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Abstract

A packing is an arrangement of geometric elements within a container region in the
plane. Elements are united to communicate the overall container shape, but each is large
enough to be appreciated individually. Creating a packing is challenging since an artist
should arrange compatible elements so that their boundaries interlock with each other.
This thesis presents three packing methods that create element compatibilities using shape
deformation. The first method, FLOWPAK, deforms elements to flow along a vector field
interpolated from user-supplied strokes, giving a sense of visual flow to the final composi-
tion. The second method, RepulsionPak, utilizes repulsion forces to pack elements, each
represented as a mass-spring system, allowing them to deform to achieve a better fit with
their neighbours and the container. The last method, AnimationPak, creates animated
packings by arranging animated two-dimensional elements inside a static container. We
represent animated elements in a three-dimensional spacetime domain, and view the ani-
mated packing problem as a three-dimensional packing in that domain. Finally, we propose
statistical methods for measuring the evenness of 2D element distributions, which provide
quantitative means of evaluating and comparing packing algorithms.
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Chapter 1

Introduction

A packing is an arrangement of geometric elements within a container region in the plane.
As an artistic composition, a packing can communicate a relationship between a whole and
the parts that make it up. Elements work together to communicate the overall container
shape, but each is large enough to be appreciated individually. Elements are shapes like
animals, plants, abstract geometry, or man-made objects. Packings are popular in logo
design, graphic design, and art. Figure 1.1a shows the Unilever logo, which is a 2D packing
of elements arranged inside a U-shaped container.

The subset of the container that does not belong to any element is called negative
space (Figure 1.1b). We can also interpret negative space as separation and gaps between
elements. On the other hand, elements can be interpreted as positive space. In this thesis,
we narrow our focus to packings without element overlaps, which makes it easier to discuss
positive and negative space without double counting the positive space.

The evenness of negative space plays an important role in packings. Initially, an artist
should arrange elements in such way that their boundaries interlock with each other, caus-
ing the separation between neighbouring elements to become roughly the same every-
where. We refer to elements in the resulting packing as primary elements. However, the
interlocking of primary elements is imperfect, and artists will frequently place smaller sec-
ondary elements such as triangles or circles to reduce remaining large gaps, as shown in
the autumn-themed packing in Figure 1.2.

Design Principles: In studying packing designs, we have identified five high-level
principles that are important to the construction of packings. A few of them are adapted
from work by Wong et al. [WZS98]. These principles are design considerations that cover

1



(a) (b)

Figure 1.1: (a) The Unilever logo packing consists of 25 elements arranged inside an estimated
U-shaped container. (b) The red region, consisting of the remaining area not claimed by the
elements, is referred to as negative space.

(a) (b)

Figure 1.2: An autumn-themed packing created by Balabolka on Shutterstock. (a) The
packing with primary elements only. (b) Secondary elements are added.
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a broad range of packing styles. A packing algorithm need not satisfy all five of them. We
discuss these principles below:

• Balance. A composition does not exhibit too much variation in local amounts of pos-
itive and negative space. Typically, this goal is accomplished by limiting variation in
the diameters of elements (controlling the variation in positive space), and in ensuring
that elements are spaced evenly (controlling negative space). The primary elements in
Figure 1.2 come in a range of sizes, but none so extreme that they stand out. Addition-
ally, interlocking elements lead to channels of negative space that are roughly constant
in width.

• Flow. In local parts of a composition, the elements are oriented to communicate a sense
of directionality or flow. Examples in Figure 1.3 exhibit some amount of flow. In the
dog, many elements appear to flow outward from the flower in the centre of the torso,
and then up the neck and down into the legs. The scales and other elements on the
fish flow along the length of its body. In the lion and skull, elements flow horizontally
outward from a central axis of symmetry, suggesting fur in the case of the lion. Another
example is shown in Figure 1.4, which is a packing of leaves that are oriented toward
the centre of the container. Flow adds visual interest to a composition, engaging the
viewer by providing a sense of progression and movement through elements.

• Uniformity Amidst Variety. Repeated elements must balance between two opposing
forces. Uniformity aims for an overall unity of design; variety seeks to break up the
monotony of pure repetition. Elements should be permitted to vary in shape, but in a
controlled way. We refer to this principle as uniformity amidst variety, a term borrowed
from philosopher Francis Hutcheson [Hut29]. Gombrich also wrote eloquently on the
role of variation in design [Gom84]. In the context of procedural art, Galanter discussed
the trade off between order and disorder [Gal03]. The Unilever packing in Figure 1.1
has the elements drawn with a similar curvy design. In Figure 1.2, the elements are
autumn-themed shapes and are convex or near convex. In Figure 1.3, the dog’s spirals
and the fish’s scales both obey this principle. The lion and skull do as well, except that
half of the elements are reflected copies of the other half, across a vertical line through
the centre of the composition. This repetition emphasizes the bilateral symmetry in the
design. The land art packing in Figure 1.4 has the most uniformity of these examples:
the leaves have similar shapes and the composition conveys the radial symmetry. The
artist added some amount of variety by using different leaf sizes and colours.

• Fixed Elements. Compositions use a small number of fixed elements to solve specific
design problems or provide focal points. In any figurative drawing, eyes serve as a
powerful focal point; every example in Figure 1.3 has eyes drawn in as unique elements

3



(the dog’s eye is expressed via a carefully placed spiral). Other situations that call for
specialized shapes include the dog’s paws, the fish’s teeth and fins, the lion’s eyes and
nose, and the skull’s teeth. Sharp variation in the balance of positive and negative
space can also be used to emphasize a focal point, as in the fish’s head and the lion’s
face that contain considerable amount of empty space.

• Boundaries. In many ornamental packings, elements are carefully arranged to conform
to and emphasize container boundaries. Elements in the Unilever packing (Figure 1.1)
and the autumn-themed packing (Figure 1.2) demonstrate this principle most clearly:
we can easily fill in the gaps between elements to form a mental image of a continuous
outline. In Figure 1.3a, the dog’s elements are also well aligned to indicate the container
shape. However, this rule is not universal. The lion packing in Figure 1.3b artfully
subverts it with elements that flow outward to an indistinct boundary, helping to convey
the appearance of fur.

There has been a moderate amount of past research in computer graphics, particularly
in the field of non-photorealistic rendering, on the generation of packings, or mosaics.
See Chapter 2 for specific examples. However, most techniques pack elements via rigid
transformations, leading to uneven element distribution and overlaps.

Jigsaw Image Mosaics [KP02] and collages based on the Pyramid of Arclength Descrip-
tor [KSH+16] are data-driven. These techniques rely on a large library of elements, so that
given an area to fill in a partial composition, there is likely to be an element in the library
with a compatible shape. The challenge is finding compatible elements, which requires
designing a shape matching technique that is fast and robust. Additionally, they cannot
guarantee to find a compatible element at every iteration, and elements typically do not fit
perfectly with each other or the container boundary. The remedy here is providing more
data with increased computation time. However, a large library may not be feasible or
artistically desirable. If an artist wants a packing of hand-drawn cats, and a data-driven
approach cannot find a good result with ten cat shapes, the artist may not want to draw
100 or 1000 cats to ensure a better fit.

In this thesis, we propose deformation-driven methods. Instead of finding compatible
elements, we create compatible elements through deformation; these deformed elements
can adapt to the shapes of neighbouring elements and the container boundary. We allow
elements to deform in a controlled way, to trade off between the evenness of the element
distribution and the deformations of the individual elements. By building an algorithm
with a controllable deformation model at its core, we achieve a more even distribution of
negative space, and we require only a small library of element shapes. Deformation-driven
methods also allow us to work toward the principle of uniformity amidst variety. We can
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(a)

(b) (c) (d)

Figure 1.3: Packings with flow-based visual styles: (a) Dog (by ComicVector703 on Shut-
terstock), including a visualization showing the flow directions of elements; (b) Lion (from
StockUnlimited); (c) Skull (by alitdesign on Shutterstock). (d) Fish in the style of Haida art
(by Russ Jones, used with permission);
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Figure 1.4: A land art packing that is composed of leaves, created by James Brunt. Each leaf
is oriented toward the centre of the circle.

achieve a degree of uniformity by using repeated copies of a small library of elements, but
balance that uniformity with variety by deforming those elements. We believe that there
is a value in deformation that can generate plausible families of related elements from a
single input shape.

In this thesis, many of our techniques are inspired by physical simulations. We create
an element representation that can be deformed by pseudo-physical forces. Our goal is not
to contribute to research on physics-based animation, but to use a physical simulation as
an optimization process that allows us to reach a physical equilibrium where the resulting
packing has approximately uniform distribution of both positive and negative space.

The perceived packing quality is closely tied to the evenness of negative space. The more
the elements interlock, the more even the negative space. We are interested in quantitative
measurements of evenness in order to evaluate and compare packing algorithms. In this
thesis we discuss several possible measurements of evenness based on methods from spatial
statistics.
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1.1 Problem Formulation

We define the general packing problem to be solved as follows. The user provides several
general inputs, although an individual packing method requires additional information
from time to time. We discuss these inputs below:

1. A library of elements. Each is a collection of open, closed, or intersecting polygonal
paths. An element can contain additional information, such as colours, a preferred
orientation, or a scripted animation.

2. One or more target containers. Each container is a closed non-self-intersecting curve
to be filled with elements. A container can optionally have internal holes.

3. An optional set of fixed elements that we transfer directly to the result.

Our goal is to fill each container with elements, trying to satisfy several considerations:

1. Balance out the element distribution and make the widths of negative space be as
uniform as possible.

2. Deform elements in a controllable way, trading off between the preservation of element
shapes and the creation of shape compatibilities.

3. Use the container space efficiently by having as little negative space as possible.

4. Conform to container boundaries.

1.2 Thesis Contributions

In this thesis, we develop three specific deformation-driven packing methods, and present
a study to investigate the quantitative evaluation of packing quality in greater detail:

1. FLOWPAK is a packing method that deforms long thin elements to follow a user-
defined vector field (Chapter 3).

2. RepulsionPak is a packing method that utilizes repulsion forces to distribute and
deform elements, each represented as a mass-spring system (Chapter 4).
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3. AnimationPak is a method to pack 2D animated elements inside a static 2D container.
Each element is an extruded 3D shape in a spacetime domain and we view the
animated packing problem as a 3D packing in that domain. (Chapter 5).

4. Quantitative metrics for measuring the evenness of negative space: spherical con-
tact probabilities, histograms of the distance transforms, and the overlap functions
(Chapter 6).
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Chapter 2

Related Work

An element arrangement is defined as a distribution of non-overlapping elements in the
plane. Decades of research in non-photorealistic rendering (NPR) have produced many
techniques for producing computer-generated element arrangements. Based on their de-
signs, categories of elements arrangements include packings, tilings, and discrete textures
(Figure 2.1). The categorization can be further expanded but we only choose ones that are
related to this thesis. We further break down the packing category into several subcate-
gories: mosaics, 2D packings, 3D packings, packings on surfaces, and animated packings.
This chapter covers the entire categorization except animated packings, which are discussed
in Chapter 5. Most packing techniques have the goal to generate overlap-free packings, but
in reality, it is a difficult task. A few computer-generated packings shown in this chapter
contain overlaps to some degree due to the challenge of finding and aligning compatible
elements.

Many packing algorithms can also be grouped according to their main algorithmic
techniques (Figure 2.2). The first category, Lloyd’s method, iteratively refines an initial
element arrangement to generate a more even distribution. The second category, data-
driven methods, places elements one by one. For each step, an element is taken from
an element library that is compatible with previously placed elements and the container
boundary. The last category, deformation-driven methods, attempts to create element
compatibilities through shape deformation.
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Element  Arrangements 

Packings Discrete TexturesTilings

Mosaics 3D Packings2D Packings Packings on Surfaces Animated Packings

Kaplan and Salesin AlMeraj et al.

Hausner Gal et al.Kwan et al. Chen et al. Smith et al.

Figure 2.1: A simplified categorization of element arrangements.

2.1 Mosaics

Mosaics are 2D arrangements that are popular for decorating floors or walls. In tradi-
tional mosaics, elements are made of stone, ceramics, or glass. The majority of these
mosaicing techniques use Lloyd’s method to distribute elements via rigid transformations
(Figure 2.2a). Originally, Lloyd’s method was introduced in computer graphics by McCool
and Fiume to distribute point elements [MF92]. It was later generalized to distribute
convex and concave elements.

We first discuss the simplest variant of Lloyd’s method that distributes point elements,
as shown in Figure 2.3. Given N point elements, we first compute a Voronoi diagram that
partitions the plane into N regions such that all points inside a Voronoi cell are closest to
its associated point element. Lloyd’s method moves every point element to the centroid
of its Voronoi cell, then the Voronoi diagram is recomputed. The process is repeated until
the distribution is even, meaning that the point elements are located at the centroids of
the Voronoi cells. The final structure is called a centroidal Voronoi diagram (CVD).

When computing centroids, a standard CVD assumes the area density is uniform ev-
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(c) Deformation-Driven Methods

Input elements The resulting packing 
consists of deformed elements

(a) Lloyd’s Method

An initial packing The resulting packing

(b) Data-Driven Methods

Placing elements 
one by one

The filled 
container

An element library

A container

Figure 2.2: Three popular methods in mosaicing and packings. (a) Lloyd’s method starts
with an initial distribution of elements then iteratively displaces them to generate a more even
packing. (b) A data-driven method places elements one by one until the container is filled.
For each step, it selects an element from an element library that is compatible with already
placed elements and the container. (c) A deformation-driven method attempts to create el-
ement compatibility through deformation. The illustrations are adapted from The Spectral
Approach [DKLS06], Pyramid of Arclength Descriptors [KSH+16], and Legible Compact Cal-
ligrams [ZCR+16].
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Iteration 1 Iteration 2 Iteration 15

Figure 2.3: An illustration of point-based Lloyd’s method. A Voronoi diagram is generated
from the input point elements (drawn as red dots). We then move the point elements to the
centroids of Voronoi cells (drawn as plus signs). The process is repeated until convergence,
producing a centroidal Voronoi diagram. Figure source is Wikipedia, drawn by Dominik Moritz
under CC0 1.0.

erywhere. Secord [Sec02] computed a weighted CVD so that the resulting point element
distribution resembles a stippling artwork (Figure 2.5a). His method incorporates the
pixel intensities of an input image to construct a density field. This alters the centroid
calculation so that point elements are attracted to darker regions.

A standard CVD is generated using Euclidean distance, but other metrics lead to dif-
ferent shapes of Voronoi cells. Hausner [Hau01] simulated the appearance of traditional
mosaics by using Manhattan distance, producing Voronoi cells that resemble squares in-
stead of hexagons. Each Voronoi cell is then replaced with a square element and the result-
ing arrangement resembles the appearance of traditional mosaics (Figure 2.5b). However,
a standard CVD computes only the positions of the square elements, and Hausner must
incorporate a vector field to modify the orientation of the metric and rotate the square
elements. Additionally, the approach is only suitable for square elements as more compli-
cated shapes, such as long rectangles, would have severe overlaps. More recently, Doyle et
al. [DACM19] and Javid et al. [JDM19] generated pebble mosaics using a superpixel image
segmentation [ASS+12], which is a variant of Lloyd’s method that blends an Euclidean
metric with a CIELAB colour metric. They later elongated the Voronoi cells to follow the
gradient of the input image, and smoothed out the cell boundaries. The resulting Voronoi
cells resemble smooth elongated pebble shapes.

We now discuss the computation of Voronoi diagrams that is generalized to any shapes
for which a distance measurement exists. Hiller et al. [HHD03] extended Lloyd’s method
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(a) (b)

Figure 2.4: (a) Stippling artwork of point elements generated using Lloyd’s method that
incorporates pixel densities of the input image [Sec02]. (b) Mosaics of square elements generated
using Lloyd’s method with Manhattan distance [Hau01]

to construct centroidal area Voronoi diagrams (CAVDs), a variant of CVDs that yields a
distribution of polygonal elements. This new extension computes the main inertial axis for
each Voronoi cell so that its element can be rotated to achieve better alignment with the
Voronoi cell boundary. In follow up work, Smith et al. [SLK05] developed Animosaics to
generate temporally coherent animated mosaics by utilizing CAVDs. Dalal et al. [DKLS06]
proposed a spectral approach based on a fast Fourier transform to reposition elements so
that they achieve the best alignments with their Voronoi cell boundaries, which could be
seen as making more effective use of negative space, and permitting non-convex elements
to interlock more than they did in earlier methods. However, the spectral approach cannot
rotate the elements, so it resorts to a brute force approach to find the best orientation.
Just like Animosaics, the spectral approach can generate animated mosaics, a topic that
we will explore further in Chapter 5.

