
 1 

 

 
"This is an Accepted Manuscript of an article published by Industrial & Engineering Chemistry 
Research (I & ECR), doi: 10.1021/acs.iecr.8b01424, accepted in June 2018; vol 57, 8664-8678 
(2018).” 
 

‘Optimulation’ in Chemical Reaction Engineering: The Oxidative 

Coupling of Methane as a Case Study 

 

Yousef Mohammadi1* and Alexander Penlidis2* 

 
1Petrochemical Research and Technology Company (NPC-rt), National Petrochemical 

Company (NPC), P.O. Box 14358-84711, Tehran, Iran 
2Department of Chemical Engineering, Institute for Polymer Research (IPR), University of 

Waterloo, Waterloo, Ontario N2L 3G1, Canada 

 

* To whom correspondence should be addressed: 

Dr. Yousef Mohammadi: mohammadi@npc-rt.ir 

Prof. Alexander Penlidis: penlidis@uwaterloo.ca 

Phone: 519 888 4567 ext 36634 

 

 

 

 

 

 

 

 

 

 



 2 

 

ABSTRACT 

The optimization of reacting systems, including chemical, biological, and macromolecular 

reactions, is of great importance from both theoretical and practical standpoints. Even 

though several classical deterministic and stochastic modeling and simulation approaches 

have been routinely examined to understand and control reacting systems from lab- to 

industrial-scales, almost all tackling the same problem, i.e., how to predict reaction 

outputs from any given set of reaction input variables. Development and application of 

an effective and versatile mathematical tool capable of appropriately connecting preset 

desired reaction outputs to corresponding inputs have always been the ideal goal for 

experts in the related fields. Hence, there definitely exists the need to predict a priori 

optimum reaction conditions in a computationally-demanding multi-variable space for 

both keeping the chemical and biological reactions in optimal conditions and  at the same 

time satisfying preset desired targets. As a novel and powerful solution, we hereby 

introduce a robust and functional computational tool capable of simultaneously 

simulating and optimizing, i.e. ‘optim-ulating’ intricate chemical, biological, and 

macromolecular reactions via the amalgamation of the Kinetic Monte Carlo (KMC) 

simulation approach and the multi-objective version of Genetic Algorithms (NSGA-II). The 

synergistic interplay of KMC and NSGA-II for the optimulation of Oxidative Coupling of 

Methane (OCM) as an example of a challenging chemical reaction engineering system has 

clearly demonstrated the outstanding capabilities of the proposed method. Undoubtedly, 

the proposed novel hybridized technique is very powerful and can address a variety of 

unsolved optimization questions in chemical, biological, and macromolecular reaction 

engineering. 

 

Keywords: Computational Intelligence; OCM; Reaction Engineering; Optimization; Kinetic 

Monte Carlo; Simulation 
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1. INTRODUCTION 

Reacting systems of both scientific and practical interest are generally very complicated. 

They usually comprise a large number of distinct elementary reactions, mainly with rate 

constants differing by several orders of magnitude, frequently with surface reaction and 

additional transport steps. Hence, Chemical Reaction Engineering, the field of establishing 

proper and reliable mechanisms capable of appropriately describing the behavior of a 

reacting system, is of great importance and can be extremely cumbersome. 

Simulation and optimization are effective mathematical tools in treating intricate reaction 

engineering problems. The former is an essential computational technique to reveal 

complex interrelationships between reaction inputs and outputs, while the latter is of 

paramount importance in order to minimize energy and raw material consumption and 

at the same time maximize productivity and improve product quality. In the last few 

decades, several classical deterministic and stochastic modeling and simulation 

approaches (and also the related software packages) have been successfully developed 

and put into practice to identify the behavior of reacting systems (for a sample of typical 

applications, see references (1)-(9)). Among these approaches, molecular simulation 

techniques, which are powerful and versatile computational tools, have become the focus 

of attention in recent years. Considering their outstanding capabilities, various molecular 

simulation methods for studying materials and reactions at the atomic level (Quantum 

Mechanics, Molecular Dynamics, and Monte Carlo approaches) have been reviewed in 

references (10)-(14). 

Nowadays, the Kinetic Monte Carlo (KMC) approach has almost become a standard 

stochastic molecular simulation tool, widely employed for simulating complex reacting 

systems.15-17 KMC is capable of simulating molecular reactions via a computer version of 

the reaction in a virtual reactor. In other words, virtual molecules react with each other 

through well-established digital reaction channels in a pre-determined order governed by 

instantaneous reaction rates. 
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KMC makes ‘digital synthesis’ possible via computer codes composed of well-defined 

reactants, reaction schemes, reaction kinetics, and related rate law functions. It has 

already been successfully applied in a large variety of chemical, biological, and 

macromolecular reaction engineering fields.18-23 Taking into consideration KMC’s 

outstanding capabilities in tracking each reactant over the reaction course, one can find 

it powerful enough to uncover many of the complexities and unobservable details in 

reacting systems. Undoubtedly, high computational cost is one of the major 

disadvantages of KMC simulations, which can be effectively improved by the 

development of sophisticated computer codes and computationally fast algorithms.24-29 

The developed codes should have functional data storage structures and also establish a 

suitable interplay among the CPU, RAM, and Hard Disk of the computer.  Despite many 

remarkable capabilities, still lacking in KMC simulators is their inability to discover the 

complex interrelationships among input variables (e.g. operational and compositional 

parameters or reactor configuration and mode of operation) and outputs (e.g. 

conversion, selectivity, property distributions, and yield). While in practice the prediction 

of inputs for a set of predefined targets is of great importance, the conventional KMC 

simulators are only ‘expert’ in revealing the reaction outputs from a given set of input 

reaction variables. In other words, KMC simulators intrinsically cannot be applied for 

optimization purposes. 

To equip the KMC simulator with both simulation and optimization capabilities, i.e. 

determining appropriate input variables resulting in predefined targets, it is essential to 

design a robust version of KMC simulators with the capability for seeking and screening 

all possible reaction recipes and identifying complex, non-linear interrelationships among 

input variables and reaction outputs. In fact, the simulator should be provided with 

appropriate optimization tools to have the opportunity to intelligently explore the 

reaction search space in an attempt to find optimum recipes (i.e. optimal input values) 

for complex reacting systems resulting in predefined reaction outputs (e.g. preset 

conversion, yield and/or other product properties). 
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Nowadays, Artificial Intelligence techniques are of vital importance in Applied Sciences 

and Engineering, and undoubtedly play a key role in everyday life.30-32 Basically, all 

Intelligent Computation techniques are equipped with critical components of 

‘intelligence’, including learning, generalization, and decision-making for modeling and 

optimization of complex nonlinear phenomena.33 Artificial Neural Networks and Fuzzy 

Logic Systems are the most powerful intelligent modelers, whereas intelligent optimizers 

include Swarm Intelligence, Simulated Annealing, and Genetic Algorithms. Artificial 

Intelligence techniques are the most versatile and effective stochastic modeling and 

optimization tools successfully employed in different fields of science and technology.34-

38 Generally speaking, Artificial Neural Networks (ANNs), as biologically inspired modeling 

tools, and Genetic Algorithms (GAs), as evolutionary optimization algorithms, have 

frequently been utilized for modeling and optimization of a large variety of phenomena 

in different fields.39-41 Indeed, the potential advantages of Intelligent Computation 

techniques in KMC simulations can be very beneficial and challenging. Hence, proper 

implementation and amalgamation of Artificial Intelligence techniques with the KMC 

approach could effectively address weaknesses associated with KMC simulators (as 

discussed above). We hereby introduce this new concept as the ‘optimulation’ algorithm. 

