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Abstract 

In nondestructive testing (NDT), geometrical features of a flaw embedded inside the material such as 

its location, length, and orientation angle are critical factors to assess the severity of the flaw and make 

post-manufacturing decisions. In this study, a novel evolutionary optimization algorithm has been 

developed for machine learning (ML). This algorithm has been inspired by thermodynamic laws and 

can be adopted for artificial neural network (ANN). To this end, it was applied to the oscillograms from 

virtual ultrasonic NDT to estimate geometrical features of flaws. First, a numerical model of NDT 

specimen was constructed using acoustic finite element analysis (FEA) to produce the ultrasonic 

signals. The model was validated by comparing the produced signals with the experimental data from 

NDT tests on the specimens without and with defects. Then, 750 numerical models containing flaws 

with different locations, lengths, and angles were generated by FEA. Next, the oscillograms produced 

by the models were divided into 3 datasets: 525 for training, 113 for validation, and 112 for testing. 

Training inputs of the network were parameters extracted from ultrasonic signals by fitting them to sine 

functions. The proposed evolutionary algorithm was implemented to train the network. Lastly, to 

evaluate the network performance, outputs of the network including flaw’s location, length, and angle 

were compared with the desired values for all datasets. Deviations of the outputs from desired values 

were calculated by a regression analysis. Statistical analysis was also performed by measuring Root 

Mean Square Error (RMSE) and Efficiency (E). RMSE in x-location, y-location, length, and angle 

estimations are 0.09 mm, 0.19 mm, 0.46 mm, and 0.75, with efficiencies of 0.9229, 0.9466, 0.9140, 

and 0.9154, respectively for the testing dataset, which demonstrates high accuracy in estimation. 

Results suggest that the proposed AI-based method can be used to characterize flaws with time of flight 

NDT approach. 

This research introduces optimized smart ultrasonic NDT as an exact and rapid method in 

detection of internal flaw, its geometrical features, and also proves the need to replace this method with 

conventional method which requires interpretation of the human. 
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Chapter 1 

Introduction 

1.1 Non-Destructive Testing 

Non-destructive Testing (NDT) is an examination technique to evaluate the integrity of a material, a 

mechanical component or other parts without causing physical damage [1]. NDT is the use of special 

equipment and methods to learn something about an object without harming the object. The term 

nondestructive testing usually implies that a nonliving object, such as a piece of metal, is being 

evaluated. NDT methods are used to make sure that important parts on airplanes and automobiles and 

in nuclear power plants are free of defects that could lead to an accident. NDT is also used in many 

other industries to make sure that parts do not have defects that would make the customer unhappy. 

The inspection and measurement methods used in the field of NDT are largely based on the scientific 

principles of physics and chemistry [2]. Non-destructive testing refers to a set of methods for assessing 

and determining the properties of devices and components that do not cause any damage or change in 

the system [3]. 

1.1.1 Applications 

Non-destructive testing is widely used in many industries. Among them, the following can be 

mentioned [4]: 

• Power industry 

• Automobile manufacturing 

o Engine parts 

o Body 

• Civil engineering 

o Structure 

o Foundation 

o Water transmission networks 

o Roads and road construction 

• Oil and gas industry 

o Oil and gas pipes 

• Aviation 

1.1.2 Methods 

In this section, the most common methods used in non-destructive tests are introduced. 
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1.1.2.1 Acoustic Emission (AE) 

When a solid is under stress, the defects in it cause high-frequency sound waves. These waves are 

propagated in matter and can be received by special sensors, and by analyzing these waves, the type of 

fault, its location, and its intensity can be determined. Acoustic emission is a new method in the field 

of non-destructive testing. This method can be used to identify and locate various defects in load-

bearing structures and their components. Rapid discharge of energy from a concentrated source inside 

the body causes transient elastic waves and their propagation in matter. This phenomenon is called 

acoustics emission. Depending on the propagation of the waves from the source to the surface of the 

material, they can be recorded by sensors and thus obtain information about the existence and location 

of the source of the propagation of the waves. These waves can have frequencies up to a few MHz. 

Ultrasonic sensors in the range of 20 kHz to 1 MHz are used to hear the sound of materials and structural 

failure, and the common frequencies in this method are in the range of 150-300 kHz. Depending on the 

type of application, the devices used can be in the form of a small porTable device or a large device of 

tens of channels. A single sensor, along with related tools for acquiring and measuring emission 

acoustic signals, forms an acoustic emission channel. The multi-channel system is used for purposes 

such as locating resources or testing areas that are too large for a single sensor. The components 

available on all devices for signal reception are: sensor, preamplifier, filter and amplifier [5]. 

1.1.2.2 Visual Testing (VT) 

This method is the most basic and simplest method of testing quality control and equipment monitoring. 

In this way, the quality controller must visually check the items. Of course, cameras are sometimes 

used to send images to a computer and the computer detects faults. The sorting method, which is 

especially used to control the quality of screws, is an example of a visual control method by a computer 

[6].  

1.1.2.3 Radiography Testing (RT) 

A radiography testing is using gamma and X-rays, which can penetrate many materials to examine 

materials and detect product defects. In this method, X-rays or radioactive radiation are directed to the 

part and are reflected on the film after passing through the part. Thickness and interior features make 

the spots appear darker or lighter in the film [7]. 
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1.1.2.4 Magnetized Testing (MT) 

In this method, iron particles are poured on a material with a magnetic property and a magnetic field is 

induced in it. If there is scratches or cracks on the surface or near the surface, magnetic poles will form 

at the fault site or the magnetic field in that area will be distorted. These magnetic poles absorb iron 

particles. As a result, faults can be detected by the iron particles aggregation [8]. 

1.1.2.5 Ultrasonic Testing (UT) 

In this method, high-frequency, low-amplitude ultrasonic waves are sent into the part. These waves are 

reflected back after each collision, and some of these waves go to the sensor and the sensor receives it. 

From the amplitude and time of return of these waves, the characteristics of this rupture can be 

understood. Applications of this method include measuring thickness and detecting defects in parts [9]. 

1.1.2.6 Liquid Penetrant Testing (PT) 

In this method, the surface of the part is covered with a visible colored liquid or fluorescent. After a 

while, this liquid penetrates into the cracks and surface cavities of the piece. The liquid is then removed 

from the surface of the object and the emitter is sprayed on the surface.  The difference in the brightness 

of the penetrating liquid and the emitter makes it easy to see surface defects.  

This test is used to detect defects that have a way to the surface and can be used on most materials 

of any type, while the roughness of the test surface must be appropriate. In this method, we must first 

clean the surface from grease and contamination, then spray the penetrating liquid on the surface and 

wait for at least five minutes for the penetrating liquid to penetrate into the defect, then clean the surface 

and spray the emitter on the surface. The material is usually white. If there is a defect on the surface, 

its effect on the surface is clear [10]. 

1.1.2.7 Electromagnetic Testing (ET) 

In this method, an electric Eddy current is induced using a variable magnetic field in a conductive 

material, and this electric current is measured. The presence of faults such as cracks in the material 

causes interruptions in this flow, and thus the presence of such a defect can be realized. In addition, 

different materials have different permeability electrical conductivity, so some materials can be 

classified by this method [11].  
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1.1.2.8 Leak Testing (LT) 

Various methods are used to detect leaks in pressure vessels and so on, the most important of which 

are: electric earphones, pressure gauges, gas or penetrating barriers, halogen diodes, mass spectrometry, 

as well as soap bubble testing [12]. 

1.1.2.9 Infrared Testing (IRT) 

One of these methods is to monitor the condition and predict the defects of mechanical and electrical 

machines using thermal analysis because the performance of each device is always accompanied by 

heat dissipation and usually any mechanical and electrical defects in the equipment occur with 

increasing or decreasing temperature. The heat released from the outer surface of objects is released in 

the form of infrared radiation that is not visible to the human eye. But this radiation can be seen through 

thermographic cameras, which are the most advanced and complete equipment in the field of thermal 

analysis.  

Thermal analyses can be used to identify and detect faults such as improper electrical connections, 

loose parts and equipment, metallurgical changes, overload, improper cooling, improper voltage, 

improper connection and conduction, dirty equipment, environmental pollution, oxidation of 

connections, poor capacity, corrosion and external erosion, lack of overlap and excessive vibrations, 

and many other defects that ultimately cause defects in parts and equipment [13]. 

1.1.2.10 Magnetic Flux Leakage (MFL) 

Magnetic imaging of metal surfaces by magnetic field sensors is a widely used technique in non-

destructive surface testing to detect defects in metal specimens. Among magnetic imaging techniques, 

magnetic flux leak test is a widely used method in non-destructive testing of ferromagnetic metal 

surfaces such as transmission pipes and oil and gas storage tanks. In this method, the ferromagnetic 

sample is magnetized by a permanent magnet or a coil near the saturation zone. The presence of any 

discontinuities in the material, such as cracks, causes a localized leakage of flux at the crack site. The 

distribution and severity of leakage fluxes provide useful information about the location and dimensions 

of the crack. This leakage flux can be measured by a magnetic sensor. The properties of the magnetic 

sensor are very effective on the ability of the test system to detect cracks and corrosion with different 

dimensions [14]. 
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1.1.2.11 Comparison of Methods 

Table 1-1 Different methods of NDT and their comparison. 

Method Applications Disadvantages and limitations 

Liquid penetrant 

• Non-porous materials 

• Weld inspection, soldering, casting 

materials, forging materials, 

aluminum parts, discs and turbine 

blades, rotary 

• Requires access to the tested 

surface  

• Defects must be broken at the 

surface. 

• The surface may need to be 

cleaned 

• Crack-like defects that are 

very narrow, especially when 

exposed to a force that causes 

them to close, as well as very 

shallow defects, are difficult to 

detect. 

• Depth of defect cannot be 

measured. 

