
Type Checking and Whole-program
Inference for Value Range Analysis

by

Tongtong Xiang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Tongtong Xiang 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of contributions

Tongtong Xiang is the sole author for Chapters 1, 3, 4, and 6. They are written under
the supervision of Professor Werner Dietl, and are not yet published.

Chapter 5 of the thesis is part of the publication for the OOPSLA 2020 paper, Precise
Inference of Expressive Units-of-Measurement Types [46]. It is co-authored with Jeff Yu-
cong Luo and Werner Dietl. Chapter 2, background, and Chapter 7, conclusion and future
work, also contain pieces from the paper.

iii

Abstract

Value range analysis is important in many software domains for ensuring the safety
and reliability of a program and is a crucial facet in software development. The resulting
information can be used in optimizations such as redundancy elimination, dead code elim-
ination, instruction selection, and improve the safety of programs. This thesis explores
the use of static analysis with type systems for value range analysis. Properly formalized
type systems can provide mathematical guarantees for the correctness of a program at
compile time. This thesis presents (1) a novel type system, the Narrowing and Widening
Checker, (2) a whole-program type inference, the Value Inference for Integral Values, (3)
a units-of-measurement type system, PUnits , and (4) an improved algorithm to statically
analyze the data-flow of programs.

The Narrowing and Widening Checker is a type system that prevents loss of infor-
mation during narrowing conversion of primitive integral data types and automatically
distinguishes the signedness of variables to eliminate the ambiguity of a widening conver-
sion from type byte and short to type int. This additional type system ensures soundness
in programs by restricting operations that violate the defined type rules.

While type checking verifies whether the given type declarations are consistent with
their use, type inference automatically finds the properties at each location in the program,
and reduces the annotation burden of the developer. The Value Inference for Integral
Values is a constraint-based whole-program type inference for integral analysis. It supports
the relevant type qualifiers used by the Narrowing and Widening type system, and reduces
the annotation burden when using the Narrowing and Widening Checker. Value Inference
can infer types in two modes: (1) ensure a valid integral typing exists, and (2) annotate a
program with precise and relevant types. Annotation mode allows human inspection and
is essential since having a valid typing does not guarantee that the inferred specification
expresses design intent.

PUnits is a type system for expressive units of measurement types and a precise, whole-
program inference approach for these types. This thesis presents a new type qualifier for
this type system to handle cases where the method return and method parameter type
are context-sensitive to the method receiver type. This thesis also discusses the related
work and the benefits and trade-offs of using PUnits versus existing Java unit libraries,
and demonstrates how PUnits can enable Java developers to reap the performance benefits
of using primitive types instead of abstract data types for unit-wise consistent scientific
computations in real-world projects.

The Dataflow Framework is a data-flow analysis for Java used to evaluate the values at
each program location. Data-flow analysis is considered a terminating, imprecise abstract

iv

interpretation of a program and many false-positives are issued by the Narrowing and
Widening Checker due to its imprecision. Three improvements to the algorithm in the
framework are presented to increase the precision of the analysis: (1) implementing a
dead-branch analysis, (2) proposing a path-sensitive analysis, and (3) discussing how loop
precision can be improved.

The Narrowing and Widening Checker is evaluated on 22 of the Apache Commons
projects with a total of 224k lines of code. Out of these projects, 18 projects failed with 717
errors. The Value Inference for Integral Values is evaluated on these 18 Apache Commons
projects. Out of these projects, 5 projects are successfully evaluated to SAT and the Value
Inference inferred 10639 annotations. The 13 projects that are evaluated to UNSAT are
manually examined and all of them contain a real narrowing error. Manual annotations
are added to 5 of these projects to resolve the reported errors. In these 5 projects, the
Narrowing and Widening Checker detects 69 real errors and 26 false-positives, with a
false-positive rate of 37.7%. The type system performs adequately with a compilation time
overhead of 5.188x for the Narrowing and Widening Checker and 24.43x for the Value
Inference. These projects are then evaluated with the addition of dead-branch analysis to
the framework; the additional evaluation time is negligible. Its performance is suitable for
use in a real-world software development environment.

All the presented type systems build on techniques from type qualifier systems and
constraint-based type inference. Our implementation and evaluation of these type systems
show that these techniques are necessary and are effective in ensuring the correctness of
real-world programs.

v

Acknowledgements

I would like to give my most sincere thanks to my supervisor Professor Werner M. Dietl,
for his constant support and guidance. I would like to thank my readers, Professor Arie
Gurfinkel and Professor Richard Trefler, for their time and feedback. I am thankful to all
my colleges in our research group, especially Jeff Y. Luo, Weitian Xing, and Lian Sun, for
their help and bringing joy to these two years of my study. I would also like to thank my
boyfriend, for taking care of my well-being and daily matters.

vi

Dedication

This is dedicated to my parents who have always wanted the best for me.

vii

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background and Related Work 6

2.1 Dataflow Framework for Java . 6

2.2 Checker Framework and Inference . 7

2.2.1 Modular Type Checking . 10

2.2.2 Whole-program Type Inference . 11

2.3 Constant Value Type System . 12

2.4 PUnits - The Units Type System . 14

3 Numeric Narrowing and Widening Conversion Checker 16

3.1 Introduction . 16

3.2 Type Hierarchy and Rules . 18

3.2.1 Type Introductory Rules . 19

3.2.2 Type Rules . 20

3.2.3 Method-local Flow-sensitive Refinement 22

3.3 Type System Features . 23

viii

3.3.1 Polymorphism . 23

3.3.2 Post-Condition Qualifiers . 24

3.4 Implementation . 25

3.5 Experiments . 26

3.5.1 Errors due to Insufficient Annotations 26

3.5.2 Real Errors . 29

3.5.3 False Positives . 31

3.5.4 Performance Overhead . 32

3.6 Related Work . 34

4 Whole-Program Type Inference for Integral Range Analysis 35

4.1 Introduction . 35

4.2 Value Inference Type System . 37

4.3 Constraints . 38

4.3.1 Comparison Expression Refinement 40

4.4 Encoding of Constraints for Solvers . 41

4.5 Implementation . 49

4.6 Experiments . 49

4.6.1 Performance Overhead . 54

5 PUnits - Units Type System Improvement and Related Works 56

5.1 Introduction . 56

5.2 Receiver Dependent Units . 57

5.3 JScience vs. PUnits . 59

5.4 Related Work in Static Units Systems . 63

ix

6 DataFlow Framework Precision Improvements 67

6.1 Introduction . 67

6.2 Dead Branch Analysis . 68

6.2.1 Implementation . 70

6.2.2 Applying to Constant Value Type System 71

6.2.3 Experiments . 72

6.3 Path-Sensitive Analysis . 73

6.4 Loop Imprecision . 74

6.5 Related Work . 81

7 Conclusions and Future Work 82

References 84

x

List of Figures

1.1 Example on how the Nullness type system prevents possible null pointer
exceptions . 2

2.1 An example program with CFG produced by the Dataflow Framework . . . 8

2.2 Type checking and type inference process with Checker Framework Inference 10

2.3 Main qualifier hierarchy of the Constant Value Checker 13

2.4 Examples of normalized unit representations 15

3.1 Examples of incorrect usage of narrowing conversion 17

3.2 Examples of ambiguous usage of widening conversion 18

3.3 Type rule for narrowing conversion . 20

3.4 Narrowing error issued by the Narrowing and Widening Checker 21

3.5 Type rule for widening conversion . 21

3.6 Widening warning issued by the Narrowing and Widening Checker 22

3.7 Method-local flow-sensitive type refinement process 22

3.8 Example of a polymorphic class constructor and method 24

3.9 Post-condition qualifier example . 25

3.10 An example of errors issued due to insufficient annotations in source code . 28

3.11 Four false positive examples. 33

4.1 Example with constraints generated at each line 37

4.2 Type hierarchy of the Value Inference type System. 38

xi

4.3 Method-local flow-sensitive type refinement process with comparison expres-
sions . 42

5.1 Receiver-dependent units examples . 58

5.2 Receiver-dependent units unsound examples 58

5.3 A simple example comparing the difference between JScience and PUnits . 62

5.4 An overview of features provided by each unit of measurement system. . . 64

6.1 An example of a false positive error due to lack of dead branch analysis. . . 68

6.2 Control-flow graph of the example in Fig. 6.1 containing the transfer result
in each block produced after evaluating the expressions. 69

6.3 An example of false positive error due to path-insensitive analysis. 74

6.4 Control-flow graph of the example in Fig. 6.3 containing the transfer result
in each block produced after evaluating the expressions. 75

6.5 An example of false positive error in a while loop 77

6.6 CFG produced by the Dataflow Framework for the example in Fig. 6.5 . . 78

6.7 Final Control-flow Diagram output generated by the modified Dataflow
Framework for program 6.5 . 80

xii

List of Tables

3.1 Range and default annotations of integral data types 19

3.2 Experimental result of evaluating the Narrowing and Widening Checker on
22 Apache Commons project . 27

3.3 The results of running the Narrowing and Widening Checker on manually
annotated projects . 29

4.1 Summary of language uses in the 18 experimental Apache Commons projects 50

4.2 Constraint variables and constraints generated for each of the 18 Apache
Commons projects. 51

4.3 Inference mode results using Value Inference for Integral Values 52

4.4 Annotation mode results using Value Inference for Integral Values 53

5.1 Summary of all the dimensions and units used in the GasFlow project . . . 61

6.1 With vs. without dead branch analysis experiment results 73

xiii

Chapter 1

Introduction

Ensuring the safety and reliability of a program is a crucial facet in software development.
To achieve this, sophisticated and elaborated processes and methods are presented and
implemented. This includes static analysis [2] and type systems [11]. Static program anal-
ysis is the analysis of a computer program without execution of the program, as opposed
to dynamic analysis, which analyzes the program by performing executions [38]. A type
system is a logical system that assigns properties and defines type rules between differ-
ent parts of a computer program, such as variables, expressions, functions, or modules.
Properly formalized type systems can provide mathematical guarantees for the correctness
of a program at compile time. The type properties in a type system can be checked and
inferred. Type checking verifies whether the given type declarations are consistent with
their use. Type inference can automatically define the properties at each location in the
computer program, and reduce annotation burden on the developer.

Java is one of the most popular programming languages today and is widely used in
many places, from Android and web applications to scientific and financial computations.
Java’s built-in type system can already prevent various type errors. For example, Java will
issue a type incompatible error for expression String x = 0, since x has type String and
0 has type int. The Java type system forbids direct assignment of a variable with a type
int to a variable with a type String and vice versa. Nevertheless, Java’s type system has
its limitations. As a basic example, Java’s built-in type system cannot prevent the possible
occurrence of a null pointer exception.

The Checker Framework [41, 18] is a pluggable type system that enhances Java’s type
system and makes it “more powerful and useful”. This pluggable type system framework
allows additional type systems to be designed and ‘plugged-in’ to the existing compiler

1

1 void foo (@NonNull Object nn , @Nullable Object nbl) {
2 nn . t oS t r i ng () ; // OK
3 nbl . t oS t r i ng () ; // Error
4 i f (nbl != n u l l) {
5 nbl . t oS t r i ng () ; // OK
6 }
7 }

Error: [dereference.of.nullable] dereference of possibly -null

reference nbl

nbl.toString ();

^

Figure 1.1: Example on how the Nullness type system prevents possible null pointer ex-
ceptions. An dereference.of.nullable error is issued on line 3.

infrastructure to further improve program reliability. These additional type systems ensure
soundness in programs by restricting operations in which violate the type rules defined.

For example, the Nullness type system implemented using the Checker Framework can
effectively prevent the occurrence of null pointer exceptions during program execution.
Fig. 1.1 shows how null pointer exceptions are prevented using the Nullness type system.
The parameters nn and nbl are annotated with @NonNull and @Nullable, respectively.
Those annotations are the additional property provided by the type system. @NonNull

means that this variable will never be null. Therefore the dereference of nn on line 2
is always valid. @Nullable means that the variable can be a null value. Therefore, the
compiler issues a dereference of nullable error on line 3 as the type rule of the Nullness
type system forbids the dereferencing of a @Nullable type. Variables with type @Nullable
should perform a nullness check before dereferencing for program safety.

Other than the Nullness type system, various other type systems are built using the
Checker Framework. This thesis focuses on the design and implementation of two novel
type systems that are built using the Checker Framework, the Narrowing and Widening
Type System, and the Value Inference Type System. Both of these type systems are built
on top of the Constant Value type system, and can be viewed as an enhancement to the
type system. This thesis will also discuss the improvements and evaluations of PUnits [46],
a units-of-measurement type system built together with Ph.D. student Jeff Yucong Luo.

The Constant Value type system tries to determine the primitive values, box primitive
values, string values, and array lengths of each variable at compilation time. Knowing

2

the value of variables at compiler time can be useful to prevent many common run-time
exceptions such as the index out of bound exception [30], division by zero exception,
overflow exception, etc. It is also useful to prevent unsafe codings that are not easily
detectable, such as enforcing cryptography functions to only accept certain key strings or
length1. This thesis presents the Narrowing and Widening Checker, a novel type system
that builds on top of the Constant Value type system and prevents unsafe narrowing
and widening conversions between Java’s primitive types [23]. A conversion is considered
unsafe when there is a loss or ambiguity of information during narrowing and widening. It
is inspired by the EOF Value Checker [14].

Ensuring computations are unit-wise consistent is an important task in software de-
velopment for scientific, engineering, and business domains. Performing calculations with
mismatched dimensions (e.g., length, time, speed, etc.) or units (e.g., meters, millimetres,
seconds, meter per second, etc.) can result in catastrophic failures. The Mars Climate
Orbiter disintegrated in 1998 on its approach to Mars due to one software component
communicating values in Imperial units, while the receiving component expected values
in International System (SI) units [7]. This mismatch cost US taxpayers $327.6 million
USD. For efficiency reasons, such computations are usually performed with primitive types
instead of abstract data types, which results in very weak static guarantees about cor-
rect usage and conversion of units. This thesis makes improvements on the Unit type
system and demonstrates how this type system can enable Java developers to reap the
performance benefits of using primitive types instead of abstract data types for unit-wise
consistent scientific computations in real-world projects.

Manually adding type qualifiers to every location of the computer program can be a
burden. To reduce annotation burden for the developers, a type inference framework,
Checker Framework Inference [20], has been presented. The Checker Framework Infer-
ence is a whole-program type inference that uses a constraint-based analysis approach.
Constraints are generated over the program locations and are collected for a solver. If a
solution exists, then a valid typing exists for the program. Optionally, these solutions can
be inserted back into the source code to allow human inspection and provide well-specified
applications and libraries.

The whole-program type inference is not implemented for all the type systems since the
annotation burden and the necessity for human inspection for some type systems may be
low. For some type system where we have localized information, like regex [43], inference
is not necessary. The Units type system on the other hand, wants to provide well-specified
applications and libraries and thus, has a type inference implemented. The Constant Value

1AWS KMS Compliance Checker: https://github.com/awslabs/aws-kms-compliance-checker

3

type system currently does not have a type inference implemented, but due to its wide uses,
having a whole-program type inference for this type system can be useful, especially for
numeric variables. This thesis introduces the Integral Value Inference, a type system that
implements a whole-program inference for integral values in the program.

The Checker Framework uses the Dataflow Framework, a data-flow analysis for Java
[40], to estimate the values during compile time. Data-flow analysis is a static analysis
technique that is flow-sensitive and is guaranteed to terminate. However, it is considered an
imprecise abstract interpretation of a program as this analysis is path-insensitive – it does
not depend on the predicates at conditional branch instructions. This thesis introduces
two enhancements to the precision of the analysis done by the Dataflow Framework, a
dead-branch analysis and a path-sensitive analysis, and discusses how they can be used to
improve loop precision.

The focuses of this thesis is on value range analysis, where the resulting information can
be used in optimizations such as redundancy elimination, dead code elimination, instruction
selection, and improve the safety of programs. The motivation of this thesis is to enhance
the analysis and the pluggable type systems implemented by the Checker Framework and
demonstrate their effectiveness in ensuring program correctness for real-world projects.
This thesis makes contributions in the following areas: the thesis

• presents the Narrowing and Widening Checker, a type checker that prevents loss of
information during narrowing conversion and automatically distinguishes the signed-
ness of variables to eliminate the ambiguity of a widening conversion.

• presents a whole-program inference for integral analysis and reduces the annotation
burden when using the Narrowing and Widening Checker.

• introduces the comparison constraint, a constraint for the refinement of variable types
after a boolean expression.

• adds receiver-dependent types to the Unit type system to further minimize the need
for unit annotations in method bodies and remove unnecessary clutter.

• discusses the related works and the benefits and trade-offs of using the Units Checker
versus existing Java unit libraries, while demonstrating how PUnits enables devel-
opers to reap the performance benefits of using primitive types instead of abstract
data types for unit-wise consistent scientific computations in real-world projects.

4

• improves the algorithm in the framework to increase the precision of the analysis
by implementing a dead-branch analysis, proposing a path-sensitive analysis, and
discussing loop precision improvements.

This thesis is organized as follows:

Chap. 2 discusses the background on the Dataflow Framework, Checker Framework,
Checker Framework Inference, and introduces the Constant Value type system and the
Units type system. Chap. 3 introduces the Narrowing and Widening Checker, which is
built on top of the Constant Value type system. Chap. 4 introduces Integral Value In-
ference, which is influenced by the Constant Value type system. Chap. 5 discusses the
improvement to the Units type system and the benefits and trade-offs of using the Units
Checker versus existing Java unit libraries. Chap. 6 introduces the improvement to the
Dataflow Framework for precision. Finally, Chap. 7 concludes the whole thesis and dis-
cusses future work.

5

Chapter 2

Background and Related Work

2.1 Dataflow Framework for Java

Data-flow analysis is a flow-sensitive analysis that predicts the flow of information through
the locations of a program. It is considered a terminating, imprecise abstract interpre-
tation of a program. Even though it is imprecise, having an analysis that is decidable
is important, e.g. for compiler optimization. The Dataflow Framework is a data-flow
analysis framework for Java programs that estimate the values a variable might contain.
The java program is portrayed as a control-flow graph (CFG) in the Dataflow Framework.
The Dataflow Framework transforms the abstract syntax tree (AST) generated from an
input Java program to its CFG interpretation. Then the analysis is applied to the CFG
iteratively until the abstract values reach a fix-point.

The Dataflow Framework contains the following main modules [40]:

• Node: represents an individual operation of a program. It is a minimal Java operator
or expression.

• Block: consists of groups of nodes. There are four types of blocks: regular block,
exception block, conditional block, and a special block. Conditional block represents
all non-exceptional control-flow splits, or branches, and contains no nodes.

• Abstract Value: is the internal representation of data-flow information computed
by the specific analysis. It is an abstract representation of the values during an
execution.

6

• Store: is a mapping of nodes to their abstract values.

• Transfer Function: takes in a transfer input and produces a transfer result. Each
node has its transfer function. The transfer input and the transfer result may contain
a single store or a pair of then and else stores. A Boolean-valued expression produces
a result that contains both a then and an else store, other Nodes produces a result
with a single store.

• Analysis: performs the iterative data-flow analysis over the control flow graph
blocks.

Fig. 2.1 is an example program and the corresponding control flow graph generated by
the Dataflow Framework of that program. Special blocks, entry and exit, are represented
using circles. The regular blocks are represented using rectangles and the conditional blocks
are represented using an octagon. The regular blocks contain the sets of nodes that make
up the program. The type of node is indicated in [].

If there is one store flowing into a conditional block, then it is duplicated to both
successors. If two stores are flowing into a conditional block, the then store is propagated
to the block’s then successor and the else store is propagated to the block’s else successor.

Control flow split occurs in if, for, while, and switch statements. A transfer result
is produced containing two stores, then and else stores, after certain boolean-valued
expressions. The then and an else store is always produced by the transfer function
after a boolean expression. The then store will flow to the then branch of the control
flow graph and the else store will flow to the else branch of the control flow graph.
After the branching, the two stores are merged back together. Merge means taking the
least-upper-bound of the two stores.

2.2 Checker Framework and Inference

The Checker Framework provides the abstract values, rules, various options, etc. for the
analysis done by the Dataflow Framework. To develop a type system using the Checker
Framework 1, the developer is required to define the five main implementation components
of a type system:

1https://checkerframework.org/manual/#creatingachecker

7

1 int f oo (boolean b) {
2 int x = 0 ;
3 i f (b) {
4 x = 1 ;
5 }
6 }

(a) Example program

〈entry〉

x [VariableDeclaration]
0 [IntegerLiteral]
x=0 [Assignment]
b [LocalVariable]

x [LocalVariable]
1 [IntegerLiteral]
x=1 [Assignment]

〈exit〉

th
en

else

(b) CFG of foo

Figure 2.1: A simple example with its CFG produced by the Dataflow Framework. Spe-
cial blocks are represented using circles. Regular blocks are represented using rectangles.
Conditional blocks are represented using octagon. The regular block consists set of nodes.
The type of node is indicated in [].

