
Improving Object Detection with
MatrixNets

by

Rishav Raj Agarwal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Rishav Raj Agarwal 2020



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Object detection is a popular task in computer vision with various applications, from
pedestrian detection to face detection. Following the success of Convolutional Neural Net-
works (CNNs), many CNN based object detectors have been proposed to solve the object
detection task. Early CNN based detectors suggested using deeper networks to detect
objects in images. However, deeper networks cannot capture objects of varied sizes and
aspect ratios with high accuracy. Thus, CNN-based detectors have two main challenges —
scale invariance (detecting objects at multiple scales) and aspect-ratio invariance (detecting
objects at various aspect ratios).

Modern CNN-based object detectors have two main components — a backbone network
that learns features from an image and an output network that leverages these features
to make predictions. Scale and aspect-ratio invariance are typically added by either mak-
ing changes to the backbone or to the output network. Adding scale awareness to the
output network is often computationally expensive. Thus, a popular method to add scale
invariance by changing the backbone is Feature Pyramid Networks (FPNs) [31]. FPNs
create a hierarchy of features at different scales and implicitly capture objects at various
resolutions. Thus, FPNs are able to identify objects at different scales without the need
to resize the input image.

However, FPNs have a square-bias and favour square objects over asymmetric ones.
One solution to alleviate the square biasedness of FPNs is to add template anchor boxes
of various sizes to add more bias towards non-square objects. However, anchor boxes
are set as hyperparameters and add a computational overhead to the network. Newer
architectures have thus moved towards anchor-free techniques; however, they still rely on
FPNs, which are square-biased. Recently, MatrixNets [41] has been proposed as a general-
purpose aspect-ratio aware extension of FPNs that can explicitly model aspect-ratios better
than anchor boxes while keeping the model anchor-free. Matrixnets expands the FPN
backbone by applies asymmetrically strided convolutions to create skewed receptive fields,
making rectangular objects appear more square to the network While MatrixNets has been
shown to improve keypoint based object detectors significantly, the implementation makes
significant changes to the architecture, making it difficult to isolate the solo impact of
MatrixNets.

In this thesis, we explore MatrixNets as a viable method to add aspect-ratio awareness.
Specifically, we study MatrixNets along three axes — 1) Does MatrixNets make anchor-
based detectors anchor-free. 2) Does MatrixNets add aspect-ratio awareness to object de-
tectors, and 3) can MatrixNets be used for other, more complicated computer vision tasks

iii



like instance segmentation .We explore these questions via three case studies. We demon-
strate the effectiveness of MatrixNets by replacing anchor boxes in RetinaNet [32] with
our MatrixNets module and showing better performance on skewed boxes while making
the detector anchor-free. Then, we extend the anchor-free CornerNets [27] to x-CornerNet
to support multiple output heads and smaller backbones. We then apply MatrixNets to
x-CornerNet and demonstrate a similar improvement in skewed boxes leading to an overall
5.6% mAP improvement on MS COCO, achieving competitive results. Finally, we add
MatrixNets to Mask RCNN [17] to tackle the instance segmentation tasks. While object
detection draws bounding boxes delineating an object, instance segmentation goes one step
further and draws pixel-wise masks delineating objects. This level of detail makes instance
segmentation a more difficult problem to solve than object detection. We propose a new
loss function, Mask Edge Loss (MEL), that leverages mask contours to reduce coarseness
in predicted masks, thereby achieving higher accuracy. Together these three case studies
demonstrate the effectiveness of MatrixNets for adding aspect-ratio awareness to object
detectors. The code-base for our implementation will be made public.

iv



Acknowledgments

I want to thank my supervisor, Dr. Lukasz Golab, for allowing me to work with him
and continually guiding me throughout my master’s degree. His Yoda-like approach of
supervision has taught me to ask the right questions, then methodically search for the
answer. I thank Dr. Abdullah Rashwan for coming up with MatrixNets and giving me
free rein over it. I would also like to thank Dr. Robin Cohen and Dr. Srinivasan Keshav,
for their excellent advice. In general, University of Waterloo has helped me foster great
collaborations and grow as a researcher.

I would like to thank my roommates. Shubhankar Mohapatra, for always sharing coffee,
Aseem Baranwal, for sharing my frustration when things didn’t work out, and Manav
Mehra, for sharing my happiness when something did. I would also like to thank Soham
Mukherjee, Agastya Kalra and Suvi Agrawal for reading the first draft of this thesis and
coming up with the lamest jokes.

Finally, I would like to thank my parents. They let me travel 10,000 miles and pursue
my dreams even though they did not fully understand them.

v



Dedication

This thesis is dedicated to Ansel Adams and the photography club at IIT Kanpur, who
kindled my love for photography and helped me “see”.

P.S. No sheep were harmed in the making of this thesis.

vi



Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 CNNs and Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Challenge 1: Scale Invariance . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Challenge 2: Aspect-ratio Invariance . . . . . . . . . . . . . . . . . 8

1.4 Thesis Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related Work 14

2.1 CNN based Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Output Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 CNN based Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . 18

3 Methodology 20

3.1 MatrixNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



3.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Advantages of MatrixNets . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Dimension Ratio AP . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Retinanet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Our Implementation: x-Retinanet . . . . . . . . . . . . . . . . . . . 28

3.3 Cornernets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Our Implementation: x-Cornernet . . . . . . . . . . . . . . . . . . . 31

3.3.3 x-Cornernet-lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Mask RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Our Implementation: x-Mask RCNN . . . . . . . . . . . . . . . . . 37

4 Experiments 39

4.1 x-RetinaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 x-Cornernets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 x-Mask RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 State of the art Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



5 Conclusion and Future Work 50

References 52

APPENDICES 58

A NMS 59

B Gaussian Blur 60

C Smooth L1 Loss 61

ix



List of Figures

1.1 The object detection task is shown on the left and the instance segmentation
task is shown on the right. The image is taken from the MS COCO dataset [33] 2

1.2 A simple Feedforward Neural Network with fully connected layers . . . . . 3

1.3 (a) Shows a Conv operation (3× 3 filter 1× 1 stride and 0 padding). Each
pink 3× 3 matrix in the input is multiplied element-wise with the filter and
added together to compute one pink cell in the output matrix. (b) Shows a
max pool operation (2× 2 Maxpool). Each coloured region in the output is
the max of a 2× 2 region in the input of the same colour. . . . . . . . . . . 3

1.4 Examples of features learned by the various layers of a CNN trained on the
ImageNet data. The features range from simple features in the lower layers
of a CNN (left) to more abstract features in the higher layers of the CNN
(right). Image taken from [37] . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A high-level abstraction of a CNN based object detection architecture is
shown. It has a CNN based backbone to extract features and an output
network that makes predictions. . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Objects in the image on the left have different scales and have the same
class (person). Objects in the right image are the same class but different
aspect ratios. Images were taken from the COCO dataset [33] . . . . . . . 7

x



1.7 (Left) A featurized image pyramid where the image is scaled to various sizes,
then features are computed independently at each scale and predictions are
made. (Right) An FPN which uses the layers of a CNN to create a feature
pyramid. Blue boxes show the last three layers of a CNN. In FPN, the last
layer is upsampled twice, and weights from the preceding layer are added to
each upsampling. This allows each layer of the FPN to access the weights
from the last layer of the CNN, and thus having stronger semantics. The
bold boxes indicate that the layer has the most robust semantics. The image
is taken from [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 The image on the left shows some template anchor boxes, which are then
refined by the network to obtain predictions as seen on the right. Note that
the image on the left shows very few boxes for simplicity. In reality, there
could be over 100K red boxes on the images. . . . . . . . . . . . . . . . . 9

1.9 (a) A keypoint based object detector, Cornernet [27] is shown. It predicts
corners, then groups them to bind the object. (b) A centre-based anchor-free
method, FCOS [48] is shown. It directly predicts a 4D vector of distances
from each pixel, treating it as the center. (l, t, r, b) are the (left, top, right,
bottom) distances from each centre. . . . . . . . . . . . . . . . . . . . . . 10

1.10 (a) The mask around the sheep is “coarse” as it misses fine details like the
legs. (b) A finer mask that contours around the legs. . . . . . . . . . . . . 11

2.1 (a) FPN [31] introduces a top-down pathway to fuse multi-scale features; (b)
PANet [34] adds a bottom-up pathway on top of FPN; (c) DetectroRS [39]
adds a recursive connection to the top-down FPN . . . . . . . . . . . . . . 16

2.2 The formula for IoU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 (a) The MatrixNet architecture with the matrix analogy taken from [40] (b)
The MatrixNet architecture re-drawn to show all connections. . . . . . . . 21

3.2 Normalized frequency of boxes assigned to matrix layers with different re-
ceptive fields. We see that matrix layers with a square (1:1) receptive field
have mostly square boxes assigned. Matrix layers with 1:2 receptive fields
have mostly boxes with a dimension ratio from 1.5-3. Finally, the most
skewed matrix layers with a receptive field of 1:4 have mostly boxes with a
dimension ratio 3.5+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The Retinanet architecture taken from [32]. . . . . . . . . . . . . . . . . . 26

xi



3.4 The x-Retinanet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The Cornernet architecture taken from [27] . . . . . . . . . . . . . . . . . . 29

3.6 The x-Cornernet architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Example of a prediction where Cornernet makes an error matching corners
and embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Mask RCNN architecture taken from [17] . . . . . . . . . . . . . . . . . . . 35

3.9 The top figure shows an example of RoIPool and bottom shows RoIAlign. . 36

3.10 The x-Mask RCNN architecture. MatrixNets with R2 is used in the back-
bone and MEL is added to the mask branch. . . . . . . . . . . . . . . . . 37

4.1 (a) Matrixnet with 5 layers (b) MatrixNets with 13 layers and (c) 19 layer
MatrixNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Sample detection results for x-Cornernet object detection framework when
using FPN (top), and 19 layers MatrixNet (bottom) as backbones. Ma-
trixNet produces tighter bounding boxes especially for rectangular objects. 45

4.3 Sample predicted masks from Mask RCNN with MEL (top), and without
MEL (bottom). Adding MEL achieves finer mask predictions. . . . . . . . 47

B.1 (Left) shows the image without blur and (right) shows the image with Gaus-
sian blur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



List of Tables

3.1 Table of notations used in Chapter 3, unless stated otherwise. . . . . . . . 21

3.2 Metrics used for evaluation. AP is the precision averaged over all categories
(80 in MSCOCO) present in the data. Dimension ratio is computed as
max(h,w)/min(h,w) where h,w are the height and width of the object. . 24

4.1 Retinanet Result with FPN and MatrixNets backbone. x-Retinanet implies
MatrixNets with 19 layers. For #Anchors = 3 we add anchors at 3 scales
and 1 aspect-ratio, and for #Anchors = 9 we add anchors at 3 scales and 3
aspect-ratio. We report the various precision metrics as discussed in Table 3.2. 40

4.2 Impact of the number of layers of MatrixNets on detection performance in
x-Retinanet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Cornernet Results. Blank indicates results were not available. ori. indicates
original image size. We report the precision metrics as discussed in Table 3.2. 43

4.4 Impact of the number of layers of MatrixNets on detection performance in
x-Cornernet-Lite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Left table shows the impact of input image size and right table shows the
impact of backbone on x-Cornernet-Lite performance. We see larger image
size improves perfrormace. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 x-Mask RCNN results with and without Mask Edge Loss (MEL). . . . . . 46

4.7 Mask branch accuracy with and without MEL for Mask RCNN and x-Mask
RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 State-of-the-art comparison on COCO test-dev2017 set for object detection.
A blank indicates methods for which results were not available. The image
size for multi-scale results indicates the maximum size to which the image
was scaled; for example, 2× means that the image was resized to twice the
resolution for multi-scale testing. . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



Chapter 1

Introduction

Object detection is the task of detecting instances of a class (or classes) of objects in images
and videos and localizing each instance by drawing a bounding box around it. Object
detection has a wide variety of applications, from tracking objects and video surveillance
to pedestrian detection and face detection. Instance segmentation goes one step further
and aims to delineate each object by computing a pixel-wise mask over the object. It may
also be thought of as a pixel-wise classification of an image. Instance segmentation has
various applications where individual objects need to be separated. For example, instance
segmentation is useful in biomedical image analysis where individual organisms in cell
cultures need to be separated and identified. Figure 1.1 shows examples of object detection
and instance segmentation tasks. The object detection task shown on the left draws boxes
bounding each object. In contrast, instance segmentation draws a precise pixel-wise mask.

