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Control of Hysteretic Systems with Preisach

Representations

The last decade has seen a growing interest in the application of so-called “smart
materials” as sensors and actuators. Transducers made from these materials are
self-contained and scalable, and are well-adapted for use in distributed sensing and
actuation. However, many of these smart materials display a highly non-linear
input-output behaviour known as hysteresis, which can introduce delays and cause

errors in position control tasks.

This thesis examines some of the properties of the Preisach hysteresis model,
as they pertain to controller design. The Preisach model is general in nature,
and has been successful in modelling the hysteresis in several smart materials:
magnetostrictives, piezoelectrics, and shape memory alloys. A novel state-space
framework for the model is introduced, and a class of Preisach model is shown to be
dissipative. This allows the application of energy-based controller design techniques
to these non-linear systems. The Passivity Theorem is applied to determine a set
of stabilizing controllers for velocity feedback of this dissipative class of Preisach
models.

iv



Experimentally, Preisach model identification is carried out for two shape mem-
ory alloy actuator configurations, including a differential actuator. For each ac-
tuator, models which are in the dissipativity class are identified. Applying the
aforementioned theoretical results, this immediately provides a stability result for
velocity feedback control of these actuators. While simulations using these models
provide a good qualitative match with experimental data, other models were iden-
tified for which the match was better. However. these better models were not in

the dissipativity class. suggesting that this class is likely somewhat conservative.
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Chapter 1

Introduction

The last decade has seen a growing interest in the field of “smart materials™ and
“smart structures”. The definition of the latter is generally agreed upon: a smart
structure is one which monitors itself and/or its environment in order to respond
to changes in its condition[9]. A smart bridge might be able to detect high wind
conditions and reduce posted speed limits accordingly, or detect degradation in
footings or piers and alert maintenance crews. A smart building may sense the
presence of high winds or the onset of an earthquake, and adjust its dynamic
properties automatically to minimize damage or occupant discomfort. In order
to perform these tasks efficiently, the smart structure requires a large number of
distributed control sites, each responsible for local sensing, decision and actuation

functions. It is here that so-called smart materials enter the picture.

Just what constitutes “intelligence” in a material is the subject of much debate.
Some argue that there is no one material which satisfies the dictionary definition
of “intelligent”, although hybrid materials can come close[9]. However, there are a

number of materials which might be termed “self-adapting” or “responsive”, and the
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ability to adapt is certainly a part of “intelligence”. These materials are able to alter
one or more of their physical properties. such as stiffness or viscosity, in response
to external stimuli such as temperature, stress, or electric fields. Transducers made
of these materials are self-contained and often completely scalable, making them

well-suited for the task of distributed sensing and actuation.

Two of the most popular classes of these materials are piezoceramics and shape
memory alloys. Although they can also be used as sensors, particularly piezoce-
ramics, this work concentrates on their function as actuators. Piezoceramics are
capable of generating very small strains, at high stress, in response to high electric
fields. The focus of piezoceramic actuator applications has been in active vibration
and noise controlfe.g. 22, 15]. Shape memory alloys (SMA) generate significant
strains (up to 8%) in response to a temperature change. The stresses achievable
are lower than those for piezoceramics. Although SMA actuators have also been
proposed as actuators for vibration and noise controlle.g. 27. 22|, their relatively
low bandwidth limits their usefulness in these applications. However, their ability
to generate large strains has promoted their use as an “artificial muscle”. They have
one of the highest force/mass ratios of any actuator system[31], and have been ap-
plied in numerous research robots as a replacement for joint motors[e.g. 17, 23, 46].
The fact that the material properties are maintained when the actuator is scaled
has resulted in the development of mini-actuators for fine positioning(4, 21] and

micro-valves for flow control[66].

The adaptive abilities of these “smart materials” are the result of physical
changes occurring within the material. These changes occur in a highly non-linear
fashion, introducing significant hysteresis in the actuator response. This is true of
piezoceramics and SMA, and also of other smart actuators such as magnetostric-

tives and electrorheological fluids. This hysteretic behaviour introduces delays, and
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can lead to significant error in positioning tasks.

Controller design, simulation and stability analysis of systems incorporating
hysteretic elements requires accurate modelling of their behaviour. Modelling based
on physical properties of specific hystereses has been carried out for decades and.
in the case of ferromagnetics, over a century. It is only recently, however, that
work has been done on general hysteresis modelling schemes. The most popular
of these is the Preisach hysteresis model. Since physical mechanisms of hysteresis
vary amongst different materials, this generality is preferred if one wishes to develop

results which would benefit more than one type of hysteretic actuator.

1.1 Thesis Goals

The goals of this research are twofold. First, to investigate the properties of the
Preisach hysteresis model as they pertain to feedback controller design. This general
hysteresis model has recently been successfully applied in modelling both piezoce-
ramic and shape memory alloy hystereses[27], and has been proposed for magne-
tostrictive modelling as well[38, 56]. In the course of this investigation, a novel
state-space representation for the Preisach model is set out, allowing the appli-
cation of dissipativity theory in controller design. Dissipativity theory is but one
example of state-space based controller design techniques which are made accessible

by the introduction of this framework.

The second aspect of the work is concerned with Preisach modelling of two con-
figurations of shape memory alloy actuator. A novel approach is taken with respect
to a constant-load, single-wire actuator, which results in an analytical form of the
associated Preisach model. Although Preisach modelling of this type of actuator
has been carried out in the past[27], the lack of an analytical model form has limited
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the ability to analyze systems incorporating these actuators. A Preisach model for
a two-wire differential actuator is also derived, resulting in what is believed to be

the first stability results for such an actuator.

1.2 Outline

The thesis is organized in the following manner. Chapter 2 provides background
on hysteresis. A working definition is presented, along with assumptions limiting
the types of hysteresis nonlinearities being considered. A brief history of hysteresis
modelling is given and the reasons for retaining the Preisach model for this study
are outlined. The Preisach model is described in Chapter 3. After introducing the
model structure, representation conditions are given and the model identification

procedure is detailed. Extensions to the Preisach model are also briefly described.

Chapter 4 examines some mathematical properties of the model which arise in
the case of specific types of hystereses. Chapter 5 is concerned with the modelling
of two shape memory alloy actuators. The hysteresis is described, and some history
of SMA modelling presented. Two actuator configurations are tested to verify the
suitability of the Preisach model, and several models are identified for each.

In Chapter 6, the Preisach model is cast in a non-linear state-space framework.
A state space is identified, along with the state transition and output operators.
Some properties of the state space are also investigated. Chapter 7 examines the
energy storage properties of the Preisach model. This study leads to a proof of the
dissipativity of the Preisach model. Chapter 8 investigates the design of feedback
controllers for systems with Preisach model representations. The final chapter
describes the contributions of this work, along with some potential areas for future

study.



Chapter 2

Hysteresis

This chapter provides background on hysteresis. The first section gives a definition
of hysteresis as it is understood in this work, as well as some of the terminology
associated with hysteresis graphs. The second section describes one of the more
popular analogies used to explain the physical causes of hysteresis in magnetic
materials: the “domain wall analogy”. In the third section, a brief summary of
developments in modelling of hysteresis is given. In order to motivate the choice
of the Preisach model in this work, the hysteresis present in two smart materials is
described in Section 4. Similarities in physical behaviour between these materials
and domain walls are pointed out. The final section summarizes the reasons for

using the Preisach model in this study.

2.1 Definitions and Terminology

The word hysteresis comes from the Greek hustereia, “to arrive late”, and in its most

basic form hysteresis is simply a lag of the output behind the input. While there
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have been attempts to provide a more rigorous mathematical definitionfe.g. 64].
these usually include some systems which one would not consider to be hysteretic
at all. As such. they are not entirely satisfactory. Here, we will limit ourselves to a
graphical definition, along with a set of assumptions (Assumption 2.1). which form
an “operational” definition which suits the scope of this work.

Hysteresis can be represented graphically as a relation in the u-y plane. Figure
2.1 shows an example of an hysteretic relation, along with a sample path. The loop
which bounds the region where y(t) is multivalued is called the major (hysteresis)
loop. The domain of input values u corresponding to this region is denoted [u_,u.]:
the range of outputs, [y_.y,). Each new segment of the output path in the u-y
plane is called a dranch (labeled 1 to 5 in Figure 2.1), and branching results from a
local extremum in the input. Ascending branches are followed for increasing inputs
(1.3.5), descending branches if the input is decreasing (2,4). Successive branches
which cross inside the major loop form minor (hysteresis) loops. In Figure 2.1,
minor loops are formed by branches 2 and 3, 4 and 5, but not by 2 and 5 since they

are not successive.

The above paragraph on terminology contains several statements, made as facts,
which imply certain assumptions about the hystereses being comsidered in this
work. Although these are so common that they are often assumed implicitly, it is

worthwhile re-stating them clearly.

Assumption 2.1 (Hysteresis Forms)

It will be assumed in this work that hystereses satisfy the following assumptions.
1. The magjor loop is bounded. In other words, u_, u,., y- and y, are all finite.

2. Branching occurs as a result of, and only as a result of, an input reversal. In

other words, the sign of the input and output derivatives are always the same.
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Y+

branch #4

minor loop —

u, "
branch #1
major loop

Y

Figure 2.1: Hysteresis Terminology

Hystereses are further categorized by the type of memory they exhibit[43]. In
systems with local memory, the future output depends only on the current output
and current and future inputs. The “memory” of a local hysteresis is entirely
captured in the current output. In hystereses with non-local memory, the future
output depends not only on the current output, but also on the past history of

input extrema.
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2.2 The Domain Wall Analogy

In attempting to understand the physical mechanisms of hysteresis in any material,
it 1s instructive to look to magnetic hysteresis, where there has been over a cen-
tury of study. The hysteresis in magnetic materials is often described using what is
called a domain wall analogy. The material is composed of elementary dipoles: tiny
polarized particles which orient themselves according to the applied field. Regions
of similarly-oriented dipoles form domains of polarization, and the overall magne-
tization depends on the relative extent of the positive and negative domains. The
domain walls are the imaginary boundaries which separate these regions. As an
applied field is varied, these regions grow or shrink in size, depending on polarity:

the domain walls are said to move. This behaviour is illustrated in Figure 2.2.

Figure 2.2: Sketch of the Domain Wall Analogy

An elementary dipole which is isolated in a field would not display hysteresis: it
would simply re-orient itself instantaneously if the field changed polarity. Hysteresis
is said to arise due to material defects and internal friction between dipoles, which
can be thought of as “inertial forces” causing the dipoles to exhibit a preference
for their current orientation. The applied field must overcome these inertial forces
if it is to change the dipole orientation. It is these inertial forces which give rise to

hysteretic behaviour.

While the domain wall idea originated in ferromagnetics, we will see that the
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analogy is equally applicable to other hysteretic systems composed of elementary

particles having binary state.

2.3 Modelling History

Some of the first recorded scientific observations of hysteresis were made by Lord
Raleigh[ref. 1], in connection with the behaviour of magnetic materials exposed to
a time-varying electric field. Since those initial observations, the ubiquity of this
phenomenon has become apparent. Hysteresis has been identified in many different
areas of study. including physics, engineering, chemistry, biology, and economicsref.
64].

For nearly a century, engineers and scientists have been developing hysteresis
models based principally on an understanding of physical or chemical properties
in a specific system of interest. In more recent decades, mathematicians have also

come to contribute to the field.

Mathematical models are well adapted to analysis, but often suffer from com-
plications in implementation, since they generally require the use of numerical ap-
proximation techniques. Because they are removed from the underlying cause of
the hysteresis, the parameters in mathematical models are often difficult to asso-
ciate with the physical system, and they often lack the intuition of physical models.
Unfortunately, in the absence of standard controller design techniques for strong
non-linearities such as hysteresis, intuition is often the most powerful tool available
to the designer. An excellent, albeit very mathematical, treatment of the available

mathematical models (and some physical models as well) can be found in [64].

A major drawback of physical models, especially in the context of this work,
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is that they are specific to a particular type of system. Physical models of smart
material hysteresis would have to be developed separately for each different ma-
terial. and may in fact have entirely different structures. This implies separate
controller design techniques and analyses. and precludes any general results which

might benefit the broad spectrum of smart materials.

In the 1930s, F. Preisach developed a model for hysteresis in magnetic materials
which straddles the boundary between physical and mathematical[51]. Originally
based on the physical notion of magnetic domains described in the previous section.
the model retains much of the intuition associated with physical models. However.
in recent decades it has been abstracted and successfully applied in other areas,
thus demonstrating its generality, a property usually associated with purely math-
ematical models.

When investigating mathematical models of hysteresis, several researchers’ names
appear quite often. The foremost is that of Visintin, who has written and edited
substantial review works on hysteresis models of all types(61, 62, 63. 64]. Other
review papers include [24, 50]. Krasnosel'skii and Pokrovskii were probably the first
to extend Preisach-type models to more general elementary hysteresis operators.
They have written what appears to be the most complete mathematical work on

hysteresis models to date{34].

Since the work by Krasnosel’skii on the abstraction of the Preisach model,
the mathematical properties of the model have been investigated by Brokate and
Visintin[6)], and many extensions and variations have been proposed. These exten-
sions are often associated with the names Della Torre[33, 59] and Mayergoyz[e.g.
44]. Mayergoyz has compiled a number of his own publications, as well as those
of others in the field, into a monograph[43] which is an excellent reference on the

Preisach model and its extensions. The text addresses many of the problems gen-
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erally associated with mathematical models: identification techniques., a simple
implementation form., as well as necessary and sufficient conditions for Preisach

model representation.

2.4 Hysteresis in Smart Materials

This section describes the hystereses present in piezoceramics and shape memory
alloys. These are some of the most commonly used smart materials, and those for
which the hysteresis mechanism is best understood. For a comprehensive source on

smart actuators, sensors, structures and their applications, the reader is referred to

[9]-

2.4.1 Shape Memory Alloys

Many different metal alloys have been found to display shape memory properties[67].
The most commonly used in electrical actuator applications is a near-binary mixture
of nickel and titanium, commonly called Ni-Ti-NOL since it was first developed at
the US Naval Ordinance Laboratory{7]. The large strain recovery in SMA is made
possible by the existence of two distinct, temperature-dependent crystalline phases
within the alloy. At low temperatures, the alloy is in the martensite phase, while
at higher temperatures, the structure changes to austenite.! As the wire undergoes
heating from the fully martensite phase, the percentage of martensite diminishes,

while that of austenite increases, until the alloy is 100% austenite.

For the purposes of this study, the terms austenite and martensite are best defined by linking
them to their respective crystalline lattice structures. Austenite bas a rigid, cubic structure, while

martensite is characterized by a softer, rhombic lattice.
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The transformation from martensite to austenite, and back again. is charac-
terized by a large hysteresis loop, as depicted in Figure 2.3. The temperatures
associated with the transformation are A,, Ay and M,, M;: the austenite and
martensite start and finish temperatures. Between A, and Ay, and from M, to
M;. the structure of the alloy is a mix of martensite and austenite. Typical trans-
formation temperatures in degrees Celsius, for NiTi which is 49.5% nickel, are
M; =19, M, =47, A, =53, A; = 80[14]. However, these parameters are highly
dependent on alloy composition and processing: variations on the order of 2-3% in

alloy composition can cause shifts of over 100 degrees in transformation tempera-

tures.
A
M Ag
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Figure 2.3: Hysteresis Curve and Transition Temperatures for SMA

The most efficient use of NiTi as an actuator is in wire form[54]. A sketch
of the stress-strain characteristics of austenite NiTi and martensite NiTi is shown
in Figure 2.4. The utility of SMA wire as an actuator comes from the change in
this characteristic as the alloy undergoes a phase change between austenite and

martensite. The strain resulting from a particular stress will be different in each



CHAPTER 2. HYSTERESIS 13

phase. This allows work to be done on a load by heating the wire. A wire subject
to a stress of oy MPa (cf. Figure 2.4) can recover substantial strain, on the order

of 5%. when heated from martensite to austenite. If only a few cycles are required.

strains of up to 8% can be recovered.

\ ’
4
4

14

z

’ -
+ Austenite

applied stress

Martensite

?

Y

actuator strain

Figure 2.4: Stress-Strain Curves of Austenite and Martensite for SMA

The phase transformation process is similar in nature to the description of the
domain wall analogy. The individual crystals of NiTi are thought of as dipoles,
and their “polarization” is their current phase state. Domains of martensite and
austenite are in fact visible at the microscopic level during the transformation. Dur-
ing cooling, the martensite can be seen to be growing, “taking over” the austenite;
upon cooling, it recedes(16]. The domain walls, separating regions of martensite
and austenite, “move”. Hysteresis arises in part due to internal friction associated

with the phase transformation(70].

In an unconstrained alloy, several variants of martensite form during cooling,
suggesting the need for a “multi-state” dipole analogy. However, in wire actuators

the material is never unconstrained. In this case only one variant of martensite is
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formed(16]. and the binary state dipole analogy remains appropriate.

2.4.2 Piezoceramics

The “piezoelectric effect™ refers to the ability of certain materials to generate elec-
tric charge in response to mechanical stress{9]. The inverse transformation is also
possible. and it is this property which is the basis for the use of piezoelectric mate-

rials as actuators.

Piezoceramics are ferroceramic materials which have been treated in order that
they exhibit the piezoelectric effect. Ferroceramics contain many elementary elec-
tric dipoles. similar to the magnetic dipoles of magnetic materials. These respond
to an applied electric field by orienting themselves with the field direction. A change
in material dimension, the extent of which is dependent on dipole geometry, occurs
during this re-alignment. In order to create a piezoceramic actuator, the ferroce-
ramic material is exposed to a strong electric field as it is heated to the Curie point
and slowly cooled. This process, known as poling, leaves all dipoles aligned in one
direction. It is only after this poling process that ferromagnetics become useful as

actuators.

When the poling field is removed, a residual electric field E, remains within the
material, effectively introducing a “pre-strain”. Subsequent applied fields of the
same polarity as the poling field will cause an increase in strain, while the opposite
polarity produces a strain reduction. When the applied field is removed, the dipoles
will attempt to realign themselves with the residual field E,. Material defects
prevent this realignment from being total, introducing the hysteresis characteristic
sketched in Figure 2.5. The hysteresis is not as pronounced as that displayed by

shape memory alloys, and has a more regular shape.
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Strain

/ Electric Field

Figure 2.5: Sketch of Piezoceramic Hysteresis Characteristic

Typical poling fields for piezoceramics are 1V/um, and strains are generally
limited to 0.1%[9]. Due to the large electric fields required for actuation, material
thicknesses in control applications are usually on the order of 0.1-0.3mm. It is
suggested in {9] that the control field be limited to 75% of the poling field, in order
to avoid re-poling the material. This results in control voltages on the order of

75-225V.

A classical application of piezoceramic actuators is in vibration controlfe.g. 15],
where squares of piezoelectric sheet are bonded to either the side of a cantilevered
flexdble beam, near the clamp. By controlling the electric field across the piezoce-
ramic, the strain, and hence bending moment in the beam, can be controlled. This

can be used to damp out unwanted beam vibration.
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2.5 Model Selection

The Preisach model has been chosen for this work for two main reasons. One of
the goals of the research was to develop results pertaining to the control of smart
materials. Piezoceramics and shape memory alloys are referred to as examples.
but other smart materials also display hysteretic behaviour. The generality of the
Preisach model is therefore appealing, since results may potentially be applied to
any system for which a Preisach model exists. Despite its generality, however, the
Preisach model has inherited a physically based structure from its roots in magnetic
hysteresis modelling. This structure is often absent in purely mathematical models,

and leads in this case to an intuitive interpretation of model behaviour.

Aside from these compelling reasons, the Preisach model has further advantages

of a more practical nature:

o The model is able to represent the non-local memory which has been shown

to exist in shape memory alloys[49].

o It has been shown that the model is suited to piezoceramic and shape memory

alloy representation{27].

e The significant problems of identification and implementation have been ad-

dressed by Mayergoyz{43].

o Several mathematical properties of the model have been investigated[6, 34].

In the past few years, as a testament to its generality and practicality, the
Preisach model seems to have emerged as the preferred model for engineering appli-
cations. This corroborates the opinion of Brokate and Visintin[6], that the Preisach
model “may be the most satisfactory mathematical model of hysteresis available.”
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2.6 Summary

This chapter provided a working definition of hysteresis. outlined the types of hys-
teresis being considered, and discussed the history of modelling. The popular do-
main wall analogy from ferromagnetics was described. and parallels drawn with
the hysteresis mechanisms in shape memory alloys and piezoceramics. Given these
parallels. it is expected that the Preisach model of ferromagnetic hysteresis may be
successfully applied to these newer materials. This, and several other compelling
reasons. motivate the choice of the Preisach model for this study. In the next

chapter, the Preisach model will be described in detail.



Chapter 3

The Preisach Model

This chapter intends to familiarize the reader with the Preisach hysteresis model.
The first section describes the input-output form of the model. Section 2 discusses
the Preisach plane, the source of much of the intuition associated with the model.
Section 3 presents the necessary and sufficient conditions for representation by a

Preisach model. In Section 4, the model identification procedure is described.

Since its invention in the 1930s, several extensions and variations of the Preisach
model have been proposed. The form described in this chapter, and applied in the
research. is that which has come to be known as the “classical” Preisach model.
The final section of this chapter briefly describes, for the benefit of the reé.der, some
of the more important extensions of the classical model form. The information in

this chapter is mainly compiled from Mayergoyz’ monograph{43].

18
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3.1 Model Description

The main assumption made in the Preisach model is that the system can be thought
of as a parallel summation of a continuum of weighted relay hystereses vy,g. This
is illustrated in Figure 3.1, where the value p(a. 3) represents the weighting of the
relay v,5. Each relay is characterized by the pair of switching values (a.8), with
a > 3. so that there is a unique representation of the collection of relays as points

in the half-plane P ={(a,B)|a > B} (cf. Figure 3.2). The vertical portions of the
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Figure 3.1: Schematic of the Preisach Model

relays are irreversible: they can only be traversed in one direction. The horizontal

sections are reversible. Degenerate relays, those with a =g, are fully reversible.

Mathematically, each of these relays can be represented as a relation in R?

Yag = {(¢, =1); ¢ < @} U{(¢,+1); ¢ 2 B},

with the output at any particular time dependent on the input history up to that
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time. The behaviour of these relays. and hence the Preisach model, is only defined
for continuous inputs u. As this input varies with time, each individual relay adjusts
its output according to the current input value, and the weighted sum of all the

relay outputs provides the overall system output (cf. Figure 3.1)

y(t) = [ [ W B)rapul(t)dads. (3.1

P
The collection of weights u(a.B3) forms a weighting function g : P — R, which

describes the relative contribution of each relay to the overall hysteresis.

