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Abstract

Metric based method is a promising approach to domain adaptation, which aims to align
the marginal distribution of different domains with a similar conditional distribution. The thesis
explores applying domain adaptation for autonomous driving and proposes domain adaptation
methods for 2D image semantic segmentation and 3D point cloud object detection. For 2D
image semantic segmentation domain adaptation, traditional approaches design metric function
manually to measure the distance across domains. The adversarial methods can be considered
as an automatic learning approach for the metric function. Instead of depending on the qual-
ity of metric function, this thesis outlines a generalized framework for domain randomization
which first introduces moderate perturbation as randomness and then combines the advantage
of metric-based domain adaptation and domain randomization. Then a simple-to-implement
training pipeline of this framework is proposed, which proves that the proposed model achieves
comparable performance with metric-based methods while having better generalization perfor-
mance. The proposed Metric Guided Domain Randomization approach is able to improve mean
intersection-over-union on target domain from 16.9 to 27.2 without using any target domain data
or annotations. 3D point cloud domain adaptation is an area where researchers pay little atten-
tion. A method based on global feature alignment is proposed and experiments show that it has a
better performance compared with fine-tuning on target domain data directly when having access
to limited number of target data frames.
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Chapter 1

Introduction

Recent years, researchers have made significant progress in self-driving vehicles [I]. Many
institutes and companies also pour lots of resources into this area. Despite a large amount of data
collected every day, it is still insufficient to meet the demands of the ever-increasing Al model
complexity required by autonomous vehicles. Autonomous driving has driven lots of attention
recently. A fully autonomous vehicle can be safer compared to the car driven by a human being
for the fact that humans can not avoid being distracted and that human’s reaction time is much
longer than computers’. However, fully autonomous vehicles must have human-level perception
ability, which can not be satisfied for a long time. Recently, with the development of deep
learning [2], computer vision has made significant progress, which makes fully autonomous
driving possible.

To fulfill the requirements for data, on the one hand, collecting and labeling more data is
necessary. On the other hand, using existing data more efficiently is also of great significance.
In this thesis, the possibility of utilizing domain adaptation for autonomous driving is explored.
Domain adaptation aims to transfer policy learned in one domain to another relative domain.
With domain adaptation, existing data can be used more efficiently to fulfill the data requirements
for autonomous driving tasks. In the first section, the thesis introduces the development of deep
learning and why it needs lots of annotated data. Then the thesis introduces how to collect
and label data more efficiently. Finally, the thesis introduces how to use domain adaptation to
utilize existing data more efficiently. In the second section, this thesis introduces existing domain
adaptation methods for 2D tasks, then it includes some 3D point cloud data’s characteristics and
how these characteristics will influence 3D tasks. In the third section, this thesis introduces our
proposed methods for both 2D and 3D tasks. In the fourth section, the experiment details and
results of the proposed methods are included. In the last section, the thesis discusses the current
results and give some recommendations for researchers interested in this area.



1.1 Deep Learning for Autonomous Driving

For autonomous driving, the two most important things are to extract meaningful information
from raw sensor data and to predict the future state based on the current state, which includes
two general topics in deep learning — computer vision and motion prediction. A typical pipeline is
using CNN based model to extract meaning information from raw data, for example, to generate
a bird’s eye view of the current surrounding environment. Then a RNN based motion predictor
will take the past few bird’s eye views as input and try to predict the next few bird’s eye views.
And then the control module can generate a control signal based on the current state and predicted
future state.

Different from traditional rule-based methods which try to inference some new conclusions
based on the exist axiom theorem system, learning-based methods try to extract a valid policy
based on previous experiences. For supervised deep learning algorithms, the experience is data
with ground truth annotation. Deep learning methods are based on the assumption that the data
used for training and the data used for testing are i.i.d. To make sure i.i.d assumption can be
satisfied, lots of data is needed during the training progress, and high-quality annotations [3-5]
are also crucial to the final performance of trained models.

1.2 Data Collection and labelling

A large amount of data is necessary to make sure the i.i.d assumption can be satisfied. Ideally,
training data needs to be collected from different environments to ensure all the situations have
already been met. For autonomous driving, this means prototype autonomous vehicles equipped
with all the necessary sensors need to be driven by human export drivers in different cities,
different weather, different seasons to collect countless data. It is even more challenging to
annotate all these collected data. Each data point needs to be annotated three times or more to
ensure that most of the annotations are valid, which requires lots of labour force.

Researchers and industry have already try to make the data collection and labelling progress
more efficient [0]. Tesla added a shadow mode to its in-stock vehicles. Shadow mode can
collect information when human drivers are driving, and then these collected data can be used
for imitation learning. Since these data are collected from Tesla’s millions of sold vehicles
in different areas, and human driving signals can be used directly as annotations, their data
collection and labelling speed is quite remarkable. However, due to the limit of in-stock vehicles’
local storage and network bandwidth, Tesla only collects the most meaningful data. For example,
they collect the data in three kinds of situation: first, the Autopilot system’s output is different



from human drivers’ manual output; second, the motion prediction system’s output is different
from what happens later; third, the human driver chooses to take over the Autopilot system
(which usually indicates the human driver are not satisfied with Autopilot’s current control police
or the surrounding environment is too complicated that the human driver is not confident about
the Autopilot system). Even with these selective data collection methods, there is still much
data that needs to be annotated. Amazon Web Services provides a SageMaker [7] service,
which aims to make the data labelling progress more efficient. With Amazon Mechanical Turk
annotators’ help, hire labour force to annotate collected can be more flexible, cheap and safe.
With SageMaker’s built active learning algorithm, the total number of required annotations can
also be reduced.

Even with all these efforts, data collection and labeling are still too expensive and time-
consuming, which limits the development of fully autonomous vehicles [!]. How to use training
data more efficiently then becomes quite crucial for autonomous driving, and also for general
deep learning.

1.3 Data Efficiency and Domain Adaptation

Deep neural networks have been proved useful across a variety of tasks under the i.i.d assump-
tion. However, a phenomenon called domain shift [8] makes it hard to guarantee this assumption
in practice. Typical transfer learning approaches [Y] use pre-trained feature extraction models
trained on large and labeled datasets and then fine-tune the whole network on a task-specific
dataset. However, collecting and annotating enough data to fine-tune the pre-trained network is
still expensive and time-consuming. Meanwhile, a tremendous amount of labelled data is re-
quired to cover the diversity of real-time running scenarios for engineering applications such
as autonomous driving and robotic control. The data collection process is too expensive and
sometimes even dangerous.

Simulation environment, however, provides a gateway to the problems as mentioned above.
With access to nearly unlimited well-annotated data, safety issues of data collecting progress
no longer exist. Although simulation can be of great benefit, there is always a reality gap be-
tween simulation and the real world. Current game engine based simulators like CARLA [10]
and AirSim [! 1] require moderate computational resources but can not provide photo-realistic
rendering results. Movie level special effects are hard to be distinguished from real-world exam-
ples yet even more expensive than collecting data from the real world. One of the most popular
approaches to close the gap between simulation and reality is domain adaptation, where the data
distribution in one domain is mapping to a shared latent space through metric-based regulariza-
tion enforced by task model.



The principal idea of current domain adaptation methods is minimizing the distance between
the source and target distribution [9]. Pioneer researches attempt to minimize the marginal and
conditional distribution of raw data [12, 13]. Following deep learning-based methods attempt
to map data from different domains to a common feature space with a CNN feature extractor
[14,15]. Inspired by GAN, a CNN based domain discriminator is utilized instead of handcrafted
metrics to measure the distance between different domains [16, 17]. In order to regularize the
training process, authors in [18, 19] applied semantic transformation constraints and batch spec-
tral penalization to maintain the content consistency in task mapping to the target domain. Be-
sides minimizing the differences in pixel and feature level, another line of thought considers the
instance level difference [20]. Authors of [20] focus on minimizing the distribution difference
of scene composition between simulation and reality instead of aligning the semantic and pixel
distribution. Meanwhile, extra instance level relationship information [21] and traces on how
to learn [22] also contribute to the transfer progress. However, the additional graphic assets are
not free, and the domain gap between simulation and real are not solved by combining the game
engine’s assets with the extracted scene composition distribution.

Besides computer vision, transfer learning can also be used to transfer policy learned in the
source domain to the target domain. [23] provided an approach to adapt actions made based on
a policy trained in a simulation environment to the real world by setting a learning algorithm
after the original policy. This learning algorithm learns from the action decided by the original
policy and the state in the simulation. Furthermore, with the learned model, the simulation itself
can be optimized. However, it is nearly impossible to adjust the image for some image-based
algorithms.

[24,25] provided another approach. Instead of directly comparing the differences between
the reflects of simulation and the real world, they try to learn an inverse dynamic model which
takes the current state of the simulation and the expected state in the real world as input in order
to decide which is the suitable action the real world robot needs to take. Moreover, the output
action can be used directly to control the real world robot.