As an alternative to Lloyd’s method, an interactive user interface can also be used to
generate mosaics. Abdrashitov et al. [AGYS14] developed a sketch-based mosaic interface
where an artist can draw curves to guide the placement of square-like elements. After the
square elements are frozen in place, their boundaries are sliced to eliminate overlaps.
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(a) (b)

Figure 2.5: Mosaics generated with generalized Voronoi diagrams. (a) Animosaics [SLK05].
(b) A Spectral Approach [DKLS06].

2.2 2D Packings

This section discusses packings composed of elements that resemble man-made objects,
geometry, letterforms, plants, or animals. Unlike decorative mosaics, packings are mostly
found in logo design and graphic design. Some packing styles are reminiscent to paintings
by Giuseppe Arcimboldo, like the one shown in Figure 2.6. Most packing methods drift
away from Lloyd’s method in favor of data-driven methods (Figure 2.2b) and deformation-
driven methods (Figure 2.2c).

A data-driven method requires an input element library to find compatible elements
(Figure 2.7). Typically, elements are placed one by one until the container area is filled. A
shape matching algorithm selects an element from the library that has the best compatibil-
ity with the previously placed elements or the container boundary. Jigsaw Image Mosaics
(JIM) [KP02] uses a geometric hashing technique to find compatible elements. JIM places
elements using a greedy approach, but is able to backtrack if a previous configuration is
more optimal. Pyramid of Arclength Descriptor (PAD) [KSH+16] is a curvature-based
shape descriptor that can find new elements that partially match existing element bound-
aries as a container is being filled.
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An alternative approach to data-driven methods is to initially partition a container
into smaller segments and independently replace each segment with a matching element
taken from the library. This is desirable if the container has colours or salient parts
that need to be emphasized. Huang et al. [HZZ11] proposed a data-driven approach that
generates Arcimboldo-like collages by arranging cutout images collected from the internet.
Their container is a larger cutout image which is partitioned into parts using an image
segmentation algorithm. Each part is then replaced with a smaller cutout image that has
a similar shape and colour.

All these data-driven methods require a large element library. The more elements in the
library, the better the chances of finding compatible elements. For example, JIM required
about 900 elements, PAD used a library with more than 120 elements (see Figure 2.2), and
Huang et al. needed about 5000 elements. However, a bigger database means increased
computation time and collecting a large number of elements is not always feasible.

The placement process in JIM and PAD is being done without shape deformation.
As shown in their results in Figure 2.7, element shapes never have perfectly compatible
boundaries, and the packing process allows some overlaps to arise between neighbouring
elements. These techniques optionally post-process elements by locally deforming their
boundaries to suppress overlaps. While these local adjustments improve compatibility,
they cannot influence the placement process, and a large element library is still required
to generate satisfactory packings.

Instead of allowing shape compatibilities to arise organically in a large collection of
elements, we can deform elements to manufacture those compatibilities. A deformation-
driven method can create packings based on much smaller element libraries. Xu and
Kaplan [XK07] and Zou et al. [ZCR+16] constructed calligraphic packings by filling a
container with a small number of letter elements composing one or two words (Figure 2.2c
and 2.9a). Xu and Kaplan’s method is able to fill the container but the arrangement
and deformation of the letters can make the calligram difficult to read. The improved
method by Zou et al. can achieve better readability by computing the medial axis of
the container where letter elements are anchored. However, these calligraphic packing
methods require significant deformation so they are not able to preserve the characters
of the original letterforms. In other work, Peng et al. [PYW14] proposed a method that
packs and deforms simple polygon and polyomino elements to generate layouts for urban
planning or indoor space, although their method cannot handle more complicated element
shapes. An example of a generated indoor layout is shown in Figure 2.10.

These data-driven methods and deformation driven methods inspire us to develop new
packing methods. In JIMs and PAD packings, deformation is a post-processing operation
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Figure 2.6: Vertumnus (ca. 1590), by Giuseppe Arcimboldo, which illustrates a packing of
plants, vegetables, and fruits (Skokloster Castle, Skokloster, Sweden).

(a) (b)

Figure 2.7: Data-driven methods: (a) Jigsaw Image Mosaics [KP02]. (b) Pyramid of Arclength
Descriptor [KSH+16].
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Figure 2.8: An Arcimboldo-inspired 2D packing of overlapping elements [HZZ11] .

used for local touch-ups. In calligraphic packings and polyomino layouts, the deformation
methods are limited to specific element shapes. We would like to use deformation as the
core of the packing process and generate packings with more general styles similar to JIMs
and PAD packings.

2.3 Tilings

As elements reach perfect compatibility, a packing turns into a tiling, such as the example
in Figure 2.11a. The element boundaries interlock, leaving no negative space. Kaplan
and Salesin introduced Escherization [KS00, KS04], a technique that deforms one or two
input elements into shapes that can tile the plane. The tiles always fill the entire plane,
and are not intended for filling a bounded container. Given an input element S, they
performed a search in a parameterized tiling space to find its deformed variant T . Due to
deformation, T is often perceptually unrecognizable from its silhouette unless an interior
picture is added. Kaplan and Salesin’s method has a better chance to find T if S has
shallow concavities. More recent methods [KS11, NI20] are able to solve the Escherization
problem more efficiently and can deal with shapes that have deeper concavities.

Past research has proposed methods to replicate the figure-ground reversal style of
Escher’s Sky and Water, in which elements serve as both positive and negative space
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Figure 2.9: A deformation-driven packing of a calligraphic “elephant” [XK07].

Figure 2.10: An office layout generated by packing deformable rectangle and polyomino
elements [PYW14].
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depending on the viewer’s perception [KS04, Sug09, LML+18]. Two input elements S1

and S2 are placed at opposite ends of a canvas. They are then copied, arranged, and
deformed until they meet in a tiling in the middle, with copies of each shape acting as
the other’s negative space (Figure 2.11b). The gradual evolution of tile shapes can also be
found in Parquet Deformations, a graphic design style invented by William Huff [Hof86].
Aesthetically, Parquet Deformations are closely related to Escher’s metamorphoses. An
example can be seen in Figure 2.11c, where the tiling can be interpreted as a kind of
spatial animation. Kaplan [Kap10] proposed several element evolution schemes: a grid-
based curve evolution, iterated function systems, and organic labyrinth simulations.

2.4 Discrete Texture Synthesis

Some past work has sought to adapt example-based texture synthesis methods from raster
images to vector graphics, producing distributions of rigidly transformed elements that
mimic the statistics of an exemplar, an example can be seen in Figure 2.12. For raster-
based texture synthesis methods, readers can refer to a survey paper compiled by Wei
et al. [WLKT09]. These techniques are all concerned with replicating the distribution of
positive space in the exemplar, and less about negative space. An element is represented
as a single point, which is adequate for small near-convex elements. Barla et al. [BBT+06]
and Ijiri et al. [IMIM08] used a growth model that copies small neighbourhoods from the
exemplar into a larger output texture. Hurtut et al. [HLT+09] developed a statistical sam-
pling method based on multitype point processes. AlMeraj et al. [AKA13a] stamped out
copies of the exemplar and discarded overlapping elements. Loi et al. [LHVT17] developed
a texture synthesis method that can specify global arrangements, local arrangements, or a
blend of multiple arrangements.

For larger concave elements, a single point representation is not enough. Ma et al.
[MWT11] used a sample-based representation that is created by generating a sparse set of
points inside an element. They later distributed these points using a neighbourhood metric
and an iterative optimization. Unlike previous work, they were able to synthesize textures
with long deformable elements, for example, spaghetti. Ma et al. later extended their
work to accept animated elements [MWLT13], where each sample point has a spatial and
time position, turning the problem to spacetime texture synthesis. More recently, Hsu et
al. [HWYZ20] adapted the sample-based representation into an interactive tool where an
artist can initially distribute elements by drawing strokes which are then optimized using
a Lloyd-like optimization.
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(a)

(b)

(c)

Figure 2.11: (a) A tiling of tux penguins [KS00]. (b) Sky and water tiling style [KS04].
(c) A Parquet Deformation [Kap10].
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Exemplar Synthesized Texture

Figure 2.12: An example of discrete texture synthesis [AKA13a].

2.5 3D Packings

Collages are arrangements of overlapping elements, similar to portrait paintings by Giuseppe
Arcimboldo. Gal et al. [GSP+07] presented a method for constructing 3D collages (Fig-
ure 2.13a). They filled a 3D container with overlapping 3D elements using a greedy ap-
proach and a partial shape matching algorithm. This work can be seen as a JIM-like
technique in 3D, except that there is more tolerance for overlaps. Similar to the work
of Gal et al., Theobalt et al. [TRdAS07] developed a method to generate animated 3D
collages, which we will discuss more in Chapter 5. In other work, Huang et al. [HWFL14]
designed a method to generate mechanical collages, such as giant robots. All these collage
methods require a 3D shape database.

The cutting and packing problem (C&P) is defined as cutting a large object into smaller
parts which are then packed inside a container. C&P is popular in manufacturing and 3D
printing because objects can be produced with less waste material and packed into a smaller
box. A good cutting process is critical in C&P: if it can decompose the input object into
simpler parts, then the packing process can be easier. Chernov et al. [CSR10] proposed a
method to decompose a large object into smaller “phi objects” that can be packed more
efficiently. A phi object is defined as a shape whose surface boundaries are flat, spherical,
cylindrical, or conical. Vanek et al. [VGB+14] introduced PackMerger, a method to pack
thin shells which can be assembled together into a larger watertight object. In follow up
work, Chen et al. [CZL+15] introduced Dapper, a method to cut and pack volumetric
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printed objects.

In engineering, packings are useful for a number of applications, such as product pack-
aging, circuit designs, or mechanical layouts. This requires elements to be packed without
any overlap. Cagan et al. [CSY02] compiled a survey of 3D packing approaches such as
gradient methods, simulated annealing, and genetic algorithms. Byholm et al. [BTW09]
developed a method to pack voxelized elements, which are computationally easier for colli-
sion detection. Ma et al. [MCHW18] proposed a heuristic method to pack non-overlapping
triangular meshes (Figure 2.13b).

2.6 Packings on Surfaces

Some recent work has explored the elaboration of ornamental patterns on surfaces, under
constraints imposed by fabrication, such as connectivity. Schiftner et al. [SHWP09] intro-
duced Circle Packing meshes, a special kind of triangle mesh, where the incircles of two
neighbouring triangles have the same contact point on the shared edge, forming a pack-
ing of circles or spheres. Chen et al. [CZX+16] developed a method to generate a filigree
pattern, which is an arrangement of decorative thin rod elements on a surface. Given an
initial random configuration of overlapping elements, their method removes overlaps by
either deforming or trimming the rods. In similar work, Zehnder et al. [ZCT16] proposed
a semi-automated tool for deforming ornamental curves to cover a surface, as shown in
Figure 2.13c. They start with an initial, overlap-free configuration of scaled down ele-
ments. They then grow the elements, avoiding overlaps using curve deformation. Chen
et al. [CML+17] generated modular surfaces by computing contact point networks of rigid
elements, as shown in Figure 2.13d. Bian et al. [BWL18] used Wang tiles made of element
parts to generate filigree patterns. Mart́ınez et al. [MSS+19] developed a variant of Lloyd’s
method to generate star-shaped tiling patterns that are printed onto tracery sheets. Their
method works by constructing a star-shaped metric to manipulate the Voronoi cell shapes.
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(a) (b)

(c)(d)

Figure 2.13: Examples of 3D packings and packings on surfaces. (a) An Arcimboldo-like
packing of overlapping 3D elements [GSP+07]. (b) A packing of non-overlapping 3D ele-
ments [MCHW18]. (c) Deformed curve elements that fill a surface [ZCT16]. (d) A surface
packed with elements connected to each other by hinges [CML+17].
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Chapter 3

FLOWPAK: Flow-Based Ornamental
Element Packing

3.1 Introduction

FLOWPAK is a technique for filling a container region with elements that are deformed
to communicate a sense of directionality or flow. We aim to create packings that obey all
design principles articulated in Chapter 1, with a special focus on the flow principle. Ele-
ments have simple geometric forms, often stylized flora, spirals, or other abstract geometry.
Elements can be oriented in the local direction of flow, but can also be deformed to cap-
ture changes in flow direction. We express the user’s desired flow by placing evenly spaced
streamlines inside the container region. Each streamline is then replaced by an element
chosen from a pre-drawn set. The element is bent along the streamline to communicate
flow, and also deformed to balance the usage of negative space with elements placed on
adjacent streamlines.

3.2 Related Work

Decorative Ornaments: A distinct category of past research seeks to develop explicit
procedural models for authoring decorative patterns. Wong et al. [WZS98] articulated
a set of design principles for decorative art: repetition, balance, and conformation to
geometric constraints. They went on to describe a grammar-like system for laying out floral
ornament. Beneš et al. [BvMM11] developed an interactive interface to guide procedural
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models in generating decorative elements. Guerrero et al. [GBLM16] developed PATEX, a
system that preserves high-level geometric relationships like symmetry and repetition while
ornamental designs are being edited. Gieseke et al. [GALF17] developed a user interface
where an artist can generate a decorative pattern by specifying design principles such as
flow, balance, and symmetry. Li et al. [LBMH19] developed a method that can produce
a 2D quilting pattern by generating connected stitch paths, each is then decorated by
ornamental elements.

Decorative Strokes: FLOWPAK is related to decorative stroke methods since we aim
to deform long thin elements. The goal of these methods is to create stylized decorative
strokes, and not to fill a container area. Hsu et al. developed Skeletal Strokes [HLW93], a
method to warp decorative patterns along a stroke. Asente [Ase10] improved upon Skeletal
Strokes by correcting severe deformation on high-curvature strokes. Lu et al. developed
DecoBrush [LBW+14], which can join multiple decorative patterns seamlessly.

Vector Field-Guided Compositions: FLOWPAK requires elements to be deformed
and oriented according to a vector field. Xu and Mould [XM09] generated decorative curves
by simulating the trajectories of charged particles in a magnetic field. Li et al. [LBZ+11]
developed a method to decorate a surface using a shape grammar that is guided by a tensor
field. Maharik et al. explored Digital Micrography [MBS+11], in which lines of small-scale
text are deformed to fit along dense streamlines in a container. These streamlines are
traced from a user defined vector field. We take inspiration from Digital Micrography,
but seek to place fewer, larger elements taken from a small library of elements and to use
shorter, sparser, and less regular streamlines. Lastly, Xu and Mould [XM15] proposed a
graph-based tree synthesis method that is guided by vector fields.

Decorative Ornaments on Surfaces: Related methods in fabrication have sought
to cover surfaces with arrangements of decorative elements that satisfy manufacturing
constraints such as connectivity [CZX+16, ZCT16, BWL18, MSS+19]. Elements must be
linked together to produce a connected result that will hold together when 3D printed. In
the case of FLOWPAK, we seek to distribute disconnected elements inside a container.

3.3 Approach

The user provides several inputs, similar to those described in Section 1.1 with a few
additional details:

1. An input element has a spine that will control its deformation.
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2. Each container includes a set of direction guides that influence the placement algo-
rithm, defining the flow of the results. Every target container must have at least one
guide, and some or all of the guides typically follow the container boundaries.

3. Fixed elements are also included.

The goal of FLOWPAK is to fill each target container with elements. Figure 3.1 gives
an overall view of our system. The drawing in Figure 3.1(1) shows containers, directional
guides, and a fixed element. The drawing in Figure 3.1(2) shows elements and their spines.
The numbers in the following steps correspond to parts of the figure.

1. Read the input target containers and copy any fixed elements to the output art
(Section 3.3.1).

2. Analyze the ornamental elements, creating a shape descriptor for each (Section 3.3.2).

3. Use the direction guides to fill each target container with a vector field and then
trace streamlines (Section 3.3.3).

4. Divide the target containers into Voronoi cells around the streamlines. Each cell is
referred to as a blob. (Section 3.3.4).

5. Use the element shape descriptors to determine the best element for each blob. Place
the element in the blob, treating it as a skeletal stroke and mapping its spine to the
streamline (Section 3.3.5).

6. Iteratively refine the placement to eliminate empty areas and make the spacing more
even (Section 3.3.6).

3.3.1 Target Containers

The input diagram contains a set of target containers. Each is a single closed curve defining
an area to be filled. Most non-trivial examples include more than one target container. For
the most part, our algorithm fills each container separately, and so the following explanation
is given in terms of a single container. Containers will later be merged in the iterative
refinement step.
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(1) Target containers

(4) Sub-region blobs

(3) Creating vector fields and 
tracing streamlines

(2) Ornamental elements 
and LR functions

Best 
match

Iteration 5 Iteration 15

(6) Iterative refinement

(5) Shape matching and deformation

Deform

Figure 3.1: A visualization of the steps in our ornamental packing algorithm. The input
containers are shown as three black outlines in (1): the body and two fins. They are annotated
with directional guides in red and fixed elements (in this case, the eye) in green. The steps in
the algorithm follow the description at the beginning of Section 3.3.
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The artist has the option of including a set of fixed elements that we copy directly into
the final result. The following sections include descriptions of how the fixed elements affect
the filling algorithm.

