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Abstract

The theory of automatic sets and sequences arises naturally in many different areas of
mathematics, notably in the study of algebraic power series in positive characteristic, due
to work of Christol [14, 15], and in Derksen’s [18] classification of zero sets for sequences
satisfying a linear recurrence over fields of positive characteristic.

A fundamental dichotomy for automatic sets shows that they are either sparse, having
counting functions that grow relatively slowly, or they are not sparse, in which case their
counting functions grow reasonably fast. While this dichotomy has been known to hold for
some time, there has not—to this point in time—been a systematic study of the algebraic
and number theoretic properties of sparse automatic sets.

This thesis rectifies this situation and gives multiple results dealing specifically with
sparse automatic sets. In particular, we give a stronger version of a classical result of
Cobham for automatic sets where one now specializes to sparse automatic sets; we then
prove that a conjecture of Erdős and Turán [19] holds for automatic sets, again using the
theory of sparseness; finally, we give a refinement of a classical result of Christol where we
consider algebraic power series whose support set is a sparse automatic set.
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Chapter 1

Introduction

This thesis deals with sparse automatic sets and their algebraic and number theoretic
properties. For the reader’s convenience we shall cover a lot of the fundamental background
from automata theory needed to read the results in this thesis in Chapter 2, but one can
intuitively view automatic sets as being sets S of natural numbers that have an associated
fixed natural number k and for which the decision of whether a number n is in the set S
or not is done so by taking the base-k expansion of n and feeding it into a machine which
then makes the decision about membership in the set S.

These sets are part of a larger universe of computable subsets of natural numbers and
they are the least complex of the computable sets in a hierarchy first given by Chomsky
[13].

As it turns out, there is a striking gap in the possible growth types of automatic sets S:
πS(x) = |{n ≤ x : n ∈ S}| is either poly-logarithmically bounded (i.e., πS(x) = O((log x)d)
for some d ≥ 1) or it grows at least like a fractional power of x (i.e., there exists α > 0 such
that πS(x) ≥ xα for x sufficiently large).

Automatic sets for which the growth function is poly-logarithmically bounded are called
sparse and they have been shown to arise in many different contexts. We give some of the
more important examples. Derksen’s positive characteristic version of the Skolem-Mahler-
Lech theorem [18] (see also [10, Chap. 11]) makes use of such sets. In [18], it is shown that
the zero set of a linearly recurrent sequence over a field of characteristic p > 0 is a finite
union of arithmetic progressions augmented by a sparse p-automatic set.

Another relevant work is Kedlaya’s description of the algebraic closure of global function
fields in positive characteristic. In [28, 29], he extends earlier work of Christol [2, Theorem
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12.2.5] (see also [14, 15]) to give a full characterization of the algebraic closure of Fp(t) by
generalizing the notion of automatic subsets of natural numbers to automatic subsets of
Sp, where Sp is the set of nonnegative elements of Z[p−1]. As part of his work, he also
shows that for these maps that arise, the “post-radix point behaviour” of such sets can be
described in terms of sparse automatic sets.

Moosa and Scanlon’s [35] (see also [24]) work on the isotrivial case of the Mordell-Lang
conjecture deals with F -sets and these can again be described using sparse automatic sets
(see, also, [12]). Finally, recent work by Bell, Hare and Shallit [11] shows that automatic
sets that fail to be additive bases of the natural numbers can be characterized in terms of
this sparse property as well.

While sparse automatic sets have played a fundamental role in many different areas
of mathematics, thus far there has not been a systematic study of them from an alge-
braic/number theoretic point of view. In this thesis, we give a cohesive treatment of
the theory of sparse automatic sets in three different contexts: the theory of algebraic
power series, unlikely intersections, and the theory of representations in additive bases. In
particular, we prove three different results on the theme of sparse automatic sets, the last
of which is part of joint work with Jason Bell.

Our first result deals with a strong version of an old result of Cobham [16]. This result
shows that if k and ` are two multiplicatively independent natural numbers ≥ 2 (i.e., there
are no solutions to the equation ka = `b with positive integers a and b), then if a set S is
both k- and `-automatic then in fact it is eventually periodic; that is, there is some fixed
number c such that for n large, n ∈ S =⇒ n+ c ∈ S. One can recast this as saying that
if S is a k-automatic set and T is an `-automatic set with k and ` again multiplicatively
independent, then S ∩ T is a proper subset of S and T unless S and T are the same
eventually periodic sets. Note that if S is a proper subset of T and T is eventually periodic,
then S ∩ T is a proper subset of T but not of S. Since sparse non-empty sets cannot be
eventually periodic, it is natural to consider whether a stronger version of this phenomenon
might hold in the case of sparse sets (see Definition 24 in Section 2.2 for the definition of
sparse sets). We show that this is indeed the case. Our first main result is the following
theorem.

Theorem 1. Let k and ` be multiplicatively independent natural numbers greater than or
equal to 2. If S is a sparse k-automatic set and T is a sparse `-automatic set then S ∩ T is
finite.

We prove this Theorem 1 in Chapter 4 by proving a stronger quantitative result that
gives a bound on the size of the intersection in terms of the complexity of the machines
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needed to generate the sets S and T . To prove Theorem 1 we require the theory of S-units,
and we shall give background on this in Chapter 3.

After this, we turn our attention to automatic sets that are additive bases of the natural
numbers. Given a set S of natural numbers, we say that S is an additive basis of N of
order d if every natural number can be expressed as the sum of d elements of S and no
number smaller than d has this property. For example, a famous result of Lagrange says
that the perfect squares {1, 4, 9, . . .} are an additive basis of the natural numbers of order
four. (Note that seven cannot be written as a sum of three squares, so 4 is indeed the order
of this additive basis.) A set is an additive basis if it is an additive basis of order d for some
d ≥ 1. Automatic sets that are additive bases of the natural numbers were characterized
by Bell, Hare, and Shallit [11]. Interestingly, they showed that being an additive basis is
equivalent to two conditions holding, one of which is that the set not be sparse and the
other is that 1 must be in S.

This characterization allows one to examine classical questions about additive bases
within the context of automatic sets. In particular, an old conjecture of Erdős and Turán
[19] asserts the following: if S is an additive basis of the natural numbers of order d then
there are natural numbers n with arbitrarily many different representations as a sum of d
elements of S. There has been a lot of work on this question, but it nevertheless remains
open today. We are able to show that their question has an affirmative answer for automatic
sets.

Theorem 2. Let k and d be positive integers greater than or equal to two and let S be a
k-automatic set of natural numbers. If S is an additive basis of the natural numbers of
order d then for each integer M there exists a natural number n such that the number of
solutions to the equation s1 + · · ·+ sd = n with (s1, . . . , sd) ∈ Sd is at least M .

Again we prove a quantitative version of this result in Chapter 5, showing that one can
in fact find such an n that is bounded by a power function of N .

The final result of the thesis deals with refining the earlier-mentioned work of Christol,
which characterized algebraic power series in terms of automatic sets. Christol showed

that if q is a power of a prime p, then if F (t) =
∑
n≥0

f(n)tn ∈ Fq[[t]] is a power series that

satisfies a non-trivial polynomial equation

P (t, F (t)) = 0

with P (X, Y ) ∈ Fq[X, Y ], then for each a ∈ Fq the set of n for which f(n) = a is a
p-automatic subset of N. In particular, the support of F (t) (the set of n for which f(n) 6= 0)
is p-automatic, since finite unions of p-automatic sets are again p-automatic.
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With the sparse/non-sparse dichotomy for automatic sets mentioned above, a natural
question to ask is whether one can give a characterization of the algebraic power series over
a finite field with sparse supports. The author, in joint work with her supervisor [1], gives
such a characterization from two different points of view.

In this work it is shown that such series with sparse supports are intimately linked with
Artin-Schreier extensions, whose existence is the main reason for the fact that the algebraic
closure of the field of Laurent series K((t)) over a field K is considerably simpler when K
is of characteristic zero than when it is of positive characteristic.

We show that the collection of algebraic power series with sparse supports (henceforth
called sparse series) forms a ring and characterize this ring in two ways. The first charac-
terization is that the collection of sparse series is the smallest non-trivial subalgebra closed
under certain sparseness-preserving operators, such as making a change of variables by
multiplying the variable by a nonzero scalar, substituting a power of the variable as the
new variable, or multiplying (or dividing) the series by a power of the variable, along with
a special operator related to the Frobenius map. Our second characterization is purely
algebraic and is given by taking the integral elements in a certain maximal unramified
extension. Background on ramification and necessary algebraic concepts is provided in
Chapter 3. More specifically, the final result of this thesis is the following and is proved in
Chapter 6.

Theorem 3. Let p be a prime and let A be the field extension of F̄p(t) consisting of algebraic
Laurent series over F̄p, and let B be the subring of A consisting of algebraic power series
with sparse support. Then we have the following:

(a) B is the smallest non-trivial F̄p-subalgebra of A that possesses the following closure
properties:

(P1) If F (t) ∈ B and F (0) = 0 then F (t) + F (tp) + F (tp
2
) + · · · ∈ B;

(P2) If F (t) ∈ B and α ∈ F̄p then F (αt) ∈ B;

(P3) if F (t) ∈ B and tdF (tc) ∈ A with c ∈ Q>0 and d ∈ Q, then tdF (tc) ∈ B;

(b) If F (t) is a power series with coefficients in F̄p then F (t) ∈ B if and only if there is

some j ≥ 0 such that for G(t) := F (tp
j
) the following hold:

(i) the Galois closure of G(t) over the field K := F̄p(t±1/n : n ≥ 1, p - n) has degree
a power of p;

(ii) the extension K(G(t))/K is unramified outside of 0 and ∞;
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(iii) G(t) is integral over the Laurent polynomial ring F̄p[t±1].

We point out that the technical terminology used in the statement of Theorem 3 is
defined in Chapter 3. We also point out that in item (ii) in part (b) of the statement of
Theorem 3, we are implicitly using the fact that places of K are parameterized by points
in P1

F̄p (see Chapter 6 for details) and so it is this identification of places with points in

projective space that is being used when we speak of unramified extensions outside of 0
and ∞.

The outline of the thesis is as follows. In Chapters 2 and 3, the necessary background
on the theory of automatic sets and sequences and on number theory is given. In Chapter
4 we prove a quantitative version of Theorem 1 and in Chapter 5 we prove a quantitative
version of Theorem 2. In Chapter 6, Theorem 3 is proved along with a more general result
characterizing generalized Laurent series with sparse support, which arise in Kedlaya’s
extension of Christol’s theorem. Finally, in Chapter 7, we briefly consider the possibility of
finding the right extension of sparseness to regular sequences.
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Chapter 2

Preliminaries on Automata

In this chapter, we give some of the basic background on automata required to understand
the main results of this thesis. We introduce deterministic finite automata with output,
k-automatic sequences, and examine various equivalent definitions of these concepts. We
also introduce k-automatic sets and look at some examples. Then we define sparse languages
and look at some properties of sparse automatic sets. We present Christol’s theorem, which
provides a bridge between p-automatic sequences and formal power series that are algebraic.
Then we present generalized series, which are used by Kedlaya to extend Christol’s Theorem,
together with the corresponding generalization of p-automatic sets. Kedlaya’s theorem
characterizes the full algebraic closure of function fields in terms of p-quasi-automatic sets.
Much of the exposition in this chapter follows material from [2, 8, 28, 29, 31].

2.1 Automatic Sequences and Sets

In this section, we give some elementary information concerning regular languages, finite-
state automata, and p-automatic sequences. We start by setting the stage as follows.
Let Σ be a nonempty finite set. We call Σ an alphabet and we call a finite or infinite
sequence of symbols chosen from Σ a word over the alphabet Σ. Given a finite-length word
w = arar−1 . . . a1a0, we define its reversal wR = a0a1 . . . ar−1ar. We let Σ∗ denote the set of
all finite words over Σ; that is, Σ∗ is the free monoid on the set Σ, with multiplication given
by concatenation. A language over Σ is a subset of Σ∗. We say that a language L ⊆ Σ∗ is
a regular language if there is a finite-state machine accepting L (see Kleene’s theorem [30]).
Having given some terminology, we now see how this works in practice.
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Finite-state machines take words over a finite alphabet as input. They read the word
by starting from an initial state and moving from state to state as each letter is read. After
the reading of the word is done, according to which state is reached at the end, the machine
decides to accept the word or not to accept it.

As an example we look at Figure 2.1, which depicts a deterministic finite-state machine
which accepts all the words over the alphabet Σ2 = {0, 1} which contain two consecutive
1’s and rejects all the others. The states at which a word ends up and are accepted are
indicated with double-circles. The rest of the states (at which a word ends up and are
rejected) are indicated with single-circles. The state at which the machine starts reading a
word is labeled q0 and the rest of the states are labeled accordingly. To indicate how the
machine works, we include paths (or arrows) with labels to indicate which state is reached
after which letter is read. For example in Figure 2.1, when a word starts being read, the
machine starts at q0 and if it reads a 0 it remains at the same state q0, if it reads a 1 it
moves to state q1. More concretely, when w = 01101 is being read (from right to left),
we start at q0, reading 1 we move to q1, we then read 0 and move back to q0, read 1 and
move to q1, read one more 1 and move to q2; reading 0 while we are at q2, we stay at q2, as
indicated by the labeled arrows. After the reading is done, the state reached is q2 and it is
double circled. So this machine accepts the word 01101. This is no coincidence because we
constructed this machine so that it accepts words that contain two consecutive 1’s. Next
consider the example 010101. Then reading from right to left we go from q0 to q1, q0, q1, q0,
q1, q0, respectively. Since the state reached after the word is read is q0 and since q0 is not
one of the accepting (double-circled) states, we conclude that the word 010101 is rejected
by this machine.

q0start q1 q2

0

1

0

1
0,1

Figure 2.1: A deterministic finite-state machine (or a deterministic finite automaton)

Observe that at each state the various letters of our input alphabet give transitions to
other states and we can think of this as giving a function from the Cartesian product of
the set of states and the input alphabet to the set of states. For the finite-state machine
in Figure 2.1, call the collection of all states Q and we can define δ : Σ2 × Q → Q by
δ(0, q0) = q0, δ(1, q0) = q1, δ(0, q1) = q0, δ(1, q1) = q1, δ(0, q2) = q2, and δ(1, q2) = q2. In
addition to these data, we also require a set of accepting states A ⊆ Q. Then for the
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finite automaton given in Figure 2.1, A = {q2} . More formally, we give the definition of a
deterministic finite-state automaton below.

Definition 4. A deterministic finite-state machine or a deterministic finite automaton
(DFA) is a 5-tuple (Q,Σ, δ, q0, A) where Q is a finite set of states, Σ is a finite input alphabet,
δ is a transition function from Σ×Q to Q, q0 ∈ Σ is an initial state, and A ⊆ Q is a set of
accepting states.

If we consider accepting a word as giving an output of 1 and rejecting as giving 0, we
can add one more function to this 5-tuple and make it a deterministic finite-state machine
with output. In this case the output function is defined from the set of all states to the
set {0, 1}. For example, for the DFA in Figure 2.1, the output function τ : Q→ {0, 1} can
be defined by setting τ(q0) = τ(q1) = 0, τ(q2) = 1. Notice that the data of this function
now adds an output alphabet to the 5-tuple and also makes indicating the set of accepting
states redundant because they are now characterized by the function τ . In this case Figure
2.1 becomes Figure 2.2, where we remove the double-circles and instead label the state qi
along with its output as qi/τ(qi). Extending this idea, one can have any alphabet as the
range of the output function τ .

q0/0start q1/0 q2/1

0

1

0

1
0,1

Figure 2.2: A deterministic finite automaton with output (DFAO)

We now give a formal definition of the idea behind the above-described machine.

Definition 5. A deterministic finite automaton with output (DFAO) is a 6-tuple

M = (Q,Σ, δ, q0,∆, τ),

where Q is a finite set of states, Σ is a finite input alphabet, δ is the transition function
from Σ×Q to Q, q0 ∈ Q is the initial state, ∆ is an output alphabet, and τ is the output
function from Q to ∆.

Intuitively, we can think of a DFAO as a directed graph in which the vertices are the
elements of Q and for each vertex q ∈ Q and each s ∈ Σ we have a directed arrow with
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label s from q to the state q′ = δ(s, q). Then given a word w ∈ Σ∗, the DFAO gives us an
output in ∆ as follows: we begin at the initial state q0 and then, reading w from right to
left, we obtain a path by moving vertex to vertex as we read each letter in w. When we
have finished reading w, we arrive at a state q ∈ Q and we then apply τ to obtain an output
in ∆. Adopting this point of view, we see we can extend δ to a map from Σ∗ ×Q to Q and
then the output associated with a word w ∈ Σ∗ is simply τ(δ(w, q0)). Thus to a DFAO M ,
there is an associated finite-state function fM : Σ∗ → ∆ given by fM(w) = τ(δ(w, q0)).

For a natural number k ≥ 2, we let

Σk = {0, 1, . . . , k − 1}, (2.1)

which are the digits used in forming base-k expansions of natural numbers. For every
natural number n, there is a word w = (n)k ∈ Σ∗k, which is the base-k expansion of n,
where we define (0)k to be the empty word; conversely, given a non-empty word w ∈ Σ∗k
with no leading zeros there is a natural number n = [w]k, which is the natural number
whose base-k expansion is w. In the case when w is the empty word, we take [w]k = 0. If
w = a1a2 · · · as−1, we have

[w]k =
s−1∑
i=1

aik
s−1−i,

and if

n =
s−1∑
i=1

aik
s−1−i

with a1 nonzero then (n)k = a1a2 · · · as−1.

If we use the base-k expansions of the natural numbers as the input for a DFAO
M = (Q,Σk, δ, q0,∆, τ), then for each natural number n, we get an output computed by
M ; i.e., M generates a sequence f(n) taking values in ∆, where we set f(n) = fM((n)k)
with n = [w]k and fM(w) = τ(δ(w, q0)). Such a DFAO is called a k-DFAO.

Let us look at a concrete example (see Figure 2.3) of a k-DFAO which generates a
famous sequence, the Thue-Morse sequence. This is a 2-DFAO, hence having input alphabet
Σ2 = {0, 1}, and it has two states q0 and q1, with q0 being the initial state. Its transition
function is given by δ(0, q0) = q0, δ(0, q1) = q1, δ(1, q0) = q1, and δ(1, q1) = q0. The
labelling q0/0 and q1/1 inside states is specifying that τ(q0) = 0 and τ(q1) = 1. If we
regard a word over the alphabet Σ2 with no leading zeros as being the binary expansion
of a natural number then we can construct a {0, 1}-valued sequence f(n) by feeding the
binary expansion of n into our DFAO, starting at state q0 and reading the word from right
to left, and then (to get the value) applying τ to the state we reach after we have fed
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all of the digits into the machine. For example, if n = 13, we have the binary expansion
1101, and applying successive transitions we see that 1101 takes state q0 to state q1 and
so f(13) = τ(q1) = 1. The sequence obtained in this particular case via this procedure is
known as the Thue-Morse sequence.

q0/0start q1/1

0

1

0

1

Figure 2.3: A 2-DFAO generating the Thue-Morse sequence.

We record the type of sequences generated in this way in the following definition.

Definition 6. Let ∆ be a finite set. A function a : N→ ∆ is called a k-automatic sequence
if there exists a k-DFAO M with output alphabet ∆ such that for each n ∈ N, a(n) is equal
to fM ((n)k).

For example, the Thue-Morse sequence is a 2-automatic sequence and it is generated by
the 2-DFAO drawn in Figure 2.3. One can also explicitly write a formula for the terms of
the Thue-Morse sequence. Let {t(n)}∞n=0 denote the Thue-Morse sequence. Define s(n) to
be equal to the number of 1’s in the base-2 expansion of n. Then t(n) can be defined for
each n as follows:

t(n) =

{
0 if s(n) ≡ 0 (mod 2)

1 if s(n) ≡ 1 (mod 2).
(2.2)

With this definition, one can write down the first few terms of the Thue-Morse sequence:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
t(n) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

Note that it is also possible to define this sequence by the recursive formulas

t(0) = 0,
t(2n) = t(n),

t(2n+ 1) = 1− t(n).
(2.3)
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Another basic example of a k-automatic sequence is, for a fixed prime number p,

a(n) =

{
1 if n = pm for some integer m ≥ 0

0 otherwise
(2.4)

Then we can show that there exists a p-DFAO M (with finite-state function fM ) such that
a(n) can be computed as fM((n)k). In the case when p = 2, the automaton accepting
the base-p expansions of powers of p is given in Figure 2.4. Notice that the sequence a(n)
coincides with the characteristic function of the set of powers of p, which we will elaborate
on later, when we define k-automatic sets.

q0/0start q1/1 q2/0

0

1

0

1

0,1

Figure 2.4: A deterministic finite-state machine accepting the binary expansions of powers
of 2.

There are many equivalent characterizations of k-automatic sequences, one of which is
done using the notion of k-kernels and another is given by using morphisms (Cobham’s
little theorem). Before we jump to these equivalent definitions, let us prove a basic property
of automatic sequences using the definition we have seen so far.

Notation 7. For a sequence {a(n)}∞n=0, we write {a(n)}n for simplicity.

Lemma 8. Let {a(n)}n and {b(n)}n be k-automatic sequences with values in alphabets ∆
and ∆′. Then the sequence {c(n)}n defined by c(n) := (a(n), b(n)) for each n ≥ 0 is also
k-automatic.

Proof. Since {a(n)}n and {b(n)}n are k-automatic sequences, there exist k-DFAOs M and
M ′ with M = (Q,Σk, δ, q0,∆, τ) and M ′ = (Q′,Σk, δ

′, q′0,∆
′, τ ′) that generate the sequences

{a(n)} and {b(n)}, respectively. Using M and M ′, we construct a new k-DFAO that will
generate the sequence {c(n)}n. Let

M ′′ = (Q×Q′,Σk, δ
′′, (q0, q

′
0),∆×∆′, τ ′′),

where we define δ′′ and τ ′′ for each q ∈ Q, q′ ∈ Q′, n ∈ Σ as follows: δ′′((q, q′), (n)k) =
(δ(q, (n)k), δ

′(q′, (n)k)) and τ ′′(q, q′) = (τ(q), τ ′(q′)). Then this new k-DFAO generates
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the sequence {c(n)}n. To see this, we prove c(n) = τ ′′(δ′′((q0, q
′
0), (n)k)). We have

δ′′((q0, q
′
0), (n)k)) = (δ(q0, (n)k), δ

′(q′0, (n)k)) by definition of δ′′. Then τ ′′(δ′′((q0, q
′
0), (n)k)) =

τ ′′(δ(q0, (n)k), δ
′(q′0, (n)k)) = (τ(δ(q0, (n)k)), τ

′(δ′(q′0, (n)k))) = (a(n), b(n)) = c(n).

