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Abstract 

Water management involves monitoring, predicting, and stewarding the quality and quantity of 

groundwater recharge at the watershed scale. Recharge sustains baseflow to streams and replenishes 

water extracted by pumping at wells; it is frequently estimated using numerical models that couple or 

fully integrate surface water and groundwater domains and use water budgets to partition water into 

various components of the hydrological cycle. However, uncertainty associated with the input data for 

large components such as precipitation and evapotranspiration may hinder model accuracy, and 

preferential flow dynamics such as depression focused recharge (DFR) may not be represented at 

typical modelling scales (≥10s of km2) or with typical approaches. The present study addressed two 

themes related to groundwater sustainability and vulnerability: 1) the sensitivity of modelled recharge 

estimates to the spatial variability of rainfall, and 2) the vulnerability of public supply wells to DFR 

during large-magnitude rainfall or snowmelt events. The region investigated during this research was 

the Alder Creek watershed (78 km2), a typical southern Ontario setting overlying glacial moraine 

sediments with mostly agricultural land use, some urban and aggregate resource development, and 

whose recharge supplies multiple municipal well fields for the cities of Kitchener and Waterloo. 

Rainfall is often the largest component of the water budget and even a small uncertainty percentage 

may lead to challenges for accurately estimating groundwater recharge as a calculated residual within 

a water budget approach. However, rainfall monitoring networks typically have widely spaced gauges 

that are frequently outside the watershed of interest. Assessment of the influence of spatially variable 

rainfall on annual recharge rate estimates was performed by comparing transient simulations using 

input data from three different rain gauge networks within a coupled and fully-distributed numerical 

model. A local network of six weather stations with rain gauges was installed and operated in and 

around the study watershed for three years, and data from six regional stations (within 30 km of  the 

watershed) and one national station (3 km from the watershed) were obtained from publicly available 

sources. Time series of distributed, daily rainfall were interpolated via the inverse distance squared 

method using data from each of the rain gauge networks for three calendar years. The temporal and 

spatial snowfall distribution was consistent among all scenarios, to maintain focus on differences 

caused by the rainfall input data. Results showed that annual average recharge rates could differ 

considerably between scenarios, with differences sometimes greater than the water-budget derived 

uncertainty for recharge. Differences in overall recharge between pairs of scenarios involving the 

local rain gauge network were largest, varying by up to 141 mm per year, or 44% of the steady state 
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recharge estimated in a previous study. Streamflow estimates for the local rainfall simulations were 

closer to observations than those using regional or national rainfall. Because the three scenarios used 

the same set of underlying soil parameters, the results suggest that the availability of local rainfall 

measurements has the potential to improve the calibration of transient watershed hydrogeological 

models. 

The second theme of the present study was exemplified by the Walkerton tragedy in 2000, where 

pathogenic microbes were rapidly transported from ground surface to a public supply well during a 

heavy rainfall event. The vulnerability of such wells to surface-originating contaminants during major 

hydrological events remains poorly understood and is difficult to quantify. Such events may result in 

overland flow collecting in low topographic locations, leading to localized infiltration. If focused 

recharge occurs in the immediate vicinity of a public supply well, the threat to the water quality of 

that well may significantly increase temporarily. These conditions are frequently encountered within 

the glaciated landscape of southern Ontario. Conventional approaches for defining the threat of 

groundwater under the direct influence of surface water (GUDI) do not routinely account for this type 

of transient infiltration event and instead assume steady state flow fields without localized recharge. 

The present study combined the monitoring and modelling of a site in southern Ontario where DFR is 

routinely observed to occur within 50 m of a public supply well. Extensive site characterization and 

hydrologic monitoring were conducted at the site over a period of 3.5 years, specifically during large-

magnitude hydrologic events including heavy rainfall and snowmelt. Integrated surface water – 

groundwater models employing HydroGeoSphere (HGS) were used to quantify the transport of 

potential contaminants infiltrating beneath a depression and a creek and the associated risk to the 

public supply well. Simulated relative concentrations at the well were below “detection” for typical 

median contaminant concentrations in surface water but > 1 cfu/100 mL with travel times between 

118 and 142 days for creek and DFR solutes, respectively, based on maximum initial surface water 

concentrations. Results suggest that DFR and localized recharge could increase the threat to 

overburden wells under extreme conditions. Ponding reduced travel time by at least 58 days for the 

DFR solute. 

In order to extend the analysis of recharge estimate sensitivity to spatial rainfall variability to the 

longer term, and to incorporate the influence of actual evapotranspiration (AET) uncertainty, a 

method was developed to employ stochastic rainfall time series and AET estimates in a Monte Carlo 

framework to quantify the resulting variability in recharge estimates and three groundwater 
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management metrics. Stochastic rainfall time series were generated via a parametric, mixed 

exponential method for three virtual stations within the Alder Creek watershed and constrained by 

field-derived spatial correlation coefficients. Observed snowfall data from one nearby national 

weather station were used to calculate total precipitation. Stochastic annual AET estimates were 

generated based on: 1) calculated annual potential evapotranspiration at the national weather station, 

2) observed variation about the Budyko curve in 45 US MOPEX watersheds with 𝑃𝑃𝑃𝑃𝑃𝑃/𝑃𝑃������ � ratios  

within ±0.05 of the average ratio calculated for the national weather station near the watershed, and 3) 

a correction factor to remove AET from the saturated zone. Recharge rates for the Alder Creek 

watershed were calculated via a 46-year vadose zone water budget for each of 16,778 realizations. 

The surface water fraction of streamflow was estimated using hydrograph separation results for the 

watershed. It was hypothesized that spatially variable precipitation would exert more influence on 

recharge than AET because it is a larger component of the local water budget. Groundwater recharge 

results were applied to three different metrics related to water quality, well vulnerability, and water 

quantity. Results suggest that estimates of non-point source contaminant loadings to the water table 

could differ by up to ±14% from the average. Worst case changes in capture zone area estimates for a 

public supply well could be up to ±15% different from the average. The ratio of maximum to 

minimum cumulative recharge over all realizations was 1.31, though contributions from spatial 

rainfall variability alone led to a ratio of 1.15. This suggests that AET uncertainty and spatial rainfall 

variability each contribute nearly the same amount of variability to recharge estimates. This latter 

ratio is less than the result (~2) from a previous study of a much larger watershed in Spain. The 

results highlight the importance of AET estimates for recharge rate estimation, and their potential 

impacts on land use planning and groundwater management. This method could be used to project 

impacts of climate change on recharge variability at the watershed scale. 

Overall, results suggest that the spatial variability of rainfall could impact recharge rate estimates in 

numerical models of small to medium sized watersheds (e.g., 78 km2), especially during short 

simulations. Annual recharge estimates could vary over a range equivalent to 44% of a previously 

estimated steady state value, though long-term (46-yr) estimates could vary over a range equivalent to 

12% of this value due to averaging over time. Non-point source loadings and capture zone areas could 

vary up to ±7.0% and ±7.4% from the average, respectively, over the long term due to spatial rainfall 

variability, though uncertainties associated with AET could increase this to ±14% or ±15%, 

respectively. The hydrological event characterization and well vulnerability modelling of the second 

research theme suggest that localized recharge could lead to increased microbial risks for wells 
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screened in overburden sediments during large hydrological events (≥ 40 mm rainfall over 4 days) 

through the phenomenon of temporary ponding. The method developed for the long-term stochastic 

recharge rate analysis could be applied in other settings as an alternative to, or to complement, large-

scale, fully-distributed 3D numerical modelling. 
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Chapter 1 
Introduction 

1.1 Background 

Two of the main considerations for groundwater management at the watershed scale are the quantity 

and quality of groundwater recharge, factors which influence the sustainability and vulnerability of 

well pumping rates and baseflow to streams. Groundwater recharge amounts are frequently estimated 

using numerical models. While these are powerful tools, the representation of complex, transient 

watersheds within models that link the surface and subsurface leads to questions regarding the impact 

of the scale of the input data: How much uncertainty is entrained in rainfall and evapotranspiration 

data? Are typical monitoring strategies and numerical modelling tools effective for understanding 

large-magnitude or extreme events? What role might localized recharge play for well water quality, 

especially in areas of heterogeneous and hummocky glacial moraine sediments? 

Well vulnerability and sustainability are global and local issues. Extreme hydrological events, 

disease outbreaks, and groundwater wells have been linked in many countries including Canada 

(Hrudey et al., 2002; O’Connor, 2002), the United States (Curriero et al., 2001), the United Kingdom 

(Bridgman et al, 1995; Hunter, 2003), Turkey (Aksoy et al., 2007; Baldursson and Karanis, 2011), 

and Guatemala (Eisenhauer et al., 2016), among others. The Walkerton, ON, tragedy of May 2000 is 

an unfortunate example. Over 100 mm of rain fell in less than a week and pathogenic bacteria were 

rapidly transported to a shallow (5 to 8 m deep) well in fractured bedrock; improper chlorination, 

coupled with this contamination event, led to 2,300 cases of illness and seven deaths (O’Connor, 

2002). Further, extreme rainfall is expected to become increasing frequent, globally, due to climate 

change (IPCC, 2013; Jiang et al., 2015). On the other extreme, drought occurrence is increasing in 

parts of the world (Dai et al., 2004; Trenberth, 2011). Warming could lead to fewer, more extreme 

rainfall events, increasing risks of both flooding and droughts (Trenberth, 2011). The spatial and 

temporal variability of rainfall, and therefore recharge rates and the vulnerability of wells, could 

undergo change as a result. 

Numerical models are used to predict how wells will affect local or regional groundwater levels 

and the concentrations at which contaminants might arrive at wells. Many numerical simulations are 

conducted at steady state. This may be reasonable for long-term studies and non-point source 

contamination, if rainfall rates average out over the long term and if land use practices remain 
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relatively unchanged. If transient analyses are desired, for instance, for studying groundwater–surface 

water interaction, there may be few data available at time scales less than daily to guide or constrain 

modelling. Extreme rainfall events (100 - 200 mm) in southern Ontario can occur over small areas 

(e.g., 100 km2) within hours (Paixao et al., 2015). These may be even more pronounced in other 

climates (e.g., rates > 200 mm/hr; Hamada et al., 2014). To complicate matters, runoff generation 

from large rainstorms is nonlinear (Paixao et al. 2015; Villarini et al., 2010), and stream rating curves 

may not include extreme event data due to safety issues and measurement challenges related to 

turbulent flow. One of the relevant questions for models concerns whether input data are available at 

an acceptable scale to capture dynamic watershed responses. 

Previous work on spatially variable rainfall and recharge has been performed by Sapriza-Azuri et 

al. (2015) and by Mileham et al. (2008). Sapriza-Azuri et al. (2015) studied the 16,000 km2 Upper 

Guadiana watershed in Spain. These authors were interested in how the spatial resolution of 

stochastic rainfall amounts applied to a fully-distributed model affected the recharge rates estimated. 

They found that recharge rates in simulations with the lowest and highest spatial grid resolution were 

different by a factor of around 2 over 40 years. Mileham et al. (2008) focused on a slightly different 

question. Rather, these authors looked at how the interpolation method chosen for rainfall data 

impacted recharge estimates in a semi-distributed soil moisture balance model of a 2,100 km2 

watershed in Uganda over 15 years. They compared results of rainfall interpolated via Thiessen 

polygons with results from inverse distance weighting applied to 25 km by 25 km areas. The present 

study complements these analyses in Chapter 2 by addressing how rain gauge network scale can 

influence simulated annual recharge rates when rainfall is interpolated by the same method onto the 

same grid (250 m by 250 m) in a smaller watershed (Alder Creek, 78 km2). The long-term influence 

of spatially variable rainfall on recharge rates in this watershed was projected in Chapter 4 by using 

stochastic rainfall time series based on observed correlation characteristics. 

Recharge rates and their distribution are also important for understanding microbial transport to 

public supply wells. Previous work on reactive transport modelling of microbes during a large-

magnitude event in the context of well vulnerability has been conducted by Knappett et al. (2014). 

These authors simulated E. coli transport from a surface pond flooded with latrine effluent to shallow 

observation wells using Hydrus-2D under saturated conditions. The present study builds upon this 

work by investigating and simulating solute transport from ponding at the ground surface through the 

vadose and saturated zones to a well, as an analog to possible microbial contamination resulting from 
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a large hydrological event (Chapter 3). Other researchers have modelled microbial transport in the 

absence of hydrological event conditions, often via injections into wells and using analytical or 

simplified models (e.g., Bales et al., 1997; Mallén et al., 2005; Kvitsand et al., 2015; Schijven et al., 

1999; Sinton et al., 1997). Well vulnerability is typically considered by generating capture zones for 

certain periods of travel time using numerical models that may assume 2D flow (e.g., 50 days, 1 year, 

2 years, etc.; Frind et al., 2006). For instance, Worthington et al. (2012) calculated a 3-day capture 

zone based on particle tracks for a well involved in the Walkerton tragedy. Another example is the 

study by Eberts et al. (2012), who simulated breakthrough curves for conservative non-point source 

contaminants in the saturated zone over decades and compared particle tracking and lumped-

parameter models. Sousa et al. (2013b) introduced a method to consider whether the vadose zone 

could reasonably be neglected or not when assessing contaminant migration toward a well. The 

vadose zone may be a crucial buffer preventing microbial contamination from reaching the saturated 

zone within a short enough time scale to be of concern in many cases. 

The field site chosen for the present study was the 78 km2 Alder Creek watershed, west of 

Kitchener-Waterloo, ON (population ~ 400,000). This watershed is located on the Waterloo Moraine 

and its overburden stratigraphy is a multi-aquifer-aquitard system (Martin and Frind, 1998), where 

groundwater recharge supplies water for up to seven well fields whose capture zones are located 

within or reach beneath it (Brouwers, 2007). This largely agricultural watershed has experienced 

some development in terms of urban areas and aggregate extraction (sand and gravel) pits; it 

represents a typical watershed in southern Ontario. Threats to water quality include non-point sources 

such as road salt and nitrate, and point-sources such as a landfill and surface water bodies. This 

watershed has been modelled multiple times (CH2MHILL and SSPA, 2003; Martin and Frind, 1998; 

Matrix and SSPA, 2014a, 2014b; Sousa et al., 2013a) due to its importance for municipal water 

supply. 

The approach applied in the present study combined the collection of hydrological field data 

(rainfall, water levels, soil moisture, and parameters for reference evapotranspiration (ETo) 

calculations) with numerical modelling to answer questions related to groundwater recharge and 

uncertainty. Characterization tools such as spatial correlation analysis (Chapters 2 and 4) and 

cataloguing and evaluating large-magnitude hydrological events (Chapter 3) are presented as methods 

that may be useful at other sites for similar studies. Within this framework, this research seeks to 

advance water management by addressing issues that have previously received little attention by 
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using characterization tools and numerical modelling strategies that then may be applied to other 

settings. 

 

1.2 Objectives 

The overall goal of this work was to address two themes related to groundwater management, and 

specifically groundwater recharge, that remain poorly understood. These two themes were: 1) the 

impact of the spatial variability of rainfall on recharge estimates, and 2) the impact of localized 

infiltration and recharge on well vulnerability. The research objectives of this thesis were: 1) to 

explore the impact of the spatial variability of rainfall on annual, watershed scale recharge estimation 

via a numerical model that couples surface and subsurface domains (Chapter 2); 2) to evaluate the 

potential threat of large-magnitude hydrological events to public supply wells from depression 

focused recharge and losing streams in glacial moraine landscapes (Chapter 3); and 3) to quantify the 

potential long-term variability of watershed scale groundwater recharge estimates due to the spatio-

temporal variability of rainfall and the uncertainty of actual evapotranspiration, and the resulting 

variability of three metrics related to water quality, water quantity, and well vulnerability (Chapter 4). 

 

1.3 Thesis Organization 

The three topics noted above (Chapters 2 to 4) were written in manuscript format in preparation for 

submission as journal articles. A paper based on Chapter 2 has been published by a scientific journal 

as follows: 

 

• Wiebe, A.J., Rudolph, D.L., 2020. On the sensitivity of modelled groundwater recharge 

estimates to rain gauge network scale. J. Hydrol. 585, 124741. 

https://doi.org/10.1016/j.jhydrol.2020.124741. 

 

Chapter 5 contains conclusions and recommendations. The list of references that follows Chapter 5 

includes references for all chapters and appendices. The acknowledgements section above is a 

compilation for all chapters. Seventeen appendices provide supplementary information at the end of 
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the document. One of the appendices is electronic (a pdf file) and contains the computer code used to 

perform the calculations for Chapter 4.  
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Chapter 2 
On the sensitivity of modelled groundwater recharge estimates to 

rain gauge network scale 

2.1 Introduction 

The estimation of groundwater recharge is a challenging task at any scale of consideration. With the 

emergence of regional scale groundwater models, often applied at a watershed scale, the seasonality 

and spatial variability of recharge has become a hydrologic component of significant importance. 

This is particularly the case when considering its role as a forcing function in water budgets and 

contaminant transport processes. Recharge magnitude and distribution is frequently estimated by 

numerical models that employ a water balance approach, where the magnitude of the recharge is 

calculated as a residual of the other measured or estimated components of the overall water budget 

(Healy, 2010). The calculated recharge distributions are then used as boundary conditions in 

modelling exercises related to watershed-scale assessments of water resources, regional impacts of 

non-point source contaminants, and changing land-use impacts. The rainfall data that are required for 

the water budget estimations are often derived from local weather stations that vary in spatial 

proximity to the study area. 

While the scales at which rainfall measurements are made are known to influence their spatial 

accuracy over regional scales (Hess et al., 2016; Villarini et al., 2008; Winter, 1981), the impact of 

measurement density on the spatial distribution of calculated groundwater recharge rates has received 

little attention (Sapriza-Azuri et al., 2015). In many environments, precipitation (P) tends to be the 

largest component of the water budget (Dingman, 2015). Thus, small percentage uncertainties 

associated with P will lead to large magnitudes of uncertainty for smaller components of the overall 

hydrologic flow system – such as groundwater recharge or discharge – that are often estimated as 

residuals of the total water budget (Thodal, 1997; Wiebe et al., 2015; Winter, 1981). For rainfall data 

collection, a rain gauge density of 3 gauges/100 km2 has been recommended for the U.S. (Schaake et 

al., 2006), and densities between 1 gauge/900 km2 and 1 gauge/600 km2 have been recommended by 

the World Meteorological Organization (Dingman, 2015). The recommended measurement scale 

required for rainfall measurements to ensure a particular degree of confidence in the estimation of 

groundwater recharge for a particular area is largely unknown and dependent on local conditions. 
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Many studies focused on the spatial variation of rainfall and the uncertainty associated with a 

particular network density have been undertaken to illustrate the significance of precipitation 

measurement (e.g., Dingman, 2015; Hess et al., 2016; Huff, 1970; Huff and Schickedanz, 1972; 

Linsley and Kohler, 1951; Villarini et al., 2008; Winter, 1981). The impact of spatial rainfall 

variability on streamflow has also been addressed, and it is well known that the number of rain 

gauges and their locations impact the accuracy of modelled hydrographs (e.g., Andréassian et al., 

2001; Bell and Moore, 2000; Faurès et al., 1995; Obled et al., 1994; Zhao et al., 2013). Villarini et al. 

(2008) found that spatial correlation among rain gauges tends to increase, and spatial sampling errors 

tend to decrease, for increasing data averaging times (e.g., 15 min, hourly, and daily). The authors do 

note, however, that the transferability of specific rainfall uncertainty results to other areas may not be 

directly applicable due to local site conditions. 

Previous numerical studies addressing the influence of spatial rainfall variability on recharge have 

identified that interpolation techniques and the model’s spatial grid size are important factors. 

Mileham et al. (2008) used a semi-distributed, soil-water budget model for a humid, tropical 

watershed in Uganda (2,098 km2) over 15 years and found that cumulative recharge estimates differed 

by a factor of about 1.5 between a scenario interpolating precipitation via Thiessen polygons and one 

using inverse distance weighting with 20 rain gauges. Sapriza-Azuri et al. (2015) used a fully-

distributed model with stochastic rainfall distributions generated from rain gauges at 151 weather 

stations and found that recharge estimates varied based on the scale of the interpolated rainfall data 

(2.5 km by 2.5 km, or 50 km by 50 km, or lumped over the entire 16,000 km2 watershed). Applying 

rainfall at the smallest grid cell size over four decades resulted in 1.5 to 2 times the recharge 

estimated when rainfall was applied at the other two scales. Recommendations for both the spatial 

density of observation points and selection of grid sizes for model input are needed for other 

geographical contexts. 

Precipitation is frequently measured by rain/snow gauge networks, and ground-based radar 

methods rely on these for calibration (e.g., Dingman, 2015). The density of Canada’s rain gauge 

network (Metcalfe et al., 1997; OMNR, 2007) is less than 1 gauge per quaternary watershed 

(OMNRF, 2016) in southern Ontario, where quaternary watersheds are on average 312 km2 in size. 

Extreme summer rainfall events in this area may occur over 100 km2 (Paixao et al., 2015), and 

convective summer storms can be as small as 5 to 8 km2 in size (Singh, 1992; Tsanis and Gad, 2001). 

Such events could easily evade detection by existing rain gauge networks, and these may become 
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increasingly important due to climate change (Collins et al., 2013; Cubasch et al., 2001; Jyrkama and 

Sykes, 2007). This is a potential concern for groundwater recharge estimation under both long-term 

and event-based conditions. The sustainable management of integrated water supplies depends on 

accurate quantitative estimates derived from precipitation measurements. Accurate precipitation 

estimates are also essential for assessing regional-scale water quality vulnerability related both to 

non-point contaminants and local, extreme hydrologic, event-based conditions near critical receptors 

such as public supply wells (e.g., Christie et al., 2009; the May 2000 Walkerton tragedy – O’Connor, 

2002). 

The objective of the present study was to assess the spatial correlation among point rainfall 

measurements, and to explore the sensitivity of modelled recharge estimates to spatial variations in 

rainfall in the vicinity of a typical watershed in southern Ontario. The watershed selected for this 

study represents watersheds where municipal water sources rely on glacial moraine aquifers, and 

agricultural activities and urban expansion present challenges related to water quality and quantity. It 

was hypothesized that recharge estimates in scenarios employing different rainfall networks’ 

interpolated data would differ to a degree that could significantly impact regional water management 

decisions. The uncertainty associated with the recharge component of a near-surface water budget 

was employed as a metric of significance. Differences in recharge between scenarios were assessed 

based on: 1) visual analysis of the spatial distributions of total recharge, 2) the frequency of cell-by-

cell differences in modelled total recharge, and 3) changes in water budget components such as 

cumulative streamflow. Three different spatial scales of rain gauge networks were used for the 

assessment: i) one national station located within 3 km of the watershed, ii) six regional stations 

within 30 km of the watershed, and iii) six local stations, five of which were within the watershed. 

The sensitivity was addressed by comparing the magnitude and spatial distribution of recharge results 

from three corresponding scenarios: (1) spatially uniform rainfall from the national network, and 

spatially variable rainfall interpolated from the (2) regional and (3) local networks. Spatially uniform 

reference evapotranspiration (ETo) derived from the national network station was used for all 

scenarios, and spatial variations in snowfall were held constant in order to isolate rainfall as the 

variable of comparison. 

For this investigation, field data collected from the local rain gauge network within the study region 

over a three-year period were utilized to illustrate natural precipitation variability. This relatively 

short temporal period was specifically addressed because this is the time scale at which fully-coupled 
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models may be used in practice by environmental consultants to study the impacts of dynamic 

hydrological events on city water supply systems (Meyer et al., 2017). There could be different 

results over a longer time scale. 

2.2 Methods 

2.2.1 Site Description 

The Alder Creek watershed (78 km2; Figure 2.1; GRCA, 1998) within the Grand River watershed 

(6,800 km2; OMNRF, 2016) is located on the regional upland of the Waterloo Moraine. Located 

adjacent to the cities of Kitchener and Waterloo, ON, this watershed’s glacial sands and gravels cover 

over half of its surficial area (CH2MHILL and SSPA, 2003; OGS, 2010) and facilitate recharge for 

about seven municipal well fields operated by the Regional Municipality of Waterloo (Brouwers, 

2007). Due to its importance for water supply, the watershed and its surrounding area have been the 

subject of detailed hydrologic modelling in the past (e.g., CH2MHILL and SSPA, 2003; Martin and 

Frind, 1998; Matrix and SSPA, 2014a, 2014b; Sousa et al., 2013a). The availability of extensive 

subsurface geological data and hydrogeological interpretations derived from previous work in the 

area (e.g., Bajc et al., 2014; Blackport et al., 2014; CH2MHILL & SSPA, 2003; Martin and Frind, 

1998) provides a valuable foundation for the current modelling exercises within the multi-aquifer 

system of the Waterloo Moraine. 

Total annual precipitation is around 900 mm in this region, varying between 600 and 1100 mm at 

the nearby Environment Canada weather station at Roseville, ON, which is located less than 3 km 

outside the watershed (Government of Canada, 2019; OMNR, 2007). Actual ET (AET) for the region 

has been estimated at generally around 540 mm per year (Sanderson, 1998),1 and streamflow is on 

average 140.5 mm per year at the gauging station within the watershed (Figure 2.1; based on daily 

data, 1973-2018; WSC, 2019). The average baseflow index (i.e., BFI, the fraction of total streamflow 

constituted by groundwater baseflow) for this station is 0.56, according to PART (Barlow et al., 2015) 

hydrograph separation results (based on daily data from WSC, 2019; 1973 to 2018). 

National network daily precipitation and temperature data were obtained for the Roseville weather 

station (Government of Canada, 2019) noted above and shown in Figure 2.1; this is the closest 

national station to the Alder Creek watershed.2  Rainfall data were recorded using a Canadian Type B 

 
1 See Appendix A for AET estimates based on the Budyko curve. 
2 Appendix B explains why only one national station was used. 



 

 10 

rain gauge (113 mm diameter) at a height of 0.4 m and available on a daily timescale, while snow 

depths were manually measured each day and converted to snow water equivalent using a ratio of 0.1 

(Government of Canada, 2013, 2019). No windshield was reported, so undercatch related to wind 

may be a factor for the Roseville rainfall dataset. Daily maximum and minimum temperatures 

(Government of Canada, 2019) were obtained from the Roseville station for ETo calculations. 

Regional network rainfall data (GRCA, 2017a) were obtained from six stations operated by the 

Grand River Conservation Authority (GRCA) and shown on the inset map of Figure 2.1. Rainfall data 

were available at an hourly time scale from a network of tipping-bucket gauges installed for the 

purposes of flood forecasting (Shifflett, pers. comm., 2018). Windshields were not likely used at these 

stations, so related undercatch may also be an issue for this network. 

Local network rainfall data were obtained from the Alder Creek field observatory of the Southern 

Ontario Water Consortium (SOWC; Wiebe et al., 2019).3  This network of weather stations (Figure 

2.1) employed tipping bucket rain gauges (200 mm diameter) that recorded data every 15 min. Each 

of the six gauges was installed at a height of 1 m above the ground surface and surrounded by an 

Alter-type wind shield. Data were available for January 2014 onward for all stations except WS5, 

where data records began in June 2014. Annual rainfall totals are shown in Table 2.1 for each of the 

three rain gauge networks. The local rain gauge network density was about twice the density 

recommended by others. Schaake et al. (2006) recommended two gauges per 10 km2 and three gauges 

per 100 km2 in order to accurately estimate precipitation in a watershed. 

Snowfall constitutes 15% (Government of Canada, 2019; OMNR, 2007) of annual total 

precipitation in the Alder Creek watershed. Spatial variations in snowfall or snowpack thickness were 

not incorporated into the present study due to the focus on spatial rainfall variability and insufficient 

snowfall data, though spatially variable snowpack thickness could modify recharge distributions, 

especially during large snowmelt events. Available monthly rainfall and snowfall data are shown in 

Appendix D for all three networks. Additional information regarding the calculation of total 

precipitation from local or regional or national rainfall and national snowfall data may also be found 

in Appendix D. 

 

 
3 Appendix C provides an overview of the Alder Creek field observatory. 
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2.2.2 Spatial Correlation 

Spatial correlation for rainfall was assessed using Spearman’s rank correlation coefficient (Gibbons 

and Chakraborti, 1992; Villarini et al., 2010) for several accumulation times (following Villarini et 

al., 2008). Each coefficient was generated by comparing the data from a pair of stations. For each 

accumulation time (1 hr, 3 hr, and 24 hr), the sum of the data within each time interval of that size 

was compared. Each correlation coefficient measures the strength of the linear relationship between 

ranked data at a pair of stations. The Spearman rank correlation coefficient was used instead of the 

Pearson coefficient because the Pearson method assumes that the data are normally distributed, while 

the Spearman coefficient does not (Gibbons and Chakraborti, 1992). Rainfall data were assessed for 

the combined stations of the local and regional networks. The overall time period for this correlation 

analysis was three years, except for correlations involving station WS5, which employed 2.5 years of 

data. An exponential model (Villarini et al., 2008) relating the correlation coefficient, ρ, to the 

separation distance, h, was employed to fit the data and show general trends in correlation for the 

different accumulation times (Eqn. 2.1): 

 

𝜌𝜌(ℎ) = 𝑐𝑐1𝑒𝑒𝑒𝑒𝑒𝑒 �−�
ℎ
𝑐𝑐2
�
𝑐𝑐3
�. (2.1) 

 

The parameters c1, c2, and c3 represent the nugget, correlation distance, and shape factor, respectively 

(Villarini et al., 2008). Following Villarini et al. (2010) and based on arguments by Krajewski et al. 

(2003) that a traditional network of rain gauges (one gauge per location) is insufficient to estimate c1, 

a nugget value of c1 = 1.0 was chosen in all cases. The correlation distance and shape factor for the 

field data were determined via the Levenberg-Marquardt algorithm (Gavin, 2009, 2019) in the 

scientific computation program GNU Octave (Eaton et al., 2011). 

 

2.2.3 Water Budget and Uncertainty 

Context for the recharge differences between scenarios was portrayed by calculating the uncertainty 

from an annual near-surface water budget (Eqn. 2.2), 
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𝑅𝑅 = 𝑃𝑃 − 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉 − 𝑄𝑄𝑆𝑆𝑆𝑆 − ∆𝑆𝑆𝑉𝑉𝑉𝑉, (2.2) 

 

where R is recharge, P is total precipitation, AETVZ is actual evapotranspiration from the vadose zone, 

QSW is the surface water fraction of streamflow (i.e., 1 – baseflow index), and ΔSVZ is net storage 

change in the vadose zone. Infiltration into the vadose zone has been replaced by 𝑃𝑃 − 𝑄𝑄𝑆𝑆𝑆𝑆 in the 

above equation. This water budget assumes that recharge occurring from surface water bodies directly 

connected to the water table is negligible (i.e., all recharge migrates through the unsaturated zone). 

AET derived from the saturated zone is excluded from this water budget because the domain for this 

budget is the vadose zone; AET derived from the saturated zone has already become recharge (R) and 

thus should not be counted twice. Uncertainty on recharge (δR) was calculated under the assumption 

that the individual uncertainties are independent (e.g., Dingman, 2015) via (Eqn. 2.3), 

 

𝛿𝛿𝑅𝑅 = �𝛿𝛿𝑃𝑃2 + 𝛿𝛿𝐴𝐴𝑃𝑃𝑃𝑃2 + 𝛿𝛿𝑄𝑄2 + 𝛿𝛿∆𝑆𝑆𝑉𝑉𝑉𝑉2 , (2.3) 

 

where δP is precipitation uncertainty (~10%, Dingman, 2015); δAET is AET uncertainty (~10%, 

Kristensen and Jensen, 1975); δQ is streamflow uncertainty (~5%, Herschy, 1973; Winter, 1981); and 

δ∆SVZ is uncertainty related to vadose zone storage change (~5%, assumed similar to streamflow). 

Spatial interpolation errors for P and AET were not included. The uncertainty of the water budget 

components in Eqn. (2.3) was calculated using the input data and results for a scenario and year with 

a percentage uncertainty on R that was similar to the average from all annual simulations, as an 

example of a typical case. 

 

2.2.4 Numerical Model 

The fully-distributed MIKE SHE software code (Abbott et al., 1986; Graham and Butts, 2005; 

Refsgaard and Storm, 1995) was used to conceptually explore the sensitivity of recharge estimates to 

spatial variations in rainfall. This code internally couples the saturated zone (3D), unsaturated zone 

(1D), overland flow (semi-distributed), and streamflow (1D) processes, with surface boundary inputs 

and outputs such as P and ETo. Advantages of MIKE SHE include its ability to simulate all major 

aspects of the hydrological cycle and internally couple them, which is particularly advantageous for 
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groundwater-surface water interaction and overland flow-drainage-recharge flow paths. The model 

includes a Richards equation option for the unsaturated zone, which is comparable to many models 

(Barthel and Banzhaf, 2016) such as FEFLOW (Zhou et al., 2011), FEFLOW coupled with HELP 

(Guay et al., 2013), CATHY (Camporese et al., 2010), and MODHMS (Werner et al., 2006). 

Disadvantages of MIKE SHE include its inability to simulate lateral flow in the unsaturated zone, 

which excludes the representation of possible perched groundwater and any associated interflow 

component of streamflow. 

The ground surface topography and seven geological layers for the model were imported from an 

existing three-dimensional groundwater flow model (Region of Waterloo Tier Three water budget 

and risk assessment; Matrix and SSPA, 2014a) and interpolated onto a grid with 50 m by 50 m cells 

that composed the domain for the present study. This included hydraulic conductivity values that had 

been calibrated for steady state conditions in the existing model, which used the finite element-based 

model FEFLOW (DHI-WASY, 2011). Hydraulic head values from the existing model were applied at 

the boundaries of the Alder Creek watershed and specified as the initial conditions within the domain. 

The boundary of the domain (Figure 2.1) was designed to coincide with the New Dundee dam at the 

outflow of Alder Lake, about 8 km upstream from the actual outflow of Alder Creek into the Nith 

River. This allowed for a well-defined hydraulic head boundary in the surface water portion of the 

model. The resulting model domain area was 68 km2, and the revised boundaries adjacent to the dam 

followed local topographic ridges (GRCA, 1998) to the watershed divide. 

Precipitation inputs to the model were developed from daily national data, hourly regional data, and 

15 min local rainfall data. Rainfall data for the regional and local scenarios were aggregated to the 

daily time scale and interpolated onto a 250 m by 250 m grid using the inverse distance squared 

technique. The inverse distance squared technique is the recommended technique for sparse spatial 

data among those included with the model software (DHI, 2017a) and has the advantages of being 

simple (Stisen and Tumbo, 2015) and applicable for data that are not normally distributed, unlike 

Ordinary Kriging (Chen and Liu, 2012). Disadvantages include a strong dependence on gauge 

locations, which appear as peaks in the interpolated distribution, and the fact that locations far from 

observation points assume an average rainfall value (Stisen and Tumbo, 2015). Rainfall data for the 

national scenario were applied at the daily time scale in a spatially uniform manner because there was 

only one station with a sufficiently complete dataset. All scenarios employed daily snowfall data from 

the Roseville station. The model used the average daily air temperature at the Roseville station 
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(Government of Canada, 2019) to calculate the accumulation and melting of snow, based on a 

modified degree day method (DHI, 2017a). Possible undercatch at the rain gauges of the three 

networks was not evaluated in the present study. 

Drainage of water in the unsaturated zone was represented by the 1D Richards’ Equation option 

(DHI, 2017a). Soil columns for each grid cell were composed of one single soil type corresponding to 

the surficial soil because the model framework did not allow automated incorporation of the detailed 

geological layering into the unsaturated zone. Each column was discretized with 0.1 m cells down to 

10 m, then 0.2 m cells to 30 m, and then 1 m cells to 55 or 80 m depth. The spatial distribution of nine 

surficial soil types (Figure 2.2) was based on OGS (2010). Saturated hydraulic conductivity, porosity, 

and residual moisture content parameters for the van Genuchten curves were based on literature 

values (D. Graham, pers. comm., 2017; Schaap et al., 1999; Sousa et al., 2013b), and the n, alpha, and 

Green and Ampt suction at the wetting front parameters were selected in order to vary in a 

conceptually reasonable manner in comparison with the UNSODA soil types (D. Graham, pers. 

comm., 2017; Leij et al., 1996; Table 2.2). No macropore flow was simulated. The default pressure 

head values for field capacity and wilting point (-1 m H2O, and -100 m H2O, respectively), and the 

default shape factor for unsaturated hydraulic conductivity (0.5) were selected based on DHI (2017b) 

recommendations. 

Daily ETo inputs to the model were calculated based on the Penman-Monteith method for reference 

ET, using the UNFAO56 ETo Calculator (Allen et al., 1998; Raes, 2009). The maximum and 

minimum daily temperatures at the Roseville station were used to calculate ETo for all three 

scenarios. The “light to moderate winds” option (2 m/s at a height of 2 m above ground surface) was 

selected to fill in missing wind speed data in the ETo calculations. 

The upper three geological layers that were imported from the existing model were merged into 

one computational layer for the saturated zone simulation. This ensured that the water table would be 

present in the uppermost saturated zone cell, improving the stability of the model. The minimum 

geological layer thickness was set to match the input layers from the existing model (0.1 m). The 

finite difference option (DHI 2017a) was used to represent flow in the saturated zone. Public supply 

wells within the watershed were incorporated into the model and their average 2008 pumping rates 

(total extraction: 23,000 m3/d; Matrix and SSPA, 2014b) were employed. 

Land use and vegetation data (Figure 2.3) were compiled from ROW (2010) and from the Ontario 

Ministry of Natural Resources (OMNR, 2008). The sparse paved areas were not treated specially 
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beyond maintaining an assigned background rooting depth, as required by the model, though the 

urban areas were assigned a leaf area index (LAI) value representing grass. Maximum LAI and root 

depths were obtained from the literature (Canadell et al., 1996; Scurlock et al., 2001). The LAI values 

for agricultural areas were assigned a linear increase from zero up to the respective literature value for 

each cell during the month of May; rooting depths linearly increased during the growing season (May 

to mid-September). LAI was specified to linearly increase for forest areas during May, be held 

constant during the growing season, and then linearly decrease during the last two weeks of 

September. See Appendix E for a summary of LAI values. No irrigation was included in the model. 

Overland flow was represented using a semi-distributed approach via the finite difference method 

(DHI, 2017a). A Manning’s n value of 0.3 m-1/3s was applied throughout the domain to represent the 

majority agricultural land use with a value for light brush, and detention storage was specified based 

on literature values (Chin, 2006) for five of the land cover types, excluding wetlands and open water. 

Stream channels were generated based on the pre-processed (interpolated) model topography to 

obtain more reasonable agreement between the streamflow and overland flow processes, and cross-

sections were generated every 200 m. Manning’s n values for the channel were based on GRCA 

(2017b): 0.035 m-1/3s for the channel thalweg, and 0.05 m-1/3s otherwise. 

The model employs independent, automatically adjusted time steps for its overland flow, 

unsaturated zone, and saturated zone processes (DHI, 2017c; Graham and Butts, 2005). Groundwater 

recharge is calculated iteratively as an internal flux from the unsaturated zone to the saturated zone 

during simulations (Graham and Butts, 2005); the accumulated amount for a single cell or the entire 

watershed was obtained via post-processing. Additional model settings may be found in Appendix E. 

 

2.2.5 Comparison of Model Simulations 

The scenarios were simulated one year at a time for the years 2014 to 2016. The 2014 simulations 

followed a three-year model spin-up period that employed spatially uniform daily rainfall and 

snowfall data from the Roseville station. Scenarios 2 and 3 were started from the same initial 

conditions as Scenario 1 in all three years. The method of comparing simulations with different 

rainfall inputs that start from identical initial conditions has been used in other studies (e.g., 

Schuurmans and Bierkens, 2007; Sapriza-Azuri et al., 2015). The present study differs from 

Schuurmans and Bierkens (2007) by focusing on groundwater recharge rather than hydraulic heads 
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and discharge, and from Sapriza-Azuri et al. (2015) by addressing a much smaller watershed (~70 

km2 vs. 16,000 km2) using rainfall interpolated from observations within different networks rather 

than stochastic values derived from the overall network. Results from the numerical model were 

saved on a weekly basis, so each year was represented by 52 weeks during analysis of the 

simulations. The results were compared based on maps of the spatial distribution of total recharge, the 

frequency of cell-by-cell differences in total recharge, the visual match between observed and 

modelled cumulative streamflow, and differences in overall water budget components. 

None of the three simulations were calibrated. This study compared the impacts of the different 

rainfall input data on the precision of the estimated recharge distributions. Each set of input data 

would result in a different calibrated model, but modifications to the parameters of the model (e.g., 

hydraulic conductivity values) would obscure the effects of the input data on recharge rates. Using the 

same starting point for each 52-week simulation allows the differences in recharge rates to be 

compared for a model domain structure that is identical in all cases (i.e., the same set of hydraulic 

conductivity values for the geological layers). The comparison of modelled streamflow for each 

scenario to observed streamflow provides a sense of the degree of calibration that still would be 

required to match existing conditions. 

