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Abstract

Hydrogen has long been considered an ideal model system for a variety of molecular configu-

rations, given its chemical simplicity and ubiquitous nature in the world. However, the weak

van der Waals forces that exist between hydrogen molecules have often been challenging to

model, with work in developing a thorough analytical and numerical potential energy surface

dating back decades. In this thesis, we consider a theoretical approach to hydrogen-based

systems. We draw on well known properties of spherical harmonics to produce vibrational

Raman and Infrared results, with good agreement to prior experimental work and for the

prediction of results for isotopologues involving deuterium and tritium. As part of this

analysis, both spin isomers (para and ortho) are considered; a full range of nuclear spin

considerations are discussed as a means of helping to explore spectroscopic intensities. We

consider efficient diagonalization techniques and basis reduction tools, in conjunction with

the general theme of symmetrization. This model is also extended to an adiabatic setup,

where a more ‘primitive’ basis is considered; in this configuration, the rotors are assumed

to be decoupled from one another without end-over-end rotation of the dimer and are fixed

in space. By analyzing the various states at different intermolecular distances, we are able

to explore the suitability of this model in comparison to the full coupled results. We then

extend these findings to chains of hydrogen molecules; here, we explore both an exact di-

agonalization technique as well as a singular value decomposition and one-body operator

method for use with the density matrix renormalization group. Ultimately, this work will

help lay a foundation for other arrangements of hydrogen (e.g. clusters, solid hydrogen) and

similar homonuclear diatomic molecules, such as nitrogen or oxygen.
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Chapter 1

Introduction

As the most common element in the universe, hydrogen is an essential component of numer-

ous molecules. In particular, molecular hydrogen (H2) has a wide range of applications, from

its use as a clean source of fuel1 to its presence in many chemical reactions.2 The ability

to store hydrogen molecules for later use has also prompted significant research; ongoing

work focuses on structures such as carbon nanotubes3 or water-based clathrates4 as poten-

tial mediums for clusters or chains of molecules. As part of this research, it is essential to

have an understanding of how hydrogen molecules interact with each other to produce forms

as diverse as dimers, chains, and solid configurations. Despite the simplicity of hydrogen

atoms and molecules, substantial work has been devoted to creating increasingly complex

intermolecular potential energy surfaces. As will be explored throughout this thesis, these

efforts have become very successful in reproducing and helping to predict experimental spec-

troscopic results.
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1.1 Ortho and Para Hydrogen: Nuclear Spin Statistics

As described by Van Kranendonk,5 the number of protons and neutrons within an atom’s

nucleus are responsible for determining a parameter known as nuclear spin. If a nucleus

has some spin I, there will be a total of 2I + 1 degenerate nuclear spin states (|Im〉).

However, identical atoms can undergo exchange of their nuclei, producing a new quantity

known as IT that represents the total spin. In general, IT spans {|I1 − I2| . . . (I1 + I2)} since

IT = I1 + I2. For the special case of identical molecules, I1 = I2 = I, the possible values

for IT are 0, . . . , 2I − 1, 2I. To determine the combined coupled spin states |ITmT 〉, we can

rewrite the equation in terms of a tensor product of the two individual spin states, where we

add a Clebsch-Gordan coefficient for each product and apply a summation:6

|ITmT 〉 =
∑
m1,m2

CITmT
Im1Im2

|Im1〉1 |Im2〉2 (1.1)

The nuclei of particles are characterized as bosons and fermions if they have integer or

non-integer spin, respectively. The primary distinction between these two categories is the

mathematical result that occurs upon exchange of two identical particles. In particular,

in terms of their total wavefunctions, fermions are antisymmetric upon exchange, whereas

bosons are symmetric upon exchange. These total wavefunctions can be thought of as a

product of each individual component wavefunction: ΨT = ΨelΨvibΨrotΨns. For 1H, I = 1
2
,

indicating that the nucleus is a fermion and requiring that the total nuclear wavefunction be

antisymmetric upon exchange of the two hydrogen nuclei. This property takes into account

the swapping of the internuclear separation variable r with the term −r that dictates the
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symmetry of the orbital component of the wavefunction, such that it is paired properly with

either a symmetric or antisymmetric nuclear spin wavefunction.5 Note that the ground elec-

tronic state for H2 is 1Σ+
g , which is symmetric upon exchange. The vibrational ground state

is also symmetric, since the wavefunction is invariant of the sign change of r. By contrast,

the parity of the spherical harmonics (−1)j produces symmetric rotational wavefunctions

for even j values and antisymmetric rotational wavefunctions for odd j values (for a 180◦

rotation). Therefore, for H2:

Ψtot(AS) = Ψel(S) ∗Ψvib(S) ∗


Ψrot,even(S) ∗Ψns(AS)

Ψrot,odd(AS) ∗Ψns(S)

(1.2)

Here, we see that the sign of Ψns is determined using the known properties of Clebsch-Gordan

coefficients that allow us to determine the symmetry of the spin function. In particular,

exchanging particles 1 and 2 results in an identical result with the addition of a phase

factor:5

P̂12 |ITmT 〉 =
∑
m1,m2

(−1)I+I−ITCITmT
Im2Im1

|Im2〉2 |Im1〉1

= (−1)2I−IT |ITmT 〉

(1.3)

Based on the above equation, for non-integer spin, when 2I−IT is odd, Ψns is antisymmetric

and produces (2I+1)I states (singlet, H2, para, IT = 0). If 2I−IT is even, Ψns is symmetric

and produces (2I+1)(I+1) states (triplet, H2, ortho, IT = 1).5 Ortho hydrogen is restricted

to odd rotational levels, while para hydrogen is limited to even rotational levels for ground

and excited vibrational states. This ratio between ortho and para hydrogen defines the upper

3



boundary of ortho hydrogen at high temperatures with a fixed 3:1 equilibrium between the

two forms. However, as the temperature decreases, the equilibrium shifts in favour of para

hydrogen, approaching a pure form (Figure 1.1) as a consequence of Boltzmann statistics.

Note that all plots shown throughout this work were created using the Matplotlib software

package.7
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Figure 1.1: Relative ortho equilibrium concentrations for compounds containing H2 or D2

at different temperatures. At high temperatures, ortho H2 and D2 dominate at ratios of 3:1
and 2:1, respectively, in comparison to the corresponding para spin isomer. By contrast, at
low temperatures, the mixtures are nearly pure para H2 and ortho D2.5

1.2 Hydrogen Dimers

The weakly-bound van der Waals dimer (H2)2 has been a source of fascination and study for

decades. It was first discovered by Watanabe and Welsh in 1964,8 who identified the dimer

4



H

H

H

H

Figure 1.2: 6D Body-fixed representation of the (H2)2 dimer, consisting of three radial
(r1, r2, R) and three angular coordinates (θ1, θ2, φ).

using infrared (IR) spectroscopy on samples of pure para hydrogen (pH2) and normal gaseous

H2 containing hydrogen’s other spin isomer, ortho hydrogen (oH2). Further investigation by

McKellar and coworkers9–12 verified the presence of (H2)2, with additional rovibrational lines.

Theoretical studies have sought to complement these experimental results, focusing on pro-

ducing an accurate potential energy surface (PES) that allows for the prediction of spectral

lines.13–20 In 2008, Hinde19 introduced a six dimensional setup, consisting of three radial (r1,

r2, R) and three angular (θ1 , θ2 , φ) components (Figure 1.2). As part of his investigation,

Hinde successfully confirmed several rovibrational lines described by McKellar for pH2-pH2

dimers using IR spectroscopy. However, given that hydrogen molecules lack a permanent

dipole moment and only possess a weak quadrupole, Raman spectroscopy is a more viable

alternative for the detection of clusters. Production of small (N = 2 − 8) para hydrogen

clusters has been shown to be possible through the use of cryogenic free jets.21 Hinde’s

model accurately predicted a Raman shift of -0.4 cm−1 for the dimer, relative to the Q(0)

monomer spectral line. Over the past few years, para hydrogen clusters have been explored

5



in more depth. Motivated by Hinde’s results, an adiabatic Hindered (1D) rotor potential was

constructed from the 6D model,22,23 in tangent with related studies involving pH2-CO2,24

pH2-H2O,25 pH2-N2O,26 and pH2-CH3F27 complexes. While other approaches have relied

on adiabatic corrections to a Born-Oppenheimer model involving nuclear and electronic co-

ordinates of the hydrogen dimer,28 the adiabatic 1D rotor model focuses on separating the

fast motion along the dimer coordinates (r1, r2, θ1 , θ2 , φ) from the slow motion along

the coordinate R. Given the difficulty in producing and isolating ortho hydrogen-containing

dimers at low temperatures, little experimental work has been performed for ortho-para and

ortho-ortho hydrogen dimers. A recent theoretical paper investigated the applicability of

this potential in solid para hydrogen, using a path integral method.29 However, cryogenic

free jets have also been used to produce mixed hydrogen clusters.30 This setup allowed for

the identification of oH2-pH2 and oH2-oH2 hydrogen dimers using Raman spectroscopy, with

observed shifts of approximately -0.3 cm−1 from the Q(0) and Q(1) lines and -0.4 cm−1 from

the Q(1) line, respectively.

1.3 Solid Hydrogen

Research on solid hydrogen provides an additional opportunity for observing fascinating

characteristics of both ortho and para hydrogen. In particular, there has been significant in-

terest in impurities within solid hydrogen that affect the physical properties of the structure.

At equilibrium, experimental evidence has suggested that solid hydrogen forms in a hexag-

onal close-packed (hcp) structure preferentially over a face-centred cubic (fcc) structure;5

recent theoretical work has helped confirm this idea.29,31 At atmospheric pressure, solid hy-

6



drogen forms only at low temperatures (<14.01 K),32 producing structures that are nearly

entirely composed of para hydrogen. These structures can lead to a number of interesting

spectroscopic results. In general, no Q(0) infrared spectrum peak can be detected since the

symmetry of the complex leads to a net induced dipole of zero,33 while the Q(0) quadrupole

transition is also forbidden.34 However, if a “dopant” or “impurity” is introduced within

the structure, the net induced dipole is no longer zero and IR peaks can be observed.35 A

number of different molecules can be used as possible impurities, with various effects on the

resulting IR specta to produce a shifted, narrowed Q(0) line (around 4149-4152 cm−1 in solid

hydrogen).33,35 In particular, increasing the concentration of ortho hydrogen in the sample

introduces impurities in the clusters and produces an IR peak.5,36 Noble gases (e.g. Ar, Kr,

Xe) are also able to produce distinguishable Q(0) peaks, with downward shifts in energy due

to the formation of X-H2 complexes, with the intensity of the IR signal varying depending on

the strength of the interaction between the hydrogen molecule and introduced impurity.33

1.4 Structure of Thesis

This thesis is divided into four additional technical and application chapters, and a conclu-

sion. Chapter 2 outlines a theoretical framework for the exact (‘full’) and adiabatic hydrogen

dimer models; these models, with comparisons to experimental data, are described in Chap-

ters 3 and 4, respectively. Chapter 5 extends this model using exact diagonalization and the

density matrix renormalization group (DMRG), using a mix of analytical one body operators

as well as a singular value decomposition (SVD) method.

7



Chapter 2

Theoretical Framework

In this chapter, we present a summary of the coupling mechanisms for various basis sets,

including the close-coupled approach developed previously,37–40 which is applied for the

hydrogen dimer system in Chapter 3. These equations are formed based on the scattering

approach of two rotors first introduced by Klar.37 We also consider the effects of varying

levels of coupling on the labeling of eigenvalues. Before considering the exact nature of our

potential energy matrix elements, let us consider the components of the chosen basis sets.

For a dimer system, the two hydrogen molecules have angular momentum quantum numbers

j1 and j2, with projections m1 and m2, respectively. In the space-fixed frame, the dimer itself

has some separate quantum number Lend with projection MLend which defines the end-over-

end rotation of the dimer as a whole. When defining our basis set, we can couple various

parts of our basis sets together; this property allows us to sum over different m projections,

reducing the ultimate size of our basis set. The addition or lack of coupling produces different

potential energy matrix elements, since we are making use of different representations of the

chosen basis set. However, in certain cases, we can also exclude components of the basis set

from consideration; in particular, the ‘partial’ and ‘primitive’ coupling approaches described

8



below neglect the end-over-end rotation quantum number Lend in contrast to its inclusion in

the ‘Full‘ close-coupled approach.

2.1 Full close-coupled approach

In this setup, we assume that j1 + j2 = j12 and Lend + j12 = J . Of these quantum

numbers, only J is conserved (i.e. [Ĥ,J ]=0). This property ensures that J is both diagonal

and that its corresponding projection M plays no role in the value of the obtained potential

(i.e. it is rotationally invariant).37 Note that our angular wavefunction is given as a tripolar

spherical harmonic:19,39

IJ,M,j1,j2,j12,Lend(r̂1, r̂2, R̂) =
∑

m1m2m12MLend

Cj12m12

j1m1j2m2
CJM
j12m12LendMLend

× Yj1,m1(r̂1)Yj2,m2(r̂2)YLend,MLend
(R̂) (2.1)

In the above equation, the notation Cj3m3

j1m1j2m2
is used as a standard representation for

Clebsch-Gordan coefficients. Our potential operator V̂12 is divided into two different parts:

a radial operator Âl1,l2,L and an angular operator Ĝl1,l2,L. The angular operator is a zero

rank tensor, composed of the scalar product of a bipolar spherical harmonic and another

spherical harmonic.37 Note that the chosen expansion for l1, l2, L differs for a particular sys-

tem depending on the importance of each term, e.g. for the hydrogen dimer, the following

expansions are the most important: (l1, l2, L) =(000, 022, 202, 224). Throughout this chap-

ter, we focus primarily on an exact, analytical expression for the Ĝl1,l2,L operator. For the

radial portion of the potential, we use a simple expression of Al1,l2,L(R). In Chapter 3, when

9



we make use of Hinde’s19 6D potential, we describe vibrationally averaged values for the

potential as 〈ν1j1ν2j2| Âl1,l2,L |ν ′1j′1ν ′2j′2〉. Notably, these values take into account a (4π)−3/2

term that is produced during the exact integration of spherical harmonics in the analytical

expression. This property allows for a simplification of the explicit Ĝl1,l2,L terms and matrix

elements. For instance, in a body-fixed frame, these terms are defined as:16

Ĝ000(θ1, θ2, φ) = 1 (2.2)

Ĝ022(θ1, θ2, φ) =
5

2
(3 cos2(θ2)− 1) (2.3)

Ĝ202(θ1, θ2, φ) =
5

2
(3 cos2(θ1)− 1) (2.4)

Ĝ224(θ1, θ2, φ) =
45

4
√

70
[2(3 cos2(θ1)− 1)(3 cos2(θ2)− 1)

− 16 sin(θ1) cos(θ1) sin(θ2) cos(θ2) cos(φ)

+ sin2(θ1) sin2(θ2) cos(2φ)] (2.5)

In our space-fixed frame, we instead define these terms as the following, beginning without

any initial (4π)−3/2 normalization:6,37

Ĝl1,l2,L(r̂1, r̂2, R̂) = {Yl1(r̂1)⊗ Yl2(r̂2)}LmL · YL(R̂) (2.6)

=
∑

ml1ml2mL

CLmL
l1ml1 l2ml2

Yl1,ml1 (r̂1)Yl2,ml2 (r̂2)YL,mL(R̂)∗ (2.7)

= YL(R̂) · Y l1l2
L (r̂1, r̂2) (2.8)
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We can express this fully in matrix element form with the basis |j1j2j12LendJM〉:37

〈j1j2j12LendJM | V̂12 |j′1j′2j′12L
′
endJ

′M ′〉 =
∑
l1l2L

Al1l2L(R)

× 〈j1j2j12LendJ ||YL · Y l1l2
L ||j′1j′2j′12L

′
endJ

′〉 (2.9)

Using Eq. 5.13 from Brink and Satchler,41 we can write the following expression. Note that

[x] = 2x+ 1 and that W denotes a Racah coefficient:

〈j1j2j12LendJ ||YL · Y l1l2
L ||j′1j′2j′12L

′
endJ

′〉 = (−1)J−Lend−j
′
12W (LendL

′
endj12j

′
12;LJ)

× 〈Lend||YL ||L′end〉

× 〈j1j2j12||Y l1,l2
L ||j′1j′2j′12〉 δJ,J ′δM,M ′ (2.10)

Where (using Eq. 5.12 from Brink and Satchler):

〈Lend||YL ||L′end〉 =

(
[L′end][L]

4π

)1/2

CLend0
L′
end0L0 (2.11)
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In the above equation, we follow the convention from Varshalovich6 (see Eq. 13.2.8(105)

versus Eq. 4.17 from Brink and Satchler) for the form of the reduced matrix elements, such

that our reduced matrix element term is [Lend]
1/2 greater than the equivalent term given by

Brink and Satchler, which has an additional factor of [Lend]
−1/2 in Eq. 2.11. We continue

this convention below for the expansion of the reduced matrix elements below, relying on a

modified Eq. 5.12 from Brink and Satchler (e.g. we have included the [j12]1/2 factor in this

equation as opposed to the previous equation).

