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Control of Hysteretic Systems with Preisach 

Representat ions 

The last decade has seen a growing interest in the application of secalled "smart 

materials" as sensors and actuators. Tramducers made fiom these materids are 

self-contained and scalable, and are wd-adapted for use in distnbuted sensing and 

actuation. However. many of these smart materials display a highly non-hear 

input-output behaviour known as hysteresis, which can introduce delays and cause 

errors in position control tasks. 

This thesis examines some of the properties of the Preisach hysteresis model. 

as they pertain to controller design. The Preisach mode1 is general in nature, 

and has been successfi.d in modelling the hysteresis in sevaal smart materials: 

magnetostrictives, piezoelectrics, and shape memory doys. A novel state-space 

framework for the model is introduced, and a class of Preisach model is shom to be 

dissipative. This dows the application of energy-based controller design techniques 

to these non-linear systems. The Passivity Theorem is applied to determine a set 

of stabilizing controllas for velouty feedback of this dissipative class of Preisach 

models. 



Experimentdy, Preisach mode1 identification is carried out for two shape mem- 

ory d o y  actuator configurations, including a differential actuator. For each ac- 

tuator. models which are in the dissipativity dass are identified. Applying the 

aforementioned theoretical results, this irnmediately provides a stability resdt for 

velocity feedback control of these actuators. While simulations using these models 

provide a good qualitative match with experimental data, other models were iden- 

tified for which the match was better, However, these better models were not in 

the dissipativity c h s .  snggesting that this dass is Iikely somewhat consenmtive. 
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Chapter 1 

Introduction 

The last decade has seen a growing interest in the field of "smart materialsn and 

'smart structures". The definition of the latter is generally agreed upon: a smart 

stmcture is one which monitors itself and/or its environment in order to respond 

to changes in its condition[9]. A smart bndge might be able to detect high wind 

conditions and reduce posted speed limits accordingly, or detect degradation in 

footings or piers and al& maintenance crews. A smart building may sense the 

presence of high winds or the onset of an earthquake, and adjust its dynamic 

properties automaticdy to minimize damage or occupant discomfort. In order 

to perform t hese tasks efficiently, the smart structure requires a large number of 

distnbuted control sites, each responsible for local sensing, decision and actuation 

functions. It is here that s e c d e d  smart materials enter the picture. 

Just what constitntes "intelligence" in a material is the subject of much debate. 

Some argue that there is no one materid which satisfies the dictionary definition 

of "intelligentn, although hybrid materials can corne dose[9]. However, there are a 

number of materials which might be termed "self"adaptingn or "responsive", and the 
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ability to adapt is certainly a part of -intelligence3. These materials are able to alter 

one or more of their physical properties. such as stifhess or viscosity. in response 

to extemal stimuli such as temperature. stress, or electric fields. Transducers made 

of these materials are self-contained and ofken completely scdable. making them 

wd-suited for the task of distributed sensing and actuation. 

Two of the most popular classes of these materials are piezoceramics and shape 

memory doys .  Although they can also be used as sensors. particdarly piezoce- 

ramics. this work concentrates on their h c t i o n  as actuators. Piezoceramics are 

capable of generating very s m d  strains, at  high stress, in response to high electric 

fields. The focus of piezoceramic actuator applications has been in active vibration 

and noise control[e.g. 22, 151. Shape memory d o y s  (SMA) generate significant 

strains (up to 8%) in response to a temperature change. The stresses achievable 

are lower than those for piezoceramics. Although SMA actuators have also been 

proposed as actuators for vibration and noise control[e.g. 27. 221, their relatively 

low bandwidth limits their usefnlness in these applications. However, th& ability 

to generate large strains has promoted their use as an "artScid muscle'. They have 

one of the highest force/mass ratios of any actuator system[31], and have been a p  

plied in numerous research robots as a replacement for joint motors[e.g. 17, 23, 461. 

The fact that the material propaties are maintained when the actuator is scded 

has resulted in the development of mini-actuators for fme positioning[4, 211 and 

mia*valves for flow control[66]. 

The adaptive abilities of these "smart materials* are the result of physicd 

changes occuriing within the material. These changes occur in a highly non-linear 

fashion, introducing significant hysteresis in the actuator response. This is true of 

piezoceramics and SMA, and &O of 0th- smart actnators such as magnetostric- 

tives and electrorheological fluids. This hysteretic behaviour introduces delays, and 



CHAPTER 1. INTRODUCTION 3 

can lead to significant error in positioning tasks. 

Controller design, simulation and stability analysis of systems incorporating 

hysteretic element s reqnires accurate modelling of their behaviour. Modehg  based 

on physical properties of specific hystereses has been carried out for decades and. 

in the case of ferromagnetics. over a century. It is only recently, however, that 

work has been done on general hysteresis modelling schemes. The most popular 

of these is the Preisach hysteresis model. Since physical mechanisms of hysteresis 

vary amongst different materials. this generality is prefmed if one wishes to develop 

resdts which would benefit more than one type of hysteretic actuator. 

1.1 Thesis Goals 

The goals of this research are twofold. First, to investigate the properties of the 

Preisach hysteresis model as they pertain to feedback controller design. This general 

hysteresis model has recently been successfidy applied in modeiling both piezoce- 

ramic and shape memory d o y  hystereses[27], and has been proposed for magne- 

tostrictive modelling as w&[38, 561. In the course of this investigation, a novel 

state-space representation for the Preisach model is set out, allowing the appli- 

cation of dissipativity theory in controller design. Dissipativity theory is but one 

example of state-space based controller design techniques which are made accessible 

by the introduction of this framework. 

The second aspect of the work is concerned with Preisach modelling of two con- 

figurations of shape memory d o y  actuator. A novel approach is taken with respect 

to a constant-load, single-wire actuator, which resdts in an analytical form of the 

associated Preisach model. Although Preisach modelling of this type of actuator 

has been carried out in the pas t [27], the lack of an analytical mode1 fonn has limited 
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the ability to analyze systems incorporating these actuators. A Preisach model for 

a twwwire diaerential actuator is also derived. resulting in what is believed to be 

the fist stability results for such an actuator. 

1.2 Outline 

The thesis is organized in the following manna. Chapter 2 provides background 

on hysteresis. A working definition is presented, dong with assumptions Iimiting 

the types of hysteresis nonlinearities being considered. A bnef history of hysteresis 

modehg  is given and the reasons for retaining the Preisach model for this study 

are outlined. The Preisach model is described in Chapter 3. After introducing the 

model structure, representation conditions are given and the model identification 

procedure is detailed. Extensions to the Preisach model are &O briefly described. 

Chapter 4 examines some mathematical properties of the model which aise in 

the case of specific types of hystereses. Chapter 5 is concerned with the modehg 

of two shape memory alloy actuators. The hysteresis is described, and some history 

of SMA modelling presented. Two actuator configurations are tested to venfy the 

suitability of the Preisach model, and several models are identified for each. 

In Chapter 6, the Preisach model is cast in a non-Linear state-space framework. 

A state space is identified, dong with the state transition and output operators. 

Some properties of the state space are &O investigated. Chapter 7 examines the 

energy storage properties of the Preisaeh model. This study leads to a proof of the 

dissipativity of the Preisach model. Chapta 8 investigates the design of feedback 

controllers for systems with Preisach model representations. The final chapter 

describes the contributions of this work, dong with some potential areas for future 

s t udy. 



Chapter 2 

Hyst eresis 

This chapter provides background on hysteresis. The &st section gives a definition 

of hysteresis as it is understood in this work. as well as some of the terminology 

associated with hysteresis graphs. The second section desaibes one of the more 

popular analogies used to explain the physical causes of h~steresis in magnetic 

materials: the "domain wall analogy". h the thkd section, a brief summary of 

developments in m o d e h g  of hysteresis is given. In order to motivate the choice 

of the Preisach mode1 in this work, the hysteresis present in two smart materials is 

described in Section 4. Similarities in physicd behaviour between these materials 

and domain walls are pointed out. The final section snmmarizes the reasons for 

using the Preisach mode1 in this study. 

2.1 Definitions and Terminology 

The word hys teresis cornes fiom the Greek hwtereia, 'to arrive Iatew, and in its most 

basic form hysteresis is simply a lag of the output behind the input. While there 
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have been at tempts to provide a more rigorous mathematical definition[e.g. 641. 

these asually include some systems which one would not consider to be hysteretic 

at d. As such. they are not entirely satisfactory. Here. we wiU &mit ourselves to a 

gcaphical definition, dong with a set of assumptions (Assumption 2.1). which form 

an -operational* definition which snits the scope of this work. 

Hysteresis can be represented graphically as a relation in the u-y plane. Figure 

2.1 shows an example of an hysteretic relation, along with a sample path. The loop 

which bounds the region where y ( t )  is multivalued is c d e d  the major (hysterests) 

loop. The domain of input values u corresponding to this region is denoted [u-. u+]: 

the range of outputs. [y-. y+]. Each new segment of the output path in the u-y 

plane is c d e d  a branch (labeled 1 to 5 in Figure 2.1), and branching results kom a 

local extremum in the input. Ascending branches are foIlowed for increasing inputs 

(1.3.5), descendhg branches if the input is decreasing (2,4). Successive branches 

which cross inside the major loop form minor (hysteresis) loops. In Figure 2.1, 

minor loops are formed by branches 2 and 3 , 4  and 5, but not by 2 and 5 since they 

are not successive. 

The above paragraph on terminology contains several statements, made as facts. 

which imply certain assump tions about the hystereses being considered in this 

work. Although these are so common that they are often assumed implicitly, it is 

wort hwhile re-s t ating t hem dearly. 

Assumption 2.1 (Hysteresis Forms) 

It d l  be assumed in this work that hystereses satisfy the folloving assuntptiow. 

1. The major loop is bounded. In other words, u-, u+, y- and y+ are al1 finite. 

2. Branchzng occvrs as a result of, and only as a result of, an input reversal. In 

other words, the sign of the input and output derivatives are alvays the same. 
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Figure 2.1: Hysteresis TerminoIogy 

Hystereses are further categorized by the type of memory they exhibit(431. In 

systems with local memory, the future output depends only on the current output 

and current and future inputs. The "memory" of a local hysteresis is entirely 

captured in the carrent output. In hystereses with non-local memory, the future 

output depends not ody on the m e n t  output, but also on the past history of 

input extrema. 



2.2 The Domain Wall Analogy 

In attempting to understand the physicd mechanisms of h~steresis in any material, 

it is instructive to look to magnetic hysteresis, where there has been over a cen- 

tury of study. The hysteresis in magnetic materials is ofken desaibed using what is 

c d e d  a domain wall andogy. The material is composed of element ary dipoles: tiny 

polarized particles which orient themselves according to the applied field. Regions 

of similarly-oriented dipoles form domains of polarization, and the overd magne- 

tization depends on the relative extent of the positive and negative domains. The 

domain walls are the imaginary boudaries which separate these regions. As an 

applied field is varied. these regions grow or shrink in size, depending on polarity: 

the domaîn w d s  are said to moue. This behavionr is illustrated in Figure 2.2. 

Figure 2.2: Sketch of the Domain Wall Analogy 

An elementary dipole which is isolated in a field would not display hysteresis: it 

would simply re-orient i t self instant aneously if the field changed polarity. Hys t eresis 

is said to aise due to material defects and interna1 fiction between dipoles, which 

can be thought of as 'inertial forcesn causing the dipoles to exhibit a prefaence 

for their cnrrent orientation. The applied field must overcome these inertial forces 

if it is to change the dipole orientation. It is these inertial forces which give rise to 

hysteretic behaviour. 

While the domain w d  idea originated in fmomagnetics, we wiU see that the 



analogy is equally applicable to ot her hysteretic systems composed of elementary 

particles having binary state. 

2.3 Modelling History 

Some of the f i s t  recorded scientific observations of hysteresis were made by Lord 

Raleigh[ref. 11. in connection with the behaviour of magnetic materials exposed to 

a time-varying electric field. Since those initial observations, the ubiquity of this 

phenornenon has become apparent. Hysteresis has been identified in many diaerent 

areas of study. including physics, engineering, chemistry, biology, and economics[ref. 

641. 

For nearly a cent ury, engineers and scient is t s have been developing hys t eresis 

models based principdy on an understanding of physical or chemical propaties 

in a specific system of interest. Ln more recent decades. mathematicians have &O 

corne to contribute to the field. 

Mathematical models are w d  adapted to analysis, but oRen s d e r  fiom com- 

plications in implementation, since they generally require the use of numericd ap- 

proximation techniques. Because they are removed fkom the underlying cause of 

the hysteresis, the parameters in mathematical models are often diflicult to assw 

ciate with the physicd system, and they often lack the intuition of physical models. 

Unfortunately, in the absence of standard controller design techniques for strong 

non-linearities such as hysteresis, intuition is often the most powerful tool available 

to  the designer. An excellent, albeit very mathematical, treatment of the a d a b l e  

mathematical models (and some physical models as well) can be found in [64]. 

A major drawback of physicd models, especidy in the context of this work, 
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is that they are s p e d c  to a particular type of system. Physical models of smart 

material hysteresis would have to be developed separately for each different ma- 

terial. and may in fact have entirely different structures. This implies separate 

controlles design techniques and analyses. and precludes any general results which 

might benefit the broad spectrum of smart materials. 

In the 1930s. F. Preisach developed a model for hysteresis in magnetic materials 

which straddles the boundary between physical and mat hematical[51]. Ongindy 

based on the physical notion of magnetic domains described in the previous section. 

the model retains much of the intuition associated with physical models. However. 

in recent decades it has been abstracted and successfuUy applied in other areas. 

thus demonstrating its generality, a property usudy associated with purely math- 

ema tical models. 

When inves tigating mathematical modeh of hysteresis, sever al researchers' names 

appear quite often. The foremost is that of Visintin, who has written and edited 

substantial review works on hysteresis models of all types(61, 62, 63. 641. Other 

review papers indude [24,50]. Krasnosel'sku and Pokrovskü were probably the first 

to extend Preisach-type models to more general elementary hysteresis operators. 

They have written what appears to be the most complete mathematical work on 

hys t eresis models t O da t e[34]. 

Since the work by Krasnosel'skii on the abstraction of the Preisach model, 

the mathematical properties of the model have been investigated by Brohte and 

Visintin[6]. and many extensions aad variations have been proposed. These exten- 

sions are often associated with the names Della Torre[33, 591 and Mayergoyz[e.g. 

441. Mayergoyz has compiled a number of his own publications, as well as those 

of othas in the field, into a monograph[43] which is an excellent reference on the 

Preisach model and its extensions. The text addresses many of the problems gen- 



e r d y  associated with mathematical models: identification techniques. a simple 

implementation form. as well as necessary and sdEcient conditions for Preisach 

model representation. 

2.4 Hysteresis in Smart Materials 

This section describes the hystereses present in piezoceramics and shape memory 

doys. These are some of the most commonly used smart materials, and those for 

which the hysteresis mechanism is best understood. For a cornprehensive sonrce on 

smart actuators, sensors, structures and th& applications, the reader is referred to 

191 - 

2.4.1 Shape Memory Alloys 

Many different met al d o y s  have been found to display shape memory properties[67]. 
P 

The mos t commoniy used in electrical actuator applications is a near-binary mixture 

of nickel and titaaium, commonly c d e d  Ni-Ti-NOL since it was first developed at 

the US Naval Ordinance Laboratory[7]. The large strain recovery in SMA is made 

possible by the existence of two distinct, temperature-dependent crystalline phases 

within the doy. At low temperatures, the d o y  is in the marterisite phase, while 

at higher temperatmes, the structure changes to awtenite.' As the wire undergoes 

heating from the M y  martensite phase, the percentage of martensite dimirllshes, 

while that of austenite increases, until the d o y  is 100% austenite. 

'For the purposes of this study, the t a n s  austenite and martensite are bat  defined by ünking 

them to their respective crystahe lattice structures. Austenite Eaa a rigid, cubic structure, while 

martensite is characterized by a soher, rhombic lattice. 
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The transformation fkom martensite to austenite. and back again. is charac- 

terized by a large hysteresis loop, as depicted in Figure 2.3. The temperatures 

associated with the transformation are A., Af and Ma, Mf: the austenite and 

martensite start and finish temperatures. Between A. and Af, and from Ma to 

Mf . the structure of the d o y  is a mix of martensite and austenite. Typical trans- 

formation temperatures in degrees Celsius, for NiTi which is 49.5% nickel, are 

Mf = 19, M, = 47, A, = 53, Af = 80[14]. However, these parameters are highly 

dependent on dloy composition and processing: variations on the order of 2-3% in 

d o y  composition can cause shifts of over 100 degrees in transformation tempera- 

Af 

martensi te II austenite 

M f  

Figure 2.3: Hysteresis Curve and Transition Temperatures for SMA 

The most efficient use of NiTi as an actuator is in wire form[M]. A sketch 

of the stress-strain characteristics of austenite NiTi and martensite NiTi is shown 

in Figure 2.4. The utility of SMA wire as an actuator cornes from the change in 

this characteristic as the d o y  undergoes a phase change between austenite and 

martensite. The strain res J t ing  fÎom a particular stress will be différent in each 
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phase. This dows work to be done on a load by heating the wire. A wire subject 

to a stress of ol MFa (cf. Figure 2.4) can recover substantial strain. on the order 

of 5%. when heated fiom martensite to austenite. If only a few cycles are required. 

strains of up to 8% can be recovered. 

/ 
4 Austenite 

1 
/ 

/ 
f 

I 

CI- recovered strain 4 
Martensite 

actuator strain 

Figure 2.4: Stress-Strain C w e s  of Austenite and Martensite for SMA 

The phase transformation process is similar in nature to the description of the 

domain wall analogy. The individual crystals of NiTi are thought of as dipoles, 

and th& "polarization" is their m e n t  phase state. Domains of martensite and 

austenite are in fact visible at the microscopie level during the transformation. Dur- 

ing cooling, the martensite can be seen to be growing, "taking over" the austenite; 

upon cooling , it recedes[lô] . The domain walls, separating regions of martensite 

and austenite, "move". Hysteresis arises in part due to intenial fXction associated 

with the phase transformation['lO]. 

In an unconstrained doy,  several variants of martensite form during cooling, 

suggesting the need for a "multi-staten dipole analogy. However, in wire actuators 

the material is never unconstrained. In this case only one variant of martensite is 



fomed(l61. and the binary s t ate dipole andogy remains appropriate. 

2.4.2 Piezoceramics 

The "piezoelectric effect' refers to the abiIity of certain materials to generate elec- 

tric charge in response to mechanical stress[9]. The inverse transformation is also 

possible. and it is this property which is the basis for the use of piezoelectric mate- 

rials as actuators. 

Piezoceramics are ferroceramic materials which have b e n  treated in order t hat 

they exhibit the piezoelectric effect. Ferroceramics contain many elementary elec- 

tric dipoles. similar to the magnetic dipoles of magnetic materiah. These respond 

to an applied electnc field by orienting themselves with the field direction. A change 

in material dimension, the extent of which is dependent on dipole geometry, occurs 

during this re-alignment. In order to create a piezoceramic actuator, the ferroce- 

ramic material is exposed to a strong electric field as it is heated to the Curie point 

and slowly cooled. This process, known as poling, leaves d dipoles aligned in one 

direction. It is only after this p o h g  process that ferromagnetics become usefd as 

actuators. 

When the poling field is removed, a residual electnc field Er remains within the 

material, effectively introducing a 'pre-strain". Subsequent applied fields of the 

same polarity as the p o h g  field will cause an increase in strain, while the opposite 

polarity produces a strain reduction. When the applied field is removed, the dipoles 

will attempt to realign themselves with the residual field Er. Material defects 

prevent t his realignment hom being total, introducing the hysteresis charactenstic 

sketched in Figure 2.5. The hysteresis is not as pronounced as that displayed by 

shape memory doys,  and has a more regular shape. 



Figure 2.5: Sketch of Piezoceramic Hysteresis Characteristic 

Typical p o h g  fields for piezoceramics are lV/pm, and strains are generally 

limited to O. lq/o[9]. Due to the large electric fields required for actuation. material 

thicknesses in control applications are usudy on the order of 0.1-0.3mm. It is 

suggested in [9] that the control field be limited to 75% of the poling field, in order 

to avoid re-poling the material. This results in control voltages on the order of 

75-225V. 

A classicd application of piezoceramic act uators is in vibration control[e.g. 151, 

where squares of piezoelectnc sheet are bonded to either the side of a cantilevered 

flexible beam, near the damp. By controllhg the electric field across the piezoce- 

ramic, the strain, and hence bending moment in the beam, can be controlled. This 

can be used to damp out unwanted beam vibration. 



2.5 Mode1 Selection 

The Preisach model has ben chosen for this work for two main reasons. One of 

the goals of the research was to develop results pertaining to the control of smart 

materials. Piezoceramics and shape memory d o y s  are refmed to as examples. 

but other smart materials also display hysteretic behaviour. The generality of the 

Preisach model is therefore appealing, since results may potentially be applied to 

any system for which a Preisach model exists. Despite its generality, however. the 

Preisach model has inherited a physically based structure £iom its roots in magnetic 

hysteresis modelling. This structure is often absent in pureiy mathematical modeis, 

and leads in this case to an intuitive interpretation of model behaviour. 