With the success of AlexNet [26] in 2012, deep learning architectures have become
a popular solution to the object detection task. The most widely used deep learning
architectures rely on Convolutional Neural Networks (CNNs). CNNs are a class of Neural
Networks, which draw inspiration from the biological visual cortex. Before we discuss
CNN-based object detectors, we fist give some background necessary to understand deep
learning architectures. Advanced readers may skip directly to Section 1.3.

1.1 Feedforward Neural Networks

Feedforward neural networks are a class of machine learning algorithms that approximate
a function through a series of intermediate computational layers. Thus, given an input-
output pair of x, y : x ∈ X, y ∈ Y , the network aims to approximate ŷ = f(x,Θ) where

1



Figure 1.1: The object detection task is shown on the left and the instance segmentation
task is shown on the right. The image is taken from the MS COCO dataset [33]

Θ parameterizes the layers of the network. The input is passed between the intermediate
layers without any cyclical connections among them. The intermediary layers are simple
functions that, when combined, approximate the function well. These intermediate layers
are called hidden layers. These hidden layers are composed of interconnecting nodes or
neurons, which are activation functions that take in a linear combination of input data via a
layer weight vector W , add a bias b, and output values through a non-linear transformation
(fact). Thus, each neuron has the form n = fact(W

TX + b). b is called bias as it influences
the output scores, but without interacting with the input data(X). Non-linear activations
are used as they can capture complex relationships in the input data. Several fact have
been proposed based on the characteristics required by the network. A popular fact used
is Rectified Linear Unit or ReLU, given as ReLU(k) = max(0, k) where k is a real number.
An example of a feed-forward neural network called a Fully Connected Network (FCN) is
given in Figure 1.2. In the diagram, all neurons of a layer are connected to all the neurons
in the previous layer.

The parameters of the neural networks are then optimized. We first define a loss
function, which is a measure of how well the model is doing. In supervised learning tasks,
typically used loss functions are the distances between the predicted ŷ and actual output y.
The choice of loss function depends on the type of input and the task at hand. For instance,
in the case of multi-class classification, the input has to be assigned to one of the K output
classes. The neural network outputs a probability distribution of each input belonging to
the K classes. The most popular loss function used in such scenarios is the cross-entropy
function which is defined as CE(ŷ, y) = −

∑K
k=0 yklog(ŷk). A popular optimization method

is gradient descent, which minimizes the loss function by iteratively moving in the direction
of steepest descent. In stochastic gradient descent, a random subset of the training dataset
(called mini-batch) is used for calculating the gradients.

2



Figure 1.2: A simple Feedforward Neural Network with fully connected layers

(a) (b)

Figure 1.3: (a) Shows a Conv operation (3 × 3 filter 1 × 1 stride and 0 padding). Each
pink 3×3 matrix in the input is multiplied element-wise with the filter and added together
to compute one pink cell in the output matrix. (b) Shows a max pool operation (2 × 2
Maxpool). Each coloured region in the output is the max of a 2× 2 region in the input of
the same colour.

Modern Neural Network methods also add batch normalization (batchnorm) [20]. The
weights of a neural network are usually initialized randomly. Moreover, the distribution of
the input data may have some randomness as well. These sources of randomnesses affect
the distribution of the inputs to each layer, and this effect is called internal covariance
shift. Batchnorm adds a mini-batch-wise normalization step that fixes the means and
variances of each layer’s inputs. This normalization makes each hidden layer stable to
internal covariance shift.

3



1.2 Convolutional Neural Networks

Images are represented as 3D matrices. Each dimension is called a channel and represents
the three primary colours’ intensities — red, blue and green. In order to learn information
from images, we would require vast Fully Connected Networks. For instance, an image of
size 64 × 64 × 3 would need 12, 288 neurons to be present. Such a network would take
a long time to train and would also overfit. In order to learn from images, we turn to
Convolutional neural networks (CNNs). CNNs are a class of Neural Networks, which draw
inspiration from the biological visual cortex. Neurons in a CNN are constrained, such that
each neuron “looks” at only a small part of the input image. The region in the input which
a neuron looks at is called its receptive field. CNNs are designed such that all the neurons
in a layer do not have to be connected to all the neurons in the previous layer, i.e., they do
not have to be fully connected. This property allows CNNs to have fewer parameters and
be less prone to overfitting. Moreover, CNNs take advantage of hierarchical patterns in
the images (e.g., pixels representing a line need to be close by) to learn complex patterns
by assembling simpler ones. Thus, CNNs are well suited for learning features from images.
CNNs are typically made up of convolutional layers, pooling layers and fully connected
layers.

• The convolutional layers (ConvLayer) are the core building block of a CNN. A Con-
vLayer ’s parameters consist of a set of learnable kernels or filters. Every filter is
small spatially (along the width and height), but extends through the full depth of
the input volume. The filters transform the image 3D volume to output 3D volume
of activations, also called a feature map. This transformation is done by sliding the
filter over the input volume’s height and width and computing the dot product be-
tween each element of the filter and the input. Intuitively, the network will learn
filters that activate when the network “sees” some visual features. Each point on the
feature map is referred to as a location and is semantically equivalent to a pixel in
an image. The “depth” of a Convlayer represents the number of filters used to learn
various aspects of the input. To increase robustness, often CNNs have more channels
than the input.

ConvLayers generally share weights for each application of the filter. Hence, the
number of parameters depends only on the filter size. An example of a 1-D conv
operation is shown in Figure 1.3. Note, neurons in a ConvLayer are locally connected
to a region in the input to reduce computational costs. Thus, the spatial extent of
each neuron is constrained by the size of the filter used. For instance, if we use a
filter of size 3× 3, each neuron in the output looks at 3× 3 area of the input. This

4



Figure 1.4: Examples of features learned by the various layers of a CNN trained on the
ImageNet data. The features range from simple features in the lower layers of a CNN (left)
to more abstract features in the higher layers of the CNN (right). Image taken from [37]

area is also called the receptive field of the neuron. Each filter has a predefined stride.
The stride determines how many pixels are skipped when sliding the filter over the
input. A stride of 1 × 1 goes over each pixel in the height and width, whereas a
stride of 2× 2 jumps 2 pixels when the filter is slid. Downsampling is whenever the
output size reduces either by pooling or a ConvLayer. Similarly, upsampling pertains
to increasing the size of output by using deconvolutional layers. Often the input is
padded with zeros to keep the size of the input and the output the same.

• Pooling layers are added between ConvLayers to reduce the spatial extent of the
representation and reduce the number of parameters to be learned. The pooling
layer slides over the input volume and outputs the pooled value of the window. The
pooling operation typically used is max pooling, so a Maxpool layer of size 2× 2 will
output the max over all the elements of the window of size 2×2 and reduce the input
width and height by half. An example of max-pooling is shown in Figure 1.3.

• Finally, an FCN may be added towards the end to add more non-linearity to the
network for better learning.

Some examples of features learned from images by the various layers of a CNN are given
in Figure 1.4. As the receptive field is limited, different layers in a CNN learn different
complexity of features. The first few layers learn basic features like lines and textures. In
contrast, the later layers lean more complicated and often abstract features. Thus, the
last layers of a CNN are said to have stronger semantics i.e. the features learned are more
meaningful .

5



Figure 1.5: A high-level abstraction of a CNN based object detection architecture is shown.
It has a CNN based backbone to extract features and an output network that makes
predictions.

1.3 CNNs and Object Detection

A typical CNN based object detector uses a backbone network (also called encoder) to
extract features from the input and create a feature map. An output network (also called
decoder) processes the feature map and predicts classes and bounding boxes for the detected
objects. Most of the time, Non-Maximum Suppression (NMS) is used as a post-processing
step to remove overlapping boxes (NMS algorithm is available in Appendix A). A high-
level representation of a CNN-based object detection architecture is given in Figure 1.5.
With the availability of faster GPUs, features computed by CNNs have almost completely
replaced the ‘hand-engineered’ features used previously for recognition tasks. An example
of a hand-engineered feature would be to use the Canny Edge Detector [5] to explicitly find
edges and then provide this information to the model rather than have it learn the feature.
Initial CNN based deep learning models or architectures focused on deeper networks, i.e.,
adding more layers [18, 26]. However, as objects in an image can be of different scales (or
sizes) and aspect ratios (as seen in Figure 1.6), deeper networks are not enough to achieve
the best accuracy. This is because the feature maps are calculated at one resolution of the
image. Hence, they often miss out on objects that may be very small. Thus, CNN based
architectures have started to move towards architectures that are 1) scale-invariant and 2)
aspect-ratio invariant.

6



Figure 1.6: Objects in the image on the left have different scales and have the same class
(person). Objects in the right image are the same class but different aspect ratios. Images
were taken from the COCO dataset [33]

Figure 1.7: (Left) A featurized image pyramid where the image is scaled to various sizes,
then features are computed independently at each scale and predictions are made. (Right)
An FPN which uses the layers of a CNN to create a feature pyramid. Blue boxes show the
last three layers of a CNN. In FPN, the last layer is upsampled twice, and weights from
the preceding layer are added to each upsampling. This allows each layer of the FPN to
access the weights from the last layer of the CNN, and thus having stronger semantics.
The bold boxes indicate that the layer has the most robust semantics. The image is taken
from [31].

7



1.3.1 Challenge 1: Scale Invariance

CNNs have two main components: the backbone and the output network. Scale invariance
can be added by either changing the backbone or changing the output network.

Changing the Output Network

Early object detectors used featurized image pyramids (shown in Figure 1.7 (left) to effec-
tively detect objects at various scales. Featurized image pyramids re-scale the images to
smaller sizes, like levels in a pyramid, compute feature maps independently at each level
and predict objects. This design choice makes featurized image pyramids scale-invariant,
but the method is slow and computationally expensive. Thus, featurized image pyramids
were only used at inference time and not for training deep learning models.

Changing the Backbone

With the advent of CNNs, researchers discovered that the various layers of a CNN naturally
create a hierarchical feature map. The first few layers of a CNN hold simple features like
lines and textures, and the later layers hold more complex patterns (as seen in Figure 1.4).
The last layer holds the most meaningful or semantically strongest features (shown with
bold blue in Figure 1.7 (left)). The next generation of deep learning architectures then
aimed to achieve scale invariance by leveraging this inherent hierarchy and creating seman-
tically strong feature maps from the layers of a CNN. Feature Pyramid Networks (FPNs)
[31] (shown in Figure 1.7 (right)) proposed using the CNN hierarchy to create a feature
pyramid such that semantically strong feature maps are available at multiple levels. Thus,
FPNs add scale invariance by modifying the backbone. Now FPNs are the most popular
backbone used in many new deep learning architectures (e.g., [46, 14, 4]) to learn objects
of different scales better. While FPNs can detect objects at various scales well, they do
not do so well with non-square objects as they have an inherent “square bias” (discussed
in more detail in Section 2.1.1) in their receptive field.

1.3.2 Challenge 2: Aspect-ratio Invariance

Objects can not only be of different scales but also different aspect ratios. For instance,
in the MS COCO dataset [33], 58% of boxes have a dimension ratio (ratio of maximum
side/minimum side) greater than 1.5. More than 7% have a ratio higher than 3.5. This

8



Figure 1.8: The image on the left shows some template anchor boxes, which are then
refined by the network to obtain predictions as seen on the right. Note that the image on
the left shows very few boxes for simplicity. In reality, there could be over 100K red boxes
on the images.

issue is prominent in tasks like wildlife detection, where animals like giraffes have extremely
skewed aspect ratios. In order to model objects of various aspect ratios, many FPN based
methods use anchor boxes or templates in the output network. Like scale invariance,
aspect-ratio invariance is also tackled by making changes to the backbone or the output
network.

