample is found), instances with
safe properties (i.e. a proof is found), respectively. The second row shows that Dopey

1According to CHC-COMP 2018, failure means no result is produced in 15 minutes.
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is 1.51× faster than Spacer on average over all instances solved by both. The last three
rows show the average speedups in specific phases.

Beyond quantitative improvements, Dopey also achieved higher quality of inductive
generalization, indicated by the safe instances (Safe column in Table 3.1). Suppose all
the performance gain is from the inductive generalization alone, then the speedups should
decrease when the overall solving time or SMT solving time is considered (as in the Unsafe
column of Table 3.1). Surprisingly, this is not the case. Our analysis shows that this
is because Dopey learns better lemmas and improves the reasoning steps outside of the
inductive generalization phase (SMT-solving time)!

Fig. 3.8 plots the running time of each individual instance by Dopey and Spacer.
Except for a few instances whose solving time is short, Dopey significantly outperforms
Spacer.

3.6.3 Ablation study.

To highlight the combined benefits of M+ and M−, we also evaluate Dopey with a single
model. As shown in Fig. 3.9, except for a few outliers, using both models is faster and
solves more instances – Dopey times out on 54 (58) instances when using only M+ (M−).

3.7 Conclusion

We proposed a neuro-symbolic system, Dopey, which uses deep learning models to improve
symbolic model checking. Dopey uses a positive and a negative model to approximate co-
and anti-occurrences of literals appeared in past inductive generalizations. The logical and
neural component of Dopey are implemented as an efficient gRPC client-server architec-
ture. Our empirical evaluation on CHC-COMP 2018 indicates significant improvements
of Dopey over the state-of-the-art SMC engine, Spacer: inductive generalization is 3.26×
faster, and total solving time is 1.51× faster. To the best of our knowledge, Dopey is the
first neural-symbolic SMC guidance that works well in practice. We open source the code
and welcome contributors to contribute, improve and extend Dopey.

This chapter is adapted from our collaboration with Dr.Xujie Si, and is currently under
submission.
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Chapter 4

Reinforcement Learning Guided
Software Debloating

4.1 Introduction

The rapid increase of software productivity in the last decades was fueled by the extensive
use of abstraction and reuse of software components. While this enabled building larger and
more complex software systems, these gains came at the expense of less efficient and less
secure software systems, and contribute to a troublesome trade-off between productivity
and performance/security. When an application built using general-purpose components
is deployed, the majority of the general-purpose functionality is never used. This creates
two problems: first, as the use of abstraction layers makes it more difficult to optimize
the software, this has a detrimental impact on performance; second, it increases the attack
surface for security vulnerabilities.

An emerging solution to this problem is a set of tools, called Software Debloaters, that
automatically customize a program to a user-specified environment. One successful ap-
proach for software debloating is based on partial evaluation (PE) [42] in which a partial
evaluator takes a program and some of its input values and produces a residual (or spe-
cialized) program in which those inputs are replaced with their values. While PE has been
extensively applied to functional and logic programs, it was less successful on imperative
C/C++ programs (with a noteable exception of C-Mix [7] and Tempo [26]). With the
advent of LLVM [52], several new partial evaluators of LLVM bitcode have arisen dur-
ing the last few years (e.g., LLPE [77], Occam [54], and Trimmer [73]). These tools
leverage LLVM optimizations such as constant propagation, function inlining, and others
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to either reduce the size of the residual program (e.g., Occam and Trimmer) or improve
performance (e.g., LLPE).

The key step of a PE-based debloater is to estimate whether specializing (or inlining)
a function results in a smaller (or more secure) residual program. Specialization naturally
increases the size of the code since it adds extra functions. However, since some inputs in
the new functions have been replaced by constant values, optimizations such as constant
propagation, might become enabled and result in new optimization opportunities that
reduce the code size. Therefore, the decision whether or not a function should be specialized
for a particular call-site is non-trivial. Current PE-based software debloaters use naive
heuristics. For example, Occam implements two heuristics of “never specialize” or “always
specialize”, respectively; Trimmer specializes a function only if it is called once in the
whole program.