Aside fiom these compelling reasons, the Preisach model has further advantages 

of a more practical nature: 

0 The mode1 is able to represent the non-local memory which has been shown 

to exist in shape memory doys[49]. 

It has b e n  shown that the model is suited to piezoceramic and shape memory 

d o y  representation[2?]. 

The significant problems of identification and implementation have b e n  ad- 

dressed by Mayergoyz [43]. 

Sevaal mathematical properties of the model have been investigated[6, 341. 

In the past few years, as a testament to its genaality and practicality, the 

Preisach model seems to have emerged as the preferred model for engineering appli- 

cations. This corroborates the opinion of Brokate and Visintin[G], that the Preisach 

model "may be the most satisfactory mathematical modd of hysteresis available." 



Summary 

This chapter provided a working definition of hysteresis. outlined the types of hys- 

teresis being considered. and discussed the history of modelling. The popular d e  

main w d  analogy fiom ferromagnetics was described. and pardels drawn with 

the hysteresis mechanisms in shape memory alloys and piezoceramics. Given these 

parallels. it is expected that the Preisach model of ferromagnetic hysteresis may be 

successfdy applied to these newer materials. This, and severd other compelling 

reasons. motivate the choice of the Preisach model for this study. In the next 

chapter. the Preisach model will be described in detail. 



Chapter 3 

The Preisach Mode1 

This chap ter intends to familiarize the reader wit h the Preisach hys teresis model. 

The first section describes the input-output form of the model. Section 2 discusses 

the Preisach plane. the source of much of the intuition associated with the model. 

Section 3 present s the necessary and sufllcient conditions for represent ation by a 

Preisach model. In Section 4, the model identification procedure is desaibed. 

Since its invention in the 1930s, several extensions and variations of the Preisach 

model have ben proposed. The fonn described in this chapter, and applied in the 

research, is that which has corne to be known as the "classical" Preisach model. 

The final section of this chapter briefly d e s d e s ,  for the benefit of the reader, some 

of the more important extensions of the ciassical model form. The information in 

this chapter is rnainly compiled kom Mayergoyz' monograph(431. 
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3.1 Model Description 

The main assumption made in the Preisach mode1 is that the system can be thought 

of as a parallei summation of a continuum of weighted relay hystereses This 

is illustrated in Figure 3.1. where the value p(a .  P )  represents the weighting of the 

reiay ~ ~ 0 .  Each relay is characterized by the pair of switching values (a@). with 

a 2 8. so that there is a unique representation of the collection of relays as points 

in the half-plane P = {(aJ)la 3 f i )  (cf. Figure 3.2). The vertical portions of the 

Figure 3.1: Schematic of the Preisach Model 

relays are irreversible: they can only be traversed in one direction. The horizontal 

sections are reversible. Degenerate reiays, those with a =P. are M y  reversible. 

Mathematicdy, each of these relays can be represented as a relation in R* 

with the output at any particular time dependent on the input history up to that 



CHAPTER 3. THE PRELSACH MODEL 20 

tirne. The behaviour of these relays. and hence the Preisach model. is only defined 

for continuous inputs u. As this input varies with time, each individual relay adjusts 

its output according to the current input value, and the weighted sum of all the 

relay outputs provides the overd system output (cf. Figure 3.1) 

The collection of weights p(a. P )  forms a weighting function p : P * R, which 

describes the relative contribution of each relay to the overall hysteresis. 

In magnetics, the relays 7 represent the magnetic dipoles which make up the 

material. When modelling SMA actuators, the relays may represent individual 

crystals. which are assnmed to be in one of two distinct phases. 

3.2 The Preisach Plane 

The region 'P is often referred to as the Preisach plane, and it is seen that it plays a 

central role in the Preisach model. Every point in P represents a unique relay, and 

P is the support for the weighting function p, as iUustrated in Figure 3.2. It will be 

demonstrated in this section that the Preisach plane also provides an alternative 

way of lookùig at the model behaviour. This leads to a clearer anderstanding of 

some of its properties. 

3.2.1 The Preisach Plane Boundary 

This section introduces the Preisach plane boundary, a unique mechanism for keep 

h g  track of the state of individual relays. 
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Figure 3.2: Utility of the Preisach Plane 

First. divide the relays in P into two time-varying regions, P- and P+, defined 

as follows: 

A P-(t)  = ((a,/3) E P 1 output of - y 4  at t is - 1) 
A P+(t) = {(a.,@) E P 1 output of -ypg at t is + 11, 

so that P- (t )U P+(t ) = P at dl times. It will becorne dear that each set is connected. 

The time-dependence will often be implicit, with P- and P+ used to denote these 

regions . 

Now, consider an hysteretic system exposed to a monotonicdy increasing in- 

put, taking it from negative saturation to positive saturation dong the major bop. 

In negative saturation, ail relays are in the state and P- = P, P+ = 0 (Figure 

3.3a). As the input increases, it switches a relay rafi to 'fl" as it passes u = a, 

moving it fkom 73- to P+. The bonndary between P- and P+ can be represented as 

a horizontal line in the Preisach plane, which moves up as the input increases (Fig- 

ure 3.3b), switching relays from P- to P+ until the system is in positive saturation 

(Figure 3.3~) .  Similady, if the input now reverses and begins to decrease monoton- 

ically, a vertical bouadary is generated sweeping fkom right to left, switching relays 

fiom P+ to P- as it passes u =P (Figure 3.3d). 
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Figure 3.3: Preisach Boundary Behaviour 

The similarity between the Preisach plane boundary and the domain w d  de- 

scribed in Section 2.2 is clear. As the input evolves over t h e ,  the boundary *moves9 

in P, always separating relays into two groups of %ke pokrization". 

The Preisach plane boundary &O represents, in a sense, the memory of the 

Preisach model. When an arbitrary input is applied to the hysteresis, monotonicdy 

increasing segments generate horizontal branches on the boundary, while monoton- 

ically decreasing segments generate vertical branches. Input revers& cause corners 

in the boundary. The history of past input revers&-and hence of branching 

behaviour-is stored in the corners of the boundary. 

Observation 3.1 (Key Boundary Facts) 

The boundary plays a uery important role in the  analysis of the Preisach model. The 



CHAPTER 3. THE PREISACH MODEL 

reader wdl find subsequent discussion inuolving the bovndary eusier if the folloving 

facts are deur at this point. 

0 The area below and to  the left of the bovndary represents those relays whose 

outputs are positive, and is denoted Pt. 

0 The area above and to the right of the boundary represents those relays vhose 

outputs are negatzve. and is denoted P-. 

e The boundary always zntersects the line a = f l  at ( IL ,  u) ; u ts the current input 

value. 

The astute reader WU recognize at this point that inputs can be constructed 

so that boundary corners are generated. but later removed. For example, if an 

input maximum is followed by a minimum, and then by a larger maximum. the 

memory of the first reversal will be "erased*. This "wiping out" property has been 

identified as one of two conditions which are necessary and sdicient for existence 

of a Preisach representation for an hysteresis(431. These representation conditions 

will be discussed in greater detail in Section 3.3. 

3.2.2 Restricting the Domain of p 

In hystereses with dosed major loops, the domain of hysteretic behaviour is bounded 

by [IL, u+] (cf. Figure 2.1). The behaviour outside [u-, u+] is fully reversible, indi- 

cating that only degenerate relays, with a=P, contnbute to the output for inputs 

outside [u-. u,]. Hence, we have p ( a , b )  = O for points in P satisfiing a! > p and 
either a > u+ or p < u-. Note that if the hysteresis ha9 zero dope outside the major 

loop, p wiU also be zero on a =B outside [u-, u+]. 



CHAPTER 3. THE PREISACH MODEL 

In any physical setup, there are limitations which impose a further constraint 

which can effectively be interpreted as a restriction on the domain of p. Saturation 

of the control input. Say at u;fU and uFt. means that some relays in P can never be 

exercised, and cannot conhibute to a change in output. This effectively restricts 

the domain of p to a triangle in P defined by 

These two restrictions are illustrated in Figure 3.4, whae p = O outside the shaded 

area. It wiu be assumed that, in the design of the overd system, the equipment 

used to generate control signais has been suitably chosen so that it is capable of 

exercising the entire hysteresis loop (ie. [u-. u+] c [ u 5  UT]). 

Figure 3.4: Restriction of the Preisach Plane 

3.2.3 R o m  Boundary to Output 

Ushg the definitions of P+ and P-, the output equation (3.1) c m  be written as 
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Since the boundary defines the region P+. knowledge of the boundary configuration 

at time t. dong with the weighting function p, is s&uent to determine y ( t ) .  Note 

that this does not preclude non-local memory, since the boundary stores the dec t s  

of past input extrema in its corners. 

That the Preisach mode1 represents static hystereses is now easily verified. The 

output is determined by the boundary, and the boundary itseif is defmed by past 

values of input extrema, as weil as the current input value. Neither the tirne at 

which input extrema occur, nor the shape of the input between extrema influence 

the boundary. Hence. the output depends only on the current input value, and on 

past input extrema and the order in which they occur. 

The area swept out by the boundary during a monotonie change in input deter- 

mines the resulting change in output. This is made more precise by the following 

proposition. 

Proposition 3.2 (Output Vdation) 

A monotonic change in input which causes the boundary tu sweep out an area 

from tirne tl to tirne t2 ndts in an output variation 
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Consider the example of Figure 3.5. The input decreases Born u(t,) to u(t2), re- 

moving the region R from P+ and adding it to P-. 

Figure 3.5: Preisach Plane: Monoton c Input Decrease 

From equation (3.2). the merence in output is given by 

Similady, if u is inaeasing, it shifts the points of Q fiom P- to P+, and the sign 

of the output variation is reversed. a 
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For any region O swept out b y  the boundary in response to a rnonotonic change in 

input. the Pnisach mode1 weightzng fvnction p satisfies 

ZJ and only if, the sign of the inpat and output inciements are the same. 

Proof 

The resdt foilows directly from equation (3.3). 

3.2.4 Anhysteretic State 

A magnetic system in which no remnant magnetization is present is said to be in the 

anhystere tic state(1). One recognized method for removing remnant magnetization 

from a magnetic materid is to appiy a sinusoidd input whose amplitude decays 

fiom a value greater than max(lu+l, lu-1). This technique has ais0 been success- 

fully applied to 'initialize* a differential SMA actnator in order to remove residual 

hysteresis and obtain repeatable experimental results[20]. The effect of t his decay- 

ing sinusoid on the Preisach boundary is that it will approximate the line a = -0. 

As the decay rate decreases, the change &om one m d m u m  (minimum) to the next 

decreases, the length of the horizontal (vertical) boudary segments decreases, and 

the closeness of the approximation increses. This prompts the following definition. 

Definition 3.1 (Anhysteretic State) 

A Preisach mode1 WZZ be said to be in the anhysteretic state whenever its boundary 

corresponds to the line a = -P. 
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If the hysteresis is sy-etnc about the origin, as in the case of magnetics. then 

the Preisach weighting function will be symmetric about a = -p, leading to an 

output of zero in the anhysteretic state. Furthermore. it will be seen in Chapter 7 

that this is a state of minimum stored energy for the Preisach modeI. 

In subsequent analysis. it is important to have a well-dehed initial state. Al- 

though the choice of this initial condition is somewhat arbitrary, the above discus- 

sion suggests the anhysteretic state as a good choice. based on energy arguments 

as well as the analogy to magnetic materials. 

Assumption 3.1 (Initial Condition) 

It will be assumed throvghout this work that the initial boundary, ut time t = -oc. 

is the line a = -0. 

Because the initial boundary intersects the origin of the Preisach plane, and the 

mode1 is only defined for continuous signais, this assumption means that valid 

inputs mus t satisfy Kmt,-, u(t ) = O. 

Since inputs can only generate horizontal or vertical boundary segments, it is 

not possible to return a system to the aahysteretic state. It is, however, possible to 

approximate this state arbitrarily dosely, by applying an oscillatory, slowly decaying 

input such as a lightly-damped sinusoid. 

3.2.5 The Preisach Plane Origin 

The Preisach weighting function results fkom an identification process, detailed in 

Section 3.4, which must be carried out on the system to be modeled. Identification 

data is collected by varying the input to the system in a predetermined fashion 
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and measuring the resulting output. The reference value for the input during this 

identification is arbitrary: for a temperature-based actuator such as SMA. one may 

choose any value such as absolute zero, zero centigrade. or ambient temperature. 

The -zerov of the Preisach plane represents an input value corxesponding to this 

reference. It will be assumed in this work that models are identified with respect to 

ambient conditions. For the SMA example. the Preisach temperature input would 

be (T - TambienL). 

3.2.6 Mode1 Symmetry 

While magnetic hysteresis usually has symmetric output saturation values. some 

hystereses. such as that present in an SMA actuator, are *shiftedn (cf. Fieme 2.3). 

It is clear 60m the discussion of the boundary behaviour that the Preisach model as 

described thus far is unable to reproduce this output SM. In negative saturation. 

u < uot and all relay outputs are - 1. so that P+ = 0. The output is given from 

equation (3.2) as 

In positive saturation, relay ontputs are +1, P+ = P,, an d the output is given by 

In other words, the saturation values of the Preisach model are symmetric about 

zero. In order to model "output-shifked" hystereses, an offset is added so that the 
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output is given by 

MO DEL 

where y:at and y r t  are the output valnes obtained when the input is saturated. 

Since it is assumed that lu-, u+] c [u-. uyt] , these values are unique. 

3.3 Preisach Mode1 Representation Conditions 

The previous section introduced the Preisach plane and the boundary which s e p  

arates relays in ditferent states within the plane. The definition of the plane and 

the boundary behaviour imply that the Preisach model displays certain properties, 

known as the wipzng out property and congruent minor loop property. It has been 

shown by Mayergoyz that a necessary and sufEcient condition for existence of a 

Preisach representation for a particuiar system is that the system display these two 

properties[43 1. The final subsection discusses the inability of the dassicd Preisach 

model to reproduce a specific type of behaviour, known as accommodation. which 

appears in some hysteretic systems. The behaviour will be defined in that section. 

3.3.1 Wiping Out Property 

In [43], Mayergoyz defines two system characteristics known as the uriping out prop- 

erty and the congruent minor loop property, and shows that they are necessary and 

sufficient conditions for existence of a Preisach rnodel. The first of these properties 

is described here; the second is the snbject of the next section. 

We have seen that input extrema generate the corners of the Preisach boundary, 

and that this boundary represents the memory of the Preisach model. The wiping 
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out property states t hat certain input extrema can remove the effects of previous 

extrema. essentidy "wiping out" the memory of the model. This behaviour is 

sketched in Figure 3.6. 

Suppose the boundary at some t h e  ti is as depicted in Figure 3.6a. with the 

input constant at ut. If the input inmeases, a new horizontal branch is generated 

on the boundary, sweeping upwards through Pr (Figure 3.6b). As u(t )  reaches and 

passes the previous input mmcimum, the corner previously generated is "wiped out' 

(Figure 3 . 6 ~ )  and as the input continues to inaease, the memory of that previous 

extremum has been removed (Figure 3.6d). At any particular t h e ,  the previous 

extrema which are retained by the boundary are referred to by Mayergoyz as the 

dominant input eztrema. These will be discussed in greater detail in Chapter 6. 

Proposition 3.4 

Preisaeh plane boundanes are always non-increasing with respect to in P. 

Proof 

Since inputs can only generate horizontal and vertical boundary segments, an in- 

creasing bomdary implies that there is a horizontal segment, Say at a =ul, foilowed 

by a vertical segment with points a > ul (cf. Figure 3.7). But at any t h e  t the 

boundary always intersects the line a = p at (u(t) ,  u ( t )  ). Since the vertical segment 

just described cannot intersect this h e  at all, there must be artother horizontal 

segment, say at a = uz > UI, to complete the boundary. But this is not possible 

because of the wiping out property: the input maJtimum u = uz would have re- 

moved the memory of the previous maximum u = ul, preventing the formation of 

an increasing boundary section. 
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Figure 3.6: Wiping Out Property 
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Figure 3.7: Boundary Violating the Wiping Out Property 

3.3.2 Congruent Minor Loop Property 

The congruent minor loop property requires that any two comparable minor loops 

have the same shape. That this is a property of the Preisach mode1 is once again 

evident fiom a discussion of behaviour in the Preisach plane. 

Definition 3.2 (Comparable Minor Loops) 

Two minor loops are comparable if they are generated by input u a ~ a t i o n  between 

the same two distinct values, regardless of past input history. 

Consider two Merent input signah which generate comparable minor loops 

through variation between us and U J  > u2, but have different input histories. Before 

reaching UZ, the est input has a peak at ui > UJ, while the second has a srnder 

peak before u2 of magnitude u; satisfying us < u; < ui. The different input histories 

(ul # ui) mean that these minor loops wiU be displaced fiom one another in the 

input-output plane. This is illustrated, dong with the Preisach plane diagrams for 

each input, in Figure 3.8. 

The change in output, Ay, due to input variation between u2 and u3 wiU be 

entireIy determined by the region Q, regardless of p s t  input history. At any t h e  



CH.4PTER 3. THE PREISACH MODEL 

Figure 3.8: Congruent Minor Loop Property 

when u2 < u < u.1, the same triangle (shaded in Figure 3.8) has been swept in both 

cases. As a result, at  any point on the minor loop the output variation fiom the 

previous extremum wiU be identicd for both inputs, and the minor Ioops should 

have exactly the same shape. 

3.3.3 Minor Loop Accommodation 

Some physical hystereses display a behaviour known as accommodation, which the 

classical Preisach mode1 is unable to represent. This is because this behaviour 

violates the wiping out property. When a Preisach hysteresis is subjected to an 

input which oscillates between t ao  distinct input values, the wiping out property 
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Mplies that minor loops which are generated by this oscillation should be identicd. 

The texm "accommodation'. or sometimes 'reptation". is used to describe a sta- 

bhat ion process in which several cycles are required before a stable minor loop is 

generated. Typicdy, successive loops shift progressively npwards in the hys teresis . 
towards a stable limit loop. 

Figure 3.9: Minor Loop Accommodation 

Figure 3.9 demonstrates this behaviour. The input osdates  between the same 

two values, sweepiag the region S2 once in each direction for each input period. 

Thus, one minor loop is generated by each period of the input. Every time the in- 

put sweeps S I ,  the boundary is identicd, so that the output must also be identical, 
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and successive minor loops coincide exactly. This is depicted in Figure 3.9a. Figure 

3.9b shows a typical example of accommodation behaviour. Extensions of the clas- 

sical model have b e n  proposed which are able to account for this accommodation 

behaviour[43]. Preisach model extensions wiu be reviewed in more detail in Section 

3.5. 

3.4 Preisach Mode1 Identification 

In [43], Mayergoyz proposes a technique to determine the Preisach weighting surface 

p fiom experimental data. The identification involves the generation of several 

'first-order descending cuves", fkom which p can be determined. 

A first-order descending c w e  (FOD) is generated by first bringing the input 

to negative saturation, followed by a monotonic increase to a value u = al, then 

a decrease to u = BI. Any such input is parameterized by al and Pt, and will be 

denoted Ualfii This process is illustrated in Figure 3.10. The measured output 

values are labeled y,, , correspondhg to u =al, and y,,~, when u has reached Pl. 

The term "descendingn refers to the direction of the ha1 branch of the graph. 

The addition of WVst-ordan indicates that only one reversal ha9 occurred. Similar 

terminology leads to the definition of higher-order descending or ascending cuves, 

coIlectively called 'nthordes transition c w e s n .  

After the input peaks at al, the decrease sweeps out a, generating the de- 

scending branch inside the major loop. The change in ontpue dong the descending 

branch can therefore be h t t e n  (Proposition 3.2) 



CHAPTER 3. THE PREISACH MODEL 

Figure 3.10: Sample 

a 1 

Identification 

B 

Input 

Dehning the function F(al, pl) = yal -ya,&, rewriting the integral and then taking 

partial derivatives of both sides gives the following relationship for p- 
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If the value y,@ could be identified for all points in R, it is clear on physical 

grounds that the surface y(a.0) formed of ail points yad should be smooth. This 

surface could t hen be differentiated to obtain the weighting fùnction, 

More realistically, the hysteresis domain [IL. u+] is divided into n segments. 

defined by the ordered partition (~~)~=~,... ,n FOD Cumes are then obtained for 

aII pairs (ui,uj) with j 5 i. resulting in z (n  -+ 3) FOD data points. A smooth 

approximation surface $(a, /3) is then fit to these data points. and this FOD surface 

is differentiated to obtain an approxhate weighting suface M. 

Based on the fact that the major hysteresis is closed, as well as the smooth 

nature of the FOD c w e s  for physical systems and their relationship to p (3.5), the 

foilowing standing assumption on p is made. 

Assumption 3.2 

It will be assumed that the Preisoch weighting ftrnction is at least piecezuise contzn- 

sow. that it is bounded o n  Pr, and that there exis ts  at least one point (a$) E Pr 

wit p(a .p )  # O .  

It shodd be noted that the output of the Preisach mode1 can be computed 

directly from knowledge of the boundary configuration and the FOD data. The 

f o r d a  is a simple linear combination of FOD surface d u e s  at points in 'P, given 

by the corners of the boundary. The need to perform the surface fit (and dineren- 

tiation ) rnentioned above is t hus eliminated, by using an appropnate interpolation 
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scheme to approxixuate FOD surface values which were not directly measured. The 

method is desaibed in [e.g. 431. 

