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Abstract 

Although it is recognized that deep aquifers offer a very large potential storage capacity for CO2 sequestration it is not clear 
how to fill the storage with a large volume of CO2 in a relatively short period of time. The typical benchmark for the rate of CO2 
injection is 1 Mt/year when studying storage performance. This rate is very low compare to the scale necessary for the storage 
technology to play a significant role in managing global emissions. In this study we perform numerical simulations of a large 
volume of injection, 20 Mt/year during 50 years of continuous injection resulting in a total sequestration of 1 Gt CO2. A 
sensitivity analysis of the results (plume area and CO2 storage capacity) is presented within the range of aquifer parameters: 
thickness (50-100 m); permeability (25-100 mD); rock compressibility (from 9 10-10 to 2 10-9 (1/Pa)) as well as different 
injection arrangements. The implementation of this study to a particular case of injection of 1 Gt total over 50 years into the 
Nisku aquifer located in Wabamun Lake Area, Alberta, Canada [1] is presented. In this area, large CO2 emitters including four 
coal-fired power plants with emission between 3 to 6 Mt/year each are present. The Nisku aquifer is believed to be a suitable 
choice for future sequestration projects. In this case study a few injection scenarios (number of wells and their placement, which 
control the ability to inject without exceeding the aquifer’s fracture pressure) are presented. The evolution of plume size and 
pressure field in the aquifer for these scenarios is shown. As opposed to the generic sensitivity study, the case study includes the 
heterogeneity of the aquifer and its dip angle. Both generic and Nisku studies have shown that the capacity of the reservoir in the 
case of large injection volumes should be evaluated not by available pore volume, but by ability to inject some amount without 
exceeding fracture pressure of formation. 
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1. Introduction 

The main contributor of carbon to carbon dioxide emissions to the Earth’s atmosphere is the burning of fossil fuels, which 
results in the emission of more than 23.5 Gt CO2/year (2000 global emission data [2]). Underground storage of CO2 is a well 
known method for managing and reducing carbon dioxide concentration in the atmosphere. However, for CO2 storage to have a 
noticeable impact on atmospheric CO2 levels it should be carried out on a very large scale. 

Although aquifers offer a huge storage potential for CO2 sequestration, the implementation of large volume injection to fill 
this capacity seems to be very complex. In scientific investigations by van der Meer [3] it was recognized that in low 
permeability formations or compartmentalized reservoirs the CO2 injection will result in an increase in pore pressure. This 
increase in pore pressure can limit the ability to inject CO2 into the subsurface, because overpressure-associated geomechanical 
damage needs to be avoided. In this case, the storage capacity mainly depends on pore and brine compressibilities that provide 
extended pore space availability, and on the maximum pressure buildup that the formation can sustain. Presented here is the 
quantitative investigation of a large volume CO2 injection and its potential barriers. This work covers two general topics: (i) a 
generic study in which a homogenous, infinite acting but closed reservoir is used to determine the minimum number of wells 
and their spatial distance to achieve total injection of 20 Mt CO2/year. Then, a sensitivity analysis of basic reservoir parameters 
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pressure. On the other hand, if the flowrate constraint is chosen then a constant flowrate is applied for each run such that the 
maximum bottom-hole pressure does not exceed the sustainable pressure.  

For a definite injection period, the simulation results (not presented here) indicated that for pressure constrained wells the 
achievable storage capacity is 35% to 65% of flowrate constrained well, depending on the number of wells. For example in the 
case of = 8 km and n=16, after 50 years, for a pressure constraint scenario the injected CO2 is only 0.344 Gt while for a 
flowrate constraint is 0.867 Gt. This represents a significant difference.  Therefore, all simulation runs make us of flowrate 
constraints for wells.  

Figure 2 (left) shows the storage capacity considering the number of vertical wells and the distance between them.  Note that 
the injection rate for each well was regulated such that the maximum bottom-hole pressure, which is always associated with the 
well near the center, reached to 27,000 kPa which is equal to 90% fracture pressure.  

As this figure indicates, the required number of wells to achieve the target volume is 25 which are 8 km apart from each 
other. For practical prospective it may be more feasible to use smaller or larger amount of wells, covering a little bit larger or 
smaller area. Extrapolating the green and red curves we can roughly estimate the number of wells required. For example 18 
wells which are 10 km apart or 28 wells which are 6 km apart will achieve the target (although in these cases the placement will 
be not symmetrical and particular simulations have to be performed). With respect to area of injection there would be no 
preferences between these three choices. For sensitivity analysis the blue curve in Figure 2, which corresponds to 25 wells 
which are 8 km apart will be used as a base case and all other data are compared against it. This case covers an area of 1024 km2 
(32km  32km) km2, which is a considerably large area. As the number of wells increases the injection rate of each well 
decreases to compensate for the excess pressure build up associated with new wells that affect the pressure response of the 
central well. Hence, the initial steep slope of the graphs (from 1 well to 4 wells) quickly approaches a constant slope.  

 

  
Figure 2: Variation of injected CO2 versus number of wells and distance between them (left); Sensitivity to rock compressibility 
(right). 