In magnetics, the relays v represent the magnetic dipoles which make up the
material. When modelling SMA actuators, the relays may represent individual

crystals. which are assumed to be in one of two distinct phases.

3.2 The Preisach Plane

The region P is often referred to as the Preisach plane, and it is seen that it plays a
central role in the Preisach model. Every point in P represents a unique relay, and
P is the support for the weighting function g, as illustrated in Figure 3.2. It will be
demonstrated in this section that the Preisach plane also provides an alternative
way of looking at the model behaviour. This leads to a clearer understanding of

some of its properties.

3.2.1 The Preisach Plane Boundary

This section introduces the Preisach plane boundary, a unique mechanism for keep-

ing track of the state of individual relays.
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B
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I+ B

Figure 3.2: Utility of the Preisach Plane

First, divide the relays in P into two time-varying regions, P- and Py, defined

as follows:

e

P_(t)
P.(t)

{{(a,B) € P | output of y,g at tis — 1}

11>

{(a.B) € P | output of y.4 at £t is + 1},

so that P_(¢)UP,(t)="7P at all times. It will become clear that each set is connected.
The time-dependence will often be implicit, with P_ and P.. used to denote these

regions.

Now, consider an hysteretic system exposed to a monotonically increasing in-
put, taking it from negative saturation to positive saturation along the major loop.
In negative saturation, all relays are in the “-1” state and P_=P, P, =0 (Figure
3.3a). As the input increases, it switches a relay v, to “+1” as it passes u = a,
moving it from P to P,. The boundary between P_ and P, can be represented as
a horizontal line in the Preisach plane, which moves up as the input increases (Fig-
ure 3.3b), switching relays from P_ to P, until the system is in positive saturation
(Figure 3.3c). Similarly, if the input now reverses and begins to decrease monoton-
ically, a vertical boundary is generated sweeping from right to left, switching relays
Yag from P, to P- as it passes u=g (Figure 3.3d).
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Figure 3.3: Preisach Boundary Behaviour

The similarity between the Preisach plane boundary and the domain wall de-
scribed in Section 2.2 is clear. As the input evolves over time, the boundary “moves”

in P, always separating relays into two groups of “like polarization™.

The Preisach plane boundary also represents, in a sense, the memory of the
Preisach model. When an arbitrary input is applied to the hysteresis, monotonically
increasing segments generate horizontal branches on the boundary, while monoton-
ically decreasing segments generate vertical branches. Input reversals cause corners
in the boundary. The history of past input reversals—and hence of branching

behaviour—is stored in the corners of the boundary.

Observation 3.1 (Key Boundary Facts)
The boundary plays a very important role in the analysts of the Preisach model. The
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reader will find subsequent discussion involving the boundary easter if the following

facts are clear at this point.

o The area below and to the left of the boundary represents those relays whose

outputs are positive, and is denoted P,.

o The area above and to the right of the boundary represents those relays whose

outputs are negative, and ts denoted P_.

o The boundary always intersects the line a=f at (u,u); u i3 the current input

value.

The astute reader will recognize at this point that inputs can be constructed
so that boundary corners are generated. but later removed. For example, if an
input maximum is followed by a minimum, and then by a larger maximum, the
memory of the first reversal will be “erased”. This “wiping out™ property has been
identified as one of two conditions which are necessary and sufficient for existence
of a Preisach representation for an hysteresis[43]. These representation conditions

will be discussed in greater detail in Section 3.3.

3.2.2 Restricting the Domain of u

In hystereses with closed major loops, the domain of hysteretic behaviour is bounded
by [u_,uy] (cf. Figure 2.1). The behaviour outside [u_,u,] is fully reversible, indi-
cating that only degenerate relays, with a =g, contribute to the output for inputs
outside [u_.u.]. Hence, we have u(a,8) =0 for points in P satisfying @ >3 and
either @ >u, or B <u._. Note that if the hysteresis has zero slope outside the major

loop, p will also be zero on a=pg outside [u_,u,].
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In any physical setup, there are limitations which impose a further constraint
which can effectively be interpreted as a restriction on the domain of u. Saturation
of the control input, say at u** and u***. means that some relays in P can never be
exercised, and cannot contribute to a change in output. This effectively restricts

the domain of g to a triangle in P defined by
P & {(a,B) € Pl < B < a < u'®}.

These two restrictions are illustrated in Figure 3.4, where =0 outside the shaded
area. It will be assumed that, in the design of the overall system, the equipment
used to generate control signals has been suitably chosen so that it is capable of

exercising the entire hysteresis loop (ie. [u_,u.] C [u®, u{?]).

p—

- rd - -
gsat| ul u, ut B

Figure 3.4: Restriction of the Preisach Plane

3.2.3 From Boundary to Output
Using the definitions of P, and P-, the output equation (3.1) can be written as

vt) = [ [ a.B)vesul(t)dads
Pr
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= [ [ waB)dods - [ [ m(a.B)dads

P4 (t) P_(t)

= [[waBidads — | [ [ nia.prdads - [ [ u(a,B)dads

P+(t) P Pe(t)
= 2 [ [ wa.B)dodp - [ [ (. B)dadp. (3.2)
P+ (2) Pr

Since the boundary defines the region P, . knowledge of the boundary configuration
at time ¢, along with the weighting function u, is sufficient to determine y(t). Note
that this does not preclude non-local memory, since the boundary stores the effects

of past input extrema in its corners.

That the Preisach model represents static hystereses is now easily verified. The
output is determined by the boundary, and the boundary itself is defined by past
values of input extrema, as well as the current input value. Neither the time at
which input extrema occur, nor the shape of the input between extrema influence
the boundary. Hence, the output depends only on the current input value, and on

past input extrema and the order in which they occur.

The area swept out by the boundary during a monotonic change in input deter-
mines the resulting change in output. This is made more precise by the following

proposition.

Proposition 3.2 (Output Variation)
A monotonic change in input which causes the boundary to sweep out an area €2

from time t, to time t; results in an output variation

y(ta) = y(t1) = 2ogm[u(ts) — u(tr)] [ [ (e, B)dadp. (33)
1t}
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Proof
Consider the example of Figure 3.5. The input decreases from u(t;) to u(t,), re-

moving the region {2 from P, and adding it to P_.

[0 4

P

—u(t,)
E B

zs

Figure 3.5: Preisach Plane: Monotonic Input Decrease

0.

From equation (3.2), the difference in output is given by

yita) ~y(tr) = |2 [ [ wla,B)dads - [ [ u(e,f)dads) -
Pr

| P4(ta) J

: :
2 [ [ wa.p)dads - [ [ ua.f)iedp

L P+ity) Pe

= 2 [ [ wa.prdadg ~2 [ [ u(a.B)dads

Ps(ta) Pi(t1)

= -2//p(a,ﬂ)dadﬁ.
)

Similarly, if » is increasing, it shifts the points of Q from P. to P, and the sign

of the output variation is reversed. a
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Corollary 3.3
For any region Q swept out by the boundary in response to a monotonic change in

input. the Preisach model weighting function p satisfies
[ [ wa.B)dads > 0
Q

if. and only if, the sign of the input and output increments are the same.

Proof
The result follows directly from equation (3.3). m

3.2.4 Anhysteretic State

A magnetic system in which no remnant magnetization is present is said to be in the
anhysteretic state[l]. One recognized method for removing remnant magnetization
from a magnetic material is to apply a sinusoidal input whose amplitude decays
from a value greater than max{|u,|,|u-|}. This technique has also been success-
fully applied to “initialize” a differential SMA actuator in order to remove residual
hysteresis and obtain repeatable experimental results(20]. The effect of this decay-
ing sinusoid on the Preisach boundary is that it will approximate the line a=—-2.
As the decay rate decreases, the change from one maximum (minimum) to the next
decreases, the length of the horizontal (vertical) boundary segments decreases, and

the closeness of the approximation increases. This prompts the following definition.

Definition 3.1 (Anhysteretic State)

A Preisach model will be said to be in the anhysteretic state whenever its boundary

corresponds to the line a=—p3.
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If the hysteresis is symmetric about the origin, as in the case of magnetics. then
the Preisach weighting function will be symmetric about @ = 3, leading to an
output of zero in the anhysteretic state. Furthermore, it will be seen in Chapter 7

that this is a state of minimum stored energy for the Preisach model.

In subsequent analysis, it is important to have a well-defined initial state. Al-
though the choice of this initial condition is somewhat arbitrary, the above discus-
sion suggests the anhysteretic state as a good choice, based on energy arguments

as well as the analogy to magnetic materials.

Assumption 3.1 (Initial Condition)
It unll be assumed throughout this work that the initial boundary, at time t = —co.

s the line a=—-4.

Because the initial boundary intersects the origin of the Preisach plane, and the
model is only defined for continuous signals, this assumption means that valid

inputs must satisfy lim,_,_,, u(¢)=0.

Since inputs can only generate horizontal or vertical boundary segments, it is
not possible to return a system to the anhysteretic state. It is, however, possible to
approximate this state arbitrarily closely, by applying an oscillatory, slowly decaying
input such as a lightly-damped sinusoid.

3.2.5 The Preisach Plane Origin

The Preisach weighting function results from an identification process, detailed in
Section 3.4, which must be carried out on the system to be modeled. Identification

data is collected by varying the input to the system in a pre-determined fashion
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and measuring the resulting output. The reference value for the input during this
identification is arbitrary: for a temperature-based actuator such as SMA. one may
choose any value such as absolute zero, zero centigrade. or ambient temperature.
The “zero” of the Preisach plane represents an input value corresponding to this
reference. It will be assumed in this work that models are identified with respect to
ambient conditions. For the SMA example, the Preisach temperature input would

be (T -_ Tamb'l'cnt)-

3.2.6 Model Symmetry

While magnetic hysteresis usually has symmetric output saturation values, some
hystereses. such as that present in an SMA actuator, are “shifted” (cf. Figure 2.3).
It is clear from the discussion of the boundary behaviour that the Preisach model as
described thus far is unable to reproduce this output shift. In negative saturation.
u < u’* and all relay outputs are —1. so that P, =@. The output is given from

equation (3.2) as
2 [ [ w(e.B)dads - [ [ u(a,B)dads = - [ [ p(a,B)dadp.
Py Pr P,
In positive saturation, relay outputs are +1, P, ="P,, and the output is given by
2 /? [ aBrdads - [ [ w(a.B)dads = 2 /? [ #@.B)dads ~ [ [ (. B)dedp
+ P, . P,

= [ [ nie.prdads.

P

In other words, the saturation values of the Preisach model are symmetric about

zero. In order to model “output-shifted” hystereses, an offset is added so that the
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output is given by
_ y:.ot + y:at
y(t) = f? [ Ha-Alrasul(t)dads + Lo ¥=

where y*** and y}** are the output values obtained when the input is saturated.

Since it is assumed that {u_,u;] C [u'. ui?], these values are unique.

3.3 Preisach Model Representation Conditions

The previous section introduced the Preisach plane and the boundary which sep-
arates relays in different states within the plane. The definition of the plane and
the boundary behaviour imply that the Preisach model displays certain properties,
known as the wiping out property and congruent minor loop property. It has been
shown by Mayergoyz that a necessary and sufficient condition for existence of a
Preisach representation for a particular system is that the system display these two
properties[43]. The final subsection discusses the inability of the classical Preisach
model to reproduce a specific type of behaviour, known as accommodation. which

appears in some hysteretic systems. The behaviour will be defined in that section.

3.3.1 Wiping Out Property

In [43], Mayergoyz defines two system characteristics known as the wiping out prop-
erty and the congruent minor loop property, and shows that they are necessary and
sufficient conditions for existence of a Preisach model. The first of these properties

is described here; the second is the subject of the next section.

We have seen that input extrema generate the corners of the Preisach boundary,

and that this boundary represents the memory of the Preisach model. The wiping
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out property states that certain input extrema can remove the effects of previous

extrema. essentially “wiping out” the memory of the model. This behaviour is

sketched in Figure 3.6.

Suppose the boundary at some time ¢; is as depicted in Figure 3.6a, with the
input constant at u,. If the input increases, a new horizontal branch is generated
on the boundary, sweeping upwards through P, (Figure 3.6b). As u(t) reaches and
passes the previous input maximum, the corner previously generated is “wiped out”
(Figure 3.6c) and as the input continues to increase, the memory of that previous
extremum has been removed (Figure 3.6d). At any particular time, the previous
extrema which are retained by the boundary are referred to by Mayergoyz as the
dominant input eztrema. These will be discussed in greater detail in Chapter 6.

Proposition 3.4

Preisach plane boundaries are always non-increasing with respect to 3 in P.

Proof

Since inputs can only generate horizontal and vertical boundary segments, an in-
creasing boundary implies that there is a horizontal segment, say at a=u,, followed
by a vertical segment with points a > u; (cf. Figure 3.7). But at any time ¢ the
boundary always intersects the line a=p at (u(t),u(t)). Since the vertical segment
Just described cannot intersect this line at all, there must be another horizontal
segment, say at a = u; > u;, to complete the boundary. But this is not possible
because of the wiping out property: the input maximum u = u, would have re-
moved the memory of the previous maximum u = u,, preventing the formation of

an increasing boundary section. ®
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u(t)

u(t)

u(t)

Figure 3.6: Wiping Out Property
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Figure 3.7: Boundary Violating the Wiping Out Property
3.3.2 Congruent Minor Loop Property

The congruent minor loop property requires that any two comparable minor loops
have the same shape. That this is a property of the Preisach model is once again

evident from a discussion of behaviour in the Preisach plane.

Definition 3.2 (Comparable Minor Loops)
Two minor loops are comparable if they are generated by input variation between

the same two distinct values, regardless of past input history.

Consider two different input signals which generate comparable minor loops
through variation between u; and u3 > u,, but have different input histories. Before
reaching u,, the first input has a peak at u; > u3, while the second has a smaller
peak before u, of magnitude uj satisfying u3 < u] <u;. The different input histories
(uy # u}) mean that these minor loops will be displaced from one another in the
input-output plane. This is illustrated, along with the Preisach plane diagrams for
each input, in Figure 3.8.

The change in output, Ay, due to input variation between u; and uz will be

entirely determined by the region 2, regardless of past input history. At any time
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Figure 3.8: Congruent Minor Loop Property

when u, <u < u3, the same triangle (shaded in Figure 3.8) has been swept in both
cases. As a result, at any point on the minor loop the output variation from the

previous extremum will be identical for both inputs, and the minor loops should

have exactly the same shape.

3.3.3 Minor Loop Accommodation

Some physical hystereses display a behaviour known as accommodation, which the
classical Preisach model is unable to represent. This is because this behaviour
violates the wiping out property. When a Preisach hysteresis is subjected to an

input which oscillates between two distinct input values, the wiping out property



CHAPTER 3. THE PREISACH MODEL 35

implies that minor loops which are generated by this oscillation should be identical.
The term *accommodation”, or sometimes “reptation”, is used to describe a sta-
bilization process in which several cycles are required before a stable minor loop is

generated. Typically, successive loops shift progressively upwards in the hysteresis.

towards a stable limit loop.

u(t) a

Figure 3.9: Minor Loop Accommodation

Figure 3.9 demonstrates this behaviour. The input oscillates between the same
two values, sweeping the region 2 once in each direction for each input period.
Thus, one minor loop is generated by each period of the input. Every time the in-

put sweeps 2, the boundary is identical, so that the output must also be identical,
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and successive minor loops coincide exactly. This is depicted in Figure 3.9a. Figure
3.9b shows a typical example of accommodation behaviour. Extensions of the clas-
sical model have been proposed which are able to account for this accommodation

behaviour(43]. Preisach model extensions will be reviewed in more detail in Section

3.5.

3.4 Preisach Model Identification

In [43], Mayergoyz proposes a technique to determine the Preisach weighting surface
g from experimental data. The identification involves the generation of several

*“first-order descending curves”, from which y can be determined.

A first-order descending curve (FOD) is generated by first bringing the input
to negative saturation, followed by a monotonic increase to a value u = «,, then
a decrease to u =f;. Any such input is parameterized by «, and ), and will be
denoted u4,5,. This process is illustrated in Figure 3.10. The measured output

values are labeled y,,, corresponding to u=a;, and y,,5, when u has reached g;.

The term “descending” refers to the direction of the final branch of the graph.
The addition of “first-order” indicates that only one reversal has occurred. Similar
terminology leads to the definition of higher-order descending or ascending curves,

collectively called “n‘B-order transition curves”.

After the input peaks at «;, the decrease sweeps out {2, generating the de-
scending branch inside the major loop. The change in output along the descending

branch can therefore be written (Proposition 3.2)

Vo = Ve, =2 [ [ (o, B)dadp. (3.4)
Q
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u(t) @
P
[0 2 R \u=(x|
/\ o
p _
t + B
sl ) \ -
/u=ﬂ,

Figure 3.10: Sample Identification Input

Defining the function F(ay,1)=Ya, —Ya,4,, rewriting the integral and then taking
partial derivatives of both sides gives the following relationship for u.

Flas,B) = 2 [ [ u(e.B)dads

;%F(ai,m) = ~2[" api)da
62
aalaﬂlF(alvﬂl) = —2#(alsﬁ1)‘

Then the value of the weighting function at any point (a;,;) € P, can be deter-

mined from

1 82
Has, ) = "~ 2 8,00,

F(a1,)
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lazyalﬂl
2 3a1 6ﬂ1 )

If the value y,g could be identified for all points in P, it is clear on physical
grounds that the surface y(c.3) formed of all points y.g should be smooth. This
surface could then be differentiated to obtain the weighting function,

1 8%y(a.B)
PB)= -1 3.5
ulaf) = 325 (35)

More realistically, the hysteresis domain [u_.u] is divided into n segments.

defined by the ordered partition {u;}i=o...n. FOD curves are then obtained for

all pairs (ui,u;) with j <4, resulting in (n + 3) FOD data points. A smooth
approximation surface §j(«a, 3) is then fit to these data points, and this FOD surface

is differentiated to obtain an approximate weighting surface f.

Based on the fact that the major hysteresis is closed, as well as the smooth
nature of the FOD curves for physical systems and their relationship to u (3.5), the

following standing assumption on u is made.

Assumption 3.2
It will be assumed that the Preisach weighting function is at least piecewise contin-

uous, that it is bounded on P,, and that there erists at least one point (a,f) € P,
with u(a.B8)#0.

It should be noted that the output of the Preisach model can be computed
directly from knowledge of the boundary configuration and the FOD data. The
formula is a simple linear combination of FOD surface values at points in P, given
by the corners of the boundary. The need to perform the surface fit (and differen-

tiation) mentioned above is thus eliminated, by using an appropriate interpolation
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scheme to approximate FOD surface values which were not directly measured. The

method is described in [e.g. 43].

The disadvantage of the interpolation method is that the weighting function is
never actually determined, even approximately. In this work, the form of u and its
properties are of greater interest than model implementation. and the identification

strategy used will be that of surface fitting and differentiation.

3.5 Extensions to the classical Model

In his monograph[43], Mayergoyz collects results, due to himself and others, which
present various extensions to the classical Preisach model. Each of these is briefly
discussed in this section. The intent is to summarize the effect of the extension on
representation conditions and the complexity of the identification task. For details

of the extended models, the reader is referred to [43].

Non-Linear Preisach Model

The intent of this extension is to relax the congruent minor loop requirement, which
is that which is most often violated. With this model, comparable minor loops (cf.
Definition 3.2) are no longer required to have the same shape, but instead must have
vertical chords of equal length. In other words, for any two minor loops generated
as the input oscillates between u; and u,, then for every u~ € (u;,u;) the chord
u =u" must have the same length in each loop. Along with the wiping out property,
this property of equal vertical chords form the necessary and sufficient conditions

for representation.
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The cost of this less stringent minor loop condition is an increase in the com-
plexity of the identification task. The procedure is similar in flavour to the classical
model identification scheme, but requires second-order transition curve data as well

as first-order. This results in an identification hypersurface with domain in R3.

Restricted Preisach Model

The restricted Preisach model, despite its name, is a further generalization of the
non-linear model. While the weighting function of the non-linear form depended
only on the current input value, that of an n‘t-order restricted model depends on
the n previous dominant input maxima and minima. The accuracy of the model

representation increases with increasing order.

The representation conditions are stated in the same manner as those of the
classical Preisach model: the wiping out property must hold and comparable minor
loops must have the same shape. However, the definition of comparable minor loops
is somewhat relaxed. Two loops are now called comparable if they are generated
by input variation between the same two values and after an identical set of n most

recent mazrima and minima.

The identification task becomes more involved with this model. Where the iden-
tification surface for the classical model is three-dimensional, an n*®-order restricted
model requires the identification of a hypersurface in (2+n)-space. This must be
done through systematic measurement of first- to n**-order transition curves. The
number of identification inputs required, and hence the time required for the pro-
cedure, is of order n. As well, the complexity of the subsequent surface fit to

determine the weighting function is greatly increased.
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Accommodation Preisach Model

In order to model accommodation behaviour. a second weighting function v is
introduced, which multiplies u. This additional weighting is a function of output
extrema, and it is assumed that the form of v is known a priori. The identification
of u is carried out in the same manner as for the classical model. The representation

conditions for this model have not been addressed.

Other Models

Further extensions have been proposed to model dynamic hystereses as well as
those having multiple independent inputs. In particular, the latter extension may
be required for a full modelling of magnetostrictive or shape memory alloy behaviour
in response to time-varying stresses. However, it will be seen in Chapter 5 that if the
stress variations are small, the classical form can provide an adequate match. These
models are more general than those outlined previously and are further complicated

in their identification techniques and representation conditions.

3.6 Summary

This chapter introduced the classical form of the Preisach hysteresis model. A for-
mula was derived for the computation of the output variation to a monotonic input,
as an area integral in the Preisach plane. Necessary and sufficient conditions for
existence of a Preisach model were given, the identification technique was discussed,

and several extensions to the Preisach model were briefly outlined.



Chapter 4

Preisach Model Properties

In this chapter, some mathematical properties of the Preisach model are shown.
The first section deals with the continuity of the operator defined by the Preisach
model. These and other properties have been investigated in the past, notably by
the mathematician Visintin[6. 64]. The authors of those works consider the general

case where u is a Borel measure on an unbounded set, giving the model form

y(t) = [ briw)(®)du.