The disadvantage of the interpolation met hod is tha t the weighting function is 

never ac tudy determined, even approximately. In this work, the form of C< and its 

properties are of greater interest than model implementation. and the identification 

strategy used wiU be that of surface fitting and differentiation. 

3.5 Extensions to the classicd Model 

In his monograph[43], Mayergoyz collects results, due to himself and ot hers, which 

present various extensions to the classical Preisach model. Each of these is brie%y 

discussed in this section. The intent is to summarize the effect of the extension on 

representation conditions and the complexity of the identification t ask. For details 

of the extended models, the reader is referred to [43]. 

Non-Linear Preisach Model 

The intent of this extension is to relax the congruent minor loop requirernent, which 

is that which is most often violated. With this model, comparable minor loops (cf. 

Definition 3.2) are no longer required to have the same shape, but instead must have 

vertical chords of equal length. In other words, for any two minor loops generated 

as the input oscillates between ai and u2, then for every u' E (ut, u2)  the chord 

u = u' must have the same length in each loop. Along with the wiping out property, 

this property of equd vertical chords fom the necessary and snfficient conditions 

for represent ation. 
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The cost of this less stringent minor loop condition is an increase in the com- 

plexity of the identification task. The procedure is similar in flavour to the classical 

model identification scheme. but requires second-order transition c w e  data as well 

as first-order. This results in an identification hypersdace with domain in Et3. 

Restricted Preisach Model 

The restricted Preisach model, despite its name, is a hirther generalization of the 

non-linear model. While the weighting function of the non-linear form depended 

only on the current input value, that of an nth-order restricted model depends on 

the n previous dominant input maxima and minima. The accuracy of the model 

represent ation increases wi t h increasing order. 

The representation conditions are stated in the same rnanner as those of the 

classical Preisach model: the wiping out property must hold and comparable minor 

loops must have the same shape. However, the definition of comparable minor loops 

is somewhat relaxed. Two loops are now called comparable if they are generated 

by input variation between the same two values and after an identical set of n most 

recent maxima and minima. 

The identification task becomes more involved with this model. Where the iden- 

tification surface for the classical model is three-dimensional, an nth-order res tricted 

model requires the identification of a hypersurface in (2+n)-space. This must be 

done t hrough systematic measurement of fist- to nth-order transition curves. The 

number of identification inputs required, and hence the time requked for the pro- 

cedure, is of osder n. As wd, the complexity of the subsequent surface fit to 

determine the weighting Çnction is greatly hcreased. 



CHAPTER 3. THE PREISACH MODEL 

Accommodation Preisach Mode1 

In order to model accommodation behaviour. a second weighting h c t i o n  v is 

introduced. which muitiplies p. This additional weighting is a fuaction of output 

extrema, and it is assumed that the form of u is known a p r i o n  The identification 

of p is carried out in the same rnanner as for the dassical model. The representation 

conditions for this rnodel have not b e n  addressed. 

Ot her Models 

Further extensions have been proposed to model dynarnic hystereses as well as 

t hose having multiple independent inputs. In particular, the latter extension may 

be required for a fidl m o d e h g  of magnetostrictive or shape memory alloy behaviour 

in response to time-varying stresses. However, it d be seen in Chapter 5 that if the 

stress variations are small, the classical f o m  can provide an adequate match. These 

models are more general than those outlined previously and are fur tha  complicated 

in t hek identification techniques and representation conditions. 

Summary 

This chapter introduced the dassical form of the Preisadi hysteresis model. A for- 

mula was derived for the computation of the output variation to a monotonic input, 

as an area integral in the Preisach plane. Necessary and s a c i e n t  conditions for 

existence of a Preisach model were given, the identification technique was discussed, 

and several extensions to the Preisach model were briefly outlined. 
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Preisach Mode1 Properties 

In this chapter, some mathematical properties of the Preisach model are shown. 

The fùst section deals with the continuity of the operator defined by the Preisach 

model. These and ot her properties have been investigated in the p s t ,  notably by 

the mathematician Visinth[G. 64). The authors of those works consider the general 

case where p is a Borel measure on an unbounded set, giving the model form 

Unfortunately, the proofs are difficult to foilow wit hout a strong mathematical 

background. Here, the more realistic case where the measnre can be written as a 

product of a function with a Lebesgue measure, dp = p(a,P)dadp, is examined. 

The proofs of continuity are sirnpler in this more restrictive case. 

The second section discusses conditions under which the weighting function is 

non-negative. This has implications for many resdts in the exkithg literature[6,43]. 

First, several classes of weighting function p are defined. 



Definition 4.1 (Classes of p)  

1 n*i& 1 .i the set of al2 furactions p : Pr P, ct which a n  bounded and piecewise 

continuous. 

LS the set  of all jknctions p : Pr c, R which are bounded and piecevrLse 

Note that Mp c MpC by definition. 

4.1 Continuity 

The Preisach model has so far been treated as a map fiom R to R, with memory. 

The model can also be viewed as an operator, r, on the space of continuous fanctions 

Co. so that for u E Co. we write y = ru. This section is concerned with showing 

continuity of î on Co and also on the Sobolev space W: (defined later). 

In analyzing the continuity of r. it will be nsefd to define horizontal and vertical 

strips in Pr, of width t: 

These are illustrated in Figure 4.1. For convenience, notation for the integrated 

strips is also defined: 
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Figure 4.1: Definition of h and a 

For any ( E [O. uYt - utat] and X E [unt, u;OL - a, d e h e  &O the functions 

44 0 2 max {Ho<, 0, V ( 4  0) 

and 

The value 1 K([) 1 is the maximum change in output which can resdt from a mon* 

tonic input variation of magnitude (. 

Lemma 4.1 

If C< E M p C ,  then k(*, 0 )  is continuow. 

Proof 

The areas of integration defined by h(A, 6) and v(X, t )  are clearly continuous in 



both X and (. Since p is piecewise continuous over Pr, both H(A,()  and V(A. [ )  

are continuous functions of A and (. So H and V are continuous functions on a 

compact subset of R ~ ,  and it is required to show that the pointwise maximum of 

t hese two functions is itself continuous. 

Let T c R2 be the compact metric space deîmed by E E ( 0 , ~ ~ '  - TL-'] and 

X E [uf t ,  uCt - (1, with the standard Euclidean metric d(e, -). Let B,(Ao, Co)  denote 

the disc of center (Ao ,  Co) and radius T so that d((&, [,), ( A ,  6 ) )  < r for all (A. () E 

B , ( & & 3 ) -  

Now, choose any E > O. I t  is required to show that for any point (Ao ,  t0) E T ,  

there exists a 6 > O such that Ik(A0&) - k(A,()I < r for all (A,[) E Bs(&,co). 

Choose any point (A*, l0) E T and suppose, without loss of generality, that V(&,  &, ) > 

H(Ao. 4),  so that k(&, t0) = V(A,, t0). Since V and H are continuous. there exists 

6, > O so that for any point in Bs,(A&), k(A,() = V(A,() .  Also, there exists 

cSv > O so that 

Thus, k ia continuous at the point (A, ,  Co) .  A simila, argument shows continuity if 

W ~ 0 , C o )  > V(&, ( 0 ) -  

If V(&, Co) = X(&, Co) ,  then choose 8, > O and Jh > O so that 
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Set b = min(&. &). Since l ( A O .  Co) = V(Ao, Co) = H(Ao. &,). then w i t b  Bs(Ao. 5,). 

the farthest any point on V or H can be fkom le(&, Co) is e. In particukr, 

This shows that if V(Ao,4)  = H(Ao.C0), k is continuous at (Ao,(*).  BU^ ( A ~ , C ~ )  

was arbitrary, so this completes the proof. 

Lemma 4.2 (Properties of K(6))  
The f i c t i o n  K(() satisfies the follouring properties: 

2. if p E Mpc,  K(5) Lg continuow, and 

S. i f  p E Mpc. then there ezists C > O such that K(c)  < Ct. 

Proof 

-1 
From the definition of H and V, k(A, O) = O for any X E lu?', UT'], since the area 

of integration is empty for [ = O. The fact that K(0)  = O then follows directly 

fkom the definition of K ( 0 .  

1 Property 2 J 

Let T be the compact subset of R2 defmed by 5 E [O, u y  -uot] and A E [UT', u;"' - 
in Figure 4.2. Choose any E > O and any E [O, u;Ot - uf]. Since 

p E M pC, k is continuous from Lemma 4.1. Then for every A E [uot, uyt -&] there 

is a JA > O and RA = BsA(A,t0) where Ik(A,C) - k(X,&,)1 < 4 2 .  The collection of 

all regions RA is an infinite number of circles of varying radii JA and centres on the 



vertical line 5 = Co in T (cf. Figure 4.2). For evay point (A. [) inside any one of 

these &des. the shortest distance to the line = Co is - Co( < &, and 

chosen which contains all the points of 

k - 

Since lu?'. u l t  - &,] is compact. a finite subset of these regions 72 = {&-} can be 

Figure 4.2: Continuity of K(e)  

Since the regions & are open and cover the line E = Co, then every overlaps 

one next to it, and they share a common chord of non-zero length in this intersection 

(cf. Figure 4.2). Let 2Ji be the length of the common chord between a- and 

R,+i, and set 6 = *{di). Then for any ( snch t h t  14 - (1 < 6 and m y  A E 

[u?', UT' - 6 0 1 9  



Since L is continuous with respect to A. these values are well-defined. Then K(e0) = 

k(Ao.&,) and K(&) = l e ( & , & ) .  From (4.1), 

From the definition of A, and XI, 

From equations (4.2) and (4.5), 

Similady, from (4.3) and (4.4), 



uid K is continuous. 

1 Property 3 1 
Since p E M P C ,  the weighting hinction is bounded by definition. Choose any finite 

positive constant 

But the value of the integrals in (4.6) are simply the areas defined by h and v. 

Rom the definition of these regions (cf. Figure 4.1), and of the function K, 

Since M is independent of A, setting C = 2M(uSt - umt) gives K(() 5 C[ for - 

every E [O, uyt - uy]. a 
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Theorem 4.3 (Continuity on Co) 

I f p  E MPC then the Preisach model maps continvous inputs to continuous outputs. 

Proof 

Choose any E > 0. and define 

K(0)  = 0, and p E M P C ,  so K is continuous. Then [' is wd-defined. > 0. and 

IK(0l 5 IKK-Il for au c 5 c- 
For u E Co. choose 6 > O so that It2 - t l (  < 6 implies lu(t2) - u(tl)l  < c. 

Recalling that JK(C)( is the maximum output variation for an input change of 

magnitude (, then Jt2 - tll < 6 implies 

and the Preisach operator is continuous on Co. 

Another space of interest is the Sobolev space, denoted W:. 

Definition 4.2 (Sobolev Space) 

The Soboiev space W:[0, T] ig the space of rea-valued jùnctions u for which the 

Sobolev n o m  is fnizte: 

ù2 + u2dt. 

These signals have bounded energy and bounded velocity. 

In (61. the following theorem is proven. 



Theorem 4.4 ([6], Theorem 4.13) 

Suppose p is finite and non-negatiue o n  P. The Preisach operator rnaps W;[O. T] 

into itself if and only i f  the~e ezists C > O mch that K(() < Cc for al1 ( > 0. 

In the context of (61. the Preisach plane P is not assumed bounded. 

Corollary 4.5 

If F' is restn'cted to Pr and p E M p  then I' : W'[O.T] H W:[O.T]. 

Proof 

Since M p  C MPC.  the required constant C exïsts, from Property 3 of Lemma 

4.2. Then the conditions of Theorem 4.4 are satisfied. and the Preisach model 

r : W:[O. Tl c, W:[O, TI. R 

4.2 Positivity of 

Many references which treat 

the Weight ing Function 

the mathematical properties of the Preisach model 

mention the positivity of p[e.g. 6, 431. Specific results, such as Theorem 4.4, may 

be derived for Preisach systems for which the weighting function satisfies p 2 O. In 

this section a graphical test for the positivity of p is discussed. 

Mayergoyz mentions weighting function positivity in [43], in relation to the FOD 

curves and equation (3.5): 

For any pair (cr,, A), the partial derivative is the dope of the tangent 

to the FOD curve at the point (Po, y,&,,) in the input-output plane (cf. Figure 
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1.3). Assuming the output direction follows that of the input. the FOD c w e s  are 

monotonie and this dope is dways positive. If the rate of change of this dope is 

non-negative for increasing a (higher and higher FOD curves). then p ( ~ .  &) 2 0. 

If this is tme at every point on the FOD curves, then p 2 O. Mayergoyz rnakes 

the comment. without proof. that ali that is required to ensure this is that Al 

hs t-order transition curves are monotonically increasing functions of P,  and t hey 

do not intersect inside the major loop but mage together at the point where the 

descending and ascending branches of the major loop meet one another". The FOD 

c w e s  of Figure 4.3 exempw this behaviour. 

Figure 4.3: FOD Curves 

Mayergoyz uses the termino1og-y %st-orda transition curves" , which indudes 

both first-order ascending and descending c w e s .  A fist-order ascending (FOA) 

cuve  is, as the name wodd imply, a c w e  which andergoes one reversal aad whose 

last brandi is ascending. Such a cuve is the dual of an FOD, and is generated 

by first bringing the system to positive saturation, then decreasing to P, reversing, 

and increasing to a > p. Note that monotonicity of the FOD and FOA cnrves 

is tant amount to the standing assumption that the direction of the output fokws 

that of the input. 
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The full proof of Mayergo~z' statement remains elusive. The following Prop* 

sition provides a partial proof. as well as a graphicd test which indicates when a 

weighting function has negative regions. 

Proposition 4.6 

is continaow in a, then none of the FOD curves cross If p E M p .  and aa 
inside the major loop. 

The proposition is proven by contradiction. Figure 4.4 helps to &strate the proof. 

Choose any a* > al, and suppose that the curves y(a1. /3) and y(a2, P )  cross inside 

the major loop. 

B' Pi ci4 

Figure 4.4: Crossing FOD Cumes 



But fiom the assumption of continuity of in a, then by the mean value 

theorem there exists a point a' E (al, az) such that 

so p(aœ.  f i * )  < O. This implies that if p E M p ,  then the FOD curves do not cross 

within the major loop. 

The proof of Proposition 4.6 provides a "negative testn: crossing FOD c w e s  indi- 

cate a weighting surface that has negative values. 

4.3 Summasy 

The first section of this chapter dedt with the continuity of the Preisach operator 

on the space of continuous functions and also on the space of square-integrable 

functions wit h square-integrable h s t  derivatives. Although the results of that sec- 

tion were also derived in 161, the dependence on results fkom measure theory in that 

paper can make it difficult to understand for many readers. Aside fkom Theorem 

4.4. the results here were derived independently. The less general fiamework al- 



Iows the use of simpler mathematical arguments than those fÎom previous works. 

resulting in proofs which are hopefdy more accessible. 

Section 2 discussed the positivity of C< for a given system. A test based on 

experimental data is quoted from [43], but the proof of this resdt remains elusive. 

It was shown that if a system's FOD curves cross inside the major loop, then some 

points on the weighting function must be negative. This provides a graphical test 

which can indicate when p 6 M p .  



Chapter 5 

Preisach Modelling of Shape 

Memory Alloys 

This chapter is concerned with applying the identification procedure of Chapter 

3 to two SMA wire actuators: a single-wire under constant-load, and a tw-wire 

differential actuator. The first section provides background for the identification 

procedure. The experimental apparatus are described, some previous research in 

Preisach modelling of SMA is discussed, and the approach taken in this work is 

ou tlined. The second section describes the experimental met ho& used. 

IR Section 3, the actuators are tested for the wiping out and congruent minor 

loop properties. Once these have been verified, Section 4 describes the collection of 

experimental data and the fit of an appropriate surface. This surface is differenti- 

ated to obtain the weighting function. In Section 5, the models are verified against 

experimental identification data. and the results are discussed. 

It should be noted that results have appeared very recently which treat the 

problem of the estimation of the Preisach weighting function from a more theoret- 
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ical s tandpoint [3]. In t hat work, the weU-posedness of the problem of determining 

the weighting fimction fkom experimental data is shown, and a convergent approxi- 

mation method is given. It will be seen that the results obtained here using surface 

fitting techniques are somewhat inconsistent. and support the continued investiga- 

tion of more rigorous identification techniques. 

5.1 SMA Modelling Background 

5.1.1 Experiment al Apparat us 

This section describes the physical configuration of each experimental apparatus 

used in this research. The single-wire actuator is described in the first section. The 

second part describes the differential actuator. 

One-Wwe Actuator 

The experiment consists of a 38cm length of 0.3m.m diameter NiTi wire, biased by a 

load of 2kg. This represents a constant stress on the wke of roughly 277 MPa. The 

wire is routed over a 3cm diameter pdey, with a contact arc length of approximately 

90 degrees. The shaft of the pdey  drives a 2000 count/revolution optical encoder, 

for a linear resolution of less than 1/20th of a millimeter. Position data is fed 

from the optical encoder to a PC486/50MHz cornputer, which is &O responsible 

for output of reference signais. Output signals are intentionally saturated, limiting 

wire current to 1 Amp. Current drive is provided by a voltage-controlled current 

amplifiero with a transconductance of 1 Amp/Volt. 
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Figure 5.1: One-Wire SMA Actuator 

Two-Wire Actuator 

The mechanical details of the Merentid actuator are shown in Figure 5.2 (electrical 

connections are omitted). The mid-point of a length of SMA wire is anchored at 

the centre of the 6m.m shafk by a set screw. This shaft is equipped with a 2000 

count/revoIution optical encoder. giving an angdar resolution of 0.18 degrees, or 

Iess than lOpm change in length of the SMA wire. A total of 35cm of 0.3mm 

NiTi wire is used to provide two 15cm lengths of active wire. The wires have a 

common electrical connection at the shafk, and the two ''Gee" ends have electrical 

lugs crimped over a h o t  tied in the wire. The lugs provide an electrical connection 

to the ends of the SMA wire, and also d o w  the wire ends to be secured to a 

terminal block. This terminal block is mobile, and can be positioned by means of 

a screw. The screw is adjusted to give 3% pre-strain in the SMA wire. 

The cornputer hardware is identical to the onewire case. Bipolar reference 

signals are used, with two series diodes routing current to one or the o tha  SMA 
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Figure 5.2: DiEerential SMA Actuator 

wire, depending on the sign of the current. The convention adopted in the remainder 

of this chapter is that negative currents and temperatures refer to one wire, while 

positive values refer to the other. 

In this configuration, each wire individually is subjected to a tirne-varying stress. 

As one wire contracts, the opposing wire is stretched, exerting more force on the 

wire being heated. Generdy, this tirne-varying stress would cause a bi-variate 

hysteresis behaviour to appear, with the shape of the T - E  characteristic dependent 

on the (time-varying) stress. Previous attempts to model this actuator have b e n  

put off because of this complexity, in favour of achieving a better understanding of 

the one-wire actuator first. It had always been assumed that at l e s t  a two-input 

Preisach model would be required for the differential actuator. 

In this chapter, it is seen that the single-input Preisach model can represent the 

hysteresis in the two-wire actuator as well as the onmvire. Discussion of a possible 

reason for this interesting result is inclnded in the final section of the chapter. 
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5.1.2 Previous Preisach M o d e h g  

Preisach models have been successfully applied to shape memory d o y s  in the past. 

Ortin[49] identitied a model for isot hennal s tress-s train hys teresis in a single crys t al 

of CuZnAI SMA. A very good quantitative match is observed between simulated 

output from the model and experimental data. 

In [30]. the author describes a complicated extension of the Preisach model. 

Four-parameter hysteresis kemels are used, rather than the two-parameter relays of 

the classical model. Furthermore, it is suggested that the switching values of these 

operators vary as a function of temperature (the control is stress, in this case) in 

order to model the bi-variate behavionr. Howeva, a technique for identifjrhg this 

complex model is lacking, and only qualitative results are ob tained. 

Probably the most interesthg SMA Preisach modehg results, in the context 

of this work. are those of Hughes & Wen. In their experiments, a shape memory 

d o y  wire is fixed between the hub and tip of a flexible beam. Wire contraction 

is controlled by Joule-heating, current is the model input, and beam strain the 

output. In (271, representation testing is carried ont, and the resdts support the 

application of the Preisach model to this experiment, but only for slowly varying 

current inputs. In [26] an identification is performed and an attempt is made to 

fit a polynomial surface to the data. with mixed results. In more recent work[29], 

Hughes has opted for an interpolation, rather than a surface fitting, strategy. A 

good match is achieved, but again only for slowly varying currents. A possible 

reason for this limitation is discussed in the next section. 
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It was seen in Chapter 3 that an hysteretic system has a classical Preisach model 

representation if and only if it displays the wiping out and congruent minor loop 

properties[43]. In previous Preisach modelling of an SMA actuator, it has been 

shown that the relationship between control current and wire strain satisfied these 

two properties for slowly varying inputs(271. The probable cause of the f d u e  of 

the classicd model to represent the response to rapidly changing currents is minor 

loop accommodation introduced by the lag in temperature response. 