Observed and simulated rainfall amounts were compared as follows. The spatial correlation of the 

numerical model’s interpolated rainfall datasets was assessed by selecting 36 uniformly spaced cells 

from the grid, extracting their precipitation time series, and calculating Spearman correlation 

coefficients for days with no Roseville snowfall. Days with snowfall were omitted because the 

observed and simulated daily snowfall amounts differed slightly due to the model’s partitioning of 

rain and snow based on temperature. Rainfall frequency distributions for these 36 cells were also 

compared with the observed distributions. 

 

2.3 Results 

The spatial correlation of rainfall was found to vary substantially at both the regional and local scales. 

Figure 2.4 suggests a continuum in the spatial correlation relationships as distance increases from the 

local to the regional scale. Daily Spearman correlation coefficients ranged between approximately 0.4 
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and 0.8 (Figure 2.4).4  Correlation distances and shape factors for the combined stations of the local 

and regional networks are shown in Table 2.3 for different time scales. Correlation distances 

associated with the fitted curves on Figure 2.4 ranged from 88.4 to 113.3 km. Correlation coefficients 

in the local network were substantially lower than those reported for a dense monitoring network (50 

gauges in 135 km2, 6 years of data) in the Brue Watershed, SW England (Villarini et al., 2008). Daily 

(Pearson) coefficients were ≥ 0.85 in that study, while these varied between roughly 0.6 and 0.9 for 

the local network in the present study. The spatial correlation analysis indicates that: 1) rainfall may 

not be sufficiently uniform temporally and spatially in the region around Alder Creek to justify either 

reliance upon a single rain gauge to represent the watershed or the neglect of rainfall variation within 

the watershed itself, and 2) the local network is providing additional rainfall information not captured 

by the regional network. 

The inverse distance squared interpolation technique was found to increase the spatial correlation 

of the interpolated daily precipitation distributions for the regional and local rainfall scenarios. All 

Spearman coefficients among 36 uniformly spaced sample points for both Scenarios 2 and 3 were 

between 0.7 and 1.0, a higher range than observed. Appendix F includes examples of the rainfall 

interpolation for four representative days with a range of rainfall rates. The interpolated daily rainfall 

frequency distributions at these 36 points for Scenarios 2 and 3 were similar to those observed within 

the local and regional networks (Appendix F). 

A simple, annual water budget for the vadose zone provided a metric for the differences in recharge 

between scenarios. Figure 2.5 shows that typical instrument and method uncertainty values on these 

components lead to a substantial accumulated percentage uncertainty on recharge (±27%), prior to 

accounting for spatial interpolation uncertainties for P or ET. The uncertainty on recharge (δR) could 

be at least ±100 mm per year (using Scenario 3 data for 2015; Table 2.4), with precipitation 

measurement uncertainty as the largest contributor. Analysis of error for small groundwater 

components is often disregarded when conducting calibration and water budget uncertainty 

estimations (Wiebe et al., 2015). 

The water budget results from the three scenarios are listed in Table 2.4, along with other relevant 

values for the watershed: the observed streamflow totals from the WSC gauge (WSC, 2019), and a 

regional, steady state model’s estimate of average recharge (M.H. Brouwers, pers. comm., 2017; 

 
4 In contrast, ETo was highly correlated at the regional scale and had much less influence on recharge estimates 
than spatially variable rainfall (Appendix A). 
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Matrix and SSPA, 2014a). The average total precipitation driving the water budget in the numerical 

model was different in each of the three rainfall scenarios, and the direction of change from year to 

year sometimes differed. Table 2.4 shows that average total precipitation increased from 2015 to 2016 

in both Scenarios 1 and 2, while it decreased for Scenario 3. Precipitation differences between 

scenarios for a given year were up to about ±20% of the long-term average from Roseville. 

Differences in average recharge varied up to 141 mm per year, or 44% of average steady state 

recharge (321 mm; M.H. Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a), although 

Scenarios 1 and 3 showed nearly equivalent average recharge for 2016. Differences in average 

recharge with respect to Scenario 3 were greater than the magnitude of the water budget δR for both 

comparisons in 2014, and for the comparison with Scenario 2 in 2015. Vadose zone AET rates were 

similar (within ±11 mm of Scenario 3) in 2014 and 2015; AET for Scenarios 1 and 2 differed from 

Scenario 3 by +106 mm or +44 mm in 2016, respectively, despite having identical ETo input values. 

This shows a “cascade” effect of the variation of rainfall on other water budget parameters calculated 

by the numerical model: Differing rainfall inputs can influence AET rates which in turn influence 

recharge rates. Figure 2.6 shows the spatial distribution of recharge rates for the three rainfall 

scenarios. Net groundwater discharge conditions are generally present along the Alder Creek channel 

and tributaries. The 2014 maps (a, d, and g) show similar recharge distributions for Scenarios 1 and 2, 

and higher recharge rates everywhere except near the stream channels for Scenario 3. The 2015 maps 

(b, e, and h) particularly show differences in recharge rates between different scenarios in the sand 

and gravel soil types. The 2016 maps (c, f, and i) show similar spatial recharge patterns for Scenario 1 

and Scenario 3 and lower recharge for Scenario 2, reflecting the lower precipitation in Scenario 2 

(Table 2.4). While general spatial differences in recharge rates may be observed in the Figure 2.6 

information, Figure 2.7 presents the frequency of cell by cell differences between scenarios. Despite 

the similar overall average recharge in the local and national rainfall scenarios in 2016 (Table 2.4), 

the frequency plot (Figure 2.7c) shows that this is the result of a balancing of increases and decreases 

in recharge across the domain. Comparisons involving the local rainfall scenario produced a broader 

distribution of cell by cell differences in recharge, while the differences between the regional and 

national scenarios resulted in a more general shift that affected more cells similarly. That is, a greater 

number of cells changed by differing amounts of recharge when the local rainfall scenario was 

compared with either of the other two rainfall scenarios. 

Figure 2.8 shows that the cumulative streamflow results for the scenario employing local rainfall 

were closer to the observed streamflow in all three years simulated. Scenario 3 streamflow was about 
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3% lower than the observed cumulative flow at the WSC gauge at the end of 2014, about 10% lower 

at the end of 2015, and about 20% lower at the end of 2016. Cumulative streamflow results from 

Scenario 1 were between 25 and 31% lower during the three years, whereas Scenario 2 results were 

between 27 and 43% lower. Because Scenario 3 provided closer agreement with recorded values in 

all three years, the local rainfall scenario could be interpreted as requiring less extensive calibration 

than the other two. However, the baseflow indices at the node representing the WSC gauge were 

between 0.21 and 0.31 for all scenarios. Scenario 3 had the lowest baseflow values. The model 

predicted a larger overland flow component of streamflow and much lower baseflow than observed. 

BFI values ranged from 0.60 to 0.64 for 2014 to 2016, based on PART (Barlow et al., 2015) 

hydrograph separation analysis of data from WSC (2019). 

Overall, the poor spatial correlation in rainfall near the study area resulted in differences in 

recharge rate estimates for 2014 to 2016 that were largest when the local rainfall scenario was 

compared with either the regional or national network scenarios. Local rainfall interpolations 

generally led to recharge and streamflow results that were markedly different than those associated 

with rainfall from the regional or national networks, suggesting a high degree of sensitivity of 

recharge rates to the scale of rainfall input data. 

 

2.4 Discussion 

The results suggest that annual recharge distributions estimated through numerical modeling can be 

quite sensitive to the spatial variability of rainfall, as characterized by the spatial correlation analysis. 

Longer term monitoring followed by modelling would provide a more complete evaluation of the 

issue. However, this study suggests that the significant investment required for a longer study would 

likely produce non-trivial differences in modelled recharge rates for watersheds similar to Alder 

Creek for some years. Annual recharge rates could differ by a considerable percentage of the average 

long-term recharge (e.g., 44%). Local rainfall measurements are frequently unavailable at the scale of 

watersheds used for public water supply, yet models are frequently used for water management at this 

scale and in similar settings. The implications of the results are discussed below, following discussion 

of several aspects of the study itself. 

The four main factors that could have influenced the recharge results of this study are: 1) the 

uncertainty associated with measured rainfall amounts, 2) the frequency of applied rainfall intensities 
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in the model, 3) the increased correlation of rainfall caused by the interpolation method, and 4) the 

rainfall regimes sampled by the short-term monitoring of the local rainfall network (3 years). First, 

the accuracy of the readings at the individual rain gauges could influence the interpolated rainfall 

distribution applied to the model, and therefore recharge. All rainfall measurements are susceptible to 

human and instrument errors. The local network rain gauges were observed to have instrument errors 

up to ±10% on average when tested. Though the local network data were assessed for anomalous 

readings associated with snow accumulation and melt, the installation of cameras at the weather 

stations would have improved this analysis. The wind screens around the local network’s gauges 

reduce the degree to which wind effects are expected to bias the data, while the regional network 

likely has a higher level of uncertainty due to infrequent calibration and a typical lack of wind 

screens. The daily volumetric capture of the Roseville rain gauge was likely to be measured quite 

accurately, though the wind effects would be different because the gauge type differs from the other 

two networks. The potential for undercatch, especially for the regional and national rain gauges, was 

not quantitatively determined in the present study, but the uncertainty assigned to precipitation in the 

water budget calculations (±10%) was greater than common literature values for undercatch. 

Second, Mileham et al. (2008) found that the frequencies of interpolated daily rainfall amounts 

impacted recharge rate estimates. In contrast to the Mileham et al. (2008) study, interpolated daily 

frequencies of rainfall amounts for the regional and local rainfall scenarios in the present study were 

similar to each other and to the frequencies observed at the local rain gauges (Appendix F). The lack 

of noteworthy frequency differences between the interpolated and measured amounts suggests that 

variations in the rainfall frequency distribution are not a major factor. 

Third, recharge rates could have been influenced by the increased spatial correlation of rainfall 

caused by the inverse distance squared interpolation technique. Interpolation shifted the entire range 

of Spearman correlation coefficients upward by about 0.2, from about 0.4 to 0.8 for the observed 

rainfall to about 0.7 to 1.0 for the simulated. Two related issues are: 1) software packages used for 

fully-distributed watershed modelling typically restrict the user to the choice of a small number of 

interpolation methods, and 2) a more advanced method such as kriging may require a larger number 

of observation points than are frequently available. 

Fourth, the short-term nature of data collected by the local rain gauge network may have biased the 

recharge results by limiting the period of analysis to three years. Thus, the concern is that the limited 

analysis may not be representative of the actual long-term data. However, the dataset does include 
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two of the types of years that would be desirable in a more extensive study: the rainfall at Roseville in 

2016 was essentially equal to the long-term average rainfall over 1973 to 2018, and the rainfall in 

2014 and 2015 was lower than average (by about 12 and 9%, respectively). Though the recharge 

modelling is missing a comparative, higher than average rainfall amount for Roseville, the results do 

suggest that drier years (at the national station) may be more interesting in terms of greater variability 

in rainfall and recharge (Table 2.4). While modelling longer-term impacts of the choice of rain gauge 

measurement network on recharge variability would be preferable, the purpose of present study was 

to conduct an initial assessment and suggest whether investments in local rainfall monitoring might 

improve confidence in groundwater recharge estimates. 

The results of this study have implications for the calibration of hydrogeological models, and 

therefore implications for the delineation of wellhead protection areas (capture zones), the estimation 

of groundwater contribution areas for stream reaches, the quantification of the groundwater volume 

available for long-term extraction, and the assessment of contaminant loadings and transport. The 

results also provide advice on hydrological monitoring investments. While boundary conditions such 

as spatial variation in rainfall rates could be estimated during the calibration process (e.g., Anderson 

and Woessner, 1992), it is common in practice to apply whatever precipitation data are available to 

fully-distributed models and focus calibration efforts on modifying hydraulic conductivity values in 

order to match observed hydraulic heads and streamflow (Kampf and Burges, 2010). This is a 

potential concern. In either transient or steady state calibration, a lack of precision in the rainfall 

distribution will be compensated for by adjustments of the hydraulic conductivity and other soil 

parameters, potentially mis-representing the actual geology and biasing infiltration and drainage rates. 

For example, He et al. (2013) commented that calibration compensated for temporal and spatial 

differences in rainfall inputs. Steady state models would be unable to incorporate repeating rainfall 

patterns that may exist at small scales without being captured by existing national networks. Such 

patterns could be caused by trends in wind direction and rainfall distributions associated with 

evaporation from large lakes (Dingman, 2015) or a heat-island effect near cities (Renard, 2017). The 

sustainable management of groundwater resources could be impaired by water budget errors related 

to the precision of rainfall data. For instance, a recharge uncertainty of ±100 mm (Figure 2.5) over the 

68 km2 model domain in the present study is roughly equivalent to ±50% of the adjacent City of 

Kitchener’s (population ~ 230,000) annual groundwater extraction (Matrix and SSPA, 2014b). 
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The magnitude and spatial distribution of recharge is a significant uncertainty for steady state 

capture zone delineation (Sousa et al., 2013a). This would be further pronounced for transient capture 

zones (e.g., Graham and Butts, 2005). Precise rainfall measurements could also affect the recharge 

rates used to delineate areas of groundwater contribution for stream reaches, which could be an 

important aspect of land use planning and low impact development strategies aimed at maintaining 

baseflow to streams (e.g., Chow et al., 2016). 

Contaminant loadings and transport depend on accurate recharge rates. Recharge distributions also 

affect the flowpaths of contaminants to receptors such as wells and wetlands and their associated 

reaction potential (e.g., Loschko et al., 2016). In addition to the potential amount of dilution 

experienced by contaminants based on recharge rate variation due to the rainfall input data employed, 

the estimation of dispersion coefficients could also be affected (Yin et al., 2015). Factors such as 

rainfall amounts, timing, and intensity that could influence recharge rates have been found to 

influence pesticide leaching rates in the vadose zone (Isensee and Sadeghi, 1995; Sadeghi and 

Isensee, 1994). 

Spatial correlation information for rainfall could be used to enhance groundwater modelling. 

Correlation statistics could guide the design of rainfall monitoring networks used to collect model 

input data. Comparison of the spatial correlation coefficients for rainfall in the Brue watershed 

(Villarini et al., 2008) and the Alder Creek watershed suggests that Alder Creek requires relatively 

more rainfall observation points to capture the spatial variability over small distances (< 15 km). 

Correlation could also be used to interpret how well sparse rainfall observation stations represent an 

area, or discrepancies between sparse rainfall data and water table responses. 

In addition to the use of spatial correlation information, radar-based rainfall estimates can be used 

to interpolate rainfall distributions for groundwater models. He et al. (2013) state that radar estimates 

can fill in missing spatial rainfall information not captured by a rain gauge network but caution that 

the mean bias between rainfall interpolated from radar and from the set of all rain gauges may 

increase when the number of gauges employed is reduced. This suggests that the spatial density of 

rain gauges could impact recharge rates even when radar-based rainfall estimates are used. More 

work on how radar-based estimates translate their uncertainty to recharge estimates is needed. One of 

the few studies relating radar rainfall data and recharge variability, He et al. (2011), used short-term 

(1 year) simulations of radar rainfall estimates within MIKE SHE to estimate the uncertainty of 

recharge in a watershed in Denmark. These authors used a simple, two-layer water balance method 
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for partitioning ET and recharge in the unsaturated zone and found that the coefficient of variation 

(standard deviation / mean) of recharge was similar to that of precipitation. Longer-term studies and 

more complex representations of the unsaturated and saturated zones could clarify the advantages and 

limitations of using radar products to represent spatial variations in rainfall and to estimate recharge. 

If it is the case that considerable uncertainty exists for modelled recharge estimates based on rain 

gauge network scale, how might this uncertainty be reduced in a cost-effective manner? Increased 

data collection from the watershed of interest can be costly. Strategies might include drilling more 

wells or installing more weather stations. A comparison of the results discussed above with Appendix 

A suggests that rainfall monitoring scale is of greater value for recharge estimate variability than 

monitoring parameters related to Penman-Monteith ETo estimates. The related AET component’s 

uncertainty was not addressed in the present study but is worthy of further evaluation in future 

studies. Rainfall/precipitation data provide information on the input of water to the model water 

budget. Precipitation station components could cost ~$10,000 or less per station and conceptually 

represent a certain area of the watershed based on spatial precipitation correlation and gauge density. 

On the other hand, drilling wells provides different information. Soil cores enhance interpretation of 

stratigraphic layers but may represent a smaller lateral area because of subsurface heterogeneity. 

Except for the water table fluctuation method (Healy and Cook, 2002), direct recharge estimates with 

wells are not possible. Modelling must generally be conducted with both precipitation data and well 

data to estimate recharge. A single well is also likely to cost several times more than a precipitation 

station, without accounting for the ongoing maintenance and data collection/analysis costs necessary 

in both cases. If the goal is to reduce uncertainty in modelled recharge estimates, installing rain 

gauges within the watershed of interest may be the most cost-effective method. 

Watershed studies at shorter time-scales (transient as opposed to steady state) in certain regions are 

likely to benefit from more spatially precise rainfall data. The results of the present study suggest that 

the scale of available data could bias hydraulic conductivity values as calibration compensates for a 

lack of precise rainfall observations, thus mis-representing recharge and discharge in the near-surface 

environment. Increasing the density of rain gauges may also be the most cost-effective way to reduce 

uncertainty associated with recharge estimates, when compared with the cost of collection of 

subsurface information at the point scale, such as drilling more wells. 
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2.5 Conclusions 

The results of this study indicate that rain gauge network scale can have a significant impact on 

recharge rate estimates at the watershed scale during short (annual) time scales. Daily Spearman 

spatial correlation coefficients between gauges of the local and regional networks were typically < 

0.8. These correlations show that rainfall is not uniform in the vicinity of the Alder Creek watershed. 

Simulation of the three rainfall networks resulted in differences in overall average recharge of up to 

141 mm, or 44% of previously estimated steady state recharge (M.H. Brouwers, pers. comm., 2017; 

Matrix and SSPA, 2014a). Differences in recharge rates between the scenario employing local rainfall 

and each of the other two rainfall scenarios were more variable than comparisons between the 

national and regional scenarios, and cumulative streamflow for the local rainfall scenario visually 

appeared to provide a closer match with observed streamflow. The overall conclusion is that in a 

setting such as the one described by the observed ranges of local and regional spatial rainfall 

correlation coefficients, fully-distributed, transient models may frequently be compensating for actual 

rainfall inputs via adjustment of hydraulic conductivity values during calibration. This is a concern 

for land use planning with the goal of maintaining baseflow to streams, for long-term water resources 

projections, for representing transient hydrological events, and for contaminant transport models that 

rely on accurate recharge rate estimates. 

 Future work should address the incorporation of radar rainfall data to better characterize the extent 

to which spatial precipitation variability leads to variability in recharge estimates, and also an 

improved assessment of the contribution of snowfall distribution and snow melt to recharge estimate 

variability at the watershed scale. The spatial variability of snowpack thickness could be especially 

important during large melt events. 
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2.6 Tables 

 

Table 2.1. Annual rainfall* (mm) recorded at stations of the local, regional, and national networks. 

 Rainfall 

Weather Station 2014 2015 2016 

WS2 987 839 371 

WS3 794 784 797 

WS4 892 853 665 

WS5 N/A† 725 746 

WS6‡ 800 927 414 

WS7 560 673 789 

Wellesley§ 849 690 888 

Baden§ 731 626 537 

Laurel Creek§ 701 612 605 

Cambridge§ 677 464 747 

Paris§ 597 759 892 

Burford§ 432 641 329 

Roseville** (755) 665 689 746 
* Snowfall data are not included. Roseville snowfall amounts were 183 mm, 111 mm, and 153 mm for 

2014, 2015, and 2016, respectively (Government of Canada, 2019). 
† N/A – not available. WS5 data collection started in June 2014. Jun to Dec 2014: 600 mm. 
‡ The rainfall time series at WS6 is a composite from two gauges at this station. 
§ Grand River Conservation Authority weather station (GRCA, 2017a). 
** Environment Canada Weather station (Government of Canada, 2019). The amount in brackets is the 

average rainfall from 1973 to 2018. 
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Table 2.2. Unsaturated soil properties (D. Graham, pers. comm., 2017; Leij et al., 1996; Schaap et al., 

1999; Sousa et al., 2013b). 

Soil Unit 
Ksat

* 

(m/s) 

θsat
† 

(-) 

θres
‡ 

(-) 

n§ 

(-) 

α¶ 

(cm-1) 

Outwash gravel 5x10-4 0.28 0.04 4.0 0.040 

Ice-contact gravel 3x10-4 0.33 0.04 3.3 0.040 

Outwash sand 6.5x10-5 0.43 0.05 3.2 0.035 

Ice-contact sand 7x10-5 0.35 0.05 3.3 0.035 

Bog/swamp deposits 1x10-5 0.60 0.20 3.0 0.030 

Stream alluvium 1x10-6 0.41 0.07 1.5 0.010 

Port Stanley Till 5x10-6 0.40 0.06 1.5 0.020 

Maryhill Till 1x10-6 0.45 0.06 1.2 0.021 

Lacustrine deposits 1x10-6 0.45 0.09 1.3 0.020 

 
* Ksat = saturated hydraulic conductivity 
† θsat = saturated moisture content 
‡ θres = residual moisture content 
§ n = van Genuchten fitting parameter 
¶ α = inverse air entry pressure for van Genuchten curve 
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Table 2.3. Fitting parameters for the spatial correlation best-fit curves. 

Network Method Time scale 
Nugget 

(c1; -) 

Correlation Distance 

(c2; km) 

Shape Factor 

(c3; -) 

Local 
with 

Regional 
Spearman 

1 hr 1.0 88.4 0.21 

3 hr 1.0 113.3 0.24 

24 hr 1.0 91.2 0.39 
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Table 2.4. Numerical model water budget results and comparisons (results in mm per yr). 

Year Component Scenario 

  1 2 3 

2014 

Precipitation 849 895 1048 

Evapotranspiration* 392 376 381 

Overland Runoff† 91 96 124 

Storage change‡ -53 -33 -20 

Recharge§ 421 456 562 

Streamflow at node representing WSC gauge** 107 112 148 

Total Streamflow†† 121 127 157 

2015 

Precipitation 789 714 897 

Evapotranspiration* 425 421 428 

Overland Runoff† 68 61 85 

Storage change‡ 7 -9 20 

Recharge§ 288 241 364 

Streamflow at node representing WSC gauge** 84 75 101 

Total Streamflow†† 97 88 116 

2016 

Precipitation 879 756 771 

Evapotranspiration* 444 382 338 

Overland Runoff† 78 64 93 

Storage change‡ 13 25 -10 

Recharge§ 344 285 349 

Streamflow at node representing WSC gauge** 96 79 112 

Total Streamflow†† 107 91 122 

Recharge Estimate from Previous Study (Tier Three‡‡) 321 

Streamflow estimates from WSC 
gauge§§ 

2014 153 

2015 112 

2016 135 
* AET excluding AET from the saturated zone. Total AET values were: 493, 476, and 496 mm for 

Scenarios 1 to 3 for 2014; 521, 505, and 533 mm, respectively, for 2015; and 540, 466, and 439 mm, 

respectively, for 2016. 
† Overland flow into stream. 
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‡ Includes storage change (unsaturated, snow, and overland flow zones), and boundary flows out of 

the unsaturated zone (~5 mm/yr/scenario). Boundary flows into the unsaturated zone: 0 mm. 
§ Recharge can be calculated via Eqn. (2.2).5 
** Area above gauge = 47.4 km2 (WSC, 2019). 
†† Area of model domain = 68.2 km2 (GRCA, 1998). 
‡‡ Annual results from calibrated, steady state, saturated zone FEFLOW simulation for Regional 

Municipality of Waterloo Tier Three Assessment (M.H. Brouwers, pers. comm., 2017; Matrix and 

SSPA, 2014a). 
§§ WSC (2019). The sums here are based on the 52-week periods of the simulations. There were 

twelve days with missing data at the start of 2016. 

 

 

 

  

 
5 Eqn. (2.3) was erroneously referenced in Wiebe and Rudolph (2020); the correct reference is Eqn. (2.2). 
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2.7 Figures 

 

 
Figure 2.1: The Alder Creek watershed, with Environment Canada, GRCA, and SOWC weather 

station locations (DMTI, 2011; Esri et al., 2019a; Government of Canada, 2019; GRCA, 1998, 

2017a; WSC, 2019). The Water Survey of Canada (WSC) stream gauging station location is also 

shown near WS3. 
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Figure 2.2: Surficial soils in the model domain (DMTI, 2011; GRCA, 1998; OGS, 2010). 
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Figure 2.3: Land use in the model domain (DMTI, 2011; GRCA, 1998; OMNR, 2008; ROW, 

2010). The “Agriculture” category includes minor areas of recreation and open land. 
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Figure 2.4: Spatial correlation between rainfall measurements for the combined stations of the local 

and regional networks (GRCA, 2017a; Wiebe et al., 2019). 
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Figure 2.5: Instrument and method uncertainty for the Scenario 3 (2015) near-surface water budget. 
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Figure 2.6: Recharge estimates for the three rainfall scenarios (GRCA, 1998; DMTI, 2011). Maps 
show results as follows: Scenario 1 (national), (a) 2014, (b) 2015, and (c) 2016; Scenario 2 
(regional), (d) 2014, (e) 2015, and (f) 2016; and Scenario 3 (local), (g) 2014, (h) 2015, and (i) 
2016. The local weather stations are shown as black triangles. 
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Figure 2.7: Frequency of differences in recharge rates between the three rainfall scenarios. “S3 - 

S1” implies a cell-by-cell subtraction of Scenario 1 from Scenario 3, etc. The emphasized grey 

vertical line in each subplot indicates a difference of 0 mm. 
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Figure 2.8: Comparison of cumulative streamflow results for the three simulations with recorded 

flows at the Water Survey of Canada (WSC) gauge (WSC, 2019). The WSC gauge was missing 12 

days of data at the start of 2016. 
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Chapter 3 
Assessing public supply well vulnerability to depression focused 

recharge during hydrological events 

3.1 Introduction and Background 

Hydrological events such as heavy rainfall, rapid snowmelt, and rain-on-snow events may lead to an 

increased risk of contamination for wells (Hrudey et al., 2003). Such events are dynamic, and the 

magnitudes of overland flow and recharge within a watershed vary based on factors such as: 

topography, permeability of soils, vegetation, and land use (Blackport et al., 2009; Freeze and Cherry, 

1979; Healy, 2010); the presence or absence of soil frost (Greenwood and Buttle, 2018); the 

magnitude and timing of rainfall (Freeze and Cherry, 1979) and snowmelt events (Blackport et al., 

2009; Wu and Xu, 2005); the aerial extent of impermeable surfaces (Matrix and SSPA, 2014b); and 

the degree of soil saturation (e.g., Freeze and Cherry, 1979). Recharge rates in glacial overburden 

sediments are mediated, in part, by the distribution and thicknesses of soil units with varying degrees 

of permeability. Glacial moraines are commonly relied upon as drinking water sources, and as a result 

of their characteristic hummocky topography, depression focused recharge (DFR) tends to be a 

significant process (Blackport et al., 2009; Greenwood and Buttle, 2018). DFR and localized recharge 

processes have the potential to channel overland flow and associated contaminants into the subsurface 

during large-magnitude hydrological events. If these depressions are situated in the vicinity of a 

public supply well, the travel time from ground surface to the well may temporarily decrease, thus 

increasing the threat to the well (Sousa et al., 2013b). 

Regulations regarding the vulnerability of wells to surface-originating pathogens (e.g., Clean Water 

Act; Province of Ontario, 2006) were drafted in multiple Canadian provinces following the Walkerton 

tragedy of 2000. Heavy rainfall near Walkerton, ON, in early May 2000, led to the formation of 

temporary surface water features near several public water supply wells. The resulting focused 

groundwater recharge phenomena carried pathogenic bacteria from agricultural fields through thin 

overburden soils and highly permeable fractured bedrock to the supply wells. As a result of 

insufficient water treatment infrastructure, more than two thousand cases of illness and seven deaths 

resulted (Hrudey et al., 2003; O’Connor, 2002). The response to this tragedy revolutionized the 

management of public groundwater supplies in Canada, leading to the adoption of so-called GUDI 

(Groundwater Under the Direct Influence of surface water) risk analysis and improved wellhead and 
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source water protection strategies. However, although the Walkerton tragedy was associated with a 

heavy rainfall event, the Ontario regulations for existing wells (Province of Ontario, 2018) mainly 

discuss such events in the context of permanent surface water features that may contribute source 

water to public supply wells. The guidelines for new water well permits briefly mention well 

vulnerability in terms of storm events. Pathogenic microbes are typically found in greater numbers in 

surface water during these types of events, when overland runoff may transport pathogens from 

manure fertilizer, depositional manure (from livestock pastures), or failed private septic systems into 

streams (Bradshaw et al., 2016). A well can be certified as having effective in-situ filtration based on 

a hydrogeologist’s report regarding microbial particle counts during events and seasonal changes; this 

reporting must address potential threats to water supply infrastructure due to large-magnitude events 

(OMECP, 2019). While the potential threat of permanent surface water bodies (lakes and streams) to 

well water quality is acknowledged in the Ontario regulations, the degree to which seasonal 

hydrological events may increase risks is less well understood. Large-magnitude events may increase 

recharge rates by increasing soil saturation and may modify the spatial distribution of recharge 

through temporary flow and ponding at the ground surface, potentially influencing the transient 

capture zone of a well. 

It is challenging to characterize event-based risks. Such risks: i) may rarely or never be observed by 

water managers and field technicians; ii) may evade or incapacitate typical monitoring strategies; and 

iii) may not easily be incorporated into existing regional hydrogeological models. Large-magnitude 

hydrological events that occur with a frequency of once or twice per year are less likely to be 

observed than general conditions, especially if there is a bias toward fair-weather field work. Typical 

observation wells have screens installed at depth and do not routinely focus on capturing “event” 

water arriving at the water table. In addition, conventional groundwater flow models designed to 

estimate well capture zones rely on steady state simulations and are unable to address transient event 

risks. 

Research in glacial moraine environments in southwestern Ontario has identified hydrological 

event responses that may be of concern to public supply well water quality. These phenomena are not 

specifically considered within current source water protection risk assessments for existing wells. 

Temporary surface water features that form during snowmelt periods and persist for several days have 

been observed on agricultural fields within the wellhead protection areas of public supply wells near 

Woodstock, ON (Brook, 2012; Christie et al., 2009; Pasha, 2018), and Mannheim, ON (Menkveld, 
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2019; Menkveld et al., 2015). Christie et al. (2009) found that indicator species for microbial 

pathogens were present in both the surface water and in shallow groundwater wells during these 

events. Menkveld (2019) monitored two snowmelt events involving overland runoff and temporary 

ponding in the base of a topographic depression within 50 m of a public supply well in Mannheim, 

ON. There was some evidence of pathogen indicator species in the topographic depression and the 

nearby creek, though less rigorous procedures than those recommended by Myers et al. (2014) were 

used. The Mannheim site is the subject of the present study and will be discussed further below. 

Runoff collecting in the depression in this case was influenced by surrounding agricultural land 

management practices and overflow from a stormwater management pond collecting water from the 

impermeable surfaces of a greenhouse roof. 

Recharge pathways to wells are important for estimating travel times, understanding 

biogeochemical reactions, and quantifying potential threats to drinking water supplies. Three types of 

recharge pathways from the surface to the water table are (de Vries and Simmers, 2002; Lerner et al., 

1990): 1) Direct recharge, a diffuse distribution occurring over broad areas from precipitation that 

infiltrates vertically; 2) depression focused recharge (DFR) or localized recharge that occurs 

following overland flow and infiltration, and 3) indirect recharge, which occurs beneath water courses 

such as losing streams. Focused recharge has been found to be a significant process in the Prairie 

Pothole Region of western Canada, where researchers have estimated that about 40% of the recharge 

occurs through about 5% of the land surface area, within depressions in the landscape (Zebarth et al., 

1989). The numerous topographic depressions collect overland runoff from larger areas and facilitate 

net infiltration (infiltration > evapotranspiration); these cumulatively constitute a regionally 

significant source of recharge (Hayashi et al., 2016). Playas have been identified as an important 

source of focused recharge in the High Plains Aquifer, USA (Crosbie et al., 2013; Gurdak and Roe, 

2010; Scanlon and Goldsmith, 1997; Wood and Sanford, 1995). DFR has also been studied on the 

Oak Ridges Moraine (ORM), north of Toronto, ON. Greenwood and Buttle (2018) studied 

topographic depressions in agricultural and forested settings on the ORM and found that the 

development of soil frost caused overland flow on agricultural fields, leading to ponding; recharge 

rates in depressions on two fields were factors of 1.5 and 11.3 times larger than the rate at the crest of 

the respective topographic basin. Large topographic depressions have been identified and modelled as 

suspected “hot spots” for recharge on the Waterloo Moraine in Ontario (CH2MHILL and SSPA, 

2003), though the overall impact of smaller depressions on water quantity and quality in this setting 

remains unknown. While depression size may not necessarily influence the consistency of infiltration 
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activity (Berthold et al., 2004), underlying soil hydraulic conductivity and the amount of overland 

flow into a depression are important factors influencing the amount of DFR (Blackport et al., 2009; 

Delin et al., 2000; Tosomeen, 1991). Further detailed studies are needed to assess indirect and 

focused recharge in the field with respect to potential implications for water quality in drinking water 

wells. 

Quantifying threats to drinking water wells is often done by simulating contaminant breakthrough 

curves. Previous studies have used such curves to assess specific well vulnerability (Frind et al., 

2006), where accounting is made for characteristics of the porous medium and the contaminant. Frind 

et al. (2006) suggested that solute transport simulations could be used to estimate the peak 

concentration, peak arrival time, and total exposure time experienced by a public supply well via 

contaminant breakthrough curves. Knappett et al. (2014) modelled E. coli attachment and transport 

from a latrine effluent pond to observation wells within 10 m of the pond under saturated conditions, 

generating breakthrough curves with their 2D model. Eberts et al. (2012) modelled breakthrough 

curves for conservative tracer migration to public supply wells under pumping conditions using 

particle tracking and lumped-parameter models, representing the migration of non-point source 

contaminants applied at the land surface for more than two decades. 

The present study seeks to assess potential event-specific microbial threats to a public supply well 

based on the projected breakthrough curve of a conservative tracer originating in a nearby 

topographic depression. First, soil stratigraphy and hydrological conditions were characterized and 

evaluated at a site where DFR was suspected to occur. Distinct hydrological events were catalogued 

and compared over 3.5 years. Next, numerical models were constructed to represent the vadose zone 

and the flow field from the DFR location to the well. Relative concentration breakthrough curves for 

a simulated contaminant were calculated for two large-magnitude hydrological events that were 

monitored in the field, and also for background conditions with no ponding in the topographic 

depression. It was hypothesized that event conditions (ponding in the topographic depression) would 

lead to travel times (time to “detection”) that were sufficiently short to be of concern for pathogenic 

contamination (i.e., < 50 days; CH2MHILL, 2002; Enzenhoefer et al., 2012; Frind et al., 2002; 

Nalarajan et al., 2019; OMECP, 2019). Breakthrough curves for a second hypothetical solute released 

in a creek near the well were also simulated for comparison. 
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3.2 Methods 

3.2.1 Field Site 

The field site for the present study (Figure 3.1; “Mannheim” site) is located within the Alder Creek 

watershed on the Waterloo Moraine. This watershed is immediately adjacent to the twin cities of 

Kitchener and Waterloo (combined population ~400,000), and up to seven municipal well fields 

capture water recharged within its topographic boundaries (Brouwers, 2007). The site contains the  

base of a topographic depression (~160 m2) in a field adjacent to Alder Creek (Menkveld, 2019; 

Menkveld et al., 2015); its catchment area is likely ~10,000 m2 (based on aerial imagery; First Base 

Solutions, 2006). A cross-section through the site consists of the creek, an 8 m riparian zone, the base 

of the depression, and a gradual upland slope (Figures 3.2 and 3.3). A stormwater management pond 

for a greenhouse operation, located 65 m upslope of the depression base, occasionally overflows 

during large rainfall events (e.g., > 10 mm/day) and causes overland flow that reaches the base of the 

depression. The ditch beside the road north of the site also channels overland flow toward the 

depression base. Across the creek and within 50 m of the depression base is a public supply well that 

has recently been inactive for several years due to rehabilitation challenges related to iron and 

manganese precipitates (Stantec, 2013). This well is screened in overburden sediments. 

Ponding events occur frequently in response to heavy rainfall and snowmelt. The silty topsoil in the 

field is conducive to allowing overland flow to occur during large-magnitude rainfall events. 

Dynamics of water flow and infiltration, observed in the absence of pumping at the public supply 

well, are governed by factors such as: 1) the magnitudes of snowmelt volume and rainfall rate, 2) 

whether the soil is frozen or not, and 3) the stage of the creek. The amount of transmission losses 

during overland flow across the field is unknown. 

The reach of Alder Creek that flows through the site has been observed to be hydraulically 

disconnected from, i.e., perched with unsaturated soil above, the water table during at least certain 

times of the year (CH2MHILL, 2002; Wiebe et al., 2019), though the vadose zone region under the 

stream and above the average water table position may become fully saturated during significant 

infiltration events. The base of the stream channel consists of low permeability materials. Regional 

groundwater flow in the vicinity of the field site is generally toward the southeast (CH2MHILL and 

SSPA, 2003). 
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Surficial geology mapping (Figure 3.2) suggests a narrow floodplain of stream alluvium between 

ice-contact sand in the west and outwash gravel to the east of the creek, while the underlying, 

generally unconfined sand and gravel aquifer in which the public supply well is screened is quite 

permeable (hydraulic conductivity ~ 1 x 10-3 m/s; CH2MHILL and SSPA, 2003). Figure 3.3 shows 

the shallow soils in cross-section A-A’ through the site. A compact, stony unit composed of gravelly 

sand was commonly encountered during drilling at approximately 1 m depth at locations on the west 

side of the creek. This gravel layer was typically observed to be underlain by a silty sand layer that 

contained the water table at a depth of 2 to 4 m below ground surface, and then by a medium to 

coarse sand layer, in shallow soil cores (Menkveld, 2019). Coarse sands and gravels were observed in 

deeper boreholes on both sides of the creek (Hillier, 2014; OMECP, 2018). Hillier (2014) reported a 

silt unit between 0.5 and 2 m thick, encountered around 6 m below ground surface. This unit is shown 

with dotted lines in Figure 3.3. 

DFR within closed topographic basins is known to occur naturally in this type of glacial moraine 

setting (Blackport et al., 2009; CH2MHILL and SSPA, 2003; Greenwood and Buttle, 2018; Stantec, 

2012). The site is typical of the setting of many public supply wells in southern Ontario and is an 

excellent example to explore the issue of the potential impact of large-magnitude events on well water 

quality through numerical simulations based on field characterization. Three general types of recharge 

are present at the site: diffuse recharge across the field, DFR beneath the base of the topographic 

depression, and indirect recharge beneath the stream and possibly beneath overland flow channels. 

 

3.2.2 Field Data and Analysis 

Field data collection occurred from November 2014 to April 2018 at the monitors shown on Figures 

3.1 and 3.4. Soil cores were collected with a direct-push Geoprobe drilling rig to characterize shallow 

stratigraphy. Cores were logged, and the sediment types were classified and then assigned to one of 

the four major units shown on Figure 3.3 (Appendix G; Menkveld, 2019). Data were collected to 

monitor event responses in terms of overland ponding depths, soil moisture, and groundwater and 

surface water levels. Infiltration and water table responses were monitored at three locations: 1) 

beneath the base of the topographic depression, 2) beneath the creek, and 3) beneath the middle of the 

field, where background conditions were hypothesized to exist. Eighteen observation wells (Wiebe et 

al., 2019; Menkveld, 2019) were installed on the west side of the creek, augmenting existing wells 

(Hillier, 2014). Water levels in several of the wells located outside of the base of the topographic 
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depression were assessed for background water level dynamics. A neutron probe (CPN, 2013) was 

calibrated using gravimetric water content analyses on soil cores in order to periodically monitor soil 

moisture at initially three (Menkveld, 2019) and later five locations along the transect (Appendix H). 

Three drive-point piezometers were installed beneath the stream (Menkveld, 2019) in order to 

measure water levels when saturated conditions were present and to calculate the vertical flow 

direction. Water levels along transect B-B’ (Figure 3.4) from the creek to CPP6 were obtained using 

pressure transducers, corrected for barometric pressure as necessary, and adjusted to match manual 

measurements. Extensive data analysis was performed on hydrological events that resulted in > 9 cm 

of water level rise at CPP3 under the base of the topographic depression. A list of the magnitudes of 

water level rise, and the time intervals between background and peak water levels was compiled 

(Appendix I). The combined datasets were used to judge the likelihood of whether the creek or the 

base of the topographic depression was the main source of recharge during events. Two contrasting 

events (Nov 2014 and Jul 2017) were selected to be represented via model simulations. 

Precipitation data were collected and estimated as follows. A weather station (WS4; Figure 3.1) 

installed at the site measured rainfall with a tipping bucket rain gauge. Rainfall data (Wiebe et al., 

2019) were checked for anomalous values corresponding to days of snowmelt. Snowmelt was 

estimated based on reductions in the thickness of measured snowpack (Government of Canada, 2019) 

at the Roseville Environment Canada weather station 8 km from the site. A time series for estimated 

effective precipitation (rainfall + snowmelt – actual evapotranspiration; Appendix J) was developed 

from: 1) daily rainfall values (Wiebe et al., 2019) from the weather station on site, 2) daily estimates 

of snowmelt based on the nearby Roseville station (Government of Canada, 2019), and 3) an estimate 

of daily actual evapotranspiration. 