We now look at an equivalent definition of k-automatic sequences in terms of k-kernels.

Definition 9. For k ≥ 2 and a sequence {u(n)}n, the k-kernel of {u(n)}n is defined as

Kk =
{
{u(kin+ j)}n : i ≥ 0 and 0 ≤ j < ki

}
.

Most sequences have infinitely many distinct subsequences that occur in the k-kernel,
but for k-automatic sequences the kernel is finite and this in fact characterizes the
property of k-automaticity. An example is the Thue-Morse sequence. It has 2-kernel
K = {{t(2n)}n, {t(2n+ 1)}n} by the relations in Equation 2.3. So {t(n)}n has finite
2-kernel (with 2 elements). This shows that the Thue-Morse sequence is 2-automatic
without having to explicitly write a finite-state machine that generates it, by the well-known
characterization below (see Allouche and Shallit [2, Theorem 6.6.2]).

Theorem 10. Let k ≥ 2. A sequence is k-automatic if and only if its k-kernel is finite.

This characterization of automaticity is useful when exploring some properties of k-
automatic sequences. We now give another characterization of automaticity due to Cobham
[17]. This characterization of k-automatic sequences involves morphisms and can be used to
prove additional properties of k-automatic sequences. For example, Proposition 18, which
states a sequence is k-automatic if and only if it is km-automatic can be quickly proved
using Cobham’s characterization. This property will later be useful in proving Christol’s
theorem relating algebraic power series to automata. To provide necessary background for
Cobham’s little theorem, we briefly review morphisms and uniform morphisms along with
giving some examples.

Definition 11. Let Σ and ∆ be alphabets. A morphism is a map f from Σ∗ to ∆∗ satisfying
f(ab) = f(a)f(b) for all a, b ∈ Σ∗.

Note that when specifying a morphism, it is sufficient to define f on the elements of Σ
since we can then extend it uniquely to a morphism from Σ∗ to ∆∗. Note also that the
identity h(xy) = h(x)h(y) for all x, y ∈ Σ∗ forces h(ε) = ε, where ε is the empty word.

Example 12. Let Σ = {t, h, e, s, i} and ∆ = {d, i, s, e, r, t, a, o, n}. Set f(t) = di, f(h) = ss,
f(e) = er, f(s) = ε and f(i) = tation. Then f(thesis) = dissertation.

12



Definition 13. Let k ≥ 2 be a positive integer and let Σ and ∆ be finite alphabets. A
k-uniform morphism f : Σ∗ → ∆∗ is a morphism such that |f(a)|, the length of the word
f(a), is equal to k for all a ∈ Σ. A 1-uniform morphism is called a coding.

We have seen the Thue-Morse sequence is generated by a 2-DFAO and that it has a
finite 2-kernel. Now we also show that it is the image of a 2-uniform morphism, which will
constitute another method of proving the Thue-Morse sequence is 2-automatic, by using
Cobham’s little theorem (see Theorem 17 below).

It is noteworthy to mention that the image of an automatic sequence under a coding is
also automatic. We record this more formally.

Lemma 14. If a : N→ ∆ is a k-automatic sequence for some finite set of symbols ∆ and
if f is a function from ∆ to a set Z, then {f (a(n))}n is also a k-automatic sequence taking
values in a finite subset of Z.

Proof. Since the sequence {a(n)}n is k-automatic, there exists a k-DFAO that generates it.
Denote it by M = (Q,Σ, δ, q0,∆, τ). Then for each n ≥ 0, we have a(n) = τ(δ(q0, (n)k)).
Now we can make a new k-DFAO by replacing the map τ by f ◦ τ , and the output alphabet
∆ by f(∆). Hence the k-DFAO (Q,Σ, δ, q0, f(∆), f ◦ τ) generates {f(a(n))}n.

Combining Lemmas 8 and 14, we get the following corollary.

Corollary 15. Let {a(n)}n and {b(n)}n be two k-automatic sequences taking values in a
finite subset of a ring R. Then:

(i) {a(n) + b(n)}n is k-automatic,

(ii) {a(n)b(n)}n is k-automatic,

(iii) {c b(n)}n is k-automatic for any constant c ∈ Z.

Proof. Let c(n) = (a(n), b(n)). Then by Lemma 8, c(n) is k-automatic. Let Ra and Rb be
two finite subsets of R such that a(n) ∈ Ra for all n ≥ 0 and b(n) ∈ Rb for all n ≥ 0. Then
c(n) takes finitely many values, namely it has values in Ra ×Rb. Now we will use different
maps f : Ra ×Rb → R, using that the image of an automatic sequence under a coding is
again automatic, to obtain the three parts:

(i) by taking f(x, y) := x+ y.
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(ii) by taking f(x, y) := xy.

(iii) by taking a(n) to be the constant sequence c with c ∈ Z and applying part (ii). Every
constant sequence is k-automatic since it has one element in its k-kernel.

Next we give a calculation that shows how to compute the image of a letter in an infinite
word under a uniform morphism. This will be useful in proving Cobham’s little theorem
(Theorem 17). We follow the treatment of this result in the text of Allouche and Shallit [2,
Chapter 6].

Lemma 16. Let k ≥ 2 and suppose that f is a k-uniform morphism. If w = a0a1a2 . . . is
a fixed point of f , then f(ai) = aki . . . aki+k−1.

Proof. Since w is a fixed point of f and f is a k-uniform morphism, f(a0 · · · ai) =
a0 · · · aki+k−1. We can write

f(a0 · · · ai) = f(a0 · · · ai−1)f(ai)

= a0 · · · (ak(i−1)+k−1)aki . . . aki+k−1,

which proves that f(ai) = aki . . . aki+k−1.

The following theorem goes by the name Cobham’s little theorem [17].

Theorem 17. Let k ≥ 2. Then a sequence {a(n)}n is k-automatic if and only if it is the
image, under a coding, of a fixed point of a k-uniform morphism.

Proof. This argument is simpler if one works with automata that read base-k expansions
from left-to-right. Fortunately, this is equivalent to the right-to-left definition we have
worked to up till now (cf. Allouche and Shallit [2, Corollary 4.3.5]). We will add the
adjective left-to-right when describing k-DFAOs with the property of reading words starting
from the left.

Suppose that {a(n)}n is k-automatic. Then there exists a left-to-right k-DFAO
(Q,Σk, δ, q,∆, τ) that generates it. We may assume δ(q0, 0) = q0 by adding a new initial
state to the k-DFAO and redefining the maps δ and τ , if necessary. Now we define a mor-
phism f : Q∗ → Q∗ as follows. For q ∈ Q, we let f(q) = δ(q, 0) · · · δ(q, k−2)δ(q, k−1) ∈ ∆∗.
Let w = w0w1w2 · · · be the unique fixed point of f with w0 = q0. (This is obtained by
taking the limit of fn(q0) where fn is the n-th iterate of f .) We can show δ(q0, y) = w[y]k for
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all y ∈ Σ∗ by induction on the length of y. If the length of y is zero, then δ(q0, 0) = q0 = w0.
Assume δ(q0, y) = w[y]k for all y ∈ Σ∗ with |y| < i. Let |y| = i. Writing y = xa, where
a ∈ Σk and |x| = i− 1, we have

δ(q0, y) = δ(q0, xa)

= δ(δ(q0, x), a)

= δ(w[x]k , a), by the induction hypothesis

= ath letter in f(w[x]k), by definition of f

= wk[x]k+a, by Lemma 16

= w[xa]k

= w[y]k .

So, we get a(n) = τ(δ(q0, (n)k)) = τ(wn). Hence {a(n)}n is the image (under τ) of a fixed
point of f .

For the other direction, let Q and ∆ be finite alphabets, let τ : Q→ ∆ be a coding, and
suppose {a(n)}n is the image of τ applied to the fixed point, w, of a k-uniform morphism
φ : Q∗ → Q∗. Let wi denote the i-th letter of the word w for i ≥ 0. Define a (left-to-right)
k-DFAO M = (Q,Σk, δ, w0,∆, τ) where δ(q, b) is the b-th letter of φ(q). We claim that
wn = δ(w0, (n)k) for all n ≥ 0. We prove it by (strong) induction on n. For n = 0, we have
δ(w0, 0) = w0. Now suppose that wi = δ(w0, (i)k) for all i < n. Let (n)k = ntn2 . . . n1, so
n = kn′ + n1, for some n′ and 0 ≤ n1 < k. Then we have

δ(w0, (n)k) = δ(w0, ntnt−1 . . . n2n1)

= δ(δ(w0, nt . . . n2), n1)

= δ(δ(w0, (n
′)k, n1)

= δ(wn′ , n1)

= n1-th letter of φ(wn′)

= wkn′+n1 , by Lemma 16

= wn.

Then a(n) = τ(wn) = τ(δ(q0, (n)k).

This theorem helps us understand how outputs of two automata with different alphabets
relate to each other in a special case, namely, when one alphabet has cardinality a power of
the cardinality of the other automaton’s alphabet.
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Proposition 18. Let k ≥ 2 and m ≥ 1 be natural numbers. A sequence {a(n)}n is
k-automatic if and only if it is km-automatic.

Proof. By Cobham’s little theorem (Theorem 17), if {a(n)}n is k-automatic, then it can be
expressed as the image under a coding τ of a fixed point of a k-uniform morphism f . So,
we have

a0a1a2 · · · = τ(fω(a0)) for some letter a0,

where f(a0) has a0 as a prefix and fω(a0) represents the infinite word obtained by taking
the limit of fn(a0) as n tends to infinity. If g := fm, then g is a km-uniform morphism and
we have a0a1a2 · · · = τ(gω(a0)). So, {a(n)}n is km-automatic by Cobham’s little theorem.

If {a(n)}n is km-automatic, then its km-kernel is finite. Denote its km-kernel by

K ′ = {{a(kmin+ b)}n : i ≥ 0, 0 ≤ b < kmi} := {{a1(n)}n, . . . , {ad(n)}n}

for some finite set of sequences a1, . . . , ad. We want to show that the k-kernel Kk =
{{a(ksn + t)}n : s ≥ 0, 0 ≤ t < ks} is finite. Given s ≥ 0 and t with 0 ≤ t < ks, we can
write s = mq + r where 0 ≤ r < m and t = kmqt1 + t0 where t0 < kmq. Notice that t1 < kr

since t < ks. Then we have

ksn+ t = kqm+rn+ kqmt1 + t0 = kqm(kr + t1) + t0.

Then a(ksn+ t) = a(kqm(krn+ t1) + t0) but a(kqm(krn+ t1) + t0) = ai(k
rn+ t1) for some

i, by definition of K ′. There are only finitely many sequences of the form ai(k
rn+ t1) since

i ≤ d, r < m and t1 < kr. Hence we are done.

We revisit the sequence generated by the finite-state machine in Figure 2.4. The
values of the sequence are obtained by looking the characteristic function of the set
S = {1, p, p2, p3, p4, . . . } consisting of powers of p, for a prime number p; i.e.,

χS(n) =

{
1 if n ∈ S
0 if n /∈ S.

Definition 19. Let k ≥ 2 be a positive integer and let S be a subset of nonnegative
integers. Then S is called k-automatic if {χS(n)}n is a k-automatic sequence.

In the above example, the sequence (χS(n))n≥0 is a p-automatic sequence, where
S = {1, p, p2, p3, p4, . . . }, and so S is a p-automatic set.

We can prove certain closure properties of k-automatic sets by using Definition 19.
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Proposition 20. Let k ≥ 2 and let S and T be k-automatic subsets of N. Then

(i) S ∪ T is k-automatic, and

(ii) S ∩ T is k-automatic.

Proof. We consider the characteristic functions of the sets S ∪ T and S ∩ T . Then we have

χS∪T (n) = χS(n) + χT (n)− χS(n)χT (n)

and
χS∩T (n) = χS(n)χT (n).

The automaticity of S ∪T and S ∩T now follows from parts (i) and (ii) of Corollary 15.

In the next section, we turn our attention to the main focus of this thesis: sparse
automatic sets, which form a distinguished subclass of the class of automatic sets.

2.2 Sparse Automatic Sets

In this section we give an overview of sparse languages and sparse sets. We revisit some
well-known material from [12] (for example, Proposition 22). We let Σ be a finite alphabet
and we let L ⊆ Σ∗ be a language. We define the counting function of the language

fL(n) := #{w ∈ L : length(w) ≤ n}.

A regular language is sparse if the number of words of length at most n grows at most
polynomially in n. More precisely, we shall say that a regular language L is sparse if
one of the equivalent conditions in Proposition 22 below holds. Sparse languages play an
integral role in the theory of regular languages and finite-state automata, and they have
been studied in numerous contexts. We borrow a summary of conditions equivalent to
sparseness from [12], which combines results from [23, 25, 27, 43, 44].

We introduce some notation that will be used here and in later sections.

Notation 21. Let f(x) and g(x) be two real-valued functions with g strictly positive. We
write f(x) = O(g(x)) for all sufficiently large x if there exists a positive constant C > 0 such
that |f(x)| ≤ Cg(x) for sufficiently large x. We write f(x) = o(g(x)) for all sufficiently
large x if for every ε > 0 there exists a constant N ≥ 1 such that |f(x)| ≤ ε|g(x)| for all
x ≥ N .
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Proposition 22. Let L be a regular language. Then the following are equivalent:

(1) fL(n) = O(nd) for some natural number d.

(2) fL(n) = o(Cn) for every C > 1.

(3) There do not exist words u, v, a, b with a, b non-trivial and of the same length and a 6= b
such that u{a, b}∗v ⊆ L.

(4) Suppose Γ = (Q,Σ, δ, q0, F ) is an automaton accepting L in which all states are
accessible. Then Γ satisfies the following.

(∗) If q is a state such that δ(q, v) ∈ F for some word v then there is at most one
non-trivial word w with the property that δ(q, w) = q and δ(q, w′) 6= q for every
non-trivial proper prefix w′ of w;

(5) There exists an automaton accepting L that satisfies (∗).

(6) L is a finite union of languages of the form v1w
∗
1v2w

∗
2 · · · vkw∗kvk+1 where k ≥ 0 and the

vi are possibly trivial words and the wi are non-trivial words.

Given the connection between regular languages over the alphabet {0, 1, . . . , k − 1}
and k-automatic sets, we can naturally extend the notion of sparseness to k-automatic
sets as follows. Given a subset S ⊆ N, we say that S is a sparse k-automatic set if
{(n)k ∈ {0, 1, . . . , k − 1}∗ : n ∈ S} is a sparse sublanguage of {0, 1, . . . , k − 1}∗. If one
translates conditions (i) and (ii) of Proposition 22 into this context, we obtain the following
dichotomy.

Theorem 23. Let S ⊆ N be a k-automatic set and let πS(x) := #{n ∈ S : n ≤ x} for
x ≥ 0. Then one of the following alternatives must hold:

(1) there exists d ≥ 1 such that πS(n) = O((log n)d) as n→∞; or

(2) there exists a real number α > 0 such that πS(n) > nα for all sufficiently large n.

Then sparse sets are precisely k-automatic sets for which there is some d ≥ 1 such that
πS(n) = O((log n)d), and this “gap” result shows there is a clear delineation between sparse
and non-sparse k-automatic sets. We record this more formally.

Definition 24. Let k ≥ 2 be a natural number and let S be a k-automatic set. We say
that S is sparse if condition (1) in Theorem 23 holds.
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One can in fact take the finite union given in item (6) of Proposition 22 to be disjoint.
This fact is not explicitly stated in [12, Proposition 7.1], and so we provide an argument
below.

Lemma 25. Let L be a regular sparse language. Then, the language L is a finite disjoint
union of languages of the form

v1w
∗
1v2w

∗
2 · · · vsw∗svs+1

where s ≥ 0, the vi are possibly trivial words and the wi are non-trivial words.

Proof. We will work with automata that read expansion from left-to-right since the argument
is completely symmetric.

We know by Proposition 22 that the language L is a finite union of languages of the
form

v1w
∗
1v2w

∗
2 · · · vsw∗kvs+1

where s ≥ 0 and the vi are possibly trivial words and the wi are non-trivial words. We
only need to show that this finite union can be taken as a disjoint union of languages of
this form. Let Γ = (Q,Σ, δ, q0, F ) be a finite-state automaton accepting L. We recall that
condition (∗) in item (4) of Proposition 22 also holds because L is a sparse language.

One can define an equivalence relation on the set of states as follows. Given two states
q, q′, we’ll say that q ≺ q′ if there is some u ∈ Σ∗ such that δ(q, u) = q′. If q ≺ q′ and q′ ≺ q,
we’ll write q ∼ q′. We note that ∼ is an equivalence relation and ≺ induces a partial order
on the equivalence classes and we’ll let [q] denote the equivalence class of q. Since L is
sparse, there is a unique (possibly empty) cycle that visits each state in an equivalence
class.

We now prove the decomposition for L by induction on the number of equivalence
classes in Q. If there is a single equivalence class, then there is a unique cycle corresponding
to the word w based at q0 that visits each state in [q0]. Then every word accepted by our
language is of the form wnv where v is a prefix of w. Thus our language L is a finite disjoint
union of languages of the form w∗v in this case. Now we suppose that the claim holds
whenever there are fewer than d equivalence classes in Q and we consider the case when
there are d classes. Then there is a shortest word w (that is possibly empty) that visits
each state in [q0] and a word in L either has δ(q0, w) ∈ [q0] or δ(q0, w) 6∈ q0. In the former
case, we get a finite disjoint set of languages of the form w∗v with v a prefix of w and we
call this union L0; in the latter case, we get a finite disjoint union of languages of the form
w∗uiLi, where ui runs over words from q0 to a state not in [q0] such that δ(q0, v) ∈ [q0] for

19



every proper prefix v of ui and such that w is not a prefix of ui; Li is the set of words u
such that δ(qi, u) lies in F , where qi = δ(q, ui). Since there are only finitely many such ui,
this is a finite disjoint union. Observe that Li is accepted by the automaton

Γi = (Q \ [q0],Σ, δ, qi, F \ [q0]) ,

where we restrict δ to (Q \ [q0])× Σ. Then by the induction hypothesis, each Li has the
desired form and we can now use the expression

L = L0 ∪
⋃
i

w∗uiLi

to obtain the result.

Although Proposition 22 already implies the statement of Theorem 23, it is possible
to give a proof of this well-known dichotomy using linear algebra and a gap result on the
norms of semigroup of matrices (see [6]). We will first need to prove a couple of lemmas on
counting functions and to do that we introduce some more notions from automata theory.

Definition 26. A sequence {f(n)}n taking values in an abelian group A is called k-regular
if the elements of its k-kernel generate a finitely generated subgroup of AN. That is, every
element in the k-kernel can be written as an integer linear combination of a finite set of
A-valued sequences.

Given a subset S of natural numbers, the counting function πS(n) = #{j ≤ n : j ∈ S}
can be considered as a sequence in the abelian group (Z,+).

Lemma 27. If S is a k-automatic subset of N, then {πS(n)}n≥0 is a k-regular sequence.

Proof. Allouche and Shallit [2, Theorem 16.4.1] prove a more general property. They show
that if a(n) and b(n) are two k-regular sequences, then the convolution

c(n) :=
n∑
i=0

a(i)b(n− i)

is again k-regular. Since {χS(n)}n, the characteristic sequence of n, is k-automatic, it is
k-regular. Similarly, the constant sequence of all ones is k-regular, and since {πS(n)}n is
the convolution of these two sequences, we see that {πS(n)}n is also k-regular.

20



The fact that k-regularity allows one to associate a finitely generated abelian group to a
sequence allows one to give a characterization of regularity in terms of matrices as follows.
This matrix presentation of a given sequence will help us prove Theorem 23 by using a gap
result for the norms of semigroups of matrices.

Lemma 28. Let f(n) be a sequence taking values in a commutative ring R. If f(n) is
k-regular, then there exist matrices M0,M1,M2, . . . ,Mk−1 with integer entries and vectors
v, w with entries in R such that

f(n) = wTMn1Mn2 · · ·Mnsv

for all n, where (n)k = ns . . . n2n1 ∈ Σ∗k.

Proof. Since f(n) is k-regular, its k-kernel generates a finitely generated subgroup of RN.
We let {{f1(n)}n, {f2(n)}n, . . . , {fd(n)}n} be a set of generators, which we may assume are
elements of the k-kernel. Without loss of generality, we assume that f1(n) = f(n). Then
every subsequence of the form {f(kan+ b)}n with 0 ≤ b < ka can be written as a Z-linear
combination of members of the generating set. Let vn = (f(n), f2(n), . . . , fd(n))T . Then
as each fi(kn + b) for 0 ≤ b < k will be an integer linear combination of the fi(n)’s, for
each b there exists a matrix Mb such that vkn+b = Mbvn for n ≥ 0. Then by induction,
for (n)k = ns . . . n2n1 with ni ∈ Σk, we have vn = Mn1Mn2 · · ·Mnsv0. Then we can set
w = (1, 0, 0, . . . , 0)T and v := v0. This gives f(n) = wTMn1Mn2 · · ·Mnsv.

Another arithmetical property of the counting function of a k-automatic set that follows
from this characterization of k-regularity is the following.

Lemma 29. Let S be a k-automatic subset of N. Then a(n) := πS(kn) satisfies a linear
recurrence relation.

Proof. Since {πS(n)}n is a k-regular sequence taking values in Z, by Lemma 28 there
exist matrices A0, . . . , Ak−1 and vectors v and w with integer entries such that πS(kn) =
πS([10n]k) = wTAn0A1v. The result now follows from the Cayley-Hamilton theorem applied
to A0.

Using k-regularity of {πS(n)} we obtain another proof of Theorem 23. Since we will
look at the growth of the functions and will use a description involving matrices and vectors,
we introduce some notation.

Notation 30. For a d× 1 vector v = (v1, v2, . . . , vd)
T whose entries are integers, we write

|v| :=
√
v2

1 + v2
2 + · · ·+ v2

d.
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Proof of Theorem 23. By Lemma 27, πS(n) is k-regular. So by Lemma 28, there exist
d× d matrices A0, . . . , Ak−1 with integer entries and integer vectors v, w such that πS(n) =
wTAa1 . . . Aasv where (n)k = as . . . a1, with a1, . . . , as ∈ Σk.