In order to venfy this hypothesis. the one-wire actuator described in Section 

5.1.1 was subjected to two inputs designed to generate comparable minor loops. 

Each increases from zero, then varies back and forth between two distinct values, 

generating five minor loops in the process. The low-frequency input generated 

a new minor loop approximately every eight minutes, while the higher-frequency 

current generated a new minor loop every eight seconds. The results are shown in 

Figure 5.3. 

Rapidly changing current Slowly changing cunent 

Appiied Cunent (amps) Applied Cunent (amps) 

Figure 5.3: Experirnental Evidence of Accommodation in SMA 

The response to the higher-fiequency current (Mt-hand plot) is problematic in 
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two ways. After the first input reversal. the wke continues to contract even as the 

current demeases. This is evidence of the lag between current and temperature, 

since it implies that the wire temperature is still increasing. As well, minor loop 

accommodation is clearly seen. as progressive loops shift upwards towards a &al 

stable loop. 

Looking at the low-frequency response (right-hand plot), nearly all decreasing 

input segments generate decreasing outputs. This is an indication that the tem- 

perature follows current much more closely. Furthexinore, the drift in minor loops 

is insigdicant. compared to that seen in the response to higher fiequency current. 

Given these results, it is clear that in order to model directly the relationship be- 

tween current and strain using a Preisach-type model. the Accommodation Preisach 

model should be applied (cf. Section 3.5). However, this model has a much more 

complicated fom,  and the problem of d e t e r e g  the Preisach weighting surface 

from experimental identification data has not yet been M y  addressed. 

An alternative approach is to consider the heating behaviour as the driving 

element for hysteresis o c c k g  between temperature and strain. This is in fact an 

approach which is truer to the actual physical mechanisms of shape memory, sînce 

the phase change occurs as a h c t i o n  of temperature and is independent of the 

heating method use& The remainder of this chapter is concenied with applying 

the classical Preisach model form to the temperature-strain characteristic of the 

SMA actuator. 

In m o d e h g  the relationship between temperature and strain, it would be ided 

to control and mesure wire temperature directly. One possibility would be to have 

the wire immersed in a water bath whose temperature could be controlled and 

measured. In the absence of such a setup, m e n t  could be used to slowly heat the 
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wire. and temperature could be measured. 

However, direct temperature measwement of SMA wires is not simple. While 

several researchers have had some success with themmcouples[25,3?). this is achieved 

with large wire diameters (Imm in [25]). When smaller diameter wires are used, 

the thermal mass of the thermocouple bead becomes a factor. The bead acts to 

partially sink heat away from the wire, lowering the temperature locally. The cur- 

rent carried by the SMA wires hirther complicates the task, introducing the need 

for some form of electricdy isolating, yet thermdy conductive paste between the 

thermocouple and the wire. hi addition, the relatively large currents present in the 

wire can induce currents in the thermocouple itself. corrupting temperature read- 

ings. Aside kom thermocouples, some degree of success has been reported using 

an infra-red sensor based on a pyroelectric detector[53], but this device is not yet 

refined enough to be usefd. 

In the absence of an accurate and reliable temperature measurement technique. 

the temperature must be estimated from a heating modd. A lumped-parameter 

approximation for the relationship between input curent, i, and temperature above 

ambient. T, is s h o w  in equation (5.1). The change in heat enagy in the wire is 

equal to the electrical energy input less the energy lost to the environment through 

convection. For a more detailed discussion of heat transfer, see [e.g. 351, 

The parameters in the heating model are: 

p densityofthewirematerial, 

V volume of the wire, 

A surface area of the d e ,  

R electrical resistance of the wke, 
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h heat transfer coefficient to the cooling medium, 

c, specificheatofthewirematerial. 

A Linear transfer function for the heat ing relationship 

and 

between i2 and T may be 

The t h e  constant of this equation is 

and the steady-state value at tained for a step cnrrent input i is 

It is weIl hown that the physical parameters of equation (5.1) are not con- 

stant over the transformation range of an SMA, although this is often assumed[e.g. 

39, 411. While actud parameter values and thei. variation during the transfor- 

mation are highly dependent on d o y  composition and processing, representative 

trends c m  be discerned from [14]: an excellent reference for properties of Ni-Ti 

doys.  In this source, the authors indicate that the volume change during the 

transformation is smail (0.16%). Significant change is noted in c, and R, however. 

The specific heat of the martensite phase is lower than that of the austenite phase, 

and a large peak (approximately 500% of base value) is present at transformation 

temperatmes. This Merence in specific heats is consistent with the ready obser- 

vation that the heating time constant is smder  than that observed on cooling[e.g. 

411. Since specific heat is difficult to measure experimentally, input signals used 

in the course of this experimental work were restricted to step cnrrents. Position 

readings were taken only after the measnred actuator position had reached a steady- 

state value. This allows the use of the steady-state relationship (5.3), which doesn't 

depend on 4. 
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In (141: the resistance characteristic for the d o y  considered displays only slight 

hysteresis over the range of temperatures between Mf and Af. Resistance mea- 

snrements were taken in the martemite and austenite phases and the average of 

the two values was used in equation (5.3). 

Measurements for the one-wire actuator were RM = 5.00 and RA = 4.5Q. 

giving an average value of 4.750. Normally, the resistivity of NiTi is higher in the 

austenite phase than in the martensite phase[14]. However, it is indicated in [16] 

that NiTi is sometimes doped with Cu (at the expense of Ni) to decrease production 

cost and reduce the hysteresis. It is noted that one effect of Cu doping, even at 

Low levels, is to fip the resistivity characteristic so that resistance is lower in the 

austenite phase. This leads to the presumption that the d o y  employed contains 

some Cu. In the shorter-length twwvire actuator, the average resistance value was 

2 . 0 a  

5.2 Experimental Methods 

This section det ails the experimental met hods used during the testing and identi- 

fication of the SMA actuators. 

5.2.1 Data Collection 

As mentioned in the previous section, piecewise cons tant current inputs were used 

during testing and identification. Each current value was applied until the measured 

actuator position had reached a steady-state. This position was then associated 

with the steady-state temperature found from (5.3) to form one point on the input- 

output graph. Specifically, the procedure was as follows: 
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1. Choose a desired temperature profile. T( t ) .  

2. Sample T ( t )  at N evenly spaced points. obtaining {Z);=~..N. 

3. Cornpute the constant currents (1;) boom equation (5.3): 

4. Apply each current Ii to the actuator in sequence. 

5. For each current ri, wait until the position has b e n  constant for twenty-five 

seconds. assign the steady-state output value to pi, and apply li+l. 

6. When the test is complete, join the points (Ti, pi) by straight line segments to 

obtain an approximate input-output characteristic. The doser together the 

points Ti, the bet ter the approximation. 

It should be noted that, because of uncertainties and variation in the heating 

mode1 parameters, all temperatures indicated in thîs chapter should be considered 

approximat e. 

5.2.2 Act uator Initiabation 

The left graph of Figure 5.4 shows two major loops fiom the twewire actuator, 

each generated using the same temperature profile. The shape of the loops is 

nearly identical, but there is a significant offset between them. This offset is due 

to reauiant hysteresis in the actuator at  the start of the test input. Since a relative 

encoder is used, outputs generated for identical inputs wiU be shifted unless the 

actuator begins in the same location a t  each tria. 
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If all trace of remnant hysteresis can be rernoved before a trial. repeatable results 

are obtained. In Chapter 3, it was mentioned that it was possible to approximate the 

anhysteretic state by applying a decaying sinusoid to the actuator. This technique 

was used on this same actuator in [20]. Here again. in order to remove the remnant 

hysteresis. the actuator was %itializedn before each test input was applied. This 

was accomplished by subjecting it to a decaying simsoidal signal corresponding to 

a temperature input of 

This signal takes three minutes to decay from maximum temperature input to zero, 

and has o d y  18 maxima and 18 minima. 

The right plot of Figure 5.4 shows one major loop (dashed) superimposed on 

another (solid), traced during the congruent minor loop test1. The actuator was 

initialized before t his test, and it can be seen t hat the saturation values are symmet- 

ric and the match with the major loop is excellent. Initiakation of the one-wire 

actuator was not required, since there is no remnant hysteresis present at room 

temperat ure. 

5.3 Representation Testing 

In this section, each actuator is tested for the presence of the wiping out and 

congruent minor loop properties. These are the reqnired properties for existence of 

a Preisach modei for the actuators. 

lThe results of the congruent minor Ioop test are discuased in a later section. 
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Major Loop Offset 
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Figure 5.4: Remnant Hysteresis a d  the Effect of Initiaiization 

5.3.1 Wiping Out Test 

The temperature input used to test the mping out property in the one-wire actnator 

is shown in Figure 5.5. Each of the two marked segments (A & B) generates four 

nested branches, as iUustrated in the sketch. If the SMA wire displays the wiping 

out property, the peak at the start of segment B should remove any rnemory of 

input up to that point, and the loops traced for input segment B should re-trace 

exactly those generated by A. 

Figure 5.6 shows the actual carrent input and corresponding measured output. 

The current plateaus indicate the t h e  taken for the position to stabiüze before the 

next curent step was applied (note the t h e  scale). In order to obtain an input- 

output graph, the steady-state position d u e s  for each of the current plateaus was 

plotted against the corresponding steady-state temperature. These points were 

then joined by straight line segments. The resdts, shown in Figure 5.7, show 
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. . 

Data Point 

Figure 5.5: Wiping Out Test Input and Nested Branches 

strong support for concluding that the temperature-strain characteristic of the SMA 

actuator does satisfjr the wiping out property. On the lefi, the response is shown uo L 

to the end of segment A. The first four nested branches are traced. On the right. 

the entire response is shown. and the branches traced in response to input segment 

B coincide with those of segment A. 

The andogous graphs for the tw-wire actuator are shown in Figure 5.8. It cari 

be seen that they also support the application of the Preisach modd. 

5.3.2 Congruent Minor Loop Test 

The results of the congruent minor loop test of the one-wire actuator are shown in 

Figure 5.9. The first plot shows the temperature input designed to generate two 

minor loops which, if the system displays the congruent minor loop property, should 

have the same shape. The fist minor loop is traced by input segment A, while the 

second is generated by B. The intervening peak has the efKect of shiRiag the second 
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One-Wire Actuator: wiping out test output 

Current input 

'1 

O U 
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Measured Output 
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Figure 5.6: One-Wire Wiping Out Test Output 
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Figure 5.7: One-Wme Wiping Out Test Hysteresis 
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Figure 5.8: Two-Wire Wiping Out Test 
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loop upwards. The actual curent input and measured output are also shown in 

Figure 5.9. Once again. the plateaus reflect the t h e  required for the position to 

stabilize. The ha1  plot is the input-output graph. obtained in the same manner 

as for the wiping out test. The sections of the output corresponding to the two 

minor loops are shown in different line styles in order to distinguish them fiom each 

other and boom the major loop. Although the loops are not exactly congruent. thek 

general shapes are similar. The congrnency is similar to that which was observed in 

[27]. Figure 5.10 shows the results of this test for the dinerential actuator. Better 

congruency is seen in this case than for the one-wire actuator. 

Congruent Loop Test Input 
100r u 

- - 

Data Point 
Measured Output 

1 
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O 1000 2000 3000 
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Figure 5.9: One-Wire Congruent Mior  Loop Test 
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Figure 5.10: Two- Wwe Congruent Minor Loop Test 
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5.4 Mode1 Identification 

The mode1 identification section is divided into three subsections. The first sub- 

section presents the experimental identification data. In the second subsection. a 

surface g(a. P )  is fit to the identified data. This surface is then differentiated to 

obtain the approximate weighting function p(a. /3). The results are discussed in 

the final subsection. 

5.4.1 Identification Data 

One-Wire Actuator 

The range of input currents for the one-wire actuator is [O, 11 Amps. A current 

of 1 Amp corresponds approximately to a steady-state temperature of 175°C. The 

temperature input range was divided into the partition 

{Ti) = { 0.0 1.7 7.0 15.7 27.8 43.5 62.7 85.3 111.4 141.0 174.1 )- 

A temperature sequence, s h o w ~  in Figure 5.11, was then constmcted to generate 

the nine FOD curves. 

The measured outputs of the corresponding FOD c w e s  are shown in Figure 

5.12. Data points are joined by line segments to show the general shape of the 

hys t eresis . 

Several observations can be made regarding these curves. FLst, although it 

is not easily seen from the figure, the FOD cuves do not cross within the major 

loop, even in the bottom "knee" . Second. motion is achieved at lower temperatures 

than expected. Findy, the shape of the curve is somewhat skewed. The last two 

observations can be partially explained by the use of the average resistance value 
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One-Wire Identification Input 

Figure 5.11: One-Wie Identification Input 
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of the hysteresis and narrow the bot tom. 

Two-Wire Actuator 

For the two-wire actuator, the range of input currents is [-1,1] Amps, correspond- 

ing to temperatures of approxkately [- 185,1851 degrees above ambient . This 

temperature range was partitioned into 

and a temperature input sequence similar to that of Figure 5.11 was constmcted. 

This input was applied using the steady-s tate technique previously desaibed, gen- 

erating eleven FOD m e s .  The measured ontputs and the corresponding first 
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order descending curves are shown in Figure 5.13. 

One-Wire Achrator: Measured FOD Data 
14 r 1 1 i 1 t 1 1 

Figure 5.12: One-Wire Measured FOD Data 

It is apparent fÎom this data that the actuator was not fidy exercised: higher 

temperatures should have been used. Because of this, the lower end of the FOD 

curves do not merge. EOIR the angle at which the major ascending branch a p  

proaches the npper FOD curve, the npper limit is Ueiy not reaching saturation 

either. Projecting the curves to the left of the data shows that a temperature range 

of [-250,2501 may have been more appropriate, although this seems excessively 

high for NiTi wire. 

Figure 5.14 shows the-dimensional plots of the FOD data for the one- and two- 

wire actuators. In order to determine the weighting functions for these systems, a 

surface i j (a.P) is fit to each measured FOD data set, then diffaentiated to obtain 

f i -  
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Figure 5.13: Two-Wire Measured FOD Data 

OneWire Actuator: FOD Fit Data Two-Wire Actuator: FOD Fit Data 
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Figure 5.14: Three-dimensional FOD Fit Data 
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5.4.2 FOD Surface Fit 

Previous at tempts to fit a polynomial surface to FOD data for SMA have failed[29], 

mainly because the FOD c w e s  genaated by SMA wke have three regions with 

distinct slopes. Low-order polynomials are unable to properly mat ch t his behaviour . 
While polynomial surfaces of higher order may efTectively match the measured data 

points. t hey may exhibit highly osc~a tory  behaviour between points. This codlicts 

with the smooth behaviour observed experimentally, and has serious implications 

if the surface is to be dinerentiated to obtain 6. 

While it is undear what type of three-dimensional surface might best fit the 

data, experience shows that the individual FOD curves might be well-approximated 

by an exponential c w e .  In one of the initial works on modelling of SMA hysteresis[32], 

two curves of the form 

were used to simulate the major loop of the hysteresis. Equation (5.4) saturates 

asymptotically at both 1ow and high values of u. The parameter X I  determines the 

upper saturation value, while x2 and x3 control the dope and point of idection of 

the central portion of the curve. 

A more recent work[41] used cuves of the same form to achieve a good qualita- 

tive match of minor loop behaviour as well, by dowing the parameters of the curve 

to vary as a function of alloy phase. In [2], it has ben proposed that the hysteresis 

relay 7 be replaced with two shifked ''ridgen hc t ions ,  sirnilar in behaviour to (5.4). 
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Curve Fitting 

To determine an appropriate form of a candidate three-dimensional surface i (a.  8). 
a leas t-squares fit of the function 

bl 
"(') = 1 + e-kt(8+&3) + b4 

is perfomed for each FOD c w e  (constant a). The offset is added to d o w  a 

match of the tw-wire FOD curves, which are negative in the lower range of a. 

A candidate surface is then determined by looking at how the parameters of the 

resulting family of curves ij,(p) vary as a fimction of a. 

A Nelder-Mead simplex algorithm[48], as implemented in the MATLAB fmins 

command. was used to do a least-squares fit. The results are shown in Figure 5.15. 

A good match is achieved, except for FOD c w e s  with few data points. in which 

case the simplex algorithm used failed to converge. This is thought to be due to 

the linearity of the data points on these curves. For the type of curves being fit. 

this may result in many minima, close together in parameter-space, causing the 

algorithm to fail to converge. 

Candidate Surface 

The initial proposed candidate surface, denoted tj', is of the form 

An offset is added 

b l ( 4  g'(a.p) = i d P l  = + e-h(P)(@*(a)) 

to this surface in the next section. The Mnation of the param- 

eters bl to b3 of &(P)  as a fanction of a is shown in Figure 5.16. 

The function bl (a) was assumed to be another exponentid curve: 
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One-Wire Actuator: FOD Curve Fit Two-Wire Actuator: FOD Curve Fit 

alpha beta alpha beta 

Figure 5.15: FOD Curve Fit 

The range of b 2 ( a )  is s m d ,  especially in the two-wire case, and nearly constant 

for most a. The exception is in the one-wire case, where the point b2(27.8)  is 

approximately double b 2 ( a )  at the rest of the points. In the interest of keeping 

the number of fit parameters small, it was assumed that b(a) = 2 4 .  The error in 

assuming constant may be mitigated by the fact that the multiplier b, is s m d  

for low values of a. 

Three types of functions were t&d for 4(a):  constant, parabolic, and decaying 

exponentid. The form of the surface becomes 
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One-Wire Actuator: Parameter Variation as a Function of alpha 

- 
O 100 200 O 100 -30- 200 O 100 
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alpha alpha 
Two-Wire Actuator: Parameter Variation as a Funch'on of aipha 

20 
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Figure 5.16: Parameter Variation 
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Before proceeding with the surface fit. the surface ij' is rnodified to obtain the final 

candidate snrface ij. The following modifications guarantee a perfect match of the 

mode1 wi th the experimental output saturation values. 

Modified Candidate Surface 

Maximum output saturation occurs for increasing input as the input reaches û. 

the maximum identification input value. If the input is increased to ü and then 

decreased to g. the minimum identification input value. the major loop is traced. 

So the minimum output saturation value is y@, g). Since the FOD curves merge 

at this saturation value is reached on every FOD curve, so that y(a. 14) = y@, g) 

for all a. In order to guarantee a match of these saturation values. constraints are 

imposed on the surface so that y(û,ri) = y ( ü , ~ )  and i (a ,g)  = y(G,g) for all  a. 

The values y@, u) and y(%, g) were measnred during the identification process as 

Yîz =d Yüü- 

The match of the lower output saturation value is easily achieved by adding an 

offset to the surface: 

In order to match the upper output saturation value, zl is removed as a pa- 

rameter fkom the minimization, and is instead compnted as a function of y (ü ,  ü), 

y(ü,g) and the other parameters 22, 23, x4, and f: 
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The final form of the candidate surface was 

The notation &, ijp and ij. is used to refer to the surfaces which result when f 

is chosen to be constant. parabolic, or exponential, respectively. It is easily seen 

that. for any choice of f ,  ij(û. Z) = y (q ü) and g(a. g) = y(ü, g). 

Surface Fit Results 

The measured data values y, correspond to points on the ascending branch of the 

major loop. and values rd to the descendhg branch of the major loop. In order 

to encourage matching of the rest of the major loop, a weighted least-squares error 

function was used. penalizing enors at points on the major laop by a factor of two 

compared to errors inside the loop. 

The result of this weighted least-squares surface fit for ij,, ij, and ij, are shown 

in Fiopres 5.17 and 5.18. The measured data points are indicated in the figure, 

and it is seen that the match is good. As expected, the surfaces match exactly for 

,8 = and at (Ti, ü). The details of the surface parameters are shown in Table 5.1, 

dong with the standard and weighted least-squares error for each surface. 
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Constant f 

alpha 

alpha 

Parabolic f 

A 

beta 

beta 

Exponential f 

alpha 0 -0 beta 

Figure 5.17: One-Wiie FOD Surface Fit 
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Figure 5.18: Two-Wire FOD Surface Fit 



actuator 

surface 

weighted error 

standard error 

Table 5.1: FOD Surface Fit Data 
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5.4.3 Weighting Surfaces 

Dserentiating the surface which iesults fiom the mode1 identification gives the 

weighting surface for the one-wire actuator: 

The surfaces jïc, f i p  and ge for the one-wire actuator are shown in Figure 5.19. 

The twewire weighting functions are shown in Figure 5.20. 

In Chapter 4, several classes of weighting function were defined. It was seen that 

for those in M p ,  the Preisach mode1 was continuous on Co and on the Sobolev space 

W:. It is interesting to determine to which of these classes each of b,, & and +, 
belong . 

Obviously, by the choice of @(a, P ) ,  each of the weighting functions is continuous 

and bounded over PT, so fi  E M PC. The plots of Figures 5.19 and 5.20 clearly show 

(5.5). ij, can be written 

with 

Since ~ ( C I Z )  > y(2i724) and ü > g, cl > O. Differentiating to obtain fic: 
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Constant f 
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Exponential f 
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Figure 5.19: One-Wiie Identified Weighting Surfaces 
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Constant f 
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Exponential f 
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Figure 5.20: Two-Wie Identified Weighting Surfaces 
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and fic 2 O for all (a, 13) if zzzr > O. This is the case for both actuators (cf. Table 

5.1). so fi, E M p .  Table 5.2 sumarizes these results. 