 

3.2.3 Numerical Modelling 

The investigation outlined below focused on assessing event-related microbial threats to a public 

supply well via solute transport modelling using a quasi-3D, wedge-shaped domain. Parameters for 

this simulation experiment were derived during two calibration steps. The first step was designed to 

derive estimated values of the horizontal (Kx = Ky) and vertical (Kz) hydraulic conductivity for the 

vadose zone and shallow soil layers through the calibration of a numerical model to a highly 

monitored infiltration event. Matching of transient hydraulic head data collected from several of the 

monitoring wells beneath the depression was conducted during this calibration. A separate 1D 
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infiltration model was used to inform the streambed hydraulic conductivity for the first step. 

Calibration was performed on an event with a non-negligible (10s of cm) water table rise beneath the 

base of the topographic depression but very little response (< 10 cm rise) in the creek (26-30 Mar 

2017). This event was chosen to minimize the suspected impacts of superposition (Menkveld, 2019) 

of the influences of ponding in the depression and the losing reach of the creek on water levels 

beneath the base of the depression. Hydraulic conductivity (K) values for the main aquifer were 

estimated in the second step, where a 34-day pumping test was simulated and observed water levels 

were used for calibration. Solute breakthrough curves were calculated during the simulation 

experiment after spinning up the background conditions for the two events of interest.  

The physically-based, fully-integrated groundwater and surface water model HydroGeoSphere 

(HGS) was chosen to represent the Mannheim site. This model solves the 2-D diffusion wave 

equation for surface water flow, and a 3-D version of the Richards equation for the vadose and 

saturated zones (Aquanty, 2015a, 2015b). It also has the capability to simulate solute transport. The 

seamless integration of surface water, the vadose zone, and the saturated zone seemed advantageous 

for application to a question of contaminant migration from the ground surface to a pumping well. 

The goal of the numerical modelling was to assess the event-related threats to the public supply well 

at the site by simulating breakthrough curves at the well for dispersive, conservative solutes 

originating in the base of the topographic depression and in the creek during two selected 

hydrological events (Nov 2014 and Jul 2017). 

 

3.2.3.1 Vadose Zone Model 

The model design used for the first step of calibration consisted of a triangular mesh that was 

generated via Grid Builder (McLaren, 2012). The domain region was 100 m by 100 m in plan view 

with a depth varying between 23 and 26 m, depending on ground surface topography interpolated 

from GPS elevation surveys (Figures 3.4a and 3.5a; CH2MHILL, 2002; Hillier, 2014; OMECP, 2018; 

OMNR, 2010; Wiebe et al., 2019). The elevation of the bottom boundary of the domain was assigned 

to coincide with the approximate elevation of the upper surface of the first major regional aquitard 

(Lower Maryhill Till, ATB3; Bajc et al., 2014), approximately 312 m above sea level (asl) based on 

local borehole data (CH2MHILL, 2002; OGS, 2017; OMECP, 2018). The lateral extent was 

developed by estimating the region of influence of infiltration beneath the base of the topographic 

depression on the water table, based on observed water level responses at wells during the largest 
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DFR event on record (Nov 2014). The base of the topographic depression was located at the centre of 

the model domain. Forty-nine grid layers were used to discretize the interpreted major stratigraphic 

units of the subsurface beneath the depression (Figure 3.5). This model is hereafter referred to as the 

“Vadose Zone Model”. 

Soil properties in the Vadose Zone Model were developed as follows. Soil layers were derived 

from soil cores from several locations on the west side of the creek, with specific focus on the 

stratigraphy observed beneath the topographic depression (CP6 soil core, Appendix G). Porosity 

values could have been estimated from neutron probe and TDR measurements (Appendix H), but 

values derived from the TDR sensors were unrealistically high and there was much scatter about the 

best-fit calibration line for the neutron probe, so appropriate literature values were used (e.g., 

Domenico and Schwartz, 1998). The hydraulic parameters required to represent partially saturated 

flow conditions (van Genuchten parameters) were derived from the UNSODA database (Leij et al., 

1996; D. Graham, pers. comm., 2017), according to the different sediment types identified in the soil 

cores. Initial estimates for the saturated hydraulic conductivity of the soil layers were specified along 

with reasonable ranges and adjusted through an automated calibration procedure using PEST 

(Doherty, 2015). Specific storage values were obtained from the literature (Batu, 1998; Domenico 

and Mifflin, 1965; Duffield, 2019). The hydraulic conductivity values for the deeper sediments 

associated with the main Sand and Gravel aquifer were chosen based on preliminary estimates 

(literature values for lower permeability units; Theis analysis by CH2MHILL and SSPA, 2003 for 

sand and gravel unit), and the final values were verified to yield a similar match between simulated 

and observed water levels. 

A steady state spin-up was used to obtain initial conditions for one event simulation (Mar 2017). 

These conditions were developed to mimic pre-event water levels beneath the topographic depression 

by specifying typical background recharge rates across the domain and larger rates within the 

topographic depression, and by fixing the hydraulic head values at the outer east and west boundaries 

during a steady-state spin-up period. No-flow boundaries were located along the north and south sides 

and bottom of the domain. The lateral boundaries were specified in this way as a simplification of the 

general southeast flow direction suggested by CH2MHILL and SSPA (2003). Assuming equivalent 

fixed head values at the east and west boundaries was unlikely to influence the event simulation 

because of its short duration (4 days) and the predominantly vertical infiltration beneath the base of 

the topographic depression. The steady state recharge rates and outer fixed head boundary conditions 
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were calibrated via PEST. Rainfall data collected on site were specified as a variable flux to the top of 

the model during the transient event calibration. 

Hydraulic properties for the streambed were developed based on HGS simulations using a one-

dimensional column (“Streambed Model”) whose upper boundary was the streambed and whose 

lower boundary was the depth of the CPP13 observation well screen (Figure 3.4). Creek water levels 

from a pressure transducer in the stream were specified as the upper, transient hydraulic head 

boundary condition, while the lower transient head boundary was defined by the transducer water 

levels for CPP13. Isotropic hydraulic conductivity values for the Streambed unit were varied 

manually in an attempt to match simulation results with manual water levels from three piezometers 

located at intermediate depths between the streambed and the screen of CPP13. Specific storage 

values were again chosen based on literature values (Batu, 1998; Domenico and Mifflin, 1965; 

Duffield, 2019). The column consisted of Streambed material underlain by Silty Sand, based on 

hydraulic testing at wells beneath and beside the creek (Appendix K). All monitoring wells used in 

this analysis were located within close proximity of each other laterally. As such, variations in 

hydraulic head with depth were assumed to be a reasonable approximation of the vertical hydraulic 

gradient. 

 

3.2.3.2 Pumping Test Calibration (Wedge 1) Model 

The second calibration step involved the estimation of hydraulic properties for the main Sand and 

Gravel aquifer and related stratigraphic units. Initial K values for the main aquifer units were selected 

based on estimates from CH2MHILL and SSPA (2003), and these were subsequently revised through 

calibration (via PEST) to the pumping test data. A radial flow model domain (“Wedge1”) that 

included the public supply well and the topographic depression was used for this step (Figure 3.5b). 

The grid for this model was constructed in Grid Builder (McLaren, 2012) and consisted of a wedge 

with two nodes per arc and an arc angle of 18.64°. The ground surface boundary for this calibration of 

K values for the deeper stratigraphic units was specified to have a uniform elevation equal to the 

overflow point of the base of the topographic depression, i.e., 335.9 m asl, while the bottom boundary 

of the domain was the same as for the Vadose Zone Model. Stratigraphy was represented by 70 layers 

categorized into the major units interpreted beneath the topographic depression, with one clay lens 

specified near the well based on borehole data (Figure 3.5b; CH2MHILL, 2002; Hillier, 2014; OGS, 

2017; OMECP, 2018). The soil properties from the Vadose Zone Model were included for the near 
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surface layers within the region representing the floodplain and for the Silt3 layer. The Silty Topsoil 

unit was extended across the entire wedge domain, and the main Sand and Gravel aquifer was 

specified to underlie either the floodplain soil layers or the Topsoil. The radial extent of the model 

used for calibration was 2400 m, more than twice the estimated radial drawdown cone extent 

(Appendix L). Recharge flux through the top boundary was given a calibration range of 290 to 330 

mm/yr that included a previously estimated average steady state recharge value for the watershed 

(321 mm/yr; M.H. Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a). The effective pumping 

rate at the public supply well was specified as the rate reported for the pumping test (42 L/s) for both 

the steady state spin-up and transient 34-day simulations. Because the wedge was only a fraction of a 

full circle, the effective pumping rate was the same fraction of the reported rate. Details of the spin-up 

process and PEST calibration settings are listed in Appendix M. A feedback process was employed to 

incorporate hydraulic conductivity values resulting from the calibration of the Vadose Zone Model 

into the Wedge1 Model and vice versa. 

 

3.2.3.3 Solute Transport (Wedge2) Model 

A truncated version of the Wedge1 Model (“Wedge2 Model”) was used for event simulations of 

solute transport for potential dissolved contaminants originating in both the base of the topographic 

depression and in the creek during the solute transport simulation experiments (Figure 3.5c). 

Truncating the Wedge1 Model was a telescoping approach that assumed steady state flow in order to 

facilitate reducing the actual volumetric area modelled and therefore grid refinement. This model 

domain was 183.6 m long, with two nodes along each arc and 320 nodes along each of the two axes; 

it was again constructed in Grid Builder (McLaren, 2012). Nodes were spaced at minimum intervals 

of 0.3 m in the transport region between the well and the base of the topographic depression based on 

calculations related to the Peclet criterion (Pe ≤ 2.0; Daus et al., 1985). Specifically, radial nodes were 

spaced at intervals of 0.3 m from 1 to 60.1 m, at intervals of 0.6 m between 60.1 and 80.5 m, at 

intervals of 0.9 m between 80.5 m and 90.4 m, and at intervals of 1.2 m between 90.4 m and 183.6 m 

along each axis. The mass balance for each solute was verified to have a residual of < 0.1% of the 

input mass over the entire simulation, as a check of numerical dispersion. The arc angle of this wedge 

domain was the same as for Wedge1, an angle whose width encompassed the typical extent of 

ponding in the base of the topographic depression. Nodal locations for the contaminant source 

features (i.e., the creek and the base of the topographic depression) were chosen to ensure that their 
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lateral distances from the pumping well were similar to observations in the field, and that the area of 

the base of the topographic depression was also similar to observations. Nodal spacing in the vertical 

direction was ≤ 0.3 m for all 71 layers; the layer containing the Clay Lens from the Wedge1 Model 

was split into two layers to facilitate this. The vertical profile of head values for nodes at radii of 

183.6 m in the Wedge1 Model after a simulation length of 60 years was used as the outer, fixed head 

boundary condition, approximating steady state conditions. Ground surface topography was again 

specified as a uniform elevation corresponding to the outflow of the base of the topographic 

depression, except in the region near the base of the topographic depression and the creek, where 

elevations of nodes were estimated based on field observations. Solute transport was performed using 

a longitudinal dispersivity ( ) of 5.0 m for the Sand and Gravel aquifer based on a rule of thumb of 

10% of the transport scale (50 m). A transverse lateral dispersivity of 0.5 m and a vertical dispersivity 

of 0.05 m were also applied to this aquifer based on general order-of-magnitude recommendations by 

Gelhar et al. (1992). For reference, a literature-based estimate of =3.0 m would be recommended 

based on a summary of dispersivity and field scale (Fetter, 2001; Equation 14b in Xu and Eckstein, 

1995

𝛼𝛼𝐿𝐿

𝛼𝛼𝐿𝐿

). A value of  is thus more conservative and would be expected to facilitate earlier  =5.0 m𝛼𝛼𝐿𝐿
contaminant arrivals at the well. Longitudinal and transverse dispersivity values (Appendix M) for the 

vadose zone layers, Silt3 layer, and Clay Lens were specified based on Rockhold et al. (2016). The 

rate at which the extended pumping test was conducted, Q = 42 L/s (CH2MHILL and SSPA, 2003), 

was used for all simulations. This was considered a likely maximum production rate for this specific 

well. 

A conservative but dispersing tracer was used as an analog for colloid transport during event 

simulations. Colloid transport in the soil matrix is not specifically supported in the modelling code 

employed (E. Sudicky, pers. comm., 2019). Well vulnerability has often been evaluated based on 

advective flow (backward particle tracking; Frind et al., 2006). Pure advective transport ignores 

colloid specific processes (Cey et al., 2009; Ginn et al., 2002; Harvey et al., 1989; Ryan and 

Elimelech, 1996; Schijven and Hassanizadeh, 2000; Unc and Goss, 2003) such as filtration and die-

off that attenuate colloid concentrations and processes such as pore size exclusion that could enhance 

the tracer velocity. The addition of dispersion allows for an analog to some of the processes that could 

lead to non-uniform velocities. Ultimately, the present study sought to examine whether hydrological 

events have the potential to increase pathogen threats to a well from infiltration at a nearby 

topographic depression, rather than to represent the precise details of colloid transport in the 

subsurface. 
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The daily effective precipitation rates calculated as described in Section 3.2.2 and Appendix J were 

applied as a flux to the upper surface of the porous media. The influence of the exact timing of the 

snowmelt occurring weeks or months after the events was expected to be negligible compared with 

the influence of ponding in the topographic depression during the events. 

Transport simulations were conducted as follows. Conservative tracers were introduced via fixed 

concentration boundary conditions into the topographic depression and the creek simultaneously over 

the time period of observed ponding in the base of the depression during each of the November 

(Simulation N1) and July (Simulation J1) events. Table 3.1 lists details for the two calibration steps 

(shaded) and the background and event simulations. Initial concentrations were arbitrarily set to 100 

kg/m3 because the analysis considered only the relative concentrations. Pressure transducer data were 

used to provide a temporally averaged, observed ponding depth that was imposed as a specified head 

in the base of the depression during this time period. Transducer data were also used to provide 

observed, fluctuating creek water levels that were imposed as a transient, specified head boundary 

condition throughout the simulation. In order to compare with a background case with no ponding in 

the base of the topographic depression, two additional simulations introduced the topographic 

depression solute over the same time periods as in the above cases for the November and July events, 

but with no ponding specified (Simulation N1NP and Simulation J1NP, respectively, where “NP” 

indicates “no ponding”). The free-solution diffusion coefficient of each solute was specified as a 

value for a non-reactive chemical species in water (Freeze and Cherry, 1979). 

Breakthrough curves were plotted from the relative overall concentrations of the two solutes at the 

well over time. Each flow-weighted concentration in the well was calculated via (Eqn. 3.1): 

 

𝐶𝐶𝑡𝑡 = �
𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡�
𝑄𝑄

�
𝑡𝑡
, (3.1) 

 

where 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�  is the rate of change of mass obtained from the model output files, Q is the total 

pumping rate at the well, and 𝐶𝐶𝑡𝑡 is the concentration leaving the domain during the time step ending 

at time t. The relative concentration was then obtained by dividing the flow-weighted concentration 

by the initial concentration applied in the base of the topographic depression or creek. The critical 
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relative concentration corresponding to the “detection” of a fecal indicator species such as E. coli in 

the raw water at the well was estimated via (Eqn. 3.2): 

 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐶𝐶
𝐶𝐶𝑠𝑠𝑠𝑠

, (3.2) 

 

where C is the typical minimum quantifiable concentration of 1 cfu/100 mL, and 𝐶𝐶𝑠𝑠𝑠𝑠 is a typical E. 

coli concentration estimate based on either the median or maximum observation at a nearby creek 

(Canagagigue Creek, about 20 km away; 220 cfu/100 mL or 31,000 cfu/100 mL, respectively; Van 

Dyke et al., 2010). The median concentration was similar to observations at the Mannheim site 

(Menkveld, 2019) and about twice the maximum concentrations found in snowmelt runoff near the 

Thornton well field in Woodstock, ON (Christie et al., 2009). The time (𝑡𝑡 at which each 

breakthrough curve first reached 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐶𝐶𝑠𝑠𝑠𝑠

=  𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 was recorded. 

The actual breakthrough of the creek solute would be underestimated by the above process because 

the Wedge2 Model does not represent the continuity of the creek as a line source extending outside of 

the boundaries of the wedge. Representing only a small section of the creek at its minimum distance 

from the well is appropriate for determining first arrival times, but microbial contaminants could 

infiltrate at greater distances from the public supply well and thus could contribute additional 

contaminants to the well at later times. This is a limitation of the simplified geometry chosen for the 

solute transport modelling. The assumption that the contamination event in the creek corresponds to 

the timing of the presence of ponding in the base of the topographic depression is a further 

simplification. Contamination in the creek could persist over a longer time period and lead to higher 

concentrations at the well. 

 

3.3 Results 

Field monitoring of several ponding events during the study suggested that the enhanced recharge 

flux occurring beneath the topographic depression significantly influences the local groundwater flow 

system under conditions of no pumping at the nearby public supply well (Figure 3.6; Appendix I; 

Menkveld, 2019). Figure 3.6a illustrates water level responses to the Nov 2014, Mar 2017, and Jul 

2017 events, Figure 3.6b shows the overall range of soil moisture profiles observed for the soil 
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beneath the base of the depression, and Figure 3.6c shows the relationship between groundwater 

levels and rainfall intensity at four monitoring wells along transect B-B’ (Figure 3.4). Hydraulic head 

values under the base of the topographic depression (CPP3) were usually larger than those measured 

beside the stream (CPP1) and always larger than those in the middle of the field (CPP8, CPP6) during 

events. This suggests that DFR has a larger impact on local water levels than the localized recharge 

occurring beneath the creek. The amplitude (peak water level – pre-event background water level) of 

the water table fluctuation beneath the base of the topographic depression was always larger than 

event responses at other wells during large rainfall events (> 10 mm; Figure 3.6c). Large-magnitude 

hydrological events at the site (water level rise > 1 m under the base of the topographic depression) 

were found to occur about 4 times per year, when sufficient rainfall and sometimes snowmelt led to 

ponding in the topographic depression (Appendix I). Over half of these large events were associated 

with rainfall > 10 mm. Soil moisture content values in vertical profiles near CPP1, CPP3, and CPP6 

were observed to increase by up to around 5% during events, compared with pre-event conditions 

(Figure 3.6b; Appendix H). General water level fluctuations in deeper wells located > 20 m away 

from the base of the topographic depression (e.g., CPP6, CPP18, and MWB; Wiebe et al., 2019) 

showed seasonal water table fluctuations within a range of 1.2 m on an annual basis, and the water 

table was located between 2 and 4 m below ground surface. For comparison, water levels under the 

base of the topographic depression (CPP3) varied from 2.4 to 0 m below ground surface. 

The Vadose Zone Model was used to derive saturated hydraulic conductivity values for the near 

surface soils under the base of the topographic depression by matching simulated to observed water 

levels during calibration. Table 3.2 shows the final derived parameters. Seven soil layers were 

interpreted beneath the base of the topographic depression, including silt layers above and below the 

Gravelly Sand unit (Silt1 and Silt2), a Silty Sand unit that combined observed silty sand and medium 

to coarse sand units (Figure 3.3), and the Silt3 unit (Table 3.2; Figure 3.5, “SILT” layer). The 

horizontal and vertical hydraulic conductivity values for the Silty Topsoil were estimated to be 3.0 

m/d and 8.5 m/d, respectively, based on the calibration; these were one order of magnitude larger than 

a value estimated by Guelph Permeameter measurements in the field (Menkveld, 2019; Missori, 

2015). Estimated hydraulic conductivity values for the Gravelly Sand unit under the floodplain were 

consistent with reasonable values (Freeze and Cherry, 1979) for a clean sand, and values for the Silty 

Sand were reasonable for the type of material. The hydraulic conductivity values for the Silty Sand 

were within ±50% of the estimate from hydraulic testing at CPP3 (Appendix K). Hydraulic 

conductivity for the Streambed was in the range for silt (Freeze and Cherry, 1979) and agreed well 
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with slug test results (Appendix K); this value allowed unsaturated conditions to develop beneath the 

creek during certain times of year, as observed (Wiebe et al., 2019). 

Recharge rates for the base of the topographic depression and for other areas of the domain in the 

Vadose Zone Model were estimated to be 370 mm and 330 mm per year, respectively, during the 

steady state spin-up period of calibration. Figure 3.7a shows that a reasonable match with observed 

event (Mar 2017) water levels was obtained for the rising limb of the groundwater level response at 

CPP5 and CPP1, though rising limb observations at CPP2 were matched less well. The delayed 

simulated response at CPP2 could be related either to the initial conditions or uncertainty regarding 

soil layering. The simulated initial conditions were generated via a steady-state spin up, while water 

levels at the field site were receding after a previous infiltration event. The presence of possible 

underlying lower permeability soil layers not included in the Vadose Zone Model could have had an 

effect on the observed rate of response at CPP2. The inclusion of thin silt layers interpreted from 

borehole data was critical for matching the observed CPP5 event response. The falling limb of the 

CPP5 groundwater hydrograph was matched to a lesser degree by the simulations, though this was 

matched more precisely at CPP2. The Vadose Zone Model calibration generally captures the 

dynamics of the observed Mar 2017 event. 

Figure 3.7b shows the results of matching a 2002 pumping test with the Wedge1 Model. The 

calibrated Kx value (86 m/d) for the main Sand and Gravel aquifer is within the range of previous 

estimates for the site (50 to 112 m/d for a saturated thickness of 16 m; CH2MHILL and SSPA, 2003; 

Hillier, 2014). Kz for the main aquifer was estimated to be 25 m/d, with a resulting anisotropy ratio of 

0.3, similar to the estimate of 0.35 by Hillier (2014) for the site. Recharge to the top of the domain 

was calibrated to be 292 mm per year during the steady state spin-up that preceded the pumping test. 

Appendix M contains a list of the final boundary conditions and additional information for the 

models. 

Results of the solute transport simulations are shown in Figure 3.8 and Table 3.3. Figure 3.8 shows 

selected breakthrough curves, including the DFR solute for the two events and one background 

simulation, and two creek solute curves. The sharp increase in breakthrough in Simulation N1 around 

110 days for the creek solute and around 120 days for the DFR solute is likely related to: 1) increased 

creek water levels around 110 days (Appendix M, Figure M.5), and 2) increased effective 

precipitation around 120 days (Appendix M, Figure M.5). The 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟  value corresponding to 

“detection” of E. coli in the raw water of the well (at a concentration of 1 cfu/100 mL) was estimated 
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to be 5 × 10-3 for the median 𝐶𝐶𝑠𝑠𝑠𝑠 and 3 × 10-5 for the maximum 𝐶𝐶𝑠𝑠𝑠𝑠. This latter value is indicated on 

Figure 3.8. Table 3.3 shows that peak relative concentrations for all events were at least one order of 

magnitude below 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 for the median 𝐶𝐶𝑠𝑠𝑠𝑠 case, suggesting that it would be unlikely for non-zero 

concentrations to be detected by sampling at the well for average contaminant conditions, in the 

absence of preferential flow paths. Under extreme conditions, when 𝐶𝐶𝑠𝑠𝑠𝑠 was two orders of magnitude 

larger than the median value, relative concentrations exceeded 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 for both solutes during 

Simulation N1. Simulation N1NP resulted in peak relative concentrations for the DFR solute of up to 

half of 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 for the maximum 𝐶𝐶𝑠𝑠𝑠𝑠 (Figure 3.8). Maximum relative concentrations for the creek 

solute were comparable and of the same order of magnitude as those for the DFR solute during 

Simulation N1, and five orders of magnitude lower during Simulation J1. Critical travel times, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡, 

were > 50 days for both solutes in all cases. In Simulation N1, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 was 142 days for the DFR solute 

and 118 days for the creek solute. For comparison, the site of the May 2000 Walkerton tragedy had 

thin overburden soils and fractured bedrock that allowed bacteria to migrate from the surface into 

shallow wells within about two days (Worthington and Smart, 2017). 

Overall, field observations indicated that infiltration beneath the topographic depression during 

events had a larger influence than the creek on local groundwater levels. Several models were used to 

match the observed dynamics related to the streambed, vadose zone, and saturated zone by modifying 

hydraulic conductivity values, and to simulate solute transport from the base of the topographic 

depression and the creek to the well. Critical concentrations corresponding to a typical (median) 

initial surface water concentration were not reached at the well for either of the events simulated. 

Critical travel times for a potential maximum initial concentration were > 50 days for both DFR and 

creek solutes. For a large initial surface water microbial concentration, the DFR solute attained 

concentrations of concern at the well after 142 days when ponding and DFR occurred in the base of 

the topographic depression, but did not reach concentrations of concern within 200 days when no 

ponding occurred. Despite 𝑡𝑡 > 50 days, Simulation N1 results suggest that ponding and associated 

DFR can lead to increased risk to an overburden public supply well by reducing the arrival time by at 

least 58 days, compared to Simulation N1NP. The creek solute reached critical concentrations at the 

well after 118 days in Simulation N1, but relative concentrations were six orders of magnitude below 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 in Simulation J1. 
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3.4 Discussion 

Threats to public supply wells due to transient hydrological events are not commonly assessed. The 

present study combined the results of detailed field site characterization and event monitoring with 

numerical modelling to assess the potential risk to an overburden well by contamination from rapid, 

short-duration, focused infiltration of potential contaminant species during large-magnitude 

hydrological events. Consideration of the threat of DFR to microbial water quality at public supply 

wells may be most important when considering the location of new water supply wells, or existing 

wells that could be exposed to a higher degree of risk following hydrological events. The following 

text: 1) discusses contaminant breakthrough at the well and highlights the large difference in tcrit for 

the DFR solute between the N1 and N1NP simulations, 2) outlines several challenges related to 

quantifying microbial travel times of concern using breakthrough curves, and 3) discusses focused 

recharge more broadly. 

Despite 𝑡𝑡 values being much larger than (more than two times) the 50-day threshold in the 

present study, factors such as preferential flow paths, well depth, and colloid-specific processes that 

enhance microbial transport could generally lead to earlier and larger relative concentration 

breakthrough at a well. The commonly used 50-day threshold is based on the assumption that 

pathogens will be inactivated to the extent that they pose an acceptable risk after this period of travel 

time in groundwater (Ferguson et al., 2003). This threshold is not necessarily a robust indicator of 

pathogen threat (Schijven et al., 2010). Some viruses can survive more than 200 days in groundwater 

(Murphy et al., 2017; Espinosa et al., 2008). Additional analysis such as microbial sampling results 

should always be considered in addition to numerical modelling results (A. Chik, pers. comm., 2020). 

The phenomenon of ponding in the base of the topographic depression appears to be one factor 

differentiating the N1 simulation, where the relative DFR solute concentration exceeded 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟, 

from the N1NP simulation, where relative concentrations were below the threshold. The results 

suggest that there could be large differences in 𝑡𝑡 between scenarios that consider or ignore event 

ponding and DFR. The 𝑡𝑡 value for the DFR solute was 142 days in Simulation N1 and was not 

identified �𝐶𝐶𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐𝑟𝑟𝑐𝑐
𝐶𝐶0

< 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟� within 200 days in Simulation N1NP. The duration of ponding also 

seemed to be a major factor for whether relative breakthrough concentrations approached 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 . 

Figure 3.8 shows increasing relative concentration breakthrough as scenarios progressed from no 

ponding (Simulation N1NP, DFR solute) to 24 hours of ponding (Simulation N1, DFR Solute) to 
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continuous ponding (Simulation N1, creek solute). The reason for the DFR solute results for 

Simulation J1 not fitting this pattern (peak concentrations were lower than N1NP peak concentrations 

at 200 days) is possibly related to lower creek water levels during the J1 simulation. Creek water 

levels during Simulation J1 were 0.71 m lower at the start of the event and were 0.11 m lower on 

average (Appendix M). Proximity of the contaminant source zone also influences breakthrough. The 

difference between the breakthrough of the creek solute and the DFR solute in Simulation N1 relates 

to the distances between their source areas and the well, where the creek solute (26.7 m from the 

well) reaches 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 prior to the DFR solute (41.2 m from the well). The relative magnitudes of the 

creek solute and the DFR solute are reversed in the Simulation J1 results. Infiltration of the creek 

solute may have been more inhibited by the lower permeability of the streambed in Simulation J1 

because of the lower water levels. Peak concentrations resulting from the creek may also be low 

because the model does not include contamination from reaches of the stream outside the model 

domain that would also normally be captured by the well. 

One of the challenges of the approach of using breakthrough curves in association with microbial 

contaminants is the inability to quantify the concentration or time of “first arrival” of the contaminant 

at a well. The point in time at which a sample is collected that is found to contain more than one fecal 

coliform is not truly the first arrival because of noncontinuous sampling and laboratory analytical 

method detection limits. The measurement of a concentration of 1 cfu /100 mL implies that the well 

would already be capturing millions of these indicator species per day if pumping at the flow rate 

noted above (42 L/s). The arrival (at concentrations of concern) of a contaminant species with a more 

clearly defined drinking water threshold or maximum allowable concentration would be easier to 

quantify with a breakthrough curve approach (e.g., Frind et al., 2006). Microbial contaminants are 

considered on more of a presence/absence basis related to sampling (Ahmed et al., 2019). Single grab 

samples are the norm due to costs and laborious analysis procedures, and it has generally not been 

possible to obtain continuous microbial concentration measurements (Besmer et al., 2016). The 

probability of detecting relatively small numbers of pathogen indicator species from a well pumping 

at reasonably high flow rate (e.g., 42 L/s) with a single sample is low. The use of a detection-based 

concentration (such as 1 cfu/100 mL) as a threshold of concern during simulations is intuitive and 

analogous to sampling for pathogen indicator species. However, threats to public health related to 

microbes could exist before this threshold is reached for the raw well water.   

A second challenge is parameter uncertainty. For instance, the  characteristics of the porous 

media (vadose zone and saturated zone) could affect travel times by weeks. Dispersivity is generally 

𝛼𝛼𝐿𝐿
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understood to vary with the scale of transport (e.g., Xu and Eckstein, 1995). Though values may be 

selected based on the literature or an expert opinion based on the site scale, accurate local values may 

be difficult to obtain without conducting a tracer test at the site. Further uncertainties relate to the 

concentration of pathogen indicator species in surface water during an event. 

Another challenge is the potential discrepancy between the advective-dispersive transport of a 

conservative solute and the more complex dynamics of colloid transport. Processes that enhance or 

attenuate microbial transport were not specifically incorporated into the present study. The present 

study illustrates the difference between advective-dispersive transport with and without consideration 

of surficial ponding, and between simulations with different ponding duration. 

The presence of unsaturated soil above the water table (hydraulic disconnection) can be seen as a 

source water protection mechanism. Hydraulic disconnection may significantly slow the migration of 

contaminants from ground surface to the water table. The magnitude of the hydraulic conductivity in 

unsaturated soils may be one or two orders of magnitude smaller than the saturated value because it is 

a function of the soil water content. Soil under the base of the topographic depression became 

saturated essentially from the initial water table position up to the surface during some observed 

events, while the well was not pumping. When the well was simulated to be pumping, the soil did not 

become saturated up to ground surface because of the lower initial water level beneath the 

topographic depression. Other researchers have noted that the proximity of the water table to the 

ground surface could be a concern for sand and gravel extraction or other development operations that 

remove overburden sediments, because decreasing vadose zone thickness could potentially reduce 

this buffer against contaminant transport (Peckenham et al., 2009; Sousa et al., 2014). 

Monitored events showed a threshold response and repeated patterns in terms of overland runoff 

and ponding (McDonnell et al., 2007). Ponding, infiltration, and DFR typically occurred following a 

large magnitude of combined rainfall/snowmelt (> 10 mm), and large water table responses (> 1 m 

amplitude) beneath the topographic depression occurred about four times per year, most often over 

the winter months from Nov to Apr (Appendix I). DFR could be an aspect of landscape-scale 

enhanced recharge and preferential flow, analogous to Prairie Potholes in western Canada or playas in 

the High Plains Aquifer, USA (Crosbie et al, 2013; McDonnell et al., 2007; Zebarth et al., 1989). 

Researchers in these areas have found that focused recharge locations within the landscape are an 

important management consideration for source water protection and for the maintenance of recharge 

functionality during land use change (e.g., Gurdak and Roe, 2010; van der Kamp and Hayashi, 2009). 
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Permanent water courses such as the reach of Alder Creek at the Mannheim field site are more 

obvious microbial contaminant threats than intermittent ponding in topographic depressions. The 

creek in this case was a losing stream, but field data suggested that DFR had a larger influence on the 

local water table than localized recharge beneath the creek. The simulations suggested that relative 

creek tracer concentrations at the well could be similar to those corresponding to the DFR solute in 

certain scenarios such as the large November event. Despite some results (Simulation J1) pointing to 

a minor role for the creek in transmitting microbial contaminants into the subsurface, the creek was 

located closer to the well than the base of the topographic depression and was observed to overflow 

its banks during snowmelt events. The simulations did not specifically address this type of scenario, 

and the creek could generally be a larger threat than indicated by the Simulation J1 results. The creek 

would also be a larger threat if the streambed deposits did not have a hydraulic conductivity (Table 

3.2) that limited flow and was orders of magnitude less than the banks and surrounding deposits. 

Monitoring of hydrological events can be a labour intensive task. Collecting manual measurements 

during event water level peaks is difficult in terms of timing. Yet any manual measurements collected 

during events are valuable as verification of sensor data. The minimum required equipment to 

monitor events would be a pressure transducer installed at the ground surface in locations of potential 

ponding. Shallow observation wells allowed arrival of draining event water at the water table to be 

verified via water level responses. Event monitoring in the present study could have been improved 

with the use of cameras to record event responses when no field staff were on site. Cameras could be 

useful for verifying the presence of ponded water. This could be especially important during times of 

freeze-thaw cycles (e.g., Menkveld, 2019) when a surface water transducer’s data might be unreliable 

due to freezing of the sensor diaphragm. 

Detailed analysis of both hydrological events and site stratigraphy, in association with solute 

transport modelling, has the potential to aid assessment of well vulnerability to large-magnitude 

events. Provincial public supply well management policies in Ontario provide a limited focus on 

hydrological events, despite the fact that the May 2000 Walkerton tragedy involved a heavy rainfall 

event. Guidance is also lacking in terms of how to proactively characterize the vulnerability of 

proposed public supply wells to events. The present study suggests that increased risk may exist not 

only for public supply wells screened in fractured bedrock but also for those screened in overburden 

sediments during the sudden challenges (Rizak and Hrudey, 2007) posed by large-magnitude 
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hydrological events. Inclusion of ponding and its duration, and the proximity of infiltration to the well 

are likely two of the most important factors related to projecting arrival time and peak concentration. 

 

3.5 Conclusions 

The present study illustrates how topography-induced overland runoff leading to DFR has the 

potential to increase microbial risk to overburden public supply wells during large-magnitude rainfall 

and/or snowmelt events. Simulations suggested that under extreme conditions, arrival times for 

tracers representing microbial contaminants originating at the ground surface within 50 m of a well 

could decrease by at least 58 days if ponding and DFR occurred. The DFR solute was simulated to 

reach a public supply well at concentrations analogous to detection within a travel time of 142 days 

during a large November rainfall and snowmelt event. For a background case with no event ponding, 

the peak relative concentrations were three times lower, below the estimated detection threshold, and 

considered unlikely to be a threat. These results suggest that the limited focus on hydrological events 

within public supply well management could be ignoring potential problems related to temporary, 

event-induced ponding during extreme events for some sites. The results also suggest consideration of 

event-related risks for a broader range of wells than merely those screened in fractured bedrock, such 

as those implicated in the Walkerton 2000 disease outbreak. 

The conditions related to microbial concerns �𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐶𝐶𝑠𝑠𝑠𝑠

≥ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟� at the study site were found to be 

associated with the most extreme hydrological event within the field data record. The largest event on 

record in the 3.5-year period was a late autumn heavy rainfall event that followed the melting of a 20 

cm snowpack (November 2014). This was the only event simulated to exceed a threshold for relative 

concentrations analogous to detection of pathogen indicator species at the well for a solute originating 

in ponding in the base of a topographic depression. A summer (July 2017) rainfall event with half of 

the effective precipitation and half of the duration of ponding resulted in relative concentrations 

below the threshold of concern. Threshold relative concentrations were only exceeded in the largest 

event for a high surface water pathogen indicator species concentration (31,000 cfu/100 mL). 

Calculations using a typical median surface water pathogen indicator species concentrations for 

another creek in the area (220 cfu/100mL; Van Dyke et al., 2010) seemed unlikely to estimate 

concentrations of concern in raw well water. 
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Breakthrough of a tracer originating in a creek located between the topographic depression and the 

well differed depending on the event, likely as a result of creek water levels and overbank flooding. In 

the November event, the estimated critical travel time for the creek solute was 118 days and the peak 

relative concentrations were of the same order of magnitude as the DFR solute. Peak relative 

concentrations for the creek were six orders of magnitude below the threshold related to the higher 

initial surface water pathogen indicator species concentration during the July event, when creek water 

levels were initially 0.71 m lower, and on average 0.11 m lower, than in the November event 

simulation. 

For many public supply wells, the major acute threat could be the possibility that the transport of 

event water could deliver large concentrations of pathogenic microbes to a well. This is typically 

mitigated by attenuation within the subsurface and by sufficient water treatment. DFR may in extreme 

cases be a threat to the raw water at nearby overburden public supply wells.  

Cameras, pressure transducers installed at ground surface, and shallow wells instrumented with 

pressure transducers could be used to ascertain whether event-induced ponding and DFR occurs in 

topographic depressions when no field staff are on site. Such monitoring could provide water 

purveyors with early warning of future potential impacts on the water quality in their supply wells.  



 

 61 

3.6 Tables 

 
Table 3.1. List of events simulated. 

Event Model 
Total 

precip.* 
(mm) 

 Ponding 
duration for 

base of 
topographic 
depression 

(hr) 

Description† 

26 – 30 Mar 
2017 

(Calibration) 

Vadose 
zone 19 6.5 

Calibrate properties for upper three soil layers 
(Kx

‡ = Ky, Kz). Minimal stream influence 
(stream rise ≤ 10 cm). Average ponding depth 
= 2 cm. 

2002 Pumping 
Test 

(Calibration) 
Wedge1 N/A 0 

Calibrate main aquifer properties (Kx
‡ = Ky, 

Kz). Q = 42 L/s§. Pump shut off for 4.2 days, 
then restarted. 

Background 
conditions 

(Simulation 
N1NP) 

Wedge2 
Based on 
observat-

ions¶ 
0 Spin-up. Q = 42 L/s§. 

Nov 2014 
(Simulation 

N1) 
Wedge2 87 24 

Largest event on record. Heavy rainfall (67 
mm) followed snowpack melting (20 mm 
SWE**). Unfrozen soil. Average ponding depth 
= 10 cm. Q = 42 L/s§. 

Jul 2017 
(Simulation 

J1) 
Wedge2 43 11.5 

Summer event. Unfrozen soils. Rapid 
response: shortest rising limb of any observed 
groundwater hydrograph. Average ponding 
depth = 5 cm. Q = 42 L/s§. 

* Total precipitation over the previous 4 days and up to the time of the peak water level. 
† Event observations (for Nov 2014, Mar 2017, and Jul 2017) from Appendix I and Wiebe et al. 

(2019). 
‡ K = saturated hydraulic conductivity. The direction is specified as “x”, “y”, or “z”. 
§ Q = effective 3D pumping rate (CH2MHILL and SSPA, 2003; the wedge model applied a fraction 

equivalent to the total pumping rate multiplied by the ratio of the angle of the wedge to 360°). 
¶ Effective precipitation was calculated based on rainfall and snowmelt observations as described in 

Appendix J. 
** SWE = snow water equivalent; assuming a 10:1 ratio of snow thickness to liquid water height. 
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Table 3.2. Model parameters. 

Soil Unit Kx = Ky
* 

(m/d) Kz (m/d) 
Specific 
Storage† 

(m-1) 

van Genuchten parameters‡ 
α 

(m-1) n θs§ θr 

20 Apr 2016 to 19 Apr 2017 – Streambed Model (Transient Calibration) 
Streambed 6.0E-3 6.0E-3 3.0E-3 2.0 1.2 0.5 0.1 
Silty Sand See below 

26-30 Mar 2017 – Vadose Zone Model (Transient Calibration) 
Silty Topsoil 3.0 8.5 1.0E-4 1.2 1.39 0.4 0.1 

Silt1 6.7E-2 0.26 1.0E-4 1.2 1.39 0.4 0.1 
Gravelly Sand 17 5 5.0E-5 1.5 3.8 0.3 0.05 

Silt2 6.6E-2 3.2E-2 1E-4 1.2 1.39 0.4 0.1 
Silty Sand 0.20 0.11 5.0E-4 2.5 2.3 0.37 0.08 

Sand and Gravel See below 
Silt3 1.9E-3 1.1E-3 1.0E-4 1.2 1.39 0.4 0.1 

Streambed See above 
2002 Pumping test at public supply well – Wedge1 Model 

Silty Topsoil See above 
Silt1 See above 

Gravelly Sand See above 
Silt2 See above 

Silty Sand See above 
Streambed See above 

Sand and Gravel 86 25 5.0E-5 1.5 3.8 0.3 0.05 
Silt3 See above 

Clay Lens 9.7E-4 9.8E-4 3.0E-3 2.0 1.2 0.5 0.1 
* K = saturated hydraulic conductivity 

† Based on Batu (1998), Domenico and Mifflin (1965), and Duffield (2019) 

‡ α, n, θs, and θr are van Genuchten parameters (inverse of air entry pressure, fitting parameter, 

saturated moisture content, and residual moisture content, respectively).  