In this paper, we present a new approach based on reinforcement learning (RL) to
automatically infer effective heuristics for specializing functions for PE-based software de-
bloating. RL is a good fit for the problem for two reasons. First, code specialization
resembles a Markov Decision Process: each decision moves the code from one state to
another, and specialization depends only on the current state rather than the history of
the transformations. Second, the quality of debloating can only be measured after all
specialization actions and corresponding compiler optimizations have been performed.

The main challenge in applying RL is in deciding on a good state representation. While
it is tempting to use the source code (or LLVM intermediate representation (IR)) as a
state, this is not computationally tractable. The IR is typically hundreds of MBs in size.
Instead, an adequate set of features that captures meaningful information about the code
while avoiding state aliasing is required. In particular, these features must capture the
calling context in order to distinguish between call-sites.

The main contributions of this paper are threefold: (1) calling context features that
enable RL to find a useful heuristic for PE-based debloating software; (2) implementation
of our method in a tool called DeepOccam; and (3) evaluation on the reduction of the
program size and number of possible code-reuse attacks, by comparing our handcrafted
features with features learned automatically via embedding LLVM IR into a vector space
using inst2vec [13]. Our initial evaluation suggests that RL is a viable method for
developing an effective specialization policy for debloating, and learning with handcrafted
features is easier than with inst2vec.
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Callee Caller Module Call-Site

Basic blocks Basic blocks Functions Arguments

Instructions Instructions Instructions Known arguments

Store instructions Store instructions Basic blocks

Call instructions Call instructions Direct calls

Branch instructions Branch instructions

Loops Loops

Uses Uses

Influenced branches Untouched call-sites

Influenced instructions

Table 4.1: RL features. Influenced instructions (branches) are the those whose operands
have statically known arguments. Uses indicates how many times the caller and the callee
are invoked.

4.2 Methods

In this section, we formulate the debloating problem as a reinforcement learning problem,
describe the learning procedure, and its hyperparameters.

Action, state, and reward. To determine whether a call-site should be specialized or
not, we train a policy using reinforcement learning. This requires defining action, state,
and reward.

An action is whether to run a code transformation, called specialization, or not. Con-
sider a call to function calleeF with arguments A at a call-site ci. Let formals be a map
from call-site arguments to their corresponding formal parameters. Let B, B ⊆ A, be the
arguments whose values are are statically known. Then, specialization of the call-site does:

1. Create a new function spec calleeF (formals(A \ B)), such that spec calleeF ’s body
is identical to the body of the original calleeF except that formals(B) are replaced
with their values.

2. Perform constant propagation to push forward the information to the rest of callee’s
body, potentially specializing more call-sites in the callee.
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3. Replace calleeF (A) with spec calleeF (A \B) at the call-site ci.

Note that after specialization, a software debloater can trigger other optimization passes
such as inlining and dead-code elimination.

A state is a vector capturing all the relevant information about the code. We experiment
with two state representations: (a) a vector of hand crafted features (HF), and (b) an
embedding of LLVM IR via inst2vec (IV).

In HF, the state is a concatenation of four feature vectors, summarized in Table 4.1.
They capture relevant information about the callee, caller, compilation unit (module), and
call-site. Most features are self-explanatory, and hence, we focus only on those which are
novel or more relevant for avoiding state aliasing. The state aliasing problem occurs when
two different states have the same representation in the RL model. In our context, our
features must distinguish between two call-sites in the same basic block when invoking the
same callee with the same arguments if one is specialized and the other not. In [50], the
features InLoop (whether a call-site is in a loop), InlineDepth (the current inlining depth),
and currentGraphSize (how many instructions are there in the caller, including one added
by inlining), are used to decide inlining. However, in our case, these features are insufficient
to prevent state aliasing. Thus, we also add Untouched call-sites that counts the number of
call-sites yet to be processed. Since the call-sites are processed in a fixed order, Untouched
call-sites is sufficient to distinguish any two call-sites in a function.