Unfortunately, the proofs are difficult to follow without a strong mathematical
background. Here, the more realistic case where the measure can be written as a
product of a function with a Lebesgue measure, du = pu(a, 3)dadB, is examined.

The proofs of continuity are simpler in this more restrictive case.

The second section discusses conditions under which the weighting function is

non-negative. This has implications for many results in the existing literature[6, 43)].

First, several classes of weighting function u are defined.

42
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Definition 4.1 (Classes of p)
is the set of all functions p : P, — R which are bounded and piecewise

continuous.

is the set of all functions p : P, — R which are bounded and piecewise
continuous. and satisfying p(a,B) > 0 for all points (a,B) € P..

Note that Mp C Mpc by definition.

4.1 Continuity

The Preisach model has so far been treated as a map from R to R, with memory.
The model can also be viewed as an operator, I', on the space of continuous functions
C°, so that for u € C°, we write y = ['u. This section is concerned with showing

continuity of ' on C° and also on the Sobolev space W} (defined later).

In analyzing the continuity of I. it will be useful to define horizontal and vertical
strips in P,, of width &:

ne

{(.B) e PlA < a< A+ €},
{(a.B)ePIASB L A+E}

h(A,¢)
v(A§)

e

These are illustrated in Figure 4.1. For convenience, notation for the integrated

strips is also defined:

HAE £ [ [ ua,B)dads,

h(2.£)

= 2 [ u(a.p)dbde,
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virng 2 [ [ ma.p)deds
v(A.£)
A+E pult
= / / u(a. B)dadp.
[0 4
..-.é-—
P
0 ;
' u® B
..... l+§
el a| A )
e N
...................... u§at

Figure 4.1: Definition of h and v

For any £ € [0, 4% — u***] and A € [u**, uf?* — €], define also the functions
k(A €) £ max {H(A,€), V(A &)}

and

e

K@ 2, max, kOAQ.

The value |K(£)| is the maximum change in output which can result from a mono-

tonic input variation of magnitude £.

Lemma 4.1

If u € Mpc, then k(-,-) i3 continuous.

Proof
The areas of integration defined by h(A,€) and v(A,€) are clearly continuous in
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both A and £. Since p is piecewise continuous over P,, both H(\,£) and V(A €)
are continuous functions of A and £&. So H and V are continuous functions on a
compact subset of R?, and it is required to show that the pointwise maximum of
these two functions is itself continuous.

Let T C R? be the compact metric space defined by £ € [0,u%* — u'**] and
A € [u’®, u’?* — €], with the standard Euclidean metric d(-,-). Let B.(A,,&,) denote

the disc of center (A,,§,) and radius r so that d((X., &), (A, €)) < r for all (A, €) €
B (X, &)
Now, choose any € > 0. It is required to show that for any point (A,,&,) € T,

there exists a § > 0 such that |k(X,,&) — k(A €)] < € for all (X, &) € Bs(A,,&).
Choose any point (A,,&,) € T and suppose, without loss of generality, that V(A,,£,) >
H(Xs.&), so that k(X,, &) = V(As,&)- Since V and H are continuous. there exists
8 > 0 so that for any point in B, (Ao, &), k(A &) = V(A €). Also, there exists
4, > 0 so that

V(A &) — V(A &)l <&, V(X&) € Bs,(Xo, o)
Setting 6 = min{éx, 8, }, for all (X, €) € Bs(Xo, &),

[k(A,€) — k(Ao &) = |V(A,€) = V(Xs, 6)]

< E.

Thus, & is continuous at the point (A, &,). A similar argument shows continuity if
H(Xo, &) > V(Aa, &)-
If V(X,&) = H(X, &), then choose &, > 0 and d§ > 0 so that

V(AL = V(X &)l <& V(A€ € Bs,(Xo, &),

and

IH(A, 6) - H(’\Ov Eo)l <§g, v(’\sf) € BJ,.(Ao-: Eo)'
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Set ¢ = min{d,.dx}. Since k(A,.&) = V{Ao. &) = H(Xo. &). then within Bs(Xo. ).
the farthest any point on V or H can be from k(),,§,) is €. In particular,

Ik(’\é) - k(’\mfo)l <E, V(’\vE) € BS(’\osfo)-

This shows that if V(A,,&) = H(X.. &), k is continuous at (A,,&,). But (A,.&)
was arbitrary, so this completes the proof. "

Lemma 4.2 (Properties of K(£))
The function K(€) satisfies the following properties:

1. K(0) =0,
2. if u € Mpc, K(£) i3 continuous, and

3. if p € Mpc, then there ezists C > 0 such that K(€) < CE.

Proof

From the definition of H and V, k(},0) = 0 for any A € [u**, u%*], since the area
of integration is empty for £ = 0. The fact that K(0) = 0 then follows directly
from the definition of K(&).

Let T be the compact subset of R? defined by £ € [0, ui* —u* and A € [u’, ult -
€], as shown in Figure 4.2. Choose any € > 0 and any &, € [0, — u***]. Since
p# € Mpc, kis continuous from Lemma 4.1. Then for every A € [u**, u%%* —¢&,] there
is a 4y > 0 and Ry = By, (A, &) where |k(A, €) — k(X &,)| < €/2. The collection of
all regions R, is an infinite number of circles of varying radii 4, and centres on the
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vertical line £ = § in T (cf. Figure 4.2). For every point (A.¢) inside any one of
these circles. the shortest distance to the line § = &, is |€ — &,| < dx, and

[k(A, §) — k(Xo, &) < €/2.

Since [uf, u{?* — &] is compact. a finite subset of these regions R = {R;} can be

chosen which contains all the points of the line £ = ¢, in T'.

A

u, ial

sat IR 4
u L.
$ .éo uiat -psat

A

Figure 4.2: Continuity of K (&)

Since the regions R; are open and cover the line £ = £,, then every R; overlaps
one next to it, and they share a common chord of non-zero length in this intersection
(cf. Figure 4.2). Let 24; be the length of the common chord between R; and
Riyy, and set § = min;{4;}. Then for any £ such that |§, —¢| < § and any A €
[w'e*, uf®t — £,

k(X&) — kA, &)[ < €/2. (4.1)
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Now. choose any point &, such that [§; — &| < 4. and define

Ao 2 argmax k(A.&,),

AE{u’at .u‘+"‘ -&o)

e

/\1 argmax k(/\, EI)’

AEfutot utoe g ]
Since k is continuous with respect to A. these values are well-defined. Then K(£,) =
k(Xo.&,) and K(£1) = (A1, &1). From (4.1),

k(Ao &) — k(Xo, &)l < /2 (4.2)

and
[B(A1. &) — (A1, &) < €/2. (4.3)

From the definition of A, and A,

(2o, €0) 2 KA1, &) (4.4)

and

k(’\lvfl) 2 k(/\ov 61) (45)

From equations (4.2) and (4.5),

k(Ao &) — K(Xo, &1)] < /2

k(Ao, &) — k(Xo,&1) < €f2
k(. &) < €/2+ k(Ao &)
< €/2+k(A. &)

k(Ao &) — k(A1 &) < ef2.

Similarly, from (4.3) and (4.4),

k(A1.&) < €/2+ k(A1 6l)
< /24 k(A &o)

k(A1 1) = k(Ao &) < €/2.
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So for any two points satisfying |&, — &1] < 4.

IK(&) — K&l = [k(Ao, &) — KA1, &)

< €/2

A

[

and K is continuous.

Property 3

Since y € Mpc, the weighting function is bounded by definition. Choose any finite

positive constant

M > u%’ax,u(a.ﬁ)
and £ € [0.25% ~ u’®*]. Then for any A € [u®* u® — £],

k(\.€) = max{2H(A.£),2V().€)}

= max{Z / / (. B)dadg. 2 / f p(a,ﬁ)dadﬂ}

h(A.£) v(A.£)
< Mmax{? //dadﬁ.2//dadﬁ}. (4.6)
h(A.€) v(.8)

But the value of the integrals in (4.6) are simply the areas defined by A and v.
From the definition of these regions (cf. Figure 4.1), and of the function X,

K@ < 2M  max {e(A+¢&/2-u), & (ut -2 -¢/2)}

Ag[ur™ uiot—¢]
2M [€ (uf* —u™ — ¢/2)]

< 2M(u't — utt). €.

Since M is independent of A, setting C = 2M(u%* — u**) gives K(£) < C¢ for
every { € [0, uf® — u*]. ]



CHAPTER 4. PREISACH MODEL PROPERTIES 50

Theorem 4.3 (Continuity on C°)

If u € Mpc then the Preisach model maps continuous inputs to continuous outputs.

Proof
Choose any € > 0. and define

& £ sup{&l [K(6) <&, VE< &}
K(0) =0, and p € Mpc, so K is continuous. Then £~ is well-defined. £~ > 0. and
[K(&)] < |K(§)| forall £ < €.

For u € C° choose § > 0 so that [t, — ;| < & implies |u(ty) — u(t;)] < €.
Recalling that [K(¢)| is the maximum output variation for an input change of

magnitude £, then |t, — ¢,| < § implies

ly(tz) —y(t1)| < |K(lu(t2) — u(t1)])|
< (K

£,

A

and the Preisach operator is continuous on C°. =

Another space of interest is the Sobolev space, denoted W?.

Definition 4.2 (Sobolev Space)
The Sobolev space WE[0,T] is the space of real-valued functions u for which the

[T
llu”wg = / u? + u3dt.
0

These signals have bounded energy and bounded velocity.

Sobolev norm is finite:

In (6], the following theorem is proven.
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Theorem 4.4 ([6], Theorem 4.13)
Suppose u is finite and non-negative on P. The Preisach operator maps W2[0.T)
into itself if and only if there ezists C > 0 such that K(§) < C€ forall £ > 0.

In the context of [6]. the Preisach plane P is not assumed bounded.

Corollary 4.5
If P is restricted to P, and p € Mp then T : WZ[0.T] — WZ[0,T].

Proof
Since Mp C Mpc. the required constant C exists, from Property 3 of Lemma

4.2. Then the conditions of Theorem 4.4 are satisfied, and the Preisach model
L : W20.T] —~ WEo,T). .

4.2 Positivity of the Weighting Function

Many references which treat the mathematical properties of the Preisach model
mention the positivity of ule.g. 6, 43|. Specific results, such as Theorem 4.4, may
be derived for Preisach systems for which the weighting function satisfies 4 > 0. In
this section a graphical test for the positivity of u is discussed.

Mayergoyz mentions weighting function positivity in [43], in relation to the FOD

curves and equation (3.5):

13%y(a, B)
2 8alB

For any pair (a,,[,), the partial derivative -8—”%%@ is the slope of the tangent

pla,B) =

to the FOD curve at the point (B,,Ya,s,) in the input-output plane (cf. Figure
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4.3). Assuming the output direction follows that of the input. the FOD curves are
monotonic and this slope is always positive. If the rate of change of this slope is
non-negative for increasing a (higher and higher FOD curves). then u(a,.3,) > 0.
If this is true at every point on the FOD curves, then u > 0. Mayergoyz makes
the comment, without proof. that all that is required to ensure this is that —all
first-order transition curves are monotonically increasing functions of 3, and they
do not intersect inside the major loop but merge together at the point where the
descending and ascending branches of the major loop meet one another”. The FOD

curves of Figure 4.3 exemplify this behaviour.

Figure 4.3: FOD Curves

Mayergoyz uses the terminology “first-order tranmsition curves”, which includes
both first-order ascending and descending curves. A first-order ascending (FOA)
curve is, as the name would imply, a curve which undergoes one reversal and whose
last branch is ascending. Such a curve is the dual of an FOD, and is generated
by first bringing the system to positive saturation, then decreasing to 3, reversing,
and increasing to a > 3. Note that monotonicity of the FOD and FOA curves
is tantamount to the standing assumption that the direction of the output follows

that of the input.
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The full proof of Mayergoyz™ statement remains elusive. The following Propo-
sition provides a partial proof, as well as a graphical test which indicates when a

weighting function has negative regions.

Proposition 4.6

If uy € Mp. and alf%‘-@ ts continuous in a, then none of the FOD curves cross

inside the major loop.

Proof
The proposition is proven by contradiction. Figure 4.4 helps to illustrate the proof.

Choose any a; > a;, and suppose that the curves y(a;.3) and y(a3, 3) cross inside

the major loop.

Figure 4.4: Crossing FOD Curves

Define

max{f € (u_,us)ly(as,B) = y(az,8), y(ar,B — AB) > y(az, 8 — AB)}
max{f € [u_,B)ly(a1,B) = y(az,8)}.

{>3

A

>
1
e
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B, exists by hypothesis. and all FOD curves merge at § = u_. so 3~ exists. Since
y(ay.B) > y(az,B) for all B € (8°.61) and y(a,.8%) = y(a2.8%),

Oyl B7) _ o y(@2, B + AB) — y(a2. B7)
oB AB—0 AB
< y(ai. 8 + AB) — y(@1,87)
AB—0 AB
dy(a. B7)
aB

But from the assumption of continuity of 2"%%":)- in «, then by the mean value

theorem there exists a point a” € (a;, az) such that
Py(e. ") _ 1 Oy(asz,8%)  dy(a,B")

280 T oay—a B o8
< 0,

so u(a".B") < 0. This implies that if 4 € Mp, then the FOD curves do not cross
within the major loop. P

The proof of Proposition 4.6 provides a “negative test”: crossing FOD curves indi-

cate a weighting surface that has negative values.

4.3 Summary

The first section of this chapter dealt with the continuity of the Preisach operator
on the space of continuous functions and also on the space of square-integrable
functions with square-integrable first derivatives. Although the results of that sec-
tion were also derived in [6], the dependence on results from measure theory in that
paper can make it difficult to understand for many readers. Aside from Theorem

4.4. the results here were derived independently. The less general framework al-
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lows the use of simpler mathematical arguments than those from previous works.

resulting in proofs which are hopefully more accessible.

Section 2 discussed the positivity of u for a given system. A test based on
experimental data is quoted from [43], but the proof of this result remains elusive.
It was shown that if a system’s FOD curves cross inside the major loop, then some
points on the weighting function must be negative. This provides a graphical test
which can indicate when u ¢ Mp.



Chapter 5

Preisach Modelling of Shape
Memory Alloys

This chapter is concerned with applying the identification procedure of Chapter
3 to two SMA wire actuators: a single-wire under constant-load, and a two-wire
differential actuator. The first section provides background for the identification
procedure. The experimental apparatus are described, some previous research in
Preisach modelling of SMA is discussed, and the approach taken in this work is

outlined. The second section describes the experimental methods used.

In Section 3, the actuators are tested for the wiping out and congruent minor
loop properties. Once these have been verified, Section 4 describes the collection of
experimental data and the fit of an appropriate surface. This surface is differenti-
ated to obtain the weighting function. In Section 5, the models are verified against

experimental identification data, and the results are discussed.

It should be noted that results have appeared very recently which treat the

problem of the estimation of the Preisach weighting function from a more theoret-

56
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ical standpoint(3]. In that work, the well-posedness of the problem of determining
the weighting function from experimental data is shown, and a convergent approxi-
mation method is given. It will be seen that the results obtained here using surface
fitting techniques are somewhat inconsistent, and support the continued investiga-

tion of more rigorous identification techniques.

5.1 SMA Modelling Background

5.1.1 Experimental Apparatus

This section describes the physical configuration of each experimental apparatus
used in this research. The single-wire actuator is described in the first section. The

second part describes the differential actuator.

One-Wire Actuator

The experiment consists of a 38cm length of 0.3mm diameter NiTi wire, biased by a
load of 2kg. This represents a constant stress on the wire of roughly 277 MPa. The
wire is routed over a 3cm diameter pulley, with a contact arc length of approximately
90 degrees. The shaft of the pulley drives a 2000 count/revolution optical encoder,
for a linear resolution of less than 1/20':h of a millimeter. Position data is fed
from the optical encoder to a PC-486/50MHz computer, which is also responsible
for output of reference signals. Qutput signals are intentionally saturated, limiting
wire current to 1 Amp. Current drive is provided by a voltage-controlled current

amplifier, with a transconductance of 1 Amp/Volt.
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- -

- from currex{t

! lifi

pulley, with ; __amplitier
encoder

to computer ~TTtee---ee

Figure 5.1: One-Wire SMA Actuator
Two-Wire Actuator

The mechanical details of the differential actuator are shown in Figure 5.2 (electrical
connections are omitted). The mid-point of a length of SMA wire is anchored at
the centre of the 6mm shaft by a set screw. This shaft is equipped with a 2000
count/revolution optical encoder. giving an angular resolution of 0.18 degrees, or
less than 10um change in length of the SMA wire. A total of 35cm of 0.3mm
NiTi wire is used to provide two 15cm lengths of active wire. The wires have a
common electrical connection at the shaft, and the two “free” ends have electrical
lugs crimped over a knot tied in the wire. The lugs provide an electrical connection
to the ends of the SMA wire, and also allow the wire ends to be secured to a
terminal block. This terminal block is mobile, and can be positioned by means of

a screw. The screw is adjusted to give 3% pre-strain in the SMA wire.

The computer hardware is identical to the one-wire case. Bipolar reference

signals are used, with two series diodes routing current to one or the other SMA
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Figure 5.2: Differential SMA Actuator

wire, depending on the sign of the current. The convention adopted in the remainder
of this chapter is that negative currents and temperatures refer to one wire, while

positive values refer to the other.

In this configuration, each wire individually is subjected to a time-varying stress.
As one wire contracts, the opposing wire is stretched, exerting more force on the
wire being heated. Generally, this time-varying stress would cause a bi-variate
hysteresis behaviour to appear, with the shape of the T'—¢ characteristic dependent
on the (time-varying) stress. Previous attempts to model this actuator have been
put off because of this complexity, in favour of achieving a better understanding of
the one-wire actuator first. It had always been assumed that at least a two-input

Preisach model would be required for the differential actuator.

In this chapter, it is seen that the single-input Preisach model can represent the
hysteresis in the two-wire actuator as well as the one-wire. Discussion of a possible

reason for this interesting result is included in the final section of the chapter.
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5.1.2 Previous Preisach Modelling

Preisach models have been successfully applied to shape memory alloys in the past.
Ortin[49] identified a model for isothermal stress-strain hysteresis in a single crystal

of CuZnAl SMA. A very good quantitative match is observed between simulated

output from the model and experimental data.

In [30], the author describes a complicated extension of the Preisach model.
Four-parameter hysteresis kernels are used, rather than the two-parameter relays of
the classical model. Furthermore, it is suggested that the switching values of these
operators vary as a function of temperature (the control is stress, in this case) in
order to model the bi-variate behaviour. However, a technique for identifying this
complex model is lacking, and only qualitative results are obtained.

Probably the most interesting SMA Preisach modelling results, in the context
of this work, are those of Hughes & Wen. In their experiments, a shape memory
alloy wire is fixed between the hub and tip of a flexible beam. Wire contraction
is controlled by Joule-heating, current is the model input, and beam strain the
output. In [27], representation testing is carried out, and the results support the
application of the Preisach model to this experiment, but only for slowly varying
current inputs. In [26] an identification is performed and an attempt is made to
fit a polynomial surface to the data, with mixed results. In more recent work([29],
Hughes has opted for an interpolation, rather than a surface fitting, strategy. A
good match is achieved, but again only for slowly varying currents. A possible

reason for this limitation is discussed in the next section.
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5.1.3 Modelling Philosophy

It was seen in Chapter 3 that an hysteretic system has a classical Preisach model
representation if and only if it displays the wiping out and congruent minor loop
properties{43]. In previous Preisach modelling of an SMA actuator, it has been
shown that the relationship between control current and wire strain satisfied these
two properties for slowly varying inputs[27]. The probable cause of the failure of
the classical model to represent the response to rapidly changing currents is minor

loop accommodation introduced by the lag in temperature response.

In order to verify this hypothesis. the one-wire actuator described in Section
5.1.1 was subjected to two inputs designed to generate comparable minor loops.
Each increases from zero, then varies back and forth between two distinct values,
generating five minor loops in the process. The low-frequency input generated
a new minor loop approximately every eight minutes, while the higher-frequency

current generated a new minor loop every eight seconds. The results are shown in

Figure 5.3.
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Figure 5.3: Experimental Evidence of Accommodation in SMA

The response to the higher-frequency current (left-hand plot) is problematic in
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two ways. After the first input reversal, the wire continues to contract even as the
current decreases. This is evidence of the lag between current and temperature,
since it implies that the wire temperature is still increasing. As well, minor loop
accommodation is clearly seen. as progressive loops shift upwards towards a final

stable loop.

Looking at the low-frequency response (right-hand plot), nearly all decreasing
input segments generate decreasing outputs. This is an indication that the tem-
perature follows current much more closely. Furthermore, the drift in minor loops

is insignificant. compared to that seen in the response to higher frequency current.

Given these results, it is clear that in order to model directly the relationship be-
tween current and strain using a Preisach-type model, the Accommodation Preisach
model should be applied (cf. Section 3.5). However, this model has a much more
complicated form, and the problem of determining the Preisach weighting surface

from experimental identification data has not yet been fully addressed.

An alternative approach is to consider the heating behaviour as the driving
element for hysteresis occurring between temperature and strain. This is in fact an
approach which is truer to the actual physical mechanisms of shape memory, since
the phase change occurs as a function of temperature and is independent of the
heating method used. The remainder of this chapter is concerned with applying
the classical Preisach model form to the temperature-strain characteristic of the

SMA actuator.

In modelling the relationship between temperature and strain, it would be ideal
to control and measure wire temperature directly. One possibility would be to have
the wire immersed in a water bath whose temperature could be controlled and

measured. In the absence of such a setup, current could be used to slowly heat the
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wire. and temperature could be measured.

However, direct temperature measurement of SMA wires is not simple. While
several researchers have had some success with thermocouples[25, 37], this is achieved
with large wire diameters (lmm in [25]). When smaller diameter wires are used,
the thermal mass of the thermocouple bead becomes a factor. The bead acts to
partially sink heat away from the wire, lowering the temperature locally. The cur-
rent carried by the SMA wires further complicates the task, introducing the need
for some form of electrically isolating, yet thermally conductive paste between the
thermocouple and the wire. In addition, the relatively large currents present in the
wire can induce currents in the thermocouple itself, corrupting temperature read-
ings. Aside from thermocouples, some degree of success has been reported using
an infra-red sensor based on a pyroelectric detector[53], but this device is not yet

refined enough to be useful.