§ Assumed equal to porosity 
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Table 3.3. Comparison of breakthrough results for 200 days of travel time. 

Event Solute Maximum C/C0 
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for 

maximum 𝐶𝐶𝑠𝑠𝑠𝑠 
(days) 

Nov 2014 
(Simulation N1) 

DFR 5.9E-5* 142 

Creek 5.4E-5* 118 

Jul 2017 
(Simulation J1) 

DFR 5.6E-6 -† 

Creek 1.3E-11 - 
Nov 2014 Background 

(Simulation N1NP) DFR 1.6E-5 - 

Jul 2017 Background 
(Simulation J1NP) DFR 1.0E-17 - 

* Shaded cells correspond to C/C0 > 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟  for the maximum 𝐶𝐶𝑠𝑠𝑠𝑠 case.  

† “-” signifies “not available” (maximum C/C0 < 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟 for maximum 𝐶𝐶𝑠𝑠𝑠𝑠) 
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3.7 Figures 

 

 

  

 
Figure 3.1: Mannheim field site (CH2MHILL and SSPA, 2003; DMTI, 2011; Esri et al., 2013; 

First Base Solutions, 2006; GRCA, 1998; Menkveld, 2019; Stantec, 2013; Wiebe et al., 2019). 
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Figure 3.2: Surficial geology (CH2MHILL and SSPA, 2003; DMTI, 2011; Esri et al., 2013; First 

Base Solutions, 2006; GRCA, 1998; Hillier, 2014; Menkveld, 2019; modifying OGS, 2010; 

OMECP, 2018). 
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Figure 3.3: Stratigraphic cross-section (Appendix H; Menkveld, 2019; NERC, 2017; BGS Groundhog® Desktop, Copyright © 

BGS/NERC (2019); OMECP, 2018). Vertical exaggeration = 4.0. Two thin silt layers observed above and below the gravelly sand 

unit near CPP2 are not shown. 
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Figure 3.4: Equipment along transect through topographic depression in a) plan view, and b) cross-

section (First Base Solutions, 2006; Menkveld, 2019; Wiebe et al., 2019). 
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Figure 3.5: Model grids for the (a) Vadose Zone, b) Wedge1, and c) Wedge2 models (McLaren, 2012; Tecplot, 2017). 
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Figure 3.6: Observed event responses at the field site (Appendix I; Wiebe et al., 2019): a) Water 

levels, b) range of soil moisture profiles under base of topographic depression, and c) relationship 

between event water level response and rainfall. 
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Figure 3.7: Matching of observed water levels: (a) Vadose Zone Model with 26 – 30 Mar 2017 

event, (b) pumping test responses with Wedge1 model (after CH2MHILL and SSPA, 2003). 
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Figure 3.8: Solute breakthrough curves for the November (N1), November background (N1NP), 

and July (J1) event simulations. Simulation N1NP had no specified event ponding in the base of the 

topographic depression. The 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,𝑐𝑐𝑟𝑟𝑟𝑟 value related to the maximum 𝐶𝐶𝑠𝑠𝑠𝑠 initial concentration is 

shown as a dashed horizontal line. 
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Chapter 4 
Effects of spatial rainfall variability and actual evapotranspiration 
estimates on cumulative recharge and the sustainability of public 

supply wells 

4.1 Introduction 

Precipitation variability has the potential to significantly influence groundwater recharge within a 

watershed system and confound the estimation of the temporal and spatial recharge distribution for 

that watershed. As the largest component of the water budget, precipitation generates surface runoff, 

influences stream baseflow via recharge fluxes, is an important factor affecting the water available for 

actual evapotranspiration and storage within the subsurface reservoirs, and likely contributes most of 

the uncertainty in recharge within a water budget (Wiebe and Rudolph, 2020). Though spatial 

variations in precipitation have repeatedly been studied in streamflow models (Andréassian et al., 

2001; Bell and Moore, 2000; Faurès et al., 1995; Obled et al., 1994; Zhao et al., 2013), few studies 

have looked at impacts on groundwater recharge. Sapriza-Azuri et al. (2015) showed that recharge 

rates could differ by a factor of 2 between simulations, if stochastic rainfall was applied at different 

spatial scales over several decades. Mileham et al. (2008) found that recharge rates calculated using a 

semi-distributed model for SW Uganda were highly sensitive to the precipitation interpolation 

method. Wiebe and Rudolph (2020) suggested that annual recharge rates could vary by up to 44% in 

short-term simulations (3 years) using a coupled and fully-distributed watershed model. However, 

general long-term linkages between the degree of spatial variability of precipitation and the associated 

potential variability of recharge rate estimates are poorly understood. 

It is well known that there are relatively consistent spatial differences in annual precipitation at 

regional scales. For instance, lake-effect precipitation belts around the Laurentian Great Lakes have 

been studied by Veals and Steenburgh (2015) and Dewey (1973). Also, the dominant type of 

precipitation can vary in different areas. Convective rainfall affects smaller areas than frontal systems 

(Shook and Pomeroy, 2012), and storm track trends may lead to regional or even local differences. 

Orographic effects on rainfall patterns may be present in some regions, such as the central West Coast 

of North America (Dingman, 2015). Krajewski et al. (2003) studied the spatial correlation distances 

of rainfall at five different sites and found that three tropical sites with localized convective rainfall 

had much lower spatial correlation than two sites in the middle of the contiguous USA, where frontal 



 

 73 

storms were more common. One of the main questions for groundwater management is this: at what 

scale do place-to-place differences in precipitation tend to average out over time such that it is 

reasonable to assume an average value for that region? Alternatively, at what scales do consistent 

patterns exist and define regions of microhydrology with observable differences in precipitation over 

the long term? Further, are precipitation characteristics within a watershed transitioning from being 

more uniform to more isolated, or vice versa, with climate change (e.g., Shook and Pomeroy, 2012)? 

A key unknown is whether there exists a spatial scale for a particular geographic region at which 

long-term average precipitation is sufficiently uniform to lead to minimal differences in recharge. 

The existence of microhydrology regions with distinct precipitation signatures could occur in 

several ways. If precipitation processes are related to repeated patterns, such as storm track trend 

directions, then conceptualizing precipitation patterns in terms of “belts” could be promoted. 

However, if precipitation processes may be viewed as largely random, the effect of Poisson clustering 

could be invoked (Onof et al., 2000; Rodriguez-Iturbe et al., 1999). Poisson clustering describes the 

tendency of truly random data to contain clusters (Rosenthal, 2005). The idea here is that not only 

might storm cell development be viewed as a stochastic Poisson clustering process (e.g., Rodriguez-

Iturbe et al., 1999), but also spatially variable rainfall trends themselves. Further, other factors could 

influence precipitation patterns. Urban areas could influence precipitation via a heat island effect, i.e., 

variations in the land surface thermal regime and wind speed changes due to urban development 

(Choi, 1998; Renard, 2017). Temporal cycles such as the El Nino-Southern Oscillation, North 

Atlantic Oscillation, Pacific-North America Oscillation, and North Pacific Oscillation also influence 

precipitation patterns by modifying the jet stream and storm tracks (Dingman, 2015). 

Trends between watershed evapotranspiration and precipitation (P) have been found to exist despite 

variability in precipitation, geography, and spatial scale. The Budyko curve (Budyko, 1961) is a 

commonly used empirical tool for conceptualizing the relationship between the ratio of long-term 

average actual evapotranspiration (𝐴𝐴𝑃𝑃𝑃𝑃������) to long-term average total precipitation (𝑃𝑃�) as a function of 

the long-term average index of aridity (Gentine et al., 2012). The index of aridity is the ratio of 

potential (reference) evapotranspiration (𝑃𝑃𝑃𝑃𝑃𝑃  𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑜𝑜 𝑃𝑃������ �����) to �. Though the curve was originally 

developed (Budyko, 1961) using 1,200 watersheds with areas > 1,000 km2, in a different study it was 

shown to hold for more than 400 watersheds with sizes between 60 and 11,000 km2 and is an example 

of a hydrological, empirical relationship whose causal mechanism is not completely understood 

(Gentine et al., 2012). The influence of actual evapotranspiration (AET) estimates on recharge rates is 
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often not considered, but it could be large because AET is frequently a large water budget component. 

Annual AET estimates could have uncertainty of ±10% (Kristensen and Jensen, 1975) or more. 

AET estimates at the watershed scale over long time periods are difficult to obtain from in situ field 

sensors. AET methods such as Eddy covariance, Bowen Ratio Energy Balance, scintillometry, and 

weighing lysimetry have disadvantages such as requiring expensive field instruments, relying on 

complex data analysis, or having a lack of energy budget closure (Moorhead et al., 2017). Derived 

AET estimates at individual locations may not be representative of the entire watershed (e.g., Eddy 

covariance scale ~ 104 m2; Wilson et al., 2001) and may be prohibitively expensive to obtain by 

monitoring throughout a watershed. Relatively few watersheds have long-term AET estimates derived 

from such methods. The Budyko curve offers a simple, empirical method to estimate AET for many 

watersheds, if local measurements related to PET, P, and streamflow (Q) are available. 

Sustainable groundwater management in a watershed context essentially involves an accurate 

historical and ongoing account of the dynamic components of the water budget. One of the main 

challenges is to quantify groundwater recharge, a vital component of the flow system that is too often 

solved for as the residual of a water budget (e.g., Wiebe and Rudolph, 2020). Recharge rates are an 

important factor influencing the dynamic spatial extent of well capture zones, the mass flux of non-

point source contaminants to the water table, and the overall sustainability of wells and streams from 

a quantity perspective. Each of these three metrics – well vulnerability, water quality, and quantity – 

will be briefly described in the following. 

Well vulnerability will be considered in this chapter to refer to the possibility for a well to capture 

non-point source contaminants, with emphasis on the total area of the land surface that could 

contribute contaminants to the well. This definition is a subset of the “intrinsic well vulnerability” 

term defined by Frind et al. (2006) because only the areal extent of the capture zone rather than the 

entire hydrogeologic pathway is considered, and specific contaminants are not considered. This 

capture zone area conceptually contributes recharge flux to the drawdown cone of a well pumping 

under steady state conditions. The delineation of capture zones always involves uncertainty (Martin 

and Frind, 1998). For example, Piersol (2005) found that three different sets of recharge and 

hydraulic conductivity distributions with similar degrees of calibration (base case, and upper and 

lower bounds on its ±95% confidence interval) in FEFLOW yielded different capture zones for a 

public supply well network in Panama. Total capture zone areas differed by ±30% from the base case, 

and areas without overlap were about 25% of the base case area. Similarly, Sousa et al. (2013a) found 
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that three different models of the same watershed, each with a similar degree of calibration, yielded 

dramatically different capture zones. The areas of the 50% probability of capture zone differed by 

about ±70% with respect to the simulation with the median area. Capture zones are an important tool 

for assessing the threats to a well due to land surface activities. 

Contaminant migration and capture degrades well water quality and is frequently a major concern 

for managers of public supply wells. The legacy of non-point source contaminants such as 

agricultural nutrients and road salt applications can lead to decades of degradation of groundwater 

quality that threatens the viability of wells (e.g., Bester et al, 2006; Kent and Landon, 2013). 

Beneficial/best management practices (BMPs) are often developed using numerical models, where 

recharge rates are a critical factor for estimating mass loadings to the water table (e.g., Chesnaux et 

al., 2007; Hérivaux et al., 2013; Molénat and Gascuel-Odoux, 2002; Sousa, 2013). For example, 

Sousa (2013) investigated how nitrate loadings at the water table could vary based on spatially 

distributed, field-derived, recharge estimates. The level of uncertainty associated with recharge rates 

may affect the prediction of BMP efficacy (Sousa, 2013), and spatial variations in precipitation are 

generally not considered. Point source contaminant transport models could be impacted also. Parker 

et al. (2007) concluded that data from a limited number of weather stations were insufficient to model 

the dynamic impacts of rainfall on pesticide contamination. The degree to which loadings estimates 

could vary based on weather station network input data is unknown. 

Total recharge within a watershed is important from a broad sustainability perspective (Bruce et al., 

2009; Devlin and Sophocleous, 2005). It is an important factor related to the quantity of groundwater 

and magnitudes of hydraulic gradients that sustain baseflow to streams and replenish amounts 

extracted for public water supply and irrigation. Total recharge impacts contaminant mass loadings, 

which influence the concentrations experienced at a well, water treatment, and the exposure time of 

wells to contaminants (Frind et al., 2006). Variation in recharge may lead to changes in capture zone 

areas for wells, thus affecting management decisions regarding which land use activities potentially 

have an impact, and which contaminants are at risk of being captured by the well. 

The objective of this study was to quantify the variability of metrics related to well vulnerability, 

water quality, and overall water quantity in terms of their relation to rainfall and AET variability via 

recharge rate estimates at the watershed-scale and over a long time period. The results of a short-term, 

local rainfall variability analysis were projected to multiple decades in order to assess the impact of 

this variability on the range of possible recharge rates in a typical watershed. A vadose zone water 
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budget equation was rearranged to solve for cumulative recharge as a function of: P over the 

watershed, AET estimated from the Budyko curve, and the average surface water component of 

streamflow. Thousands of random 46-year rainfall time series were generated for virtual stations near 

the watershed in order to assess a likely range in cumulative recharge estimates. Each realization 

consisted of three rainfall time series and was assigned annual values of random AET estimates that 

were normally distributed about the Budyko curve, based on observed variations across 45 US 

MOPEX (Duan et al., 2006) watersheds having 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� ratios similar to the ratio for Alder Creek. It 

was hypothesized that variability in average recharge among the set of realizations would be non-

trivial despite the spatial and temporal averaging of precipitation over the watershed. It was also 

hypothesized that precipitation would be the dominant contributor to recharge variability when 

compared to AET because precipitation is a larger component of the water budget. The rainfall time 

series were selected based on spatial correlation analysis among local weather stations. The average 

and quantiles outlining the 95% confidence interval from the distribution of cumulative recharge 

estimates were used to provide a sense of the sensitivity of capture zone areas, non-point source 

loading estimates, and total recharge to spatial rainfall and watershed AET variability. 

 

4.2 Methods 

4.2.1 Field Site 

Alder Creek is a tributary to the Nith River within the Grand River basin (6,800 km2; OMNRF, 

2016). The Alder Creek watershed has an area of 78 km2 and is located on the Waterloo Moraine 

outside of Kitchener-Waterloo, Ontario (Figure 4.1). The Waterloo Moraine consists of inter-bedded 

sand/gravel layers and silt/clay layers, resulting in a complex stratigraphic system with discontinuous 

aquifers and aquitards (Bajc et al., 2014; Martin and Frind, 1998). Groundwater recharge to the 

underlying glaciofluvial aquifers in the watershed provides source water to about seven well fields 

operated by the Regional Municipality of Waterloo (Brouwers, 2007). An estimated 108 mm per year 

is pumped by the wells located directly within the watershed (Matrix and SSPA, 2014b). Land use in 

the watershed is predominantly agricultural (ROW 2010) and coarse-grained sand and gravel deposits 

are present at the ground surface over about half of the watershed area (OGS, 2010). Total average 

annual precipitation in the area is around 900 mm per year, with 15% snow on average (Roseville 

Environment Canada weather station; AquaResource, 2008; Government of Canada, 2019; OMNR, 
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2007). PET at this station is around 780 mm per year on average, as estimated using the Penman-

Monteith method (UNFAO56 ETo Calculator; Raes, 2009) based on daily minimum and maximum 

temperatures (Government of Canada, 2019) and local wind speed measurements (Wiebe et al., 2019; 

SOWC weather stations, Figure 4.1; Appendix A; Appendix C). Total streamflow at the Water 

Survey of Canada (WSC) gauge in the middle of the watershed equates to 140.5 mm per year on 

average for the area upstream of the gauge (Figure 4.1; WSC, 2019). However, the lower reaches of 

the creek downstream of the WSC gauge are thought to receive more groundwater discharge than the 

upper reaches due to the lowering of the water table by the public supply wells in the north and mid-

east of the watershed (CH2MHILL and SSPA, 2003). The issue of anthropogenic modifications to the 

watershed is discussed below. 

A network of six local rain gauge stations (WS2 to WS7; Figure 4.1) was installed in and around 

the watershed by the Southern Ontario Water Consortium (SOWC) to provide greater resolution on 

rainfall amounts in the area. Rainfall data (Wiebe et al., 2019) were recorded via tipping bucket rain 

gauges surrounded by Alter-type wind screens. Data were collected from 2014 to 2016 on a 15 min 

time scale and were aggregated up to daily scale for the correlation analysis described below. 

Snowfall was not recorded continuously at these stations, so annual sums of the daily snowfall 

amounts from the Roseville weather station were used (Government of Canada, 2019). Infrequent 

manual measurements of snowpack thickness near WS4 were within 2 cm of the Roseville 

measurements (Government of Canada, 2019), and the average difference between Roseville 

measurements and the average from sonic snow depth readings at all six local stations (Wiebe et al., 

2019) was 2.0 cm during the 2014 to 2015 winter season (Nov 2014 to Mar 2015; Appendix D). 

This watershed has been modelled many times because of its importance for water supply (e.g., 

CH2MHILL and SSPA, 2003; Martin and Frind, 1998; Matrix and SSPA, 2014a, 2014b; Sousa et al., 

2013a). The current study seeks to build upon previous work by assessing the ranges of plausible 

variations in rainfall and AET across the watershed and the resulting long-term recharge variability. 

An increased understanding of the uncertainty of recharge estimates could assist groundwater 

management in the area with respect to the three management metrics. 
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4.2.2 Analysis 

The overall idea for this analysis was to quantify the variability of groundwater recharge based on 

spatial variation in rainfall and uncertainty in watershed AET estimates via a Monte Carlo framework 

involving: the generation of thousands of rainfall time series constrained by observed spatial 

correlation statistics, AET estimates based on the Budyko curve, calculation of the total recharge over 

several decades, and the estimation of several metrics related to sustainable groundwater 

management. Rainfall time series were selected from randomly generated time series based on the 

criterion that daily rainfall spatial Spearman Rank Correlation coefficients were within the range 

observed among seven weather stations within 3 km of the watershed (six local rain gauges and one 

national station). The generation of rainfall time series was performed using a parametric approach 

based on mixed exponential distribution (e.g., Li et al., 2013) fitting to both the observed rainy day 

spacing and observed rainfall amounts (Appendix N). The range of Spearman coefficients was 

developed based on the observed daily rainfall rates for the years 2014 to 2016. Scripts (Appendix O) 

were written for the scientific computation program GNU Octave (Eaton et al., 2011) to perform the 

calculations for the stochastic water budget analysis. 

Both parametric and non-parametric approaches have been used for stochastic rainfall generation 

(Basinger et al., 2010; Sharma and Mehrotra, 2010). Both types of approaches construct a sequence of 

rainy and non-rainy days and then generate rainfall amounts for the rainy days (e.g., Lall et al., 1996; 

Sharma and Mehrotra, 2010). Parametric approaches have the advantages of being simple (Wilks, 

1998) and applicable to ungauged locations in sparse data situations (Sharma and Mehrotra, 2010), 

and the disadvantage of being somewhat less portable than non-parametric approaches (Basinger et 

al., 2010). Fitting of one of several distributions (e.g., exponential, gamma, Weibull) to the observed 

rainfall probability distribution is required for parametric models (Vu et al., 2018). Non-parametric 

approaches do not make assumptions about the statistics of local rainfall, but it is difficult to find an 

approach that performs well across different climates (Vu et al., 2018). Such approaches typically rely 

on Markov chain models for the spacing between rainy days (Lall et al., 1996). Non-parametric 

approaches such as the Neyman-Scott Rectangular Pulse method (Camici et al., 2011, 2014) may 

employ seasonal statistics derived from observation data. Non-parametric models tend to resample 

observed rainfall data and thus restrict amounts to those in the historical record (Basinger et al., 

2010). The present study selected a parametric approach for simplicity, acknowledging that 

transferring the approach to another site would require fitting a local rainfall probability distribution 

for that context. Obtaining rainfall spatial correlation similar to the observed across multiple sites was 
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accomplished by adjusting the order of rainfall events in the random time series, following the 

method used by Tarpanelli et al. (2012), which was based on Iman and Conover (1982). Testing 

conducted by modifying a non-parametric approach (a single site Neyman-Scott Rectangular Pulse 

method; Camici et al., 2011, 2014) resulted in an underestimate of observed mean annual rainfall by ≥ 

25 mm and was rejected in favour of the parametric approach described below. 

 

4.2.2.1 Water Budget 

The first step of the analysis employed in the present study was to derive an equation to estimate 

long-term recharge rates from a combination of measured and stochastic hydrological data. Many 

studies have used a water budget approach coupled with stochastic methods to estimate recharge (e.g., 

Baalousha, 2009; Crosbie et al., 2018; Scibek and Allen, 2006; Sene, 1996). Consider a vadose zone 

(VZ) water budget for the watershed region between the ground surface and the water table (Eqn. 

4.1): 

 

∆𝑆𝑆𝑉𝑉𝑉𝑉 = 𝐼𝐼 − 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉 − 𝑅𝑅, (4.1) 

 

where ∆𝑆𝑆𝑉𝑉𝑉𝑉 is storage change in the vadose zone, 𝐼𝐼 is infiltration (the difference between precipitation 

and overland flow: 𝐼𝐼 = 𝑃𝑃 − 𝑄𝑄𝑂𝑂𝐿𝐿), 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉 is actual evapotranspiration from the vadose zone, and 𝑅𝑅 is 

recharge flux across the water table. All terms have units of L3/L2, i.e., length corresponding to a unit 

area. Substituting for 𝐼𝐼 and rearranging for recharge (Eqn. 4.2): 

 

𝑅𝑅 = 𝑃𝑃 − 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉 − 𝑄𝑄𝑂𝑂𝐿𝐿 − ∆𝑆𝑆𝑉𝑉𝑉𝑉. (4.2) 

 

This water budget could assume that all recharge occurs following drainage through the vadose zone, 

and that exchange flux (indirect recharge, 𝐼𝐼𝑅𝑅) from surface water bodies to the water table is 

negligible. Alternatively, 𝑄𝑄𝑂𝑂𝐿𝐿, which is stream runoff excluding groundwater baseflow, could be 

interpreted as the net overland flow into the stream, i.e., 𝑄𝑄𝑂𝑂𝐿𝐿,𝑛𝑛𝑟𝑟𝑡𝑡 = 𝑄𝑄𝑂𝑂𝐿𝐿,𝑇𝑇𝑜𝑜𝑡𝑡𝐶𝐶𝑟𝑟 − 𝐼𝐼𝑅𝑅, and the vadose 

zone drainage assumption would not be necessary. Assuming that steady state conditions are 

approximated within the watershed after multiple decades, and that the cumulative storage changes 

approach zero (Eqn. 4.3): 
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𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡 = ∑ �𝑃𝑃𝑦𝑦𝑐𝑐 − 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉,𝑦𝑦𝑐𝑐 − 𝑄𝑄𝑂𝑂𝐿𝐿,𝑦𝑦𝑐𝑐�𝑛𝑛
𝑦𝑦𝑐𝑐=1 ,  (4.3) 

 

where 𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡 is the total, cumulative recharge over the watershed over 𝑛𝑛 years, and 𝑦𝑦𝑜𝑜 is the index of 

the year. Re-writing in terms of the ratio of 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉/𝑃𝑃 and expressing the overland flow fraction of 

total runoff in terms of the baseflow index (BFI) (Eqn. 4.4): 

 

𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡 = ∑ �𝑃𝑃𝑦𝑦𝑐𝑐 − 𝑃𝑃𝑦𝑦𝑐𝑐 �
𝐴𝐴𝐴𝐴𝑇𝑇𝑉𝑉𝑉𝑉,𝑦𝑦𝑡𝑡

𝑃𝑃𝑦𝑦𝑡𝑡
� − �1 − 𝐵𝐵𝐵𝐵𝐼𝐼𝑦𝑦𝑐𝑐�𝑄𝑄𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐�𝑛𝑛

𝑦𝑦𝑐𝑐=1 , (4.4) 

 

where all terms relate to the watershed overall, 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉,𝑦𝑦𝑐𝑐/𝑃𝑃𝑦𝑦𝑐𝑐 may be generated from 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡/𝑃𝑃 ratios 

estimated based on the Budyko curve (e.g., Gentine et al., 2012) and observed variation about it 

(discussed further below), 𝐵𝐵𝐵𝐵𝐼𝐼𝑦𝑦𝑐𝑐 is an annual estimate of baseflow index derived from the WSC 

stream gauge within the watershed, and 𝑄𝑄𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐 is an estimate of the total annual streamflow 

(baseflow plus overland flow) that is derived from the measured streamflow at the WSC stream gauge 

and a scaling factor to account for the ungauged area below the gauge. The precipitation term (𝑃𝑃𝑦𝑦𝑐𝑐) 

here is the annual average precipitation for the watershed that is calculated as the sum of observed 

snowfall and the weighted average of stochastic rainfall time series. This method assumes the 

following: 

 

1) Vadose zone storage change over the 𝑛𝑛 years is zero; 

2) a time period of 𝑛𝑛 years is sufficient to capture the variability in PET estimates; 

3) the watershed is close to its natural state and anthropogenic influences are minor, justifying 

the use of the Budyko curve to estimate 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃�; 

4) variation in 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐/𝑃𝑃𝑦𝑦𝑐𝑐 ratios are reasonably represented by normally distributed values 

about the mean value from the Budyko curve (Gentine et al., 2012) and the maximum 

standard deviation with respect to the curve for 45 watersheds in the US MOPEX dataset 

(Duan et al., 2006) with 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� ratios similar to (within ±0.05 of) the ratio for Alder Creek; 
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5) 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉/𝑃𝑃 may be estimated from Budyko curve estimates of 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡/𝑃𝑃 values by applying 

𝑃𝑃𝑃𝑃𝑃𝑃������ within the areas of the watershed where the water table is at or close to ground surface 

(areas mapped as bog, marsh, open water, or swamp; OMNR, 2008; ROW, 2010) and 

deriving an estimate for a correction factor representing the  ratio 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝐴𝐴𝑃𝑃 𝑡𝑡���� �𝑃𝑃𝑡𝑡𝑜𝑜����  (Appendix 

P); 

6) total streamflow estimates for the watershed outflow may be derived from measurements at 

the WSC gauge (Figure 4.1) within the watershed and a scaling factor relating watershed 

outflow to gauged streamflow, based on long-term estimates (Appendix Q); 

7) annual BFI values derived from measurements at the WSC gauge are representative for Alder 

Creek overall; and 

8) snowfall is reasonably uniform over the watershed and surrounding area, justifying use of 

nearby Roseville measurements. 

 

Under these assumptions, Eqn. 4.4 may be used in the context of a stochastic analysis of different 

rainfall time series interpolated over a watershed, coupled with stochastic AET estimates for the 

watershed overall. 

 

4.2.2.2 Spatial correlation and stochastic rainfall 

The second step in the analysis was to calculate the range of observed spatial correlation coefficients 

among daily rainfall totals for six local weather stations (five within the Alder Creek watershed, and 

one < 0.5 km outside) and the Roseville national weather station (< 3 km outside the watershed). The 

Pearson Product-Moment Correlation coefficient and the Spearman Rank Correlation coefficient were 

calculated, and the Spearman coefficient was selected for estimation of the observed correlation range 

because of the non-normality of the rainfall data (e.g., Gibbons and Chakraborti, 1992; Villarini et al., 

2010). 
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The third step in the analysis involved the generation of 19,761 daily rainfall time series of 46 years 

in length. Stochastic models have been employed often in the analysis of rainfall (e.g., Wilks and 

Wilby, 1999). The total length of the time series (46 years) was selected based on the amount of data 

available for the Roseville national weather station (AquaResource, 2008; Government of Canada, 

2019; OMNR, 2007). Daily time series for 46 years were generated based on a parametric approach 

that employed mixed exponential models for the probability distributions of both the observed 

spacing between rainy days and observed rainfall amounts (Government of Canada, 2019) at the 

Roseville Environment Canada weather station. The mixed exponential model was (Li et al., 2013): 

 

𝑓𝑓(𝑒𝑒) =  𝑝𝑝
𝛽𝛽1

exp �−𝑥𝑥
𝛽𝛽1
�+ 1−𝑝𝑝

𝛽𝛽2
𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑥𝑥

𝛽𝛽2
�, (4.5) 

 

where 𝑓𝑓(𝑒𝑒) is the relative frequency (probability), 𝑥𝑥 is either a time interval between days with rain 

or a daily rainfall depth, 𝑝𝑝 is the mixing probability (0 ≤ 𝑒𝑒 ≤ 1), and 𝛽𝛽1 and 𝛽𝛽2 are the scale 

parameters (𝛽𝛽𝑐𝑐 > 0) for two different exponential distributions. This approach is similar to the one 

presented by Rodriguez-Iturbe et al. (1999), except that a mixed exponential model was used instead 

of an exponential model. A mixed exponential model has the advantage of representing both large 

and small extremes of the range of rainfall amounts (Li et al., 2013; Wilks, 1998). The values of 𝑝𝑝, 

𝛽𝛽1, and 𝛽𝛽2 for the time intervals between rainy days were determined by fitting the probability 

distribution of gaps (number of days) between rainy days using the Levenberg-Marquardt algorithm 

(Gavin, 2009, 2019) in the scientific computation program GNU Octave (Eaton et al., 2011) to solve 

for these parameters. The values of 𝑒𝑒, 𝛽𝛽1, and 𝛽𝛽2 for the probability distribution of daily rainfall 

depths were estimated in the same way, where rainfall depths were binned by integer values (e.g., the 

bin for 1 mm included all rainfall amounts, 𝑜𝑜,  such that 0 mm < 𝑜𝑜 ≤ 1 mm, etc.). Time intervals 

between rainy days and rainfall depths were generated randomly via (Li et al., 2013): 

 

xt= -βtln (vt), (4.6) 

 

where 𝑥𝑥 is either the time interval or the rainfall amount at time 𝑡𝑡 𝛽𝛽𝑐𝑐 is either 𝛽𝛽1 or 𝛽𝛽2 for the 

respective distribution (chosen with probability 𝑝𝑝 for the respective distribution), and vt is a uniform 
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random number (0 < vt < 1). Appendix N shows the observed (Government of Canada, 2019) 

probability distributions of time intervals and rainfall depths. 

Spearman spatial correlation coefficients were verified to be within the observed range as follows. 

Sets of six random rainfall time series were adjusted based on the Iman and Conover (1982) method 

to ensure similarity (Tarpanelli et al., 2012) with the observed Pearson and Spearman correlation 

matrices. This was conducted using 3- or 4-year subsets of six random time series plus the Roseville 

time series for consistency with the length of the observed rainfall records (3 years), from which the 

observed correlation matrices were calculated. Sets of six time series were processed in association 

with the Roseville observed time series because the Iman and Conover (1982) method required 

correlation matrices of the same size as the observed matrix (7 x 7). Maximum and minimum 

Spearman coefficients for the adjusted six random time series were assessed for each 3- or 4- year 

subset and sets of three time series with coefficients within the observed range were selected. 

Next, the Alder Creek watershed was divided into three Thiessen polygon regions (Areas 1 to 3; 

Figure 4.1), which were drawn for three rain gauge locations (WS5, WS3, and WS7). Each polygon 

was assigned a virtual rain gauge (“VS1”, “VS2”, and “VS3”; Figure 4.1), to which stochastic rainfall 

time series were assigned. Total precipitation was calculated for each station for each year by adding 

the sum of observed daily Roseville snowfall amounts (Government of Canada, 2019) to the sum of 

the random daily rainfall amounts for that year. The average precipitation over the watershed was 

calculated via Thiessen polygon area weighting of the random rainfall time series for each year (Eqn. 

4.7): 

 

𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 = ∑ 𝑃𝑃𝑉𝑉𝑆𝑆,𝑦𝑦𝑐𝑐 ∙ 𝑤𝑤𝑉𝑉𝑆𝑆3
𝑉𝑉𝑆𝑆=1 , (4.7.1) 

𝑤𝑤𝑉𝑉𝑆𝑆 = 𝐴𝐴𝑉𝑉𝑉𝑉 , (4.7.2) 
𝐴𝐴𝑊𝑊𝑊𝑊

𝑃𝑃𝑉𝑉𝑆𝑆,𝑦𝑦𝑐𝑐 = (𝑜𝑜𝑟𝑟𝑟𝑟𝑛𝑛𝑉𝑉𝑆𝑆,𝑦𝑦𝑐𝑐 + 𝑠𝑠𝑛𝑛𝑜𝑜𝑤𝑤𝑅𝑅𝑜𝑜𝑠𝑠𝑟𝑟𝑅𝑅𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑐𝑐), (4.7.3) 

 

where 𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 is the average over the entire watershed for year 𝑦𝑦𝑜𝑜, 𝑉𝑉𝑆𝑆 is the virtual station, 𝑤𝑤𝑉𝑉𝑆𝑆 is the 

weight of the virtual station, 𝐴𝐴𝑉𝑉𝑆𝑆 is the area of the Thiessen polygon for virtual station 𝑉𝑉𝑆𝑆, 𝐴𝐴𝑆𝑆𝑆𝑆 is the 

overall watershed area, 𝑟𝑟 is the sum of rainfall amounts in the random time series for virtual 
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station 𝑉𝑉𝑆𝑆 for year 𝑦𝑦𝑜𝑜, and 𝑠𝑠𝑛𝑛𝑜𝑜𝑤𝑤𝑅𝑅𝑜𝑜𝑠𝑠𝑟𝑟𝑅𝑅𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑐𝑐 is the sum of snowfall amounts for the Roseville weather 

station for year 𝑦𝑦𝑜𝑜. 

 

4.2.2.3 AET and Streamflow 

Estimates of the annual ratios of 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐/𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 were obtained from the scatter of observed points 

around the Budyko curve (Gentine et al., 2012) for 45 US MOPEX watersheds (Duan et al., 2006; 

Appendix N) similar to Alder Creek for each realization. Similarity was defined as 𝑃𝑃𝑃𝑃𝑃𝑃/𝑃𝑃������ � within 

±0.05 of the ratio derived from the Roseville Environment Canada weather station. 𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑐𝑐 values for 

the Roseville station were calculated via the Penman-Monteith method (Allen et al., 1998) from the 

maximum and minimum daily temperatures (Government of Canada, 2019) using the UNFAO56 ETo 

Calculator (Raes, 2009), where the average wind speed from seven local weather stations over four 

years was employed (Appendix A; Wiebe et al., 2019). Random 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐/𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 values were 

selected from a normal distribution of AET/P ratios about a mean value from the Budyko curve 

calculated for the 𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑐𝑐/𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 ratio for the realization. The standard deviation describing this 

normal distribution was estimated as the maximum value derived from the 45 MOPEX watersheds 

(Duan et al., 2006) similar to Alder Creek. This process attempts to capture the potential variability in 

the annual scatter of points about the Budyko curve. Appendix N illustrates the variation of annual 

AET/P ratios about the Budyko curve for the 45 MOPEX watersheds. 

Sensitivity to the AET correction factor for areas where the water table is close to ground surface 

was tested by adjusting the correction factor, 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������, by its estimated uncertainty (Appendix 

P). Calculations were also performed for an alternative scenario that employed the 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡,𝑦𝑦𝑐𝑐/𝑃𝑃𝑆𝑆𝑆𝑆,𝑦𝑦𝑐𝑐 

ratio directly from the Budyko curve with no random component in order to assess the variability in 

recharge rates associated solely with precipitation variability. 

The annual BFI values for the creek were estimated based on PART (Barlow et al., 2015) 

hydrograph separation analysis of daily WSC streamflow data (1973 to 2018; WSC, 2019) from the 

gauge within the Alder Creek watershed. Because the WSC gauge is not located at the outflow of the 

creek into the Nith River, a scaling factor was derived from long-term water budgets (Appendix Q) to 

estimate annual total streamflow at the outflow. 
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Finally, total recharge was calculated via Eqn. 4.4 for each set of three selected rainfall time series. 

The total number of realizations was determined from the stability of the average recharge over all 

realizations and the following three water quality, well vulnerability, and water quantity metrics, 

where stability was defined as the absolute value of average percent change in metric < 0.1% with an 

additional 400 realizations. 

 

4.2.3 Water quality implications in terms of non-point source contamination 

Results of the recharge analysis were used to evaluate potential differences in non-point source mass 

loadings estimates due to rainfall and AET variation. Bekeris (2007) defines mass flux as (Eqn. 4.8): 

 

𝐹𝐹    

 

where 𝐹𝐹 is the contaminant (e.g., nitrate) mass flux, 𝐶𝐶𝐶𝐶𝑎𝑎,𝐶𝐶𝑅𝑅𝑎𝑎 is the average aqueous concentration 

below the root zone, and 𝑅𝑅 is the recharge rate. This equation could be applied to different 

agricultural nutrient or road salt application areas within the watershed to describe the spatial 

variation. The contaminant concentrations below the root zone were assumed to be the same for 

source areas in the present study, and average recharge rates for the watershed were assumed 

representative. Because the mass flux is directly proportional to the recharge rate, the maximum 

annual percentage difference in non-point source mass flux to the water table within the watershed 

was estimated via (Eqn. 4.9): 

 

𝑃𝑃𝑃𝑃𝑑𝑑𝐵𝐵 =  ±𝑚𝑚𝐶𝐶𝑥𝑥��𝑄𝑄𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅(𝑝𝑝)−𝑅𝑅���
𝑅𝑅�

, (4.9) 

 

where 𝑃𝑃𝑃𝑃𝑑𝑑𝐵𝐵 is the percent difference in mass flux, 𝑄𝑄𝑅𝑅𝐶𝐶𝑅𝑅𝑎𝑎(𝑒𝑒) is the 𝑝𝑝quantile of the probability 

distribution of average recharge (𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅) over all realizations, 𝑝𝑝 is the probability of one of the bounds 

of a 95% confidence interval (2.5% or 97.5%), and 𝑅𝑅�  is the average annual recharge over all 

realizations. The overbar indicates an overall average. The worst case 𝑃𝑃𝑃𝑃𝑑𝑑𝐵𝐵 was thus approximated 

by the maximum absolute difference between the average and either the 0.025- or 0.975-quantile. 
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4.2.4 Well vulnerability implications in terms of capture zone variation 

Well vulnerability was assessed based on the possible range of capture zone areas, which were 

assumed to vary with the watershed’s average recharge rate due to rainfall and AET variation. 

Assuming steady state conditions (Sousa, 2013), 

 

𝑄𝑄𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟������� =  𝑅𝑅𝑐𝑐𝐶𝐶𝑝𝑝 𝑧𝑧𝑜𝑜𝑛𝑛𝑟𝑟������������ ∙ 𝐴𝐴, (4.10) 

 

where 𝑄𝑄𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟������� is the average pumping rate at a well and 𝑅𝑅𝑐𝑐𝐶𝐶𝑝𝑝 𝑧𝑧𝑜𝑜𝑛𝑛𝑟𝑟������������ is the average recharge rate within a 

capture zone of area 𝐴𝐴. Using the average recharge and the bounds on the 95% confidence range of 

average recharge rates, the maximum difference in area was estimated via (Eqn. 4.11): 

 

𝐴𝐴 = 𝑄𝑄𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤��������
� , and (4.11.1) ̅
𝑅𝑅

PDA = ±
max��𝐴𝐴 − 𝑄𝑄𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 𝑄𝑄𝑅𝑅𝐶𝐶𝑅𝑅𝑎𝑎 𝑒𝑒� ��

𝐴𝐴
, (4.11.2) 

������� ( )̅
̅

 

where 𝐴̅𝐴 is the average area calculated based on the average annual recharge over all realizations (𝑅𝑅�), 

𝑄𝑄𝑅𝑅𝐶𝐶𝑅𝑅𝑎𝑎(𝑒𝑒) is the 𝑝𝑝 quantile of the probability distribution of average recharge (𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅) over all 

realizations, 𝑝𝑝 is the probability of one of the bounds of a 95% confidence interval (2.5% or 97.5%), 

and PDA is the percent difference in capture zone area, relative to the average area. Average annual 

recharge rates within the theoretical capture zone were thus assumed equal to watershed average 

recharge rates. This assumption is a less robust estimate than using a local average recharge rate for a 

well capture zone, but it provides a simple estimate where quantifying local average recharge would 

be a more complex task involving 3D numerical modelling of the watershed. PDA was calculated for 

the watershed’s largest public supply well’s average pumping rate (𝑄𝑄𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟������� = 6,756 m3/d; CH2MHILL 

and SSPA, 2003) over 46 years. 