For some data-driven methods, if the data used for training can be transferred to the real-
world domain or close to the real-world domain, the model will be good enough to perform well
in the real world. For some image-based algorithms, this is where GAN [26] will help. And for
the other algorithms, data from simulation and real-world is mapped the same domain, and then
the mapped data can be used to train the model which can work well in the real world while the
whole training process needs little real-world data. [27]

For some computer vision problems, it is ubiquitous that researchers use the pre-trained
weights of ImageNet, do some fine-tuning in order for the weights to be used in some other
similar problems. [28] proposes a model which combines successor representation learning to



deep reinforcement learning in order for the model to better transfer between similar environ-
ments. After training of the first environment, training of the other similar environments is quite
easy. Apart from the deep learning area, policy adaptation methods can also be found in re-
inforcement learning area [29—-31]. In order for the model to be robust enough to mismatch
between simulation and the real world, some random noise is always added to the training data.
Some traditional methods about control theory are also listed [32,33].

In this thesis these approaches are concluded as metric-based approaches with typical pipeline
demonstrated in Fig. 1.1. The metric-based domain adaptation highly relies on the accuracy of
the metric used for the distance between different domains.

| Source | » Sour_ce —» Task | | E Source
Mapping } Mapping Task
’ v . Source i A
( Metric / Metric )
Target M?;:g?r: g » Task Target M?;gﬁ: g » Task
\‘ Metric Based Domain Adaptation/ / ‘\\Metric Guided Domain Randomizatio/n,,

Figure 1.1: A brief framework comparison between popular metric based domain adaptation
(left) and the proposed metric guided domain randomization (right).

Meanwhile, current domain randomization methods [34] mainly based on manually designed
augmentation techniques, whereas augmentations are solely based on prior knowledge about
the difference across two domains. This prior knowledge may not be reliable enough to find
a common feature space. Recent style transfer based domain randomization methods [34] ac-
cept a style discriminator as the metric for domain randomization. Follow a similar line of
thought, this thesis considers metric guided domain randomization that deploys metric based do-
main adaptation methods for better accuracy and robustness in a domain transfer task. A brief
framework comparison between the proposed domain randomization scheme and the traditional
metric-based adaptation approaches is shown in Fig. 1.1. Unlike metric based domain adap-
tation methods which highly rely on the design of metric, our method first combines multiple
simple domain adaptation modules to augment the source data marginal distribution towards tar-
get data marginal distribution with selected perturbations. Meanwhile, the level of perturbation
injected can be tracked, and the distribution transfer learning procedure includes a certain degree
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of randomness. A contrastive learning module is utilized to make sure only consistent informa-
tion between original and randomized data influence the training result. In general, the main
contributions of our paper are as follows:

e QOutlining a novel framework for domain randomization by synergizing multiple domain
adaptation networks to effectively boost transferred task performance in the target domain.

e Designing a domain generalization model with triplet network based on the proposed
framework for sim-to-real adaptation, which only requires the prior knowledge to transfer
policy. The proposed model utilizes style transfer for domain randomization and further
use contrastive learning to regulate the learning process.

e The proposed method is simple to implement and can generalize to various real-world
application domains. The thesis analyzes the performance of our proposed model in GTAS
to CityScapes and BDD 100K semantic segmentation policy transfer task and show that our
model achieves comparable performance with other metric-based methods while having
better generalization ability.

Besides trying to improve RGB image domain adaptation performance, this thesis also ap-
plies domain adaptation to an unexplored area — Point Cloud. Point cloud differs from RGB
images because its raw data is disordered and sparse, which makes domain adaptation methods
designed for RGB images not suitable for point cloud domain adaptation. The thesis proposes
a baseline method for point cloud domain adaptation that will focus the task-specific decision
boundary during global feature alignment progress in order to work on point cloud scenario.



Chapter 2

Related Work

2.1 Domain Adaptation for RGB images

Most of the domain adaptation researches focus on RGB images, try to adapt from source domain
Dy to target domain D,. Normally, domain adaptation methods have access to large amount of
source domain data {x;,y;}; € D, and also limit amount of target domain data {z;, y; ?::Zil
Task .% (+) is the policy we try to learn. For RGB images, usually it could be classification, object
detection, semantic segmentation, etc.. The formulation of a typical domain adaptation problem

can then be defined as:

The source domain D and target domain D); have the same characteristic space
Zs = 24, and the label space of these two domains %, = %;. Most importantly, the
two domains should be related so that the conditional distribution of the two domains
should be similar 2, (y,|xs) ~ 2,(y;|x;). However, the marginal distribution of two
domains are different 2(Z;) # Z(Z:). We try to learn a policy .# : x; —
based on D,.

If n, = 0, then it becomes zero-shot learning or unsupervised domain adaptation setting.
Else if n; < 10, it can be called few-shot learning. The situation that only one source domain is
available is mostly considered. However, some other researchers consider the situation that data
from multi-source domains are available in order to train a policy for a specific target domain;
this kind of problem is called multi-source domain adaptation. Most of the domain adaptation
methods try to map data from the source and target domain to a shared latent space based on a
metric of the distance between the distribution of source and target feature mapping, which we
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call them metric based domain adaptation. Other methods try to find a mapping function that
can map data from target domain to source domain; this kind of methods is called reconstruction
based domain adaptation. There are also some methods dealing domain adaptation problem with
self-training, which we call it self-training based domain adaptation. Furthermore, based on
different . (), it can also be categorized as domain adaptation for image classification, domain
adaptation for semantic segmentation and domain adaptation for object detection.

Simulation to reality domain adaptation aims at bridging the gap between simulations
and the reality, e.g. the reality gap. Recent researches divide reality gap into two groups:
instance-level gap and pixel-level gap. The former describes the differences in scenario com-
plexity, instance-level distribution. While the latter describes the differences between the quality
or the style of images from different domains. Most recent work [ 18, 35-37] has focused on the
latter kind of gap and recently some researches [20, 38] focused on the former one also draw
much attention. Metrics for the distance between different domains is the key to the optimization
progress. A-Distance [39] and MMD [14, 15] are used widely in domain adaptation research.
MMD is firstly used to find an optimized mapping function in order to decrease the distance
between two distribution in the common mapping space, and then it is utilized in CNN structure
to decrease the variance of extracted features. A-distance, on the other hand, can not be used
directly in the training progress since it is hard to calculate it online. New adversarial meth-
ods [17] make significant progress in this area thanks to learning-based discriminator’s ability to
approximate a metric between distinct domains. We can consider adversarial methods as using
A-distance as their metric for domain differences.

Other than improving the metrics for domain adaptation, authors in [18] applied the cycle-
consistent loss to the training process to effectively reduced the loss of semantic information
during the transferring progress. Authors of [19] observe that the most significant singularity
value of feature matrix during the transferring progress is harmful to the discriminability in the
target domain. Thus they managed to balance the transferability and discriminability with a BSP
loss. These researches indicate that regularization terms and the inclusion of “proper level” of
perturbation and randomness are beneficial to domain adaptation.

Domain Randomization is a class of techniques for domain adaptation, and researchers
mainly use it for Simulation to reality domain adaptation because they can easily accomplish
high-quality augmentation on the render engine. By searching domain invariant feature space
using randomization instead of minimizing the distance between different domains, domain ran-
domization transfers knowledge between diverse domains. Traditional augmentation methods
like flipping, rotation, blurring are widely used for domain randomization to improve the model’s
generalization ability. In [40], augmentation policy is learnt for simulation-to-real transfer. The
recent development in automatic augmentation methods [41,42] can also suit the domain ran-
domization problem. In [34], style transfer method [43] is explored to build a style-consistent



model. Unlike the basic training with randomized data pipeline, [44] utilized a Randomized-
to-Canonical Adaptation Networks (RCANSs), crossed the reality gap by translating randomized
images into original canonical versions.

2.1.1 Metric Based Domain Adaptation

Traditional transfer learning methods try to find a mapping function in the raw data space in
order to map both X and X, to have the same . A distance metric:

DISTANCE(D,, D)) ~ | (%) — 2(2)| @.1)

is used to find a mapping function ¢ in order to minimize || Z(Pp(Z;)) — P (Pp(Z1))||. [45] tries
to align the marginal distribution of two domains, thus the distance metric it designs a MMD is
minimize the mean of two distribution after mapping:

1 & 1 &
n_1;¢(xi)_n_g;¢(xj>

STL [46] on the other hand aims to minimize the conditional distribution of two domains. It
is hard to measure the distance of two domains’ conditional distribution, and STL actually esti-
mate the distance of conditional distribution by the mean of each category’s MMD distance (for
classification task). And the distance is defined as:

Dyiyip = (2.2)

H

2
C

D=5 X ox)-—5 X 6(x) 23)

_ n n
c=1 1 XiGDgc) 2 X G'DiC)

H

Where C' is the total number of categories in a classification task. DY and Dﬁc) represent data
that belongs to category c in responding domain.