In the absence of an accurate and reliable temperature measurement technique.
the temperature must be estimated from a heating model. A lumped-parameter
approximation for the relationship between input current, ¢, and temperature above
ambient, T, is shown in equation (5.1). The change in heat energy in the wire is
equal to the electrical energy input less the energy lost to the environment through
convection. For a more detailed discussion of heat transfer, see [e.g. 35].

pch% = Ri(t)? — hAT(t) (5.1)

The parameters in the heating model are:
p density of the wire material,
V  volume of the wire,
A surface area of the wire,
R

electrical resistance of the wire,
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h  heat transfer coefficient to the cooling medium, and

cp specific heat of the wire material.

A linear transfer function for the heating relationship between > and T' may be

written R
a T(s) AL
H(s) = = 4 )
(s) 3(s) 14227 (52)
The time constant of this equation is
_rsV
RA
and the steady-state value attained for a step current input 17 is
. 1 R,
T,, = P_%SH(S) . ‘s‘ = ;{ZT- . (53)

It is well known that the physical parameters of equation (5.1) are not con-
stant over the transformation range of an SMA, although this is often assumed[e.g.
39, 41]. While actual parameter values and their variation during the transfor-
mation are highly dependent on alloy composition and processing, representative
trends can be discerned from [14], an excellent reference for properties of Ni-Ti
alloys. In this source, the authors indicate that the volume change during the
transformation is small (0.16%). Significant change is noted in ¢, and R, however.
The specific heat of the martensite phase is lower than that of the austenite phase,
and a large peak (approximately 500% of base value) is present at transformation
temperatures. This difference in specific heats is consistent with the ready obser-
vation that the heating time constant is smaller than that observed on coolingfe.g.
41]. Since specific heat is difficult to measure experimentally, input signals used
in the course of this experimental work were restricted to step currents. Position
readings were taken only after the measured actuator position had reached a steady-
state value. This allows the use of the steady-state relationship (5.3), which doesn’t

depend on c,.
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In [14], the resistance characteristic for the alloy considered displays only slight
hysteresis over the range of temperatures between M; and Ay. Resistance mea-
surements were taken in the martensite and austenite phases and the average of

the two values was used in equation (5.3).

Measurements for the one-wire actuator were Ry = 5.002 and R, = 4.5Q.
giving an average value of 4.75§. Normally, the resistivity of NiTi is higher in the
austenite phase than in the martensite phase[l14]. However, it is indicated in [16]
that NiTi is sometimes doped with Cu (at the expense of Ni) to decrease production
cost and reduce the hysteresis. It is noted that one effect of Cu doping, even at
low levels, is to flip the resistivity characteristic so that resistance is lower in the
austenite phase. This leads to the presumption that the alloy employed contains

some Cu. In the shorter-length two-wire actuator, the average resistance value was

2.0Q.

5.2 Experimental Methods

This section details the experimental methods used during the testing and identi-
fication of the SMA actuators.

5.2.1 Data Collection

As mentioned in the previous section, piecewise constant current inputs were used
during testing and identification. Each current value was applied until the measured
actuator position had reached a steady-state. This position was then associated
with the steady-state temperature found from (5.3) to form one point on the input-

output graph. Specifically, the procedure was as follows:
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1. Choose a desired temperature profile, T(¢).

Sample T(t) at N evenly spaced points, obtaining {T}i=1.~-

)

3. Compute the constant currents {/;} from equation (5.3):

I{ = ‘_RTT:.

4. Apply each current I; to the actuator in sequence.

5. For each current I;, wait until the position has been constant for twenty-five

seconds. assign the steady-state output value to p;, and apply ;.

6. When the test is complete, join the points (T3, p;) by straight line segments to
obtain an approximate input-output characteristic. The closer together the

points T;, the better the approximation.

It should be noted that, because of uncertainties and variation in the heating

model parameters, all temperatures indicated in this chapter should be considered

approximate.

5.2.2 Actuator Initialization

The left graph of Figure 5.4 shows two major loops from the two-wire actuator,
each generated using the same temperature profile. The shape of the loops is
nearly identical, but there is a significant offset between them. This offset is due
to remnant hysteresis in the actuator at the start of the test input. Since a relative
encoder is used, outputs generated for identical inputs will be shifted unless the

actuator begins in the same location at each trial.
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If all trace of remnant hysteresis can be removed before a trial, repeatable results
are obtained. In Chapter 3, it was mentioned that it was possible to approximate the
anhysteretic state by applying a decaying sinusoid to the actuator. This technique
was used on this same actuator in [20]. Here again, in order to remove the remnant
hysteresis. the actuator was “initialized” before each test input was applied. This
was accomplished by subjecting it to a decaying sinusoidal signal corresponding to

a temperature input of
180 —¢

180

This signal takes three minutes to decay from maximum temperature input to zero,

- 185sin(0.27t).

and has only 18 maxima and 18 minima.

The right plot of Figure 5.4 shows one major loop (dashed) superimposed on
another (solid), traced during the congruent minor loop test!. The actuator was
initialized before this test, and it can be seen that the saturation values are symmet-
ric and the match with the major loop is excellent. Initialization of the one-wire
actuator was not required, since there is no remnant hysteresis present at room

temperature.

5.3 Representation Testing

In this section, each actuator is tested for the presence of the wiping out and
congruent minor loop properties. These are the required properties for existence of

a Preisach model for the actuators.

1The results of the congruent minor loop test are discussed in a later section.
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Major Loop Offset Effect of Initialization
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Figure 5.4: Remnant Hysteresis and the Effect of Initialization
5.3.1 Wiping Out Test

The temperature input used to test the wiping out property in the one-wire actuator
is shown in Figure 5.5. Each of the two marked segments (A & B) generates four
nested branches, as illustrated in the sketch. If the SMA wire displays the wiping
out property, the peak at the start of segment B should remove any memory of
input up to that point, and the loops traced for input segment B should re-trace

exactly those generated by A.

Figure 5.6 shows the actual current input and corresponding measured output.
The current plateaus indicate the time taken for the position to stabilize before the
next current step was applied (note the time scale). In order to obtain an input-
output graph, the steady-state position values for each of the current plateaus was
plotted against the corresponding steady-state temperature. These points were

then joined by straight line segments. The results, shown in Figure 5.7, show
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One-Wire: Wiping Out Test input
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Figure 5.5: Wiping Out Test Input and Nested Branches

strong support for concluding that the temperature-strain characteristic of the SMA
actuator does satisfy the wiping out property. On the left, the response is shown up
to the end of segment A. The first four nested branches are traced. On the right.
the entire response is skown. and the branches traced in response to input segment

B coincide with those of segment A.

The analogous graphs for the two-wire actuator are shown in Figure 5.8. It can

be seen that they also support the application of the Preisach model.

5.3.2 Congruent Minor Loop Test

The results of the congruent minor loop test of the one-wire actuator are shown in
Figure 5.9. The first plot shows the temperature input designed to generate two
minor loops which, if the system displays the congruent minor loop property, should
have the same shape. The first minor loop is traced by input segment A, while the
second is generated by B. The intervening peak has the effect of shifting the second
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One-Wire Actuator: wiping out test output
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loop upwards. The actual current input and measured output are also shown in
Figure 5.9. Once again. the plateaus reflect the time required for the position to
stabilize. The final plot is the input-output graph, obtained in the same manner
as for the wiping out test. The sections of the output corresponding to the two
minor loops are shown in different line styles in order to distinguish them from each
other and from the major loop. Although the loops are not exactly congruent. their
general shapes are similar. The congruency is similar to that which was observed in
[27]. Figure 5.10 shows the results of this test for the differential actuator. Better

congruency 1s seen in this case than for the one-wire actuator.
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Figure 5.9: One-Wire Congruent Minor Loop Test
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Congruent Loop Test Input Current Input
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5.4 Model Identification

The model identification section is divided into three subsections. The first sub-
section presents the experimental identification data. In the second subsection. a
surface g(a.B) is fit to the identified data. This surface is then differentiated to
obtain the approximate weighting function g(a.3). The results are discussed in
the final subsection.

5.4.1 Identification Data
One-Wire Actuator

The range of input currents for the one-wire actuator is [0,1] Amps. A current
of 1 Amp corresponds approximately to a steady-state temperature of 175°C. The

temperature input range was divided into the partition

{T:}={0.0 17 70 157 278 43.5 62.7 853 111.4 141.0 174.1 }-

A temperature sequence, shown in Figure 5.11, was then constructed to generate

the nine FOD curves.

The measured outputs of the corresponding FOD curves are shown in Figure
5.12. Data points are joined by line segments to show the general shape of the

hysteresis.

Several observations can be made regarding these curves. First, although it
is not easily seen from the figure, the FOD curves do not cross within the major
loop, even in the bottom “knee”. Second. motion is achieved at lower temperatures
than expected. Finally, the shape of the curve is somewhat skewed. The last two

observations can be partially explained by the use of the average resistance value
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One-Wire Identification Input
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Figure 5.11: One-Wire Identification Input

in computing the temperature axis values. Since the martensite resistance is higher
than that measured for austenite. use of the average value tends to widen the top

of the hysteresis and narrow the bottom.

Two-Wire Actuator

For the two-wire actuator, the range of input currents is [~1, 1] Amps, correspond-
ing to temperatures of approximately [—185,185] degrees above ambient. This

temperature range was partitioned into
{Ti} ={ -185 -145 —-105 —-75 —45 —15 15 45 75 105 145 185 }

and a temperature input sequence similar to that of Figure 5.11 was constructed.
This input was applied using the steady-state technique previously described, gen-

erating eleven FOD curves. The measured outputs and the corresponding first
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order descending curves are shown in Figure 5.13.

One-Wire Actuator: Measured FOD Data
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Figure 5.12: One-Wire Measured FOD Data

It is apparent from this data that the actuator was not fully exercised: higher
temperatures should have been used. Because of this, the lower end of the FOD
curves do not merge. From the angle at which the major ascending branch ap-
proaches the upper FOD curve, the upper limit is likely not reaching saturation
either. Projecting the curves to the left of the data shows that a temperature range

of {—250,250] may have been more appropriate, although this seems excessively

high for NiTi wire.

Figure 5.14 shows three-dimensional plots of the FOD data for the one- and two-

76

wire actuators. In order to determine the weighting functions for these systems, a

surface g(a.B) is fit to each measured FOD data set, then differentiated to obtain

i
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One~-Wire Actuator: FOD Fit Data
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Figure 5.13: Two-Wire Measured FOD Data
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5.4.2 FOD Surface Fit

Previous attempts to fit a polynomial surface to FOD data for SMA have failed[29],
mainly because the FOD curves generated by SMA wire have three regions with
distinct slopes. Low-order polynomials are unable to properly match this behaviour.
While polynomial surfaces of higher order may effectively match the measured data
points. they may exhibit highly oscillatory behaviour between points. This conflicts
with the smooth behaviour observed experimentally, and has serious implications

if the surface is to be differentiated to obtain f.

While it is unclear what type of three-dimensional surface might best fit the
data, experience shows that the individual FOD curves might be well-approximated
by an exponential curve. In one of the initial works on modelling of SMA hysteresis{32],

two curves of the form
I

y(v) = T (5.4)

were used to simulate the major loop of the hysteresis. Equation (5.4) saturates
asymptotically at both low and high values of u. The parameter z; determines the
upper saturation value, while z, and z3 control the slope and point of inflection of

the central portion of the curve.

A more recent work[41] used curves of the same form to achieve a good qualita-
tive match of minor loop behaviour as well, by allowing the parameters of the curve
to vary as a function of alloy phase. In {2], it has been proposed that the hysteresis
relay v be replaced with two shifted “ridge” functions, similar in behaviour to (5.4).
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Curve Fitting

To determine an appropriate form of a candidate three-dimensional surface §(a.3).

a least-squares fit of the function

alB) = Ty + e
is performed for each FOD curve (constant a). The offset is added to allow a
match of the two-wire FOD curves, which are negative in the lower range of a.
A candidate surface is then determined by looking at how the parameters of the

resulting family of curves §,(8) vary as a function of a.
A Nelder-Mead simplex algorithm[48], as implemented in the MATLAB fmins

command. was used to do a least-squares fit. The results are shown in Figure 5.15.
A good match is achieved, except for FOD curves with few data points. in which
case the simplex algorithm used failed to converge. This is thought to be due to
the linearity of the data points on these curves. For the type of curves being fit.
this may result in many minima, close together in parameter-space, causing the

algorithm to fail to converge.

Candidate Surface

The initial proposed candidate surface, denoted g, is of the form

o - _ bl(a)
§{(P) =4alB) = T anarman

An offset is added to this surface in the next section. The variation of the param-

eters by to b3 of §,(B) as a function of a is shown in Figure 5.16.

The function b,(a) was assumed to be another exponential curve:

)
[1 + e-n(c+=s)] ’

bi(a) =
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One-Wire Actuator: FOD Curve Fit Two-Wire Actuator: FOD Curve Fit
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Figure 5.15: FOD Curve Fit

The range of by(a) is small, especially in the two-wire case, and nearly constant
for most a. The exception is in the one-wire case, where the point 5,(27.8) is
approximately double by(a) at the rest of the points. In the interest of keeping
the number of fit parameters small, it was assumed that b;(a) = z4. The error in
assuming constant b, may be mitigated by the fact that the multiplier b, is small

for low values of a.

Three types of functions were tried for b3(a): constant, parabolic, and decaying

exponential. The form of the surface becomes

y (a, ﬂy f) - [1 + e_zz(a-}-z;)][l + e—zq(ﬁ‘f'f(a”] )
with f(a) one of
fela) = zs,
fola) = zsa® + zea + z7,

f(la) = zse ™% 4 z5.
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One-Wire Actuator: Parameter Variation as a Function of alpha
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Figure 5.16: Parameter Variation
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Before proceeding with the surface fit, the surface §’ is modified to obtain the final
candidate surface . The following modifications guarantee a perfect match of the

model with the experimental output saturation values.

Modified Candidate Surface

Maximum output saturation occurs for increasing input as the input reaches .
the maximum identification input value. If the input is increased to % and then
decreased to u, the minimum identification input value, the major loop is traced.
So the minimum output saturation value is y(%,u). Since the FOD curves merge
at u, this saturation value is reached on every FOD curve, so that y(a.z) = y(%, u)
for all a. In order to guarantee a match of these saturation values. constraints are
imposed on the surface so that §(%,%) = y(%, %) and g(a,u) = y(%,u) for all a.
The values y(%,%) and y(%, ) were measured during the identification process as
Yz and ygy-

The match of the lower output saturation value is easily achieved by adding an
offset to the surface:

J(a.B.f) = §(apB, f)—y(aun,f)+y(Eu)
[e-=(utF(@) _ g-=z(B+1(@))]
1+ e-m2letas)][1 + e-mBH@N|[1 4 e-=s@rFa)]

fermd 31 . + y(ﬁQ_u-)’

In order to match the upper output saturation value, z; is removed as a pa-
rameter from the minimization, and is instead computed as a function of y(%, %),
y(%, u) and the other parameters z,, z3, z4, and f:

o _ [1 + e-tn(ﬁ‘?%)][l + e-—m(a+f(m)][1 + e-=a(2+f(m)]
o= [y(u’u) —viE, y')] [e'=4(2+!(6)) - e‘xi(i-f-!(ﬁ))] )




CHAPTER 5. PREISACH MODELLING OF SHAPE MEMORY ALLOYS 83

The final form of the candidate surface was

~ _ _ _ [1 + e—n(6+za)][1 + ™% (i‘+f(m)]
y(a? ﬁ f) = [y(‘llo, u) - y(w E)] [1 + e—zz(a+z;)][1 + 3—24(ﬁ+!(a))]

[1 + e-zq(f_ﬁ'f(m)][e—h(!ﬁ-l(a” — e—Za(B+f(a))

[+ o=@t e [e-maler T — e-saer i@ T y(@.u). (5.9)

The notation g, §, and y. is used to refer to the surfaces which result when f
is chosen to be constant, parabolic, or exponential, respectively. It is easily seen

that, for any choice of f, §(%. 7) = y(%. %) and g{a.u) = y(7, »).

Surface Fit Results

The measured data values y, correspond to points on the ascending branch of the
major loop, and values ygzg to the descending branch of the major loop. In order
to encourage matching of the rest of the major loop, a weighted least-squares error
function was used. penalizing errors at points on the major loop by a factor of two

compared to errors inside the loop.

The result of this weighted least-squares surface fit for g., §, and §. are shown
in Figures 5.17 and 5.18. The measured data points are indicated in the figure,
and it is seen that the match is good. As expected, the surfaces match exactly for
B = u and at (%, %). The details of the surface parameters are shown in Table 5.1,

along with the standard and weighted least-squares error for each surface.
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Figure 5.17: One-Wire FOD Surface Fit



CHAPTER 5. PREISACH MODELLING OF SHAPE MEMORY ALLOYS 85

Constant f

FOD Data

200

alpha -200 -200 petg

Parabolic f Exponential f

FOD Data
FOD Data

200

alpha =200 -200 beta alpha =200 -200 beta

Figure 5.18: Two-Wire FOD Surface Fit
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actuator one-wire two-wire
surface A Up Ye Ye Yp Ye
2 0.0483 0.0439 0.0394 0.0255 0.0297 0.0293
T3 -47.2120 | -44.1660 | -43.0003 ;| -16.7731 | -25.0694 | -24.2772
T4 0.1041 0.0996 0.1034 0.0330 0.0344 0.0343
zs -23.7060 | -0.0010 | 269.6849 38.4726 0.0017 27.2773
Zg — 0.2392 0.0765 — -0.4900 0.0207
z7 — -36.3101 | -23.6099 - 68.6903 36.0267
T 174.1 174.1 174.1 185.0 185.0 185.0
u 0.0 0.0 0.0 -185.0 -185.0 -185.0
y(%, @) 12.54 12.54 12.54 18.1085 18.1055 18.1055
y(u, u) 0.0 0.0 0.0 -16.5234 | -16.5234 | -16.5234
weighted error 3.8446 3.5901 3.2668 9.5914 7.3254 7.3415
standard error 2.8149 2.8807 2.3780 7.3717 5.2065 5.2144

Table 5.1: FOD Surface Fit Data
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5.4.3 Weighting Surfaces

Differentiating the surface which results from the model identification gives the

weighting surface for the one-wire actuator:

o 18§(e.B.f)
Meb) =3 508
The surfaces /., fi, and j. for the one-wire actuator are shown in Figure 5.19.

The two-wire weighting functions are shown in Figure 5.20.

In Chapter 4, several classes of weighting function were defined. It was seen that
for those in M p, the Preisach model was continuous on C° and on the Sobolev space
WZ. It is interesting to determine to which of these classes each of ji., i, and f.

belong.

Obviously, by the choice of §(a, B3), each of the weighting functions is continuous
and bounded over P,, so g € Mpc. The plots of Figures 5.19 and 5.20 clearly show
that i, and f,. are not in Mp. For 4., f(a) = zs and, grouping constant terms in
(5.5). gy can be written

- [e-h(y:f-Zs) — e—%4 (3+=s)]
yc(a-yﬂ) =C [1 + e—zg(a-{-x;)][l + e—zq(ﬁ+=5]]

+ y(%, u),

with
[]_ + e-zz(ﬁ-i-zs}][]_ + e-zd(ﬁ'*-f("i))][]_ + e—=4(9.+f(m)]
] 1 + e—zs(utf(a))][e—z1(utf(@)) — g~zs(ut+f(W))
+

L = [y(-ﬁv z) - y(T, y—)

Since y(%, %) > y(¥,u) and @ > u, ¢; > 0. Differentiating to obtain j,:

18%gc(a,
) = 3 pg

2 da

c; O z4e~ % (B+zs) z4e-=4(ﬁ+=s)[e-=4(2+zs) - e—zq(ﬂ*-ts)]
[1 + e—=alat=s)|[1 4 e~zs(B+2s)] + 1+ e-z2(atzs)](1 + e—*4(B+=s)]2

}
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Figure 5.19: One-Wire Identified Weighting Surfaces
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Figure 5.20: Two-Wire Identified Weighting Surfaces
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o 8 { $4e—=4w+=s)[1 + e—=-‘4(g+zs)] }
20a |1+ e—rz(a+zs)][1 + e—zq(ﬂ'{'?-s)}z

a {zzx4e—zz(a+=3)e-=4(ﬂ+zs)[1 + e—zi(g'f'ts)] }
2 [1 + e—z2lat+=3)|2[] 4 e%4(B+z3)]2

and g. > 0 for all (a,f) if z2z4 > 0. This is the case for both actuators (cf. Table
5.1), so i € Mp. Table 5.2 summarizes these results.

-~

surface || . | fp | fe
pEMpc || Yes | Yes | Yes
uEMp || Yes | No | No

Table 5.2: Weighting Surface Categorization
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5.5 Model Verification

In order to verify the models, the output to the identification input sequence was
simulated for each of the derived weighting functions. The results are shown in
Figures 5.21 and 5.22. The measured FOD data are plotted in the figure and
joined by dashed line segments to represent the experimental hysteresis.

As expected, output saturation values are matched exactly for each curve of
the one-wire model output. The two-wire actuator was not fully exercised during
identification, so that the measured FOD curves do not merge at u. In the surface
fitting for this actuator, the mean value of the measured y(a,u) was used as the
negative saturation output. It is this mean value (cf. Table 5.1) which is matched

by the simulation.

In order to secure a merge of the simulated two-wire FOD curves at u, the model
output is significantly low in the bottom “knee”. This demonstrates model inaccu-

racies which result when the full hysteretic range is not used during identification.

Constant f

For both actuators, the surface ¢. had the largest fit error to the measured FOD
data. This weighting function also provides the poorest qualitative match of the
three. The shape of the upper minor loops is similar to that seen in experiment.
The lower minor loops, corresponding to smaller values of a, do not match as well.
This is expected, since it is at lower values of a that b,(c) and b3(a) deviated most
from their assumed constant form. This is particularly true of b3, since it determines
the point of inflection of §.(3). By setting b3(a) = zs, the points of inflection of the
descending curves are constrained to a vertical line in the input-output plane. In

the one-wire case this is around 20, and -40 for the two-wire response. These match
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Figure 5.21: One-Wire Simulation Qutput
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Figure 5.22: Two-Wire Simulation Output
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with the values of z5 for these actuators in Table 5.1. The simulated response of
the one-wire actuator also shows some bunching of the descending curves in the

upper portions of the hysteresis.

Parabolic f

For the one-wire actuator, the weighted fit error for g, was better than for g., but
the unweighted error was slightly worse. It is seen in the output for g, that major
loop points are better matched than for fi., which explains the decrease in weighted
error. The upper curves are not as bunched as with .. However, no significant

improvement is noted for the lower descending curves.