Additional simulations were conducted to investigate the effect of some aquifer properties such as rock compressibility, 
absolute permeability and thickness, on the amount of injected and stored CO2 after 50 years. Since for the base case properties 
it was possible to inject the desired value of 1 Gt CO2 over 50 years, the values of parameters were chosen closer to the expected 
aquifer properties. In all cases the rates of gas injection were adjusted such that at the end of injection period, the maximum 
bottom-hole pressure reaches the highest sustainable pressure.  

Depending on the rock composition of the formations, the compressibility of the reservoirs varies widely [8-9]. Hence, for 
sensitivity study the value of compressibility was varied within one order of magnitude by multiplying and dividing the base 
case value by five, respectively. Figure 2 on the right shows the outcome. Higher values of compressibility cause significant 
differences on the results especially when the number of well increases. To explanation this behaviour, it should be mentioned 
that injecting a finite amount of fluid into a subsurface is accommodated by compressibility of the system components (brine, 
formation) and the increase in fluid pressure [10]. The first response is elevated by the more compressible component which is 
almost always the brine. For the range of pressures and temperatures usually encountered in reservoir the brine compressibility 
is in the order of 10-9 (1/Pa). When a higher value is assigned to rock compressibility, the bulk of the reservoir and its fluid gain 
the same order of magnitude and therefore act simultaneously in accommodating the exerted stress. Due to this fact, the slope of 
the curve also increases considerably and with fewer wells higher storage is accomplished. In contrast, when the compressibility 
is decreased, the main responsibility of pressure handling is again delivered to the brine and therefore in comparison with the 
base case no dramatic change will occur. 

The permeability of the formation controls both the uniformity of the pressure distribution over the system volume and the 
propagation velocity of the pressure pulse away from the injection site. According to the diffusivity equation, pressure will 
diffuse faster in formations with higher permeability or lower compressibility. Although it is quite possible to find localized 
regions with high absolute permeability within an aquifer (which are usually allocated to injection sites), generally the average 
permeability of the formation may be low. Figure 3 on left depicts the results of simulations for different values of permeability. 
As the permeability reduces by half, the amount of stored gas nearly decreases by half. By reducing permeability the initial steep 
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slope of the curves decreases which shows increasing the number of well is not much beneficial in low permeable formations 
and to reach the target value, many wells should be drilled. 

The last parameter considered was the thickness of the formation. Reducing the thickness by 50% of the initial value has 
almost the same effect of reducing the absolute permeability by half as would be anticipated). The graph on the right hand side 
of the Figure 3 indicates that for thinner reservoirs, more wells should be placed in the injection zone or other methods of 
increasing injectivity should be considered. 

 

Figure 3: Effect of absolute permeability (left) and formation thickness (right) on storage capacity 

3. Case study- Nisku Aquifer 

A considerable number of CO2 emitters are located in the central region of Alberta, Canada, including four coal-fired power 
plants in the Wabamun Lake area (Figure4-left) [11].  Together these plants emit approximately 30 Mt CO2 per year. The 
Alberta Geological Survey has identified this area in the southwest of Edmonton as a potential storage site considering capacity, 
injectivity and confinement [11]. Moreover, since the large CO2 emitters are located in the vicinity of area it would minimize the 
transportation cost which varies widely depending on the distance between source and sink. Different storage targets, based on 
stratigraphy and lithology, fluid composition, rock properties, geothermal, geomechanical and pressure regimes, are present in 
the study area. One of these targets, Nisku formation in the Devonian Winterburn Group, was selected for a more detailed 
investigation including modelling of the injection and spread of large volume of CO2 in the subsurface [11]. 

 The depth of the top of the Nisku formation ranges between 1600 m in northeast and gradually increases to 2150 m in the 
southeast. The Nisku was deposited at the edge of a carbonate shelf. From southeast to northwest, relatively pure platform 
carbonates change into interbedded limestone and shale of ramp and ultimately basin slope characteristics.  

 

Figure 4: (left) Wabamun Lake study area which shows CO2 emitters [11]; (right) Characteristic relative permeability curve of Nisku 

The salinity of the formation water is equivalent to 190,000 mg of sodium chloride/L. The temperature of the formation is 
equal to 60 °C and at these conditions the water viscosity is equal to 0.84 cp. The net thickness of the aquifer is considered equal 
to 70 m and pressure at aquifer top is 16 MPa. All above data are taken from [1] and used for preliminary study of capacity and 
plume size. The characteristic relative permeability values of the Nisku carbonate which has been measured at in-situ conditions 
of pressure, temperature and brine salinity is shown on the right side of Figure 4 [12]. According to this curve, at residual water 
saturation, 0.3, the gas relative permeability is only 0.18 which is a considerably a small value and can significantly influence 
the injectivity of the gas injection well. 
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4. Methods of increasing the capacity 

In storage process the term “capacity” could have two meanings. The apparent capacity is the available and accessible pore 
volume of the aquifer. However, the injection capacity is the amount of CO2 that can be injected realistically into the formation 
and is a strict function of the number of wells and the fracture pressure of the formation and the confining caprock [14]. As 
discussed earlier, for a restricted injection area such as Nisku study, increasing the number wells beyond a limit (which is 
controlled by formation properties and injection site area) has a minor effect on the injection capacity. The focus of this section 
is the investigation of the methods that lead to an increase in injection capacity of the aquifer. 