In fact, ‘optimulation’ synergistically combines the beneficial features of both the KMC 

simulation method and intelligent optimization techniques. 

In the current study, the proposed ‘optimulation’ algorithm is implemented to 

‘optimulate’ the Oxidative Coupling of Methane (OCM) as a complex chemical reaction 

case study. To do this, a well-designed KMC simulator is established by computer 

programming to virtually imitate the OCM process. Afterwards, an appropriate Artificial 

Intelligence technique, the Non-dominated Sorting Genetic Algorithm (NSGA-II), is 

amalgamated with the developed KMC simulator to predict the optimal input variables 

resulting in predefined reaction outputs. 
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2. MODEL DEVELOPMENT 

A two-stage stochastic computational approach is required for successful implementation 

of the optimulation methodology. Firstly, a digital version of the reaction should be 

developed by computer programming applying KMC simulation concepts. Taking as many 

possible details into account, the digital synthesizer (molecular simulator) must be 

capable of virtually mimicking the real reacting system via predefined reaction channels 

and also calculating/reporting the reaction outputs. To guarantee the success of 

optimulation, an accurate and computationally cost-effective KMC simulator should be 

available. 

In the second stage, an optimizer capable of exploring the reaction search space in an 

intelligent evolutionary manner should be developed and appropriately hybridized with 

the KMC simulator. The interplay between the KMC simulator and intelligent optimizer 

decodes the complex interrelationships between input factors and reaction outputs. In 

fact, the intelligent optimizer (a powerful and versatile heuristic search strategy) 

generates numerous reaction recipes. Then, it recalls the KMC simulator as frequently as 

needed in order to run the virtual reactor for each recipe one by one, and subsequently 

stores the reaction outputs for all recipes separately. Hence, following this strategy, each 

reaction recipe (a genotype) is precisely connected to a set of reaction outputs (its 

phenotype). 

To illustrate the capabilities of the proposed optimulation algorithm, it has been applied 

to the challenging, multi-objective optimization of oxidative coupling of methane or OCM, 

a complex chemical reaction engineering problem. In the following subsections, the 

implementation of the algorithm is comprehensively described for ‘optimulating’ the 

OCM process. 

 

2.1. Stage I: Development of the KMC simulator for the reacting system 

Ethylene is one of the most important primary building blocks, with a worldwide 

production capacity of 170 million metric tonnes per year in 2016 and also with an 
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estimated annual production capacity of over 230 million metric tonnes in 2025.42,43 

Nowadays, it is industrially utilized for polymerization to polyethylene, oxidation to 

ethylene oxide, oligomerization to form other olefins, and halogenation to vinyl chloride. 

Around 90% of ethylene is directly consumed to produce chemicals like ethylene oxide 

and polyethylene, which are subsequently utilized in the production of detergents, 

surfactants, and different packaging materials.44 In the United States, 70% of all ethylene 

is produced via thermal cracking, heating light hydrocarbons to 750-950°C.45 These high 

temperatures break the large hydrocarbons into smaller ones through free radical 

reactions. Ethylene is then separated and extracted from the mixture with compression 

and distillation. 

Over the past few decades, various direct and indirect methods have been examined for 

methane (CH4) conversion into more useful products, including olefins (e.g. C2H4, C3H6), 

higher hydrocarbons, and liquids (e.g. benzene and gasoline).46-48 The oxidative coupling 

of methane, a prospective route for the utilization of natural gas as a chemical and 

petrochemical feedstock, has been the target of enormous theoretical and practical 

interest for more than thirty years due to the large potential of the process to reduce 

cost, energy, and environmental emissions during the production of useful chemicals, 

especially ethylene. Interestingly, the coupling of methane in the absence of oxygen is 

extremely endothermic and the conversion is very limited, due to thermodynamic limits. 

The process is exothermic in the presence of oxygen (Equation 1).49-51 It is worth 

mentioning that both partial and total oxidations are favored in the OCM process due to 

thermodynamic reasons (Equations 2 and 3).52 Hence, catalysts are used to achieve a 

reasonable yield. In the OCM process, methane and oxygen react over a catalyst 

exothermically to form ethylene, water, and heat. 

 

Overall Pathway: OHHCOCH 24224 22 +→+  ( ) molkJCHr /139800 −=°∆  (1) 

Partial Oxidation: OHCOOCH 224 2
2
3

+→+  ( ) molkJCH r /519800 −=°∆  (2) 

Total Oxidation: OHCOOCH 2224 222 +→+  ( ) molkJCHr /801800 −=°∆  (3) 
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Despite intensive efforts on the OCM process, there are still serious problems related to 

the commercialization of this technology. This is mainly due to the fact that the 

intermediates and desired products (i.e. C2 hydrocarbons) are usually more reactive than 

the raw material (methane), and therefore prone to partially or totally oxidize to carbon 

mono- and di-oxide.52 From both scientific and commercial standpoints, control and 

optimization of the OCM process (a multi-objective problem) is of paramount importance 

and definitely requires the development and application of powerful mathematical tools. 

To construct the KMC simulator virtually resembling the OCM process, the comprehensive 

10-step kinetic model including nine catalytic reactions and one gas phase reaction 

proposed by Stansch et al.53 for the oxidative coupling of methane to C2+ hydrocarbons 

was utilized (see Scheme 1). This scheme explains the differential rates of formation of 

different species in the La2O3/CaO packed bed reactor under a wide range of 

experimental conditions. The gas feed contains O2 and CH4 as reactants and is diluted with 

N2. Also, eight species including C2H4, C2H6, CH4, CO2, CO, O2, H2O and H2 participate in the 

reaction network. 

Although several reaction schemes have been proposed to study the kinetics of OCM 

process, almost all of them have employed the kinetic model of Scheme 1 as the main 

framework, with some modifications (e.g. see references (54)-(59)). The proposed kinetic 

model includes (1) thermal cracking, (2) steam reforming, and (3) water-gas shift 

reactions. According to this reaction scheme, methane is allowed to be converted via 

three parallel primary reaction channels including (i) nonselective total oxidation of 

methane to carbon dioxide (step 1), (ii) formation of ethane by oxidative coupling of 

methane (step 2), and also (iii) partial oxidation of methane to carbon monoxide (step 3). 

Furthermore, carbon monoxide could react with oxygen and convert to carbon dioxide 

(step 4) which is coupled with the water-gas shift reaction in both directions (steps 9 and 

10). In the other steps, ethane can be converted by two parallel routes, i.e. by 

heterogeneous catalytic oxidative dehydrogenation of ethane (step 5) and thermal gas-

phase dehydrogenation of ethane to ethylene occurring under high temperature (step 7). 
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Finally, ethylene can be converted to carbon monoxide in two parallel ways, i.e. partial 

oxidation (step 6) and steam reforming (step 8). 