Changing the Output Network

Anchor boxes are preset boxes of various sizes and aspect ratios that are initially tiled
over an image during training. Then the boxes are classified and refined to obtain the
output detections. Figure 1.8 shows an example of anchor boxes. The boxes in red in the
image on the left are examples of predefined boxes of a given size. Many such boxes of
different heights and aspect ratios are drawn to cover the image densely. These boxes are
then refined to obtain potential predictions (seen on the right). Anchor boxes can also
be thought of as a way of providing training samples to the network. Thus, more anchor
boxes of various sizes and aspect ratios mean more robust training samples. Different
architectures may refine anchor boxes in different ways. For example, in Retinanet [32],
the network predicts four offsets, one for each coordinate of the top left and bottom right
corner of the anchor box, and a confidence score. The low confidence boxes are discarded.
The offsets are applied to the surviving anchor boxes to obtain bounding box predictions.
Anchor boxes have two main issues. (1) Many anchor boxes are needed to capture objects

9



(a) (b)

Figure 1.9: (a) A keypoint based object detector, Cornernet [27] is shown. It predicts
corners, then groups them to bind the object. (b) A centre-based anchor-free method,
FCOS [48] is shown. It directly predicts a 4D vector of distances from each pixel, treating
it as the center. (l, t, r, b) are the (left, top, right, bottom) distances from each centre.

of varied shapes and sizes. For instance, Retinanet [32] requires > 100K anchors per
image. (2) They are set as hyperparameters, so researches have to make many parameter
choices that are usually made via ad-hoc heuristics. Thus, there has been a paradigm shift
among researchers towards anchor-free methods. Anchor-free methods work primarily in
two ways:

1. They predict some “keypoints” and group them to localize the objects and thus pre-
dict bounding boxes. For example, Figure 1.9 shows predictions from Cornernet [27],
which predicts corner points and groups them together.

2. They use the centre point of the object as an anchor point and then predict the four
coordinates representing the top left and bottom right corners of the bounding box.
This method is similar to having one anchor box. For example, FCOS [48] predicts
a 4D vector encoding the location of a bounding box at each pixel ( Figure 1.9).

Both centre-based and corner-based anchor-free methods rely on FPNs as their back-
bone. Even though they can model skewed boxes better, they still suffer from the “square-
bias” of FPNs.

10



Figure 1.10: (a) The mask around the sheep is “coarse” as it misses fine details like the
legs. (b) A finer mask that contours around the legs.

Changing the Backbone

Other aspect-aware architectures (e.g., [29, 10, 40]) aim to incorporate aspect-ratio aware-
ness in the backbone itself. A recent framework, MatrixNets [40], generalizes FPNs by
proposing unique “matrix layers” (more details in section 3.1) that capture asymmetric
objects well. Moreover, as they inherently capture asymmetric aspect ratios, they can turn
anchor-based methods anchor-free1.

The rise of anchor-free methods highlights the need for implicit methods for mod-
elling aspect-ratio awareness. A recent work, ATSS [58], explores differences between
anchor-based and anchor-free methods and suggests algorithms to reduce the number of
anchors required to achieve state of the art performance. However, ATSS still requires
some hyperparameter to be set by the end-user. MatrixNets removes the need for any such
hyperparameter by implicitly modelling aspect-ratios.

1.4 Thesis Goals and Contributions

FPNs have been studied in detail [14, 32, 14, 46] and applied to important computer vision
tasks like instance segmentation and object detection. On the other hand, MatrixNets is a
relatively new and understudied concept. Matrixnets has been shown to improve keypoint

1They still require one anchor per location, which is equivalent to centre-based anchor-free methods

11



based object detectors [41] significantly. However, the implementation makes significant
changes to the architecture, making it difficult to isolate the solo impact of Matrixnets.
Moreover, the claims of improvement in aspect-ratio awareness by eliminating the need for
anchor boxes are not substantiated. Finally, the modular attribute of Matrixnets needs to
be asserted, as well. The primary goal of this thesis is to study the impact of MatrixNets
in more detail. We re-implement MatrixNets with several state-of-the-art architectures to
understand its stand-alone impact. Specifically, we study MatrixNets along three axes:

• Making anchor-based architectures anchor-free: We first apply MatrixNets
to an anchor-based architecture Retinanet [32]. We replace the FPN backbone in
Retinanet with MatrixNets, and show that MatrixNets removes the need for anchor
boxes of various sizes and aspect ratios, and leads to better performance.

• Modelling aspect-ratio invariance: We apply MatrixNets to an anchor-free ar-
chitecture, Cornernet [27]. Cornernet is not compatible with FPNs, so we first pro-
pose x-Cornernet that allows FPNs to be used and then show the benefits of using
MatrixNets, especially in modelling skewed aspect-ratio objects better.

• Application to other Computer Vision tasks: Instance segmentation goes one
step further than object detection and predicts individual objects at the pixel level.
As size and shape of the object become more important for instance segmentation,
We explore MatrixNets for the instance segmentation task. We follow the Mask
RCNN [17] architecture and improve it by proposing Mask Edge Loss (MEL) . MEL
penalizes coarseness in masks (e.g., in Figure 1.10) and leverages the asymmetric
receptive field of MatrixNets to improve mask predictions. We show that adding
MatrixNets can again lead to improved performance without the need for additional
anchor boxes. Moreover, MEL can also be combined with FPN based Mask RCNN
for 0.3 mAP improvement in accuracy.

We choose Retinanet, Cornernet and Mask RCNN as they are the most popular methods
for object detection and instance segmentation tasks. Several newer and more sophisticated
methods have been built over these architectures. However, these remain the supreme
example for each of the axes defined above. We believe that by showing the impact of
MatrixNets with these simpler architectures, we can successfully isolate the impact of
MatrixNets without any bells and whistles.

Neural Network architectures may have different implementations, so comparing them
on the same baseline is difficult. Some of the performance gains in terms of inference
time may depend on the implementation and software used. To level the playing field,

12



many software implementations (or frameworks) like MMdet [8], AdelaiDet [47], and De-
tectron2 [51] have come up which serve as general-purpose libraries for architecture imple-
mentation. They already have the popular architectures built-in, and newer architectures
can easily be built on top of them. Using a framework allows for fair comparisons. It does
not count gains, that may come from better software engineering practices. In this thesis,
we choose Detectron2 as it is the most widely used open-source framework. We update
the FPN already implemented in Detectron2 to MatrixNets and make minimal changes to
the rest of the network to ensure fair comparison with previous work.

Finally, all experiments are done on the COCO dataset [33], which is the standard
dataset used for benchmarking various object recognition tasks. The code for Detectron2
compatible MatrixNets will be made publicly available.

1.5 Thesis Organization

The subsequent chapters are organized as follows. We discuss the background and related
work in Chapter 2. Then we discuss each architecture implementation in detail in Chap-
ter 3, and we give the experiment results in Chapter 4. Finally, we conclude the thesis
in Chapter 5.

13



Chapter 2

Related Work

In this chapter, we first discuss the recent work done to improve CNN based object detec-
tion. As a CNN-based object detector has two main components — the backbone, and the
output network, the improvements in object detection come from improvements in either
of these two components. We discuss work done to improve each component in more detail.
Then, we discuss the recent work in the instance segmentation domain.

2.1 CNN based Object Detection

2.1.1 Backbones

CNNs use a backbone network to extract features from an image. Earlier methods like
VGG [45] propose deeper architectures to improve performance. On the other hand,
methods like Resnet [18] propose adding skip connections. Skip connections connect non-
adjacent layers in a neural network, thus alleviate the problem of vanishing gradients [1]
and aid in better learning. HourglassNet [53] proposes first downsampling convolutional
layers then upsampling to learn global and local features in a unified structure. However,
HourglassNets are computationally heavier than Resnets. These methods used only the
last layer of the network to process outputs and thus do not work well with objects of var-
ious scales. One solution is to use features computed at multiple scales independently, but
such a method is computationally expensive. Feature Pyramid Nets (FPNs) [31] offer a
scale-invariant solution by calculating a feature pyramid directly from an underlying CNN.
They use the layers from a Resnet [18] owing to its performance, lower complexity and flex-
ibility. FPNs are also compatible with ResNext [52], ResNest [56] and Resnet-DCNs [10],

14



which are improvements over the basic Resnet model. To reduce training time, FPNs use
a Resnet that has been pretrained on the Imagenet dataset.

FPN and Improvements

FPNs [31] introduced the idea of a top-down multi-scale fusion of features. They use the
final layers {R2, R3, R4, R5} (R2 being the highest resolution) of a Restnet model and fuse
them to obtain {P2, P3, P3, P4, P5} as outputs. The fusion of layers typically means that
they are either added or averaged together. Top-down fusion happens in the following
manner: We upsample R5 and add R4 to obtain P5. Next, we upsample P5 and add R3 to
obtain P4. Similarly, we obtain P3 and P2. As the fusion happens from the smallest to the
largest layers, we call it top-down fusion. Each output is a 2× downsample along the width
and height of the previous output layer. This step essentially doubles the receptive field of
the layer, but the receptive field remains square. Since the original FPN paper, there have
been many improvements in the fusion methodology of FPNs. Retinanet [32] modified the
FPN by further downsampling P5 to create smaller P6 and P7. These layers are better at
predicting smaller objects owing to the larger receptive fields. PA-Net [34] added a bottom-
up pathway to the original fusion method. NAS-FPN [14] performed a neural architecture
search to produce a complex fusion graph. EfficientDet [46] proposed BiFPN, which learns
the importance of each input feature map, and then fuses features based on importance.
SpineNet [21] permutes the connections in the backbone instead of following a top-down or
bottom-up fusion paradigm. Finally, DetectroRS [39] adds recursive calls to the bottom-
up FPN backbone. All of the above methods still follow symmetric downsampling when
computing the output layers. They thus suffer from square biasedness in the receptive field.
A few examples of various fusion techniques are shown in Figure 2.1. MatrixNets [40] is
the first to generalize FPNs by allowing asymmetric strides. MatrixNets adds asymmetric
downsampling (more details in Section 3.1) and follows a top-down fusion method like the
original FPN paper. As the diagonal of MatrixNets acts as an FPN, the different fusion
methods can be applied to MatrixNets as well.

2.1.2 Output Methods

The output method is perhaps the most critical part of modern CNN based methods. The
output method is where the core idea of the algorithm works — the features are processed,
and loss functions are calculated. Two main types of output methods exist, anchor-based
and anchor-free.

15



(a) (b)
(c)

Figure 2.1: (a) FPN [31] introduces a top-down pathway to fuse multi-scale features; (b)
PANet [34] adds a bottom-up pathway on top of FPN; (c) DetectroRS [39] adds a recursive
connection to the top-down FPN

Figure 2.2: The formula for IoU

16



Anchor-Based

Anchor-based methods use predefined anchors at each position of the feature map and
then refine them to obtain bounding box predictions. All anchor-based methods are ei-
ther one-stage or two-stage. Most two-stage architectures are based on Faster-RCNN [43],
which consists of two sub-networks: the first sub-network, called Region Proposal Network
(RPN), proposes Regions of Interest (ROIs). The second sub-network classifies and re-
gresses the RoIs to get final predictions. One-stage methods directly classify and regress
bounding boxes without waiting for proposals from an RPN. The most popular single-stage
method is Retinanet, after which many improvements have been proposed. FreeAnchor [60]
improves Retinanet by improving anchor box to ground truth box matching during train
time. MAL [22] improves anchor selection during train time. YOLO [3] is another popular
one-stage method, but they make large speed-accuracy tradeoffs. ATSS [58] tries to reduce
the number of anchors required for prediction by using a specialized training sample selec-
tion mechanism based on the standard deviation of the IoU (Figure 2.2) of the anchors.
PPA [23] first learns the distribution of samples and then draws potential anchor locations
from this distribution.