JDA [47] tries to minimize both the distance of marginal distribution and conditional distri-
bution between two domains. And the objective function is:

Djpa = Dyp + Dsrr (2.4)

Since conditional distribution and marginal distribution is not equally important for many domain
adaptation tasks, BDA [48] defines the distance as:

Dgpa = ADyyp + (1 —AN)Dgry, (2.5)
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Where A is used to balance the importance of two kinds of distribution, which is estimated with
o distance [49].

As the development of deep learning, metrics designed for traditional methods are also uti-
lized in CNN structure. Instead of calculating a mapping function by optimization methods, the
distance between two domains is added to deep neural network’s objective function as a regular-
ization term. Here we use a classification task as an example:

= gc (Dsa yg) + )\KA (DS7 Dt) (26)

where /. is classification loss and /4 is adaptation loss. A is used to balance the importance of
the two objectives.

MMD distance is commonly used as adaptation loss for deep adaptation methods. DDC
[14] applies MMD loss on the last global feature mapping. And [50] extends DDC by applying
multi-kernel MMD loss on multiple layers of the CNN feature extractor.

The recent development of GAN [51] also contributes to domain adaptation. Researchers
realize that the best adaptation loss is not a human-designed loss to minimize conditional loss,
marginal loss or both. Another CNN based discriminator can be used to predict the distance
between two domains, and with joint training with the original task network, the discriminator
network outperforms all the human-designed adaptation loss [52].

Besides different kinds of adaptation loss, many regularization terms are also designed to
increase the adaptation performance. [!9] observes that during the transfer progress, feature
extractor tend to only focus on the most useful feature in order to obtain better transfer perfor-
mance, they propose the batch spectre penalization loss to encourage the model to utilize more
feature during the transfer progress. [53] proposes a similar idea by placing a batch nuclear-norm
maximization on the output matrix.

2.1.2 Reconstruction-based Domain Adaptation

Reconstruction-based methods try to find the mapping function that is able to map data from the
target domain to source domain. The mapping is done on the raw data space. These kinds of
methods usually follow the [43] structure. [54] digs into the innate reason why cycle loss works,
and they conclude that shared common space in the middle layers of the two generators is the key
to CycleGAN’s success. They further increase the transfer performance by directly using shared
layers in the middle of two generators. [55] consider not only the transfer performance but also
the diversity of mapped images. These kinds of reconstruction based methods will not be biased
to any specific task since their mapping is done on the raw data level. However, these kinds of

10



methods will also be limited by the fact that they do not strictly limit the mapped data to have
some label compared the related source domain data. [!8] designs a semantic consistency loss to
make sure the mapped data and the original data’s semantic segmentation are the same. They find
that even with not the semantic consistency loss, their method also works. It is mainly because
CNN based feature extractors are naturally biased towards a feature that is about texture, colour.
Thus CNN based CycleGAN like the unsupervised image to image translation will naturally
remain the structure and semantic information of the original images, which benefits the domain
adaptation methods a lot since for most of the domain adaptation tasks, labels are constant as
long as the semantic information of transferred data is constant.

2.1.3 Discrepancy-based Domain Adaptation

Self-training based methods generate labelled target domain data with a policy trained on the
source domain. And then they try to modify the generated pseudo labels to make them more
accurate for the target domain. These kinds of modification are mostly based on unsupervised
clustering, which actually can only increase the quality of pseudo labels slightly. However, with
repeating the generating, modifying and training progress, again and again, the pseudo labels
will become more and more accurate, and policy will become more and more suitable for the
target domain. This kind of methods is widely used for object detection domain adaptation for
the reason that object detection uses local feature instead of global feature to generate output
labels. So all the global feature alignment-based methods will face some challenges in such a
scenario. The key differences among self-training based domain adaptation methods are the way
they correct the generated pseudo labels. [56] designs a Weak Self-Training framework which
uses a Supporting Region-based Reliable Score to filter out the generated labels that have high
possibility to be wrong. [57] assumes that a classification network trained on the source domain
can be used to correct the object detection network’s classification result.

2.1.4 Domain Adaptation for Image Classification and Semantic Segmen-
tation

Image classification learns to categorize images into a related class. Semantic segmentation
learns to category each pixel of an image into a related class. Most of the domain adaptation re-
search focuses on classification and semantic segmentation [58]. Usually, methods designed for
classification task can also be used for semantic segmentation, since these two tasks both utilize
the global feature to generate the final output. Global feature alignment-based methods are dom-
inant in classification domain adaptation and semantic segmentation domain adaptation. [35]
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adds two conditioning strategies for the standard adversarial adaptation strategy, the multilin-
ear conditioning that captures the cross-covariance between feature representations and model’s
output to improve the discriminability, and entropy conditioning that designed to reduce the un-
certainty of classification model’s output to guarantee the transferability. [59] finds that even
though CNN based discriminator has been better than most of the human-designed discrimina-
tor, the problem that whether the difference between the source and target domain is dominant by
the marginal distribution or conditional distribution still exists and still influences the final trans-
fer performance. Thus they propose a dynamic adversarial adaptation network to dynamic decide
whether the discriminator should focus on marginal distribution or conditional distribution.

Besides finding better domain distance metric or methods to stabilize the adversarial adap-
tation progressresearchers start to consider some new problems. Instead of transferring the net-
work’s weight learnt from the source domain to the weight of the same network structure suitable
for the target domain, [60] propose to transfer the weight learnt from source domain to the weight
of a different network structure suitable for the target domain. They divide the problem into these
sub-problems: which part the network is transferable, where the weights will be transfer to and
how much of this weight can be transferred. This work can also be considered as solving the
Knowledge Distilling problem from transfer learning’s perspective. With lots of existing domain
adaptation methods, which one is suitable for a specific task and dataset is also a problem. [61]
proposes this new problem setting and manages to formulate and solve it with an MMD based
method. [62] argues that directly global feature alignment may ignore some task-specific deci-
sion boundary’s characteristics. Furthermore, their method is based on modifying the decision
boundary. They use two networks that are trained in the source domain. With some dropout and
different initialization, the networks’ output on the target domain will be slightly different. Their
adaptation progress is first training the classifiers while feature extractors are fixed in order to
maximize the two networks’ differences of output, second, the two networks’ classifiers are fixed
and training their feature extractors to minimize the differences of output. On the first stage, the
networks are trained to maximize the differences, and in this way, they are encouraged to explore
some unexplored area. Moreover, in the second stage, the quality of feature extractor is improved
while fixing the classifier layers.

2.1.5 Domain Adaptation for Object Detection

Unlike image classification and semantic segmentation which are generate output based on global
feature, object detection generates lots of bounding boxes, and each of them is based on some
local feature. This difference makes the global feature-alignment-based methods that are popular
for image classification and semantic segmentation unable to have satisfying results for object
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detection. Thus self-training based methods are used widely for object detection domain adap-
tation. Some feature-alignment-based methods will need to consider how to align local feature
instead of directly aligning the global feature.

Instead of aligning the distribution of global feature. [63] filter out the feature that will not in-
fluence the final output bounding boxes with the help of two-stage object detector’s Rol module.
They set a threshold that only the areas higher ?? will be used for distribution alignment. That
is to say, only the ideally only the objects need to be aligned and meanwhile, and background is
not considered transferable.

[56] uses a Weak Self-Training (WST) module, which will filter out the generated pseudo
labels that are likely to be wrong. They design a Supporting Region-based Reliable Score (SRRS)
which decides how likely the pseudo labels are correct. The decision is made considering all the
nearby Rol instead of just one.

N
1 S
SRRS (r*) = N E IoU (ry,r*) - P(c" | r;) 2.7)
5 =1

where Nj is the number of nearby supporting Rol, /oU (A; B) is the IoU between region A and
region B, ¢* is the pseudo label of r*, and P (¢* | r;) is the probability that r; belongs to c*.

[57] trains an extra image classifier using source domain labelled bounding boxes and re-
sponding labels. Furthermore, after generating pseudo labels in the target domain, this classifier
is used to correct the pseudo bounding boxes’ predicted label. This method bases on the assump-
tion that image classifier usually is more reliable among different domains. Furthermore, the
separate image classifier can be trained with a far more complex network backbone and maybe
semi-supervised training strategy [64] which can also make sure that it can provide more reliable
predictions compared to object detection networks’ built-in classification head.

2.2 Domain Adaptation for Point Cloud

Domain adaptation for point cloud data is an unexplored area. Here we will mostly introduce
some object detection methods designed for point cloud data. Also, some point cloud data’s
unique characteristic compared to RGB images’ will be included.

There have been lots of research on RGB image semantic segmentation and object detection.
Although extracting information from RGB images and point cloud data is similar in some de-
gree, there are two key differences: 1) point cloud a disordered which means feature extractors
designed for point cloud should have similar output when the order if input data changes. 2)
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point cloud data is extremely sparse. For RGB images, almost all the pixels in an image can
be considered meaningful for a feature extractor, while for a frame of bird’s eye view image
generated from point cloud data, only part of data is scanned with Lidar while most of the data
is blank and meaningless. Figure 2.1 'shows a RGB image with 2D and 3D annotations and its
corresponding point cloud data.