 

Scheme 1. Reaction scheme applied for KMC simulation of OCM process.53 

Step Reaction Channel 
Step 1 4CH  +  22O  →  2CO  +  OH 22    
Step 2 42CH  +  25.0 O  →  62 HC  +  OH 2    
Step 3 4CH  +  2O  →  CO  +  OH 2  +  2H  
Step 4 CO  +  25.0 O  →  2CO      
Step 5 62 HC  +  25.0 O  →  42 HC  +  OH 2    
Step 6 42 HC  +  22O  →  CO2  +  OH 22    
Step 7   62HC  →  42 HC  +  2H    
Step 8 42 HC  +  OH 22  →  CO2  +  24H    
Step 9 CO  +  OH 2  →  2CO  +  2H    
Step 10 2CO  +  2H  →  CO  +  OH 2    

 

Figure 1 schematically represents the reactor configuration applied to study the kinetics 

of OCM process.52,53 As can be observed, the reactor is composed of three distinct 

segments, including an upstream part, a catalytic fixed bed part, and a downstream part. 

It should be noted that the inner tube diameter (ID), bed porosity (ε), and bed density (ρ) 

are set to be 6 mm, 0.5, and 130 kg/m3, respectively.52 The height of the catalytic packed 

bed varies depending on the modified reaction time, MRT (kg.s.m-3), as follows: 

 

•=
gas

cat

V

M
MRT                                                                                                                                  (2) 

 

where Mcat denotes the total mass of the catalyst in the reactor (kg) and V�gas is the 

volumetric flow of the gas (m3.s-1). 
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Figure 1. Schematic representation of the reactor configuration for OCM process. 

 

Following the work in references (52)-(53), several reaction factors of interest (input 

variables) are selected as regulating factors in the optimulation algorithm. The selected 

factors (to be adjusted) permit manipulation of the reacting system and investigation of 

the influences of either a factor individually or several factors simultaneously by the 

developed KMC simulator (thus leading to complex single- and multi-objective 

optimization problems). The manipulated reaction inputs include (1) modified reaction 

time (MRT), (2) volumetric flow of the gas (Vg̊as), (3) inlet methane to oxygen ratio 

(XCH4/XO2), (4) inlet mole fraction of nitrogen (XN2), and (5) reaction temperature (T). 

Methane conversion (CH4 conversion), C2 selectivity (SC2+), and C2 yield (YC2+) are 

considered the main reaction outputs of interest. These can be calculated as follows: 

 

( ) 100
4

4
4 ×=

FeedCHofmoles
convertedCHofmolesconversionCH                                                                 (3) 

( )
( )( )

oductsn

oductsn
C nshydrocarboCofmolesnCOofmolesCOofmoles

nshydrocarboCofmolesn
S

Pr2

Pr
2 ∑

∑
++

=+            (4) 

+
×=+ 242 CCHC SXY                                                                                                                         (5) 

 

The following reaction rates, reported by Stansch et al. (Equations 6-11) along with the 

kinetic parameters tabulated in Table 1, were applied to simulate the OCM process by the 

KMC approach.53 
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Table 1: Kinetic parameters for OCM by Stansch et al.53 

Step K0,j 
[mol/(g.s.Pam+n)] 

Ea,j 
[kJ/mol] 

Kj,CO2 
[Pa-1] 

ΔHad,CO2 
[kJ/mol] 

KO2 
[Pa-1] 

ΔHad,O2 
[kJ/mol] 

mj nj 

1 0.2×10-5 48 0.25×10-12 -175 - - 0.24 0.76 
2 23.2 182 0.83×10-13 -186 0.23×10-11 -124 1.0 0.40 
3 0.52×10-6 68 0.36×10-13 -187 - - 0.57 0.85 
4 0.11×10-3 104 0.40×10-12 -168 - - 1.0 0.55 
5 0.17 157 0.45×10-12 -166 - - 0.95 0.37 
6 0.06 166 0.16×10-12 -211 - - 1.0 0.96 
7 1.2×107 226 - - - - 1.0 - 
8 9.3×103 300 - - - - 0.97 0 
9 0.19×10-3 173 - - - - 1.0 1.0 
10 0.26×10-1 220 - - - - 1.0 1.0 

 

In the present study, Gillespie's algorithm was implemented to develop and construct an 

appropriate simulator for the OCM process.15 To do this, the simulation volume, V, was 

assumed to be shared homogeneously among the reactants. Accordingly, microscopic 

elementary reactions occurred discretely and stochastically through 10 reaction channels 

(see Scheme 1) and an event was selected in a given time interval (t, t+dt) from uniformly 

distributed random numbers in a unit interval, according to the following relationships: 
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where r1 and r2 are two random numbers, µ is the number of the selected reaction 

channel (according to Scheme 1, it can be an integer between 1-10), dt is the time interval 

between two successive reactions, while Pi and Ri are the instantaneous reaction rate 

probability and rate of reaction i, respectively. 

The rate of reaction i (i.e. Ri; i = 1, 2, 3 … 10) can be determined applying Equations 6-11. 

Also, the instantaneous reaction rate probability of reaction i can be calculated as follows: 

 

∑
=

= 10

1j
j

i
i

R

R
P                                                                                                                                    (14) 

 

To construct the KMC simulator, the aforementioned input variables, including three 

compositional (V�gas, XCH4/XO2, and XN2) and two operational (MRT and T) factors, were 

defined. Then, an appropriate function was defined/developed for each reaction channel 

capable of virtually resembling that channel. In fact, the virtual reactants can digitally 

react with each other according to the rules dictated by each reaction channel. 

Afterwards, the selected function adjusted the concentration of reactants accordingly. 

The simulation proceeded via frequently selecting the reaction channels based on the 

roulette wheel mechanism considering instantaneous reaction rates and updating the 

populations of reactants and products according to the stoichiometry of the selected 

channel. The KMC simulation flowchart for the OCM process is presented in Figure 2. 
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Figure 2. Flowchart applied to develop KMC simulator for OCM process. 

 

A simulator, according to the aforementioned reaction scheme and flow chart presented 

in Figure 2, was written in Pascal programming language (Lazarus 1.6.4 IDE) and compiled 

into 64-bit executable using FPC 3.0.2. A subroutine based on the ‘‘Mother-of-all Pseudo 

Random number Generators’’ algorithm was utilized to produce the required random 

numbers for the simulation.60 The random number generation subroutine satisfied the 

tests of uniformity and serial correlation with high resolution. The cycle length of the 

random number generator was 3×1047. Simulations were performed on a desktop 

computer with Intel Core i7-3770K (3.50 GHz), 32 GB of memory (2133 MHz), under 

Windows 7 Ultimate 64-bit operating system. The runtime approximately took between 

0.1 and 1.5 sec. 

 

2.2. Stage II: Development of the intelligent optimizer 

In the second stage of the optimulation algorithm, a powerful and versatile multi-

objective optimizer capable of communicating with the KMC simulator should be 

developed based on Computational Intelligence techniques. Optimization of the OCM 
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process is a complex multi-objective problem (since many compositional and operational 

parameters concurrently influence the reacting system). Hence, the selection of an 

appropriate and powerful optimization tool is of vital importance to be hybridized with 

the well-developed KMC simulator and handle the optimulation process. As simultaneous 

satisfaction of several predefined objectives and constraints is necessary in complex 

reacting systems, a well-designed optimization tool for complex multi-objective problems 

should be employed. 