Denote by S = 〈A0, . . . , Ak−1〉 ⊆ Md(Z) the semigroup generated by the matrices
A0, . . . , Ak−1. We may assume without loss of generality that wTS spans the space of 1× d
row vectors: if not, we let W denote the subspace spanned by wTS and since S is closed
under right-multiplication by A0, . . . , Ak−1, for i = 0, . . . , k−1 we have a map Ãi : W → W
given by

x ∈ W 7→ xAi.

Then after fixing a basis for W this gives us a representation of our semigroup that again
generates the counting function πS. Similarly, we may assume that Sv spans the space of
d× 1 column vectors.

Recall that there is an operator matrix norm ‖ · ‖ defined on complex matrices, given
by ‖A‖ = sup |Au|, where the supremum is taken over all vectors u with |u| = 1. If
every matrix in S has all of its eigenvalues on or inside the unit circle then by [6] we
have max

0≤a1,...,as≤k−1
‖Aa1 . . . Aas‖ = O(sd−1), and so all entries are polynomially bounded in

s. Then πS(n) = O(sd−1) since w and v are constant vectors. Since s = O(log(n)), we have
the first part of the dichotomy.

Alternatively, if there is some matrix in S that does not have all of its eigenvalues on
or inside the unit circle, then by the gap result again in [6], we have that there is some
constant c with |c| > 1 and some matrix

B := At1 · · ·Atr

in S such that B has an eigenvalue equal to c. Now we pick a nonzero vector u1 such that
Bu1 = cu1, and we pick a row vector uT2 with uT2 u1 = 1.

Now by assumption, wTS spans the space of column vectors, so there are fixed elements
U1, . . . , Ud ∈ S and scalars λ1, . . . , λd such that∑

i

λiw
TUi = u2.

Similarly, there are U ′1, . . . , U
′
d ∈ S and scalars γ1, . . . , γd such that∑

γiU
′
iv = u1.

22



Then for n ≥ 1
cn = uT2B

nu1 =
∑
i,j

λiγjw
TUiB

nU ′jv.

Thus if we let R denote the maximum of |λi| · |γj|, then for each n there exist (i, j) depending
on n such that

|wTUiBnUjv| ≥
|c|n

(d2R)
.

In particular, if we let a denote the maximum of the lengths of the elements Uk and U ′` for
1 ≤ k, ` ≤ d as products of A0, . . . , Ak−1 then we see that for each n there is some word wn
whose length is at least rn and at most rn+ 2a such that

πS([wn]k) ≥
|c|n

(d2R)
.

As πS(krn+2a) ≥ πS([wn]k), we see that

πS(krn+2a) ≥ |c|n

(d2R)
.

But now if N is a positive integer, then there exists some n such that

krn+2a ≤ N < kr(n+1)+2a,

and so

πS(N) ≥ |c|
n

d2R
.

Since |c| > 1, there is some α ∈ R such that |c|α > kr, and so we see that |c|n/d2R > N1/α

for N sufficiently large and so we have the other part of the dichotomy.

Now we have proved a dichotomy for a k-automatic set. It is either sparse (i.e. the
counting function of the set grows at the rate of a positive power of log(n)), or the counting
function grows at least as fast as nα for some α > 0.

We also mention here how sparseness of sets relate to density of sets. We first define
what we mean by density.

Definition 31. Let S be a subset of N. We define the density of S by

lim
n→∞

πS(n)

n
, if exists.
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In other words, for any interval In := [0, n] ∩ Z, n ∈ N, the density of S, if it exists, is

defined by lim
n→∞

|S ∩ In|
|In|

, where |S ∩ In| and |In| denote the number of elements in sets

S ∩ In and In, respectively. Although the density need not exist in general, there are related
quantities that always exist. The lower density and the upper density of S are defined by

lim inf
n→∞

|S ∩ In|
|In|

and lim sup
n→∞

|S ∩ In|
|In|

,

respectively.

We look at a statement that connects sparseness and density of a set.

Proposition 32. If S ⊆ N is a k-automatic sparse set then it has upper density (and
therefore density and lower density) zero.

Proof. Since S is sparse there exists d ≥ 1 such that πS(n) = O(log(n)d). Then |S∩ [0, n]| ≤

C log(n)d for some C > 0 for n large, and since we have lim sup
n→∞

log(n)d

n
= 0, the result

follows.

An interesting feature of Proposition 22 combined with Lemma 25 is that it shows that
a sparse language L is a finite disjoint union of languages of the form v1w

∗
1v2w

∗
2 . . . vsw

∗
svs+1

where s ≥ 0 and the vi are possibly trivial words and the wi are non-trivial words. We shall
call languages of this special form simple sparse languages.

Then every sparse language is a finite union of disjoint simple sparse languages and if
one translates Lemma 25 into sparse k-automatic sets, we see that a sparse k-automatic set
can be written as a disjoint union

S = S1 t S2 t · · · t Sd (2.5)

for some integer d ≥ 1, where each Si is a set of natural numbers of the form

{[v1w
n1
1 v2w

n2
2 . . . vsw

ns
s vs+1]k : n1, n2, . . . , ns ≥ 0} . (2.6)

We call a set of natural numbers of the form in Equation 2.6 a simple sparse k-automatic
set. Sparse sets are related to p-normal sets in [18] and simple sparse sets coincide with
the sets

Up(vs+1, vs, . . . , v1;ws, . . . , w1)

that are defined in [18, Definition 7.8].

A straightforward computation involving geometric series gives the following lemma.
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Lemma 33. Let k ≥ 2 be a natural number and let S be a non-empty simple sparse
k-automatic set. Then there exist s ≥ 0, c0, . . . , cs ∈ Q such that (k` − 1)ci ∈ Z for some
` ≥ 0, c0 + c1 + · · ·+ cs ∈ Z≥0 and positive integers δ1, . . . , δs such that

S =
{
c0 + c1k

δsns + c2k
δsns+δs−1ns−1 · · ·+ csk

δsns+···+δ1n1 : n1, . . . , ns ≥ 0
}
. (2.7)

Moreover n ≥ c0 for all n ∈ S and c0 ∈ S if and only if s = 0.

Proof. Let [vi]k = ai for i = 1, . . . , s + 1 and [wi]k = bi for i = 1, . . . , s. Note that each
bi is strictly positive since the wi are non-trivial words. Let µi = length(vi) ≥ 0 and
δi = length(wi) ≥ 1. Then we compute the value of [v1w

n1
1 v2w

n2
2 · · · vswnss vs+1]k as follows.

[v1w
n1
1 v2w

n2
2 · · · vswnss vs+1]k = as+1 + kµs+1

(
bs + kδsbs + · · ·+ kδs(ns−1)bs

)
+ kµs+1+nsδsas

+ kµs+1+µs+nsδs
(
bs−1 + kδs−1bs−1 + · · ·+ kδs−1(ns−1−1)bs−1

)
+ · · ·

+ kµs+1+µs+µs−1+···+µ2+nsδs+···+n2δ2
(
b1 + kδ1b1 + · · ·+ kδ1(n1−1)b1

)
+ a1k

µs+1+···+µ2+δsns+···+δ1n1

= as+1 + kµs+1bs

(
knsδs − 1

kδs − 1

)
+ kµs+1+nsδsas + kµs+1+µs+nsδsbs−1

(
kδs−1ns−1 − 1

kδs−1 − 1

)
+ · · ·

+ kµs+1+µs+···µ2+nsδs+···+n2δ2b1

(
kδ1n1 − 1

kδ1 − 1

)
+ a1k

µs+1+µs+···+µ2+nsδs+···+n1δ1 .

The result follows, taking c0 := as+1 − kµs+1bs
kδs−1

,

c1 :=
kµs+1bs
kδs − 1

+ kµs+1as −
kµs+1+µsbs−1

kδs−1 − 1
, . . . , cs := a1k

µs+1+µs+···+µ2 +
kµs+1+µs+···+µ2b1

kδ1 − 1
.

We observe that if s ≥ 1 then c0 < as+1 = [vs+1]k and since every element of S is at least
as large as [vs+1]k we then see that n ≥ c0 for every n ∈ S and c0 ∈ S if and only if s = 0.
Taking n1 = n2 = · · · = ns = 0 and using the fact that S consists of nonnegative integers,
we see that c0 + · · ·+ cs ∈ Z≥0.

2.3 Christol’s Theorem and Kedlaya’s Extension

Christol’s theorem is a fundamental result that gives a characterization of the collection
of algebraic power series with coefficients in a finite field in terms of automatic sequences.
Although Christol’s theorem gives some of the algebraic elements over a function field, it
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doesn’t give a description of its full algebraic closure. Kedlaya gave a full characterization
by passing to generalized series and generalizing p-automaticity to p-quasi-automaticity.
We overview Christol’s theorem and Kedlaya’s generalization in this section. As these
characterizations both involve algebraic properties, we start by giving some basic algebraic
preliminaries. We assume that the reader is familiar with the ring of formal power series
over a field. Given a field k, we let k[[x]] denote the ring of formal power series with
coefficients in k.

Definition 34. Given a field k, a power series F (t) ∈ k[[t]] is an algebraic power series if
there exists some d ≥ 1 and C0(t), C1(t), . . . , Cd(t) ∈ k[t], not all zero, such that

Cd(t)F (t)d + · · ·+ C1(t)F (t) + C0(t) = 0.

Equivalently, F (t) is a power series that is algebraic over the field of rational functions
k(t). The collection of algebraic power series forms a ring and it contains the power series
expansions of rational functions that are regular at t = 0. We now state the famous result
of Christol [14, 15].

Theorem 35 (Christol). Let F (t) =
∑
n≥0

f(n)tn ∈ Fq[[t]] be a formal power series where

q = pa for some integer a ≥ 1 and a prime number p. Then F is an algebraic power series
if and only if the sequence f(n) is p-automatic.

We provide some examples before presenting the proof.

We have seen that the Thue-Morse sequence is 2-automatic in two different ways already:
by explicitly writing the finite-state machine that generates it and looking at its 2-kernel and
observing that it is finite. Now, by using Christol’s theorem, we can use the automaticity
of this sequence to show algebraicity of a power series, or, we can prove its automaticity by
showing the algebraicity of the series whose coefficient sequence is taken as the Thue-Morse
sequence.

Example 36. [Thue-Morse example via Christol’s Theorem] Consider the formal power

series F (t) =
∑
n≥0

f(n)tn with coefficients in F2, where f(n) represents the Thue-Morse

sequence; i.e. f(n) is equal to 1 if the binary expansion of n contains odd number of 1’s and
f(n) = 0 if the binary expansion of n has even number of 1’s. Then we have the following
relations from Equation 2.3:

f(0) = 0,
f(2n) = f(n),

f(2n+ 1) = 1− f(n).
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Using these relations we rewrite the series as

F (t) =
∑
n≥0

f(n)tn =
∑
n≥0

f(2n)t2n +
∑
n≥0

f(2n+ 1)t2n+1

=
∑
n≥0

f(n)t2n +
∑
n≥0

(1− f(n))t2n+1

=
∑
n≥0

f(n)t2n +
∑
n≥0

(1 + f(n))t2n+1

=
∑
n≥0

f(n)
(
t2
)n

+ t
∑
n≥0

(
t2
)n

+ t
∑
n≥0

f(n)
(
t2
)n

= F (t2) +
t

1− t2
+ t F (t2)

Rearranging, and using the fact that we are in characteristic 2, we get the following
polynomial equation:

(1 + t)3F 2 + (1 + t)2F + t = 0 (2.8)

This means F satisfies an equation over F2(t) with C2(t) = (1 + t)3, C1(t) = (1 + t)2 and
C0(t) = t as in Definition 34, which means F ∈ F2[[t]] is algebraic over F2(t).

Another example comes from considering a series whose coefficient sequence is the
characteristic function of the set of powers of p, which we know is a p-automatic set.

Example 37. Let us consider the series G(t) :=
∑
n≥0

tp
n ∈ Fp[[t]], with p a prime number.

A simple calculation shows that Gp = G − t. i.e. the formal power series G satisfies an
equation as in Definition 34 with C2(t) = 1 = −C1(t) and C0(t) = t, and hence is algebraic
over Fp(t).

Now we provide some background information to prove Christol’s theorem. The proof
uses Cartier operators and an equivalent description of algebraicity of power series over
Fq(t).

First, we introduce the Cartier operators and look at some of their arithmetical properties.

Definition 38. Let q be a power of a prime p. For 0 ≤ r < q, a linear transformation
Λr : Fq[[t]]→ Fq[[t]] given by

Λr

(∑
n≥0

f(n)tn

)
=
∑
n≥0

f(qn+ r)tn

is called the rth-Cartier operator.
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A useful property of the Cartier operators, which is also used in the proof of Ore’s
lemma (see Lemma 41), is the following.

Lemma 39. Let F :=
∑
n≥0

f(n)tn and G :=
∑
k≥0

g(k)tk be two formal power series in Fq[[t]].

Then the Cartier operators have the following properties:

(i) F (t) =
∑

0≤r<q

trΛr(F (t))q;

(ii) Λr(F
qG) = F Λr(G) for r = 0, . . . , q − 1.

Proof. (i) We have

F (t) =
∑
n≥0

f(n)tn =
∑

0≤r<q

∑
n≥0

f(qn+ r)tqn+r

=
∑

0≤r<q

tr
∑
n≥0

f(qn+ r)tnq

=
∑

0≤r<q

tr

(∑
n≥0

f(qn+ r)tn

)q

=
∑

0≤r<q

tr (Λr(F (t)))q .
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(ii) We have

Λr(F
qG) = Λr

((∑
n≥0

f(n)tn

)q(∑
k≥0

g(k)tk

))

= Λr

((∑
n≥0

f(n)tqn

)(∑
k≥0

g(k)tk

))

= Λr

∑
j≥0

tj

 ∑
n,k≥0,
qn+k=j

f(n)g(k)




=
∑
j≥0

tj

 ∑
n,k≥0,

qn+k=qj+r

f(n)g(k)


=
∑
j≥0

tj

( ∑
0≤n≤j

f(n)g(q(j − n) + r)

)

=
∑
n≥0

f(n)tn

(∑
j≥n

g(q(j − n) + r)tj−n

)

=

(∑
n≥0

f(n)tn

)(∑
k≥0

g(qk + r)tk

)
= F Λr(G).

Another useful property of Cartier operators is the following.

Lemma 40. Let {f(n)}∞n=0 be a sequence over Fq. Then {f(n)}n is q-automatic if and
only if there exists a finite collection of formal power series F such that

(a) F ∈ F , where F (t) :=
∑
n≥0

f(n)tn; and

(b) for all G ∈ F and 0 ≤ r < q, we have Λr(G) ∈ F .
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Proof. Suppose {f(n)} is q-automatic. Then we know that its q-kernel is finite. Let
Kq = {{f1}n, {f2}n, . . . , {fr}n} be its q-kernel with f1 = f . Let F denote the collection

of power series of the form
∑
n≥0

fi(n)tn for 1 ≤ i ≤ r. Then F (t) ∈ F . For any G ∈ F ,

G(t) =
∑
n≥0

fi(n)tn for some 1 ≤ i ≤ r. Applying the rth Cartier operator to G, Λr(G) =∑
n≥0

fi(qn+ r)tn ∈ F . Since {fi(qn+ r)}n corresponds to one of {fj(n)}n≥0 for 1 ≤ j ≤ r

(by definition of q-kernel), Λr(G) ∈ F .

If there exists a finite collection of formal power series F such that F (t) ∈ F and F
is closed under the Cartier operators, then any formal power series whose coefficients are
taken from Kq is going to be in F . So |Kq| ≤ |F| <∞ since F is a finite collection. So the
q-kernel is finite and {f(n)}∞n=0 is q-automatic.

An equivalent formulation of algebraicity of formal power series (Definition 34) is given
by Ore’s lemma. This characterization is used in the proof of Christol’s theorem.

Lemma 41 (Ore’s lemma). Let F ∈ Fq[[t]], q = pn. Then F is algebraic over Fq(t) if and
only if there exist an integer d ≥ 1 and polynomials C0(t), C1(t), C2(t), . . . , Cd(t) ∈ Fq[t],
not all zero, such that

C0F + C1F
q + C2F

q2 + · · ·+ CdF
qd = 0.

Furthermore, we can assume that C0 6≡ 0, i.e. the function C0(t) is not the constant zero
function.

Proof. Suppose F is algebraic over Fq(t). Let d be the degree of its minimal polynomial.

Then F, F q, F q2 , . . . , F qd cannot be linearly independent over Fq(t). Hence there exists a
nontrivial linear relation

C0F + C1F
q + · · ·+ CdF

qd = 0

where C0, C1, . . . , Cd ∈ Fq[t]. The other direction follows trivially.

Now it remains to show that we can in fact assume C0 6≡ 0. Pick a nontrivial relation of
the form

C0F + C1F
q + C2F

q2 + · · ·+ CdF
qd = 0

with a minimal d. Let j be the smallest nonnegative integer such that Cj(t) 6≡ 0. Assume
towards a contradiction that j 6= 0. Since Cj ∈ Fq[t] and Fq[t] ⊆ Fq[[t]], by (i) in Lemma
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39, we get

Cj(t) =
∑

0≤r<q

tr (Λr(Cj(t)))
q .

This means that there exists r such that Λr(Cj(t)) 6≡ 0. Since j is the smallest nonnegative
integer with Cj(t) 6≡ 0, we get∑

0≤i≤d

CiF (t)q
i

=
∑
j≤i≤d

CiF (t)q
i

= 0.

Applying the rth-Cartier operator we get∑
j≤i≤d

Λr

(
Ci(t)F

qi(t)
)

= 0.

By assumption, j 6= 0 so we can use (ii) in Lemma 39. Then∑
j≤i≤d

Λr (Ci)F
qi−1

= 0.

So we obtain a new nontrivial linear relation which contradicts minimality of d. Hence
j = 0.

Now we are ready to prove Theorem 35.

Proof of Christol’s theorem. If F (t) =
∑
n≥0

f(n)tn is algebraic over Fq(t), then there exist

an integer d ≥ 1 and polynomials C0(t), C1(t), . . . , Cd(t) such that

C0(t)F (t) + C1F (t)q + · · ·+ CdF (t)q
d

= 0 (2.9)

with C0(t) 6≡ 0, by Lemma 41. Dividing both sides by C2
0 in Equation 2.9, we get

F

C0

+
C1

C2
0

F q + · · ·+ Cd
C2

0

F qd = 0.

Multiplying and dividing the ith term by Cqi

0 for 2 ≤ i ≤ d, we get

F

C0

+
C1C

q
0

C2
0C

q
0

F q + · · ·+ CdC
qd

0

C2
0C

qd

0

F qd = 0.
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If we put G := F
C0

, we get

G+ C1C
q−2
0 Gq + · · ·+ CdC

qd−2
0 Gqd = 0.

From this, we get G = −
d∑
i=1

CiC
qi−2
0 Gqi . Let Bi := −CiCqi−2

0 for 1 ≤ i ≤ d. Then

G =
d∑
i=1

Bi(X)Gqi . Now, let N = max (degC0,maxi degBi). Let H denote the collection

of formal power series in Fq[[t]] of the form
∑

0≤i≤d

DiG
qi , with Di ∈ Fq[t] and degDi ≤ N .

Observe that H is a finite collection because for each i, degDi ≤ N and that F = C0G ∈ H
since degC0 ≤ N by definition of N . We will use Lemma 40 and show that H is mapped

into itself under each Cartier operator Λr. Let H =
∑

0≤i≤d

DiG
qi ∈ H. Then

Λr(H) = Λr

(
D0G+

∑
1≤i≤d

DiG
qi

)

= Λr

(∑
1≤i≤d

D0BiG
qi +

∑
1≤i≤d

DiG
qi

)

= Λr

(∑
1≤i≤d

(D0Bi +Di)G
qi

)
=
∑

1≤i≤d

Λr

(
(D0Bi +Di)G

qi
)

( since Λr is linear)

=
∑

1≤i≤d

Λr(D0Bi +Di)G
qi−1 by (ii) in Lemma 39.

Now, observe that degD0 ≤ N and degDi ≤ N for all 1 ≤ i ≤ t by definition of H. Also,
degBi ≤ N for all 1 ≤ i ≤ d by definition of N . So, we get deg (D0Bi +Di) ≤ 2N . Hence,

deg (Λr(D0Bi +Di)) ≤
2N

q
≤ N

since q ≥ 2. Therefore, {f(n)}∞n=0 is q-automatic and, by Proposition 18, it is p-automatic.
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If f(n) is p-automatic, then it is q-automatic by Proposition 18 again. So its q-kernel is
finite. Denote the q-kernel by Kq = {{f1}n, {f2}n, . . . , {fd}n} for some integer d ≥ 1 with
f1 = f . For 1 ≤ j ≤ d define Fj(t) to be the power series∑

n≥0

fj(n)tn.

Then
Fj(t) =

∑
n≥0

fj(n)tn =
∑

0≤r<q

∑
m≥0

fj(qm+ r)tqm+r.

By assumption, there is some b(j, r) ∈ {1, . . . , d} such that fj(qm+ r) = fb(j,r)(m) for all
m. Then

Fj(t) =
∑

0≤r<q

trFb(j,r)(t)
q.

This shows that each Fj(t) is a Fq[t]-linear combination of Fi(t
q)’s, 1 ≤ i ≤ d. This means

each Fj(t) is in the Fq(t)-vector space generated by Fi(t
q), 1 ≤ i ≤ d. But then, we similarly

have that each Fj(t
q) is in the vector space generated by Fi(t

q2), 1 ≤ i ≤ d, and hence
both Fj(t) and Fj(t

q) are in the vector space generated by Fi(t
q2), 1 ≤ i ≤ d. Continuing

with Fj(t
q2), Fj(t

q3) and so on (up to Fj(t
qd)), we get all of Fj(t), Fj(t

q), Fj(t
q2), . . . , Fj(t

qd)

are in the Fq(t)-vector space generated by Fi(t
qd+1

), 1 ≤ i ≤ d. By dimension counting,

there exists a nontrivial relation among Fj(t), Fj(t
q), Fj(t

q2), . . . , Fj(t
qd) since they are d+ 1

power series in a vector space of dimension d. We get the result since this holds for all
1 ≤ j ≤ d and F1 = F , together with Lemma 41.