In IV, we use inst2vec embedding from [13]. We extract the LLVM IR of the caller,
the callee, and the calling context (a window of n instructions around the call-site) as a
lists of instructions. Each instruction is embedded into a vector space using inst2vec.
Additionally, we encode the arguments at the call-site as a bitvector, in which each stati-
cally known argument is encoded by 1, and an unknown argument by 0. This bitvector is
then embedded using a different embedding matrix. Finally, the IV state is a tuple of the
above four 2-D matrices. Note that in this case, the calling context of each call is explicitly
represented by the IR.

For rewards, we focus on two different metrics. First, we measure the number of
instructions in the final binary produced by the software debloater after specialization
took place. Second, we measure the reduction of the attack surface, focusing on code reuse
attacks.

Code reuse attacks are exploits in which an attacker makes use of the available instruc-
tions in the binary to chain together short sequences called gadgets, and use those gadgets
to compromise the control flow of the program, causing a malicious effect. Those sequences
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are often categorized based on their last instruction, into ROP (return-oriented program-
ming), JOP (jump-oriented programming), and COP (call-oriented programming) gadgets,
respectively. Since the relationship between the number of gadgets and exploitability is
an open question [17], we focus on reducing the number of gadgets without making any
further claim about the security of the debloated code.

The rewards are the negations of the number of instructions, ROP, JOP, and COP
gadgets. The negation is necessary because we are interested in minimizing our metrics.
We only have one measurement at the end of an episode (when the final binary is produced).
Immediate rewards after each action are set to zero.

Learning procedure, policy network, and hyper-parameters. Each state repre-
sentation requires a different neural net for the policy network. For HF, we use a 3-layer
fully connected network. Before training, we run the pipeline with a random policy 100
times to calculate the mean and standard deviation of each feature, and use this metadata
to normalize all features into mean of 0 deviation of 1.

For IV, we run the caller, the callee, the calling context and the arguments bitvector
through four separate 2-layer GRU [21] blocks, concatenate the last hidden outputs of
these 4 blocks, and then feed it to a 3-layer fully connected network. The architecture is
depicted in Fig. 4.1.

Both networks use ReLU [61] as the activation function. We use reinforce [84] with
normalized rewards to update the policy for both models. At each reinforce iteration, we
roll out k runs of the current policy, batch them together, and use the Adam optimizer [45]
to update the network. For all metrics, we use the same hyper-parameters: inst2vec
calling context n = 10, number of runs in each policy rollout k = 75, Adam’s learning rate
= 0.001, and train up to 340 iterations.

4.3 Implementation and Evaluation

We have implemented our prototype, called DeepOccam, using Occam [54]. The ar-
chitecture of DeepOccam is depicted in Fig. 4.2. DeepOccam takes as inputs a set of
LLVM modules (main application and libraries) and a manifest (i.e., a user-defined ex-
ecution environment) and produces a specialized binary. We used Gadget Set Analyzer
(gsa) [17] to evaluate the specialized binary and PyTorch [62] for training the deep
learning models.
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At each call-site, Occam calculates the features described in Table 4.1 from the LLVM
module, sending them to the PyTorch server, and transforming the code based on the
returned decision. During inference, the PyTorch server receives the message and runs
the learned policy to decide whether to specialize that call-site. During training, the
PyTorch server also keeps track of all the decisions it has made and uses that information
to update its policy. We run multiple copies of Occam on multiple copies of the PyTorch
server to scale up the learning process, which is justified by the Markov property of the
state.

We compare DeepOccam with Occam running in two modes. First, occamAgg
that runs Occam with a nonrecursive-aggressive policy. This always specializes a call-site
if the callee is not a recursive function. Second, occamNone that runs Occam without
specializing any call-site. Fig. 4.3 shows the comparision between DeepOccam using HF
, DeepOccam using IV, occamAgg, and occamNone for debloating GNU Tree. On
average, DeepOccam outperforms both occamNone and occamAgg in reducing the
number of ROP and JOP gadgets, matches occamNone on COP gadgets, and underper-
forms in reducing the number of instructions. Interestingly, while DeepOccam matches
occamNone on COP, it finds a different policy that specialize some call-sites. For opti-
mizing the number of instructions, we run 200 more training iterations but are not able to
outperform occamNone. We include the results for the number of instructions only to
demonstrate the flexibility of our approach.