〈j1j2j12||Y l1,l2
L ||j′1j′2j′12〉 =

(
[j12][j′12][L]

)1/2


j12 j′12 L

j1 j′1 l1

j2 j′2 l2


× 〈j1||Yl1 ||j′1〉 〈j2||Yl2 ||j′2〉 (2.12)

=
(
[j12][j′12][L]

)1/2


j12 j′12 L

j1 j′1 l1

j2 j′2 l2


×
(

[j′1][l1]

4π

)1/2

Cj10
j′10l1

(
[j′2][l2]

4π

)1/2

Cj20
j′20l2

(2.13)
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The final form given by Green is presented slightly different, using Wigner-3j and Wigner-6j

symbols instead of Clebsch-Gordan and Racah coefficients, respectively. First, let us consider

Eq. 8.1.2(12) from Varshalovich to convert the Clebsch-Gordan coefficients to Wigner-3j

symbols:

CLend0
L′
end0L0 = (−1)L

′
end−L[Lend]

1/2

L′end L Lend

0 0 0

 (2.14)

Cj10
j′10l10 = (−1)j

′
1−l1 [j1]1/2

j′1 l1 j1

0 0 0

 (2.15)

Cj20
j′20l20 = (−1)j

′
2−l2 [j2]1/2

j′2 l2 j2

0 0 0

 (2.16)

Now, we use Eqs. 9.4.3(5) and 9.1.2(11) from Varshalovich to convert Racah coefficients to

Wigner-6j symbols:

W (LendL
′
endj12j

′
12;LJ) = W (L′endLendj

′
12j12;LJ) (2.17)

= (−1)L
′
end+Lend+j12+j′12


L′end Lend L

j12 j′12 J

 (2.18)

For each of the above Wigner-3j symbols, the following relationship is true (see Eq. 8.4.2(5)

of Varshalovich):

ja jb jc

0 0 0

 = (−1)ja+jb+jc

jb ja jc

0 0 0

 (2.19)
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(ja + jb + jc) must be even for all of these results or else the resulting term is equal to 0 (see

Eq. 8.5.2(32)) and the phase can be discarded for these terms. If we make this conversion

and sum up all of the others parities, we are left with the following result:

(J − Lend − j′12) + (L′end − L) + (j′1 − l1) + (j′2 − l2) + (L′end + Lend + j12 + j′12)

= J + 2L′end + j′1 + j′2 + j12 − l1 − l2 − L (2.20)

Since L′end is an integer, 2L′end is an even integer, and can be discounted. Similarly, −(l1+l2+

L) is also even. Our final expression for the phase is therefore (−1)J+j′1+j′2+j12 . In addition,

from Eq. 10.4.1(6) from Varshalovich:


j12 j′12 L

j1 j′1 l1

j2 j′2 l2


=


j′12 j′2 j′1

j12 j2 j1

L l2 l1


(2.21)

A slightly different final phase can be derived instead: (−1)J+j1+j2+j′12 , which is equivalent to

the form from above and makes use of the symmetry and phase change properties associated

with Wigner 3-j and 6-j symbols, as well as some prior conventions used in deriving this

result. We therefore obtain the final expression for the potential energy matrix elements

written in the same final form as Green,39 where |λ〉 = |j1j2j12LendJ〉:

〈λ| V̂12 |λ′〉 =
∑
l1l2L

Al1l2L(R) (4π)−3/2 (−1)J+j1+j2+j′12

× ([L]2[l1][l2][j1][j2][j12][Lend][j
′
1][j′2][j′12][L′end])

1/2
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×

L L′end Lend

0 0 0


l1 j′1 j1

0 0 0


l2 j′2 j2

0 0 0



×


L′end Lend L

j12 j′12 J




j′12 j′2 j′1

j12 j2 j1

L l2 l1


δJ,J ′δM,M ′ (2.22)

2.2 ‘Partial’ close-coupled approach

Suppose we remove end-over-end rotation, i.e. the quantum number Lend, and consequently,

the total angular momentum J . However, j12 is not a conserved quantity and is not rota-

tionally invariant (i.e. [Ĥ, j12] 6= 0). In other words, our new basis set is |j1j2j12m12〉, where

our angular wavefunction is a bipolar spherical harmonic:

Ij1,j2,j12,m12(r̂1, r̂2) =
∑
m1m2

Cj12m12

j1m1j2m2
Yj1,m1(r̂1)Yj2,m2(r̂2) (2.23)

Our angular operator is the same as before; however, the dimer is now fixed at a specific

angle. Nevertheless, this should not have a particular effect on the PES, since it is rotationally

invariant of the direction that is set for the space-fixed axis.39 We therefore first consider a

dimer fixed along the z-axis (with R̂ = (0, 0)). This form is convenient since YL,ML
(0, 0) =

[2L+1
4π

]1/2δML0. Our potential operator parameterized at these coordinates take the form:

Ĝl1,l2,L(r̂1, r̂2; R̂ = (0,0)) = {Ŷl1,m1(r̂1)⊗ Ŷl2,m2(r̂2)}L0 (2.24)
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=

√
2L+ 1

4π

∑
m

CL0
l1ml2−mŶl1,m(r̂1)Ŷl2,−m(r̂2) (2.25)

Where, using the Wigner-Eckart Theorem, we arrive at a similar equation derived previ-

ously.42–44 Notably, this equation is identical to the matrix elements that can be obtained

for a rotating, body-fixed representation of the potential matrix element, with one important

distinction: our dimer is not rotating and is still in the space-fixed frame. Consequently, any

kinetic or angular momentum operator that we add to this equation would still be associated

with the space-fixed frame as well. Therefore, fixed along this coordinate:

〈j1j2j12m12| V̂fixed |j′1j′2j′12m
′
12〉 =

∑
l1l2L

Al1l2L(R)

√
2L+ 1

4π
Cj12m12

j′12m
′
12L0

〈j1j2j12||Y l1,l2
L ||j′1j′2j′12〉

[j12]1/2

(2.26)

=
∑
l1l2L

Al1l2L(R)(4π)−3/2(−1)j
′
1+j′2+j′12+m12 (2.27)

× ([L]2[l1][l2][j1][j2][j12][j′1][j′2][j′12])1/2

×

l1 j′1 j1

0 0 0


l2 j′2 j2

0 0 0


 j′12 L j12

m′12 0 −m12



j′12 j′2 j′1

j12 j2 j1

L l2 l1


(2.28)
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The above equation is similar to the form presented previously by Van Kranendonk5 for a pair

of interacting j1 = j2 = 1 molecules (refer to Eq. 7.18). His investigation only explores the

ansiotropic contribution of the electric quadrupole-quadrupole (EQQ) interaction. Rewritten

in our notation using the Wigner-Eckart theorem, this equation takes the following form

(note the addition of the normalization factor [j12]1/2 based on our chosen convention for the

definition of the reduced matrix element):

〈j1j2j12m12| V̂EQQ |j′1j′2j′12m
′
12〉 = Cj12m12

j′12m
′
1240

〈j1j2j12|| V̂EQQ ||j′1j′2j′12〉
[j12]1/2

(2.29)

Where 〈j1j2j12|| V̂EQQ ||j′1j′2j′12〉 is the reduced matrix element for the EQQ model. The an-

gular dependence of this interaction is identical to the expansion term Ĝ224 used in our

model,16 but does not include the anisotropy of the Ĝ022 and Ĝ202 expansions. However,

in both cases, an additional restriction imposed here limits the basis size when the dimer

lies along the collision axis, requiring m12 = m′12 to produce non-zero values. Van Kranen-

donk represented this decoupling in a simple figure on page 202 (Figure 49),5 with only the

inclusion of a quadrupole force. If we now include all four terms, we can see that there is

additional decoupling of states. This idea is presented in Figure 2.1, where we illustrate the

effect of coupling on a minimum basis (i.e. j1max = j2max = 1). In particular, the initially

isotropic potential consists of nine degenerate eigenstates, due to the symmetric nature of

the isotropic Ĝ000 term. When the Ĝ224 operator is added, splitting begins to occur, such

that for a fixed R, there exists some positive constant Γ0, where the energy associated with

each eigenstate |j12m12〉 is as follows:5

(a) |20〉 = 6Γ0
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(b, c) |2± 2〉 = Γ0

(d) |10〉 = 0,

(e) |00〉 = 0,

(f, g) |1± 1〉 = 0,

(h, i) |2± 1〉 = −4Γ0,

In other words, the inclusion of this operator does not affect the diagonal nature of the

resulting matrix. The addition of the Ĝ022 and Ĝ202 terms results in slight modifications to

the potential energies. There are now, two degenerate lower |1,±1〉 = 0 terms, one slightly

higher |00〉 and one significantly higher |10〉 level. At different R distances, the relative

energetic position of the |1± 1〉 and |00〉 states can flip. However, the matrix is no longer

completely diagonal, with small coupling between the |20〉 and |00〉 states. This is logical

since only these terms share the same m12 states and (−1)j12 rotational symmetry. In sum-

mary, for our sample calculations using the labels a-g described in the text from above, we

have three distinct cases at R = 6.0 a0. When only Ĝ000 is included:

a = b = c = d = e = f = g = h = i

In contrast, when Ĝ224 is also included:

a > b = c > d = e = f = g > h = i

Finally, when Ĝ022 and Ĝ202 are also included:

a > b = c > d > e > f = g > h = i
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Figure 2.1: Effect of inclusion of various hydrogen angular expansion terms, fixed at a
distance of 6.0 a0 using Hinde’s potential energy surface described in Chapter 3. Degeneracies
of each state are included in brackets.

2.3 Primitive Basis

If we remove coupling between the two rotors (i.e. no j12, m12), we arrive at a final form

derived previously that consists only of the ‘primitive’ basis functions (j1, j2, j
′
1, j
′
2 and the

associated m values).45 Note that this form is very similar to the equations presented in

the previous section for the ‘partial’ coupled basis state; however, we no longer are able to

neglect m1 and m2. While this results in a larger basis set for a dimer system, this formalism
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is the foundation of a convenient basis state for rotor chains that we will explore in Chapter

5. For consistency, we present our Wigner-3j symbols using the corresponding order given

in the text. Here, we again apply the Wigner-Eckart Theorem. We use the relationship

Y ∗a,b = (−1)bYa,−b (Eq. 5.1.5(11)) in order to apply Eq. 5.9.1(5) for the integration of

three spherical harmonics (refer to Varshalovich6), arriving at a form similar to that derived

previously by Rabitz:45

〈j1m1j2m2| V̂fixed |j′1m′1j′2m′2〉 =
∑
l1l2L

(−1)m1+m2Al1l2L(R)(4π)−3/2

×
∑

ml1 ,ml2 ,ML

CLML
l1ml1 l2ml2

(4π)1/2YLML
(R̂)∗([l1][l2][j1][j2][j′1][j′2])1/2

×

 j1 l1 j′1

−m1 ml1 m′1


j1 l1 j′1

0 0 0


 j2 l2 j′2

−m2 ml2 m′2


j2 l2 j′2

0 0 0


(2.30)

In this equation, we can also apply a simplification when the space-fixed frame lies along

the collision axis. As an additional benefit, the basis can be subdivided into non-coupling

blocks, where m1 + m2 = m′1 + m′2, based on the selection rules imposed by the Wigner 3j

symbols and the shared values of m and −m. All of the matrix elements are real-valued due

to the simple form of the spherical harmonic term:

〈j1m1j2m2| V̂fixed |j′1m′1j′2m′2〉 =
∑
l1l2L

(−1)m1+m2Al1l2L(R)(4π)−3/2
∑
m

CL0
l1ml2−m

× ([L][l1][l2][j1][j2][j′1][j′2])1/2
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×

 j1 l1 j′1

−m1 m m′1


j1 l1 j′1

0 0 0


 j2 l2 j′2

−m2 −m m′2


j2 l2 j′2

0 0 0


(2.31)

Ultimately, these approaches highlight an important idea: coupling changes the effective

basis for our dimer. The circumstances in which each method can be employed may vary

depending on the restrictions imposed on the system and/or the configuration (e.g. free

rotating dimer pair vs. contained hydrogen chain, cluster, etc.). As we will see in Chapters

3 and 4, many of the quantum states exhibit degenerate energy values that can be predicted

simply by looking at the analytical form of the potential.

2.4 Degeneracy of States

In considering the various matrix elements and basis sets throughout this chapter, one ques-

tion comes to mind: what drives the energetic degeneracy that we see in these systems? In

the ‘full’ close-coupled approach, the only degeneracy seen is associated with the projections

of J (e.g. for J = 1, MJ = (−1, 0,+1) states are all degenerate). As we break down the

coupling, the relevant m values come out and do not always result in degeneracy. For the

purely ‘primitive’ case, with non-coupling angular momentum fixed along the z-axis, we see

that:

 j1 l1 j′1

−m1 m m′1

 = (−1)j1+l1+j′1

 j1 l1 j′1

m1 −m −m′1

 (2.32)

21



 j2 l2 j′2

−m2 −m m′2

 = (−1)j2+l2+j′2

 j2 l2 j′2

m2 m −m′2

 (2.33)

For our hydrogen-based systems, j1 and j′1 must either be both odd or both even for a given

spin isomer. The same is true for j2 and j′2. Note as well that l1 and l2 are always defined

as either 0 or 2 for the potentials used in this investigation. Consequently, j1 + l1 + j′1

and j2 + l2 + j′2 are always even numbers and the phase will be equal to 1. As a result,

there will exist an equivalent matrix element if the sign of the momentum projections is

flipped, since the value of m extends from −min{l1, l2} to min{l1, l2}. For instance, in

the reduced basis set of j1,max = 1 and j2,max = 0 for an ortho-para hydrogen dimer, this

property gives rise to two degenerate eigenvalues, composed of linear combinations of the

|j1m1j2m2〉 = |1100〉 , |1-100〉 eigenstates. As we will see in Chapter 4, however, there is a

non-degenerate lower lying eigenstate composed entirely of |1000〉 when the dimer is fixed

along the z-axis.

2.5 Symmetry

When exploring the dimer system, we made use of a symmetrized basis, described by

Takayangi (1965)46 for the close-coupled system. To ensure a linearly independent basis,

we set (ν1 < ν2) or (ν1 = ν2 and j1 ≤ j2) to generate the following potential energy matrix
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elements:1

〈λ| V̂12 |λ′〉± = [(1 + δν1ν2δj1j2)(1 + δν′1ν′2δj′1j′2)]
− 1

2

(
〈λ| V̂12 |λ′〉

± (−1)j1+j2−j12+Lend 〈λsym| V̂12 |λ′〉
)

(2.34)

Where, λsym = (ν2ν1j2j1j12LendJ). For the primitive basis, the inclusion of m1,m2 and the

removal of coupled variables J and Lend leads to a similar form for the symmetrized potential

matrix elements. The reduced basis for this matrix takes the following form: (ν1 < ν2) or

(ν1 = ν2 and j1 ≤ j2) or (ν1 = ν2 and j1 = j2 and m1 ≤ m2):

〈ν1j1m1ν2j2m2| V̂12 |ν ′1j′1m′1ν ′2j′2m′2〉
±

= [(1 + δν1ν2δj1j2δm1m2)(1 + δν′1ν′2δj′1j′2δm′
1m

′
2
)]−

1
2(

〈ν1j1m1ν2j2m2)| V̂12 |ν ′1j′1m′1ν ′2j′2m′2〉

± 〈ν2j2m2ν1j1m1| V̂12 |ν ′1j′1m′1ν ′2j′2m′2〉
)

(2.35)

Previous investigations29 have instead relied on a projection operator approach, where the

potential matrix is constructed from a full basis and symmetrized after the fact using matrix

multiplication. In the symmetric (Ŝ) and antisymmetric (Â) operators presented below, Î is

the identity operator and P̂12 is the permutation operator for ν1, ν2, j1, j2. For full coupling,

the (−1)j1+j2−j12+Lend phase factor is necessary to include the coupled rotational symmetry

1Some forms of potential energy matrix elements also make use of a symmetrized form of the V̂12 operator
for identical particles (see, e.g. Alexander and DePristo42), so that only the l1, l2, L expansions (0, 0, 0),
(0, 2, 2), and (2, 2, 4) are required. While this ultimately involves one less potential energy term, the resulting
symmetrized equations become more lengthy and do not appear to provide significant savings in time.
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associated with the system into the equation:

Ŝ =
1

2
(Î + (−1)j1+j2−j12+LendP̂12) (2.36)

Â =
1

2
(Î − (−1)j1+j2−j12+LendP̂12) (2.37)

With the matrix elements for the symmetrized and antisymmetrized matrices given by:

VijS = 〈i| ŜV̂ Ŝ |j〉 (2.38)

VijA = 〈i| ÂV̂ Â |j〉 (2.39)

For the primitive basis, we arrive at a similar equation, but P̂12 is the permutation operator

for ν1, ν2, j1, j2,m1,m2:

Ŝ =
1

2
(Î + P̂12) (2.40)

Â =
1

2
(Î − P̂12) (2.41)

While this approach yields the same result, there are disadvantages associated with this

method. In particular, there are no savings in basis size, as associated with the basis sym-

metrization technique. Furthermore, eigenvalues associated with antisymmetric and sym-

metric eigenfunctions default to a value of zero after symmetrization or antisymmetrization,

respectively. This effect leads to a large number of degenerate eigenvalues; notably, ARPACK

and other methods that rely on the Arnoldi method for eigenvalue problems can often strug-

gle to find more than one eigenpair in the case of degenerate eigenvalues without further
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modifications to algorithms.47 More details surrounding the use of symmetry and matrix

eigenvalue calculations are described in Chapter 3 and Appendix A, during our investigation

of the full treatment of hydrogen dimers and isotopologues.
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Chapter 3

Vibrational Raman Shifts of Spin Iso-

mer Combinations of Hydrogen Dimers

and Isotopologues

We extend1 Hinde’s model in reproducing the experimental Raman vibrational shifts of

(H2)2 for all three dimer combinations. We also consider the analogous comparisons for

observed and predicted (D2)2 and (T2)2 Raman results. For these full, exact diagonalization

calculations, we make use of an analytical method developed previously.39,40 Adopting this

approach, we rely on exact solutions for the angular component of the potential that exploits

the properties of analytical solutions containing Wigner 3-j, 6-j, and 9-j symbols. We provide

considerations for the symmetry and nuclear spin statistics of the dimers and degeneracy of

various binding energy states.