Anchor-Free

Anchor-free methods either predict keypoints and group them to localize each object
or calculate the “centreness” of each pixel on the image (guided by the availability of
ground truth) and then regress a bounding box around it. Cornernet [27] was the first
method to use top-left and bottom-right key points for box localization rather than an-
chors. Centernet-HG [61] and Centernet [12] both extend this by predicting a centre key
point as well. Centripetalnet [11] further improves Cornernet by predicting the offset of
the centres from the corners and proposes a better corner matching algorithm. All of
these methods use the heavy Hourglass [53] backbone, making them difficult to train and
deploy. Other anchor-free methods such as FCOS [48] and FSAF [64] predict a centre
and regress box coordinates per output. More recently, a fast, anchor-free two-stage ar-
chitecture, RepPoints [54], has shown the best performance. All of these methods again
rely on FPNs and suffer from a square biased receptive field, which MatrixNets alleviates.
Our implementation of Cornernet with MatrixNets as the backbone further highlights this
point in Section 3.1.

17



Loss Functions

Some researchers have proposed newer loss functions to improve performance. Retinanet
[32] proposes a new algorithm “focal loss” to balance negative ROI samples. GIoULoss
[44] incorporates the IoU metric into the loss function for better improvement. These loss
functions are typically implemented in the output layer often do not interfere with the
backbone. Thus, MatrixNets should be compatible with them, as well.

Aspect-Ratio Awareness

Anchor-based methods [43, 32, 60] generally use skewed anchor boxes to represent objects
with different aspect ratios. However, they are still limited to anchor boxes for explicit
aspect-ratio modelling. ME-RCNN [29] creates multiple second stage networks for predict-
ing different aspect ratios. However, this only applies to two-stage anchor-based models,
does not modify the receptive field, and has fallen out of favour. Anchors are hyperparam-
eters, so the community is moving towards hyperparameter free methods that implicitly
model aspect ratios.

Deformable Convolutions [10] create backbones that have adaptive receptive fields in
their convolution kernels, which implicitly improves aspect-ratio awareness. MatrixNets
[40] explicitly encodes aspect-ratio awareness by adding asymmetrically downsampled lay-
ers to the FPN backbone. However, more experimentation is needed to isolate the impact
of MatrixNets on accuracy.

2.2 CNN based Instance Segmentation

Instance segmentation architectures can be divided into one-stage and two-stage meth-
ods. Two-stage detectors split the task into detection and segmentation. The detection
task offers some template boxes over which masks are segmented. The first breakthrough
two-stage detector that achieved high accuracy on the instance segmentation task was
Mask-RCNN [17]. Mask RCNN is built over Faster RCNN [43] and adds a mask branch
parallel to the bounding boxes and classification branches. Several architectures like Mask
Scoring RCNN [19] and Hybrid Task Cascade (HTC) [7] improve over the Mask-RCNN
architecture by either improving the underlying backbone or creating pathways between
the mask and detection branch. However, these methods suffer from the main drawback
of Mask-RCNN, which depends on anchor boxes. In anchor-free methods, Centermask [30]
is one new architecture built upon FCOS [48], which is an anchor-free one-stage object

18



detector. Centermask achieves this by adding a Spatial Attention Guided (SAG) mask
branch over FCOS. Incorporating MatrixNets in Mask RCNN can benefit all the methods
mentioned above by adding aspect-ratio awareness and improving accuracy. Moreover,
MatrixNets can reduce the number of anchor boxes required, as well.

One the other hand, one-stage methods directly predict masks without the need for
detection first. Architectures like BlendMask [6], EmbedMask [55], SOLO [50], YOLO [42]
and RDSNET [49] are one-stage but they are unable to compete with MaskRCNN in term
of accuracy. A recent method, MEinst [57], achieves comparable performance to Mask
RCNN by encoding a one-dimensional mask vector instead of 2D representations predicted
by Mask RCNN. However, MEInst (and many other one-stage methods) uses an FPN based
backbone. We posit that MatrixNets can replace FPNs in all these FPN based one-stage
detectors and lead to better accuracy.

19



Chapter 3

Methodology

In this chapter, we first discuss the architectural details of MatrixNets. We then present
three case studies. The first case study, x-Retinanet, is created by replacing the FPN
in Retinatnet by MatrixNets. x-Retinanet shows that MatrixNets can make anchor-based
detectors anchor-free with no changes to the output network. We then present x-Cornernet,
an adaptation of Cornernets that works better with skewed boxes. Finally, we present x-
Mask RCNN, an anchor-free version of Mask-RCNN that uses a MatrixNets backbone.
x-Mask RCNN has a unique component, Mask Edge Loss (MEL), that reduces coarseness
in predicted masks. Together, these three implementations demonstrate that MatrixNets
is a general-purpose module that adds implicit aspect-ratio awareness to object detectors.
This awareness can also make anchor-based detectors anchor-free without adding more
parameters to the network. Some text in this section is taken from our previous work [40].
We provide a table of notations in Table 3.1 that we will follow throughout this chapter.

3.1 MatrixNets

FPNs, as described in [32], use the final layers {R3, R4, R5} of a Restnet model and fuse
them in a top-down fashion to create five outputs {P3, P4, P5, P6, P7}. Layer Pi has reso-
lution 2i lower than the input. Let us imagine a 5 × 5 matrix of ConvLayers with each
layer represented by li,j (as shown in Figure 3.1a). Then the FPN can be thought of
like the diagonal of this matrix such that {P3, P4, P5, P6, P7} of the FPN correspond to
{l1,1, l2,2, l3,3, l4,4, l5,5} of the matrix. At each level of the FPN, we add a width downsam-
pling of 2i−1 and height downsampling of 2j−1 to obtain MatrixNets. Thus, the diagonal

20



Notation Definition
(Hinp,Winp) Height and width of the input image

(H,W ) Height and width of the output layer of the backbone
(hr, wr) Height and width of a Region of Interest

K Number of categories used for classification
m Size of the downsampled mask for Mask RCNN
Px Layer number for FPN
Rx Layer number for Resnet
li,j Layer number for MatrixNets
A Number of Anchors used in Retinanet and MaskRCNN

Table 3.1: Table of notations used in Chapter 3, unless stated otherwise.

(a) (b)

Figure 3.1: (a) The MatrixNet architecture with the matrix analogy taken from [40] (b)
The MatrixNet architecture re-drawn to show all connections.

21



layers are square layers of different sizes, while the off-diagonal layers are rectangular lay-
ers, unique to MatrixNets. Matrix-layer l1,1 is the largest layer in size and is called the
base layer. Every step to the right reduces the width of the layer by half, while every
step-down reduces the height by half. For example, Width(l3,4) = 0.5Width(l3,3). Diago-
nal layers model objects with square-like aspect-ratios because they have square receptive
fields. Off-diagonal layers model objects with non-square aspect-ratios since they have
skewed receptive fields. Layers close to the top right or bottom left corners of the matrix
{l1,4, l1,5, l4,1, l5,1, l5,2, l2,5 } model objects with very skewed aspect-ratios (∼ 1 : 8). Such
objects are scarce so that these layers can be pruned for efficiency. In Figure 3.1b, we
redraw MatrixNets to show the various hierarchical connections more clearly. The pale
blue rectangle shows an FPN. Asymmetric layers are added to each layer in the FPN to
obtain MatrixNets. Note that we can use different FPN designs (e.g., from [43, 35, 32] )
to create MatrixNets as described above.

3.1.1 Parameters

MatrixNets introduces as few new parameters as possible when following the Retinanet
FPN. The upper triangular layers, i.e layers li,j where, i > j, are obtained by applying a
series of shared 3× 3 convolutions with stride 1× 2 on the diagonal layers. Bottom layers
li,j where i < j are obtained using shared 3×3 convolutions with stride 2×1. This sharing
helps reduce the number of additional parameters introduced by the matrix layers. Each
layer has a standard batchnorm and ReLU. The addition of the off-diagonal layers usually
adds as many parameters as multiple anchor boxes. For example, both anchor boxes and
MatrixNets add ∼ 1M parameters to Retinanet.

3.1.2 Advantages of MatrixNets

The key advantage of MatrixNets is that they allow a square convolutional filter to accu-
rately gather information about different aspect-ratios. In anchor-based object detection
models, such as Retinanet, a square convolutional filter is required to output boxes of
different aspect-ratios and scales. Using a square convolutional filter is counter-intuitive
since boxes of different aspect-ratios and scales require different contexts. In MatrixNets,
the same square convolutional filter can be used for detecting boxes of different scales
and aspect-ratios since the context changes in each matrix layer. l1,2 can be viewed as
an alternative to a 1:2 anchor box on l1,1, where the receptive field matches the targeted
aspect-ratio. Note that custom anchor boxes like a 1:3 anchor box can be represented by
using fractionally strid convolutions, so in this case, with a 1:1.5 stride applied to l1,2.

22



We illustrate how matrix layers imitate anchor boxes. In anchor-based object detectors,
different ground-truth boxes are assigned to the closest anchor boxes. For the purpose of
this demonstration, we fix the range of widths and heights of objects assigned to each
layer in the matrix. We set the range of width (W ) and height(H) for the base layer
to be H = [24px, 48px],W = [24px, 48px]. Based on this range, we use the MatrixNets
definition to generate the range of heights and widths for all the other layers. A step to
the right doubles the width range, and a step-down double the height range. We plot
the distribution of boxes assigned to layers grouped by the receptive field in Figure 3.2.
We compute these by going through a training subset of MS COCO, assigning each box
to its appropriate layer based on its dimensions, creating a histogram for each layer, and
grouping each histogram by receptive field. We group layers with receptive fields of 2:1
and 1:2 into the same group since we plot a histogram of dimension ratios (ratio of the
maximum dimension by the minimum dimension). Our assignment mechanism assigns
boxes with large dimension ratios (skewed aspect-ratios) to layers with similarly skewed
receptive fields, allowing for explicit targeting of aspect-ratios. Since object sizes are nearly
uniform within their assigned layers, the dynamic range of the widths and heights is smaller
compared to other architecture such as FPNs. Hence, regressing the heights and widths of
objects becomes an easier optimization problem. Finally, MatrixNets are general and can
be used with any output method.

3.1.3 Dimension Ratio AP

The COCO dataset challenge1 defines 12 metrics given by the first 3 blocks of Table 3.2.
Precision and recall are calculated at a specific IoU threshold for the top 100 scoring
detections from the model. AP is the precision averaged over all the categories in the
dataset. mAP is the AP averaged over 10 IoU thresholds selected uniformly from 0.5 to
0.95. APs, APm, APl are mAP calculated for small, medium and large objects. AR is the
recall averaged over all the categories in the dataset. AR1, AR10, and AR100 are ARs
calculated by taking the top 1, 10 and 100 detections from the model and averaged over 10
IoU thresholds selected uniformly from 0.5 to 0.95. These metrics capture precision and
recall at various scales, but such metrics are unavailable for aspect-ratios. We add four new
metrics to capture the precision of predicting skewed objects. We define the dimension
ratio as the ratio of maximum dimension to the minimum dimension of the object. We
then bin dimension ratio in 4 categories as given in the last block of the table and calculate
the AP.

1cocodataset.org/.

23

cocodataset.org/.


Average Precision (AP)
mAP AP over IoU range [.50, .95]
AP50 AP at IoU=.50
AP75 AP at IoU=.75

AP Across Scales
APs AP for small objects: area < 322

APm AP for medium objects: 322 < area < 962

APl AP for large objects: area > 962

Average Recall (AR)
AR1 AR given 1 detection per image
AR10 AR given 10 detections per image
AR100 AR given 100 detections per image

AR Across Scales
ARs AR for small objects: area < 322

ARm AR for medium objects: 322 < area < 962

ARl AR for large objects: area > 962

AP Across Dimension ratios (Ours)
1− 1.5 AP for objects with dimension ratio 1− 1.5
1.5− 2.5 AP for objects with dimension ratio 1.5− 2.5
2.5− 3.5 AP for objects with dimension ratio 2.5− 3.5
3.5+ AP for objects with dimension ratio 3.5+

Table 3.2: Metrics used for evaluation. AP is the precision averaged over all categories (80
in MSCOCO) present in the data. Dimension ratio is computed as max(h,w)/min(h,w)
where h,w are the height and width of the object.