In all of our experiments, the learning procedure does not converge when we use
inst2vec pre-trained embedding. Upon closer inspection, we observe that the software
in our test suite, once compiled to LLVM IR, contained many instructions regarded as
low-frequency by inst2vec. Consequently, they are all mapped into the same UNK! token
in the cutoff dictionary. Hence, the calling context window that we use suffers from the
state aliasing problem: different calling contexts are mapped to the same vector of tokens.

This is surprising since inst2vec claims to train the embedding on a wide range of
software written in C, C++, FORTRAN, and OpenCL, specifically to avoid overfitting to
a small family of code bases.

4.4 Related work and Conclusions

Recent advances in deep learning and RL have opened new frontiers to the design of
compiler heuristics [8]. Most current approaches define actions at the compilation unit
level: whether to run a particular optimization pass, or how to schedule optimization
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Figure 4.3: Results for optimizing different metrics using HF and IV. x-axis is the number
of RL iterations. y-axis is the results. Dots and bars are mean and std. dev. of k runs in
each iteration. HF results are in blue while IV results are in green. Orange and red lines
are occamNone and occamAgg results, respectively.

45



passes. For example, Cummins et al. [27] model code as a natural language problem to
predict whether to run the code on CPU or GPU, as well as the optimal GPU thread
coarsening factors. Kulkarni et al. [50] use NEAT — a genetic algorithm — to learn
an inlining heuristic for MaxineVM as a neural network. For interpretability, they then
approximate the neural network by a decision tree. We, on the other hand, use actions at
much lower granularity, focusing on specialization at each call-site.

Program code is a rich structure that can be presented in a variety of ways, e.g., as
raw text, control-flow and call- graphs, etc. Recent application of deep learning for code
experiment with models based on techniques from Natural Language Processing and Graph
Neural Network (e.g., [6, 13, 5, 20]). Among them, inst2vec [13] is the only one that works
on LLVM IR.

The closest related work is Chisel [37] – a software debloater based on RL. Inspired
by C-Reduce [66], Chisel takes a program P and a property of interest ϕ (i.e., P must
compile and pass tests defining ϕ) and produces the smallest program P ′ that satisfies ϕ.
RL accelerates the search for the reduced program providing a scalability boost. Compared
to DeepOccam, Chisel has very different state and action space, and, is generally only as
sound as the test cases defining ϕ.

Conclusions In this thesis, we present DeepOccam— an end-to-end tool to learn spe-
cialization heuristics for software debloating. Our preliminary results suggest that it is
feasible to use RL to learn an effective specialization heuristic to optimize a variety of
related metrics. They also suggest that out of the box, pretrained embedding such as
inst2vec might not be applicable for the task.

We hope that DeepOccam contributions in feature engineering and architecture might
be applicable to other compiler optimization tasks such as inlining.

This chapter is adapted from the following published work:

• Nham Le, Ashish Gehani, Arie Gurfinkel, Susmit Jha, Jorge A.Navas, Reinforcement
Learning Guided Software Debloating, Workshop on ML for Systems at NeurIPS 2019

46



Chapter 5

Future Work

Recent advances in deep learning, especially language modeling, has played a tremendous
role in solving many natural language reasoning tasks that used to be considered infea-
sible. Yet, neural-guidance for symbolic reasoning is still a barely charted territory, with
successes few and far between. In previous chapters, we have studied two exciting appli-
cations of learning a better heuristic for symbolic reasoning tasks, specifically Inductive
Generalization, and Software Debloating. In this chapter, we outline some future direc-
tions on guiding symbolic reasoning using machine learning, which we think are feasible,
and can play a major role in making neural-guidance not just another tool, but a powerful
hammer in tackling down symbolic reasoning tasks.