We define lcanvas to be the canvas size, which is the maximum of the combined width or
height of all the target containers and fixed elements as laid out by the artist. This value
will be used to set various parameters in the synthesis process.

3.3.2 Ornamental Elements and LR functions

An ornamental element is defined as one or more closed curves. Our placement method
will eventually deform copies of the element (Section 3.3.5) using a simple skeletal stroke
algorithm [HLW93], so each element must be annotated with a straight spine to guide the
deformation. The spine does not need to go through the centre of the element—it can be
anywhere.

We define two classes of elements: a two-sided element extends across both sides of
its spine, and a one-sided element lies entirely on one side of its spine. Figure 3.2 shows
examples of two-sided and one-sided elements. If the input to our algorithm includes
direction guides that coincide with target container boundaries, the placement method
will align one-sided elements along these boundaries. The alignment of one-sided elements
will visually reinforce container boundaries, as shown in our results.

We define a simple shape descriptor called an LR function that will be used in Sec-
tion 3.3.5 to choose which element to place in a particular location. Inspired by the work
of Gal et al. [GSCO07], we sample the element’s spine at n locations and at each location
determine how far the ornament extends to the left and right of the spine. The LR function
is the set {L,R} where L = {`1, . . . , `nf

} is the left function and R = {r1, . . . , rnf
} is the

right function. The number of samples is denoted by nf .

The LR function is made scale-invariant by normalizing its domain and range to [0, 1].
Note that swapping the L and R functions corresponds to reflecting the element across its
spine, and reversing each of L and R corresponds to reflecting the element along its spine.
We will consider all four combinations of these two reflections when placing an element in
a blob (Section 3.3.4), in order to achieve the best possible fit.

Intuitively, LR functions give an approximate area an ornamental element can claim.
Figure 3.2 shows elements with their left values in blue and their right values in red. We
have found that nf = 100 gives sufficient granularity for our algorithm.
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Two-Sided Elements One-Sided Elements

Figure 3.2: Ornamental elements and their LR functions. Two-sided elements have non-empty
left and right sides, while one-sided elements have only one non-empty side. We normalize the
LR functions to a unit square.

3.3.3 Creating Vector Fields and Tracing Streamlines

To implement the flow principle described in the introduction, we fill each target container
with a vector field, constrained by the direction guides in that container.

We sample the directional guides D = {d1, d2, ..., dnd
} and use the tangent at every

sampled point as a directional constraint. We then construct a vector field using the 1-RoSy
algorithm of Palacios and Zhang [PZ07]. Note that, as shown in Step 3 of Figure 3.1, fixed
elements do not affect the vector field. The artist can include directional guides to guide
the vector field around fixed elements if desired.

The next step is to trace streamlines in the vector field, guided by three input param-
eters:

sgap is the desired space between streamlines;
smax is the maximum desired streamline length; and
smin is the minimum desired streamline length.

Because we will ultimately place elements along streamlines without overlap, sgap deter-
mines the approximate width of the placed elements, and smax the maximum length. We
also derive a value sstop that prevents streamlines from coming too close to each other; in
our implementation we compute sstop = 0.8 sgap.

We adapt the streamline tracing algorithm of Jobard and Lefer [JL97]. First we gen-
erate a set of potential seed points P = {p1,p2, ...,pnp} by densely resampling the target
container boundary T and the directional guides in D. We use a sampling distance of
0.005 lcanvas. The first streamline s is generated by randomly removing a seed point from
P and following the vector field until one of the following conditions holds:

1. the length of s would exceed smax.
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Figure 3.3: The streamline tracing process. The first streamline s1 always begins on a di-
rectional guide or the container boundary. Subsequent streamlines begin on the container
boundary, a directional guide, or at a point that is sgap away from a previous streamline.

2. s would come within sstop of another streamline.

3. s would cross T , leaving the container.

4. s would cross the boundary of a fixed element.

If the length of s is less than smin, we discard it. Otherwise we sample s, again using
0.005 lcanvas, and at each point generate two more potential seeds that are sgap away from
s on either side. If a seed is inside the container, we add it to P . The process is repeated
until P is empty. Note that the sstop distance test combined with the smin length test imply
that many attempts to form streamlines will stop immediately, especially as the container
fills with streamlines.

Figure 3.3 shows the creation process, and Algorithm 1 shows the pseudocode. The sort
function Sort(P ) orders the points in P according to their distance from the boundary T
and the directional guides in D, with closer points first and equally distant points ordered
randomly. Because the initial points are all on T or on a path in D, their sort value is
zero, and they will be processed before any derived points.

3.3.4 Sub-Region Blobs

To assist in choosing which element to place along each streamline, we first subtract the
areas of any fixed elements from the target container. We then construct an approximate
generalized Voronoi diagram of the interior using the method of Osher and Sethian [OS88].
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Algorithm 1 Tracing Streamlines

Create a seed list P = {p1,p2, ...,pnp} by uniformly resampling
T and the guides in D.

Create an empty set S of streamlines.
Randomly order the elements of P .
while P is not empty do

Generate a new streamline s from p1.
Remove p1 from P .
if s is longer than smin then

Add s to S.
Create seed points that are sgap away from s and

add them to P .
Sort(P ).

end if
end while

The streamlines are then extended at each end, following the vector field, until they en-
counter the boundaries of their Voronoi regions. We call the area around each streamline
a sub-region blob. Step 4 of Figure 3.1 shows the blobs of the fish.

We then compute an LR function for each blob as described in Section 3.3.2, using the
streamline as the spine. Because the streamline is not usually straight, we compute the left
and right distances along the normals to the streamline. The LR function approximates
the blob’s shape if the streamline were to be straightened.

3.3.5 Shape Matching and Deformation

The next step is to place an ornamental element in each blob. We choose which element
to place in the blob by finding the element that minimizes a sum of least squares distance,
defined as

N∑
i=1

(αli − βli)2 +
N∑
i=1

(αri − βri)2 (3.1)

where
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Figure 3.4: The deformation process bends the element along the streamline and scales it to
fit inside the blob.

αl is the element L function;
αr is the element R function;
βl is the blob L function; and
βr is the blob R function.

Every element can be placed in one of four orientations, by optionally incorporating
reflections across and along its spine. These reflections correspond, respectively, to swap-
ping the L and R functions and reversing them. When comparing the LR functions for
an element and a blob, we compute the least squares distances for all four orientations
and choose the orientation with the smallest distance. Note that this matching method
will naturally place one-sided elements along streamlines that follow container boundaries,
visually reinforcing the overall shape.

We investigated alternatives for shape matching, using an approach discussed by Gal et
al. [GSP+07] that tries to fill a sub-region blob as much as possible, with heavy penalties
if a part of an element protrudes outside the boundary of the blob. However, we found
this computation to be more expensive without providing significant advantages over our
LR functions.

Once we have chosen an element, we place it along the streamline using a simple skeletal
stroke algorithm [HLW93]. We uniformly scale the element’s width to make it as wide as
possible while still staying inside the blob (Figure 3.4).

3.3.6 Iterative Refinement

The previous steps produce an initial arrangement consisting of a packing of flow-guided
elements in each distinct container. We now merge all the containers and all elements
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within them, allowing elements from different containers to interact with each other in an
iterative manner.

The refinement process aims to reduce the amount of negative space and make it more
even by growing and shifting the placed ornamental elements. We improve the placement of
each element as much as possible before moving on to the next. Each refinement iteration
has two phases. First, we shift the streamlines to more accurately follow the space that
is available, as shown in Figure 3.5. After shifting, we recalculate the LR function for the
blob to reflect the new position, and repeat a variant of the element placement process that
allows the elements to rotate slightly in their space. Second, we expand each blob to allow
it to use adjacent space that is not filled with another element, as shown in Figure 3.7.

Each refinement iteration considers the blobs in increasing order of placed element area,
allowing smaller elements to grow more. While each step usually results in a larger placed
element, some configurations can result in a smaller one. We only accept the new element
if its area is no smaller than α times its old area, where α is a growth tolerance that we
set to 0.9. Elements therefore have some freedom to grow or shrink, in the search for more
globally even spacing.

The rest of this section gives the implementation details of the refinement process and
Algorithm 2 summarizes the overall method. We have found that 15 iterations suffice for
most designs. Note that in Algorithm 2, the variable E is the list of placed, distorted
ornamental elements, and not the set of prototype elements discussed earlier.

Shifting Streamlines. There are two issues that keep the initial placement of elements
from being evenly distributed. Our streamline placement method keeps streamlines apart,
but they may not be spaced completely evenly. More significantly, the ornamental elements
often have unbalanced left and right sides and concavities, leading to extra space on one
side or the other. Our refinement process shifts streamlines to address these problems.

The shifting process allows the endpoints of the streamline to move to the left or the
right relative to the streamline, depending on which side has more empty space. This
allows the streamline’s element to become wider and fill more of the space (Figure 3.5). It
also gives the streamline room to extend if its endpoints were too close to boundaries of
other placed elements.

Given the endpoints pstart and pend, we calculate new endpoints p′
start and p′

end. We
generate perpendicular vectors to the left side and to the right side at each endpoint
and construct a line segment joining the points where the vectors intersect other placed
elements. We then move the endpoint of the streamline towards the midpoint of this
segment. To enforce the principle of gradual refinement, we do not allow the endpoint to
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Algorithm 2 Iterative Refinement

Input: E = {e1, e2, ..., ene} as the ornamental element list.
Input: S = {s1, s2, ..., sns} as the streamline list.
Input: B = {b1, b2, ..., bnb

} as the blob list.
Input: α as the growth tolerance
Input: t as the number of iterations

for t times do
Sort E, S, and B by Area(ei) (smallest first)
for Element ei in E do
si is the corresponding streamline of ei
Calculate s′i by shifting si.
Recompute the LR function of bi to give b′i
Calculate e′i by placing ei inside b′i
if Area(e′i)× α > Area(ei) then
si ← s′i
bi ← b′i
ei ← e′i

end if
end for
Sort E, S, and B by Area(ei) (smallest first)
for Element ei in E do
bi is the corresponding blob of ei
Calculate b′i by growing bi.
Calculate s′i based on b′i
Calculate e′i by placing ei inside b′i
bi ← b′i
if Area(e′i)× α > Area(ei) then
si ← s′i
ei ← e′i

end if
end for

end for
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Figure 3.5: Streamline shifting. We move the streamline’s start and end points along perpen-
diculars, stopping before intersecting neighbouring elements.

move more than glimit units, where glimit = 0.005 lcanvas (Recall that lcanvas is the canvas size
of the design as described in Section 3.3.1).

We replace the streamline with a path joining p′
start and p′

end. Our goal is to create a
path that is smooth and does not deviate too much from the vector field. We calculate the
shifted streamline by performing Dijkstra’s algorithm on a non-rectangular graph that re-
spects the vector field (Figure 3.6), using a method similar to one by Xu and Mould [XM15]
for pathfinding in a vector field.

To construct the graph, we begin by densely sampling the original streamline with a
distance of 0.25 glimit. We then duplicate the points, offset to the left and right, again using
0.25 glimit. The duplication is repeated until the graph extends to the left and right of the
streamline by a distance equal to the maximum left and right widths of the blob (i.e., the
maximum values in an unnormalized version of the blob’s LR function).

For a node, we check its 150 nearest neighbours, considering only neighbours where
the angle between the line into the current node and the line to the neighbour form an
angle greater than 90◦, thereby preventing the streamline from backtracking. The cost of
an edge from pa to pb is

w = wf (1− fp) + wd D(si,pa) (3.2)

where

f is (pb − pa) · v;
v is a sampled unit vector of the vector field at pa;
si is the original streamline; and
D() is a distance function between a polyline and a point.
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Figure 3.6: Tracing a shortest path using Dijkstra’s algorithm. We generate the blue nodes
by resampling and offsetting the blue streamline. The search directions at a node are shown
with green arrows.

In practice, we set wd = 0.1, wf = 1, and p = 3.

After finding a set of points, we fit cubic Bézier curves using a method devised by
Schneider [Sch90] and extend the path at both ends by following the vector field until it
intersects the edges of its blob.

Growing Blobs. The growth process tries to enlarge each sub-region blob to claim
empty space. Given a blob bi, we calculate a larger blob b′i by offsetting its boundaries
until they intersect other placed elements (Figure 3.7). To enforce gradual growth, the
offset cannot be larger than glimit, where glimit = 0.005 lcanvas.

The value glimit used in growing blobs and shifting streamlines limits the speed of the
refinement. Making it larger would require fewer iterations to fill the available space, but
at a cost of elements growing less evenly.

Element Placement. In the refinement process, we allow a more flexible element
placement so that the elements can fill more of their blobs. We allow the element to rotate
by a small amount, up to ten degrees, before placing it, as shown in Figure 3.8. We generate
rotated versions of ei with varying angles rangle = ±{1◦, 2◦, 3◦, ..., 10◦} and precompute LR
functions for each. The shape matching algorithm (Section 3.3.5) automatically choses the
best rotation. It can also choose to reflect the element across its spine, along its spine, or
both (Figure 3.9).
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(a) (b)

Figure 3.7: (a) An element with its sub-region blob shown in dashed blue line. Note that any
blob is constrained by the neighbouring elements. (b) The dashed red line is the grown blob,
which accommodates an enlarged element.

... ... ... ...

-10o -5o 0o 5o 10o

Figure 3.8: Left: rotated versions of the original element. The best rotation angle is chosen
via least squares matching. Right: original, rotated, and enlarged versions of an element.

Figure 3.9: An element that reflects across its spine during iterative refinement. LR functions
and least squares shape matching allow an element to reflect across its spine, along its spine,
or both.
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3.4 Implementation and Results

We design our containers and decorative elements in a vector graphics editor, and then
use them as input to a C++ program that outputs final placed elements in an SVG file.
We use the Clipper library [Joh14] for calculation of LR functions and for testing polygon
intersections during deformation and growth. As a postprocess, we optionally smooth
outlines and replace polygonal paths with Bézier curves. Finally, we apply colours and
other treatments in an editor.

Our technique is fast except for the iterative refinement process, which considers a large
number of variations to the composition via brute-force computation. On a computer
with an Intel i7-4790K processor at 4.0 Ghz, 15 iterations of refinement on a packing
of 50 elements takes about an hour. Our software is not intended to run interactively;
still, we believe the performance could be improved significantly through the use of more
sophisticated 2D geometric data structures such as uniform grids or quadtrees.

We tested our approach using a variety of container shapes, based mostly on animals,
and many different ornamental elements with varying amounts of geometric complexity.
In Figure 3.10, we show two packings of a lion and a unicorn. Each packing is generated
with only a set of four elements. The packings demonstrate that FLOWPAK is able to
pack and deform elements inside the containers. In Figure 3.11, we show a packing of
a rhinoceros with simple teardrop elements that demonstrates the variety we achieve in
shape and curvature. We use more complex leaf elements on the bear in Figure 3.12,
and adjust the tracing parameters to obtain shorter placed elements. We also process the
placed elements to create a distressed look.

The packing of a cat in Figure 3.13 demonstrates a symmetric packing with a fur
contour. We compute only the left part and reflect the result. The elements around
the cheeks and the chin extend outward, not following the boundary, and creating the
appearance of fur.

We experimented with two extensions to our pipeline, which could enhance its aesthetic
value and flexibility. First, in Figure 3.14 we allow the user to draw fixed spines in addition
to fixed elements. These fixed spines act like pre-placed streamlines, which will be assigned
blobs and then elements. However, they are not required to follow the surrounding vector
field, and are not shifted during the refinement process. Fixed spines are used in Figure 3.14
for the flower petals in the torso and the paws. Second, in Figure 3.15 we construct explicit
new shapes (drawn in brown) to fill the negative space between placed elements (in black),
by computing offset polygons from the negative space between elements. The result is a
distinct and appealing style.
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Finally, we asked an artist to draw containers and decorative elements. The result is
the bird design shown in Figure 3.16. The artist requested that different elements and
densities be used in different container regions; the result has sparse “Y” elements in the
breast and head, and denser “O” elements in the wings. The artist was pleased with the
result.

3.5 Conclusions and Future Work

We presented FLOWPAK, a method to create ornamental packings in which the elements
are oriented and deformed to give a sense of visual flow to the final composition. Our
implementation computed a vector field based on user strokes, constructed streamlines
that conform to the vector field, and placed an element over each streamline. An iterative
refinement process then shifted and stretched the elements to improve the composition.