Figure 2.2 ! shows point cloud data and its corresponding bird’s eye view image. All the
black area is not scanned and is considered as meaningless.

Early works [65] try to use 3D convolution to deal with point cloud object detection. Some
other works consider projecting point cloud data into 2D images and then extracting information
from projected 2D image [66]. Following works process point cloud from a bird’s eye view
[67]. Recently, voxel-based methods achieve good performance mainly because voxels, to some
degree, make the data less sparse. From manual designed feature encoding [68] to automatic
voxel-level feature extractor [69], quality of generated voxels increases a lot and the final per-
formance of object detection or semantic segmentation also increase correspondingly. Generated
voxels [69] are usually 3D which still require 3D convolutions to extract information. [70]
proposes an efficient voxel generation method and can obtain good object detection performance
with only 2D voxels and much faster compared to 3D voxels based methods.

Although point cloud is extremely sparse compared to RGB image, it has the advantage that
almost all the scanned points belong to objects that the object detection methods try to find (For
autonomous driving, most of the points belong to road, vehicle, pedestrians), which makes the
manual designed Rol module possible [71].

For RGB images, object detection methods are categorized as one-stage or two-stage. Two-
stage methods like [72] first generate region proposals and then classify and refine the proposals.
One-stage methods like [73] and [74] do all the region proposals generation, classification and
refinement in a single stage, which make it faster than two-stage methods.

"From KITTI Object data transformation and visualization project. https://github.com/kuixu/
kitti_object_vis
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Figure 2.1: Point Cloud Data Mapped to Related RGB image. From KITTI Object data transfor-
mation and visualization project.
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Figure 2.2: Point Cloud data and its corresponding bird’s eye view.
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Chapter 3

Methods

3.1 Domain Adaptation for Image Semantic Segmentation

3.1.1 Metric Guided Domain Randomization

The general framework for metric guided domain randomization is presented here. Consider hav-
ing access to source images X; and labels ); drown from a source domain distribution p,(z, y).
In the sense of unsupervised adaptation, only limited unlabelled target images X; are accessible
from target domain distribution p;(z,y) where there is no label but domain adaptation aims to
learn a task mapping function M to transfer knowledge. [17] assumes they have direct access
to the target images. However, the limited target images often lead to model bias to the target
domain distribution p,(z,y). Here this thesis considers a different setting by adding random
perturbations to approximate the target distribution. In order to consider the randomness of the
perturbations, the thesis denotes the noise set as A and specific noise n € N. The primary goal
of our proposed framework is to randomize and augment the source mapping in order to make
sure M (X}, n) can not be distinguished from the demonstrated task in source domain with a col-
lection of randomness { M (X, n;)}¥_,, where k is the size of the selected noise set. In this case,
the source classifier Cs can be directly applied to the target domain, such that unified classifier
C=0,=Ch

The supervised loss for the source classification model can be defined as:

K
/Ccls (XsaysaN) E(xs Ys,n)~(Xs, Vs, N Zﬂk =ys] logc (X57n)) (31)
k=1
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Figure 3.1: Relation between images from randomized simulation, simulation and reality

To make sure the selected perturbation noise N can effectively randomize the source domain
mapping M (X,, N) instead of being ignored, the proposed method presents noise classifier C),
with the supervised loss L,,(N, M) as

K
En(X&N; M) = E(ms,n)N(Xs,N) - Z IL[k:n] 10g Cn (M ('T& n)) (32)
k=1

Finally, the proposed method needs to make sure the task mapping in the target domain with
arbitrary perturbations M (X}, n2) can not be distinguished by a domain discriminator D, from the
task model accepting the source domain input M (X,, ') for the transfer learning robustness.
The supervised loss for discriminability £ is defined as

[:D(XS, Xt, M,N) = — ]E(zsm)N(XS,N) [lOg D (M (:ES, n))]

— Esinn, [10g(1 —-D (M (gjt, ﬁ)))] (3.3)

where 7 is a specific noise.

The generic formulation for the metric guided domain randomization considering unknown
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perturbations is derived below:

min L (Xs, Vs, N)
M,C

y—“n

min max Lp (X, X, M, N)
M D

The proposed formulation of a metric guided domain randomization problem can be consid-
ered as a simultaneous optimization problem. Notably, the direction of randomness N included
will have an impact on the efficiency of the domain transfer. Several problems remain for finding
the solution of the optimization problem (3.4).

e How to find “proper” noise to the feature mapping?

e Should the introduced perturbation be the features from the target domain data, data similar
to target data or just random noise?

e In terms of the training process, should we divide the whole pipeline into metric based do-
main randomization and training with randomized data or one-staged adversarial training
progress?

These issues will be discussed in the following sections along with the proposed solution and
designed model.

Randomization Based Domain Generalization

The benefit of our proposed generic framework for domain randomization is that it directly ap-
plies to the development of adaptive learning methods. In many applications, including au-
tonomous driving and robotic vision, semantic segmentation is a fundamental visual task towards
the visual understanding of the environment. Source images and labels can be obtained from the
public datasets as well as simulation platforms. Typically, having access to target domain data
distribution will benefit randomization progress. This thesis argues that have direct access to tar-
get dataset will make the trained model bias to the limited target sample distribution and decrease
the generalization performance, since, for domain adaptation, we usually have limited target data
obtainable. Instead of having direct access to the target data, the proposed method encodes a pure
prior knowledge into our model. The proposed method mainly uses the prior knowledge that the
simulation environment and real-world environment differ a lot in its texture, lighting, but sim-
ilar in their geometric information. Hence a geometry consistent domain randomization model
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Figure 3.2: An overview of our proposed metric guided domain randomization pipeline. A style
transfer network is used to generate random stylized images with noise n; € N. The generated
stylized images is then labeled as positive x,, or negative x,, based on the comparison between
the anchor image z,. A contrastive loss is utilized in the task policy training process to make sure
feature mappings of positive images are similar with the anchor images while feature mappings

of negative images are dissimilar.
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will first be used to randomize the source data. Furthermore, the proposed method uses a triplet
structure to make sure the task model mainly learn from geometry consistent information.

To tackle the union optimization problem in (3.4), the thesis proposes a two-fold pipeline
with style transfer and triplet network trained by contrastive learning. The style transfer stage in
Fig. 1.1 handles (3.2) by implementing style transfer methods for accurate randomization [34].
The noise set N is a set of images from a weakly correlated domain. The adaptive instance
normalization [75] is used to add noise to middle state feature mapping. Notice that the level of
perturbation need to be controlled since its ideal to maintain the minimal level of content infor-
mation from the source image instead of the pursue of total randomness. Hence, the proposed
method adopts a style loss of L, (NN, M) as (3.2) in our pipeline to ensure that the noise can still
be distinguished.

The discriminability loss (3.3) is a typical min-max two-player problem where a GAN model
is typically accepted in [17]. Although GAN should have excellent performance in the Nash
equilibrium, only in the case of convex function can gradient descent guarantee Nash equilib-
rium. When neural networks represent both sides of a game, it is possible for them to always
adjust their strategies without actually reaching equilibrium. Another point is that the learning
process of GAN often suffer from a collapse problem where the generator starts to degenerate.

Considering these problems, the thesis proposes a simple-to-implement supervised training
pipeline to handle (3.1) and (3.3) simultaneously. The task network stage illustrated in Fig.
1.1 take advantage of a triplet structure to filter the augmentation with “proper” perturbations.
The thesis argues that the discriminability can be measured by the consistency of the semantic
segmentation results. The proposed method uses geometric consistency as an approximation
measure of the model discriminability in (3.3). Moreover, the thesis uses a triplet network to
tell whether the source image with injected perturbation x; & n; belongs to the source domain
distribution, e.g. classify whether x4 @ n; ~ p,(z,y) is real. The proposed triplet structure is
advantageous in making the task model robust on the consistent geometric information.

The relation between simulation, randomized simulation and reality is shown in Figure 3.1.
Given Xmutation C R¥T W X catiy C R¥>T*W | the proposed method tries to find a map-
ping X, andomized = f(Xsimutation, ) given a specific style s, and make sure that X, .., C
Xyandomized- Also the proposed method tries to find a mapping Ximuiation = G(Xrandomized)-
Since X, caiity C Xrandomized> the proposed method will also get Ximuiation = G(Xyeatity). This
mapping function G will help us map a real image into X, uation Where unlimited high quality
labeled data and a policy trained with these data have already been accessible. For a unsupervised
domain adaptation setting, the problem can be formalized as:

9;(” = arg Héln DiSt<f(Xsimulation)7 Xreality) (35)
f

21



And for a domain generalization problem setting, it can be formalized as:

‘9;; = arg Holln DiSt(f(XsimulatiML)u f(Xsimulationa S)) (36)
f

where s is a specified style which is never used by f in the training progress.