Magnetized 

• Materials with magnetic properties 

• Surface defects and near-surface 

defects can be detected by this 

method. 

• Can be used for welding, pipes, rods, 

castings, forging materials, extruded 

materials, engine parts, axles and 

gears 

• Fault detection is affected by 

factors such as field strength 

and direction. 

• Requires a clean and relatively 

smooth surface 

• Need to hold the clamp for the 

field generator 

• The test piece must be non-

magnetic before the test, 

which is difficult for some 

parts and materials to do. 

• The depth of the defects 

cannot be measured. 

Ultrasonic 

• Metallic and non-metallic materials 

and composites 

• Surface and non-surface defects 

• Can be used for welds, fittings, rods, 

castings, forging materials, engine 

and aircraft parts, building 

components, concrete, as well as 

widely for detecting defects in 

pressurized tanks and oil and gas 

transmission pipes. 

• Also to determine the thickness and 

properties of the material 

• To monitor burnout 

• It is generally by contact, 

sometimes directly and 

sometimes through the 

interface 

• Requires different sensors for 

different applications; 

generally in terms of 

frequency range 

• Sensitivity is a function of the 

frequency used, and some 

materials, due to their 

structure, cause the ultrasonic 

waves to propagate 

significantly. Return waves 

from such waves are 
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generally difficult to 

distinguish from noise. 

• This method is difficult to 

apply to very thin parts. 

Neutron 

radiography 

• Metallic and non-metallic materials 

and composites 

• Pyrotechnics, resins, plastics, 

honeycomb structures, radioactive 

materials, high-density materials and 

materials containing hydrogen 

• The test piece must be placed 

between the radiation 

emitting source and the 

receiver. 

• The size of the radiation 

generator reactor is very 

large. 

• It is difficult to place test 

components in parallel. 

• Radiation hazards 

• Cracks should be placed 

parallel to the rays to be 

recognizable. 

• Sensitivity reduction by 

increasing the thickness of 

the piece 

X-ray radiography 

• Metallic and non-metallic materials 

and composites 

• Used for all shapes and forms; 

casting, welding, electronics, 

aerospace, marine and automobile 

industries 

• Both sides of the piece must 

be accessed. 

• Test results are largely 

dependent on determining the 

focal length, voltage, and 

exposure time of the 

radiation. 

• Radiation hazards 

• Cracks should be placed 

parallel to the rays to be 

recognizable. 

• Sensitivity reduction by 

increasing the thickness of 

the piece 

Gamma radiography 

• It is generally used for thick and 

dense materials. 

• Used for all shapes and forms; 

casting, welding, electronics, 

aerospace, marine and automobile 

industries 

• It is usually used in a place where x-

rays cannot be used due to its high 

thickness. 

• Both sides of the piece must 

be accessed. 

• The sensitivity of this method 

is not as high as x-rays. 

• Radiation hazards 

• Cracks should be placed 

parallel to the rays to be 

recognizable. 

• Sensitivity reduction by 

increasing the thickness of 

the piece 

Electromagnetic 
• Metals, alloys and conductors of 

electricity 

• For materials sorting 

• Requires different sensors for 

different applications 
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• Surface and near surface defects can 

be detected by this method. 

• Can be used for pipes, wires, 

bearings, tracks, non-metallic 

electrotyping, aircraft parts, discs 

and turbine blades, car axle 

• Although the sensors in this 

method are non-contact, the 

sensor must be located very 

close to the piece. 

• Low penetration (usually 

about 5 mm) 

Magnetic flux 

leakage 

• Metals, alloys and magnetic 

materials 

• Diagnosis of micrometer cracks 

• Surface and deep defects can be 

detected by this method. 

• Can be used for pipes, tanks, wires, 

bearings, tracks, non-metallic 

electrotyping, aircraft parts, discs 

and turbine blades, car axle 

• Can be used in magnetic 

materials 

 

1.2 Ultrasonic Testing (UT) 

Ultrasonic Testing (UT) is a non-destructive testing method. In this method, high-frequency, low-

amplitude ultrasonic waves are sent into the part. Ultrasonic waves are mechanical vibrations generated 

by piezoelectric transducers in elastic material. The frequency of ultrasonic waves is generally between 

0.1 MHz and 50 MHz. Most industrial applications use frequencies from 0.5 MHz to 15 MHz [15]. 

These waves are reflected back after each collision, and some of these waves go to the sensor and the 

sensor receives them. From the amplitude and time of return of these waves, the characteristics of this 

rupture can be understood. Applications of this method include measuring thickness and detecting 

defects in parts. One of the important advantages of this method is its ability to detect very small defects 

due to the use of high frequency and therefore very small wavelengths [16]. 

 

Figure 1-1 Example of ultrasonic test for jet engine turbine blade root test. 
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1.2.1 Components of Ultrasonic Test System 

The components of the ultrasonic test system are shown in Figure 1-2. In this system, the pulser sends 

an electric wave to the transmitter transducer. These very short waves (usually about 0.1µs) are 

repetitive (about 1 ms) and have a range of hundreds of volts. The transducer converts this electric wave 

into sound. The sound wave propagates inside the material and is reflected in the presence of any 

discontinuity in the material. The wave reflected by the transducer is received by the receiver and 

converted into an electric wave. These waves are then displayed on an oscilloscope and may also be 

sent to a computer for more detailed analysis [17]. 

1.2.1.1 Pulser-Receiver Unit 

The Pulser-Receiver is used in field applications and workshops and usually has an oscilloscope for 

displays. The main task of this unit is to send the stimulus signal to the transmitter transducer and 

receive the signal from the receiver transducer. The unit also usually has multiple microprocessors for 

calibration and data analysis purposes [18]. 

1.2.1.2 Ultrasonic Transducers 

The transducers used in the ultrasound test are made of piezoelectric crystals. There are several types 

of these transducers, each with its own characteristics. The most important of these features that 

distinguish them are [19]: 

• Convergent: transducers that have a concave shape and wave rays are concentrated in the 

center. 

• Flat: the surface of these transducers is flat. 

• Receiver-Transmitter: transducers that are used as both receivers and transmitters. 

• Longitudinal: transducers that send or receive longitudinal ultrasonic waves. 

• Shear: transducers that send or receive ultrasonic shear waves. 

• Phased array: in fact, these transducers consist of a number of transducers, each of which can 

be stimulated separately. 
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Figure 1-2 Components of ultrasonic test system. 

1.2.2 Arrangement of Transducers 

In the ultrasonic test, the arrangement of the transducers is as follows: 

1. Pulse-Echo: in this method, a transducer is used both as a transmitter and as a receiver. The 

transducer sends a pulse into the sample, and the signal is reflected in the presence of a defect, 

and part of the reflected signal is received again by the transducer. 

2. Pitch-Catch: in this method, the transmitter transducer sends a signal and the receiver 

transducer receives it (Figure 1-3).  

3. Through transmission: it is similar to the pitch-catch method, except that the transducer is 

placed on the other side of the sample and receives a signal that has passed through the sample 

and not reflected inside it. 
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Figure 1-3 Pitch-Catch method. 

1.2.3 Display Test Data 

1.2.3.1 A-Scan 

If a signal is sent by the transmitter transducer and received by the receiver, the resulting signal is a 

signal based on time and therefore a one-dimensional signal. This signal is called the A-Scan signal 

(Figure 1-4). 
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Figure 1-4 An example of A-scan. 

1.2.3.2 B-Scan 

If we move the transducer over the test sample and a signal is sent and received at any point, a set of 

one-dimensional signals will result. The resulting signal is a two-dimensional matrix that can be 

represented as a two-dimensional image. This type of display is called a B-Scan ultrasonic signal. 

Sometimes the non-scan signal is displayed as a one-dimensional signal, so that each scan is determined 

when the signal has a maximum amplitude, so for each position of the transducer we will have some 

time and this amount of time can be plotted by location (Figure 1-5). 
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Figure 1-5 A two-dimensional B-scan. 

1.2.3.3 C-Scan 

Now, if a two-dimensional scan is performed, that is, one of the surfaces of the sample is scanned, then 

the resulting signal will produce a three-dimensional image of the sample being called a C-Scan. Also, 

just as a B-scan can be displayed as a one-dimensional signal, so can a C-scan signal be displayed in 

two dimensions. 

1.2.4 Analysis of Ultrasonic Data 

Although the ultrasonic method has many advantages and can theoretically detect very small defects, 

in practice, due to the noise, the detection power of this method is much lower than the theoretical 

values. It is important to note that today, despite the high-sensitivity transducers used in these tests, 

significant improvements cannot be expected in terms of computer hardware in this area. In fact, unlike 
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many other tests in this method, the restriction is not on hardware but on the methods used in processing 

ultrasonic signals [20]. 

1.2.5 Applications 

• Metallic and non-metallic materials and composites 

• Surface and non-surface defects 

• Can be used for welds, fittings, rods, castings, forging materials, engine and aircraft parts, 

building components, concrete, as well as widely for detecting defects in pressure vessels and 

oil and gas transmission pipes 

• Also to determine the thickness and properties of the material 

• To monitor burnout 

1.2.6 Advantages and Disadvantages 

Advantages:  

• High penetration power, which can detect defects in the depth of matter. 

• Distinguish very small defects such as cracks: Due to the high frequency and therefore the low 

wavelength of the waves used in this method, defects with very small dimensions can be 

detected. As a rule of thumb, in the theory of size, the smallest defect that can be detected in 

this way is equal to half the wavelength used.  

• High accuracy in determining the location and size of defects 

Disadvantages:  

• It is generally using contact, sometimes directly and sometimes through the interface 

• Requires different sensors for different applications; generally in terms of frequency range 

• Functional sensitivity is a function of the frequency used, and some materials, due to their 

structure, cause the ultrasonic waves to propagate significantly. Return waves from such 

materials are generally difficult to distinguish from noise.  