We see two natural opportunities for improving FLOWPAK. First, we would like to
generate streamlines with higher curvatures, like u-turns. However, these streamlines could
unpleasantly fold the decorative elements. This could be solved with a folding avoidance
algorithm [Ase10]. Second, we would like to experiment with a procedure for element
placements that can backtrack to previous configurations, as demonstrated by Jigsaw Im-
age Mosaics [KP02]. This way, we can achieve a better configuration with less iterative
refinement.
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Figure 3.10: Ornamental packings of a lion and a unicorn. The diagram next to each animal
shows a set of four ornamental elements used in the packing (top) and the annotated container
regions (bottom). The colours in the final rendering were added manually.

Figure 3.11: A packing of a rhinoceros. Simple teardrop-shaped elements lead to variety in
size and curvature.
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Figure 3.12: A bear packing with leaf elements. We manually add noise to the elements in the
output to create a distressed look.

Figure 3.13: A packing with a symmetric layout; we only compute the left half and reflect the
result. The elements around the cheeks and the chin are not aligned to the boundary, creating
a fur-like effect.
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Figure 3.14: A packing of a dog. The fixed elements, shown as green shapes in the diagram,
are copied as-is to the output; fixed spines, shown as green paths, force the placement of new
elements at the given locations.

Figure 3.15: A packing of the same container as in Figure 3.12. We place longer and sparser
elements and synthesize additional elements from the remaining negative space. The bottom
row is the visualization of primary elements in black and negative space elements in brown.
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Figure 3.16: A packing of a bird, based on input provided by an artist.
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Chapter 4

RepulsionPak: Deformation-Driven
Element Packing with Repulsion
Forces

4.1 Introduction

RepulsionPak is a technique to pack elements using a physical simulation, in which each
element is represented by a mass-spring system called an element mesh. Repulsion forces
between neighbouring meshes work to even out the negative space, inducing displacements
in mesh springs. These displacements translate, rotate, and deform the elements as they
gradually adapt to the shapes of their neighbours and the container boundary. To control
the amount of deformation, we use spring forces within a mesh to preserve element shapes.

Most of the elements in a packing are large shapes of real-world objects like animals,
plants, or man-made objects. We refer to these as primary elements. An artist distributes
primary elements so that they communicate the shape of the container, while attempting
as much as possible to ensure an even distribution of negative space. When the primary
elements leave behind large pockets of negative space, the artist typically fills those pockets
with small secondary elements, often simple abstract shapes like circles or triangles. A
packing example with primary and secondary elements was shown in Figure 1.2.

Unlike FLOWPAK that is optimized to deform long thin elements, we design RepulsionPak
to support arbitrary shaped elements. Elements in FLOWPAK could only bend along
their spines. In RepulsionPak, we allow elements to deform in a more open-ended way.
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RepulsionPak is intended to fulfill three of five design principles: balance, uniformity amidst
variety, and boundaries (Chapter 1). We achieve a more even distribution of negative space
by building an algorithm with a controllable deformation model at its core. We are able to
use repeated copies taken from a small library of elements but their final shapes are varied
thanks to element deformation. We also show that by carefully placing elements in the
initial distribution using a shape matching algorithm, the shape of the container boundary
can be more emphasized.

Chapter 2 discussed the general categorization of mosaicing and packing techniques:
Lloyd’s method, data-driven methods, and deformation-driven methods. RepulsionPak
can be categorized as a hybrid of point-based Lloyd’s method and a deformation-driven
method. Similar to Lloyd’s method, RepulsionPak iteratively refines the element distri-
bution although it does not explicitly compute a Voronoi diagram. Forces do not act
directly on elements, but their mesh vertices. During the simulation, these mesh vertices
are spread apart but remain connected using elastic springs, effectively creating an element
representation that can be packed and deformed. Additionally, unlike previous variants
of Lloyd’s method, repulsion forces naturally induce rotations in elements, helping them
discover greater compatibilities with their neighbours.

4.2 Related Work

Curve Simulations: Pedersen and Singh [PS06] grew curves to create organic labyrinthine
paths using a geometric analogue of reaction-diffusion. Their algorithm is related to ours
by the use of repulsion forces to maintain even spacing and parallel segments. Yu et
al. [YSC20] reformulated repulsion forces as tangent-point energy to pack curves inside a
container while avoiding self-intersections and resolving tangling. In fabrication, Zehnder
et al. [ZCT16] proposed a method to cover 3D surfaces with deformed ornamental elastic
curves. Our method has some similarities to theirs in that both start with scaled-down
copies of elements and grow them, but the simulation process is different. Unlike their
approach, our elements exert forces on each other throughout the growth process, allowing
them a greater opportunity to translate, rotate, and deform in search of more even negative
space. Additionally, the goal of their work (3D fabrication) is quite different from that of
RepulsionPak (2D graphic design) and our results appear qualitatively different.

Sample-Based Representation: A few texture synthesis methods represent an el-
ement as a collection of sparse points [MWT11, MWLT13, HWYZ20]. This representa-
tion allows them to synthesize textures with elements that have large concave shapes.
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RepulsionPak uses a similar approach, but we represent an element with denser vertices
that are connected with elastic springs.

4.3 System Overview

RepulsionPak requires several inputs, which are described in Section 1.1. Elements are
then categorized as primary and optional secondary elements, such as those shown in
Figure 4.1a. Additionally, an artist needs to specify the desired element spacing distance
dgap > 0.

RepulsionPak starts by preprocessing the elements, creating additional space around
each to enforce the spacing distance, and fitting a triangle mesh over each element. The
containers are seeded with copies of scaled-down elements. This initial element placement
can be done in two ways: random seeding (Section 4.4) or a careful placement using a
shape matching algorithm (Section 4.7).

RepulsionPak then performs a physics simulation on the meshes, making them simul-
taneously grow and repel each other. As a proof of concept, we implement a spring-based
simulation, which yields satisfactory results despite its simplicity; many alternatives are
possible (see Section 4.9). Forces in the simulation push mesh vertices away from vertices in
other meshes, attempt to keep the meshes from undergoing excessive deformation, and re-
solve places where meshes overlap or vertices move outside target containers (Section 4.5).
After each iteration of the simulation, meshes grow into adjacent space if possible, so that
they gradually consume the negative space in the container.

The simulation concludes either when the elements occupy a sufficient proportion of
the container area, or when some number of simulation steps fail to significantly reduce
the negative space (Section 4.5.2).

An optional second simulation further reduces and evens out the negative space. It
begins by placing small secondary elements in large pockets of negative space. This sim-
ulation is the same as the first, except that vertices of primary element meshes are not
allowed to move (Section 4.6).

Final SVG output is created by using barycentric coordinates to map each element’s
paths from the element’s initial mesh into the deformed mesh produced through simulation.
The computation of barycentric coordinates is discussed in the next section.
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(a)

(b) (c)

(d) (e)

Primary Elements Secondary
Element

Figure 4.1: The creation of a packing using RepulsionPak. (a) A library of elements, comprising
nine primary elements and a single secondary element. (b) A target container with the initial
distribution of scaled-down elements. (c) The simulation in progress, showing the elements
growing, translating, rotating, and deforming. (d) The resulting packing of primary elements.
(e) The final result, after adding secondary elements and allowing them to grow. Figure 4.2
shows the deformations of some of the elements.
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Figure 4.2: Some of the elements in the final packing in Figure 4.1, showing the effect of
deformation in our simulation.

4.4 Preprocessing

Given an input element (Figure 4.3a), we generate a skin, which is a simple closed poly-
gon that fully encloses it (Figure 4.3b). We generate the skin by offsetting an element’s
boundary outward by dgap/2. The simulation aims to produce an approximate tessellation
of the target container by deformed skins, thereby achieving the desired element spacing
and suppressing overlaps.

We triangulate the element skin to obtain a triangle mesh. To create the mesh we
uniformly sample the skin polygon s, with samples spaced apart by distance dgap, to obtain
a simpler polygon s′, which is the outer boundary of the mesh (Figure 4.3c). We then
construct a Delaunay triangulation of s′ (Figure 4.3d). The vertices and edges of this mesh
become unit masses and longitudinal springs in a physical simulation, allowing elements
to deform in response to their neighbours. We also add extra edges to reduce folding
and self-intersections during simulation. First, if two triangles ABC and BCD share
an edge BC, then we add a shear edge connecting A and D (Figure 4.3e). Second, we
triangulate the negative space inside the convex hull of the original Delaunay triangulation,
and create new negative space edges corresponding to the newly created triangulation edges
(Figure 4.3f). These negative space edges are used exclusively for internal bracing. The
element’s concavities can still be occupied by its neighbours. The construction of negative
space edges is a simpler variant of Air Meshes [MCKM15], a technique to detect and resolve
collisions.

Barycentric Coordinates: The simulation operates on meshes, not element geome-
try. In the final rendering phase, we will redraw an element relative to a deformed copy
of its mesh. To do so, we first re-express every vertex of an element path in terms of the
mesh triangles. Every element vertex lies either inside a mesh triangle or just beyond a
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(a) Input Element (b) Skin

(d) Triangle Mesh (e) Shear Edges (f) Negative Space Edges

(c) Simple Polygon

Figure 4.3: An illustration of element discretization for preprocessing.
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border edge. We encode each vertex in barycentric coordinates relative to its enclosing or
nearest triangle.

Initial Element Placement: We prepare our simulation by randomly placing non-
overlapping elements as illustrated in Figure 4.1.

1. Generate random points P = {p1,p2, ...,pn} inside the target container via blue
noise sampling [Bri07]. The user controls the number of points; using more points
gives results with smaller elements. We can automatically estimate n by dividing the
container area by the desired average area of the element skins.

2. Cycle through the primary elements, assigning each element to a random unused pi
with a random orientation, repeating until every point has an element.

3. Shrink all the elements so that they do not overlap and occupy only a small fraction
of the container’s area; in our implementation we have found that 5 − 10% of the
area gives good results. Making them larger would speed up the simulation but does
not allow enough freedom of movement to generate successful packings. Figure 4.1b
shows an initial placement.

4.5 Simulation

We design a simulation in which we generate forces that pack and deform elements by
transforming their meshes. Let x = (x, y) be a vertex of an element mesh. The total force
Ftotal applied to x is

Ftotal = Frpl + Fedg + Fbdr + Fovr + Ftor (4.1)

where

Frpl is the repulsion force;
Fedg is the edge force;
Fbdr is the boundary force;
Fovr is the overlap force; and
Ftor is the torsional force.

These forces combine with the growth process, described in Section 4.5.1, to completely
fill the target container.
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Repulsion Force: The repulsion force tries to push
element meshes apart when they approach each other,
with the goal of making them transform to align their
boundaries.

The vertex x will experience an inverse square repul-
sive force, inspired by Coulomb’s law, from all nearby
meshes. We use the following formula:

Frpl = krpl

n∑
i=1

u

‖u‖
1

(ς + ‖u‖2)
(4.2)

where

krpl is the strength of the repulsion force relative to other forces in the simulation;
n is the number of nearest neighbouring meshes to x;
xi is the closest point on the skin of the ith neighbour;
u = x− xi; and
ς is a soft parameter ; it places an upper bound on the magnitude of Frpl, avoiding

explosive instability when ‖u‖ is very small.

An imbalance in the repulsion forces across a mesh’s vertices will naturally induce
translation and rotation in meshes, helping their boundaries discover compatible segments
and consuming more of the remaining negative space.

If x lies inside of another element’s mesh, then the aggregate repulsion force from
other neighbours can push x further inside and worsen the overlap. If we discover such an
overlap, we set Frpl to 0 and use the overlap force Fovr, discussed below, to correct it.

Rest state Deformed state

Edge Force: A mesh’s edges are treated as longitu-
dinal springs; displacements of these springs allow a mesh
to deform in response to repulsion forces by neighbouring
meshes. An undeformed element mesh provides the rest
lengths for all of its springs; as mesh vertices move rel-
ative to each other, the springs attempt to restore these
rest lengths. Let x′

a and x′
b be deformed mesh vertices

connected by a spring. We compute the spring force as
follows:

Fedg = kedg
u

‖u‖
s (‖u‖ − `)2 (4.3)

where
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kedg is the strength of the edge force relative to other forces;
u = x′

b − x′
a;

` = ‖xb − xa‖ which is the rest length of the spring; and
s is +1 or -1, according to whether (‖u‖ − `) is positive or negative.

We apply Fedg to xa and −Fedg to xb. The strengths of the edge forces increase
quadratically with displacement. The equation is a modification of Hooke’s law, which is
defined as −kedg(‖u‖ − `). This change allows the meshes to be more tolerant of small
displacements and to resist severe deformations when subjected to powerful forces.

Overlap Force: Occasionally, a vertex x from one mesh can be
pushed inside the skin of a neighbouring mesh. In such cases, we
temporarily disable the repulsion force on this vertex by setting it to 0,
and instead apply an overlap force that attempts to eject the intruding
vertex. In particular, every mesh triangle having x as a vertex will pull
x in the direction of its centroid. The overlap force is thus given by:

Fovr = kovr

n∑
i=1

(pi − x) (4.4)

where

kovr is the relative strength of the overlap force;
n is the number of mesh triangles that have x as a vertex; and
pi is the centroid of the ith triangle incident on x.

The overlap force is zero for vertices that are not within another mesh.

co
nt

ain
er

 
bo

un
da

ry

Boundary Force: The boundary force causes element meshes
to stay inside the target container and conform to its boundary.
It applies to any vertex x that is outside the container, and moves
the vertex towards the closest point on the container’s boundary,
by an amount proportional to the distance to the boundary:

Fbdr = kbdr(pb − x) (4.5)

where

kbdr is the relative strength of the boundary force; and
pb is the closest point on the target container to x.

The boundary force is zero for any point inside the container.
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Torsional Force: As forces propagate through
an element mesh, the aggregate velocity vectors of
the vertices can induce a rotation of the entire ele-
ment. However, some elements may have a preferred
orientation, either for aesthetic reasons or because
the shape is comprehensible only at certain orienta-
tions. We introduce a torsional force that penalizes
individual vertices for which the orientation, relative
to their element’s centre of mass, drifts too far from its initial orientation.

Consider a vertex x belonging to an element, and let cr be the element’s centre of mass
in its undeformed state. We may define the “rest orientation” of x as the orientation of
the vector ur = x− cr. During simulation we compute the current centre of mass c of the
element and let u = x− c. Then the torsional force is

Ftor =

{
ktoru

⊥, θ > 0

−ktoru⊥, θ < 0
(4.6)

where

ktor is the relative strength of the torsional force;
θ is the signed angle between ur and u; and

u⊥ is a unit vector rotated 90◦ counterclockwise relative to u;

Using the equation above, Ftor is always perpendicular to u and the direction of Ftor

points to the left or to the right depending on θ. Unlike the first four force types, the
torsional force is optional.

Simulation Details: We use explicit Euler integration to simulate the motions of the
mesh vertices under the forces described above. Every vertex has a position and a velocity
vector; in every iteration, we update velocities using forces, and update positions using
velocities. These updates are scaled by a simulation time step ∆tsim, typically chosen from
the range [0.01, 0.1]. A smaller time step results in a more stable simulation at the cost
of additional running time. We cap velocities at 5∆tsim to dissipate extra energy from the
system.

The repulsion and overlap forces rely on nearest-neighbour queries on the set of all
vertices. We accelerate these queries by storing vertices in a uniform spatial subdivision
grid that covers the container. In our implementation, cell width and height are 6− 10%
of the larger dimension of the grid. We define the neighbours of a vertex x as all vertices
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in a 3×3 window of cells centred on the cell containing x. This approximation ignores the
negligible interactions between distant vertices.

The constants krpl, kovr, kbdr kedg, and ktor control the relative strengths of the five
forces in the simulation. They must also be chosen relative to the time step ∆tsim and the
overall width and height of the container. We find that our simulation produces satisfactory
results when krpl ≈ kovr ≈ kbdr ≥ kedg > ktor. For example, if the container’s bounding
box is approximately 1000 × 1000, we set krpl = kovr = kbdr = 80, and ktor = 1. We set
kedg = 40 for edge springs and shear springs, and kedg = 10 for negative-space springs, since
weaker negative-space springs are sufficient to avoid self-intersections. We also set ς = 1
to avoid explosive repulsion forces. Increasing kedg relative to the other forces suppresses
deformation, yielding a close approximation of packing with rigid elements.

4.5.1 Element Growth

RepulsionPak starts with small initial elements to avoid intersections, and gradually en-
larges them until they tightly fill the target container. Figure 4.1c-d shows elements growing
and gradually consuming negative space. Elements have different intrinsic sizes, which are
respected in the initial placement. Because they all grow at roughly the same rate, their
relative sizes tend to be maintained.

After each iteration of the physics simulation, the element meshes undergo a growth
step. If an element mesh has no vertices that lie inside of neighbouring meshes, it is
permitted to grow in this iteration. A mesh with overlaps may still grow in subsequent
iterations, if local changes to the packing open up more negative space. This approach
produces slight variations in skin offsets in the output packing but the effect is negligible.