8

• Type Qualifier: defines the types in the type system. Usually, a type system
contains a > and a ⊥ indicating the least upper bound and the greatest lower bound
of all the types in that type system.

• Type Hierarchy: defines the typing relationships between the type qualifiers.

• Type Introduction Rules: specifies the type qualifiers at each node or location
in the program. The qualifiers at these locations can be explicitly annotated by the
developer, implicitly defined by the type system, or inferred by the type inference.

• Type Rules: defines the type system’s semantics and yields type errors and warnings
if violated.

• Type Refinement Rules: defines how type qualifiers are refined during flow-
sensitive type refinement when evaluating the program using Dataflow Framework.
Usually, the type is defaulted to > and then refined to a more precise subtype.

• Compiler Interface: specifies the type qualifiers and the options supported by the
type system.

Developers can provide partially-annotated source code and specifications for library
code as input. Type inference alleviates the manual annotation effort for the developer.
The Checker Framework Inference provides a constraint-based whole-program inference
framework for type qualifiers provided by the Checker Framework [36]. Soundness is en-
forced by generating and solving typing constraints through syntax-guided constraint gen-
eration rules. Checker Framework Inference currently supports the following constraints:

• Subtype constraint Ta <: Tb: enforces Ta to be the same type or a subtype of Tb.
They are usually used for assignments, parameter passing, result passing, and type
variable bound checks.

• Equality Constraint Ta = Tb: ensures Ta and Tb are the same. They are usually used
to handle method overriding, type refinement, and type argument.

• Inequality Constraint Ta 6= Tb: ensures Ta and Tb are not the same.

• Comparable Constraint Ta <:> Tb: ensures Ta and Tb are comparable. These con-
straints are usually used for casts or comparison operations.

9

Figure 2.2: Type checking and inference process with three different modes: 1) Modular
type checking using defaults and eager constraint solving; 2) Whole-program type inference
to ensure valid typing; and 3) Whole-program type inference with additional breakable
constraints to annotate code with the most precise types. [46]

• Combination Constraint Tc = Ta B Tb: ensures that the viewpoint adaptation of Tb
from the viewpoint expressed by Ta results in Tc. They are usually used for receiver
dependent variables.

• Arithmetic Constraint Tc = Ta op Tb: enforces that α will be equal to the result of
the arithmetic computation of Ta op Tb, for some defined arithmetic operation op.

• Preference Constraint Ta ≈ Tb: prefers the solution for Ta be the same as Tb when
possible. These constraints are breakable.

A user of Checker Framework Inference can pick between one of three modes: 1) mod-
ular type checking, 2) whole-program type inference to ensure valid typing, and 3) whole-
program type inference to annotate the program with the most precise typing solution.
The modes are respectively given the short names of type check mode, inference mode,
and annotate mode. Fig. 2.2 illustrates the overall type checking and type inference pro-
cess.

2.2.1 Modular Type Checking

Modular type check mode allows methods and classes to be type-checked independently. It
gives developers quick feedback on potential errors, with a method-local view of potential
problems.

10

All type systems use defaults for missing type qualifiers. The defaults are chosen
to give errors across method and class boundaries, allowing developers to quickly catch
potential problems and focus on fixing one method or class at a time. A set of mandatory
constraints is generated by syntax-guided constraint generation rules and follows the type
system semantics. In type check mode, each constraint is solved upon creation. Unsatisfied
constraints cause compilation errors.

Type check mode gives method-local views of potential errors, some of which may be
due to a lack of annotations in the code.

2.2.2 Whole-program Type Inference

Whole-program type inference mode ensures a valid typing exists for a program and, op-
tionally, infers the most precise units for a program using annotation mode. Inference
mode pinpoints the set of code locations across the program that together could cause a
type inconsistent error.

In whole-program type inference, constraint variables are created, which are placehold-
ers for the type qualifiers. The same mandatory constraints are generated as in type check
mode. The constraints for the whole program are collected and solved together by a solver.
Multiple type-safe solutions are possible in inference mode and, as long as a solution exists,
inference succeeds.

Annotation mode creates additional, breakable, preference constraints. It annotates
the program with the most precise types possible by relying on the solver to produce the
optimal solution guided by hard and soft constraints. The annotation mode inserts the
inferred solutions back into the source code, giving the developer a chance to inspect the
results. This is intended to help developers create well-specified applications and libraries.
Like in inference mode, if any of the mandatory constraints cannot be satisfied, errors are
raised for the code locations which generated the unsatisfiable constraints.

If inference succeeds, there exists a valid typing for the program. If a typing exists,
inference will succeed. However, type checking with default qualifiers can fail for different
reasons than type inference. Errors given in inference mode provide a whole-program view
of the reasons why no type-safe solutions can be inferred, and indicate potential errors.

Prior type systems that build a type inference using the Checker Framework Inference
includes the Ontology type system [14], Immutability type system [44], and the Units type
system (Chap. 5). The Ontology type system is used to reason about a coarse abstraction
for a given program based on ontic concepts. The immutability type system is used to
control mutation and avoid unintended side-effects.

11

2.3 Constant Value Type System

The Constant Value type system is used to approximate the possible value of an expression
at compiler time. Fig. 2.3 shows the type hierarchy of this type system containing the main
type qualifiers and the subtyping relationships among them. The main type qualifiers for
this system are @BoolVal, @IntVal, @IntRange, @DoubleVal, and @StringVal. @IntVal

and @IntRange indicate the possible values for a byte, short, char, int or long type
and their wrappers. @DoubleVal indicate the possible values for a byte, short, char,
int, or long type and their wrappers. The @IntVal and @DoubleVal type annotations
take a set of possible values as argument. This set is limited to 10 entries. At run time,
the expression will evaluate to one of the values in the set. If an integral variable can
be more than 10 values, then the @IntVal annotation changes to @IntRange. @IntRange

takes a lower bound and an upper bound. The smallest value in the range is the minimum
value of long, -9223372036854775808L, and the largest value in the range is the maximum
value of long, 9223372036854775807L. At run time, the expression will evaluate to a value
between the bounds inclusively. @BoolVal indicates the possible values for boolean and
its wrappers, and @StringVal indicates the possible values for String Objects.

For two annotations of the same type, subtypes have a smaller set of possible values. At
the very top of the hierarchy is @UnknownVal (>), which means the variable could be any
value. At the very bottom of the hierarchy is @BottomVal (⊥), which means the expression
could only be evaluated to null. These qualifiers are internal and should never be written
by a programmer.

Many related works statically predict the possible values of variables at run-time, such
as including a value range analysis to compilers [26]. Frama-C is a modular static analysis
framework for the C language and it has a value analysis plug-gin [10]. To reduce the
number of false-positives, it discards the alarms that seem most likely to be false positives,
allowing false-negatives. In the Constant Value type system, all errors are presented en-
suring soundness. It has the same limitations as the Narrowing and Widening Checker
described in Sec. 3.5.3, where loops and external functions call lack precision. It does not
contain a whole-program inference. An entry point must be specified when analyzing a
program with multiple functions. The global variable will differ based on the specified
entry point. With whole-program inference, Value Inference for Integral Values sees all
operations that affect the value of the global variable, and estimate the bounds of that
value accordingly. It does not have type inference capabilities.

12

Figure 2.3: Main qualifier hierarchy of the Constant Value Checker. The type qual-
ifiers are pointing to its supertype. For example, @IntVal(1,100) is an subtype of
@IntRange(0,100), and a supertype of @IntVal(1) and @IntVal(100), but is neither
a subtype nor a supertype of @IntRange(0,1).

13

2.4 PUnits - The Units Type System

PUnits [46] allows developers to specify units of measurement systems by defining a set
of base units, and to specify the units of their program elements via type qualifiers. Each
type qualifier specifies a single unit. For example, @m int is a qualified type specifying an
integer with the unit of meters. The qualifier @Dimensionless specifies the unit of truly
dimensionless quantities, such as number literals, e, and π, and usually does not need to
be written. The qualifiers are organized as a flat lattice over the set of scientific units, with
top > and bottom ⊥ type qualifiers. > expresses unit-wise agnostic types. To support
object-oriented languages, ⊥ is used for null types, and > and ⊥ are respectively used as
the upper and lower bounds of generic type parameters. We use the term unit to denote
both the scientific unit of a program element as well as the type qualifier used to annotate
the program element.

PUnits internally represents all units through a normalized representation to efficiently
reason about program correctness. A base unit is the unit of measurement from which all
other units from the same dimension can be derived. Each base unit is represented by a
symbol. For SI, the base units are {m, s, g2, A, cd, K, mol}.

PUnits represents scientific units as a single prefix and a product of one or more base
units, each raised to an integer power: p uz (where X denotes a sequence of elements
X1, . . . , Xk). Each base unit appears exactly once.

The representation can support any unit system. In the Java implementation, p is
encoded as a base-10 prefix with an integer exponent to support SI-like units: p = 10z.
Thus, we need to declare additional base units for units that are not a base 10 multiple
(e.g., inch vs. cm). Fig. 2.4 shows some examples of how units are represented in PUnits .
The prefix p could be encoded as a floating-point value. However, the precision of analysis
will be subjected to floating-point rounding errors, and safe floating-point comparisons
must be used. The set of base units is customizable, allowing for base units such as
currencies, abstract quantities, lengths, and pixels. There are special cases where the
units alone cannot decide whether a computation is permitted. For example, a radian
and a steradian, respectively defined as m/m and m2/m2, would both be normalized to
dimensionless. In PUnits , radian and steradian can be declared as two different base
units. Type systems that only allow SI units cannot support such derived units. Some
derived units have several different representations, such as energy, which can be kinetic,
thermal, or electrical, etc. These representations can be supported in PUnits by declaring

2Although kg is defined as the SI base unit for mass, PUnits uses g since the metric prefix is captured
and encoded in the prefix component of the normalized representation.

14

Unit 10z gz mz sz ...

m2 0 0 2 0 0
kg 3 1 0 0 0
N 3 1 1 -2 0
kN 6 1 1 -2 0

Dimensionless 0 0 0 0 0

Figure 2.4: Example unit representations. Squared-meter is represented as m2 and kilogram
is represented as 103 g with g as the base unit. All SI prefixes of a unit are multiplied
together into one prefix. Newton is represented by 103 g m s−2 and a kilo-newton is
normalized and represented by 106 g m s−2. @Dimensionless is represented by 100.

distinct base units. The representation is compact and allows for efficient calculation of
the resulting units of various arithmetic operations. Two units are equal if and only if
every component in their normalized representations are pairwise equal.

PUnits can also be instantiated for dimensional analysis [9] by using a set of base
dimensions (e.g. @Length) instead of base units (e.g. @m), together with the fixed prefix
p = 1. Dimensional analysis can be useful if the developer does not care about the specific
units, such as verifying if two units are convertible. Unit-wise analysis offers more precision
than dimensional analysis and can detect more errors.

15

Chapter 3

Numeric Narrowing and Widening
Conversion Checker

3.1 Introduction

Java allows narrowing and widening primitive conversions on seven of the eight primitive
data types [23], except boolean. These data types are, from the smallest to the largest size,
byte, short, char, int, long, float and double. The five integral types are byte, short,
char, int, and long; double and float are floating-point types. This section focuses only
on the narrowing and widening of integral primitives types and their wrappers. Table 3.1
shows the size of the five integral types. Widening is the process of converting a smaller
size data type to a larger size type, and it is done implicitly. Narrowing is the process of
converting a larger size data type to a smaller size type, and requires explicit casting. All
integral data types in Java are signed except for char; char is a 16-bit Unicode character
rather than signed integer, but can be represented as an integer.

A narrowing conversion from an integral type to another integral type T discards all
but the n lowest order bits, where n is the number of bits used to represent type T . This
may cause a loss of information about the overall magnitude of a numeric value. Fig. 3.1 is
an example where the program has an incorrect behaviour due to loss of information during
a narrowing conversion discussed in the paper on EOF Value Checker [13]. Reading from
an IntputSream in Java returns an integer from 0 to 255 to represent an unsigned byte
or −1 if the end-of-file (EOF) has been reached. The value returned by read should be
compared to −1 before converting it to a byte. In this example, the conversion is performed
before the comparison. The while loop could exit prematurely when read returns a 255.

16

1 InputStream in = new Fi leInputStream (” f i l e ”) ;
2 byte data ;
3 while ((data = (byte) in . read ()) != −1) { // Error
4 p r i n t (data) ;
5 }
6
7 Reader in = new Fi leReader (” f i l e ”) ;
8 char data ;
9 while ((data = (char) in . read ()) != −1) { // Error

10 p r i n t (data) ;
11 }

Figure 3.1: Two program failures caused by loss of information due to incorrect usage
of narrowing conversion from int to byte and char. The first while loop could exit
prematurely if read returns a 255. The second while loop is stuck in an infinite loop as
char cannot be −1.

Similarly, reading form an Reader returns an integer from 0 to 65535 to represent a char

or −1 if EOF has been reached. The conversion is performed before comparing it with −1
and the method is stuck in an infinite loop as char will never be −1.

A widening conversion from a signed integer to another integral type sign-extends the
twos-complement representation of the integer value. Even though a widening conversion
from an integral type to another integral type does not lose information, problems would
occur when developers are trying to work with unsigned value. Unsigned bytes are usually
desired for low-level programming. Since Java does not handle unsigned bytes, the most
common way to represent an unsigned byte in Java is using a signed int. A bitwise-and
(&) with 0xFF is required to correctly convert the signed byte to an int to represent the
unsigned byte. Consider the program in Fig. 3.2, variable byteValue can be widened to
a signed value or an unsigned value both in int. However, Java has no way of knowing
which conversion is desired. Since variable byteValue is initialized as an unsigned byte
0xFF, after the widening conversion, the value should stay as 0xFF for consistency. Shorts
have similar problems. Even though unsigned short can be represented using char, they
are sometimes represented using signed int to differentiated the use of char for a character
value.

Despite these problems, both of these conversions will never result in a run-time excep-
tion. Incorrect widening and narrowing behaviours may trigger other run-time exceptions

17

1 int value = 0xFF ;
2 byte byteValue = (byte) va lue ; // v a l u e = 255
3 int s ignedByte = byteValue ; // v a l u e = −1
4 int unsignedByte = byteValue & 0xFF ; // v a l u e = 255

Figure 3.2: Two different widening of byte to int as int is sometimes used to represent
unsigned bytes in Java. The second widening is the desired behaviour as it is consistent
with the initialization of byteValue.

and produce incorrect programs, and the developer may have a difficult time pin-pointing
the exact source of the problem. This chapter introduces the Narrowing and Widening
Checker, a type system that prevents loss of information during narrowing conversion of
primitive integral data types and automatically distinguishes the signedness of variables
to eliminate the ambiguity of a widening conversion from type byte and short to type
int in Java during program compilation. This checker is built on top of the Constant
Value type system, and is inspired by generalizing the problem resolved by the EOF Value
Checker [13], where it focuses on preventing unsafe EOF comparison such as the examples
in Fig. 3.4.

The Narrowing and Widening Checker is evaluated on 23 of the Apache Commons
project with 224k lines of code. Out of these projects, 18 projects failed with 28 widening
warnings, 354 narrowing errors, 217 type incompatible errors, and 118 override errors.
The output is manually examined and 5 of these projects are evaluated in detail. Manual
annotations are added to those 5 projects to resolve the issued errors. In these 5 projects,
the Narrowing and Widening Checker detects 69 real errors and 26 false-positives, with a
false-positive rate of 37.7%.

3.2 Type Hierarchy and Rules

The Narrowing and Widening Checker is built on top of the Constant Value type sys-
tem. The main type annotations for the Constant Value Checker are @BoolVal, @IntVal,
@IntRange, @DoubleVal, and @StringVal. Out of these, the only ones that the Narrow-
ing and Widening Checker uses are @IntVal and @IntRange, as they are used for integral
primitives and their wrappers. The type introductory rules and method-local flow-sensitive
type refinement minimize the need for annotations in method bodies and remove unneces-
sary clutter. Narrowing and Widening Checker follows all the type rules of the Constant

18

Data Type Range Default Annotation
byte 8-bit signed integer @IntRange(-128,127)

short 16-bit signed integer @IntRange(-32768,32767)

char 16-bit Unicode character @IntRange(0,65535)

int 32-bit signed integer @IntRange(-2147483648,2147483647)

long 64-bit signed integer >

Table 3.1: Default annotations for different data types on field instances, method param-
eters and return. Long is defaulted to > as it contains all possible ranges.

Value Checker with additional rules added.

Sec. 3.2.1 introduces the default qualifier for different data types in various locations.
Sec. 3.2.2 presents the additional type rules defined by the type system. Sec. 3.2.3 presents
the process of method-local flow-sensitive type refinement and the constraints generated
to ensure soundness.

3.2.1 Type Introductory Rules

The Constant Value Checker has defined a default qualifier for every variable, bound, cast,
and method. It uses the CLIMB-to-top rule, which states that the > qualifier in the
hierarchy is used as the default qualifier. For the Narrowing and Widening Checker, the
default qualifier for some instances, methods, and casts use a different qualifier than >.

Table 3.1 defines the default annotations of each data type on field instances, method
returns, and method parameters locations. Other than char, all integral data types in
Java default to signed ranges, which follows Java’s specification. If the programmer wants
to declare the type qualifier of the field variable, the method parameter, or the method
return to an unsigned type, then an explicit annotation is required. @IntRange(0,255) is
used for unsigned byte, and @IntRange(0,65535) is used for unsigned short.

For primitive narrowing conversion type, the type qualifier for byte can be a sub-
type of @IntRange(-128,127) or @IntRange(0,255), and for short can be a subtype of
@IntRange(-32768,32767) or @IntRange(0,65535), depending on the integral range of
the expression to be narrowed. This is to allow the narrowing of a larger size type to
both the signed range and the unsigned range of bytes and shorts. Unsigned int can be
represented using long. It is not supported for this type system as it is not commonly
used, but can be easily included. Unsigned long cannot be represented using a primitive
data type in Java and thus is not supported. All other data types follows Table 3.1.

19

Γ ` e : Q c d <: c Q <: P

Γ ` (P d) e : Q d

Figure 3.3: Type rule for narrowing conversion. Γ is the environment. Q is the type
qualifier of expression e. P is the type qualifier of the cast. Narrowing a variable from
type c to d is only allowed if Q is a subtype of type P , meaning no information is lost.

To allow the data-flow-sensitive refinement to process for local variables, variables de-
fault to the minimum and maximum bounds. @IntRange(-128,255) is the default qualifier
for byte local variables and @IntRange(-32768,65535) is the default qualifier for short

local variables. The other default qualifier for local variables follows Table 3.1.

3.2.2 Type Rules

The Narrowing and Widening Checker includes all the types rules of the Constant Value
Checker. Additional type rules are added to prevent the loss of information during nar-
rowing and ensure consistency during the widening of byte and short types.

Narrowing Type Rule

This Checker restricts the standard type rules for narrowing conversions. Narrowing a value
that has an annotation with a range that is larger or smaller than the annotation range to
be converted to is forbidden. As shown in Fig. 3.3, only expressions with annotation that
is a subtype of the narrowing type can be converted. An environment Γ maps variables
to their types. Q is the type qualifier of expression e with data type d and P is the type
qualifier of the primitive narrowing conversion with data type c. Narrowing a variable
from type c to d is only allowed if Q is a subtype of type P . The integral type narrowing
rules ensure that the annotation of the expression to be converted is compared against the
narrowing type annotation before being converted.

This type narrowing rule effectively prevents loss of information by preventing narrow-
ing conversions that may result in a loss of information. An unsafe cast error is issued for
any possible narrowing that could result in lost information. Fig. 3.4 is an example of the
narrowing error issued by the Narrowing and Widening Checker for the example shown in
Fig. 3.1. The correct implementation is shown in Figure 3.7. Note that the cast to byte
is allowed after the comparison against -1, which refined the annotation on of the inbuff

variable from @IntRange(-1, 255) to @IntRange(0, 255), and allowing the cast in the
loop body. No explicit annotation is required in the source code.

20

error: [cast.unsafe] "@IntRange(from=-1, to=255) int" may not be

casted to the type "@IntRange(from=0, to =255) byte"

while ((data = (byte) in.read()) != -1) {

^

error: [cast.unsafe] "@IntRange(from=-1, to =65535) int" may not be

casted to the type "@IntRange(from=0, to =65535) char"

while ((data = (char) in.read()) != -1) {

^

Figure 3.4: Cast unsafe error issued by the checker for the program in Fig. 3.1.