I 

pEMPc 1) Yes Yes 1 Yes 

Table 5.2: Weighting Surface Categorization 
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5.5 Mode1 Verification 

ln order to venfy the models, the output to the identification input sequence was 

simulated for each of the derived weighting functions. The results are shown in 

Figures 5.21 and 5.22. The measured FOD data are plotted in the figure and 

joined by dashed line segments to represent the experiment al hys teresis. 

As expected, output saturation values are matched exactly for each curve of 

the one-wire model output. The twewire actuator was not hilly exercised during 

identification, so that the measnred FOD curves do not merge at g. In the surface 

fitting for this actuator, the mean value of the measured y ( a ,  TL) was used as the 

negative saturation output. It is this mean value (cf. Table 5.1) which is matched 

by the simulation. 

In order to secure a merge of the simulated two-wke FOD cunres at IL, the model 

output is significantly low in the bottom %me". This demonstrates model inaccu- 

racies which resdt when the fidl hysteretic range is not used during identification. 

Constant f 

For both actuators. the surface i, had the largest fit enor to the measured FOD 

data. This weighting function also provides the poorest qualitative match of the 

t h e .  The shape of the upper minor loops is similar to that seen in experiment. 

The lower minor loops, corresponding to s m d e r  values of a, do not match as well. 

This is expected, since it is at lower values of a tbat b ( a )  and b3(a) deviated most 

from t heir assumed constant form. This is particularly true of b, since it determines 

the point of idection of g&?) By setting b(a)  = 2 5 ,  the points of inflection of the 

descendhg c w e s  are constrained to a vertical line in the Uiput-output plane. In 

the one-wire case this is around 20, and -40 for the two-wire response. These match 
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Constant f 

O 50 100 150 200 
Temperature Above Ambient 

Parabolic f Exponential f 

O 50 100 150 200 
Temperature Above Ambient 

Figure 5.21: One-Wire Simulation Output 
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Constant f 

-200 -100 O 100 200 
Temperature Above Ambient 

Parabolic f 

-200 -100 O 100 200 
Temperature Above Ambient 

Exponential f 

-200 -100 O 100 200 
Ternperature Above Ambient 

Figure 5.22: Two-Wwe Simulation Output 
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with the values of as for these actuators in Table 5.1. The simulated response of 

the one-wire actuator also shows some bunching of the descending cunres in the 

upper portions of the hysteresis. 

For the one-wire actuator, the weighted fit error for y, was better than for cc, but 

the unweighted error was slightly worse. It is seen in the output for &, that major 

loop points are better matched than for 5,. which explains the decrease in weighted 

error. The upper curves are not as bunched as with &. However, no significant 

improvement is noted for the lower descending c w e s .  

For the two-wire actuator? the qualitative match using li, was much better 

than that obtained for fi,. Notably, an excellent match is achieved for the lower 

descending curves. 

Exponential f 

In the case of the one-wire actuator, this surface provided the lowest fit errors. and 

also the nicest qualitative output. Although the upper cunres have bunched up 

siightly compared to those resulting fiom &, the reproduction of lower branching 

behaviour is much better. 

For the t w c ~ ~ i r e  actuator, the fit errors were nearly identical for both tj, and 

& , and very lit tle diffaence is seen in the output simulations. 
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5 S.1 Comments on the Differential Actuator Results 

As previously mentioned. the effectiveness of the classical mode1 f o m  in the case 

of the differentid actuator is somewhat surprising. Although the reasons for this 

unexpected result are not yet entirely clear, this section sketches a possible answer, 

using an analysis of the stress-strain crirves of the wires. 

The andysis is done from the perspective of one wire, which is to be heated. 

This wire d l  be c d e d  the 'actuator3. while the other is the "load" . Figure 5.23 

shows the stress-strain cuve  for the martensite and austenite states of the SMA wire 

used in the construction of the differential actuator. The d u e s  were determined 

empiricdy in [40]. Note the characteristic martensite strain plateau, the dope of 

which is exaggerated here for clarity. 

826MPa 

martensite 

s train 

Figure 5.23: Stress-Strain C w e s  for SMA Wire 

In a clifkentia1 actuator, the wires are mechanicdy fixed to each other at one 

end and to the support structure at the other (cf. Figure 5.2). The wires are 

then pre-strained, to 3% in this particular case. Assuming the support structure 
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is sufficiently rigid. the total strain in the wire rernains constant at 6%- h o .  

ignoring dynamic effects, the stress in the wires is the same at any point in tirne. 

The diagram of Figure 5.24 shows the martensite and austenite characteristics of 

the actuator wire (solid), with the martensite characteristic of the load wire flipped 

and overlayed (dashed). Note that for any vertical line, the total strain in the 

actuator and the load is 6%. 

0% 1.36% 3% 4% 6% strain (-1 - 1 I I 

6% 4% 2% 0% strain (- -) 

Figure 5.24: DifFerentiaI Actuator Stress Analysis 

Initidy, when both wires are cool and in the rnartensite state, the operating 

point OP. is at the intersection of the martensite c w e s ,  at 3%. The stress in the 

system is u,. Now, suppose the actuator wke is heated. As it undergoes an interna1 

phase transformation, its stress-strain characteristic changes, shining towards the 

straight-line behaviour of fid austenite. This is represented by the dotted lines in 

Figure 5.24. At any point during the transformation, the operating point is at the 

intersection of the changing actuator characteristic and the load martensite curve. 

The stress in the wires has increased accordingly. 
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The change in wire stress during heating, then. is a function of the dope of the 

martensite plateau for the d o y  employed. Assuming that the &es begin cool. 

both in the martensite state. and one is heated to full austenite, the change in 

stress can be calculated fÎom the values in Figure 5.23. The initial stress is 

If e, is the bal  strain in the wire being heated, then the h a 1  strain in the load is 

(0.06 - r.), and the final stress is 

Solving this for E. gives 

and the change in stress upon heating from martensite to austenite: 

It is hypothesized that this relatively small change in stress, dong with the 

continuons fashion in which it occurs, is at least partially responsible for the ability 

to represent the behaviou of the actuator with a singleinput Preisach model. A 

more detailed investigation of the reasons behind this observation will hopehilly be 

the subject of future research. 
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Summary 

In this chapter. identification of Preisach models for two different SMA actuator 

configurations was considered. It was shown that the actuators satisfy the wiping 

out property quite well. and that comparable minor loops show a certain degree of 

congmency. While it theoreticdy requires an input of infinite length to return a 

system to the anhysteretic state, it was demonstrated using the t w ~ w i r e  actuator 

that this could be achieved to satisfaction using a reasonable input. 

Preisach weighting surfaces of t hree different forms were identified for two shape 

memory alloy actuator configurations. The results Mer fkom exis king literatnre[27] 

in that exponential surfaces were successfully fit to experimental data. The success 

of the classical model in representing the d8"rential actuator configuration is in- 

triguing, since actuator motion produces timevarying stresses in the wires. It was 

shown that the change in stress over the range of motion of the actuator is limited 

to less than 10%. which may account for this result. Std.  farther investigation is 

needed into the mechanisms of this surprising behaviour. 

The advantage of surface fitting over interpolation is that the weighting function 

is known andytically. This is important if the continuity results of Chapter 4 or 

dissipativity result of Chapter 7 are to be applied. It is only with an analytical 

expression for p that the weighting funetion, and hence model properties. can be 

understood with fùll confidence. 

In this case, each identified model was characterized in terms of weighting func- 

tion classes defined in Chapter 4. A positive weighting surface f i ,  was identiiied for 

each actuator, which provided a reasonable model match. However, the best match 

was obtained with ji,, which was not positive over all of PT. 

It may seem counter-intuitive to think of the Preisach weighting fnnction being 
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negative-valued. In the energy ar,ouments of Chapter 7. it will be seen that the 

energy lost in one cycle of a relay is equal to Z p ( a . P ) ( a  - P ) .  Since a > 8. 
if ~ ( a . / 3 )  < O does this mean that this relay generates energy? One possible 

fdacy  in this logic is that relays in the Preisach plane cannot be switched in 

isolation. Rather, they switch in gronps dong horizontal and vertical line segments 

corresponding to boundary branches, as these branches sweep through the Preisach 

plane. Furthmore. it will be seen in Chapter 7 that Preisach weighting functions 

for rnagnetostrictive materials must have some negative regions, so this is obviously 

not precluded in physical systems. This suggests that conditions for the positivity 

of the Preisach weighting function. and indeed a good understanding of what snch 

positivity implies, wodd be an appropriate topic for future 

investigation. 

The fact that tkee  surfaces were identified for each actnator, each having fun- 

damentally different properties in terms of their positivity, suggests the need for 

a more ~ ~ O ~ O U S  identification technique. Recent work has proposed a fiamework 

for the estimation of Preisach weighting surfaces in which existence of a unique 

optimal solution can be shown, and convergent algorithms exist [3]. In the future. 

this approach to identification may provide a more accurate and robust technique 

for determination of the weighting function. 



Chapter 6 

S tat e Space Representat ion 

Chapter 3 discussed the traditional input-output representation of the Preisach 

model. Non-linear input-output stability theory is largely lllnited to systems satis- 

fying the coniùty and sector conditions proposed by Zames[69]. Some hystereses. 

such as those found in magnetic materials, do not satis6 these conditions. As 

a result. the graph of the Preisach model is not, in general, restricted to a sec- 

tor. Because of this, the input-output stability theory which can be applied to 

the Preisach model is limited. The current chapter is concemed with developing a 

state space representation for the Preisach model. By placing the model in a state 

space framework, non-linear s t abili ty techniques such as Lyapunov and dissipativity 

theory may be applied. 

The bulk of this chapter is devoted to defining the state space and the de- 

termination of the state transition operator, in the context of Willems' work on 

dissipative dyaamical systems[65]. It will be seen that the nice graphical properties 

of the Preisach plane can be used by choosing the boundary as the state. 

In Section 1, Willems' definition of a dynamical system is recalled. The state 
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space representation of the Preisach mode1 is developed in Sections 2-4. and prop 

erties of the state space are examined in Section 5. This chapter makes use of 

extensive notation. and tables of nomenclature have been induded for reference. 

They can be found after the summary. in Section 6.6. 

6.1 Dynamical Systems 

The following definition of a dynamicd system is due to W i s .  who f i rs t  intro- 

duced the fomalism used in the study of dissipative dynamicd systems. 

Definition 6.1 (Dynamicd System [65]) 

A (contznuow stationary) dynamzcal system C Ls defied throm$ the sets U, U, Y, Y ,  X 

and the maps q5 and r. These satisfy the following aziom: 

1. U is called the input space and consists of a clws of U-valued finctions on R. 

The set U Ls called the set ofinput values. The space U ii assumed to be closed 

under the shift operator O=; i.e., ifu E U then the fvnction crTu(t) ~ l ( t  + T) 

also belongs to U for any T E R; 

2 y is called the output space and consists of a class of Y-valued fvnctiow on 

R. The set Y is called the set of output values. The space Y is &O ~ s u m e d  

to be closed under the shzft operator; 

S. X is  an abstract set called the state space; 

4. q5 is called the state transition function and i.s a mup fwm R' x X x 24 into 

K. It obeys the folioving azioms: 
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( b )  (deteminism): $(tl ,  t,, x,, ul )  = 4(t t ,  t,. xo, u2) for ail to. tl E R ti 2 

to, x, E X, and al1 ul,uz EU satisfyng ul(t) = u2(t) for all t, 5 t 5 t l :  

(d) (stationan'ty): 4(t l  + T,  t, + T, z,, uTu) = #(tl, to, xo. P) for ail t, E 

R, ti > t,, T f R, 2, E X, and u f U; 

5. r is called the read-out function and is  a map fiom X x U znto Y; 

6. the Y-vahed fvnction r(+(t .  t,, x,, u) ,  u ( t ) )  d e f i e d  for  t 2 t ,  is. for  ail x, E 

X, to E R. u E U, the restriction to [t,, oo ) of a function y E Y .  This meaw 

that there ezists an element y E y such that y(t) = r(#( t ,  t,, xo, u) ,  u ( t ) )  for  

Willems points out: 'It should be emphasized that the read-out hinction is 

required to be a memory-less map in the sense that the output only depends on 

the present d u e  of the state and the input. All dynamical effects (ie., those 

phenornena involving memory) are reqnired to be taken care of by the state." 

Although the dynamical system framework is used to establish the state-space 

representation for the Preisach model, the reader is reminded that the model is, in 

fact, static. That is, the behaviour depends only on input extrema, and the order 

in which they occur. As a result, it will turn out in much of what foilows that time 

is rather arbitrary. This d l  be true for any representation of the Preisach model 

in isolation. 

The following sections set out a state space fkamework for the Preisach model. 

First, the input, output, and state spaces are defined. An intermediate space S, 

which will be used in the construction of the state hamition operator, is then 
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introduced. and mappings between the spaces U. S and B are defined. Finally. the 

state transition function q5 and read-out faction T are defined. and it is shown that 

both functions satis& the axioms of Definition 6.1. 

6.2 System Spaces 

6.2.1 The Input Space 

Let Co denote the space of real-valued continuous functions defined on the bi- 

infinite real h e .  The input space U is defined, for some system-dependent û > 0, 

as 

L/ {U E Col Iu(t)l 5 û V t  and lim u( t )  =O) .  
t+-00 

U is obviously closed under the shift operator. For any interval [to, t l ]  in R. the 

notation ~ [ ~ ~ , ~ ~ l  denotes the restriction of u to [to, t l] .  The notation U[to, ti] denotes 

the set obtained when every element of Li is restricted to [to, t l] .  

The input restriction (u(t) 1 5 Û allows the Preisach plane to be bounded, as 

in Chapter 3, and arises naturally in systems where input signals are subject to 

saturation. In the context of previous chapters, û = max(luntl, (uTtl). 

R e c d  that at any time t, the point in P. where the boundary intersects the 

line a = is (a( t ) ,  u( t ) ) .  The initial boundary B', at t = -cm, is assumed to be 

the line a = -p, which intersects cr = /? at (0,O). Since the Preisach mode1 is not 

defined for piecewise continuous inputs, the limitation 

iim u( t )  = O 
t 3 - a  

is required to preserve the continuity of the input at this initial condition. 
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6.2.2 The Output Space 

The output space Y c Co, Y = R. and Y is also dosed under the shift operator. 

6.2.3 The State Space 

In defming the state of the Preisach rnodel it seems logical to look to the Preisach 

plane. since that is where the memory of the model is 'storedn. There are a number 

of possible choices for the state space. For instance: 

the set of all possible configurations of the continuum of relays in P; 

a the set of all bonndaries which separate the above relay configurations; 

0 the set of all alternating sequences of extrema which generate those bound- 

&es. 

Each of these choices stores the complete memory of the system, as required by 

the dynamicd systems formalism. In fact, they are equivalent in that each can be 

generated from the other. However, the choice of the boundary as the state resdts 

in a nice graphical interpretation of state dynamics. 

In characterizhg the set of ail boundaries, it is us& to r e c d  some of the key 

boundary features fÎom Chapter 3. It was seen that Preisach boundaries are non- 

increasing "staircase" graphs in P, composed of horizontal and vertical segments, 

with possibly one diagonal segment corresponding to the initial condition. As in 

Chapter 3, the input restriction u( t )  E [-û,û] further b i t s  boundaries to those 
A contained in the triangle P, C P defined by P, = {(a$) E Pl - 6 < P 5 a 5 

Û }  The assumption that the initial boundary is a = -B, dong with this input 

restriction, means that ail bonndaries contain the point (-6, û). The followi~g 

definition characterizes the st ate space in terms of t hese properties. 
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Definition 6.2 (The State Space) 

The date  space B is defined to be the set of (possibly multivalued) contanvous graphs 

B in R2 u~hose points (B. B ( P ) )  satisb the following properties (for ail valves of 

B(P)I: 

( B P I )  bounded input restn'ctzon: -Y 5 P < B(P) 5 û: 

(B P 2 )  initial condition: B(-6) = û; 

( B P 3 )  non-increasing: B(P2) 5 B ( a ) ,  Vp2 > a. 

This definition encompasses all the characteristics of Preisach plane boundaries, 

and fits Willems' definition of a state space. In addition, it purposefully includes 

c w e s  which are bounded and non-increasing, but not necessarily made up of hor- 

izontal or vertical line segments. The inclusion of these elements completes the 

space, as will be seen in Section 6.5.4. 

Note that (BP2)  implies that every boundary contains the point (4, a). There 

is a subtlety which arises as a result of this, which is illustrated in Figure 6.1. The 

boundary on the left is not a member of B, since it does not include (-û,û); the 

boundary on the right does, and is an acceptable state. While the two are equivalent 

in terms of the resulting output, the inclusion of the point (-6, û) will facilitate 

the mathematical details of Section 6.5. 

Zero EIement 

It seems logical in choosing a zero element in B to be guided by the idea of minimum 

energy. Li discussing energy storage in the Preisach mode1 in Chapter 7, it wil l  be 

seen that there is no unique state of minimum stored energy. However, in the 
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Figure 6.1: Effect of the Initial Condition on the State 

anhysteretic state, no remnant hysteresis is present in the system, and zero input 

gives zero output. It wilI be seen in Chapter 7 that this is in fact a state of zero 

stored energy. Since it is aiso assumed to be the initial state of the system, it is 

iogical to choose this as the zero state, denoted 

6.2.4 Reachability 

In control theory, the success of a control problem often relies in part on the ability 

of the con t rok  to move the system to a desired state by applying an input. This 

concept is known as reachability. 

Definition 6.3 (Reachability ) 

A system C is said to be kachable from z, ' if for every x E X there ezLsts a tzme 

t < a, and an admissible input u E U(t , ,  t ]  such that 4(t ,  + t ,  t,, z,, u) = z. If C is 

reachable fiom every z, E X, it is said to 6e "reachable". 

As the input to the Preisach mode1 evolves, it generates boundaries composed 

only of dternating horizontal and vertical segments, plus a segment of the line a = 



-p if any memory of the initial condition remains. One such boundary is iUnstrated 

in Figure 6.2. However. boundaries in B may contain segments of arbdrary negative 

slope. For fiaite time T. there is no input in U( - w, T] which c m  generate such a 

segment exactly, so the entire state space B is not reachable. 

Figure 6.2: Example of a Reachable Boundary 

The reachable subspace of B can be defined as follows. For n 2 O, denote by Bn 

the set of aIl boundaries B E B for which there exists a real nurnber Po E [-ù, 01 

such that B(P) = -/3 for all p 5 0, (segment of slope -1), and which consist of n 

connected alternating horizontal and vertical segments for ,û > Po. For example. 

the boundary of Figure 6.2 is an element of B3. Note also that Bo = B'. Any 

B E B" can be reached hom B* by an input having n input reversals over (-00, Tl, 

for any T < m. Then the subspace of bonndaries which is reachable b m  B* is 

the set of all "staircase" boundaries with a finite number of %airsv. The reacha- 

bility properties of B wiu be further discussed in Section 6.5.2. 
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6.3 Reduced Memory Sequences 

In this section. the intermediate space S of reduced menory sequences is introduced. 

dong with mappings between S and the input and state spaces. These mappings 

will be used in the next section to constnict the state transition operator. 

6.3.1 Memory Sequences 

Branching in static hystereses occurs whenever the input switches direction. at 

input extrema. In general, the output of a static hysteresis is dependent at any 

particular time on the current input value as well as the values of all past input 

extrema. A hysteresis "remembers' the effect of these past input extrema, and the 

set of previous extrema form a memory sequence[64]. The wiping out property of the 

Preisach model implies that the dependence of the output on previous input extrema 

is restricted to a particular subset of the memory sequence. This subset is referred 

to by Mayergoyz as the set of dominant input e z t~ema[43 ] ,  and by Visintin[64] as 

the reduced memory sequence. The terminology of Visintin is adopted here. 

The wiping out property was desmbed in Chapter 3. In essence, any input 

maximum which exceeds previous maxima wiU wipe out the memory of those mar- 

h a ,  and minima can be similarly "wiped out". At a given time t. only certain 

past extrema are retained and d e c t  the output. They form an alternating set of 

input maxima and minima, in which each maximum is s m d a  in amplitude than 

the previous one, and each minimum is larger than the previous one, until the two 

senes converge at u(t). Since the boundary corners are defined by these extrema, 

this results in the characteristic "staircase" appearance of the boundaries. 

Examples of the const~ct ion of the reduced memory sequence associated with 
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an input can be found in [e-g. 43. 641. The following construction is based on that 

of [64]. 

For any input u E U ( - m .  Tl and any r 5 T, set so = O and q = maxté(-m,r] lu(t)(. 

This is well-defined. since hl,-, u(t ) = O. Let tl = max(t E (-m. T ]  1 Iu(t) 1 = q) .  

and defme the elements si (i= 1.2. . . .) of the reduced rnemory sequence s (u. r ) as 

follow s : 

terminating the sequence if ti = r. 