Representation learning for formal languages. Deep learning has made tremendous
progress in understanding natural language, and in many cases surpassing human-level
[3]. However, there is a big gap between natural language understanding and formal
language understanding. Natural language, as a means of transferring information through
noisy channels (i.e sound wave through the air, or word-of-mouth gossiping), has a lot of
redundancy in both grammar and context [85]. This redundancy helps with, among others,
enhancing the comprehensibility of natural language. In contrast, formal languages, such as
formulas or programming languages, are designed to be as concise and compact as possible,
with little to no redundancy. This makes representation learning for formal languages very
challenging. For example, many breakthroughs in NLP are based on the word-guessing
tasks — given a sentence, we randomly remove some words in it, and try to guess them
using the remaining words — such as word2vec [58] or BERT [22]. Due to redundancy, it
is reasonable to try guessing a word from its context, but it is counter-intuitive to try to
do the same for formal languages.
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One promising way to learn a good representation for formal languages is to use the
structure of the entities. In Chapter 3, we show that augmenting an AST with domain
knowledge about the tokens can achieve good results on representing linear arithmetic for-
mulas. Given that graph-based and tree-based methods have been successful in structure
learning tasks, such as drug discovery [19], it is reasonable to believe that representa-
tion learning for small to medium mathematical formulas is feasible. While in Chapter 4,
we cannot transfer results of inst2vec [13] into our domain, this graph-based work shows
promising results in many different tasks, and it is foreseeable that better feature engineer-
ing at the token level may help us achieve even better code representation.

Transfer learning for formal languages. One of the main reasons for the wide adop-
tion of deep learning is the success of transfer learning. Starting from a model pretrained
on millions of labeled images using hundreds of GPU hours, an individual researcher can
easily fine tune it for a task that may have only a handful of training examples, using a
small amount of computing power. ELMo [64] and BERT [22] were big breakthroughs in
NLP for the same reason: previously, each NLP task required a full end-to-end training,
making it very difficult to use deep learning to solve NLP problems with small datasets.

The main challenge in successful transfer learning for symbolic reasoning lies in the fact
that downstream tasks are often representation specific: while one can imagine a model
trained on a dataset about the Python programming language can be helpful to do Python
reasoning tasks (e.g neural-based auto-completion), there is little reason to believe it would
help detect memory leaks in C++, a bug that is completely missing in Python. This is
very different in natural language, where tasks for different languages are often the same:
answering questions, analysing sentiments, extracting entities, among others. Because of
this reason, while the amount of available code and formulas are tremendous, it is still
not clear how one can train a useful general model that can be finetuned to solve multiple
different tasks.

A useful idea that borrowed from the compilers community: at the end of the day, all
programming languages have to be compiled to machine instructions. A model trained on
this lowest level of abstraction, or some other forms of Intermediate Representation (IR),
could be the key to the puzzle. While there is still no pre-trained model that is helpful
for multiple tasks in practice, we envision that this is a solvable missing piece to make
neural-guidance learning truly useful.
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Chapter 6

Conclusion

This thesis presents a glimpse into the feasibility of learning state-of-the-art heuristics for
symbolic reasoning tasks, specifically, inductive generalization and software debloating,
using neural networks.

For inductive generalization, we proposed a neuro-symbolic system, Dopey, which uses
a positive and a negative model to approximate co- and anti-occurrences of literals that
appeared in past inductive generalizations to improve the overall symbolic model checking
process. For software debloating, we present DeepOccam— an end-to-end tool to learn
specialization heuristics using Reinforcement Learning.

In both cases, our results show that the learned heuristics are better than state-of-the-
art handcrafted ones, even when we take into account the communication costs between
our neural components in Python and our symbolic engine in C++, in the case of Dopey.
To the best of our knowledge, they are both the first neural-symbolic guidance that works
well in practice for their tasks.

Looking forward, we want to extend the work presented in this thesis to make it more
useful, by trying to learn a better representation for the formulas and LLVM IRs, as well as
trying to make the learned heuristics transferable to different problems in the same task.
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