1Portions of this chapter have been reprinted (adapted) with permission from Marr, A.; Halverson, T.;
Tripp, A.; Roy, P.-N. J. Phys. Chem. A 2020, 124, 6877–6888. Copyright 2020 American Chemical Society.48
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3.1 Theory

3.1.1 Exact Diagonalization

The dimer Hamiltonian is,

Ĥ = T̂R + ĥ1 + ĥ2 + V̂12 (3.1)

where T̂R is the kinetic energy operator associated with the relative motion of the monomers.

Furthermore, ĥ1 and ĥ2 are the individual rovibrational monomer Hamiltonians. We choose

as a basis the monomer eigenstates. They produce diagonal matrices such that each ma-

trix element corresponds to energies calculated using Le Roy’s49 LEVEL code at different

vibrational and rotational levels (ν and j). Specifically, this method relies on solving the

radial Schrödinger equation and determining the energy eigenvalues and associated eigen-

functions for monomer hydrogen molecules. Finally, V̂12 is the potential energy operator for

the two molecules. In line with Hinde19 and Green’s39 notation and methods, we also define

a nine-dimensional wavefunction derived previously:

Ψ(R, r1, r2) = R−1
∑
λ

Fλ(R)IJ,M,γ(R̂, r̂1, r̂2)ψν1,j1(r1)ψν2,j2(r2) (3.2)

where the vectors r1 and r2 describe the bond length, ri, and orientation, (θi, φi), of each

hydrogen molecule, while R is the Cartesian vector representing the difference between

the centre of masses of the two monomers. Also, r̂1(θ1, φ1) = r1
r1

, r̂2(θ2, φ2) = r2
r2

, and

R̂(θR, φR) = R
R

are unit vectors parametrized by three sets of angular coordinates. As a

shorthand, we represent sets of quantum numbers as γ = (j1j2j12Lend) and λ = (ν1ν2JMγ).
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The angular basis function involves coupled angular momenta, such that vector sums are

defined as j12 = j1 + j2 and J = j12 + Lend. Eq. 3.2 consists of individual monomer

wavefunctions ψν1,j1 (also obtained using the LEVEL code and orthonormalized), as well as

a radial wavefunction, Fλ(R), for the full dimer. The angular basis function IJ,M,γ(R̂, r̂1, r̂2)

is defined as a tripolar spherical harmonic:19

IJ,M,γ(R̂, r̂1, r̂2) =
∑

m1m2m12MLend

Cj12m12

j1m1j2m2
CJM
j12m12LendMLend

Yj1,m1(r̂1)

× Yj2,m2(r̂2)YLend,MLend
(R̂) (3.3)

In the above equation, ν1 and ν2 and j1 and j2 indicate the vibrational state and rotational

angular momentum associated with each individual monomer.50 Lend represents the angular

momentum associated with the end-over-end rotation (n.b. we have used Lend instead of the

regular notation L to distinguish it from the potential energy index L described below). To

better explore this model, it is worthwhile to consider each of the components separately.

Since we have already discussed ĥ1 and ĥ2, we consider next the potential energy operator

in the space-fixed representation.39 Note that we choose a space-fixed representation of the

wavefunction in order to allow for a better comparison between our results and previous

studies presented by Hinde and McKellar. In addition, the use of a space-fixed representation

for the dimer system allows for a clearer extension to a multi-dimer system in future work,

where a body-fixed representation is not appropriate. We note that:

V̂12 =
∑
l1,l2,L

Âl1,l2,L(R, r1, r2)Ĝl1,l2,L(R̂, r̂1, r̂2) (3.4)
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Where:39

Ĝl1,l2,L(R̂, r̂1, r̂2) =
∑

ml1ml2mL

CLmL
l1ml1 l2ml2

Yl1,ml1 (r̂1)Yl2,ml2 (r̂2)YL,mL(R̂)∗ (3.5)

We determine the matrix elements of V̂12 by integrating through the radial monomer and an-

gular wavefunctions. Note that these matrix elements are diagonal with respect to the radial

dimer wavefunction, which we include in the final equation for the total matrix elements:

〈λ| V̂12 |λ′〉 =
∑
l1,l2,L

〈ν1j1ν2j2| Âl1,l2,L |ν ′1j′1ν ′2j′2〉 〈γJM | Ĝl1,l2,L |γ′J ′M ′〉 (3.6)

In line with past work, we only consider the four most important angular expansions relevant

for the (H2)2 dimer, with the following l1, l2, and L values: G000, G022, G202, and G224.16,19,51

The first part of each matrix element must be integrated numerically (i.e. numerical quadra-

ture) using the calculated monomer wavefunctions from before, producing a matrix element

for each Al1,l2,L term that varies with R. However, the second part can be solved analytically,

by integrating over the monomer and dimer angular components. We include the final, de-

rived expression below.37–40 Note that after integration, the matrix elements are revealed to

be all real-valued:

〈λ| V̂12 |λ′〉 =
∑
l1l2L

〈ν1j1ν2j2| Âl1,l2,L |ν ′1j′1ν ′2j′2〉 (−1)J+j1+j2+j′12

× ([L]2[l1][l2][j1][j2][j12][Lend][j
′
1][j′2][j′12][L′end])

1/2

×

L L′end Lend

0 0 0


l1 j′1 j1

0 0 0


l2 j′2 j2

0 0 0


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×


L′end Lend L

j12 j′12 J




j′12 j′2 j′1

j12 j2 j1

L l2 l1


δJ,J ′δM,M ′ (3.7)

In the above equation, 〈ν1j1ν2j2| Âl1,l2,L |ν ′1j′1ν ′2j′2〉 represents the vibrationally averaged radial

coefficients, and takes into account the (4π)−3/2 term explicitly written out in the above

equation by Green. Note that [x] = 2x + 1, and that the various parentheses are used to

indicate 3-j, 6-j, and 9-j Wigner symbols. We see from the above equation that the matrix

elements are diagonal in J and independent of M ; we therefore do not need to include

the M term in the final version of the matrix element equations. Matrix channels with

different parities (i.e. (−1)J+j1+j2+Lend 6= (−1)J+j′1+j′2+L′
end) do not couple together and can

be treated separately. The resulting equation is also implicitly independent of the terms m1,

m2, MLend , and m12 as a result of symmetry gained through the use of higher order Wigner

symbols. These ideas allow for a considerable reduction in both the overall basis size and

computational time required for the calculation of the matrix elements. In line with Hinde’s

method, for this work, we restrict both j1 and j2 to values of 0, 2, 4 (para hydrogen, ortho

deuterium, or para tritium) or 1, 3, 5 (ortho hydrogen, para deuterium, or ortho tritium).

However, we do not truncate the basis for the total allowed value of j1 + j2 as Hinde does.

Using this expanded basis for j1 and j2, the maximum value of j12 is 8, 9, and 10 for pH2-pH2,

oH2-pH2, and oH2-oH2 hydrogen dimers, respectively [the opposite order is true for (D2)2].

This consideration allows us to determine the maximum allowed Lend value that produces

30



non-zero values, since:

|L′end − j′12| ≤ J ≤ L′end + j′12 (3.8)

|Lend − j12| ≤ J ≤ Lend + j12 (3.9)

Since j12,max = j′12,max, we see that Lend,max = L′end,max = j12,max + J , which provides us

additional information about the size of our basis being employed. For the kinetic energy

operator T̂R, we begin by writing the operator in the following form:

T̂R = − ~2

2µABR2

∂

∂R

(
R2 ∂

∂R

)
+

1

2µABR2
L̂2
end (3.10)

We employ a numerical method known as as the Colbert-Miller Discrete Variable Represen-

tation (CM-DVR)52 that relies on a grid composed of evenly spaced radial points (a), such

that ∆R = Rmax−Rmin
N

and Ra = Rmin + a∆R, where a ranges from 1 to N − 1.53 Note that

the kinetic energy converges in value as the space between the grid points decreases. We can

therefore rewrite our matrix elements within the a grid as:

〈aλ| Ĥ |a′λ′〉 = 〈aλ| T̂R + ĥ1 + ĥ2 + V̂12 |a′λ′〉

=
[
〈a| T̂rad |a′〉+

~2

2µABR2
a

(Lend)(Lend + 1)δaa′
]
δλλ′ + Ev1

j1
δλλ′δaa′

+ Ev2
j2
δλλ′δaa′ + 〈λ| V̂12 |λ′〉 δaa′ (3.11)
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Where:

〈a| T̂rad |a′〉 =
~2

2µAB∆R2
(−1)a−a

′


π2

3
− 1

2a2
a = a′

2
(a−a′)2 −

2
(a+a′)2

a 6= a′

(3.12)

We compute the Wigner symbols using the built-in functions provided by the SymPy package

on Python.54,55 The resulting eigenvalues for this matrix are determined using an efficient

eigenvalue solver (ARPACK) to find the lowest (smallest algebraic, i.e. most negative in

value) binding states,56 labeled with the five quantum numbers (j1, j2, j12, J, Lend). Of these

five quantum numbers, only J is considered to be ‘good’. The remaining four are approxi-

mations that include contributions from other states. Note that the exact number of states

that exist is difficult to predict in advance and is obtained here by the presence of nega-

tive binding energies. The states included throughout this paper are referred to as “ground

states”, since they consist of contributions primarily from the lowest para (j = 0) or ortho

(j = 1) states. In particular, coupling is high between states that share four out of the five

same quantum numbers. We generally are able to label our binding energy results without

much difficulty, using the largest basis contribution for each calculated eigenfunction and

arriving at similar results to those obtained by McKellar.11,12 However, McKellar finds that

the binding energy associated with ortho-ortho hydrogen’s (1, 1, 2, 1, 1) state has a higher

(more positive) value than that associated with the (1, 1, 0, 1, 1) state. In comparison, in our

calculations, it appears that the opposite is true. Although this is not explicitly discussed by

McKellar, more recent investigations57 suggest that there is a convention for labeling states

that share four out of the five same quantum numbers and experience significant coupling:

binding energies become more positive with increasing j12 and Lend. For our calculations, we
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do not assume that this assumption is correct and retain the original, largest contributions

to the eigenfunctions without any additional sorting. For the deuterium and tritium dimers,

we also maintain this approach due to more complicated coupling schemes and scenarios

where both Lend and j12 change.

3.1.2 Symmetry of (H2)2 and (D2)2

The symmetry of (H2)2 has been extensively explored in the literature40,58,59 and serves as

a useful means of explaining some of the spectral properties of the dimer. We assume that

the rovibrational wavefunction (Ψrv) can be approximated as the product of components of

vibrational (ν1, ν2, n) and rotational (j1, j2, Lend) quantum numbers:

Ψrv = |ν1ν2±〉 |j1j2±〉 |n〉 |Lend〉 (3.13)

In the above equation, note the following non-normalized relationships:58

|ν1ν2±〉 = Φν1(r1)Φν2(r2)± Φν1(r2)Φν2(r1) (3.14)

|j1j2±〉 = Yj1,m1(r̂1)Yj2,m2(r̂2)± Yj1,m1(r̂2)Yj2,m2(r̂1) (3.15)

Each basis wavefunction can be described by a particular symmetry under certain conditions,

as outlined in Table 3 from Bunker.58 After noting the nuclear spin statistics for para (1

state, even j values) and ortho hydrogen (3 states, odd j values) monomers, we treat each

molecule as a ‘single particle’ in a dimer system, with molecular symmetry G16. Although a

full discussion of the chosen symmetry scheme will not be provided here, G16 is a convenient
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method of describing sixteen different possible exchanges of the four hydrogen nuclei, with

the caveat that the intramolecular bonds of the two hydrogen monomers are never broken. In

the case of pH2-oH2 or oH2-pH2, the particles are distinguishable, with nuclear spin symmetry

3E+, while pH2-pH2 and oH2-oH2 consist of indistinguishable particles. The actual geometry

of the hydrogen dimer has been a challenging area of research, with a recent study suggesting

energetically favourable minima for linear, symmetric top, and spherical top geometries.60

For the pH2-pH2 dimer, a total nuclear spin of 0 is possible, with allowed nuclear spin

symmetry 1B+
1 . By contrast, the oH2-oH2 dimer may have possible total nuclear spin values

of 0, 1, and 2 with permitted nuclear spin symmetries 1A+
1 , 3B+

2 ,5A+
1 .12,58 The final symmetry

can be shown to be restricted to B+
1 and A−1 symmetries, using the character table for G16.58

Both of these states are antisymmetric upon exchange of each individual hydrogen nucleus

within a molecule (fermions), but symmetric upon exchange of the two hydrogen molecules

with each other (bosons). This analysis permits the assignment of nuclear spin statistics.

For pH2-pH2, there is always a ratio of 1 symmetric: 0 antisymmetric nuclear spin states,

while for oH2-oH2, a ratio of 6 symmetric: 3 antisymmetric spin states remains constant.

Note that the antisymmetric and symmetric eigenstates are the same as the symmetric and

antisymmetric oH2-oH2 labels used in Table 3 by McKellar and Schaefer.12 Furthermore, for

non-identical oH2-pH2 and pH2-oH2 dimers, there is a nuclear statistical weight of 6 (3+3)

relative to the other terms. A similar analysis can be performed for the (D2)2 dimer, with

ortho (6 states, even j values) and para (3 states, odd j values) nuclear spin isomers. Here,

oD2-oD2 has a ratio of 21 symmetric: 15 antisymmetric nuclear spin states.12 In contrast,

pD2-pD2 has a ratio of 6 symmetric: 3 antisymmetric nuclear spin states, while pD2-oD2

and oD2-pD2 have a combined nuclear weight of 36 (18+18). In comparison to hydrogen,
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the deuterium nuclei are bosons and are symmetric upon exchange. This property leads

to allowed final symmetries only of A+
1 and B−1 character. Note that (T2)2 has the same

nuclear spin statistics as (H2)2, since IT = IH = 1
2
.61 While there are different methods

of determining symmetry of our eigenstates, we use a standard approach by symmetrizing

the wavefunctions for our system for identical particles.12 In particular, the final expression

allows us to separate our matrices into symmetric and antisymmetric blocks for cases where

the dimer consists of identical particles:40,46

〈λ| V̂12 |λ′〉± =[(1 + δν1ν2δj1j2)(1 + δν′1ν′2δj′1j′2)]
− 1

2 [〈λ| V̂12 |λ′〉

± (−1)j1+j2−j12+Lend 〈λsym| V̂12 |λ′〉] (3.16)

Where, from before, λ = (ν1ν2j1j2j12LendJ) and now λsym = (ν2ν1j2j1j12LendJ). For iden-

tical particles, we are also able to further restrict the basis λ to only include cases where

ν1 < ν2 or ν1 = ν2 and j1 ≤ j2. Note that the equation given above follows the form

derived previously (refer to Eq. 56 by Takayanagi46), which includes the interchange of ν1

and ν2 omitted in the final potential expression by Schaefer and Meyer40 (refer to Eq. 12

given in the source). In addition, we are able to reduce the basis size further by separating

out certain symmetrical and antisymmetrical rotational functions. Consider first that when

j1 = j2, |j1j1+〉 can only have even j12, while |j1j1−〉 can only have odd j12 values.59 Further-

more, when ν1 = ν2, only |ν1ν1+〉 terms exist (with A+
1 symmetry), and consequently, the

value of the rotational phase factor (−1)j1+j2−j12+Lend = (−1)−j12+Lend determines whether

or not a state is symmetric or antisymmetric.40 For instance, a ground vibrational state

(j1, j2, j12, J, Lend) = (1, 1, 0, 1, 1) is antisymmetric while (1, 1, 1, 1, 1) is symmetric and can
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be treated separately in our matrix calculations. Our final eigenvalues are therefore able

to be sorted in terms of symmetric and antisymmetric rovibrational functions, with allowed

and forbidden nuclear spin symmetries determined using the method described above.