There is no guarantee that information that we are interested in keeps unchanged during the
randomization progress, while the proposed method is trying to keep the information during
the randomization progress explicitly, it is also important that the proposed method does not
randomize X, uiation t00 much.

Algorithm 1: AdaIN with £, loss
Data: content image /., style image I, encoder ¢, ith activation layer of the encoder
¢;, decoder g
initialization;
for number of training iterations do
Calculate feature mapping of both /. and style image I,. Referred to as M, and M

Align data distribution of M, and M,: t = (M) (%) + p(My).

Decode the aligned features back to image space.
Encode the reconstructed image and calculate content loss and style loss:

L= 3000 I (@ilg()) = n(di(L)lly + 300y llo (:(g(2))) — o (6i( L))

Le=f(g(t) —t[2

L1 =lg(t) = Lllx

Update weights of the decoder based on: £ = L.+ M\ Ls + Ao L.
end

Style Transfer for Domain Randomization

The proposed method needs to add random noise to source images; meanwhile, make sure the
randomized image and origin image are geometry consistent. Experiments show that add direct
pixel-wise constraint like £, loss in the training progress will violate equation (3.2) and resulted
in the perturbations indistinguishable from randomized images. Hence, the proposed method
uses a perceptual metric [76] to measure the distance between the source images and randomized
images.

First, the proposed method encodes both content image ¢ and style image s to feature space
with a fixed encoder f. An adaptive instance normalization layer is then used to align the mean
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and variance of the content feature maps to those of the style feature maps:
t = AdaIN(f(c). f(s)) (3.7)

A decoder g is used to map the target feature map back to target image space.

T(c,s) = g(t) (3.8)
The total training loss is:
07 = Lo+ ML (3.9)
L
L= lln(@ig(t) = p(d:(s)l,+

! (3.10)

Z lo (¢i(g(£))) — o (#i(s))ll,
Le=|f(g(t)) —tl2 (3.11)

where ¢; denotes activation layers of f. While the adaptive normalization operation align noise
into intermediate features, £, is used to make sure n is still noticeable after reconstruction, as is
described in equation (3.2).

Contrastive learning

Our task network needs to learn from M (x4, n) and control the effects of n. It can be considered
as a contrastive learning problem and the proposed contrastive learning module tries to learn from
the differences between different generated images. In this section, the thesis explores the use of
triplet network and siamese network [77]. The proposed method generates different images of
the same source image with different style images, and every two of the images can be considered
as a positive pair. Since GTAS dataset is collected by time order, the proposed method chooses
images that have close indices, stylize them with the same style image and then uses these as
negative pair. The proposed method adds a triplet ranking loss to make sure our intermediate
feature representation focuses on geometry information instead of image texture. For an anchor
image x,, positive image z, has the same geometry information with x, and negative image x,,
has similar texture information with the anchor image. The triplet ranking loss is:

L contrastive(Za, Tp, r,) = max(0,m + || f(za) — f(x;))H — || f(za) = f(2n)]]) (3.12)
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Figure 3.3: Example of triplets for constrastive learning. Anchor image is filtered with a percep-
tual similarity metric. Positive image is generated with the same content as the anchor image but
stylized with different style image. Negative image is generated with similar content image as
the anchor image and stylized with the same style image as the anchor image.

A pairwise ranking loss can also used:

. _ | f(za) — f(zp)||  if (24, xp) is positive
Leontrastive(Ta; Tp Tn) = { max(0,m — ||zq — z,||)  if (24, z,) is negative (3.13)

Another choice of training objective is:

‘Ctask (a:aa xp? xn) = ‘Cseg ('Tcw ya) + )\Econtrastive (314)

where f is a feature mapping function of our task network. The proposed method adds a spatial
pyramid pooling layer before calculating the distance between two feature representation, as
mentioned in [34]. Selection of negative pairs is the key to contrastive learning. The experiments
showed that it is hard to always select hard negative examples in order to provide a consistent
gradient. Noise contrastive estimation (NCE) [78] combines triplet loss and softmax and can
be used in such a situation. However, NCE requires the storage of thousands of negative pairs;
hence the proposed method only uses the positive pairs. In this case the pairwise ranking loss
(3.13) is equivalent to (3.12).
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3.1.2 Style-agnostic Target Domain to Source Domain Generator

A CGAN based domain adaptation method is also proposed. Unlike the Metric Guided Domain
Randomization method, the CGAN based method trains directly with randomized source domain
images. The CGAN based methods trains a Style-agnostic Target Domain to Source Domain
Generator G;_~. During inference, target domain images are first passed to G;_~ to generate
a corresponding source domain image, and then the generated source images can be passed to a
semantic segmentation model trained with source domain data. The whole pipeline is shown in
Figure 3.4

The critical component of this pipeline is the CGAN which is used to find a mapping function
that can map data from the target domain to source domain. In a typical unsupervised domain
adaptation setting, this can be done by training a CGAN based on X and X;. However, in this
thesis, the proposed method considers a harder situation where the model has no access to Xj;.
All we get is a prior knowledge that the source domain and target domain data are styles agnostic.
With no access to target domain data, the proposed method needs to find a mapping function that
can map from the randomized source domain to source domain and also make sure that target
domain can not be distinguished from the randomized source domain.

CGAN [79] takes n randomized images = of the same original image x as input, and the
fake original image y as output. Since all the randomized images in a training batch are mapping
to the same output, the similarity betwee the input images’ feature mapping can be used as a
regularization term. The objective of the conditional GAN can be denoted as:

ﬁcGAN(G7 D) :Ei‘,x[lOg D(j7 I)]_I_

E;:[log(1 — D(%, G(%,2))] (3.15)

spatial pyramid pooling loss [34] is used to encourage the consistency of different feature map-
ping of images in the same batch. And £, loss is used to encourage less blurring. Overall, our
objective can be expressed as:

G* = arg mGin max Lecan(G, D) + MLy, + ALy (3.16)
In practice, the proposed method uses patch wise loss in the discriminator to focus on discrim-

inating high frequency differences as mentioned in [79]. Specific training process is shown in
Algorithm 2
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Figure 3.4: Style-agnostic Target Domain to Source Domain Generator Pipeline

3.2 Domain Adaptation for Point Cloud Object Detection

3.2.1 Adaptive PointPillars

Point Pillars

This section is a brief introduction of original PointPillars [70]. For autonomous driving, infer-
ence speed of perception module should be over 30 fps. Only projection-based methods can be

that fast while still relatively accurate. GCN-based methods’ inference speed is mostly less than
five fps, and Point-based methods’ inference speed is usually 10-20 fps. PointPillars is an end-

26



Algorithm 2: Conditional GAN

Data: Original image /,, Randomized image I,
initialization;
for number of training iterations do
Generate fake original image I, from corresponded randomized image I,
Discriminate fr given [, calculate L, loss between [, and I,.
Update weights of the discriminator by gradient by gradient ascend:
Vo, [Er 1,[log D(I,, I,)] + E;, .[log(1 — D(I,, I.)] + AL4]
Update weights of the generator by gradient descent:
Vﬁg [EI,.,IO [1Og D(Ira Io)] + Elr,z[log<1 - D(L‘» ]7“)]

end

Point cloud Predictions
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Figure 3.5: PointPillars Pipeline

to-end projection-based 3D object detection network that achieves state-of-the-art performance.

It uses a one-stage object detection method SSD and a novel pillars extraction module that makes

it faster than most other methods. It can infer at 62Hz.

The key contribution of PointPillars is its PointCloud to Pseudo-Image extraction module. A
point in the point cloud is 1 with coordinates x, y, z and a reflectance r. Instead of dividing the
whole point cloud into 3D grids, PointPillars divides the point cloud into a grid in the x-y plane

and results in pillars &2 with |#?| = B. Then the original coordinates are converted into pillar-

relative coordinates x., Y., 2., T, and y,. Here c subscript means distance is calculated against
the mean of all points a the same pillar, and p subscript means distance is calculated against the

centre of the pillar. The converted point will have D = 9 dimensions.

And then, the generated pseudo-images are used to train a Single Shot MultiBox Detector

(SSD). The whole pipeline is shown in 3.5.
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Figure 3.6: Our Adaptive PointPillars Structure

Adaptive PointPillars

The section describes how the proposed method manages to adapt a PointPillars network trained
in the source domain to the target domain.

The proposed method uses the typical metric based domain adaptation structure, as shown in
the left part of 1.1. In a metric based domain adaptation method, the bottleneck of the adaptation
performance are: first, where is the adaptation head placed; second, what kind of adaptation loss
can be used.

To address the first issue, multiple locations are tested and finally the proposed method places
the adaptation head after the 2D CNN backbone and the other detection heads. In this layer, the
feature is less sparse than the original point cloud and the extracted pseudo-images.