 

4.2.5 Water budget implications due to water quantity uncertainty 

Water quantity was assessed by comparing the cumulative recharge totals between the 95% 

confidence bounds of the probability distribution of total recharge over all realizations: 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷    

𝐴𝐴𝑅𝑅𝑅𝑅 𝐴𝐴𝑛𝑛𝑛𝑛𝐹𝐹𝑟𝑟𝐹𝐹 𝑃𝑃𝑟𝑟𝑓𝑓𝑓𝑓𝑒𝑒𝑜𝑜𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑅𝑅𝑡𝑡 = 𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝑟𝑟𝑐𝑐𝑟𝑟𝑛𝑛𝑐𝑐𝑟𝑟𝑅𝑅𝑡𝑡
𝑛𝑛

, (4.12.2) 

 

where 𝑅𝑅𝑑𝑑 is the probability density function of all 𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡 values over all realizations, and 𝑛𝑛 is the total 

number of years considered (i.e., 46). The ratio between the maximum and minimum 95% confidence 

bounds of the 𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡 distribution was also calculated: 

 

𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑜𝑜𝑅𝑅𝑡𝑡 = 𝑄𝑄𝑅𝑅𝑡𝑡(0.975) /𝑄𝑄𝑅𝑅𝑡𝑡(0.025). (4.13) 

 

This approximates the worst-case scenario for variability resulting from both rainfall and AET 

variation. The same calculations were performed for the case of solely rainfall variation when 

𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃𝑆𝑆𝑆𝑆����� estimates were restricted to the Budyko curve. 

 

4.3 Results 

The results of the spatial correlation analysis of the observed daily rainfall amounts are shown in 

Figure 4.2. Spearman spatial correlation coefficients for the seven rainfall stations varied between 0.5 

and 0.8. This range in observed coefficients was used to constrain the selection of sets of random time 

series for the virtual stations. For context, if Pearson Product-Moment Correlation among the Alder 

Creek rain gauges is compared with the few rainfall correlation studies available in the literature, 

Alder Creek rainfall is better correlated than rainfall in Florida and Brazil, where intense, convective 

storms are prevalent (Krajewski et al., 2003), and less well correlated than rainfall in Oklahoma 

(Villarini and Krajewski, 2007), where frontal rainfall is more common. Alder Creek would be 

expected to experience a mix of convective and frontal storm systems in the southern Ontario climatic 

context (e.g., Paixao et al., 2015). 

Baseflow separation performed using the PART program (Barlow et al., 2015) on WSC data 

(WSC, 2019) from a gauge within the Alder Creek watershed (Figure 4.1) yielded a range of BFI 

values from 0.37 to 0.72 with a mean value of 0.56. Because the creek has been hypothesized to 

receive increased baseflow into its lower reaches below the WSC gauging station (CH2MHILL and 
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SSPA, 2003), the average value seems reasonable when compared with the minimum estimate from 

the Upper Grand River basin (0.6) in a study by Neff et al. (2005). The average annual streamflow for 

the watershed, 𝑄𝑄𝑡𝑡𝑜𝑜𝑡𝑡������,  was estimated to be 216 mm based on the average total streamflow of 140.5 mm 

derived from the daily WSC gauge data (WSC, 2019) and long-term water budget component 

estimates (Appendix Q). The scaling factor for streamflow was 1.54 (Appendix Q). 

Figure 4.3 shows the evolution of the water quality, vulnerability, and quantity metrics as the 

number of realizations increased. The total number of realizations was 16,778, each with a 

corresponding set of three selected time series for the virtual stations and one time series of watershed 

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉 estimates. The four stability metrics (𝑅𝑅�, 𝑃𝑃𝑃𝑃𝑑𝑑𝐵𝐵, PDA, and 𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑜𝑜𝑅𝑅𝑡𝑡) met the stability criterion 

by the total number of realizations (where absolute percent change in each metric was < 0.1% for an 

additional 400 realizations). 

The observed mean total precipitation (AquaResource, 2008; Government of Canada, 2019; 

OMNR, 2007) and standard deviation at the Roseville station from 1973 to 2018 (Figure 4.4b) were 

907 mm and 119 mm, respectively, and the simulated mean annual watershed-averaged precipitation 

over all realizations was 898 mm, with a standard deviation of 102 mm (Figure 4.4c; Table 4.1). 

Thus, the magnitude of the average simulated watershed rainfall underestimated the observed average 

by 9 mm. The observed precipitation at Roseville ranged from 650 to 1140 mm per year 

(AquaResource, 2008; Government of Canada, 2019; OMNR, 2007), and the simulated (interpolated) 

annual total precipitation ranged from 707 to 1107 mm over the 95% confidence interval. Mean 

annual total precipitation values for the individual virtual stations ranged from 649 to 1181 mm over 

the 95% confidence interval, and their standard deviations each rounded to 136 mm. Figure 4.4a 

shows an example for VS1; all frequency distributions for the virtual stations were similar. 

Interpolating annual total precipitation over the watershed resulted in a reduction in range of 25%, 

compared to the annual ranges at the virtual stations. Averaging simulated total precipitation for the 

watershed over 46 years resulted in a much smaller 95% confidence range (873 to 923 mm, with a 

standard deviation of 13 mm; Figure 4.4d). 

Figure 4.5 shows the AET estimates derived from the PET values calculated for Roseville and 

those simulated. 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑆𝑆𝑆𝑆����� ratios within the 95% confidence interval varied between 0.54 and 0.62, 

after applying the correction to remove saturated zone AET. The mean ratio of 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑆𝑆𝑆𝑆����� for the 

watershed was 0.58, i.e., 9% less than the long-term estimate (0.64) based on locally measured wind 

speed and Roseville temperature data due to the correction for saturated zone AET. The area of the 
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watershed covered by wetlands and other features where the water table was expected to be at or 

close to ground surface was 7% of the total area (OMNR, 2008; ROW, 2010). The 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡��������� 

correction factor was calculated to be 0.91 ±0.02 by applying 𝑃𝑃𝑃𝑃𝑃𝑃������ to 7% of the watershed area 

(Appendix P). The standard deviation of 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑆𝑆𝑆𝑆����� was calculated to be 0.02, and the 95% 

confidence interval for the magnitude of 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉�������� varied between 490 and 558 mm, with a mean value 

of 524 mm (Table 4.1). The standard deviation of 𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉�������� was 17 mm. 

Figure 4.6 shows the frequencies of the calculated recharge estimates over all realizations. The 

average annual recharge over all realizations’ averages was 282 mm, and the 95% confidence interval 

for average recharge ranged from 244 to 321 mm; the standard deviation of average recharge was 20 

mm (Table 4.1). These averages were within the range of recharge estimates from previous numerical 

modelling studies (210 mm – CH2MHILL and SSPA, 2003; 321 mm – M.H. Brouwers, pers. comm., 

2017, Matrix and SSPA, 2014a). 

The implications of the recharge rate variation due to rainfall and AET variability for the three 

metrics introduced above are summarized in Table 4.1. Concerning water quality related to non-point 

source loadings, cumulative differences in mass loadings based on average recharge rates in different 

scenarios were at worst ±14% different from the average loadings. Regarding well vulnerability, the 

overall capture zone area for the public supply well was estimated to be 8.74 km2 based on the 

average annual recharge rate (282 mm). This capture zone area could change by ±1.35 km2 from the 

annual average in the worst case (Table 4.1). This implies that uncertainty of up to ±15% per year 

could potentially be associated with capture zone areas due to the combination of spatially variable 

rainfall and variable AET over several decades. In terms of water quantity, the 95% confidence range 

in average annual recharge was 77 mm, and cumulative recharge totals over 46 years could differ by 

up to a factor of 1.31 (Table 4.1). If the impacts of solely the variability of rainfall were considered 

and 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃𝑆𝑆𝑆𝑆����� estimates were not allowed to deviate from the Budyko curve prior to being 

adjusting by the AET correction factor (Appendix N), then the difference in mass loadings was 

±7.0%, the difference in capture zone area was ±7.4%, average recharge (95% confidence) ranged 

from 260 to 299 mm, and the ratio of maximum to minimum cumulative recharge was 1.15. Thus, the 

inclusion of 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡 deviation from the Budyko curve led to a 95% confidence range in recharge (77 

mm) that represents 24% of previously estimated steady state recharge (321 mm; M.H. Brouwers, 

pers. comm., 2017; Matrix and SSPA, 2014a), while solely accounting for rainfall variability led to a 
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range (39 mm) representing 12% of this. This suggests that spatial rainfall variability and AET 

uncertainty contribute approximately equal portions to the recharge variability. 

The sensitivity of the results to the AET correction factor during the case where the 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡/𝑃𝑃𝑆𝑆𝑆𝑆 

estimates were allowed to deviate from the Budyko curve was tested by adjusting the calculated 

factor of 0.91 by its estimated uncertainty, ±0.02 (Appendix P). A factor of 0.89 produced differences 

in mass loadings of ±13%, differences in capture zone area of ±15%, and a cumulative recharge ratio 

of 1.29, while a factor of 0.93 produced differences in mass loadings of ±15%, differences in capture 

zone area of ±17%, and a cumulative recharge ratio of 1.34. Thus, results were not highly sensitive to 

the vadose zone correction factor (differences ≤ ±2%). Recharge variability was insensitive to 

changes in total streamflow. 

 

4.4 Discussion 

The approach used in the present study applies a new combination of existing ideas using stochastic 

generation of both rainfall and AET estimates based on the Budyko curve to project watershed scale 

recharge rates, estimating the surface water fraction of total streamflow via baseflow index, and then 

applying these to estimate uncertainty in non-point source loadings and capture zone areas. 

Advantages of this approach include that it is flexible, applicable to the long-term, is at the watershed 

scale, and does not require complex geological information or hydraulic head measurements –

although this latter information can be useful to generate complementary estimates via numerical 

simulations. The following discusses the methodology and the three management metrics. 

 AET is the second largest water budget component in this type of setting, and it is difficult to 

measure or estimate (Hess et al., 2016). AET also has a large impact on recharge rate estimates, 

similar to the precipitation component. The Budyko curve may be a useful tool for estimating long-

term 𝐴𝐴𝑃𝑃𝑃𝑃������/𝑃𝑃� ratios, but guidance is needed on two issues. Because the water budget applied in the 

present study was conducted for the vadose zone, modifications were necessary to estimate and 

remove the saturated zone AET component. The method of applying 𝑃𝑃𝑃𝑃𝑃𝑃������ to regions where the water 

table is known to be at or near ground surface (e.g., wetlands, and open water) was a rough estimate. 

Modifying the AET correction factor by ±0.02 resulted in changes of ≤ ±2% in terms of mass 

loadings, capture zone area, and cumulative maximum to minimum recharge ratio. Thus, the results 

are not very sensitive to the calculated AET correction factor in this case. It is unknown whether this 
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would be similar for other watersheds. Second, the variability of the 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃� ratio with respect to 

the average, long-term 𝑃𝑃𝑃𝑃𝑃𝑃������/ �𝑃𝑃 ratio requires further study. The use of the scatter of points about the 

Budyko curve from the analysis of the MOPEX data (Duan et al., 2006) was based on watersheds in 

other geographical contexts with 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� ratios similar to Alder Creek and verification is needed to 

determine the possible variation for a specific watershed. 

The use of the Budyko curve required the assumption that Alder Creek behaves similarly to the 

watersheds employed in its development. This entailed assuming that the watershed exchanges a 

negligible net flow of groundwater with adjacent basins, and that it has experienced minimal human 

influence (i.e., no significant alterations such as irrigation or reservoirs – Gentine et al., 2012). While 

maintaining about 70% agricultural land use, the Alder Creek watershed contains some other 

development in terms of small urban communities (6% by area) and aggregate (sand and gravel) 

extraction pits (3% by area; OMNR, 2008; ROW, 2010). These gravel pits are expected to facilitate 

recharge rates that are a relatively larger proportion of total precipitation than in other areas because 

of the coarse nature of the sediments and the lack of vegetation (Matrix and SSPA, 2014b). Alder 

Lake, a small reservoir within the watershed, has a spill-over dam and is not considered to constitute a 

significant anthropogenic change to the watershed (CH2MHILL and SSPA, 2003). Historical 

pumping within the watershed has lowered the water table in places and may have indirectly 

influenced AET rates. Whether there is a net flow of groundwater into or out of the watershed is not 

known. Overall, the 𝐴𝐴𝑃𝑃𝑃𝑃������ values for the watershed are likely to be lower than they would be in an 

undeveloped, naturally vegetated watershed. 

The replacement of natural vegetation with agricultural crops is likely the largest anthropogenic 

change to the watershed. Zhang et al. (2001) provide equations for curves similar to the Budyko curve 

for different vegetation types. Their curves are adjusted by a plant-water availability factor, w, which 

was proposed to be w = 2.0 for forest and w = 0.5 for pasture/grassland. A value of w = 1.0 was 

chosen arbitrarily for mixed-vegetation type watersheds (Zhang et al., 2001). For the long-term 

𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� ratio from Roseville, the use of the Zhang et al. (2001) equation with w = 0.5 leads to an 

𝐴𝐴𝑃𝑃𝑃𝑃������/𝑃𝑃� ratio that is 13.6% less than the value noted above (0.64). This magnitude of change, if 

applied to the long-term 𝐴𝐴𝑃𝑃𝑃𝑃������ estimate results in a significant increase in recharge. 𝑅𝑅� = 350 mm for w 

= 0.5, using long-term estimates in the water budget. This seems unreasonable because the previous 

steady-state Alder Creek modelling studies have estimated 𝑅𝑅� to be between 210 and 321 mm. If w = 

1.0, the resulting long-term 𝐴𝐴𝑃𝑃𝑃𝑃������/𝑃𝑃� ratio would be 3.6% less than the estimate derived in the present 
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study. This w value would lead to an estimate of 𝑅𝑅� of 298 mm. A value of w somewhere between 0.5 

and 2.0 seems logical for Alder Creek, a mixed vegetation type watershed, where the lower value of 

w = 0.5 seems unreasonable and the watershed is only 10% forest. A value of w = 1.2 corresponds to 

the long-term 𝐴𝐴𝑃𝑃𝑃𝑃������/𝑃𝑃� estimate from the present study and a curve that essentially coincides with the 

Gentine et al. (2012) Budyko curve over the range of 𝑃𝑃𝑃𝑃𝑃𝑃/𝑃𝑃 ratios relevant to the Alder Creek area. 

Further, Istanbulluoglu et al. (2012) discuss the impact of land use change from native vegetation to 

agricultural crops. These authors state that crops such as corn tend to transpire more than natural 

grassland, according to another study (Irmak et al., 2008). So, it seems that there could be factors like 

corn crops (which are grown in the watershed) that increase AET above specifically grassland 

estimates, and factors such as conversion of native vegetation (e.g., forest) to crop cover that could 

decrease AET relative to natural vegetation conditions. An effective value of w = 1.2 seems 

reasonable because the variability of recharge was the focus of the present study rather than the exact 

average value. 

The BFI values and the total streamflow amounts have some uncertainty because the outflow of the 

creek is not gauged. However, this likely had a minimal influence on the overall recharge results 

because the overland flow component of the water budget is relatively small (about 10% of average 

total precipitation). The annual overland flow components of the water budget were consistent in all 

realizations, whereas the rainfall and AET values differed. The rainfall and AET values thus likely 

exerted a much larger influence on recharge estimates than the BFI values. 

There are several issues to mention related to rainfall. One issue related to the stochastic rainfall 

generation is whether the correlation coefficients have remained similar over the last 46 years, or if 

they were different during the three-year analysis period at the local weather stations. Another issue is 

that the precipitation and AET estimates were generated by a process that ignored potential natural 

patterns in the relationship between annual AET and precipitation. A third issue is that the variability 

of average watershed precipitation is likely less than the variability associated with local precipitation 

within a well capture zone. The method proposed in the present study used watershed scale recharge 

variability to estimate well capture zone area variations. There was a mismatch in the scales of the 

two areas, but obtaining water budget component estimates for regions smaller than a watershed is 

challenging because the Budyko curve does not apply and partitioning of overland flow and baseflow 

may change throughout the watershed. 
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Previous studies of the variation of recharge rates due to rainfall spatial variability have reported 

larger differences in recharge rates than those in the present study. The ratio of cumulative recharge 

under maximum and minimum conditions for the case of no scatter of 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃� around the Budyko 

curve (1.15) was less than the factor obtained by Sapriza-Azuri et al. (2015) over a similar time 

period for a watershed in Spain (~2). The difference in values may be related to the differences in the 

sizes of these watersheds. The maximum difference in the range of average annual recharge rates in 

the present study for the case of no scatter of 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃� about the Budyko curve (39 mm) was smaller 

than most of the differences between annual scenarios comparing different rain gauge networks as 

inputs within a fully-distributed model of the Alder Creek watershed (Wiebe and Rudolph, 2020). 

This may be due to the difference in time scale. 

The worst-case capture zone area change (±15%) was smaller than the results of Piersol (2005) and 

smaller than would be predicted by the water budget derived uncertainty from Wiebe and Rudolph 

(2020). Piersol (2005) generated capture zones for the city of Aguadulce, Panama, using steady state 

particle tracking under different uniform recharge rates. The author found that recharge rate variation 

from the base case by factors of +50% and -30% resulted in a capture zone whose area differed from 

the base case by -33% and +43%, respectively, under uniform pumping rates. Such variation in 

recharge rates (≥ 30%) would be outside the 95% confidence interval of the present study. Wiebe and 

Rudolph (2020) estimated the water-budget derived uncertainty on recharge to be ±100 mm or about 

±30% of a previous steady state recharge estimate (321 mm; M.H. Brouwers, pers. comm., 2017; 

Matrix and SSPA, 2014a). A change in recharge of ±100 mm would lead to a capture zone area 

change of up to around ±54% of the average area via equations Eqn. 4.11.1 and Eqn. 4.11.2. The 

worst-case capture zone area change from the present study, ±15%, is significantly less than this 

value. However, this estimate does not incorporate the 25% larger variability of the local virtual rain 

gauges because of the difference in spatial scale mentioned above. Also, local sediment types and 

vegetation play key roles that were not accounted for by the watershed-scale recharge estimates 

generated by the present study. The present analysis assumed that well capture zones contain soil and 

vegetation types representative of the entire watershed, which may not be the case. This would be 

more likely to be true for a well with a larger capture zone, which may potentially sample a broader 

range of soil types. Despite this, guidance is needed to assess the uncertainty of the capture zone 

concept, which is extremely important from a source water protection perspective (Sousa et al., 

2013a). The method employed in the present study could be used to provide a rough estimate of the 

uncertainty boundaries for the challenging task (Frind and Molson, 2018; Rayne et al., 2014) of 
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delineating transient capture zones. The capture zone concept has also been extended to the 

contribution area for gaining stream reaches (Chow et al., 2016). A similar change in stream 

contribution areas would be possible based on variation in recharge rate estimates due to spatially 

variable rainfall. The 𝑄𝑄𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟������� term in equations Eqn. 4.10 and Eqn. 4.11 could be replaced with the 

groundwater discharge flow rate into the stream reach of interest. 

Guidance is also needed in terms of understanding the uncertainty in non-point source mass 

loadings for watershed management. There is a large amount of uncertainty associated with road salt 

and nitrogen concentrations and mass loadings to the water table. Variations in daily road salt 

application are currently recorded by municipalities (Perera et al., 2013). However, the fraction of salt 

that is ploughed with snow to the side of the road to be retained by the soil is unknown (Denby et al., 

2016). Historical municipal salt application rates are likely less well known than current rates. In 

terms of nitrogen loadings, the applied mass is quantified according to provincial regulations (e.g., 

Province of Ontario, 2002). The proportion of nitrogen that leaches below the root zone has 

considerable uncertainty and has been estimated via coefficient of variation (standard deviation / 

mean) as up to 40% in one study (Hansen et al., 1999), and +59% or -79% in another (Schmidt et al., 

2008). The coefficient of variation for non-point source mass loadings due to the combined variability 

of watershed-averaged rainfall and AET in the present study would be 7.1%. This suggests that water 

budget uncertainty is a minor component of overall mass loadings estimates and efforts to reduce 

uncertainty should focus on quantifying the fraction of applied mass retained by the soil more 

accurately. 

Climatic change may result in changing trends and statistics (e.g., DeBeer et al., 2016; Gregersen et 

al., 2013), including the spatial correlation of rainfall rates. An increase in the number of intense 

storms would likely be associated with changes in the spatial distribution of rainfall at different scales 

(Marvel and Bonfils, 2013; Simonovic et al., 2017; Trenberth, 2011). The present study’s approach 

could be a useful tool to project potential changes in recharge rates for watersheds undergoing 

climatic change, if key parameters (e.g., rainfall spatial correlation, streamflow, and BFI) were 

measured. It may be possible to apply to urban watersheds if the Budyko curve estimate of 𝐴𝐴𝑃𝑃𝑃𝑃/𝑃𝑃 

could be revised for the decrease in 𝐴𝐴𝑃𝑃𝑃𝑃 caused by the replacement of vegetation with impermeable 

surfaces. Other water budget components such as recharge from leaky water (Jang et al., 2019) or 

sewer pipes (Vystavna et al., 2018) would likely need to be accounted for in the water budget. 
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Generally, the method of the present study could be used as context for distributed numerical model 

results, or a comparison for uncertainty analyses from such models. 

Quantifying uncertainty is difficult without measurements of rainfall or AET across a watershed. 

Correlation coefficients are a valuable tool to constrain spatial rainfall variability. The results of the 

present study suggested that AET uncertainty and spatial rainfall variability contributed nearly 

equivalently to estimated recharge variability, and, by extension, to non-point source loadings and 

capture zone areas. These error bars may be helpful for the sustainable management of well fields 

from a quality and quantity perspective. 

Five recommendations are offered here to improve confidence in recharge rate estimates, and 

therefore in capture zone and non-point source mass loadings estimates. First, reducing uncertainty on 

long-term average watershed rainfall may be as important as reducing the uncertainty of 𝐴𝐴𝑃𝑃𝑃𝑃 

estimates. Verifying the validity of and scatter of points about the Budyko curve for a certain area 

would be a useful step. Care should be taken because the watersheds of some regions may not fall 

along the Budyko curve (e.g., some arid regions – Donohue et al., 2007, 2010; Gentine et al., 2012; 

areas affected by afforestation or deforestation – Zhang et al., 2001; and possibly peatlands – Hwang 

et al., 2018). Second, the influence of soil texture in association with rainfall variability may lead to 

increasing uncertainty on average watershed estimates. Third, it may also become increasingly 

necessary to track changing rainfall trends and correlation statistics as climatic changes occur. Fourth, 

guidance is needed to downscale AET and baseflow results from the watershed scale to the 

subwatershed scale, a scale at which precipitation may be more variable and a scale that may be 

similar to the area of public supply well capture zones. Fifth, spatial snowfall variability should be 

addressed. While this is on average a smaller component of the water budget in the Alder Creek 

watershed (about 15% of total precipitation; Government of Canada, 2019; OMNR, 2007), this could 

be a larger component in other watersheds. The present study assumed uniform snowfall based on 

limited data, but this is a second source of spatial precipitation uncertainty whose impact on recharge 

should be considered further. 

 

4.5 Conclusions 

This study used three years of observed rainfall data from the Alder Creek watershed to calculate 

spatial correlation coefficients that were then used to constrain a stochastic vadose zone water budget 
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to estimate the variability of watershed scale recharge rates over 46 years. Stochastic AET estimates 

for the watershed were developed based on: i) the Budyko curve (Gentine et al., 2012), ii) observed 

PET/P ratios at a weather station near the watershed, iii) observed annual variations from the Budyko 

curve for 45 US MOPEX (Duan et al., 2006) watersheds, and iv) applying PET to regions within the 

watershed where the water table is known to be at or close to ground surface. Annual streamflow 

from a gauge within the watershed and derived BFI values were used to estimate the overland flow 

component of streamflow. 

The average recharge rate across all realizations was estimated to be 282 mm per year, a value 

within the range of previous steady state estimates determined by numerical modelling (M.H. 

Brouwers, pers. comm., 2017; CH2MHILL and SSPA, 2003; Matrix and SSPA, 2014a). The 95% 

confidence interval for recharge ranged from around 244 to 321 mm per year over all realizations, and 

the total variability represented by this range was derived nearly equivalently from the uncertainty of 

AET estimates and the spatial variability of stochastic rainfall. 

The 95% confidence interval derived for long-term recharge rates was applied to three water 

management metrics. The water quality implications of the results suggest that non-point source 

contaminant loadings estimates could vary from the average by up to ±14%. Well vulnerability was 

evaluated in terms of capture zone area uncertainty, which was estimated to vary by up to ±15% from 

the average. Water quantity was assessed via the ratio of maximum to minimum cumulative recharge 

over 46 years. This ratio was estimated to vary by a factor of up to 1.31. Impacts of rainfall spatial 

variability alone with 𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑜𝑜𝑡𝑡���������/𝑃𝑃� ratios estimated strictly based on the Budyko curve resulted in 

variations in contaminant loadings of up to ±7.0%, capture zone area percentage differences of up to 

±7.4%, and a ratio of maximum to minimum recharge of 1.15. These results provide a sense of the 

uncertainty related to groundwater management that may be present in typical water budget analyses 

(e.g., most steady state numerical models) due to the spatial variability of rainfall and the uncertainty 

of AET, and the approach is applicable to watersheds where the Budyko curve is either representative 

or the influence of land use changes on the curve may be estimated. Variability in contaminant 

loadings and capture zone areas may be increased for partial areas of the watershed because local 

rainfall variation was damped by 25% by interpolating over the watershed. Further work is needed on 

the expected degree of variability of the ratio of 𝐴𝐴𝑃𝑃𝑃𝑃/𝑃𝑃 about the Budyko curve, based on 

geographical area or watershed characteristics.  
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4.6 Tables 

 

 

Table 4.1. Stochastic water budget results for 16,778 realizations, considering the influence of both 

rainfall and AET variability. 

Category Result 

Water Budget  

Average annual weighted average watershed total P 898 mm 

Average annual AETVZ 524 mm 

Average annual watershed recharge (over 46 years, all realizations) 282 mm 

Standard deviation for average annual watershed recharge 20 mm 

0.025-quantile annual watershed recharge 244 mm 

0.975-quantile annual watershed recharge 321 mm 

Water Quality  

Percent difference in mass loadings over 46 years, PDMA* ±14% 

Well Vulnerability  

Percent difference in capture zone area for 46 years, PDA* ±15% 

Water Quantity  

0.975-quantile – 0.025-quantile difference, average annual recharge† 77 mm 

0.975-quantile cumulative recharge / 0.025-quantile cumulative recharge† 1.31 

* Maximum 95% confidence interval difference with respect to the average 

† Worst case approximation using 95% confidence interval bounds 
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4.7 Figures 

 

 

 
Figure 4.1: Study site and Thiessen polygons (Areas 1 – 3) for virtual rain gauges (DMTI, 2011; 

Esri et al., 2019a; Government of Canada, 2019; GRCA, 1998; WSC, 2019). 
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Figure 4.2: Spearman correlation between six local rain gauges and the nearest national station 

(Gavin, 2009, 2019; Government of Canada, 2019; Wiebe et al., 2019). 
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Figure 4.3: Variation of metrics with the number of realizations: a) Average recharge (𝑅𝑅�), b) 

maximum 95% confidence percentage difference in mass loadings (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), c), maximum 95% 

confidence percentage difference in capture zone area (PDA), and d) ratio of 95% confidence 

maximum to minimum cumulative recharge (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅). 

 

  



 

 101 

 

Figure 4.4: Frequency distribution of total precipitation for: a) Virtual Station 1 over all realizations 

(annual values), b) Roseville annual values for 1973 to 2018 (Government of Canada, 2019), c) the 

watershed, over all realizations and in terms of interpolated annual values, and d) the watershed, 

where interpolated annual values were averaged over 46 years for each realization. The bin size 

was 50 mm for a), b), and c), and 10 mm for d). 
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Figure 4.5: AET/P and PET/P ratios: a) observed Roseville (Government of Canada, 2019) annual 

variations in PET/P and average 𝐴𝐴𝐴𝐴𝐴𝐴������/𝑃𝑃� value along the Budyko curve (Gentine et al., 2012), b) 

simulated 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑊𝑊𝑊𝑊����� ratios, and c) frequency distribution of 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑊𝑊𝑊𝑊����� ratios from all realizations. 
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Figure 4.6: Frequency of 46-year average recharge rates over all realizations. 
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Chapter 5 
Conclusions and Recommendations 

The present study explored the impact of the spatial variation of rainfall on groundwater recharge and 

the impact of DFR on well vulnerability in the Alder Creek watershed, a typical watershed in 

southwestern Ontario that provides source water for multiple well fields. Field data were collected 

within a network of six local weather stations (five within the watershed) and at one DFR site. 

Regional data were obtained for a network of six rainfall stations within 30 km of the watershed, and 

for one national station within 3 km of the watershed. Daily spatial correlation coefficients for local 

and regional rain gauge networks, and for the local network plus one national weather station, were < 

0.8, suggesting that rainfall is generally not very well correlated in the area. 

Chapter 2 explored how annual recharge rates could be affected by the choice of rain gauge 

network in a fully-distributed, watershed-scale, coupled model for three calendar years. Overall 

average recharge rates differed by up to 141 mm per year in the worst-case comparison of simulations 

employing either national or regional rainfall with local rain gauge network input data. This 

constituted 44% of previously estimated steady state recharge (321 mm; M.H. Brouwers, pers. 

comm., 2017; Matrix and SSPA, 2014a) for the Alder Creek watershed. The cumulative streamflow 

for the local rainfall scenario appeared to be a closer match with observations. These results suggest 

that the calibration of transient models of watersheds with similar rainfall correlation would be likely 

to compensate for rainfall differences by adjusting hydraulic conductivity values to match observed 

hydraulic heads and streamflow. Ultimately, adjustments to such near-surface soil properties based on 

imprecise rainfall information could negatively impact recharge estimates and management decisions 

related to capture zone delineation and net baseflow into streams. 

Chapter 3 addressed focused recharge and well vulnerability to potential microbial contaminants at 

the site scale. Creek water levels, groundwater levels, soil moisture, and rainfall were monitored at a 

site within the Alder Creek watershed where surficial ponding had been observed to occur in the base 

of a topographic depression. This ponding occurred around 50 m (Menkveld, 2019) from a public 

supply well that is screened > 15 m below ground in glacial overburden sediments (CH2MHILL, 

2002). Numerical modelling was conducted to examine the hypothesis that contaminants originating 

in the ponded water in the topographic depression during a large-magnitude rainfall or snowmelt 

event could reach the well at relative concentrations of concern within 50 days, a time frame related 
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to microbial risks to water quality. Two fully-integrated, surface water–groundwater 

(HydroGeoSphere) models were used to calibrate shallow soil properties based on an observed 

ponding event, and the main aquifer soil properties to a pumping test. A smaller version of the second 

model represented the radial flow field through the base of the topographic depression and the creek 

toward the well and was used to simulate two large hydrologic events (> 40 mm of rain over 4 days; 

Nov 2014, Jul 2017) and subsequent transport of solute tracers from the depression and the creek to 

the well. Breakthrough curves did not reach a critical value corresponding to “detection” (1 cfu/100 

mL) at the well for median initial concentrations in surface water (220 cfu/100 mL). However, critical 

travel times associated with maximum initial concentrations in surface water (31,000 cfu/100 mL) 

were 118 and 142 days for the creek solute and the DFR solute, respectively, in the most extreme case 

(Nov 2014). Breakthrough results for the DFR solute in a background scenario with no event ponding 

did not reach critical relative concentrations within 200 days. This suggests that event ponding could 

reduce critical travel time by at least58 days, indicating a potential concern for the well. The 

phenomenon of ponding, sharp increases in effective precipitation, and creek overbank flow events 

seemed to be important factors for breakthrough at the well.  

Chapter 4 extended the analysis of the influence of spatially varying rainfall on recharge rates to 

several decades (46 years) using a stochastic vadose zone water budget. The influence of variable 

actual evapotranspiration (AET) estimates was also examined. Stochastic rainfall time series were 

generated via a parametric, mixed exponential method and then adjusted based on the observed range 

of rainfall correlation coefficients. Stochastic annual vadose zone AET estimates for the Alder Creek 

watershed were based on factors including: the Budyko curve, PET calculated for a long-term 

weather station < 3 km from the watershed, observed annual variations about the Budyko curve for 45 

US MOPEX watersheds, and applying PET estimates to watershed regions where the water table is at 

or close to ground surface. The overland flow component of streamflow was estimated based on 

baseflow index values derived from the gauging station within the watershed. The 95% confidence 

interval results for combined rainfall and AET variability suggested that non-point source 

contaminant loadings could differ from the average by up to ±14%. Capture zone areas were 

estimated to vary up to ±15% with respect to the average. The ratio of maximum to minimum 

cumulative recharge over 46 years was at most 1.31. When only rainfall spatial variability was 

considered, contaminant loadings were estimated to differ from the average by up to ±7.0%, capture 

zone areas were estimated to differ from the average by up to ±7.4%, and the ratio of maximum to 

minimum cumulative recharge was 1.15. This latter value is smaller than the ratio found during a 
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previous study by Sapriza-Azuri et al. (2015) of spatially variable rainfall in a larger watershed in 

Spain. In contrast to Chapter 2, rainfall spatial variability over several decades could lead to a range 

of recharge estimates that differ by up to 12% of a previously estimated steady state estimate (321 

mm; M.H. Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a). The variability calculated for 

water quality, well vulnerability, and water quantity provides a sense of the potential influence of 

spatial rainfall variation over the long term at the watershed scale, though the variability of local 

rainfall might increase the variability of contaminant loadings and well capture zone area estimates 

beyond the above percentages. The results of Chapter 4 suggest that the contributions of AET 

uncertainty and spatial rainfall variability to recharge variability may be nearly equivalent at the 

watershed scale. 

The present study has implications for transient, coupled or integrated watershed modelling and for 

well vulnerability assessments. Previous studies (Mileham et al., 2008; Sapriza-Azuri et al., 2015) 

that assessed the sensitivity of recharge rates to spatial rainfall variability focused on watersheds at a 

much larger scale. Chapter 2 suggests that recharge rates and streamflow estimates for a small to 

medium sized watershed (~70 km2) can be quite sensitive to the spatial scale of input rainfall data at 

an annual time scale. The transient calibration of land use planning or water resources models 

assessing baseflow to streams may be affected by the amount of available rainfall data. Local rainfall 

data may improve confidence in groundwater recharge estimates and provide more accurate estimates 

of discharge to streams. The installation of rain gauges would likely be less expensive than drilling 

operations to collect soil cores and install new groundwater monitoring points. Appendix A identified 

wind speed as an important supplementary parameter for constraining ETo estimates when only 

temperature data are available, though ETo variation was found to exert less impact on recharge 

estimates than rainfall variation. Chapter 3 illustrated the possibility for extreme hydrological events 

to reduce microbial contaminant travel times to a public supply well when ponding occurs at the 

ground surface. Chapter 4 introduced an approach to estimate the uncertainty of non-point source 

loadings to the water table, capture zone areas, and cumulative recharge rates that could be used to 

provide context for modelling results in watersheds where the Budyko curve applies. 

Recommendations for future study are offered here in closing. A long-term comparison of 

modelled recharge rates based on rain gauges and on radar-derived rainfall estimates would 

complement the work in Chapter 2. Radar may integrate rainfall over space differently than 

interpolation algorithms but is still subject to ground-truthing with rain gauges. The spatial variability 



 

 107 

of snowpack thicknesses could be assessed in watersheds where this is expected to be significant. An 

assessment of the sensitivity of recharge rates within watersheds with greater and lesser degrees of 

spatial rainfall correlation could establish a general relationship between the degree of spatial rainfall 

correlation and associated differences in recharge estimates. The work described in Chapter 3 

suggests that sediment core logging, especially near regions of localized infiltration and in greater 

detail than is usually available (e.g., one soil type for intervals spanning multiple metres; OMECP, 

2018), would be helpful for modelling large-magnitude hydrological events. Site-specific information 

on longitudinal dispersivity and fecal indicator concentrations in surface water during events would 

be needed to reduce uncertainty in transport modelling. Cameras could assist with the monitoring of 

hydrological events and rain gauge data, in addition to hydrological sensors. Estimates of the 

variability of AET based on geographical or watershed characteristics are needed to confirm the 

expected degree of variability of the ratio of AET/P about the Budyko curve for a given watershed. 

Verification of the method used to adjust AETtot estimates to remove AET from the saturated zone 

would also be useful. 
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Appendix A 
The influence of ETo variation on modelled recharge results 

A.1 Methods 

Daily Penman-Monteith reference evapotranspiration (ETo) values were calculated for both the 

regional and local networks for 2014 to 2016 using the ETo Calculator program (Raes, 2009). Daily 

maximum and minimum temperatures were used to estimate daily ETo values for the national station 

and the regional network. Air temperature, relative humidity, wind speed, and incoming solar 

radiation data were incorporated into the ETo estimates for the local network. The Wellesley station 

(regional network) was omitted from the ETo analysis due to missing data. ETo values for both the 

“light winds” (0.5 m/s) and “light to moderate winds” (2.0 m/s) options were calculated for 

comparison. These wind speeds correspond to a height of 2 m above ground. An intermediate value 

based on the average of observed wind speeds at the local network stations was also used for 

comparison. Pearson and Spearman spatial correlation coefficients were calculated for ETo using 

pairs from the set of all thirteen available stations, rather than separating the results among the local 

and regional networks. 

The Actual ET (AET) estimate by Sanderson (1998) of 540 mm per year was assessed by using the 

Budyko curve (Budyko, 1961; Gentine et al., 2012), which represents the relationship between long-

term averages of the ratio of AET to precipitation (P) and the ratio of potential ET (PET, identical to 

ETo) to P for a watershed with minimal anthropogenic influences. Averages from long-term (1973 – 

2018) temperature and P data from Roseville (AquaResource, 2008; Government of Canada, 2019) 

were used to explore the influence of wind speed on ETo and AET. 

The sensitivity of modelled recharge rates to the scale of point ETo estimates was explored during 

two scenarios in addition to the three described in Wiebe and Rudolph (2020) (Chapter 2): Scenario 4 

employed rainfall interpolated from the local network, with spatially variable ETo interpolated from 

the regional network; and Scenario 5 employed rainfall interpolated from the local network, with 

spatially variable ETo interpolated from the local network. These two scenarios were compared with 

Scenario 3, which employed rainfall interpolated from the local network and spatially uniform ETo 

from the national network. Scenarios 4 and 5 were started from the same initial conditions as Scenario 

3 in all three years. ETo for Scenarios 4 and 5 was interpolated using the inverse distance squared 

technique and a 250 m by 250 m grid in MIKE SHE (Abbott et al., 1986; Graham and Butts, 2005; 

Refsgaard and Storm, 1995).  
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A.2 Results 

Annual ETo totals are shown in Table A.1 for each of the three networks’ weather stations for the 

“light to moderate winds” option. Figure A.1 shows the annual ETo totals for all stations for both the 

“light to moderate winds” and “light winds” options. The “light to moderate winds” option (2 m/s) 

yielded annual ETo estimates for Roseville that were near the upper end of the range of values 

generated by the local stations using more measured parameters. The use of the “light winds” option 

(0.5 m/s) generated ETo estimates near the lower end of the local range. The spatial correlation of the 

Penman-Monteith ETo estimates was found to be very high, with coefficients essentially above 0.9 in 

all daily comparisons among all available stations (Figure A.2). Correlation lengths for the curves on 

Figure A.2 were > 400 km. Some of the annual coefficients were slightly lower, but still higher than 

0.8. Thus, ETo was found to be much more spatially correlated than rainfall in the study area. 

 

Table A.1. Annual ETo totals for the local, regional, and national networks. 

Weather Station 
ETo (mm) 

2014 2015 2016 

WS1* 722 793 808 

WS2* 756 783 837 

WS3* 699 726 779 

WS4* 653 720 774 

WS5* N/A† 683 731 

WS6* 698 729 783 

WS7* 776 819 891 

Baden‡ 846 904 954 

Laurel Creek‡ 723 762 803 

Cambridge‡ 781 813 846 

Paris‡ 842 892 946 

Burford‡ 818 874 946 

Roseville§ 756 816 857 
* Local (SOWC) weather station (Wiebe et al., 2019) 
† N/A – not available. WS5 data collection started in June 2014. 
‡ Grand River Conservation Authority weather station (GRCA, 2017a) 
§ Environment Canada weather station (Government of Canada, 2019) 
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Figure A.1: ETo estimates (Raes, 2009) for “light winds” (a, c), and “light to moderate winds” (b, 
d). Local stations are shown in a) and b); regional stations are in c) and d). The one national station 
is included on all plots. 
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Figure A.2: Pearson (a) and Spearman (b) spatial correlations among ETo estimates for all stations 
(Raes, 2009). Best fit curves were calculated using the Levenberg-Marquardt algorithm coded by 
Gavin (2009). 
 

Observed wind speeds at the local stations, corrected for 2 m height above ground surface, ranged 

between 0 and 14.6 m/s; the average of all recorded values was 1.6 m/s (Wiebe et al., 2019). 



 

 141 

Figure A.3 shows AET������ 𝑃𝑃�⁄  results along the Budyko curve for estimates of ETo based on different 

wind speeds (Budyko, 1961; Gentine et al., 2012). The “light winds” option for ETo yielded an 

average annual ETo value of 680 mm. Based on an average annual total precipitation of 907 mm and 

the resulting index of aridity of 0.75, AET������ 𝑃𝑃�⁄  was 0.59, and AET������ was calculated to be 532 mm/yr. 