Note that the values s; are well-defined: by definition of si-1 in (6.1), u ( t )  > 

si-1 (or ~ ( t )  < over (ti-1, T I .  Since u is ~~nt inuous ,  the reqnired maximum 

(or minimum) is well-defined. The times t; are similarly wd-defined, since the 

maximum is being taken over a non-empty set and T is finite. The sequence { t i )  

is merely used to constrnct { s i ) ,  and then discarded: the t h e  at which extrema 

occur is of no significance in the Preisach model. 

If the input u has a finite number of extrema in (-=,TI, the above sequence 

has finite length N, t~ = r and u(t,) = u(r). In this case, the tail of the sequence 

is formed by setting si  = SN for i > N. If the seqnence is infinite. then setting 

t' = sup{t;), the input u must be constant over [t', r]. Note that in both cases, 

The elements of the seqnence s(u, T) change depending on the thne T at which 

the reduced memory sequence is computed. Figure 6.3 shows the reduced memory 

sequence s(u ,  t i )  for a sample input u at various times. 
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Figure 6.3: Example of Construction of Reduced Memory Sequences 

This section will make use of the notation 

which, for any reduced memory sequence s(u, T ) ,  is the index beyond which v 

is constant and equd to u( r ) .  If u has a finite nnmber of extrema in ( - q r ] .  

then N(s (u .  T ) )  is finite: otherwise, N ( s )  may be infinite. Also. for any sequence 
A 

s = {s i } ,  let se and JO denote the even and odd subsequences se = { ~ i ) ~ = ~ , ~ , - - -  = {sr) 
A 

and s0 = {si)i=l,s. ... = {J:). 

Definition 6.4 (Space of Reduced Memory Sequences) 

The space of reduced memory sequences, S c l,, is cornposed of al1 sequences s wàth 

I I  slim 5 û, and ~ O T  which the even subsequence se and odd subsequence s0 satisfy 

1. se is strictly decreaszng (strictly increaing) up to N ( s ) ,  and constant there- 

after (if N ( J )  i.s jînite). 

2. so is sttictly inc~eusing (strictly decreasing) up to N(s), and constant then- 

after (if N ( s )  is finite). 
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F , : U c , S  

For =y t h e  r < and any input u E U(-m.  r] ,  the reduced memory seqnence 

F,u = s(u.  T )  is dehed  as in (6.1). 

F , ' : S H U  

The reduced memory sequence ~ ( u .  T )  captures only the information regarding ex- 

trema of u(-,,,l. There are therefore an infinite number of inputs u; # u satisfjring 

F,ui = F,u. Hence, Fr is not one-teone, and the inverse mapping is not defined. 

However, these inputs are equivalent in the sense that they generate the same 

reduced memory sequence. The operator E: : S ct U(-oo, r] is defined by con- 

structi~g, for any s € S. an input which is representative of this class of equivalent 

inputs. 

For any s ( - , r )  E S, let N ( s )  be defined as in (6.3). It is required to construct 

an input u E U(-OOJ] with extrema equal to the elements of s and satisfjring 

u(+) = lim{s;). Note that N ( s )  could be infinite. Choose any to < r ,  and let { t ; )  

be a partition of [to, T ]  defined for all i 2 O by 

Note that k,, ti = T .  Set so = O and define u(t)  on (-oqr] by straight-line 

interpolation between the points (t;, s i ) :  

The resulting output u E U(-m, r] has extrema corresponding to elements of 

s(*. T ) ,  and 
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Define the concatenation operator O on Co x Co by 

Lemma 6.1 

The operators K .  F '  satisfy the following propertzes. for any r < m. 

1. F: is a right-inverse of Fr: for any s E S. F,F:s(*,T) = & Y ) .  

2. F, is detemzniJtic; that is, for any T < oo and ul, u2 E U(-oo, r] sat.isfya'ng 

u1 (t ) = u2( t )  mer (-CQ, r] , then F,ui = F,u2. 

3. For a n y  u E U( -CQ, TI the composition F: FT preserves the continuity of the 

input for eveq  r < T: that is, 

4. For any T > r and u E U(-oo. Tl, the composition F:Fr satisfies the identity 

1 Property 1 )  

This property is satisfied by definition of F;. For any s E S, the extrema of 

u = F:s(=, T )  are exactly the elements of s, so F,u = F , c s ( * ,  r )  = s(-, T ) .  

Since ul(t) = u 2 ( t )  over ail of (-w, TI, then in particular th& extrema over this 

interval are equal. Since FT constructs a sequence based ody on the extrema of an 

input over (-00, T I .  Fzul = Fru2. 
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1 Property 3 1 
Choose any u E U(-W. Tl. r < T. Let the reduced 

s(u.r) = F,u. and the input which is reconstnicted 

rnernory sequence at r be 

from S(U,T) be ü = F . s .  

From the partition (6.4) used in the construction of 6, hi,, ti = T and fkom 

(6.5). Ü(r) = liw,, si. But fkom the definition of Fr (6.2), lim;,, s; = u(r). So 

G ( T )  = r (r )  and FJFr~Ou(cq E U(-oo. Tl. 

1 Property 4 J 
For any u E U(-m, Tl, let ü = F:F,U(-,,,~. By construction, ii contains all of the 

same extremum information as u(-,,,j. From Property 3. GOzl(,r] E U(-=. Tl. so 

F T ( i i ~ ( , , q )  is defined. Then üOu(,,q has extrema identical to those of u[-,,q1 

so the identity (6.6) holds. 

The following two subsections define mappings between reduced memory se- 

quences and boundaries. 

G : S - t 3  

For any reduced memory sequence s(u, r) E S, the elements of s d e h e  the corners 

of the corresponding boundary G(s) as follows. For all i < oo, define the set of 

points pi E R' 
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and the h e  segments Pi joining pi to p;+p Define 

s 

G(s) = U Pi. 
;=O 

Note that if N ( s )  < m, then for all i > N ( s ) ,  

If N ( s )  is infinite. then the boundary G(s)  has an infinite number of corners pi. In 

this case, since 

t hen 

In both cases, the result is as expected for the Preisach model: the boundary at 

time r intersects the iine a = ,û at the point (u( r ) .u( r ) ) .  

Note that the range of G, Ra(G), is the set of all boudaries B E B which 

have a finite or countably infinite nurnber of alternathg horizontd and vertical 

segments. This set is not quite B, since 8 also contains non-increaping c w e s  of 

arbitrary negative slope. This wiu be furt her discussed in Section 6.5.2, once the 

concept of distance in B is introduced. It wiU be shown that for any B E B, there 

is a boundary in Ra(G)-in fact, in B, c Ra(G)-which is arbitrarily close to B. 

G-* : &(G) H S 

For every sequence s E S ,  the boundary G(s) is unique, by definition of G. Since 

G is obviously onto Ra(G), the inverse mapping G-' : Ra(G) H S exists. The 
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construction of a sequence s E S from any boundary in B E Ra(G) is defmed as 

follows. 

Let N - 1 be the number of horizontal and vertical segments of B. Then N 2 1 

and N may be infinite. Set pi = (al. A), the coordinates of the right endpoint of 

the diagonal segment (if none exists. set pl = (-â,û)). For i = 2, .  . . . N. let pi 

be the coordinates (ai, pi) of the N remaining corners of the boundary. If the first 

segment is horizontal, set 

and if the f i s t  segment is vertical. set 

The resulting sequence contains N elements. If N < oo, as in the example of Figure 

6.6. the reduced memory sequence is completed by setting the tail to y = SN for 

a l I i > N .  

From the definition of G, the construction outlined above is the inverse of G, 

G-' : Ra(G) ct S, and GG-' = G-'G = I .  

H : : U ~ B  

HT : Ro(G) ++ U 

The mappings ~f : U ct B and K. : Ra(G) * U are dehed as the compositions 
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Figure 6.6: Construction of s from B 

Lemma 6.2 

The opetators H,, Hf sut* the follovring propertàes. fo r  any T c oc. 

2. H: Ls detertnznistic: thot is. for any r < m and u l ,  ~2 E U(-m .  T] satzSfying 

u l ( t )  = u z ( t )  ove+ (-m. r ] ,  then H;ut = Hfu2. 

3. For any T > r and o E Li(--, Tl, the operators satisfy the identzty 

H$ [ ( ~ r ~ : u ( - w , r ~ )  = x$u- 



Since Fr is deterministic. then for any two inputs u,, ul E U(-oo. r] satisfying 

ut@)  = u&) over (-m. r]. 

Applying Property 4 of Lemma 6.1, 

6.4 State Transition and Read-Out Operators 

6.4.1 State Transition Operator 

The state transition operator # determines the state B = q5(tl, t,, Bo, u) which 

results fiom applying aa input u E U[to, t l ]  to a system in state Bo at time to. 

Since the Preisach mode1 is only defined for continuous inputs, it is imperative that 

u be continuous at t, with the input up to that point. This prompts the following 

definition of admissibility. 
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Definition 6.5 (Admissible Inputs) 

An input u E U(to ,  T] ts said to Le admissible for state Bo if, for any input u' E 

U(-oo. t,] sach that Bo = #(to, -m. B', u') . ui -,,, olOu(to,q is in U(-m.T]:  thot 

is u(t*) = u9(to). 

This concept of admissibility is presented in more detail in [57]. 

It is nonsensical, when writing 4 ( t l ,  t,. Bo, u), to consider inputs which are not 

admissible to Bo, or states Bo which are not reachable. The state transition operator 

is defined. and the axioms proven. under the assumptions that initial states Bo are 

reachable and inputs u are admissible for the state to which they are applied. While 

this interpretation is not explicitly clear fkom Definition 6.1, it can be found in other 

similar defini tions [e. g. 571. 

The state transition operator 4 is defined using the mappings introduced in 

Section 6.3. Given some interval [to, t l ] ,  some reachable initial state Bo at time t,, 

and some input u E U [to, tt]  admissible at Bo, the procedure to determine the state 

$(t l ,  t., Bo, u )  is as follows: 

1. determine the memory sequence corresponding to the initial state: s(-, to )  = 

G-l Bo, 

2. constmct an input u, E U(-co, to] which generates s(-, to): uo = FGs(=, to) ,  

3. concatenate the inputs u, and u to form ii = uoOu E U(-oo,tl],  

4. determine the corresponding boundary B1 at time t l :  Bi = GFt, 8. 

Thus, the state transition hinction 4 is given by 
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6.4.2 State Transition Function Axioms 

It is now proven that q5 as defined in (6.8) satisfies the axiorns required of a state 

transition function, 
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by Property 3 of Lemma 6.2. But 

and so 4 satisfies the semi-group property. 

to show that 

fi' = u l ~ ( t o * t , ~ ,  

Üa = utO~T~(t , , t1  J -  

Equation (6.9) can be written 
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and q5 is stationary. 

6.4.3 Read-Out Function 

The read-out function r gives the system output which corresponds to a particular 

state B. In Chapter 3, the output was written as 

where P+(t) and P- (t) were the regions of Pr where relays were in the +1 and -1 

state. respectively, at time t .  At any tirne, these regions can be determined fiom 

the boundary B. The operators P+ and P- on B are dehed so that P+ B = P+ 

and P-B = P-: 

P+B is the set of ail (a$) E P which lie below or to the left of the graph of B in 

P, as w d  as the points on the graph of B. 

P- B is the set of aU (a, P )  E P which lie above or to the right of the graph of B 

in P. 

Then the read-out function r : B H Y is given by 
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6.5 Properties of the State Space 

This section is devoted to elucidating some of the properties of the state space B. 

An isomorphic space which is more familiar than B is introduced. Where it is 

more efficient. the subsequent analysis makes use of this relationship. demons trating 

properties of 23 by showing they hold in B. 

Define an isomorphic rnapping on R : R2 ct R* by 

The eEect of this mapping on a boundary B E B is illustrated in Figure 6.7. 

R 

Figure 6.7: The Rotation Mapping R 

Essentidy, the rotation R maps elements of the state space B to the set of 

functions which are Lipschitz continuous on [-&,O], with Lipschitz constant 1. 

While elements of B may be graphs of multivalued functions of ,û, these rotated 

boundaries cannot be multivalued. This simplifies proofs for some of the results 

which follow. Since isomorphisms preserve distance, properties related to distance 

are shared by B and B: what can be proven for 8 also holds for B. 



CHAPTER 6. STATE SPACE REPRESENTATION 

Claim 6.3 

For any B E B .  the points of the rotated graph 

satisfi~ the follouring rotated boundary conditions: 

(&PI) bounded input restriction: la(j)I 5 fiû + 6. f i  5 0: 

( & ~ 2 )  initial condition: B(-&i) = O ;  

Proof 

For any B E B, the points (/3, B(P))  satis& properties (BPLBP2). and are rekted 

to points of B by 

Property (BPI) resdts directly fiom substituting (6.10) into (BPI), and in turn 

implies ( B P ~ ) .  Although property ( B P ~ )  can be proven by considering all possible 

violations of the Lipschitz condition and showing these contradict (BP3), a graphi- 

cal argument is mnch clearer, if less rigorous. Suppose that some portion of a curve 

B, satisfying (BPI-BPZ), has a dope whose magnitude is greater than unity. When 

this cuve  is rotated, the resulting boundary B = R-' B has segments which are 

increasing, as shown in Figare 6.8. This is in contradiction with (BP3), and shows 

that ( B P ~ ) = + B P ~ ) .  
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Figure 6.8: Violation of the Lipschitz Condition 

This result shows that the state space B is isomorphic to a space l? C c'[-fi& O]. 

This fact will be used in demonstrating several properties of the state space in the 

following subsections. 

6.5.1 Metrizing the State Space 

Introducing the notation PBlB2, indicating the region in P bounded by the graphs 

BI ,  BZ and the line a = ,8, the state space can be given a metric defined by the 

area between two boundaries, 

Since the mapping R preserves distance between points in R ~ ,  the area between 

any two boudaries BI and B2 is equal to the area between & and 4, which is 

computed as 

This is illustrated in Figure 6.9. 
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Figure 6.9: The Metric on B 

But every element of 6, is in cO[-&,O], and (6.11) is simply the LI n o m  on 

CO[- a û .  O]. So for any two boundaries in B.  d( Bi. B2) = 11 & - B I  II l, and it is 

clear that d(-, a )  satisfies the properties of a metric. 

It is worth noting that L? (and hence also B) is not a h e a r  space, since scalar 

multiplication is prechded by the Lipschitz condition ( É L P ~ ) .  Although the distance 

function in Ë is identical to the LI nom,  the notation 11-(1, will not be used since this 

wodd imply a normed spaee. The rotated metric space will be denoted (B. d(- .  9 ) )  

to avoid this conhision, with 

6 -5.2 Reachability 

The notion of teachability was introduced and briefly discnssed in Section 6.5.2. It 

was pointed out that the state space was not reachable, and the reachable subspace 

Br was defined. Here, the idea of approximate teachability is introduced. This 

concept is similar to that of approximate controllability for infinite-dimensional 

systems, dehed in [IO]. 
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Definition 6.6 (Approximate Reachability) 

The state space ( X .  d) of a dynamical systern C is sazd to be *approzirnately reach- 

able /rom x, " if. for any x E X and E > O, there ezists a time t < oo and admissible 

input u E U(-oo. t ]  s w h  that d ( z .  # ( t ,  t,, z., u)) < E .  

Theorem 6.4 (Approximate Reachability) 

The state space B is approzimately reachable fmm B*. 

Proof 

Consider any B E B ,  a continuons, non-inaeasing function defined on [-6. O]. For 

any n < m. let {pi)i=o,-..,n be a partition of [-6. O] into n equal subintenals, with 

13, = -6. B can be approximated on 1-6, O] by a function g which is piecewise 

constant over each interval (/3;,Pi+i]: 

Increasing n reduces the LI approximation error, and for any E > O, n < co can be 

chosen so that the area between B and g is less than ~[e-g .  111. 

Since B is non-increasing, the values (g(P;) )  are also non-increasing, and g is 

equivalent in the area metnc on B to a non-inmesing staircase function Bo with 

n horizontal segments. Since n is finite for any E > 0, Bo E B,. So for any B E B 

and E > O, there exists a Bo E Br such that d(B,  Bo) < E .  Since bonndaries in Br 

are reachable from B', the state space B is approhately reachable from B'. i 
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6.5.3 Boundedness 

Definition 6.7 (Boundedness[e.g. 361) 

A rnetric space ( X .  d )  is said to be bounded if, for every pair of states X I .  z2 E K .  

d(zl.z2) < 00. 

By property (BPI). the maximum area between any two boundaries is 2û2. 

Hence. d(Bl .  B2) 2û2 for all BI, Bz E 8, and the state space B is bounded. 

6.5.4 Completeness 

In this subsection. it is proven that the metnc space B is complete. The importance 

of this property will be desaibed after some preliminary definitions. 

Dehition 6.8 (Cauchy Sequence[e.g. 361) 

A sequence (x,} in a m e t n i  space X vi th  metric d(0, a )  is soid to be Cauchy if for 

every E > O there is an N = N ( E )  such that d(x,, 2,) < E for every m. n > N. 

Definition 6.9 (Completeness[e.g. 361) 

A rnetn'c space X ts sazd to be complete if every Cauchy sequence in X converges 

in X .  

Definition 6.10 (Equicontinuity[e.g. 521) 

A fumily of fvnctzons F frorn a space X into a metric space (Y, d) is saàd to be 

equicontinuous at 2, if, for every E > O ,  there e*ts an open nezghborhood O of z, 

such that d ( f ( z ) .  f ( z , ) )  < B for $1 x E 8 and al1 f E 3. If 3 Ls equicontinuous 

for al2 x, E X ,  it is sazd to be equicontinuow. 
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The key point in this definition is that the size of the neighborhood O does not 

depend on f.  

The importance of completeness can now be explained. In many applications. 

it is easier to show that a sequence is Cauchy-that its elements get doser and 

closer to each other-than it is to show that it converges. This is because the 

former requires only knowledge of the sequence itself, while the latter supposes 

some knowledge of the iimit. For an example of an application where completeness 

is important. consider the numerical optimization of a cost fnnction J : X ct R 

over a parameter space X. A minimization dgorit hm generates a sequence of points 

zi in X such that J ( x i )  < J ( x ~ - ~ ) .  and it may be easy to show that { x i )  is Cauchy. 

Then if X is complete, (2;) converges to a unique Limit, Say to z' E X. and 

J(z ' )  = min J(x): the minimization problem has a unique solution in X. However. 

if X is not complete, then the sequence ( x i )  may not converge, and the problem 

could be ill-posed. 

It is now shown that 8 is equicontinuous, and later? that it is complete. Since 

B and 8 are isomorphic, this implies that B is also complete. 

Lemma 6.5 (8 Equicontinuous) 

8 is an equzcontznuow family offinetions mapping [-fi+, O] ct (R. 1 1). 

Proof 

Choose any e > O. Every element of B is Lipschitz continuous with Lipschitz 

constant 1. Setting 6 = E ,  then for any È E and any Po E [-a, O], if IP - 81 < 
6 then 
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Since d is uidependent of B and fl0. the f d y  of c w e s  B is equicontinuous. 4 

Theorem 6.6 (Arccela-Ascoli[52]) 

Let 3 be an equzcontinuovs fumdy of real-ualued fvnctzons on a separalle spacel 

X .  Then each subsequence {f,) in 3 zvhich is bounded at each point (of a dense 

subset) has a subseqvence { fnk) thut converges poantvrise to a contznuow finction. 

the convergence being unzform on each compact subset of X .  

Theorem 6.7 (Completeness) 

The net7- i~  space ( B ,  d )  is complete. 

Proof 

The proof is an application of the Arzela-Ascoli theorem. in which X = [- f i û .  O] 

is a compact subset of R and 3 = 8. Note that X is separable. 

Choose any Cauchy sequence 

B is Lipschitz continuous, so for 

pnc~ii 

and the sequence (a,) is pointwise bounded over X. By the Arzela-Ascoli theorem. 

the sequence {B,) has a subsegaence {&,) which converges both unif'ormly and 

pointwise to a continuous hinction B. But pointwise convergence over compact X 

means t hat 

'A space X is separable if it has a countable subset whieh is dense in X .  in particular. the 

ceal &ne ia separable, since the rationals are countable and dense in R[e.g. 361. 



CHIIPTER 6. STATE SPACE REPRESENTATION 

which in tuni implies that 

/x I&(B) - B ( s ) ~ ~ P  -* 0 

so B,, -+ in the metnc d'on Ë. 

h o .  d is simply the Ll n o m  on CO[-&, O], and LI is the completion of Co. 

Since {Ën) c c'[-&Û. O ] ,  { B ~ }  converges in d to a limit $. Since the limit 

of a seqnence which converges in a metric space is unique[emg. 361, Bo = B. and 

{&) -t Èr in 9. 

To prove completeness. it remains to show that B E B. Choose any @Ir E 

[-&û. O]. R e c d  that Bn(p) is a bounded sequence of real numbers. Then 

so B satisfies ( B P ~ ) .  

The pointwise convergence {B,} -t B implies that &-&û) = Or since 

Bn(-JZû) = O for every n. So B also satisfies ( B P ~ ) .  Together, properties ( B P ~ )  

and ( B P ~ )  impk (BPI), so B E B. 

Hence, the rotated state space (B ,  d )  is complete, and since they are isomorphic, 

so is the state space ( B ,  d). 
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6.6 Summary 

A state space definition of the Preisach model has been given for continuous bounded 

inputs which vanish as t -P -m. The state space is a complete. bounded metric 

space. and is approximately reachable. 