In general, classical multi-objective optimization techniques, including weighted sum, 

goal programming, goal attainment, and ε-constraint, are mostly based on the 

decomposition concept. In fact, they transform a multi-objective optimization problem 

into several single-objective ones. Hence, they are not powerful enough to handle multi-

objective problems, like complex chemical reactions, as they are not equipped with 

powerful searching and decision-making tools.61 They basically apply deterministic 

transition principles to ‘scalar-ize’ iteratively multiple objectives in exploring a set of 

Pareto-optimal solutions. The fact is that the whole set of Pareto optimal solutions is not 

accessible in a single trial applying the mentioned traditional approaches. In other words, 

merely some of the optimal solutions are disclosed at any specific potential setting. 

Hence, they must be put into practice several times and each time the settings (i.e. the 

relevant built-in parameters of the algorithm) should be precisely altered/adjusted to 

obtain a part of the Pareto optimal solution. On the other hand, Computational 

Intelligence-based optimizations attempt to find solutions in an evolutionary single 

simulation trial, so that no other solutions in the search space dominate Pareto-optimal 

solutions of the dominated front.62 In contrast to classical deterministic multi-objective 

optimization algorithms, stochastic evolutionary techniques such as NSGA-II are 

considerably more functional and computationally efficient alternatives. 

Computational Intelligence techniques as stochastic modeling and optimization tools are 

able to learn, generalize, and make decisions (i.e. they enjoy all three principal 

components of intelligence).63 Genetic Algorithms are the most popular intelligent 

optimization techniques widely applied in different fields of study due to simplicity, 
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flexibility, versatility, and high potential to handle a large variety of problems.64-68 Genetic 

Algorithms, inspired by the process of natural selection, lead to heuristic search 

strategies. Randomly producing a population of potential solutions, they stochastically 

evolve it toward better solutions via the application of powerful genetic operators. Not 

only are Genetic Algorithms masterful in single-objective optimizations, but they are also 

capable of handling two or more objectives and constraints concurrently in complex 

multi-objective optimizations. Among different Genetic Algorithms, NSGA-II is a unique 

multi-objective version of the family established primarily based on the domination 

concept. Undoubtedly, it can be considered as one of the most popular multi-objective 

optimization techniques in different fields of science and technology. 

In the current study, NSGA-II was put into practice to interact with the developed KMC 

simulator and handle the optimulation of the OCM process by satisfying several 

predefined objectives and constraints. Except for population sorting, NSGA-II follows all 

principal steps of single-objective versions of Genetic Algorithms in all respects. Figure 3 

graphically illustrates the implementation of the proposed optimulation algorithm for the 

OCM process. 

Genetic Algorithms are initialized by codifying the input variables into a chromosome-like 

structure defining a potential solution for the optimization problem. The chromosome, as 

a well-organized string composed of properly connected genes, is capable of transferring 

the genetic information. Each chromosome as a genotype is a codified version of an object 

as its corresponding phenotype, e.g. a recipe in case of the OCM process. 

As mentioned in Stage I, five input variables including Modified Reaction Time (MRT), 

volumetric flow of the gas (V�gas), inlet methane to oxygen ratio (XCH4/XO2), inlet mole 

fraction of nitrogen (XN2), and the reaction temperature (T) are selected as the main 

determining factors in the case of the OCM process. 
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Figure 3. Graphical flowchart illustrating the implementation of the developed 

‘optimulation’ algorithm. 



 17 

 

As clearly observed in the box ‘CODIFY input parameters (DEFINE chromosome)’ of Figure 

3, an appropriate chromosome-like structure is designed in which each input variable 

occupies a unique position (i.e. a gene) in the order given. In the current study, taking into 

consideration the experimental range of reaction conditions applied in the experiments 

by Stansch et al.53, the potential search space considered for each input variable is 

represented in Table 2. Obviously, changing the potential variation ranges for input 

variables, NSGA-II can still handle the Optimulation of OCM process for the new search 

space. 

 

Table 2. The predefined search space for determining input variables.53 

Input Variables Potential Values Unit 
 Low Value High Value  
Modified Reaction Time (MRT) 0.5 250.0 (kg.s.m-3) 
Volumetric flow of the gas (V�gas) 4.0×10-6 13.0×10-6 (m3.s-1) 
Inlet Methane to Oxygen ratio (XCH4/XO2) 0.5 100.0 (-) 
Inlet mole fraction of Nitrogen (XN2) 20.0 50.0 (%) 
Reaction Temperature (T) 650.0 950.0 (oC) 

 

Having defined the genes, a preset number (of chromosomes) is generated randomly as 

the initial population. It is worth mentioning that in all Genetic Algorithms the initial 

population is generated randomly. In other words, new generations are produced via 

genetic operators capable of combining chromosomes and manipulating genes in order 

to evolve the population towards optimal solutions. 

Having generated the initial population, the optimizer initializes the evaluation process 

by calculating/quantifying the competencies of chromosomes and assigning fitness 

value(s) to each chromosome one by one. In all optimizations based on Computational 

Intelligence techniques, the competencies of potential solutions are quantitatively 

assessed by definition and application of one or more proper fitness function(s). As 

graphically illustrated in Figure 3, the developed KMC simulator plays the role of a specific 

fitness function in the proposed Optimulation methodology. In fact, the optimizer 

separately recalls the KMC simulator for each chromosome to virtually imitate the OCM 
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process considering the compositional and operational conditions dictated by that 

chromosome. Obviously, the outputs calculated and reported via the KMC simulator are 

collected and stored as fitness values for different chromosomes. Afterwards, the new 

generation is produced applying genetic operators including selection, crossover, and 

mutation operators. A brief description of the main genetic operators implemented in the 

current study is given in what follows. 

The selection operator is one of the most important genetic operators in all Genetic 

Algorithm techniques. It suggests the best chromosomes to be transferred to the next 

generations for construction of better solutions. In single-objective optimizations, the 

chromosomes are generally ordered from the most qualified to the less fit according to 

the calculated fitness values. Choosing one of the available selection mechanisms, 

including ‘merge, sort, truncate’, ‘elitism’, ‘roulette wheel’, or ‘tournament’, the 

satisfactory chromosomes are extracted thereafter. As noted above, the main difference 

between NSGA-II and other conventional single-objective Genetic Algorithms is the 

mechanism of sorting potential solutions. In fact, within NSGA-II, chromosomes are 

appropriately sorted in a multi-objective optimization framework. A domination concept 

puts the chromosomes into order mainly by the application of two criteria, i.e. the 

‘quality’ and ‘diversity’ of the solutions. The first criterion clusters the solutions into 

classes named Pareto fronts, while the second one separately sorts the members of each 

Pareto front according to their fitness values. 

To categorize the chromosomes based on the quality of the solutions, the domination 

concept is applied. If all objectives should be minimized mutually, then the domination 

concept is mathematically expressed as Equation 13. According to this equation, a 

chromosome, e.g. chromosome i, dominates another chromosome, e.g. chromosome j, if 

it is not worse than this chromosome in all predefined objectives and definitely better in 

at least one objective. 
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where Fx(i) is the fitness value of chromosome i in objective x and Nobj is the total number 

of predefined objectives. 

Having compared all possible pairs of solutions, the selection operator assigns a number 

or rank to each chromosome based on the dominations. Afterwards, the chromosomes 

are properly classified into a set of Pareto fronts. It is obvious that the non-dominated 

chromosomes are placed in the first Pareto front while the second Pareto front hosts 

those chromosomes dominated once by the members in the first front, and the front 

construction goes on. The chromosomes in the first front, then, are given a rank value of 

1, those in the second front are assigned the rank value of 2, and so on. 