Γ ` e : Q byte Q <: IntRange(0, 255)

Γ ` 0xFF & e : Q int

Γ ` e : Q byte Q <: IntRange(−128, 127)

Γ ` e : Q int

Γ ` e : Q short Q <: IntRange(0, 65535)

Γ ` 0xFFFF & e : Q int

Γ ` e : Q short Q <: IntRange(−32768, 32767)

Γ ` e : Q int

Figure 3.5: Type rules for implicit widening from a byte or a short to an int. Widening of
expression e is dependent on qualifier Q.

Widening Type Rule

This checker restricts the standard type rule for widening from a byte or a short to an
int. Assignment of an unsigned byte or short variable to an int variable is now forbidden.
However, assignment of a signed byte or short to an int variable is still permitted. As
shown in Fig. 3.5, the unsigned byte must be processed with a bitwise-and with 0xFF
to allow the widening assignment from a byte to an int. The unsigned short must be
processed with a bitwise-and with 0xFFFF to allow the widening assignment from a short

to an int.

This type widening rule effectively prevents inaccurate widening from a byte or a short

to an integer. An unsafe widening warning will be issued if any widening of an unsigned
byte to int is performed without masking the bits. Fig. 3.6 is an example of the widening
error issued by the Narrowing and Widening Checker for the example shown in Fig. 3.2 on
line 2. The correct conversion is shown on line 3. Note that the type qualifier of the variable

21

error: [widening.unsafe] widening of the unsigned value @IntVal

(255) byte is unsafe.

int signedByte = byteValue;

^

Figure 3.6: Widening unsafe error issued by the checker for the program in Fig. 3.2.

1 InputStream in = new Fi leInputStream (” f i l e ”) ;
2 @1 int i n b u f f ;
3 @2 byte data ;
4 i n b u f f@3 = in . read () ; // @3 <: @1, @3 = @IntRange (−1 ,255)
5 i f ((@4) inbuff@3 != 1) { // @4 <: @1, @4 = @IntRange (0 ,255)
6 data@6 = (@5 byte) inbuff@4 ; // @6 <: @2, @4 <: @5, @6 = @4
7 }

Figure 3.7: Method-local flow-sensitive type refinement process. Placeholders @1 to @7 are
used to mark the locations for which types need to be determined based on the constraints
generated at each line. @4 is the refined value of inbuff after the comparison expression.

byteValue contains the unsigned value of byteValue instead of the signed value stored
in memory. This is how the checker distinguishes an unsigned value from a signed value.
If the type qualifier contains more values within the range of an unsigned range rather
than a signed range, then Narrowing and Widening Checker determines that variable be
unsigned. Otherwise, it determines the variable to be signed.

3.2.3 Method-local Flow-sensitive Refinement

This Checker uses Constant Value Checker’s data-flow-sensitive type refinement to mini-
mize the annotation effort on the local variables. An annotation on a local variable can
be refined to its subtype if the annotation of the expression assigned to the variable is a
subtype based on the type hierarchy in Figure 2.3.

The example in Fig. 3.7 highlights the types and generated constraints. @1 and @2
are the declared qualifiers for variable inbuff and data. During type checking, the types
of local variables default to >. On line 4, a refinement type @3 is introduced for the
type of inbuff after the assignment. With this introduction, an equality constraint and
subtype constraints are created and verified. The range of inbuff is refined from > to
@IntRange(-1, 255). On line 5, with the if statement, two more refinement types for

22

inbuff are created, one for the then branch and one for the else branch. For clarity, the
refinement in the else branch is not shown. @4 is refined to @IntRange(0, 255) from
the boolean expression inbuff == -1. The refined type of inbuff is safely narrowed to
byte on line 6 according to rule stated in Fig. 3.3.

Note how the type of inbuff and data is changed through re-assignments. Reusing of
local variables to store values with various integral ranges is permitted. However, it forbids
the incorrect use of local variables.

For each re-assignment of a local variable, a new refinement type is introduced. Each
refinement type must be a subtype of the declared type of the variable and a corresponding
subtype constraint is generated. Additionally, an equality constraint is generated between
the expression type and the refinement type, to ensure the refinement type has the most
specific type from the expression.

3.3 Type System Features

Similar to the Constant Value type system, the Narrowing and Widening Checker also
supports polymorphism, used for method and constructor calls that take on various interval
types. The Narrowing and Widening Checker also supports post-condition qualifiers, for
evaluating the state of the input parameter after a boolean method call. These features
increase the expressiveness of the type system.

3.3.1 Polymorphism

The Constant Value type system supports parametric polymorphism of values using the
special @PolyValue type qualifier to parameterize methods and constructors. The Narrow-
ing and Widening Checker also supports parametric polymorphism of values for methods
via the special type qualifier @PolyValue.

At every method and constructor call site, the Narrowing and Widening Checker com-
putes an interval range for the variable which is used to instantiate @PolyValue for the
called method. The value is computed as the least-upper-bound of the method receiver
and/or argument types. For method or constructors with only one polymorphic parameter,
this is the same thing as equating the return.

Java’s boxed primitives classes are treated the same as their primitive counterparts, as
they ultimately hold and represent a numeric value. Polymorphism can be used in ensuring

23

1 @PolyValue Byte (@PolyValue byte va l) { /* . . . */ }
2 @PolyValue int byteValue (@PolyValue Byte this) { /* . . . */ }
3 Byte good = new Byte (1) ;
4 byte good va l = good . byteValue () ;
5 @IntVal (2) byte bad val = good . byteValue () ;

Figure 3.8: Example of a polymorphic class constructor and method. Both variables good
and good val are refined to be @IntVal(1), which are consistent. An error is issued on
line 5 as bad val is expected to be @IntVal(2) but receives @IntVal(1) instead.

the consistency between the primitives and the wrappers. Fig. 3.8 shows an example of
a wrapper class Byte having a polymorphic constructor and a polymorphic method. The
example ensures that the instantiate of the wrapper and the primitive values return from
the wrapper are consistent. After instantiating, variable good have type @IntVal(1) since
the argument to the constructor is @IntVal(1). Variable good val is also @IntVal(1)

because of the type of the receiver. The intervals of Java integral types are preserved
during auto-boxing and auto-unboxing through a set of similarly annotated JDK methods
that are provided to developers as library annotations.

3.3.2 Post-Condition Qualifiers

The Narrowing and Widening Checker contains two method post-condition qualifiers,
@EnsuresIntRangeIf and @EnsuresIntValIf. A method post-condition is introduced
on method annotations and ensures that a certain expression is a valid value or range af-
ter the method returns. Fig. 3.9 demonstrates how the post-condition qualifiers are used.
These qualifiers ensure that if method isEndOfFile returns false, then the qualifier of ex-
pression v is @IntRange(0,255). @IntRange(-1,255) is the pre-condition on the method
parameter v. If the method returns true, then the qualifier of expression v is @IntVal(-1).
Without these qualifiers, the refinement would not correctly determine the range of c after
the if statement.

The expression must be final, or is not modified within the method call; otherwise,
soundness cannot be guaranteed. For example, assume that the method parameter v in
Fig. 3.9 is modified by method isEndOfFile. Since Java always passes parameter variables
by value, modification to variable v inside method isEndOfFile does not change the value
of the passed-in argument variable c. Thus, claiming that the argument is @IntVal(-1) if

24

1 @EnsuresIntRangeIf (expr=”#1” , r e s u l t=false , from=0, to =255)
2 @EnsuresIntValI f (expr=”#1” , r e s u l t=true , va lue={−1})
3 boolean i sEndOfFi le (@IntRange (from=−1 , to =255) int v) {
4 return v == −1 ;
5 }
6
7 InputStream in = new Fi leInputStream (” f i l e ”) ;
8 int c = in . read () ;
9 i f (! i sEndOfFi le (c)) {

10 byte va l = (byte) c ; // OK
11 }

Figure 3.9: An example showing how EnsuresIntRangeIf and EnsuresIntRangeIf are
used.

evaluated to true or @IntRange(0,255) if evaluated to false will not be sound. An error
is issued by the Narrowing and Widening Checker if the parameter is modified.

The current post-condition qualifiers only support methods that return a boolean value.
For future work, more expressive forms of post-condition qualifiers can be explored and
implemented.

3.4 Implementation

The Narrowing and Widening Checker is implemented as a pluggable type system using
the Checker Framework. Excluding empty lines and comments, 741 lines of Java code is
used to implement this checker in total. It is an extension of the Constant Value type
system and follows all the standard rules and data type refinement in the Constant Value
type system with two new type rules in Sec. 3.2.2 implemented.

We add annotations to methods in libraries that handle stream inputs. These includes
26 @IntRange(-1, 255) annotations for the read methods in the InputStream classes and
its subclasses; 9 @IntRange(-1, 65535) annotations for the read methods in the Reader

classes and its subclasses; one @IntVal(-1) annotation for the EOF field in the IOUtils

class in; 61 @@IntRange(-1, 2147483647) to other overloading read methods in both
InputStream and Reader since the method returns the number of bytes or characters read
or -1 indicating none.

25

We add annotations to methods in libraries that handle stream outputs. These includes
24 @IntRange(-128, 255) annotations for the parameters of the write methods in the
InputStream classes and its subclasses. These annotations are provided as the value passed
into this method is narrowed to an 8-bit value. 9 @IntRange(0, 65535) annotations for
the parameters of the write methods in the Reader classes and its subclasses. These
annotations are provided as the value passed into this method is narrowed to a 16-bit
value.

76 methods in the primitive wrapper classes are polymorphic with @PolyValue. These
include the constructors and the getValue methods. 8 methods in Java Math library are
polymorphic with @PolyValue. These are the min and max methods calls.

It is easy to provide additional annotations for other APIs. More annotations are added
to the library during the experiments.

3.5 Experiments

The Narrowing and Widening Checker is evaluated on 22 open source project. The Checker
issued errors on 18 of these projects. Table 3.2 gives a summary of the size of the projects,
the number of errors issued by the Checker, and the compilation time of running the
Narrowing and Widening Checker vs. OpenJDK compilation. These errors are manually
evaluated and are grouped into three categories: errors due to insufficient annotation, real
errors, or false positives.

3.5.1 Errors due to Insufficient Annotations

Most of the errors issued are due to missing annotations in the program source code or
insufficient library annotations. They can be resolved by adding explicit annotations to the
source code and binary-code libraries. Type inference will remove the manual annotation
effort on the source code for these types of errors. The details of how type inference is
performed will be introduced in Chap. 4.

The defaults defined in Sec. 3.2.1 are an overestimate of all the possible values a
variable will contain. Unless the developer explicitly specifies the type qualifier of a
variable, defaults are applied. For example in Fig. 3.10, a cast.unsafe error will be
issued without the explicit annotation on the parameter since x will be defaulted to
@IntRange(from=-2147483648, to=2147483647) and the narrowing conversion on line
2 violates the type rule defined in Fig. 3.3.

26

Errors Issued Time
Project Files SLOC Narrow Widen Type Override OpenJDK Checker

common-bcel 378 30475 30 0 13 2 8.418 70.34
commons-beanutils 111 11644 0 0 0 4 7.739 34.214
commons-bsf 59 6005 21 0 37 8 7.811 28.746
commons-cli 23 2798 0 0 0 0 5.328 15.868
commons-codec 63 7977 58 0 13 6 5.967 34.501
commons-compress 195 22543 65 1 13 21 7.385 56.128
commons-crypto 42 2954 8 0 2 2 5.385 16.118
common-csv 11 1605 10 0 3 2 4.799 13.696
commons-daemon 10 842 0 0 0 0 4.754 11.529
commons-dbcp 58 11596 0 0 0 0 6.135 28.004
commons-email 23 2815 1 0 0 0 4.927 14.996
commons-exec 32 1787 1 0 2 0 5.699 13.439
commons-fileupload 39 2364 3 0 4 4 5.925 15.015
commons-imaging 343 31368 65 13 31 4 7.932 83.123
commons-io 118 10017 29 14 28 41 6.263 27.233
commons-jxpath 171 18773 6 0 22 0 10.842 41.238
commons-logging 14 2613 0 0 0 11 5.798 15.007
common-net 211 20259 35 0 38 11 7.091 42.051
commons-ognl 155 13139 18 0 1 0 9.115 48.778
commons-scxml 100 9075 0 0 0 0 6.040 30.065
commons-text 64 5886 3 0 2 2 5.874 30.219
commons-validator 64 7460 1 0 8 0 6.064 25.133

Total 2285 223995 354 28 217 118 134.265 696.551

Table 3.2: The SLOC column counts the number of non-comment, non-blank lines of code.
The Narrow column counts the total number of cast.unsafe errors issued. The Widen

column counts the total number of widening.unsafe warnings issued. The Type column
counts the number of assignment.type.incompatible, argument.type.incompatible,
and return.type.incompatible issued. The Override column counts the number of
override.param.invalid and override.return.invalid errors issued. All values under
Time are in seconds. It compares the time taken with OpenJDK compilation vs. the type
checking time with the checker for checking the entire project.

27

1 byte bound (@IntRange (0 ,255) int x) {
2 return (byte) x ;
3 }
4 void c a l l (int y){
5 y = Data . getUnsignedByte () ;
6 bound (y) ;
7 }

Figure 3.10: An example of errors issued due to insufficient annotations in source code. A
cast.unsafe error will be issued on line 2 without the explicit annotation on parameter
x. A argument.type.incompatible error will be issued on line 6 without the explicit
annotation on for binary library method getUnsignedByte().

The Narrowing and Widening Checker requires annotations for binary-only depen-
dencies. Applications have large dependencies on binary-only libraries, like the JDK. In
Fig. 3.10, an annotation is required for the return type of function getUnsignedByte for
line 6 to be a valid operation as variable y passed into the function bound is required to be
a subtype of the parameter declaration. An argument.type.incompatible will be issued
on line 6 without the annotation. Manual annotation efforts for libraries can be re-used to
type check in other projects utilizing the same APIs.

All the override errors issued by the Checker are due to missing annotations methods
signatures in the source code. When an instance method m1, declared in class c1, overrides
another instance method m2, declared in a class c2 where c1 is a subclass of c2, the Liskov
Substitution Principle specifies that the method return of m1 should be a covariant of
m2, and the method parameter of m1 should be a contravariant of m2. This means that
the type qualifier of the method return in m1 must be a subtype of m2, and the method
parameter in m1 must be a supertype of m2.

The Value inference that is introduced in Chap. 4 is run on the 18 projects that failed
type check. Out of these 18 projects, 5 successfully inferred. This means 13 projects issued
errors that may contain real errors. Out of these 13 projects, 5 are picked and manually
annotated to clean up errors issued due to insufficient annotations. These 5 projects are
picked because their annotation efforts is slightly lower compared to other projects and they
show interesting results. Table 3.3 gives an overview of the numbers of manual annotations
added and the numbers of errors issued.

In total, 153 annotations are manually added for 5 projects and 69 real errors were
detected with 26 false positives. The high annotation effort on project commons-io was

28

Manual Annotation Errors Issued
Project IntVal IntRange EnsureIf Narrow Widen Type FP

commons-bcel 1 19 2 19 4 3 12
commons-crypto 0 11 0 5 0 0 3
commons-csv 14 8 4 2 0 2 1
commons-io 8 83 0 10 14 7 8
commons-text 0 3 0 3 0 0 2

Total 23 124 6 39 18 12 26

Table 3.3: The EnsuresIf column indicates the number of @EnsuresIntValIf and
@EnsuresIntRangeIf manual annotations added to the project. IntVal indicates the
number of @IntVal and IntRange indicates the number of @IntRange. The narrow col-
umn counts the total number of cast.unsafe error issued. The widen column counts
the total number of widening.unsafe issued. The type column counts the number of
type.incompatible issued. Column FP indicates the number of false positives within the
issued errors.

due to the number of methods that overwrites the methods in the java.io library.

3.5.2 Real Errors

In this section, the real errors issued by the Narrowing and Widening Checker for each
project are described in detail.

commons-bcel1: The Byte Code Engineering Library (BCEL) is intended to analyze,
create, and manipulate Java binary files. Four narrowing errors are from converting the
return value from read in the InputStream library to char before checking against the
EOF -1. It is also suspicious that the value return is converted to char instead of byte.
Maybe the desired library to use is Reader. There is a type error resulting from passing in
an int value ranges from 0 to 65535 obtained from the read method in the Reader library
to function write from the OutputStream library which is expecting an integer within the
byte range. It probably should use the write method from the Writer library instead.
There is one narrowing error where EOF from read in the Reader libary is not checked
before converting it to a char.

Four of the widening warnings issued are due to the widening of an unsigned short
to int. The two variables being converted are named start pc (program counter) and

1https://commons.apache.org/proper/commons-bcel/

29

line number, and are converted from an int that ranges from 0 to 65535 to short. The
toString function prints these values without the bitwise-and operation with 0xffff.
These two values can be printed as negative values without the correct widening conversion.

Nine of the narrowing errors issued are from narrowing the result of arithmetic computa-
tions where the smallest resulting ranges estimated by the checker from the computations
is larger than the target range. Seven of the narrowing and type errors are from over-
approximated parameters and return values. From inspection, there is no clear indication
of the bounds on these values, so they are labelled as real errors. One narrowing error is
from converting a double to an int.

commons-crypto2: Commons Crypto is a cryptographic library. The checker picked
up one ordering of operation error (byte) counter & 0xff where the int counter is
narrowed to byte before the bitwise-and operation. There should be parenthesis around
counter & 0xff. The other four narrowing errors are from arithmetic computations where
the result range is not a subtype of the expected range.

commons-csv3: Commons CSV reads and writes files in variations of the Comma
Separated Value (CSV) format. Function getLastChar in the project returns the last
character that was read as an integer between 0 to 65535, or -1 if the last read is a EOF,
or -2 if no characters were read. This method is annotated with @IntRange(-2, 65535).
There are two attempts made narrowing the value return by this function to char before
checking it against -1 and -2, and one attempt of passing this value to a function expecting
@IntRange(-1, 65535), a subtype of @IntRange(-2, 65535), as its parameter.

The other type error issued also results from passing into a function that is not its su-
pertype. Function isWhitespace has its parameter annotated with @IntRange(0, 65535)

since the parameter is narrowed to a char in the method. A value obtained from method
read from the InputStream library which ranges from -1 to 65535 is passed into this
method before checking it against -1.

commons-io4: Commons IO is a library of utilities to assist with developing IO func-
tionality. The 14 widening warnings issued are from the widening of an unsigned byte to
int. In this expression write((byte)((value >> 0) & 0xff)), value >> 0) &

0xff returns a range from 0 to 255 after the bitwise-and operation. Method write from the
OutputStream takes int as its parameter type. Since the expression is already within the
byte range and function write ignores the 24 high-order bits of the parameter, narrowing
the expression to byte is unnecessary.

2https://commons.apache.org/proper/commons-crypto/
3https://commons.apache.org/proper/commons-csv/
4https://commons.apache.org/proper/commons-io/

30

Two issued errors are related to method read in the InputStream library. There is
an attempt of narrowing the return value from method read in the InputStream library
before checking the return value of read to byte before checking for -1. This error is also
detected by the EOF Value Checker. Function readUnsignedByte returns an int between
0 to 255. The return value of read is used as its return value before checking for -1.

Six of the narrowing and type errors are from arithmetic computations where the result
range is not a subtype of the expected range. Eight of the narrowing and type errors are
from over-approximated parameters. From inspection, there is no clear indication of the
bounds of these parameters, so they are labelled as real errors.

commons-text5: Commons Text is a library focused on algorithms working on strings.
Three of the narrowing errors issued are related to the process of converting an integer
representation in string in data type int. The resulting int is then narrowed to char. From
inspection, there are no clear indications where the integer representation is within the char
rang, so they are labelled as real errors. Note that these operations could also produce
false positives as the current type system does not handle string to int manipulation, and
vice versa.

3.5.3 False Positives

In this section, the different types of false positives issued are described in detail. These
show the limitations of the Checker Framework and the Narrowing and Widening Checker.

Loops: The Narrowing and Widening Checker does not have a way to precisely estimate
the number of times a loop will be executed, such as using a loop invariant. How the
Dataflow Framework handles loop evaluations are described in detail in Sec. 6. Lines 1
to 6 in Fig. 3.11 give an example of a case.unsafe false positive due to the lack of loop
precision. Since this type system could not estimate the number of times the loop is
executed, variable i is estimated to be between 0 and 2147483647 by the checker, and a
cast.unsafe error is raised on line 5. 11 of the false positives in commons-bcel results
from such limitations.