This is an original contribution which is made possible by the structure of the 

Preisach model. It opens the door for the application of classical non-linear state- 

space methods to these highly non-lliear systems. In the next chapter, the state- 

space framework allows the development of a new result on the dissipativity of the 

Preisach model. 
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Spaces 

space of continuous functions 

space of bounded sequences 

input space (C Co) 

output space (C Co) 

state space 

reachable subspace of B (C B) 

set of boudaries in B with n (finite) horizontal and vertical 
segments (C B,) 

rotated state space, isomorphic to B 

set of reduced rnemory sequences (C 1,) 

the Preisach plane (C R2) 

the restricted Preisach plane (C P) 

'Igble 6.1: Chapter 6 Nomenclature-Spaces 
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Elements 

a point in P or Pr (E R ~ )  

the abscissa of a point in P or P, (E R) 

a boundary: a graph of a fnnction (E B) 

the initial condition; the zero state (E 8) 

a rotated boundary (E 8) 
a reduced memory sequence ( E  S) 

even and odd subsequences of s 

index beyond which si is constant 
N ( s )  2 1 and N ( s )  may be infinite 

an input (E U) 

input bonnd: IIuII, 5 û (E R) 

'hble 6.2: Chapter 6 Nomenclature-Elements 
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Mappings (see &O Figure 6.5) 

constructs the reduced memory sequence of u at tirne T 

constructs an input u E U which generates s(-. T )  

constructs a boundary fkom a reduced memory sequence 

maps boundaries in Ra(G) back to their generating sequence 

composite map from inputs to boundaries: Hf = GF, 

composite map fkom boundaries to inputs: HT = Fr'G-' 

isomorphic rotation mapping 

area metic  on B 

area metric on B 

'Pable 6.3: Chapter 6 Nomenclature-Mappings 



Chapter 7 

Energy and the Preisach Mode1 

In the design of controllers for physical systems, it is often useful to have an under- 

standing of the energy properties of the system. Some of the cIassicaI results in the 

design of controllers for non-linear systems are based on generalizations of energy 

arguments. Passivi ty t heory and Lyapmov's method are two examples. 

In the fkst section of this chapter, formulas for energy storage and loss in the 

Preisach rnodel are derived. Similar results have been derived in [43], but the 

assumption made in that work was somewhat restrictive and a more general a p  

proach is taken here. In the second section, the dissipativity theory of Willems is 

introduced. Coupled with the state-space representation of the previous chapter, 

this frarnework allows the derivation of an energy dissipation result which is more 

general t han t hose obt ained previously[l9, 281. 
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7.1 Energy Storage in the Preisach Mode1 

This section is concerned with investigating energy storage in Preisach rnodels for 

which p E M p .  in order to form a basis for the subsequent use of energy argu- 

ments in controller design and stability analysis. In dohg so, an input-output pair 

representing instantaneous power is identifed and used to compute the total en- 

ergy input over t h e .  Examples of such 'energy pairs" are force and velocity in 

mechanical systems. and current and voltage in electrical systems. 

In actuators. a is often some form of mechanical or electrical force. and y is 

displacement. Hence. uy has units of power. The instantaneous power input at 

time t is u( t )y ( t ) .  and the total energy input as a r e sd t  of applying ufiom t ,  to t l  

7.1.1 Energy Storage, Recovery & Loss in Relays 

In order to understand the energy characteristics of the Preisach model, it is nsefid 

to begin with the study of the individual weighted relays which make up the model. 

Consider the arbitrary weighted relay 74 of Figure 7.1, with weighhg p(a ,  P )  2 
0. and suppose it is subjected to an input that switches the relay into the "up" po- 

sition and later back into the "down" position: for instance, u( t )  = -ul cos(t) 

with ul > max{lal, lPI). The d e c t  of this input is illustrated in Figure 7.2. Since 

-ul < p, the relay is in the "dom" position at time t = O. Suppose the relay 

switches "up" at t, and 'down" again at tg. Then 
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Figure 7.1: Weighted Relay Figure 7.2: Test Cosine input 

A A 
Dehe  q, = 2 p ( q  /3)a and qa = -2p(a, O)& If the product uypB has units of 

power. then q, and a represent the net work involved in switching the relay as u 

passes a and /3. respectively. If eit her q, or q, is negative for a particular relay, t his 

implies that energy is recovered h m  that relay when it switches. This is a more 

generd approach that that taken in [43], where it was assumed that the total energy 

loss was split evenly between switches, so that q, = <IB = p(a ,  P )  (a - P ) .  Note that 

the energy lost in one cycle is equal to the area of the relay. This agrees with the 

well-known result that the hysteretic energy loss in each cycle of a magnetic circuit 

is equal to the area of the hysteresis loop[e.g. 11. 

7.1.2 Energy Stored in the Preisach Mode1 

If jx  E M p ,  the regions of P, in which relays store recoverable energy are deheated 

by the axes of the Preisach plane. For notationd convenience, dehe the following 
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*quadrants9 (cf. Figure 7.3): 

A Qi = ((a./?)la >O.P > O)nPr. 
a 

Q2 = ((a.P)la L 0 - B  4 0)npr. 
A 

Q3 = {(%P)IQ<O>B<O)~P~ 

These are t k e e  of the four -standardn quadrants, restncted to those points con- 

tained in Pr. 

Relays which have recoverable stored energy are those for which the next switch 

results in a negative energy transfer. For example. since qfi = -2p(a,,O)P and 

13 2 O in QI, relays in that quadrant store recoverable energy whenever th& next 

switch is fIom +1 to - 1. The amount of recoverable stored energy is lq81 The 

energy storage capabilities of individual relays are summarized in Table 7.1. 

Table 7.1: Recoverable Energy Storage in Relays 

region 
of 

E p  E M p ,  the energy storage properties may be conceptualized as follows. Any 

relay yad in Q2 may be represented by a mass system with a non-zero coefficient of 

static friction. Moving the mass is analogoas to switching the relay. To move the 

current 
r&y 
state 

energy 
transfer at 
next switch 

recoverable 
s tored 
energy 
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mass in either direction (switch 7 , ~  fkom -1 to fi. or +l to -1) requires that the 

static friction force be overcome. ln each case, this represents energy which is lost 

in moving the mass. 

Relays in QI may be thought of as mass-spring systems. again with a non-zero 

coefficient of static i%ctionl. When the mass has been given a positive displacement 

(74  is in the +l state), the spring stores some potential energy. This energy is 

released when the input force is reduced below the static friction force. and the 

mass moves back (743 switches from +1 to -1). A similar analogy holds for relays 

in Q3. 

Using the information of Table 7.1. recoverable energy stored in the Preisach 

mode1 can be computed from the Preisach plane diagram. If p E MF. recoverable 

energy is stored in relays in QI which are in the 4+ 1" state, and in relays in QI 

which are in the "-1" state. 

Figure 7.3a shows a sample boundary for u < O, with the quadrants labeled. 

The shaded region contains points representing those relays in which recoverable 

energy is stored. The amonnt of energy stored in each relay is Iq, 1 ,  and the total 

recoverable stored energy Q, is given by 

Since 0 c Q3, a < O and this gives 

'Note that thia analogy is not perfect: the relay transitions at u = a and u = have infinite 

slope, implying a zero spring coefficient. 
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Figure 7.3: Regions of Stored Energy in 'P, 

If on the other hand the boundary is as in Figure 7.3b, then 

At any particular instant, the boundary c m  only intersect one of these quad- 

rants. so any enagy stored in the system is either in relays in QI or  in those in Q3. 

For any boundary B E B, Q,(B) can be written as the s u m  of two terms, of which 

one, or possibly both, is zero: 

In determinhg whether a system dissipates energy, it is ofien assumed that a 

state of minimum stored enagy can be determined. In stable linear systems, a 

common approach to the determination of this state is to set the system input to 
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zero and find the steady s tate. In the case of the Preisach model, a similar concept 

may be proposed. 

Proposition 7.1 (Zero Energy Storage) 

If at any time t the input u(t)  = O, then the Preisach model is in a state of zero 

stored energy. 

Proof 

Since boundaries are always non-increasing, then for any time t at which u( t )  = 0, 

the corresponding boundary B intersects the line a = /3 at (0, O), and must be 

entirely contained in Qa (cf. Figure 7.3~). Recalling that P+ B is the region of Pr 

containing relays which are below the graph of B. we see that QI n P+ B = 0, and 

similady, Q3 n P-B = 0. 

since the areas of integration are empty. rn 

This resuit implies that there are an infinite number of states in which the Preisach 

mode1 has zero stored energy. These states correspond to the vertical line u = O 

in the input-output plane. The associated output is the remnant hysteresis, the 

magnitude of which depends on the past history. IR particda, the anhysteretic 

state is a state of zero energy storage. 

7.1.3 Energy Transfer in the Preisach Mode1 

In the previous section, a formula was derived for the energy stored in the Preisach 

model. This section presents a method of computing the total energy transfmed 
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to the system by a given input u. 

Theorem 7.2 (Net Energy Transfer) 

If u W a monotonzc input which sweeps a region Q in the Preisach plane. then the 

total energy transferred to the systern by u U 

Consider an input which increases monotonicdy fiom t l  to t2 .  transferring points 

in the region R fkom P- to P+ . as shown in Figure 7.4. 

Figure 7.4: Proof of Theorem 7.2 

For every relay switched, the energy transferred is q, = 2p(a,P)a.  The total 

energy input, as u sweeps fkom u( t l )  to u ( f 2 ) ,  is given by the sum of q, over ail the 

relays switched: 

Q = 2 / J AQ, B W ~ ~ S .  
n 

The proof is similar in the case where u is decreasing. 

Note that Theorem 7.2 is generd, in that no assumptions have been made on p. 
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Whether (7.2) represents net energy input or recovered WU depend on the shape 

and s i p  of p ( a . p )  on Q, and the location of S2 in PT. 

Equation (7.2) can be used to compute the total energy transfened due to any 

continuous input u composed of monotonie segments. If p E M F .  the result can 

be combined with the equation for stored energy (7.1) to determine the hysteretic 

energy loss for a given input u. 

7.2 Dissipativity of the Preisach Mode1 

In his pioneering work on dissipative dynamicd systems(651, Willems sets out a 

fiamework for investigating the energy-dissipating quaiities of a systern. These 

qualities are intimately related to system stability, and it was shown[65] that the 

major input-output stability results can all be cast as special cases of dissipativity 

theory. In this section, the definition of dissipativity is recded and the dissipativity 

of Preisach models with p E M p  is shown. 

Dissipativity is defined in terms of the relationship between two functions known 

as the m p p l y  rate and the storage function. 

Definition 7.1 (Dissipativity [65]) 

A dynamical system E Ls said to be dlssipatzue with respect to the (locally integmble)  

supply rate w : U x Y ct R if there exists a non-negatzve functzon S : X ct fi, 

called the storage functton, such that for al1 t l  2 t,, x. E K ,  and u E U, 

when t1 = q5(tl, to, z,, u ) .  
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Essentidy, for a system to be dissipative, the sum of the storage in the initial state 

and the supply generated by the input must not be less than the storage in the 

final state. In other words. there is no intemal generation of storage. The word 

&energyY is conspicuously absent kom this description: while dissipativity theory is 

based on energy concepts. the supply rate and storage hinction are generalizations 

of the physical concepts of *rate of energy supply" and "amount of stored energy'. 

There need not be any physical energy interpretation in order for the definition or 

related result s to hold. 

The more restrictive condition that 

often c d e d  "passivity". is a speùfic case of dissipativity with w(u,y)  = uy and 

S = O. This will be discussed in more detail in Chapter 8. 

Although in generai, storage functions for physical systems are not unique, it is 

often the case that the formula for the actud energy stored in a system is a storage 

function for some related supply rate. It WU be shown that the Preisach mode1 is 

dissipative with respect to the supply rate w(u,  y) = utj, by demonstrating that the 

recoverable stored energy Q, is a storage fnnction for this supply rate. 

The proof of dissipativity requires the following definition of the char acteris tic 

function of a set. 

Definition 7.2 (Characteristic Function[e.g. 471) 

II A is a subset of a spoce X ,  the cha~actenktie finetion of A, X A  : X * {O, 1) is 

defined by 



CHAPTER 7. ENERGY AND THE PHUSACH MODEL 

Lemma 7.3 

Let A and B be svbsets of a space X .  Then for ail z E X. 

1. $ A n  B = 0. then xn(x) + XB(X) = xAUB(x). and 

2. if B c A. then X A ( X )  - X B ( X )  = XA-B(z), 

w h e ~ e  -. indicates the set diference operation. 

Proof 

The proof of t his Lemma is straightforward. 

Theorem 7.4 (Preisach Mode1 Dissipativity) 

I f p  E M p .  the Preisach mode1 W disszpatzve with respect to  the supply rate w(u. y) = 

Proof 

The recoverable stored energy, for any B E B, is 

I f p  E MpT then since or 5 O in Qs and p 2 O in QI, Q,(B) 2 O. Also, p and P, 

are bounded, so Qr(B) < oo, and Q, : B ct Rf. It remains to show that for any 

initial state Bo and u E U[to,tl] such that Bi = 4(tl,t,, Bo,u), the dissipativity 

inequality 

is satisfied. 



CHAPTER 7. ENERGY AND THE PREISACH MODEL 147 

For each relay r,s, let nad be the number of tirnes that relay is M y  cycled 

(switched twice) by u. The energy transferred in one full cycle is equal to the area 

of the relay, 2 p ( a , / 3 ) ( a  - p)  3 0. and represents a net energy loss. Suppose first 

that all n , ~  are finite. The case where na@ is infinite for some -y,@ is discussed at 

the end of the proof. 

Let ne be the collection of relays which are switched an even number of times 

(2naB) by u. The energy transfer for each relay in this region is 2na81<(a. P)(a-0) 2 

O. Denote by QG > O the total energy transferred to al1 relays in ne. 

Let na be the collection of relays which are switched an odd number of times 

(2724 + 1) by u, and whose last switch was at u = a (fkom -1 to +1). The energy 

transferred to each of these relays is 2na8p(a, ?)(a - P )  + qa. Let Q, 2 O be the 

total energy transferred to relays in 8, after each has been M y  cycled n-6 times. 

Each relay 

transfer to 

then undergoes one 

relays in 52, is 

final switch fiom -1 to +1, so that the total energy 

Similady, defme Rd as the collection of relays which are switched an odd number 

of times (hafi + 1) by u, and whose last switch was at u = ,û (kom +1 to -1). Let 

QB 1 0 be the total energy transferred to relays in fi8 after each has been M y  

cycled na@ times. The energy transfer for the final switch of each relay in is qg, 

so the total energy transferred by u to relays in Rg is 

The total energy transfer from t ,  to t l  is 
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In Q2, both q, and g are non-negative, so 

Since a 2 f l .  the f i r s t  and last tems above can be replaced in the inequality: 

kitroducing the characteristic functions for Q, and fiB, this can be writ ten 

But Q, contains all the relays r , ~  which were in P- at to and P+ at t l .  Similarly, 

Q, is exactly alI those relays which were switched from P+ at to to P- at t l .  Then 

P+B1, the collection of relays which are in the +1 state at tl ,  can be written as 

'all relays which started in the +1 state, less those which were switched to -1, plus 

those which were switched fiom -1 to +ln: 
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But fiB c l'+Bo, and St, ri l'+Bo = 0. so by Lemma 7.3 

and 

Similady. 

and 

Substituting (7.5) and (7.6) in equation (7.4) gives 

So the dissipation ineqnality (7.3) is satisfied. 
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If n , ~  is infinite for any 74. then that relay undergoes an infinite ntunber of full 

cycles. Since energy is lost in each fidl cycle, the total energy transfw is positive 

and infinite. But QJB) is bounded for every B. so the dissipativity inequality 

(7.3) stiU holds. The Preisach model is dissipative with respect to the supply rate 

~ ( i i .  y )  = uy. m 

It is important to note the sufncient nature of the dissipativity result of The- 

orem 7.4. It may be that some physical systems which are in fact dissipative do 

not have non-negative weighting functions. Indeed. it was seen in Chapter 5 that 

weighting fimctions with negative regions resdted in better matches for the SMA 

actuators. Furthmore.  the relationship between magnetic field and strain in a 

magnet ostrictive material displays a so-cded "but t e d y n  hysteresis [9] , sketched in 

Figure 7.5. A decrease in applied field A f c m  result in an increase in strain Ae. 

From Proposition 3.2. a Preisach model for this hysteresis satisfies 

so that if Af demeases and AE increases. 

Intuitivdy, these physical systems also dissipate energy, and it is apparent that 

the requirement that C< be non-negative is overly restrictive. Understanding the 

reasons for the conservative nature of this result shodd be one area of focus for 

future research. 
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Figure 7.5: Characteristic of Magnetostrictive Hysteresis 

7.3 Summary 

This chapter examined the energy properties of the Preisach model. In the case of 

non-negative weighting functions. it was seen that the Preisach plane provides an 

intuitive framework for analyzing energy storage and loss in the hysteresis. Based 

on individual relay characteristics, regions in P, which are able to store recoverable 

energy were identified. A formula was then derived which allows the computation 

of recoverable energy stored as a function of the boundary, and states of minimum 

energy were identified. 

In the second section, it was shown that if p E M p ,  the associated Preisach 

model is dissipative. Although this result is significant, it is nonetheless only suf- 

ficient. The example of magnetostrictive materials was cited as a physical system 

for w hich a Preisach weight ing function would have negative areas. 

Dissipativity theory is a powerfd tool for the design of stabilizing controllers. 

It is important to note that, while the dissipativity investigation was guided by 

energy arguments, the theory is more general. The definitions are not speWfically 

tied to physical energy, and related results hold whether an energy interpretation 

of the supply rate and storage function exist or not. One use of dissipativity wil l  
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be detailed in the next chapter. and another application set out for the future in 

the h a 1  chapter. 



Chapter 8 

Controller Design 

8.1 Background 

Figure 8.1 shows a standard single-input singlesutput feedback interconnection. 

The system being controlled, H2, is known as the "plant", and Hl is the controller. 

Extemal inputs are labeled ri, the inputs to the plant and controller are ui, and 

the outputs yi. The input r2 is typicdy a disturbance on the control signal. The 

goal of implementing a controller in a feedback system is to attempt to have the 

plant output track a desired reference signal rl .  If the reference is the-varying, the 

controuer is referred to as a "tracking controllern. If r1 is constant, the controller 

is a "regulator". 

There are two main aspects to the controller design problem. The f i s t  is stabil- 

ity: given a plant &, what types of controllers will ensnre that for "well-behavedn 

reference signals r ,  the interna1 signais u and outputs y will &O be "well-behaved". 

A robwt stabilizing controiler has the ability to maintain stability under s m d  per- 

turbations in plant dynamics. For example, such perturbations may occur as a 
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Figure 8.1: Standard Feedback Interconnection 

result of system noise or changes in component characteristics due to aging. 

The second problem is performance. which can be measured in a number of 

ways. How closely does a controller achieve the objective? How puickly? How 

much energy is required? The primary resdt of this chapter is concenied with the 

stability aspect of controller design. A second preliminary result regarding optimal 

regdation of Preisach hystereses is &O presented. 

Before stability can be formally defined, a few mathematical definitions are 

required. 

8.1.1 Mat hemat ical Definit ions 

This section introduces some of the basic mathematicd definitions and notation. 

The common concepts of L2 spaces, extended spaces and tnincation, as  well as sig- 

nal noms and inner products, are presented. To represent the hysteretic behaviour 

of the Preisach model, the concept of a relation is defined. R is the set of all real 

numbers, and R+ = [O, a). 

Definition 8.1 (Truncation) 

Let z Le a function mappzng R ct R, and T < m. Then the truncation of z 
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is defined as 

Definition 8.2 (L, and L, Spaces) 

The space Lp(-00, m: R) inchdes ail Lebesgue measurable functiorrs' x : R ct R 

for whzch 

The eztended space Lp (-m. a: R) is conposed of Lebesgue meamrable functiow 

for zuhzch 

for al1 T 2 0. 

To s i r n p e  notation, the spaces LJ-oc, oo; R) and t,(-m, m; R) are often re- 

ferred to as L, and L,, respectively. Note that L, C L,. 

Central to the notion of stability is the concept of a "well-behavedn signal. A 

common definition of a "well-behavedn signal is one which does not have unbounded 

energy; that is, it must be square-integrable. The space LI contains all such signals, 

and d play a key role in the definition of input-output stability. An example of a 

function which is in Lze, but not in L2 is x ( t )  = t2. Functions which are not in Lz, 

have "finite escape t h e " ,  implying that there exists some fbite time tl at which it 

'blows up" . An example of such a fimction is z ( t )  = tan(t). 

'For our purposes, fuactions which are Lebesgue measurable are essentially those which are 

bounded except at a countable number of points. A more rigorous d a t i o n  can be found in [e.g. 

521. 
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Definition 8.3 (pNorm) 

For funetions x E Lp,  the p - n o m  ( [ ( - I I ,  : L, H IF) of x iS defined as 

Define the t m c a t e d  p-nom. I I - I I ï p  : LPe ~f as 

Where the subscript p is omit ted. the 2-nom is implied (ie. p = 2). 