24



Figure 3.2: Normalized frequency of boxes assigned to matrix layers with different receptive
fields. We see that matrix layers with a square (1:1) receptive field have mostly square
boxes assigned. Matrix layers with 1:2 receptive fields have mostly boxes with a dimension
ratio from 1.5-3. Finally, the most skewed matrix layers with a receptive field of 1:4 have
mostly boxes with a dimension ratio 3.5+.

3.2 Retinanet

Retinanet [32] is a one-stage architecture that takes in an input image, uses anchor boxes
as templates for objects, and outputs bounding box offsets and class prediction for each
template. Predictions are obtained by applying the offsets to the template boxes and are
then ranked by the model confidence score. Non-Maximum Suppression (NMS) is applied
to eliminate duplicate predictions. The top-scoring bounding boxes that survive NMS are
used as the final predictions from the model.

3.2.1 Architecture details

Retinanet consists of a backbone network and two task-specific sub-networks. The back-
bone is an FPN based on R2 to R5 layers of Resnet. The backbone computes a convolu-
tional feature map over the input image. The first sub-network performs object classifi-

25



Figure 3.3: The Retinanet architecture taken from [32].

cation, and the second one performs bounding box regression and outputs bounding box
offsets. The architecture is shown in Figure 3.3.

Backbone

Retinanet uses an FPN backbone (previously discussed in Section 2.1.1). Retinanet’s FPN
is built over the Resnet architecture, and the pyramid is constructed from level R3 to R5

to obtain P3 to P5 in the FPN. P5 is further downsampled twice to obtain to P6, P7 layers.
The layer Px has resolution 2x times than the input. All pyramid levels have 256 channels.

Anchors

Retinanet uses predefined anchor boxes of sizes 322 to 5122 on pyramid levels P3 to P7. At
each level, anchors at 3 aspect-ratios {1 : 2, 1 : 1, 2 : 1} and 3 sizes {20, 21/3, 22/3} are used.
Thus each level has A = 9 anchors per location and these cover a scale range of 32− 813
pixels with respect to the input image size.

Each anchor box is assigned a K one-hot vector of classification targets (where K is the
number of classes). The assignment is done based on Intersection over Union (IoU) with
the ground truth bounding box. Matches with IoU greater than 0.5 are labelled as positive
samples, IoU between [0.4, 0.5) are ignored, and rest are assigned to the background class.
Each anchor box can be assigned at most one ground truth box based on the maximum
IoU. Bounding box regressions are computed as the offsets between the ground truth and
the assigned anchor box.

26



Classification Sub-network

The Classification Sub-network predicts the probability of an object’s presence for each
of the anchor boxes and K classes. The sub-network is an FCN composed of four 3 × 3
ConvLayers, each with C filters (C being the number of channels in each pyramid layer),
followed by ReLU activation and ending with a 3 × 3 Conv with K × A filters. Finally,
a sigmoid activation is attached to obtain K × A binary predictions per spatial location.
This sub-network is attached to each FPN level; parameters of this sub-network are shared
across all the pyramid levels.

Regression (Bbox) Sub-network

The Regression Subnet is a parallel FCN connected to each pyramid level and used to
regress the offsets from each anchor boxes to the nearby ground truth. The architecture
is similar to the Classification Subnet. However, it terminates in 4 × A (A is the number
of anchor boxes) coordinate offsets per anchor box. Note that the regression sub-network
is class agnostic, i.e., it predicts bounding box offsets without classification information.
The regression loss (Lreg) is added to the loss.

Focal Loss

Retinanet uses Focal loss for classification, which is a variant of the cross-entropy loss and
is defined as:

FL(pt) = −αt(1− pt)γ log(pt)

where

pt =

{
p, if y = 1.

1− p, otherwise.
(3.1)

y ∈ ±1 specifies the ground truth class (1 for positive, -1 for negative), p ∈ [0, 1]
specifies the model’s estimated probability for the class with label y = 1, and αt is the
weighting factor that penalizes heavy class imbalances. When γ = 0, FL reduces to the
cross-entropy loss. As γ increases, easy examples are discounted from the loss. Thus,
Focal loss works better when there are large class imbalances between the foreground and
background classes.

27



Figure 3.4: The x-Retinanet architecture .

Thus, the total training loss is:

Ltotal = βLreg + FL (3.2)

Here, β is a hyperparameter. Retinanet uses SGD to optimize this loss function.

3.2.2 Our Implementation: x-Retinanet

We follow the same architecture as Retinanet with two modifications.

1. We replace the FPN backbone with MatrixNets. Our MatrixNets uses the P3 to P7

as the diagonal, and the off-diagonal layers are computed by downsampling along the
width and height as discussed in Section 3.1.

2. We have one anchor per location (A = 1). The classification and regressions sub-
networks receive outputs from all 19 layers of MatrixNets.

Figure 3.4 shows the x-Retinanet architecture.

28



Figure 3.5: The Cornernet architecture taken from [27]

3.3 Cornernets

Cornernet [27] detects objects like a pairs of keypoints. The network uses an Hourglass [53]
network as the backbone followed by two prediction sub-networks, one to predict the top-
left corner and the other for the bottom-right corner. Each sub-network has a corner
pooling layer that localizes corners. It then predicts heatmaps, embeddings and offsets.
Cornernets does not use features of different scales and only uses the single output of the
hourglass network. Figure 3.5 shows the Cornernet architecture.

3.3.1 Architecture details

Corner Pooling

Predicting corners for objects is challenging as the corners may lie outside the object.
For example, a bounding box for a circle has corners that lie outside the object. Thus,
there is not enough local information available to predict corners. Cornernet uses a corner
pooling layer to localize corners. It takes the feature map and finds the top-left (or bottom-
right) candidates by pooling horizontally (or vertically) along the top-left (or bottom-right)
direction in each feature map.

Corner Detection

A CNN then predicts two sets of heatmaps, one for the bottom-right and another for the
top-left corners. Each heatmap is of size H × W and has K channels where K is the

29



number of categories, and (H,W ) is the size of the output from the hourglass network.
Each channel is a binary mask indicating the location of the corners. For each corner,
there can only be one ground truth positive location, and the rest are negative. During
training, the penalty for a negative location is reduced based on the distance from the
ground truth assignment. This is done as the authors assume that a pair of false corners
close to the ground truth can still produce a valid set of corners. An unnormalized 2-D

Gaussian e
−x2+y2

2σ2 ( σ is 1/3 of the size of the object) centred at the positive location is used
to reduce the penalty.

The loss function for classification error is a specialized form of focal loss run over every
location {(i, j)|i ∈ [1...H], j ∈ [1...W ]} on the heatmap for every class k ∈ [1...K].

CFL = − 1

N

K∑
k=1

H∑
i=1

W∑
j=1

{
(1− pkij)α log(pkij), if ykij = 1.

(1− ykij)βpαkij log(1− pkij), otherwise.
(3.3)

yijk ∈ ±1 specifies the ground truth class (1 for positive, -1 for negative), pijk ∈ [0, 1]
specifies the model’s estimated probability for the class k at location (i, j) with label y = 1,
N is the number of objects and α, β are hyperparameters that encode the contribution of
each point to the loss.

Corner Matching

The top-left and bottom-right corners of an object are grouped by using associative em-
bedding as described in [36]. The network predicts an embedding vector for each detected
corner. The embedding is constrained such that the distance between the corners’ embed-
dings should be small if a top-left corner and a bottom-right corner belong to the same
bounding box. Cornernet defines two embedding losses — Lpull to train the network to
group corners, and Lpush to train the network to separate corners. Embedding losses are
then added to the total loss.

Offsets

As the input image is resized to the size of the output layer of the CNN backbone (which
is usually smaller than the input size to save memory), the network’s predictions need to
be resized to the original image size. As precision is lost when resizing, the corners are
slightly adjusted before mapping to the input resolution. The network thus predicts two

30



Figure 3.6: The x-Cornernet architecture.

pairs of offsets, one for each corner. The L1 loss between the ground truth offsets and
predicted offsets (Lo) is added to the loss.

Thus the loss function of Cornernets is:

Ltotal = CFL+ αLpull + βLpush + γLo (3.4)

Here, α, β, γ are hyperparameters. Cornernet use ADAM [24] to optimize the full
training loss.

3.3.2 Our Implementation: x-Cornernet

Cornernets has three main shortcomings:

1. Cornernet uses a single output layer from the backbone as input and then performs
corner pooling to obtain predictions. However, pooling operations lose information.
For example, if two objects of different sizes share the same location for the top
corner, only the object with the dominant features will contribute to the gradient, so
we can expect Cornernets to miss several objects. Using multiple outputs at different
scales ensures that the context required for objects within a layer is bound by the
single feature map’s receptive field.

31



Figure 3.7: Example of a prediction where Cornernet makes an error matching corners and
embeddings.

2. The top-left and bottom-right corners are matched using embeddings to find corners.
Learning corners from embeddings is difficult, especially for tasks where similar ob-
jects are located together. For instance, Cornernet may may associate traffic lights
of same size to different embeddings as seen in Figure 3.7.

3. Cornernet uses the Hourglass network, which has over 200M parameters and is com-
putationally expensive to train.

x-Cornernets alleviates these issues by allowing learning from backbones with multi-
ple outputs and eliminating the need for corner pooling. x-Cornernets consists of two
components:

1. A MatrixNets backbone that extracts feature maps at various output sizes.

2. Two corner sub-networks, one for each corner that generates a corner heatmaps,
then generate offsets for the centre and corner. This is done for each matrix layer.
Then, a prediction module matches corners and applies offsets to produce the final
predictions.

Figure 3.6 shows our x-Cornernets architecture.

32



Corner Heatmaps

The corner heatmap is generated in the same way as CornerNets. A CNN predicts a
K×H ×W heat map for each corner where K is the number of classes, and (H,W ) is the
size of a matrix layer. A positive value implies ground truth, and the values are negative
otherwise. An unnormalized 2-D Gaussian centred at each positive location is applied
to reduce the penalty for locations closer to the ground truth corner. In x-Cornernets,
multiple outputs from MatrixNets ensure that the context required for objects within a
layer is bounded by the receptive field of a single feature map. As a result, corner pooling
is no longer needed. Like Cornernet, we use the focal loss described in Equation (3.3) to
deal with unbalanced classes.

Corner Regression

Just as in Cornernets, the input has to be resized to the dimensions of the matrix layers
in x-Cornernet. As a result, when scaling down a corner from input dimensions to an (x,
y) location in a layer, we predict offsets to scale up the corner to the original image size
without losing precision. We keep the offset values between −0.5 and 0.5, and we use the
smooth L1 loss Appendix C to optimize the parameters. The L1 loss for the top-left corner
is denoted by Ltl, and the loss for the bottom-right corner is Lbr.

Centre Regression

Since the matching is done within each matrix layer, the object’s width and height are
guaranteed to be within a specific range, which is the size of the layer. The centre of
the object can be regressed easily because the range for the centres is small and allows
us to remove the embedding entirely. At training time and for each corner location, we
have a separate output head (centre regression head) that predicts the relative distance
between the corner and the centre of the object. At test time, we match any two arbitrary
top-left and bottom-right corners based on how far their centre predictions are from the
actual centre. The actual centre between the top-left and bottom-right corners is the
average of their coordinates. Once the actual centre is computed, we can compute the
relative distance between the centre and each of the two corners. Using these distances as
a reference, we can compute the error of the predicted distance by each corner with respect
to the reference distance. We only match corners if both predict the relative distance to
the centre with an error within 30%. To optimize the centre of the parameters, we again

33



use smooth L1 loss. Thus, we define the L1 centre regression loss for the top-left corner as
Lctl, and the one bottom-right corner as Lcbr.