The second criterion completes the sorting process via evaluating the diversity of 

solutions in all Pareto fronts individually. Essentially, the members of each Pareto front 

are put into order by calculating the so called ‘Crowding Distance’ for each chromosome. 

This index essentially measures the proximity of a chromosome to its neighbors in a given 

Pareto front. Those solutions located in a less crowded region, i.e. a region with a larger 

average crowding distance, have better diversity and are more preferable. The crowding 

distance of chromosome i, C.D.(i), is defined as follows: 
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In Equation (16), dx(i) is the crowding distance of chromosome i with respect to objective 

x. Also, Min(Fx) and Max(Fx) are the minimum and maximum values of objective x, 

respectively. 

Having sorted the chromosomes based on the quality and diversity criteria, the 

optimization algorithm picks out a preset number of the fittest chromosomes to be 

transferred to the next generation for offspring production. In this stage, the preset 

amount of crossover rate dictates the number of chromosomes to be selected. 
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The winner chromosomes are subsequently utilized to generate new members to be 

substituted by refused chromosomes of the previous generation; this is accomplished by 

two well-known powerful intelligent genetic operators, i.e. crossover and mutation. Both 

operators are stochastic search algorithms but their mechanism and implementation are 

quite different. Crossover is mainly an expert exploitation tool, while mutation is applied 

for exploration. Put simply, the crossover operator receives two chromosomes as parents 

and generates two new chromosomes as offspring, which are similar to the parents. 

Therefore, the crossover operator seeks the promising regions in the hope of finding 

superior solutions, i.e. local optima. On the other hand, mutation has an effect on a single 

chromosome and changes it into a new chromosome, which may or may not be in the 

current population. Thus, the mutation operator seeks unexplored regions to guarantee 

that all regions of the search space are thoroughly explored and the search is not confined 

to limited regions. Obviously, the rate and type of crossover and mutation can be 

regulated depending on the problem under study. 

To apply the crossover operator, the transferred chromosomes from the previous 

generation should be set up into mating pairs as potential parents to generate the 

offspring. For the chromosomes to mate, different mechanisms including ‘best-best’, 

‘best-worst’, ‘random’, ‘roulette wheel’, and ‘tournament’ can be employed. After 

defining the recombination mechanism, the crossover operator is applied on mated 

chromosomes. Several types of crossover operators exist, among which single- and multi-

point crossover operators are the most popular. 

Applying the crossover operator on potential mating pairs and generating the offsprings, 

the mutation operator manipulates some of the newcomers. The number of offspring 

chromosomes elected for mutation is determined by the mutation rate. In the first step, 

the mutation candidates are chosen randomly. Then, one or more genes of each selected 

chromosomes are manipulated by the mutation operator. It should also be noted that the 

gene(s) are specified in a stochastic manner for the mutation process. Generally, the value 

of a selected gene for mutation is randomly replaced by another value among the 
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minimum and maximum preset values of that gene. The mutated chromosomes are 

completely replaced by the ones they are originated from. 

The evolutionary optimization process is repeated by calculating fitness values of the new 

population. It stops whenever one or more evolved solutions satisfy the predefined 

target(s). The values of the parameters used for evolutionary optimization by NSGA-II are 

given in Supporting Information (see Table S1). Note that the initial population size, 

crossover rate, mutation rate, and the maximum number of iterations were set to be 500, 

50.00%, 15.00%, and 100, respectively. 

Taking the aforementioned computational algorithm into account (Figure 3), an optimizer 

based on NSGA-II was written in Pascal programming language (Lazarus 1.6.4 IDE) and 

compiled into 64-bit executable using FPC 3.0.2. The optimizer was capable of recalling 

the KMC simulator developed in Stage I to send codified chromosomes and receive the 

simulation outputs in a swift manner. The Mersenne Twister pseudorandom 

number generator was used to produce the required random numbers for the 

optimulation processes.69 The random number generation subroutine satisfies the tests 

of uniformity and serial correlation with high resolution. The cycle length of the random 

number generator was 219937-1. 

Optimulations were performed on a desktop computer with Intel Core i7-3770K (3.50 

GHz), 32 GB of memory (2133 MHz), under Windows 7 Ultimate 64-bit operating system. 

The runtime was approximately 18 hours for the most complicated optimulation case 

studies. 

 

3. RESULTS AND DISSCUSION 

To evaluate the performance of the developed optimulation algorithm effectively, it is of 

great importance to verify the accuracy of the developed KMC simulator first. Hence, the 

established simulator has been put into practice at several compositional and operational 

conditions and the simulation outputs have been compared with reliable data available 

in the literature.52 Furthermore, to appropriately illustrate the outstanding capabilities of 

the designed optimulation algorithm, it has been implemented to handle the optimization 
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of the OCM process as an intricate chemical reaction engineering case study. To do this, 

two different classes of problems have been investigated. The first class, i.e. part A, is 

considered to investigate aspects of the conventional OCM process consisting of one 

reaction zone. Different scenarios were defined in part A to practically display the power 

and versatility of the optimulation algorithm in challenging single- and multi-objective 

optimization problems (8 case studies). On the other hand, more complicated 

optimization scenarios were designed to represent the uniqueness of the proposed 

algorithm. Accordingly, in part B, a multi-stage reactor is optimized in an attempt to 

explore the possibility of improving the OCM process. 

 

3.1. Verification of the developed KMC simulator 

To utilize the developed KMC simulator in the proposed optimulation framework, it is of 

great importance to appropriately evaluate the precision of its predictions. To do so, the 

OCM simulator was put into practice to handle the set of reactions under the same 

conditions reported by Eppinger et al.52 The simulation outputs, including methane 

conversion and C2 selectivity, were calculated and compared with those measured by the 

research group. It should be noted that the dilution ratio (DR) and the initial mole fraction 

of nitrogen (XN2) were set to be 6.00 and 0.30, respectively. The dilution ratio is defined 

as the ratio of the mass of quartz sand to that of the catalyst. The developed KMC 

simulator was capable of successfully predicting the outputs reported for all 15 scenarios 

in the literature. All calculated errors were less than 2.00%. 

 

3.2. Part A: Optimulation of simple scenarios 

The capabilities of the proposed optimulation algorithm were investigated in detail via 

several single- and multi-objective optimization scenarios. In the case of single-objective 

problems, the algorithm looked for a specific target, while several objectives and/or 

constraints were simultaneously satisfied in case of multi-objective scenarios. It is worth 

mentioning that constraints can be applied both on input variables and responses. 
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Three different single-objective optimization scenarios (Cases I, II, and III) were defined 

to evaluate the capabilities of the proposed optimulation algorithm. The first scenario, 

Case I, is designed to ‘back-calculate’ the recipe resulting in a C2 selectivity of 40%. On the 

other hand, maximizing C2H4 and C2H6 yields were considered as the main targets in Cases 

II and III, respectively. Obviously, the algorithm heuristically explores the predefined 

search spaces in an attempt to find the most appropriate recipe satisfying the predefined 

objective in each case. As mentioned in the previous section, each recipe consists of 

adjusting five factors including MRT, V�gas, XCH4/XO2, XN2, and T, which should be optimized 

according to the preset target for each scenario. To do this, the optimulation computer 

code randomly generates reaction recipes as its initial population and recalls the 

developed KMC simulator to virtually carry out the OCM process for all suggested recipes. 