An application of Christol’s theorem is showing that Hadamard products of algebraic
series are algebraic. We provide the definition of Hadamard product below and prove the
aforementioned property.

Definition 42. The product (F �G)(t) =
∑
n≥0

(f(n)g(n)) tn is called the Hadamard product

of F (t) =
∑
n≥0

f(n)tn and G(t) =
∑
n≥0

g(n)tn.

We can prove the following by using Christol’s theorem and item (ii) in Corollary 15.

Theorem 43. Let p be a prime number and q be a power of p. If F,G ∈ Fq[[t]] are algebraic
over Fq(t), then F �G is also algebraic over Fq(t).
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Proof. Let F (t) =
∑
n≥0

f(n)tn and G(t) =
∑
n≥0

g(n)tn. Then, since F and G are algebraic

over Fq(t), by Christol’s theorem, the sequences {f(n)}n and {g(n)}n are p-automatic. Then
by item (ii) in Corollary 15, the sequence {f(n)g(n)}n is p-automatic as well. Applying
Christol’s theorem again, we get F �G is algebraic over Fq(t).

Next we define sparse series and also show that, like the collection of algebraic power
series, they form a ring under multiplication.

Definition 44. Let p be a prime and let q be a power of p. Given an algebraic power

series F (t) =
∑
n≥0

f(n)tn ∈ Fq[[t]], we call the formal power series F (t) a sparse series if the

support of F (t) is a sparse p-automatic set; that is, if {n : f(n) 6= 0} is sparse.

We have a similar definition for formal Laurent series, Fq((t)), which is an algebra. Note
that Fq[[t]] ⊆ Fq((t)) as a subring. Algebraic formal power series form a commutative ring
as a subset of algebraic Laurent series. We can also show that sparse algebraic series also
form a ring.

Lemma 45. The set of all sparse series forms a commutative ring (as a subset of algebraic
Laurent series). i.e. The series in Fq[[t]] with sparse support form a commutative ring.

Proof. Denote the set of all sparse series by S. Let F (t), G(t) ∈ S. Then we can write

F (t) =
∑
α∈F∗q

α ·
∑
n∈Sα

tn. Denote FSα(t) :=
∑
n∈Sα

tn. Similarly, for G(t), we can write

G(t) =
∑
β∈F∗q

β ·
∑
m∈Sβ

tm =
∑
β∈F∗q

β ·GSβ(t). Here, Sα and Sβ are sparse sets. Now, it suffices

to show that FSα(t) +GSβ(t) and FSα(t)GSβ(t) have sparse support. We can write

FSα(t) +GSβ(t) =
∑
n∈Sα

tn +
∑
m∈Sβ

tm =
∑

n∈Sα∪Sβ

tn +
∑

n∈Sα∩Sβ

tn

and

FSα(t)GSβ(t) =

(∑
n∈Sα

tn

)∑
m∈Sβ

tm

 =
∑
n∈Sα

∑
m∈Sβ

tn+m.

Note that intersection of two sparse sets is sparse since S ′ := Sα ∩ Sβ ⊆ Sα hence
πS′(n) ≤ πS(n) = O((log n)d). Noticing that πSα∪Sβ(n) ≤ πSα(n) + πSβ(n), we get that
Sα ∪ Sβ is also sparse. Hence FSα(t) +GSβ(t) has sparse support. Note also that

πSα+Sβ(n) ≤ πSα(n) · πSβ(n)
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where Sα + Sβ := {a+ b : a ∈ Sα, b ∈ Sβ}. So FSα(t)GSβ(t) also has sparse support. The
automaticity conditions (which are needed for algebraicity) follow from Corollary 20.

We will see in Chapter 6 that similar properties hold for generalized sparse sets, i.e.
sparse sets that are not only subsets of N but subsets of a well-ordered subset of rational
numbers. For a subset S ⊆ Q, we will say that S is well-ordered if every nonempty subset
of S has a minimal element. Note that this is equivalent to saying that there is no infinite
decreasing sequence s1 > s2 > · · · within S.

Remark 46. Let A be a well-ordered subset of Q. Then, the following are equivalent:

(i) Every nonempty subset of A has a minimal element.

(ii) There is no infinite decreasing sequence a1 > a2 > · · · within A.

Proof. For (i) =⇒ (ii), suppose every nonempty subset of A has a minimal element and
that there is an infinite decreasing sequence a1 > a2 > · · · within A. Then {a1, a2, . . . } is a
subset of A without a minimal element, contradiction. For (ii) =⇒ (i), suppose there is
a nonempty subset S of A without a minimal element. Then for each si ∈ S we can find
si+1 ∈ S such that si > si+1 forming an infinite decreasing sequence within S, which is
within A.

Kedlaya [28] used generalized power series (see Hahn [26]) to give an extension of
Christol’s theorem, which has the advantage of giving a complete automaton-theoretic
description of the algebraic closure of Fq(t). Here we give a brief introduction to the
concepts involved. Let k be a field. We define the collection of generalized Laurent series

over k to be the set of elements of the form
∑
α∈Q

f(α)tα, where f : Q→ k has the property

that {α : f(α) 6= 0} is a well-ordered subset of Q, where we use the usual order < on Q.
Restricting to maps f with well-ordered support allows us to endow the set of generalized
Laurent series over k with a ring structure, where addition and multiplication are given
respectively by ∑

α∈Q

f(α)tα +
∑
α∈Q

g(α)tα =
∑
α∈Q

(f + g)(α)tα

and (∑
α∈Q

f(α)tα

)(∑
α∈Q

g(α)tα

)
=
∑
α∈Q

(∑
βγ=α

f(β)g(γ)

)
tα.
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We refer the reader to Kedlaya [28, 29] for further information.

If the support is contained in Q≥0, that is the set of rational numbers greater than or
equal to zero, then we call f a generalized power series. We let k((tQ)) denote the set of
generalized Laurent series over the field k, and we let k[[tQ]] denote the set of generalized
power series over k. The generalized power series over k form a local ring with unique

maximal ideal consisting of generalized power series
∑
α≥0

f(α)tα with f(0) = 0. We let

k[[tQ]]>0 denote this maximal ideal. It is convenient to let k((tQ))<0 denote the collection
of generalized Laurent series over k whose support lies in (−∞, 0). We now give further
details concerning Kedlaya’s automaton-theoretic characterization of the algebraic closure
of Fp(t).

Let k ≥ 2 be a natural number and let Σ∗ := {0, 1, . . . , k − 1, •}∗. We say that a string
u = u1 . . . un ∈ Σ∗, with • representing the radix point, is a valid base-k expansion, if n ≥ 1,
u1 6= 0, un 6= 0 and exactly one of u1, . . . , un is equal to the radix point. If u = u1 . . . un
is a valid base-k expansion and uj is its radix point, then we can associate a nonnegative
k-adic rational, [u]k, to u via the rule

[u]k =

j−1∑
i=1

uik
j−1−i +

n∑
i=j+1

uik
j−i. (2.10)

We let
Sk := {m/kn : m,n ∈ Z≥0}. (2.11)

Given a valid base-k expansion u we obtain a value [u]k ∈ Sk, where we take [ • ]k = 0, and
we say that u is the base-k expansion of [u]k. Conversely, given an element of Sk it has a
unique valid base-k expansion and for v ∈ Sk, we write (v)k for the valid base-k expansion
of v. Observe that the maps [ · ]k and ( · )k naturally extend the maps introduced earlier.

A function f : Sk → ∆ is k-automatic (in Kedlaya’s sense) if there is a DFAO M with
input alphabet Σ = {0, 1, 2, . . . , k − 1, •} and output alphabet ∆ such that for each v ∈ Sk,
f(v) = fM ((v)k). In analogy with the classical case, a subset of Sk is called a k-automatic
set if its characteristic function is k-automatic.

Kedlaya’s extension of Christol’s theorem uses the notion of quasi-automatic series,
which we now define.

Definition 47. Let p be a prime and let q be a power of p. A generalized Laurent series∑
α∈Q

f(α)tα ∈ Fq((tQ)) is p-quasi-automatic if the following hold:
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(i) for some integers a and b with a > 0, the set aS + b := {ai+ b : i ∈ S} is contained in
Sp; and

(ii) for some a, b for which (i) holds, the function fa,b : Sp → Fq given by fa,b(x) =

f

(
x− b
a

)
is p-automatic (in the sense given above).

Kedlaya’s [28, Theorem 4.1.3] main result is the following extension of Christol’s theorem
(see also [29, Theorem 10.4]).

Theorem 48. (Kedlaya) Let p be prime and let F (t) =
∑
α∈Q

f(α)tα ∈ F̄p((tQ)) be a

generalized Laurent series. Then if F (t) is algebraic over F̄p(t) then there is a power q of

p such that F (t) =
∑
α∈Q

f(α)tα ∈ Fq((tQ)) and F (t) is p-quasi-automatic. Conversely, if

F (t) =
∑
α∈Q

f(α)tα ∈ Fq((tQ)) is p-quasi-automatic then F (t) is algebraic over F̄p(t).

In Theorem 48, F̄p denotes the algebraic closure of the field Fp.
Before concluding this section, we would like to mention some results from [28] that

were used to prove Theorem 48 by Kedlaya in [28]. Combining the results from Lemma
7.2.1 and Lemma 7.2.2 in [28] we get the following:

Proposition 49. Let F,G ∈ Fq((tQ)).

(i) If F and G are p-automatic (resp. p-quasi-automatic), Then F +G is p-automatic
(resp. p-quasi-automatic).

(ii) If F and G are p-automatic (resp. p-quasi-automatic). Then FG is p-automatic (resp.
p-quasi-automatic).

Proposition 49 is used in the proof of Lemma 81 and makes the proof significantly
shorter.

2.4 Cobham’s Theorem

In this section, we provide an overview of Cobham’s (big) theorem1 [16] and give a recent
proof due to Krebs [31]. We also give necessary background for this proof in this section.

1This is not Theorem 17
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Krebs’ proof uses a different approach than the previous proofs of the famous result. The
main problem in proving Cobham’s (big) theorem is that we want to consider sets of the
same numbers in two different integer bases. Krebs gets around this difficulty by enlarging
the alphabet.

We now state Cobham’s big theorem. We recall that integers k, ` > 1 are multiplicatively
independent if ka = `b has no non-trivial integer solutions a, b.

Theorem 50 (Cobham [16]). Let k, ` ∈ N≥2 be multiplicatively independent. If a sequence
in N is both k-automatic and `-automatic, then it is ultimately periodic.

We recall the notions of periodic and ultimately periodic for sequences.

Definition 51. A sequence {a(n)}n is periodic if there exists an integer m ≥ 1 such that
a(n) = a(n+m) for all n ≥ 0. In this case, m is said to be a period of the sequence a(n).
A sequence {a(n)}n is ultimately periodic if there exist integers k ≥ 1 and N ≥ 1, such
that a(n) = a(k + n) for all n ≥ N .

Now we have all the required definitions to understand the statement of Cobham’s
theorem, we collect background on the methods used by Krebs to prove it. We start by
local periods. Local periods are defined on intervals and by an interval we mean an interval
of natural numbers. For instance, the interval [1, 5] is equal to {1, 2, 3, 4, 5}.

Definition 52. A sequence {a(n)}n is said to have local period p > 0 on an interval I ⊆ N
if a(n) = a(n+ p) for all n ≥ 0 such that n, n+ p ∈ I.

In the proof of Cobham’s theorem which will be presented in this section, local periods
will be used to show ultimate periodicity of the sequence in question. This will be done
by proving local periodicity of the sequence on certain intervals and then collecting the
intervals while showing that the sequence has a common local period on the union. To this
end, we prove a lemma which will be useful. In the statement of the following lemma there
is not necessarily a relation between p and q.

Lemma 53. Let {a(n)}n be a sequence with local period p > 0 on an interval I ⊆ N.
Suppose {a(n)}n has local period q > 0 on an interval J ⊆ N. If |I ∩ J | ≥ p + q, then
{a(n)}n has local period p on I ∪ J .

Proof. Let n ∈ N such that n and n+p are both in I ∪J . If n and n+p are both in I, then
there is nothing to show. If n ∈ I \J , n+p ∈ J \I, then p > |I ∩J | ≥ p+q, a contradiction.
By the same reasoning, we are done if n ∈ J \ I and n + p ∈ I \ J . Therefore we may
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suppose both n and n+ p are in J . We can find an m ∈ I ∩ J such that m,m+ p ∈ J with
m ≡ n mod q since |I ∩ J | ≥ p + q. Now we have a(n) = a(m) by local periodicity of J
and a(m) = a(m + p) by local periodicity of I and finally, a(m + p) = a(n + p) by local
periodicity of J again, which proves a(n) = a(n+ p) for all n, n+ p ∈ I ∪ J . So {a(n)}n
has local period p on I ∪ J .

Given a finite subset D of the integers that contains Σk = {0, . . . , k − 1}, we can form
base-k expansions whose digits lie in D. Given a word w = dn · · · d0 over the alphabet D,

we then define [w]k =
n∑
i=0

dik
i.

Definition 54. A sequence {a(n)}n is called (D, k)-automatic if there exists a DFAO
(Q,D, δ, q0,∆, τ) such that for all w ∈ D∗ with [w]k = n we have a(n) = τ(δ(q0, w)).

Now we show that Definitions 6 and 54 are equivalent. i.e. k-automaticity and (D, k)-
automaticity are equivalent. The procedure that will be described in the following result
involves what is commonly referred to as normalization. In the proof we follow ideas from
[34, Chapt. 7].

Proposition 55. Let D be a finite set of integers that contains Σk. Then a sequence
{a(n)}n is (D, k)-automatic (in the sense of Definition 54) if and only if it is k-automatic
(in the sense of Definition 6).

Proof. One direction is trivial because if the automaton works with a larger alphabet
that contains Σk then that means all the needed arrows/paths are already there, and
one can remove the “redundant” transitions from the picture to get the desired result.
We show the other direction. Suppose {a(n)}n is k-automatic. Then there exists a
DFAO M = (Q,Σk, δ, q0,∆, τ) generating {a(n)}n. From M we create a new DFAO
M ′ = (Q′, D, δ′, q′0,∆, τ

′) as follows. The input alphabet will be a finite set D containing
Σk. Since we want this new automaton to generate the same sequence of numbers as the
original one but to allow for different representations of natural numbers n, we have to
find a way around this. We let m denote the maximum of the absolute values of elements
of D and we let Q′ = Q× Σk × {−m, . . . ,m}. This set Q′ will be the set of states of our
machine and the initial state q′0 is the state (q0, 0, 0).

We define the transition function δ′ : Q′ × D → Q′ via the rule δ′((q, a, j), d) =
(δ(q, j′), j′, s) for (q, a, j) ∈ Q′ and d ∈ D, where j′ ∈ Σk satisfies j′ ≡ j + d (mod k)
and s = (j + d − j′)/k. Observe that |s| ≤ (m + m + k − 1)/k < m + 1, since k ≥ 2,
so δ′ does indeed map into Q′. Now let w = dt · · · d0 ∈ D∗ and for i = 0, . . . , t, we let
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(vi, ci) = δ′(q′0, di · · · d0). Then each vi ∈ Q′ is of the form (ui, ai, si) with ui ∈ Q, ai ∈ Σk

and si ∈ {−m, . . . ,m}. We show by induction on t that a0 +a1k+ · · ·+atk
t+stk

t+1 = [w]k
and δ′(q′0, w) = (δ(q0, at · · · a0), at, st).

Observe that when t = 0, w = d0 and if we let a0 be the unique element of Σk with
d0 ≡ a0 (mod k) then δ′(q′0, d0) = (δ(q, a0), a0, (d0 − a0)/k), and so s0 = (d0 − a0)/k,
which means a0 + ks0 = d0, and so we obtain the base case. Suppose now that the
claims hold for all words over D of length at most t. Then if w = dt · · · d0 is a word
of length t + 1 and we let w′ = dt−1 · · · d0 then by the induction hypothesis, we have
δ′(q′0, w

′) = (δ(q0, at−1 · · · a0), at−1, st−1) and [w′]k = a0 + · · ·+ at−1k
t−1 + st−1k

t. Then by
the induction hypothesis

δ′(q′0, w) = δ′(q′0, dtw
′) = δ′((δ(q0, at−1 · · · a0), at−1, st−1), dt).

By definition at ≡ st−1 + dt (mod k) and st = (dt + st−1 − at)/k. Thus we have

δ′(δ(q0, at−1 · · · a0), at−1, st−1), dt) = (δ(q0, at · · · a0), at, st).

This then gives the induction step for the first of the two claims. Next observe that

a0 + a1k + · · ·+ atk
t + stk

t+1 = (a0 + · · ·+ at−1k
t−1) + atk

t + stk
t+1,

and by the induction hypothesis, this is equal to

[w′]k − st−1k
t + atk

t + stk
t+1.

Finally, using the fact that st = (dt+st−1−at)/k, we see that this is just [w′]k +dtk
t = [w]k,

and so we obtain the claims by induction.

We finally define τ ′ : Q′ → ∆ via the rule τ ′((q, a, s)) = τ ′(δ(q, (|s|)k) for q ∈ Q, a ∈
Σk, s ∈ {−m, . . . ,m}. Notice that if w = dt · · · t0 ∈ D∗ is a word with [w]k = n ≥ 0 then
by the claim above, δ′(q′0, w) = δ(q0, at · · · a0), at, st) for some a0, . . . , at ∈ Σk and some
st ∈ {−m, . . . ,m} with n = a0 + a1k + · · ·+ atk

t + stk
t+1. Moreover, since n ≥ 0 we must

have st ≥ 0. Thus by definition τ ′(δ(q0, w)) = τ(δ(q0, (st)kat · · · a0) = δ(q0, (n)k), and so we
see that the DFAO M ′ gives the same output regardless of which expansion over D we pick
for a nonnegative integer n and, moreover, the output is equal to τ(δ(q0, (n)k)), the output
given by the DFAO M .

We give an example that illustrates how to construct a (D, k)-DFAO from a given
k-DFAO.
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Example 56. Let k = 2 and consider the example of the k-DFAO given in Figure 2.3. We
shall show how to convert this to a (D, k)-DFAO when D = {−1, 0, 1}. One can follow the
procedure given in Proposition 55, but we introduced more states than necessary in the
proposition to help with bookkeeping. One can, in this case, work with just four states as
shown in the figure below with initial state [q0, 0].

[q0, 0]/0

[q1, 0]/1

[q0,−1]/1

[q1,−1]/0

0

1

−1

0

1

−1

−1

0

1

−1

0

1

Figure 2.5: A ({−1, 0, 1}, 2)-DFAO generating the Thue-Morse sequence.

It is an enjoyable exercise for the reader to show that the finite-state machine given in
Figure 2.5 takes as input one of the possible base-k expansions of a natural number n over
D = {−1, 0, 1} and outputs the n-th term of the Thue-Morse sequence, regardless of which
expansion of n is selected.

We recall one last very well-known result that is necessary to prove Cobham’s Theorem,
Dirichlet’s approximation theorem.
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Theorem 57 (Dirichlet’s Theorem). Let k, ` ≥ 2 be two integers. For any real number
ε > 0, there exist positive natural numbers m and n such that |km − `n| ≤ εmin(km, `n).

Proof. [41] Let ε > 0 be an arbitrary real number and let k, ` ≥ 2 be two integers. We may
assume without loss of generality that k ≥ `. We define a(i) = blogl k

ic for i ≥ 0 where
b · c represents the floor function. i.e. the function that returns the greatest integer that is
less than or equal to the input number. Then {a(i)}i is a strictly increasing sequence of
integers as we assumed k ≥ `. Let t be a positive integer such that ε > `−1

t−1
. Consider the

rational numbers 1
`a(0)

, k
`a(1)

, k2

`a(2)
, . . . , kt−1

`a(t−1) ∈ [1, `). By the Pigeonhole Principle, there exist
integers 0 ≤ i < t, 0 ≤ j < t such that i 6= j, and∣∣∣∣ kj`a(j)

− ki

`a(i)

∣∣∣∣ ≤ ε.

Without loss of generality, we may assume i < j. Then we have

`a(j)

ki

∣∣∣∣ kj`a(j)
− ki

la(i)

∣∣∣∣ = |kj−i − `a(j)−a(i)| ≤ `a(j)

ki
ε ≤ εmin(kj−i, `a(j)−a(i))

since k ≥ ` ≥ 2 by assumption. Now let m := j − i and n := a(j) − a(i). Since j > i,
m > 0 and since the sequence {a(n)}n is strictly increasing, n = a(j)− a(i) > 0 for j > 0
as well.

The proof below of Theorem 50 is due to Krebs [31]. We elaborate on the details of the
original proof.

Proof of Theorem 50. Suppose {a(n)}n is both k-automatic and `-automatic for multiplica-
tively independent k, ` ≥ 2. Denote the open and closed balls in Z centred at x ∈ R with
radius r ∈ R by B(x; r) := (x− r, x+ r) ∩ Z and B[x; r] := [x− r, x+ r] ∩ Z, respectively.
For digit sets B(0; k) and B(0; `) we will write Dk and D`, respectively. Now by Propo-
sition 55, since {a(n)}n is k-automatic and `-automatic, it is also (Dk, k)-automatic and
(D`, `)-automatic. So there are two finite automata Mk = (Qk, Dk, δk, q0,k,∆, τk) and M` =
(Q`, D`, δ`, q0,`,∆, τ`) that generate {a(n)}n. Let q ∈ Qk, q

′ ∈ Q` be two states. We look at
all the words over the alphabet Dk that have base-k expansions that are natural numbers
and which end at state q; i.e., the language Lk,q = {w ∈ D∗k : δk(q0,k, w) = q and [w]k ∈ N}.
Similarly let L`,q′ be the language {w ∈ D∗` : δ`(q0,`, w) = q′ and [w]` ∈ N}. Then each of
{[Lk,q]k : q ∈ Qk} and {[L`,q′ ]` : q′ ∈ Q`} is a finite cover of N since both Qk and Q` are finite
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sets. Observe that for w ∈ Lk,q and x ∈ [Dn
k ]k, f([wx]k) = τk(δk(q0,k, wx)) = τk(δk(q, x))

which means for all n ≥ 0,

f(kn[w]k + [x]k) = f(kn[w′]k + [x]k) (2.12)

for w,w′ ∈ Lk,q, x ∈ [Dn
k ]k. Similarly for all m ≥ 0,

f(`m[w]` + [y]`) = f(`m[w′]` + [y]`) (2.13)

for w,w′ ∈ L`,q′ , y ∈ [Dm
` ]`. In particular, for each q ∈ Qk, f is constant on [Lk,q]k and for

each q′ ∈ Q`, f is constant on [L`,q′ ]`. We now want to create local periods and invoke
Lemma 53. Let

Q∞ := {q′ ∈ Q` : #[L(`,q′)]` =∞}.