Thus, the total loss for x-Cornernet is given as:

Ltotal = CFL+ α(Lctl + Lcbr) + β(Ltl + Lbr) (3.5)

Here, α, β are hyperparameters. We use ADAM [24] to optimize the full training loss.

3.3.3 x-Cornernet-lite

We also propose a lighter variant of x-Cornernet called x-CornerNet-lite. In this architec-
ture, we have the same MatrixNets backbone but a single output sub-network. The output
sub-network produces centre heatmaps and regression offsets for the top-left and bottom-
right corners. Thus, this architecture is similar to centre-based anchor-free methods, where
each centre prediction acts as an anchor point. We compare the inference time-accuracy
trade-offs in the experiments section.

3.4 Mask RCNN

Mask RCNN is a two-stage detector for the instance segmentation task. It is an extension
of the Faster RCNN [43] framework that adds a parallel mask branch for predicting binary
segmentation masks for each predicted object. We will discuss the architectural details
below:

3.4.1 Architecture details

Backbone

Mask RCNN uses the traditional FPN from [31], i.e., it uses R2, R3, R4, R5 to create
P2, P3, P4, P5 and then downsamples P5 to obtain P6.

Faster RCNN

Faster RCNN is made up of two stages.

34



Figure 3.8: Mask RCNN architecture taken from [17]

1. First Stage: The first stage is a Region Proposal Network (RPN). The RPN takes
an image of any size and outputs a set of bounding box proposals, each with an
objectness score. Objectness measures a proposal’s membership to one of the object
classes vs. the background. The RPN works as follows: first, the backbone takes in
the input image and calculates a feature map. Then, at each location of the feature
map, we tile anchor boxes for predefined height and width over the feature map
with each location of the feature map as the centre. If the dimensions of the feature
map are H ×W , we have the total number of anchors given by Na = H ×W × a
anchor boxes, where a is the number of anchor boxes per location. Finally, two fully
connected layers predict 4 × Na regression targets for each anchor box and 2 × Na

probabilities, whether the anchor box has an object or not. The loss of this layer
is the sum of the normalized classification and regression losses. Thus, the RPN
produces a refined bounding box called Regions of Interest (RoIs) and ranks them
by their objectness score.

2. Second Stage: The second stage is Fast RCNN [15]. This layer takes in the
candidate boxes from the RPN, extracts features using RoIAlign and predicts the
final classification and bounding box regression. Note that the first and second stage
networks share features for faster inference.

Mask Branch

Mask RCNN adds a parallel mask branch in the second stage of Faster RCNN. Mask
RCNN predicts a binary mask for size m×m for each RoI. Thus, the mask branch outputs
a K×m2 dimension output for each RoI for the K classes. The mask loss is then defined as

35



Figure 3.9: The top figure shows an example of RoIPool and bottom shows RoIAlign.

a binary cross-entropy loss over the predicted mask and ground truth binary mask scaled
to size m2. Note that the loss is calculated only for the predicted mask for class k of the
ground truth. This mask loss is then added to the total loss.

RoI Align

RoIPool is a simple method that crops a region of the size of the RoI from the feature
map. However, as the feature maps and input image are of different dimensions, RoIPool
performs harsh quantization over the pixels to resize the RoIs to the feature map scale. For
example, say we have an input of size H×W . We obtain a feature map of h×w after some
convolution layers, and we want to pool an area of size m2. A region of size h×w decreases
(bH/hc × bW/wc) times from the input to the feature map. As the downsampling in the
FPN is square, bH/hc is equal to bW/wc and is called the stride, s, of the layer. Thus,
for an RoI of shape hr × wr, we have to compute hr ∗ s × wr ∗ s. Next, the RoI in the
feature coordinates is again quantized by the output size m2, and maxpool is taken over
each region. Figure 3.9 shows an example of RoIPool.

RoIAlign avoids this harsh quantization. Firstly, RoIALign does not use the floor
function when it scales the RoI coordinates to the feature map scale. Thus, the coordinates
are left as float values. The feature map is cropped with the coordinates, and the cropped

36



Figure 3.10: The x-Mask RCNN architecture. MatrixNets with R2 is used in the backbone
and MEL is added to the mask branch.

part is divided into a grid using the output size. Next, RoIalign chooses 4 points in each
bin using bilinear interpolation. Then, the maximum of these four points is taken to obtain
the final output. Figure 3.9 shows an example of RoIAlign.

3.4.2 Our Implementation: x-Mask RCNN

To adapt MatrixNets to Mask RCNN, we make three changes. We first modify the back-
bone FPN and add matrix layers. Then, we modify the RoIAlign to allow pooling from
asymmetric matrix layers. Finally, we introduce Mask Edge Loss (MEL), which benefits
from the larger number of RoIs coming from the additional matrix layers. Figure 3.10 shows
the x-Mask RCNN architecture.

MatrixNets backbone

We recreate MatrixNets using the FPN with R2 to R5 as the backbone. Figure 3.10 presents
the MatrixNets backbone with R2.

37



RoIAlign and Adaptive Pooling

RoIAlign, as defined in [17], is implemented to pool from FPN layers. As FPNs use square
downsampling, the stride along the height and width dimensions are equal for a layer.
Matirxnets use asymmetric downsamplings, so the stride along the width and height can
be different, especially along with the non-diagonal layers. We modify the RoIAlign to
incorporate this functionality.

Faster RCNN [43] and then Mask RCNN [17] use the following rule to assign RoIs to
layer (Pk) from which to pool:

k = bk0 + log2
√
wr ∗ hr/S0c (3.6)

Here, k0 is 4, and (hr, wr) are the height and width of an RoI. The equation implies
that objects of size 2442 are assigned to P4. 244 is chosen as S0, as the images in Imagenet
are trained at an image size of 2242. However, if the image dimension is 1024 × 1024, an
object of size 2242 would still be assigned to P4, despite it being five times smaller than
the input dimension.

Mask Edge Loss

Mask RCNN downsamples the ground masks to a fixed size of 28 × 28 in order to save
memory during mask loss calculation. This downsampling leads to loss of information
and is most pronounced around the edges. We add a subtle attention mechanism to the
mask loss such that the loss function pays extra attention to the boundaries and penalizes
coarseness. We call this new loss function Mask Edge Loss (MEL) .

Precisely, during loss calculation, we first extract the boundary from the ground truths.
As ground truth masks are bitmasks, getting the boundary comes at minimal cost by merely
taking the gradient along the x and y axes. We then apply a Gaussian blur (more details
in Appendix B) to increase the thickness of the extracted contour. Then, we normalize the
contour and multiply it with the pixel-wise cross-entropy loss between the predicted mask
and the ground truth mask. Finally, we reduce the pixel-wise cross-entropy loss to a single
value by taking the mean over all the values.

38



Chapter 4

Experiments

In this chapter, we present the experimental results for x-Retinanet, x-Cornernet and x-
Mask RCNN. We train the network using the “train2017” subset of MSCOCO [33] dataset
and test using the “val2017” subset. More details on the exact training and testing setup
used are presented in each section.

4.1 x-RetinaNet

4.1.1 Experimental details

Training

We initialize the network as per the initialization in Retinanet [32]. We use synchronized
SGD over 4 GPUs with a batch size of 16 images (4 per GPU) for 180K iterations. The
initial learning rate is 0.01, which is divided by ten at 140K and 160K steps. We use
a momentum rate of 0.09. We train using the MS COCO train2017 data set and resize
images such that the smaller side of the image is at most 800 pixels. We do not use any
other data augmentations at train time.

Inference

Inference involves a forward pass over the network. To improve performance, we decode
box predictions from at most 1K top-scoring predictions per MatrixNet layer. The top

39



Retinanet x-Retinanet (Ours)
# Anchors 1 3 9 (Default) 1 3
mAP 33.5 35.2 37.9 38.9 39.5
AP50 55.1 55.1 58.1 59.8 59.5
AP75 35.0 37.4 40.5 42.1 42.9
APs 21.0 21.8 22.8 23.4 23.3
APm 35.9 38.6 41.9 43.4 44.2
APl 42.4 45.3 48.3 49.7 51.4
1-1.5 38.5 42.3 43.5 43.0 44.3
1.5-2 36.2 38.9 41.2 42.1 43.0
2-3.5 31.5 32.6 36.5 37.5 38.0
3.5 12.6 6.5 9.1 14.8 15.9
Parameters 36.4M 36.8M 37.9M 37.5M 38.1M
Inference Time (ms) 74 83 106 140 159

Table 4.1: Retinanet Result with FPN and MatrixNets backbone. x-Retinanet implies
MatrixNets with 19 layers. For #Anchors = 3 we add anchors at 3 scales and 1 aspect-
ratio, and for #Anchors = 9 we add anchors at 3 scales and 3 aspect-ratio. We report the
various precision metrics as discussed in Table 3.2.

predictions from all levels are merged, and Non-Maximum Suppression (NMS) with a
threshold of 0.5 is applied to get the final detections.

4.1.2 Results

The results comparing RetinaNet to x-Retinanet are given in Table 4.1. We see that,
without any bells and whistles, MatrixNets improves Retinanet by 1mAP. Moreover, Ma-
trixNets significantly improves performance on skewed boxes. MatrixNets makes inference
slower by ∼ 1.3 times.

4.1.3 Ablation

By adding MatrixNets to Retinanet, we only change two parameters: 1) We remove anchor
boxes, and 2) we add matrix layers. Thus, we run ablation studies to understand the effect
of these two parameters.

40



#layers mAP 1-1.5 1.5-2.5 2.5-3.5 3.5+ Inference Time
5 33.5 38.5 36.2 31.5 12.6 74
13 37.9 42.5 41.1 36.0 12.5 115
19 38.9 43.0 42.1 37.5 14.8 140

Table 4.2: Impact of the number of layers of MatrixNets on detection performance in
x-Retinanet.

Adding Anchors to MatrixNets

Table 4.1 shows the effect of adding anchor boxes to Retinanet vs. adding anchor boxes
to x-Retinanet. We see that going from 1 to 3 anchor boxes improves the performance
of Retinanet by 2.7mAP. In contrast, the performance of x-Retinanet is improved by
0.6mAP, indicating that the matrix layers indeed capture some aspect-ratio awareness.
This result also follows [32], which shows that more than nine anchors per location does
not improve outcomes significantly. Moreover, x-Retinanet with one anchor box improves
performance on boxes with a dimension ratio of 3.5+ by 5.7 AP.

Effect of Matrix Layers

We also run an ablation analysis on the effect of the number of matrix layers on per-
formance. We run these tests for the number of layers in {5, 13, 19}. For a five-layer
matrixnet, we remove all layers except the diagonal ones. As discussed earlier, this is
equivalent to an FPN at A = 1. For 13 layers we remove layers {l1,3, l2,4, l3,1, l3,5, l4,2, l5,3},
i.e., we symmetrically remove the smallest layers from the top right and bottom left of the
matrix. Figure 4.1 shows the various Matrixnet architectures. We see that adding layers
has a similar effect as adding anchor boxes to FPN based RetinaNet. Results are available
in Table 4.2. Going from 5 to 13 layers improves accuracy by 1 mAP, and going from 13
to 19 layers adds another 1 mAP to the accuracy.

41



(a) (b) (c)

Figure 4.1: (a) Matrixnet with 5 layers (b) MatrixNets with 13 layers and (c) 19 layer
MatrixNets

4.2 x-Cornernets

4.2.1 Experimental details

Training

We train all of our networks on a server with 8 Titan XP GPUs. Our implementation is
done in PyTorch [38]. The image is cropped to 512×512. As per [27], we use the following
data augmentation techniques: random horizontal flipping, random scaling, random crop-
ping and random colour jittering, adjusting the brightness, saturation and contrast. For
optimization, we use the ADAM optimizer, set an initial learning rate to 5e-5, and cut it
by 1/10 after 250k iterations, training for 350k iterations. For our matrix layer ranges, we
set l1,1 to be [24px-48px]x[24px-48px] and then scale the rest as described in Chapter 3.1.