We implement growth in the context of the physics simulation by scaling the rest lengths
of an element mesh’s springs, allowing it to expand as the simulation progresses. Every
element mesh M maintains a current scaling factor g. When a mesh is permitted to grow,
we increase its g value by kg∆tsim, where kg is the growth rate and ∆tsim is the simulation
time step. We then compute the new rest lengths of all springs by scaling the current
rest lengths by a factor of g. These new rest lengths are then used as the ` values in
Equation 4.3 to calculate edge forces. In our implementation, The constant kg is set to
0.01.
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4.5.2 Stopping Criteria

We choose one of two criteria to stop the simulation. First, the artist specifies the desired
positive space ratio at which the simulation immediately terminates. The ratio should not
be set too high, and we find that most of our results have positive space ratios between 35%
and 60% depending on the element shapes. For example, the Unilever logo in Figure 1.1
has a positive space ratio of 45%. Additionally, concave elements with long extensions
are more difficult to pack, so a lower positive space ratio is recommended to generate a
satisfactory packing. Second, we stop the simulation when the element meshes are no
longer able to maneuver enough to consume the remaining negative space. After each
iteration, we compute an area fraction A, defined to be the fraction of the container area
taken up by element meshes. We then compute a measurement of the recent change in
area fraction in a sliding window that covers the w most recent iterations of the system; we
use w = 100. If A0, . . . , Aw are the area fractions in the w + 1 iterations up to the current
one, then we define

RMS =

√√√√ 1

w

w∑
i=1

(Ai − Ai−1)
2 (4.7)

We stop iterating when RMS < ε, where ε is 0.01 in our system.

4.6 Secondary Elements

The iteration process described above can leave behind isolated pockets of empty space,
which will be visible in the final composition. We imitate the approach taken by human
artists by filling these pockets with small, usually simple secondary elements.

We seed the container with secondary elements by finding points that are far from any
existing element mesh. Specifically, we compute a discrete approximation of the distance
transform of the negative space. We then create an initial candidate list of all points
for which the distance value is above a threshold dmin, sorted by decreasing distance.
We consider each of these candidates in turn, adding it to a final list of seed locations
provided that no previously chosen seed is within distance dsep of the candidate. In our
implementation, if the distance transform is computed on a 1000 × 1000 grid fit to the
container’s bounds, then we typically set 5 ≤ dmin ≤ 10 and dsep = 10.
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Figure 4.4: A packing generated by RepulsionPak that has a rounded corner. A round element
is placed on a sharp convex corner on the bottom of the heart-shaped container.

Next, we assign random secondary elements to these chosen seed points, scaled down as
before to avoid overlaps. We then run the simulation and growth process again, but freeze
the primary elements: they exert repulsion forces on secondary elements and can induce
overlaps, but primary mesh vertices cannot move. The secondary elements gradually grow
to consume some of the remaining negative space until the packing satisfies the same
stopping criteria described above.

4.7 Shape Matching

The motions and deformations of elements, as described in the previous sections, give them
an opportunity to conform to each other and to the target container. However, in some
cases the random seeding may position some elements in such a way that the simulation
process will still leave undesirable artifacts. In particular, when a round element is placed
near a sharp convex corner of the container, it cannot deform enough to extend into the
corner, but cannot yield its position to a pointy element that offers a better fit. In the final
packing, the sharp corners of the containers will appear “rounded off”, as seen in Figure 4.4.
Another problem occurs when a long narrow element is initially placed diagonally across a
corner, in which case the simulation pushes the element’s middle into the corner, causing
extreme deformation as seen in the rhinoceros’s front horn in Figure 4.6.

To overcome these deficiencies, we optionally perform an initial fit-guided placement
pass before seeding the rest of the container at random. Here we take inspiration from

56



existing rigid packing algorithms [KSH+16], which are driven primarily by shape compat-
ibility. We use a simplified shape descriptor; we can tolerate a less perfect initial fit, with
the expectation that deformation will improve the quality later.

We begin by building shape descriptors for the elements. Each element is first scaled to
have area 0.6Ac/ne, where Ac is the container area and ne is the number of elements. This
step resizes the element to a rough estimate of its final size in the packing, an approximation
that is adequate for our fit-based placement. We then sample the target container and
the boundaries of the elements, with adjacent samples separated by distance δ. We set
δ = 0.002Ls, where Ls is the side length of the container’s bounding square.

We define a local descriptor based on integral of absolute curvature [CFH+09, KSH+16].
Let P (t) be an arclength-parameterized 2D curve, and let κ(t) represent the curvature of
the curve at P (t). For a given interval [s, t] within the curve’s domain, we may define the
integral of absolute curvature:

τ(s, t) =

∫ t

s

|κ(x)|dx. (4.8)

In our implementation, we estimated curvature from the discrete sample points using
second-order forward finite differences [BL15], although we recently found that second-
order central finite differences can give more accurate approximations. Lastly, we compute
τ by summing curvature estimates using the trapezoid rule.

Let an objective τobj be a positive real number and P (t0) be a given point on a curve.
If τobj is sufficiently small, then as we traverse the curve on either side of P (t0) we will
eventually reach points P (t−1) and P (t1) such that τ(t−1, t0) = τ(t0, t1) = τobj. We let
l1 = t0 − t−1 and r1 = t1 − t0 be the arclengths that produce these integrals. We can
continue this process for any number of steps, walking in both directions along the curve
away from previous sample points until we reach τobj, yielding new arclengths lk and rk
(see Figure 4.5). Finally, for a given number of steps n we define the shape descriptor at
P (t0) as

(ln, ln−1, . . . , l2, l1, r1, r2, . . . , rn−1, rn) (4.9)

Like PAD [KSH+16], our shape descriptor is rotation invariant. Effectively it is one level
of a PAD, which suffices because we do not require scale invariance. Descriptors can be
compared using simple Euclidean distance, accelerated by storing them in a k-D tree. In
our implementation we set τobj = 0.001Ls; the dependence on Ls makes the measurement
robust against changes in absolute container size, and the factor of 0.001 was determined
through experimentation. We further choose n = 5, yielding a 10-dimensional descriptor.
We compute this descriptor for all the container and element samples defined above.
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Figure 4.5: An illustration of a local shape descriptor with n = 3. These segments have varying
arclengths but they all have the same value of τ , the integral of absolute curvature along their
lengths.

Based on these descriptors, we now use a simple greedy heuristic to identify salient
container features where shape matching will be used. Here we restrict our attention
to convex protrusions with high curvature, which benefit the most from careful element
placement (See Figure 4.7a). Given a shape descriptor, we define its total length to be∑n

i=1 li + ri. We iterate over all sample points on the container boundary in increasing
order by the total lengths of their descriptors. For each sample point P (t0), we add it to
a list of salient features under two conditions. First, we require that the angle formed by
P (t0) with two samples to either side of it be sufficiently acute; we use a threshold of 0.3
radians to ensure convex-to-convex matching. Second, we ensure that salient features are
not too close to each other by requiring that every new sample point be separated by a
distance of at least 0.2Ls from all previously identified salient features.

Even when an element’s descriptor is a close match to a segment of target container,
it may still not be safe to place that element at a given location. An example of this
problem is illustrated in Figure 4.8. One part of an element may extend into a corner of
the container, while a different part, outside the purview of the local shape descriptor, could
protrude outside the container entirely. We augment our descriptor-based fit calculation
with an additional score adapted from Gal et al. [GSP+07] in order to ensure a more global
element fit. Let d(x) be a signed distance function for the container, with negative values
inside the container and positive outside. In practice we superimpose a 1000 × 1000 grid
over the container’s bounding square and compute a discrete approximation of the distance
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Figure 4.6: A packing without the use of shape matching. Three elements are not aligned
properly with convex corners: a long thin element is severely deformed in the front horn, an
element cannot emphasize the shape of the back leg properly, and an element cannot extend
inside the narrow tail.

(a) (b)

(c)

Figure 4.7: A demonstration of shape matching of leaf shapes inside a rhinoceros. (a) We
detect nine salient features, namely sharp convex corners, and assign an element to each. (b)
A spring holds each element in place. (c) The final result.
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(a) (b)

Figure 4.8: Two elements that locally match the container’s corner. The element in (a)
is completely inside, but the element in (b) has non-local regions that protrude outside the
container.

transform. For an element sample point x, we then compute a score

q(x) =


−αd(x), if d(x) > 0

1, if d(x) = 0

e−d(x)2/µ2β, if d(x) < 0

(4.10)

where

α is a parameter that penalizes elements with parts that protrude outside the container;
β is a parameter that favors elements with parts close to the target container;
µ = 0.5

√
2Ls which is half of the diagonal of the container’s bounding square.

With this scoring function, a sample point that lies on the container boundary will have
a score of 1, the maximum for q(x). Scores decay exponentially towards 0 for points farther
inside the container. In our implementation we choose α = 1 and β = 0.001. Sample points
outside the container are penalized by assigning a negative score proportional to distance.

We then define a quality measurement for an entire element by summing over all of its
sample points:

Q =

np∑
i=1

q(xi) (4.11)

where

np is the number of sample points on the element.
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For every salient container feature, we obtain the 10 closest descriptors from the k-D
tree, and choose one that has the highest Q. Finally, we place the selected element in
the container by aligning the endpoints of the element’s and container’s matching shape
descriptors.

The shape matching process yields a set of elements that should be attached to par-
ticular locations on the target container. However, during simulation they could wander
away from these initial positions, under the influence of the many other forces at play. As
shown in Figure 4.7b, we encourage these elements to remain in place by attaching them
to the salient container points with additional springs.

4.8 Implementation and Results

Our software was written in C++, and reads in text files describing elements and containers;
we prepared these files using Adobe Illustrator. We ran our software on a computer with a
2.4 GHz Intel i7-4700HQ processor and 16 GB of RAM. As a post-process, we optionally
read packings back into Illustrator, fit smooth curves to polygonal paths, and apply colours
and other visual effects. Table 4.1 shows statistics for the results in this chapter. All results
in this chapter use ∆tsim = 0.1. Torsional forces are used only in Figure 4.11, and shape
matching is used only in Figure 4.7. We let real-world artists and users to use RepulsionPak
for generating packings in Figure 4.14 and 4.15, but we unfortunately were unable to collect
their statistics.

The supplemental materials include movies that visualize the simulation process. These
movies make it clear that elements can jostle each other around, inducing translation,
rotation, and deformation throughout the simulation.

The packing in Figure 4.9 uses six cat-shaped primary elements and one secondary cat
head. RepulsionPak naturally bends legs and tails to fill the container more evenly.

The animal packing in Figure 4.1 has several elements with limbs (the bear, fox, chick,
and penguin), extensions (the dog and bunny ears), and long shapes (the snake). Figure 4.2
highlights the deformations for some of these elements; they are noticeably more deformed
than nearly convex elements like the cat and mouse.

The butterfly packing in Figure 4.10 is an attempt to reproduce the visual style of a
dense packing (or tessellation), similar to Jigsaw Image Mosaics [KP02] or the “Butterflies
in Butterfly” example from the Pyramid of Arclength Descriptor paper [KSH+16]. The
target container is made from two regions, one with internal holes. The resulting packing
is tight but overlap-free.
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Table 4.1: Data and statistics for RepulsionPak results. In these results, torsional forces are
used only in Figure 4.11 and shape matching is used only in Figure 4.7.

Packing
Primary
elements

Secondary
elements

Vertices
Primary
running

time (seconds)

Secondary
running

time (seconds)
Iteration

Animals
(Figure 4.1)

25 14 2412 133 65 16670

Rhino
(Figure 4.7)

107 0 4833 237 0 15521

Cats
(Figure 4.9)

41 69 3598 185 62 8531

Birds
(Figure 4.10a)

43 43 2309 102 54 11571

Bats
(Figure 4.10b)

47 22 3048 165 56 13120

Butterflies
(Figure 4.10c)

123 135 11916 696 616 14379

Giraffes & Penguins
(Figure 4.11)

60 0 2250 163 0 9347

Paisley
(Figure 4.12)

162 0 4860 128 0 23040

Circles in Paisleys
(Figure 4.12)

144 0 2544 403 0 29584

The bird packing in Figure 4.10 exhibits significant deformation in the wings and the
tails of the birds. In particular, the thin tails of the swallows have some unaesthetic sharp
bends. We would like to investigate ways to ensure these bends are smoother.

The packing in Figure 4.11 demonstrates torsional forces that gradually turn the ele-
ments upside down. The rhinoceros packing in Figure 4.7 demonstrates initial placement
via shape matching. The entire shape matching process took 922 milliseconds with a
4-element library.

We have also experimented with creating tileable packings, as shown in Figure 4.12.
We seed a central square with elements, but also place clones of those elements in all the
squares of the 8-neighbourhood around the centre. These clones track the transformations
and deformations of their originals, but also exert forces on them during simulation, leading
to an even, seamless packing in a toroidal domain.

We have found that RepulsionPak is robust to parameter variation, and produces pre-
dictable, high quality results without the need for fine-grained adjustments. However, as
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(a) (b) (c)

Figure 4.9: (a) A packing of six cat elements inside a fish-shaped target container. (b)
Input elements. (c) lined up deformed elements in the packing. Controllable deformation
and repulsion forces allow the elements to deform, efficiently filling the container and creating a
uniform distribution of negative space. We then reduce the remaining negative space by placing
smaller cat heads. The gradient fill was added as a post-process.

shown in Figure 4.13, extreme parameter settings can still produce degenerate results. In
Figure 4.13a, the repulsion force is made much stronger than the edge force, leading to
excessive element deformation and self-intersections in the pursuit of even negative space.
In Figure 4.13b, edge and torsional forces dominate repulsion, producing a packing with
stiff, upright elements that do not fill their container effectively.

Two professional artists have used RepulsionPak to create packings shown in Fig-
ure 4.14. The skull packing is made of butterfly and plant elements arranged inside multiple
containers. The skull’s teeth are made of manually placed leaf elements. The background
is created by superimposing several packings. The smoothies packing is made of fruit ele-
ments arranged inside a smoothie cup. Additionally, a casual user made a packing using
RepulsionPak, which was then printed on t-shirts for a fitness club at a tech company, as
shown in Figure 4.15.

4.9 Conclusions and Future Work

We presented RepulsionPak, a method to create packings with deformable elements. Each
element is represented as a mass-spring system, allowing it to deform to achieve a better fit
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Figure 4.10: Three packings created using RepulsionPak: Birds, Bats, and Butterflies. The
results are visually appealing overall, though some birds’ tails suffer from excessive deformation
in the packing on the left.
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Figure 4.11: A packing that demonstrates torsional forces. The packing uses copies of a single
element shape, but every copy is given a rest orientation between 0◦ and 180◦, based on its
horizontal position in the container. In the final packing the elements transition from upright
to upside-down, recreating an illusion in which giraffe heads become penguins.

(a)

(b)

(c)

Figure 4.12: A paisley-inspired toroidal packing that can tile the plane. (a) An initial paisley
packing. (b) In a separate simulation, we fill each paisley with circles to demonstrate a packing
inside a packing. (c) The final result.
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(a) (b)

Figure 4.13: Two examples of how extreme parameter values can lead to low-quality results.
In (a), we allow repulsion to overwhelm element shape by setting krpl to 200 and kedg to 20;
the resulting packing has even negative space, but elements suffer from high deformation and
self-intersections. In (b), we minimize repulsion and prioritize orientation by setting kedg, ktor,
and krpl to 200, 100, and 50, respectively. The elements deviate minimally from their original
shapes and orientations, but cannot fill the container effectively.

with its neighbours and the container. The combination of repulsion forces and controlled
deformation allows RepulsionPak to create shape compatibilities that eliminate the need
for a large element library and fill the target container effectively.

We see several opportunities for further improvements to RepulsionPak. We deliber-
ately chose a simple simulation model based on springs and forward Euler integration, be-
cause our main goal was to demonstrate the validity of a deformation-driven approach, and
not to contribute a new physical simulation method. Contemporary research has yielded
many more sophisticated physical simulation methods, such as Position Based Dynam-
ics [MHHR07], Projective Dynamics [BML+14], and the Finite Element Method. No one
method is obviously best suited to this problem, and future work should experiment with
several to investigate if any offers a suitable trade-off between performance and quality.
Additionally, our barycentric warping method can introduce undesirable artifacts in highly
deformed elements, as in the swallow tails in the left result of Figure 4.10. We would like
to explore other methods for warping an element’s geometry based on the correspondences
between the triangles of its original mesh and the deformed meshes in the final packing,
for example, work of Jacobson et al. [JBPS11], Liu et al. [LJG14], and James [Jam20].
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Figure 4.14: Artist-made packings using RepulsionPak. The top arrangement was made
by Paul Trani, consisting of multiple containers filled with butterfly and plant elements. The
manually-placed leaves are fixed elements that represent the skull’s teeth. The background was
made by superimposing several packings. The bottom packing was made by Daichi Ito, where
fruit elements are arranged inside a smoothie cup.
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Figure 4.15: A RepulsionPak packing printed on a t-shirt, created by Paul Asente.
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Chapter 5

AnimationPak: Packing Elements
with Scripted Animations

5.1 Introduction

During the development of RepulsionPak, we observed that the simulation process, while
intended only as a means to an end, was itself enjoyable to watch. Elements would move
and deform in an active, almost organic way as they responded to physical forces. These
animations inspired us to explore a method for generating packings in which elements are
augmented with scripted animations.