• This method is difficult to apply to very thin parts. 

• The manual operation of the ultrasonic device requires high user skill. 

• Data interpretation requires high technical knowledge. 

• This method is difficult to apply to irregular, rough, very small, thin, and heterogeneous 

surfaces. 

1.3 Project Goals 

The present project is an attempt to intelligently diagnose component flaws using ultrasonic NDT by 

an acoustic modeling and optimization, which can be used to improve the level of the diagnostic process 

in industrial use. At present, many models of flaw diagnosis have been performed with the help of 

NDT. In some models, attempts have been made to increase the accuracy and speed of defect detection 

by using effective parameters in flaw diagnosis and using intelligent methods.  
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In this project, the goal is to try to determine the relationship between specimen ultrasonic signal and 

flaw diagnosis by examining the acoustic parameters in flawless specimen and comparing it with the 

conditions of having defect within the part. In the modeling section, using the finite element method, 

the process of acoustic propagation is simulated in specimen and by extracting the signal profile of the 

specimen, the sample is examined to diagnose the presence or absence of flaw. In the next step, the 

NDT process is intelligentized and the detection process is performed using acoustic signal.  

An ultrasonic NDT device has been implemented to conduct accurate and optimized examinations 

of the flaw detection process. An artificial intelligent system has been used to estimate the geometrical 

characteristics of the defect. The final achievements of this project include the following:  

1. Provide an acoustic model to simulate the ultrasonic NDT process 

2. Quantitative diagnosis of crack location 

3. Assessment of geometrical features of crack using artificial neural network 

4. Optimizing the neural network for high performance 

1.4 Review of Thesis Chapters 

In the second chapter, an overview of the existing research in the field of NDT will be given and its 

modeling. There is also a brief overview of AI methods.  

The numerical method of modeling with finite element analysis, implementation of NDT setup, and 

crack geometrical features estimation using an artificial neural network is examined in Chapter 3. 

In chapter 4, a new evolutionary algorithm is introduced which called the Thermodynamic 

Equilibrium Algorithm for optimal neural network in NDT process. 

Chapter 5 also includes the results of the constructed model and the capability of NDT method in 

detection of the crack geometrical features inside the specimen. 
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Chapter 2 

NDT, Research History 

2.1 Introduction 

Ultrasonic testing is recognized as one of the most common and important methods for a range of 

applications in non-destructive testing (NDT) [21]. In this method, ultrasonic energy is propagated into 

the tested solids as the form of high-frequency and low-amplitude ultrasound waves. Ultrasound waves 

are excited by the mechanical vibration generated by piezoelectric transducers in elastic matter. The 

popular frequencies of ultrasound waves in applications are generally between 0.1 MHz and 50 MHz, 

and in most industrial NDT, the frequency ranges from 0.5 MHz to 5 MHz [22]. These waves are then 

reflected by the back surface or internal discontinuities of the material, and a part of the reflected waves 

are received by the same or a different piezoelectric transducer and converted to electrical signals, 

called A-scan signals. Characteristics of this discontinuity can be discerned from the amplitude and 

timing of the A-scan signals [23]. Applications of this method include thickness measurement and 

defect detection in the components [24]. One of the important advantages of ultrasonic NDT is its 

ability to detect small defects due to the use of high frequency, and hence short wavelength [25]. 

However, in most of the applications, it aims to detect only whether cracks and/or defects exist or not 

[21]. 

2.2 Quantitative Non-Destructive Testing (QNDE) 

Quantitative non-destructive evaluation (QNDE) is a branch of NDT techniques to estimate sizes, 

shapes and locations of flaws, and eventually to assess the health state of a material or a structure [26]. 

QNDE encompasses a broad range of disciplines including quantitative measurement techniques, 

physical models for computational analysis, statistical considerations, quantitative designs of 

measurement systems, specifications for flaw detection and characterization, system validation and 

performance reliability. Achenbach [26] provided extensive reviews of QNDE and related ultrasonic 

techniques including laser-based ultrasonics and acoustic microscopy for crack detection and for the 

determination of elastic constants.  

Chatillon et al [27] proposed a numerical model for ultrasonic non-destructive testing of components 

of complex geometry in the nuclear industry.  They proposed a new concept of phase array contact 

transducer.   
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Chassignole et al [28] utilized NDT in austenitic stainless steel welds of the primary coolant piping 

system for the nuclear industry. They described the characteristics of the mock-ups inspected. Two 

side-drilled holes with a diameter of 2 mm were machined in the mock-ups (Figure 2-1). 

 

Figure 2-1 Automatic testing of the mock-ups [28]. 

Le Jeune et al. [29] proposed a plane wave imaging method for ultrasonic NDT. This method was 

applied to multimodal imaging of solids in immersion. 

Sutcliffe et al. [30] applied real-time full matrix capture (FMC) for ultrasonic NDT with acceleration 

of post-processing through graphic hardware. Full matrix capture allows for the complete ultrasonic 

time domain signals for each transmit and receive element of a linear array probe to be retrieved.   They 

suggested several optimization approaches to speed up the FMC inspection process with particular 

emphasis on data parallelization over the graphic process unit (GPU) and provided experimental results 

based on real-world scenarios where FMC can be used as a real-time inspection process. They 

quantified their results obtained from each of the experimental tests (Figure 2-2). 
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Figure 2-2 Processed images at different configurations. (a) 16 elements at 0.25, (b) 16 elements at 

0.125, (c) 32 elements at 0.25, (d) 32 elements at 0.125, (e) 64 elements at 0.25 and (f) 64 elements at 

0.125 [30]. 

S To this end, flaw characterization based on ultrasonic NDT has been largely studied by analytical 

[31], experimental [32] and numerical [33] methods to classify them based on their location, size, and 

orientation. In recent years, with the dramatic advancement of computing power, the interest in the use 

of AI approach to solve NDE problems has been rapidly growing, particularly in the interpretation of 

NDT signals for detection and characterization of flaws. 

2.3 Smart Ultrasonic NDT 

Some well-known AI approaches have been implemented in many researches on ultrasonic NDT. For 

the feature extraction from raw data, conventional signal processing methods have been widely 
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adopted, such as discrete Fourier transform (DFT) [34], discrete wavelet transform (DWT) [35], 

principal component analysis (PCA) [36] or the genetic algorithm (GA) [37]. For the classification of 

features, a variety of machine learning techniques have been used, including singular value 

decomposition (SVD) [38], support vector machines (SVM) [39], and sparse coding (SC) [40]. Neural 

network (NN)-based learning systems have also been employed, including artificial neural network 

(ANN) [41], convolutional neural network (CNN) [42], and deep learning (DL) [43] for damage 

characterization.  

For example, Sambath et al. [44] adopted a signal processing technique based on DWT for feature 

extraction and applied ANN to classify defects in ultrasonic NDT. However, their algorithm could only 

categorize the defects into four types: porosity, lack of fusion, and inclusion and non-defect; no 

geometrical information of the defects could be obtained. The DWT analyses the signal by 

decomposing it into its coarse and detailed information which is accomplished with the use of 

successive high-pass and low-pass filtering and subsampling operations, on the basis of the following 

equations: 

𝑦ℎ𝑖𝑔ℎ(𝑘) = ∑ 𝑥(𝑛). 𝑔(2𝑘 − 𝑛)

𝑛

 (2-1) 

𝑦𝑙𝑜𝑤(𝑘) = ∑ 𝑥(𝑛). ℎ(2𝑘 − 𝑛)

𝑛

 (2-2) 

where 𝑦ℎ𝑖𝑔ℎ(𝑘) and 𝑦𝑙𝑜𝑤(𝑘) are the outputs of high-pass and low-pass filters with impulse response 

𝑔 and ℎ, respectively, after sub sampling by two (decimation). 

Ye et al. [45] compared the performance of CNN-based DL with conventional computer vision 

approaches and concluded that DL outperformed all conventional approaches. They presented a 

diagram describing the sequential process from ultrasonic signal capture to automatic result generation 

(Figure 2-3). However, their DL system could only tell whether a defect exists, and was not able to 

report further information, such as location and size. 
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Figure 2-3 The general processing flow of computerized ultrasonic imaging inspection [45]. 

Meng et al. [42] used a deep CNN to classify the defects in carbon fiber reinforced polymer (CFRP)  

(Figure 2-3). However, their framework could identify only the depths of delamination defects using 

A-scan signals. The shape of the defect could be obtained from C-scan signals, i.e. by combining 

multiple A-scan signals at different locations.  

 

Figure 2-4 Ultrasound signal representation [42] . 

Toghroli et al. [46] evaluated the parameters affecting the results of structural health monitoring 

using adaptive neuro fuzzy inference system (ANFIS), where the fuzzy logic was combined with the 

neural network to obtain a new network architecture. They applied this method to examine how the 
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material properties affect the readings of Schmidt rebound hammer. Figure 2.4 depicts the schematic 

process of Schmidt rebound hammer test. 

 

Figure 2-5 Schematic process of Schmidt rebound hammer test [46]. 

Munir et al. [47] used deep neural network (DNN) with drop out regularization to classify defects in 

weldments and showed that proposed DNN architecture could classify defects with high accuracy 

without extracting any feature from ultrasonic signals. However, their DNN could detect only the 

existence of the flaws without further geometrical information of the flaws. They compared the testing 

performance of single hidden layer feed forward neural network on single frequency database and 

mixed frequencies database of ultrasonic signals. 