This result was very similar to the 540 mm/yr noted by Sanderson (1998). For comparison, the “light 

to moderate winds” option yielded an aridity index of 0.89, an annual average ETo value of 806 mm, 

an average AET������ 𝑃𝑃�⁄  ratio of 0.65, and an AET������  value of 590 mm. Employing an average wind speed 

value over about 4 years from the seven local weather stations (1.6 m/s) yielded an aridity index of 

0.85, an annual average ETo value of 775 mm, an AET������ 𝑃𝑃�⁄  ratio of 0.64, and an AET������ of 577 mm. The 

“light to moderate winds” estimate is therefore closer to the estimate derived using wind speed data 

from the local stations. 

 

 
Figure A.3: Budyko curve and AET/P estimates for the Roseville weather station for different 
average wind speed estimates. Error bars were derived based on relative uncertainty values of P ± 
10%, PET ± 15%, and AET ± 10%. 
 

Figure A.4 suggests that the three ETo scenarios (3, 4, and 5) from the MIKE SHE model are in 

closer agreement than the three rainfall scenarios (1, 2, and 3). Like the differences between the 
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regional and national rainfall scenarios (Figure 2.7, g - i), there is a similar shift in recharge rates for 

large numbers of cells between scenarios. Recharge rates varied among Scenarios 3, 4, and 5 by up to 

around 50 mm in 2014, up to 40 mm in 2015, and up to 16 mm in 2016 (Table A.2). Thus, the 

maximum difference in recharge rates for a given year was 51 mm, or 16% of previously estimated 

steady state recharge (M.H. Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a). The three ET 

scenarios thus varied much less than the rainfall scenarios, which varied up to 44% of previously 

estimated stead state recharge. 

Streamflow totals showed a maximum difference of 26 mm (in 2014) for the ETo scenarios, 

varying within a range of about ±20% of long-term average streamflow at the WSC gauge (Figure 

A.5, Table A.2). Table A.2 shows that all components of the water budget were similar for these three 

scenarios. This indicates that the choice of network for ETo input to the model had much less 

influence on the variability of the recharge results than the choice of rain gauge network. The 

variation between the recharge distributions of Scenarios 3, 4, and 5 (analogous to Figure 2.6) was 

slight and is not presented here. 

 
Figure A.4: Frequency of differences in recharge rates between ETo scenarios (3, 4, and 5). “S5 – 
S3” implies a cell-by-cell subtraction of Scenario 5 minus Scenario 3, etc. 
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Table A.2. Numerical model water budget results and comparisons (results in mm per m2 per yr). 

Year Component Scenario 
  1 2 3 4 5 

2014 

Precipitation 849 895 1048 1048 1048 
Evapotranspiration* 392 376 381 398 316 
Overland Runoff† 91 96 124 119 144 
Storage change‡  -53 -33 -20 -21 -15 
Recharge§ 421 456 562 550 601 
Streamflow at node representing WSC gauge¶ 107 112 148 143 174 
Total Streamflow** 121 127 157 152 178 

2015 

Precipitation 789 714 897 897 897 
Evapotranspiration* 425 421 428 445 385 
Overland Runoff† 68 61 85 82 93 
Storage change‡  7 -9 20 17 26 
Recharge§ 288 241 364 352 392 
Streamflow at node representing WSC gauge¶ 84 75 101 98 110 
Total Streamflow** 97 88 116 112 125 

2016 

Precipitation 879 756 771 771 771 
Evapotranspiration* 444 382 338 345 316 
Overland Runoff† 78 64 93 91 97 
Storage change‡  13 25 -10 -11 -3 
Recharge§ 344 285 349 345 361 
Streamflow at node representing WSC gauge¶ 96 79 112 110 116 
Total Streamflow** 107 91 122 118 125 

Recharge Estimate from Previous Study 
(Tier Three††) 321 

Streamflow estimates from WSC gauge‡‡ 
2014 153 
2015 112 
2016 139 

* AET excluding AET from the saturated zone. Total AET values were: 493, 476, 496, 511, and 442 mm, 

respectively, for scenarios 1 to 5 for 2014; 521, 505, 533, 547, and 495 mm, respectively, for scenarios 1 to 5 

for 2015; and 540, 466, 439, 445, and 419 mm, respectively, for scenarios 1 to 5 for 2016. 
† Overland flow into stream. 
‡ Includes storage changes in both sat. and unsat. zones, as well as boundary flows out of unsat. zone. 
§ Recharge can be calculated via Eqn. (2.2). 
¶ Area above gauge = 47.4 km2 (WSC, 2019). 
** Area of model domain = 68.2 km2 (GRCA, 1998). 
†† Results from calibrated, steady state, saturated zone FEFLOW simulation for Regional Municipality of 

Waterloo Tier Three Assessment (M.H. Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a). 
‡‡ WSC (2019). There were twelve days with missing data at the start of 2016. 
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Cumulative streamflow patterns for the ETo scenarios were similar. Scenario 4 results were 7% 

smaller, 13% smaller, and 21% smaller than observed in 2014, 2015, and 2016, respectively. Scenario 

5 results were 14% larger, 2% smaller, and 17% smaller than observed for the three years, 

respectively. Scenario 3 results were 3% smaller, 10% smaller, and 19% smaller, respectively. 

Scenarios 3 and 4 yielded very similar streamflow results. Scenario 5 sometimes differed to a slightly 

greater extent but was still closer to the observed cumulative streamflow than Scenarios 1 and 2. 

The reasonably good spatial correlation between ETo values near the study area was associated 

with smaller discrepancies in recharge rates and cumulative streamflow totals, compared to rainfall 

results (Wiebe and Rudolph, 2020; Chapter 2). These results suggest that rainfall variation is greater 

and has a larger impact on recharge rates. Therefore, incorporating rainfall variation seems more 

important than capturing ETo variation for the area around the study site. 

 

 
Figure A.5: Comparison of cumulative streamflow results for all simulations with recorded flows at 
the Water Survey of Canada (WSC) gauge (WSC, 2019). The WSC gauge was missing 12 days of 
data at the start of 2016. 
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A.3 Discussion 

The relatively short-term results of the present study are an important initial analysis because of the 

costs associated with the long-term operation of a network of weather stations. The choice of ETo 

network had a smaller influence on overall annual recharge rates (≤ 51 mm per year, or ≤16% of 

steady state recharge) than the choice of rainfall network (variation up to 44% of steady state 

recharge). Hydrological modelling (streamflow) studies have similarly found less sensitivity to 

evaporation variation than to rainfall variation (Nandakumar and Mein, 1997; Oudin et al., 2006; 

Paturel et al., 1995). 

Despite the high degree of correlation of the ETo estimates, there was initially some uncertainty 

regarding which wind speed option to choose in the ETo calculator for stations with only temperature 

data. The “light to moderate winds” (2 m/s) option was employed for modelling by Wiebe and 

Rudolph (2020) (Chapter 2) and was considered more reasonable than the “light winds” (0.5 m/s) 

option based on the range of ETo estimates for the local network, where the average of all recorded 

wind speed values was 1.6 m/s. Whether the “light to moderate winds” option (2 m/s) in the ETo 

Calculator is used, or an average value of 1.6 m/s is entered as input, the index of aridity and average 

AET������ 𝑃𝑃�⁄  ratio are quite similar. 

 

A.4 Conclusions 

ETo values were very well correlated, with daily, monthly, and annual Pearson and Spearman 

coefficients > 0.8 among all thirteen stations. The three ETo scenarios were all quite similar, and 

overall average recharge rates varied by up to ±51 mm, or ±16% of a previous estimate of steady state 

recharge for the watershed. Results indicate that the rainfall differences between networks could lead 

to much larger differences than those displayed by ETo scenarios. 

Care is needed for selecting the wind speed option or value for ETo calculations when local wind 

data are unavailable. 
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Appendix B 
Background information on the meteorological observation 

networks 

National (Environment Canada) Network 

Figure B.1 shows the Environment Canada weather stations closest to the Alder Creek watershed, and 

Table B.1 shows the number of missing days of data at each station. Because so many observations 

were missing from many of these stations, only the Roseville station was used to represent national 

network precipitation. Missing precipitation and temperature data for the Roseville station during 

2014 to 2016 were filled in using either WS4 in the local network (Wiebe et al., 2019; 8 km from the 

station), or the University of Waterloo weather station (Seglenieks, 2017; 16 km from the station). 

 

 
Figure B.1: Environment Canada weather stations with rainfall observations near the Alder Creek 
watershed (Esri et al., 2019a, 2019b; Government of Canada, 2017; GRCA, 2017a). 
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Table B.1. Data gaps for the national weather stations near the Alder Creek watershed*. 

Station Number of days with missing data per year 
2014 2015 2016 

Fergus 3 6 3 
Roseville 22 15 32 
Foldens 2 28 202 
Waterloo Wellington 2 200 200 201 
Woodstock 218 218 213 
Stratford 125 125 325 

* Government of Canada (2017) 

 

Regional (GRCA) Network 

The GRCA rain gauges were installed for flood forecasting purposes (S. Shifflett, pers. comm., 

2018). They represent the only regionally available gauges with continuous data for the time period of 

interest. Wellesley temperature data were incomplete for 2014 and 2015, so this station was only used 

as a source of rainfall data and not for ETo calculations. 

 
 

Local (SOWC) Network 

The rainfall data were analyzed for anomalous readings that could be due to snow accumulating on 

the gauge and then melting in a short period of time. Each rain gauge was installed following factory-

calibration, and all gauges were tested and calibrated to within ± 5% (if necessary) between Dec 2015 

and Jul 2016. Errors were found to be < 10% during multiple lab trials, though errors for the WS2 

gauge were < 20% during one trial. The lab trials employed an intensity of around 8 mm/hour for 

about one hour, representing a locally heavy rainfall rate exceeded ≤ 2.2% of the time by gauges of 

the local network. The manufacturer (Hydrological Services PTY LTD, 2013) recommended a more 

rapid rate of water addition during calibration (653 mL for 12 min, i.e., 100 mm / hr). While not as 

high, the rate used during calibration seems appropriate for the rainfall rates observed in the Alder 

Creek watershed. Observed hourly rainfall intensities in the local network were only greater than 37 

mm/hr on two occasions (51.75 mm/hr at WS7; 44.75 mm/hr at WS6). Maximum rainfall intensities 

for all three networks are listed in Table B.2. 
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Table B.2. Maximum rainfall rates observed in the three networks (2014 – 2016). 

Network Station Maximum hourly rainfall 
rate (mm/hr) 

Maximum daily rainfall 
rate (mm/day) 

Local* 

WS2 39.2 61.6 

WS3 46.4 58.4 

WS4 37.0 69.6 

WS5 34.2 53.0 

WS6 39.8 75.6 

WS7 58.0 88.4 

Regional† 

Wellesley 52.4 78.8 

Baden 39.5 59.0 

Laurel Creek 28.8 41.0 

Cambridge 48.5 90.4 

Paris 41.5 67.8 

Burford 31.0 109.6 

National‡ Roseville N/A 67.1 
* Local (SOWC) weather station (Wiebe et al., 2019) 
† Grand River Conservation Authority weather station (GRCA, 2017a) 
‡ Environment Canada weather station (Government of Canada, 2019) 
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Appendix C 
The Alder Creek field observatory 

C.1 Introduction and Objectives 

The Alder Creek Field Observatory is one of three watershed monitoring initiatives of the Southern 

Ontario Water Consortium (SOWC; Wiebe et al., 2019).6  The SOWC is a collaboration of 10 

universities and colleges supported by the federal and provincial governments and private companies. 

Its mandate is to spur economic growth through providing a platform for the development and testing 

of new technologies in a broad range of water-related disciplines. Alder Creek represents a middle 

member along a trajectory from agricultural (Hopewell Creek, east of Kitchener) to fully urbanized 

(Mimico Creek, Toronto) watersheds, and is important from a water supply perspective. As many as 

seven of the well fields of the Regional Municipality of Waterloo capture water recharged within the 

78 km2 Alder Creek watershed, which is located on the Waterloo Moraine (Brouwers, 2007). 

There were several objectives for the setup of a hydrological monitoring network within the Alder 

Creek watershed, including to: 1) expand the body of knowledge generated by previous studies; 2) 

measure rainfall variation; 3) assess reference evapotranspiration (ET) variation; 4) monitor surface 

water; 5) develop systems to record hydrological events, including depression focused recharge; and 

6) estimate recharge rates in different locations. 

 

C.1.1 Network Setup and Instrumentation 

Locations of the field stations are shown on Figure C.1. Efforts were made to find well-distributed 

locations in and around the watershed for the seven weather stations. A typical weather station is 

shown in Figure C.2, and typical sensors for the different types of stations are listed in Table C.1. 

Weather data collection became a focus of the project because of questions about the sensitivity of 

coupled or fully integrated (surface flow, vadose zone, and saturated groundwater flow), watershed-

scale hydrological models to various input data imposed on the upper domain surface. Beyond this, 

two sites were instrumented to monitor groundwater recharge, three sites were instrumented with 

surface water sensors, and several wells were drilled. Groundwater recharge sites included: bromide 

tracer applications; groundwater level, soil moisture, temperature, and electrical conductivity 

 
6 Renamed as the Ontario Water Consortium, Aug 2019. 
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monitoring; and tensiometer testing. Soil tension was a missing element in previous, similar studies in 

Woodstock on groundwater recharge rates (e.g., Bekeris, 2007; Koch, 2009). Multi-level tensiometers 

were developed for the two recharge stations. 

 
Figure C.1: Locations of the SOWC Alder Creek field stations (DMTI, 2011; GRCA, 1998). 

 
Figure C.2: Photo of typical station setup (WS2). Not shown: an Alter-type windscreen (1 m 
radius), which was installed around the rain gauge after this photo was taken. 
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Table C.1. Typical instrumentation and supplementary equipment at field stations. 

Weather Stations 

Sensors 
Tipping bucket rain gauge 
Temperature  
Relative humidity 
Incoming solar radiation* 
Wind speed and direction 
Snow depth sensor 
 
Supplementary equipment 
Alter-type wind screen for rain gauge, 1 m radius† 
 

Stream Stations 

Sensors 
Water level (pressure transducer) 
Creek (water) Temperature 
Multi-parameter water quality sonde – pH, dissolved 
oxygen, electrical conductivity, temperature 
Automatic water sampler 
Well (water) temperature 
 
Supplementary equipment 
Radio relay system with secondary station 
 

Recharge stations 

Sensors 
Soil moisture 
Soil temperature 
Soil electrical conductivity 
Well water levels 
Soil tension 
 

All Stations 

Supplementary equipment 
Datalogger 
Deep cycle battery 
Solar panel 
Cell network modem 

* WS7 alternatively had sensors to measure incoming short-wave solar radiation and outgoing long-

wave radiation. 
† WS6 had a second rain gauge with two concentric Alter-type wind screens at radii of 1 m and 2 m. 

 

The surface water stations included monitoring of water level and temperature, and options to 

deploy multi-parameter water quality instruments and automatic water samplers. The automatic water 

samplers were configured with the ability to collect creek or groundwater samples either on a 
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schedule or based on hydrological triggers such as water levels rising in exceedance of a specified 

rate. Two of the surface water stations employed radio-relay technology, allowing multiple sensors 

deployed remotely at smaller stations tens of metres from the master station to send their data 

periodically to the master station via line-of-sight radio link. 

Nearly all stations could periodically (e.g., hourly) communicate sensor readings via modems to a 

central server at the University of Waterloo over the cellular telephone network, though a couple of 

stations experienced poor reception. 

Following a review of the maintenance history and detailed examination of the data from each 

weather station, WS1 rainfall data were suspected to be unreliable due to an equipment malfunction 

and were not used. 

 

C.1.2 Bromide Tracer Tests 

Bromide tracer tests were conducted at the Mannheim and Bethel Road sites following the procedure 

of Bekeris (2007) with modifications by Ju (2016) for composite soil sampling (Figure C.3). One 

tracer application was conducted at the Mannheim site, while two experiments were carried out at the 

Bethel Road site; one of these plots was within an active agricultural field with coarse sand and gravel 

sediments, and the other in a woodlot with sandy soil and deciduous and coniferous trees nearby 

(Figure C.3). A known mass of sodium bromide (5 kg) was dissolved in 20 L of deionized water and 

applied to a 3 m by 3 m area by hand using watering cans at each of three recharge plots in June 2016. 

Sampling was conducted by hand using a soil auger after 97 days at both sites, and after 369 days at 

the Bethel Road site. Sampling was later conducted using a Geoprobe 7720DT drill rig at the Bethel 

Road site after 524 days. Multiple soil cores (up to nine by hand, or three with the drill rig) were 

collected during each sampling event, and soil from equivalent depth intervals from across all cores at 

a tracer plot were combined, mixed, and subsampled for submission to a commercial laboratory for 

bromide mass analysis. Background soil cores were collected outside the Mannheim and Bethel 

Road-Woodlot plots after 97 days. Soil samples were submitted in filled 50 g (approximately 300 mL 

volume) jars on ice. Sampling by hand could only obtain soil samples from depths of up to about 1 m. 

Coring with the drill rig obtained samples down to 4.2 m (Bethel Road site - field plot) or 7.3 m 

(Bethel Road site - woodlot plot). Soil cores were only collected once at the Mannheim site due to 
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suspected non-vertical migration of tracer during a snowmelt event with high local water table 

conditions under the tracer plot. 

 

 
Figure C.3: Locations of the tracer application plots at the two recharge sites (DMTI, 2011; First 
Base Solutions, 2006; GRCA, 1998). 

 

C.1.3 Manual Operation Multi-Level Tensiometers 

Pressure head measurements in the vadose zone may be used for calculating drainage or 

evapotranspiration rates via the zero-flux plane method (Healy, 2010). Tensiometers are one of the 

few types of instruments able collect pressure head measurements in the vadose zone. However, data 

collection can be challenging because of either the need to maintain a vacuum, or the tendency for 

entrapped air bubbles to impact pressure measurements due to the high compressibility of air. Burr 

(2000) found that tensiometer pressures in the second year of a field study yielded unreasonable 

recharge rates. P. Menkveld (pers. comm., 2017) found tensiometer measurements unreliable, 

possibly due to small amounts of air entering the tensiometer each time the needle of the vacuum 

gauge was used to collect pressure measurements. 

The manual-operation, porous cup tensiometer that has been deployed in the past (e.g., Burr, 2000; 

Healy, 2010) typically consists of a water-filled PVC pipe with a porous ceramic cup at the lower end 

and a rubber septum at the top. Such a device is: installed into unsaturated soil with an appropriate 
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slurry of fine-grained sediment to assure a good hydraulic connection between the ceramic and the 

native soil, filled to the top with de-aired water, capped with a rubber septum, and then allowed to 

equilibrate with soil pressures. During equilibration, the water in the PVC pipe will be drawn into the 

soil by the tension of the unsaturated soil around the ceramic cup and the water level will decrease 

until the vacuum tension in the head space at the top of the PVC pipe is the same as the tension in the 

soil around the ceramic cup. Following this, the pressure head (tension, in the vadose zone above the 

water table) in the soil region in contact with the ceramic cup may be measured by inserting the 

needle of a vacuum gauge through the rubber septum into the vacuum in the head space above the 

water column in the PVC pipe and taking a reading. 

Due to the difficulties in maintaining a vacuum under field conditions for long periods of time, and 

as an alternative to the cost associated with purchasing large numbers of electronic tensiometers in 

order to obtain vertical profiles of pressure measurements in the vadose zone at multiple locations, a 

variation on a porous cup tensiometer design was deployed in the field at two sites within the Alder 

Creek watershed. The variation was based on Figure 2.12 in Freeze and Cherry (1979), where a 

pressure head profile in the vadose zone is depicted as a series of point measurements connected to 

manometer (U-shaped) tubes containing water. One side of the “U” is hydraulically connected to the 

soil, and the other side is open to the atmosphere; the bottom of the “U” is below the elevation of the 

measurement point and ideally the distance between the measurement point and the ceramic cup 

would be equal to the greatest expected tension, in terms of water column height. When the 

measurement point (e.g., porous ceramic cup) is above the water table and experiencing negative 

pressure (tension), the water level in the side of the “U” that is open to the atmosphere is below the 

elevation of the measurement point. The magnitude of the tension experienced at the measurement 

point is the difference between the elevation of the measuring point (ceramic) and the elevation of the 

water level on the other side of the “U”, which is a pressure in units of water column height. 

If a series of tubes, each connected to a porous ceramic cup on one end, and open on the other end, 

are installed in a borehole with the ceramic cups at different depths, the system is a multi-level 

tensiometer (MLT) in which vadose zone pressure heads at the depths of the ceramics may be 

measured manually using a small diameter water tape. Table C.2 lists advantages and disadvantages 

of such a system. 

The first generation of MLTs employed a design consisting of six moderate-flow ceramic discs 

attached to 6 mm diameter Teflon tubing via custom PVC brackets with fittings. Each fitting was 
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installed into the side-wall of a hollow 5 cm diameter PVC tube. The maximum depth of the bottoms 

of the tubes was designed to be the typical water table depth at prospective installation locations. 

Concern about the lag time between soil pressure changes and the response in the water column of 

the manometer due to the hydraulic conductivity of the “Generation 1” MLT (moderate-flow) disks, a 

second design was developed. The second generation of MLTs used high-flow ceramic cups and a 

central 1 cm diameter PVC piezometer, to which was fastened all tubing and cups. Custom fittings 

were again built to connect the ceramics to the 6 mm tubing. 

MLTs were prepared for field installation as follows, using a procedure that minimized the risk of 

air entrapment within the porous ceramics. Each ceramic disk or cup was soaked in de-aired water 

overnight prior to installation. For the “Generation 1” MLTs, the assembly was set up horizontally 

and each of the ceramic disks was placed in a de-aired water bath. While the ceramic disk was in the 

bath, a syringe was used to draw water through the ceramic in order to fill the tubing. Measurement 

ends of the tubes were capped once filled, and a wet sponge was taped across each ceramic disk 

overnight. For the “Generation 2” MLTs, the entire ~ 5 m long assembly was set vertically in a larger 

PVC tube. This larger tube was filled with de-aired water and then a syringe was used to draw water 

through each ceramic cup until all manometer tubing was filled with water. Each measurement tube 

end was capped once filled and the ceramics were left to soak overnight. 

Installation of the “Generation 1” and “Generation 2” MLTs in the field involved drilling with a 

track mounted Geoprobe 7720DT rig. For the “Generation 1” MLTs, a borehole of approximately 2 

inches in diameter was drilled (while collecting a soil core), then a 3.25-inch metal casing was driven 

into the pilot hole, and then the 2-inch PVC casing was installed and the metal casing was removed. 

Attempts were made to align the side of the casing with the ceramic disks against the borehole wall, 

while silty fine sand was backfilled in the borehole annulus space on the opposite side. The sand was 

occasionally tamped while backfilling. For the “Generation 2” MLTs, a pilot hole was first hammered 

down to a depth near the water table, and then 3.5-inch diameter augers were used to create a 

borehole of sufficient size for the MLT assembly. The MLT assembly was installed in the borehole, 

and silty fine sand was backfilled and periodically tamped up to a depth of around 1 or 1.5 m below 

ground surface. Bentonite chips were then backfilled until near ground surface, and native topsoil was 

used to fill the remaining space. 
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Table C.2. Advantages and disadvantages of the manual operation multi-level tensiometers. 

Advantages 

• pressure head in the vadose zone (i.e., tension) may be measured manually, similar to 

collecting piezometer or well water levels 

• measurement equipment consists of only a small diameter water tape with no weights; no 

other specialized equipment is needed 

• no need to maintain a vacuum; measurement side of the manometer tube allowed to de-gas; 

air entry not a problem if hydraulic connection maintained between soil, ceramic material, 

and water column on soil side of the manometer tube 

• no moving parts 

• after initial equilibration, no need to reset tensiometer by adding water (e.g., Burr, 2000) 

• intuitive design (promotes conceptual understanding) 

• MLT may be removed using a manual jack during decommissioning 

Disadvantages 

• currently lacking a method for continuous data collection* 

• difficult to verify hydraulic connection between native soil and fine sediment fill around 

the ceramic cups† 

• pressure range dictated by depth of installation of the bottom of the manometer tube 

• insufficient tamping could lead to preferential vertical pathways for drainage to occur 

through the soil† 
* Would require a small diameter (≤6 mm) pressure transducer of suitable (mm scale) accuracy 
† This is a potential issue with all tensiometers. 
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C.1.4 Challenges 

Finding landowners to host the field stations was an initial challenge. Partnership with the Regional 

Municipality of Waterloo provided one site (part of the Mannheim site). The Grand River 

Conservation Authority (GRCA) recommended three land-owners who agreed to host weather 

stations and wells. Four businesses (a greenhouse operation adjacent to the Regional Municipality of 

Waterloo site, an organic farm, a farm market, and a golf course) also agreed to host weather stations 

or other equipment. The County of Oxford provided access to the right-of-way beside a bridge over 

the lower reach of Alder Creek, where permission from landowners could not be obtained. It was not 

possible to install monitoring equipment within about one kilometre of the confluence of Alder Creek 

and the Nith River due to this lack of permission. 

Another challenge was the development of rating curves for the stream stations. While low to 

moderate flow rates in the creek could be gauged manually by wading and using a flow meter, large-

magnitude events such as those generated during mid-winter snowmelt events with rainfall could not 

be measured for safety reasons. Such events were observed to include streamflow in the riparian zone 

beside the creek at the Mannheim site, putting equipment at risk. A related challenge was damage to 

steel drivepoint piezometers installed in the creek. Ice movement associated with mid-winter 

snowmelt events bent some piezometers and pulled one completely out of the streambed. 

The gravelly sand unit at the Mannheim site made sampling for the bromide tracer difficult for 

depths greater than about 1 m. This unit dictated the maximum depth of sampling via hand-auger and 

tended to yield reduced soil recovery over its thickness during soil coring via drill rig. 

 

C.2 Results and Discussion 

C.2.1 Tracer Tests 

Soil sampling results from the Mannheim site confirmed the hypothesis that composite soil sampling, 

(i.e., collecting multiple cores and then combining similar depth intervals to create a composite core) 

provides a more complete analysis of the tracer migration than is given by one core (Figure C.4; Ju, 

2016).  
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Figure C.4: Soil sampling results after 93 days of tracer migration at the Mannheim tracer plot: a) 
linear concentration scale; b) logarithmic concentration scale. 

 

Figure C.5 shows the bromide tracer results from the woodlot plot. Results for none of the three 

sampling events show a decline to near the detection limit as depth increases. The first and second 

sampling events (at 93 and 369 days of travel time), may have failed to capture the centre of mass of 

the tracer due to their shallow sampling depth, and the increase in concentration at the bottom of the 

profile for the third sampling event (524 days) suggests that some amount of the tracer had reached 

the water table prior to sampling. Thus, any vadose zone drainage rate approximations or recharge 

estimates based on these results are likely to be underestimates (Table C.3). 

Figure C.6 shows that the sampling event at 93 days at the field plot resulted in concentrations 

much higher than the detection limit at the bottom of the profile. Samples collected after 524 days 

were near or below the detection limit, suggesting that most of the tracer mass had been flushed 

through the system. 

 
Figure C.5: Bromide tracer results for the Bethel Road site – Woodlot plot: a) linear concentration 
scale; b) logarithmic concentration scale. 
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Figure C.6: Bromide tracer results for the Bethel Road site – Field plot: a) linear concentration 
scale; b) logarithmic concentration scale. 

 

 
Table C.3. Recharge estimates based on bromide tracer results. 

Location 
(Soil sampling 
method, no. of 

samples) 

Maximum 
Sampling 
Depth (m) 

Depth of 
Centre of 
Mass (m) 

Travel 
time 
(yr) 

Average 
Volumetric 

Water Content 
(m3/m3) 

Drainage rate 
estimate § 

(m/yr) 

CP – Grass plot 
(Composite, 9) 0.9 0.34 0.27 0.16* 0.20 

CP – Grass plot 
(2” core, 1) 0.7 0.16 0.27 0.16* 0.09 

Bethel Rd. – Woodlot 
(Composite, 7) 1.0 0.27 0.27 0.15† 0.15 

Bethel Rd – Field 
(Composite, 4) 0.4 0.10 0.27 0.07‡ 0.03 

Bethel Rd – Woodlot 
(Composite, 5) 1.4 2.48 1.02 0.15† 0.36 

Bethel Rd – Woodlot 
(Composite, 3) 7.6 3.50 1.44 0.15† 0.36 

Bethel Rd – Field 
(Composite,3) 3.8 1.06 1.44 0.07‡ 0.05 

* VWC calculated via overall calibration equation (y = 0.3112x + 0.1398), Appendix H. 

† VWC calculated via silty topsoil and silty SAND equation (y = 0.1795x + 0.3839), Appendix H. 

‡ VWC calculated via gravelly SAND equation (y = 0.0991x – 0.0005), Appendix H. 

§ Drainage rate calculated via 𝑑𝑑 = ∆𝑧𝑧
∆𝑡𝑡
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎 (Bekeris, 2007) 
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C.2.2 Multi-Level Tensiometers 

Early readings (shortly after installation) for each MLT were likely influenced by the initial 

equilibration of pressure between the two sides of the manometer. Each tube was initially filled with 

water on the measurement side, and this water would flow out of the ceramic ports into the soil until 

equilibration. 

The deeper MLTs at the Mannheim site do not suggest the presence of a zero-flux plane, except 

possibly on a few days at MLT3 (Figures C.11 and C.13). This may be due to shallow transpiration 

by vegetation (grass) near MLT2 and MLT3 (“Generation 2” MLTs). Conversely, MLT1 

(“Generation 1”) was located closer to several trees and suggests the presence of a zero-flux plane 

(sink) at a depth of about 2 m during some parts of the year (Figure C.9). However, some of the 

hydraulic head profiles with troughs at the 1.84 m deep port occur during winter. 

Some studies assume that a zero-flux plane will develop in the vadose zone soil profile beneath 

agricultural fields (e.g., Bekeris, 2007). Despite the use of “Generation 1” low flow ceramic ports in 

the Bethel Road site’s MLTs, Figure C.15 suggests that a zero-flux plane may frequently be present 

under the agricultural field. The peak in the total hydraulic head suggests that water is moving away 

from the zero-flux plane both upward (due to evapotranspiration) and downward (due to gravity 

drainage of soil moisture) (Healy, 2010). Two of the three complete sets of hydraulic head estimates 

for the woodlot tensiometer (Figure C.17) show a zero-flux plane that is a trough (sink) in middle of 

the profile. Water appears to be moving toward an intermediate depth somewhere between the ports 

at depths of 1.3 m and 3.4 m. This occurs on 27 Sep 2016 and 4 Oct 2016, possibly indicating that the 

roots of the nearby deciduous trees draw water from this depth range. The only other complete set of 

measurements for this tensiometer shows a snapshot of the tension profile in late October. This 

profile suggests drainage between all measurement ports and does not contain a zero-flux plane. 

Deciduous trees may have stopped transpiring by this time, allowing drainage to occur more 

continuously. Measurements could not routinely be made at the deepest port of MLT2 at the Bethel 

Road site, likely due to constriction of the tubing. The water tape could not pass a certain point. 

Pressure should theoretically equilibrate between native soil and the backfilled soil around the 

ceramics at pseudo-steady state. This is expected to be reasonable under conditions where changes are 

not too rapid. The amount of water migration into and out of the tensiometer could be a concern (T. 

Ferré, pers. comm., 2016). While the amount of water between the ceramic and the bottom of the 

manometer is constant, the size of the tubing on the open side of the “U” dictates the volume of water 

that must be exchanged with the soil pores for a unit change in pressure. Another issue is that 
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installation of tubing extending below the water table would require casing to be driven below the 

water table, which was not possible with the auger system on the drill rig. This limits the depth of 

installation and the maximum pressure range. MLT measurements suggest that the installation depths 

used in the present study (5 or 5.5 m) were suitable for the local soil tensions experienced. 

 

 

 
Figure C.7: Locations of the three multi-level tensiometers at: a) the Mannheim site, and b) the 
Bethel Road site (DMTI, 2011; First Base Solutions, 2006; GRCA, 1998).  
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Figure C.8: Pressure head profiles for Mannheim MLT1. 
 

 
Figure C.9: Hydraulic head profiles for Mannheim MLT1. 
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Figure C.10: Pressure head profiles for Mannheim MLT2. 
 

 
Figure C.11: Hydraulic head profiles for Mannheim MLT2. 
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Figure C.12: Pressure head profiles for Mannheim MLT3. 
 

 
Figure C.13: Hydraulic head profiles for Mannheim MLT3. 
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Figure C.14: Pressure head profiles for Bethel Road MLT1. 
 

 
Figure C.15: Hydraulic head profiles for Bethel Road MLT1. 
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Figure C.16: Pressure head profiles for Bethel Road MLT2. 
 

 
Figure C.17: Hydraulic head profiles for Bethel Road MLT2. 
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C.2.3 Data from the Alder Creek field observatory 

Most of the meteorological and hydrological data collected are available - see Wiebe et al. (2019). 

 

C.3 Recommendations 

Rain Gauges 

• Install at least two rain gauges at each weather station. This is similar to the recommendation 

by Krajewski et al. (2003). Having multiple rain gauges was beneficial at WS6, where one of 

the gauges had electrical connection problems. 

• Collect rainwater from each gauge in a container for volume checking. It may be 

advantageous to store this water underground, where temperature fluctuations would be 

damped, and evaporation will be less likely. The collection system must account for freezing, 

however. 

Weather Stations 

• More regular maintenance checks are advised. For example, a suitable schedule could involve 

a maintenance check of each weather station every two months. Items to check include 

battery voltage, battery wiring connections, rain gauge funnel, and rain gauge wiring 

continuity. It is important to check battery wiring because corrosion can lead to poor 

connections or the disconnection of wires from the battery terminals. Debris should be 

cleaned out of the rain gauge funnel to avoid build-up that could lead to clogging. Rain gauge 

wiring continuity testing should be performed using a voltmeter on the wires that plug into 

the datalogger. The gauge should be disconnected from the datalogger to avoid erroneous 

readings, and then the bucket should be tipped manually to test the signal transmission. 

• Acoustic snow sensors should be retrieved after snowfall is unlikely in the spring and the 

internal desiccant should be replaced prior to re-installation in the fall. 

• Venting strategies for pressure transducers connected to dataloggers within enclosures should 

be assessed. Vented pressure transducers were found to have a slight offset of up to about 10 

cm from the manual water level measurements, and this may be due to the vent tubes 

terminating within the enclosure, despite the enclosure having a waterproof air vent. 
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Solute Tracer Tests 

• More frequent sampling is recommended, especially in coarse-grained unsaturated soils, with 

a drill rig. Drilling soil cores when soil is moist may maximize soil recovery in coarse soils. 

Tracer applications should target areas without coarse gravel units in the vadose zone, 

thereby avoiding soil layers likely to yield poor soil recovery. 

Soil Moisture Block Sensors 

• The soil moisture block sensors for matric potential did not function well at the Mannheim 

site. Testing of these devices under controlled or well-monitored conditions should be 

conducted, and installation techniques should be reviewed. 

Multi-Level Tensiometers 

• Improvements to the MLT design are recommended. An alternative installation method is 

suggested by Figure 6.2 in Fetter (2001). Porous ceramic cups could be attached to tubing as 

in the “Generation 2” MLTs discussed above but installed right-way up (tubing going up to 

ground surface), and then the tubing could form a manometer “U” inside the casing of a 

nearby well. This would decrease the depth of drilling required specifically for the 

tensiometers, and the maximum pressure range (in metres of water column) would be dictated 

by the difference in elevation between the ceramic cup and the bottom of the well. Thus, the 

pressure range could be extended beyond the limitations of the auger system. 

• Bentonite chips could be backfilled with care in between the measurement ports and above 

the upper measurement port to limit preferential vertical flow through the disturbed borehole. 

Each ceramic cup would need a suitable silt/sand pack extending above and below it to 

ensure a good hydraulic connection with native soil. 
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Appendix D 
Alder Creek climate and precipitation 

D.1 Introduction 

This appendix describes introduces the climate of the Alder Creek watershed, presents monthly 

graphs of rainfall and snowfall, and notes how rainfall and snowfall were combined to produce total 

precipitation time series. Data may be obtained from the URLs associated with the Wiebe et al. 

(2019), GRCA (2017a), and Government of Canada (2019) references. 

The Alder Creek watershed is located within a region of southern Ontario that is classified as 

“humid continental” within the Köppen-Geiger climate classification system (Peel et al., 2007). The 

area has a cold climate with a warm summer, relative to regions across the globe. Precipitation in 

southern Ontario tends to be around 1,000 mm/yr with about 20% falling as snow (Champagne et al., 

2020; Wang et al., 2015). Storms may be frontal or convective (Paixao et al., 2015); the lack of 

mountainous terrain nearby precludes orographic storms. Alder Creek is located far enough from the 

nearby Great Lakes (Lake Huron and Lake Erie) to avoid direct lake-effect precipitation much of the 

time. Maps in Suriano and Leathers (2017) suggest that lake-effect snow does impact the region 

around Alder Creek occasionally, under certain weather conditions. 

Figure D.1 shows the average monthly total precipitation at the Roseville Environment Canada 

weather station. Precipitation is reasonably well distributed throughout all months of the year 

(Champagne et al., 2020; Wang et al., 2015), with 20 mm less than the monthly average in February 

and 15 mm more in July. The ETo curve superimposed on the precipitation amounts in Figure D.1 

suggests that precipitation and ET are in phase, i.e., that maximum precipitation and maximum ET 

occur in the same season.  Figure D.1 also shows that peak streamflows occur in winter to early 

spring, between February and April, which is common for southern Ontario (Burn and Whitfield, 

2015; Champagne et al., 2020). 
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Figure D.1: Precipitation (Government of Canada, 2019), reference ET (ETo; Penman-Monteith 
method via ETo Calculator program, Raes, 2009; temperature data from Government of Canada, 
2019; average wind speed from Wiebe et al., 2019), and estimated streamflow (Qstr; WSC, 2019) 
for the Alder Creek watershed. Average values are shown for each month based on analysis of 
daily data from 1973 to 2018. A scaling factor of 1.54 (Qtotal, average, estimated / QWSC, average; see 
Appendix Q), was used to adjust the measured streamflow at the WSC gauge within the watershed 
to be an estimate relevant for the entire watershed. 
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D.2 Rainfall 

D.2.1 Local Rainfall 

Figures D.2 to D.7 show monthly rainfall totals at the local SOWC rain gauges. The low rainfall 

amounts (< 15 mm per month) at WS2 (Figure D.2) and WS6 (Figure D.6) from May to Dec 2016 are 

likely related to equipment problems, though both stations exhibited this pattern in the data. The 

gauges were still recording non-zero rainfall amounts at times, so the electronics were at least 

partially operational. The reason for the low rainfall amounts is unclear. The rainfall data from these 

two stations were used in: 1) the correlation analysis shown in Figure 2.4, 2) the MIKE SHE model 

simulation Scenario 3, and 3) the correlation analysis shown in Figure 4.2. If the May to Dec 2016 

time period was omitted from correlations between WS2 or WS6 and the other local gauges, nine of 

the SOWC points would shift upward (show increased correlation) for each of the three time intervals 

on Figure 2.4. If the May to Dec 2016 time period for these two stations was omitted from the rainfall 

interpolations in Scenario 3, the total precipitation and average recharge for Scenario 3 would 

increase in 2016. This would not be likely to change the conclusions in Chapter 2. Omission of the 

May to Dec 2016 data from the WS2 and WS6 stations would increase the Spearman Rank 

Correlation coefficients of 11 of the 21 points on Figure 4.2 by ≤ 0.05. 
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Figure D.2: Monthly rainfall at the WS2 local station (Wiebe et al., 2019). 

 



 

 173 

 
Figure D.3: Monthly rainfall at the WS3 local station (Wiebe et al., 2019). 
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Figure D.4: Monthly rainfall at the WS4 local station (Wiebe et al., 2019). 
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Figure D.5: Monthly rainfall at the WS5 local station (Wiebe et al., 2019). Data collection at WS5 
started on 20 June 2014. The graph omits the incomplete month of June 2014. 
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Figure D.6: Monthly rainfall at the WS6 local station (Wiebe et al., 2019). The data shown are a 
composite of data from two rain gauges at the site. 
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Figure D.7: Monthly rainfall at the WS7 local station (Wiebe et al., 2019). 
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D.2.2 Regional Rainfall 

Figures D.8 to D.13 show monthly rainfall totals at the regional GRCA rain gauges. There appear to 

be some missing data (Jan to Apr 2014; Jul to Dec 2016) from the Burford rain gauge (Figure D.9). 

The rainfall data from this station were used in: 1) the correlation analysis shown in Figure 2.4, and 2) 

the MIKE SHE model simulation Scenario 2. Omission of these time periods would lead to increased 

correlation for five of the GRCA points in each of the three time intervals on Figure 2.4. If these time 

periods were omitted from the rainfall interpolation, Scenario 2 would have higher total precipitation 

and recharge in 2014 and in 2016. This would not change the conclusions of Chapter 2. 