AnimationPak is a method to pack elements with scripted animations. An element can
have an animated deformation, such as a slithering snake or a dancing bear. It can also
have an animated transformation, giving a changing position, size, and orientation within
the container. Our goal is to produce an animated packing, with elements playing out their
animations while simultaneously filling the container shape evenly. A successful animated
packing should balance among the evenness of the negative space, the preservation of
element shapes, and the comprehensibility of their scripted animations.

We consider an animated element to be a geometric extrusion along a time axis, a
three-dimensional object that we call a “spacetime element”. We use a three-dimensional
physical simulation similar to RepulsionPak to pack spacetime elements into a volume
created by extruding a static container shape. The animated packing emerges from this
three-dimensional volume by rendering cross sections perpendicular to the time axis.

Animated packings are a largely unexplored style of motion graphics, presumably be-
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cause of the difficulty of creating an animated packing by hand. Finding motivating ex-
amples created by artists is difficult. We found only a single animated packing, shown
in Figure 5.1, which is an animated gear-like meshing of copies of Lisa Simpson’s spiky
head. The discussion in Section 5.2 shows there is also limited past research on animated
packings.

5.2 Related Work

When we consider adding scripted animations to a packing, we must decide separately
whether to support animated elements and an animated container shape. Work in this
area can then be categorized naturally into a 2×2 grid, as shown in Figure 5.2. We discuss
these categories and techniques in greater detail below.

• Static elements in a static container. These are standard 2D packing algorithms
that produce a single drawing of a static container packed by static elements.

• Static elements in an animated container. These algorithms allow the container
to move and deform. The elements do not have scripted animations, but they might
still animate passively in response to changes in the container.

• Animated elements in a static container. The container is fixed, but the el-
ements are endowed with scripted animations. Elements must negotiate for space
within the container as they attempt to express their animations.

• Animated elements in an animated container. In this category, both elements
and the container have scripted animations. We are not aware previous work that
falls into this category.

Animated Packings and Tilings: Animosaics by Smith et al. [SLK05] constructs
animations in which static elements without scripted animations follow the motion of an
animated container. Initially, elements are placed using centroidal area Voronoi diagrams
(CAVDs). Elements are then advected frame-to-frame using a choice of methods motivated
by Gestalt grouping principles, aiming to generate group motions of elements, instead
of distracting uncoordinated movements of individual elements. As the container’s area
changes, elements are added and removed as needed, while attempting to maximize overall
temporal coherence. Packings generated by Animosaics fall into the category of static
elements in an animated container.
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Figure 5.1: Three frames of an animated packing from The Simpsons, Season 31, Episode 19
( c© FOX), showing gear-like meshing of oppositely-rotating copies of Lisa Simpson.
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Static Elements in
Static Containers

Static Elements in
Animated Containers

Animated Elements in
Static Containers

Animated Elements in
Animated Containers

RepulsionPak

3D Packings
(Gal et al.)

Mosaics
(Hausner)

Animosaics
(Smith et al.)

Animation Collage
(Theobalt et al.) 

AnimationPak

The Spectral Approach
(Dalal et al.)

Figure 5.2: A categorization of animated packings.

Initially, Elements are placed using centroidal area Voronoi diagrams (CAVDs). Ele-
ments are then advected frame-to-frame using a choice of methods motivated by Gestalt
grouping principles, that aim to generate group motions of elements, instead of distracting
uncoordinated movements of individual elements.

Dalal et al. [DKLS06] showed how the spectral approach they introduced for 2D pack-
ings could be extended to pack animated elements in a static container. Like us, they
recast the problem in terms of three-dimensional spacetime; they computed optimal ele-
ment placement using discrete samples over time and orientation. However, their spacetime
elements have fixed shapes and are made to fit together using only translation and rota-
tion, limiting their ability to consume the container’s negative space. Animated packings
generated by the spectral approach fall into the category of animated elements in a static
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container.

Liu and Veksler created animated decorative mosaics from video input [LV09]. Their
technique combines vision-based motion segmentation with a packing step similar to Ani-
mosaics. Kang et al. [KOHY11] extracted edges from video and then oriented rectangular
tesserae relative to edge directions. Both techniques fall into the category of static elements
in an animated container.

Animated 3D Packings: Theobalt et al. [TRdAS07] developed a data-driven method
to generate animated 3D collages that resemble Arcimboldo paintings by arranging static
3D elements into an animated 3D container. They partitioned the input animated container
by identifying rigid parts, each of which is replaced by a matching element taken from a
library. The result is a 3D collage with overlapping elements, and the animation is created
from rigid transformations of the elements with some degree of deformation to improve
the fit with the container. This work falls into the category of static elements inside an
animated container.

Animated tilings: We discussed metamorphosis tilings in Section 2.3, consisting of
slowly evolving interlocked elements. Although the entire composition of a metamorphosis
tiling is static, the evolving elements can be interpreted as a spatial animation. More
recently, Kaplan [Kap19] explored animations of simple tilings of the plane from copies
of a single shape. Elements in a tiling fit together by construction, and therefore always
consume all the negative space in the animation.

Animated Textures: Ma et al. [MWLT13] developed Dynamic Element Textures
(DET), a method to synthesize an animated texture of a group of identical elements, such
as a school of fish or particles. For each animated element in an exemplar, DET generates
sample points both in spatial and temporal domains. DET synthesizes a larger texture by
copying and distributing the sample points, which are then repositioned to resemble the
original distribution in the exemplar. Inspired by DET, Kazi et al. [KCG+14] developed an
interactive user interface where an artist can draw curves to guide the motions of animated
elements. Both techniques by Ma et al. and Kazi et al. do not belong to any category in
the 2× 2 grid above, as their arrangements do not have containers and elements can move
freely. Similar to DET, AnimationPak represents an animated element as a collection
of discrete vertices that reside in a spacetime domain. However, as a texture synthesis
method, the goal of DET is to create an element arrangement that resembles an exemplar,
and not fill a container tightly.

Derived Animations: AnimationPak falls into the category of systems that create a
derived animation based on some input animation. This problem, which requires preserving
the visual character of the input, is a longstanding one in computer graphics research.
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Spacetime constraints [WK88, Coh92] allow an animator to specify an object’s constraints
and goals, and then calculates the object’s trajectory via spacetime optimization. Motion
warping [WP95] is a method that deforms an existing motion curve to meet user-specified
constraints. Bruderlin and Williams [BW95] used signal processing techniques to modify
motion curves. Gleicher [Gle01] developed a motion path editing method that allows user
to modify the traveling path of a walking character.

Previous work has also investigated geometric deformation of animations. Ho et al.
[HKT10] encoded spatial joint relationships using tetrahedral meshes, and applied as-
rigid-as-possible shape deformation to the mesh to retarget animation to new characters.
Choi et al. [CKHL11] developed a method to deform character motion to allow characters
to navigate tight passages. Masaki [Osh17] developed a motion editing tool that deformed
3D lattice proxies of a character’s joints. Dalstein et al. [DRvdP15] presented a data struc-
ture to animate vector graphics with complex topological changes. Kim et al. [KHHL12]
explored a packing algorithm to avoid collisions in a crowd of moving characters. They
defined a motion patch containing temporal trajectories of interacting characters, and ar-
ranged deformed patches to prevent collisions between characters.

5.3 Animated Elements

The inputs to AnimationPak are similar to those described in Section 1.1, with the addition
of a scripted animation for each element. AnimationPak currently supports two kinds
of animation: the user can animate the shape of each individual element and can also
give elements trajectories that animate their position within the container. This section
explains how we animate the element shapes using as-rigid-as-possible deformation, and
then construct spacetime-extruded objects that form the basis of our packing algorithm.
These elements animate “in place”: they change shape without translating. The next
section describes how these elements can be given trajectories within the container. Size
and orientation of an element can be animated either way; they can be specified as an
animation of the element’s shape, or they can be part of the transformation trajectory.

5.3.1 Spacetime Extrusion

Each element begins life as a static shape defined using vector paths. As with RepulsionPak,
we construct a discrete geometric proxy of the element that will interact with other proxies
in a physical simulation. The construction of this proxy for a single shape is shown in
Figure 5.3, and the individual steps are explained in greater detail below.
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In order to produce a packing with an even distribution of negative space, we first offset
the shape’s paths by a distance of dgap/2, with the goal of maintaining a separation of dgap
between elements in the resulting packing. (Figure 5.3a). In our system we scale the shape
to fit a unit square and set dgap = 0.08.

Next, we place evenly-spaced samples around the outer boundary of the offset path and
construct a Delaunay triangulation of the samples (Figure 5.3b). We will later treat the
edges of the triangulation as springs, allowing the element to deform in response to forces
in the simulation. We also follow RepulsionPak by adding shear edges to prevent folding
and negative space edges to avoid self-intersections during simulation (Figure 5.3c).

We refer to the augmented triangulation shown in Figure 5.3c as a slice. The entire
spacetime packing process operates on slices. However, we will eventually need to compute
deformed copies of the element’s original vector paths when rendering a final animation
(Section 5.6). To that end, we re-express all path information relative to the slice trian-
gulation: every path control point is represented using barycentric coordinates within one
triangle.

To extend the element into the time dimension, we now position evenly-spaced copies
of the slice along the time axis. Assuming that the animation will run over the time
interval [0, 1], we choose a number of slices ns and place slices {s1, . . . , sns}, with slice si
being placed at time (i− 1)/(ns− 1). Higher temporal resolution will produce a smoother
final animation at the expense of more computation. In our examples, we set ns = 100.
Figure 5.3d shows a set of time slices, with ns = 5 for visualization purposes.

To complete the construction of a spacetime element without animation, we stitch the
slices together into a single 3D object. Let sj and sj+1 be consecutive slices constructed
above. The outer boundaries of the element triangulations are congruent polygons offset in
the time axis. We stitch the two polygons together using a new set of time edges : if AB is
an edge on the boundary of sj and CD is the corresponding edge on the boundary of sj+1,
then we add time edges AC, AD, and BC. During simulation, time edges will transmit
forces backwards and forwards in time, maintaining temporal coherence by smoothing out
deformation and transformations. Figure 5.3e shows time edges for ns = 5.

5.3.2 Animation

The 3D information constructed above is a parallel extrusion of a slice along the time axis,
representing a shape with no scripted animation. We created a simple interactive appli-
cation for adding animation to spacetime elements, inspired by as-rigid-as-possible shape
manipulation [IMH05]. The artist first designates a subset of the slices as keyframes.
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(a) (b) (c)

(d) (e)

Figure 5.3: The creation of a discretized spacetime element. (a) A 2D element shape offset
by dgap/2. (b) A single triangle mesh slice. (c) Shear edges (red) and negative space edges
(blue). (d) A set of five slices placed along the time axis. (e) The vertices on the boundaries
of the slices are joined by time edges. The black edges in (e) define a triangle mesh called the
envelope of the element. In practice we use a larger number of slices than in (d) and (e).

Figure 5.4: A spacetime element with a scripted animation.
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They can then interactively manipulate any triangulation vertex of a keyframe slice. Any
vertex that has been positioned manually has its entire trajectory through the animation
computed using spline interpolation. Then, at any other slice, the positions of all other ver-
tices can be interpolated using the as-rigid-as-possible technique. The result is a smoothly
animated spacetime volume like the one visualized in Figure 5.4.

Unlike data-driven packing methods, AnimationPak allows distortions so it does not
require a large library of distinct elements to generate successful packings. The results in
this chapter all use fewer than ten input elements, and some use only one. The physical
simulation induces deformation to enhance the compatibility of nearby shapes in the final
animation.

5.4 Initial Configuration

We begin the packing process by constructing a 3D spacetime volume for the container
by extruding its static shape in the time direction. The container is permitted to have
internal holes, which are also extruded. The resulting volume is scaled to fit a unit cube.

The artist can optionally specify trajectories for a subset of the elements, which we call
guided elements. A guided element attempts to pass through a sequence of fixed target
points in the container, imbuing the animation with a degree of intention and narrative
structure. To define a guided element, we designate the triangulation vertex closest to its
centroid to be the anchor point for the element. The artist then chooses a set of spacetime
target points p1, . . . ,pn, with pi = (xi, yi, ti), that the anchor should pass through during
the animation. In our interface, the artist uses a slider to choose the time ti for a target
point, and clicks in the container to specify the spatial position (xi, yi). The artist can also
optionally specify scale and orientation at the target points. We require t1 = 0 and tn = 1,
fixing the initial and final positions of the guided element. We then linearly interpolate the
anchor position for each slice based on the target points, and translate the slice so that its
anchor lies at the desired position. The red extrusions in Figure 5.6a are guided elements.

If the artist wishes to create a looping animation, the (xi, yi) position for target points p1

and pn must match up, either for a single guided element or across elements. In Figure 5.6
the two guided elements form a connected loop; (x1, y1) for each one matches (xn, yn) for
the other.

In this initial configuration, the guided elements abruptly change direction at target
points. However, because the slices are connected by springs, the trajectories will smooth
out as the simulation runs. Also, the simulation is not constrained to reach each target
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target point

slice
vertex

Figure 5.5: A 2D illustration of a guided element. Slices are depicted as black lines and slice
vertices as black dots. A spring connects the centremost vertex x of a slice s to a target
point p. (a) The initial shape of a guided element is a polygonal extrusion. (b) The spacetime
element deforms but the springs pull it back towards the target points.

position exactly. Instead, we attach the anchor to the target using a target-point spring
that attempts to draw the element towards it while balancing against the other physical
forces in play (Figure 5.6b). The strength of these springs determines how closely the
element will follow the trajectory.

We then seed the container with an initial packing of non-guided spacetime elements.
We generate points within the container at random, using blue-noise sampling [Bri07] to
prevent points from being too close together, and assign a spacetime element to each seed
point, selecting elements randomly from the input library. Depending upon the desired
effect, we either randomize their orientations or give them preferred orientations. We reject
any candidate seed point that would cause an unguided element’s volume to intersect a
guided element’s volume.

Finally we shrink each element, guided and unguided, uniformly in the spatial dimension
towards its centroid. As seen in Figure 5.6a, these shrunken elements are guaranteed not to
intersect one another; as the simulation runs, they will grow and consume the container’s
negative space, while avoiding collisions. In practice, we shrink these elements to 5–10%
of their original size.
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(c) (d)

Figure 5.6: The simulation process. (a) Initial placement of shrunken spacetime elements inside
a static 2D disc, extruded into a cylindrical spacetime domain. Guided elements are shown in
red and unguided elements in blue. (b) A physics simulation causes the spacetime elements to
bend. They also grow gradually. (c) The spacetime elements occupy the container space. (d)
The simulation stops when elements do not have sufficient negative space in which to grow, or
have reached their target sizes.
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5.5 Simulation

We perform a physics simulation on the spacetime elements and the container. Elements
are subjected to a number of forces that cause them to simultaneously grow, deform, and
repel each other (Figure 5.6). In Section 5.5.2 we introduce some new hard constraints
that must be applied after every time step. Note that we must distinguish two notions of
time in this simulation. We use t to refer to the time axis of our spacetime volume, which
will become the time dimension of the final animation, and tsim to refer to the time domain
in which the simulation is taking place.

Let x = (x, y, t) be a vertex of a slice. The total force Ftotal applied to x is

Ftotal = Frpl + Fedg + Fbdr + Fovr + Ftor + Ftmp (5.1)

where

Frpl is the repulsion force;
Fedg is the edge force;
Fbdr is the boundary force;
Fovr is the overlap force;
Ftor is the torsional force; and
Ftmp is the temporal force.

These forces are the spacetime analogues of the ones used in RepulsionPak, except the new
temporal force. In this section, we explain the first five forces briefly; readers can refer
back to Section 4.5 for equations used to generate them.

Repulsion forces allow elements to push away vertices of neighbouring elements,
inducing deformations and transformations that lead to an even distribution of elements
within the container (Figure 5.7). Since the simulation operates in the spacetime domain,
a given vertex x accumulates repulsion forces from points at different time positions on
neighbouring elements. To locate these points on neighbouring elements that are considered
nearest, we use a collision grid data structure, described in greater detail in Section 5.5.1.

Edge forces allow elements to deform in response to repulsion forces. The edge forces
are calculated using a quadratic version of Hooke’s law, allowing more tolerance to small
displacements while avoiding severe deformation. As discussed in Section 5.3.1 and Sec-
tion 5.4, we have five types of springs: edge springs, shear springs, negative-space springs,
time springs, and target-point springs. Each spring type has a different relative strength.