For the two-wire actuator, the qualitative match using i, was much better

than that obtained for .. Notably, an excellent match is achieved for the lower

descending curves.

Exponential f

In the case of the one-wire actuator, this surface provided the lowest fit errors. and
also the nicest qualitative output. Although the upper curves have bunched up
slightly compared to those resulting from f,, the reproduction of lower branching

behaviour is much better.

For the two-wire actuator, the fit errors were nearly identical for both g, and

Ye, and very little difference is seen in the output simulations.



CHAPTER 5. PREISACH MODELLING OF SHAPE MEMORY ALLOYS 95
5.5.1 Comments on the Differential Actuator Results

As previously mentioned. the effectiveness of the classical model form in the case
of the differential actuator is somewhat surprising. Although the reasons for this
unexpected result are not yet entirely clear, this section sketches a possible answer,

using an analysis of the stress-strain curves of the wires.

The analysis is done from the perspective of one wire, which is to be heated.
This wire will be called the “actuator”. while the other is the “load”. Figure 5.23
shows the stress-strain curve for the martensite and austenite states of the SMA wire
used in the construction of the differential actuator. The values were determined
empirically in [40]. Note the characteristic martensite strain plateau, the slope of

which is exaggerated here for clarity.

f
35917MPa
austenite
8§26MPa
C— .
martensite
/1 16800MPa
1.36% strain

Figure 5.23: Stress-Strain Curves for SMA Wire

In a differential actuator, the wires are mechanically fixed to each other at one
end and to the support structure at the other (cf. Figure 5.2). The wires are

then pre-strained, to 3% in this particular case. Assuming the support structure
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is sufficiently rigid, the total strain in the wire remains constant at 6%. Also.
ignoring dynamic effects, the stress in the wires is the same at any point in time.
The diagram of Figure 5.24 shows the martensite and austenite characteristics of
the actuator wire (solid), with the martensite characteristic of the load wire flipped
and overlayed (dashed). Note that for any vertical line, the total strain in the

actuator and the load is 6%.

stress

o, martensite
St =
o \ N
; Op,  Unartensite(load)
P . s N -
0% 136% 3% 4% 6% strain (—)
6% 4% 2% 0% strain (= =)

Figure 5.24: Differential Actuator Stress Analysis

Initially, when both wires are cool and in the martensite state, the operating
point OP, is at the intersection of the martensite curves, at 3%. The stress in the
system is g,. Now, suppose the actuator wire is heated. As it undergoes an internal
phase transformation, its stress-strain characteristic changes, shifting towards the
straight-line behaviour of full austenite. This is represented by the dotted lines in
Figure 5.24. At any point during the transformation, the operating point is at the
intersection of the changing actuator characteristic and the load martensite curve.

The stress in the wires has increased accordingly.
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The change in wire stress during heating, then. is a function of the slope of the
martensite plateau for the alloy employed. Assuming that the wires begin cool,
both in the martensite state. and one is heated to full austenite, the change in

stress can be calculated from the values in Figure 5.23. The initial stress is

o, = 16800(0.0136) + 826(0.03 — 0.0136),
= 242 MPa

If &4 is the final strain in the wire being heated, then the final strain in the load is
(0.06 — &,), and the final stress is

o1 = 35917c,
= g, + 826(0.03 — €,).

Solving this for £, gives

.- do + 826(0.03)
¢ 7 35917 + 826
= 0.7%,

and the change in stress upon heating from martensite to austenite:

gy — 0,
o
35917(0.007) — 242
242

Ao =

= 7.77%.

It is hypothesized that this relatively small change in stress, along with the
continuous fashion in which it occurs, is at least partially responsible for the ability
to represent the behavicur of the actuator with a single-input Preisach model. A
more detailed investigation of the reasons behind this observation will hopefully be

the subject of future research.
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5.6 Summary

In this chapter. identification of Preisach models for two different SMA actuator
configurations was considered. It was shown that the actuators satisfy the wiping
out property quite well, and that comparable minor loops show a certain degree of
congruency. While it theoretically requires an input of infinite length to return a
system to the anhysteretic state, it was demonstrated using the two-wire actuator

that this could be achieved to satisfaction using a reasonable input.

Preisach weighting surfaces of three different forms were identified for two shape
memory alloy actuator configurations. The results differ from existing literature[27]
in that exponential surfaces were successfully fit to experimental data. The success
of the classical model in representing the differential actuator configuration is in-
triguing, since actuator motion produces time-varying stresses in the wires. It was
shown that the change in stress over the range of motion of the actuator is limited
to less than 10%. which may account for this result. Still, further investigation is

needed into the mechanisms of this surprising behaviour.

The advantage of surface fitting over interpolation is that the weighting function
is known analytically. This is important if the continuity results of Chapter 4 or
dissipativity result of Chapter 7 are to be applied. It is only with an analytical
expression for u that the weighting function, and hence model properties, can be

understood with full confidence.

In this case, each identified model was characterized in terms of weighting func-
tion classes defined in Chapter 4. A positive weighting surface ji. was identified for
each actuator, which provided a reasonable model match. However, the best match

was obtained with f., which was not positive over all of P,.

It may seem counter-intuitive to think of the Preisach weighting function being
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negative-valued. In the energy arguments of Chapter 7. it will be seen that the
energy lost in one cycle of a relay is equal to 2u(a.B)(a — B). Since a > B.
if p(a.B) < 0 does this mean that this relay generates energy? One possible
fallacy in this logic is that relays in the Preisach plane cannot be switched in
isolation. Rather, they switch in groups along horizontal and vertical line segments
corresponding to boundary branches, as these branches sweep through the Preisach
plane. Furthermore, it will be seen in Chapter 7 that Preisach weighting functions
for magnetostrictive materials must have some negative regions, so this is obviously
not precluded in physical systems. This suggests that conditions for the positivity
of the Preisach weighting function. and indeed a good understanding of what such

positivity implies, would be an appropriate topic for future
investigation.

The fact that three surfaces were identified for each actuator, each having fun-
damentally different properties in terms of their positivity, suggests the need for
a more rigorous identification technique. Recent work has proposed a framework
for the estimation of Preisach weighting surfaces in which existence of a unique
optimal solution can be shown, and convergent algorithms exist[3]. In the future,
this approach to identification may provide a more accurate and robust technique

for determination of the weighting function.



Chapter 6

State Space Representation

Chapter 3 discussed the traditional input-output representation of the Preisach
model. Non-linear input-output stability theory is largely limited to systems satis-
fying the conicity and sector conditions proposed by Zames[69]. Some hystereses.
such as those found in magnetic materials, do not satisfy these conditions. As
a result. the graph of the Preisach model is not, in general, restricted to a sec-
tor. Because of this, the input-output stability theory which can be applied to
the Preisach model is limited. The current chapter is concerned with developing a
state space representation for the Preisach model. By placing the model in a state
space framework, non-linear stability techniques such as Lyapunov and dissipativity

theory may be applied.

The bulk of this chapter is devoted to defining the state space and the de-
termination of the state transition operator, in the context of Willems’ work on
dissipative dynamical systems([65]. It will be seen that the nice graphical properties
of the Preisach plane can be used by choosing the boundary as the state.

In Section 1, Willems' definition of a dynamical system is recalled. The state

100
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space representation of the Preisach model is developed in Sections 2-4, and prop-
erties of the state space are examined in Section 5. This chapter makes use of
extensive notation. and tables of nomenclature have been included for reference.

They can be found after the summary, in Section 6.6.

6.1 Dynamical Systems

The following definition of a dynamical system is due to Willems, who first intro-
duced the formalism used in the study of dissipative dynamical systems.

Definition 6.1 (Dynamical System [65])
A (continuous stationary) dynamical system ¥ is defined through the setsU, U, Y, YV, X

and the maps ¢ and r. These satisfy the follounng azioms:

1. U 15 called the input space and consists of a class of U-valued functions on R.
The set U is called the set of input values. The space Y is assumed to be closed
under the shift operator ar; t.e., if u € U then the function oru(t) = u(t+T)
also belongs toU for any T € R;

2. Y is called the output space and consists of a class of Y -valued functions on
R. The set Y is called the set of output values. The space Y is also assumed

to be closed under the shift operator;
3. X 13 an abstract set called the state space;

4. ¢ is called the state transition function and is @ map from R?* x X x U into

X. It obeys the following azioms:

(a) (consistency): d(to,to,Zo,u) =2, forallt, € R, z, € X, u € U;
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(b) (determinism): ¢(t1,to,T0o,u1) = S(t1,t0. To,u2) for all t,.t) € R, t; >
to. To € X, and all uy,uqy € U satisfying uy (L) = uq(t) for allt, <t < ty:

(c] (semi-group): ¢(ta.to, To, ) = P(t2,t1, P(t1, b0, To.u),u) for allt, < t; <
t21 o € Xs ueuv.

(d) (stationarity): ¢(t1 + T,to + T, z0,017u) = P(t1,t0.Z0 1) for all t, €
R . t; >2¢t, TER, z,€ X, andu € U;

5. r is called the read-out function and s @ map from X x U into Y';

6. the Y-valued function r(¢(t.t,, z,,2),u(t)) defined for t > ¢, s, for all z, €
X, t, € R. v € U, the restriction to [t,,o0) of a function y € Y. This means
that there ezists an element y € Y such that y(t) = r(@(t.to, 2o, u), u(t)) for
t>t,.

Willems points out: “It should be emphasized that the read-out function is
required to be a memory-less map in the sense that the output only depends on
the present value of the state and the input. All dynamical effects (i.e., those

phenomena involving memory) are required to be taken care of by the state.”

Although the dynamical system framework is used to establish the state-space
representation for the Preisach model, the reader is reminded that the model is, in
fact, static. That is, the behaviour depends only on input extrema, and the order
in which they occur. As a result, it will turn out in much of what follows that time
is rather arbitrary. This will be true for any representation of the Preisach model

in isolation.

The following sections set out a state space framework for the Preisach model.
First, the input, output, and state spaces are defined. An intermediate space S,

which will be used in the construction of the state transition operator, is then
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introduced. and mappings between the spaces /. S and B are defined. Finally, the
state transition function ¢ and read-out function r are defined. and it is shown that

both functions satisfy the axioms of Definition 6.1.

6.2 System Spaces

6.2.1 The Input Space

Let C° denote the space of real-valued continuous functions defined on the bi-
infinite real line. The input space I/ is defined, for some system-dependent & > 0,

as
UL {ueCut) <iVtand Jim_ u(t) = 0}.

U is obviously closed under the shift operator. For any interval [o,%,] in R. the
notation up, ., denotes the restriction of u to [tg, ¢;]. The notation U(to, ¢1] denotes

the set obtained when every element of U is restricted to [to, ¢;]-

The input restriction |u(t)| < u allows the Preisach plane to be bounded, as
in Chapter 3, and arises naturally in systems where input signals are subject to

saturation. In the context of previous chapters, @ = max{|u®*|, |u5*|}.

Recall that at any time ¢, the point in P, where the boundary intersects the
line a = B is (u(t),u(t)). The initial boundary B*, at ¢ = —co, is assumed to be
the line @ = —3, which intersects a = 3 at (0,0). Since the Preisach model is not

defined for piecewise continuous inputs, the limitation

lim u(t) =0

t=—c0

is required to preserve the continuity of the input at this initial condition.
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6.2.2 The Output Space

The output space Y C C% Y = R. and Y is also closed under the shift operator.

6.2.3 The State Space

In defining the state of the Preisach model it seems logical to look to the Preisach
plane. since that is where the memory of the model is “stored”. There are a number

of possible choices for the state space. For instance:

e the set of all possible configurations of the continuum of relays in P;
e the set of all boundaries which separate the above relay configurations;

e the set of all alternating sequences of extrema which generate those bound-

aries.

Each of these choices stores the complete memory of the system, as required by
the dynamical systems formalism. In fact, they are equivalent in that each can be
generated from the other. However, the choice of the boundary as the state results

in a nice graphical interpretation of state dynamics.

In characterizing the set of all boundaries, it is useful to recall some of the key
boundary features from Chapter 3. It was seen that Preisach boundaries are non-
increasing “staircase” graphs in P, composed of horizontal and vertical segments,
with possibly one diagonal segment corresponding to the initial condition. As in
Chapter 3, the input restriction u(¢) € [—u, 4| further limits boundaries to those
contained in the triangle P, C P defined by P, £ {(e,8) € P|— 2 < B < a <
@}. The assumption that the initial boundary is @ = —8, along with this input
restriction, means that all boundaries contain the point (—u,%). The following

definition characterizes the state space in terms of these properties.
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Definition 6.2 (The State Space)
The state space B is defined to be the set of (possibly multivalued) continuous graphs
B in R? whose points (B, B(B)) satisfy the following properties (for all values of

B(B)):

(BP1) bounded input restriction: —u < 8 < B(8) < u.
(BP2) initial condition: B(—u) = u;

(BP3) non-increasing: B(82) < B(f1), VB2 > b

This definition encompasses all the characteristics of Preisach plane boundaries,
and fits Willems’ definition of a state space. In addition, it purposefully includes
curves which are bounded and non-increasing, but not necessarily made up of hor-
izontal or vertical line segments. The inclusion of these elements completes the

space, as will be seen in Section 6.5.4.

Note that (B P2) implies that every boundary contains the point (—4,#). There
is a subtlety which arises as a result of this, which is illustrated in Figure 6.1. The
boundary on the left is not a member of B, since it does not include (—%,i); the
boundary on the right does, and is an acceptable state. While the two are equivalent
in terms of the resulting output, the inclusion of the point (—u,%) will facilitate
the mathematical details of Section 6.5.

Zero Element

It seems logical in choosing a zero element in B to be guided by the idea of minimum
energy. In discussing energy storage in the Preisach model in Chapter 7, it will be

seen that there is no unique state of minimum stored epergy. However, in the
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x o
('G‘G) ('G\a).

P

p ? 4 B

Figure 6.1: Effect of the Initial Condition on the State

anhysteretic state, no remnant hysteresis is present in the system, and zero input
gives zero output. It will be seen in Chapter 7 that this is in fact a state of zero
stored energy. Since it is also assumed to be the initial state of the system, it is

logical to choose this as the zero state, denoted

B" £ {(a,B) € P,|a = —f3}.

6.2.4 Reachability

In control theory, the success of a control problem often relies in part on the ability
of the controller to move the system to a desired state by applying an input. This
concept is known as reachability.

Definition 6.3 (Reachability)
A system T i3 said to be “reachable from z,” if for every £ € X there exists a time
t < oo and an admissible input u € U(L,,t] such that ¢(t, +t,to,z0,u) =z. If X is

reachable from every z, € X, it is said to be “reachable”.

As the input to the Preisach model evolves, it generates boundaries composed

only of alternating horizontal and vertical segments, plus a segment of the line a =
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—p if any memory of the initial condition remains. One such boundary is illustrated
in Figure 6.2. However. boundaries in B may contain segments of arbitrary negative
slope. For finite time 7. there is no input in U(~o0, T'] which can generate such a

segment ezactly, so the entire state space B is not reachable.

a

Figure 6.2: Example of a Reachable Boundary

The reachable subspace of B can be defined as follows. For » > 0, denote by B™
the set of all boundaries B € B for which there exists a real number 8, € [—.0)
such that B(B) = —p for all B < 3, (segment of slope -1), and which consist of n
connected alternating horizontal and vertical segments for 8 > 3,. For example,
the boundary of Figure 6.2 is an element of B®. Note also that B° = B*. Any
B € B™ can be reached from B~ by an input having n input reversals over (—oo, T},
for any T' < 0. Then the subspace of boundaries which is reachable from B* is

B.= | B",
n<oo
the set of all “staircase” boundaries with a finite number of “stairs®. The reacha-

bility properties of B will be further discussed in Section 6.5.2.
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6.3 Reduced Memory Sequences

In this section. the intermediate space S of reduced memory sequences is introduced.
along with mappings between S and the input and state spaces. These mappings

will be used in the next section to construct the state transition operator.

6.3.1 Memory Sequences

Branching in static hystereses occurs whenever the input switches direction, at
input extrema. In general, the output of a static hysteresis is dependent at any
particular time on the current input value as well as the values of all past input
extrema. A hysteresis “remembers” the effect of these past input extrema, and the
set of previous extrema form a memory sequence[64]. The wiping out property of the
Preisach model implies that the dependence of the output on previous input extrema
is restricted to a particular subset of the memory sequence. This subset is referred
to by Mayergoyz as the set of dominant input ertrema[43], and by Visintin[64] as

the reduced memory sequence. The terminology of Visintin is adopted here.

The wiping out property was described in Chapter 3. In essence, any input
maximum which exceeds previous maxima will wipe out the memory of those max-
ima, and minima can be similarly “wiped out”. At a given time ¢. only certain
past extrema are retained and affect the output. They form an alternating set of
input maxima and minima, in which each maximum is smaller in amplitude than
the previous one, and each minimum is larger than the previous one, until the two
series converge at u(t). Since the boundary corners are defined by these extrema,

this results in the characteristic “staircase” appearance of the boundaries.

Examples of the construction of the reduced memory sequence associated with
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an input can be found in [e.g. 43. 64]. The following construction is based on that
of [64].

For any input u € U(—o00,T]|and any 7 < T, set 8o = 0 and ) = maxee(—o0.r] [u(t)|.
This is well-defined. since lim,_,_, u(¢t) = 0. Let ¢; = max{t € (—oco.7]| [u(t}| = n}.
and define the elements s; (i=1.2,...) of the reduced memory sequence s(u.t) as
follows:

i=1: 8 =u(ty)

8i-1 < 8i—2: &= max u(t), and ¢ =max{t€ (ti1, T]lu(t) = s}, (6.1)

tE(timt.7]
Si1 > 8i—2: 8 = !e(r?in ]u(t), and t; = max{t € (t;—1, T]|u(t) = s:},
s=1T

terminating the sequence if ¢; = 7.

Note that the values s; are well-defined: by definition of s;_; in (6.1), u(¢) >
8;—y (or u(t) < s;~;) over (t;_1,7]. Since u is continuous, the required maximum
(or minimum) is well-defined. The times ¢; are similarly well-defined, since the
maximum is being taken over a non-empty set and 7 is finite. The sequence {t;}
is merely used to construct {s;}, and then discarded: the time at which extrema

occur is of no significance in the Preisach model.

If the input u has a finite number of extrema in (—oo, 7], the above sequence
has finite length N, ty = v and u(t,) = u(7). In this case, the tail of the sequence
is formed by setting s; = sy for i > N. If the sequence is infinite. then setting

t* = sup{¢;}, the input u must be constant over [t*, 7). Note that in both cases,

lim s; = u(r). (6.2)

1—00

The elements of the sequence s(u, ) change depending on the time 7 at which
the reduced memory sequence is computed. Figure 6.3 shows the reduced memory

sequence s(u,¢;) for a sample input u at various times.
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s(u.t )
{444...}
{4.-3,-3,-3,...}
{4,-3,3.3,3....}
{5.5.5....}
{5.1,1,1,...}
{5.1,3,3.3,...}
{5.-2,-2,-2,...}

- -t o a o e

===+ =

N W bW N = O~

-
K.’]

Figure 6.3: Example of Construction of Reduced Memory Sequences

This section will make use of the notation
N(s) & sup{i|si-1 # s:}, (6.3)

which, for any reduced memory sequence s(u,7), is the index beyond which s;
is constant and equal to u(r). If » has a finite number of extrema in (—oo,7|.
then N(s(u.7)) is finite: otherwise, N(s) may be infinite. Also, for any sequence
s = {s;}, let s° and s° denote the even and odd subsequences s® £ {s;};—s4... = {55}

and s° 2 {s:}i=13... = {s¢}.

Definition 6.4 (Space of Reduced Memory Sequences)
The space of reduced memory sequences, S C lo, 13 composed of all sequences s with

l|8li <, and for which the even subsequence s° and odd subsequence s° satisfy

1. 8% is strictly decreasing (strictly increasing) up to N(8), and constant there-

after (if N(s) s finite).

2. 8° is strictly increasing (strictly decreasing) up to N(s), and constant there-

after (if N(s) s finite).
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3. lim,-_m sf = lim

o
1~—0C si .

111

Figure 6.4 shows examples of elements of S which have finite and infinite N(s).
Note that if N(s) < oo, then s; = 8Nn(s) = u(r) for all 7 > N(s).

s(u,7) s(u,1)
Y U 1l VS
X
X Xy
X X
il ™ S oot o S ] S e S
X N(s) i X i
N(s) finite X

N(s) infinite

Figure 6.4: Sample Sequences in S

Figure 6.5 shows the spaces defined thus far. The following subsections are

concerned with the definition and properties of mappings between these spaces.

=

Figure 6.5: Relationship Between System Spaces
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F.:U— S
For any time T < oo and any input v € U{—oo. 7}, the reduced memory sequence

F.u = s(u.7) is defined as in (6.1).

Fr:s—Uu

The reduced memory sequence s(u, T) captures only the information regarding ex-
trema of %(_e ,- There are therefore an infinite number of inputs u; # » satisfying
F,u; = Fyu. Hence, F, is not one-to-one, and the inverse mapping is not defined.
However, these inputs are equivalent in the sense that they generate the same
reduced memory sequence. The operator F} : § — U(—o0, 7] is defined by con-
structing, for any s € S, an input which is representative of this class of equivalent

inpats.

For any s(-,7) € S, let N(s) be defined as in (6.3). It is required to construct
an input u € U(—oo,7| with extrema equal to the elements of s and satisfying
u(7) = lim{s;}. Note that N(s) could be infinite. Choose any £y < 7, and let {¢;}
be a partition of [tg, 7| defined for all ¢ > 0 by

T — to 1
t.' = t,'_ —_— .
1+ 2 2 (6.4)

Note that lim; ,ot; = 7. Set s = 0 and define u(t) on (—oo, 7| by straight-line

interpolation between the points (¢;, 3;):

0 t <t
u(t) =4 s t =¢, (6.5)

(E—tim) 7=t 55y Ly <t <ty

ti—tiy
The resulting output u € U(—oo, ] has extrema corresponding to elements of
s(+,7), and
u(r) = ilfglo 3;.
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Define the concatenation operator < on C° x C° by

u, t°<t$t1

u(tmtllov(tl-‘!] =
v, b <t<i,.

Lemma 6.1

The operators F.. F] satisfy the following properties, for any v < oo.