3.1.3 Summary of Allowed Transitions for IR and Raman spec-

troscopy

As a means of comparison, the selection rules for electric dipole-infrared spectroscopy have

been derived previously,58 with the conditions requiring that ∆Lend = odd, ∆J = 0,±1.62–64

Nuclear spin statistics must also be considered in determining the relative intensity of each

of the spectral lines for the different dimer species. For vibrational IR excitations, the above

selection rules demand that transitions occur from the ground state to the excited state

in which the vibration is delocalized antisymmetrically (i.e. |ν1ν2−〉).19 While the simple

cases of pH2-pH2 and oD2-oD2 have a limited number of accessible ground states, other spin

isomers have many different ground states that may undergo vibrational excitations. For

vibrational Raman spectroscopy of these dimers, previous studies19,22,23 have focused on pure

vibrational Q(0) and Q(1) lines, in which ∆v = ±1 and ∆j1,∆j2 = 0. In the vibrational

Raman spectrum for isolated hydrogen molecules, these transitions occur only for the case

ν = 1 ← 0, J←J.5 For dimers, the individual angular momenta of each hydrogen molecule

couples with the end-over-end rotation of the dimer to produce J . If the overall selection

rules are the same as for rovibrational lines in diatomic molecules (∆J = 0,±2), there may

be additional lines in the Q-branch for ortho-ortho hydrogen. This idea was suggested by

Hinde19 for several predicted ortho-ortho deuterium dimer Raman lines despite there being
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no change in j1 or j2. However, the actual existence and intensity of ∆J = ±2 lines within the

Q region remains unknown and cannot be verified with the current state of Raman vibrational

spectroscopy available for the dimers in question. In addition, individual hydrogen molecules

exhibit very weak anisotropic contributions in their vibrational Raman spectrum that are

usually neglected for much stronger isotropic scattering that is independent of the total

angular momentum J .5 Past studies involving the polarizability of the hydrogen dimer have

indicated that the complex exhibits both isotropic and anisotropic changes as a consequence

of molecular scattering.65,66 A full analysis of the polarizability operator, composed of the

individual molecular and dimer polarizability changes, will not be explored here. For our

present work, we consider only isotropic scattering and we assume here that any change in this

property associated with the dimers colliding is insignificant compared to the polarizability

inherent to each molecule. If we approximate the total wavefunction (ΨT ) as a product

of ψnsψrotψvib for a given electronic state, the selection rules demand that ψ′ns = ψns and

ψ′rot = ψrot, with totally symmetric vibrational symmetry (Γ′vib = Γvib).
59 While the quantum

number labels included in the tables in Section 3.2 for j1, j2, j12, and Lend are approximate, we

use them to only consider ‘pure’ Q lines, i.e. those in which the initial and final states share

the same five values with the inclusion of the good quantum number J . This assumption

allows us to significantly restrict the number of possible transitions and compare our results

more easily to available experimental findings. As we described in the following sections,

our relative line intensities are approximated using a combination of Boltzmann and nuclear

spin statistics.
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3.1.4 Computational Details

For both computational efficiency and utility, a variety of tools are used in the construction

of the resulting software. The bulk of the code, responsible for generating and storing matrix

elements is written in C++, with a wrapper function used to call Hinde’s 6D Fortran code

to obtain the A coefficients. We make use of two Python libraries in our code, as mentioned

previously: (1) SymPy54,55 is used to generate relevant Wigner 3j, 6j, and 9j coefficients in

our analytical G component of the matrix elements and (2) SciPy’s56,67 implementation of

ARPACK is used to obtain the resulting binding energies as generated eigenvalues. Both

Python libraries are used such that objects are passed back and forth using a Python/C API

mechanism to embed short Python functions. This setup allows for the more computationally

expensive length of the code to run more efficiently in the compiler-based C++ language, while

making use of well-supported libraries in Python. For SciPy’s ARPACK code, we make use

of default settings (i.e. number of iterations is total basis size times 10, tolerance is set at

machine precision, etc.) We choose to obtain the thirty lowest eigenvalues of our produced

sparse matrices using the “SA” (smallest algebraic) feature of ARPACK and only include

values with negative values that represent our bound binding states. Larger matrices tend to

experience more difficulty in converging, requiring more computational time and iterations.

However, alternative setups involving the “LM” (largest magnitude) setting with appropriate

shifts of the diagonal of our matrices do not reveal any significant differences in reported

results. For completion, we include a table summarizing the Basis Set used in our final

calculations (Table 3.1). Note that in our case, we supply sparse matrices to ARPACK for

eigenvalue calculations, but matrix vector products are also possible inputs to the software.
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Table 3.1: Parameters used in the Construction of Basis Set
jpara,max jortho,max J Lend,max DVRgrid (spacing) Parity Symmetry (id. particles)

4 5 0, 1, 2, 3, 4 j12,max + J 3.0-48.0 a0 (0.05 a0) (−1)j1+j2+Lend+J ν1 < ν2 or (ν1 = ν2 and j1 ≤ j2)

Table 3.2: Rovibrational energies values calculated from LEVEL49 code

ν j H2 (cm−1) D2 (cm−1) T2 (cm−1)

0 0 -36117.5942855 -36748.1782171 -37028.3869532
0 1 -35999.1009407 -36688.3959347 -36988.3231995
0 2 -35763.2015637 -36569.1061141 -36908.3186562
0 3 -35412.0362763 -36390.8538543 -36788.6179323
0 4 -34948.7315935 -36154.4459969 -36629.5846922
0 5 -34377.3069200 -35860.9386127 -36431.6978427
1 0 -31955.5931841 -33754.2565798 -34563.7140808
1 1 -31843.0132054 -33696.5845329 -34524.8061821
1 2 -31618.9043026 -33581.5086500 -34447.1109509
1 3 -31285.3346870 -33409.5610143 -34330.8682121
1 4 -30845.3245590 -33181.5290728 -34176.4344847
1 5 -30302.7545620 -32898.4432846 -33984.2792069

3.2 Results

We compute the binding energies for (H2)2, (D2)2, and (T2)2 by determining the first few

eigenvalues of the matrices described above and subtracting the relevant monomer energies

(Eν1j1 , Eν2j2). For completion, we present a short table summarizing the energies used in our

calculations (Table 3.2). These values vary depending on the particular dimer combination

being considered (Tables 3.3-3.5). While we attempt to maintain a consistent approach

with Hinde’s methods, we employ a few different corrections. In particular, we use slightly

different masses for each dimer, relying on the NIST elemental database68 and constants:69

3674.31 me, 7342.97 me, and 10995.84 me for the three isotopologues, respectively. Note
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that in all three tables, the mixed dimer combinations (i.e. consisting of one ortho and one

para molecule) have two possible vibrational shifts dependent on selective excitation of each

distinguishable molecule. We obtain our potential energy results on the same boundaries as

Hinde, from 3.0 a0 to 48.0 a0, with smaller grid point (0.05 a0) intervals for a total of 901

radial points to improve convergence (i.e. R1 = 3.0 a0, RN−1=901 = 48.0 a0). Since Hinde

does not recommend the use of his potential below 4.210625 a0 in his attached Supplementary

code, we cap the potential at that limit for any lower R values while still using the correct

DVR grid point. We also assume that νT = ν1 + ν2 = 0 and νT = ν1 + ν2 = 1 do not couple

and can be evaluated separately. For ortho-para dimers, we evaluate the two νT = ν1+ν2 = 1

states together, and find that there exists a weak coupling in the vibrational states in which

either an ortho or para molecule is being excited. Our results for the hydrogen dimer binding

energies are presented in the last three columns of Table 3.3. We also include McKellar and

Schaefer’s theoretical findings12,20 for ground state binding energies in the column with the

heading −EM−S
νT=0 .

Note that there are slight differences between our binding energies and those obtained

by Hinde in his work involving para hydrogen and ortho deuterium, at about the third

decimal place. These small deviations are likely due to different methods of obtaining the

monomer rovibrational wavefunctions Ψνj, including the possible differences in the number

of gridpoints used for the quadrature of the Al1,l2,L coefficients. In addition, Hinde employed

a five-point central difference approximation for his kinetic energy operator instead of the

DVR method that we use, which may also be responsible for the small deviation. In compar-

ison to the results obtained by McKellar and Schaefer, our results differ at about the second
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Table 3.3: Calculation of Binding Energies and Raman Shifts for ground and excited state
H2-H2 dimers,b with comparison to past theoretical results.12,20

Nuclear Spin Symmetry j1 j2 j12 J Lend −EM−S 12,20

νT=0 (cm−1) −EHinde
νT=0 (cm−1) −EHinde

νT=1 (cm−1) −∆ν (cm−1)

pH2-pH2, B
+
1 (1) 0 0 0 0 0 2.849 2.899 3.304 0.405

oH2-pH2, E
+ (3*2) 1 0 1 0 1 1.718 1.746 2.112, 2.099 0.366, 0.353

1 1 0 2.875 2.931 3.257, 3.253 0.326, 0.322
1 1 1 1.102 1.176 1.436, 1.442 0.260, 0.266
1 2 1 1.353 1.408 1.713, 1.707 0.305, 0.299

Sym. oH2-oH2, A
+
1 (6) 1 1 0 0 0 2.946 2.981 3.411 0.430

1 0 1 0.885 0.999 1.289 0.290
1 1 1 1.505 1.553 1.968 0.415
2 2 0 3.015 3.083 3.546 0.462
1 2 1 1.260 1.335 1.704 0.369

Antisym. oH2-oH2, B
+
2 (3) 1 1 1 1 0 2.862 2.932 3.345 0.414

0a 1 1 1.234 1.288 1.661 0.374
2 1 1 2.009 2.039 2.576 0.537
2 2 1 1.145 1.224 1.587 0.363
2 3 1 1.480 1.539 1.964 0.425

aLiterature values for the (1, 1, 0, 1, 1) and (1, 1, 2, 1, 1) binding energies are flipped, for consistency with the convention used
in this paper.
bFor the mixed pair, the two vibrationally excited states correspond to the selective excitation of ortho and para hydrogen,
respectively.

decimal place, likely due to the different PES employed. Using these binding energies and the

corresponding calculated states with one quantum of vibration, we confirm and predict the

vibrational Q(0) and Q(1) Raman shifts for the three dimers by subtracting the excited state

bound energies by the ground state bound energies, with comparisons made to experimental

values. At low temperatures, ground rotational states tend to be exclusively populated (i.e.

j = 0 or j = 1), which we only consider here for our bound states. While para-para hy-

drogen has only a single ground state, (j1, j2, j12, J, Lend) = (0, 0, 0, 0, 0), that can be excited

vibrationally, there are many possible ortho-para and ortho-ortho bound states that arise

for their respective dimers. However, the Boltzmann factor e−Eγ,J/kBT plays an important

role in determining the population of energy states depending on the temperature being

employed in the experiment. The weightings associated with the (2J +1) degeneracy as well

as the nuclear spin statistics (g) also contribute in determining the overall population of a

given ground energy state. This approach allows us to determine the most populated states
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likely responsible for the observed Raman dimer transitions. As one method of approxima-

tion, we can consider each of the bound states as capable of transitions independent of each

other, modeled using the standard Stokes vibrational Raman scattering for diatomics (refer

to Eq. 8.98 from Bernath70). To better explore this idea, consider a delocalized symmetric

vibrational state excited from the ground state, with polarizability operators α1(r) and α2(r)

that can excite the first and second molecule, respectively. Note that in the equation below,

ν12 = 1√
2
(|νaνb〉 + |νbνa〉). If we are exciting from the symmetric ground state |00〉, we find

that:

〈ν12|α1(r) + α2(r) |00〉 =
1√
2

(
〈νa|α1(r) |0〉 δνb,0 + 〈νb|α2(r) |0〉 δνa,0

+ 〈νa|α2(r) |0〉 δνb,0 + 〈νb|α1(r) |0〉 δνa,0
)

=
√

2 〈1|α1(r) |0〉 (3.17)

For vibrational transitions, we assume a harmonic oscillator model where ∆v = ±1 for all of

the matrix elements. If we are transitioning from an initial ground |00〉 state, (νa, νb) = (1, 0)

or (νa, νb) = (0, 1). Note that the above equation is only valid for dimer pairs in which the

two molecules are indistinguishable and is very similar to the matrix element given by Van

Kranendonk5 (refer to Eq 3.106 in the source) for the Raman amplitude of solid hydrogen

vibrational delocalization. This approximation assumes that: (a) similar to isolated hydrogen

molecules, the polarizability operator is independent of the value of j1, j2 (i.e. equal for both

ortho and para hydrogen) and (b) the eigenstates are composed of a single bound state.5

In practice, coupling between various quantum states lowers the accuracy of the labeling

system employed; this model of polarazibility will require additional considerations when
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higher resolution experimental spectra are produced. In line with this assumption, the

frequency of transition is very similar for all of the possible transitions (about 4155.25 cm−1

for Q(1) and 4161.18 cm−1 for Q(0) as given previously30), since the Raman shifts that arise

from the intermolecular interactions are generally less than -0.5 cm−1. Note as well that all

of the excited first vibrational states are unpopulated at the low temperatures performed

in this experiment. Therefore, we assume that the only significant factors responsible for

determining the strength of the transition are the relative population of the ground bound

states (based on the dimer ground state energy Eγ,J), nuclear spin weight (g), and (2J + 1)

rotational degeneracy mentioned above (associated with the MJ projection of each dimer

state). These three important considerations were subsequently added to our equation.