The first method is using horizontal wells instead of vertical wells. For vertical wells, it is preferable to use fully penetrated 
wells over the whole thickness of the aquifer. To find the minimum length of the horizontal well, the effective radius of pressure 
disturbance around the vertical injection well, which is again a function of formation properties, should be determined. For 
vertical wells, as the injection begins the pressure around the wellbore increases rapidly and causes the development of locally 
narrow width pressure peak in vicinity of the well. The left graph in Figure 8 shows the spatial distribution of pressure along the 
dotted red line in frame 4 of Figure 1 for vertical well configuration after 50 years of injection. The x axis shows the distance 
with respect to the boundary of the simulation area. The figure clearly shows the peaks around the injectors that indicates an 
effective radius of about  1250 m. Application of horizontal wells with this length will diminish these peaks and increase the 
injectivity (consider the dotted green line in frame 4 of Figure 1 and the corresponding graph (green) in Figure 8). For the Nisku 
formation the length of the horizontal wells was equal to 3000 m. 

         

Figure 8: Comparison of bottom hole pressure of vertical and horizontal well configuration (left), Comparison of the effect of different 
well orientations and stimulation on the storage capacity of the model (right) 

 Application of stimulation techniques such as hydraulic fracturing and induced micro-seismicity can also improve injectivity. 
The technical feasibility of implementing these techniques requires careful geomechanical characterization of the formation. 
Vertical wells with hydraulic fracture of 400 m (half length) were modeled by constructing thin grid blocks in the E-W 
direction.  A porosity of 15% and permeability of 1500 mD was assigned to these grid blocks to approximate a 400 m half-
length fracture and associated damage zone. These properties were also used to construct of four 100 m half length of 4 
staggered hydraulic fractures for horizontal wells. The column chart in Figure 8 shows the simulation results for 10 wells cases 
(located in Figure 6) in Nisku aquifer.  One may conclude that  using any stimulation technique can improve the injectivity.  
However, this result was not unexpected considering the fact that the limited area of the focus region causes quick pressure 
communication between the wells and hence reduces the injection rate of the wells. The effectiveness of the micro-seismicity 
method requires a comprehensive knowledge of the geomechanical features of the aquifer and is left for future studies. A final 
method of increasing CO2 capacity in the Nisku aquifer would be to produce brine [15] from the formation to prevent the 
reservoir pressure from building up excessively near injection wells.  This method involves transporting produced brine through 
surface pipelines to a location where brine can be disposed into another compatible formation or into a lower pressure region of 
the Nisku aquifer itself.  Transporting brine long distances is both expensive and requires added environmental precautions.  
Furthermore, the presence of dissolved H2S in the Nisku brine adds an element of risk to this option due to the toxicity of H2S. 

5. Summary and conclusion 

This paper demonstrates that underground injection of substantial amounts of CO2 may be a very difficult task. The injection 
capacity might be limited by injection of large volumes of gas within a relatively small area and within a relatively short period 
of time. Injection capacity may be much lower than estimated by available pore space on its own. The reservoir pressure during 
injection may exceed the fracture pressure very fast and injection should be stopped before the target amount is injected. Large 
volumes would require a multiple injection well design, but it was shown that increasing the number of injection wells has 
diminish returns. The sensitivity study provides an illustration of the degree to which each reservoir parameter influences CO2 
injectivity and capacity. Permeability and net thickness of the formation have a direct impact on injectivity, but rock 
compressibility manifests its effect when a larger number of injectors is used. 
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The Nisku aquifer in Wabamun area of Alberta is considered as a potential candidate for CCS. Although the entire aquifer 
provides a huge pore volume capacity, the injection site (the study area) covers an area which is approximately 1500 km2. Since 
the characterization of the formation is in progress, the main focus of this study was a homogenous model with properties 
representative of the average values in the study area. However, these average values are based only on a limited amount of data 
currently available from wells previously drilled and tested in the Nisku aquifer.  Future wells, optimized for injectivity may 
prove to demonstrate higher permeabilities.  The current results may be illustrative of only the lower range of parameters 
specific to CO2 injectivity. The results, however, do indicate that increasing the number of wells in a semi-closed area (like the 
one in this study) is not an effective way to increase injection capacity. The effect of heterogeneity was considered by 
introducing a preliminary geostatistical model of the Nisku. Based on this preliminary geostatistical heterogeneous model no 
evidence of significant improvement in the final storage capacity of the area was observed. 

Finally, various methods of increasing the contact area of the injectors including horizontal wells as well as stimulation 
techniques were studied. The application of all these methods led to minor improvements in results. The economic and 
engineering aspects of CO2 injection were not considered in this work and are left as the subject of further studies. 
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