And to address the second issue, the proposed method tests three different adaptation loss,
MMD [14], CORAL loss [80] and RevGrad loss [81].

MMD loss minimizes the distance between mean of two data distribution with respect to a
particular representation ¢. It can be represented as:

MMD (Xg, X7) =
) ﬁ szeXs ¢ (xs) — ﬁ thEXT ¢ ()

where ¢ is a CNN based feature extractor.

(3.17)

CORAL loss is the distance between the second-order statistics (covariances) of the source
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and target features with respect to a specific representation ¢:

p(X,) — (X5 (3.18)

lcorar = 1 d2

RevGrad loss uses a discriminator network as distance metric and update parameters based

on: ) )
9f — 9f — (% — )\%)
0, + 0, — 135" (3.19)
Qd — 5= Bﬁ

where [, is domain adaptation loss and [, is task loss.
PyTorch implement of all these three losses will be provided in Appendix A.

And as mentioned in 2.2, domain adaptation for object detection should not only focus on
global feature, so the proposed method uses a BSP [19] to encourage the feature extractor to
use more feature instead of focusing on the most important few principal components. With
this penalization, the adaptation progress will not only focus on global feature alignment but
pay more attention to task specific decision boundary. BSP loss bases on the observation that
during domain adaptation the largest singular value of the feature matrix that adaptation loss is
placed on is significantly larger than the others, which will increase the transferability of model
but at the same time decrease the discriminability. To reduce increase discriminability on target
domain, they propose a BSP:

k
Lp(F) =Y _ (02,4 07,) (3.20)
i=1

BSP is easy to understand, it is the sum of largest k singularity value of feature matrix (both
source and target domain). And with this penalization, performance on target domain is actually
increased.

The whole structure of our Adaptive PointPillars in shown in Figure 3.6

Experiments and comparison of different choice of adaptation loss is shown in section 4.2.1
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Chapter 4

Experiments

4.1 Domain Adaptation for Image Semantic Segmentation

4.1.1 Metric Guided Domain Randomization

In this section, the thesis describes the experiment set up and list results of the proposed metric
guided domain randomization method on the semantic segmentation task. This section also
provides analysis of different experiment set up and comparison with other methods. It is worth
mentioning that the proposed policy transfer progress does not require any target domain data or
data relevant to the target domain. All it need is a prior knowledge that the current simulation
environment is different from the real-world environment in their texture, lighting, physics, but
similar in their geometry information. The proposed method uses this strict experiment set up to
guarantee the generalization ability of our proposed method.

Experiment Settings

The experiments use FCN8s-VGG16 [82] as task policy. The proposed method evaluates the
semantic segmentation performance of the model trained on one synthesized dataset on different
real-world datasets.

Datasets The experiments choose GTAS dataset [83] as our synthesized dataset, Cityscapes
[34] and BDD100K [85] as our real-world dataset. The experiments use Kaggle’s Painter by
Numbers data set ! as our noise set.

Painter by Numbers dataset. https://www.kaggle.com/c/painter—by-numbers/data
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Figure 4.1: Example of CityScapes semantic segmentation results. The first column is original
RGB image, the second column is result of FCN8s-VGG16 model trained directly on GTAS
dataset, the third column is result of our proposed method and the last column is the ground
truth.

GTAS is a vehicle-egocentric dataset collected from a computer game. The authors extract
pixel-wise semantic segmentation labels from render engine directly. Therefore, their semantic
segmentation labels are cheap but extremely accurate. They provide a total of 24,966 images
with resolution 1914 x 1052. The class labels are compatible with the CityScapes datasets.

CityScapes contains 5000 fine annotated frames and 20000 coarsely annotated frames. Re-
searchers collect data on the urban environment from 50 different cities in Europe. The resolution
is 2048 x 1024, and they provide a total of 30 classes. The experiments only use 19 of the classes.

BDD100K is collected with a dashcam. They provide a total of over 10, 000 diverse images
with pixel-level and rich instance-level annotations. Resolution of images is 1280 x 720.

Training The experiment trains an AdaIN network using the training set of GTAS dataset
as content images and images from Painter by Numbers dataset as style images. The proposed
method augments the training set of GTAS with trained AdalN model and randomly selected
style images from Painter by Numbers dataset. For one source domain image from GTAS dataset,
the proposed method generates two positive images as a positive pair. All the generated images
are filtered by a perceptual loss with a constant threshold. The proposed method uses FCN8s-
VGG16 as base model. The input of the semantic segmentation network is pairs of images consist
of two generated images of the same source image. For all the experiments train all the semantic
segmentation models with images of a resolution of 512 x 1024. Contrastive loss is calculated
on different activation layers of FCNSs.
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Figure 4.2: Example of BDD100K semantic segmentation results. The first column is original
RGB image, the second column is result of FCN8s-VGG16 model trained directly on GTAS
dataset, the third column is result of our proposed method and the last column is the ground
truth.

Evaluation This section follows the evaluation protocol mentioned in [86]. The real-world
RGB image is resized to 512 x 1024 and then passed through to the model trained with synthe-
sized images. For evaluation the output semantic predictions are resized to the original resolu-
tion and evaluated with the standard Pascal VOC intersection-over-union (IoU). The evaluation
uses mloU as evaluation metric. The model trained on augmented GTAS dataset is tested with
CityScapes dataset, and the result is shown in Table 4.1.

Results Discussion Effect of resolution is discussed in previous articles [88]. For metric
based domain adaptation methods, high resolution usually leads to better performance in both
the source and target domain. In our experiment, high resolution will lead to higher source (ran-
domized) domain performance, but target domain performance does not increase. For example,
the proposed method resizes the image from GTAS to a resolution of 512 x 1024 and then ran-
dom crop a 512 x 512 part. With lower resolution, the proposed method can still get a target
domain mloU (FCN8s-VGG16) of 27.4 (mloU is 27.1 for 512 x 1024) while source domain se-
mantic segmentation performance is worse compared to the performance of the higher resolution
model (34.7 to 40.1). Furthermore, as mentioned in other research [88], even with the same
base model, performance on source domain reported by different papers is very different due to
some implementation differences. Performance of our method does not increase when changing
the base model from VGG16 to VGG19, which indicates that the style transfer module is the
bottleneck of the final performance.

32



Results of Generalizing from GTAS
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FCN wid [37]|C A 70.432.462.114.95.4 10.91422.7 79.221.364.644.14270480 7.3 0.03.5 0.027.1
AdaSeg [87] |C A 72.930.074.912.1 13.2 153 16.8 14.1 79.3 14.575.535.710 62.120.6 19 0.019.3 12 314
MCD [62] |C A86.485 76.118.6 9.7 14978 0.6 82.832.771.42521.176316.117.11.40.2 0.028.8
Source C A83 10337240 12914.684 34 74699 31.33650.153495 6.1 060.1 0.016.9
Proposed C A77931.572.010.2 0.0 19.32.1 0.0 79.623.676.928.60.060.48.6 6.2 0.00.0 0.026.2
Source CB74 10.73503.8 10.713.413.824 76.014.230.240.60.048.39.3 42 2.00.8 0.017.0
Proposed C B826324742164 0.0 22902 0.0 81.121.277.133.60.061.41042.7 0.00.2 0.027.2
Source B A21.31544271.8 99 19.013.22.7 52411.974327.00.045959 7.0 0.00.3 0.0184
Proposed B A54821.160.043 0.0 24584 0.0 68.121.784.428.60.053.089 9.6 0.00.0 0.023.6

Table 4.1: Results of Generalizing from GTAS5. The performance of our proposed method is
evaluated by using GTAS as source labelled training data while evaluating the algorithm on the
validation set of Cityscapes. Experiments compare our model using two base semantic seg-
mentation architectures FCN-VGG16 (A) and FCN-VGG19 (B). Target C represents Cityscapes
dataset and target B represents BDD100K dataset.

Our adaptation progress requires no target domain data or data related to the target domain.
The adaptation progress relies on the prior knowledge that the simulation environment and real-
world environment are similar in their geometry information while being different in their tex-
ture, lighting situation. This thesis proposes to train a semantic segmentation model which de-
pends mainly on geometry information. To further test the generalization ability of our trained
model, the same model is also tested on BDD100K dataset. Performance is also shown in Ta-
ble 4.1.

Having access to target data typically benefits the policy transfer, since data can be augmented
towards target domain distribution. However, in our experiment, using target domain data as
noise does not benefit the transfer progress since the learned intermediate feature representation
of real-world data is relatively stable and stylized images generated with real-world can not
provide enough randomization. This finally leads to bad transfer performance.
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Figure 4.3: Results of CGAN, the first column shows original cityscapes images and the second
column shows the corresponding fake Carla images
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Figure 4.4: Results of CGAN, even lines shows cityscapes images and the odd lines shows the
corresponding fake GTAS images

35



4.1.2 Style-agnostic Target Domain to Source Domain Generator
Experiment Settings

In experiments, the proposed method uses U-Net [89] structure as generator follows the original
CGAN [90]. The semantic segmentation performance of the model is evaluated by passing target
domain data to a trained generator and then passing the generated fake source domain data to a
FCN trained directly on source domain data.