These ideas are also explored by Bunker, in his equation for the transition probability of

isotropic Raman scattering (14-136).59 In summary, we exclusively focus on the relative

populations of each dimer pair’s states, such that this quantity is calculated at a given

temperature T for each set of calculations. Note as well that in the equation below kb is the

Boltzmann constant (0.6950348004 cm−1/K).

pγi,Ji =
gi(2Ji + 1)e−Eγi,Ji/kBT∑N
i=1 gi(2Ji + 1)e−Eγi,Ji/kBT

(3.18)

For instance, for oH2-oH2, the symmetric state (j1, j2, j12, J, Lend) = (1, 1, 2, 2, 0) has both

the lowest ground vibrational energy state and a (2J + 1) degeneracy of 5. Along with

a symmetric nuclear spin weight of 6, this state would be expected to play the dominant

role in the vibrational Q(1) transition, particularly at low temperatures where the state is

exclusively populated. However, as the temperature increases, other states begin to exhibit
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increased population and contribute to the Raman peak as the Boltzmann factor becomes

less important in comparison to nuclear spin statistics and rotational degeneracy. This con-

sideration allows us to calculate a change in Raman shift from a high of about -0.460 cm−1

at 0.1 K to a converged shift of -0.416 cm−1 at 10.0 K, which is closer in magnitude to the

approximate reported shift of −0.4 cm−1 by Montero et al. The paper also reported a more

specific ratio of about
√

2 for the oH2-oH2 and oH2-pH2 shifts. Although this value was

presented without additional clarification by Montero et al., it remains a good match for our

observed results at all temperatures within the uncertainty associated with the experimental

shifts. We present our data in two different ways: using a predicted vibrational spectrum

with the relative intensities calculated above (Figure 3.1) or as a weighted average based on

relative intensity (Figure 3.2), that attempts to predict the wavenumber of the dominant

peak at different temperatures. Note that the location of our obtained spectral peaks are

found by adding the negative Raman shift to Q(0) and Q(1) monomer lines given by Montero

et al.30 for (H2)2 dimers. For comparison, the experimental Raman shifts appear as dashed

lines in our spectra using the approximate dotted lines and shifts given in the paper. This

choice is made since the monomer vibrational transitions calculated by the LEVEL code

appear to be slightly blue-shifted from experimental values as the final energy eigenvalues

lack non-adiabatic corrections; while this appears to have a minimal effect on the calculated

bound energy states and obtained Raman shifts, it produces incorrect vibrational peaks

for the purposes of comparison on a single spectrum. For the (D2)2 and (T2)2 dimers, we

use experimentally obtained Q(0) and Q(1) lines.71,72 The results we present assume that

the hydrogen dimers were formed at equilibrium conditions (i.e. 3oH2:1pH2, 2oD2:1pD2,

3oT2:1pT2). Although the exact local temperature is not given, we cool the dimers to a
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Figure 3.1: Calculated Q(0) and Q(1) Vibrational Spectrum of (H2)2 dimer (top) and its
isotopologues (D2)2 (centre) and (T2)2 (bottom) at 2.5 K using a Boltzmann Weighting Fac-
tor, Nuclear Spin Statistics, and (2J + 1) rotational degeneracy. All positions are calculated
relative to the experimental vibrational energies.30,71,72 We also include the approximate ex-
perimental shifts obtained from the spectra provided by Montero et al.,30 as a shift from the
dominant Q(0) and Q(1) monomer lines for the (H2)2 dimer. The experimental ortho-ortho
deuterium shift was also obtained previously23 and is also included here for comparison.
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Figure 3.2: Calculated Population-Averaged Raman Shifts from Q(0) and Q(1) lines of (H2)2

dimer (top) and its isotopologues (D2)2 (centre) and (T2)2 (bottom), from 0.1 to 10 K (in
0.01 K intervals). All shifts are calculated relative to the monomer vibrational energies
produced by the LEVEL code.49 46



temperature of 2.5 K based on the parameters and temperatures reported previously.21 It

is also assumed that interconversion between spin isomers is no longer possible during the

cooling process. We multiply the calculated relative populations by the nuclear spin weight

at equilibrium (e.g. 9 for oH2-oH2 , 3x2 for oH2-pH2 and pH2-oH2, and 1 for pH2-pH2). Note

that the total intensity should satisfy the principle of spectroscopic stability for ortho-para

combinations, in which the total intensity of the system remains constant for any dimer pair.5

In particular, we assume that the total intensity of the two ortho-para peaks is equivalent

to the intensity that would exist for a dimer pair with two indistinguishable particles that

produces a single peak. Due to the lack of delocalization, each separate ortho-para peak is

consequently an additional 0.5 times weaker based on the polarizability terms defined above.

However, when we include the equivalent number of ‘para-ortho’ dimers that also form,

this 0.5 factor is eliminated since the nuclear spin weighting effectively doubles. Ultimately,

the overall purpose of these calculations are not to conclusively establish all of the possible

transitions that may occur in the spectra, but rather explore features associated with the

nature of the observed peaks. Further discussions relating to the actual shape of this peak,

linewidth, and overall intensity will be reserved for a more complete discussion of polariz-

ability in future work, some of which may be based on past work involving the intensity

of the IR spectra of hydrogen dimers.53,73,74 For the ortho-ortho and ortho-para hydrogen

dimers, our Raman peaks appear to be slightly red-shifted from the obtained experimental

intensity, with larger vibrational shifts. However, the relatively low spectral resolution of

0.12 cm−1 makes it difficult to distinguish peaks between the various dimers on the spec-

trum. Consequently, higher resolution spectra, akin to the vibrational IR results obtained

previously by McKellar11 with spectral resolution of 0.04 cm−1, will be required to more
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definitively assess the accuracy of this model for Raman spectroscopy. Nevertheless, as a

first approach, the results obtained from this method are very encouraging, as they illustrate

the same degree of vibrational shifts for the different spin isomers. This same approach can

be applied for the (D2)2 and (T2)2 dimers; however, these dimers have additional binding

states. While (H2)2 only has bound energy states up to Lend = 1, previous findings suggests

that (D2)2 has bound states up to Lend = 3,11 which we have been able to confirm using

our calculated binding energies. (T2)2 adds further complexity by allowing certain bound

states up to Lend = 4. For our purposes, we only consider states up to and including J = 4

in the determination of our spectra (higher ground J states exist in theory,12 but are not

considered here). However, many of these states are not populated at the low temperatures

that we consider for Raman spectroscopy. In particular, note that Tables 3.4 and 3.5 only

contain binding energies with relative ground populations of at least 2% at 2.5 K for ease of

presentation of our results. We see that the corresponding mixed dimers for the deuterium

and tritium dimers exhibit the lowest Raman shift as before for the hydrogen dimer, since the

vibration cannot be delocalized over the two monomers as for the para-para and ortho-ortho

pairs. To better illustrate the small effect that coupling has on the mixed dimers, we include

additional figures showing the increased splitting associated with the Boltzmann population

averaged Raman shift for all three mixed dimers (Figure 3.3). There also appears to be an

increasing difference between the shifts for para-para and ortho-ortho dimers for deuterium

and tritium, as compared to the hydrogen dimers. Whether or not this is a realistic result

remains unknown, as this finding may be a limitation of the assumptions employed in this

model. As seen previously, other states become increasingly important as the temperature

increases. In particular, the ‘bump’ at low temperatures within the para-para deuterium
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Table 3.4: Calculation of Binding Energies and Raman Shifts for ground and excited state
D2-D2 dimersa

Nuclear Spin Symmetry j1 j2 j12 J Lend −E (cm−1)HindeνT=0 (literature12) −E (cm−1)HindeνT=1 −∆ν (cm−1)

Sym. oD2-oD2, A
+
1 (21) 0 0 0 0 0 6.714 (6.844) 7.121 0.407

0 2 2 3.713 (3.816) 4.113 0.400
Antisym. oD2-oD2, B

+
2 (15) 0 0 0 1 1 5.698 (5.818) 6.103 0.405

0 3 3 0.887 (0.964) 1.265 0.378
pD2-oD2, E

+ (18*2) 1 0 1 0 1 6.367 6.752, 6.728 0.385, 0.362
1 1 0 6.808 7.146, 7.135 0.338, 0.327
1 1 1 5.394 5.684, 5.687 0.291, 0.294
1 1 2 3.970 4.306, 4.296 0.336, 0.326
1 2 1 5.824 6.162, 6.151 0.338, 0.327
1 2 2 3.422 3.709, 3.714 0.288, 0.293
1 3 2 3.847 4.182, 4.172 0.336, 0.325
1 4 3 1.013 1.334, 1.323 0.321, 0.310

Sym. pD2-pD2, B
+
1 (6) 1 1 0 0 0 6.900 7.340 0.440

1 1 1 6.034 6.478 0.444
2 1 2 6.068 6.704 0.636
2 2 0 7.265 7.775 0.511
1 2 1 5.682 6.096 0.414
1 2 1 5.682 6.084 0.402
0 2 2 3.863 4.280 0.418
2 3 2 3.965 4.431 0.466
2 4 2 4.132 4.602 0.470

Antisym. pD2-pD2, A
+
2 (3) 1 1 1 1 0 6.784 7.205 0.421

0 1 1 5.762 6.196 0.435
2 1 1 7.087 7.675 0.588
2 2 1 5.824 6.309 0.485
2 3 1 6.192 6.681 0.489

aTheoretical literature results12 are available for ortho-ortho dimers and provided in parentheses. Note that for the mixed
pair, the two vibrationally excited states correspond to the selective excitation of para and ortho deuterium, respectively.
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Table 3.5: Calculation of Binding Energies and Raman Shifts for ground and excited state
T2-T2 dimersa

Nuclear Spin Symmetry j1 j2 j12 J Lend −E (cm−1)HindeνT=0 −E (cm−1)HindeνT=1 −∆ν (cm−1)

pT2-pT2, B
+
1 (1) 0 0 0 0 0 8.995 9.369 0.374

0 2 2 6.801 7.177 0.376
0 4 4 1.895 2.264 0.370

oT2-pT2, E
+ (3*2) 1 0 1 0 1 9.045 9.401, 9.375 0.356, 0.329

1 1 0 9.165 9.486, 9.469 0.321, 0.304
1 1 1 7.902 8.174, 8.172 0.271, 0.270
1 1 2 7.056 7.363, 7.352 0.307, 0.296
1 2 1 8.443 8.762, 8.746 0.319, 0.303
1 2 2 6.450 6.723, 6.723 0.273, 0.273
1 2 3 4.890 5.203, 5.191 0.313, 0.301
1 3 2 6.988 7.308, 7.292 0.320, 0.304
1 3 3 4.316 4.591, 4.592 0.274, 0.276
1 4 3 4.841 5.162, 5.146 0.321, 0.305

Sym. oT2-oT2, A
+
1 (6) 1 1 0 0 0 9.258 9.667 0.408

1 1 1 8.650 9.059 0.409
2 1 2 9.542 10.121 0.579
2 2 0 9.908 10.407 0.499
1 2 1 8.260 8.641 0.381
0 2 2 6.987 7.387 0.400
2 3 2 7.395 7.876 0.481
2 4 2 7.451 7.911 0.460

Antisym. oT2-oT2, B
+
2 (3) 1 1 1 1 0 9.107 9.498 0.391

0 1 1 8.440 8.849 0.409
2 1 1 10.081 10.633 0.552
2 2 1 8.855 9.364 0.509
2 3 1 9.026 9.501 0.475
1 3 2 6.750 7.126 0.376

aNote that for the mixed pair, the two vibrationally excited states correspond to the selective excitation of ortho and para
tritium, respectively.
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Figure 3.3: Comparison of the influence of coupling associated with the selective excitation
of each component of the mixed-pair dimers for the Population-Average Raman Shift, for
(H2)2 (top), (D2)2 (centre), and (T2)2 (bottom) dimers. For all three cases, we observe a
small splitting effect between the two excited states.
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model is a product of competing bound state vibrational shifts, which produces a higher

overall vibrational shift compared to the originally more dominant (1, 1, 2, 2, 0) state. Since

the binding energy of the deuterium and tritium dimer ground states are larger in magni-

tude, we may not be able to neglect the anisotropic transitions in the Q region with the

same success that we were able to obtain for the hydrogen dimer ortho-ortho and ortho-para

Raman shifts. Furthermore, the actual nature of the binding states in terms of the four

quantum numbers other than J is more complicated. While states were assigned using the

dominant basis contributions to the resulting eigenfunctions, coupling cannot be completely

neglected and varies between the ground and excited vibrational states. For instance, for

para-para deuterium, this process of labeling quantum states seemingly leads to two nearly

degenerate energy levels for the (1, 1, 1, 2, 1) excited vibrational state. In practice, there ap-

pears to be significant coupling between this vibrationally symmetric (1, 1, 1, 2, 1) state and

the vibrationally antisymmetric (1, 1, 2, 2, 1) state (both overall ‘symmetric states’ when ro-

tational symmetry is also taken into account), hindering our ability to determine an accurate

quantum state. For the calculations presented here, we consider both vibrational states as

viable transitions for the (1, 1, 1, 2, 1) ground state in accordance with the generally accepted

method of labeling. Specifically, we assume that the intensity of each vibrational transition

for this particular state is not diminished by the other (i.e. we include two (1, 1, 1, 2, 1)

ground state populations in our total dimer calculations). However, it is likely that these

type of interactions would impose additional selection rules on the types of transitions that

are permitted. Additional experimental work will be required to verify the observed shifts,

in order to see if further refinement to this model is warranted.
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3.3 IR spectroscopy

As a further means of assessing the success of this model in confirming spectroscopic results,

we consider the Q(0) and Q(1) infrared shifts for the (H2)2 and (D2)2 dimers. Note that

the vibrational states are above the thermal threshold for dissociation and are not stable as

compared to the ground vibrational dimer states. However, the exact nature and population

lifetimes of these states are not considered here in this section and remain a future area for

research in both IR and Raman spectroscopy. McKellar11 investigated separate spectra in

this region for para-para hydrogen and ortho-ortho deuterium dimers, which were computed

theoretically by Hinde.19 However, the spectrum for normal hydrogen and deuterium dimers

have not been explored. For this section, we provide a preliminary test of these results for

ortho-ortho and ortho-para hydrogen pairs. In contrast to the previous section, we do not

consider the relative intensity of each of these lines; unlike Raman spectroscopy, the peaks

that occur for these lines are largely a result of induced dipole moments associated with the

formation of dimers. There is also a weak quadrupole moment associated with the ortho H2

monomer that is noted by McKellar on his spectra at a known position. Further analysis of

these lines would require a more involved investigation of relevant dipole expansion terms,

similar to work performed for rotational IR spectra.12,53 For our current work, we only

attempt to assign the known shifts provided in Table III for (H2)2 by McKellar,11 using the

selection rules ∆Lend = odd, ∆J = 0,±158 as well as the additional restriction that |∆Lend| ≤

j1 + j2 + j′1 + j′2 + 1.59 Note that we do not attempt to assign quasibound ground states (i.e.

Lend > 1 for (H2)2), Lend > 3 for (D2)2), which may explain the presence of a few additional
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lines reported by McKellar, but not found in our calculations. We attempt to match our

results as best as possible, using McKellar’s Q(0) and Q(1) H2 monomer spectral lines as

baseline measurements for our shifts, to facilitate a more ready comparison. In general, our

close-coupled approach yields accurate results, with these relatively simple selection rules.

As seen with the Raman calculations, the primary purpose of these calculations is to help

explore experimental work in this field using a well-defined PES. These results are presented

in Table 3.6. The (D2)2 dimer produces a more complex vibrational IR spectrum. To help

explore the accuracy of our potential for this isotolopologue, we first analyze the pure ortho

deuterium dimers and produce identical results to those obtained previously by Hinde (Table

3.7). For these results, we are able to accurately assign a specific transition for each of the

six spectral lines. For the normal deuterium spectrum, we do not attempt to accurately list

all of the transitions since they are too numerous. Instead, we pick a single transition that

is close to the reported experimental result where possible (Table 3.8), since these results

are significantly more difficult to analyze as opposed to the pure ortho deuterium sample.

Subsequent investigation into the strength of each transition will help elucidate which of the

over 150 possible transitions dominate to produce this complex vibrational spectrum.
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Table 3.6: Experimental and Calculated Q(0) and Q(1) IR (H2)2 Spectral Lines
Experimental Results11 (cm−1) Calculated Results (cm−1) (j′1j

′
2j
′
12J
′L′end)← (j′1j

′
2j
′
12JLend)

4152.78(2) — —
4153.133(7) 4153.091 (1,1,1,1,0) ← (1,1,1,0,1)

4153.140 (1,1,2,2,0) ← (1,1,2,2,1)
4153.174a (1,0,1,1,0) ← (1,0,1,1,1)

4153.411(7) 4153.321 (1,1,0,0,0) ← (1,1,0,1,1)
4153.406a (1,0,1,1,0) ← (1,0,1,2,1)
4153.426 (1,1,1,1,0) ← (1,1,1,2,1)
4153.456 (1,1,2,2,0) ← (1,1,2,3,1)

4153.67(2) 4153.644 (1,1,1,1,0) ← (1,1,1,1,1)
4153.76(2) 4153.744a (1,0,1,1,0) ← (1,0,1,0,1)
4153.96(2) 4153.955 (1,1,2,2,0) ← (1,1,2,1,1)
4155.61(3) — —
4156.04(3) 4156.006 (1,1,2,1,1) ← (1,1,2,2,0)

4156.074a (1,0,1,0,1) ← (1,0,1,1,0)
4156.238(7) — —
4156.462(7) 4156.341 (1,1,2,1,2) ← (1,1,2,2,1)

4156.399 (1,1,1,1,1) ← (1,1,1,1,0)
4156.472a (1,0,1,2,1) ← (1,0,1,1,0)
4156.559 (1,1,2,3,1) ← (1,1,2,2,0)
4156.640 (1,1,1,2,1) ← (1,1,1,1,0)
4156.733 (1,1,0,1,1) ← (1,1,0,0,0)
4156.750a (1,0,1,1,1) ← (1,0,1,1,0)

4156.92(2) 4156.905 (1,1,2,2,1) ← (1,1,2,2,0)
4157.21(5) 4157.012 (1,1,1,0,1) ← (1,1,1,1,0)

4157.156 (1,1,2,1,2) ← (1,1,2,1,1)
4158.03(5) — —

4159.092b (1,0,1,1,0) ← (1,0,1,1,1)
4159.324b (1,0,1,1,0) ← (1,0,1,2,1)
4159.662b (1,0,1,1,0) ← (1,0,1,0,1)
4162.001b (1,0,1,0,1) ← (1,0,1,1,0)