1. Fr is a right-inverse of F,.: for any s € S, F.Fls(-,7) = s(-. 7).

T

2. F. is deterministic; that is, for any 7 < 0o and uy,uz € U(—o0, 7] satisfying

u1(t) = us(t) over (oo, 7], then Fouy = Fru,.

3. For any u € U(—o0,T] the composition FIF, preserves the continuity of the

input for every v < T'; that 1s,
(FrFrt=co)) Qugr1) € U(—00,T).
4. For anyT > 1 and u € U(—~o0.T], the composition Fr F, satisfies the identity

Fr [(F:Ffu(_oo,,]) Ou(f,m] = Fru. (6.6)

Proof

l Property 1|

This property is satisfied by definition of F7. For any s € S, the extrema of

u = F[s(-,7) are exactly the elements of s, so Fru = F.FTs(-,7) = 3(-, 7).

Property 2

Since u;(t) = u,(t) over all of (—oo, 7], then in particular their extrema over this
interval are equal. Since F, constructs a sequence based only on the extrema of an

input over (—oo, 7], Fru; = Fru,.
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Property 3

Choose any u € U(—o0.T]. T < T. Let the reduced memory sequence at 7 be
s(u.t) = Fru. and the input which is reconstructed from s(u,7) be @ = FJs.
From the partition (6.4) used in the construction of %, lim; o ¢; = 7 and from
(6.5), @(7) = lim;_,o 8;- But from the definition of F, (6.2), lim; , $; = u(7). So
#(r) = u(r) and FFrulu 1 € U(—0.T).

For any v € U(—o0, T}, let & = F} Frt(_r . By construction, @ contains all of the
same extremum information as %(— . From Property 3. aOur1) € U(~00.T). s0
Fr(aQu(r 1) is defined. Then 2w, 1 has extrema identical to those of u(_1},
so the identity (6.6) holds. [

The following two subsections define mappings between reduced memory se-

quences and boundaries.

G:8§— B
For any reduced memory sequence s(u,7) € S, the elements of s define the corners

of the corresponding boundary G(s) as follows. For all ¢ < oo, define the set of
points p; € R?

1 = (=[s1],[s1])
{ (85,8i-1), 8 < 8i—y

(8i-1,8i), 8> 8iy
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and the line segments P; joining p: to piy;. Define
G(s) = U Pi.
=0

Note that if N(s) < oo, then for all > N(s),

Pi = DPN(s)
= (3N(s)» SN(s})

= (u(r),u(7)).

If N(s) is infinite, then the boundary G(s) has an infinite number of corners p;. In

this case, since

lim s = ili!g s? = u(r),

t—oc
then
lim p; = (u(r),u(r)).
1—00

In both cases, the result is as expected for the Preisach model: the boundary at

time 7 intersects the line a = # at the point (u(7),u(r)).

Note that the range of G, Ra(G), is the set of all boundaries B € B which
have a finite or countably infinite number of alternating horizontal and vertical
segments. This set is not quite B, since B also contains non-increasing curves of
arbitrary negative slope. This will be further discussed in Section 6.5.2, once the
concept of distance in B is introduced. It will be shown that for any B € B, there
is a boundary in Ra(G)—in fact, in B, C Ra(G)—which is arbitrarily close to B.

G ':Ra(G)— S
For every sequence s € S, the boundary G(s) is unique, by definition of G. Since
G is obviously onto Ra(G), the inverse mapping G™! : Ra(G) — S exists. The
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construction of a sequence s € S from any boundary in B € Ra(G) is defined as

follows.

Let N — 1 be the number of horizontal and vertical segments of B. Then ¥ > 1
and N may be infinite. Set p; = (a;.31). the coordinates of the right endpoint of
the diagonal segment (if none exists. set p; = (—w,%)). For ¢ = 2,....N. let p;
be the coordinates (o4, 3;) of the N remaining corners of the boundary. If the first

segment is horizontal, set

The resulting sequence contains N elements. If N < oo, as in the example of Figure
6.6. the reduced memory sequence is completed by setting the tail to s; = sy for

all z > N.

From the definition of G, the construction outlined above is the inverse of G,

G™':Ra(G)— S,and GG =G"'G = I.

H :U— B
H, : Ra(G) — U
The mappings H: : U ~— B and H, : Ra(G) — U are defined as the compositions

H, &2 FrG!, H £ GF,.
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(3.-8) [ I

(6.-3) N=6
(6.-6)

(3. 7 P=(6.-6)
) p=(6,-4)
p=(3.-4)
S X g B p,:(3_-2)
ps=(-1,-2)
pe=(-1,-1)

_________________ a 5={6,-4,3,2,-1,-1,-1,...}

Figure 6.6: Construction of s from B

Lemma 6.2

The operators H., HE satisfy the following properties, for any T < co.

1. H! is a left-inverse of H,.

2. HY is deterministic: that is. for any T < co and uy,us € U(—oo, 7| satisfying

T

u1(t) = uy(t) over (—oo. 7], then Hiu; = Hlu,.
3. Forany T > 1 and u € U(—o0, T], the operators satisfy the identity
Hf [(He How(- o) Qugriny] = Hi o (6.T)

Proof

H!H, = GF,FTG™
= GIG™!
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Property 2

Since F. is deterministic, then for any two inputs u;,us € U(—oo.7] satisfying
u;(t) = ua(t) over (—oo. 1],
Hfu, = GFu

(4
= H,’U.z.

| Property 3 .

Applying Property 4 of Lemma 6.1,
HE: [He HowomiQurr)] = GPr [FIG™' G Frt(coorCtr]
= GFr [FIFot( o rjOuer|
= GFT‘U.

= H%u.

6.4 State Transition and Read-Out Operators

6.4.1 State Transition Operator

The state transition operator ¢ determines the state B = ¢(t;,¢t,, Bo,u) which
results from applying an input v € U([t,,t;] to a system in state B, at time ¢,.
Since the Preisach model is only defined for continuous inputs, it is imperative that
u be continuous at ¢, with the input up to that point. This prompts the following
definition of admissibility.
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Definition 6.5 (Admissible Inputs)
An wnput u € U(L,, T] is said to be admissible for state B, if, for any input u" €
U(—co.t,]| such that B, = ¢(ts, —00. B*,u"). U{_ .| OU(to.1y 15 i U(—00.T): that

13, u(t,) = u(¢,)-

This concept of admissibility is presented in more detail in [57).

It is nonsensical, when writing ¢(¢;, £,. B,, %), to consider inputs which are not
admissible to B,, or states B, which are not reachable. The state transition operator
is defined. and the axioms proven. under the assumptions that initial states B, are
reachable and inputs u are admissible for the state to which they are applied. While
this interpretation is not explicitly clear from Definition 6.1, it can be found in other
similar definitionsfe.g. 57].

The state transition operator ¢ is defined using the mappings introduced in
Section 6.3. Given some interval [to,t,], some reachable initial state B, at time ¢,,
and some input u € U[ty, t;] admissible at B,, the procedure to determine the state

&(t1,to, By, u) is as follows:

1. determine the memory sequence corresponding to the initial state: s(-,f9) =
G-'B,,

2. construct an input u, € U{—oo,ty] which generates s(-,tg): u, = Fy s(- ta),

3. concatenate the inputs u, and u to form @& = u,Ou € U(—o00, ],

4. determine the corresponding boundary B, at time t,: B, = GF,, i.

Thus, the state transition function ¢ is given by

B(t1,to, Boyu) = HY [Hey BoOugeo ] - (6.8)
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6.4.2 State Transition Function Axioms

It is now proven that ¢ as defined in (6.8) satisfies the axioms required of a state

transition function.

consistency

Choose any ¢, € R. B, € B,, and admissible © € /. Then
B(tortos Boyu) = HY [HeyBoOu,s,)|
= Htto [HtoBOJ
= B,.

Bietermjm'smj

Choose any ¢, > t,, B, € B,, and admissible u;,u; € U such that u,(f) = us(¢)

over t € [t,,t;]. Let u, = H, B,. Then
#(t1,to, Boruy) = Hft (uoo‘uut,.e,]) , and
¢(t1, to, Bo, ‘U.z) = Httl (uOOuz(,mgl]) .

But uy(e, ] = Uae,.e,]- and from Lemma 6.2, H? is deterministic, so ¢(£1, to, Bou1) =

¢(t17 t09 BOV U2).

Choose any t, € R, t; > t; > t,, B, € B, and admissible © € . Let u, = H, B.,
U = uoQUe, ry), and note that v, Oue, ¢] = B(—co,ty] A0 U(e, 23] = e, ¢,)- Then
B(ta,t1, B(ts,to, Boru),u) = HE [Hey {$(t1,t0r Boy 1)} Oty 1]
= HY [He, {H [HeBoOuieos] } Oty ]
= HE [Hy, {HE [s0ueom] } O]
= HY [Hey HE 8o Oty ]

= £ =
= H,u



CHAPTER 6. STATE SPACE REPRESENTATION 121

by Property 3 of Lemma 6.2. But

$(ta.to, Bovu) = HE [HeiBoOUross)]
a2, |

-
- 2

: "'oou(t..tz]]

— L ~
= H,zu,

and so ¢ satisfies the semi-group property.

stationarity

Choose any t, € R, t; > t,, B, € B,, admissible © € ¥ and T < oo. It is required

to show that
HY, [H,,BoOuge, 1)) = Hiy o1 [Heos1 BoO0TU, 1] - (6.9)
Recall that o7 is the shift operator. Set

Uy = Ht.,Bo € u(_my t0]1
u, = H, 1B, € U(—00,t,+T).

Then
s(uy, t,) = Feuy = FQOF;G-IBO =G™'B,,

and similarly, s(uz,t, + T) = G~ ! B,. Now define

u; = ulou(t.,,tl],

Uy = ugOaTu(to',l].
Equation (6.9) can be written

L~ _ gt =
Ht‘ul -_— Htl_‘_Tuz.
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Since s(u;.t,) = s(u2.t, + T'). then s(@,,t;) = F, 4, is the same reduced memory
sequence as s(tug,t; + T) = F,, +7%2. Thus
Hfl‘l}q = GFgl‘&l
= GF;1+T1.‘2

_ £ ~
= H¢1+T"2’

and ¢ 1s stationary.

6.4.3 Read-Out Function

The read-out function r gives the system output which corresponds to a particular

state B. In Chapter 3, the output was written as

v(t) = [ [ wa.B)dads — [ [ u(a,B)dads,

Pslt) P-(¢t)
where P, (t) and P_(t) were the regions of P, where relays were in the +1 and -1

state. respectively, at time ¢{. At any time, these regions can be determined from
the boundary B. The operators P, and P_ on B are defined so that P.B = P,
and P.B =P_:

P, B is the set of all (a,8) € P which lie below or to the left of the graph of B in
P, as well as the points on the graph of B. '

P_B is the set of all (a,3) € P which lie above or to the right of the graph of B
in P.
Then the read-out function r : B — Y is given by

y(t) =r(B) = [ [ w(e,B)dads ~ [ [ u(a, B)dads.
P.B P.B

Note that the boundary B is implicitly time varying with .
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6.5 Properties of the State Space

This section is devoted to elucidating some of the properties of the state space B.
An isomorphic space B which is more familiar than B is introduced. Where it is
more efficient. the subsequent analysis makes use of this relationship. demonstrating

properties of B by showing they hold in B.
Define an isomorphic mapping on R : R? — R? by
R= I: 715 _71; ] .
v
The effect of this mapping on a boundary B € B is illustrated in Figure 6.7.

R Ed
a /““\ a
A
U~
B
P
7 7 =
P 24 B B
A
.......... .

Figure 6.7: The Rotation Mapping R

Essentially, the rotation R maps elements of the state space B to the set of
functions which are Lipschitz continuous on [~+/2%,0], with Lipschitz constant 1.
While elements of B may be graphs of multivalued functions of 3, these rotated
boundaries cannot be multivalued. This simplifies proofs for some of the results
which follow. Since isomorphisms preserve distance, properties related to distance

are shared by B and B: what can be proven for B also holds for B.
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Claim 6.3
For any B € B, the points of the rotated graph

B ={(B. BB)B BB)" = R[B BB}
satisfy the following rotated boundary conditions:
(BP1) bounded input restriction: |B(8)| < vZii + 8. B < 0:
(BP2) initial condition: B(~v/24) = 0;
(BP3) Lipschitz condition: |B(B:) - B(Bz)| <|Bi - 5. VBuB

Proof
For any B € B, the points (3. B(8)) satisfy properties (BP1-BP2), and are related
to points of B by

3 B B+B(8
| " || 7| e | o
( — V3

Property (BP1) results directly from substituting (6.10) into (BP1), and in turn
implies (BP2). Although property (BP3) can be proven by considering all possible
violations of the Lipschitz condition and showing these contradict (BP3), a graphi-
cal argument is much clearer, if less rigorous. Suppose that some portion of a curve
B, satisfying (BP1-BP2), has a slope whose magnitude is greater than unity. When
this curve is rotated, the resulting boundary B = R'B has segments which are
increasing, as shown in Figure 6.8. This is in contradiction with (BP3), and shows

that (BP3)=>(BP3). =
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R
>
R

/
A

2u

™t
>

r ;
NYE

Figure 6.8: Violation of the Lipschitz Condition

This result shows that the state space B is isomorphic to a space B C C°[—+/24.0].
This fact will be used in demonstrating several properties of the state space in the

following subsections.

6.5.1 Metrizing the State Space

Introducing the notation Ppg, g,, indicating the region in P bounded by the graphs
By, B; and the line a = 3, the state space can be given a metric defined by the
area between two boundaries,

d(By, B;) = [ [ dadp.

Pp, B,

Since the mapping R preserves distance between points in R?, the area between
any two boundaries B; and B, is equal to the area between B, and B,, which is
computed as

[ |1B:5) - BB & (6.11)

This is illustrated in Figure 6.9.
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3

Figure 6.9: The Metric on B

But every element of B is in C°[—+/2i,0], and (6.11) is simply the L, norm on
C°[—+v/24.0]. So for any two boundaries in B, d(B,, B,) = "B.l - B-ZHL’ and it is
clear that d(-,-) satisfies the properties of a metric.

It is worth noting that B (and hence also B) is not a linear space, since scalar
multiplication is precluded by the Lipschitz condition (BP3). Although the distance
function in B is identical to the L, norm, the notation [I-{l, will not be used since this
would imply a normed space. The rotated metric space will be denoted (B. d(-.-))

to avoid this confusion, with

-~ = = 0 - = . . -
d(By, By = [ |Bu(B) - Ba(B)] dB.

6.5.2 Reachability

The notion of reachability was introduced and briefly discussed in Section 6.5.2. It
was pointed out that the state space was not reachable, and the reachable subspace
B, was defined. Here, the idea of approzimate reachability is introduced. This
concept is similar to that of approximate controllability for infinite-dimensional
systems, defined in [10].
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Definition 6.6 (Approximate Reachability)
The state space (X.d) of a dynamical system X is said to be “approzimately reach-
able from z,” if, for any z € X and € > 0, there exists a time t < oo and admissible

input u € U(—oo, t]| such that d(z. $(t, s, 2,,2)) < €.

Theorem 6.4 (Approximate Reachability)
The state space B is approzimately reachable from B~.

Proof

Consider any B € B, a continuous, non-increasing function defined on [—%.0]. For
any n < oo, let {;}i=o...n be a partition of [—u,0] into n equal subintervals, with
Bo = —t. B can be approximated on [—,0] by a function g which is piecewise

constant over each interval (8, Bit1]:

B(f3:), B=-u
g(ﬂ) = ( 1)
B(ﬂ)7 /Bi <,6 gﬂi+1-

Increasing n reduces the L, approximation error, and for any € > 0, n < co can be

chosen so that the area between B and g is less than c[e.g. 11].

Since B is non-increasing, the values {g(3:)} are also non-increasing, and g is
equivalent in the area metric on B to a non-increasing staircase function B, with
n horizontal segments. Since n is finite for any € > 0, B, € B,. So for any B € B
and ¢ > 0, there exists a B, € B, such that d(B, B,) < ¢. Since boundaries in B,

are reachable from B=, the state space B is approximately reachable from B~. =
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6.5.3 Boundedness

Definition 6.7 (Boundednessfe.g. 36])
A metric space (X.d) is said to be bounded if, for every pair of states z,,z, € X,

d(z,,z2) < 00.

By property (BP1), the maximum area between any two boundaries is 2a2.

Hence. d(B,. B;) < 242 for all B,, B, € B, and the state space B is bounded.

6.5.4 Completeness

In this subsection, it is proven that the metric space B is complete. The importance

of this property will be described after some preliminary definitions.

Definition 6.8 (Cauchy Sequence[e.g. 36])
A sequence {zn} in a metric space X with metric d(-,-) is said to be Cauchy if for

every € > 0 there is an N = N(¢) such that d(zm,Tn) < € for everym,n > N.

Definition 6.9 (Completeness{e.g. 36])

A metric space X is said to be complete if every Cauchy sequence in X converges

in X.

Definition 6.10 (Equicontinuityfe.g. 52])

A family of functions F from a space X into a metric space (Y, d) is said to be
equicontinuous at z, if, for every € > 0, there ezists an open neighborhood O of z,
such that d(f(z), f(zo)) < € forallz € O and all f € F. If F is equicontinuous

forall z, € X, it is said to be equicontinuous.
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The key point in this definition is that the size of the neighborhood @ does not
depend on f.

The importance of completeness can now be explained. In many applications.
it is easier to show that a sequence is Cauchy—that its elements get closer and
closer to each other—than it is to show that it converges. This is because the
former requires only knowledge of the sequence itself, while the latter supposes
some knowledge of the limit. For an example of an application where completeness
is important. consider the numerical optimization of a cost function J : X — R
over a parameter space X. A minimization algorithm generates a sequence of points
z; in X such that J(z;) < J(zi-;). and it may be easy to show that {z;} is Cauchy.
Then if X is complete, {z;} converges to a unique limit, say to z= € X, and
J(z") = min J(z); the minimization problem has a unique solution in X. However,
if X is not complete, then the sequence {z;} may not converge, and the problem

could be ill-posed.

It is now shown that B is equicontinuous, and later, that it is complete. Since

B and B are isomorphic, this implies that B is also complete.

Lemma 6.5 (B Equicontinuous)

B is an equicontinuous family of functions mapping [—v/24, 0] — (R.|-]).

Proof

Choose any ¢ > 0. Every element of B is Lipschitz continuous with Lipschitz
constant 1. Setting § = ¢, then for any B € B and any 8, € [—v/24,0], if |8 — B| <
d then

|B(8) - B(8.)

S lﬁ"ﬂol
< ¢

= E&.
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Since ¢ is independent of B and f3,. the family of curves B is equicontinuous. ®

Theorem 6.6 (Arzela-Ascoli[52])

Let F be an equicontinuous family of real-valued functions on a separable space'
X. Then each subsequence {f,} in F which is bounded at each point (of a dense
subset) has a subsequence {fn, } that converges pointwise to a continuous function,

the convergence being uniform on each compact subset of X.

Theorem 6.7 (Completeness)
The metric space (B,d) is complete.

Proof
The proof is an application of the Arzela-Ascoli theorem, in which X = [—v/2.0]
is a compact subset of R and F = B. Note that X is separable.

Choose any Cauchy sequence {Bn} in B. Then for every n, B,,(—-\/fﬁ) =0 and
B is Lipschitz continuous, so for every point 8 € [—v/2i, 0],

|Ba(B)] = |BalB) - Ba(—V23)|

< |8+ v2i,

I

and the sequence { B, } is pointwise bounded over X. By the Arzela-Ascoli theorem,
the sequence {B,} has a subsequence {B,,} which converges both uniformly and
pointwise to a continuous function B. But pointwise convergence over compact X

means that

max|B., () ~ B(B)| — 0

A space X is separable if it has a countable subset which is dense in X. In particular, the

real line is separable, since the rationals are countable and dense in R[e.g. 36].
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which in turn implies that
[, |Bw(8) - B(8)| d8 — 0

so B,, — B in the metric d on B.

Also. d is simply the L, norm on C°[—+/24,0], and L, is the completion of C°.
Since {B.} C C°[-v?2i.0], {B.} converges in d to a limit B,. Since the limit
of a sequence which converges in a metric space is uniquefe.g. 36], B, = B. and
{B.} — Bind.

To prove completeness. it remains to show that B € B. Choose any f;,0; €
[—Vv/24.0]. Recall that B,(8) is a bounded sequence of real numbers. Then
lim Ba(Ba) - lim Ba(f)
lim (Ba(B2) — BalB1))
lim [(Ba(B2) = Ba(B:))]
< lim 3, ~ B

n—o0

182 — Bl

|B(82) - B(B)| =

I

i

so B satisfies (§P3).

The pointwise convergence {B,.} — B mmplies that E(—\/ﬁ&) = 0, since
B.(~v2%) = 0 for every n. So B also satisfies (BP2). Together, properties (BP2)
and (BP3) imply (BP1), so B € B.

Hence, the rotated state space (B, d) is complete, and since they are isomorphic,

so is the state space (B, d). o®
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6.6 Summary

A state space definition of the Preisach model has been given for continuous bounded
inputs which vanish as ¢ & —oo. The state space is a complete, bounded metric

space. and is approximately reachable.

This is an original contribution which is made possible by the structure of the
Preisach model. It opens the door for the application of classical non-linear state-
space methods to these highly non-linear systems. In the next chapter, the state-
space framework allows the development of a new result on the dissipativity of the

Preisach model.
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Spaces

& W -

G3
3

9 O o

RS

space of continuous functions
space of bounded sequences
input space (C C?°)

output space (C C9)

state space

reachable subspace of B (C B)

set of boundaries in B with n (finite) horizontal and vertical
segments (C B,)

rotated state space, isomorphic to B

set of reduced memory sequences (C [)
the Preisach plane (C R?)

the restricted Preisach plane (C P)

Table 6.1: Chapter 6 Nomenclature—Spaces

133
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Elements

(a.8) a point in P or P, (€ R?)
Jé; the abscissa of a point in P or P, (€ R)
B a boundary; a graph of a function (€ B)
B- the initial condition; the zero state (€ B)
B a rotated boundary (€ B)
8,8(+.7),8(u,7) | a reduced memory sequence (€ S)
8%, s° even and odd subsequences of s
N(s) index beyond which s; is constant

N(s) > 1 and N(s) may be infinite
u an input (€ Y)
u input bound: |z|| <% (€ R)

Table 6.2: Chapter 6 Nomenclature—Elements
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Mappings (see also Figure 6.5)

FrU— S constructs the reduced memory sequence of u at time 7
FI.S—U constructs an input © € & which generates s(-, 1)
G:S§—B coustructs a boundary from a reduced memory sequence

G~': Ra(G) — S | maps boundaries in Ra(G) back to their generating sequence
H-U — B composite map from inputs to boundaries: H¢ = GF,
H.: Ra(G) — U | composite map from boundaries to inputs: H, = FTG™!
R:B— B isomorphic rotation mapping
d:B x B~ R | area metric on B

d:B x B — R | area metric on B

Table 6.3: Chapter 6 Nomenclature—Mappings




Chapter 7
Energy and the Preisach Model

In the design of controllers for physical systems, it is often useful to have an under-
standing of the energy properties of the system. Some of the classical results in the
design of controllers for non-linear systems are based on generalizations of energy

arguments. Passivity theory and Lyapunov’s method are two examples.