2.4 NDT Acoustic Modeling 

Although there have been abundant studies applying AI to flaw characterization, most of them can just 

discern whether defects exist or not, or types of defects, not capable of predicting more detailed 

geometrical features. This may be partly attributed to the lack of real NDT data for various features of 
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the flaws. Note that all AI-based methods are data driven approaches where their ability and 

performance are highly dependent on the quantity and quality of training dataset. Unfortunately, there 

are very limited number of experimental or real engineering data with detailed information on the flaws, 

which highly limits the employment of data-driven approaches for NDT. One way to circumvent the 

scarcity of experimental NDT data is to produce the data through realistic numerical simulation. Two 

classical analytical scattering models have been used to simulate the interaction of ultrasonic waves 

with flaws: the Kirchhoff approximation (KA) [48] and Geometrical Theory of Diffraction (GTD) [49]. 

Recently there have been other analytical approaches based on Physical Theory of Diffraction (PTD) 

[50, 51] accounting for wave reflection and diffraction. However, these analytical approaches are not 

easy to implement for numerical simulation. Instead, the numerical acoustic modeling with finite 

element analysis (FEA) enables the prediction of the propagation of acoustic fields [51] under various 

conditions in both frequency domain and the time domain. There are several studies that have employed 

acoustic FEA to simulate the ultrasonic QNDE of the components containing various flaws.  

For example, Zou et al. [52] used acoustic FEA to simulate the ultrasonic NDT of hollow components 

using phased array transducers. They introduced a new array pattern, which is different in structure 

from the commonly used arrays, such as linear array, annular array, 2-D-plannar array, or etc. The 

governing equation derived from the momentum equation (Euler's equation) and continuity equation 

is: 

1

𝜌0𝑐𝑠
2

𝜕2𝑝

𝜕𝑡2
+ ∇. (−

1

𝜌
(∇𝑝 − 𝑞𝑑)) = 𝑄𝑚 (2-3) 

where 𝑝 is the total acoustic pressure, 𝜌0 is the fluid density, 𝑐𝑠 is the speed of sound, 𝑄𝑚 is the 

monopole source, 𝑞𝑑 is the dipole source, 𝑡 is the time variable and ∇ is the divergence operator. 

The reliability of the NDT is the basis of NDT technology, and it is the focus of technical research 

by many scholars. Tian et al. [53] investigated the detection reliability of ultrasonic NDT with acoustic 

FEA using COMSOL and explored the variation of the ultrasonic detection amplitude with the angle 

between the sound beam and the crack. Their numerical simulation verification model of ultrasonic 

testing was a crack-free cylinder with a diameter of 50 mm and a height of 20 mm (Figure 2-6). 
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Figure 2-6 Simulation model of crack-free cylinder [53]. 

Owowo et al. [54] employed acoustic FEA to simulate acoustic wave propagation in pipes with leaks 

of various sizes, and showed that acoustic FEA can be used to identify, locate and estimate the size of 

a leakage defect in a pipe. As such, acoustic FEA modeling of the component for ultrasonic NDT can 

simulate the behavior of ultrasonic waves according to the flaw characteristics embedded in the 

component.  

2.5 Evolutionary Optimization Algorithms 

Determination of ANN's parameters and structure are very important. Some well-known evolutionary 

algorithms such as Simulated Annealing [55, 56], Pruning Algorithm [57], Particle Swarm 

Optimization [58], Genetic Algorithm (GA) [59] and Back Propagation (BP) are used in this regard. 

However, these algorithms suffer from major deficiencies.  For example, BP is a gradient descend 

algorithm with poor performance in global searching while having slow convergence speed. So it may 

easily get into partial extreme values. The genetic algorithm has its intrinsic disadvantages of being 

unpredictable and producing unripe results [60, 61]. Therefore, looking for high efficiency algorithms 

has been one of the most important problems in ANN applications [62]. 
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Chapter 3 

Numerical Simulation and NDT Device 

3.1 Introduction 

NDT of industrial part can provide useful information to operators during manufacturing . Today, with 

the advancement of ultrasonic NDT technologies, the use of this method as a diagnostic and localization 

tool for growing cracks is necessary. This chapter simulates the process of industrial ultrasonic NDT to 

locate a flaw. This location can help operators in the follow-up procedures and decisions. In the first 

part of the modeling, the finite element method is used to solve the problem of acoustic pressure in the 

specimen and the received signal of the specimen is analyzed to check for the presence of the crack and 

its location. In order to estimate the geometrical characteristics of the crack from the specimen surface 

signal profile, a reverse method using a neural network is used. Figure 3-1 shows the flowchart for the 

numerical method used to estimate the geometrical features of the crack.  

 

Figure 3-1 Flowchart of numerical method to estimate crack features. 
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3.2 Acoustic Modeling 

The pressure acoustics simulation requires primarily the time-dependent (transient) equation for 

acoustics modeling. The acoustic wave equation can be written in scalar form as: 

1

𝜌𝑐2

𝜕2𝑝𝑡

𝜕𝑡2 + ∇. (−
1

𝜌
(∇𝑝𝑡 − 𝑞𝑑)) = 𝑄𝑚 (3-1) 

where 𝑝𝑡 is the total acoustic pressure, 𝜌 is the matter density, c is the speed of sound, 𝑞𝑑 is the dipole 

domain source, and 𝑄𝑚 is the monopole domain source. In the wave equation, the speed of sound and 

density are in general space-dependent and only slowly vary in time, i.e., at a much slower temporal 

scale than the variations of acoustic amplitudes. 

Boundary conditions at walls are defined with a hard boundary equation, in which the normal 

component of the acceleration (and also the velocity) is zero: 

−𝑛 ∙ (−
1

𝜌
(∇𝑝𝑡 − 𝑞𝑑)) = 0 (3-2) 

In case of a constant matter density 𝜌 in the medium with no dipole domain source (𝑞𝑑 = 0) at the 

boundary, Equation (3-2) implies that the normal derivative of the pressure is zero: 

𝜕𝑝𝑡

𝜕𝑛
= 0 (3-3) 

Sound hard boundaries are valid for both transient and intransient cases to mimic the effect of 

impedance mismatch between metal and air. This boundary condition is mathematically identical to the 

symmetry condition. 

Pressure equation in Equation (3-2) defines the boundary condition that acts as a pressure source at 

the boundary, which means that an acoustic pressure constant 𝑝0 is specified and maintained at the 

boundary: 𝑝𝑡 = 𝑝0. In the frequency domain, 𝑝0 is the amplitude of a harmonic pressure source. 

3.3 Finite Element Analysis (FEA) 

The problem was numerically modeled and analyzed using COMSOL Multiphysics software (Release 

5.4) for FEA. The NDT specimen made of aluminum was modeled as a 2D square of 100 mm × 100 

mm. The top-left corner of the square was chamfered at 45 angle to apply pressure source boundary. 

A line crack was modelled inside the specimen (Figure 3-2). 
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Figure 3-2 (a) Schematic of NDT specimen; (b) meshed FEA model. 

As the training procedure of an ANN needs a huge amount of data for an accepTable performance, 

cracks with different geometrical features were modeled by the numerical simulation. For crack 

characterization, four geometrical parameters of a crack were defined and varied as listed in Table 3-

1, while ultrasound waves were emitted by a line source at A and the reflected waves were received at 

B in Figure 3-2 (a). 

(a) 

(b) 
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Table 3-1 Geometrical parameters of a crack in the FEA model. 

Parameter Candidates 

Crack x location, x (mm) 10, 30, 50, 70, 90 

Crack y location, y (mm) 10, 30, 50, 70, 90 

Crack length, l (mm) 3, 5, 8, 10, 13 

Crack Angle, 𝜃 (°) 0, 30, 60, 90, 120, 150 

 

In order to avoid acoustic wave transition through the sides which are confined by the air, the walls 

of the specimen and the crack surface were defined as sound hard boundaries. As indicated in Figure 

3-2 (b), the input pulse was applied on the surface of the 45° chamfered corner. The amplitude and 

frequency of the pulse were 1 Pa and 0.5 MHz, respectively. The reflected waves were evaluated with 

the pressure responses collected on the top right surface of the specimen as shown in Figure 3-2 (b). 

Triangular elements were used for FEA modeling as shown in Figure 3-2 (b), as it is well suited to 

irregular meshing. For a 10 mm long crack located horizontally in the center of the specimen, the total 

number of elements and average mesh quality were 25987 and 0.9899 respectively, with mesh size 

ranging from 0.002 mm to 1 mm. Mesh independency was checked and the maximum error of 3.9% 

was achieved. For the simulation, acoustic parameters for aluminum were selected from the software 

library. 

3.4 Experimental Validation 

Experiments were conducted to validate the FEA modelling. Two aluminum specimens were machined 

to have rectangular shapes with their top left corner chamfered at 45°. The dimensions of the first 

specimen was 152.4 mm (L) x 63.3 mm (H) x 63.3 mm (t) (6 in x 2.5 in x 2.5 in) with 25.4 mm (1 in) 

chamfer length, and the second one was 152.4 mm (L) x 38.1 mm (H) x 38.1 mm (t) (6 in x 1.5 in x 1.5 

in) with the same chamfer length. Ultrasonic NDTs were performed on both specimens following the 

schematic shown in Figure 3-2 (a). Two sets of tests were conducted on each sample. The one was on 

the fresh-made specimen without defect, and the other was performed after an artificial defect was 

created. In the first specimen, a circular hole of 4 mm diameter was drilled in the middle (Figure 3-3 

(a)). As for the second specimen, a vertical slit with 10 mm length and 1 mm width was created in the 

middle of bottom surface (Figure 3-3 (b)). 
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Figure 3-4 shows the experiment setup. The transmitter (INP 5-10L, SIUI) was placed on the 

chamfered surface in the top-left corner, and the receiver (SIUI P10-10L, SIUI) was positioned on the 

top surface. The received signals from flawless samples and the signals from flawed specimens were 

investigated and compared with simulation results. 

(a) 

(b) 

Figure 3-3 Drawings of prepared specimens: (a) with a circular hole; 

(b) with a vertical slit (all dimensions are in mm). 
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Figure 3-4 Experiment setup for ultrasonic NDT test. 