4162.41(3) 4162.393b (1,0,1,2,1) ← (1,0,1,1,0)
4162.51(2), 4162.513(5) (pure pH2 sample) 4162.505 (0,0,0,1,1) ← (0,0,0,0,0)

4162.67(3) 4162.658b (1,0,1,1,1) ← (1,0,1,1,0)
aCorresponds to excitation of ortho hydrogen in mixed pair

bCorresponds to excitation of para hydrogen in mixed pair

Table 3.7: Experimental and Calculated Q(0) and Q(1) IR pure ortho (D2)2 Spectral Lines

Experimental Results11 (cm−1) Calculated Results (cm−1) (j′1j
′
2j
′
12J
′L′end)← (j′1j

′
2j
′
12JLend)

2990.565(5) 2990.558 (0,0,0,2,2) ← (0,0,0,3,3)
2991.412(5) 2991.400 (0,0,0,1,1) ← (0,0,0,2,2)
2992.382(5) 2992.371 (0,0,0,0,0) ← (0,0,0,1,1)
2994.412(5) 2994.401 (0,0,0,1,1) ← (0,0,0,0,0)
2995.379(5) 2995.368 (0,0,0,2,2) ← (0,0,0,1,1)
2996.229(5) 2996.216 (0,0,0,3,3) ← (0,0,0,2,2)
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Table 3.8: Experimental and Calculated Q(0) and Q(1) IR for normal (D2)2 Spectral Lines
Experimental Results11(cm−1) Calculated Results (cm−1) (j′1j

′
2j
′
12J
′L′end)← (j′1j

′
2j
′
12JLend)

2984.919(5) — —
2985.449(5) 2985.449a (1,0,1,1,0) ← (1,0,1,2,3)
2987.568(5) 2987.569b (1,0,1,1,0) ← (1,0,1,2,3)
2987.891(5) 2987.858 (1,1,1,2,2) ← (1,1,1,2,3)
2988.328(7) 2988.336a (1,0,1,3,2) ← (1,0,1,4,3)
2988.723(5) 2988.723a (1,0,1,0,1) ← (1,0,1,1,2)
2989.194(5) 2989.190a (1,0,1,2,1) ← (1,0,1,3,2)
2989.796(5) 2989.791a (1,0,1,1,1) ← (1,0,1,1,2)
2990.181(5) 2990.184a (1,0,1,1,0) ← (1,0,1,2,1)
2990.866(5) 2990.856b (1,0,1,0,1) ← (1,0,1,1,2)
2991.059(7) 2991.052 (1,1,2,2,0) ← (1,1,2,1,1)
2991.905(5) 2991.897b (1,0,1,1,1) ← (1,0,1,1,2)
2992.156(5) 2992.151a (1,0,1,2,1) ← (1,0,1,1,0)
2993.151(5) 2993.147a (1,0,1,3,2) ← (1,0,1,2,1)
2993.575(5) 2993.565a (1,0,1,1,2) ← (1,0,1,0,1)
2994.042(7) 2994.029a (1,0,1,3,3) ← (1,0,1,2,2)
2994.708(5) 2994.711b (1,0,1,1,2) ← (1,0,1,1,1)
2995.298(7) 2995.293b (1,0,1,2,2) ← (1,0,1,1,1)
2996.137(5) 2996.138b (1,0,1,4,3) ← (1,0,1,3,2)
2996.905(5) 2996.901a (1,0,1,2,3) ← (1,0,1,1,0)
2997.159(5) — —
2999.025(5) 2999.020b (1,0,1,2,3) ← (1,0,1,1,0)

aCorresponds to excitation of para deuterium in mixed pair

bCorresponds to excitation of ortho deuterium in mixed pair
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3.4 Summary

We have used Hinde’s 6D potential surface to calculate the bound states of spin isotopo-

logues of dimers of molecular hydrogen. We have obtained the binding energy for the dimers,

calculated with an exact diagonalization approach. Taking into account the additional com-

plexity of these dimers, we have explored the Q(0) and Q(1) vibrational Raman shifts for

each of these dimers using a simple Boltzmann weighted model, inclusive of total angular

momentum degeneracy and symmetry considerations for each state. Our predictions are

in line with the experimental measurements of Montero et al., with our inclusion of only

isotropic scattering. We also provide predicted shifts for (D2)2 and (T2)2, in the hope that

this will help provide further motivation for experimental studies with a higher resolution

Raman vibrational spectrum. We have also provided some early success with the assessment

of this potential for predicting and confirming IR vibrational dimer lines for hydrogen and

deuterium dimers.
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Chapter 4

Adiabatic Approach of Hydrogen Dimers

In this chapter, we extend the work discussed in Chapters 2 and 3 and outline specific

details related to symmetry and basis choice. For instance, consider an alternative approach

for computing binding state energies in which we separate the radial coordinate R from

the other coordinates (r1, r2, θ1, θ2, φ1, φ2). These included coordinates will also contain the

dimer angles (θR, φR) as either full terms or parameters depending on whether the coordinate

system is pinned. In cases where the grid or basis size is large, this adiabatic approach can

prove to be quite valuable in reducing the computational cost of determining eigenvalues of

the final energy matrix. Consider first a new form for the resulting Hamiltonian (Ĥ ′), where

only the radial kinetic energy is removed from the adiabatic Hamiltonian (Ĥadia):

Ĥ ′ = − ~2

2µABR2

(
∂

∂R
R2 ∂

∂R

)
+ Ĥadia (4.1)

Such that:

Ĥadia = ĥ1 + ĥ2 + V̂12 +
1

2µABR2
L̂2
end (4.2)
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For a given value ofR, the matrix elements 〈λ| ĤAdiabatic |λ′〉 can be determined. In particular,

the smallest algebraic eigenvalue, or any eigenvalue of our choice, can be obtained for each

value of R and labelled as E0(R). The kinetic energy operator can then be added back in to

obtain the final matrix elements, before subsequent diagonalization of our new matrix:

〈i| Ĥ ′ |i′〉 = 〈i|Trad |i′〉+ E0(Ri)δi,i′ (4.3)

The resulting binding energies suggest a number of important results, which are described

in more depth below.

4.1 Primitive Basis Set

In this section, we provide a brief overview of the success of this simple approach for the

three types of hydrogen dimer pairs, using the non-coupled basis set for para-para, ortho-

para, and ortho-ortho hydrogen. All binding energies presented in this section were achieved

with the same grid used in Chapter 3 (3.0 a0 to 48.0 a0, with intervals of 0.05 a0) and a basis

set where jpara,max = 4 and jortho,max = 5 unless otherwise stated.

4.1.1 Para-Para hydrogen

Over the course of these binding energy state calculations, the lowest eigenvalue (most neg-

ative in value) is taken at each radial point R and is assumed to represent the desired

eigenvalue representing a consistent eigenstate. However, care must be taken to ensure that

the basis is appropriately symmetrized. Due to the relative simplicity of para-para hydrogen,
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our desired eigenstate consists largely of j1 = j2 = 0 character, with a single m1 = m2 = 0

non-degenerate state (i.e. the state is almost exclusively composed of |0000〉). Consequently,

the lowest adiabatic curve is well-separated from other para-para hydrogen states that are

composed of higher rotational character. However, symmetrization can still play an impor-

tant role in the determination of the correct vibrational state. For the ground vibrational

state, we obtain an adiabatic binding energy of -2.903 cm−1. Notably, a failure to symmetrize

the vibrational wavefunctions results in a change in the vibrational binding energy when the

lowest adiabatic curve is picked, such that the calculated shift is -0.408 cm−1 instead of the

obtained result of -0.406 cm−1; in other words, the calculated vibrational binding energy

varies from -3.311 cm−1 without symmetrization in comparison to a value of -3.309 cm−1

with symmetrization. This result occurs due to the crossing of the symmetric and antisym-

metric vibrational states at low intermolecular distances; simply picking the lowest curve

without symmetrization ensures that the antisymmetric vibrational state is sometimes se-

lected instead. To illustrate this idea, the ground state vibrational para-para hydrogen dimer

potential is presented in Figure 4.1, while the difference in energy between the symmetric

and antisymmetric vibrational states is presented in Figure 4.2.

4.1.2 Ortho-Para hydrogen

The introduction of an ortho hydrogen molecule within a dimer pair leads to a new com-

plexity, in comparison to a pure para-para hydrogen dimer. If we take a minimal ba-

sis jortho = j1 = 1, jpara = j2 = 0, we are left with three basis states |j1m1j2m2〉 =

|1000〉 , |1-100〉 , |1100〉. For the full dimer, where end-over-end rotation is considered, the
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Figure 4.1: Potential energy, as a function of intermolecular distance R, for a ground rota-
tional and vibrational state para-para hydrogen dimer.

state is independent of any m value and demonstrates three-fold degeneracy. However, when

the dimer is fixed in space, a lower energy state is accompanied by a two-fold degeneracy.

This idea is similar to previous work with endofullrenes, where an oH2 molecule placed

within a C60 structure also experienced identical symmetry breaking.75,76 Similarly, an ortho

hydrogen impurity within solid para hydrogen also produces a similar splitting pattern of

a doubly degenerate and separate, single non-degenerate state.5 For convenience, we often

consider the dimer pair as situated along the z-axis. As described previously in Chapter 2,

this configuration allows for a convenient setup such that the basis set is reduced based on
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Figure 4.2: Difference in potential energy, as a function of intermolecular distance R, for
symmetric and antisymmetric vibrationally excited, ground rotational state of the para-para
hydrogen dimer.

the known definition for Yl,m = δm0

√
2l+1
4π

.19 If we fix the dimer at a specific geometry, the

energy eigenvalues are not affected. This idea is logical, since the rotation of the dimer in

space only changes the relative molecular coordinate system. To consider this, recall that

in a rotating dimer, the body fixed frame is typically set such that the z-axis lies along

the collision coordinate, but it is equally valid to pick any other orientation for the colli-

sion coordinate.39 In this case, we are simply defining a parameterized, fixed position of the

dimer at the chosen coordinates, rather than allowing the dimer full rotation. As a result,

the angles associated with each individual rotor spherical harmonic ((θi, φi) for each Yjimi)
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still refer to the space fixed frame rather than a newly defined body fixed frame. In other

words, we achieve ‘similar’ matrices, where the diagonalization of both matrices produces

identical eigenvalues. However, as expected, there is a significant change in the character

of the eigenvector (including complex terms in some cases). Consequently, it is much more

convenient to employ a dimer fixed along the z-axis, where each eigenvector is dominated by

a single basis state |1m100〉. As shown in Chapter 2, we are also able to make use of decou-

pled basis states m1 + m2 = m′1 + m′2 = n, where n spans {−1, 1}. Specifically, we obtain

degenerate binding energies dominated by |1± 100〉 of -2.704 cm−1 and a non-degenerate,

lower ground binding energy of -3.351 cm−1 dominated by the |1000〉 state. For the excita-

tion of ortho hydrogen, we obtain corresponding vibrational binding energies of -2.990 cm−1

and -3.742 cm−1, respectively. In Figure 4.3, we present a potential energy function for the

ortho-para hydrogen dimer. Collectively, this results in an average Raman shift of about

-0.321 cm−1, which is a good match for the full diagonalization calculations, corresponding

to the (j1, j2, j12, J, Lend) = (1, 0, 1, 1, 0) state. For the excitation of para hydrogen, we obtain

similar vibrational binding energies of -2.995 cm−1 and -3.725 cm−1, with an averaged shift

of about -0.319 cm−1.

4.1.3 Ortho-Ortho hydrogen

Ortho-ortho dimers present additional complexity to this adiabatic model by introducing

further splitting, as discussed previously during our exploration of the theory of the potential

energy matrix elements in Chapter 2. We can again determine relatively simple eigenvectors

by imposing a fixed dimer location along the z-axis. Here, we obtain simple eigenstates
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Figure 4.3: Potential energy, as a function of intermolecular distance R, for split energy
levels of the ground rotational and vibrational states of the ortho-para hydrogen dimer.

that can be roughly approximated by the following expressions (|m1m2〉), which loosely

correspond to the equivalent coupled states given here:5

(1,2) |m1m2〉 = |±1± 1〉, m1 +m2 = ±2, |j12,m12〉 = |2,±2〉

(3,4) |m1m2〉 = 1√
2
(|±10〉+ |0± 1〉), m1 +m2 = ±1, |j12,m12〉 = |2,±1〉

(5,6) |m1m2〉 = ± 1√
2
(|±10〉 − |0± 1〉), m1 +m2 = ±1, |j12,m12〉 = |1,±1〉

(7) |m1m2〉 = 1√
2
(|±1∓ 1〉 − |∓1± 1〉), m1 +m2 = 0, |j12,m12〉 = |10〉

(8) |m1m2〉 = 1√
6
(|±1∓ 1〉+ 2 |00〉+ |∓1± 1〉), m1 +m2 = 0, |j12,m12〉 = |20〉

(9) |m1m2〉 = 1√
3
(|±1∓ 1〉 − |00〉+ |∓1± 1〉), m1 +m2 = 0, |j12,m12〉 = |00〉

64



Table 4.1: Binding Energies for Ortho-Ortho Hydrogen Dimer Adiabatic Model

Basis Set −Ev=0 (cm−1) −Ev=1 (cm−1) -ν (cm−1)
(1,2) 2.170 2.443 0.274
(3,4) 4.716 5.418 0.702
(5,6) 3.132 3.577 0.445
(7) 2.497 2.820 0.323
(8) 1.188 1.331 0.142
(9) 3.265 3.742 0.477

Average 2.998 3.419 0.420

In the above states, (1, 2), (3, 4), 8, and 9 are rotationally symmetric, while states (5, 6) and

7 are rotationally antisymmetric. For the special m1 + m2 = 0 case, the lowest eigenvalues

cannot be simply taken for each R value, as performed previously, since there is more than

one possible eigenvalue corresponding to various ground rotational states. Similarly, for the

vibrationally excited m1 + m2 = ±1, the rotationally symmetric (3,4) states can appear in

an overall antisymmetric state, if it possesses antisymmetric vibrational delocalization. This

can lead to errors in assignment due to energy curve crossings with the desired rotationally

antisymmetric (5,6) states with a symmetric vibrational delocalization. Note that for the

vibrational ground states, this is not a concern since there is no separate symmetric or

antisymmetric vibrational states, meaning that the (3,4) and (5,6) states are generated

separately using the symmetrization methods described in Chapter 2 purely on the basis of

rotational symmetry. Instead, we can track the character of the eigenvalues at different R

values to assign binding energies, such that we observe the following binding states (Table

4.1). This method ensures that the ground and vibrationally symmetric excited state share

the same rotational eigenstate character. The final averaged value is relatively close to the

approximate weighted averaged shift of the (j1, j2, j12, J, Lend) = (1, 1, 0, 0, 0), (1, 1, 2, 2, 0),

and (1, 1, 1, 1, 0) states. Drawing on these ideas, in Figure 4.4, we present a potential energy
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function for the ortho-ortho hydrogen dimer. Notably, upon resolution of the resulting

curves, we see that there is no crossing between the (8) and (9) curves, which have coupled

eigenstates. The remaining curves are not exclusively non-crossing; however, as mentioned

previously, curves with different m1 + m2 values do not interact. Furthermore, as was the

case of vibrationally excited para-para hydrogen, states with either different rotational or

vibrational symmetry appear to be decoupled from one another. For instance, there appears

to be a crossing between the rotationally antisymmetric (5,6) and symmetric (9) states, which

are treated separately in the symmetrized basis. If we refer back to the j12 states described

in Chapter 2, we see that the generated states (1)-(9) are in relatively good agreement with

the order of coupled states reported previously.