External Checks: Some checks are evaluated at an external method invocation rather
than inside the local method. The @EnsuresIf post-condition qualifiers can only evaluate
simple method calls where the input is final and the output is a boolean. The Narrowing
and Widening Checker cannot correlate the return value of a more complicated external
method invocation check with the value being checked. Lines 8 to 13 in Fig. 3.11 are an

5https://commons.apache.org/proper/commons-text/

31

example of a false positive due to such limitations. Variable n is estimated to be less than
0 even though it passed the check on line 8. The false positives from project commons-csv,
commons-text, and one from common-crypto are all resulted from such limitations.

Method Return Precision: The min and max functions from Java’s Math library
are annotated with @PolyValue. Therefore, the return value of method Math.min and
Math.max are the least-upper-bound of the two parameters rather than the min range and
the max range of the two. Lines 15 to 20 issue a false positive due to imprecision of the
value returned by method Math.min. Since remaining > 0 and SIZE = 2048, the return
value should be between 0 to 2048. Two of the false positives from project commons-cryto,
and seven from common-io results from imprecision when evaluating the Math.min method.
Similarly, when Integer.parseInt is called to convert a string representation of an integer
to int, the full range of int is always returned. Lines 22 to 25 show an example where
the checker fails in determining the range returned to be within byte since the length of
the string is two. One of the false positives from project commons-bcel, and one from
common-io results from imprecision when evaluating this method.

3.5.4 Performance Overhead

This case study is performed on a cloud instance with a four-core CPU and 16GB RAM,
running 64-bit Ubuntu 20.04.

Table 3.2 reports the execution times of the Narrowing and Widening Checker modular
type-checking for 22 projects. The projects take 134.265 seconds in total to compile using
the OpenJDK 11 compiler, and 696.551 seconds in total using the checker to type check the
projects. The overhead is approximately 5.188x and is consistent with other type systems
developed using the Checker Framework[18, 13].

The performance of the checker in type check mode enables it to be used in edit-compile-
unit-test development workflows. As type check mode is modular, faster performance is
expected when checking one source file at a time. The Narrowing and Widening Checker
performs adequately in type-check mode. Its performance is suitable for use in a real-
world software development environment. Improvements to the Checker Framework will
improve the performance of this type system and other type systems developed using the
frameworks.

32

1 // loop f a l s e p o s i t i v e
2 int MAX = 65535;
3 char [] char map ;
4 for (int i = 0 ; i < MAX; i++) {
5 char map [i] = (char) i ;
6 }
7
8 // e x t e r n a l check f a l s e p o s i t i v e
9 Long n ;

10 check (n >= 0 , ” Negative thrown except ion ”) ;
11 i f (n <= I n t e g e r .MAX VALUE) {
12 int pos = (int) n ;
13 }
14
15 // Math . min f a l s e p o s i t i v e
16 long remaining ;
17 long SIZE = 2048 ;
18 i f (remaining >= 0) {
19 int s i z e = (int) Math . min (SIZE , remaining) ;
20 }
21
22 // I n t e g e r . p a r s e I n t f a l s e p o s i t i v e
23 St r ing u r l ;
24 int oc t e t = In t eg e r . pa r s e In t (u r l . s ub s t r i ng (1 , 3) , 16) ;
25 byte b = (byte) o c t e t ;

Figure 3.11: Four false positive examples.

33

3.6 Related Work

The Narrowing and Widening type system is built on top of the Constant Value type
system. It is inspired by the EOF Value Checker [13], and solves a more generalized
problem. The EOF Value Checker focuses only on preventing unsafe EOF comparison.
The Narrowing and Widening type system can detect the EOF error found in the EOF
Value Checker as well as additional unsafe narrowing and widening conversions that were
missed by the EOF Value Checker. EOF Value Checker is also missing type inference
capabilities. Type inference for the Narrowing and Widening Checker is introduced in
Chap. 4.

The Signedness Checker is another type system build using the Checker Framework.
It supports two type qualifiers @Signed and @Unsigned to indicate the signedness of an
integral variable. The Signedness Checker cannot automatically determine the signedness
of a variable and does not know the actual range of the variable. It is used to prohibit
meaningless operations with unsigned variables. The Narrowing and Widening Checker
prohibits ambiguous widening conversions and can automatically signedness of variables.
The two type systems can be combined to enforce stricter type rules for uses of unsigned
integral types in Java.

Within our knowledge, the Narrowing and the Widening type system is the first type
system that specifies additional rules for a narrowing and widening conversion for Java’s
integral data types.

34

Chapter 4

Whole-Program Type Inference for
Integral Range Analysis

4.1 Introduction

In Sec. 3.5, 599 errors and warnings were issued on 18 unannotated projects. Some of the
errors are due to missing annotations in the program source code and insufficient library an-
notations. Fig. 4.1 shows a similar example to Fig. 3.10 and shows the constraints generated
at each line. Soundness is enforced by generating and solving typing constraints through
syntax-guided constraint generation rules. With the code not annotated, the Narrowing
and Widening Checker will issue a cast.unsafe error on line 2 due to the defaulting rules
on int. To resolve the error on line 2, we can annotate the parameter x to either a value
within @IntRange(0, 255) or @IntRange(-128, 127). Then, we type check the code and
the Narrowing and Widening Checker produces an argument.type.incompatible error
on line 6. We can annotate parameter y to the same as parameter x to resolve this er-
ror. Then line 5 will fail with an assignment.type.incompatible error, and requires an
annotation on the return type of function getBytes. This process is a burden and for
larger projects with many interchanging calls between method, the annotation effort could
be quite high. Whole-program inference infers type qualifiers on program variables and
expressions, greatly reducing manual annotation burden in source code for developers.

In whole-program type inference, constraint variables are created, which are placehold-
ers for concrete types. Whole-program type inference mode ensures a valid typing exists
for a program by solving a set of generated constraints. The constraints generated are the
same as the ones generated during the type checking process. Multiple type-safe solutions

35

are possible in inference and, as long as a solution exists, inference succeeds. If inference
fails, it pinpoints the set of code locations across the program that together could cause a
type-inconsistent error.

This chapter introduces the Value Inference for Integral Values, a whole-program infer-
ence for integral analysis. It supports the main type qualifiers used by the Narrowing and
Widening Checker, and is used to reduce the annotation efforts needed for the Narrowing
and Widening Checker. The type system hierarchy of the Value Inference is similar to
the Constant Value type system, but focuses only on inferring integral types for integral
variables. The constraints generated the MaxSMT encoding can be easily adopted by the
Constant Value Type System, which is lacking type inference capability.

The constraints generated for the whole program are collected and solved together
by a MaxSMT solver in Value Inference. Value Inference offers two modes to be used
by the developer, an inference mode, and an annotation mode. The inference mode is
intended to give the program a quick check for the soundness of the whole program without
any additional annotation effort. Annotation mode is whole-program type inference with
additional, breakable, preference constraints. It provides the program with more precise
and relevant annotations. We rely on the MaxSMT solver to produce the optimal solution
guided by hard and soft constraints provided to the solver. The annotation mode inserts
the inferred solutions back into the source code, giving the developer a chance to inspect the
results. This is intended to help developers create well-specified applications and libraries.

Going back to the example in Fig. 4.1, the constraints written out in the comments are
collected and solved together to determined its satisfiability. The program is, therefore,
type safe. One possible solution in inference mode assigns @IntRange(0,255) as the value
for all constraint variables. There are multiple solutions, as long as the constraints are
satisfied, even @IntRange(0,0) for all constraint variables can be a possible solution, and
@3 can be anything within the range of type int. With annotation mode, additional
constraints are added to prefer type byte to resolve to @IntRange(-128,127) and int to
@IntRange(-2147483648, 2147483647) rather than some arbitrary value, which is more
correct.

As a simple unsatisfiable example, we can annotate the return value of getByte on
line 7 with @IntRange(-1, 255). This propagates to the assignment on line 5, and then
to the argument on line 6. On line 2, the constraints require @2 to be a subtype of
@IntRange(0,255), and @1 to be a subtype of @2. Since @4 need to be a subtype of @1 but
must be a supertype of @IntRange(0,255), @1 cannot be a subtype of @IntRange(0,255).
The constraints introduced in lines 2, 5, and 6 are together unsatisfiable.

If inference succeeds, there exists a valid typing for the program. If a typing exists,

36

1 @3 byte bound (@1 int x) {
2 return (@2 byte) x ; // @2 <: @3, @1 <: @2
3 }
4 void c a l l (@3 int y){
5 y@4 = getByte () ; // @4 <: @3, @4 = @5
6 bound (y@4) ; // @4 <: @1
7 }
8 @5 int getByte () { /∗ . . . ∗/ }

Figure 4.1: Example with constraint generated at each line. @1 to @5 are constraint variable
slots. One valid solution is to have all slots

inference will succeed. However, type checking with default qualifiers can fail for different
reasons than type inference. Errors given in inference mode provide a whole-program view
of the reasons why no type-safe solutions can be inferred, and indicate potential errors.

The Value Inference for Integral Values is evaluated on the 18 Apache Commons
projects in Table 3.2 where an error is issued by the Narrowing and Widening Checker.
Out of these projects, 5 projects successfully evaluated to SAT and the Value Inference
inferred 10639 annotations. The projects evaluated to UNSAT are manually examined and
all of them contain a real narrowing error.

4.2 Value Inference Type System

The Value Inference is inspired by the Constant Value type system. The Constant Value
type system does not support whole-program inference. It only infers method local vari-
ables using flow-refinement process described in Sec. 3.2.3. Value Inference for Integral
Values provides a whole-program type inference for integral types qualifiers in Constant
Value Type System.

Fig. 4.2 shows the type hierarchy of the Value Inference type system for whole-program
type inference. The Value Inference Type System can be viewed as a simplified version
of the Constant Value Type System where only the values of numeric integral data types
are evaluated during compilation time. It supports all the type qualifiers needed for the
Narrowing and Widening Checker, except for the post-condition qualifier. The main type
annotations for the Value Inference are @IntRange and @IntVal indicating the possible

37

>

@IntVal(val)@IntRange(from,to) @PolyValue

⊥

Figure 4.2: Type hierarchy of the Value Inference Type System. @IntVal and @IntRange

are applicable to the five integral primitive data types and their wrappers @PolyValue is
used for polymorphism.

values for all numeric integral data types. @IntRange takes a lower-bound and an upper-
bound. The smallest value in the range is −264 and the largest value in the range is 264−1.
At run time, the expression will evaluate to a value between the bounds inclusively. Unlike
the type qualifier in the Constant Value type system, the @IntVal qualifier only takes a
single possible value as argument for simplicity. Expanding the @IntVal type qualifier to
support more than one value complicates the MaxSMT encoding.

Value Inference for Integral Values utilizes polymorphic method signatures in inference
and annotate modes, and generates the corresponding constraints at each call site. Fresh
type variables are generated at each call site and constrained to be the least-upper-bound
of the arguments. Within a method declaration, the parameters of polymorphic methods
are checked by substituting > for @PolyValue, and the return is checked by substituting
⊥ for @PolyValue, since it can be instantiated with any integral range.

Value Inference for Integral Values does not infer additional @PolyValue annotations
during whole program inference, but uses existing polymorphism correctly. It is not a
common case to require a method to be annotated with @PolyValue as an inference result
to satisfy constraints. We, therefore, did not need to design a strategy to infer @PolyValue
method signatures and kept the inference complexity small.

4.3 Constraints

A constraint variable α is a placeholder for a concrete value. A fresh constraint variable is
introduced for each location that is missing a type qualifier and for the resulting qualifier of
each arithmetic operation and comparison operation. Inference assigns one concrete value
to each constraint variable.

38

The Value Inference for Integral Values generates five kinds of constraints σ over types:

• Well-formedness constraint wf (α): enforces that any satisfying solution for constraint
variable α is uniquely interpretable as a value.

• Subtype constraint Ta <: Tb: enforces Ta to be the same type or a subtype of Tb. e.g.
converting between primitives using cast is a subtype constraint.

• Equality constraint Ta = Tb: ensures Ta and Tb are the same.

• Arithmetic constraint α = Ta op Tb: enforces that α will be equal to the result of the
arithmetic computation of Ta op Tb, for some defined arithmetic operation op. Value
Inference for Integral Values abstracts over a concrete set of arithmetic operations.
op constraints build upon the idea of Viewpoint Adaptation [19, 20] and can be
thought of as computing the result type of the arithmetic operator op.

• Comparison constraint α C Ta comp Tb: enforces α as a refined type of Ta for which
the comparison α comp Tb can be evaluated to true. The six comparison operators
are equal to (==), not equal to (6=), greater than (>), less than (<), greater or equal
to (≥), and less or equal to (≤). comp constraints are also built upon the idea of
Viewpoint Adaptation and can be thought of as computing all possible values of Ta
where the expression can be evaluated to true.

The Value Inference for Integral Values generates six kinds of constraint variables:

• Constant αcons: A constant constraint variable contains valid type qualifiers and does
not need to be inferred, but helps with inference. A constant constraint variable is
generated for literals, explicit annotations in the source code, and type qualifiers from
binary libraries.

• Variable αvar: Variable constraint variables are created for field and local variable
declarations, type casts, method parameter and return, type parameters, and class
declaration and constructors. A variable constraint variable also stores the underlying
type (e.g. byte or Byte) of the declared variable.

• Refinement αrefin: Refinement constraint variables are created during the variable
assignment. Consider an expression x = expr, the refinement constraint variable is
the refined value of variable x. For every refinement variable generated, a subtype
constraint αrefin <: Tx and an equality constraint αrefin = Texpr are generated with
it.

39

• Least-upper-bound αlub: Least-upper-bound constraint variables are created when
we want to find the least-upper-bound of two values. They are created when two
branch merges or when there are multiple returns in a method. Consider finding the
least-upper-bound of two types Ta and Tb, the least-upper-bound constraint variable
contains the least-upper-bound of these two types. For every least-upper-bound
variable generated, two subtype constraint Ta <: αlub and Tb <: αlub are generated
with it.

• Arithmetic Variable αop: This constraint variable is created when there is a binary
arithmetic expression. Consider an arithmetic expression x + y, the arithmetic con-
straint variable contains the results of the operation. For every arithmetic variable
generated, a arithmetic constraint αop = Tx + Ty is generated with it.

• Comparison Variable αcomp: This constraint variable is generated for every vari-
able in a comparison expression. They are used to refine the variables used after
a comparison expression. Consider a comparison expression x < y, the comparison
constraint variable contains the refined result of variable x. For every comparison
variable generated, a comparison constraint α C Tx < Ty is generated with it.

All the constraint variables must satisfy the well-formedness constraint wf (α).

4.3.1 Comparison Expression Refinement

This section explains the constraint variables and constraints generated by the Value In-
ference when encountering a comparison expression during inference. The method-local
flow-sensitive type refinement type checking process is explained in Sec. 3.2.3. The sup-
port for comparison constraint and comparison constraint variables is added to the Checker
Framework Inference for Value Inference. Unlike numeric value types, condition expres-
sions usually would not change the type of the variable after evaluation for most type
systems, so a simple comparable constraint (Sec. 2.2) is usually sufficient for ensuring
program soundness. Value Inference is the first type inference build using the Checker
Framework Inference with comparison constraints and comparison constraint variables.

When encountering a comparison expression, two refinement types will be introduced
for each of the variables in the comparison expression, one for the then branch, and one
for the else branch. During inference, the refinement types are represented with com-
parison constraint variables. These constraint variables will propagate to their respective
branches. Each comparison constraint variables generates one comparison constraint. For

40

a comparison expression where both operands are variables, four comparison constraint
variables and comparison constraints are generated.

For expression Ta == Tb, constraints αa thCTa == Tb and αb thCTb == Ta propagates
to the then branch, and constraints αa el C Ta 6= Tb and αb el C Tb 6= Ta propagates to the
else branch. For expression Ta 6= Tb, the constraints are the same with then and else

reversed.

For expression Ta < Tb, constraint αa th C Ta < Tb and αb th C Tb > Ta propagates to
the then branch, and constraints αa el C Ta >= Tb and αb el C Tb ≤ Ta propagates to the
else branch. The constraints are the same for expression Ta ≥ Tb but with then and else

reversed.

For expression Ta ≤ Tb, constraint αa th C Ta ≤ Tb and αb th C Tb ≥ Ta propagates to
the then branch, and constraints αa el C Ta > Tb and αb el C Tb < Ta propagates to the
else branch. The constraints are the same for expression Ta > Tb but with then and else

reversed.

The example in Fig. 4.3 highlights the types and constraints generated when encoun-
tering a conditional expression. @1 and @2 are the declared qualifiers for variables x and y.
At the comparison expression x < y, two refinement types @3 and @4 are introduced for
the type of x and two refinement types @5 and @6 are introduced for the type of y. With
this introduction, four subtype constraint @3 <: @1, @4 <: @1, @5 <: @2, and @6 <: @2

and four comparison constraints @3 C @1 < @2, @4 C @1 ≥ @2, @5 C @2 > @1, and @6 C @2

≤ @1 are generated. The value of @3 and @5 will propagate to the then branch while the
value of @4 and @6 will propagate to the else branch. The return type @7 in this example
is bounded by refined type of x and y are @3 and @6 respectively instead of the declared
type @1 and @2.

4.4 Encoding of Constraints for Solvers

Value Inference for Integral Values abstracts away the low-level constraint encoding from
the high-level constraints through a solver interface. The solver abstraction allows inference
to experiment with different solving techniques and solver systems.

Value Inference for Integral Values encodes constraint variables and constraints as a
Maximum Satisfiability Modulo Theory (MaxSMT) problem using the linear integer arith-
metic and boolean theories. A MaxSMT problem is similar to a Maximum Boolean Sat-
isfiability (MaxSAT) problem, but incorporates additional theories. A MaxSMT problem

41

1 @7 int cond i t i on (@1 int x , @2 int y) {
2 i f ((@3, @4) x < (@5, @6) y) {
3 // @3 < : @1, @5 < : @2, @3 C @1 < @2, @5 C @2 > @1
4 return x ; // @3 <: @7
5 } else {
6 // @4 < : @1, @6 < : @2, @4 C @1 ≥ @2, @6 C @2 ≤ @1
7 return y ; // @6 <: @7
8 }
9 }

Figure 4.3: Method-local flow-sensitive type refinement process with comparison expres-
sions. Placeholders @1 to @7 are used to mark the locations for which types need to be
determined based on the constraints generated at each line.

consists of hard constraints and soft or breakable constraints with weights. A MaxSMT
solver will generate a solution that satisfies all the hard constraints, while maximizing the
weight of satisfying soft constraints. Encoding the constraints Σ as a MaxSMT problem
allows Value Inference for Integral Values to take advantage of the optimizations that go
into existing SMT solvers. Value Inference for Integral Values uses Z3 as its SMT solver
[17]. The complexity of MaxSAT solvers is appropriate for the inference of expressive type
systems [28]. Our use of a MaxSMT solver is appropriate because the Value Inference
for Integral Values constraints additionally require integer theories for inferring interval
ranges.

Each constraint variable is encoded as three boolean variables βtop, βbot, βint which
respectively represents >, ⊥, and IntRange; two integer variables ωfr and ωto which re-
spectively represents the from and to of the IntRange qualifier. Each constraint presented
in Sec. 4.3 is encoded as a predicate expressed over the boolean and integer variables.

The encoding of the hard constraints along with the detailed encoding for Java’s com-
parison operators are:

• Well-formed Constraint (wf (α)): ensures each constraint variable represents a unique
type. The encoding is dependent on the data type. At >, the upper-bound and lower-
bound value need to be set to as the maximum (longmax = 9223372036854775807)
and the minimum (longmin = −9223372036854775808) value as it is the supertype.

wf (αt) := (¬βtop ∧ βbot ∧ ¬βint) ∨ (¬βtop ∧ ¬βbot ∧ βint ∧ ωfr ≤ ωto ∧ p(t))
∨ (βtop ∧ ωfr = longmin ∧ ωto = longmax ∧ ¬βbot ∧ ¬βint)

42

Predicate p(t) ensures that the constraint variable αt stays within the allowable range
of data type t where t is an integral primitive type or their boxed object. Unsigned
int is not encoded since they are not commonly used, but can be easily included.

p(byte) := (ωfr ≥ −128 ∧ ωto ≤ 127) ∨ (ωfr ≥ 0 ∧ ωto ≤ 255)

p(short) := (ωfr ≥ −32768 ∧ ωto ≤ 32767) ∨ (ωfr ≥ 0 ∧ ωto ≤ 65535)

p(char) := ωfr ≥ 0 ∧ ωto ≤ 65535

p(int) := ωfr ≥ −2147483648 ∧ ωto ≤ 2147483647

p(long) := true

• Subtype Constraint (Ta <: Tb): given the type lattice, it is enough to check whether
the subtype is the bottom type, the supertype is the top type, or if a is within the
range of b.

Ta <: Tb := βtop
b ∨ βbot

a ∨ (βint
a ∧ βint

b ∧ ωfr
a ≥ ωfr

b ∧ ωto
a ≤ ωto

b)

• Equality Constraint (Ta = Tb): two types are equal if their encoding are equal.