Definition 8.4 (Inner Product) 

Giuen two scalar Qnctions x. y E Lt, the inner product of these two jhct ions  

U defined as 

and the truncated inner product. for  x, y E L2., is 

Definition 8.5 (Relation [69]) 

A relation 7Z on o space K defines a set of ordered pairs (2. y) E X x X. The 

domazn and range of a relation c m  Le d e f i e d  as 

Do(7Z) (212 E X and 3y E X such that (z, y) E 72) Ç X 
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and 

Ra(7Z) {yly E K and 32 E X such that (z.9) E 7Z) C X 

The nature of a relation is such that a given z E D o ( R )  may correspond to more 

than one y E Ra(R) .  As well. there may be more than one x E Do(R)  rnapping to 

the same y E Ra(R) .  1t is this behaviour which makes relations us& in describing 

hysteretic systems. The Preisach operator defines a relation I: whose dornain is Co. 

As was shown in Chapter 4, if p is in M p ,  Ra(I') C Co as well. 

The notation (2, y )  E 7Z implies *z E Do('R) and y in the correspondhg set 

Rz'. This is dEerent fkom saying -x E Do(7Z) and y E Ra(R)" ,  since there may 

be some z E Do(7Z) and y E R a ( R )  which are unrelated. 

Definition 8.6 (Finite Gain) 

A relation 72, on X, is said to have finite gain if there exists some constant 7 E R+ 

such WLat llyll 5 7 11x11, for al1 (z, y) E 71. 

The fouowing definition of feedback stability is similar to that found in [12]. 

Definition 8.7 (Stabiüty) 

The feedback system of Figure 8.1, where Hi and H2 me relations, will be called 

stable if, for each ul E Do(&) and ua E Do(H2) there ezkt finite ke, 4 indepen- 

It has been shown[e.g. 601 that the boundedness of ei and Yi are equivalent, and 

ody one need be shown to demonstrate system stability. 
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8.1.2 Previous Work 

With the keen interest shown in smart materials in recent years, and the general 

apped of the Preisach model, it is not surprising that several works exist on control 

strategies for this model. 

The majority of results pertaining to Preisach model control are concerned with 

performance improvements. A popular approach is to identifjr a Preisach model 

for the plant to be controlled and linearize the hysteresis by cascading au inverse 

model with the plant. If the identsed FOD surface is monotonie in both a and p. 

then model inversion is possible[43]. This technique has been applied successfuUy 

to piezoceramics in [26] and resistance control of SMA in [42]. A similar idea was 

proposed in [18] for tracking control of a piezoceramic actuator. Recently a new 

technique. motivated by study of the Preisach model, has been proposed for partial 

Linearization of hysteresis by a linear compensator[8]. The phase shift introduced 

by the delay in the hysteresis is identified experimentally over a frequency range 

of interest. A linear compensator cded  a phoser, which has the opposite phase. is 

placed in fiont of the hysteresis. Good experimental linearization of a piezoceramic 

ac tuator is âchieved. 

Further developments of note are found in [5], where the existence of optimal 

controls for a class of hystaesis functionals which include the Preisach model, is 

shown. k [58], an adaptive control scheme for unknown hystereses of a hybrid 

playfstop type is presented. Although not directly related to the Preisach model, 

this last result is exciking given the onerous identification methods used for Preisach 

models . 

All of these works have been concerned with performance or identification as- 

pects. One reference has discussed the issue of stability when an active SMA wire 
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is used to dampen vibrations in a flexible beam[l3]. The authors observe system 

instability. despite very low bandwidth, and demonstrate that the instability can 

be removed through the correct choice of feedback variable. A qualitative stability 

analysis using phase plane techniques is given. 

8.2 Velocity Feedback 

Ln some applications, a controller is designed which makes use of velocity mea- 

surements to achieve its objective. For example, in [15]. the authors discuss the 

damping of vibrations in a flexible beam using piezoceramic actuators. The ac- 

tuators are bonded to the beam, and the strain which they generate is rneasured 

using strain gauges. Measurements of the rate of change of strain are fed back to a 

proportional-gain controuer, which is able to achieve significant damping of beam 

vibrations. 

In this section. it is shown that the relationship between the Preisach mode1 

input and the derivative of its output is passzve. This dows a whole dass of sta- 

bilizing controllers for velocity feedback applications to be determined. This result 

encompasses the application mentioned in [15], and is similar to classical results 

obtained using passivity theory for position and velocity feedback (PD control) of 

robot manipulators. It has been shown[e.g. 551 that a PD controuer provides robust 

stability for position control of robot manipulators. The extension of the present 

results to include position feedback is an area of continuing research. 
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Passivity is a characteristic of a physical system which dows the design of r+ 

bust stabilizing controllers based on the princi~le tbat if both controller and plant 

are dissipating energy, then a standard negative-feedback configuration should be 

stable. Robustness is obtained since a plant which dissipates energy generally con- 

tinues to do so despite small changes in dpamics. It is a common approach in 

analyzing the stability of robotic and other non-linear systems. 

The definition of passivity is a special case of dissipativity, in which the supply 

rate is w(u, y) = tcy and the storage function is zero. Like dissipativity, the theory 

is motivated by the study of energy storage, where the input-output pair represents 

instantaneous power. Again, however, the theory and results continue to hold when 

such an interpretation is not available. 

Some examples of such energy pairs are: force and velocity in mechanical sys- 

tems; current and voltage in electricd systems. In actuator control, the input is 

generdy some form of mechanical or electricd force, and the output is displace- 

ment. Hence, to get the force-velocity energy pair, we examine the passivity of 

(u. Y 1. 

Mathematically, the passivity of a system is expressed as follows: 

Definition 8.8 (Passivity[e.g. 121) 

A relation 73 is said to 6e passive2 if there exists d 2 O and constant p such that, 

for al2 T < oo and u E Do(?Z), 

'1n more recent work, this general definition is refemd to as *psssive roifi b i d ,  and the more 

common definition of ~ i v i t y  is given with P = 0. 
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R U said to be stnctly passive if (8.1) ho& with 6 > 0. 

If the product u - 7Zu has units of power. this says that the net energy Liput 

over time is positive for every ~ossible input. In other words, the system does not 

generate any power internally. The underlying assumption in the above definition 

is that the system starts in a state of minimum stored energy. Otherwise, an input 

could be generated which recovers any stored energy. causing (u, y)T to be negative. 

8.2.2 Preisach Model Passivity 

The passivity of the Preisach model with respect to the energy pair (u, y) has b e n  

investigated by Hughes in [28]. It was shown that the model satisfied the inequality 

(u. y)= > -& for 6 > O. This is a slightly different result fkom that required by 

Definition 8.8. The fact that the total energy transferred could be negative results 

fiom the l a d  of a restriction in [28] on the initial state. Essentially, if the system 

starts out with any stored energy, an input can be constructed to recover that 

energy. resulting in a negative net energy transfer. 

In [19] the idea of minimum energy storage (as defined in Section 7.1.2) was 

extended to the Preisach model, and it was shown that if the system begins in such 

a state. then the result fiom [28] can be improved to the required (a, y)= 2 0. 

In each of t hese previous studies, it was &st shown that a relay -y,@ is passive if 

p(a.  p ) > O. Since a parallel interconneetion of passive elements is itself passive[55], 

then the passivity of the Preisach model follows. Here, a similar result is obtaiaed, 

but it is obtained more directly, as a speual case of the dissipativity result of the 

previous chapter. 
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Theorem 8.1 (Preisach Modei Passivity) 
d If p E M the operator iS passive. 

From the hypothesis on p. the Preisach mode1 is dissipative with respect to the 

supply rate w(u, y) = uy (Theorem 7.4). Suppose the system star ts  in a state of 

zero energy storage, meaning that u(t,) = O. Then for any input u E Do(î). and 

But since u(to) = 0. Q3n P-Bo = 0 and Qin P+B, = 0. so Sa(Bo) = O  and 

Thus. if the stored energy is zero at t = -m. then for any T < oo and u E Do(î). 

we have 

which completes the proof. 

8.2.3 Stability Conditions 

The velocity feedback configuration is illustrated in Figwe 8.2. The input F is a 

reference velocity to be tracked, è the velouty tracking error, U the control signal, 

u the Preisach input, y the actuator position output, and y the actuator velocity. 

The input u, can be any fnnction in W:, and may be used to offset any initial 

conditions on ü and any change in ambient conditions which may have occurred 
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Figure 8.2: Velocity Feedback Configuration 

between identification and the current operating conditions. This ensures that the 

input to the Preisach model is hitially zero. so that u E Do(&) and the passivity 

of H2 can be exploited. Altematively, the Preisach model could be 5nitialized". 

at least approximately, as was successfdly done in the identification procedure for 

the tw-wire SMA actuator (cf. Section 5.2.2). 

In order to ensure the consistency of internal signals, it is assumed that the system 

Hl is a relation with Do(& ) = L2, that it has some srnoothing properties so that 

Ra(H1) C W:, and also i E Lz, u, E W:. Then u E W: and if p E M p  then 

I' : W: H W: . y is ClifFerentiable, and y E L2. 

Theorem 8.2 (Stability) 

If Hl is stPictly passive with finite gain, and u, is chosen so that u(0) = 0 ,  the 

feedback system of Figun 8.2 is stable for all f E L2. 

Proof 

The proof is dong the lines of the standard proof of the passivity theorem[e.g. 121. 

From the system configuration, and the hypothesis on u,, we have u E Do(H2).  
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Along with Theorem 8.1 and the hypothesis on Hl. this implies that there exist 

constants 6.7 > O such that 

Now. choosing any i E L2[0. Tl. we have 

Applying the strict passivity condition on Hl and the Cauchy-Schwartz inequality 

(x* Y)T 5 llxllT IlyllT gives 

and completing the square in (le I l T  gives 
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Taking the square root of both sides gives 

1 where ke = max{r + 6.1). The boundedness of ù, u and y all foUow, since 

11à1IT 5 r 1 1 ~ 1 1 2 1  Il+ I l141T + l l~o l lT  and IIY I IT  5 I l + l l ~  + 1141~- 

8.3 Comments on Position Regulat ion 

In some applications, the control objective is regdation about a set output value, 

in the face of some external disturbance. One example of such an application c m  

be found in [68], where piezoceramic actuators bonded to a flexible beam are used 

to force the beam to maintain a static deformation. Such tesearch has applications 

in the aerospace industry, where sirnilar schemes could be nsed to actively tune the 

fight surfaces of an aircraft[9], or for fine tuning of the transmission surface of large 

space antenne. An important rneasure of performance in this case is the miïximum 

output transient caused by disturbances, since this determines the deviation fkom 
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the de. 9. A control strategy which minimizes this deviation can be said 

to be - o p t h  some sense. 

The presenct an hysteresis nonlinearity complicates the regulation task con- 

siderably. Since hysteresis branches are irreversible, even s m d  output perturba- 

tions can require very large corrective input swings. Ieading in turn to undesirably 

large output transients. Furthermore, for any output value within the hysteretic 

range of the system. there are an infinite number of corresponding states. Ln this 

section. it is assumed that a stabilizing controller has b e n  designed for setpoint 

regulation. and a strategy is proposed for achieving optimal performance &om this 

controuer. 

The foundation of the regulation strategy is the choice of state about which to 

regulate. Given a desired constant reference ydr there are an infinite number of 

corresponding states, each reflecting different input histories leading to the same 

output due. However, if among these the state about which to regulate is chosen 

in an intelligent manner. output transients during regulation can be minimized. 

A 
First. for any t E [u-, u+], defme the boundary BL =  C CI,^) E Pria = 2- p). 
The form of the boundary Bc is illnstrated in Figure 8.3. 

Theorem 8.3 

Given t E [u-, u+], ut E U can be comtructed 30 thot Bi = #(ti, t,, Bo, ut) approz- 

imates Bt arbitrarily closely in the metr-ic o n  B ,  for any Bo E B and ti > t,. 
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Figure 8.3: Boundary Bc 

Proof 
a 

Simply define A = max(u+ - !, l - u-). choose t l  > t,. and set 

The amplitude A is chosen to wipe out the boundary B(t,). The decaying sinusoid 

approhates  a line paralle1 to B', and the offset t determines the point at which 

the new state intersects the line a = p. The approximation error. the distance 

between Bc and 4(t1, t,, Bo, uf ), will be inversely proportional to fiequency w and 

t l  - t,. Since the hysteresis is static, these may be chosen arbitrarily, subject to 

the limits of controller capabilities. rn 

Now, define for any I E [u-a+] 

+ ( L )  is the output corresponding to the boundary &. 



Proof 

The area of integration defined by P+Bc is continuous in t .  and C< is piecewise con- 

tinuous over 'P,. Then fkom equation (8.3), $(!) is continuous. m 

Proof 

From equation (8.3), 

and 

So $(O connects the endpoints of the major Ioop. From Lemma 8.4, is continuous. 

so for any yd E [y-, y+] there exists (at least one) L E [u-, u+] such that $(O = yd. i 

8.3.2 Control Codguration 

The proposed control configuration is shown in Figure 8.4. is dehed on [y-, y+] 

as 

$'(Y ) min{! E Lu-, u+l lé(4 = Y), 
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which is well-defined by compactness of [a-,u+] and Theorem 8.5? The map 

D : t I+ uc generates a decaying sinusoida1 input ut as in equation (8.2). The 

s t  abilizing controller C is shown in the standard feedback loop with the Preisach 

operator. The input to I' can be switched between the feed-forward input ut and 

the control signal a,, which is subject to a disturbance d. 

Figure 8.4: Optimal Strategy for Set point Regulation 

To initialize the system. ut is used to drive the system to (or close to) the state 

Bt, such that y(tl) r: r ( B f )  = yd. At this point. the control signal switches to u,, 

and regulation begîns. 

The advantage of this strategy can be seen from the Preisach plane diagram 

in Figwe 8.5. Suppose the boundaries Br and Bo satisS. r (Bt )  = r(BJ = yd. 

If a small negative disturbance is injected at d, the boundaries assume the shape 

indicated by the dashed line. The shaded regions show the area which must be 

swept to recover the initial boundary in each case. Although the input required to 

recover Bc is more osdatory. it is much smaller in magnitude, leading to smaller 

output transients. 

Figure 8.6 shows what the input-output behaviour may look Like for regulation 

about the two states Bo and Bc of Figure 8.5. The curves are somewhat exagger- 

3Note that ony t satisfying +(1) = yd couid be used in the regulation strategy; the above map 

is introduced for the purposes of the block-diagram of Figure 8.4. 
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l a 

Figure 8.5: Regulation Strategy: Preisach Plane Behaviour 

ated for clarity. q5 is the dotted curve which joins the corners of the major loop. 

Several ascending and descending branches are shown as dashed lines. The paths 

resulting hom each corrective input are solid. In each case. the path begins at the 

point marked by a dot, representing the deviation from the setpoint caused by the 

disturbance d. 

The particular nature of the locus @ is that it contains points in the input-output 

gaph which are between two close crossings of the same ascending and descending 

branches. The point dehed  by the input and output travels along ascending or 

descending branches, depending on the sign of the input. If a s m d  negative distnr- 

bance d is injected onto the control, a small excursion down a descending branch 

results. Because branches are irreversible, a Werent, ascending branch mnst first 

be taken to return to the original point. The distance traveled along that ascending 

branch will determine the maximum output transient during the correction. It can 

be seen in Figure 8.6 that both the control and output variation resdting from 

regulation about (u,, yd) is mach greata than those required for regulation about 

(!!,ya) Although the output in the second case is oscillatory, the magnitude of 

output transients is reduced. 
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Figure 8.6: Regulation Strategy: Input-Output Behaviour 

8.4 Summary 

In this chapter, it was shown that, i f p  E M P ,  then the relationship between the 

input and the output derivative of the Preisach mode1 is passive. The result is used 

to obtain a class of stabilizing controllers for velocity feedback control of a Preisach 

hysteresis. A preliminary version of this result has been published in [19]. The 

SMA models which provided the better match in simulation in Chapter 5 were not 

in M p .  It is important, therefore, to point out the sufficient nature of both the 

dissipativity result of Chapter 7 and the Passivity Theorem which was used in this 

chapter to design the control system. Generalizing these results to broader classes 

of Preisach weighting functions is a likely course of future research. 

A second result was given on the regdation problem. It was shown that, of 



the infinite number of states which could be chosen for regulation about a given 

setpoint. one in particda ensures low transients during regulation. This interesting 

result arose out of the intuition fostered by the Preisach plane, and would have been 

difficult to predict fkom the mode1 input-output fom. 
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Conclusions and Future Research 

The research in this thesis examined some of the propeities of the Preisach hysteresis 

model, as they pertain to controller design. Particdar attention was given to the 

class of Preisach models having non-negative weighting fnnctions p. For this dass. 

expressions were derived for the energy storage and loss in the model. A state- 

space representation of the model was introduced, and it was shown that if p > 0. 

then the state-space model is dissipative with respect to the supply rate uy. The 

dissipativity of the model led to a stability result for velocity feedback control. A 

preliminary result on optimal regdation of Preisach systems was also presented. 

As is typical of non-linear systems, results obtained in this work, although global, 

were sufficient in nature. 

Experimentd work involved the identification of Preisach models for two shape 

memory alloy actuator configurations. Testing confirmed that the Preisach model 

was suited to represent the relationship between d o y  temperature and strain. 

Three weighting surfaces were identsed for each actuator, based on different forms 

of approximation surfaces. Positive weighting functions were found which provided 
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a reasonable match to experimentd da ta  This allows the application of the afore- 

mentioned control results to shape memory d o y  actuators. However. fot both 

actuators a better modd match was achieved with other weighting b c t i o n s  which 

were negative in parts. 

9.1 Summary of Contributions 

The main contributions of this research are snmmarized below. 

The introduction of an exponential candidate surface in the identification 

of Preisach mode1 weighting functions. This type of surface is more suited 

than polynomial-based surfaces to fit the observed behaviour of the SMA 

identification data. 

The determination of analytical weighting fimctions for both the one-wire and 

two-wke SMA actuator configurations. 

Control 

The introduction of a state-space representation of the Preisach model. This 

contribution allows the application of non-linear state-space techniques for 

controller design to these highly non-linear systems. 

The derivation of s d c i e n t  conditions under which the Preisach model is 

dissipative. 
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a Associated with the dissipativity of the model. the derivation of sdc ien t  

conditions on the controuer which guarantee dosed-loop stability of velocity 

feedback control of Preisach hystereses. 

9.2 Future Research Directions 

This research has opened more doors than it has shut. Ideas for some future projects 

are outlined below. 

0 Variations in the characteristics of the Mixent weighting fanctions identified 

in Chapter 5 indicate that the identification technique used here may not be 

very robust. In particular. since the identification surface is digerentiated to 

obtain the weighting function. the surface should match not only the identi- 

fied data but &O its derivatives. Application of recent work by Banks[2. 31 

on identification techniques for Preisach-type operators may provide a more 

robust result. 

a The majority of the results obtained in this work relied on the weighting func- 

tion p being non-negative. However, it was seen in Chapter 5 that partidy 

negative weighting functions provided a better SMA model match. Further- 

more, i t was seen t hat weighting h c t i o n s  for magne tostrict ive materials have 

negative regions. It is thought, therefore, that the condition p 2 O is overly 

restrictive, notably in the proof of dissipativity. One important area of h- 

ture research is to fully investigate the requkements for, and implications of, 

non-negative p. A proper identification of a weightiag surface for a magne- 

tostrictive materid may hold the due to obtaining less stringent conditions 
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on p. In particular. a more relued condition may prove to be both necessary 

and snfficient for dissipativity. 

Chap ter 6 presented a non-linear , infinite dimensional s t ate-space represen- 

tation for the Preisach model. Establishing this framework is only the begin- 

ning, and opens up new areas for study. Future research wïIl involve further 

investigation of the state space properties. applications of non-linear state- 

space techniques for controller design, as well as simply polishing the repre- 

sentation presented here. 

0 The extension to position control of velocity feedback results from Passiv- 

ity Theory is a classical result for some non-hear systems snch as robotic 

manipulators[55]. In [45]. the authors demonstrate a method for the design 

of position controllers for dissipative plants. based on matching the controller 

supply rate to that of the plant. Assuming several conditions are met. it 

can be shown in the case of the Preisach model that any controlIer whose 

state-space is reachable and which is dissipative with respect to the supply 

rate 

w,(u, y) = -a2 (y, y) + (b2 - c2) ( ~ , 4  - (ùl Y) 

wiU provide stable position control. It is not yet clear, however, 

- whet her the required assump tions hold in the case of the Preisach model, 

and 

- what types of controllers satisfy this supply rate. 

0 The observation that the twewire actuator can be modeled using the classi- 

cal fonn of the Preisach model is surprising, given the time-varying stresses 

involved. Further research is required in osder to M y  understand this result. 



FinaJly, many controilers have been developed in the literature for hysteretic 

systems which may have associated Preisach models. In particula. the au- 

thors of [21j demonstrate excdent results in position control of a two-wke 

SMA actuator. The control strategy is essentidy gain scheduling using con- 

stant gains. It would be interesting to attempt to apply the results of this 

work to a proof of stability for their control system. 
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