Since the sets [Lk,q]k form a finite cover of N, for each q′ ∈ Q∞ there exists at least
one q ∈ Qk such that [Lk,q]k ∩ [L`,q′ ]` has at least two elements. For each such (q, q′) we
pick x = x(q,q′) and y = y(q,q′) in the intersection with x > y. We let S denote the set of
such pairs (q, q′) for which the intersection has at least two elements. Notice that since
[L(k,q)]k ∩ [L(`,q′)]` is finite for (q, q′) 6∈ S and since the sets [L(k,q)]k ∩ [L(`,q′)]` cover N there
is some natural number M such that every natural number n ≥M is in [L(k,q)]k ∩ [L(`,q′)]`
for some (q, q′) ∈ S.

By Dirichlet’s theorem, for each ε > 0, there exist m,n ∈ N such that |kn − `m| ≤
εmin(kn, `m). Take ε = 1

6N
where

N = max{x(q,q′) : (q, q′) ∈ S}+ 1.

Now, without loss of generality, we may assume kn > `m. So we have

|kn − `m| ≤ 1

6N
`m. (2.14)

Then for each pair (x, y) = (x(q,q′), y(q,q′)) we have chosen above, since x(q,q′) 6= y(q,q′) and
kn 6= `m, we have that

p(q,q′) := (x(q,q′) − y(q,q′))(k
n − `m)

is not zero, and in fact it is strictly greater than zero by our assumptions. Then by Inequality
2.14, we have 0 < p(q,q′) ≤ `m

6
for all q′ ∈ Q∞. We show that for each (q, q′) ∈ S, the

sequence {a(n)}n has local period p(q,q′) on Ic for every c ∈ [Lk,q]k ∩ [L`,q′ ]`, where

Ic := B[c`m;
2

3
`m].
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That is, we will show that a(c`m+z) = a(c`m+z+p(q,q′)) whenever z, z+p(q,q′) ∈ B[0; 2
3
`m].

Pick z, z + p(q,q′) ∈ B[0; 2
3
`m]. Note that

|z − y(q,q′)(k
n − `m)| ≤ |z|+ |y(q,q′)(k

n − `m)| ≤ 2

3
`m +

1

6
`m =

5

6
`m < `m < kn.

So
z − y(q,q′)(k

n − `m) ∈ B(0; kn) ⊆ [Dn
k ]k.

Now, for (q, q′) ∈ S and c ∈ [Lk,q]k ∩ [L`,q′ ]`, since z ∈ [Dm
` ]`, we have

a(c`m + z) = a(y(q,q′)`
m + z) by Equation 2.13 since both c and y(q,q′) are in [L`,q′ ]`

= a(y(q,q′)k
n + z − y(q,q′)(k

n − `m))

= a(x(q,q′)k
n + z − y(q,q′)(k

n − `m)) by Equation 2.12 since

x(q,q′), y(q,q′) ∈ [Lk,q]k ∩ [L`,q′ ]`

= a(x(q,q′)`
m + z + p(q,q′)) since p(q,q′) = (x(q,q′) − y(q,q′))(k

n − `m)

= a(c`m + z + p(q,q′)) by Equation 2.13 since both c and x are in [L`,q′ ]`.

Therefore, we have shown that for each (q, q′) ∈ S, the sequence {a(n)}n has local period
p(q,q′) on Ic for every c ∈ [Lk,q]k ∩ [L`,q′ ]`, where Ic := B[c`m; 2

3
`m]. Earlier we saw that there

exists an integer M such that all natural numbers j ≥ M have the property that j is in
[Lk,q]k ∩ [L`,q′ ]` for some (q, q′) ∈ S.

Then from the above, for each j ≥M there is some pj ≤ 1
6
`m that is a local period of

{a(n)}n on Ij. We show that {a(n)}n has local period pM on⋃
M≤j≤s

Ij

for all s ≥ M by induction on s. If s = M , then {a(n)}n has local period pM on⋃
M≤j≤s

Ij = IM by construction. Now suppose {a(n)}n has local period pM on
⋃

M≤j<s

Ij and

has local period ps on Is. Now we use Lemma 53 as follows. We show that( ⋃
M≤j<s

Ij

)
∩ Is

has cardinality greater than or equal to pM +ps. Since

( ⋃
M≤j<s

Ij

)
∩Is = B[(s− 1

2
)`m);

1

6
`m]

and B[(s− 1
2
)`m); 1

6
`m] has cardinality at least `m

3
≥ pM +ps, we have that {a(n)}n has local
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period pM on
⋃

M≤j≤s

Ij , by Lemma 53. So {a(n)}n has local period pM on
⋃
M≤j

Ij , and since

this set contains all sufficiently large natural numbers, this gives that {a(n)}n is ultimately
periodic.

We conclude this section by looking at one nice application of Cobham’s theorem.

Example 58. Let p be prime and consider the set S = {1, p, p2, p3, . . . }. We have seen
that this set is p-automatic and that, moreover, by Proposition 18 it is pm-automatic for
each m ≥ 1. Also the sequence χS(n) is not ultimately periodic since it has arbitrarily long
runs of zeros without being eventually zero. So for a number k that is not a power of p, i.e.
k 6= pm for any m ≥ 1, S cannot be a k-automatic set by Cobham’s theorem.
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Chapter 3

Number Theoretic Preliminaries

In this chapter, we give the number theoretic background necessary for proving part (b) of
Theorem 3 and also some background needed for the strong version of Cobham’s theorem
proved in Chapter 4. For the characterization of sparse series valuations and Artin-Schreier
extensions are involved. For the strong version of Cobham’s theorem that we will give, we
require the theory of S-unit equations and Schlickewei’s theorem [40].

3.1 Ramification and Artin-Schreier Extensions

We first introduce places and valuations. Let k be a field and let K be a field extension
of k. A valuation of K is a map ν : K → Γ ∪ {∞}, where Γ is a totally ordered abelian
group, such that the following conditions are met:

(i) ν(a) =∞ if and only if a = 0;

(ii) ν(ab) = ν(a) + ν(b);

(iii) ν(a+ b) ≥ min(ν(a), ν(b)), with equality whenever ν(a) 6= ν(b).

We say that a valuation is trivial if it is zero on all nonzero elements of the field. We define
the rank of a valuation to be the rank of the abelian group Γ; i.e., the dimension of Γ⊗Z Q
as a Q-vector space, and we say that a valuation is discrete if its value group Γ is Z.

Given a valuation, we have a valuation ring Oν ⊆ K consisting of elements with
nonnegative valuation. Then Oν is a local ring with a unique maximal ideal, which we
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denoteMν , given by the collection of elements with strictly positive valuation. The residue
field of a valuation is defined to be Oν/Mν . We say that two valuations of K are equivalent
if they have the same valuation ring and we call an equivalence class of valuations of K
a place of K. We will often use an equivalence class representative to represent a place.
We will generally deal with discrete valuations ν, in which case the valuation ring Oν is a
principal ideal domain and a generator for the maximal ideal Mν is called a uniformizing
parameter.

In the case where k is an algebraically closed field and K is a finitely generated extension
of k of transcendence degree one, there is a smooth projective curve X over k such that K
is the function field of X. Then if we look at non-trivial places of K with trivial restriction
to k, these are parametrized by the closed points of X as follows. Given x ∈ X, we can
define a valuation νx : K → Z ∪ {∞} by taking νx(f) to be the order of vanishing of the
function f at the point x (see [48, Ch. VI, §17]).

In the case we are interested in, k will be the algebraic closure of a finite field and in
this case, every valuation of K has trivial restriction to k. From the above, we then have
that the non-trivial places of the field F̄p(t) are parametrized by the projective line over F̄p.

We now use places to define ramification.

Definition 59. Given a finite extension of fields L ⊇ K, we say L is unramified at a place
ν of K if the value group of every extension of ν to L is the same as the value group of ν.

In our case, we generally deal with discrete valuations, and a place ν of K has finitely
many extensions ν1, . . . , νs to L. Then for each i ∈ {1, . . . , s} we have a discrete valuation
ring Oνi ⊆ L consisting of elements in L with nonnegative valuation with νi, and similarly
we have a discrete valuation ring Oν ⊆ K. Then these are local rings whose maximal
ideals are principal and we have Oν ⊆ Oνi . Then if π is a generator for the maximal ideal
of Oν and if L is unramified at ν then π will also generate the maximal ideal of Oνi for
i = 1, . . . , s. Furthermore, we will often work with places that are parametrized by points
in P1 and so we will often identify places with the corresponding points in projective space.

In our setting, the fields K and K ′ we work with will have the property that the
compositum of two finite extensions of K inside K ′ that are unramified at some place ν of
K is again unramified at ν (see Serre [42, Chapter III] for further details).

The final algebraic ingredients we will use in proving Theorem 3 are the notion of Artin-
Schreier extensions, which are degree-p Galois extensions of fields of positive characteristic
p, and the notion of integrality. We first quickly recall the relevant definitions for integral
elements.
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Given integral domains S ⊆ T , we say that u ∈ T is integral over S if there is a monic
polynomial f(x) ∈ S[x] with f(u) = 0. The set of elements of T that are integral over S
forms a ring and is called the integral closure of S in T . We say that S is integrally closed if
S is integrally closed in its field of fractions. Finally, we recall the notion of Artin-Schreier
extensions.

For the proof of the following theorem, see Lang [33, VI.6.4].

Theorem 60 (Artin-Schreier Theorem). Let p be prime, let k be a field of characteristic p,
and let K be a Galois extension of k of degree p.

(1) There exists α ∈ K such that K = k(α) and α is the root of a polynomial Xp −X − a
for some a ∈ k.

(2) Conversely, given a ∈ k, the polynomial f(X) = Xp −X − a either has one root in k,
in which case all its roots are in k, or it is irreducible. In this latter case, if α is a root
then k(α) is cyclic Galois extension of k of degree p.

The Artin-Schreier theorem provides an inductive means of describing Galois extensions
of size a power of p.

Remark 61. Let k be a field of characteristic p > 0 and let K be a Galois extension of k of
degree pm for some m ≥ 0. Then there exists a chain of fields k = K0 ⊆ K1 ⊆ · · · ⊆ Km = K
with each Ki a Galois extension of k and such that Ki+1 is an Artin-Schreier extension of
Ki for i = 0, . . . ,m− 1.

Proof. This follows immediately from the fundamental theory of Galois theory combined
with the fact that a group P of order pm is nilpotent and hence has a chain of subgroups

P = P0 � P1 � · · ·� Pm = {1}

with each Pi normal in P and |Pi| = pm−i for i = 1, . . . ,m.

3.2 S-unit equations

In this brief section we give an overview of the theory of S-unit equations. Specifically, we
require a quantitative version of a result due to Evertse, Schlickewei and Schmidt (see [22,
Theorem 1.1] and also [21, Theorem 6.1.3]).
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Definition 62. Let L be a field and let a1, . . . , am ∈ L be nonzero elements of L. Then a
solution y1, . . . , ym ∈ L to the equation

a1y1 + · · ·+ amym = 1

is called non-degenerate if the left side has no non-trivial vanishing subsums i.e. if∑
i∈I

aiyi 6= 0 for each non-empty subset I of {1, . . . ,m}.

Theorem 63. Let L be a field of characteristic zero, let a1, . . . , am be nonzero elements of L,
and let H ⊂ (L×)m be a finitely generated multiplicative group. Then there are only finitely
many non-degenerate solutions (y1, . . . , ym) ∈ H to the equation a1y1 + · · ·+ amym = 1.

Theorem 6.1.3 in [21] is only stated for m ≥ 2, but the case m = 1 is immediate.

We will require a quantitative version of the S-unit theorem due to Schlickewei [40].

To describe this result, we require some background. We let K be a number field that
is Galois over Q. Recall that places of K are simply equivalence classes of valuations of K.
We recall that the p-adic valuation on Q gives rise to an absolute value. Then valuations
are equivalent when the corresponding absolute values induce the same topology on the
field. In fact, it is often more convenient to work with absolute values as proxies for places,
and then one sees that there are two types of places of a number field: finite places, which
correspond to absolute values whose restriction to Q is equivalent to the p-adic absolute
value for some prime p; and infinite places, which correspond to absolute values whose
restriction to Q is equivalent to the ordinary Euclidean absolute value. While a number
field K has infinitely many finite places, it only has finitely many infinite places; moreover,
the number of infinite places is at most the degree of the number field over Q.

We now let S be a finite set of places of K that includes all the infinite places. Then
we have a ring OK,S consisting of elements x ∈ K for which |x|v ≤ 1 for all v 6∈ S. We let
UK,S denote the units group of OK,S. With this notation in place, we have the following
result due to Schlickewei [40].

Theorem 64. Let n ≥ 1, let K be a number field that is Galois over Q, and let S be a finite
set of places of K that includes all the infinite places. If a1, . . . , an ∈ K, then the number
of non-degenerate solutions to the equation a1x1 + · · ·+ anxn = 1 with (x1, . . . , xn) ∈ Un

K,S

is bounded above by (4|S|D)236n|D||S|6, where D = [K : Q].
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Chapter 4

A Strong Version of Cobham

In this chapter we prove a strong version of Cobham’s theorem for sparse sets. In particular,
we prove a quantitative version of Theorem 1 given in the Introduction.

4.1 Intersections of sparse sets

We now consider the intersection of a sparse k-automatic set and a sparse `-automatic set
of natural numbers and show that one can bound the size of the intersection in terms of
the number of states of the DFAOs that generate the sets. We begin with a basic estimate.

Lemma 65. Let r, k, q be integers with r ≥ 1, k ≥ 2 and q > r. Then

rk(kq−r + · · ·+ k + 1) + r ≤ (kq + kq−1 + · · ·+ 1).

Proof. We have (q − r)rk(kq−r + · · ·+ k + 1) + r ≤ (q − r)r((kq−r+1 + kq−r + · · ·+ k) + 1).
Now since k ≥ 2, we have kr−1 ≥ 2r−1 ≥ r for all r ≥ 1. Hence

r(kq−r+1 + kq−r + · · ·+ 1) ≤ kr−1(kq−r+1 + kq−r + · · ·+ 1) ≤ kq + kq−1 + · · ·+ 1,

and so we get the desired result.

Proposition 66. Let k ≥ 2 and Γ = (Q,Σk, δ, q0, F ) be a deterministic finite-state automa-
ton accepting a sparse non-trivial language L. Then L is a finite (possibly empty) union of
at most |Q|!(k|Q| + k|Q|−1 + · · ·+ 1) sets of the form

{v0w
∗
1v1w

∗
2 · · · vs−1w

∗
svs}

50



with w1, . . . , ws, v1, . . . , vs words in Σ∗k in which the wi are non-empty but the vi may be
empty and with |w1|+ · · ·+ |ws| ≤ |Q| and |v0|+ · · ·+ |vs| ≤ k|Q|.

Proof. Suppose towards a contradiction that this is not the case and pick (Q,Σk, δ, q0, F )
for which the conclusion to the statement of the proposition does not hold with |Q| minimal.
We put a transitive binary relation ≺ on Q by declaring that q ≺ q′ for q, q′ ∈ Q if there is
a word w ∈ Σ∗k such that δ(q, w) = q′. We then declare that two states q, q′ are equivalent
if q ≺ q′ and q′ ≺ q. Then this relation is reflexive as δ(q, ε) = q and so q ≺ q and it is
symmetric and transitive by construction. We let [q] denote the equivalence class of q.
Then ≺ induces a partial order on the equivalence classes. We let r denote the size of
the equivalence class [q0]. Since L is non-empty, there is at least one path from q0 to an
accepting state. In particular, by Proposition 22, we have that there is at most one cycle
based at q0 and since it passes through all states in [q0], this cycle, if it exists, is some word
w1 of length r. We note that if r ≥ 2 then there must be a cycle based at q0, but if r = 1 it
is possible that δ(q0, w) = q0 if and only if w = ε. We now consider two cases corresponding
to these possibilities. The simpler case is when δ(q0, w) = q0 only if w = ε. In this case,
[q0] = q0 and for each x ∈ Σk, we let Lx denote the set of all words w ∈ Σ∗k whose first
letter is x and for which w ∈ L. Then δ(q0, ux) ∈ Q \ {q0} for every ux ∈ Lx. Then since q0

is only equivalent to itself, we see that Lx = xEx, where Ex is the regular language accepted
by the automaton Γx := (Q \ {q0},Σk, δ, δ(q0, x), F \ {q0}).

Then by minimality of |Q|, we have that Ex is a union of at most (|Q| − 1)!(k|Q|−1 + · · ·+ 1)
sets of the form

{v0w
∗
1v1w

∗
2 · · · vs−1w

∗
svs}

with w1, . . . , ws, v1, . . . , vs words in Σ∗k in which the wi are non-empty but the vi may be
empty and with |w1|+ · · ·+ |ws| ≤ |Q| − 1 and |v0|+ · · ·+ |vs| ≤ k(|Q| − 1). Then Lx is a
union of at most (|Q| − 1)!(k|Q|−1 + · · ·+ 1) sets of the form

{(xv0)w∗1 · · · vs−1w
∗
svs}

with w1, . . . , ws, v0, . . . , vs words in Σ∗k in which the wi are non-empty but the vi may be
empty and with |w1|+· · ·+|ws| ≤ |Q| and |xv0|+· · ·+|vs| ≤ k|Q|, since k ≥ 1. Then since L
is the union of Lx for x ∈ Σk we see that L is a union of at most (|Q|−1)!(k|Q|+k|Q|−1+· · ·+k)
sets of the form

{v0w
∗
1v1w

∗
2 · · · vs−1w

∗
svs}

with w1, . . . , ws, v1, . . . , vs words in Σ∗k in which the wi are non-empty but the vi may be
empty and with |w1| + · · · + |ws| ≤ |Q| and |v0| + · · · + |vs| ≤ k|Q|. Thus we obtain the
result in this case.
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We next consider the case when there is a unique cycle w1 of length r ≥ 1 based at
q0. In particular, #[q0] = r. Then in this case we can write L = L0 ∪ L1, where L0 is the
set of words w in L for which δ(q0, w) ∈ [q0] and L1 is the set of words w ∈ L for which
δ(q0, w) 6∈ [q0]. By construction every word in L0 is of the form w∗1v where v is a proper
prefix of w1. In particular, L0 is a union of at most r sets of the desired form. We next
consider L1. If w ∈ L1 then w can be written as uxv with δ(q0, u) ∈ [q0], δ(q0, ux) 6∈ [q0].
Then we may write L1 as a union of |Q| − r sublanguages L1,q for each q ∈ Q \ [q0], where
L1 is the set of words in L of the form uxv with δ(q0, u) ∈ [q0], δ(q0, ux) = q. We have a
machine Γq = (Q \ [q0],Σk, δ, q, F \ [q0]), which accepts a sparse regular language Eq. Then
L1,q is a finite union of languages of the form w∗1zxEq where z is a proper prefix of w1,
x ∈ Σk and δ(q0, zx) = q. In particular, by minimality of |Q|, each Eq is a finite union of at
most (|Q| − r)!(k|Q|−r + · · ·+ 1) sets of the form

{v1w
∗
2v2w

∗
3 · · · vs−1w

∗
svs}

with |w2|+ · · ·+ |ws| ≤ |Q| − r and |v1|+ · · ·+ |vs| ≤ k(|Q| − r). Then since w has at most
r proper prefixes and since there are at most k choices for x, we see that L1,q is a union of
at most (rk)(|Q| − r)!(k|Q|−r + · · ·+ k + 1) sets of the form

{w∗1(zxv1)w∗2v2w
∗
3 · · · vs−1w

∗
svs}

with |w1| + · · · + |ws| ≤ |Q| and |zxv1| + · · · + |vs| ≤ k(|Q| − r) + r ≤ k|Q|. Thus L
is a union of at most (|Q| − r)rk(|Q| − r)!(k|Q|−r + · · · + k + 1) + r sets of the desired
form, where the contribution of r comes from considering our decomposition of L0 and
the |Q| − r factor comes from considering the languages L1,q for q ∈ Q \ [q0]. Notice that
(|Q| − r)rk(|Q| − r)!(k|Q|−r + · · ·+ k + 1) + r ≤ |Q|!(k|Q| + · · ·+ k + 1) by Lemma 65.

For the remainder of the section, we make use of a Theorem 64, due to Schlickewei [40].

For us, we will apply Theorem 64, taking K = Q and S to be the set of places
corresponding to prime divisors of numbers k and ` along with the infinite place.

Lemma 67. Let k and ` be multiplicatively independent integers and let n,m ≥ 1 be
integers and let a1, . . . , an, b1, . . . , bm be nonzero rational numbers. Then there are at most

(4(log2(2k`)))(log2(2k`))6·236(n+m−1)

non-degenerate solutions to the equation

a1X1 + · · ·+ anXn + b1Y1 + · · ·+ bmYm = 0

in which each Xi is a power of k, each Yi is a power of `.
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Proof. We take S to be the places corresponding to the infinite place of Q along with the
places corresponding to the prime divisors of k and `. Then since each prime factor of k
and ` is at least two, we have |S| ≤ log2(k) + log2(`) + 1. Further, by construction, k and `
are in the units group of OQ,S. Now a non-degenerate solution to the equation

a1X1 + · · ·+ anXn + b1Y1 + · · ·+ bmYm = 0

with each Xi a power of k and each Yj a power of ` gives rise to a non-degenerate solution
to the equation

(−a1/bm)Z1 + · · ·+ (−an/bm)Zn + (−b1/bm)Zn+1 + · · ·+ (−bm−1/bm)Zn+m−1 = 1

with Zi = Xi/Yi for i ≤ n and Zi = Yi−n/Ym for n + 1 ≤ i < n + m. Since the Zi are in
the units group of OQ,S, Theorem 64 gives that there are at most

(4|S|)236(n+m−1)|S|6

non-degenerate solutions with Z1, . . . , Zn+m−1 in OQ,S. Now the final remark is that we
can uniquely recover the original Xi’s and Yi’s from Z1, . . . , Zn+m. To see this, observe
that for i = 1, . . . , n we must have Zi = ka/`b for some integers a and b. Since k and ` are
multiplicatively independent, a and b are uniquely determined and so Xi = ka and Ym = `b.
Thus we can recover X1, . . . , Xn and Ym from the Zj. But once we know Ym = `b, since
Yj = Zn+jYm for j = 1, . . . ,m− 1, we see that we can recover the Yj ’s from Z1, . . . , Zn+m−1.
Using the fact that |S| ≤ log2(2k`) gives the desired result.