Inference

For single-scale inference, we resize the max side of the image to 900px or the min size to
600px. Our images are slightly smaller than some others to lower inference time to account
for the extra output layers introduced. We use ResNet-152 rather than ResNeXt-101 as
our best model since it has fewer layers and 3/4 the inference time. Finally, we choose
the top 100 detections according to their scores as the detector’s final output. We use

42



SoftNMS [2] in favour of NMS for x-Cornernets as it has shown to improve accuracy in
other keypoint-based detectors.

4.2.2 Results

The results for x-Cornernet are available in Table 4.3. We see that x-Cornernet can outper-
form Cornernet even with a smaller backbone. x-Cornernet R50 FPN improves on regular
Cornernet R101 by 6 mAP. Furthermore, adding MatrixNets adds another 5.1 mAP to
x-Cornernet. We also see that the relative improvement of adding MatrixNets for heavily
skewed objects.

backbone Cornernet x-Cornernet-Lite (Ours) x-Cornernet (Ours)
res101 hourglass 104 res50 X19 res50 X19

mAP 30.2 40.6 40.3 41.3
AP50 44.1 56.4 60.8 60.9
AP75 32 43.2 43.7 45.5
APs 13.3 19.1 24.3 24.9
APm 33.3 42.8 44.9 45.8
APL 42.7 54.3 53.7 55.7
1-1.5 45.8 44.5 47.6

1.5-2.5 43.0 43.2 46.0
2.5-3.5 34.6 35.5 40.3
3.5+ 16.9 18.7 19.6

Parameters 55.3M 201M 44.1M 48.7M
Image Size ori. ori. 600× 900 600× 900

Inference Time 301 166 282

Table 4.3: Cornernet Results. Blank indicates results were not available. ori. indicates
original image size. We report the precision metrics as discussed in Table 3.2.

4.2.3 Ablations

Adapting Cornernet to use FPN based architectures allows us to run ablation studies on
the effect of heavier backbones on x-Cornernets.

43



#layers mAP 1-1.5 1.5-2.5 2.5-3.5 3.5+ Inference Time (ms)
5 35.1 41 38.1 30.8 12.4 85
13 38.2 43.4 42.5 35.5 10.2 125
19 40.3 44.5 42.4 39.8 18.7 139

Table 4.4: Impact of the number of layers of MatrixNets on detection performance in
x-Cornernet-Lite.

Effect of Backbone

In Table 4.5 we show the impact of using larger backbones with the x-CornetNet-Lite
architecture. We see that going from Resnet-50 to Resnet-101 gives us +1mAP, and going
from ResNet-101 to Resnet-152 gives us another +1.5 mAP improvement. This result is
expected as larger backbones have a positive impact on accuracy, as seen in most deep-
learning architectures.

Effect of Crop Size

During the training, we use scale jitter to scale the image randomly. Then we use crops of
fixed sizes to train the model. In Table 4.5, using a larger image crop during training leads
to higher accuracy. This result is expected as a larger image would have more information
and lead to better training.

Effect of Matrix Layers

Table 4.4 shows the result for ablation with the number of layers used in the MatrixNets
backbone. We see that the performance improves as we increase the number of matrix
layers. Moreover, the improvement is prominent for objects with skewed aspect-ratios.
Thirteen layers MatrtixNets enhances the performance for objects with dimension ratio
2.5− 3.5 by 4.7 AP and 19 layers MatrtixNets improves the performance for objects with
dimension ratio 3.5+ by 6.3 AP over the 5 layers MatrtixNets.

Qualitative Assessment of Predictions

Figure 4.2 shows sample predictions from x-Cornernets with FPN and MatrixNets. We
see that adding additional matrix layers lead to tighter bounding boxes, especially for tall
and thin objects.

44



Image Size AP AP50 AP75

512 40.3 61.4 43.5
640 41.3 60.9 45.5

Backbone AP AP50 AP75

Resnet50-X19 41.0 60.4 45.0
Resnet101-X19 42.3 62.1 46.4
Resnet152-X19 43.6 62.3 47.5

Table 4.5: Left table shows the impact of input image size and right table shows the
impact of backbone on x-Cornernet-Lite performance. We see larger image size improves
perfrormace.

Figure 4.2: Sample detection results for x-Cornernet object detection framework when
using FPN (top), and 19 layers MatrixNet (bottom) as backbones. MatrixNet produces
tighter bounding boxes especially for rectangular objects.

4.3 x-Mask RCNN

Most hyperparameters for x-Mask RCNN are set following Mask RCNN [17]. The modified
settings are given below.

4.3.1 Experimental details

Training

Mask RCNN uses anchors at 5 scales, 322 to 5122, and 3 aspect ratios, [0.5, 1.0, 1.5]. For
the MatrixNets experiments, we set the number of anchors to 1 per scale. An RoI is
considered positive if it has an IoU greater than 0.5 with the ground truth and negative
otherwise. The Faster RCNN Branch takes 512 RoIs from the RPN, where the ratio of
positive to negative samples is fixed at 1 : 3. We train with 3 GPUs with 2 images per

45



MEL AP Ap50 Ap75 Aps Apm Apl 1-1.5 1.5-2 2-3.5 3.5+ Parameters Inference Time (ms)
Mask RCNN 34.1 55.4 35.96 16.5 36.7 49.0 37.7 35.7 31.4 14.0 49.0M 74
Mask RCNN yes 34.4 55.7 36.5 16.8 37.0 49.7 38.2 36.5 31.5 14.2 49.0M 74
x-Mask RCNN 32.8 52.8 34.8 14.2 35.1 49.2 36.0 34.6 30.8 13.7 50.2M 100
x-Mask RCNN yes 33.3 53.4 35.2 14.9 36.0 49.7 36.4 34.7 31.7 13.9 50.2M 100

Table 4.6: x-Mask RCNN results with and without Mask Edge Loss (MEL).

GPU for a total of 240k iterations. The initial learning rate is 0.00375 and is divided by
10 at 180K and 210K iterations following the linear scaling rule [16].

Inference

During testing, the RPN gives 1000 proposals over which the Faster RCNN branch is run.
Then, NMS is applied, and the masks are predicted for the top 100 surviving boxes from
the Faster RCNN branch. The m2 floating-number mask output is then resized to the
RoI size, and made binary at a threshold of 0.5. We set m = 28 as per the Mask RCNN
paper [17]. The seg-AP is evaluated using IoU between the predicted and ground truth
masks.

4.3.2 Results

The results for x-Mask RCNN are available in Table 4.6. We see that adding MEL adds
0.3 to 0.6mAP to Mask RCNN.

4.3.3 Ablations

We make two main changes to Mask RCNN. We change the backbone, and we change the
loss function. As seen from Table 4.6, adding MatrixNets does not improve Mask RCNN
as the RPN layer already optimizes the template boxes for the Faster RCNN layer, which
then chooses a small subset of boxes. Thus, improving the RPN may not lead to any
downstream improvement in Mask RCNN. The impact of MEL is discussed in the next
section.

Impact of MEL

Table 4.6 shows the results for the effect of MEL on both Mask RCNN and x-Mask RCNN.
We see that MEL consistently improves performance. The performance improvement in

46



Model Acc w MEL Acc w/o MEL
Mask RCNN 88.9 88.9

x-Mask RCNN 90.0 88.9

Table 4.7: Mask branch accuracy with and without MEL for Mask RCNN and x-Mask
RCNN

x-Mask RCNN is higher owing to the larger variety of RoIs extracted from the matrix
layers.

Detectron2 calculates the accuracy of the mask branch as the number of masks correctly
predicted divided by the total number of ground truth masks. Table 4.7 shows the accuracy
of the mask branch for Mask RCNN with MEL and without MEL. We see that MEL
improves accuracy by 1% at virtually no additional cost. Finally, Figure 4.3 shows some
examples of masks predicted with and without MEL. We see that MEL penalizes coarseness
consistently.

Figure 4.3: Sample predicted masks from Mask RCNN with MEL (top), and without MEL
(bottom). Adding MEL achieves finer mask predictions.

4.4 State of the art Comparison

We compare our current implementation, x-RetinaNet and x-Cornernets, to existing meth-
ods and state of the art in Table 4.8. We see that both with and without bells and whistles,

47



adding MatrixNets can achieve competitive results, while removing the need for anchor
boxes (results marked with Ours).

48



Architecture Backbone Image Size mAP AP50 AP75 AP s APm APl

Previous Detectors
RetinaNet[32] ResNext-101 800x1333 40.8 61.1 44.1 24.1 44.1 51.2
NAS-FPN[14] ResNet 50 1280x1280 45.4
RefineDet[59] ResNet-101 512x512 36.4 57.5 39.5 16.6 39.9 51.4
FreeAnchor[60] ResNext-101 800x1333 44.9 62.4 48.1 25.6 47.4 57.4
RepPoints[54] ResNet-101-DCN 800x1333 45 66.1 49 26.6 48.6 57.5
RefineDet∆[59] ResNet-101 512x512 41.8 62.9 45.7 25.6 45.1 54.1
FreeAnchor∆[60] ResNeXt-101 ≤ 2x 47.3 66.3 51.5 30.6 50.4 59
RepPoints∆[54] ResNet-101-DCN ≤ 3x 46.5 67.4 50.9 30.3 49.7 57.1

Center-Based Anchor-Free
FoveaBox[25] ResNeXt 101 800x1333 42.1 61.9 45.2 24.9 46.8 55.6
FSAF[64] ResNeXt 101 800x1333 42.9 63.8 46.3 26.6 46.2 52.7
FCOS[48] ResNeXt 101 800x1333 43.2 62.8 46.6 26.5 46.2 53.3
FSAF∆[64] ResNeXt 101 ≤ 1.5x 44.6 65.2 48.6 29.7 47.1 54.6
SAPD [63] ResNeXt-64x4d-101-DCN 800x1333 47.4 67.4 51.1 28.1 50.3 61.5
ATSS∆ [58] ResNeXt-64x4d-101-DCN 800x1333 50.7 68.9 56.3 33.2 52.9 62.4
PPA∆, † [23] ResNeXt-64x4d-101-DCN 800x1333 51.4 69.7 57.0 34.0 53.8 64.0
x-CornerNet-LiteΦ Ours ResNet-152-X19 600x900 43.7 62.7 47.8 22.7 48.2 57.4
x-CornerNet-Lite∆,Φ Ours ResNet-152-X19 ≤ 1.8x 46.1 64.7 42.5 26.9 49.9 59.6

Corner-Based Anchor-Free
ExtremeNetΦ[62] Hourglass 104 ori. 40.2 55.5 43.2 20.4 43.2 53.1
CenterNet[61] Hourglass 104 ori. 42.1 61.1 45.9 24.1 45.5 52.8
CenterNetΦ[12] Hourglass 104 ori. 44.9 62.4 48.1 25.6 47.4 57.4
CornerNetΦ[27] Hourglass 104 ori. 40.5 56.5 43.1 19.4 42.7 53.9
CornerNet∆,Φ[28] Hourglass 104 ≤ 1.8x 42.1 57.8 45.3 20.8 44.8 56.7
ExtremeNet∆[62] Hourglass 104 ≤ 1.5x 43.2 59.8 46.4 24.1 46.0 57.1
CenterNet∆[61] Hourglass 104 ≤ 1.8x 45.1 63.9 49.3 26.6 47.1 57.7
CenterNet∆,Φ[12] Hourglass 104 ≤ 1.8x 47 64.5 50.7 28.9 49.9 58.9
CentripetalNetΦ[11] Hourglass 104 ≤ 1.8x 46.1 63.1 49.7 25.3 48.7 59.2
CentripetalNet∆,Φ[11] Hourglass 104 ≤ 1.8x 48.0 65.1 51.8 29.0 50.4 59.9
CPN∆,Φ, †[13] Hourglass 104 ≤ 1.8x 49.2 67.4 53.7 31.0 51.9 62.4
x-CornerNetΦ Ours ResNet-152 600x900 45.2 64.2 49.2 25.9 48.9 57.6
x-CornerNet∆,Φ Ours ResNet-152 ≤ 1.8x 47.8 66.2 52.3 29.7 50.4 60.7
∆- Multi-Scale, Φ-Soft-NMS, ori- original image size, † results from ECCV’20

Table 4.8: State-of-the-art comparison on COCO test-dev2017 set for object detection. A
blank indicates methods for which results were not available. The image size for multi-scale
results indicates the maximum size to which the image was scaled; for example, 2× means
that the image was resized to twice the resolution for multi-scale testing.