In the first section of this chapter, formulas for energy storage and loss in the
Preisach model are derived. Similar results have been derived in [43], but the
assumption made in that work was somewhat restrictive and a more general ap-
proach is taken here. In the second section, the dissipativity theory of Willems is
introduced. Coupled with the state-space representation of the previous chapter,
this framework allows the derivation of an energy dissipation result which is more

general than those obtained previously[19, 28].

136
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7.1 Energy Storage in the Preisach Model

This section i1s concerned with investigating energy storage in Preisach models for
which 4 € Mp. in order to form a basis for the subsequent use of energy argu-
ments in controller design and stability analysis. In doing so, an input-output pair
representing instantaneous power is identified and used to compute the total en-
ergy input over time. Examples of such “energy pairs” are force and velocity in

mechanical systems. and current and voltage in electrical systems.

In actuators. u is often some form of mechanical or electrical force. and y is
displacement. Hence, uy has units of power. The instantaneous power input at
time ¢ is u(t)y(t), and the total energy input as a result of applying u from ¢, to ¢,
1s

Q= /:' u(t)g(t)dt.

7.1.1 Energy Storage, Recovery & Loss in Relays

In order to understand the energy characteristics of the Preisach model, it is useful

to begin with the study of the individual weighted relays which make up the model.

Consider the arbitrary weighted relay y,4 of Figure 7.1, with weighting u(a, 8) >
0. and suppose it is subjected to an input that switches the relay into thé “up” po-
sition and later back into the “down” position: for instance, u(t) = —u; cos(t)
with u; > max{]al, |B|}. The effect of this input is illustrated in Figure 7.2. Since
—u; < (3, the relay is in the “down” position at time ¢ = 0. Suppose the relay

switches “up” at ¢, and “down” again at tg. Then

2x
(u, yaﬁ)z, = /0 ugaﬁdt
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- /:”u (. B)[B(t — ta) — 5(t — ta)]dt
= 2p(a. B)[u(ts) — u(ts)]
= 2p(a.B)(a - g).

Yap
o
v R :
: \“l v
z J @
- AN
“Hag
Figure 7.1: Weighted Relay Figure 7.2: Test Cosine Input

Define g, = 2u(a,B)a and gg S —2pu(a, B)B. If the product uy,s has units of
power. then g, and gg represent the net work involved in switching the relay as u
passes a and 3, respectively. If either ¢, or gg is negative for a particular relay, this
implies that energy is recovered from that relay when it switches. This is a more
general approach that that taken in [43], where it was assumed that the total energy
loss was split evenly between switches, so that g, = ¢g = p(a,8){(a— 3). Note that
the energy lost in one cycle is equal to the area of the relay. This agrees with the
well-known result that the hysteretic energy loss in each cycle of a magnetic circuit

is equal to the area of the hysteresis loop[e.g. 1].

7.1.2 Energy Stored in the Preisach Model

If 4 € Mp, the regions of P, in which relays store recoverable energy are delineated

by the axes of the Preisach plane. For notational convenience, define the following
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“quadrants” (cf. Figure 7.3):

e

&
Q.
Qs

{(e.B)le>0.8 >0} NP..
{{a.8)]la =0.8 <0}NP..
{(a.8)@ < 0,8 <0} NP,

>

e

These are three of the four “standard” quadrants, restricted to those points con-
tained in P,.

Relays which have recoverable stored energy are those for which the next switch
results in a negative energy transfer. For example. since ¢g = —2u(a,)8 and
g >0 in @Q,, relays in that quadrant store recoverable energy whenever their next
switch is from +1 to —1. The amount of recoverable stored energy is |gs|- The

energy storage capabilities of individual relays are summarized in Table 7.1.

. current energy recoverable
re%l;n relay transfer at stored
° state | next switch energy
+1 g <0 lgsl
&
-1 ga 20 none
+1 gs >0 none
Q2
-1 gae = 0 none
+1 g =0 none
Qs
~1 9 <0 (e

Table 7.1: Recoverable Energy Storage in Relays

If 4 € Mp, the energy storage properties may be conceptualized as follows. Any
relay vq.s in @2 may be represented by a mass system with a non-zero coefficient of

static friction. Moving the mass is analogous to switching the relay. To move the
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mass in either direction (switch 7,4 from -1 to +1. or +1 to -1) requires that the
static friction force be overcome. In each case, this represents energy which is lost

in moving the mass.

Relays in Q; may be thought of as mass-spring systems, again with a non-zero
coefficient of static friction!. When the mass has been given a positive displacement
{(7ap is in the +1 state}, the spring stores some potential energy. This energy is
released when the input force is reduced below the static friction force, and the
mass moves back (7,8 switches from +1 to -1). A similar analogy holds for relays
in Q3.

Using the information of Table 7.1, recoverable energy stored in the Preisach
model can be computed from the Preisach plane diagram. If u € Mp. recoverable
energy is stored in relays in @, which are in the *+1” state, and in relays in Qj

which are in the “-17 state.

Figure 7.3a shows a sample boundary for u < 0, with the quadrants labeled.
The shaded region contains points representing those relays in which recoverable
energy is stored. The amount of energy stored in each relay is |q,|, and the total
recoverable stored energy Q. is given by

Q- = [ [ gal dadp.
a

Since @ C Q3, @ < 0 and this gives

Q, = —2 // p(a, B)adadp.

QsnNP_

INote that this analogy is not perfect: the relay transitions at u = « and u =  have infinite

slope, implying a zero spring coefficient.



CHAPTER 7. ENERGY AND THE PREISACH MODEL 141

a a a
Q
@ 2 Q:—L Q.l. u & %
|“ap~y
3, Q B Q, B Q ~u=0 B
~ © ® ®

Figure 7.3: Regions of Stored Energy in P,

If on the other hand the boundary is as in Figure 7.3b, then

Q = [[ lasldaas

QNP4
= 2 [ [ wlaB)Bdadp.
&1nP+
At any particular instant, the boundary can only intersect one of these quad-
rants. so any energy stored in the system is either in relays in @; orin those in Q3.
For any boundary B € B, Q.(B) can be written as the sum of two terms, of which

one, or possibly both, is zero:

Q-(B) = f/ lgs| dadf + ff |9 | dadB

NP, @inP_

= 2 [[ wepBdads 2 [ [ u(a,p)adads
iNP, QNP-

= 2 / f (@, B)BdadB — 2 / / u(a, Bladedd.  (T.1)
QNP B QsnP_B

In determining whether a system dissipates energy, it is often assumed that a
state of minimum stored energy can be determined. In stable linear systems, a

common approach to the determination of this state is to set the system input to
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zero and find the steady state. In the case of the Preisach model, a similar concept

may be proposed.

Proposition 7.1 (Zero Energy Storage)

If at any time t the input u(t) = 0, then the Preisach model is in a state of zero

stored energy.

Proof
Since boundaries are always non-increasing, then for any time ¢ at which u(t) = 0,
the corresponding boundary B intersects the line a = 3 at (0,0), and must be
entirely contained in @, (cf. Figure 7.3c). Recalling that P, B is the region of P,
containing relays which are below the graph of B, we see that @; N P, B = 0, and
similarly, @3N P_B = 0.

Qu(B) = 2 [[ wa.ppdeds-2 [[ we.padeds

QNP B Q;nP_B
= 0,

since the areas of integration are empty. |

This result implies that there are an infinite number of states in which the Preisach
model has zero stored energy. These states correspond to the vertical line v = 0
in the input-output plane. The associated output is the remnant hysteresis, the
magnitude of which depends on the past history. In particular, the anhysteretic

state is a state of zero energy storage.

7.1.3 Energy Transfer in the Preisach Model

In the previous section, a formula was derived for the energy stored in the Preisach

model. This section presents a method of computing the total energy transferred
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to the system by a given input u.

Theorem 7.2 (Net Energy Transfer)

If u is a monotonic input which sweeps a region Q in the Preisach plane, then the
total energy transferred to the system by u is
Q = f [ %u(c.B)adadB. if > 0.

(7.2)
or Q@

- /ﬂ / 2u(a, B)Bdadf. if @ <O.
[¢]

Proof

Consider an input which increases monotonically from ¢, to .. transferring points

in the region 2 from P_ to P.. as shown in Figure 7.4.

N

Q:

F,
~u(ty

Figure 7.4: Proof of Theorem 7.2

For every relay switched, the energy transferred is ¢ = 2u(e,3)a. The total
energy input, as u sweeps from u(t;) to u(t,), is given by the sum of g, over all the

relays switched:
Q=2 [ / u(a, B)adadp.
[1]

The proof is similar in the case where u is decreasing. n

Note that Theorem 7.2 is general, in that no assumptions have been made on .
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Whether (7.2) represents net energy input or recovered will depend on the shape
and sign of u(a.B) on Q, and the location of Q2 in P,.

Equation (7.2) can be used to compute the total energy transferred due to any
continuous input v composed of monotonic segments. If 4 € Mp. the result can
be combined with the equation for stored energy (7.1) to determine the hysteretic

energy loss for a given input u.

7.2 Dissipativity of the Preisach Model

In his pioneering work on dissipative dynamical systems(65], Willems sets out a
framework for investigating the energy-dissipating qualities of a system. These
qualities are intimately related to system stability, and it was shown[65] that the
major input-output stability results can all be cast as special cases of dissipativity
theory. In this section, the definition of dissipativity is recalled and the dissipativity
of Preisach models with u € Mp is shown.

Dissipativity is defined in terms of the relationship between two functions known

as the supply rate and the storage function.

Definition 7.1 (Dissipativity [65])

A dynamical system I is said to be dissipative with respect to the (locally integrable)
supply rate w : U x Y — R if there ezists a non-negative function S : X — R,
called the storage function, such that for allt, > t,, z, € X, andu € U,

Stza) + | wlu(t),u(e))dé 2 S(z1)

where £, = $(t1, ¢, Zo, u).
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Essentially, for a system to be dissipative, the sum of the storage in the initial state
and the supply generated by the input must not be less than the storage in the
final state. In other words. there is no internal generation of storage. The word
“energy” is conspicuously absent from this description: while dissipativity theory is
based on energy concepts. the supply rate and storage function are generalizations
of the physical concepts of “rate of energy supply” and “amount of stored energy”.
There need not be any physical energy interpretation in order for the definition or
related results to hold.

The more restrictive condition that

ty
/ uy dt > 0,
to

often called “passivity”. is a specific case of dissipativity with w(u,y) = uy and

S = 0. This will be discussed in more detail in Chapter 8.

Although in general, storage functions for physical systems are not unique, it is
often the case that the formula for the actual energy stored in a system is a storage
function for some related supply rate. It will be shown that the Preisach model is
dissipative with respect to the supply rate w(u,y) = uy, by demonstrating that the

recoverable stored energy @, is a storage function for this supply rate.

The proof of dissipativity requires the following definition of the characteristic

function of a set.

Definition 7.2 (Characteristic Function[e.g. 47])
If A is a subset of a space X, the characteristic function of A, xa: X — {0,1} is

defined by
1, ifz€ A
xa(z) =

0, fz & A.
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Lemma 7.3

Let A and B be subsets of a space X. Then for all z € X,

1. if AN B = 0. then xa(z) + x8(z) = xaus(z), and

2. if BC A, then xa(z) — xB(z) = xa~8(z),

where ~ indicates the set difference operation.

Proof
The proof of this Lemma is straightforward. (]

Theorem 7.4 (Preisach Model Dissipativity)
If u € Mp. the Preisach model is dissipative with respect to the supply rate w(u.y) =

uy.

Proof

The recoverable stored energy, for any B € B, is

QBy=2 [[ wa.p)Bdads—2 [[ uia Badads.

QinPyB QsNP_B
If p € Mp, then sincea < 0in Q3 and 8 > 0in Q,, @.(B) > 0. Also, 4 and P-
are bounded, so Q,(B) < oo, and @, : B — R*. It remains to show that for any
initial state B, and u € U([t,,t,] such that B; = ¢(t;,¢t,, B,,u), the dissipativity
inequality
Qu(Bo) + [ uidt > Qu(Br) (7.3

is satisfied.
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For each relay .4, let n,s be the number of times that relay is fully cycled
(switched twice) by u. The energy transferred in one full cycle is equal to the area
of the relay, 2u(a,8)(a — B) > 0. and represents a net energy loss. Suppose first
that all n,g are finite. The case where n,g is infinite for some 7,g is discussed at

the end of the proof.

Let Q¢ be the collection of relays which are switched an even number of times
(2n4g) by u. The energy transfer for each relay in this region is 2n,gu(a. 8)(a—p3) >
0. Denote by Q¢ > 0 the total energy transferred to all relays in 2°.

Let {2, be the collection of relays which are switched an odd number of times
(2n48 + 1) by u, and whose last switch was at © = a (from -1 to +1). The energy
transferred to each of these relays is 2n,gp(a, 8)(a — B) + ga- Let Q4 > 0 be the
total energy transferred to relays in 2, after each has been fully cycled n,g times.
Each relay then undergoes one final switch from -1 to +1, so that the total energy

transfer to relays in 2, is
Qa + [ [ gadadp.
Qa

Similarly, define {25 as the collection of relays which are switched an odd number
of times (2n,g + 1) by u, and whose last switch was at © = 8 (from +1 to -1). Let
Qs > 0 be the total energy transferred to relays in §2g after each has been fully
cycled n,g times. The energy transfer for the final switch of each relay in Qg is gg,
so the total energy transferred by u to relays in Qg is

Qs + / / ggdadp.
Qs

The total energy transfer from ¢, to £, is

/: uydt = Q=+Qa+//qadadﬂ+Q5+/fqﬁdadﬂ
% )
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> / / gadadf + [ / gpdadp.
Qa Q3

In Q,, both g, and gg are non-negative, so
& .
/e., ujdt > / / gadadf + / / gudadB + / [ qsdadB + [ [ qadads
Qany Qan@s3 3N Q3NQ3

= // 2p(a. BadadB + /[ 2p(a, B)adadp

QanQy QanQs

- / / 2u(e.B)Bdadf — [ [ 2u(c. B)Bdadp.

¥ Tal~ Q3NQs
Since a > (3. the first and last terms above can be replaced in the inequality:

/ " ugdt 2> / / 2p(a, B)PdadB + [ / 2u(a, B)adadB

o
QanQ 1 anQs

- [ [ 2(e.B)Bdads ~ [ [ 2u(a Bladadp.

Q3N N31Qs

Introducing the characteristic functions for §2, and g, this can be written

/: uydt > /[ 2u(a. B)Bxadadf +/[ 2u(a, B)axq, dadfB
& Qs
_.// 2”(a-ﬁ)ﬂxﬂadadﬂ"//2#(0,3)0,‘(9,(1&(1/3
& Qs

= [ [ 28(a,8)8 [xa. — xn,] dadB ~ [ [ (e, B)a [xa, ~ xa.] dadB.

& Qs
(7.4)
But Q, contains all the relays v,g which were in P_ at ¢, and P, at ¢;. Similarly,
g is exactly all those relays which were switched from P, at t, to P_ at ¢;. Then
P, By, the collection of relays which are in the +1 state at ¢;, can be written as

“all relays which started in the +1 state, less those which were switched to -1, plus
those which were switched from -1 to +1”:
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But Qg C P.B,, and 2, N P, B, = 0. so by Lemma 7.3

XP+ B, = X[P+Bo~ﬂ BIUQQ
= XP:Bo~0y + X0a

= XPyB. — X5 t+ XQa-

and

XQa — X3 = XPyBy — XP4Bo- (7.5)
Similarly.

P_By =[P_B, ~ Q,] U g,
and

Xs — X0 = XP_B, — XP_B,- (7.6)

Substituting (7.5) and (7.6) in equation (7.4) gives
tl .
[ ugae > /Q [ 2600, 808 [xp,5, ~ xP,.] dadB -

// 2u(a. B)a [XP_B, —XP_B,,] dadf3
Qs

[ [ 20(a.8)8xp, 5,dadB ~ [ [ 2u(c, Baxs_s,dads
Qs

:

- [ [ [ 2@ 8)8xp, 5,dads - [ [ 2u(a-ﬂ)ax:=_a.,dadﬁ}
e Qs

= [ 2w(e.ppdeds~ [[ 24(a,B)adads

QiNPy By QsNP_B,

_[ /f 2u(a, B)BdadB — // 2ﬂ(a,ﬂ)adad,8]
(%]

lﬂP.(.B, @3NP.B,

= Q:(B1) — Q:(B,).

So the dissipation inequality (7.3) is satisfied.
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If nog is infinite for any v,4. then that relay undergoes an infinite number of full
cycles. Since energy is lost in each full cycle, the total energy transfer is positive
and infinite. But Q,(B) is bounded for every B, so the dissipativity inequality
(7.3) still holds. The Preisach model is dissipative with respect to the supply rate

w(u.y) = uy. =

It is important to note the sufficient nature of the dissipativity result of The-
orem 7.4. It may be that some physical systems which are in fact dissipative do
not have non-negative weighting functions. Indeed, it was seen in Chapter 5 that
weighting functions with negative regions resulted in better matches for the SMA
actuators. Furthermore, the relationship between magnetic field and strain in a
magnetostrictive material displays a so-called “butterfly” hysteresis[9], sketched in
Figure 7.5. A decrease in applied field Af can result in an increase in strain Aec.

From Proposition 3.2, a Preisach model for this hysteresis satisfies
Ae = 25ga(Af] [ [ w(a, B)dads.
o
so that if Af decreases and Ae¢ increases,
/ [ u(a, B)dadB < 0
Q

and 4 & Mp.

Intuitively, these physical systems also dissipate energy, and it is apparent that
the requirement that u be non-negative is overly restrictive. Understanding the
reasons for the conservative nature of this result should be one area of focus for

future research.
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Figure 7.5: Characteristic of Magnetostrictive Hysteresis

7.3 Summary

This chapter examined the energy properties of the Preisach model. In the case of
non-negative weighting functions. it was seen that the Preisach plane provides an
intuitive framework for analyzing energy storage and loss in the hysteresis. Based
on individual relay characteristics. regions in P, which are able to store recoverable
energy were identified. A formula was then derived which allows the computation
of recoverable energy stored as a function of the boundary, and states of minimum

energy were identified.

In the second section, it was shown that if 4 € Mp, the associated Preisach
model is dissipative. Although this result is significant, it is nonetheless only suf-
ficient. The example of magnetostrictive materials was cited as a physical system

for which a Preisach weighting function would have negative areas.

Dissipativity theory is a powerful tool for the design of stabilizing controllers.
It is important to note that, while the dissipativity investigation was guided by
energy arguments, the theory is more general. The definitions are not specifically
tied to physical energy, and related results hold whether an energy interpretation

of the supply rate and storage function exist or not. One use of dissipativity will
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be detailed in the next chapter, and another application set out for the future in

the final chapter.



Chapter 8

Controller Design

8.1 Background

Figure 8.1 shows a standard single-input single-output feedback interconnection.
The system being controlled, H», is known as the “plant”, and H, is the controller.
External inputs are labeled r;, the inputs to the plant and controller are u;, and
the outputs y;. The input 7, is typically a disturbance on the control signal. The
goal of implementing a controller in a feedback system is to attempt to have the
plant output track a desired reference signal r;. If the reference is time-varying, the
controller is referred to as a “tracking controller”. If r, is constant, the controller
is a “regulator”.

There are two main aspects to the controller design problem. The first is stabil-
ity: given a plant H,, what types of controllers will ensure that for “well-behaved”
reference signals r, the internal signals » and outputs y will also be “well-behaved”.
A robust stabilizing controller has the ability to maintain stability under small per-

turbations in plant dynamics. For example, such perturbations may occur as a

153
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T Hl‘—1
+
)]

Figure 8.1: Standard Feedback Interconnection

result of system noise or changes in component characteristics due to aging.

The second problem is performance, which can be measured in a number of
ways. How closely does a controller achieve the objective? How quickly? How
much energy is required? The primary result of this chapter is concerned with the
stability aspect of controller design. A second preliminary result regarding optimal

regulation of Preisach hystereses is also presented.

Before stability can be formally defined, a few mathematical definitions are

required.

8.1.1 Mathematical Definitions

This section introduces some of the basic mathematical definitions and notation.
The common concepts of L, spaces, extended spaces and truncation, as well as sig-
nal norms and inner products, are presented. To represent the hysteretic behaviour
of the Preisach model, the concept of a relation is defined. R is the set of all real

numbers, and R* = [0, o).

Definition 8.1 (Truncation)
Let z be a function mapping R — R, and T < oo. Then the truncation of z
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is defined as

i) & { z(t) t<T
0 t>T.

Definition 8.2 (L, and L,. Spaces)

The space Lp(—o00, 0; R) includes all Lebesque measurable functions' z: R — R
for which

f: 2(2)[P dt < co.

The eztended space Lpe(—o0.00: R) is composed of Lebesgue measurable functions
for which
[ lez(®)P dt < oo,

[ o]

forall T > 0.

To simplify notation, the spaces L,(—o0,00; R) and L. (—o0, 00; R) are often re-

ferred to as L, and L., respectively. Note that L, C Lp..

Central to the notion of stability is the concept of a “well-behaved” signal. A
common definition of a “well-behaved” signal is one which does not have unbounded
energy; that is, it must be square-integrable. The space L, contatins all such signals,
and will play a key role in the definition of input-output stability. An example of a
function which is in L,., but not in L, is z(t) = ¢t*. Functions which are not in Lo,
have “finite escape time”, implying that there exists some finite time ¢, at which it

“blows up”. An example of such a function is z(t) = tan(t).

1For our purposes, functions which are Lebesgue measurable are essentially those which are
bounded except at a countable number of points. A more rigorous definition can be found in [e.g.

52).



CHAPTER 8. CONTROLLER DESIGN 156

Definition 8.3 (p~-Norm)
For functions z € Ly, the p-norm (|[-||, : L, = R") of z is defined as

lell, 2 [/ ietor a]”.