Applying an intelligent evolutionary algorithm and frequently recalling the KMC simulator 

(essentially in an on-line mode), the optimizer analyzes the virtually synthesized products 

to find the optimum recipe satisfying the objective predefined in each scenario. 

The optimulation results for the designed single-objective optimization case studies are 

presented in Table 3. As expected, the algorithm has proposed only one optimal solution 

for each single-objective scenario. The optimal recipe and the detailed composition of the 

final products are separately reported for each case study. As can be seen, the intelligent 

optimizer has attempted to solely satisfy the predefined target in each case. In Case I, for 

instance, the optimizer has explored the preset search space to find the best recipe 

capable of minimizing the predefined objective, i.e. Minimize        |C2 selectivity – 40%|. 

Although the proposed solution has successfully satisfied the target, the procedure did 

not have any control on other reaction outputs, especially CH4 conversion and C2 yield. 

This can be expected, since the optimizer only attempts to evolve the potential solutions 

of each generation towards the recipes which exhibit C2 selectivity close to 40%. In other 

words, the algorithm sorts and elects the elite members (recipes) of each generation 

based on whether they can minimize the predefined objective, i.e. Min|C2 selectivity – 

40%|. The proposed recipe for Case I is MRT: 201.99 kg.s.m-3, V�gas: 8.29×10-6 m3.s-1, 

XCH4/XO2: 2.40 (-), XN2: 24.62%, and T: 772.93 oC. Subsequently, the optimal solution was 
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fed into the KMC simulator to virtually imitate the OCM process and calculate the 

composition of the final products (see Table 3). 

The optimulation algorithm has successfully suggested two distinct recipes for Cases II 

and III, i.e. for the maximization of C2H4 and C2H6 yields. More interestingly, the maximum 

attainable values of C2H4 yield (17.64%) and C2H6 yield (8.12%) have occurred at MRT 

values of 213.65 and 7.05, respectively. Furthermore, asking for the maximization of the 

final C2H4 and C2H6 yields as the optimization target has resulted in recipes leading to 

methane conversion, C2 yield, and C2 selectivity of 71.82, 19.96, and 27.79% (Case II) and 

27.21, 13.19, and 48.47% (Case III), respectively. The optimulation algorithm was capable 

of precisely handling all single-objective optimizations in a computationally cost effective 

manner. The execution time for each single-objective case study was approximately less 

than 2.4 hours. 

 

Table 3. Optimulation results obtained for single-objective optimization case studies. 

  Single-Objective Scenarios 

Optimal Recipe  
Case I 
 

Case II 
 

Case III 
 

Final Products 

MRT (kg.s.m-3): 
V�gas (m3.s-1): 
XCH4/XO2 (-): 

XN2 (%): 
T (oC): 

 

201.99 
8.29×10-6 
2.40 
24.62 
772.93 
 

213.65 
6.08×10-6 
1.01 
31.74 
811.17 
 

7.05 
4.06×10-6 
3.66 
48.63 
854.16 
 

Reaction Outputs 

XCH4 (%): 
XO2 (%): 
XN2 (%): 

XC2H6 (%): 
XC2H4 (%): 
XCO2 (%): 
XCO (%): 

XH2O (%): 
XH2 (%): 

 

31.71 
7.59×10-8 
23.55 
1.31 
2.53 
9.40 
2.12 
21.50 
7.89 
 

9.25 
5.74×10-7 
30.23 
0.38 
2.90 
14.56 
2.46 
32.78 
7.44 
 

28.97 
5.29×10-2 
47.97 
1.62 
1.01 
3.98 
1.60 
12.08 
2.72 
 

 CH4 conversion (%): 
C2H4 yield (%): 
C2H6 yield (%): 

C2 yield (%): 
C2 selectivity (%): 

37.69 
9.93 
7.14 
15.07 
39.99 

71.82 
17.64 
2.32 
19.96 
27.79 

27.21 
5.07 
8.12 
13.19 
48.47 

 

In addition to the above single-objective scenarios, several objectives and/or constraints 

were defined simultaneously in each of the more interesting and demanding multi-
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objective optimizations. To challenge the developed optimulation algorithm with more 

complex problems, three multi-objective optimization case studies were tackled, i.e. 

Cases IV, V, and VI. Each case study had more than one objectives/constraints to be 

satisfied. In Case IV, methane conversion and C2 yield were to be maximized 

simultaneously. On the other hand, in Case V, the algorithm was supposed to satisfy the 

same objectives (predefined in Case IV) but now with taking the preset values of XCH4/XO2 

and XN2 into account. It is clear that presetting the values of XCH4/XO2 and XN2 plays the 

role of two constraints via confining the algorithm to recognize and pick out only those 

solutions simultaneously maximizing methane conversion and C2 yield around the preset 

values for the mentioned input variables. It is worth mentioning that three separate case 

studies (Cases V-0.5, V-5, and V-50) were designed in Case V. For all cases, the value of 

XN2 was set to be 41.13%, while distinct values of XCH4/XO2 including 0.50, 5.00, and 50.00, 

were considered, respectively. The algorithm was also tested to handle another 

complicated task in Case VI. According to the last scenario, the algorithm should attempt 

to find solutions resulting in maximum C2 selectivity at methane conversion of 75%. 

Clearly, presetting the methane conversion at 75% acts as a constraint on a response. This 

restricts the algorithm to consider only those solutions maximizing C2 selectivity around 

the mentioned methane conversion. It should be emphasized that there is no limitation 

on the number of predesigned objectives and constraints. The selected scenarios are just 

several examples to seriously challenge and precisely evaluate/investigate the capabilities 

of the proposed optimulation algorithm. 

Figure 4 illustrates the optimization results for the targets defined in Case IV. In contrast 

to single-objective scenarios, the multi-objective optimizations result in multiple 

solutions, known as Pareto optimal solutions. In this case, the Optimulation algorithm has 

successfully suggested 37 solutions satisfying the preset targets. In fact, 37 members of 

the last population were placed in the first Pareto front as non-dominated solutions. As 

mentioned previously in the model development section, the initial population size was 

set to have 500 members (potential solutions or recipes) and the maximum number of 

iterations of the algorithm was set to 100. Therefore, the optimulation algorithm has 
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recalled the developed KMC simulator 50,000 times in order to examine 500 potential 

recipes one-by-one at each epoch in an intelligent evolutionary manner. In the last epoch, 

37 out of 500 members of the last generation have successfully satisfied the primary 

criterion of domination concept and placed in the first Pareto front. According to Figure 

4, the obtained recipes were distributed between two extreme solutions specified by the 

intersections of the red and blue lines, respectively. The former, i.e. the solution 

represented by the red dot, has been capable of achieving the maximum C2 yield, whilst 

the latter, at the intersection of the blue lines, represents the solution resulted in the 

maximum attainable methane conversion. 

 

 
Figure 4. The Pareto optimal front for the multi-objective simulation/optimization of 

OCM process proposed by the Optimulation algorithm for Case IV. 

 

Table S2 in Supporting Information provides detailed information on the 37 solutions 

shown in Figure 4 and proposed by the optimulation code. These solutions, located in the 

first Pareto front, were separated and stored because of being non-dominated. 