3.5 Extracting Acoustic Parameters 

In the pulse-echo ultrasound system, the transmitter probe emits an ultrasonic pulse in a short duration. 

Although excited at the center frequency, the probe gives out pulse with a range of frequency, called 

bandwidth. A series of sine waves may be extracted within the bandwidth. As a result, the received 

signals are also a combination of sine waves. In this paper, eight sine wave functions were used to 

approximate the response. The response from the receiver probe can thus be recognized as the 

summation of the sine functions as shown in Equation (3-4). 

𝑓 = ∑ 𝑎𝑖 sin(𝑏𝑖𝑥 + 𝑐𝑖)

8

𝑖=1

 (3-4) 

In Equation (3-4), amplitude 𝑎𝑖, frequency 𝑏𝑖, and phase angle 𝑐𝑖 were considered as features derived 

from the response. Therefore, in total 24 parameters could be derived from each ultrasonic signal. These 

parameters were found with curve fitting to the ultrasonic signal using "Trust-Region" algorithm. 

3.6 Artificial Intelligence (AI) 

The main purpose of artificial intelligence is to develop patterns or algorithms that machines need to 

perform cognitive activities. Activities that humans can do well. An artificial intelligence system should 

be able to do the following: 

1. Knowledge storage 

2. Using the stored knowledge to solve the problem 

3. Gain new knowledge through experimentation 

4. Replacing new knowledge if it is useful and dominating existing knowledge 
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An AI system, as shown in Figure 3-5, has the following three main components: representation, 

learning, and deduction. 

 

Figure 3-5 The three main components of an AI system. 

3.6.1 Artificial Neural Network (ANN) 

Artificial neural networks are a kind of simplistic modeling of real neural systems that are widely used 

in solving various problems in science. The scope of application of these networks is so wide, ranging 

from applications of classification to applications such as interpolation, estimation, detection, and so 

on. Perhaps the most important advantage of these networks is their feasibility for implementing in a 

wide range of engineering problems.  

The main idea of artificial neural networks (ANN) is inspired by the way the biological nervous 

system works, to process data, and information in order to learn and create knowledge. The neural 

network is made up of a number of super-interconnected processing elements called neurons that work 

together to solve a problem. Natural neurons receive their input through synapses. These synapses are 

located on the dendrites or nerve membranes. In a real nerve, dendrites change the amplitude of the 

received pulses, which does not remain the same over time and is termed by the nerve. If the received 

signal is strong enough (exceeding a certain threshold value), the nerve is activated and emits a signal 

along the axon. This signal, in turn, can enter another synapse and stimulate other nerves. Figure 3-6 

shows an example of a real nerve.  

Deduction 
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Figure 3-6 An example of a real neuron [63]. 

An artificial neuron is in fact a computational model inspired by real human neurons. At a glance, a 

nerve model should include inputs that act as synapses. These inputs are multiplied by weights to 

determine the signal strength. Finally, a math operator decides whether or not to activate the neuron, 

and if the answer is yes, determines the output. Therefore, the artificial neural network processes 

information using a simplified model of the real nerve. Figure 3-7 suggests a simple model for 

describing a neuron (a node in an artificial neural network). 

 

Figure 3-7 Simplified mathematical model of real nerve [63]. 
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Although the method of modeling the neuron is an essential part of the key points in the efficiency 

of the neural network, the way in which the connections and structure of the neural network are 

established is also a very important and influential factor. It should be noted that the topology of the 

human brain is so complex that it cannot be used as a model for applying the structure of the neural 

network, because the brain arrangement uses many elements and according to the existing artificial 

intelligence knowledge, this is not possible.  

One of the simplest yet most efficient layouts to use in neural network building models is the multi 

layer perceptron (MLP). It consists of one input layer, one or more hidden layers and one output layer. 

In this structure, all the neurons in one layer are connected to all the neurons in the next layer. This 

layout is a so-called network with full connections. Figure 3-8 shows a three-layer perceptron network. 

It is noteworthy that the number of neurons in each layer is independent of the number of other neurons 

in the layers.  

 

Figure 3-8 Three-layer perceptron with full connections [63]. 

Given that the neural network is a simplified model of the body's nerves, it can be learned just like 

them. In other words, the neural network is able to learn the process in patterns using the information 

it receives from the input. Therefore, similar to humans, the process of learning in the neural network 

has been inspired by human models, so that many examples should be provided to the network many 

times so that it can follow the desired output by changing the weights (w) of the network. In other 
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words, the goal of training a neural network is to find the right weights and biases in order to minimize 

the error. 

3.6.2 ANN-Based Prediction 

Artificial neural networks (ANNs) are connected nodes and links representing neurons between inputs 

and outputs. The knowledge of the problem is reflected by the values of weights and biases assigned to 

each link and node. When fed with input data, the ANN can generate output according to its knowledge. 

To obtain useful output, the neural network must be trained with realistic data to adjust the weights and 

biases.  

The most common neural network architecture is three-layer feed-forward neural network (FFNN). 

As inferred by its name, a FFNN propagates the signal from input to output unidirectionally, and can 

approximate nonlinear continuous functions [63]. In training, the signal path is reversed and back-

propagation (BP) algorithm is used to train the FFNN. In back-propagation training, the algorithm is 

looking for an optimal set of the network weights and biases to minimize the error between the 

prediction and desired output. The commonly employed error function is based on mean squared error 

(MSE) in Equation 3-5: 

𝑀𝑆𝐸 =
1

2
∑ ∑(𝑌𝑖(𝑗) − 𝑇𝑖(𝑗))2

𝑛

𝑖=1

𝑚

𝑗=1

 (3-5) 

where 𝑚 is the number of training samples, 𝑛 is the number of outputs, 𝑇𝑖(𝑗) is the desired output, and 

𝑌𝑖(𝑗) is the predicted output by ANN. 

The results from FEA simulations were divided into three groups: training, validation, and testing 

datasets. Each comprised of 525, 113, and 112 samples, respectively. Once a FFNN was established, 

BP was applied with training dataset to calculate internal weights and biases in the network. During 

training, the validation dataset was used to provide an instantaneous evaluation on the network and 

provide information for hyperparameter adjustment. After training, testing dataset was used to evaluate 

the performance of the trained FFNN. 

MATLAB was used to establish the ANN model in this study. “Trainlm” was implemented to update 

weight and bias values with Levenberg-Marquardt optimization. The training was to be terminated on 

1000 epochs or when error converged within tolerance. Data were divided with “Divideind” function 

into three sets: training, validation, and testing, according to indices provided. The topology of the 

developed network is shown in Figure 3-9 (dotted box), which consists of two hidden layers, and an 

output layer. 24 inputs are fed to the network and 4 outputs are produced. The number of neurons for 
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each layer is denoted under the layer. For the first two layers, the “Tansig” function was implemented, 

which is a hyperbolic tangent sigmoid (Equation 3-6), and for the last layer “purelin” function was used 

which is a linear transfer function (Equation 3-7). 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛, 𝑤, 𝑏) =
2

(1 + 𝑒−2(𝑤𝑛+𝑏))
− 1 (3-6) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛, 𝑤, 𝑏) = 𝑤𝑛 + 𝑏 (3-7) 

Where 𝑛 is the input, 𝑤 and 𝑏 represent the weight and the bias, respectively, of each layer. 

 

Figure 3-9 Topology of the implemented neural network 

The performances of the FFNN for both training and testing datasets were evaluated according to 

two statistical parameters: root mean square error (RMSE) (normalized) and efficiency (𝐸) (Equations 

3-8 and 3-9). 

𝑅𝑀𝑆𝐸 = √[∑
((𝑋𝑑 − 𝑋𝑠)/𝑋𝑑)2

𝑁

𝑁

𝑖=1

] (3-8) 

𝐸 =
∑ (𝑋𝑑 − 𝑋𝑑

̅̅̅̅ )2𝑁
𝑖=1 − ∑ (𝑋𝑑 − 𝑋𝑠)2𝑁

𝑖=1

∑ (𝑋𝑑 − 𝑋𝑑
̅̅̅̅ )2𝑁

𝑖=1

 (3-9) 

where, 𝑋𝑠 is the estimated variable, 𝑋𝑑 is the desired variable, 𝑋𝑠
̅̅ ̅ is the average of the estimated variable 

and 𝑋𝑑
̅̅̅̅  is the average of the desired variable. The RMSE is the standard deviation of the residuals 

(prediction errors), which becomes zero when the fitting is perfect. To eliminate the size effect, 

normalized RMSE was employed in this study. Efficiency (E) evaluates the performance of the model 

and the value close to unity (1) indicates good model performance. 
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Chapter 4 

Thermodynamic Equilibrium Algorithm 

4.1 Evolutionary Algorithm 

An evolutionary algorithm operates using mechanisms inspired by biological evolution, such as 

reproduction, mutation, recombination, and selection. Selected solutions play the role of individuals in 

a population, and determine the appropriateness of the quality of solutions. Population development 

occurs after repeated use of these operators. Artificial evolution describes the process of formation of 

any evolutionary algorithm; Evolutionary algorithms are unique components of evolutionary 

intelligence.  

4.2 Thermodynamics 

Thermodynamics is a branch of the natural sciences that discusses heat and its relation to energy and 

work. The thermodynamics defines macroscopic variables (such as temperature, internal energy, 

entropy, and pressure) to describe the state of matter and how it relates to the laws governing them. 

Thermodynamics describes the average behavior of a large number of microscopic particles. The rules 

governing thermodynamics can also be obtained through statistical mechanics. A novel evolutionary 

algorithm will be introduced in this chapter and will be implemented to train the ANN using the 

ultrasonic NDT data. 