Lemma 68. Let k and ` be multiplicatively independent integers and let n,m ≥ 1 be
integers and let a1, . . . , an, b1, . . . , bm be nonzero rational numbers. Then there are at most

(n+m)n+m+1(4(log2(2k`)))(log2(2k`))6·236(n+m−1)

solutions to the equation

a1X1 + · · ·+ anXn + b1Y1 + · · ·+ bmYm = 0

in which each Xi is a power of k, each Yi is a power of `, and no non-trivial subsum of
either a1X1 + · · ·+ anXn or b1Y1 + · · ·+ bmYm vanishes.

Proof. For each solution to

a1X1 + · · ·+ anXn + b1Y1 + · · ·+ bmYm = 0
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such that no subsum of either a1X1 + · · · + anXn or b1Y1 + · · · + bmYm vanishes, we can
associate a set partition π of the set {X1, . . . , Xn, Y1, . . . , Ym} into disjoint non-empty
subsets U1, . . . , Ur such that the subsum corresponding to the variables in each Ui vanishes
and is non-degenerate. Then by Lemma 67, for i = 1, . . . , r, there are at most (4A)236(|Ui|−1)A6

non-degenerate solutions to the subsum∑
Xj∈Ui

ajXj +
∑
Yj∈Ui

bjYj = 0

with each Xj a power of k and each Yj a power of `. Thus for the set partition π we have
at most

r∏
i=1

(4A)236|Ui|)A6

= (4A)A
6·
∑r
i=1 236|Ui|

solutions. Using the inequality 2x1+x2+···+xr ≥
∑r

i=1 2xi for x1, . . . , xr positive integers, we
see that corresponding to the set partition π we get at most

(4A)A
6·236(n+m−1)

solutions. Finally, observe that there is a natural injection from the collection of set
partitions of {X1, . . . , Xn, Y1, . . . , Ym} of size r into maps f from {X1, . . . , Xn, Y1, . . . , Ym}
to {1, 2, . . . , r}, by imposing some ordering on the subsets in our set partition and then
declaring that f(Xi) = j if Xi is in the j-th set of our partition and similarly, declaring
that f(Yi) = j if Yi is in the j-th set of our partition. It follows that there are at most rn+m

set partitions of {X1, . . . , Xn, Y1, . . . , Ym} of size r and since r can range from 1 to n+m,
we then get that there are at most (n+m)n+m+1 set partitions of {X1, . . . , Xn, Y1, . . . , Ym}.
Since we get at most

(4A)A
6·236(n+m−1)

solutions of the desired form corresponding to each set partition of {X1, . . . , Xn, Y1, . . . , Ym},
and since there are at most (n+m)n+m+1 set partitions, we get the desired upper bound.

Proposition 69. Let k and ` be multiplicatively independent positive integers and let X be
a sparse k-automatic subset of N of the form

{[v0w
∗
1v1w

∗
2 · · · vsw∗svs+1]k}

and let Y be a sparse `-automatic set of the form

{[u0y
∗
1u1y

∗
2 · · ·uty∗t ut+1]`}.

Then
#X ∩ Y ≤ (s+ t+ 2)s+t+3(4(log2(2k`)))(log2(2k`))6·236(s+t+1)

.

54



Proof. By Lemma 33 we have that X is of the form{
c0 + c1k

δsns + c2k
δsns+δs−1ns−1 · · ·+ csk

δsns+···+δ1n1 : n1, . . . , ns ≥ 0
}
,

where c0, . . . , cs are rational numbers. Similarly, Y is of the form{
d0 + d1`

δ′tmt + d2`
δ′tms+δ

′
t−1mt−1 · · ·+ dt`

δ′tmt+···+δ′1m1 : m1, . . . ,mt ≥ 0
}
,

where d0, . . . , dt are rational numbers.

Then an element in X ∩ Y corresponds to a solution to the equation

X0 + · · ·+Xt +Xt+1 + · · ·+Xt+s+1 = 0,

where X0 = d0, X1 = d1`
δ′tmt , . . . , Xt = dt`

δ′tmt+···+δ′1m1 and Xt+1 = −c0, . . . , Xt+s+1 =
−cskδsns+···+δ1n1 . Moreover, the element in the intersection in this case is given by

A := X0 + · · ·+Xt = −(Xt+1 + · · ·+Xt+s+1).

Observe that A = X0 + · · · + Xt is strictly positive and since we are only concerned
about the quantity A in determining X ∩ Y , after removing a maximal vanishing subsum
we may assume that no non-trivial subsum of the terms involving powers of ` vanishes and
that there are at most t+ 1 such terms. Similarly, we may remove a maximal vanishing
subsum from Xt+1 + · · ·+Xt+s+1. Then by Lemma 68, taking n to be the number of terms
from our first sum, we have n ≤ t+ 1; similarly, we can take m to be the number of terms
from our second subsum and we have m ≤ s+ 1. We then see there are at most

(s+ t+ 2)s+t+3(4(log2(2k`)))(log2(2k`))6·236(s+t+1)

elements in X ∩ Y .

We are now ready to put everything together and prove the strong version of Cobham’s
theorem.

Theorem 70. (Strong Cobham theorem for sparse sets) Let k and ` be multiplicatively
independent positive integers and let Γ = (Q,Σk, δ, q0, F ) and Γ′ = (Q′,Σ`, δ

′, q′0, F
′) be a

deterministic finite-state automata accepting sparse languages L ⊆ Σ∗k and L′ ⊆ Σ∗` . Then
if X = [L]k and Y = [L′]` then X ∩ Y is finite and there are at most A ·B elements in the
intersection, where

A = |Q|!|Q′|!(k|Q| + k|Q|−1 + · · ·+ 1)(`|Q
′| + `|Q

′|−1 + · · ·+ 1)

and
B = (|Q|+ |Q′|+ 2)|Q|+|Q

′|+3(4(log2(2k`)))(log2(2k`))6·236(|Q|+|Q′|+1)

.
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Proof. By Proposition 69, X is the union of at most |Q|!(k|Q| + k|Q|−1 + · · ·+ 1) sets of the
form

{v0w
∗
1v1w

∗
2 · · · vs−1w

∗
svs}

with w1, . . . , ws, v0, . . . , vs words in Σ∗k in which the wi are non-empty but the vi may be
empty and with |w1|+ · · ·+ |ws| ≤ |Q| and |v0|+ · · ·+ |vs| ≤ k|Q|. In particular, s ≤ |Q|
for each such set. Similarly, Y is the union of at most |Q′|!(`|Q′| + `|Q

′|−1 + · · ·+ 1) sets of
the form

{u0y
∗
1u1y

∗
2 · · ·ut−1y

∗
t ut+1}

with u0, . . . , ut+1, y1, . . . , yt words in Σ∗` in which the yi are non-empty but the ui may be
empty and with |y1|+ · · ·+ |yt| ≤ |Q′| and |u0|+ · · ·+ |ut| ≤ `|Q′|. In particular, t ≤ |Q′| for
each such set. Then by Proposition 69, each pair of sets of the above form has cardinality
at most

(s+ t+ 2)s+t+3(4(log2(2k`)))(log2(2k`))6·236(s+t+1)

in the intersection. In particular, since s ≤ |Q| and t ≤ |Q′| and since we have at most

|Q|!|Q′|!(k|Q| + k|Q|−1 + · · ·+ 1)(`|Q
′| + `|Q

′|−1 + · · ·+ 1)

pairs, we see that there are at most N = N(k, `, |Q|, |Q′|) elements in the intersection of X
and Y , where N is the product of

|Q|!|Q′|!(k|Q| + k|Q|−1 + · · ·+ 1)(`|Q
′| + `|Q

′|−1 + · · ·+ 1)

and
(|Q|+ |Q′|+ 2)|Q|+|Q

′|+3(4(log2(2k`)))(log2(2k`))6·236(|Q|+|Q′|+1)

.

Hence the result follows.

We note that some dependence on k and ` is necessary as well as dependence on the
number of states. For example, one can write down a k-DFAO with n states that accepts
all numbers less than kn−2; similarly, one can write down an `-DFAO with m states that
accepts all natural numbers less than `m−2. In particular, the intersection of the two sets
generated by these automata will have intersection of size min(kn−2, `m−2), and so although
this is far off from the upper bounds we obtain, it nevertheless shows that one cannot
completely eliminate some dependence on the number of states in our result.
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4.2 A general intersection question

We now consider the general question of the intersection of a sparse automatic set with a
zero density automatic set.

The following result is due to Bell [9, Prop. 2.1].

Proposition 71. Let k ≥ 2 be a natural number, let h : N → Q≥0 be a k-automatic
sequence, and let s(n) =

∑
j<n h(j). Then there exist β ∈ (0, k), C > 0, a ≥ 1, and rational

numbers cj for j ∈ {0, 1, . . . , a− 1} such that

|s(kan+j)− cjkan+j| < Cβan

for every n ≥ 0. Moreover, a and the rational numbers c0, . . . , ca−1 are recursively com-
putable and β can be effectively determined.

As a consequence of this, we can prove that either a k-automatic set S has positive lower
density (i.e., lim inf πS(x)/x > 0) or there is some positive ε > 0 such that πS(x) = o(x1−ε).
Moreover, we can find a lower bound for ε in terms of the size of the k-kernel for the
automatic sequence corresponding to S.

Theorem 72. Let k ≥ 2 be a natural number and let S be a k-automatic subset of the
natural numbers associated with a k-automatic sequence whose k-kernel has size d ≥ 2.
Then either S has positive lower density or

πS(x) = o(x1−ε)

with ε = 1− 1/(2k)d−1 + 1/2(2k)2(d−1).

Proof. The proof of Proposition 71 [9] shows that either S has positive lower density or
πS(kn) = o(βn) for some β ∈ (0, k) such that β is bigger in modulus than all eigenvalues
of a d× d matrix B with nonnegative integer entries whose eigenvalues all lie in the disc
{z : |z| < k}. We henceforth assume that we are in the second case. In particular, if
α1, . . . , αd are the roots (with multiplicity) of the characteristic polynomial, P (x), of B
then P (k) = (k − α1) · · · (k − αd) is a nonzero integer. By the Perron-Frobenius theorem
(see e.g. [2], Theorem 8.3.7), after relabelling, we may assume that α1 is real and positive
and that |αi| ≤ α1 for i = 1, 2, . . . , d. Then since each αi is less than k in modulus, we have

1 ≤ |P (k)|

= |k − α1|
d∏
i=2

|k − αi|

< |k − α1|(2k)d−1.
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Hence |k−α1| > 1/(2k)d−1. It follows that if we take β = k−1/(2k)d−1 then all eigenvalues
of B are strictly less than β in modulus and so

πS(kn) = o(βn).

Then using the inequality log(1− x) ≤ −x+ x2/2 for x ∈ (0, 1/2), we see

logk(β) = 1 + log(1− 1/(k · (2k)d−1))/ log(k) ≤ 1− 1/(2k)d−1 + 1/2(2k)2(d−1).

We see that
πS(kn) = o(k(1−ε)n)

with
ε = 1− 1/(2k)d−1 + 1/2(2k)2(d−1).

Then for a given x > 1, we have kn ≤ x < kn+1 for some n and so

πS(x) ≤ πS(kn+1) = o((kn+1)1−ε).

Since kx ≥ kn+1 we then see
πS(x) = o(x1−ε),

and so we obtain the desired result.

In general, if k and ` are multiplicatively independent, then a sparse k-automatic set
can have infinite intersection with an `-automatic set (for example, the set of all integers is
`-automatic). But in the case when S is a sparse k-automatic set and T is an `-automatic set
of zero density, we again expect S ∩ T to be finite. Heuristically, one can see this as follows.
Since T has zero density, we have shown that there is some ε > 0 such that πT (x) = o(x1−ε)
and since S is sparse there are positive constants c and d such that πS(x) ≤ c(log(x))d for x
large. Thus if we take a natural number in [0, x], the probability that it lies in T is at most
x−ε for x large. In particular, if i1 < i2 < i3 < · · · is an enumeration of the elements of our
sparse k-automatic set S, then since the bases k and ` are multiplicatively independent, we
expect that the probability that ij is in T to be at most Ci−εj for some fixed constant C
and so the expected number of elements in S ∩ T should be bounded by the size of the sum∑

j≥1

C

iεj
.

Notice that the above series converges when S is sparse. To see this, recall that πS(x) ≤
c(log(x))d for some c, d > 0 and for x large. Since πS(iN ) = N , we then have N ≤ c(log(iN ))d
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for N large, which gives iN ≥ exp((N/c)1/d) for N sufficiently large. In particular, iN grows

faster than any polynomial in N and so for every ε > 0 we have that
∑
j≥1

1/iεj converges.

We conjecture that a much more general phenomenon should hold: for k, ` multiplica-
tively independent positive integers, the intersection of a sparse k-automatic set and a zero
density `-automatic set should be finite. Although this problem appears to be well beyond
what current methods in number theory can handle, this section (Section 4.2) provides
evidence for the conjecture to hold true.
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Chapter 5

Additive bases

In this short chapter, we prove a special case of a conjecture of Erdős and Turán [19] for
automatic sets, which gives further evidence in support of their conjecture. Some of the
exposition is guided by the paper of Bell, Hare, and Shallit [11].

5.1 Automatic sets and additive bases

An important problem in additive number theory is to determine if for a given set S of
natural numbers whether there is some d ≥ 2 such that every natural number can be
written as a sum of at most d elements of S (see, e.g., [37]). If such a d exists and this
property does not hold for positive numbers smaller than d, we say that S is an additive
basis of order d for N.

This problem has a long and rich history. Diophantus first asked whether every natural
number could be written as a sum of four squares, which was ultimately proved by Lagrange
many centuries later. More generally, Waring’s problem asks whether the set of k-th powers
forms an additive basis for the natural numbers, which was eventually shown to be the
case by Hilbert [37, Chapter 3]. Waring’s problem is still an active area of research today
[32, 45, 47, 46].

Another instance of problems with additive bases is Goldbach’s conjecture, which asks
whether every even positive integer can be expressed as the sum of at most two prime
numbers. If true, this would then imply that every sufficiently large natural number is
the sum of at most three prime numbers. Vinogradov [37, Chapter 8] proved that every
sufficiently large natural number can be expressed as the sum of at most four prime numbers,
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and so the set of prime numbers is an additive basis for the natural numbers up to a finite
set of exceptions.

Given an additive basis S of order d, we let rS,d(n) denote the number of solutions to
n = s1 + s2 + · · ·+ sd with s1, . . . , sd ∈ S. Then saying that S is an additive basis of order
d gives that rS,d(n) ≥ 1 for all n. A fundamental problem in the theory of additive bases is
the conjecture of Erdős and Turán [19], which asks the following: Suppose that S ⊆ N is an
additive basis of order d ≥ 2. Is it true that lim supn rS,d(n) =∞?

This problem is currently open. If one looks at subsets of natural numbers from the
point of view of computation then it is natural to ask when an automatic set of natural
numbers is an additive basis for N.

Automatic sets that form additive bases were completely characterized by Bell, Hare,
and Shallit [11] in the theorem below.

Theorem 73. Let k ≥ 2 be a natural number and let S be a k-automatic subset of N. Then
S forms an additive basis for N if and only if the following conditions both hold:

1. S is not sparse;

2. 1 ∈ S.

Moreover, if S is a non-sparse set and 1 ∈ S, then there exists an effectively computable
constant N such that every natural number can be expressed as the sum of at most N
elements of S.

Using this result, we are able to prove that the Erdős-Turán conjecture holds for
automatic sets.

Theorem 74. Let k ≥ 2 be a positive integer and let S be a k-automatic subset of N. If S
is an additive basis of order d for some d ≥ 2 then there is a positive constant κ such that
rS,2(N) ≥ Nκ for infinitely many integers N . In particular,

lim sup
n

rS,d(n)→∞.

Proof. By Theorem 73, S cannot be sparse if it is an additive basis. Thus by Proposition
22, we have that S contains a set of the form

{[a{u0, u1}∗b]k},
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where a, b, u0, u1 ∈ Σ∗k and t := |u0| = |u1| ≥ 1, u0 6= u1. Now fix a positive integer
n. For each binary word x := εn · · · ε1 ∈ {0, 1}∗ of length n, we let wx = uεn · · ·uε1 and
we let w′x := u1−εn · · ·u1−ε1 . Then wx and w′x are words over Σk of length tn and we
have 2n−1 distinct pairs of such words {wx, w′x}. Now let [u0]k = γ0, [u1]k = γ1, and let
[a]k = α, [b]k = β and let |a| = s, |b| = r. Then, by construction, [awxb]k and [aw′xb]k are
in S for all binary words x of length n and we get 2n−1 distinct pairs of natural numbers
{[awxb]k, [aw′xb]k} ⊆ S from this construction. We let c = γ0 + γ1. Notice that

[awxb]k + [aw′xb]k = [auεn · · ·uε1b]k + [au1−εn · · ·u1−ε1b]k

= β + kb
(
γε1 + ktγε2 + · · ·+ kt(n−1)γεn

)
+ kb+tnα

+ β + kb
(
γ1−ε1 + ktγ1−ε2 + · · ·+ kt(n−1)γ1−εn

)
+ kb+tnα

= 2β + kb(c+ ktc+ · · ·+ kt(n−1)c) + 2kb+tnα.

Thus if we let N = 2β + kb(c+ ktc+ · · ·+ kt(n−1)c) + 2kb+tnα, we see that

rS,2(N) ≥ 2n−1,

since we have constructed 2n−1 distinct pairs (s, s′) ∈ S2 such that s + s′ = N . Finally,
observe that N ≤ kb+tn(2β + 2α + c), and so there are positive constants A,B > 0 such
that N ≤ AkBn. In particular, log(N) ≤ log(A) +Bn log(k) and so if C is a constant with
C > B log(k) then for n sufficiently large, we have log(N) ≤ Cn. Then, for n large, we
have

rS,2(N) ≥ 2n−1 ≥ 2n/2 ≥ 2
2
C
·log(N) = N

2 log(2)
C .

The result now follows by taking κ = 2 log(2)
C

.
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Chapter 6

Generalized series with sparse
support

6.1 Generalized sparseness

Recall that we introduced generalized series in Section §2.3 and the notion of sparseness in
§2.2.

In this chapter, we will extend the notion of sparseness to subsets of Sk ⊆ Q with k ≥ 2 a
natural number and give a characterization of sparse algebraic generalized series. Following
Kedlaya [28], we work with the alphabet {0, 1, . . . , k − 1, •}, where • represents the radix
point in the base-k expansion of a k-adic rational. The set of valid base-k expansions is a
regular language [28, Lemma 2.3.2], where such expansions are given by the language

Ek := {u = u1u2 . . . un ∈ Σ∗ : n ≥ 1, u1 6= 0, un 6= 0,

exactly one of u1, . . . , un is equal to •}.
(6.1)

By definition of sparseness for languages, a sublanguage L of Ek is sparse if fL(n) = O(nd)
for some d ≥ 1. If L is sparse then by Proposition 22, it is a finite union of languages of the
form u1w

∗
1u2w

∗
2 . . . w

∗
sus+1, where the ui are possibly trivial and the wi are non-trivial words.

Furthermore by the definition of the language Ek, exactly one of {u1, . . . , us+1} contains
the radix point and none of the {w1, w2, . . . , ws} can contain the radix point. Hence for
a language u1w

∗
1u2w

∗
2 . . . w

∗
sus+1, there is a unique index j, 1 ≤ j ≤ s + 1, such that uj

contains the radix point and so we can write this uj as u′j •u
′′
j , and a sparse sublanguage L
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of Ek can be expressed as a finite disjoint union of languages of the form

u1w
∗
1u2w

∗
2 . . . w

∗
j−1u

′
j •u

′′
jw
∗
juj+1 . . . w

∗
sus+1.

For our applications, we will be interested in the case where k = p is prime and we are
viewing elements of Ep as base-p expansions of elements of Sp via the map [ · ]p given in
Equation (2.10). In analogy with our definition of sparse subsets of the natural numbers,
we will say that a subset of Sp of the form{

[u1w
n1
1 u2w

n2
2 . . . w

nj−1

j−1 u
′
j •u

′′
jw

nj
j uj+1 . . . w

ns
s us+1]p : n1, n2, . . . , ns ≥ 0

}
is a simple sparse subset of Sp, and we will say that a subset S ⊆ Sp is a sparse subset of
Sp if S is a finite union of simple sparse subsets of Sp. If S ⊆ N then it is immediate that
being sparse as a subset of Sp exactly coincides with the notion of sparseness introduced
for p-automatic subsets of the natural numbers given in Definition 24.

We now shift our focus back to generalized Laurent series. Given a p-quasi-automatic
generalized Laurent series F (t) =

∑
α∈Q f(α)tα ∈ F̄p((tQ)) with support S ⊆ Q, there is

a power q of p such that f(α) ∈ Fq by Theorem 48 and there are integers a > 0 and b
such that aS + b ⊆ Sp and fa,b : Sp → Fq given by fa,b(x) = f((x− b)/a) is p-automatic in
the sense of Definition 47. We will say that F (t) is a sparse generalized Laurent series if
aS + b ⊆ Sp is a sparse subset of Sp, where a and b are as above.

Lemma 75. Let S ⊆ Sp be p-automatic. Then S is sparse if and only if

#{a ∈ S : a < pn and pna ∈ N} = O(nd)

for some positive integer d.

Proof. Let L ⊆ Ek be the regular language {(x)p : x ∈ S}. Then S is sparse if and only if
L is sparse. Notice that

#{a ∈ S : a < pn and pna ∈ N} = #{u •v ∈ L : length(u), length(v) ≤ n}.