Ta = Tb := βtop
a = βtop

b ∧ βbot
a = βbot

b ∧ βint
a = βint

b ∧ ωfr
a = ωfr

b ∧ ωto
a = ωto

b

• Arithmetic Constraint (αc = Ta op Tb): if either argument is >, the result has to be
>. If one argument is ⊥, while the other argument is not >, the result is ⊥. If both
of the arguments are IntRange, the resulting ranges are calculated with op.

αc = Ta op Tb := ((βtop
a ∨ β

top
b) ∧ βtop

c) ∨ (βbot
a ∧ ¬β

top
b ∧ βbot

c) ∨ (βbot
b ∧ ¬βtop

a ∧ βbot
c)

∨ (βint
a ∧ βint

b ∧ βint
c ∧ p(c) ∧ αω

c = T ω
a op T ω

b))
∨ (βint

a ∧ βint
b ∧ βint

c ∧ ¬p(c) ∧ bound(c)

Predicate bound(c) sets the min and max range of αc based on the data type of c. In
Java, all operands in an arithmetic operation implicitly widen to type int, or long

if one of the operands is a long. Therefore, αc can only be a type int or type long.
If the resulting range is larger than the allowable range, then it is set to the lower
and upper bound of an int or long.

bound(int) := ωfr = intmin ∧ ωto = intmax

bound(long) := ωfr = longmin ∧ ωto = longmax

– Addition (+): the resulting variable is the smallest possible range that includes
all values resulting from adding the two bounds together.

αω
c = T ω

a + T ω
b := ωfr

c = ωfr
a + ωfr

b ∧ ωto
c = ωto

a + ωto
b

43

– Subtraction (−): subtracting the upper-bound of T ω
b from the lower-bound of

T ω
a gives the minimum value, and subtracting the lower-bound of T ω

b from the
upper-bound of T ω

a gives the maximum value.

αω
c = T ω

a − T ω
b := ωfr

c = ωfr
a − ωto

b ∧ ωto
c = ωto

a − ω
fr
b

– Multiplication (×): the upper-bound of the resulting variable is the largest value
out of the four possible combinations (ωfr

a ×ω
fr
b , ωfr

a ×ωto
b , ωto

a ×ω
fr
b , ωto

a ×ωto
b)

when the bounds are multiplied to each other. The lower-bound of the resulting
variable is the smallest value out of the four combinations.

αω
c = T ω

a × T ω
b :=

(ωfr
a × ω

fr
b ≤ (ωfr

a × ωto
b ∧ ωto

a × ω
fr
b ∧ ωto

a × ωto
b) =⇒ ωfr

c = ωfr
a × ω

fr
b)

∧ (ωfr
a × ωto

b ≤ (ωfr
a × ω

fr
b ∧ ωto

a × ω
fr
b ∧ ωto

a × ωto
b) =⇒ ωfr

c = ωfr
a × ωto

b)

∧ (ωfr
a × ωto

b ≤ (ωfr
a × ω

fr
b ∧ ωto

a × ω
fr
b ∧ ωto

a × ωto
b) =⇒ ωfr

c = ωfr
a × ωto

b)

∧ (ωto
a × ω

fr
b ≤ (ωfr

a × ω
fr
b ∧ ωfr

a × ωto
b ∧ ωto

a × ωto
b) =⇒ ωfr

c = ωto
a × ω

fr
b)

∧ (ωfr
a × ω

fr
b ≥ (ωfr

a × ωto
b ∧ ωto

a × ω
fr
b ∧ ωto

a × ωto
b) =⇒ ωto

c = ωfr
a × ω

fr
b)

∧ (ωfr
a × ωto

b ≥ (ωfr
a × ω

fr
b ∧ ωto

a × ω
fr
b ∧ ωto

a × ωto
b) =⇒ ωto

c = ωfr
a × ωto

b)

∧ (ωto
a × ω

fr
b ≥ (ωfr

a × ω
fr
b ∧ ωfr

a × ωto
b ∧ ωto

a × ωto
b) =⇒ ωto

c = ωto
a × ω

fr
b)

∧ (ωto
a × ωto

b ≥ (ωfr
a × ω

fr
b ∧ ωfr

a × ωto
b ∧ ωto

a × ω
fr
b) =⇒ ωto

c = ωto
a × ωto

b)

– Division (÷): the problem of finding the smallest upper-bound and the largest
lower-bound for divisions can be solved by separating it into 9 different cases:
(1) both variable a and b contains only positive values, (2) only negative values,
(3) left contains only positives and right operand contains only negatives, (4) left
operand contains only negatives and right operand contains only positives, (5)
left contains both and right contains only positives, (6) left contains both and
right contains only negatives, (7) left contains only positives and right contains
both, (8) left contains only negatives and right contains both, (9) both operands
contains both signedness.

αω
c = T ω

a ÷ T ω
b := (ωfr

b = 0 =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a)
∧ (ωto

b = 0 =⇒ ωfr
c = −ωto

a ∧ ωto
c = −ωfr

a)
∧ (ωfr

a > 0 ∧ ωfr
b > 0 =⇒ ωfr

c = ωfr
a ÷ ωto

b ∧ ωto
c = ωto

a ÷ ω
fr
b)

∧ (ωfr
a > 0 ∧ ωto

b < 0 =⇒ ωfr
c = ωto

a ÷ ωto
b ∧ ωto

c = ωfr
a ÷ ω

fr
b)

∧ (ωfr
a > 0 ∧ ωfr

b < 0 ∧ ωto
b > 0 =⇒ ωfr

c = −ωto
a ∧ ωto

c = ωto
a)

∧ (ωto
a < 0 ∧ ωfr

b > 0 =⇒ ωfr
c = ωfr

a ÷ ω
fr
b ∧ ωto

c = ωto
a ÷ ωto

b)

∧ (ωto
a < 0 ∧ ωto

b < 0 =⇒ ωfr
c = ωto

a ÷ ω
fr
b ∧ ωto

c = ωfr
a ÷ ωto

b)

∧ (ωto
a < 0 ∧ ωfr

b < 0 ∧ ωto
b > 0 =⇒ ωfr

c = ωfr
a ∧ ωto

c = −ωfr
a)

∧ (ωfr
a ≤ 0 ∧ ωto

a ≥ 0 ∧ ωfr
b > 0 =⇒ ωfr

c = ωfr
a ÷ ω

fr
b ∧ ωto

c = ωto
a ÷ ω

fr
b)

44

∧ (ωfr
a ≤ 0 ∧ ωto

a ≥ 0 ∧ ωto
b < 0 =⇒ ωfr

c = ωto
a ÷ ωto

b ∧ ωto
c = ωfr

a ÷ ωto
b)

∧ (ωfr
a ≤ 0 ∧ ωto

a ≥ 0 ∧ ωfr
b < 0 ∧ ωto

b > 0 =⇒
(ωfr

a ≤ −ωto
a =⇒ ωfr

c = ωfr
a)

∧ (ωfr
a ≥ −ωto

a =⇒ ωfr
c = −ωto

a)
∧ (−ωfr

a ≥ ωto
a =⇒ ωto

c = −ωfr
a

∧ (ωfr
a ≤ −ωto

a =⇒ ωto
c = −ωto

a))

– Modulo (%): the resulting range is smaller than the upper bound of the divisor
if the upper bound is larger than zero, and larger than the lower bound of the
divisor if the lower bound is smaller than zero.

αω
c = T ω

a % T ω
b := (ωfr

b ≥ 0 =⇒ ωfr
c = 0 ∧ ωto

c = ωto
b − 1)

∧ (ωto
b ≤ 0 =⇒ ωto

c = 0 ∧ ωfr
c = ωfr

b + 1)

∧ (ωfr
b < 0 ∧ ωto

b > 0 =⇒ ωfr
c = ωfr

b + 1 ∧ ωto
c = ωto

b − 1)

– Left-Shift (�): shifting operations in Java depends on the type of the left-hand
operand. If the left-hand operand is an int type, only the 5 lowest-order bits of
the right-hand operand are used. If the left-hand is a long type, then only the
6 lowest-order bits of the right-hand operand are used. For this reason, if the
right-hand operand is not within 0 to 31, then we give up on trying to evaluate
the precise range and return the full range.

αω
c = T ω

a � T ω
b := (ωfr

b < 0 ∨ ωfr
b > 31 =⇒ bound(c))

∧ (ωfr
b ≥ 0∧ωto

b ≤ 31∧ωto
a < 0 =⇒ ωfr

c = ωfr
a � ωto

b ∧ωto
c = ωto

a � ωfr
b)

∧ (ωfr
b ≥ 0 ∧ ωto

b ≤ 31 ∧ ωfr
a < 0 ∧ ωto

a > 0 =⇒ ωfr
c = ωfr

a � ωto
b ∧ ωto

c =
ωto
a � ωto

b)
∧ (ωfr

b ≥ 0∧ωto
b ≤ 31∧ωfr

a ≥ 0 =⇒ ωfr
c = ωfr

a � ωfr
b ∧ωto

c = ωto
a � ωto

b)

– Right-Shift (�): if the right-hand operand is not within 0 to 31, then we give
up on trying to evaluate the precise range and return the full range.

αω
c = T ω

a � T ω
b := (ωfr

b < 0 ∨ ωfr
b > 31 =⇒ bound(c))

∧ (ωfr
b ≥ 0∧ωto

b ≤ 31∧ωto
a < 0 =⇒ ωfr

c = ωfr
a � ωfr

b ∧ωto
c = ωto

a � ωto
b)

∧ (ωfr
b ≥ 0 ∧ ωto

b ≤ 31 ∧ ωfr
a < 0 ∧ ωto

a > 0 =⇒ ωfr
c = ωfr

a � ωfr
b ∧ ωto

c =

ωto
a � ωfr

b)

∧ (ωfr
b ≥ 0∧ωto

b ≤ 31∧ωfr
a ≥ 0 =⇒ ωfr

c = ωfr
a � ωto

b ∧ωto
c = ωto

a � ωfr
b)

– Unsigned Right-Shift (≫): we only calculate the precise range when the left-
hand operand is positive and the right-hand operand is within 0 to 31. The
resulting range is the same as calculating the operands with the rights-shift
operator.

αω
c = T ω

a ≫ T ω
b := (ωfr

a < 0 ∨ ωfr
b < 0 ∨ ωfr

b > 31 =⇒ bound(c))

∧ (ωfr
a ≥ 0∧ωfr

b ≥ 0∧ωto
b ≤ 31 =⇒ ωfr

c = ωfr
a � ωto

b ∧ωto
c = ωto

a � ωfr
b)

45

– Bitwise-and (&): the range is only analyzed if one side is a positive constant.
The resulting range is from 0 to that constant.

αω
c = T ω

a & T ω
b := (ωfr

a = ωto
a ∧ ωfr

a ≥ 0 =⇒ ωfr
c = 0 ∧ ωfr

c = ωto
a)

∧ (ωfr
b = ωto

b ∧ ω
fr
b ≥ 0 =⇒ ωfr

c = 0 ∧ ωfr
c = ωto

b)
∧ (ωfr

a = ωto
a ∧ ωfr

a < 0 =⇒ bound(c))
∧ (ωfr

b = ωto
b ∧ ω

fr
b < 0 =⇒ bound(c))

∧ (ωfr
a 6= ωto

a ∧ ω
fr
b 6= ωto

b =⇒ bound(c))

– Bitwise-or (|): no analysis is done for bitwise-or operations. We give up on
evaluating the precise range for this operation.

αω
c = T ω

a | T ω
b := bound(c)

– Bitwise-xor (⊕): no analysis is done for bitwise-xor operations. We give up on
evaluating the precise range for this operation.

αω
c = T ω

a ⊕ T ω
b := bound(c)

• Comparison Constraints (αc C Ta comp Tb): if the left-hand operand is ⊥, or the
right-hand operand is not an integral type, then αc is the same as the left-hand type
Ta. Otherwise, we attempt to estimate a more precise range of the resulting type, as
described below.

αc C Ta comp Tb := (βbot
a ∧ αc = Ta) ∨ (¬βint

b ∧ αc = Ta)
∨ (¬βbot

a ∧ βint
b ∧ αc C T ω

a comp T ω
b)

– Equals To (==): the resulting range equals to the maximum of the two lower-
bounds and the minimum of the two upper-bounds. If the two ranges do not
overlap, then the result is ⊥.

αc C T ω
a == T ω

b := (ωfr
a ≥ ωfr

b ∧ ωfr
a ≤ ωto

b =⇒ ωfr
c = ωfr

a ∧ βint
c)

∧ (ωto
a ≥ ωfr

b ∧ ωto
a ≤ ωto

b =⇒ ωto
c = ωto

a ∧ βint
c)

∧ (ωfr
b ≥ ωfr

a ∧ ω
fr
b ≤ ωto

a =⇒ ωfr
c = ωfr

b ∧ βint
c)

∧ (ωto
b ≥ ωfr

a ∧ ωto
b ≤ ωto

a =⇒ ωto
c = ωto

b ∧ βint
c)

∧ (ωto
a ≤ ωfr

b ∨ ωto
b ≤ ωfr

a =⇒ βbot
c))

– Not Equals To (6=): if the right-hand operand can only be a single value and
is equal to the lower-bound or the upper-bound of the left-hand operand, then
that number is excluded in the resulting range. If the ranges of the two operands
are the same, then the result is ⊥.

αc C T ω
a 6= T ω

b := (ωfr
a = ωto

a ∧ ω
fr
b = ωto

b ∧ ωfr
a = ωfr

b =⇒ βbot
c)

∧ (ωfr
b 6= ωto

b ∨ ωfr
a 6= ωfr

b ∨ ωto
a 6= ωto

b =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a ∧ βint
c)

46

∧ (ωfr
b = ωto

b ∧ ωfr
a = ωfr

b =⇒ ωfr
c = ωfr

a + 1 ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωfr
b = ωto

b ∧ ωto
a = ωfr

b =⇒ ωto
c = ωto

a − 1 ∧ ωfr
c = ωfr

a ∧ βint
c))

– Greater Than (>): if the lower-bound of the left-hand operand is larger than
the upper-bound of the right-hand operand, then the result range is the same
as the left-hand operand. If the range of the left-hand operand is smaller than
the range of the right-hand operand and does not overlap, then the result is ⊥.
Otherwise, the result is the lower-bound of the right-hand operand increase by
1 to the upper-bound of the left-hand operand.

αc C T ω
a > T ω

b := (ωfr
a > ωfr

b =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωfr
b ≥ ωfr

a ∧ ω
fr
b < ωto

a =⇒ ωfr
c = ωfr

b + 1 ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωto
a ≤ ωfr

b =⇒ βbot
c))

– Less Than (<): if the upper-bound of the left-hand operand is smaller than the
upper-bound of the right-hand operand, then the result range is the same as the
left-hand operand. If the range of the left-hand operand is larger than the range
of the right-hand operand and does not overlap, then the result is ⊥. Otherwise,
the result is the lower-bound of the left-hand operand to the upper-bound of
the right-hand operand decreased by 1.

αc C T ω
a < T ω

b := (ωto
a < ωto

b =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωto
b > ωfr

a ∧ ωto
b ≤ ωto

a =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

b − 1 ∧ βint
c)

∧ (ωfr
a ≥ ωto

b =⇒ βbot
c))

– Greater Then and Equals To (≥): if the lower-bound of the left-hand operand
is larger than the upper-bound of the right-hand operand, then the result range
is the same as the left-hand operand. If the range of the left-hand operand is
smaller than the range of the right-hand operand and does not overlap, then the
result is ⊥. Otherwise, the result is the lower-bound of the right-hand operand
to the upper-bound of the left-hand operand.

αc C T ω
a ≥ T ω

b := (ωfr
a ≥ ωfr

b =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωfr
b ≥ ωfr

a ∧ ω
fr
b ≤ ωto

a =⇒ ωfr
c = ωfr

b ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωto
a < ωfr

b =⇒ βbot
c))

– Less Then and Equals To (≤): if the upper-bound of the left-hand operand is
smaller than the upper-bound of the right-hand operand, then the result range
is the same as the left-hand operand. If the range of the left-hand operand is
larger than the range of the right-hand operand and does not overlap, then the
result is ⊥. Otherwise, the result is the lower-bound of the left-hand operand
to the upper-bound of the right-hand operand.

47

αc C T ω
a ≤ T ω

b := (ωto
a ≤ ωto

b =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

a ∧ βint
c)

∧ (ωto
b ≥ ωfr

a ∧ ωto
b ≤ ωto

a =⇒ ωfr
c = ωfr

a ∧ ωto
c = ωto

b ∧ βint
c)

∧ (ωfr
a > ωto

b =⇒ βbot
c))

In annotate mode, Value Inference generates additional breakable clauses that express pref-
erences. The solver will attempt to satisfy all breakable clauses. The additional breakable
clauses (enclosed in []) with weight (indicated by the index after []) for the well-formed and
subtype constraints are:

• Well-formed Constraint (wf (α)): the breakable constraints prefer solutions that con-
tain an integral range for integral primitive types, and prefer solutions that are > or
⊥ for all other types.

wf (αt) := . . . ∧ [βint ∧ pf(t)]1 where t = byte, short, char, int, long

wf (αt) := . . . ∧ [¬βint]1 where t 6= byte, short, char, int, long

Predicate pf(t) prefers that the constraint variable αt is the max range of data type
t if there are no mandatory constrictions on the variable. This ensures the inferred
types provide a more accurate representation of the integral range for user inspection,
not some arbitrary value.

pf(byte) := ωfr = −128 ∧ ωto = 127

pf(short) := ωfr = −32768 ∧ ωto = 32767

pf(char) := ωfr = 0 ∧ ωto = 65535

pf(int) := ωfr = −2147483648 ∧ ωto = 2147483647

pf(long) := ωfr = longmin ∧ ωto = longmax

• Subtype Constraint (Ta <: Tb): the breakable constraint prefers that the subtype
and the supertype are equal.

T constant
a <: T variable

b := . . . ∧ [Ta = Tb]4

T variable
a <: T constant

b := . . . ∧ [Ta = Tb]3

T variable
a <: T variable

b := . . . ∧ [Ta = Tb]2

The preference constraints in the subtype constraint weights more than the preference
constraints in the well-formed constraints because t is preferred > for five of the data
types. A subtype constraint would infer the solution of a float or double to a type of
IntRange, and should be the preferred solution as it is more precise. The reason why

48

constant <: variable weights more than variable <: constant is that for cases where a
variable is directly connected to both a supertype constant and a subtype constant, the
subtype constant is preferred to be the solution of this variable as it contains a more precise
value. variable <: constant weights more than variable <: variable because it is preferred
for the solution of from and to to be specified values rather than random values.

4.5 Implementation

Value Inference for Integral Values is implemented as a type inference using Checker Frame-
work and Checker Framework Inference. Excluding empty lines and comments, 3976 lines
of Java code are used to implement this inference. The additional annotations provided
for the byte-code libraries are the same as the ones used for the Narrowing and Widening
Type System described in Sec. 3.4 to ensure consistency between the experiments.

The Checker Framework Inference does not generate comparison constraints and com-
parison constraint variables for refining the variables in a condition expressions prior to
this type system, as it was not necessary for previous type systems built using the Checker
Framework Inference. For most type systems, condition expressions will not change the
type of the variable after evaluation, unlike value types. 393 lines of code are added to the
Checker Framework Inference for the framework to support comparison constraints.

4.6 Experiments

This case study is performed on a cloud instance with a four-core CPU and 16GB RAM,
running 64-bit Ubuntu 20.04.

Inference is run and all 18 Apache Commons projects from Table 3.2. Table 4.1 sum-
marizes the numbers of integral primitive types, narrowing operations between primitives,
arithmetic operations, and comparison operations used in each project. The integral prim-
itives include the declared variables, parameters, and method returns. Table 4.2 shows
the number of constraint variables and mandatory constraints generated for each of the 18
projects. Out of these 18 projects, inference successfully inferred 5 of the projects while the
other 13 projects reached UNSAT. The results are presented in Table 4.3. The 5 projects
are then evaluated in annotation mode and the results are presented in Table 4.4.