Define the truncated p-norm. ||-||p, : Lpe — R*. as

A
lzllr, = llzzll,

_ U: IzT(t)l"dtJ%.

Where the subscript p is omitted. the 2-norm is implied (ie. p = 2).

Definition 8.4 (Inner Product)
Given two scalar functions z.y € L,, the inner product of these two functions
i3 defined as

@.9) 2 [~ atitrat,

and the truncated inner product, for z,y € La., ts

(z.y)r = (zr.y1)
= [ erltr(trat

T
= /_ _ sttt
Note that (z,z) = ||z||?, and (z,z); = ||z||3.

Definition 8.5 (Relation [69])
A relation R on a space X defines a set of ordered pairs (z,y) € X x X. The

domain and range of a relation can be defined as

Do(R) 2 {z|z € X and Jy € X such that (z,y) e R} C X
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and
Ra(R) £ {yly € X and Iz € X such that (z,y) € R} C X

The nature of a relation is such that a given z € Do(R) may correspond to more
than one y € Ra(R). As well. there may be more than one z € Do(R) mapping to
the same y € Ra(R). It is this behaviour which makes relations useful in describing
hysteretic systems. The Preisach operator defines a relation I' whose domain is C°.

As was shown in Chapter 4, if 4 is in Mp, Ra(T') C C° as well.

The notation (z,y) € R implies “z € Do(R) and y in the corresponding set
Rz”. This is different from saying "z € Do(R) and y € Ra(R)", since there may
be some z € Do(R) and y € Ra(R) which are unrelated.

Definition 8.6 (Finite Gain)

A relation R, on X, s said to have finite gain if there ezists some constant v € R

such that |ly|| < vz, for all (z,y) € R.

The following definition of feedback stability is similar to that found in [12].

Definition 8.7 (Stability)
The feedback system of Figure 8.1, where H, and H, are relations, will be called

stable if, for each u, € Do(H,) and u, € Do(H,) there ezist finite k., k, indepen-
dent of T such that |leillz < ke(|lually + lluellr) and |lyslly < Ay(lleallr + lluallr),
t=1,2, VT >0.

It has been shownle.g. 60] that the boundedness of e; and y; are equivalent, and

only one need be shown to demonstrate system stability.
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8.1.2 Previous Work

With the keen interest shown in smart materials in recent years, and the general
appeal of the Preisach model, it is not surprising that several works exist on control

strategies for this model.

The majority of results pertaining to Preisach model control are concerned with
performance improvements. A popular approach is to identify a Preisach model
for the plant to be controlled and linearize the hysteresis by cascading au inverse
model with the plant. If the identified FOD surface is monotonic in both a and 3,
then model inversion is possible[43]. This technique has been applied successfully
to piezoceramics in [26] and resistance control of SMA in [42]. A similar idea was
proposed in [18] for tracking control of a piezoceramic actuator. Recently a new
technique, motivated by study of the Preisach model, has been proposed for partial
linearization of hysteresis by a linear compensator{8]. The phase shift introduced
by the delay in the hysteresis is identified experimentally over a frequency range
of interest. A linear compensator called a phaser, which has the opposite phase, is
placed in front of the hysteresis. Good experimental linearization of a piezoceramic

actuator is achieved.

Further developments of note are found in [5], where the existence of optimal
controls for a class of hysteresis functionals which include the Preisach model, is
shown. In [58], an adaptive control scheme for unknown hystereses of a hybrid
play/stop type is presented. Although not directly related to the Preisach model,
this last result is exciting given the onerous identification methods used for Preisach

models.

All of these works have been concerned with performance or identification as-

pects. One reference has discussed the issue of stability when an active SMA wire
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is used to dampen vibrations in a flexible beam[13]. The authors observe system
instability, despite very low bandwidth, and demonstrate that the instability can
be removed through the correct choice of feedback variable. A qualitative stability

analysis using phase plane techniques is given.

8.2 Velocity Feedback

In some applications, a controller is designed which makes use of velocity mea-
surements to achieve its objective. For example, in [15]. the authors discuss the
damping of vibrations in a flexible beam using piezoceramic actuators. The ac-
tuators are bonded to the beam, and the strain which they generate is measured
using strain gauges. Measurements of the rate of change of strain are fed back to a
proportional-gain controller, which is able to achieve significant damping of beam

vibrations.

In this section. it is shown that the relationship between the Preisach model
input and the derivative of its output is passive. This allows a whole class of sta-
bilizing controllers for velocity feedback applications to be determined. This result
encompasses the application mentioned in [15], and is similar to classical results
obtained using passivity theory for position and velocity feedback (PD control) of
robot manipulators. It has been shown[e.g. 55] that a PD controller provides robust
stability for position control of robot manipulators. The extension of the present

results to include position feedback is an area of continuing research.
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8.2.1 Passivity

Passivity is a characteristic of a physical system which allows the design of ro-
bust stabilizing controllers based on the principle that if both controller and plant
are dissipating energy, then a standard negative-feedback configuration should be
stable. Robustness is obtained since a plant which dissipates energy generally con-
tinues to do so despite small changes in dynamics. It is a common approach in

analyzing the stability of robotic and other non-linear systems.

The definition of passivity is a special case of dissipativity, in which the supply
rate is w(u,y) = uy and the storage function is zero. Like dissipativity, the theory
is motivated by the study of energy storage, where the input-output pair represents
instantaneous power. Again, however, the theory and results continue to hold when
such an interpretation is not available.

Some examples of such energy pairs are: force and velocity in mechanical sys-
tems; current and voltage in electrical systems. In actuator control, the input is
generally some form of mechanical or electrical force, and the output is displace-
ment. Hence, to get the force-velocity energy pair, we examine the passivity of
(v.y).

Mathematically, the passivity of a system is expressed as follows:

Definition 8.8 (Passivity[e.g. 12])
A relation R is said to be passive? if there ezists § > 0 and constant B such that,
for all T < co and u € Do(R),

(u,Ru)p > & jullz + B. (8.1)

*In more recent work, this general definition is referred to as “passive with bias”, and the more

common definition of passivity is given with 8 = 0.
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R is said to be strictly passive if (8.1} holds with § > 0.

If the product u - Ru has units of power. this says that the net energy input
over time is positive for every possible input. In other words, the system does not
generate any power internally. The underlying assumption in the above definition
is that the system starts in a state of minimum stored energy. Otherwise, an input

could be generated which recovers any stored energy. causing (u,y), to be negative.

8.2.2 Preisach Model Passivity

The passivity of the Preisach model with respect to the energy pair (u,y) has been
investigated by Hughes in [28]. It was shown that the model satisfied the inequality
(u.y)p > =4, for § > 0. This is a slightly different result from that required by
Definition 8.8. The fact that the total energy transferred could be negative results
from the lack of a restriction in {28] on the initial state. Essentially, if the system
starts out with any stored energy, an input can be constructed to recover that

energy. resulting in a negative net energy transfer.

In [19] the idea of minimum energy storage (as defined in Section 7.1.2) was
extended to the Preisach model, and it was shown that if the system begins in such
a state, then the result from [28] can be improved to the required (u,y); > 0.

In each of these previous studies, it was first shown that a relay vyqg is passive if
p(a.B) 2 0. Since a parallel interconnection of passive elements is itself passive[55],
then the passivity of the Preisach model follows. Here, a similar result is obtained,
but it is obtained more directly, as a special case of the dissipativity result of the

previous chapter.
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Theorem 8.1 (Preisach Model Passivity)
If u € Mp, the operator %P is passive.

Proof
From the hypothesis on . the Preisach model is dissipative with respect to the

supply rate w(u,y) = uy (Theorem 7.4). Suppose the system starts in a state of
zero energy storage, meaning that u(¢,) = 0. Then for any input u € Do(T'). and
all ¢, > t,.

SalBo) + [ w-idt 2 Su($ltr,to. Bovu).

But since u(t,) =0, @3N P_B, =0 and @, NP, B, = 0. so S,(B,) =0 and

¢y
[ wegdt 2 Su(d(ts.tor Borw) 2 0.

Thus. if the stored energy is zero at t = —oo, then for any T < co and u € Do(I').

we have

T
(widp = [ w-ydt >0,

which completes the proof. ]

8.2.3 Stability Conditions

The velocity feedback configuration is illustrated in Figure 8.2. The input 7 is a
reference velocity to be tracked, é the velocity tracking error, % the control signal,

u the Preisach input, y the actuator position output, and y the actuator velocity.

The input u, can be any function in W3, and may be used to offset any initial

conditions on @ and any change in ambient conditions which may have occurred



CHAPTER 8. CONTROLLER DESIGN 163

Figure 8.2: Velocity Feedback Configuration

between identification and the current operating conditions. This ensures that the
input to the Preisach model is initially zero, so that « € Do(H>) and the passivity
of H, can be exploited. Alternatively, the Preisach model could be “initialized”,
at least approximately, as was successfully done in the identification procedure for

the two-wire SMA actuator (cf. Section 5.2.2).

Well-Posedness

In order to ensure the consistency of internal signals, it is assumed that the system
H, is a relation with Do(H,) = L,, that it has some smoothing properties so that
Ra(Hy) C W, and also r € Lj, u, € W2 Then u € W2 and if 4 € Mp then
[ : W?— W2, yis differentiable, and y € L,.

Theorem 8.2 (Stability)
If Hy is strictly passive with finite gain, and u, is chosen so that u(0) =0, the
feedback system of Figure 8.2 is stable for all ¥ € L,.

Proof
The proof is along the lines of the standard proof of the passivity theorem[e.g. 12].
From the system configuration, and the hypothesis on u,, we have u € Do(H,).
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Along with Theorem 8.1 and the hypothesis on H,. this implies that there exist
constants 4.7 > 0 such that

v
L

(u, y)T

A"

112
élléllz »

lzlly < vllels-

(é$ 12)’1‘

Now. choosing any 7 € L,[0.7T], we have

(€, f")T = (e ﬁ)T + (u-!))r - (u,g)T

(r - Q.ﬁ)T + (f" + uo»!))r - (“»g)r

(F.@)p + (Yo, ¥)p — (w.¥)p

< (Fut)p + (%o, Y-

Applying the strict passivity condition on H,; and the Cauchy-Schwartz inequality

(-’5-!/)1- < “"’”T “y”'z' gives

-112
d llélly

IA

(e.a)r

A

< Fliz luliz + lluollz lgllz

< 7l lléllr + Holir flllz

I

77z €l + lluollr llF — éllz

(Y IFllr + lwollz) ll€lly + lluolly 17l -

IN

Since ¢ > 0,

163 < 50 IFl + luollr) lélly + 3 luollr ¥l

and completing the square in ||é||, gives

. 1 . 2 1 . 2 1 .
[léllz = 55 T lFlle +lwalle)] < 535 (¥l + o) + 5 ol 7
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1 . .
= 155 I3 + 207 + 26) [l lwolly + ol

1 ) +46 .
= 157 (v +20) lfllz + lfwolll® = T IIFll

IA

1 i
3 [( £ 28) [Fllr + lwoll]” -
Taking the square root of both sides gives

(7 +28) Il + i) + 55 (v 17l + ol

S| -

fellr <
(v + 8) IFllp + luoll]
< ke (fIfllp + lluollr) -

)
O

where k. = 3 max{y + d.1}. The boundedness of @, u and y all follow, since

lallr < vlléllr llully < llally + llzolly and [[glly < 7]z + [léllr-

8.3 Comments on Position Regulation

In some applications, the control objective is regulation about a set output value,
in the face of some external disturbance. One example of such an application can
be found in {68], where piezoceramic actuators bonded to a flexible beam are used
to force the beam to maintain a static deformation. Such research has applications
in the aerospace industry, where similar schemes could be used to actively tune the
flight surfaces of an aircraft{9], or for fine tuning of the transmission surface of large
space antennae. An important measure of performance in this case is the maximum

output transient caused by disturbances, since this determines the deviation from
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the de. =. A control strategy which minimizes this deviation can be said

to be “optin. some sense.

The presence an hysteresis nonlinearity complicates the regulation task con-
siderably. Since hysteresis branches are irreversible, even small output perturba-
tions can require very large corrective input swings, leading in turn to undesirably
large output transients. Furthermore, for any output value within the hysteretic
range of the system. there are an infinite number of corresponding states. In this
section. it is assumed that a stabilizing controller has been designed for setpoint
regulation. and a strategy is proposed for achieving optimal performance from this

controller.

The foundation of the regulation strategy is the choice of state about which to
regulate. Given a desired constant reference yg, there are an infinite number of
corresponding states, each reflecting different input histories leading to the same
output value. However, if among these the state about which to regulate is chosen

in an intelligent manner. output transients during regulation can be minimized.

8.3.1 Preliminaries

First, for any £ € [u_,u,], define the boundary B, £ {(a,8) € Pla = 2 — B}.
The form of the boundary B is illustrated in Figure 8.3.

Theorem 8.3
Given € € [u_,uy], ue € U can be constructed so that B; = ¢(t1,to, Bo, us) approz-

imates By arbitrarily closely in the metric on B, for any B, € B and t, > t,.
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N

> L0)

Figure 8.3: Boundary B,

Proof
Simply define A 2 max{u; —{,£ —u_}. choose ¢; > ¢t,. and set

ty —

we(t) = 275 Asin(w) + £ (8.2)

t, —t
The amplitude A is chosen to wipe out the boundary B(¢,). The decaying sinusoid
approximates a line parallel to B, and the offset £ determines the point at which
the new state intersects the line a = (3. The approximation error, the distance
between B, and ¢(t,,t,, B,, us), will be inversely proportional to frequency w and
t;1 — to. Since the hysteresis is static, these may be chosen arbitrarily, subject to

the limits of controller capabilities. "

Now, define for any £ € [u_,u4]

b0 2r(8) = [[maB)deds - [ [ u(aB)dads

P, B, P_B,
= 2 [ [ wa,B)dads - [ [ (e, B)dadp. (8.3)
Py B, P.

¥(¢) is the output corresponding to the boundary B,.
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Lemma 8.4

If u € Mpc, ¥(£) ts continuous in L.

Proof
The area of integration defined by P, By is continuous in ¢. and x is piecewise con-

tinuous over P,. Then from equation (8.3), ¥({) is continuous. =

Theorem 8.5
For every yg € [y-.y.|. there exzists £ € [u_,uy| such that r(B¢) = ya.

Proof
From equation (8.3),
wlu-) = - [ [ w(a.B)dads =y
?"

and

b(es) = [ [ (e, B)dadp = y..

P,
So ¢(£) connects the endpoints of the major loop. From Lemma 8.4, 9 is continuous,

so for any ya4 € [y-,y+] there exists (at least one) £ € [u_,u,] such that ¥(€) = ya. ®

8.3.2 Control Configuration

The proposed control configuration is shown in Figure 8.4. " is defined on [y—,y4]

as

¥"(y) = min{f € (u_,u,]¥(t) = y},
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which is well-defined by compactness of [¥—,u,] and Theorem 8.5.% The map
D : { — u, generates a decaying sinusoidal input u, as in equation (8.2). The
stabilizing controller C is shown in the standard feedback loop with the Preisach
operator. The input to [’ can be switched between the feed-forward input u, and

the control signal u.. which is subject to a disturbance d.

ld
Yq € Ue N
+<> - C +

L

Y u | [

1) -l ‘VI' S

Ya

Figure 8.4: Optimal Strategy for Setpoint Regulation

To initialize the system. u, is used to drive the system to (or close to) the state
By. such that y(t;) = r(B¢) = y4. At this point. the control signal switches to .,
and regulation begins.

The advantage of this strategy can be seen from the Preisach plane diagram
in Figure 8.5. Suppose the boundaries B, and B, satisfy r(B;) = r(B,) = ya.
If a small negative disturbance is injected at d, the boundaries assume the shape
indicated by the dashed line. The shaded regions show the area which must be
swept to recover the initial boundary in each case. Although the input required to
recover By is more oscillatory, it is much smaller in magnitude, leading to smaller

output transients.

Figure 8.6 shows what the input-output behaviour may look like for regulation

about the two states B, and B, of Figure 8.5. The curves are somewhat exagger-

3Note that any £ satisfying ¥(£) = y4 could be used in the regulation strategy; the above map
is introduced for the purposes of the block-diagram of Figure 8.4.
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N

Figure 8.5: Regulation Strategy: Preisach Plane Behaviour

ated for clarity. % is the dotted curve which joins the corners of the major loop.
Several ascending and descending branches are shown as dashed lines. The paths
resulting from each corrective input are solid. In each case, the path begins at the
point marked by a dot, representing the deviation from the setpoint caused by the

disturbance d.

The particular nature of the locus ¥ is that it contains points in the input-output
graph which are between two close crossings of the same ascending and descending
branches. The point defined by the input and output travels along ascending or
descending branches, depending on the sign of the input. If a small negative distur-
bance d is injected onto the control, a small excursion down a descending branch
results. Because branches are irreversible, a different, ascending branch must first
be taken to return to the original point. The distance traveled along that ascending
branch will determine the maximum output transient during the correction. It can
be seen in Figure 8.6 that both the control and output variation resulting from
regulation about (u,,ys) is much greater than those required for regulation about
(¢,ya). Although the output in the second case is oscillatory, the magnitude of

output transients is reduced.
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Figure 8.6: Regulation Strategy: Input-Output Behaviour

8.4 Summary

In this chapter, it was shown that, if 4 € Mp, then the relationship between the
input and the output derivative of the Preisach model is passive. The result is used
to obtain a class of stabilizing controllers for velocity feedback control of a Preisach
hysteresis. A preliminary version of this result has been published in [19]. The
SMA models which provided the better match in simulation in Chapter 5 were not
in Mp. It is important, therefore, to point out the sufficient nature of both the
dissipativity result of Chapter 7 and the Passivity Theorem which was used in this
chapter to design the control system. Generalizing these results to broader classes

of Preisach weighting functions is a likely course of future research.

A second result was given on the regulation problem. It was shown that, of
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the infinite number of states which could be chosen for regulation about a given
setpoint, one in particular ensures low transients during regulation. This interesting
result arose out of the intuition fostered by the Preisach plane, and would have been

difficult to predict from the model input-output form.



Chapter 9

Conclusions and Future Research

The research in this thesis examined some of the properties of the Preisach hysteresis
model, as they pertain to controller design. Particular attention was given to the
class of Preisach models having non-negative weighting functions p. For this class.
expressions were derived for the energy storage and loss in the model. A state-
space representation of the model was introduced, and it was shown that if u > 0.
then the state-space model is dissipative with respect to the supply rate uy. The
dissipativity of the model led to a stability result for velocity feedback control. A
preliminary result on optimal regulation of Preisach systems was also presented.
As is typical of non-linear systems, results obtained in this work, although global,

were sufficient in nature.

Experimental work involved the identification of Preisach models for two shape
memory alloy actuator configurations. Testing confirmed that the Preisach model
was suited to represent the relationship between alloy temperature and strain.
Three weighting surfaces were identified for each actuator, based on different forms

of approximation surfaces. Positive weighting functions were found which provided
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a reasonable match to experimental data. This allows the application of the afore-
mentioned control results to shape memory alloy actuators. However, for both
actuators a better model match was achieved with other weighting functions which

were negative in parts.

9.1 Summary of Contributions

The main contributions of this research are summarized below.

Modelling

¢®* The introduction of an exponential candidate surface in the identification
of Preisach model weighting functions. This type of surface is more suited
than polynomial-based surfaces to fit the observed behaviour of the SMA

identification data.

® The determination of analytical weighting functions for both the ore-wire and

two-wire SMA actuator configurations.

Control

¢® The introduction of a state-space representation of the Preisach model. This
contribution allows the application of non-linear state-space techniques for

controller design to these highly non-linear systems.

¢® The demvation of sufficient conditions under which the Preisach model is

dissipative.
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e Associated with the dissipativity of the model. the derivation of sufficient
conditions on the controller which guarantee closed-loop stability of velocity

feedback control of Preisach hystereses.

9.2 Future Research Directions

This research has opened more doors than it has shut. Ideas for some future projects

are outlined below.

e Variations in the characteristics of the different weighting functions identified
in Chapter 5 indicate that the identification technique used here may not be
very robust. In particular. since the identification surface is differentiated to
obtain the weighting function, the surface should match not only the identi-
fied data but also its derivatives. Application of recent work by Banks[2, 3]
on identification techniques for Preisach-type operators may provide a more

robust result.

e The majority of the results obtained in this work relied on the weighting func-
tion px being non-negative. However, it was seen in Chapter 5 that partially
negative weighting functions provided a better SMA model match. Further-
more, it was seen that weighting functions for magnetostrictive materials have
negative regions. It is thought, therefore, that the condition u > 0 is overly
restrictive, notably in the proof of dissipativity. One important area of fu-
ture research is to fully investigate the requirements for, and implications of,
non-negative u. A proper identification of a weighting surface for a magne-

tostrictive material may hold the clue to obtaining less stringent conditions
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on . In particular. a more relaxed condition may prove to be both necessary

and sufficient for dissipativity.

e Chapter 6 presented a non-linear, infinite dimensional state-space represen-
tation for the Preisach model. Establishing this framework is only the begin-
ning, and opens up new areas for study. Future research will involve further
investigation of the state space properties. applications of non-linear state-
space techniques for controller design, as well as simply polishing the repre-

sentation presented here.

o The extension to position control of velocity feedback results from Passiv-
ity Theory is a classical result for some non-linear systems such as robotic
manipulators[55]. In (45], the authors demonstrate a method for the design
of position controllers for dissipative plants, based on matching the controller
supply rate to that of the plant. Assuming several conditions are met. it
can be shown in the case of the Preisach model that any controller whose
state-space is reachable and which is dissipative with respect to the supply
rate

wc(us y) = —a’ (yv y) + (bz - Cz) (‘!l., u) - (u1 y)
will provide stable position control. It is not yet clear, however,
— whether the required assumptions hold in the case of the Preisach model,
and
— what types of controllers satisfy this supply rate.
o The observation that the two-wire actuator can be modeled using the classi-

cal form of the Preisach model is surprising, given the time-varying stresses

involved. Further research is required in order to fully understand this result.
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¢ Finally, many controllers have been developed in the literature for hysteretic
systems which may have associated Preisach models. In particular, the au-
thors of [21] demonstrate excellent results in position control of a two-wire
SMA actuator. The control strategy is essentially gain scheduling using con-
stant gains. It would be interesting to attempt to apply the results of this

work to a proof of stability for their control system.
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