The set {u •v ∈ L : length(u), length(v) ≤ n} is a subset of the set of words in L of length
at most 2n + 1 and so if L is sparse, #{a ∈ S : a < pn and pna ∈ N} = O(nd) for some
d ≥ 0. Conversely, if L is not sparse, then it contains a sublanguage of the form u{y, z}∗v,
where exactly one of u and v contains the radix point. Let κ denote the maximum of the
lengths of y and z. Then in either case, every element of the form [uwv]p, with w a word
in {y, z}∗ of length at most (2κ)−1n, is in {a ∈ S : a < pn and pna ∈ N} for n sufficiently
large. Since the number of words of length at most (2κ)−1n in {y, z}∗ grows exponentially
in n, #{a ∈ S : a < pn and pna ∈ N} 6= O(nd) when L is not sparse.
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Definition 76. Let S be a (not necessarily p-automatic) subset of Sp. We say that S is
weakly sparse if

#{a ∈ S : a < pn and pna ∈ N} = O(nd)

for some positive integer d. In particular, a subset of Sp is sparse if and only if it is
p-automatic and weakly sparse, and an automatic subset of a weakly sparse set is sparse.

The following remark follows immediately from Lemma 75.

Lemma 77. If a, a′ and b, b′ are rational numbers with a, a′ > 0 then if S ⊂ Q has the
property that both aS + b and a′S + b′ lie in Sp then aS + b is sparse if and only if a′S + b′

is sparse, and so this definition of sparseness does not depend upon the choice of affine
transformation that we use to push S into the p-adic rationals.

Before the next remark, we recall that Z(p) is the subring of rational numbers of the
form a/b with a, b integers and p - b.

Remark 78. Let p be a prime number and let S be a non-empty well-ordered simple sparse
subset of Sp. Then there exist s ≥ 0, c0, . . . , cj−1 ∈ Z(p), dj−1, . . . , ds ∈ Q, and positive
integers δ1, . . . , δs such that

S = {c0 + c1p
δj−1nj−1 + c2p

δj−1nj−1+δj−2nj−2 · · ·+ cj−1p
δj−1nj−1+···+δ1n1

+ dj−1 + djp
−δjnj + dj+1p

−(δjnj+δj+1nj+1) + · · ·+ dsp
−(δjnj+···+δsns) : n1, . . . , ns ≥ 0}.

(6.2)

Furthermore, we have

c1p
δj−1nj−1 + c2p

δj−1nj−1+δj−2nj−2 · · ·+ cj−1p
δj−1nj−1+···+δ1n1 ≥ 0

for all n1, . . . , nj−1 ≥ 0 and

djp
−δjnj + dj+1p

−(δjnj+δj+1nj+1) + · · ·+ dsp
−(δjnj+···+δsns) ≤ 0

for all nj, . . . , ns ≥ 0.

Proof. Let [ui]p = ai and µi = length(ui) for i ∈ {1, . . . , s} \ {j}, [u′j]p = a′j, [u′′j ]p = a′′j ,
µ′j = length(u′j), µ

′′
j = length(u′′j ), and [wi]p = bi and δi = length(wi) for i = 1, . . . , s.

The pre-radix part can be handled as in Lemma 33 and the post-radix part is handled

similarly as follows. Putting dj−1 = a′′j −
bjp
−µ′′j

p−δj−1
, dj =

p
−µ′′j bj

p−δj−1
+ p−µ

′′
j aj+1 − bj+1p

−µ′′j −µj+1

p−δj+1−1
,
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. . . , ds = p−µ
′′
j−µj+1−···−µsas+1 + bsp

−µ′′j −µj+1−···−µs

p−δs−1
, we get the desired description of S. The

inequalities

c1p
δj−1nj−1 + c2p

δj−1nj−1+δj−2nj−2 · · ·+ cj−1p
δj−1nj−1+···+δ1n1 ≥ 0

for all n1, . . . , nj−1 ≥ 0 and

djp
−δjnj + dj+1p

−(δjnj+δj+1nj+1) + · · ·+ dsp
−(δjnj+···+δsns) ≤ 0

for all nj, . . . , ns ≥ 0 follow from the fact that S is well-ordered. To obtain the first
inequality, suppose that

Ψ(n1, . . . , nj−1) := c1p
δj−1nj−1 + c2p

δj−1nj−1+δj−2nj−2 · · ·+ cj−1p
δj−1nj−1+···+δ1n1 < 0

for some n1, . . . , nj−1 ≥ 0. Then since

Ψ(n1, . . . , nj−1 + a) = pδj−1aΨ(n1, . . . , nj−1)

for a ≥ 0 and δj−1 > 0, we obtain an infinite descending subsequence in S, contradicting
the fact that it is well-ordered. The second inequality follows in a similar manner.

The collection of sparse series forms a subalgebra of the ring of algebraic power series
with coefficients in F̄p. This is in fact rather straightforward, but for the sake of completeness,
we include a proof (see Proposition 82); in addition, we show that sparse series possess
natural closure properties, which we detail below.

Definition 79. Let B ⊆ C be subalgebras of the ring of generalized Laurent series F̄p((tQ)).
We say that B is Artin-Schreier closed in C if the following hold:

(P1) if F (t) ∈ B and if G(t) ∈ C is a solution to the equation Xp −X + F (t) = 0, then
G(t) ∈ B;

(P2) If F (t) ∈ B and α ∈ F̄p then F (αt) ∈ B;

(P3) if F (t) ∈ B, c ∈ Q>0 and d ∈ Q, and tdF (tc) ∈ C, then tdF (tc) ∈ B.

We make a remark concerning property (P1). In general, a generalized Laurent series
F (t) can be written as F+(t) + c + F−(t), where c is constant, F+ ∈ F̄p[[tQ]]>0 and
F−(t) ∈ F̄p((tQ))<0. Then there is some a ∈ F̄p such that ap − a = c and all solutions
to Xp − X = −F (t) are of the form G+(t) + G−(t) + a + i, where i ∈ Fp, G+(t) =
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F+(t) + F+(tp) + F+(tp
2
) + · · · and G−(t) = −F−(t1/p)− F−(t1/p

2
)− · · · . In the case when

C is the ring of formal power series and B is a subalgebra of C, condition (P1) simply says
that if F (t) ∈ B and F (0) = 0 then F (t) + F (tp) + F (tp

2
) + · · · is also in B. Our goal is

to show that various rings of sparse algebraic series are Artin-Schreier closed in natural
overrings. To do this, we need a quick lemma about sparse subsets of Sp.

Lemma 80. Let p be prime, let b be a positive integer and let S ⊆ Sp be a well-ordered
sparse set. Then we have the following:

(a) S ∩ [0, b) and S ∩ (b,∞) are both sparse;

(b) if T := S ∩ (b,∞) then
⋃
n≥0 ((T − b)pn + b) is a well-ordered sparse set;

(c) if U := S ∩ [0, b) then
⋃
n≥1 ((U − b)p−n + b) is a well-ordered sparse set.

Proof. To prove (a), let S ⊆ Sp be a sparse set. Applying the map ( · )p to S we obtain
a sparse regular language L ⊆ Ep. Both Sp ∩ [0, b) and Sp ∩ (b,∞) correspond to regular
languages and hence S ∩ [0, b) and S ∩ (b,∞) correspond to regular languages as well.
Moreover, since they are sublanguages of the sparse language L, both S ∩ [0, b) and
S ∩ (b,∞) are sparse.

We now prove part (b). By part (a), we know that T is sparse. By Lemma 77, affine
transformations preserve sparseness, so T ′ := T − b is a well-ordered sparse set. Since T ′ is
a finite disjoint union of simple sparse sets, it is no loss of generality to assume that T ′ is a
simple sparse set in what follows. We let LT ′ denote the sublanguage of Ep obtained by
applying ( · )p to T ′. Then since we are assuming that T ′ is simple sparse, LT ′ is a language
of the form

u1w
∗
1u2w

∗
2 . . . w

∗
j−1u

′
j •u

′′
jw
∗
juj+1 . . . w

∗
sus+1.

Consequently, the sublanguage of Ep obtained by applying ( · )p to
⋃
pnT ′ is a finite union

of languages of the form

(i) u1w
∗
1u2w

∗
2 · · ·usw∗sus+10∗ • ;

(ii) u1w
∗
1u2w

∗
2 . . . w

∗
j0−1u

′
j0 •u

′′
j0
w∗j0uj0+1 . . . w

∗
sus+1; and

(iii) u1w
∗
1u2w

∗
2 . . . w

∗
i0−1ui0w

∗
i0
w′i0 •w

′′
i0
w∗i0ui0+1 . . . w

∗
sus+1,
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where i0 ∈ {j, . . . , s} and w′i0w
′′
i0

= wi0 , and j0 ∈ {j, . . . , s+ 1}, u′j0u
′′
j0

= uj0 , and if j0 = j
then u′j0 has u′j as a prefix. Hence

⋃
pnT ′ is a sparse set and since affine transformations

preserve sparseness, we have

b+
⋃

pnT ′ =
⋃
n≥0

((T − b)pn + b)

is sparse. To see that
⋃
n≥0 ((T − b)pn + b) is well-ordered, it suffices to show that the

union of pnT ′ is well-ordered. Let t0 > 0 denote the smallest element of T ′ and suppose
that x1 ≥ x2 ≥ · · · is a weakly decreasing chain in the union of the sets pnT ′. Then there
is some N > 0 such that x1 < pN t0 and hence x1, x2, x3, . . . must be contained in the finite
union

⋃
i<N p

iT ′, which is well-ordered, as it is a finite union of well-ordered subsets of Q,
and so the chain x1 ≥ x2 ≥ · · · necessarily terminates. Thus we have established part (b).

Finally, we prove part (c). The proof that U ′ :=
⋃
n≥1 ((U − b)p−n + b) is well-ordered

is done exactly as in the proof of part (b). Thus it only remains to show that this set is
sparse. We write U =

⋃b−1
a=0 Ua, where Ua = {x ∈ U : a ≤ x < a+ 1}. Then every element

in Ua has a base-p expansion of the form (a)p •w, where w lies in a sparse sublanguage Ca
of {0, 1, . . . , p− 1}∗. Then b− Ua = (b− (a+ 1)) + {1− [•w]p : w ∈ Ca}. Since Ca is sparse,
it is a finite union of simple sparse languages. Observe, moreover, that if x ∈ [0, 1)∩ Sp is a
number having base-p expansion • v1w

∗
1v2w

∗
2 · · · vsw∗svs+1, with vs+1 non-empty, then 1− x

has base-p expansion

•v̄2w̄
∗
1v̄2w̄

∗
2 · · · v̄sw̄∗s ṽs+1,

where if u = a1a2 . . . ad, d ≥ 1, we define ū := (p− 1− a1)(p− 1− a2) . . . (p− 1− ad) and
ũ := (p−1−a1)(p−1−a2) . . . (p−1−ad−1)(p−ad). In general, if vs+1 is empty, one can get a
similar description of the set of 1−x and, in this way, one can show that {1− [•w]p : w ∈ Ca}
is sparse (although it need not be well-ordered). Thus b−U =

⋃b−1
a=0(b−Ua) is sparse. Now

we write
b− U =

⋃
0≤a<b

(a+ [ •Da]p) ,

where each Da is a sparse sublanguage of {0, 1, . . . , p− 1}∗. If the base p-expansion of a is
equal to a1 · · · ar, then

⋃
n≥1

p−n (a+ [ •Da]p) =
∞⋃
i=0

[ •0
ia1 · · · ar •Da]p ∪

r⋃
i=1

[a1a2 . . . ai • ai+1 . . . arDa]p,

which is a finite union of simple sparse sets, because Da is a finite union of simple sparse
languages. Hence

⋃
n≥0(b− U)p−n is a finite union of sparse sets and thus is itself sparse.
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Now
U ′ =

⋃
n≥1

(
(U − b)p−n + b

)
= b−

⋃
n≥1

(b− U)p−n ⊆ [0, b),

which is sparse by the same argument as above. The result follows.

We need one more basic fact.

Lemma 81. Let S, T ⊆ Sp be well-ordered sparse sets. Then S ∪ T and S + T are
well-ordered sparse.

Proof. First we show that S ∪ T and S + T are well-ordered. By assumption, both S and
T are well-ordered subsets of Q. If S + T is not well-ordered, then by Remark 46 there
exists an infinite decreasing sequence x1 > x2 > · · · within S + T where xn = sn + tn for
all n ≥ 1. We can construct a subsequence snk of sn as follows: define sn1 = min{sn} and
snj+1

= min{sn : n > nj}. Then we have n1 < n2 < · · · and sn1 ≤ sn2 ≤ · · · . Since {xn}∞n=1

is a decreasing sequence, we have tn1 > tn2 > · · · , an infinite decreasing sequence within T ,
which is a contradiction since T is well-ordered. To show that S ∪ T is well-ordered, let X
be a nonempty subset of S ∪ T . We can write X = (X ∩ S) ∪ (X ∩ T ). Denote by xs a
minimal element of X ∩ S and by xt a minimal element of X ∩ T . Then min{xs, xt} is a
minimal element of X, and so S ∪ T is well-ordered.

By Proposition 49, both S ∪ T and S + T are p-automatic. So there only remains to
show sparseness. Since sparse sets can be decomposed as a finite union of simple sparse
sets, and since a finite union of simple sparse sets is sparse, we see S ∪ T is sparse. We
now show that S + T is weakly sparse, from which it will immediately follow that S + T is
sparse. Since a finite union of weakly sparse sets is weakly sparse and since S and T are
finite unions of simple sparse sets, we may assume without loss of generality that S and T
are simple sparse.

A simple sparse subset of Sp is of the form {[u •v]p : u ∈ L, v ∈ L′} where L,L′ are
simple sparse sublanguages of {0, 1, . . . , p− 1}∗. In particular, S = A+X, where A is a
sparse subset of N and X is a well-ordered sparse subset of Sp∩ [0, 1). Similarly, T = B+Y ,
where B is a sparse subset of N and Y is a sparse well-ordered subset of Sp ∩ [0, 1). Hence
S + T = (A+B) + (X + Y ). Since A and B are sparse sets of natural numbers, and since
πA+B(x) ≤ πA(x)πB(x), we see that πA+B(x) = O((log x)d) for some d ≥ 0. In particular,
since a sum of two p-automatic subsets of natural numbers is again a p-automatic set of
natural numbers [2, Theorem 5.6.3], A+B is a sparse p-automatic subset of N. Now let
L ⊆ Ep be the regular language {(x)p : x ∈ S+T}. Since X+Y ⊆ [0, 2) and is well-ordered,
if u •v ∈ L then [u]p ∈ (A + B) ∪ (A + B + 1) for u •v ∈ L; moreover, by Kedlaya’s
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description of post-radix behaviour always being sparse [28, Theorem 7.1.6], there is a
sparse p-automatic subset Z of Sp ∩ [0, 1) such that {[v]p : u •v ∈ L} = Z. Thus

#{a ∈ S + T : a < pn and pna ∈ N} ≤ π(A+B)∪(A+B+1)(p
n) ·#{a ∈ Z : pna ∈ N}.

Then by the above remarks and Lemma 75, both π(A+B)∪(A+B+1)(p
n) and #{a ∈ Z : pna ∈

N} are bounded by polynomials in n and thus we obtain the result by Lemma 75.

Proposition 82. Let p be prime. Then we have the following:

(a) the collection of sparse algebraic power series in F̄p[[t]] forms a subalgebra of the ring
of algebraic power series; moreover this subalgebra is Artin-Schreier closed in F̄p[[t]];

(b) the collection of sparse algebraic generalized series in F̄p((tQ)) forms a subalgebra
of the ring of generalized Laurent series; moreover this subalgebra is Artin-Schreier
closed inside F̄p((tQ)).

Proof. We let A denote the collection of sparse algebraic power series in F̄p[[t]]. Then to
show that A is a subalgebra, it is sufficient to show that it is closed under summation and
multiplication. Let F (t), G(t) ∈ A and let SF and SG denote the supports of F and G
respectively. Then the support of (F +G)(t) is contained in SF ∪ SG and since SF and SG
are sparse then we see from the characterization of sparseness given in Theorem 23 that
SF ∪ SG is sparse and so F +G is a sparse algebraic power series. The support of F (t)G(t)
is contained in SF + SG, where SF + SG is the collection of natural numbers that can be
expressed in the form a+ b with a ∈ SF and b ∈ SG. If we define πS(x) = #{n ≤ x : n ∈ S}
for x ≥ 0 for a subset S of the natural numbers, then πSF+SG(x) ≤ πSF (x)πSG(x) and so
again from the characterization of sparseness given in Theorem 23, F (t)G(t) is a sparse
algebraic power series. The only property from (P1)–(P3) in Definition 79 that does not
obviously hold for sparse series is property (P1). Suppose that F (t) is a sparse series
with F (0) = 0 and let S be the support of F . Then if we let S ′ denote the support of
G(t) := F (t) + F (tp) + · · · , then we see that S ′ is contained in T := ∪n≥0(pn · S). Then if
we look at the language L := {(n)k : n ∈ S} then {(n)k : n ∈ S ′} ⊆ L · {0}∗, which is sparse
by Equations (2.5) and (2.6). Since sparse languages are closed under the process of taking
regular sublanguages, the support of G(t) is sparse.

For part (b), we must show that if F (t), G(t) ∈ F̄p((tQ)) are sparse then so are F (t)+G(t)
and F (t)G(t). Let SF and SG denote the supports of F and G respectively. After replacing
F and G by tbF (ta) and tbG(ta) for some positive rational numbers a and b, we may
assume that SF , SG ⊆ Sp. Then the supports of F (t) +G(t) and F (t)G(t) are contained in
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SF ∪ SG and SF + SG respectively, and since the supports of F (t) +G(t) and F (t)G(t) are
p-automatic and well-ordered, we then see they are sparse by Lemma 81.

To show the property of being Artin-Schreier closed holds, it is again enough to prove
that (P1) holds. Let F (t) be a sparse generalized power series and again let S denote its
support. By assumption there are integers a and b with a, b > 0 such that T := Sa+ b ⊆ Sp
is automatic, sparse, and well-ordered. By Lemma 80, T+ := T ∩ (b,∞) and T− := T ∩ [0, b)
are both sparse automatic subsets of Sp. Let S+ = (T+ − b)/a and S− = (T− − b)/a. By
the remarks following Definition 79, if G(t) is a solution to the equation Xp−X +F (t) = 0
and if U denotes the support of G, then U is contained in the union of S1 :=

⋃
n≥0 p

nS+,
S2 :=

⋃
n≥1 p

−nS−, and {0}. Now, let T1 = S1a+ b ⊆ Sp and let T2 = S2a+ b. Then since
automatic subsets of sparse sets are sparse, it suffices to show that T1 and T2 are sparse.
But T1 =

⋃
n≥0((T+ − b)pn + b) and T2 =

⋃
n≥1 ((T− − b)p−n + b), so T1 and T2 are sparse

by Lemma 80, and so the result follows.

We make the following remark. We recall that given a field K and F (t) =
∑
f(n)tn,

G(t) =
∑
g(n)tn ∈ K[[t]], the Hadamard product of F and G is the series

∑
n≥0 f(n)g(n)tn.

Then it is well-known that algebraic power series are closed under Hadamard product (see
[2, Theorem 12.2.6]) and since the support of the Hadamard product of two series is the
intersection of the supports of the series, the following remark is immediate.

Remark 83. Let p be a prime and let q be a power of p. The ring of sparse algebraic power
series in F̄p[[t]] is closed under Hadamard product.

6.2 Proof of the main theorem for sparse Kedlaya

In this section, we give the proof of Theorem 3. In fact, we will prove a somewhat more
general version of Theorem 3 that deals with Kedlaya’s extension of Christol’s theorem.
Before giving this more general statement, we find it convenient to fix the following notation.

Notation 84. We adopt the following notation:

(1) we let p be prime and we let q be a power of p;

(2) we let K = F̄p(t1/n : n ≥ 1, p - n);

(3) we let R denote Fp[t±1/n : n ≥ 1, p - n];

(4) we let L denote the compositum of all Galois extensions of K of order a power of p;
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(5) we let L0 denote the elements G ∈ L such that K[G(t)]/K is unramified outside 0 and
∞;

(6) for each λ ∈ P1
F̄p, we let νλ be the valuation of K induced by taking the order of vanishing

at t = λ (this valuation is discrete when λ ∈ F̄∗p = P1 \ {0,∞});

(7) given a finite Galois extension E of K, we let VE ⊆ E be the set of elements a ∈ E
such that ν(a) 6∈ {−p,−2p,−3p, . . .} for all rank-one discrete valuations ν of E with
ν|K = νλ for some λ ∈ F̄∗p;

(8) given a finite Galois extension E of K, we let VE,+ ⊆ E denote the set of elements
a ∈ E such that ν(a) ≥ 0 for all discrete valuations ν of E with ν|K = νλ for some
λ ∈ F̄∗p;

(9) we let C denote the smallest non-trivial F̄p-subalgebra of F̄p[[t]] that is Artin-Schreier
closed in the power series ring F̄p[[t]];

(10) we let C̃ denote the smallest non-trivial F̄p-subalgebra of F̄p((tQ)) that is Artin-Schreier
closed in the generalized Laurent series ring F̄p((tQ));

(11) we let B denote the collection of generalized power series G(t) such that for some j ≥ 0,
G(tp

j
) ∈ L0 and is integral over R;

(12) we let A denote the ring of sparse algebraic power series and we let Ã denote the ring
of sparse algebraic generalized Laurent series.

In terms of generalized series, we have the following more general version of Theorem 3.

Theorem 85. Let p be prime and adopt the notation of Notation 84. Then

Ã = B = C̃.

In terms of the above notation, Theorem 3 can be stated as A = B ∩ F̄p[[t]] = C, and
so Theorem 85 is an extension of Theorem 3 in the setting of generalized Laurent series.

First, we prove the equalities A = C and Ã = C̃. Proposition 82 shows that A is
Artin-Schreier closed in F̄p[[t]] and that Ã is Artin-Schreier closed in F̄p((tQ)). In particular,

we already have shown that we have the containments C ⊆ A and C̃ ⊆ Ã. Thus the main
content is to prove the reverse inclusion. The key result in this direction is Lemma 87.
Before the key lemma, we recall Alon’s Combinatorial Nullstellensatz.
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Theorem 86. Let K be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in

K[x1, . . . , xn]. Suppose the degree of f is
n∑
i=1

ti, where each ti is a nonnegative integer, and

suppose the coefficient of
n∏
i=1

xtii in f is nonzero. Then, if S1, . . . , Sn are subsets of K with

|Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.

Proof. See [5, Theorem 1.2].