Table 4.3 also reports the execution times of the Value Inference for Integral Values in
whole-program inference mode for the 18 projects. Table 4.4 reports the execution times of

49

Project Primitives Boxed Cast Arithmetic Comparison

common-bcel 3142 89 101 478 1353
commons-beanutils 985 253 212 337 1155
commons-bsf 308 39 139 83 237
commons-codec 948 37 80 338 502
commons-compress 3728 347 584 1223 1809
commons-crypto 510 7 27 98 166
common-csv 254 40 36 39 190
commons-email 113 2 4 27 184
commons-exec 262 1 21 55 181
commons-fileupload 323 3 35 49 155
commons-imaging 4251 282 416 1808 2201
commons-io 1579 71 335 470 862
commons-jxpath 999 5 16 262 1259
commons-logging 140 11 0 39 324
common-net 2185 36 207 516 1021
commons-ognl 848 39 103 213 976
commons-text 858 58 289 339 609
commons-validator 737 737 24 327 635

Total 23475 2207 2710 7245 15520

Table 4.1: Summary of the numbers of integral primitive, integral primitive wrappers,
narrowing conversions between primitives, arithmetic operators, and comparison operators
used in each projects

50

Constraint Variables Constraints
Project αcons αvar αrefin αlub αop αcomp Σsub Σeq Σop Σcomp

commons-bcel 298 18551 4523 3257 908 3084 43132 5241 909 1758
commons-beanutils 49 7721 1483 1341 136 1336 12988 2601 136 1190
commons-bsf 87 2980 2980 739 273 588 6162 1427 274 488
commons-codec 4786 4800 1340 1258 1082 796 14892 1912 1082 614
commons-compress 2955 13460 4569 4452 2633 3928 36196 5771 2633 2370
commons-crypto 29 1834 404 304 113 304 2951 608 113 254
commons-csv 40 891 247 357 67 306 2205 372 67 184
commons-email 46 1246 267 263 27 194 1955 505 27 144
commons-exec 36 1045 275 260 34 192 1855 496 34 140
commons-fileupload 119 1481 376 380 102 310 2939 589 102 208
commons-imaging 1072 20753 6796 5597 4618 4820 50588 8633 4618 3158
commons-io 131 5943 1286 1726 556 1594 11859 2228 556 1272
commons-jxpath 455 8598 2928 3189 707 2814 25482 3747 707 1870
commons-logging 29 1252 328 343 15 308 2475 568 15 254
commons-net 286 9357 2912 3017 723 2156 20984 4081 723 1396
commons-ognl 262 9455 2649 2562 565 2094 21365 3660 565 1294
commons-text 77 3909 1084 1499 624 1422 9911 1461 624 1068
commons-validator 125 4227 829 1142 169 948 7984 1457 169 728

Total 11144 128856 38603 35223 14267 27486 309506 46729 14268 20294

Table 4.2: Constraint variables and constraints generated for each of the 18 Apache Com-
mons projects.

51

SMT Inferred Values
Project Bool Int Assert > ⊥ Int Time

commons-bcel 180558 120372 163366 UNSAT 320.94
commons-beanutils 37086 24724 29294 2625 238 2355 218.83
commons-bsf 34356 22904 28340 UNSAT 54.86
commons-codec 56724 37816 56406 UNSAT 91.33
commons-compress 176850 117900 155158 UNSAT 379.40
commons-crypto 18096 12064 14088 UNSAT 38.79
commons-csv 11424 7616 9544 UNSAT 59.70
commons-email 6120 4080 4650 337 97 517 47.81
commons-exec 5640 3760 4414 255 23 404 38.41
commons-fileupload 16248 10832 13168 UNSAT 33.86
commons-imaging 258558 172372 222960 UNSAT 447.80
commons-io 67650 45100 55072 UNSAT 104.48
commons-jxpath 110970 73980 101334 UNSAT 171.18
commons-logging 6831 4554 5599 438 64 421 49.70
commons-net 110700 73800 91874 UNSAT 165.22
commons-ognl 111612 74408 91312 UNSAT 223.19
commons-text 52464 34976 44736 UNSAT 106.34
commons-validator 22281 14854 17990 1246 399 1536 129.53

Total 1260807 946648 1231697 4901 821 5233 3704.22

Table 4.3: Inference mode results for the projects. Column Assert shows the number of
(mandatory) formulas encoded for SMT. The inferred values are the solutions given by
the solver in inference mode. The time column reports the total time taken in seconds by
Value Inference for Integral Values to encode a constraint system into SMT formulas and
for Z3 to solve the formulas in inference mode.

52

SMT Inferred Values Time
Project Soft Assert > ⊥ Int Encode Solve

commons-beanutils 38321 3969 194 1048 12.762 33792.66
commons-email 5918 592 69 263 3.153 698.74
commons-exec 5590 444 49 205 4.105 476.10
commons-logging 7227 643 43 214 2.732 362.83
commons-validator 23382 2177 876 123 5.282 31331.86

Total 80438 7825 1231 1583 28.034 66662.19

Table 4.4: Annotate mode results for the projects that passed inference mode. Column
Soft Assert shows the number of breakable formulas encoded for MaxSMT. The inferred
values are the solutions given by the solver in annotation mode. The Encode and Solve
columns, respectively, report the time taken in seconds by Value Inference for Integral
Values to encode a constraint system into SMT formulas, and for Z3 to solve the formulas
in annotation mode. The Encode column does not count the time required to traverse the
AST to generate constraints

the Value Inference for Integral Values in whole-program inference annotation mode for the
5 successfully inferred projects. The time is separated into encoding time and solving time,
which respectively represent the time taken by the Value Inference for Integral Values to
encode a constraint system into SMT formulas, and the time for Z3 to solve those formulas.

When a program reaches UNSAT, names are added to each formula so that the solver
can return a minimal subset of the unsatisfiable constraints which are used by Value In-
ference to issue errors. The reasons why these projects reached UNSAT are manually
analyzed. Overall, there are three reasons for a project to reach UNSAT in inference
mode:

• Presence of narrowing type errors

All failed projects in the experiments contain a UNSAT constraint where the range
and precision are lost from the narrowing of primitives. They do not check the
range of the variable before narrowing. These errors can lead to serious failures if
the libraries were used incorrectly in mission-critical systems. Value Inference for
Integral Values helps identify such issues and forces developers to restructure their
applications in a way that allows the safe use of narrowing conversions on primitive
values.

53

• Insufficient annotations for library methods

Applications have large dependencies on binary-only libraries, like the JDK. Value
Inference for Integral Values can infer annotations for the available source code, but
requires manual annotations for binary-only dependencies. Value Inference for Inte-
gral Values can use optimistic defaults, for example by assuming that unannotated
method signatures have > receiver and parameter types, and ⊥ return types. Opti-
mistic defaults can temporarily help a developer pinpoint whether the problem is in
their code or is due to an unannotated API. Manual annotation efforts for libraries
can be re-used to type check and infer units in other projects utilizing the same APIs.

• False positives

The false positives mentioned in Sec. 3.5.3 also contributed to the UNSAT produced
by the solver as the constraints generated are limited to its type system. These
include imprecision for loop iterations, unable to handle post-conditions on external
function checks, and imprecision with functions in Math and Number libraries.

4.6.1 Performance Overhead

In inference mode, the 5 projects, commons-beanutils, commons-email, commons-exec,
commons-logging, and commons-validator that successfully pass whole-program infer-
ence, take 484.28 seconds (8.07 minutes) to check and infer a type-safe solution in infer-
ence mode. The time taken to type check these 5 projects is 102.79 seconds (1.71 minutes)
as shown in Table 3.2. The overhead is approximately 4.71x compared to modular type
checking. The solving time generally takes longer for larger projects, but if the solver finds
an unsatisfiable constraint early, the solving time can be fast.

In annotate mode, successful projects take 66690.224 seconds (1111.50 minutes) to
infer the more precise and relevant values. commons-beanutils and commons-validator

contribute the most to the tally. The overhead is approximately 650.00x vs. type check
mode, and 137.71x vs. inference mode. The time is spent by the SMT solver to optimize the
solutions. Value Inference for Integral Values takes more time to generate SMT encoding
for larger projects. The major performance bottleneck is the SMT solver. The solving
time increases dramatically with the increased numbers of soft asserts.

The performance in inference mode for whole-program satisfiability checking enables it
to be used in continuous integration workflows. The performance in annotate mode is slow,
but this mode is expected to be used less frequently. The annotations inserted into source

54

code enable subsequent uses of the Value Inference for Integral Values in inference or anno-
tate modes to be executed faster, as fewer constraint variables are generated. Developers
can also incrementally infer and annotate their projects, starting with core libraries. The
Value Inference for Integral Values performs adequately in inference and annotation mode.
Its performance is suitable for use in a real-world software development environment. Im-
provements to SMT encoding, the Checker Framework, Checker Framework Inference, and
the z3 solver will improve the performance of the Value Inference and other type inference
developed using the frameworks. We can also experiment with different solvers for future
work.

55

Chapter 5

PUnits - Units Type System
Improvement and Related Works

5.1 Introduction

PUnits is an expressive type system to enforce units of measurement and a precise whole-
program type inference approach that helps developers annotate code with unit types.
PUnits is implemented for Java as an optional type system [8]. It handles all of Java’s
language features and works on real-world Java applications. Nevertheless, the idea for
PUnits is not limited to Java and can be widely adopted.

This type system is a collaborative work with Ph.D. student Jeff Yucong Luo. Jeff
designed and implemented the normalized vector representations, the core type features,
and the type inference of the Unit Type system. A brief background on this type system is
described in Sec. 2.4. This chapter focuses on the additional features added to the system
and how PUnits compares to existing unit systems. This chapter is part of the paper
published in OOPSLA 2020 [46].

PUnits supports annotation defaulting, method-local flow-sensitive type refinement,
and parametric polymorphism over units. These features minimize the need for unit an-
notations in method bodies, removing unnecessary clutter. This chapter introduces a new
feature that is added to PUnits , receiver-dependent units, in Sec. 5.2, for handling cases
where the method return and method parameter type are context-sensitive to the method
receiver type.

Two general approaches have been applied in prior work to add support for units

56

to a programming language: (1) through designing abstract data types and libraries to
encapsulate numbers with units, (2) through modifying a language to add unit syntax and
static analysis.

The encapsulation approach uses the existing type system of a language to perform
limited static analysis, with the capability to perform fully run-time-based unit analysis
for units and quantities that are given as run-time inputs. The design and features of 38
different units libraries are extensively compared in a recent paper [3]. Using such libraries
incurs additional performance and memory overhead. For example, using boxed number
types for numeric computations in Java is 3x slower and uses 3x more memory compared
to using primitive types [37]. JSR 275/363 [15, 16] is the most popular option for Java. It
defines an API for units of measurement and provides a reference implementation for SI
units. Sec. 5.3 discusses the benefits and trade-offs of using PUnits versus such libraries.

Sec. 5.4 compares the static approaches in prior works.

5.2 Receiver Dependent Units

A return type or method parameter type sometimes needs to be sensitive to the actual
method receiver type. PUnits supports receiver-dependent units by introducing the @RDU

type qualifier for return types or method parameter types. A @RDU type is resolved using the
actual receiver type, similar to how viewpoint adaptation works in ownership types [19, 20].
The viewpoint adaptation operation takes two inputs, the receiver type and the declared
type, and yields a single result type. When type checking a method invocation, any
occurrence of @RDU in the signature is substituted with the receiver type; all non-@RDU-
types stay unchanged. Type checking happens against the viewpoint adapted signature
of the method. @RDU is never inferred. In inference and annotate mode, any occurrence
of @RDU in the signature introduces a new constraint variable and an equality constraint
is introduced between the receiver type and the new constraint variable. This constraint
variable is used for further checks instead of the declared parameter or return type.

The type rule of receiver dependent unit is as follows:

q B RDU = q

B q = q (otherwise)

Consider the example in Fig. 5.1. The return type of convert() on line 4 and the
parameter type of toNanos() on line 5 are @RDU. When these methods are invoked, we
enforce the return type of convert() and the argument to toNanos() to be the same as

57

1 enum TimeUnit {

2 @s SECOND ,

3 @ns NANOSECOND;

4 @RDU long convert(long duration , TimeUnit unit) {...}

5 @ns long toNanos(@RDU long duration) {...}

6 }

7 @s int good1 = SECOND.convert (10, NANOSECOND);

8 @ns int bad1 = SECOND.convert (10, NANOSECOND); // Error

9 @ns int good2 = SECOND.toNanos(s);

10 @ns int bad2 = SECOND.toNanos(ns); // Error

Figure 5.1: Receiver-dependent units examples. Variables s has unit type @s (second) and
variable ns has unit type @ns (nanosecond).

1 class Unsound {

2 @RDU int field;

3 }

4 @m Unsound a = new @m Unsound ();

5 @> Unsound b = a;

6 b.field = (@s int) 0;

Figure 5.2: Example of unsoundness if receiver-dependent units were allowed to be used on
member fields. @RDU is forbidden on any program element aside from method parameter
and method return types.

their method receivers. An invalid type assignment is issued on line 8 as SECOND.convert()
returns type @s. An invalid type argument is issued on line 10 as SECOND.toNanos()

accepts type @s as its argument.

Note that we forbid the use of @RDU on any program element aside from method pa-
rameters and method returns; otherwise soundness is not guaranteed. Fig. 5.2 shows an
example of unsoundness if @RDU is used on a member field. At line 6, b.field is assigned
a @s value, which is visible to a.field since object b is an alias of object a, and breaks
that a.field should be @m.

58

5.3 JScience vs. PUnits

We discuss the benefits and trade-offs of using PUnits versus existing Java unit libraries
from three aspects: error detection, program execution performance (time and memory),
and features.

We focus on analyzing PUnits ’s effects on the GasFlow project, the only project that
uses a unit library. GasFlow uses the JScience library, or JSR 275/363 [15, 16], which is
one of the most popular unit libraries for Java. We replace uses of JScience unit wrapper
classes with PUnits specifications and primitive types and run modular type checking on
the annotated code.

The JScience API uses generics to provide unit type-safety. The Amount<Quantity1>

class in JScience is used for storing the exact Unit2 and performing arithmetic operations
with the units. Table 5.1 give a summary of the ranges of dimensions and units used in
the GasFlow project.

GasFlow only uses ten functionalities within the JScience library:

• Initialization: valueOf(double, Unit) and valueOf(String) can take in a double
and its corresponding Unit or a string in the format of "value unit" (e.g., "50 m").
181 uses.

• Conversion: to(Unit) and doubleValue(Unit) return the value converted to the
unit specific by the argument. It is required for the argument to be in the same
dimension as its receiver. 81 uses.

• Arithmetic: plus(Amount), minus(Amount), times(Amount), and divide(Amount)

perform arithmetic operations between two Amounts. Plus and minus operations
require the receiver and the argument to be in the same dimension. 236 uses.

• Comparison: isGreaterThan(Amount) and isLessThan(Amount) perform compari-
son operations between two Amount. 12 uses.

To replace the abstract data types with primitives, we create helper class UnitsTools,
which stores a list of units that are represented using annotated primitives with a value
of 1 (eg. @m int m = 1). All the wrapper initialization are replaced with UnitsTools

1Part of the javax.measure package, provides dimension handling.
2Part of the javax.measure package, provides unit handling.

59

annotated primitives. For example, Amount.valueOf(2, METER) is replaced with 2 *

UnitsTools.m. All the wrapper arithmetic operations are replaced with the standard
Java operations +, -, *, /. All the wrapper comparison operations are replaced with the
standard Java operations ¿ and ¡. Initialization, arithmetic operations, and comparison
operations are replaced using a small script with sed. For conversion, we manually ensured
that the variable is in the unit specified by the argument by specifying the declaration to
its specified unit. For example, Amount m = amountVal.to(METER) becomes @m double

m = amountVal with amountVal now a primitive. UnitsTools also contains conversion
methods that are used to replace unit conversion functions in JScience when it is possible
to determine the type to be converted statically. All the unit conversions that appear in
the GasFlow project can be determined statically.

In total, 510 JScience method invocations and 503 variables containing 17 dimensions
and 22 units are replaced with 647 PUnits qualifiers and 242 UnitTools uses. Additional
PUnits qualifiers were needed for casting unit-wise heterogeneous methods to specific units.

Error Detection

After replacing unit wrappers with PUnits specifications and primitive types, we used
PUnits in type checking mode to see whether there are any units errors. We found three
units errors, whereas JScience failed to detect them.

Two of these errors are related. Function computeSiamCoefficient is declared as
dimensionless. However, the return type is m−1s−2 and an invalid return error is issued.
This function is then invoked by a function that requires the return type to be m−1s−2,
but as computeSiamCoefficient is declared as dimensionless, another return type error
is issued. We changed the return type to m−1s−2 to fix these two errors. The other error
is related to function getReynoldsNumber. A Reynolds Number [4] is a dimensionless
value, but the function returns type m3/kg. This function is missing the density (volume
per weight) variable to give the correct Reynolds Number. This error causes all future
computations in this project to be incorrect.

The reason why JScience cannot detect these errors is due to the use of casting and
raw types. The original GasFlow contains 130 raw unit data types and 51 unit casts. Line
3 in Fig. 5.3 illustrates an illegal cast of an area to a length. The return type of times()
is Amount<?>, because JScience cannot statically express the return unit. Developers are
therefore required to add casts that cannot be checked statically, to make the result usable.
Similarly, on line 4, a raw type is used to circumvent this weakness. The cast from a
wildcard to a type produces an unchecked warning, as does the usage of a raw type. 181

60

Original PUnits
Dimension Unit Amount Javax String Anno UTools

Length
m

75
79 1 46 25

mm 5 1 26 17
km 2 0 0 1

Pressure
Pa

90
3 0 0 3

Ba 46 3 111 31

Duration
s

16
24 12 14 11

hr 4 0 0 48

Temperature
K

18
8 1 18 14

°C 1 2 3 3

Mass
g

2
4 0 0 13

kg 16 0 6 9
Angle rad 0 0 0 10 0

Velocity m/s 16 4 1 11 5
Area m2 4 0 0 1 2

Volume m3 12 7 0 9 59
Power W 4 4 0 4 1

Mass Flow Rate kg/s 8 2 0 14 0
Molar Mass g/mol 5 2 2 12 0

Volumetric Flow m3/hr 71 0 52 49 0
Calorific Value MJ/m3 3 0 1 5 0

Heat Transfer Coefficient W/m2/K 3 0 0 3 0
Dimensionless - 46 21 0 39 0

Raw Data Type - 130 9 0 266 0

Total - 503 220 105 647 242

Table 5.1: A summary of all the dimensions and units used in the GasFlow project. Column
Amount counts the uses of Amount<Q>. Column Javax counts uses of javax.measure.unit
and column String counts units represented in string format. Column Anno counts
unit qualifiers after converting to use PUnits . The qualifiers replace the Amount<Q>

uses in the project. Column UTools counts uses of UnitsTools that are used to re-
place javax.measure.unit and units in string format. Velocity can be represented as
UnitsTools.m/UnitsTools.s and therefore is counted toward m and s instead of m/s.

61

1 Amount <Length > bad() {

2 Amount <Length > l;

3 l = (Amount <Length >) valueOf(1,M).times(valueOf(1,M));

4 Amount a = valueOf(1, M).times(valueOf(1, M));

5 return a;

6 }

7
8 @m double good() {

9 double l = (@m double) 1* UnitsTools.m * 1* UnitsTools.m;

10 double a = 1* UnitsTools.m * 1* UnitsTools.m;

11 return a;

12 }

Figure 5.3: A simple example comparing the difference between JScience and PUnits . M is
unit METER. Errors are issued on line 9 and 11 by PUnits .

such warnings are produced in GasFlow. Making matters worse, no runtime exception is
raised within method bad(), as all method invocations and casts are valid. However, even
though the type argument is incorrect, the unit is still preserved dynamically. If we try to
read the return value of bad() in a unit that is in the dimension of the signature on line
1, such as meter or kilometre, a runtime exception will be raised. As such invocations can
happen a long time after the call to bad(), it is difficult to pinpoint where the incorrect
Amount object came from.

With PUnits , this kind of casting will not be allowed since m is not a subtype of m2.
Not only that, with PUnits , such casts are not needed. Variable a has type m2 and it is not
a subtype of m. An invalid cast error will be issued on line 9 and an invalid return type
will be issued on line 11. PUnits is able to detect errors early and it pinpoints the exact
location of the problem.

Execution Time & Memory Consumption

We executed the GasFlow project by invoking the main method of the program. The
program calculates and generates data points at every time step over a fixed amount of
time. The time step was originally set to 1 second. To better analyze its performance, we
decrease the time step to 1 millisecond to increase the program execution time. This case
study is performed using a laptop with Intel i7-6700HQ 2.60 GHz a four-core CPU and
16GB DDR4 RAM, running 64-bit Ubuntu 18.10.

The average execution time is 3966ms when we are using JScience, and 3367ms when

62

using PUnits and all the abstract data types are replaced with primitives. The execution
time has significantly reduced by 15.1%. The execution time is measured using Java’s
System library.

The average memory consumption is 794 kBytes when we are using JScience, and 697
kBytes when using PUnits with primitive types. The memory consumption has signifi-
cantly reduced by 12.2%. The memory consumption is measured using Java’s Runtime
library.