Datasets The experiments choose GTAS dataset [83] as our synthesized dataset, Cityscapes
[84] and BDD100K [85] as our real-world dataset. This experiment uses Kaggle’s Painter by
Numbers data set > as our noise set. The experiment setting is similar to our Metric Guided
Domain Adaptation. Another experiment using Carla dataset generated with Carla’s official data
collector® is also added.

Training There are two experiments, one of them uses GTAS dataset and the other one uses
the generated Carla dataset. The CGAN is trained using randomized source domain (randomized
GTAS and randomized Carla in our experiment) as domain A, and source domain (GTAS dataset
and Carla dataset in our experiment) as domain B. Examples of training data and results is shown
in Figure 4.3.

Evaluation The evaluation follows the protocol mentioned in [86]. The real-world RGB
image is resized to 512 x 512 and then passed through to the generator model trained with
randomized synthesized images and original synthesized images.The output fake source domain
images are passed through to a FCN model trained with source domain data, and then the outputs
are resized to the original resolution and evaluated with the standard Pascal VOC intersection-
over-union (IoU). mloU is utilized as evaluation metric.

Results Discussion For Carla-Cityscapes experiments, our Style-agnostic Target Domain to
Source Domain Generator shows better performance compared to our Metric Guided Domain
Randomization method. While for GTAS-Cityscapes experiment, Metric Guided Domain Ran-
domization has a better performance compared to the other methods. This result is because GTAS
synthetic images are far more complicated compared to Carla synthetic images with more realis-
tic texture, lighting situation. In contrast, Carla synthetic images mostly use the same texture for
such category of objects and use similar lighting rendering for most of the situation. Complexed
source domain makes CGAN hard to find the mapping function that can map randomized images
back to the original images (GTAS images). This low-quality fake image is shown in 4.4. Since

ZPainter by Numbers dataset. https://www.kaggle.com/c/painter—by-numbers/data
3CARLA 0.8.4 Data Collector https://github.com/carla-simulator/data-collector
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the CGAN is not able to reconstruct high-quality source domain images, there is no way that the
whole domain adaptation pipeline can be successful.
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Figure 4.5: learning rate of adaptive PointPillars.

4.2 Domain Adaptation for Point Cloud Object Detection

4.2.1 Adaptive PointPillars

Experiment Settings

The proposed method uses a typical task loss plus domain adaptation loss structure. Object
detection is chosen as task and PointPillars is chosen as base network. Performance of the model
is evaluated by testing the trained model on target domain data and also testing it after fine-tuning
with some target domain data.

Datasets The experiment uses Kitti [4] Dataset 3D object detection task’s Velodyne point
cloud data as the source domain and Stardust dataset as the target domain. Kitti Dataset has 3712
frames of training data and a similar number of testing data as well, Stardust Dataset has 5005
frames of training data and some number of testing data. Due to different sensor setting, point
cloud data in these two datasets are different, which is shown in Figure 4.6. Based on the bird’s
eye view of two datasets, Kitti Dataset has denser point cloud data and also a wider field of view.
This differences course significant performance decrease when applying model trained with one
dataset on the other.

Training The experiments apply three different adaptation losses, which are MMD loss,
CORAL loss and RevGrad loss. BSP loss is also added to encourage the model to have better
discriminability on the target domain. All the different experiments follow the same pipeline:
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Figure 4.6: Bird’s eye view of point cloud data from two different domains, Kitti and Stardust.
The first column is from Kitti and the second column is from Stardust. Bounding box is ground
truth annotation of cars.



a model that is trained on source domain for one epoch is used as a pre-trained model, all the
parameters except the detection heads’ and adaptation head’s are adapted. A higher learning rate
is set for the heads since they do not have pre-trained weights. A step learning rate schedule is
applied to the training progress, which is shown in Figure 4.5.

Scenario | Train Set ValSet | B-E% | B-M % | B-H% | 3D-E % | 3D-M % | 3D-H %
1 kitti kitti 89.47 | 79.41 78.55 75.03 63.93 58.00

2 stardust stardust | 88.09 71.79 72.30 67.34 53.19 45.67

3 kitti stardust | 0.00 0.00 0.34 0.00 0.00 0.00

4 stardust kitti 41.97 | 40.76 40.51 2.10 4.33 4.50

5 kitti+10%stardust | stardust | 59.88 | 54.40 45.70 27.24 25.03 20.77

6 stardust+10%Xkitti | kitti 77.84 | 73.73 70.83 33.86 34.19 31.80

7 kitti+10%stardust | kitti 7524 | 63.48 60.29 54.48 40.80 38.00

8 stardust+10%Xkitti | stardust | 88.03 76.67 68.61 57.61 46.73 39.86

Table 4.2: Results of PointPillars trained on source domain only or mixed dataset which contains
both source and target domain data, and then tested on target domain. This table shows how large
the gap is between source and target domain. Default Kitti evaluation metric is used and AP of
both birds’ eye view and 3D are reported. B represents Birds’ Eye View, E represents easy, M
represents moderate, H represents hard.

Evaluation The performance of domain adaptation is evaluated by testing the model with
source data directly on the target domain. Then the performance of source domain model fine-
tuned with target domain data is also tested on the target domain. The evaluation uses AP of
bird’s eye view images as evaluation metric and threshold is set to 0.70. The evaluation uses
the same evaluation function used in Second. The evaluation first calculates the performance of
source domain data on target domain without applying any methods, results of training on mixed
datasets and testing on target domain is also presented as well in Table 4.2.

Experiments results on all three of the adaptation losses are reported. The experiments show
that that CORAL adaptation loss can not improve adaptation performance for our model. This
might relate to the sparsity of point cloud data. Figure 4.7 shows comparison between MMD
loss and RevGrad loss.

Experiments show that domain adaptation is better than just fine-tuning on target domain
data. Fine-tuning results of both AdaptivePointPillars and original PointPillars on target domain
data is reported. Results is shown in Figure 4.8. Results of fine-tuning with 1, 5, 10 target
domain data points and also one per cent to ten per cent target domain data are recorded. The
results show that with limited target domain data (less than 1000 data points), our method is
superior to fine-tuning, while with more target domain data, the performance of the two methods
is similar. The superior can also be shown in AP which are shown in Table 4.3.
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Figure 4.7: Source and Target domain loss of Adaptive PointPillars with MMD loss and RevGrad
loss. ddc-custome-Ir uses MMD adaptation loss and revgrad uses RevGrad adaptation loss.

Adaptive PointPillars \ Original PointPillars
Num of Target Domain Data Car AP (BEY, 0.7, 0.5, 0.5)

easy | medium | hard | easy | medium | hard
1 14.76 | 11.89 1144 | 0.32 | 045 0.51
5 17.33 | 13.43 1199 | 6.76 | 8.73 8.54
10 30.75 | 20.59 15.95 | 12.33 | 14.90 13.31
125 84.68 | 72.71 67.04 | 85.60 | 73.96 67.15
250 86.88 | 71.53 60.46 | 88.05 | 74.20 63.20
375 89.01 | 79.40 71.09 | 87.96 | 79.24 72.25
500 89.13 | 79.96 72.53 | 88.69 | 80.38 73.57
625 86.53 | 77.41 70.43 | 88.18 | 80.68 73.20
750 88.52 | 80.10 74.13 | 88.16 | 80.16 73.02
875 88.99 | 79.56 71.43 | 88.92 | 80.83 73.85
1000 88.85 | 78.11 72.24 | 88.81 | 81.81 75.36

Table 4.3: Fine-tuning Results

Results Discussion Our Adaptive PointPillars shows its superior adaptation performance.
When target domain data is extremely limited (less than ten target domain data points), Adaptive
PointPillars has an absolutely better performance compared to fine-tune, and with more target
domain data, it also shows similar performance compared to fine-tune original PointPillars. More
point cloud-specific modification need to be done on the proposed Adaptive PointPillars in order
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Figure 4.8: Results of fine-tuning with 1, 5, 10 target domain data points and also one percent to
10 percent target domain data points. The blue line is our Adaptive PointPillars and the orange
line is original PointPillars.

to achieve better adaptation performance.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

This thesis mainly focuses on domain adaptation and its application for autonomous driving.
The thesis first introduces some basic concepts of domain adaptation and how it can be useful for
autonomous driving. Then the current research situation for domain adaptation and the current
unexplored area is mentioned. The Methods section is categorized into domain adaptation for
RGB images and domain adaptation for point cloud data. For RGB images domain adaptation,
the proposed method uses semantic segmentation as the task and describe two different methods.