4.2 Additional Considerations for other basis sets

In the case of partial (j12) and full (J) coupling, a similar problem can occur if the parity

of the basis is not considered, which can introduce additional complications in assuming the

lowest eigenvalue; here, the resulting adiabatic curve could be a mixture of non-coupling

eigenstates if this idea is not taken into consideration. In addition, if a projection operator

is used instead of a symmetrized angular wavefunction, there will be zero-value eigenvalues

present after diagonalization. Consequently, at lower intermolecular distances, where the po-

tential is positive, there could be artificial selection of eigenvalues of a so-called ‘zero-energy

curve’ instead of the actual lowest adiabatic curve. As shown previously, an alternative

method involves the selection of the eigenstates in terms of dominant eigenfunctions, in-

stead of the simple lowest eigenvalue assumption. These results are more in line with the
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Figure 4.4: Potential energy, as a function of intermolecular distance R, for split energy
levels of the ground rotational and vibrational states of the ortho-ortho hydrogen dimer.

approach taken in Chapter 3 during the full diagonalization description. These ideas present

future opportunities for the exploration of the adiabatic model, beyond what is considered

above for the ortho-ortho case. In particular, this problem is more challenging, since for

the full diagonalization problem, we assumed that eigenvalues were dominated by a single

eigenstate, rather than as a linear combination of states as used here for the primitive basis

set. Consequently, we are no longer simply taking ‘adiabatic states’; instead by looking for

dominance of a single basis state over another, we introduce a situation in which adiabatic

principles are no longer followed and curve crossing of coupled states is possible. Ongoing
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research seeks to explore and compare the nature of these energy states.
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Chapter 5

Hydrogen Chains

5.1 Overview of model

Drawing upon the work of the previous chapter, we now consider how we would approach

creating a linear chain of hydrogen molecules that can be better exploited for future ex-

perimental designs. Previous research by Halverson et al.77 focused on hydrogen fluoride

molecules (interacting with a standard dipole-dipole potential) placed inside fullerene cages

that are themselves housed within hollow carbon nanotubes. For our model, the more com-

plex Hinde potential will be employed instead of the standard dipole-dipole interaction. In

addition, for our hydrogen-based model, we do not include the cages, since the hydrogen

potential would likely be negligible if shielding was applied (Figure 5.1). Consequently, we

use our hydrogen-based system and the mathematical techniques described here as a tem-

plate for a molecular design, where the actual strength of intermolecular forces will vary

depending on the chosen system. The basis set employed in these calculations is the direct

product of all of the individual rotor eigenstates and grows quickly as the number of rotors

in the system is increased.77 To best approach this problem, we consider the fact that each
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Figure 5.1: Model diagram of H2, fixed in position in a carbon nanotube without C60 rings.

hydrogen molecule experiences N − 1 interactions, for a total of

N
2

 = N !
2!(N−2)!

unique

combinations. By generating a set of possible combinations using an efficient programming

package (e.g. ‘itertools’ in Python), the appropriate radial matrix elements can be multi-

plied by the angular matrix elements. Note that the angular component of the hydrogen

potential energy is not dependent on the distance between the rotors; this information can

be calculated once and called as needed, as done previously in the dimer calculations. The

resulting matrix elements for the combined potential matrix are simply the sum of each rotor

pair’s potential, with Kronecker delta functions added for any rotors that are not part of the

specific interaction, i.e:

〈j1m1ν1j2m2ν2 . . . jNmNνN | V̂ |j′1m′1ν ′1j2m
′
2ν
′
2 . . . j

′
Nm

′
Nν
′
N〉

=
N∑
a=2

a−1∑
b=1

〈jamaνajbmbνb| V̂ab |j′am′aν ′aj′bm′bν ′b〉
N∏

c 6=a,b

δjcj′cδmcm′
c
δνcν′c

(5.1)

For the purposes of this model, we assume that the dimers are fixed (i.e. R̂ = (0, 0)). In

other words, while each individual molecule can rotate freely, no end-over-end rotation can

occur for the overall “dimers”, with the overall motion of the rotors pinned. Consequently,
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for every combination, the total energy of the system is described by the sum of the individ-

ual, diagonal Hamiltonian energies and the calculated potential from above. While current

calculations will focus on ground state properties of the system (e.g. energy states), future

work will also seek to explore various excited states. For instance, we hope to investigate

a rotor containing a mix of ortho and para hydrogen molecules, with selective vibrational

excitation of only some of the spin isomers. Since the overall size of the final matrix for

any of these calculations can be quite large as N increases, two different methods can be

employed in an effort to make the procedure more efficient.

5.1.1 Basis Truncation

As a means of reducing the size of the overall rotor matrix, several approaches to truncate

the overall basis set are described by Halverson et al.77 For instance, we can define some

parameter limit J , such that for N rotors, the sum of all individual ji is restricted by:

N∑
i=1

ji ≤ J (5.2)

As the value for J is increased, the calculated eigenvalues are expected to converge. As

another method of basis truncation, Halverson et al. argue that the ground |0〉 state for the

generic hydrogen fluoride system will have even parity for its total angular momentum (i.e.∑N
i=1 ji = jtot, where jtot mod 2 = 0). In the case of pure para hydrogen, this is necessarily

true; however, for pure ortho rotors or combinations of para and ortho hydrogen rotors, jtot

may be even or odd depending on the total number of each form of hydrogen and the length

of the total chain. In any of the above cases, the total parity jp is conserved, reducing the

71



size of the basis. A similar idea can be used to describe the sum of mi, by assuming that

each mtot state forms a separate block; for our purposes, the
∑N

i=1 mi = mtot = 0 block is

usually taken to be the lowest in energy and ideal for computing the ground state results.

The final matrix is diagonalized as before using sparse matrix techniques; common methods

rely on a FORTRAN library known as ARPACK that is often wrapped for use in C++ or

Python using an Arnoldi method as described previously in Chapter 3.

5.2 Density Matrix Renormalization Group

When considering larger chains with as many as 50 rotors, Iouchtchenko and Roy78 rely on

a technique known as the density matrix renormalization group (DMRG) to allow for much

more efficient computations. DMRG was first established by White79 as an improvement over

Wilson’s80 renormalization method in investigating magnetic impurities in metals. Typically

used for one-dimensional systems (e.g. rotor chains), the conventional method for the finite-

system version of DMRG is described by the following procedure:79,81,82

1. The chain or system is subdivided into a left block (S), a right block (E), and two sites in

the middle. The combination of each of these parts forms a so-called “superblock” (length:

2L+ 2), with the S and E blocks both of length L.

2. The ground state (|ψ〉) of the superblock is computed using a variational approach and

sparse diagonalization methods.

3. The reduced density matrix is calculated for each part of the system, i.e. ρ̂E, ρ̂S, and

projected onto each block to form new states for S and E.

4. The E block gains an additional site from one of the two middle sites (new length: L+1).
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To obtain a new middle site, the S block loses one additional site (new length: L− 1). Steps

2 and 3 are repeated, until the S block has a length of 0. The process is then repeated in the

opposite direction, with the S block gaining a site and the E site losing a site during each

iteration. When the two blocks reach equivalent length again, a “sweep” has occurred. To

obtain an appropriately accurate ground state eigenfunction and energy eigenvalue, several

sweeps may need to be performed.

During more recent investigations of DMRG, this procedure is usually thought of in terms

of Matrix Product States (MPS). We divide the chain into two blocks A and B; using MPS,

we note that the total Hilbert space of the chain (H) is equal to the product of the two

individual blocks’ spaces (i.e. HA ⊗ HB). The wavefunction of the entire system can be

obtained using a mathematical procedure known as the Schmidt decomposition:78

|Ψ〉 =
∑
i

√
λi
∣∣φAi 〉⊗ ∣∣φBi 〉 (5.3)

Where λi must be a non-negative, real number. We limit the total sum to some truncation

parameter to prevent the exponential growth of the wavefunction. The reduced density ma-

trices are calculated as before and projected onto blocks A and B, and repeated to complete

sweeps. However, in order to exploit the block diagonal properties of these systems (related

to
∑N

i=1 ji = jtot and
∑N

i=1 mi = mtot symmetry as discussed previously), the Hamiltonian

must be written in terms of ladder operators that raise or lower ji or mi in a fixed man-

ner.78 For instance, for the dipole-dipole operator, the potential term along the z-axis was
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expressed previously as:78

V̂
(z)
ij = x̂ix̂j + ŷiŷj − 2ẑiẑj

= −2B̂0
i B̂

0
j +

1

2
[B̂−i B̂

+
j + h.c.]

(5.4)

Where B̂0
i = 1

~(ĵ+
i + ĵ−i ) and B̂±i = ± 1

~2

(
[ĵ+
i , m̂

±
i ] + [ĵ−i , m̂

±
i ]
)

.

5.2.1 Exact Angular Potential Operators

For our hydrogen potential, we can use these ideas for the angular component of the operator,

in which an analytical form is known. In particular, for the fixed dimer at R̂ = (0, 0), we

consider the operator Ĝ, described previously in Chapter 2. Note that we use r̂i and r̂j for

generic use in a multi-rotor model.

Ĝ =

√
2L+ 1

4π

∑
m

CL0
l1ml2−mŶl1,m(r̂i)Ŷl2,−m(r̂j) (5.5)

In addition, we rely on a table of spherical harmonics6 to make the appropriate conversions

between spherical harmonics and the one-body operators. Note the following relations:78

x̂i =
1

2~2

[
(ĵ+
i + ĵ−i ), (m̂+

i − m̂−i )
]

= sinθ̂cosφ̂ (5.6)

ŷi =
1

2i~2

[
(ĵ+
i + ĵ−i ), (m̂+

i + m̂−i )
]

= sinθ̂sinφ̂ (5.7)

ẑi =
1

~
(ĵ+
i + ĵ−i ) = cosθ̂ (5.8)
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These definitions were used to define the operators B̂0
i and B̂±i , such that:

B̂±i = x̂± iŷ (5.9)

B̂0
i = ẑi (5.10)

Using this definition, the permitted expansions that result in non-zero terms are listed below

for the analytical angular potential operator components in the space-fixed frame, where the

rotors are fixed along the z-axis for convenience in deriving our equations. Here, we include

a (4π)−3/2 normalization factor for convenience, since we assume that the corresponding

matrix element involving the Âl1,l2,L term takes into account this correction, as seen before.

Ĝ000(r̂1, r̂2, R̂) =
1√
4π

Ŷ0,0(r̂i)Ŷ0,0(r̂j)

(4π)−3/2
= 1̂i1̂j (5.11)

Ĝ022(r̂1, r̂2, R̂) =

√
5

4π

Ŷ0,0(r̂i)Ŷ2,0(r̂j)

(4π)−3/2
= 1̂i

5

2
(3B̂0

j B̂
0
j − 1̂j) (5.12)

Ĝ202(r̂1, r̂2, R̂) =

√
5

4π

Ŷ2,0(r̂i)Ŷ0,0(r̂j)

(4π)−3/2
=

5

2
(3B̂0

i B̂
0
i − 1̂i)1̂j (5.13)

Ĝ224(r̂1, r̂2, R̂) =

√
9

4π

1

(4π)−3/2

[
Ŷ2,−2(r̂i)Ŷ2,2(r̂j) + Ŷ2,−1(r̂i)Ŷ2,1(r̂j)

+ Ŷ2,0(r̂i)Ŷ2,0(r̂j)

+ Ŷ2,1(r̂i)Ŷ2,−1(r̂j) + Ŷ2,2(r̂i)Ŷ2,−2(r̂j)
]

= 3
[
C40

2−222 ×
15

8
B̂−i B̂

−
i B̂

+
j B̂

+
j − C40

2−121 ×
15

2
B̂0
i B̂
−
i B̂

0
j B̂

+
j

+ C40
2020 ×

5

4
(3B̂0

i B̂
0
i − 1̂i)(3B̂

0
j B̂

0
j − 1̂j)

− C40
212−1 ×

15

2
B̂0
i B̂

+
i B̂

0
j B̂
−
j + C40

222−2 ×
15

8
B̂+
i B̂

+
i B̂

−
j B̂

−
j

]
(5.14)
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Where, the Clesbch-Gordan coefficients are exactly equal to:

C00
0000 = C20

2000 = C20
0020 = 1 (5.15)

C40
2−222 = C40

222−2 =
1√
70

(5.16)

C40
2−121 = C40

212−1 = 2

√
2

35
(5.17)

C40
2020 = 3

√
2

35
(5.18)

Each of the four angular expansions are in agreement with the properties of ortho and para

hydrogen. Specifically, ortho hydrogen has odd j rotational states, while para hydrogen has

corresponding even states. Based on the structure of each of the four terms, only raising and

lowering operators of ∆j = 0,±2 are allowed. Consequently, this approach is in agreement

with the matrix elements derived earlier for the exact diagonalization approach: odd and

even j states for each molecule do not couple together and can be treated separately.

5.2.2 Singular Value Decomposition (SVD)

The operator method described above only works for a system in which we can describe

the potential energy operator as a series of exact analytical operators. We can apply this

for a fixed Al1,l2,L(R) value that does not depend on the value of j. In the case of our

hydrogen potential energy operator, if we wish to consider multiple j1 and j2 values that

contribute to the radial component of the potential energy, we must turn to an alternative

approach as there is no analytical form for the Â operator. Since the potential energy

operator must be expressed in terms of one-body operators, we can decompose a potential
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energy matrix V taken at a fixed R. To do this, we must first map this matrix from its

usual configuration of j1m1j2m2 by j′1m
′
1j
′
2m
′
2 to the new setup of j1m1j

′
1m
′
1 by j2m2j

′
2m
′
2

(n.b. for simplicity, we replace this notation with n1 = {j1m1}). We then perform a singular

value decomposition, using an existing build-in-tool in Itensor, a software package available

in C++ and Julia that can be used for performing DMRG-based calculations with a MPS

approach.83 Mathematically, the decomposition of this new matrix Vmap can be represented

by the following equation:

Vmap = SσT † (5.19)

Where Vmap is a rectangular matrix with dimensions a by b, S is a square matrix with

dimensions a by a, σ is a diagonal, rectangular matrix with dimensions a by b and T † is a

square matrix with dimensions b by b. Our original matrix V is Hermitian. However, this

is only true for Vmap as well if the two rotors are identical (i.e. both para or ortho). In

addition, S and T † are not Hermitian (i.e. S 6= S† and T † 6= T ). The purpose of performing

this method leads to a series of row and column vectors, which act as one-body operators

for each rotor. In Itensor, the matrix multiplication is performed using an iterative sum. In

practice, we see that the matrix multiplication can be truncated to a reduced γ value (where

γ is less than the dimensions of both S and T †). Although the accuracy of the obtained

energy values decreases with fewer terms, this factor can often be insignificant for potential

energy matrices where many of the quantum states only exhibit weak coupling:

V
n2n′

2

map,n1n′
1

=
∑
γ

σγSn1n′
1,γ
T †γ,n′

2n2
=
∑
γ

σγSn1n′
1,γ
Tn2n′

2,γ
(5.20)
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Figure 5.2: Visual description of Singular Value Decomposition Process (Vmap = SσT †). For
our matrix, the dimensional size of n1n

′
1 are equal to n2n

′
2 for identical rotors (i.e. both para

or ortho). Note that (a) refers to the exact SVD method, while (b) refers to the truncated
approach.

A visual description of this approach is presented in Figure 5.2. The true benefit of the

SVD method is its overall ability to be applied to a broad range of systems. To exploit this

approach, the user needs to provide one or more potential energy matrices, for a variety

of intermolecular distances, to cover all significant pair interactions between rotors. Con-

sequently, there is no need to determine individual analytical operators, which can often

be a time consuming approach. Unfortunately, a necessary consequence of this method is

limitations to the applicability of the block diagonal jtot and mtot symmetry; we require the

full, non-symmetrized dimer matrix in order to construct the one-body rotors and cannot

construct a reduced basis initially. However, we can apply an analytical and/or numerical

cutoff as detailed in the next section to limit the memory requirements of the system.
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5.3 Dipole-Dipole System

To assess the overall accuracy and functionality of the SVD approach, we begin with the sim-

ple case of the dipole system, previously described using an operator approach by Iouchtchenko

and Roy.78 Unlike the hydrogen-based system, the dipole operators are singular raising or

lowering operators; consequently, both even and odd j values are valid for inclusion in our

system. For simplicity, we construct our system along the z-axis using the potential energy

operator described in Eq. 5.4. For a lmax = 2 system, we therefore have a total of 81 possible

basis functions. Since we require a SVD of the full basis to obtain the one-site operators,

we cannot exploit certain symmetries inherent in a system (see section 5.1.1). Preliminary

investigations include a summation over all possible indices of the matrix and suggest a

problem: the bond dimension (M) grows quickly as the summation increases, leading to

memory errors in the resulting code. Fortunately, this seems to be a product of numerical

precision errors; most of the singular values (σγ) are near zero (< 10−15) and can be readily

discarded without affecting the overall convergence of the system. Specifically, since the

dipole operator is composed of a sum of three pairs of one-body operators, we can truncate

the sum to three terms as well to obtain nearly identical results. We present a comparison of

the energy values calculated using the methods described previously,78 with our SVD-based

approach (Figure 5.3). When we first introduce a matrix product operator (MPO) cutoff

of 10−10, our results begin to diverge at around N = 12, likely due to growing summation

of errors. In general, for systems in which no analytical description is possible at all, the

truncation value can be obtained by simply applying a fixed cut-off value for the singular
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Figure 5.3: Comparison of results using the exact operator method described previously,78

with SVD method proposed here for N = 2 to N = 50 rotors. Results are set for jmax = 2,
with five DMRG “fast” sweeps and a MPO cutoff of 10−10. Rotors are fixed apart at an
arbitrary unit of R = 1.

values in the SVD. For instance, for our hydrogen-based system, we find that a cutoff of 12

terms produces appropriately converged results. Note that for all results presented in this

following hydrogen section, we assume a fixed intermolecular distance of 6.0 a0.
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Table 5.1: Ground state energy results (cm−1) for pure para hydrogen rotors at varying Jmax
truncation, with jmax = 4. Note that the truncation value is given here in the form JmaxE0.