 

 
Figure D.8: Monthly rainfall at the Baden GRCA station (GRCA, 2017a). 
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Figure D.9: Monthly rainfall at the Burford GRCA station (GRCA, 2017a). An anomalously high 
hourly reading of 219.4 mm on 26 May 2014 at 18:00 was considered erroneous and was removed. 
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Figure D.10: Monthly rainfall at the Cambridge GRCA station (GRCA, 2017a). 
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Figure D.11: Monthly rainfall at the Laurel GRCA station (GRCA, 2017a). 
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Figure D.12: Monthly rainfall at the Paris GRCA station (GRCA, 2017a). 
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Figure D.13: Monthly rainfall at the Wellesley GRCA station (GRCA, 2017a). 
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D.2.3 National Rainfall 

Figure D.14 shows monthly rainfall totals at the Roseville rain gauge for 2014 to 2016. The long-term 

Roseville precipitation dataset (1973 to 2018) was composed of two different parts. Data from 1973 

to 2005 were obtained from OMNR (2007), where missing data were filled in using data from the 

nearby Preston Environment Canada station (AquaResource, 2008; 6.9 km from the Roseville 

station). Data from 2006 to 2018 were obtained from Government of Canada (2019) and no fill-in 

was conducted over this time period. Testing was conducted to determine whether the results of 

Chapter 4 would change if the online Environment Canada data (Government of Canada, 2019) for 

1973 to 2018 were used with no fill-in. The variability of recharge and the three groundwater 

management metrics was essentially the same as when the dataset with fill-in from 1973 to 2005 was 

used, though mean precipitation and mean recharge were each around 20 mm lower with no fill-in. 

 
Figure D.14: Monthly rainfall at the Roseville Environment Canada weather station (Government 
of Canada, 2019). 
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D.2.4 Comparison of All Stations 

Figure D.15 shows annual rainfall totals at all stations. 

 

 
Figure D.15: Annual rainfall at all stations of the local (Wiebe et al., 2019), regional (GRCA, 
2017a), and national (Government of Canada, 2019) networks. The WS5 total is omitted from 2014 
because data were only collected from 20 June to 31 Dec at that station. 
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D.3 Snowfall 

Sonic snow sensors (Campbell Scientific SR50A) were installed to monitor the 2014 to 2015 winter 

season. The available local snowfall data (Wiebe et al., 2019) are shown in Figure D.16 and Figure 

D.17 along with snow depth measurements at the Roseville station (Government of Canada, 2019). 

Sonic snow depth estimates were corrected for air temperature using the Vaisala HMP155 or 

Campbell Scientific HMP45C temperature/relative humidity sensor at each local weather station. 

Maintenance issues (regarding desiccant pack replacement) led to unreasonable results during the 

winter of 2015 to 2016. The sensors were not re-deployed after this second winter. 

Manual spot checks of snowpack thickness at the Mannheim field site corresponded very well to 

the Roseville (Government of Canada, 2019) records (within 2 cm) on several occasions. Similarly, 

the average difference between the reported snow depth at Roseville (Government of Canada, 2019) 

and the arithmetic average of all local sonic snow depths (Wiebe et al., 2019) was 2.0 cm (Figure 

D.17). Monthly snowfall observations at the Roseville weather station (Government of Canada, 2019) 

over the time period of 2014 to 2016 are shown in Figure D.18. 

 
Figure D.16: Sonic snow depth readings over time at the local SOWC stations (Wiebe et al., 2019), 
compared with snow depth measurements reported at the Roseville Environment Canada weather 
station (Government of Canada, 2019). 
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Figure D.17: Differences between the snow depth measurements reported at the Roseville 
Environment Canada weather station (Government of Canada, 2019) and the arithmetic average of 
the sonic snow depth readings at the local SOWC stations (Wiebe et al., 2019). Points are shown 
only for those days when snow depth increased at the Roseville station, indicating a snowfall event. 
Other days were excluded from this analysis because of the possibility of redistribution of snow by 
wind, or differences in snowpack melting at the different sites. The average of all differences 
shown was 2.0 cm. 
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Figure D.18: Monthly snowfall at the Roseville Environment Canada weather station (Government 
of Canada, 2019). 

 

D.4 Total Precipitation 

Rainfall and snowfall occur on the same day frequently in the precipitation records at the Roseville 

station (Government of Canada, 2019), and this fact was preserved during the total precipitation 

calculations. Daily total precipitation for each local SOWC station was calculated by adding the local 

rainfall time series (Wiebe et al., 2019) to the Roseville snowfall time series (Government of Canada, 

2019; OMNR, 2007) on a day by day basis. Similarly, daily total precipitation for the regional or 

national stations was calculated by adding their respective rainfall time series (GRCA, 2017a; 

Government of Canada, 2019) to the Roseville snowfall time series (Government of Canada, 2019). 

This procedure assumes uniform snowfall across the watershed and no melting of snow into the 

tipping bucket rain gauges. Local rainfall data were checked to minimize the possibility of counting 

large snowmelt-derived amounts as rainfall. Amounts > 10 mm during times of potential snowmelt in 

the local network data were verified to be associated with other rainy time steps at the same station 
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and at other local stations during the same day. This was interpreted to indicate that rainfall was 

occurring around those time periods rather than isolated snowmelt occurring into the gauges, but the 

analysis is not conclusive because of the possibility for snow to melt on top of the gauges on a day 

with rainfall. Possible double counting of melting snow on top of the rain gauges was assumed to be a 

minimal source of error because: 1) snowfall constitutes only 15% of total precipitation in the area on 

average (Government of Canada, 2019; OMNR, 2007), 2) the number of snowmelt events during 

each year is limited (e.g., there were perhaps eight major snowmelt events during the 2014 to 2015 

winter based on the Roseville data in Figure D.16), and 3) it is not likely that snow accumulation 

would be present on top of the gauges during all snowmelt events (due to the possibility for 

sublimation or wind to remove snow from the tops of the gauges). 
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Appendix E 
MIKE SHE model settings 

Table E.1 and Table E.2 list settings for the MIKE SHE model, including its surface water model 
component (MIKE HYDRO). 

Table E.1. MIKE SHE Settings 
Heading Category Parameter Option/Value 

Simulation 
specification 

Water movement Overland flow (OL) Finite 
difference 

Rivers and lakes (OC) Yes 
Unsaturated flow (UZ) Richards 

equation 
Evapotranspiration (ET) Yes 
Saturated flow (SZ) Finite 

difference 
Time step 
control 

General settings Initial basic time step 0.25 hrs 
Maximum allowed OL time step 0.5 hrs 
Maximum allowed UZ time step 2 hrs 
Maximum allowed SZ time step 24 hrs 
Increment of reduced time step length 0.05 

Parameters for 
precipitation-
dependent time step 
control 

Maximum precipitation depth per time 
step 

10 mm 

Maximum infiltration amount per time 
step 

2.5 mm 

Input precipitation rate requiring its own 
time step 

5 mm/hr 

OL 
Computational 
Control 
Parameters 

Solver Type and 
Solver-specific 
parameters 

Solver type Explicit 
Maximum Courant number (for adaptive 
time step) 

0.8 

Common stability 
parameters 

Threshold water depth for overland flow 0.0001 m 
Threshold gradient for applying low-
gradient flow reduction 

0.0001 

Overland-river 
exchange 
calculation 

Manning Equation use OL flow 
Manning 

numbers (OL 
to River only) 

UZ 
computational 
control 
parameters 

UZ-SZ coupling 
control 

Maximum profile water balance error 0.001 m 

Richards equation 
parameters 

Iteration control – maximum number of 
iterations 

150 

Iteration stop criteria (fraction of Psi) 0.002 
Timestep reduction 
control (UZ restart) 

Maximum water balance error in one 
node (fraction) 

0.03 
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Table E.1. MIKE SHE Settings (Continued) 
Heading Category Parameter Option/Value 

SZ 
computational 
control 
parameters 

Solver Solver type Preconditioned 
conjugate gradient, 

transient 
Iteration control Maximum number of iterations 200 

Maximum head change per iteration 0.01 m 
Maximum residual error 0.001 m/d 

Sink de-
activation in 
drying cells 

Saturated thickness threshold 0.05 m 

Advanced 
settings 

Gradual drain-activation Yes 
Horizontal conductance averaging 
between iterations 

Yes 

Under-relaxation? No 
Maximum 
exchange from 
river during one 
time step 

Max. fraction of H-point volume 0.9 

Model domain 
and grid 

General Number of cells in x-direction 250 
Number of cells in y-direction 250 
Cell size (length = width) 50 m 
Rotation (degrees counter-clockwise) 0° 
x0 529600 
y0 4799700 
Coordinate system UTM-17 (N) 

Climate Snow melt Include snow melt? Yes 
Factor reducing sublimation rate from 
dry snow 

0 

Threshold 
melting 
temperature 

Spatial distribution Uniform 
Value 0 °C 

Snow melt 
degree-day 
melting or 
freezing 
coefficient 

Spatial distribution Uniform 
Temporal distribution Constant 
Value 2 mm/°C/d 

Minimum snow 
storage for full 
area coverage 

Spatial distribution Uniform 
Value 0 mm 

Maximum wet 
snow fraction in 
snow storage 

Spatial distribution Uniform 
Value 0 

Initial total snow 
storage 

Spatial distribution Uniform 
Value 0 mm 

Initial wet snow 
fraction 

Spatial distribution Uniform 
Value 0 
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Table E.1. MIKE SHE Settings (Continued) 
Heading Category Parameter Option/Value 

Land use Irrigation Include irrigation? No 
Vegetation Spatial distribution Station based 
Leaf Area Index 
(LAI) 
(Maximum 
values from: 
Canadell et al., 
1996; Scurlock et 
al., 2001) 

Urban 0 (Oct-Apr), 
3 (May-Sep) 

Forest 0 (Oct-Apr), 
Linear increase (May), 

5.06 (Jun-15Sep), 
Linear decrease 
(16Sep-30Sep) 

Aggregate extraction 0 
Wetlands 0 (Oct-Apr), 

Linear increase (May), 
6.34 (Jun-15Sep), 
Linear decrease 
(16Sep-30Sep) 

Open water 0 
Row crops and green space 0 (Oct-Apr), 

Linear increase (May), 
3.62 (Jun-15Sep), 
Linear decrease 
(16Sep-30Sep) 

Roads 0 
Overland flow General Separated overland flow areas? No 

Surface-subsurface exchange – 
reduced vertical exchange in 
specified areas? 

No 

Include ponded drainage? No 
Manning number 
(M)  

Spatial distribution Uniform 
Value (Note: MManning = 1/nManning) 3.33 m1/3s-1 

Detention storage Urban 3.0 mm 
Forest 7.6 mm 
Aggregate extraction 4.0 mm 
Wetlands 0.0 mm 
Open water 0.0 mm 
Row crops and green space 5.0 mm 
Roads 1.5 mm 

Initial water 
depth 

Spatial distribution Uniform 
Value 0 m 

 

  



 

193 

Table E.1. MIKE SHE Settings (Continued) 
Heading Category Parameter Option/Value 

Unsaturated 
flow 

Initial conditions Initial conditions Equilibrium 
pressure 

profile (based 
on field 

capacity) 
Macropores Macropore flow None 
Soil profile 
definitions (All 
soil types except 
regions noted 
immediately 
below) 

Uppermost cells’ height 0.1 m 
Number of cells in uppermost category 100 
Intermediate cells’ height 0.2 
Number of cells in intermediate category 100 
Deepest cells’ height 0.5 
Number of cells in deepest category 50 

Soil profile 
definitions (Ice-
Contact Gravel 
and Maryhill Till, 
eastern part of 
watershed only) 

Uppermost cells’ height 0.1 m 
Number of cells in uppermost category 100 
Intermediate cells’ height 0.2 
Number of cells in intermediate category 100 
Deepest cells’ height 0.5 
Number of cells in deepest category 100 

Saturated 
zone 

General Include pumping wells? Yes 
Include subsurface drainage? No 
Hydrogeologic parameter distribution Assign 

parameters via 
geological 

layers 
Specific yield in SZ computational layer 1 Derive from 

UZ soil 
parameters 
when UZ 
included 

Geological lenses? No 
Computational 
layers 

Type of numerical vertical discretization Explicit 
definition of 
lower levels 

Bottom elevation 
correction 

Minimum layer thickness 0.1 m 
Adjust top SZ layer thickness to the initial 
water table? 

No 

Pumping rates 
(Matrix and 
SSPA, 2014b) 

W7 and W8 (combined; same cell; screen = 
329.10 to 345.30 m above sea level (asl)) 

9713 m3/d 

K23 (screen = 311.64 to 325.37 masl) 2256 m3/d 
K24 (screen = 307.0 to 313.20 masl) 2562 m3/d 
K26 (screen = 303.47 m 326.4 masl) 6841 m3/d 
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Table E.1. MIKE SHE Settings (Continued) 
Heading Category Parameter Option/Value 

Storing of 
results 

General Internal MIKE SHE units Yes 
Water movement 
and output 

Store water balance Yes 
Store hot start data Yes 
Hot start storing interval 8736 hrs 

Storing interval 
for grid series 
output 

Overland 168 hrs 
Precipitation, SM, ET, UZ 168 hrs 
SZ-heads 168 hrs 
SZ-fluxes 168 hrs 

Detailed river 
time series output 

Minimum output time step 0.5 hrs 

Extra Parameters Strict retention curve adjustment? true 
 

 

 

Table E.2. MIKE HYDRO Settings 
Heading Category Parameter Option/Value 

Simulation 
specifications 

General Model type River 
River modules (data, simulation) Hydrodynamic 

Time step length Fixed time step 30 min 
Computational 
control 
parameters 

Grid spacing Maximum dx (global value) 500 m 
Wave 
approximation 

Wave approximation (global value) Dynamic, high 
order friction 

Computation 
parameters 

Shallow water 
equation 
parameters 

Time centering coefficient for gravity term 0.5 
Velocity distribution coefficient 1 
Weighting factor, momentum equation 1 
Threshold water level slope for diffusive 
wave approximation 

0.0001 

Enhanced formulation of convective 
suppression? 

No 

Alternative utilization of the convective 
suppression? 

No 

Computation 
parameters 
(Continued) 

Structure 
parameters 

Threshold water level difference below 
which flow is linearized 

0.01 m 

Minimum head loss coefficient 0.1 
Maximum number of iterations at structures 10 
Use pre-processed h-Q-h files for bridges 
generated from previous simulations? 

No 

Miscellaneous Threshold depth for slot creation 0.1 m 
Number of iterations at each time step 1 
Maximum exceedance factor for depth 
above bank level 

100 
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Table E.2. MIKE HYDRO Settings (Continued) 
Heading Category Parameter Option/Value 

Map 
configurations 

Coord. system Coordinate system UTM-17 (N) 
Digital Elevation 
Model (DEM) 

Use DEM for cross-section creation Yes 
Use DEM for river tracing and catchment 
delineation 

Yes 

Background layer (choose .DFS2 
file from 

PreProcessed 
MIKE SHE 

model) 
Cross-sections Cross-sections – interpolation Bilinear 

interpolation 
Cross-sections – spacing between points Half cell size 
Maximum number of points 100 

River tracing and 
catchment 
delineation 

Spatial extent whole DEM 
Resampling factor 1 
Assume internal undefined areas as local 
depressions 

Yes 

Hydrodynamic 
parameters 

Bed resistance Resistance formula Manning (n) 
Resistance number 0.0333333 

Boundary 
conditions 

Standard 
boundaries 

HD boundary Include 
Input type Constant 
Scale 1 
HD value 318 m 

Groundwater 
leakage 

General Include groundwater leakage? No 

MIKE SHE 
couplings 

General Include MIKE SHE coupling? Yes 
River-aquifer 
exchange 

conductance Aquifer + 
river bed 

Leakage coefficient 1E-5 
Linear reservoir exchange Gaining river 

Overland-river 
exchange 

Weir coefficient 1.838 
Weir exponential coefficient 1.5 
Minimum upstream height above bank for 
full weir width 

0.1 m 

Allow overbank spilling from river to 
overland domain? 

No 

Inundation Flood area option No flooding 
HD initial 
conditions 

General type User defined 
Level type Water level; 

0.1 m 
Discharge type Natural flow 
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Appendix F 
Rainfall interpolation 

One scenario was considered in addition to the national, regional, and local rainfall scenarios 

presented. This scenario was conceptualized as a reference scenario in which rainfall was interpolated 

from the set of all thirteen available rain gauges (Table 2.1). Interpolations were made at the daily 

time scale using the inverse distance squared method. 

Figure F.1 suggests that the reference scenario results were very similar to those of the local 

scenario for several larger rainfall events and contain only minor differences. Table F.1 shows the 

individual stations’ readings for these examples. The cumulative streamflow results of the reference 

scenario were similar to (within about 20 mm of) the cumulative streamflow results of the regional 

and national scenarios in 2014, and very similar to (within a few mm of) those from the local rainfall 

scenario in 2015 and 2016 (Figure F.2). Results for the water budget components of the reference 

scenario were intermediate values between the local and regional scenarios’ results, but the values 

were generally closer to the local scenario. This is likely because of the immediate impacts of the 

local gauges within the watershed through the interpolated precipitation distribution. The minimal 

differences between the reference scenario and the local rainfall scenario, and the poorer match 

between the reference scenario and the observed streamflow results suggest that this reference 

scenario does not constitute an improvement with respect to the results of the local scenario. 
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Figure F.1: Examples of rainfall interpolations for 20 May 2014 (a, b, c), 15 Jul 2014 (d, e, f), 24 
Nov 2014 (g, h, i), and 20 Apr 2015 (j, k, l).7  The first column (a, d, g, j) shows results for the 
local network, the second column (b, e, h, k) shows results for the regional network, and the third 
column (c, f, i, l) shows results for the reference scenario (all networks). 

  

 
7 The interpolation shown in subplot (c) is a corrected version of the subplot in Figure A.1 of Wiebe and 
Rudolph (2020), Appendix A. 
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Table F.1. Daily rainfall (mm) on the four days portrayed in Figure F.1 (Government of Canada, 
2019; GRCA, 2017a; Wiebe et al., 2019).  

Weather 
Station 

Rainfall 
20-May-14 15-Jul-14 24-Nov-14 20-Apr-15 

WS2 16.8 42.8 35.6 15.8 

WS3 21.2 0.0 42 0 

WS4 0.0 1.6 50.2 15.6 

WS5 N/A 26.0 35.8 14 

WS6 0.0 2.2 41 15.4 

WS7 15.2 0.6 25.6 11 

Wellesley 22 14.6 34.2 17.2 

Baden 0 31.4 39.2 17.2 

Laurel 10 18.6 34.4 20.8 

Cambridge 6.2 0.4 26.2 14.4 

Paris 0.8 0.6 25.6 22.8 

Burford 0 0.6 20.4 19 

Roseville 15.2 0 3.7 0.6 

 

 
Figure F.2: Cumulative streamflow results from all scenarios including the reference scenario 
(WSC, 2019). 
 



 

199 

Figure F.3 shows the simulated and observed rainfall frequencies for depths less than 20 mm. The 

simulated frequencies tend to be similar or slightly higher than the observed regional and local values. 

The simulated frequencies follow the same pattern as the local and regional frequencies, unlike what 

was observed during rainfall analysis by Mileham et al. (2008), where the simulated and observed 

frequency patterns differed to a greater extent. 

 

 
Figure F.3: Frequency distributions of observed and simulated daily rainfall: a) log scale for 
frequency, b) linear scale for frequency (Government of Canada, 2019; OMNR, 2007; GRCA, 
2017a; Wiebe et al., 2019). The simulated rainfall time series were extracted from 36 grid cells for 
both the regional and local rainfall scenarios. 
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Appendix G 
Borehole logs 

Figure G.1 shows the locations of sediment cores collected during the present study, and Figures G.2 

to G.7 show the logs (created in HydroGeoAnalyst – Waterloo Hydrogeologic, 2018). 

 

 
Figure G.1: Locations of sediment cores (CH2MHILL and SSPA, 2003; DMTI, 2011; First Base 
Solutions, 2006; GRCA, 1998; Hillier, 2014; Menkveld, 2019). 
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Figure G.2: CP1 borehole log. Figure G.3: CP2 borehole log. 
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Figure G.4: CP3 borehole log. Figure G.5: CP5 borehole log. 
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Figure G.6: CP6 borehole log. Figure G.7: MLT1 borehole log. 
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Appendix H 
Soil moisture 

Figure H.1 and Figure H.2 show the locations of the six 2-inch PVC access tubes (“AT1”, “AT2”, 

etc.) where neutron probe soil moisture data were collected at the Mannheim site. Calibration results 

for neutron probe “C” (i.e., University of Waterloo neutron probe “C”; CPN, 2013; employed starting 

in February 2016) are shown on Figure H.3. Volumetric water content (VWC) estimates derived from 

the neutron probe are included on Figures H.4 to H.9. 

Figure H.10 shows the locations of eight 30 cm-long time domain reflectometry (TDR) sensors. 

Figure H.11 shows maximum and minimum TDR soil moisture (i.e., VWC) conditions. 

 

 
Figure H.1: Locations of 2-inch diameter neutron probe access tubes at the Mannheim site 
(CH2MHILL and SSPA, 2003; DMTI, 2011; First Base Solutions, 2006; GRCA, 1998; Hillier, 
2014; Wiebe et al., 2019). 
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Figure H.2: Locations of neutron probe access tubes and monitoring wells at the Mannheim site 
(DMTI, 2011; GRCA, 1998; Wiebe et al., 2019). 
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Figure H.3: Calibration relationship for neutron probe “C” based on gravimetric analysis of soil 
cores for: a) all core intervals, and b) core intervals sorted by soil type. Soil cores were collected 
within 1 m of all six access tubes for the Nov 2017 dataset, and at AT4 and AT5 for the Sep 2016 
dataset. Outliers for the two categories in (b) were likely related to the interface between categories 
and were removed. 



 

207 

 
Figure H.4: Calculated VWC at AT1 based on equation for a) all or b) sorted core intervals.  
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Figure H.5: Calculated VWC at AT2 based on equation for a) all or b) sorted core intervals.  
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Figure H.6: Calculated VWC at AT3 based on equation for a) all or b) sorted core intervals. 
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Figure H.7: Calculated VWC at AT4 based on equation for a) all or b) sorted core intervals.  
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Figure H.8: Calculated VWC at AT5 based on equation for a) all or b) sorted core intervals.  
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Figure H.9: Calculated VWC at AT6 based on equation for a) all or b) sorted core intervals.  
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Figure H.10: Locations of TDR sensors at the Mannheim site (CH2MHILL and SSPA, 2003; 
DMTI, 2011; First Base Solutions, 2006; GRCA, 1998; Hillier, 2014; Wiebe et al., 2019). The base 
of the topographic depression is shown with hatching. 

 

  



 

214 

 
Figure H.11: TDR sensor measurements (Wiebe et al., 2019) under a) maximum, and b) minimum 
moisture conditions. The depths listed are for the top of each probe. 
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Appendix I 
Event Catalogue 

Table I.1. Event observations (Wiebe et al., 2019). 

Event 
# Date 

Amplitude of water level rise (m) Stream 
Max. Level 

(m asl)* 

WS4 
Rainfall 
(mm)† 

Comments 
Creek CPP1 CPP3 CPP8 CPP6 DFR 

pond 
1 24 Nov 2014 0.55 1.73 2.36 #N/A 0.5 0.15 336.05 65 Some flow in floodplain. 
2 26 Dec 2014 0.22 0.24 0.32 #N/A 0.04 #N/A 335.59 21.6  
3 4 Jan 2015 0.4 0.73 0.86 #N/A 0.06 0.04 335.79 17.8  
4 11 Mar 2015 0.44 0.73 0.95 #N/A 0.12 0.06 336.06 4.6 Possibly floodplain flow. Snowmelt. 
5 30 Mar 2015 0.09 0.17 0.27 #N/A 0.02 #N/A 335.51 5 Snowmelt. 
6 31 Mar 2015 0.04 0.07 0.19 #N/A 0 #N/A 335.48 0.2 Snowmelt. 
7 1 Apr 2015 0.04 0.06 0.14 #N/A 0.04 #N/A 335.48 0 Snowmelt. 

8 3 Apr 2015 
v1 0.16 0.47 0.73 #N/A 0.01 #N/A 335.61 0 Snowmelt. 

9 3 Apr 2015 
v2 0.03 0.13 0.22 #N/A 0 #N/A 335.57 3.6 Snowmelt. 

10 Aug 2016 0.36 1.22 1.7 #N/A 0.25 0.08 335.7 2.6 WS4 rainfall negligible despite response. 
11 Nov 2016 0.13 0.9 1.23 0.49 0 0.1 335.46 21.4  
12 Dec 2016 0.22 0.54 1.18 0.45 #N/A 0.18 335.7 14  
13 4 Jan 2017 0.22 0.82 1.33 0.37 0.1 0.1 335.58 12.2 Snowmelt? 

14 10 Jan 2017 0.64 1.31 1.53 1.1 0.27 0.16 336.03 52.6 
Floodplain flow likely. Creek level very 
high. Snowmelt. Rain: event a) 21.6 mm; 
event b) 31 mm. 

15 17 Jan 2017 0.12 0.32 0.68 0.12 0 0.12 335.45 12.2  
16 Feb 2017 0.21 0.8 1.46 0.5 0.03 0.15 335.47 15.8  
17 25 Feb 2017 0.26 0.72 1.17 0.48 0.08 0.11 335.6 17.2 Snowmelt. 
18 1 Mar 2017 0.49 0.94 1.13 0.62 0.21 0.16 335.87 21.2  
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Table I.1. (Continued) 

Event 
# Date 

Amplitude of water level rise (m) Stream 
Max. Level 

(m asl)* 

WS4 
Rainfall 
(mm)† 

Comments 
Creek CPP1 CPP3 CPP8 CPP6 DFR 

pond 
19 7 Mar 2017 0.58 0.6 0.96 0.29 0.09 0.14 335.59 12.2  
20 27 Mar 2017 0.07 0.22 0.61 0.16 0 0.03 335.37 13.8  
21 31 Mar 2017 0.1 0.53 0.97 0.18 0.02 0.03 335.39 10.6  
22 4 Apr 2017 0.2 0.57 0.91 0.43 0.06 0.04 335.48 15.8  
23 6 Apr 2017 0.24 0.45 0.63 0.31 0.09 0.06 335.57 9.6 Snowmelt. 
24 10 Apr 2017 0.03 0.07 0.17 0.05 0.07 0.02 335.34 5.4 Snowmelt. 
25 11 Apr 2017 0.01 0.18 0.35 0.13 0 0.05 335.33 6.2  
26 20 Apr 2017 0.5 0.96 1.28 0.56 0.15 0.1 335.67 27  
27 30 Apr 2017 0.2 0.63 1.05 0.29 0.04 0.05 335.49 14.2  
28 4 May 2017 0.42 0.9 1.03 0.64 0.29 0.07 335.82 32.6  
29 16 Jul 2017 0.36 1.05 1.66 0.89 0.21 0.18 335.57 27.2  
30 5 Nov 2017 0.07 0.09 0.09 0.07 0 0 335.29 11.2  
31 18 Nov 2017 0.17 0.42 0.62 0.48 0.04 0 335.4 25.8  
33 11 Jan 2018 0.11 0.26 0.49 0.74 0.24 0.13 335.79 13.8  

34 22 Jan 2018 0.47 0.66 0.76 0.59 0.3 0.27 336.13 20.8 
Snowmelt. Possibly floodplain flow. 
Pictures before and after suggest ground 
may still have been frozen. 

35 15 Feb 2018 0.46 0.74 1.03 0.31 0.17 0.2 335.74 30.4 
Snowmelt. Small amount of overland 
flow. Creek slightly wider than bankfull 
width. 

36 4 Apr 2018 0.2 0.73 1.22 0.66 0.06 0.03 335.47 15.6  
37 15 Apr 2018 0.23 0.97 1.4 0.68 0.15 0.1 335.49 28.2  
38 20 Apr 2018 0.14 0.28 0.52 0.19 0.06 0.02 335.38 8.4  

* asl = above sea level. 
† Rainfall over up to 4 antecedent days 
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Appendix J 
Effective precipitation estimates for the Mannheim site 

Effective precipitation estimates (Figure J.1, i.e., P – AET, where P is precipitation and AET is actual 

evapotranspiration) for the HydroGeoSphere (HGS; Aquanty, 2015a) Wedge2 model were developed 

from rainfall measurements at the Mannheim site (WS4; Wiebe et al., 2019), snowmelt estimates 

derived from the Roseville Environment Canada weather station (Government of Canada, 2019), and 

time-varying estimates of the ratio of actual evapotranspiration to precipitation (i.e., AET/P). 

Snowmelt estimates were derived manually based on the daily snowfall data and snowpack thickness 

data (Government of Canada, 2019) via the following process. The cumulative snowfall during a 

period between melt events (i.e., times when the snowpack thickness decreased and air temperatures 

were > 0°C) was calculated, and then a percentage of this total height was distributed daily during 

melt events based on the estimated severity of the melting. A ratio of 0.1 was assumed for calculation 

of the snow water equivalent from snowpack thickness (SWE = 0.1 × snowpack thickness). Warmer 

temperatures and greater daily reductions of snowpack were assumed to correspond to larger 

snowmelt values. While this is an approximation that assumes that frozen soil plays a negligible role 

in preventing infiltration, the impact of the exact timing of snowmelt infiltration on the Nov 2014 and 

Jul 2017 events is expected to be minimal because they occurred under unfrozen soil conditions. An 

uncertainty of a few days for melting amounts is not expected to significantly impact the analysis. 

AET/P ratios were approximated based on a conceptual model that assumed some evaporation or 

sublimation in winter and a maximum ratio during the summer. The AET fraction of daily 

precipitation was approximated based on a base ratio (AETdaily/Pdaily) of 0.15 between 26 Dec and 15 

Jan of each year, and a maximum ratio of 0.9 between 25 Apr and 7 Sep of each year, with linear 

interpolation in between. The average annual AET/P ratio (0.64) was set to the value obtained from 

the Budyko curve (Appendix A; e.g., Gentine et al., 2012), where reference evapotranspiration (ETo) 

estimates (ETo Calculator program; Raes, 2009) were based on 46 years of daily Roseville 

temperature data and an average wind speed estimate obtained from measurements at seven local 

weather stations over about 4 years (Appendix A; Wiebe et al., 2019), and average precipitation was 

calculated from 46 years of daily Roseville data, (AquaResource, 2008; Government of Canada, 

2019; OMNR, 2007). 
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Figure J.1: Total and effective precipitation, along with estimated variation of the AET/P ratio 
(Appendix A; AquaResource, 2008; Gentine et al., 2012; Government of Canada, 2019; OMNR, 
2007; Wiebe et al., 2019). 
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Appendix K 
Single well hydraulic (slug) tests at the Mannheim site 

Single well hydraulic testing was conducted at the Mannheim site on 1 Oct 2018 and 17 Oct 2018. 

The hydraulic conductivity (K) values derived from these slug tests complement earlier tests 

conducted by Missori (2015). This appendix contains a map of the piezometer locations (Figure K.1), 

a cross-section showing the slug test averages at different piezometers (Figure K.2), summaries of the 

results (overall – Table K.1; for individual piezometers – Table K.2; for CPP18 constant head tests – 

Table K.3), and graphs of the Hvorslev (1951) and Bouwer and Rice (1976) analyses (Figures K.3 to 

K.36). Recommendations by Butler (1998) regarding the h/h0 intervals over which to match the line 

of best fit (0.15 to 0.25 for Hvorslev and 0.2 to 0.3 for Bouwer and Rice) were followed except where 

noted. All Hvorslev analyses (basic time lag, variable head, or constant head) were conducted for case 

G (Hvorslev, 1951). Bouwer and Rice analyses were conducted in Aquifer Test 7.0 (Waterloo 

Hydrogeologic, 2016). 

 

 
Figure K.1: Locations of wells at which single well hydraulic tests were performed in 2018 (DMTI, 
2011; First Base Solutions, 2006; GRCA, 1998). 
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Figure K.2: Average slug test results along a cross-section perpendicular to the creek (Menkveld, 
2019; Missori, 2015). The location of cross-section B-B’ is shown on Figure 3.4 in plan view. 
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Table K.1. Summary of recommended hydraulic conductivity (arithmetic average) at the Mannheim 
site piezometers. The recommended values account for Missori (2015) data where noted. 

Piezometer KHvorslev 
(m/s) 

No. of 
values 

considered 
in Hvorslev 

estimate 

KBouwer&Rice 
(m/s) 

No. of values 
considered in 
Bouwer and 
Rice estimate 

Comments 

CPP1 1.2E-06 7 9.7E-07 7 

Average includes four 
values (excludes two 
outliers) from Missori 
(2015) 

CPP3 2.7E-06 2 2.0E-06 4 
Hvorslev average 
includes only the two 
higher results. 

CPP4 2.4E-05 7 1.7E-05 7 Average of the seven 
Missori (2015) values. 

CPP6 7.3E-05 5 7.1E-05 5 
Average includes one 
value from Missori 
(2015). 

CPP7 3.8E-06 9 3.6E-06 9 Average of the nine 
Missori (2015) values. 

CPP8 8.8E-05 2 4.4E-05 2  
CPP9 9.7E-07 4 5.9E-07 4  

CPP10 7.2E-05 1 5.6E-05 1 

Chose higher of the 
two Missori (2015) 
values; they differ by 
one order of 
magnitude. 

CPP14 1.1E-07 2 1.0E-07 2  

CPP15 2.1E-07 2 1.6E-07 2 Two initial lower 
values were excluded 

CPP16 2.2E-06 1 7.5E-07 1 
Second test excluded 
(one order of 
magnitude different) 

CPP17 5.5E-07 2 3.0E-07 2  
CPP18 9.7E-05 6 7.9E-05 4  

DP5 6.1E-08 2 4.6E-08 2 
First value excluded 
(2 orders of 
magnitude lower). 
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Table K.2. Summary of hydraulic conductivity (K) estimates at piezometers. 

Piezometer 
/ Test No. 

Method 
(FH = falling head; 
RH = rising head) 

KHvorslev 
(m/s) 

KBouwer&Rice 
(m/s) 

Comments 
(eqn = equation; 

H = head) 
CPP1 / 1  solid slug, FH 1.2E-06 1.0E-06  
CPP1 / 2  solid slug, RH 1.2E-06 9.9E-07  
CPP1 / 3  water addition, FH 9.7E-07 8.1E-07  
CPP3 / 1 * solid slug, FH 2.3E-06 2.4E-06  
CPP3 / 2 * solid slug, RH 7.7E-07 1.3E-06  
CPP3 / 3  water addition, FH 3.1E-06 3.1E-06  
CPP3 / 4  pump out - RH 7.7E-07 1.2E-06  
CPP6 / 1 * solid slug, RH 8.1E-05 6.9E-05  
CPP6 / 2 * solid slug, FH 8.1E-05 6.7E-05  
CPP6 / 3 * solid slug, RH 7.0E-05 7.1E-05  
CPP6 / 4 * solid slug, RH 8.0E-05 7.1E-05  
CPP8 / 1 * solid slug, FH 1.1E-04 5.5E-05  
CPP8 / 2 * solid slug, FH 6.9E-05 3.3E-05  
CPP9 / 1 * water addition, FH 3.8E-07 4.4E-07  
CPP9 / 2 * water addition, FH 6.7E-07 7.6E-07  
CPP9 / 3 * pump out - RH 9.1E-07† 6.2E-07‡ Hvorslev-Variable H. eqn. 
CPP9 / 4  pump out - RH 9.5E-07 5.3E-07  
CPP14 / 1 * solid slug, FH 8.3E-08† 7.4E-08 Development needed? 
CPP14 / 2  water addition, FH 1.4E-07 1.3E-07  
CPP15 / 1  water addition, FH 1.4E-08 1.4E-08  
CPP15 / 2  water addition, FH 6.9E-08 5.5E-08‡  
CPP15 / 3  water addition, FH 2.7E-07 2.1E-07‡  
CPP15 / 4  water addition, FH 1.4E-07 1.2E-07‡  
CPP16 / 1 * water addition, FH 2.2E-06† 7.5E-07‡ Hvorslev-Variable H. eqn. 
CPP16 / 2  water addition, FH 2.9E-07† 1.0E-07‡ Hvorslev-Variable H. eqn. 
CPP17 / 1 * water addition, FH 8.3E-07† 3.5E-07‡  
CPP17 / 2  water addition, FH 2.8E-07 2.0E-07  
CPP18 / 1 * solid slug, FH 9.7E-05 8.3E-05  
CPP18 / 2 * solid slug, RH 8.4E-05 8.9E-05  
CPP18 / 3 * solid slug, FH 5.7E-05 5.8E-05  
CPP18 / 4 * solid slug, RH 8.0E-05 8.7E-05  
CPP18 / 5  constant head pump out 1.3E-04 N/A Hvorslev-Constant H. eqn. 
CPP18 / 6  constant head pump out 1.3E-04 N/A Hvorslev-Constant H. eqn. 
DP5 / 1  water addition, FH 5.9E-10 N/A Hvorslev-Variable H. eqn. 
DP5 / 2  water addition, FH 6.1E-08† 4.5E-08‡ Hvorslev-Variable H. eqn. 
DP5 / 3  water addition, FH 6.1E-08† 4.7E-08‡ Hvorslev-Variable H. eqn. 

* Performed on 1 Oct 2018. All other tests were performed on 17 Oct 2018. 
† Data do not enter 0.15 to 0.25 fitting range recommended by Butler (1998) for the Hvorslev method. 
‡ Data do not enter the 0.2 to 0.3 fitting range recommended by Butler (1998) for the Bouwer and 
Rice method. 
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Figure K.3: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP1 / 1.  

 

 
Figure K.4: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP1 / 2.  
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Figure K.5: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP1 / 3.  

 

 
Figure K.6: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP3 / 1.  
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Figure K.7: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP3 / 2.  

 

 
Figure K.8: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP3 / 3.  
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Figure K.9: a) Hvorslev and b) Bouwer and Rice plots for slug test 
CPP3 / 4.  

 

 
Figure K.10: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP6 / 1.  
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Figure K.11: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP6 / 2.  

 

 
Figure K.12: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP6 / 3. The logger cable moved temporarily when slug was 
removed.  
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Figure K.13: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP6 / 4.  

 

 
Figure K.14: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP8 / 1.  
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Figure K.15: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP8 / 2.  

 

 
Figure K.16: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP9 / 1.  
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Figure K.17: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP9 / 2.  

 

 
Figure K.18: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP9 / 3.  
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Figure K.19: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP9 / 4.  

 

 
Figure K.20: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP14 / 1.  
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Figure K.21: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP14 / 2.  

 

 
Figure K.22: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP15 / 1.  
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Figure K.23: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP15 / 2.  

 

 
Figure K.24: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP15 / 3.  

 



 

 

234 

 
Figure K.25: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP15 / 4.  

 

 
Figure K.26: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP16 / 1.  
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Figure K.27: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP16 / 2.  

 

 
Figure K.28: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP17 / 1.  
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Figure K.29: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP17 / 2.  

 

 
Figure K.30: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP18 / 1.  
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Figure K.31: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP18 / 2.  

 

 
Figure K.32: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP18 / 3.  
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Figure K.33: a) Hvorslev and b) Bouwer and Rice plots for slug 
test CPP18 / 4.  

 

 

Table K.3. Constant head tests at CPP18. 

CPP18 Constant Head Pump-Out Test 1 (CPP18 / 5) 

Type Rising head 

Well screen length (cm) 30 

Well diameter (cm) 2.6 

Hc (Difference between static and constant water 
level; cm) 8.3 

Q (Flow rate; cm3/s) 6.589786 

K (cm/s) 0.013 

K (m/s) 0.00013 

 

CPP18 Constant Head Pump-Out Test 2 (CPP18 / 6) 

Type Rising head 

Well screen length (cm) 30 

Well diameter (cm) 2.6 

Hc (Difference between static and constant water 
level; cm) 4.2 

Q (Flow rate; cm3/s) 3.32585 

K (cm/s) 0.013 

K (m/s) 0.00013 
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Figure K.34: Hvorslev plot for slug test DP5 / 1. 

 

 

 
Figure K.35: a) Hvorslev and b) Bouwer and Rice plots for slug 
test DP5 / 2.  
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Figure K.36: a) Hvorslev and b) Bouwer and Rice plots for slug 
test DP / 3.  