Generally speaking, Metric Guided Domain Adaptation directly trained task network with
randomized source domain data. With the guarantee that using style transfer methods as a ran-
domization method will barely change semantic information between the source image and cor-
responding randomized image, the trained task network can work on the target domain if target
domain images can not be distinguished from randomized source images.

Style-agnostic Target Domain to Source Domain Generator, on the other way, can be consid-
ered as training a mapping function that can map the target domain image to its corresponding
source domain edition. The mapping function was obtained by training a conditional adversar-
ial network using randomized source domain images as domain A and source domain images
as domain B. With a trained generator and task network, the domain adaptation could be done
bypass through the target domain images to the generator and then passing through the generated
fake source domain images to the task network trained directly on source domain images. These
methods depend mainly on the quality of the conditional adversarial network.

When comparing these two proposed methods in two different experiment settings, the Style-
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agnostic Target Domain to Source Domain Generator is more suitable for domain adaptation
tasks with a less complicated source domain. At the same time, Metric Guided Domain Adapta-
tion works better when the source domain is more complicated.

A baseline method for domain adaptation for point cloud data called Adaptive PointPillars
was proposed, aiming to make domain adaptation for point cloud object detection. This method
utilized MMD distance as a regularization term when training the original PointPillars network.
A BSP penalty that will encourage the latent space to be more complicated during the domain
adaptation progress was added to the whole loss function, not only focus on global feature align-
ment.

With the development of learning-based methods, autonomous driving becomes possible.
However, the safety requirement of autonomous driving brings challenges to its perception mod-
ule. A large amount of data is needed to cover all the potential traffic situations, weather, and
lighting, which is nearly impossible even for companies with lots of labour and material re-
sources. Domain adaptation aims to use all kinds of existing data more efficiently, which can
be used to reduce the demand for collecting and annotating extra data. Also, domain adaptation
can be applied to adapt the policy trained in a simulation environment to real-world situations,
bringing unlimited access to any driving data. Data collected from the simulation environment
also has ground truth annotation, and no extra labour force is needed for annotation.

Metric Guided Domain Randomization achieved similar performance with some state-of-
the-art unsupervised domain adaptation methods. However, different from unsupervised domain
adaptation settings where target domain images are accessible. The proposed method does not
require any target domain information, including data and corresponding annotations. The pro-
posed proposed Metric Guided Domain Randomization is able to improve mean intersection-
over-union on target domain from 16.9 to 27.2 without using any target domain data or anno-
tations. Another technique for RGB image domain adaptation was also utilized, which bases
on CGAN. A comparison between these two different methods showed that the CGAN based
method’s performance decreased a lot as the source domain image becomes more complex, while
Metric Guided Domain Adaptation, although performance was a little worse than CGAN based
approach, achieved much better performance when the source domain images are more complex.

A baseline method designed for point cloud domain adaptation was proposed. Point Cloud
domain adaptation is an unexplored area, with different characteristics like the sparsity of data
and the disorder of data points, point cloud domain adaptation is somehow different from RGB
image domain adaptation. The proposed method aims to fit point cloud’s characteristics but is
far from perfect. With access to more ten target domain data frames and fine-tuning will be as
good as the proposed Adaptive PointPillars. More effects deserve to be devoted to this field.
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5.2 Recommendations

The proposed Metric Guided Domain Randomization and Style-agnostic Target Domain to Source
Domain Generator adopt policy from the source domain to target domain on the raw data level.
Ideally, adaptation on the feature level will achieve better performance since the extracted feature
is task-specific.

Adaptive PointPillars is a baseline method which simply adapt [14] to 3D object detection.
Local feature alignment should be considered for better adaptation performance. Self-training
based domain adaptation methods are worth trying since they do not focus on global feature
alignment.
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Appendix A

PyTorch Implement of Three Adaptation
Losses

Implements are from Jindong Wang’s Transfer Learning reposity. !

A.1 Maximum Mean Discrepency

Listing A.1: MMD loss

class MMD._loss(nn.Module):

def

def

__init__(self, kernel_type="rbf’, kernel_-mul=2.0, kernel_-num=5):
super (MMD_loss, self). __init__ ()

self.kernel_.num = kernel_num
self.kernel_mul = kernel_mul
self.fix_sigma = None

self.kernel_type = kernel_type

guassian_kernel (self , source, target, kernel_mul=2.0, \
kernel_num=5, fix_sigma=None):

n_samples = int(source.size ()[0]) + int(target.size ()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze (0).expand(
int(total.size (0)), int(total.size(0)), int(total.size(1)))
totall = total.unsqueeze (1).expand(

int(total.size (0)), int(total.size(0)), int(total.size(1)))

ITransfer Learning, Jindong Wang https://github.com/jindongwang/transferlearning
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L2 _distance = ((total0—totall )*%x2).sum(2)
if fix_sigma:

bandwidth = fix_sigma
else:

bandwidth = torch.sum(L2_distance.data) / (n_samples*x2—n_samples)
bandwidth /= kernel_mul xx (kernel_num // 2)
bandwidth_list = [bandwidth % (kernel_mulxxi)

for i in range(kernel_num)]
kernel_val = [torch.exp(—L2_distance / bandwidth_temp)
for bandwidth_temp in bandwidth_list]

return sum(kernel_val)

def linear_mmd2 (self, f_of_X, f_of_Y):
loss = 0.0
delta = f_of_X.float (). mean(0) — f_of_Y .float (). mean(0)
loss = delta.dot(delta.T)
return loss

def forward(self, source, target):
if self.kernel_type == ’linear’:
return self.linear_mmd2 (source, target)
elif self.kernel_type == ’rbf’:
batch_size = int(source.size ()[0])
kernels = self.guassian_kernel ( \
source , target, kernel_mul=self.kernel_mul, \
kernel_num=self.kernel_num , fix_sigma=self.fix_sigma)
with torch.no_grad ():

XX = torch .mean(kernels [: batch_size , :batch_size])
YY = torch.mean(kernels[batch_size:, batch_size:])
XY = torch .mean(kernels [: batch_size , batch_size :])
YX = torch.mean(kernels[batch_size:, :batch_size])

loss = torch.mean(XX + YY — XY — YX)
torch.cuda.empty_cache ()
return loss

A.2 Correlation Alignment

Listing A.2: CORAL loss

def CORAL(source, target):
d = source.size (1)
ns, nt = source.size(0), target.size (0)

56



# source covariance
tmp_s = torch.ones((1, ns)).to(DEVICE) @ source
cs = (source.t() @ source — (tmp-s.t() @ tmp-s) / ns) / (ns — 1)

# target covariance
tmp_t = torch.ones((1, nt)).to(DEVICE) @ target
ct = (target.t() @ target — (tmp_t.t() @ tmp_t) / nt) / (nt — 1)

# frobenius norm
loss = (cs — ct).pow(2).sum().sqrt ()
loss = loss / (4 = d x d)

return loss

A.3 RevGrad

Listing A.3: RevGrad loss

class ReverseLayerF (Function):

@staticmethod

def forward(ctx, x, alpha):
ctx .alpha = alpha
return x.view_as (Xx)

@staticmethod
def backward(ctx, grad_output):

output = grad_output.neg() * ctx.alpha
return output, None
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Appendix B

Key Component of PyTorch Pix2Pix
Implement

Borrow a lot from PyTorch-GAN reposity. !

Listing B.1: Key Component of PyTorch Pix2Pix Implement

for epoch in range(config.getint(”train”, “epoch”), \
config.getint(”train”, “n_epochs”)):
for i, batch in enumerate(data_loader):

real_B, real_A = batch

real_A = real_A .to(device)
real_B = real_B .to(device)

# Adversarial ground truths

valid torch . from_numpy (np.ones ((real_A.size (0), *patch)))
valid valid.type(torch.float)

valid = valid.to(device)

fake = torch.from_numpy(np.zeros ((real_A.size(0), *patch)))
fake fake .type(torch.float)

fake = fake.to(device)

#
# Train Generators
#

optimizer_G.zero_grad ()

'"PyTorch GAN https://github.com/eriklindernoren/PyTorch—GAN
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# GAN loss

fake_.B = generator(real_A)

pred_fake, - = discriminator (fake_ B, real_ A, spp=False)
loss_.GAN = criterion_.GAN (pred_fake, valid)

loss_pixel = criterion_pixelwise (fake_ B, real_B)

loss.G = loss_.GAN + lambda_pixel x loss_pixel # + lambda_spp * loss_spp
loss_G .backward ()

optimizer_G . step ()

#

# Train Discriminator
#

optimizer_D . zero_grad ()

# Real loss

pred_real, _ = discriminator(real_ B, real_ A, spp=False)
loss_real = criterion_.GAN (pred_real , valid)

# Fake loss

pred_fake, _ = discriminator (fake_B.detach(), real_ A, spp=False)

loss_fake = criterion_.GAN (pred_fake , fake)

# Total loss
loss.D = 0.5 % (loss_real + loss_fake)

loss_D .backward ()
optimizer_D . step ()
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