The performance overhead of UnitsTools is insignificant compared to JScience, as all
of the UnitsTools operations are using primitives. As PUnits is a static analysis tool, it
will not add any overhead to the program during runtime and reap the benefits of using
primitives, unlike JScience which uses abstract data types to keep track of units.

Features

GasFlow contains one heterogeneous method, which accepts or returns a range of dimen-
sions that differ in its specific class or type argument. For this method, PUnits loses the
unit of that variable, while JScience preserves the unit dynamically through abstract data
types. Nevertheless, we believe it is good coding practice to avoid type-unsafe heteroge-
neous methods when possible, as heterogeneous methods increase the risk of a runtime
exception. PUnits enforces this programming practice.

PUnits uses primitives instead of abstract data types, which also prevents problems
with null values. As a value should always have a unit, we do not see this as a restriction.
One simple way to allow the primitives to have a null-like behaviour is by creating a boolean
flag for each variable to indicate if a variable has been initialized or not. In GasFlow, there
are five variables that required this work-around.

It is possible to combine PUnits with a units library, by annotating the abstract data
types of the units library with PUnits specifications to gain the benefits of both static error
detection and dynamic library features. However, this will lose the performance benefits
of using primitive types. Overall, for projects that require minimum uses of dynamic unit
computations, PUnits is a better alternative than JSR 275/363.

5.4 Related Work in Static Units Systems

The static approaches in prior work differ in how units are internally represented and their
expressiveness, how types are inferred, and how annotation burden is reduced. Fig. 5.4

63

PUnits Osprey F# Simulink’s B’s ableC ’s CPF[UNITS]

Dimension analysis X X X X
Unit-wise analysis X X X X X X
Support non-SI X X X X
Polymorphism X X X X X
Receiver dependent X
>/⊥ (top/bottom) X X
<kN/km> = <N/m> X X X X
Modular type inference X X X X X X
Whole-program inference X
Reduce annotation burden X X X

Figure 5.4: An overview of features provided by each unit of measurement system.

gives an overview of the supported features between the related works.

Osprey is a constraint-based units type checker for C [?]. PUnits ’s representation
of units is similar to Osprey’s. Osprey introduces a units language whereby compound
units are represented as products and inverses of SI base units, a “dimensionless” unit,
and constant factors. Osprey does not allow developers to utilize a different set of base
units, and stores only the exponents of the SI units. It also does not have a > or ⊥ type.
There is no subtyping between units in Osprey. Assignments, additions, subtractions, and
comparisons all require the arguments’ units to be equal to each other while PUnits allows
more flexibility with > and ⊥. Any return value and parameter without annotations are
treated by Osprey to be polymorphic while in PUnits , functions that are intended to be
polymorphic must be explicitly annotated. Osprey’s minimized constraint set is translated
into a system of linear equations and then solved using Gaussian elimination. We also
implemented a Gauss-Jordan elimination solver for the integer subsets of the constraints.
However, the initial performance results of this solver did not look promising and we did
not pursue the effort further. To reduce annotation burden, Osprey can suggest “critical”
variables for users to annotate. These are variables whose units are inconsistent with the
units of their representatives. In PUnits , if inference fails, the set of constraints causing
unsatisfiability is provided. The user can examine the constraints and determine whether
there is a unit error or there are insufficient annotations in the binary-only libraries.

F#’s units type system [45, 32, 31] represents units as symbols or products of sym-
bols, each with an optional integer exponent. The set of symbols can be declared by the
developer, however, there is no support for representing prefixed units in terms of their

64

base units, as prefixed units are considered distinct unit symbols. Consequently, a value
with unit <kN/km> cannot be assigned to a variable with unit <N/m> in F# whereas it
is permitted in PUnits . F# infers under-constrained type variables as polymorphic unit
types, the most general typing in F#. In PUnits , the most general type is >, which is not
a useful annotation to insert into source code. PUnits chooses to infer the most precise
type, and prefers to infer @Dimensionless for under-constrained type variables. Similar
to PUnits , functions that are intended to be polymorphic must be explicitly annotated.
F# allows polymorphic functions to express more rich relationships such as polymorphic
multiplication and division where the resulting unit is a function of two or more polymor-
phic units given as the parameters. PUnits currently supports a less expressive form of
polymorphism, but scaling the current design to support F# style polymorphism is inter-
esting future work. We did not need F# style polymorphism in the case studies, but plan
to extend our implementation as future work.

F#’s inference algorithm was improved upon in a type system for Fortran [39]. This
system makes two improvements. First, it always assumes that functions without any
unit annotations are implicitly polymorphic over the units. It infers the unit relationships
between a function’s parameters and its return as a general relationship, and then infers
the specific units at each call-site. Second, under-constrained variables are reported as
critical variables that require manual annotation by a user. Critical variables provide
the maximal amount of unit information with the minimal number of explicit annotations.
This improvement reduces some annotation burden. PUnits inserts all inferred non-default
units into source code, reducing the annotation burden for subsequent type checking or
inference.

A dimensional analysis system for Simulink [?] expresses dimensions as products
of SI base dimensions, each with an integer exponent. Dimensional consistency can be
enforced through this representation. However, unit-wise consistency cannot be enforced:
an expression of 1 km + 1 m would not result in any errors as both are in the dimension of
length. A proper calculation would require either unit to be converted prior to the addition.
This system infers dimensions by collecting equations from the program and then solving
the set of equations through Gauss-Jordan elimination.

A units type system for the B language [33] represents units as products of SI units
where each base unit has a prefix and an exponent. Some derived units can be expressed
via multiple representations in this design. For example, a kilo-newton can be defined
as both Mg * m * s−2 and kg * km * s−2 with corresponding triples. This leads to a
combinatorial explosion of representations since multiplication and division produce new
units as a function of the units of its two arguments. PUnits extracts all prefixes into one
constant, forcing each unit to have a unique normalized representation, which avoids the

65

combinatorial explosion problem. This type system does not handle polymorphism and all
unannotated units are treated as ⊥. It uses a simple unification-based type inference, in
addition to constraint solving for multiplication, division, and exponentiation operations.
These constraints cannot be collected and are solved one at a time. The > qualifier in this
unit type system is used to indicate a type error as only one inferred unit is acceptable. In
PUnits , > is accepted to accommodate heterogeneous methods and arrays.

Type Qualifiers as Composable Language Extensions [12] proposes adding pluggable
type checkers to the ableC [29] language as grammar and type checking extensions, in-
cluding a units of measurement system. In that system, units are parsed as symbols as
part of an extended ableC grammar, and then represented as a set of tuples similar to the
units type system for the B language[33] for its type checking phase. Each tuple is of the
form [bp ∗ ue] for some conversion factor b raised to the power of p and some base unit u
raised to the power of e. In ableC, units are not organized in a type lattice and there is
no concept of > or ⊥ types. ableC ’s units type system is implemented exclusively for SI
units, and does not support other units of measurements without further extending the
grammar and implementing the extension. The pluggable type systems of ableC lack type
inference capabilities.

CPF[UNITS] [27] defines a units analysis policy, annotation language, and specification
that plugs into the C Policy Framework (CPF) to debug and verify C programs. The system
encodes the abelian group properties of units as a rewriting system. Units are represented
as products of base units, each with an exponent. The set of base units is customizable
and can be given long and short names. Users provide annotations that specify the units
of variables, objects, and function parameters and returns as pre- and post-conditions.
Unannotated function parameters and objects are treated as having a “fresh” unique unit
by the system to eagerly prevent misuses. The framework extracts one verification task
per function. The tasks are solved through symbolic execution, using the rewriting system
to solve unit relationships. Units are checked at key operations such as additions and
comparisons. The system is modular, and can infer units for local variables. However, it
does not perform whole-program inference.

66

Chapter 6

DataFlow Framework Precision
Improvements

6.1 Introduction

Data-flow analysis is considered a terminating, imprecise abstract interpretation of a pro-
gram [5]. Having an analysis that is decidable is important, e.g. for compiler optimization.
The Checker Framework uses the Dataflow Framework for program verification, which is a
data-flow analysis of Java programs. The Dataflow Framework for the Java programming
languages is used to estimate the values a variable might contain. It is a path insensitive
analysis. The Dataflow Framework transforms the abstract syntax tree from an input Java
program, and turns it into a control-flow graph. The background of the data-flow analysis
and the structure of the Dataflow Framework is described in Sec. 2.1.

Sec. 3.5.3 mentions one of the false positives issued by the Narrowing and Widening
Checker is due to loop imprecision. To resolve this false positive, one of the solutions
is making changes to algorithms of the Dataflow Framework. This chapter first explores
other kinds of false positive results from the Dataflow Framework’s imprecise algorithm
and solutions in improving its precision. Sec. 6.2 presents the addition of a dead branch
analysis to the Dataflow Framework to resolve the false positive show in Fig. 6.1. Sec. 6.3
proposes a path-sensitive analyse to resolve the false positive show in Fig. 6.3. Sec. 6.4
then describes how these two additional analyses to the Dataflow Framework resolve some
loop imprecision such as the example shown in Fig. 6.5.

67

1 @IntVal (1) int dead branch () {
2 int x = 0 ;
3 int y = 0 ;
4 i f (x == 0) {
5 y = 1 ;
6 }
7 return y ;
8 }

Error: [return.type.incompatible] incompatible types in return.

type of expression: @IntVal ({0, 1}) int

method return type: @IntVal (1L) int

Figure 6.1: An example of a false positive error due to lack of dead branch analysis.

6.2 Dead Branch Analysis

A branch is “dead” the branch is unreachable. The Dataflow Framework does not perform
dead branch analysis. Fig. 6.1 is an example of a false positive error produced by the
Constant Value type system due to the lack of dead branch analysis. After the boolean
expression x == 0, two different stores are created. The then store maps x to IntVal(0)

and the else store maps x to ⊥ since no values goes there. The value of y is mapped to
IntVal(0) in both stores. The stores are propagated to their respective branches. In the
then-branch, y changes to IntVal(1) due to the expression y = 1. After the stores merged,
y is mapped to IntVal(0,1) as it is the least upper bound of IntVal(0) and IntVal(1).
The checker then issues a return.type.incompatible error since IntVal(0,1) is not a
subtype of IntVal(1).

Fig. 6.2 shows the stores in the control-flow graph generated by the Dataflow Framework
in every block. The special blocks are represented using circles. The regular blocks are
represented using rectangles and the conditional blocks are represented using octagons.
The expression beside the regular blocks are the nodes, or expressions, analyzed. The
values in each block are the transfer results after analyzing all nodes within that block.
The stores with a mapping of the variables to their type are shown within the block.

Dead branch analysis is added to the Dataflow Framework to improve its precision and
reduces false positives. An indication of whether the branch is dead or not is added to the
stores. Upon encountering a boolean expression, the transfer function will also determine

68

〈entry〉

x ∈ {0}, y ∈ {0} x = 0, y = 0

x ∈ {0}
y ∈ {0}

x ∈ ⊥
y ∈ {0} x == 0

x ∈ {0}
y ∈ {1}y = 1

x ∈ {0}, y ∈ {0,1}

〈exit〉

th
en

else

Figure 6.2: Control-flow graph of the example in Fig. 6.1 containing the transfer result in
each block produced after evaluating the expressions.

69

the result of the expression to either be true, false, or unknown. If the expression can be
evaluated to either true or false at compile-time, then there exists a dead branch in the
program. During the merging of the two branches, incoming stores from the dead branch
should not merge with the other store. Only the stores from the reachable branch are
propagated and used for further analysis. Going back to Fig. 6.1, the store produced after
the branches merge will be {x ∈ {0}, y ∈ {1}} instead and the correctness of the program
can be verified.

6.2.1 Implementation

A new flag is added to the Store interface in the Dataflow Framework to indicate whether
this store is in a dead branch or not. If the flag returns true, then the store is in a dead
branch.

public interface Store <S extends Store <S>> {

public boolean isDeadBranch ();

public void setDeadBranch ();

/* . . . */

}

A new class ConditionEvaluator is created for statically evaluating boolean expres-
sions. This class visits a boolean expression and returns an enum indicating the path of
the dataflow. If the boolean expression is evaluated to be always true, then the visitor
will return ConditionFlow.TRUE. If the boolean expression is evaluated to be always false,
then the visitor will return ConditionFlow.FALSE. If the path is unknown, then the visitor
will return ConditionFlow.BOTH. If the ConditionFlow is evaluated to be either TRUE or
FALSE, then the deadBranch flag in the other store is set to true during value propagation.
When the branches merge and the least-upper-bound between the stores are calculated,
the store with a deadBranch flag is ignored.

public class ConditionEvaluator <A extends AbstractValue <A>,

S extends Store <S>> {

public enum ConditionFlow {

TRUE ,

FALSE ,

UNKNOWN

}

public ConditionFlow visit(Node node , TransferInput <A, S> in)

{ /* ... */ }

}

70

In total, 440 lines of code are added to the Dataflow Framework and the Checker
Framework to support a dead branch analysis interface for other type systems.

6.2.2 Applying to Constant Value Type System

Including dead branch analysis for interval analysis is beneficial as it increases precision
in the analysis. The following flow rules are applied to the ConditionEvaluator for the
Constant Value Type System. TL and TR are the type qualifier of the left and right
operators. fromL and fromR indicate the lower-bound of the left and right-hand operand
and toL and toR indicate the upper-bound of the left and right-hand operand.

• Greater Than (TL > TR): if the two ranges do not overlap or if the only overlapping
values are the upper bound of the left-hand operand and the lower bound of the
right-hand operand, then we can be certain of the propagating path. Otherwise, the
path is unknown.

fromL > toR =⇒ TRUE

toL ≤ fromR =⇒ FALSE

otherwise =⇒ UNKNOWN

• Greater or Equal (TL ≥ TR): if the two ranges do not overlap or if the only overlapping
values are the lower bound of the left-hand operand and the upper bound of the right-
hand operand, then we can be certain of the propagating path. Otherwise, the path
is unknown.

fromL ≥ toR =⇒ TRUE

toL < fromR =⇒ FALSE

otherwise =⇒ UNKNOWN

• Less Than (TL < TR): if the two ranges do not overlap or if the only overlapping
values are the lower bound of the left-hand operand and the upper bound of the
right-hand operand, then we can be certain of the propagating path. Otherwise, the
path is unknown.

toL < fromR =⇒ TRUE

fromL ≥ toR =⇒ FALSE

otherwise =⇒ UNKNOWN

• Less or Equal (TL ≤ TR): if the two ranges do not overlap or if the only overlapping
values are the upper bound of the left-hand operand and the lower bound of the
right-hand operand, then we can be certain of the propagating path. Otherwise, the

71

path is unknown.
toL ≤ fromR =⇒ TRUE

fromL > toR =⇒ FALSE

otherwise =⇒ UNKNOWN

• Equal (TL = TR): if the two ranges do not overlap or if both operands contain only
one possible value and they overlap, then we can be certain of the propagating path.
Otherwise, the path is unknown.

fromL = toL ∧ fromR = toR ∧ fromL = fromR =⇒ TRUE

fromL > toR ∨ toL < fromR =⇒ FALSE

otherwise =⇒ UNKNOWN

• Not Equal (TL 6= TR): if the two ranges do not overlap or if both operands contain
only one possible value and they overlap, then we can be certain of the propagating
path. Otherwise, the path is unknown.

fromL > toR ∨ toL < fromR =⇒ TRUE

fromL = toL ∧ fromR = toR ∧ fromL = fromR =⇒ FALSE

otherwise =⇒ UNKNOWN

In total, 192 lines of code are added to the Constant Value Type System to support
dead branch analysis in the type system.

6.2.3 Experiments

This case study is performed on a cloud instance with a four-core CPU and 16GB RAM,
running 64-bit Ubuntu 20.04. The impact of the changes on the Narrowing and Widening
Checker is evaluated as it uses the constant value type system. We analyze its effect on
precision and performance using one test file and eight real-world projects. The test file
contains 9 false positives. Table 6.1 shows the total numbers of errors issued and the
evaluation time by the Constant Value type system with the dead branch analysis and
without the dead branch analysis.

The total increase in evaluation time for 10 projects with the addition of the dead branch
analysis is 5.63 seconds, almost negligible. The errors issued are examined manually. All 9
false positives from the test file are resolved. None of the errors issued from the real-world
projects are false positives due to missing dead branch analysis. No impact on the errors
issued for those projects are expected. The impact on errors may seem negligible with
dead-branch analysis in this experiments as most projects may not contain dead branches,

72

Without With
Project Errors Time (s) Errors Time (s)

common-bcel 2 70.492 2 71.529
common-bsf 21 26.903 21 26.876
commons-compress 19 52.639 19 53.104
commons-imaging 19 78.943 19 78.462
commons-jxpath 1 37.012 1 39.108
commons-logging 11 14.403 11 16.633
commons-net 18 40.814 18 39.863
common-ognl 1 47.894 1 49.035
dead-branch.java 9 2.854 0 2.974

Total 101 371.954 92 377.584

Table 6.1: Column Without shows the number of errors issued and evaluation time by the
Narrowing and Widening Checker on the Apache Commons projects without dead branch
analysis. Column With is when dead branch analysis is included. The times are in seconds.

but this analysis is crucial as it is part of the overarching solution in resolving false-positives
issued due to loop imprecision.

6.3 Path-Sensitive Analysis

The path-sensitive analysis tracks data-flow depending on the path taken. The Dataflow
Framework uses a path-insensitive analysis. The transfer functions merge the incoming
stores together. The merged store cannot distinguish the mapped values from their re-
spective paths. Fig. 6.3 is an example of a false positive produced by the Constant Value
type system as the Dataflow Framework is path-insensitive. Fig. 6.4 shows the control-
flow graph generated by the Dataflow Framework for Fig. 6.3. When the two branches
merge, a new property is computed by finding the least upper bound of the two stores
from the two paths, which results in {x ∈ {0, 1}, y ∈ >, z ∈ {0, 1}}. This store is used as
the transfer input for node (x − z) and produces a store evaluating this expression to be
@IntVal(-1,0,1). From the result, the correctness of the program in terms of a division
by zero check cannot be established for expression 10/(x − z) as (x − z) are evaluated to
zero.

The Dataflow Framework does not allow distinctions between different stores since the
transfer input and result may only contain either a single store or a pair of stores. When

73

1 int d i v i d e b y z e r o (int y) {
2 int x = 0 ;
3 int z = 0 ;
4 i f (y == 1) {
5 x = 1 ;
6 } else {
7 z = 1 ;
8 }
9 return 10/(x−z) ;

10 }

warning: [divide.by.zero] Possible division by zero.

return 10 / (x - z);

^

denominator: @IntVal({-1, 0, 1})

Figure 6.3: An example of false positive error due to path-insensitive analysis.

the branching merges, the store merges by computing the least upper bound of the two
stores. To account for path sensitivity, the transfer result and transfer input should be
able to distinguish the stores from different paths. To add path-sensitivity to the Dataflow
Framework, stores should not merge. The transfer input and the transfer result should
contain a set of stores or a set of then and else stores.

Going back to Fig. 6.3, when the branch merges, the stores from the two branches are
collected into a set. The collected stores are {x ∈ {0}, y ∈ >, z ∈ {1}} and {x ∈ {1}, y ∈
>, z ∈ {0}}. The expression (x− z) takes in the two stores collected as the transfer input
and produces two stores evaluating (x − z) to @IntVal(-1) and @IntVal(1) as transfer
result. The correctness of the program can now be correctly established for expression
10/(x− z) as (x− z) does not evaluates to zero.

6.4 Loop Imprecision

The Dataflow Framework cannot statically predict the exact number of times a loop in
the program will be executed. When encountering a loop, the analysis will iterate to
a fix-point, by iteratively applying a set of transfer functions to the nodes in the CFG.

74

〈entry〉

y ∈ >, x ∈ {0}, z ∈ {0} x = 0, z = 0

y ∈ {1}
x ∈ {0}
z ∈ {0}

y ∈ >
x ∈ {0}
z ∈ {0}

y == 1

y ∈ {1}
x ∈ {1}
z ∈ {0}

x = 1

y ∈ >
x ∈ {0}
z ∈ {1}

z = 1

y ∈ >, x ∈ {0,1}, z ∈ {0,1} 10/(x - z)

〈exit〉

th
en

else

Figure 6.4: Control-flow graph of the example in Fig. 6.3 containing the transfer result in
each block produced after evaluating the expressions.