Overlap forces resolve a vertex penetrating a neighbouring spacetime element. Over-
laps can occur later in the simulation when negative space is limited. Once we detect a
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Figure 5.7: Repulsion forces applied to a vertex x, allowing the element to deform and move
away from a neighbouring element.

penetration, we temporarily disable the repulsion force on vertex x, and apply an overlap
force Fovr to push it out.

Boundary forces keep vertices inside the container. If an element vertex x is outside
the container, the boundary force Fbdr moves it towards the closest point on the container’s
boundary by an amount proportional to the distance to the boundary.

Torsional forces allow an element’s slices to be given preferred orientations, to which
they attempt to return.

Temporal forces prevent slices from drifting too far from their original positions along
the time axis (Figure 5.8). Drifting slices can cause two problems. First, they could cause
unexpected accelerations and decelerations in the final animation. Second, the deformation
of the spacetime element would not be monotonic, and this would cause rendering artifacts
as illustrated in Figure 5.10. For every vertex, we compute the temporal force Ftmp as

Ftmp = ktmpu
t(t− t′) (5.2)

where

ktmp is the relative strength of the temporal force;
t is the initial time of the slice to which the vertex belongs;
t′ is the current time value of the vertex; and

ut = (0, 0, 1).

Simulation Details: We use explicit Euler integration to simulate the motions of the
mesh vertices under the forces described above. Every vertex has a position and a velocity
vector; in every iteration, we update velocities using forces, and update positions using
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Figure 5.8: An illustration of the temporal force. The vertices in slice s′i are drawn back
towards time t.

velocities. These updates are scaled by a time step ∆tsim that we set to 0.01. We cap
velocities at 10∆tsim to dissipate extra energy from the simulation.

The constants krpl, kovr, kbdr kedg, ktor and ktmp control the relative strengths of repul-
sion, overlap, boundary, edge, torsional, and temporal forces, respectively. They must be
adjusted relative to the time step ∆tsim and the size of the container. Since container’s
bounding box is resized to a unit cube, we set krpl = 10, kovr = kbdr = 5, ktor = ktmp = 1.
We set kedg = 0.01 for time springs, kedg = 0.1 for negative-space springs, and kedg = 10
for edge springs, shear springs, and target-point springs.

5.5.1 Spatial Queries

Repulsion and overlap forces rely on being able to find points on neighbouring elements
that are close to a given query vertex. To find these points, we use each element’s envelope,
a triangle mesh implied by the construction in Section 5.3.1. Each triangle of the envelope
is made from two time edges and one edge of a slice boundary, as shown in Figure 5.9a.
Given a query vertex x, we need to find nearby envelope triangles that belong to other
elements.

To accelerate this computation, we first compute and store the centroids of every ele-
ment’s envelope triangles in a uniformly subdivided 3D grid that surrounds the spacetime
volume of the animation. In using this data structure, we make two simplifying assump-
tions; first, that because envelope triangles are small, their centroids are adequate for
finding triangles near a given query point; and second, that the repulsion force from a
more distant triangle is well approximated by a force from its centroid.
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(b) (a) 

Figure 5.9: (a) The triangles that connect consecutive slices define the envelope of the element.
The midpoints of these triangles are stored in a collision grid. (b) A 2D visualization of the
region of collision grid cells around a query point x in which repulsion and overlap forces will
be computed. In the central blue region, we check overlaps and compute exact repulsion forces
relative to closest points on triangles of neighbouring elements; in the peripheral red region we
do not compute overlaps, and repulsion forces are approximated using triangle midpoints only.

Given a query vertex x, we first find all envelope triangle centroids in nearby grid
cells that belong to other elements. For each centroid, we use a method described by
Ericson [Eri05] to find the point on its triangle closest to x and include that point in the
list of points in Eq. (1). These nearby triangles will also be used to test for interpenetration
of elements. We then find centroids in more distant grid cells, and add those centroids
directly to the Eq. (1) list, skipping the closest point computation. In our system we set
the cell size to 0.04, giving a 25 × 25 × 25 grid around the simulation volume. A query
point’s nearby grid cells are the 27 cells making up a 3 × 3 × 3 block around the cell
containing the point; the more distant cells are the 98 that make up the outer shell of the
5× 5× 5 block around that (Figure 5.9).

5.5.2 Slice Constraints

Our system can provide robust simulations that arrange and deform spacetime extrusions.
However, to eliminate potential problems during the rendering, we have to enforce two
additional conditions. First, all spacetime elements must be present at any time position.
Second, element slices have to be perpendicular to the time axis. In Figure 5.10, we show
examples of acceptable and unacceptable configurations of a spacetime element.

We enforce two mandatory geometric constraints and an optional constraint on element
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Figure 5.10: The left element shows an example of a desired configuration, while the right one
will cause rendering artifacts since it does not have any of three required conditions: monotonic
deformation, full extent from t = 0 to t = 1, and slices perpendicular to the time axis.

slices. Each of the following constraints is reapplied after every physical simulation step
described above.

1. End-To-End Constraint: A spacetime element must be present for the full length
of the animation from t = 0 to t = 1. After every simulation step, every vertex
belonging to an element’s first slice has its t value set to 0, and every vertex of the
last slice has its t value set to 1 Figure 5.11a shows an illustration of the end-to-end
constraint. This constraint only performs localized adjustments on the first and last
slices. Over time, these adjustments will spread throughout the elements as edge
forces strive for equilibrium.

2. Simultaneity Constraint: During simulation, the vertices of a slice can drift away
from each other in time, which could lead to rendering artifacts in the animation.
After every simulation step, we compute the average t value of all vertices belonging
to each slice other than the first and last slices, and snap all the slice’s vertices to
that t value Figure 5.11b shows an illustration of the simultaneity constraint.

3. Loop Constraint: AnimationPak optionally supports looping animations. When
looping is enabled, we must ensure that the t = 0 and t = 1 planes of the spacetime
container are identical. The t = 1 slice of every element e1 must then coincide with
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Figure 5.11: a) End-to-end constraint: slice s1 and sn, located at t = 0 and t = 1, should
never change their t positions but can change their x, y positions. b) Simultaneity constraint:
all vertices on the same slice should have the same t position. c) Loop constraint with a single
element: the x, y positions for s1 and sn must match. d) Loop constraint with two elements:
the x, y position for s1 for one element matches the x, y position for sn of the other.
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the t = 0 slice of some element e2. We can have e1 = e2 (Figure 5.11c), but more
general loops are possible in which the elements arrive at a permutation of their
original configuration (Figure 5.11d). We require only that there is a one-to-one
correspondence between the vertices of the t = 1 slice of e1 and the t = 0 slice of
e2. If p1 = (x1, y1, 1) ∈ e1 and p2 = (x2, y2, 0) ∈ e2 are in correspondence, then after
every simulation step we move p1 to (x1+x2

2
, y1+y2

2
, 1) and p2 to (x1+x1

2
, y2+y2

2
, 0).

5.5.3 Element Growth and Stopping Criteria

We begin the spacetime packing process with all element slices scaled down in x and y,
guaranteeing that elements do not overlap. As the simulation progresses we gradually grow
the slices, consuming the negative space around them (Figure 5.12a,b). A perfect packing
would fill the spacetime container completely with the elements. Because each element
wraps the underlying animated shape with a narrow channel of negative space, this would
yield an even distribution of shapes in the resulting animation. For real-world elements, the
goal of minimizing deformation of irregular element shapes will lead to imperfect packings
with additional pockets of negative space.

Element Growth: We induce elements to grow spatially by gradually increasing
the rest lengths of their springs. The initial rest length of each spring is determined
by the vertex positions in the shrunken version of the spacetime element constructed in
Section 5.4. We allow an element’s slices to grow independently of each other, which
complicates the calculation of new rest lengths for time springs. Therefore, we create a
duplicate of every shrunken spacetime element in the container, with a straight extrusion
for unguided elements, and a polygonal extrusion for guided elements. This duplicate is
not part of the simulation; it serves as a reference. Every element slice maintains a current
scaling factor g. When we wish to grow the slice, we increase its g value. We can compute
new rest lengths for all springs by scaling every slice of the reference element by a factor
of g relative to the slice’s centroid, and measuring distances between the scaled vertex
positions. These new rest lengths are then used as the ` values in Equation 4.3 to calculate
edge forces.

Every element slice has its g value initialized to 1. After every simulation step, if none
of the slice’s vertices were found to overlap other elements we increase that slice’s g by
0.001∆tsim, where ∆tsim is the simulation time step. If any overlaps are found, then that
slice’s growth is instead paused to allow overlap and repulsion forces to give it more room
to grow in later iterations. This approach can cause elements to fluctuate in size during
the course of an animation, as slices compete for shifting negative space (Figure 5.12).
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Figure 5.12: A spacetime element shown (a) shrunken at the beginning of the simulation,
and (b) grown later in the simulation. (c) When two elements overlap somewhere along their
lengths, they are temporarily prohibited from growing there.

Stopping Criteria: We halt the simulation when the space between neighbouring
elements drops below a threshold. When calculating repulsion forces, we find the distance
from every slice vertex to the closest point in a neighbouring element. The minimum of
these distances over all vertices in an element slice determines that slice’s closest distance
to neighbouring elements. We halt the simulation when the maximum per-slice distance
falls below 0.006 (relative to a normalized container size of 1). That is, we stop when every
slice is touching (or nearly touching) at least one other element.

In some cases it can be useful to stop early based on cumulative element growth. In
that case, we set a separate threshold for the slice scaling factors g described above, and
stop when the g values of all slices exceed that threshold.

5.6 Rendering

The result of the simulation described previously is a packing of spacetime elements within
a spacetime container. We can render an animation frame-by-frame by cutting through
this volume at evenly spaced t values from t = 0 to t = 1, as shown in Figure 5.13. For
our results, we typically render 500-frame animations.

During simulation, a given spacetime element’s slices may drift from their original
creation times. However, time springs keep the sequence monotonic, and the simultaneity
constraint ensures that every slice is fixed to one t value. To render this element at an
arbitrary frame time tf ∈ [0, 1], we find the two consecutive slices whose time values bound
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Figure 5.13: An illustration of rendering spacetime elements to generate 2D frames by cutting
them at evenly spaced time values from t = 0 to t = 1.

the interval containing tf and linearly interpolate the vertex positions of the triangulations
at those two slices to obtain a new triangulation at tf . We can then compute a deformed
copy of the original element paths by “replaying” the barycentric coordinates computed
in Section 5.3.1 relative to the displaced triangulation vertices. We repeat this process for
every spacetime element to obtain a rendering of the frame at tf .

This interpolation process can occasionally lead to small artifacts in the animation. A
rendered frame can fall between the discretely sampled slices for two elements at an inter-
mediate time where physical forces were not computed explicitly. It is therefore possible
for neighbouring elements to overlap briefly during such intervals.

5.7 Implementation and Results

The core AnimationPak algorithm consists of a C++ program that reads in text files de-
scribing the spacetime elements and the container, and outputs raster images of animation
frames.

Large parts of AnimationPak can benefit from parallelism. In our implementation we
update the cells of the collision grid (Section 5.5.1) in parallel by distributing them across
a pool of threads. When the updated collision grid is ready, we distribute the spacetime
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Table 5.1: Data and statistics for the AnimationPak results. The table shows the number of
elements, the number of vertices, the number of springs, the number of envelope triangles, and
the running time of the simulation in hours, minutes, and seconds.

Packing Elements Vertices Springs Triangles Time
Aquatic fauna
(Figure 5.14)

37 97,800 623,634 106,000 01:06:35

Snake and bird
(Figure 5.15)

37 58,700 370,571 58,700 01:01:32

Penguin to giraffe
(Figure 5.16)

33 124,300 824,164 143,000 01:19:50

Traveling bird
(Figure 5.17)

32 63,700 389,373 70,100 00:19:24

Lion
(Figure 5.18b)

16 39,400 236,086 41,800 00:41:56

Animals
(Figure 5.20b)

34 69,600 444,337 69,800 01:00:19

Heart stars
(Figure 5.19c)

26 85,200 598,218 85,800 00:23:08

elements over threads. We calculate forces, perform numerical integration, and apply the
end-to-end and simultaneity constraints for each element in parallel. We must process any
loop constraints afterwards, as they can affect vertices in two separate elements.

We created the results in this chapter using a Windows PC with a 3.60 GHz Intel
i7-4790 processor and 16 GB of RAM. The processor is a quad core CPU with hyper-
threading; we used a pool of eight threads, corresponding to the number of logical CPU
cores. Table 5.1 shows statistics for our results. Each packing has tens of thousands of
vertices and hundreds of thousands of springs, and requires about an hour to complete.
We enable the loop constraint in all results. This chapter shows selected frames from the
results; see supplemental videos for full animations.

Figure 5.14 is an animation of aquatic fauna featuring two penguins as guided elements.
During one loop the penguins move clockwise around the container, swapping positions at
the top and the bottom. Each ends at the other’s starting point, demonstrating a loop
constraint between distinct elements. All elements are animated, as shown in Figure 5.14a.
Note the coupling between the Pac-Man fish’s mouth and the shark’s tail on the left side
of the second and fourth frames.
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Figure 5.14: (a) Input animated elements, each with its own animation: swimming penguins,
swimming sharks and fish, Pac-Man fish that open or close their mouths, and rotating stars.
(b-e) four selected frames from an animated packing.

A snake chases a bird around an annular container in Figure 5.15, demonstrating a
container with a hole and giving a simple example of the narrative potential of animated
packings. Figure 5.16 animates the giraffe-to-penguin illusion shown as a RepulsionPak
static packing shown in Figure 4.11. This example uses torsional forces to control slice
orientations.

Figure 5.17 shows an example where a guided element is not constrained to the inside
of a container. The traveling bird moves from left to right, passing through a packing of
birds. As some slices of the traveling bird take up container space, the other birds have to
stop some of their slice growth prematurely. This is a demonstration of the benefit of the
non-uniform growth in element slices, allowing elements to adapt to changes in available
container area. In the rendered 2D animation, the elements have a subtle shrinking-and-
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Figure 5.15: A snake chasing a bird through a packing of animals. The snake and bird are
both guided elements that move clockwise around the annular container.

Figure 5.16: Penguins turning into giraffes. The penguins animate by rotating in place.
Torsional forces are used to preserve element orientations. Frames are taken at t = 0, t = 0.125,
t = 0.25, t = 0.375, and t = 0.5.
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expanding effect. The composition can also tile horizontally, which can be seen in the
supplemental video.

Figure 5.18a is a static packing of a lion’s mane created by an artist and used as an
example of flow-based packings (Chapter 1) Figure 1.3. In Figure 5.18b, we reproduce it
with animated elements for the mane. The orientations of elements follow a vector field
inside the container, and are maintained during the animation by torsional forces. We
simulate only half of the packing and reflect it to create the other half. The facial features
were added manually in a post-processing step. We call the slow motions of the lion’s mane
as ambient animation, a topic that we would like to pursue as future work.

Figure 5.19 offers a direct comparison between packings computed using Centroidal
Area Voronoi Diagrams (CAVD) [SLK05], the spectral approach [DKLS06], and AnimationPak.
These packings use stars that rotate and pulsate. For each method we show the initial frame
(t = 0) and the halfway point (t = 0.5). The CAVD approach produces a satisfactory—
albeit loosely coupled—packing for the first frame, but because the algorithm was not
intended to work on animated elements, the evenness of the packing quickly degrades in
later frames. The spectral approach is much better than CAVD, but their animated ele-
ments still have fixed spacetime shapes and can only translate and rotate to improve their
fit. Repulsion forces and deformation allow AnimationPak to achieve a tighter packing
that persists across the animation, including gear-like meshing of counter-rotating stars.

Figure 5.20 compares a static 2D packing created by RepulsionPak with a frame from
an animated packing created by AnimationPak. The extra negative space in AnimationPak
comes partly from the trade-off between temporal coherence and tight packing, and partly
from the lack of secondary elements, which were used in a second pass in RepulsionPak to
fill pockets of negative space.

Figure 5.21 emphasizes the trade-off between temporal coherence and evenness of neg-
ative space by creating two animations with different time spring stiffness. In (a), the time
springs are 100 times stronger than in (b). The resulting packing has larger pockets of
negative space, but the accompanying video shows that the animation is smoother. The
packing in (b) is tighter, but the elements must move frantically to maintain that tight-
ness. The visualization in (c) shows the trajectories of two identical elements in both cases,
which makes it clear that weak time springs cause more frantic movements.