4.3 Thermodynamic Equilibrium Algorithm 

Thermodynamic equilibrium algorithm is a novel evolutionary optimization algorithm which has been 

developed for optimization and machine learning (ML). This algorithm is inspired by thermodynamic 

phenomena and can be categorized as an evolutionary algorithm.  Figure 4-1 shows the flowchart of 

the presented algorithm. Like other evolutionary algorithms, the algorithm presented begins with an 

initial population (thermodynamic systems with different thermodynamic states). Given that each 

system is in its own condition, it is coupled with another system. Now the two systems are placed side 

by side so that they can exchange heat freely. This free exchange of heat causes the thermodynamic 

equilibrium of the two systems. In order to optimize a mathematical function, this algorithm mimics 

thermodynamic phenomena to find the best result. 
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Figure 4-1 Flowchart of optimization thermodynamic equilibrium algorithm. 

In this method, the coordinates of each system are converted to temperature or volume, both of which 

are thermodynamic parameters. Then, according to the first law of thermodynamics, the equilibrium 

temperature and volume are calculated at each stage. Knowing the equilibrium state, both systems move 

toward equilibrium and update their previous state. 
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According to the second law of thermodynamics, if any process is going to happen it has to meet a 

specific condition and the new state must comply with this law. The process will be completed when 

the coupled systems are reached to equilibrium. Some systems may be trapped in the domain of the 

function (local extremums), but a large number of systems are reached to equilibrium and their 

thermodynamic state will be declared as the optimized parameter. 

4.3.1 Initialize the Thermodynamic Systems 

The goal of optimization is to find the optimal solution according to the problem variables. An array 

consists of variables that need to be optimized. In genetic algorithm (GA) terminology, this array is 

called the chromosome, but here the term thermodynamic system has been replaced. In a 𝑁𝑣𝑎𝑟-

dimension optimization problem, each system is a dimensional array. This array is defined by Equation 

4-1. 

𝑥 = [𝑇, 𝑉2, 𝑉3, … , 𝑉𝑁𝑣𝑎𝑟
] (4-1) 

where 𝑇 is the temperature, and 𝑉 is the volume which can have more than one parameter.   As a result, 

for convenience, the problem can be turned into a two-dimensional problem by definition of a new 

variable ∀ called “Overall Volume”: 

∀=
∑ 𝑉𝑖

𝑁𝑣𝑎𝑟
𝑖=1

𝑁𝑣𝑎𝑟
 (4-2) 

Now the thermodynamic state of each system can be defined more simply as follows: 

𝑥 = [𝑇, ∀] (4-3) 

The variables in each array represent the state of each system. The cost of each system is determined 

by the cost function 𝑓 by replacing 𝑥 with variables [𝑇, ∀]. Equation 4-4 calculates the cost. 

𝑐𝑜𝑠𝑡 = 𝑓(𝑥) = 𝑓(𝑇, ∀) (4-4) 

To start the algorithm, the initial optimization population is created by the number of 𝑁𝑠𝑦𝑠. Systems 

are randomly scattered in the domain of the function based on the upper and lower limits. 

4.3.2 Thermodynamic Systems Coupling 

Initially, each system is coupled to the closest system in the function domain according to its 

coordinates. The different thermodynamic conditions of the systems allow them to gradually reach 

equilibrium, and as a result the scope of the optimization function is well studied and the optimal value 
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is found. Then both systems can exchange heat or perform work together. The different thermodynamic 

states of the systems allow them to gradually reach equilibrium, and as a result the domain of the 

optimization function is well searched and the optimal value is found.  

4.3.3 Compute Equilibrium Temperature and Volume 

After the systems are coupled, heat exchange and work can be done and the temperature and volume 

of the systems will change. If we consider the two systems as two cylinders side by side, each system 

has its own temperature and volume, but the pressure is the same in both systems (Figure 4-2). Also, 

the piston in both systems can move freely and as a result, each system can do positive or negative 

work.   

 

 

 

 

 

  

 

 

 

 

According to the conservation law of energy, the following relationship is established for these two 

systems: 

∆𝐸 = 0 (4-5) 

This means that the energy changes in the first system are equal to the energy changes in the second 

one. Thus, the above equation can be rewritten as follows: 

𝐸1 = 𝐸2 (4-6) 

Also, according to the first law of thermodynamics, the internal energy changes of a system are 

calculated as follows: 

𝑃 

∀1 

𝑇1 

𝑃 

∀2 

𝑇2 

Figure 4-2 Initial thermodynamic state of the coupled 

systems. 
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𝐸 = 𝑄 − 𝑊 (4-7) 

where 𝑄 is the amount of heat transfer and 𝑊 represents the work has been performed by each system. 

Now, Equation 4-7 can be substituted into Equation 4-6: 

𝑄1 − 𝑊1 = 𝑄2 − 𝑊2 (4-8) 

The heat transfer can be calculated by using 𝑄 = 𝑚𝑐∆𝑇, and the thermodynamic work by 𝑊 = 𝑃∆∀. 

By substituting these equations into above equation, the following equation can be derived: 

𝑚1𝑐1(𝑇𝑒𝑞 − 𝑇1) − 𝑃(∀𝑒𝑞 − ∀1) = 𝑚2𝑐2(𝑇2 − 𝑇𝑒𝑞) − 𝑃(∀2 − ∀𝑒𝑞) (4-9) 

where 𝑒𝑞 subscript represents the thermodynamic state at equilibrium. By dividing the above equation 

into 𝑃 the following equation will be resulted: 

𝑚1𝑐1

𝑃
(𝑇𝑒𝑞 − 𝑇1) − (∀𝑒𝑞 − ∀1) =

𝑚2𝑐2

𝑃
(𝑇2 − 𝑇𝑒𝑞) − (∀2 − ∀𝑒𝑞) (4-10) 

It can be assumed that 𝛼 =
𝑚1𝑐1

𝑃
=

𝑚2𝑐2

𝑃
= 1, and Equation 4-10 will be simplified to the following 

equation: 

(𝑇𝑒𝑞 − 𝑇1) − (∀𝑒𝑞 − ∀1) = (𝑇2 − 𝑇𝑒𝑞) − (∀2 − ∀𝑒𝑞) (4-11) 

As a result, the equation is only based on temperature and overall volume. However, the equilibrium 

temperature and overall volume are still unknown. 

On the other hand, the ideal gas law can be implemented as follows: 

𝑃∀= 𝑛𝑅𝑇 (4-12) 

Based on the conservation law of mass, the total molar mass at equilibrium state is equal to the sum 

of the molar mass of each system: 

𝑛1 + 𝑛2 = 2𝑛𝑒𝑞 (4-13) 

If the Equation 4-12 is substituted into Equation 4-13, then: 

∀1

𝑇1
+

∀2

𝑇2
= 2

∀𝑒𝑞

𝑇𝑒𝑞
 

(4-14) 

By solving Equations 4-11 and 4-14 for 𝑇𝑒𝑞, it will be obtained as follows: 

𝑇𝑒𝑞 =
𝑇1

2𝑇2 + 𝑇1𝑇2
2 − 𝑇1𝑇2∀1 − 𝑇1𝑇2∀2

2𝑇1𝑇2 − 𝑇2∀1 − 𝑇1∀2
 

(4-15) 

And for ∀𝑒𝑞: 
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∀𝑒𝑞=
𝑇1

2𝑇2
2∀1 + 𝑇1𝑇2

3∀1 − 𝑇1𝑇2
2∀1

2 − 𝑇1𝑇2
2∀1∀2 + 𝑇1

3𝑇2∀2 + 𝑇1
2𝑇2

2∀2 − 𝑇1
2𝑇2∀1∀2 − 𝑇1

2𝑇2∀2
2

4𝑇1
2𝑇2

2 − 2𝑇1𝑇2
2∀1 − 2𝑇1

2𝑇2∀2

 (4-16) 

At this stage, with the help of the first law of thermodynamics and the ideal gas law, the equilibrium 

state for the hypothetical systems is calculated (Figure 4-3). 

 

 

 

4.3.4 Update System Thermodynamic State 

After calculating the equilibrium temperature and overall volume, the systems will move in the 

direction of equilibrium. In fact, the new thermodynamic state of the system is the result of calculating 

the new state according to the thermodynamic laws. If each system reaches equilibrium immediately, 

the states of the two systems will be equal and they will no longer be willing to exchange energy. In 

this case, the domain of the function will no longer be searched well and the optimal answer will not 

be obtained. To prevent this, the following relationship is recommended for new temperature and 

overall volume: 

𝑇𝑖,𝑛𝑒𝑤 =
𝑇𝑖 + 𝑇𝑒𝑞

2
 

(4-17) 

∀𝑖,𝑛𝑒𝑤=
∀𝑖 + ∀𝑒𝑞

2
 

(4-18) 

where subscript 𝑖 can get the value of 1 or 2, i.e. the state of the first or second system. 

If the ∀ value is comprised from more than one parameter, like in three or more dimensional problem, 

𝑉𝑖 can be obtained as follows: 

𝑃 

∀𝑒𝑞  

𝑇𝑒𝑞  

𝑃 

∀𝑒𝑞  

𝑇𝑒𝑞  

Figure 4-3 Equilibrium thermodynamic state of the 

coupled systems. 
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𝑉𝑖,𝑛𝑒𝑤 = 𝑉𝑖 + ∀𝑖,𝑛𝑒𝑤 (4-19) 

Using the proposed relationships, the two systems get closer to equilibrium at each stage. This causes 

the entire domain to be gradually searched and the optimal point to be found. 