Lemma 87. Adopt the notation of Notation 84 and let d ≥ 1. Then we have the following:

(i) if F (t) ∈ C and F (0) = 0 then F (t) + F (t)p
d

+ F (t)p
2d

+ · · · ∈ C;

(ii) if F (t) ∈ C̃ ∩ F̄p[[tQ]]>0 then F (t) + F (t)p
d

+ F (t)p
2d

+ · · · ∈ C̃ and if F (t) ∈
C̃ ∩ F̄p((tQ))<0 then F (t)p

−d
+ F (t)p

−2d
+ F (t)p

−3d
+ · · · ∈ C̃.

Proof. (i) Let d ≥ 1 and let x1, . . . , xd be commuting indeterminates. We letA(x1, . . . , xd) ∈
Md(Fp[x1, . . . , xd]) be the matrix whose (i, j)-entry is xp

j−1

i . Then f := det(A(x1, . . . , xd))
is a homogeneous polynomial in the variables x1, . . . , xd of total degree pd−1 + · · ·+p+1
with the property that the coefficient of

d∏
i=1

xp
i−1

i

is nonzero. By Theorem 86, there is some (a1, . . . , ad) ∈ F̄dp such that det(A(a1, . . . , ad)) 6=
0, since pd is greater than the degree of f . Now let B = A(a1, . . . , ad). By con-
struction det(B) is nonzero, and so there is some (c1, . . . , cd) ∈ F̄1×d

p such that

(c1, . . . , cd)B = (1, 0, 0, . . . , 0). In other words,
d∑
i=1

cia
pj

i = δj,0 for j = 0, 1, . . . , d− 1.

Moreover, since ap
d

i = ai for i = 1, . . . , d, we in fact have

d∑
i=1

cia
pj

i =

{
1 if j ≡ 0 (mod d),
0 otherwise.
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For i = 1, . . . , d, we let Hi(t) = aiF (t) + apiF (t)p + · · · . Then since aiF (t) ∈ C and C
is Artin-Schreier closed, we have Hi(t) ∈ C for i = 1, . . . , d. Thus

d∑
i=1

ciHi(t) = F (t) + F (t)p
d

+ F (t)p
2d

+ · · · ∈ C.

(ii) The first assertion is handled similar to part (i). For the proof of second assertion, we

again can find ci ∈ F̄p, i = 1, . . . , d such that
d∑
i=1

cia
pj

i = δj,0 for j = 0, 1, . . . , d − 1,

which can be rewritten as
d∑
i=1

cia
pd−k

i = δd−k,0 for k = 0, 1, . . . , d − 1. Then since

a
1/p
i = ap

d−1

i for each i,

d∑
i=1

cia
p−k

i =

{
1 if k ≡ 0 (mod d),
0 otherwise.

For i = 1, . . . , d, we let Hi(t) = aiF (t) + apiF (t)p + · · · . Then since aiF (t) ∈ C and C
is Artin-Schreier closed, we have Hi(t) ∈ C for i = 1, . . . , d. Thus

d∑
i=1

ciHi(t) = F (t) + F (t)p
d

+ F (t)p
2d

+ · · · ∈ C.

For i = 1, . . . , d, we let Hi(t) = a
1/p
i F (t)1/p+a

1/p2

i F (t)1/p2 +· · · . Then since a
1/p
i F (t)1/p ∈

C̃ and C̃ is Artin-Schreier closed, we have Hi(t) ∈ C̃ for i = 1, . . . , d. Therefore

d∑
i=1

ciHi(t) = F (t)−p
d

+ F (t)−p
2d

+ · · · ∈ C̃.

We next require a lemma concerning power series whose support set is a simple sparse
set.

Lemma 88. Let p be prime and adopt the notation of Notation 84. Then the following
hold:
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(i) if S ⊆ N is a non-empty simple sparse subset of N, then

G(t) :=
∑
n∈S

tn is in C,

(ii) if S ⊆ Sp is a non-empty well-ordered simple sparse subset of Sp, then

G(t) :=
∑
α∈S

tα is in C̃.

Proof. We first give the proof of (i). By Lemma 33, there is some s ≥ 0 and some
c0, . . . , cs ∈ Z(p) and positive integers δ1, . . . , δs such that

S =
{
c0 + c1p

δsns + · · ·+ csp
δ1n1+···+δsns : n1, . . . , ns ≥ 0

}
.

Moreover, we have n ≥ c0 for all n ∈ S and c0 ∈ S if and only if s = 0. We prove that
G(t) ∈ C by induction on s. When s = 0, G(t) is a monomial and the result is clear. Thus
we suppose that the result holds whenever s < m with m ≥ 1 and we consider the case
when s = m.

Then we may assume that S is a set of natural numbers of the form{
c0 + c1p

δmnm + · · ·+ cmp
δ1n1+···+δmnm : n1, . . . , nm ≥ 0

}
.

We pick a positive integer N that is coprime to p such that ciN ∈ Z for i = 0, . . . ,m. We
let

T =
{
Nc1 +Nc2p

δm−1nm−1 + · · ·+Ncmp
δ1n1+···+δm−1nm−1 : n1, . . . , nm−1 ≥ 0

}
.

Then T is a subset of the integers and since m > 1, every n ∈ S is strictly greater than c0

and so T is a sparse subset of the positive integers. We let H(t) =
∑

n∈T t
n. Then by the

induction hypothesis H(t) ∈ C. We have

G(tN) =
∑
n∈N ·S

tn = tNc0
∑
j≥0

(∑
n∈T

tn

)pjδm

.

That is, G(tN) = tNc0
(∑

j≥0H(t)p
jδm
)

. By Lemma 87,∑
j≥0

H(t)p
jδm ∈ C.
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Since G(tN) is a power series and C is Artin-Schreier closed in F̄p[[t]], it follows that

G(tN) = tNc0

(∑
j≥0

H(t)p
jδm

)
∈ C.

Since G(t) is also a power series and C is Artin-Schreier closed in F̄p[[t]], we have G(t) ∈ C.
The result follows.

The proof of (ii) is handled in a similar manner. We use Remark 78 to show that if
S ⊆ Sp is a non-empty well-ordered simple sparse set of the form

{c0 + c1p
δj−1nj−1 + c2p

δj−1nj−1+δj−2nj−2 · · ·+ cj−1p
δj−1nj−1+···+δ1n1

+ dj−1 + djp
−δjnj + dj+1p

−(δjnj+δj+1nj+1) + · · ·+ dsp
−(δjnj+···+δsns) : n1, . . . , ns ≥ 0}

then we have S = {dj−1}+ S1 + S2 where S1 is the set{
c0 + c1p

δj−1nj−1 + c2p
δj−1nj−1+δj−2nj−2 · · ·+ cj−1p

δj−1nj−1+···+δ1n1 : n1, . . . , nj−1 ≥ 0
}

and S2 is the set{
djp
−δjnj + dj+1p

−(δjnj+δj+1nj+1) + · · ·+ dsp
−(δjnj+···+δsns) : nj, . . . , ns ≥ 0

}
.

Then G(t) :=
∑
α∈S

tα can be written as a product tdj−1G1(t)G2(t), where Gi(t) =
∑
α∈Si

tα for

i = 1, 2. Then from the above we have G1(t) ∈ C ⊆ C̃ and since S2 ⊆ (−∞, 0), a variant
of the above argument used with negative powers of p and applying Lemma 87 gives that
G2(t) ∈ C̃ and so G(t) ∈ C̃.

Proof of Theorem 3 (a) and the equality Ã = C̃ in Theorem 85. Proposition 82 gives C ⊆
A and C̃ ⊆ Ã. We want to show that A ⊆ C and Ã ⊆ C̃. We first show A ⊆ C. Let

G(t) =
∞∑
n=0

g(n)tn ∈ F̄p[[t]] be an algebraic power series with sparse support. Since G(t) is

algebraic, there exists a power q of p such that G(t) ∈ Fq[[t]] by Theorem 48. For α ∈ F∗q,
we define Sα := {n ∈ N : g(n) = α} ⊆ N. By assumption, Sα is sparse for each nonzero α
in Fq. Then we can write

G(t) =
∑
α∈F∗q

α

(∑
n∈Sα

tn

)
.
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Since each Sα is sparse, by Equation (2.5), each Sα admits a decomposition into disjoint
sets

dα⊔
i=1

Sα,i

for some integer dα ≥ 1 with each Sα,i a simple sparse set. For α ∈ Fq and i = 1, . . . , dα,
we define

GSα,i(t) :=
∑
n∈Sα,i

tn.

Then we have

G(t) =
∑
α∈F∗q

α

(
dα∑
i=1

GSα,i(t)

)
.

Now by Lemma 88, each GSα,i(t) is in C and so G(t) is also in C. Therefore it follows

that A ⊆ C. Now, similarly for Ã ⊆ C̃, let H(t) =
∑
s∈S

h(s)ts ∈ F̄p((tQ)) be an algebraic

generalized Laurent series with sparse support. Since H(t) is algebraic, there exists a
power q of p such that H(t) ∈ Fq((tQ)) by Theorem 48. For α ∈ F∗q, we define Sα := {s ∈
Q : h(s) = α} ⊆ Q. By assumption, Sα is sparse for each nonzero α in Fq. Then we can
write

H(t) =
∑
α∈F∗q

α

(∑
s∈Sα

ts

)
.

Since each Sα is sparse, by Equation (2.5), each Sα admits a decomposition into disjoint
sets

dα⊔
i=1

Sα,i

for some integer dα ≥ 1 with each Sα,i a simple sparse set. For α ∈ Fq and i = 1, . . . , dα,
we define

HSα,i(t) :=
∑
s∈Sα,i

ts.

Then we have

H(t) =
∑
α∈F∗q

α

(
dα∑
i=1

HSα,i(t)

)
.

Now by Lemma 88, each HSα,i(t) is in C̃ and so H(t) is also in C̃. The result follows.
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We now prove Theorem 3 (b), which in terms of Notation 84 can be expressed as
A = B ∩ F̄p[[t]]. In order to prove this equality, we must first obtain a description of L0,
which appears in the definition of B.

To give a better picture of L0, it is necessary to first know all valuations of K. We
recall that the places of the field F̄p(t) that are constant on F̄p are parametrized by the
projective line over F̄p (see Zariski-Samuel [48, Ch. VI, §17]). Since valuations of F̄p are all
trivial, these are in fact all places. Each such place is a discrete valuation of F̄p(t) and for
λ ∈ P1 \{0,∞} these valuations lift uniquely to a valuation of K with the same value group
as its restriction to F̄p(t); that is, K is an extension of F̄p(t) that is unramified outside of 0
and ∞. If we had included p-th power roots of t in our definition of K, the value groups of
the extensions of these valuations would necessarily increase from Z to Z[1/p].

We begin with a simple result characterizing integral closure in terms of valuations that
we shall use in the proof of the main theorem.

Lemma 89. Adopt the notation of Notation 84 and let E be a finite Galois extension of
K. Then a ∈ VE,+ if and only if a is integral over R.

Proof. Let X denote the set of valuations on E whose restriction to K is of the form νλ for
some λ ∈ F̄∗p. First suppose that a ∈ E is integral over R. Then a satisfies a non-trivial
polynomial equation an+rn−1a

n−1 + · · ·+r0 = 0 for some n ≥ 1 and r0, . . . , rn−1 ∈ R. Then
if µ is a valuation of E with µ|K = νλ for some λ ∈ F̄∗p and ν(ri) ≥ 0 for i = 0, . . . , n− 1.
Then if ν(a) < 0 for some ν ∈ X , we necessarily have ν(an) = nν(a) < iν(a) ≤ ν(ria

i)
for i = 0, . . . , n − 1, which contradicts the fact that an = −(rn−1a

n−1 + · · · + r0). Thus
a ∈ VE,+. Conversely, suppose that a ∈ VE,+ and that a is not integral over R. Then
since a is not integral over R and a is necessarily nonzero we have a is not integral
over R[a−1] since otherwise, we would have a non-trivial polynomial relation of the form
0 = an + pn−1(a−1)an−1 + · · ·+ p0(a−1), with each pi(a

−1) ∈ R[a−1], and then multiplying
by a sufficiently large power of a would give that a is integral over R. In particular, a−1

is not a unit of the integral closure S of R[a−1] and so there is a height one prime Q of S
such that a−1 ∈ Q. Then the local ring SQ is a discrete valuation ring and the valuation ν
on E induced by Q gives a rank-one discrete valuation of K corresponding to the valuation
induced by the prime ideal R ∩Q of R. In particular, there is some λ ∈ F̄∗p such that ν|K
is equivalent to νλ. Now by construction a−1 ∈ Q and so ν(a−1) > 0 and thus ν(a) < 0,
which contradicts the fact that a ∈ VE,+.

Lemma 90. Adopt the notation from Notation 84, let E be a finite extension of K, let
λ ∈ F̄∗p, and let Y be the set of valuations of E whose restriction to K is equal to νλ. Then
for each µ ∈ Y, there exists ε ∈ VE,+ such that µ′(ε− δµ,µ′) > 0 for all µ′ ∈ Y.
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Proof. Let T denote the integral closure of R in E. Then P := {r ∈ R : νλ(r) > 0} is a
maximal ideal of R. Let Q1, . . . , Qs denote the prime ideals of T that lie above R. Then
each local ring TQi is a discrete valuation ring and each µ ∈ Y is induced by one of these
valuation rings. Since the Qi are maximal ideals, they are in particular pairwise comaximal,
and so we see by the Chinese remainder theorem there exists some εi ∈ T such that
εi − δi,j ∈ Qj . The fact that each εi ∈ VE,+ follows from Lemma 89. The result follows.

Lemma 91. Adopt the notation from Notation 84, let E be a Galois extension of K of
degree pm for some m ≥ 0 that is unramified outside of 0 and ∞, and let a be a nonzero
element of E. Then there is some b ∈ E such that a− (bp − b) is in VE.

Proof. Let X denote the set of valuations on E whose restriction to K is of the form νλ
for some λ ∈ F̄∗p. Then there are finitely many µ ∈ X such that µ(a) < 0. Since E is an
extension of K that is unramified outside of 0 and ∞, the value group of each µ ∈ X is the
same as the value group of the corresponding νλ and so (t− λ) is a uniformizing parameter
for the valuation ring of µ. Let µ1, . . . , µd be the finite set of valuations in X for which
µi(a) ∈ {−p,−2p, . . . } for i ∈ {1, . . . , d}, and let m1, . . . ,md be the positive integers such
that µi(a) = −pmi.

Let M = M(a) := m1 + · · · + md. We prove the claim by induction on M . When
M = 0 (i.e., d = 0), there is nothing to show. We next assume that the claim holds
whenever M < N and we consider the case when M = m1 + · · · + md = N . Let
λ ∈ F̄∗p be such that µ1|K = νλ. Then since µ1(a) = −m1p, there is some c ∈ F̄∗p
such that µ1(a − cp/(t − λ)m1p) > µ1(a). By Lemma 90, there is some ε ∈ VE,+ such
that µ(ε − δµ,µ1) > 0 for all valuations µ ∈ X with µ|K = µ1|K . It follows that for a
sufficiently large s > 1 we have µ(a − cpεp

s
/(t − λ)m1p + cεp

s−1
/(t − λ)m1) = µ(a) for

µ ∈ X and µ 6= µ1 and µ1(a − cpεp
s
/(t − λ)m1p + cεp

s−1
/(t − λ)m1) < µ1(a). Letting a′ =

a− cpεps/(t−λ)m1p + cεp
s−1
/(t−λ)m1 and noting that ε ∈ VE,+, we see that M(a′) < M(a).

Then by the induction hypothesis there is some b ∈ E such that a′ − bp + b ∈ VE and so
a− (b′)p + b′ ∈ VE with

b′ = b+ cεp
s−1

/(t− λ)m1 .

The result follows.

Lemma 92. Adopt the notation of Notation 84. Then C̃ ⊆ B and C ⊆ B ∩ F̄p[[t]].

Proof. By the definitions of C̃ and C it suffices to show that B is Artin-Schreier closed in
the ring of generalized Laurent series and that B ∩ F̄p[[t]] is Artin-Schreier closed in the
ring of formal power series over F̄p, since B contains R.
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Since the substitutions t 7→ αt with α ∈ F̄∗p preserve P1 \ {0,∞}, B and B ∩ F̄p[[t]] both
have property (P2) in Definition 79. Similarly, since for c a nonzero rational number with
p-adic valuation 1, the map t 7→ tc induces an automorphism of R; moreover, if c > 0 then
this extends to an automorphism of the ring of generalized Laurent series. Thus if F (t) ∈ B
then F (tc) ∈ B and if F (t) ∈ B ∩ F̄p[[t]] and F (tc) ∈ F̄p[[t]] then F (tc) ∈ B ∩ F̄p[[t]]. By
construction, B is closed under the maps induced by t 7→ tp and t 7→ t1/p and so we then
see property (P3) holds in both cases.

Thus it remains to verify that property (P1) holds. Suppose that F (t) ∈ B. Then
there is some j ≥ 0 such that G(t) := F (tp

j
) is in L0 and is integral over R. Let H(t) be

a generalized Laurent series that is a solution to Xp −X = G(t). Since G(t) is integral
over R, H(t) is integral over R. Let E denote an extension of K containing G that is
unramified outside of 0 and ∞. Since G(t) is integral over R, we have G ∈ VE,+ by Lemma
89. Let ν be valuation of E whose restriction to K corresponds to νλ with λ ∈ F̄p. Then
since E is an extension of K that is unramified outside of 0 and ∞, and ν(G) ≥ 0, we
can complete with respect to the valuation ν and we see that G has a formal power series
expansion in the variable u = t− λ. Write G(u) =

∑
i≥0 aiu

i and let G+(u) =
∑

i≥1 aiu
i.

Then H1(u) := G+(u) + G+(up) + · · · is a power series in u and since H is a solution to
Xp −X = G, H is of the form H1 + β for some β ∈ F̄p with βp − β = a0. In particular, H
lies in the completion of the valuation ring of ν and so the value groups of the extensions
of ν to E(H) are all equal to the value group of ν (more precisely u is a uniformizing
parameter for the valuation ring of E(H) for each valuation above ν) and so E(H) is
unramified at all extensions of ν to E(H). Thus the field E(H) is an extension of K that
is unramified outside of 0 and ∞ and so H ∈ B. Thus B has properties (P1)–(P3) and the
result follows.

Proof of Theorem 3 (b) and the equality B = Ã in Theorem 85. We adopt the notation of
Notation 84. Suppose that G(t) ∈ B. We shall first show that G(t) is sparse. We may
replace G(t) by G(tp

j
) and assume that G ∈ L0. Let E denote the Galois closure of G(t)

over K. Then [E : K] = pm for some m ≥ 0. We prove this by induction on m. If m = 0,
G ∈ K and since G is integral over R and R is integrally closed in K, G ∈ R, and so G is
easily seen to be sparse in this case, as elements of R have finite support. Now we suppose
that the result holds whenever m < s with s ≥ 1 and we consider the case when m = s.

By Remark 61, there is a Galois extension E0 of K of degree ps−1 that is unramified
outside of 0 and ∞ with E = E0[H] and Hp −H = F ∈ E0. By Lemma 91, there is some
b ∈ E0 such that F − bp + b ∈ VE0 . Thus after replacing H by H + b, we may assume that
F ∈ VE0 . Then notice in fact that we must have F ∈ VE0,+ since otherwise there would
be some valuation ν of E0 with ν(F ) < 0 and p - ν(F ). Then since Hp −H = F , we have
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ν ′(H) = ν(F )/p 6∈ Z for every extension ν ′ of ν to E. In particular, this contradicts the
fact that E is unramified outside of 0 and ∞. Thus F is integral over R by Lemma 89
and so F ∈ B and thus F is sparse by the induction hypothesis. Hence H is a sparse
generalized power series by Proposition 82. Moreover, H ∈ B as E is unramified over
K outside of 0 and ∞ and H is integral over R since F is integral over R. Then since
G(t) ∈ E0[H], we can write G = e0 + e1H + · · · + ep−1H

p−1 with e0, . . . , ep−1 ∈ E0. We
claim that e0, . . . , ep−1 ∈ B. To see this, suppose that this is not the case. Then there is
some largest i ≥ 0 for which ei 6∈ B. Then G0 = e0 + e1H + · · ·+ eiH

i ∈ B, since G ∈ H
and ejH

j ∈ B for j > i. Since E is a Galois extension of E0 and Hp −H ∈ E0, there is
an automorphism of E that fixes E0 element-wise and sends H to H + 1. Since σ fixes K
element-wise, σ preserves elements of B. In particular, the operator ∆ : E → E given by
∆(a) = σ(a)− a maps elements of B ∩ E to elements of B ∩ E. Notice that

∆i(G0) = i!ei 6∈ B,

which is a contradiction since G0 ∈ B and B is preserved under application of ∆. Thus
e0, . . . , ep−1 ∈ B. By the induction hypothesis, e0, . . . , ep−1 are sparse generalized power
series and since H is also a sparse generalized power series, G must be too, since sparse
series form a ring. The result now follows by induction. Hence G(t) ∈ Ã. By Lemma 92

and the fact that Ã = C̃, established earlier, we see that Ã = C̃ ⊆ B and so B = Ã. It
is straightforward to show that Ã ∩ F̄p[[t]] = A and so we also get B ∩ F̄p[[t]] = A. This
completes the proof.
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Chapter 7

Future directions

We have seen that many important results about automatic sets have natural refinements
when one restricts one’s focus to those automatic sets that are sparse. In fact, for any result
about automatic sets, we believe one should also consider as a follow-up question what
happens in the sparse case. With this point of view, there is then no shortage of interesting
questions about sparse automatic sets. For example, a sparse version of Cobham’s theorem
is provided in Chapter 4 and also an evidence is presented towards the following conjecture.

Conjecture 93. (Bell, 2020) Let k and ` be multiplicatively independent positive integers.
If S is a sparse k-automatic set and T is a zero density `-automatic set, then S ∩T is finite.

But one area of focus that we feel might be of potential interest is to define a notion
of a sparse regular series instead of sparse automatic ones. We saw earlier that k-regular
sequences, first defined by Allouche and Shallit [3, 4], are a natural generalization of
k-automatic sequences. Many of the fundamental results in automata theory have been
extended to the case of regular sequences, including, in particular, Cobham’s big theorem
[7].

It is not immediately clear what the correct notion of sparseness should be in the context
of regular sequences; a naive possibility would be to look at the set of values n for which
f(n) 6= 0 and insist that this be a sparse automatic set. While we do not currently know
what the correct analogue for sparseness should be in this context, we feel that finding
the right definition and then considering similar refinements as we have for results about
regular sequences would be a worthwhile subject of study.
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