N 0E0
2E0

4E0
6E0

8E0
10E0

2 -14.6816 -14.6821 -14.8407 -14.8407 -14.8407 -14.8407
3 -30.3758 -30.3773 -30.6949 -30.6949 -30.6949 -30.6949
4 -46.1524 -46.1551 -46.6316 -46.6316 -46.6318 -46.6318
5 -61.9433 -61.9472 -62.5826 -62.5827 -62.5830 -62.5830
6 -77.7379 -77.7431 -78.5373 -78.5373 -78.5379 -78.5379
7 -93.5338 -93.5402 -94.4931 -94.4932 -94.4941 -94.4941
8 -109.3301 -109.3377 -110.4493 -110.4494 -110.4507 -110.4507

5.4 Hydrogen-Based Chains

5.4.1 Para Hydrogen

Using the direct diagonalization method, we first include a table summarizing the ground

state energy of pure para hydrogen chains, with varying maximum truncation values (Jmax)

(Table 5.1). We include all intermolecular potential pairs, for each of the interactions expe-

rienced for up to eight rotors. At this stage of development for our DMRG comparisons, we

include two simplifications in comparison to the above results. We cap jmax at a value of 2

and only include the nearest neighbour calculations (i.e. in our DMRG code, this is referred

to as a sociability value of 1). For comparison between exact diagonalization and DMRG,

we present our results in Table 5.2 and find good agreement.
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Table 5.2: Ground state energy results (cm−1) for pure para hydrogen rotors at varying Jmax
truncation, with jmax = 2 and DMRG comparison, using our SVD approach. Note that the
truncation value is given here in the form JmaxE0.

N 0E0
2E0

4E0
6E0

8E0
10E0 EDMRG,SV D

0

2 -14.6816 -14.6821 -14.8407 -14.8407 -14.8407 -14.8407 -14.8407
3 -29.3633 -29.3646 -29.6820 -29.6820 -29.6820 -29.6820 -29.6820
4 -44.0449 -44.0470 -44.5232 -44.5232 -44.5233 -44.5233 -44.5233
5 -58.7265 -58.7295 -59.3644 -59.3644 -59.3646 -59.3646 -59.3646
6 -73.4082 -73.4120 -74.2054 -74.2055 -74.2059 -74.2059 -74.2059
7 -88.0898 -88.0945 -89.0465 -89.0465 -89.0472 -89.0472 -89.0472
8 -102.7715 -102.7770 -103.8874 -103.8875 -103.8886 -103.8886 -103.8886

5.4.2 Ortho Hydrogen

In the case of pure ortho hydrogen chains, the more complicated nature of the molecule

makes comparisons to our DMRG calculations more challenging. In particular, the employed

software is able to find the lowest energy eigenvalues that is dominated by a single eigenstate

(e.g. |jm〉 = |10〉, |1± 1〉). Consequently, while exact diagonalization is able to identify all

relevant eigenenergies, including the lowest ground state, this property is not guaranteed

for our DMRG approach. However, the eigenenergies still exhibit a final conserved
∑
mi

symmetry. In our DMRG code, if we set an initial test state of |jm〉 = |1± 1〉, our resulting

energy corresponds to an orientation with all rotors having either mi = −1 or mi = 1

states (i.e. corresponding to a single eigenstate). If we instead set an initial test state

of |jm〉 = |1± 0〉, we are left with a more complicated resulting ground eigenstate. The

final eigenstates appear to be similar in form to the simple ortho-ortho eigenstate described

previously in Chapter 4: 1√
3
(|±1∓ 1〉 − |00〉+ |∓1± 1〉) (m1 +m2 = 0); however, the exact

form becomes more complicated as the number of rotors increases. These findings suggest

a current limitation for our DMRG approach. While para rotors exhibit a single low lying
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energy state that is relatively easy to identify and determine, the introduction of multiple

ortho hydrogen molecules results in a more difficult characterization, a factor that we have

observed in our previous work on dimers that extends to the multi-rotor model. Ongoing

work remains in helping to clarify and extend these results. It may also be worthwhile

to consider a mixed system, where a chain of para hydrogen includes one or more ortho

hydrogen ‘impurities’.
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Chapter 6

Conclusions

Ultimately, this thesis seeks to explore the physical and chemical nature of hydrogen-based

systems, with extensions to various isotopologues. In particular, we have described a theo-

retical approach to the dimer system in line with a form for an exact, analytical potential

derived previously. Using an accurate, ab initio potential developed by Hinde for the radial

component of the potential, we have provided considerations for both full and adiabatic

systems. We also include a basis for the calculations of chains, using both a full diagonal-

ization approach and specific numerical tools involving DMRG (i.e. the operator approach

and SVD).

Many of the techniques for determining the analytical potential energy matrix elements

and symmetry relationships described in Chapters 2 and 3 were first developed over fifty

years ago. However, as we have demonstrated, they are still applicable today and will likely

continue to play a significant role for many years to come due to their continued importance

in the investigation of van der Waals dimers. Future work in this field is divided into a

number of different areas. As mentioned previously, improved spectroscopic measurements

of dimers will allow for better fine-tuning and assessment of theoretical calculations; in
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contrast to current measurements, new experimental data will likely have refined resolution

that allows for the ability to more accurately assign Raman vibrational transitions similar

to the work we describe at the end of Chapter 3 for IR vibrational transitions. There are

also opportunities for future refinement for our theoretical model; for instance, the current

monomer vibrational wavefunctions and energies are based on Le Roy’s LEVEL code that

relies on a baseline hydrogen monomer potential developed by Schwartz and Le Roy in

1987.84 In addition, the “close-coupled channel” method used in this work is effective, but

limited. In practice, the transitions described in the vibrational and IR spectrum cannot

be fully described by a single eigenstate, as is conveniently employed in this thesis and

throughout many papers within this field. For instance, as referred to previously in Chapter

3, the extent of coupling between various states that share four out of five quantum numbers

likely plays some role in determining permitted and forbidden transitions.

6.1 Outlook and future directions

Although not explicitly described here, preliminary investigation has also looked at using

updated potentials to describe trimer Raman vibrational shifts of (H2)3, (D2)3, and (T2)3. We

achieve results in-line with experimental and theoretical findings first reported by Schmidt

et al.;23 however, in the case of trimers and large molecular clusters and materials (e.g. solid

hydrogen29), three-body interactions are likely to play an important role in describing the

overall potential.

In many respects, the processes reported throughout this thesis are designed for systems

beyond (H2)2 and its isotopologues; investigation of related van der Waals dimers and chains
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with larger intermolecular forces (e.g. (N2)2, (O2)2) may allow for additional considerations.

In the case of chains, further investigation will look at binding between carbon nanotubes and

various molecular units; this idea was neglected in Chapter 5 for simplicity when considering

different representations of our pairwise sum of potential approach. The use of C60 or other

rings to shield the intermolecular van der Waal or dipole forces may be required in the

case of larger molecules, as outlined previously by Halverson et al.77 The DMRG method

described in this work also has broad applicability, with applications extending from the

nearest neighbour approximation presented here. In particular, the SVD approach employed

has the ability to incorporate any potential energy matrix beyond hydrogen (e.g. water based

chains or systems). DMRG can also be applied beyond the simple 1D systems, into 2D or

3D configurations which may have greater practical applicability in the storage of hydrogen

or other molecules.
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[76] Bačić, Z.; Vlček, V.; Neuhauser, D.; Felker, P. M. Faraday Discuss. 2018, 212, 547–567.

92

https://www.nist.gov/pml/elemental-data-index
https://www.nist.gov/pml/elemental-data-index
http://physics.nist.gov/constants
http://physics.nist.gov/constants


[77] Halverson, T.; Iouchtchenko, D.; Roy, P.-N. J. Chem. Phys. 2018, 148, 074112.

[78] Iouchtchenko, D.; Roy, P.-N. J. Chem. Phys. 2018, 148, 134115.

[79] White, S. R. Phys. Rev. Lett 1992, 69, 2863–2866.

[80] Wilson, K. G. Rev. Mod. Phys. 1975, 47, 773–840.
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Appendix A

Summary of Hydrogen and Deuterium

Nuclear Spin Statistics

In Chapter 3, we make significant use of nuclear spin statistics as motivation for assigning

symmetry, reducing the size of basis sets, and determining IR and Raman allowed transitions.

Let us consider the nuclear spin statistics for (H2)2 and (D2)2, using the assigned symmetry

of the wavefunctions and nuclear spin as described by Bunker.58,58 Some important notes

are included below:

1. We only assign symmetry states for ground rotational states since we are most interested

in Q lines, without a change in rotational energy. In other words, we only include |j1j1±〉,

where j1 = j2 for j1 = 0 or j1 = 1. Note that |j1j1+〉 is only allowed for even j12 and |j1j1−〉

is only permitted for odd j12.

2. At equilibrium, the nuclear spin statistical weights are given as the following (note that

symmetric or antisymmetric refers to the overall dimer wavefunction). We include the total

IT that can result from the addition of the two monomers:

(H2)2

para-para: 1B+
1 (symmetric, IT = 0)

ortho-para/para-ortho: 3E+ (IT = 1)

ortho-ortho: 6A+
1 (symmetric, IT = 0, 2), 3B+

2 (antisymmetric, IT = 1)
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(D2)2

ortho-ortho: 21A+
1 , (symmetric, IT = 0, 0, 2, 2, 4), 15B+

2 (antisymmetric, IT = 1, 2, 3)

para-ortho/ortho-para: 18E+ (IT = 1, 1, 2, 3)

para-para: 6B+
1 (symmetric, IT = 0, 2), 3A+

2 (antisymmetric, IT = 1)

3. The rovibrational weight, Γrv, is defined as Γrv = |ν1ν2±〉 |j1j2±〉 |n〉 |Lend〉. The symme-

tries of each of these terms at various conditions is defined by Bunker in Table 358 and Table

16-2.59 The product of this symmetry must satisfy the bosonic or fermionic nature of the

components of each dimer pair and produces a corresponding statistical weight. Specifically,

(H2)2 must have a final symmetry of either B+
1 or A−1 since individual hydrogen nuclei are

fermions (antisymmetric upon exchange), while hydrogen molecules are bosons (symmetric

upon exchange). In contrast, (D2)2 must have a final symmetry of A+
1 or B−1 , since both in-

dividual deuterium nuclei and molecules are bosons and must be symmetric upon exchange.

The purpose of the section below is to provide assorted calculations for different possible

scenarios that can arise when calculating the symmetry of Γrv, to determine whether or not

its product with the corresponding nuclear spin produces an allowed or forbidden final state.

Para-Para Hydrogen, |j1j2+〉 only, since j12 is always even for j1 = j2 = 0

|ν1ν2+〉 , Lend = even

Γrv = A+
1 ⊗ A+

1 ⊗ A+
1 ⊗ A+

1 = A+
1 (A.1)

A+
1 ⊗B+

1 = B+
1 (symmetric n.s. (1)) (A.2)

|ν1ν2−〉 , Lend = even

Γrv = B+
2 ⊗ A+

1 ⊗ A+
1 ⊗ A+

1 = B+
2 (A.3)

B+
2 ⊗B+

1 = A+
2 (forbidden) (A.4)
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|ν1ν2+〉 , Lend = odd

Γrv = A+
1 ⊗ A+

1 ⊗ A+
1 ⊗ A−2 = A−2 (A.5)

A−2 ⊗B+
1 = B−2 (forbidden) (A.6)

|ν1ν2−〉 , Lend = odd

Γrv = B+
2 ⊗ A+

1 ⊗ A+
1 ⊗ A−2 = B−1 (A.7)

B−1 ⊗B+
1 = A−1 (symmetric n.s. (1)) (A.8)

Ortho-Ortho Deuterium, |j1j2+〉 only, since j12 is always even for j1 = j2 = 0

|ν1ν2+〉 , Lend = even

Γrv = A+
1 ⊗ A+

1 ⊗ A+
1 ⊗ A+

1 = A+
1 (A.9)

A+
1 ⊗ A+

1 = A+
1 (symmetric n.s. (21)) (A.10)

|ν1ν2−〉 , Lend = even

Γrv = B+
2 ⊗ A+

1 ⊗ A+
1 ⊗ A+

1 = B+
2 (A.11)

B+
2 ⊗B+

2 = A+
1 (antisymmetric n.s. (15)) (A.12)

|ν1ν2+〉 , Lend = odd

Γrv = A+
1 ⊗ A+

1 ⊗ A+
1 ⊗ A−2 = A−2 (A.13)

A−2 ⊗B+
2 = B−1 (antisymmetric n.s. (15)) (A.14)
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|ν1ν2−〉 , Lend = odd

Γrv = B+
2 ⊗ A+

1 ⊗ A+
1 ⊗ A−2 = B−1 (A.15)

B−1 ⊗ A+
1 = B−1 (symmetric n.s. (21)) (A.16)

Ortho-Para/Para-Ortho Hydrogen and Ortho-Para/Para-Ortho Deuterium

|ν1ν2+〉 , Lend = even.

Γrv = A+
1 ⊗ E− ⊗ A+

1 ⊗ A+
1 = E− (A.17)

E− ⊗ E+ = A−1 ( (Hydrogen, 3 n.s.), B−1 (Deuterium, 18 n.s.)) (A.18)

|ν1ν2+〉 , Lend = odd.

Γrv = A+
1 ⊗ E− ⊗ A+

1 ⊗ A−2 = E+ (A.19)

E+ ⊗ E+ = B+
1 ( (Hydrogen, 3 n.s.), A+

1 (Deuterium, 18 n.s.)) (A.20)

Ortho-Ortho Hydrogen

|j1j2+〉 , |ν1ν2+〉 , Lend = even.

Γrv = A+
1 ⊗B+

1 ⊗ A+
1 ⊗ A+

1 = B+
1 (A.21)

B+
1 ⊗ A+

1 = B+
1 (symmetric n.s. (6)) (A.22)

|j1j2−〉 , |ν1ν2+〉 , Lend = even.

Γrv = A+
1 ⊗ A+

2 ⊗ A+
1 ⊗ A+

1 = A+
2 (A.23)

A+
2 ⊗B+

2 = B+
1 (antisymmetric n.s. (3)) (A.24)
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|j1j2+〉 , |ν1ν2−〉 , Lend = even.

Γrv = B+
2 ⊗B+

1 ⊗ A+
1 ⊗ A+

1 = A+
2 (A.25)

A+
2 ⊗B+

2 = B+
1 (antisymmetric n.s. (3)) (A.26)

|j1j2−〉 , |ν1ν2−〉 , Lend = even.

Γrv = B+
2 ⊗ A+

2 ⊗ A+
1 ⊗ A+

1 = B+
1 (A.27)

B+
1 ⊗ A+

1 = B+
1 (symmetric n.s. (6)) (A.28)

|j1j2+〉 , |ν1ν2+〉 , Lend = odd.

Γrv = A+
1 ⊗B+

1 ⊗ A+
1 ⊗ A−2 = B−2 (A.29)

B−2 ⊗B+
2 = A−1 (antisymmetric n.s. (3)) (A.30)

|j1j2−〉 , |ν1ν2+〉 , Lend = odd.

Γrv = A+
1 ⊗ A+

2 ⊗ A+
1 ⊗ A−2 = A−1 (A.31)

A−1 ⊗ A+
1 = A−1 (symmetric n.s. (6)) (A.32)

|j1j2+〉 , |ν1ν2−〉 , Lend = odd.

Γrv = B+
2 ⊗B+

1 ⊗ A+
1 ⊗ A−2 = A−1 (A.33)

A−1 ⊗ A+
1 = A−1 (symmetric n.s. (6)) (A.34)

|j1j2−〉 , |ν1ν2−〉 , Lend = odd.

Γrv = B+
2 ⊗ A+

2 ⊗ A+
1 ⊗ A−2 = B−2 (A.35)

B−2 ⊗B+
2 = A−1 (antisymmetric n.s. (3)) (A.36)
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The nuclear spin statistics are identical for para-para deuterium compared to the above

results for ortho-ortho hydrogen, except that for our nuclear spin product, we multiply by

B+
1 instead of A+

1 and A+
2 instead of B+

2 to give final allowed states as discussed previously.
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