4.3.5 Check for Entropy Increase 

After updating the thermodynamic state, it is time to make sure the systems are moving to the optimal 

point of the function.  Given that the second law of thermodynamics requires that processes move in a 

certain direction in order to increase entropy, so in the presented algorithm each system must move 

forward in order to reduce the cost function. For this purpose, at this stage, it is checked whether the 

amount of cost function has decreased in the new state or not. The relationship between cost function 

and entropy can be defined as follows: 

𝑐𝑜𝑠𝑡 =
1

𝑒𝑛𝑡𝑟𝑜𝑝𝑦
≡ 𝑒𝑛𝑒𝑟𝑔𝑦 

(4-20) 

The above equation is showing that the algorithm is going toward minimizing the cost function, in 

which is analogous to maximizing the system’s entropy (𝑆). The desired condition is defined by the 

following mathematical relation : 

𝑆𝑛𝑒𝑤 − 𝑆𝑒𝑞 ≤ 0 (4-21) 

By converting entropy into cost function, the condition will be defined as follows: 

𝑓(𝑇𝑛𝑒𝑤 , ∀𝑛𝑒𝑤) − 𝑓(𝑇𝑒𝑞 , ∀𝑒𝑞) ≥ 0 (4-22) 

The above condition causes the algorithm to move in the right direction, which is to optimize the 

functions. But if the condition is not met, a counter is defined to count the number of times the condition 

has not been met at this stage: 

𝑗𝑛𝑒𝑤 = 𝑗 + 1 (4-23) 

As a result, thermodynamic conditions are updated as follows (𝑗  is at power): 

𝑇𝑖,𝑛𝑒𝑤 =
𝑇𝑖 + 𝑇𝑒𝑞

2𝑗𝑛𝑒𝑤
 

(4-24) 

∀𝑖,𝑛𝑒𝑤=
∀𝑖 + ∀𝑒𝑞

2𝑗𝑛𝑒𝑤
 

(4-25) 

Due to the above relationships, in this case, the system moves towards balance at a slower speed so that 

it can satisfy the mentioned condition.  This part of the algorithm is similar to examining the second law 

of thermodynamics and prevents the blind search of the function domain. 
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4.3.6 Check for Thermodynamic Equilibrium 

After a while, a large number of coupled systems are reached to equilibrium, except for a few that may 

be trapped, and a large number of systems accumulate at one point. This method has the advantage that 

not all systems have the same state, so the cost of each system varies with the thermodynamic 

equilibrium process. Therefore, the lowest cost of all systems and the state of that system will be 

announced. 

There are two indicators for stopping the proposed algorithm. The algorithm can be completed after 

a certain number of processes, or it can go so far that the systems are almost reached to equilibrium 

state. For the last method, if the two last steps difference remains less than a certain value, the stop 

condition is met and the repetitive process of the algorithm is completed. It can be defined by the 

following Equation: 

𝑇𝑛𝑒𝑤 − 𝑇 < 𝜀 (4-25) 

where 𝜀 is a certain value which can be defined based on the required accuracy. The lower the 𝜀 value, 

the more accurate the result will be, but the longer the convergence of the algorithm will be. 
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Chapter 5 

Modeling, ANN, and Algorithm Results 

5.1 Introduction 

In this section, we will present the results obtained from the modeling. According to the content 

mentioned in the chapters 3 and 4, the results of modeling, ANN, and thermodynamic equilibrium 

algorithm include four parts. The first part includes the results of acoustic modeling, FEA validation, 

and the possibility of detecting the geometrical features of the crack in the specimen. In the second part, 

the proposed algorithm is tested by some benchmark optimization problems. In the third and forth part, 

in order to estimate the geometrical features of the crack, the information obtained from the modeling 

is used as the input of the neural network and the results of the network testing stage is presented. 

5.2 Validation of Acoustic FEA 

The ultrasonic signals generated by FEA simulations were compared with data from the experiment to 

investigate the accuracy of acoustic FEA modeling. Figure 5-1 demonstrated the oscillograms acquired 

from the experiment and the numerical simulations. Figure 5-1 (a) was acquired from the specimen 

shown in Figure 3-2 (a) without defect, and Figure 5-1 (b) was from the same specimen after 4-mm 

circular hole was made. Figure 5-1 (c) is the results of experiment using the specimen shown in Figure 

3-2 (b) with a 10-mm vertical slit in the bottom edge. All three cases in Figure 5-1 showed that the 

ultrasonic signals from acoustic FEA models agreed very well with those from experimental results. 

Table 5-1 presents the RMSE between the signals from FEA models and the experiments. In all three 

cases, RMSE values were very small in the magnitude of 10-5. 

The above results indicated that the acoustic FEA models could accurately predict the behavior of 

ultrasonic signals in a flawed specimen. Based on this, acoustic FEA models were used to produce the 

datasets for the ANN in this study. 
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(a) 

(b) 

(c) 

Figure 5-1 Comparison of ultrasonic signals from acoustic FEA 

and NDT experiments for the samples: (a) without defect, (b) 

with 4-mm circular hole in the middle, and (c) with 10-mm 

vertical slit in the bottom edge. 
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Table 5-1 Performance of numerical simulation. 

Specimen RMSE 

Flawless 1.0805 × 10−5𝑃𝑎 

Circular hole 4.5988 × 10−5𝑃𝑎 

Notched 5.5114 × 10−5𝑃𝑎 

 

5.3 Optimization Results 

In this section, the proposed algorithm is tested using 11 optimization test functions. All of them are 

minimization problems. Details of the functions are listed in the Table 5-2. Problem 𝑓1 (Ackley’s 

function) is an optimization benchmark function and will be studied in detail. The rest of the results are 

given in the list. The 3D plot of function 𝑓1 is shown in Figure 5-2. The global minimum of function 

in interval −5 < 𝑥, 𝑦 < 5 which is located at 𝑓1(𝑥, 𝑦) = 𝑓1(0,0) and the cost of 0. 

 

Figure 5-2 3D plot of function f1 (Ackley’s function). 
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The initial population of 100 systems is shown in Figure 5-3 (a). Every coupled- system is 

individually looking for the minimum point. The hunters are shown by × marks. Figure 5-3 (b), (c), 

and (d) show the hunters at iterations 17, 34 and 50. It can be seen that at iteration 17, the systems are 

located at local minima of the function and a considerable amount of them have reached to the global 

minimum point which the best cost is 3.591 × 10−6. At iteration 34, few systems are trapped and the 

others reached to the equilibrium and the best cost is 8.141 × 10−11. At iteration 50, almost all systems 

have reached to the optimal location. The final answer is 9.251 × 10−15 which is so close to zero. 

 

 

 

 

 

 

 

 

 

 

a) 

b) 
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Figure 5-3 (a) Initial systems, (b) systems at iteration 17, (c) systems at iteration 34, and (d) systems 

at final iteration. 

A continuous GA and PSO are also applied to this problem. To make a comparison among these 

methods the initial population of 100 for all of them is chosen.  In continuous GA, mutation and 

selection rates are 0.3 and 0.5 respectively and for PSO, p_increment and g_increment   parameters 

both are equal to 2. The minimum cost of all population versus generation is shown in Figure 5-4. At 

c) 

d) 
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third iteration, the بdynamic equilibrium algorithm (TEA) found the minimum to the nearest 

thousandth and is looking to increase the accuracy of the answer at next iterations. GA and PSO at 

iteration 24 and 12 respectively are converged to the global minimum by the accuracy of thousandth. 

 

Figure 5-4 Minimum costs of TEA, GA, and PSO versus iteration are compared in problem 𝒇𝟏 

(convergence speed). 

The proposed algorithm is also used to find the global minimum of functions in problems 𝑓2 to 𝑓11. 

The numbers of initial hunters and iteration used in problem 𝑓1 to 𝑓11 are 100 and 50 respectively. 

Table 5-2 shows the minimum cost of all hunters in problems 𝑓1 to 𝑓11. 

Table 5-2 Details of the functions. 

Name Plot Formula Minimum 
Search 

Domain 
GA TEA 

Ackley's 

function 

 

𝑓1(𝑥, 𝑦)

= −20 exp (−0.2√0.5(𝑥2 + 𝑦2))

− exp(0.5(cos(2𝜋𝑥)

+ cos(2𝜋𝑦))) + 𝑒 + 20 

𝑓1(0,0) = 0 −5 < 𝑥, 𝑦 < 5 
3.9096

× 10−3 
0 

Sphere 

function 

 

𝑓2(𝑥, 𝑦) = 𝑥2 + 𝑦2 𝑓2(0,0) = 0 −∞ < 𝑥, 𝑦 < ∞ 

2.5002

× 10−3 
0 

0
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Rosenbrock 

function 

 

𝑓3(𝑥, 𝑦) = 100(𝑦 − 𝑥2)2

+ (𝑥 − 1)2 
𝑓3(1,1) = 0 −∞ < 𝑥, 𝑦 < ∞ 2.8738 0 

Beale's 

function 

 

𝑓4(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2

+ (2.25 − 𝑥

+ 𝑥𝑦2)2

+ (2.625 − 𝑥

+ 𝑥𝑦3)2 

𝑓4(3,0.5) = 0 
−4.5 < 𝑥, 𝑦 < 4.5 

 

5.2628

× 10−1 

1.952

× 10−7 

Goldstein

–Price 

function  

𝑓5(𝑥, 𝑦) = (1 + (𝑥 + 𝑦 + 1)2(19

− 14𝑥 + 3𝑥2

− 14𝑦 + 6𝑥𝑦

+ 3𝑦2))(30

+ (2𝑥

− 3𝑦)2(18

− 32𝑥 + 12𝑥2

+ 48𝑦 − 36𝑥𝑦

+ 27𝑦2)) 

𝑓5(0, −1) = 3 
−2 < 𝑥, 𝑦 < 2 

 
3.0029 3.005 

Booth's 

function 

 

𝑓6( 𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2

+ (2𝑥 + 𝑦 − 5)2 
𝑓6(1,3) = 0 

−10 < 𝑥, 𝑦 < 10 

 