49



Chapter 5

Conclusion and Future Work

In this thesis, we run extensive experiments to show that MatrixNets is a general-purpose
CNN module that can add aspect-ratio awareness to existing architectures. We apply
MatrixNets to three popular architectures — Retinanet, Cornernet and Mask RCNN. We
demonstrate that MatrixNets mimics anchor boxes in the asymmetric matrix layers and im-
proves performance on skewed objects. We further improve upon Mask RCNN by propos-
ing Mask Edge Loss, a subtle attention mechanism that punishes coarseness in masks.
Together, these experiments show that MatrixNets can make anchor-based architectures
anchor-free, and add aspect-ratio awareness to anchor-free architectures.

Anchor boxes add aspect-ratio awareness by modifying the output network. By restrict-
ing receptive fields, MatrixNets refactors the properties of anchor boxes into the backbone
without changing the output network. This allows architectures with customized output
networks to become aspect-ratio aware. Thus, we observe an improvement in anchor-free
architectures with generic backbones, but custom keypoint prediction mechanisms.

In Table 4.8, † marks the architectures released in July 2020. We note that our best
method x-Cornernet with Resnet-152 is comparable to the state-of-the-art Centripetal-
net [11] before July 2020. With the promise MatrixNets has shown with Retinanet and
CornerNet, we speculate that MatrixNets can further improve these newer state-of-the-art
methods. For instance, CPN [13] adds a corner proposal network to Conrnernets, but still
uses the more massive Hourglass network. MatrixNets can replace the Hourglass network
to push state-of-the-art even further.

Finally, we do not observe significant improvements in two-stage architectures like Mask
RCNN. However, Mask Edge Loss, even though unique to x-Mask RCNN, is a general-
purpose component that can improve the loss function of all architectures that predict

50



binary masks for instance segmentation.

This thesis further opens up new directions for studying MatrixNets and aspect-ratio
awareness in object detectors. One potential future work is to add ATSS [58] or PPA [23]
to MatrixNets and compare the “anchor-freeness” added by each method. We posit that
both ATSS and PPA can supplement MatrixNets and improve performance even further.
Another avenue for future work is to improve the speed of MatrixNets. MatrixNets is
currently 1.4x slower than FPN based counterparts. Depth-wise Convolution [9] is a
method that reduces the cost of convolution operations by breaking doing the matrix
multiplication into groups. Adding Depth-wise Convolutions may make MatrixNets faster.
On the other hand, the most time-consuming component in x-CornerNet is the NMS, which
is currently computed on the CPU; we can move these calculations to the GPU to get a
performance improvement. Finally, one limitation of Mask RCNN is that it requires the
mask pooler to be square. This design decision stems from the square downsampling in
FPNs. With MatrixNets, the pooler can now be asymmetric or even adaptive based on
the layer assignment. Thus, asymmetric pooling is another area of future research that
MatrixNets opens up.

51



References

[1] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,
1994.

[2] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–
improving object detection with one line of code. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5561–5569, 2017.

[3] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: real-time instance
segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 9157–9166, 2019.

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object
detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6154–6162, 2018.

[5] John Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, 1986.

[6] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and You-
liang Yan. Blendmask: Top-down meets bottom-up for instance segmentation. arXiv
preprint arXiv:2001.00309, 2020.

[7] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4974–4983, 2019.

[8] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection
toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019.

52



[9] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. Deformable convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 764–773, 2017.

[11] Zhiwei Dong, Guoxuan Li, Yue Liao, Fei Wang, Pengju Ren, and Chen Qian. Cen-
tripetalnet: Pursuing high-quality keypoint pairs for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10519–10528, 2020.

[12] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian.
Centernet: Object detection with keypoint triplets. arXiv preprint arXiv:1904.08189,
2019.

[13] Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang, and Qi Tian.
Corner proposal network for anchor-free, two-stage object detection. arXiv preprint
arXiv:2007.13816, 2020.

[14] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature
pyramid architecture for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7036–7045, 2019.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

53



[19] Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang.
Mask scoring r-cnn. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6409–6418, 2019.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[21] Amir Jamaludin, Timor Kadir, and Andrew Zisserman. Spinenet: automatically pin-
pointing classification evidence in spinal mris. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 166–175. Springer, 2016.

[22] Wei Ke, Tianliang Zhang, Zeyi Huang, Qixiang Ye, Jianzhuang Liu, and Dong Huang.
Multiple anchor learning for visual object detection. arXiv preprint arXiv:1912.02252,
2019.

[23] Kang Kim and Hee Seok Lee. Probabilistic anchor assignment with iou prediction for
object detection. arXiv preprint arXiv:2007.08103, 2020.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[25] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, and Jianbo Shi. Foveabox:
Beyond anchor-based object detector. arXiv preprint arXiv:1904.03797, 2019.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[27] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages 734–750,
2018.

[28] Hei Law, Yun Teng, Olga Russakovsky, and Jia Deng. Cornernet-lite: Efficient key-
point based object detection. arXiv preprint arXiv:1904.08900, 2019.

[29] Hyungtae Lee, Sungmin Eum, and Heesung Kwon. Me r-cnn: Multi-expert r-cnn for
object detection. arXiv preprint arXiv:1704.01069, 2017.

[30] Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance seg-
mentation. arXiv preprint arXiv:1911.06667, 2019.

54



[31] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[34] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8759–8768, 2018.

[35] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8759–8768, 2018.

[36] Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding: End-to-end
learning for joint detection and grouping. In Advances in neural information processing
systems, pages 2277–2287, 2017.

[37] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization.
Distill, 2(11):e7, 2017.

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[39] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects
with recursive feature pyramid and switchable atrous convolution. arXiv preprint
arXiv:2006.02334, 2020.

[40] Abdullah Rashwan, Rishav Agarwal, Agastya Kalra, and Pascal Poupart. Matrixnets:
A new scale and aspect ratio aware architecture for object detection. arXiv preprint
arXiv:2001.03194, 2020.

[41] Abdullah Rashwan, Agastya Kalra, and Pascal Poupart. Matrix nets: A new deep
architecture for object detection. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pages 0–0, 2019.

55



[42] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263–7271,
2017.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural in-
formation processing systems, pages 91–99, 2015.

[44] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and
Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding
box regression. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 658–666, 2019.

[45] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] Mingxing Tan, Ruoming Pang, and Quoc V Le. EfficientDet: scalable and efficient
object detection. arXiv preprint arXiv:1911.09070, 2019.

[47] Zhi Tian, Chunhua Shen, and Hao Chen. Adelaidet. https://github.com/

aim-uofa/AdelaiDet, 2020.

[48] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage
object detection. arXiv preprint arXiv:1904.01355, 2019.

[49] Shaoru Wang, Yongchao Gong, Junliang Xing, Lichao Huang, Chang Huang, and
Weiming Hu. Rdsnet: A new deep architecture for reciprocal object detection and
instance segmentation. arXiv preprint arXiv:1912.05070, 2019.

[50] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Segmenting
objects by locations. arXiv preprint arXiv:1912.04488, 2019.

[51] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. https://github.com/facebookresearch/detectron2, 2019.

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1492–1500, 2017.

[53] Jing Yang, Qingshan Liu, and Kaihua Zhang. Stacked hourglass network for robust
facial landmark localisation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 79–87, 2017.

56

https://github.com/aim-uofa/AdelaiDet
https://github.com/aim-uofa/AdelaiDet
https://github.com/facebookresearch/detectron2


[54] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point
set representation for object detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9657–9666, 2019.

[55] Hui Ying, Zhaojin Huang, Shu Liu, Tianjia Shao, and Kun Zhou. Embed-
mask: Embedding coupling for one-stage instance segmentation. arXiv preprint
arXiv:1912.01954, 2019.

[56] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue
Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks.
arXiv preprint arXiv:2004.08955, 2020.

[57] Rufeng Zhang, Zhi Tian, Chunhua Shen, Mingyu You, and Youliang Yan. Mask
encoding for single shot instance segmentation. arXiv preprint arXiv:2003.11712,
2020.

[58] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the
gap between anchor-based and anchor-free detection via adaptive training sample
selection. arXiv preprint arXiv:1912.02424, 2019.

[59] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li. Single-shot refine-
ment neural network for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4203–4212, 2018.

[60] Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, and Qixiang Ye. Freeanchor:
Learning to match anchors for visual object detection. In Advances in Neural Infor-
mation Processing Systems, pages 147–155, 2019.

[61] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv
preprint arXiv:1904.07850, 2019.

[62] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object detection
by grouping extreme and center points. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 850–859, 2019.

[63] Chenchen Zhu, Fangyi Chen, Zhiqiang Shen, and Marios Savvides. Soft anchor-point
object detection. arXiv preprint arXiv:1911.12448, 2019.

[64] Chenchen Zhu, Yihui He, and Marios Savvides. Feature selective anchor-free module
for single-shot object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 840–849, 2019.

57



APPENDICES

58



Appendix A

NMS

The algorithm given B, S and Nt, where, B the list of initial detection boxes, S, con-
tains corresponding detection scores and Nt the NMS IOU threshold, and gets back the
detections and scores that survive NMS D,S.

The NMS algorithm is given below:

Algorithm 1: The NMS Algorithm

Input : B = {b1, .., bN}, S = {s1, .., sN}, Nt

Output: Set of detections D which survive NMS and corresponding set of Scores
S

D ← {};
while B 6= φ do

m← argmax(S);
M ← bm;
D ← D ∪M ;
B ← B −M ;
for bi ∈ B do

if iou(M, bi) ≥ Nt then
B ← B − bi;
S ← S − si;

end

end

end
return D,S

59



Appendix B

Gaussian Blur

Gaussian Blur is a a standard technique used in image processing to reduce the amount
of noise in an image. The visual effect of this blurring technique is a smooth blur as seen
in fig. B.1. Mathematically, applying a Gaussian blur to an image is the same as applying
a 1D conv to the the image with weights taken from a Gaussian function of fixed standard
deviation and then normalized.

Figure B.1: (Left) shows the image without blur and (right) shows the image with Gaussian
blur.

60



Appendix C

Smooth L1 Loss

Smooth L1 loss is given as

L1smooth(x) =

{
0.5x

2

β
, if |x| < β

|x| − 0.5β otherwise.
(C.1)

Here, β is a hyperparameter that divides the positive axis range into two parts: L2 loss
is used for targets in range [0, β], and L1 loss is used > β to avoid over-penalizing outliers.
The overall function is smooth.

61


	List of Figures
	List of Tables
	Introduction
	Feedforward Neural Networks
	Convolutional Neural Networks
	CNNs and Object Detection
	Challenge 1: Scale Invariance
	Challenge 2: Aspect-ratio Invariance

	Thesis Goals and Contributions
	Thesis Organization

	 Related Work
	CNN based Object Detection
	Backbones
	Output Methods

	CNN based Instance Segmentation

	Methodology 
	MatrixNets
	Parameters
	Advantages of MatrixNets
	Dimension Ratio AP

	Retinanet
	Architecture details
	Our Implementation: x-Retinanet

	Cornernets
	Architecture details
	Our Implementation: x-Cornernet
	x-Cornernet-lite

	Mask RCNN
	Architecture details
	Our Implementation: x-Mask RCNN


	Experiments
	x-RetinaNet
	Experimental details
	Results
	Ablation

	x-Cornernets
	Experimental details
	Results
	Ablations

	x-Mask RCNN
	Experimental details
	Results
	Ablations

	State of the art Comparison

	Conclusion and Future Work
	References
	APPENDICES
	NMS
	Gaussian Blur
	Smooth L1 Loss