Apparently, all solutions have been successful in simultaneous maximization of methane 

conversion and C2 yield. The first column of Table S2 represents the solution number 

stored. The second to sixth columns represent the recipes proposed by the optimulation 

algorithm, i.e., the values of the compositional and operational adjustable factors 
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described in previous sections. The seventh and eighth columns give the outputs of the 

OCM process for each proposed recipe, i.e. methane conversion and C2 yield, respectively. 

Furthermore, and even more importantly, the ninth and tenth columns host the values of 

the first and second criteria of the domination concept utilized by the intelligent 

optimizer. The former, entitled ‘Ranking’, is calculated based on the quality of the 

solutions, which classifies solutions in different Pareto fronts. Being located in the first 

Pareto front, all solutions are acceptable and given a rank value of 1. The latter, i.e. C.D. 

column, represents the diversity of the solutions calculated and assigned based on the 

crowding distance equation for all solutions located in each Pareto front. The second 

criterion is capable of sorting the solutions isolated in different Pareto fronts separately. 

The solutions scoring higher crowding distance values are more preferable. Obviously, 

Solutions 1 and 2 scoring the highest amounts of crowding distance, i.e. infinity (inf.), have 

been ranked at the top. Interestingly, these are the solutions positioned at the 

intersections of the blue and red lines in Figure 4. Solution 1 has resulted in maximum 

attainable methane conversion of 100%, whereas maximum C2 yield (of 21.078%), has 

been achieved by Solution 2 (the red dot in Figure 4). 

The optimal recipe, detailed composition of final products, and reaction outputs 

corresponding to the specific solution are reported in Table 4. As can be observed, to 

simultaneously maximize methane conversion and C2 yield, the reaction input variables 

including MRT, V�gas, XCH4/XO2, XN2, and T should be set at 89.73 kg.s.m-3, 4.63×10-6 m3.s-1, 

1.14 (-), 41.13%, and 808.91 oC, respectively. This resulted in methane conversion, C2 

yield, and C2 selectivity of 67.04%, 21.07%, and 31.43%, respectively. 

In Case V, the optimulation algorithm should simultaneously satisfy the same objectives 

but without being allowed to change the preset values of XCH4/XO2 and XN2, i.e. two out of 

five predefined genes (input variables) in the proposed chromosome structure (potential 

recipe). As mentioned earlier, three distinct scenarios were defined in Case V including V-

0.50, V-5.00, and V-50.0. The XN2 value was set to be 41.13% (the optimal value obtained 

in Case IV) in all scenarios, while the XCH4/XO2 ratio was set to be 0.50, 5.00, and 50.00 in 

the case of V-0.50, V-5.00, and V-50.0, respectively. As can be observed from Table 4, the 
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specific constraints have resulted in different recipes. Interestingly, the optimal values of 

MRT and V�gas have been continuously declining from Case V-0.50 to Case V-50.0, while 

the optimal reaction temperature has increased. The maximum methane conversion and 

C2 yield obtained for these scenarios are (89.76% and 12.04%), (23.00% and 13.15%), and 

(4.62% and 4.01%), respectively. 

Finally, in Case VI, the Optimulation algorithm should intelligently explore the search 

space to find the recipes leading to maximum C2 selectivity at methane conversion of 

75.00% (one objective and one constraint to be simultaneously satisfied). To handle Case 

VI appropriately, the defined constraint was initially converted into an objective as 

follows: 

 

CH4 conversion → 75.00% ≡ Min(│CH4 conversion – 75.00%│)                                          (17) 

 

Hence, two objectives including maximization of C2 selectivity and minimization of (│CH4 

conversion – 75.00%│) should be simultaneously satisfied in Case VI. The optimulation 

algorithm was put into practice to handle the scenario as a two-objective optimization 

problem. Figure 5 represents the Pareto optimal front (82 solutions) obtained for Case VI. 

 

 
Figure 5. The Pareto optimal front for the multi-objective simulation/optimization of 

OCM, Case VI. 
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In this case, the red dot (located at the intersection of the red lines) was selected as the 

optimal solution. It has the closest methane conversion (75.06%) to the preset conversion 

value. The maximum attainable C2 selectivity was 25.64% when the methane conversion 

was intentionally preset at 75.00%. The optimal recipe corresponding to this solution 

along with reaction outputs and composition of final products are cited in the last column 

of Table 4. The optimal reaction input variables were predicted to be MRT: 51.03 kg.s.m-

3, V�gas: 4.48×10-6 m3.s-1, XCH4/XO2: 0.94 (-), XN2: 24.98%, and T: 824.52 oC. It should be noted 

that although the solution positioned at the intersection of the blue lines of Figure 5 

resulted in C2 selectivity of about 100%, it cannot be nominated as the optimal solution 

due to the fact that it exhibits a methane conversion of only 3.87%. 

 

 

 

 

 

 

 

Table 4. Optimulation results obtained for multi-objective optimization case studies. 

  Multi-Objective Scenarios 

Optimal Recipe  
Case IV 
 

Case V-0.5 
 

Case V-5 
 

Case V-50 
 

Case VI 
 

Final Products 

MRT (kg.s.m-3): 
V�gas (m3.s-1): 
XCH4/XO2 (-): 

XN2 (%): 
T (oC): 

 

89.73 
4.63×10-6 
1.14 
41.13 
808.91 
 

45.39 
4.50×10-6 
0.50 
41.13 
788.77 
 

14.78 
4.13×10-6 
5.00 
41.13 
808.07 

1.04 
4.09×10-6 
50.00 
41.13 
948.77 
 

51.03 
4.48×10-6 
0.94 
24.98 
824.52 
 

Reaction Outputs 

XCH4 (%): 
XO2 (%): 
XN2 (%): 

XC2H6 (%): 
XC2H4 (%): 
XCO2 (%): 
XCO (%): 

XH2O (%): 
XH2 (%): 

 

10.10 
1.60×10-6 
39.49 
0.55 
2.62 
11.74 
2.07 
26.93 
6.50 
 

1.92 
11.69 
39.37 
0.15 
0.98 
13.42 
1.17 
23.75 
7.55 
 

37.31 
1.23×10-6 
40.63 
1.83 
1.36 
3.55 
1.23 
11.06 
3.04 
 

55.21 
4.93×10-4 
41.25 
1.01 
0.15 
0.07 
0.28 
1.88 
0.14 
 

8.63 
3.64×10-2 
23.80 
0.44 
2.89 
16.94 
2.39 
37.33 
7.55 
 

 CH4 conversion (%): 67.04 89.76 23.00 4.62 75.06 
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C2 yield (%): 
C2 selectivity (%): 

21.07 
31.43 

12.04 
13.41 

13.15 
57.17 

4.01 
86.79 

19.24 
25.64 

 

3.3. Part B: Optimulation of intricate scenarios 

In this part, several complex optimization scenarios were designed to seriously challenge 

and test further the optimulation algorithm. To do this, it was considered that the OCM 

process can take place in a sequence of n consecutive reaction zones, i.e. a multi-stage 

reactor (see Figure 6). It was assumed that the reaction temperature is similar in all 

reaction zones while each one has its own MRT, i.e. each zone has a specific residence 

time (tR) and height of the catalytic packed bed (HR) value. Also, the final products of the 

ith reaction zone enter the (i+1)th reaction zone. Furthermore, at the entrance of each 

reaction zone, a fresh feed with volumetric flow of V�gas(i+1) composed of methane, 

oxygen, and nitrogen with the mole fractions of XCH4(i+1), XO2(i+1) and XN2(i+1), is fed into 

the reaction zone to be combined with the outputs of the previous stage. Figure 6 

schematically illustrates the configuration of the proposed multi-stage OCM reactor along 

with all design factors. In this part, a complicated multi-objective optimization problem 

has to be addressed, which is very hard, if not impossible, to handle by classical 

deterministic and stochastic optimization methodologies. 
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Figure 6. Schematic representation of a multi-stage reactor proposed for Optimulation 

of OCM process. 