 

 

 

 

 

 

 

 

 

 
 

 

 



 

241 

Appendix L 
Calculation of theoretical steady state drawdown cone extent 

The mathematical description of an ideal unconfined aquifer containing a pumping well with recharge 

entering the top of its drawdown cone may be developed based on the flow equation presented by 

Fetter (2001): 

𝑆𝑆
𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝐻𝐻
𝜕𝜕𝑟𝑟2

+ 1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝑇𝑇

, L.1 

 

where H is hydraulic head, r is the radial distance from the pumping well, T is transmissivity, w is a 

source (> 0) or sink (< 0) term, S is storativity, and t is time. This corresponds to the basic 

conservation of mass equation, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. L.2 

For steady state conditions, 𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕

 = 0, and the equation becomes: 

0 = 𝜕𝜕2𝐻𝐻
𝜕𝜕𝑟𝑟2

+ 1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝑇𝑇

. L.3 

Replacing source/sink term w with steady recharge rate, q, and multiplying all terms by r: 

0 = 𝑟𝑟 𝜕𝜕
2𝐻𝐻
𝜕𝜕𝑟𝑟2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑟𝑟
𝑇𝑇

. L.4 

Noting that 𝑟𝑟 𝜕𝜕
2𝐻𝐻
𝜕𝜕𝑟𝑟2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

=  𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
� via the product rule, 

0 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝑟𝑟𝑟𝑟

𝑇𝑇
. L.5 

Now, integrate both sides with respect to 𝜕𝜕𝑟𝑟: 

0 = �
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕 + �

𝑟𝑟𝑟𝑟
𝑇𝑇
𝜕𝜕𝜕𝜕 

0 = 𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟2𝑞𝑞
2𝑇𝑇

+ 𝐶𝐶1, 

 

L.6 

where C1 is a constant of integration. Multiplying all terms by 1
𝑟𝑟
: 

0 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑟𝑟𝑟𝑟
2𝑇𝑇

+
𝐶𝐶1
𝑟𝑟

 L.7 

Integrating all terms again with respect to 𝜕𝜕𝑟𝑟, and then rearranging: 
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0 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + �
𝑟𝑟𝑟𝑟
2𝑇𝑇

𝜕𝜕𝜕𝜕 + �
𝐶𝐶1
𝑟𝑟
𝜕𝜕𝜕𝜕 

0 = 𝐻𝐻 +
𝑟𝑟2𝑞𝑞
4𝑇𝑇

+ 𝐶𝐶1 ln 𝑟𝑟 + 𝐶𝐶2 

𝐻𝐻 = −𝑟𝑟2𝑞𝑞
4𝑇𝑇

− 𝐶𝐶1 ln 𝑟𝑟 − 𝐶𝐶2, 

 

 

L.8 

where C2 is a second constant of integration. 

The two boundary conditions for the system are: 

1) The hydraulic head at the outer edge of the drawdown cone is zero, and 

2) The volumetric flow rate at a distance equal to the well radius is the pumping rate, Q. 

Mathematically, 

𝐻𝐻(𝑟𝑟) = 0 at 𝑟𝑟 = 𝑅𝑅, L.9a 

where R is the radius of the outer edge of the drawdown cone, and 

𝑄𝑄 = [(2𝜋𝜋𝜋𝜋𝜋𝜋) ∙ (𝑞𝑞𝑑𝑑)]𝑟𝑟=𝑟𝑟𝑤𝑤 = �(2𝜋𝜋𝜋𝜋𝜋𝜋) ∙ �−𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��
𝑟𝑟=𝑟𝑟𝑤𝑤

= �−2𝜋𝜋𝜋𝜋𝜋𝜋 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=𝑟𝑟𝑤𝑤

, L.9b 

where b is the saturated aquifer thickness, qd is the Darcy flux, K is the hydraulic conductivity of the 

aquifer, T = Kb, and rw is the radius of the well. This second boundary condition is the product of the 

surface area of a cylinder with radius rw and length b, and the Darcy flux across this surface. 

Rearranging Equation L.7, multiplying both sides by (−2𝜋𝜋𝜋𝜋𝜋𝜋), substituting boundary condition (2) 

(Equation L.9b), evaluating for r = rw, and solving for C1: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝑟𝑟𝑟𝑟
2𝑇𝑇
− 𝐶𝐶1

𝑟𝑟
, 

�(−2𝜋𝜋𝜋𝜋𝜋𝜋) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=𝑟𝑟𝑤𝑤

= ��− 𝑟𝑟𝑟𝑟
2𝑇𝑇
− 𝐶𝐶1

𝑟𝑟
� (−2𝜋𝜋𝜋𝜋𝜋𝜋)�

𝑟𝑟=𝑟𝑟𝑤𝑤
, 

𝑄𝑄 = 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞 + 2𝜋𝜋𝜋𝜋𝐶𝐶1, 

𝐶𝐶1 =
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

2𝜋𝜋𝜋𝜋
 

L.10 

 

 

L.11 

 Applying boundary condition (1) to Equation L.8: 

0 = −𝑅𝑅2𝑞𝑞
4𝑇𝑇

− 𝐶𝐶1 ln𝑅𝑅 − 𝐶𝐶2. L.12 

Substituting C1 into Equation L.12 and solving for C2: 
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0 = −𝑅𝑅2𝑞𝑞
4𝑇𝑇

− 𝑄𝑄−𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞
2𝜋𝜋𝜋𝜋

ln𝑅𝑅 − 𝐶𝐶2, and 

𝐶𝐶2 = −
𝑅𝑅2𝑞𝑞
4𝑇𝑇

−
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

2𝜋𝜋𝜋𝜋
ln𝑅𝑅 

 

L.13 

Substituting C1 and C2 into Equation L.8 and rearranging provides the complete expression for the 

head H at any radius r: 

𝐻𝐻 = −𝑟𝑟2𝑞𝑞
4𝑇𝑇

− 𝐶𝐶1 ln 𝑟𝑟 − 𝐶𝐶2, 

𝐻𝐻 = −𝑟𝑟2𝑞𝑞
4𝑇𝑇

− 𝑄𝑄−𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞
2𝜋𝜋𝜋𝜋

ln 𝑟𝑟 − �−𝑅𝑅2𝑞𝑞
4𝑇𝑇

− 𝑄𝑄−𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞
2𝜋𝜋𝜋𝜋

ln𝑅𝑅�, 

𝐻𝐻 =
𝑞𝑞

4𝑇𝑇
(𝑅𝑅2 − 𝑟𝑟2) +

𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞
2𝜋𝜋𝜋𝜋

ln
𝑅𝑅
𝑟𝑟

 

 

 

 

L.14 

Now, starting with Equation L.10, find the radial extent of the drawdown cone at steady state by 

calculating the radius, rd, at which 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝑟𝑟𝑟𝑟
2𝑇𝑇
− 𝐶𝐶1

𝑟𝑟
, 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟=𝑟𝑟𝑑𝑑

= �− 𝑟𝑟𝑟𝑟
2𝑇𝑇
− 𝑄𝑄−𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

2𝜋𝜋𝜋𝜋𝜋𝜋
�
𝑟𝑟=𝑟𝑟𝑑𝑑

, 

0 = −
𝑟𝑟𝑑𝑑𝑞𝑞
2𝑇𝑇

−
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

2𝜋𝜋𝑟𝑟𝑑𝑑𝑇𝑇
 

(2𝑇𝑇)(0) = �−
𝑟𝑟𝑑𝑑𝑞𝑞
2𝑇𝑇

−
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

2𝜋𝜋𝑟𝑟𝑑𝑑𝑇𝑇
� (2𝑇𝑇) 

0 = −𝑟𝑟𝑑𝑑𝑞𝑞 −
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

𝜋𝜋𝑟𝑟𝑑𝑑
 

𝑟𝑟𝑑𝑑𝑞𝑞 = −
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

𝜋𝜋𝑟𝑟𝑑𝑑
 

𝑟𝑟𝑑𝑑2 = −
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

𝜋𝜋𝜋𝜋
 

𝑟𝑟𝑑𝑑 = �−
𝑄𝑄 − 𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞

𝜋𝜋𝜋𝜋
 

 

 

 

 

 

 

 

L.15 

Substituting the average pumping rate for the public supply well (K22A) from 1991 to 2000 

(CH2MHILL and SSPA, 2003), an average recharge rate for the Alder Creek watershed (M.H. 

Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a), and an approximate well radius, and solving 

for the radial extent of the drawdown cone, rd: 
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𝑄𝑄 = −3010.85 𝑚𝑚3/𝑑𝑑 

𝑞𝑞 = 321 𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦 = 0.0008794 𝑚𝑚/𝑑𝑑 

𝑟𝑟𝑤𝑤 = 0.1 𝑚𝑚 

𝑟𝑟𝑑𝑑 = �−𝑄𝑄−𝜋𝜋𝑟𝑟𝑤𝑤2𝑞𝑞
𝜋𝜋𝜋𝜋

, 

𝑟𝑟𝑑𝑑 = �− (−3010.85𝑚𝑚3 𝑑𝑑⁄ )−𝜋𝜋(0.1𝑚𝑚)2(0.0008794𝑚𝑚 𝑑𝑑⁄ )
𝜋𝜋∙0.0008794𝑚𝑚 𝑑𝑑⁄

, 

𝑟𝑟𝑑𝑑 = 1043.9 𝑚𝑚 ≈ 1040 𝑚𝑚. 

 

 

 

 

 

Thus, the radial extent of the drawdown cone for an average historical pumping rate and a steady state 

system is approximately 1040 m. 
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Appendix M 

Background information on the HGS modelling 

Table M.1 provides details on the properties used during the modelling for Chapter 3. All 

HydroGeoSphere (HGS) models employed finite difference mode rather than finite element mode 

(Aquanty, 2019a). The area of the base of the topographic depression in the Wedge2 grid was 154 m2 

(actual: 156 m2). The base of the depression and the creek were located at minimum distances of 41.2 

m (same as actual) and 26.7 m (same as actual) from the pumping well, respectively. 

The soil properties of the streambed were estimated by using a transient 1D column model in HGS 

(dimensions: 1 m by 1 m by 2.22 m). Average creek and CPP13 water levels were used during the 

spin-up period (approximately to steady state), and then vented transducer water level time series 

were used to specify heads during a transient simulation. The creek water level was applied as a 

transient head boundary condition at the top of the column and CPP13 water levels were applied at 

the bottom boundary. Hydraulic conductivity values were adjusted by trial and error to match 

modelled and manual water levels at the three drive-point piezometers installed under the streambed. 

Results generated unsaturated conditions between the base of the creek and the water table during 

certain times of the year, as observed in the field, though DP4 water levels were about 30 cm lower 

than observed (Figures M.1 and M.2). Temperatures could not be used to assist the matching process 

because of instrument failure. 

The spin-up procedure for the Wedge1 model involved two stages in order to obtain a radial water 

level profile (Appendix L) with the following characteristics: a drawdown cone produced by pumping 

at the well, a peak in the water table at the outer extent of the drawdown cone, and then a decline in 

water level to the outer boundary fixed head boundary condition (Figure M.3). Constant recharge was 

applied to the top of the wedge model domain during each stage of the spin-up. First, no pumping was 

specified at the inner arc of the domain while a fixed head boundary condition was applied to the 

outer arc of the domain. Second, the well screen was specified over representative nodes of the inner 

arc, the pump was turned on with the effective pumping rate (i.e., pumping rate, Q, multiplied by ratio 

of the angle of the wedge to 360°) at one node at the bottom of the screen, and the outer arc boundary 

fixed head was again specified. This procedure was applied prior to matching the 2002 pumping test 

data and also to obtain long-term (60 year) vertical head profiles at nodes 183.6 m from the well for 

use as boundary conditions for the Wedge2 Model. 
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Topography in the Wedge2 Model was specified as follows. Elevations were simplified to be 335.9 

m asl for all nodes except those near the creek and the base of the topographic depression. The creek 

channel was trapezoidal with the elevation of the interior streambed nodes at 335.10 m asl. The bank 

closer to the well (i.e., apex of the wedge) had an elevation of 335.90 m asl, and the bank farther from 

the well had an elevation of 335.70 m asl. The base of the topographic depression consisted of four 

boundary nodes with elevations of 335.90 m asl at radii of 41.2 m from the well for one arc and 52.9 

m from the well for the other arc. The interior nodes within base of the topographic depression had 

elevations of 335.75 m asl. The elevations of nodes in between the edges of the creek and the base of 

the topographic depression varied linearly along a slope from 335.70 m asl at the creek bank to 

335.90 at the edge of the base of the topographic depression. 

The spin up procedure for the Wedge2 event simulations was slightly different from the procedure 

for Wedge1 and involved a fixed head boundary condition (H = 328 m) at the inner arc nodes at (x = 

1.0 m, y = 0.0 m) and (x = 0.95 m, y = 0.32 m) in the first stage, and then pumping at the (x = 1.0 m, 

y = 0.0 m) node in the second stage. The vertical head profiles from a 60-year run of a modified 

version of the Wedge1 Model (where the clay lens and all laterally adjacent elements were split into 

two layers) were applied at the outer nodes of the wedge for all Wedge2 runs. 

Figure M.4 shows matching of additional water level data during the Vadose Zone Model 

calibration. Early time rapid responses by CPP3, CPP4, and CPP5 were not captured by the 

simulation. Water levels at CPP3 and CPP4 were very similar to each other in the observed data 

(despite being installed in different boreholes 0.3 m apart, with bentonite pellets backfilled in the 

boreholes above the screens) but differed in the simulations. The complexity of the shallow soil 

layering (e.g., influential lower permeability silt layers necessary in the model to obtain a good match 

at CPP5) likely contributed to the discrepancy of the observed and simulated water levels. Lateral 

flows to CPP8 and CPP6 were not well represented by the model. This is not likely an issue due to 

the predominantly vertical flow beneath ponding in the base of the topographic depression. 

Figure M.5 provides background information on the creek water levels and cumulative effective 

precipitation applied to the Wedge2 Model during simulations. Table M.2 lists the dispersivity values 

used for the soil layers in the Wedge2 model. Settings used in the HGS models are listed in Table 

M.3. Settings used in parameter estimation (via PEST; Doherty, 2015) are listed in Table M.4. 

Regularization was added to each PEST run via the ADDREG1 utility. 
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Table M.1. Model input parameters for simulations in Chapter 3. 
 Boundary Conditions  

Model Sim. 
Type 

Initial 
Head 
(m) 

Lateral 
(m) 

Outer Arc 
of Wedge 

(m) 

Inner 
arc of 
Wedge 
(L/s) 

DFR 
Pond 
sh (m) 

Specified 
head 

duration 
(d) 

Recharge 
Rate (m/d) 

DFR Pond 
Recharge 

Rate (m/d) 

Creek 
water 
level 
(m) 

Total 
time 
(d) 

Vadose 
Zone*,† 

st.st¶ 
spin-up 332.0 sh; 333.4 N/A N/A N/A N/A 9.041E-4 1.533E-3 sh; 335.4 3650 

tran from 
above sh; 333.4 N/A N/A 335.8 0.27 obs. rain obs. rain sh; 335.4 4.0 

Wedge1 - 
pumping 

test‡ 

st.st 
spin-up 332.5 no flow sh; 329.26 no 

flow N/A N/A 0.0008 N/A N/A 3650 

tran from 
above no flow sh; 329.26 sf; 42 N/A N/A 0.0008 N/A N/A 39 

Wedge1 – 
spin-up‡ 

st.st 
spin-up 

from 
above no flow sh; 329.26 sf; 42 N/A N/A 0.0008 N/A N/A 21900 

Wedge2 – 
N1§ 

tran 
spin-up 

from 
above 

no flow 
 

sh; profile 
from 

Wedge1 
spin-up v1 

sf; 42 

N/A N/A 

ep 

ep 

ot†† 

360 

tran from 
above 335.85 1.00 ep** 205 

Wedge2 – 
J1§ 

tran 
spin-up 

from 
above N/A N/A ep 395 

tran from 
above 335.8 0.48 ep** 205 

* Shaded rows correspond to calibration simulations. † 100 m x 100 m x 23 to 26 m, where the base elevation of the model was 311.76 m asl, and 
the upper surface approximated ground surface topography. There were 49 layers with 692 nodes and 1302 elements per slice. Number of slices of 
nodes equals number of layers plus 1. ‡ Wedge1: 18.64° wedge; inner radius = 0.23 m; outer radius = 2400 m; ~24.14 m tall; 38 nodes per slice; 70 
layers. § Wedge2: 18.64° wedge; inner radius = 1.0 m; outer radius = 183.6 m; ~24.14 m tall; 320 nodes per slice; 71 layers. ¶ Abbreviations: 
"st.st" = steady state; "tran" = transient; “from above” = from run described in row of table immediately above; "sh" = specified head; "sf" = 
specified flux; "ep" = effective precipitation time series; “ot” = observed transient head; “obs. rain” = observed rainfall at weather station WS4 
(Wiebe et al., 2019). ** Effective precipitation was not applied to the base of the topographic depression while the specified head boundary 
condition was applied. †† Creek depth observed at field sensor (30 min interval) was used to calculate water level at the nodes representing the 
creek. 
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Figure M.1: Observed and simulated hydraulic head values versus time at drivepoints beneath 
creek for the Streambed Model. 

 

 
Figure M.2: Comparison of observed and simulated hydraulic head values at drivepoints beneath 
creek for the Streambed Model. 
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Figure M.3: X-axis profile of water table during spin-up process for Wedge1 model. 

 

 
Figure M.4: Matching of observed and simulated (Vadose Zone Model) water levels at all wells, 
including additional wells not shown in Figure 3.7a. Observed water levels at CPP1, CPP2, and 
CPP5 between t = 0.0 days and t = 0.3 days were used for calibration via PEST. 
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Figure M.5: Creek water levels and cumulative effective precipitation for the Wedge2 simulations. 

 
 
Table M.2. Dispersivity values 

Soil Unit Longitudinal 
dispersivity*, 𝜶𝜶𝑳𝑳 (m) 

Transverse 
dispersivity, 𝜶𝜶𝑻𝑻 (m) 

Vertical transverse 
dispersivity, 𝜶𝜶𝑽𝑽𝑽𝑽 (m) 

Silty Topsoil 0.15 0.015 0.0015 
Silt1 0.15 0.015 0.0015 

Gravelly Sand 2.0 0.20 0.020 
Silt2 0.15 0.015 0.0015 

Silty Sand 1.0 0.10 0.010 
Sand and Gravel 5.0 0.50 0.050 

Silt3 0.15 0.015 0.0015 
Streambed 0.15 0.015 0.0015 
Clay Lens 0.15 0.015 0.0015 

* Values for vadose zone layers were based on Rockhold et al. (2016); low permeability saturated 
zone layers were assigned similar values to lower permeability vadose zone layers 
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Table M.3. Options employed in the HydroGeoSphere models. 
Model Option Value 

All models 
(Vadose Zone, 

Streambed, 
Wedge1, 
Wedge2) 

Units  kilogram-metre-day 
transient flow - 
unsaturated - 
remove negative coefficients - 
compute underrelaxation factor - 
finite difference mode - 
dual nodes for surface flow - 
integrated finite difference for overland flow - 
Maximum timestep multiplier 1.5 
Minimum timestep multiplier 0.5 
Flow solver convergence criteria 1.0e-8 
Newton maximum iterations (typical setting) 15 
Newton target iterations (typical setting) 12 
Jacobian epsilon 1.0e-6 
Newton absolute convergence criteria 1.0e-3 
Newton residual convergence criteria 1.0e-3 
Newton maximum update for head 0.25 m 
Newton maximum update for depth 1000 m 
Newton head change target 1.1 m 
Saturation change target 0.1 
Water depth change target 1000 m 

Wedge2 Maximum timestep 0.03 days 
Minimum timestep 1e-17 days 
Transport time weighting  1.0 
Tortuosity 1.0 
Control volume - 
Upstream weighting of velocities (x-, y-, and 
z-direction) 

1.0 

Flow maximum iterations 2000 
Transport solver convergence criteria 1.0e-10 
Transport solver maximum iterations 2000 
Surface domain longitudinal dispersivity 1.0 m 
Surface domain transverse dispersivity 0.1 m 
Surface-subsurface coupling dispersivity 1.0 m 
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Table M.4 Parameter Estimation Options used in PEST 
Model Option Value Option Value 

Vadose Zone Control data 
RSTFLE restart RELPARMAX 3.0 
PESTMODE regularization FACPARMAX 3.0 
NPAR 21 FACORIG 0.001 
NOBS 80   
NPARGP 3 PHIREDSWH 0.1 
NPRIOR 15   
NOBSGP 9 NOPTMAX 20 
  PHIREDSTP 0.005 
NTPLFLE 3 NPHISTP 5 
NINSFLE 6 NPHINORED 4 
PRECIS Double RELPARSTP 0.005 
DPOINT point NRELPAR 4 
NUMCOM 1   
JACFILE 0 ICOV 1 
MESSFILE 0 ICOR 1 
  IEIG 1 
RLAMBDA1 10   
RLAMFAC -3   
PHIRATSUF 0.3   
PHIREDLAM 0.01   
NUMLAM 10   

singular value decomposition 
SVDMODE 1   
MAXSING 10   
EIGTHRESH 5E-7   
EIGWRITE 0   

parameter groups 
PARGPNME k r hbc 
INCTYP relative relative relative 
DERINC 0.001 0.001 0.001 
DERINCLB 0.0 0.0 0.0 
FORCEN switch Switch switch 
DERINCMUL 2.0 2.0 2.0 
DERMTHD parabolic Parabolic parabolic 
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Table M.4 (Continued) 
Model Option Value Value Value 

Vadose Zone parameter data* 
PARNME rdfr rbkgd houter 
PARTRANS log log log 
PARCHGLIM factor factor factor 
PARVAL1 1.018442826E-04 8.269428721E-04 333.398221159 
PARLBND 0.00001 0.0007397 330 
PARUBND 0.0032876 0.0009041 333.4 
PARGP r r hbc 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME topsoilx topsoily topsoilz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 3.073879919009 3.073879919009 8.4866338458103 
PARLBND 0.01 0.01 0.01 
PARUBND 10 10 10 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME ksilt1x ksilt1y ksilt1z 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 0.06768472699043 0.06768472699043 4.0E-2 
PARLBND 0.001 0.001 0.001 
PARUBND 1 1 1 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
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Table M.4 (Continued) 
Model Option Value Value Value 

Vadose Zone PARNME kgravsandx kgravsandy kgravsandz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 39.54575034217531 39.54575034217531 12.89004780478210 
PARLBND 1 1 1 
PARUBND 100 100 70 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME ksilt2x ksilt2y ksilt2z 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 0.06611983524067 0.06611983524067 4.0E-2 
PARLBND 0.001 0.001 0.001 
PARUBND 1 1 1 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME ksiltsandx ksiltsandy ksiltsandz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 0.33 0.33 0.12 
PARLBND 0.01 0.01 0.01 
PARUBND 5 5 5 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
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Table M.4 (Continued) 
Model Option Value Value Value 

Vadose Zone PARNME ksilt3x ksilt3y ksilt3z 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 0.0019 0.0019 0.001 
PARLBND 0.0001 0.0001 0.0001 
PARUBND 1 1 1 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 

 
Model Option Value Option Value 

Wedge1† Control data 
NPAR 21   
NOBS 80   
NPARGP 3   
NPRIOR 15   
NOBSGP 9 NOPTMAX 30 
    
NINSFLE 6   

singular value decomposition 
MAXSING 6   
Option Value Value Value 

parameter data‡ 
PARNME ksgx ksgy ksgz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 75 75 25 
PARLBND 50 50 1 
PARUBND 120 120 90 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
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Table M.4 (Continued) 
Model Option Value Value Value 

Wedge1† PARNME khsiltx khsilty khsiltz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 2E-3 2E-3 3E-3 
PARLBND 1E-4 1E-4 1E-4 
PARUBND 100 100 100 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME kclayx kclayy kclayz 
PARTRANS log tied log 
PARCHGLIM factor factor factor 
PARVAL1 1E-3 1E-3 1E-3 
PARLBND 1E-4 1E-4 1E-4 
PARUBND 9E-3 9E-3 9E-3 
PARGP k k k 
SCALE 1.0 1.0 1.0 
OFFSET 0.0 0.0 0.0 
DERCOM 1 1 1 
    
PARNME houter rech  
PARTRANS log log  
PARCHGLIM factor factor  
PARVAL1 329.425 0.0008219  
PARLBND 328.0 0.0008  
PARUBND 330.0 0.00095  
PARGP hbc r  
SCALE 1.0 1.0  
OFFSET 0.0 0.0  
DERCOM 1 1  

* tied parameters: ktopsoily – ktopsoilx, ksilt1y – ksilt1x, kgravsandy – kgravsandx, ksilt2y –ksilt2x, 

ksiltsandy – ksiltsandx, and ksilt3y – ksilt3x 

† Only parameters that were different from the Vadose Zone Model PEST file information above are 

listed. 

‡ tied parameters: ksgy – ksgx, khsilty – khsiltx, and kclayy – kclayx 
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Appendix N 
Rainfall and AET generation 

This appendix provides background information on the stochastic generation of annual rainfall and 

actual evapotranspiration (AET) estimates. Probabilities (relative frequencies) of 1) the observed 

intervals between rainy days and 2) the observed rainfall amounts were calculated from the 46 years 

of daily rainfall data (Government of Canada, 2019) from the Roseville Environment Canada weather 

station. Figure N.1 shows the relative frequency distribution for the number of days with 0 mm 

rainfall that occurred in between days with rainfall > 0 mm. The mixing fraction and two scale 

parameters (Eqn. 4.5) for the time intervals between rainy days were 𝑝𝑝 = 0.116, 𝛽𝛽1 = 0.554, and 𝛽𝛽2 = 

3.46. Figure N.2 shows the relative frequency distribution for non-zero rainfall amounts themselves. 

The mixing fraction and two scale parameters for non-zero rainfall amounts were 𝑝𝑝 = 0.503, 𝛽𝛽1 = 

2.09, and 𝛽𝛽2 = 13.3. The observed data in these two graphs were fitted using the Levenberg-

Marquardt algorithm (Gavin, 2009, 2019) in the scientific computation program GNU Octave (Eaton 

et al., 2011) to solve for the three parameters of a mixed exponential distribution equation (e.g., Li et 

al., 2013). 

A large number (19,761) of stochastic, 46-year, daily rainfall time series were generated by 

drawing random variables from the best fit mixed exponential curves for the time intervals and 

rainfall amounts. The weighted average watershed precipitation was calculated annually based on the 

areas of the Thiessen polygons for three virtual stations (25.85 km2 for the region corresponding to 

VS1, 45.61 km2 for the region corresponding to VS2, and 6.597 km2 for the region corresponding to 

VS3). 

Figures N.3 to N.6 provide background information on the generation of AET estimates via AET/P 

ratios. Figure N.3 shows the locations of 45 US MOPEX (Duan et al., 2006) watersheds with 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� 

ratios within ± 0.05 of the ratio derived based on the Roseville weather station data (Government of 

Canada, 2019). Six US MOPEX watersheds with 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� ratios this range were removed from the 

analysis because they were considered to have too few years of data (< 40 years), and five additional 

MOPEX watersheds with ratios within this range were removed from the analysis because their data 

were not approximately normally distributed about the Budyko curve (leaving 45 watersheds after the 

removals). Figure N.4 shows the annual scatter of points about the Budyko curve for these 45 

watersheds. In order to estimate the standard deviation describing the variation of the annual AET/P 
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ratios about the Budyko curve from the 45 watersheds, their annual PET/P ratios were binned (width 

= 0.1) and the standard deviation of the AET/P ratio was calculated for each bin. The maximum 

standard deviation was chosen. Figure N.5 shows an example of one realization’s 46 annual points, 

which were generated based on: 1) annual PET/P ratios (i.e., 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑦𝑦𝑦𝑦/𝑃𝑃𝑊𝑊𝑊𝑊,𝑦𝑦𝑦𝑦, which is the 

ratio of the PET value calculated for the year to the interpolated total precipitation for the watershed 

for the year), 2) a mean value of AET/P from the Budyko curve equation (Gentine et al., 2012), 3) the 

derived maximum standard deviation from the 45 MOPEX watersheds, and 4) a random normal 

function within GNU Octave (Eaton et al., 2011). Figure N.6 shows all annual points over all 

realizations. All generated values are shown in Figure N.6, though only those AET estimates leading 

to recharge rates within the 95% confidence interval were used in the calculations. 

Figure N.7 shows the corrected AETvz/P points for the case where there was no variation about the 

Budyko curve prior to AET correction to remove saturated zone AET. This figure is analogous to 

Figure 4.5b. Figure N.8 shows the frequency distributions of AETVZ for the cases of AETtot/P scatter 

and no scatter about the Budyko curve. 

 

 
Figure N.1: Observed (Government of Canada, 2019) and fitted (Gavin, 2009, 2019) probability 
distributions of intervals between rainy days. 
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Figure N.2: Observed (Government of Canada, 2019) and fitted (Gavin, 2009, 2019) probability 
distributions of daily rainfall amounts. 

 

 
Figure N.3: Locations of the 45 selected US MOPEX (Duan et al., 2006) watersheds with 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃� 
ratios within ± 0.05 of the ratio derived for Alder Creek (Sandvik, 2009). 
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Figure N.4: Observed variation about the Budyko curve for 45 US MOPEX (Duan et al., 2006) 
watersheds. 

 

 
Figure N.5: Variation about the Budyko curve for one realization (46 annual points). Points shown 
were not corrected for the vadose zone correction factor. 
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Figure N.6: Variation about the Budyko curve for all 16,778 realizations. Points shown were not 
corrected for the vadose zone correction factor. 

 

 
Figure N.7: 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝑃𝑃𝑊𝑊𝑊𝑊����� ratios for the case of no scatter about the Budyko curve prior to the vadose 
zone correction. Points shown were corrected for saturated zone AET. 
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Figure N.8: Frequency distributions of 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� results for the cases of a) scatter and b) no scatter 
about the Budyko curve prior to the vadose zone correction. Data shown were corrected for 
saturated zone AET. 
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Appendix O 
Octave code for water budget calculations 

This appendix is a file containing GNU Octave (Eaton et al., 2011) scripts used in the water budget 

calculations in Chapter 4. 

 

The file name of this appendix is “AppendixO-Octave_WB_code_Alder.pdf”. 

 

If you accessed this thesis from a source other than the University of Waterloo, you may not have 

access to this file. You may access it by searching for this thesis on https://uwspace.uwaterloo.ca/. 
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Appendix P 
Calculation of the vadose zone AET correction factor 

The Budyko curve (Budyko, 1961; Gentine et al., 2012) allows the ratio of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������/𝑃𝑃� (long-term 

average total actual evapotranspiration to long-term average precipitation) to be estimated based on 

an estimate of the aridity index for a watershed (i.e., the ratio of long-term average potential 

evapotranspiration to long-term average precipitation, 𝑃𝑃𝑃𝑃𝑃𝑃������/𝑃𝑃�). However, a vadose zone water budget 

requires an estimate for the ratio of long-term average vadose zone evapotranspiration to precipitation 

(𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝑃𝑃�) rather than 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������/𝑃𝑃�. Thus, a correction factor equivalent to the ratio 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� 

was necessary to correct the 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� estimate from the Budyko curve. This appendix develops an 

estimate of the 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� correction factor from analysis from the Alder Creek watershed. 

Figure P.1 shows areas within the watershed where the water table is expected to be high, i.e., at or 

near ground surface. These areas (mapped as bog, marsh, open water, and swamp) constitute about 

7% of the total watershed area (OMNR, 2008; ROW, 2010). 

 
Figure P.1: Land cover areas within the Alder Creek watershed where the water table could be 
expected to be at or near ground surface (DMTI, 2011; GRCA, 1998; OMNR, 2008; ROW, 2010). 
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On an average annual basis, where quantities are stated per unit overall watershed area: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� + 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������, P.1 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� is the average total AET for the watershed [𝑚𝑚3 ∙ 𝑚𝑚−2𝑦𝑦𝑦𝑦−1], 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� is the contribution 

of AET from areas where the water table is not expected to be in the immediate vicinity of ground 

surface [𝑚𝑚3 ∙ 𝑚𝑚−2𝑦𝑦𝑦𝑦−1], and 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� is the contribution of AET from areas where the water table may 

be expected to be at or near ground surface [𝑚𝑚3 ∙ 𝑚𝑚−2𝑦𝑦𝑦𝑦−1]. VZ denotes “vadose zone” and SZ 

denotes “saturated zone”. If the water table is at or very close to the ground surface, it is assumed here 

that AET occurs directly from the saturated zone. Let 𝐴𝐴1 be the area corresponding to 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� (water 

table not at or near ground surface) and let 𝐴𝐴2 be the area corresponding to 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� (where the water 

table is at or near ground surface; represented by areas mapped as bog, marsh, open water, or swamp). 

Let 𝐴𝐴 be the overall watershed area. Based on land cover mapping (OMNR, 2008; ROW, 2010): 

𝐴𝐴1 = 0.93𝐴𝐴 P.2a 

𝐴𝐴2 = 0.07𝐴𝐴 P.2b 

Then: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� =
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������
𝐴𝐴

=
ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�������� × 𝐴𝐴1

𝐴𝐴
=
ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�������� × 0.93𝐴𝐴

𝐴𝐴
= (0.93)ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������, and P.3a 

𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� =
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������
𝐴𝐴

=
ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�������� × 𝐴𝐴2

𝐴𝐴
=
ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�������� × 0.07𝐴𝐴

𝐴𝐴
= (0.07)ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������, P.3b 

where 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴������� is the volume of AET from component 𝑥𝑥 (VZ or SZ), and ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴������� is the rate in 𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑦𝑦−1 

for component 𝑥𝑥 within the respective area (𝐴𝐴1 or 𝐴𝐴2). Assuming that the AET rate in the area with a 

high water table (𝐴𝐴2) is not limited by water availability, 

ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃������, P.4 

where 𝑃𝑃𝑃𝑃𝑃𝑃������ is the average long-term potential evapotranspiration. 𝑃𝑃𝑃𝑃𝑃𝑃������ was estimated to be 775 𝑚𝑚𝑚𝑚 ∙

𝑦𝑦𝑦𝑦−1 (Appendix A) based on Roseville temperature data (Government of Canada, 2019) and local 

wind speed data from the watershed (Wiebe et al., 2019) using the ETo Calculator program (Raes, 

2009). 

The ratio for which an estimate is desired is the 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� correction factor. Dividing all 

terms of Equation P.1 by 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� and re-arranging, the following is obtained: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� =

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� +

𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑜𝑜𝑜𝑜���������,  

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 1 −

𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������, P.5 

The correction factor can now be estimated using an estimate of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� derived from the Budyko 

curve, the 𝑃𝑃𝑃𝑃𝑃𝑃������ estimate noted above, and the long-term average annual precipitation at the Roseville 

weather station (907 mm; AquaResource, 2008; Government of Canada, 2019; OMNR, 2007): 

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 1 −

𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� 

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 1 −

0.07ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������  

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 1 −

0.07 × 775𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑦𝑦−1

577𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑦𝑦−1
 

𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 0.91 

 

If reasonable relative uncertainty values are assigned to the 𝐴𝐴2, ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������, and 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� variables, the 

uncertainty of this 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������/𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� ratio can be estimated. If the relative uncertainty of 𝐴𝐴2 is ±20%, 

and the uncertainty of ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�������� and 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� are each ±10%, then: 

Let 𝑥𝑥 = 0.07ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴����������

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������� = 0.07×775𝑚𝑚𝑚𝑚∙𝑦𝑦𝑦𝑦−1

577𝑚𝑚𝑚𝑚∙𝑦𝑦𝑦𝑦−1
= 0.09 

𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 = ±��𝛿𝛿𝐴𝐴2𝑟𝑟𝑟𝑟𝑟𝑟�
2 + �𝛿𝛿ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������

𝑟𝑟𝑟𝑟𝑟𝑟�
2 + �𝛿𝛿𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������

𝑟𝑟𝑟𝑟𝑟𝑟�
2 

𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 = ±�0.22 + 0.12 + 0.12 = ±0.24 

𝛿𝛿 �
𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇����������

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝛿𝛿𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 = ±(𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟)(𝑥𝑥) = ±(0.24)(0.09) = ±0.02 

∴
𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉��������
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇��������� = 0.91 ± 0.02 

 

In the above, 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 is the relative uncertainty for 𝑥𝑥, and 𝛿𝛿𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 is the absolute uncertainty for 𝑥𝑥. These 

calculations were based on common uncertainty equations (e.g., Taylor, 1997). The uncertainty of the 

assumption inherent in Equation P.4 (i.e., the degree to which 𝑃𝑃𝑃𝑃𝑃𝑃������ is representative for regions with a 

high water table) is not specifically quantified here. 
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Appendix Q 
Estimation of total streamflow for the Alder Creek watershed 

An estimate for the total streamflow for the Alder Creek watershed may be derived from three water 

budget equations. The first is a vadose zone water budget, illustrated in Figure Q.1. 

 

 
Figure Q.1: Components related to a vadose zone water budget. 

 

 

Based on the general mass balance equation, 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 Q.1 

 

the vadose zone water budget may be described by (Eqn. Q.2): 

∆𝑆𝑆𝑉𝑉𝑉𝑉������ = 𝐼𝐼 ̅ − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − 𝑅𝑅�, Q.2 

 

where ∆𝑆𝑆𝑉𝑉𝑉𝑉������ is the change in storage of water in the vadose zone, 𝐼𝐼 ̅is infiltration, 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� is actual 

evapotranspiration originating from the vadose zone, and 𝑅𝑅� is recharge. Infiltration is the difference 

between precipitation (𝑃𝑃�) and overland runoff (𝑄𝑄𝑂𝑂𝑂𝑂�����, which is the surface water fraction of 

streamflow): 

𝐼𝐼 ̅ = 𝑃𝑃� − 𝑄𝑄𝑂𝑂𝑂𝑂�����  Q.3 

 

All components are stated in mm per year, and the overbars indicate long-term average values. Total 

streamflow for the watershed is equal to the sum of overland flow and groundwater baseflow, i.e., 
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𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑄𝑄𝑂𝑂𝑂𝑂����� + 𝑄𝑄𝐵𝐵𝐵𝐵�����  Q.4 

 

This is the second water budget equation. Baseflow may be described by the baseflow index (BFI), or 

fraction of total streamflow that is composed of groundwater discharge: 

𝐵𝐵𝐵𝐵𝐵𝐵����� = 𝑄𝑄𝐵𝐵𝐵𝐵�����/𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������,  Q.5 

 

Therefore, 

𝑄𝑄𝑂𝑂𝑂𝑂����� = (1 −𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������  Q.6 

 

Assuming that the storage change in the vadose zone is 0 mm over the long-term, inserting 𝐼𝐼 ̅ = 𝑃𝑃� −

𝑄𝑄𝑂𝑂𝑂𝑂�����, and rearranging Eqn. Q.2: 

(1 − 𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − 𝑅𝑅�  Q.7 

 

The third water budget equation is a budget for the saturated zone, illustrated by Figure Q.2. 

 

 

 

 
Figure Q.2: Components of a saturated zone water budget. 
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A mass balance equation leads to the following:  

∆𝑆𝑆𝑆𝑆𝑆𝑆������ = 𝑅𝑅� − 𝑄𝑄𝐵𝐵𝐵𝐵����� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� − 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇��������������, Q.8 

 

where ∆𝑆𝑆𝑆𝑆𝑆𝑆������ is storage chanage, 𝑅𝑅� is recharge, 𝑄𝑄𝐵𝐵𝐵𝐵����� is the baseflow component of total watershed 

streamflow, 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� is actual evapotranspiration originating from the saturated zone, and 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�������������� is 

ground water flow out of the watershed. Assuming that the storage change is 0 mm and the inter-

basin groundwater flow is 0 mm over the long-term, the equation can be rearranged to solve for 

baseflow: 

𝑄𝑄𝐵𝐵𝐵𝐵����� = 𝑅𝑅� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� 

(𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑅𝑅� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆�������� 

 

Q.9 

 

Substituting the baseflow term from Eqn. Q.9 into Eqn. Q.7 and solving for 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������: 

(1 − 𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − 𝑅𝑅� 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ − (𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − 𝑅𝑅� 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ − (𝑅𝑅� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������) = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − 𝑅𝑅� 

 

 

 

Noting that 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������� = 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� + 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆��������: 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� Q.10 

 

Substituting estimates for long-term average precipitation (Government of Canada, 2019), 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������� 

from the Budyko curve (Budyko, 1961; Gentine et al., 2012; Raes, 2009; Wiebe et al., 2019), and 

average groundwater extraction per unit watershed area (Matrix and SSPA, 2014b): 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇���������� − 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������� 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 900 𝑚𝑚𝑚𝑚− (0.64)(900 𝑚𝑚𝑚𝑚)

− �23,000
𝑚𝑚3

𝑑𝑑 ��365
𝑑𝑑
𝑦𝑦𝑦𝑦
� (1000 𝑚𝑚𝑚𝑚/𝑚𝑚)/(78,000,000 𝑚𝑚2) 

𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ = 216 𝑚𝑚𝑚𝑚 

 

 

Total streamflow appears to increase by a factor of 1.54 between the WSC gauge (140.5 mm; WSC, 

2019) and the watershed outflow on average. The overall watershed area (78 km2) is a factor of 1.65 

times the gauged area (47.4 km2). 
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If the hypothesis by CH2MHILL and SSPA (2003) that the lower reaches of Alder creek receive 

increased baseflow is correct, then the minimum baseflow index estimate (0.60) for the Upper Grand 

River watersheds from Neff et al. (2005) is reasonable. The baseflow index for the area above the 

New Dundee WSC gauge (WSC, 2019) within the Alder Creek watershed was calculated to be 0.56 

using the PART hydrograph separation program (Barlow et al., 2015). Solving for recharge by 

rearranging Eqn. Q.7 and applying the vadose zone correction factor from Appendix P, and the 

minimum baseflow index from Neff et al. (2005): 

𝑅𝑅� = 𝑃𝑃� − 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉�������� − (1 − 𝐵𝐵𝐵𝐵𝐵𝐵�����)𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇������ 

𝑅𝑅� = 900 𝑚𝑚𝑚𝑚− (0.64)(0.91)(900 𝑚𝑚𝑚𝑚)− (1 − 0.60)(216 𝑚𝑚𝑚𝑚) 

𝑅𝑅� = 290 𝑚𝑚𝑚𝑚 

Thus, recharge is estimated to be slightly (~10%) less than the value estimated by Matrix and SSPA 

(2014a), which was 321 mm (M.H. Brouwers, pers. comm., 2017). 
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