75

The fix-point is determined by checking the semantic equivalence of the previous and
current stores. Fig. 6.5 is an example of a false positive produced by the Constant Value
type system when encountering loops. Fig. 6.6 is the control-flow graph produced by
the Dataflow Framework for that program. In the first iteration (Fig. 6.6a, the boolean
expression x < max produces a then store that contains {x ∈ {0}, sum ∈ {0},max ∈ {2}},
and an else store that contains {x ∈ ⊥, sum ∈ {0},max ∈ {2}}. The then store is
then propagated through the then branch and used as the transfer input to the set of
transfer functions to the nodes in the loop body. The transfer result produces a store
containing {x ∈ {1}, sum ∈ {1},max ∈ {2}}. The transfer results from the loop body
then propagates back to the condition expression. The two incoming stores merge and
the boolean expression produces a then store containing {x ∈ {0, 1}, sum ∈ {0, 1},max ∈
{2}}. Since this new store is not semantically equivalent to the previous store, the transfer
functions are again applied and analyzed. The second iteration produces a store containing
{x ∈ {0, 1, 2}, sum ∈ {0, 1, 2},max ∈ {2}} after analyzing the then branch the second
time and merging with the incoming store. The boolean expression produces a then store
containing {x ∈ {0, 1}, sum ∈ {0, 1, 2},max ∈ {2}}. Note that even though the value of x
in this store is the same as the previous store, a fix-point is not reached because the value
of sum changed. Therefore, the set of transfer functions are applied again until a fix-point
for sum is reached as well. The final control-flow graph with all stores reaching a fix-point
is illustrated in Fig. 6.6b.

To prevent infinite iterations for computing the fix-point, widening occurs after a certain
number of iterations. For the Constant Value type system, the max number of iterations
before widening is 10. The range of the value is first verified against the byte range. If
it is within the byte range, then it is widened to full byte range >byte. If the value is
within the short range then it is widened to the full short range >short. If the value is
within the int range, then it is widened to the full int range >int. Otherwise, to the full
long range >long. After 10 iterations, sum is widened to IntRange(-128,127), then to
IntRange(-32768,32767), and finally to IntRange(from=-2147483648, to=2147483647)

or >int since sum is type int. Fix-point is reached after 13 iterations.

Not only does this process give an imprecise value for variable sum by evaluating it to
>, it also impacts performance as more than necessary iterations are analyzed in order to
reach the fix-point. For this program, we want sum ∈ {2} at the return statement and
only two iterations of the loop body are sufficient to determine the correct value of the
program.

Classical path-sensitive analysis usually stores the path of the program and evaluates
the feasibility of the paths. We do not store the path of the program in this design. We
instead store the values from different paths in separate stores. Storing the path of the

76

1 @IntVal (2) int whi l e l oop () {
2 int max = 2 ;
3 int sum = 0 ;
4 int x = 0 ;
5 while (x < max) {
6 x++; sum++;
7 }
8 return sum ;
9 }

Error: [return.type.incompatible] incompatible types in return.

type of expression: @IntRange(from = -2147483648 , to =2147483647)

method return type: @IntVal (2L) int

Figure 6.5: An example of false positive error in a while loop. The error is produced by
the Narrowing and Widening Checker.

program can be beneficial in understanding the correlations among the variables and path
feasibility. In this design, we rely on the abstract interpretation of the type system and the
dead branch analysis to determine whether a path is reachable. The state of the variables
in the boolean expression may change and storing the path means we are also required
to store the state changes of the variables. This will increase memory and evaluation
time. This design may not be as precise as the classical path-sensitive analysis since we
do not have information on correlations among the variables, only the current state the
variables are in, but this design is sufficient in resolving common false positives issued due
to imprecision in Dataflow Analysis, a good balance between precision and performance.

This imprecision is fixed by applying the dead branch analysis described in Sec. 6.2
and the path-sensitive analysis described in Sec. 6.3. These two additional improvements
ensure precision for loop iterations that do not exceed the maximum number of iterations
before widening. The final control-flow graph produced by the program from Fig. 6.5 is
illustrated in Fig. 6.7:

1. The transfer input at expression x < max starts with a single store containing {x ∈
{0}, sum ∈ {0},max ∈ {2}}. The transfer input is analyzed by the Condition
Evaluator which determines that this expression is always true since 0 < 2. Two
stores are produced at the transfer result of expression x < max with {x ∈ {0}, sum ∈

77

〈entry〉

x ∈ {0}
sum ∈ {0}
max ∈ {2}

x = 0, sum = 0, max = 2

x ∈ ⊥
sum ∈ {0,1}
max ∈ {2}

x ∈ {0,1}
sum ∈ {0,1}
max ∈ {2}

x < max

x ∈ ⊥
sum ∈ {0,1}
max ∈ {2}

x ∈ {1}
sum ∈ {1}
max ∈ {2}

sum++, max++

〈exit〉

thenels
e

(a) First Iteration CFG

〈entry〉

x ∈ {0}
sum ∈ {0}
max ∈ {2}

x ∈ {2}
sum ∈ >int

max ∈ {2}

x ∈ {0,1}
sum ∈ >int

max ∈ {2}

x ∈ {2}
sum ∈ >int

max ∈ {2}

x ∈ {1,2}
sum ∈ >int

max ∈ {2}

〈exit〉

thenels
e

(b) Final CFG

Figure 6.6: CFG produced by the Dataflow Framework for the example in Fig. 6.5. (a) is
the graph after the first iteration of the loop stopping before the conditional block. (b) is
the final CFG after the values in the store have reached a fixed point.

78

{0},max ∈ {2}} in the then store and {x ∈ ⊥, sum ∈ {0},max ∈ {2}} in the else

store marked as inactive.

2. The transfer function in the then branch is applied to store {x ∈ {0}, sum ∈
{0},max ∈ {2}} which produces a transfer result storing {x ∈ {1}, sum ∈ {1},max ∈
{2}}. This results flows back to the boolean expression. The transfer input at ex-
pression x < max now contains two stores.

3. Once again the stores from the transfer input at the boolean expression are evaluated
by the Condition Evaluator. The Conditional Evaluator determines that both of these
stores will always evaluate the boolean expression to true and mark the two else stores
as inactive. The two then stores become the transfer input for the expressions in
the then branch which produces a transfer result with two stores containing {x ∈
{1}, sum ∈ {1},max ∈ {2}} and {x ∈ {2}, sum ∈ {2},max ∈ {2}}.

4. The transfer input at the boolean expression now contains 3 regular stores. Two of
the stores evaluates the expression to be always true and one of the stores will evaluate
the expression to be always false. The stores are marked as ’active’ and ’inactive’
accordingly. Since the then store already contains active stores, the inactive then
store produced by the expression will not be added to the sets of active then stores
in the results of the boolean expression. Therefore, the then store still only contains
2 stores. Since the else store now contains active stores, all the inactive stores in the
else store are removed and the else store now contains only one store.

5. As the set of then stores did not change, a fix-point has been reached for the then

branch so no more iterations are required. The else store containing {x ∈ {2}, sum ∈
{2},max ∈ {2}} is used as the transfer input for further analysis.

Only two iterations are analyzed to reach the fix-point and the variable sum is also
evaluated to 2 instead of >int.

79

〈entry〉

x ∈ {0}
sum ∈ {0}
max ∈ {2}

x = 0, sum = 0, max = 2

x ∈ {2}
sum ∈ {2}
max ∈ {2}

x ∈ {0}
sum ∈ {0}
max ∈ {2}

x ∈ {1}
sum ∈ {1}
max ∈ {2}

x < max

x ∈ {2}
sum ∈ {2}
max ∈ {2}

x ∈ {1}
sum ∈ {1}
max ∈ {2}

x ∈ {2}
sum ∈ {2}
max ∈ {2}

sum++, max++

〈exit〉

thenels
e

Figure 6.7: Final Control-flow Diagram output generated by the modified Dataflow Frame-
work for program 6.5

In the above case, efficiency was improved and memory is the only trade-off for precision.
However, if variable max is an unknown range, then the number of iterations and the result
of x and sum would be the same as the original design at the cost of increased memory.
The memory increase is based on the defined number of iterations before widening. If the
number of iterations is 10 as defined by the Constant Value type system, then the then

branch will contain 13 stores, one for each iteration. The else branch will still only contain
a single store as only one store satisfies the else condition.

80

6.5 Related Work

Many software formal verification languages, such as Dafny [35], a programming language
with built-in specification constructs, contain logic for handling loop invariants. Loop
invariants must be defined to formally verify the program. Dafny can infer simple loop
invariants where possible and reduce some burdens on the developer.

SeaHorn [24], a verification framework for C, does not use loop invariants. Instead, it
detects the invariants and tries to determine if they are inductive invariants [42]. If they
are then they can be used to prove program properties.

Bounded model checking [6] tools like CBMC [34], unwind the loops during program
verification. The result of the verification, whether the program evaluates to SAT or
UNSAT, is dependent on the number of times the loop is unrolled. The proposed approach
in improving loop precision described in Sec. 6.4 is similar to the concept of loop unwinding
in bounded model checking. The precision of the estimated range of variables inside the
loop is dependent on the number of times the loop is evaluated before widening.

81

Chapter 7

Conclusions and Future Work

Value range analysis is important in many software domains. In this thesis, we presented
the Narrowing and Widening Checker, the Value Inference for Integral Values, PUnits ,
and improvements to the algorithm of the Dataflow Framework. These pluggable type
systems and improvements help programmers and other program analysis tools to better
understand their programs.

The work in this domain is not yet finished.

A more advanced post-condition type qualifier can be designed and implemented to
support a more expressive form of relationship between the method inputs and output. A
more expression form of @IntRange can also be implemented to support multiple inter-
val ranges rather than just one interval range. Instead of using @PolyValue, an analysis
can be implemented for statically analyzing the results of each function in the Math Li-
brary, given the input parameters, and reduce some of the false positives produced from
evaluating the Math functions. The Constant Value type system can evaluate String
variables, and that can help statically analyze the results of a Integer.parseInt func-
tion. The Constant Value type system can also statically execute methods annotated with
@StaticallyExecutable. Future work can investigate how this qualifier can help resolve
some of the issues. These improvements not only improve the false positive rate of the
Narrowing and Widening Checker, but also increase the expressiveness and capabilities for
future type systems created using the Checker Framework.

PUnits is the first units type system to adapt the concept of receiver-dependent types.
PUnits currently does not infer whether a method parameter or return type should be
receiver dependent over units. Finding an efficient encoding is left as future work. Im-
plementing prefix p using floating-point arithmetic with safe comparisons instead of the

82

current base-10 prefix would allow PUnits to support Imperial units more easily. PUnits
performance in annotation mode also warrants further investigation. We remain optimistic
in this regard: SMT solver performance has been steadily improving, we can explore dif-
ferent constraint encodings, and we can employ alternative solvers.

We plan to extend support for a more expressive form of polymorphism for the Narrow-
ing and Widening type system and PUnits . This will enable support for methods such as
myDivide(x, y), which returns a unit or interval computed as a function of the method
arguments. Relationships between variables could be explicitly declared via declaration
annotations or automatically inferred from the typing constraints in the method body.

The Value Inference also does not contain a post-condition qualifier. Finding a way
to build the constraints for defining pre- and post-condition of method invocation with an
efficient encoding is left as future work. The Value Inference currently only infers integral
ranges, but can be extended to support type inference of floating-point values as well, with
type qualifiers similar to @DoubleVal in the Constant Value type system.

Improvements to the loop algorithm in the Dataflow Framework will greatly benefit the
type systems introduced in this thesis and provides more precise results during refinement.
For future work, other than the solution discussed in Sec. 6.4, other solutions in resolving
the loop imprecision can be explored. For example, adding support for loop invariants, or
adding additional type qualifiers specifically for handling loops, and behave similarly to
the post-condition type qualifier. Future work can explore how the information provided
by the Constant Value type system can be used in automatically determining the loop
invariant.

All the presented type systems build on techniques from type qualifier systems and
constraint-based type inference. Our implementation and evaluation of these type systems
show that these techniques are necessary and are effective in ensuring correctness of real-
world programs.

83

References

[1] Kaw Autar, E Kalu Egwu, and Nguyen Duc. Numerical methods with applica-
tions: Abridged, chapter 04.06 gaussian elimination. http://mathforcollege.com/

nm/mws/gen/04sle/mws_gen_sle_txt_gaussian.pdf, 2011.

[2] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and John
Penix. Using static analysis to find bugs. IEEE software, 25(5):22–29, 2008.

[3] Oscar Bennich-Björkman and Steve McKeever. The next 700 unit of measurement
checkers. In Software Language Engineering, (SLE), pages 121–132, 2018.

[4] Tom Benson. Reynolds number. https://www.grc.nasa.gov/WWW/BGH/reynolds.

html, 2014.

[5] Dirk Beyer, Sumit Gulwani, and David A Schmidt. Combining model checking and
data-flow analysis. In Handbook of Model Checking, pages 493–540. Springer, 2018.

[6] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu,
et al. Bounded model checking. 2003.

[7] Mars Climate Orbiter Mishap Investigation Board. Mars climate orbiter mishap in-
vestigation board: Phase I report. Jet Propulsion Laboratory, 1999.

[8] Gilad Bracha. Pluggable type systems. In OOPSLA workshop on revival of dynamic
languages, volume 4, 2004.

[9] Percy Williams Bridgman. Dimensional analysis. Yale University Press, 1922.

[10] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for C programs.
In IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pages 123–124. IEEE, 2009.

84

http://mathforcollege.com/nm/mws/gen/04sle/mws_gen_sle_txt_gaussian.pdf
http://mathforcollege.com/nm/mws/gen/04sle/mws_gen_sle_txt_gaussian.pdf
https://www.grc.nasa.gov/WWW/BGH/reynolds.html
https://www.grc.nasa.gov/WWW/BGH/reynolds.html

[11] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

[12] Travis Carlson and Eric Van Wyk. Type qualifiers as composable language extensions.
In Generative Programming: Concepts & Experiences (GPCE), pages 91–103. ACM,
2017.

[13] Charles Zhuo Chen and Werner Dietl. Don’t miss the end: Preventing unsafe end-
of-file comparisons. In NASA Formal Methods Symposium, pages 87–94. Springer,
2018.

[14] Zhuo Chen. Pluggable properties for program understanding: Ontic type checking
and inference. Master’s thesis, 2018. Available at https://uwspace.uwaterloo.ca/
handle/10012/13181.

[15] Jean-Marie Dautelle and Werner Keil. JSR 275: Units specification API. https:

//jcp.org/en/jsr/detail?id=275, 2010.

[16] Jean-Marie Dautelle, Werner Keil, and Leonardo Lima. JSR 363: Units of measure-
ment API. https://jcp.org/en/jsr/detail?id=363, 2016.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 337–340.
Springer, 2008.

[18] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and Todd W
Schiller. Building and using pluggable type-checkers. In International Conference
on Software Engineering (ICSE), pages 681–690. ACM, 2011.

[19] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In Eu-
ropean Conference on Object-Oriented Programming (ECOOP), pages 28–53. Springer,
2007.

[20] Werner Dietl, Michael D Ernst, and Peter Müller. Tunable static inference for generic
universe types. In European Conference on Object-Oriented Programming (ECOOP),
pages 333–357. Springer, 2011.

[21] Michael D Ernst, Alex Buckley, Werner Dietl, Doug Lea, Srikanth Sankaran, and
Oracle. JSR 308: Annotations on Java types. https://jcp.org/en/jsr/detail?

id=308, 2012.

85

https://uwspace.uwaterloo.ca/handle/10012/13181
https://uwspace.uwaterloo.ca/handle/10012/13181
https://jcp.org/en/jsr/detail?id=275
https://jcp.org/en/jsr/detail?id=275
https://jcp.org/en/jsr/detail?id=363
https://jcp.org/en/jsr/detail?id=308
https://jcp.org/en/jsr/detail?id=308

[22] Narain H. Gehani. Ada’s derived types and units of measure. Software: Practice and
Experience, 15(6):555–569, 1985.

[23] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java language specifica-
tion. Addison-Wesley Professional, 2000.

[24] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. The
seahorn verification framework. In Computer Aided Verification (CAV), pages 343–
361. Springer, 2015.

[25] Sudheendra Hangal and Monica S Lam. Automatic dimension inference and checking
for object-oriented programs. In International Conference on Software Engineering
(ICSE), pages 155–165. IEEE Computer Society, 2009.

[26] William H. Harrison. Compiler analysis of the value ranges for variables. IEEE
Transactions on software engineering, (3):243–250, 1977.

[27] Mark Hills, Feng Chen, and Grigore Roşu. A rewriting logic approach to static check-
ing of units of measurement in c. Electronic Notes in Theoretical Computer Science,
290:51–67, 2012.

[28] Nahid Juma, Werner Dietl, and Mahesh Tripunitara. A computational complexity
analysis of tunable type inference for generic universe types. Theoretical Computer
Science, 814:189–209, 2020.

[29] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Reliable and
automatic composition of language extensions to c: the ableC extensible language
framework. Proceedings of the ACM on Programming Languages, 1(OOPSLA):98,
2017.

[30] Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D Ernst. Lightweight
verification of array indexing. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 3–14, 2018.

[31] Andrew Kennedy. Types for units-of-measure: Theory and practice. In Central Eu-
ropean Functional Programming School, pages 268–305. Springer, 2009.

[32] Andrew J Kennedy. Relational parametricity and units of measure. In Principles of
Programming Languages (POPL), pages 442–455. ACM, 1997.

[33] Sebastian Krings and Michael Leuschel. Inferring physical units in B models. In
Software Engineering and Formal Methods (SEFM), pages 137–151. Springer, 2013.

86

[34] Daniel Kroening and Michael Tautschnig. CBMC-C bounded model checker. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 389–391. Springer, 2014.

[35] K Rustan M Leino. Developing verified programs with dafny. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pages 1488–1490. IEEE, 2013.

[36] Jianchu Li. A general pluggable type inference framework and its use for data-
flow analysis. Master’s thesis, 2017. Available at https://uwspace.uwaterloo.ca/

handle/10012/11771.

[37] Jens Melzer. Autoboxing performance. https://effective-java.com/2015/01/

autoboxing-performance, 2015.

[38] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of
software testing, volume 2. Wiley Online Library, 2004.

[39] Dominic Orchard, Andrew Rice, and Oleg Oshmyan. Evolving Fortran types with
inferred units-of-measure. Journal of Computational Science, 9:156–162, 2015.

[40] Checker Framework Organization. A dataflow framework for java. 2020.

[41] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D
Ernst. Practical pluggable types for Java. In International Symposium on Software
Testing and Analysis (ISSTA), pages 201–212. ACM, 2008.

[42] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties
using induction and a sat-solver. In International conference on formal methods in
computer-aided design, pages 127–144. Springer, 2000.

[43] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expres-
sions. In FTfJP: 14th Workshop on Formal Techniques for Java-like Programs, pages
20–26, Beijing, China, June 2012.

[44] Mier Ta. Context sensitive typechecking and inference: Ownership and immutability.
Master’s thesis, 2018. Available at https://uwspace.uwaterloo.ca/handle/10012/
13185.

[45] Scott Wlaschin. Units of measure - type safety for numerics. https://

fsharpforfunandprofit.com/posts/units-of-measure, 2012.

87

https://uwspace.uwaterloo.ca/handle/10012/11771
https://uwspace.uwaterloo.ca/handle/10012/11771
https://effective-java.com/2015/01/autoboxing-performance
https://effective-java.com/2015/01/autoboxing-performance
https://uwspace.uwaterloo.ca/handle/10012/13185
https://uwspace.uwaterloo.ca/handle/10012/13185
https://fsharpforfunandprofit.com/posts/units-of-measure
https://fsharpforfunandprofit.com/posts/units-of-measure

[46] Tongtong Xiang, Jeff Yucong Luo, and Werner Dietl. Precise inference of expressive
units-of-measurement types (to appear). Proceedings of the ACM on Programming
Languages, 4(OOPSLA), 2020.

88

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Dataflow Framework for Java
	Checker Framework and Inference
	Modular Type Checking
	Whole-program Type Inference

	Constant Value Type System
	PUnits - The Units Type System

	Numeric Narrowing and Widening Conversion Checker
	Introduction
	Type Hierarchy and Rules
	Type Introductory Rules
	Type Rules
	Method-local Flow-sensitive Refinement

	Type System Features
	Polymorphism
	Post-Condition Qualifiers

	Implementation
	Experiments
	Errors due to Insufficient Annotations
	Real Errors
	False Positives
	Performance Overhead

	Related Work

	Whole-Program Type Inference for Integral Range Analysis
	Introduction
	Value Inference Type System
	Constraints
	Comparison Expression Refinement

	Encoding of Constraints for Solvers
	Implementation
	Experiments
	Performance Overhead

	PUnits - Units Type System Improvement and Related Works
	Introduction
	Receiver Dependent Units
	JScience vs. PUnits
	Related Work in Static Units Systems

	DataFlow Framework Precision Improvements
	Introduction
	Dead Branch Analysis
	Implementation
	Applying to Constant Value Type System
	Experiments

	Path-Sensitive Analysis
	Loop Imprecision
	Related Work

	Conclusions and Future Work
	References