 

Although various objectives and constraints can be defined as optimization targets, it was 

supposed that simultaneous maximization of methane conversion and C2 yield are the 

main targets to be satisfied in part B. Hence, the hybrid algorithm should explore the 

reaction search space (Table 2) in an attempt to maximize both objectives at the same 

time. 

A very large number of scenarios was considered as possible optimization problems. The 

main difference between the designed optimization scenarios was the number of 

assigned reaction zones for the OCM process. Accordingly, the number of reaction zones 

can vary between 2 and 10. This means that the simplest reactor configuration was 

considered to have two consecutive reaction zones, i.e. a two-stage OCM reactor, while 

a more complex one was allowed to have 10 distinct reaction zones, a sequence of 10 

consecutive zones. It is clear that in each reaction zone, four (4) manipulated factors 

should be optimized. Also, the reaction temperature is the common adjustable variable 

for optimization. Therefore, the proposed reactor configuration for the OCM process with 

a sequence of n consecutive reaction zones consists of (4n+1) adjustable factors to be 

optimized through the developed multi-objective optimization tool. In other words, a 

two-stage reactor has nine (9) variables while a ten-stage one has 41 variables to be 

selected (adjusted) for optimization. 

Each scenario was separately ‘optimulated’ by the established hybrid 

simulator/optimizer. The Pareto optimal front obtained for each complex scenario is 

illustrated in Figure 7. As can be observed, the proposed algorithm was capable of 

effectively handling the designed optimization problems at all levels of complexity. 

Obviously, the algorithm has proposed multiple solutions for each scenario located in the 

first Pareto front (of the last iteration). 
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Figure 7. Pareto optimal fronts obtained for the multi-objective optimulations of the 

OCM process; cases A - I: n = 2-10, respectively. 

 

Among all of the proposed solutions, the two (extreme) ones specified at the intersections 

of the red and blue lines are practically the most important ones. The solution located at 

the intersection of the blue lines (of Figure 7) signifies the maximum attainable methane 

conversion, while the red dot determines the maximum achievable amount of C2 yield. As 

mentioned in the previous section, each point in Figure 7 represents a potential solution 

located at the first Pareto front and is thus connected to a recipe (calculated and reported 

by the intelligent optimizer). The number of factors constructing a recipe equals to (4n+1). 

As higher C2 yield values are more favorable in the OCM processes, the obtained recipes 

corresponding to solutions represented by the red dots are cited in Table S3 in Supporting 

Information (in other words, applying the listed recipes results in C2 yields and methane 

conversions specified by the red dots of Figure 7). 

The reaction outputs and the composition of the final products for all multi-objective 

scenarios (of Figure 7 and Table S3) are reported in Table 5. These have been calculated 
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via the KMC simulator based on the recipes (red dots in Figure 7) proposed by the 

optimulation algorithm as optimal solutions. 

 

Table 5. Optimulation results obtained for multi-objective optimizations in the case of 

the multi-stage OCM reactor. 

 Number of Reaction Stages 
Final Products 2 3 4 5 6 7 8 9 10 

XCH4 (%): 
XO2 (%): 
XN2 (%): 

XC2H6 (%): 
XC2H4 (%): 
XCO2 (%): 
XCO (%): 

XH2O (%): 
XH2 (%): 

10.00 
4.68×10-5 
42.92 
0.44 
3.03 
10.64 
1.73 
25.26 
5.98 

9.24 
1.01×10-4 
44.16 
0.47 
3.19 
10.43 
1.58 
25.37 
5.56 

13.27 
1.17×10-4 
35.62 
0.58 
4.32 
10.63 
1.70 
27.52 
6.36 

11.59 
4.96×10-5 
30.93 
0.56 
4.68 
12.31 
1.76 
31.88 
6.29 

10.10 
3.47×10-4 
35.73 
0.43 
4.63 
11.58 
1.57 
30.11 
5.85 

15.90 
1.88×10-5 
25.48 
0.64 
6.03 
11.31 
1.78 
32.15 
6.71 

8.32 
1.57×10-5 
32.96 
0.42 
4.95 
12.88 
1.47 
33.27 
5.73 

12.92 
2.34×10-5 
33.08 
0.45 
5.74 
10.48 
1.48 
29.97 
5.88 

11.65 
8.32×10-4 
29.16 
0.41 
5.79 
11.92 
1.75 
32.93 
6.39 

          
Reaction Outputs 2 3 4 5 6 7 8 9 10 
CH4 conversion (%): 

C2 yield (%): 
C2 selectivity (%): 

66.28 
23.84 
35.97 

68.44 
25.94 
37.91 

62.62 
27.74 
44.30 

68.17 
29.10 
42.69 

69.96 
30.41 
43.47 

62.45 
31.54 
50.50 

75.96 
32.53 
42.82 

65.07 
33.11 
50.88 

70.24 
33.42 
47.58 

 

According to the results obtained, the C2 yield is considerably improved from 23.84 to 

33.42% by increasing the number of consecutive reaction zones from 2 to 10, respectively. 

The variation of the maximum attainable C2 yield versus the number of consecutive 

reaction zones is depicted in Figure 8. As can be observed, the influence of the number of 

reaction zones/stages on C2 yield is decreased approximately after 7 consecutive reaction 

zones. 
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Figure 8. Maximum attainable C2 yield versus number of proposed reaction 

zones/stages. 

 

It is obvious that we can apply other input variables to be optimized and/or replace the 

adjustable factors already considered in this work (Table 2). The desirable manipulated 

variables can be of different types, including operational or compositional reaction 

factors, different feeding policies, various reactor configurations and modes of operation, 

etc. Furthermore, not only can other ranges for selected input variables (adjustable 

factors) be defined but also different targets (objectives) with or without constraint(s) can 

be used as the goals of optimulation. 

 

4. CONCLUSION 

In the current study, a novel hybrid intelligent computational tool, i.e. ‘optimulation’ 

algorithm, was introduced and explained for the first time to effectively handle the 

simultaneous simulation and optimization of many types of complex reacting systems, 

including chemical, biological, and macromolecular reactions. The proposed tool was 

developed based on the amalgamation of the Kinetic Monte Carlo simulation approach 

(as a well-documented molecular simulation tool) and the Non-dominated Sorting 

Genetic Algorithm (as the most powerful intelligent multi-objective optimization 
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technique). The developed algorithm was evaluated in detail with the case of Oxidative 

Coupling of Methane (a well-known intricate chemical reacting system). The developed 

computer code based on this optimulation algorithm was capable of successfully handling 

all defined single- and multi-objective optimization scenarios. The obtained results clearly 

showed that it is a powerful tool to solve optimization problems of different levels of 

complexity. Undoubtedly, the established computational framework can be effectively 

applied by academic and industrial experts to manage a wide variety of types of multi-

objective optimization problems for complex reacting systems. 
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