7.6235

× 10−4 
0 

Matyas 

function 

 

𝑓7(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2)

− 0.48𝑥𝑦 
𝑓7(0,0) = 0 

−10 < 𝑥, 𝑦 < 10 

 

2.3056

× 10−5 

3.846

× 10−9 

Lévi 

function 

 

𝑓8(𝑥, 𝑦) = sin2(3𝜋𝑥)

+ (𝑥 − 1)2(1

+ sin2(3𝜋𝑦))

+ (𝑦 − 1)2(1

+ sin2(2𝜋𝑦)) 

𝑓8(1,1) = 0 
−10 < 𝑥, 𝑦 < 10 

 

3.3600

× 10−4 
0 
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Three-

hump 

camel 

function 
 

𝑓9(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6

+ 𝑥𝑦 + 𝑦2 

𝑓9(0,0) = 0 
−5 < 𝑥, 𝑦 < 5 

 

8.1648

× 10−6 
0 

Cross-in-

tray 

function  

𝑓10 (𝑥, 𝑦) = −0.0001 [(|sin(𝑥) sin(𝑦) exp (|100

−
√𝑥2 + 𝑦2

𝜋
|)| + 1)]

0.1

 

𝑓10(1.64941, −1.34941)

= −2.06261 

−10 < 𝑥, 𝑦 < 10 

 
−2.0626 −2.0626 

Eggholder 

function 

 

𝑓11(𝑥, 𝑦)

= −(𝑦

+ 47) sin (√|𝑦 +
𝑥

2
+ 47|)

− 𝑥 sin (√|𝑥 − (𝑦 + 47)|) 

𝑓11(512,404.2319)

= −959.6407 

−512 < 𝑥, 𝑦 < 512 

 

−9.2536

× 102 
−9.51 × 102 

 

 

5.4 ANN Training 

Ultrasonic responses from the NDT samples with various geometries of embedded cracks (Figure 3-2 

and Table 3-1) were simulated by the acoustic FEA models. Figure 5-5 shows some typical responses, 

where signal amplitudes and patterns were significantly affected by the variations of geometrical 

features. Effects of crack’s location, length, and angle variations on acoustic parameters were 

investigated using the method of control variable. 
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Figure 5-5 Ultrasonic responses to the variations of location, length, and angle of the embedded 

crack produced by acoustic FEA models. 

The boxplots in Figure 5-6 show the minimum, maximum, percentiles, and median values of the 

normalized values of 24 parameters in Equation 3-4. In each box, the central mark is the median, the 

edges of the box are the 25th and 75th percentiles, and the whiskers represent data outside the upper 

and lower quartiles which were not considered for ANN training. Wide distribution of input dataset can 

result in a high performance of the network. The plot shows that distribution of all 𝑏1 and 𝑐1 values for 

525 training samples are compact while 𝑎2, 𝑏5, and 𝑏7 distributions are quite loose. Moreover, while 

𝑎5, 𝑎7, and 𝑎8 have highest normal distribution, 𝑎6, 𝑐1 and 𝑏5 have the least. 
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Figure 5-6 Boxplots of normalized acoustic inputs for the neural network. 

5.5 ANN Testing 

The proposed FFNN was trained by TEA (FFNNTEA) to estimate crack geometrical features. In 

FFNNTEA, number of input nodes was set to 6, hidden nodes to 10, and two nodes in the output layer. 

The weights of network in training phase were considered as variables of the optimization problem. 

Mean Square Error (MSE) was used as a cost function in TEA. The FFNNTEA weights was initialized 

randomly and served as initial systems for the TEA to optimize the error cost function.  

After training, the network was tested using the testing dataset. The testing dataset was not revealed 

to the network during the training process, but was fed to the network after the training to estimate the 

geometrical features corresponding to the given ultrasonic signal. The outputs from the network were 

compared with desired values, and the discrepancy was calculated.  

Performance evaluations of the proposed ANN was accomplished through the comparisons between 

estimated and desired geometrical features for all 750 datasets. In Figure 5-7, geometrical features of 

the crack are plotted with respect to the corresponding test number for FFNNTEA model. 
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Figure 5-7 Comparison of geometrical parameters of the flaws calculated by the FFNNTEA model with 

the desired values; (a) crack x location, (b) crack y location, (c) crack length, (d) crack angle. 

 

(a) 

(b) 

(c) 

(d) 
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Variations of the estimated values of crack location, length, and angle from the ANN models against 

the desired ones are plotted in Figure 5-8. All the plots in Figure 5-8 demonstrate highly linear 

relationship between them. To compare the performance of the network in location, length, and angle 

estimations, the regression coefficients were measured for all datasets. Table 5-3 presents linear 

regression coefficients, including slopes and intercepts of the fitted lines for feed-forward back-

propagation (FFBP) and FFNNTEA. 

 

Figure 5-8 Regression analysis performed over the crack location, length, and angle estimations 

calculated by ANN model. 
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Table 5-3 Linear regression between ANN outputs and desired values. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 =  𝑎 × 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + 𝑏 

Model output 
Training dataset Validation dataset Testing dataset All dataset 

𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 

FFBP 

x 0.5251 7.7021 0.6217 5.7839 0.5454 7.3027 0.7143 1.4919 

y 0.8959 0.5181 0.9025 -0.2654 0.9034 0.3958 0.8756 -0.9329 

l 0.6688 5.4854 0.7773 3.6023 0.6922 5.0671 0.6624 4.7825 

𝜃 0.9587 0.5019 0.8092 0.1962 0.9019 0.4521 0.7425 2.9553 

FFNNTEA 

x 0.9704 0.0860 0.9113 0.0669 0.9862 -0.0623 0.9663 0.0742 

y 0.9815 0.0897 0.9158 0.0540 0.9546 0.0538 0.9813 0.0382 

l 0.9540 0.0209 0.9488 0.0088 0.9540 0.0257 0.9496 -0.0444 

𝜃 0.9229 0.0650 0.9741 0.0680 0.9124 0.0496 0.9138 -0.0104 

Statistical analysis was performed on the estimated values from FFBP and FFNNTA model by 

measuring RMSE and efficiency (Table 5-4). After training, validation dataset was used to tune the 

weights and biases of the network. The results from testing dataset indicated that the accuracies of the 

FFNNTA model in estimating geometrical features have been improved significantly after validation. 

The estimated location of the crack was less than 0.3 mm and the estimated angle was within 1 

accuracy from the desired values. 

Table 5-4 Performance of ANN model in geometry estimations of an embedded crack. 

Model output 
Training dataset  Validation dataset  Testing dataset 

RMSE E  RMSE E  RMSE E 

FFBP 

x 0.9360 0.9399  1.2834 0.8319  1.3358 0.8145 

y 2.4011 0.4511  2.0441 0.5821  2.9611 0.5844 

l 0.5005 0.9028  0.9976 0.9047  0.9887 0.7254 

𝜃 2.0280 0.6084  1.4878 0.7786  0.8971 0.8816 

FFNNTEA 

x 0.0985 0.9353  0.5495 0.9942  0.0931 0.9229 

y 0.1901 0.9584  0.6031 0.9835  0.1932 0.9466 

l 0.3920 0.9345  0.8860 0.9646  0.4690 0.9140 

𝜃 0.7757 0.9016  0.7455 0.9642  0.7566 0.9154 

5.6 Discussion 

Acoustic FEA models could simulate NDT experiments on the aluminum specimens with and without 

flaws with high degree of accuracy, as shown in Figure 5-1 and Table 5-1. This enabled us to employ 
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the FEA simulation to produce the ultrasonic data from the numerical models with defects of any 

desired geometries, instead of generating cracks in the real specimens and conducting NDT experiments 

on them, which is extremely difficult. 

Using the simulated ultrasonic data, AI based method, ANN, was able to derive a network structure 

that can predict geometrical features of a crack embedded in the aluminum specimen by transmitting 

and receiving the ultrasonic signals at fixed locations. Assuming that the received ultrasound signals 

consisted of eight different sine wave functions, twenty-four acoustic parameters were identified by 

ANN using the datasets generated by numerical acoustic modeling of aluminum NDT specimens. These 

parameters were used as the input data of the ANN. Outputs of the network included location, length, 

and angle of the crack. From network performance point of view, the aforementioned parameters do 

not have the equal contributions. Indeed Figure 5-6 shows that parameters 𝑎5, 𝑎7, and 𝑎8 are more 

normally distributed in a wide range of data, which implies that they could have played bigger roles in 

training the network. Figure 5-7 shows that the ANN model could estimate the crack location, length, 

and angle with high accuracy. The value of regression coefficient 𝑎 close to unity and the small value 

of the regression constant 𝑏 close to zero, as reported in Table 5-3, are evidences of good prediction 

performance of FFNNTA in compare with FFBP model in the estimation of crack’s geometrical 

parameters. 

According to the data in Table 5-4, RMSE values in FFNNTEA are apparently very low in location 

estimation, which indicates that the ANN could predict the location (x and y) of the embedded crack 

very precisely, within 0.3 mm accuracy. On the other hand, RMSEs for length and angle are relatively 

large. For the length, they are around 0.6 mm; conservatively it can be stated that the current ANN can 

predict the length within 1 mm accuracy. In regard to crack orientation, the RMSEs are within 1, which 

may be acceptable in most of current NDT practices. 

5.7 Suggestions for Future Research 

The followings are suggestions for further research in the future: 

• Investigating the defects in the components with complex geometries 

• Simultaneous use of two receivers in different locations to accurately predict the geometry of 

the defect 

• Establishing a relationship between the geometry of the defect and the yield stress in the 

component with respect to the relationships in fracture and fatigue 

• Using other AI approaches like fuzzy inference system (FIS) or adaptive neuro-fuzzy inference 

system (ANFIS) with the aim of increasing the accuracy and efficiency of the prediction 
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