Figure 5.22 is a failed attempt to animate a “blender”. The packing has a beam that
rotates clockwise and a number of small unguided circles. In a standard physics simulation
we might expect the beam to push the circles around the container, giving each one a
helical spacetime trajectory. Instead, as elements grow, repulsion forces cause circles to
explore the container boundary, where they discover the lower-energy solution of slipping
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past the edge of the beam as it sweeps past. If we extend the beam to the full diameter
of the container, consecutive slices simply teleport across the beam, hiding the moment of
overlap in the brief time interval where physical forces were not computed. AnimationPak
is not directly comparable to a 3D physics simulation; it is better suited to improving the
packing quality of an animation that has already been blocked out at a high level.

5.8 Conclusions and Future Work

We introduced AnimationPak, a system for generating animated packings by filling a
static container with animated elements. Every animated 2D element is represented by
an extruded spacetime tube. We discretize elements into triangle mesh slices connected
by time edges, and deform element shapes and animations using a spacetime physical
simulation. The result is a temporally coherent 2D animation of elements that attempt
both to perform their scripted motions and consume the negative space of the container.
We show a variety of results where 2D elements move around inside the container.

We see a number of opportunities for improvements and extensions to AnimationPak:

• Motion Paths: Element motions in animated packings can look chaotic due to
the interaction between time springs and repulsion forces. It may be possible to
replace time springs with motion paths that connect slices together. The challenge
is to generate plausible motion paths that can be modulated by other forces. We
would also need to detect motion extrema of an animation, which are then used as
constraints when generating a motion path. We would like to investigate motion path
editing techniques such as work by Gleicher [Gle01] and Lockwood and Singh [LS11].

• 2D Vector Graphics Interpolation: Because we use linear interpolation to ren-
der an element’s shape between slices, we require elements not to undergo changes
in topology. More sophisticated representations of vector shapes, such as that of
Dalstein et al. [DRvdP15], could support interpolations between slices with complex
topological changes. We would also need to synthesize a watertight envelope around
the animating element in order to compute overlap and repulsion forces.

• Dynamic Mesh Resolution: We would like to improve the performance of the
physical simulation. One option may be to increase the resolution of element meshes
progressively during simulation. Early in the process, elements are small and dis-
tant from each other, so lower-resolution meshes may suffice for computing repulsion
forces.
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• Continuous Collision Detection: Our discrete simulation can miss element over-
laps that occur between slices. A more robust continuous collision detection (CCD)
algorithm such as that of Brochu et al. [BEB12] could help us find all collisions
between the envelopes of spacetime elements.

• Secondary Elements: In RepulsionPak, an additional pass with small secondary
elements had a significant positive effect on the distribution of negative space in the
final packing. It may be possible to identify stretches of unused spacetime that can
be filled opportunistically with additional elements. The challenge would be to locate
tubes of empty space that run the full duration of the animation and have sufficient
diameters to accommodate added elements.

• Animated Containers: Like the spectral method [DKLS06], and unlike Animo-
saics [SLK05], AnimationPak can pack animated elements into a static container.
As shown in the 2 × 2 classification of algorithms (Figure 5.2), we are not aware
any previous method that can pack animated elements inside an animated container.
AnimationPak has the potential to support animated containers, as demonstrated by
the packing with a loose bird in Figure 5.17, in which elements can vary their slice
sizes to adapt to changes in container area. As a further extension we could con-
sider dynamically adding and removing elements during the animation. This would
certainly complicate the process of giving every element an initial placement that is
fully inside the container and disjoint from other elements.

• Cinemagraphs: The lion’s mane packing shows the potential of AnimationPak to
generate a cinemagraph, a composition with repeating slow ambient animations com-
bined with static elements. There are many image processing techniques to generate
cinemagraphs, for example, Video Textures [SSSE00] and Cliplets [JMD+12]. It
would be interesting to the construction of illustrated cinemagraphs using animated
element arrangements.
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(a)

(b) (c)

(d) (e)

Figure 5.17: An animation of a traveling bird that comes in and out a packing of birds. The
other birds adapt to the reduced space by prematurely stopping some of their slices’ growths.

(a) (b) (c)

Figure 5.18: (a) A static packing made by an artist, taken from StockUnlimited. (b) The
first frame from an AnimationPak packing. (c) The input animated elements and the container
shape with a vector field. Torsional forces keep elements oriented in the direction of the vector
field. We simulate half of the lion’s mane and render the other half using a reflection, and add
the facial features by hand.
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(a) CAVD

(b) The Spectral Approach

(c) AnimationPak

Figure 5.19: A comparison of (a) Centroidal Area Voronoi Diagrams (CAVDs) [SLK05], (b)
spectral packing [DKLS06], and (c) AnimationPak. We show two frames for each method,
taken at t = 0 and t = 0.5. The CAVD packing starts with evenly distributed elements but the
packing degrades as the animation progresses. The spectral approach improves upon CAVD
with better consistency, but still leaves significant pockets of negative space. The AnimationPak
packing has less negative space that is more even.
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(a) RepulsionPak (b) AnimationPak

Figure 5.20: (a) A static packing created with RepulsionPak. (b) The first frame of a com-
parable AnimationPak packing. The input spacetime elements are shown on the right. The
AnimationPak packing has more negative space because we must tradeoff between temporal
coherence and packing density.

(a) (b) (c)

Figure 5.21: (a) One frame from Figure 5.14. (b) The same packing with time springs that
are 1% as stiff. Reducing the stiffness of time springs leads to a more even packing with less
negative space, but the animated elements must move frantically to preserve packing density.
The spacetime trajectories of the highlighted fish in (a) and (b) are shown in (c). The orange
fish in (b) exhibits more high frequency fluctuation in its position.
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(a) (b) (c)

Figure 5.22: A failure case for AnimationPak, consisting of a rotating beam and a number
of small circles. Instead of being dragged around by the beam, the circles dodge it entirely by
sneaking through the gap between the beam and the container. The red circle demonstrates
one such maneuver.
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Chapter 6

Quantitative Metrics for 2D Packings

6.1 Introduction

As with many techniques in artistic applications of computer graphics, evaluating the
quality of a computer-generated packing is a challenge. Understanding packing aesthetics
is important, since it allows us to create better and more elegant packings. There are two
ways to approach a packing evaluation. First, we could perform a qualitative evaluation
by conducting user studies. Second, we could develop quantitative metrics to measure
statistical and geometric features of packings. This chapter chooses the latter option
by developing metrics that are useful to evaluate packing algorithms, with the goal of
measuring progress in packing research. We see these metrics as a preliminary attempt
to quantify packing aesthetics, and we hope that our work will inspire new research in
packing evaluation.

The visual appeal of packings follows in part from aligning neighbouring elements along
compatible segments of their boundaries, suggesting that they interlock by design. We
believe that the evenness of negative space is an indicator of the quality of a packing. The
separation between neighbouring elements should be roughly the same everywhere. In this
chapter, we have developed several measurements of evenness, which allow us to examine
packings made by real-world artists and to compare RepulsionPak with other packing
algorithms. Packings generated by FLOWPAK and AnimationPak are not included in
this chapter. FLOWPAK prioritizes the flow principle over the evenness of negative space,
and AnimationPak’s spacetime packings are best left until we have developed a greater
understanding of the static 2D case.
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6.2 Related Work

In this section, we discuss a few related methods for evaluating discrete texture synthe-
sis, stippling, or packings. For more general discussion, Isenberg compiled a survey of
evaluation methods in NPR research [Ise13].

Qualitative Evaluation: AlMeraj et al. [AKA13b] proposed qualitative evaluations
to measure the similarity between exemplars and synthesized textures. They conducted two
user studies: a pile-sorting study and a pairwise comparison study. These user studies were
concerned with the distribution of elements, without regard for the evenness of negative
space, so their work is not suitable for our packing evaluation. Kwan et al. performed
a simple user study of 13 participants to compare packings based on their Pyramid of
Arclength Descriptor (PAD) [KSH+16] with previous packing methods. A participant was
randomly shown a computer-generated packing and they had to give ratings from 1 (worst)
to 6 (best) in each of three categories: their preference, stylishness, interlocking. In their
study, PAD received the highest scores in all three categories. We see the user study could
be expanded to discuss more categories, such as design principles discussed in Chapter 1.
Additionally, their results included occasional element overlaps, which they did not discuss
(Section 6.4).

Quantitative Evaluation: In Jigsaw Image Mosaics (JIM) [KP02], Kim et al. used
an energy minimization approach that penalizes a packing if it has too much negative space,
too many overlaps, or severely deformed elements. They did not further discuss whether
their energy measurement can be used for a quantitative evaluation, but we are inspired
by their work to develop a metric based on shape overlaps (Section 6.3.3). Maciejewski et
al. [MIA+08] compared computer-generated stippling artwork with artist-made stippling
artwork using the Gray-Level Co-Occurrence Matrix (GLCM), which measures spatial
relationships between pixel intensities. GLCM works best for analyzing dense point distri-
butions, and it unfortunately cannot be used to analyze arrangements with larger shapes.
In medical research, Aliy et al. [ASF+13] proposed a method to analyze the arrangement
of small biological objects in a histology image. They treated these objects as a point
distribution by computing their centroids, and computed the spatial relationships of these
centroids, so their work is unsuitable for our research. In fabrication, the packing quality
is dictated by manufacturing constraints, such as connectivity, so that printed objects can
resist from breaking [CZX+16, ZCT16, MSS+19]. However, our objective is more about
the evenness of negative space and less about connectivity strengths.
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6.3 Quantitative Metrics

We develop metrics that summarize the distribution of negative space as a data visual-
ization consisting of 2D functions. By generating and displaying these functions, we can
compare multiple packings. These metrics do not apply to tilings, in which elements in-
terlock perfectly. They also do not attempt to quantify the aesthetics of discrete textures
since they do not analyze the positive space distribution.

6.3.1 Spherical Contact Probability

The spherical contact probability (SCP) is the probability that a disc of radius r, chosen
uniformly at random within the container region, lies entirely within the packing’s nega-
tive space [CSKM13]. The SCP can be summarized via a function Qs(r) that gives this
probability for each radius r. Figure 6.1 shows an example of a typical Qs(r), showing it
to be a decreasing monotonic function. In order to interpret the SCP, it is helpful first to
examine a “packing” with perfectly even negative space (Figure 6.2a). Consider a pattern
of infinite horizontal stripes of width ds, separated from each other by negative space of
width dgap. For this pattern, Qs(0) = dgap/(dgap + ds); it is also clear that Qs(dgap/2) = 0,
because no disc of diameter greater than dgap can fit in the negative space (our dgap is twice
the radius of the ball). Furthermore, Qs(r) will decrease linearly between these two points,
and remain at zero thereafter; its graph will consist of a tilted line segment connected to
a horizontal ray.

No real-world packing exhibits this SCP. Even in a perfect arrangement of squares
(Figure 6.2b), the intersections of horizontal and vertical channels produce pockets of
negative space that can accommodate balls of radius dgap

√
2/2. These pockets tend to

raise the SCP slightly everywhere, and cause it to bend into a small tail that approaches
zero gradually. For a given set of elements in a container, the best packings will have a
steeply-decreasing SCP that stays close to the idealized stripe function most of the way
down, has a low value at r = dgap/2, and then bends towards horizontal near that value.
Note that there is always a largest disc that can fit in a packing’s negative space, and
hence a largest r for which Qs(r) > 0. In our graphs, we plot Qs(r) only until this point,
allowing us to compare the largest empty gaps of two packings. In less effective packings
(Figs. 6.2c,d), the negative space will be narrower in some places and wider in others,
recognizable as a shallower SCP with a longer tail.

The SCP is expressed in terms of probabilities as it originates from spatial statistics.
However, it also has a simple geometric interpretation that leads naturally to a simpler and
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Container Area

Figure 6.1: The spherical contact probability Qs(r) is defined as the probability that a disc
of radius r, chosen uniformly at random within the container region, lies entirely within the
packing’s negative space. Geometrically, we compute the value of the SCP as the ratio between
the inward-offset negative space area (drawn in red above) with the container area (drawn in
grey). We show several offsets of the negative space with discs of radius r = 0, r = 3, and
r = 5. On the right, we show a plot of Qs(r). We can observe that the positive space ratio
is Qs(0) = 45% and the largest disc that can be inserted into the negative space has radius
r = 11.85.

more precise computation. We geometrically compute the SCP by offsetting the negative
space inward. Let N be the shape of the negative space (essentially the container region
with holes where elements are). For a given radius r, we compute N(r), the Minkowski
difference of N with a disc of radius r. Then Qs(r) is simply the ratio of the area of N(r) to
the area of the container. Figure 6.1 shows the illustration of the geometric interpretation
of the SCP.

6.3.2 Histograms of the Distance Transform

In the context of 2D packings, a distance transform is a scalar field located in the negative
space where every point contains the distance r value to the nearest point on the boundary
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(e)

(a) (b) (c) (d)

(f)

Figure 6.2: Spherical contact probabilities and distance histograms for reference packings. A
“perfect packing” of infinite stripes is shown in (a), followed by a square packing with the
same area fraction and negative space width dgap in (b). The square packing is then perturbed
with random rotations in (c) and translations in (d). The corresponding SCP functions and
histograms are plotted in (e) and (f).

of an element. Note that the value r can also be interpreted as the disc radius in SCP.
In practice, we construct a discrete approximation of the distance transform in a uniform
2D grid by computing this distance for the centre of every grid cell. The computation
can be accelerated by storing the element boundaries inside a quadtree. An alternative
approach is a level-set method that propagates the fronts of the element boundaries [OS88].
Figure 6.3 shows an example of a discrete distance transform, where lighter pixel colours
represent higher r values.

The histogram of a distance transform provides insights into how negative space varies.
However, this would require quantizing distance values into bins. Instead, note that the
SCP Qs(r) is precisely the normalized area of negative space for which the distance trans-
form is at least r. Looked at another way, if we offset each element by a radius r, then
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1 − Qs(r) must be the normalized area of the union of these offset elements. This area
can then be interpreted as a cumulative distribution function of distance. From this ob-
servation we can compute a continuous variant of the distance histogram as a probability
density function via the derivative of the SCP: H(r) = −Q′s(r).

Given two packings with the same negative space area, the areas under their distance
histograms are the same. But a more even packing will have a shorter tail, indicating a
tighter upper bound on gap size, and it will have a larger concentration of density around
dgap/2. In Figure 6.2, the histogram for the perfect stripe pattern is a step function that
drops to zero at dgap/2. The ideal square packing has a histogram that climbs gently until
around dgap/2 before dropping steeply. The other two packings have shallower, smoother
histograms. Note also that high values of the distance histogram near dgap/2 correspond
to a rapid negative change in the SCP, suggesting a more even packing.

6.3.3 The Overlap Function

The overlap function is a function of a non-negative offset amount r. For any given r,
we offset every element by computing its Minkowski sum with a disc of radius r. As r
grows, elements will start overlapping; the overlap function measures the total area of
these overlaps, normalized by container area, as a function of r. We can also visualize
these overlapping areas directly as in Figure 6.4. In a perfect packing, we would expect
no overlaps until r = dgap/2, our desired gap distance, at which point overlapping areas
would start to grow into channels of roughly even width.

6.4 Comparisons

This section compares various 2D packings using three metrics discussed previously. Our
comparisons are limited to static 2D packings that have clear boundaries between positive
space and negative space.

Calibration: Two or more packings must be calibrated to each other before they
can be compared meaningfully. The calibration process requires packings to satisfy these
conditions:

1. All packings should use an identical container shape. We then normalize the container
to have unit area.
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(a) (b)

(c)

Figure 6.3: (a) An arrangement of rabbits. (b) The distance transform of the negative space,
where lighter pixel colours represent higher r values. (c) Two visualizations of the distance
transform; the continuous histogram H(r) drawn as a red curve and the discrete histogram
with 50 bins drawn as blue rectangles.
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(a) PAD

(b) RepulsionPak

Figure 6.4: An illustration of offsetting elements outward. The packings have dgap/2 = 5.7.
At an offset of 5, which is slightly less than dgap/2, the overlap for the PAD packing is 1.462%
of the total area, while the overlap for our packing is only 0.039%. At an offset of 11.4, which
equals dgap, the PAD packing shows more empty space (1.05%) than RepulsionPak (0.07%).
As the offset is increased, overlaps in the PAD packing create channels with uneven widths,
whereas ours are more uniform. The corresponding overlap function is shown in Figure 6.5e.

2. We must arrange for the packings to have the same negative space ratio (the overall
amount of negative space as a fraction of container area), in order to permit fair
comparisons of the distributions of that negative space.

3. All packings should have the same set of elements, ensuring the difficulty of the
packing process remains the same.

4. All packings should have the same element relative sizes, as changing the size of an
element can make it harder or easier to interlock with other elements.

In RepulsionPak simulations, we offset the elements outward by dgap/2 to create element
skins (Section 4.4). This allows us to estimate the expected final width of negative space
as dgap. Note that calibrated packings have the same negative space area so they should
have the same expected of dgap. In a good packing, the gaps of negative space would be
close to dgap. On the other hand, the gaps in a bad packings would have variations in
widths which are smaller or bigger than dgap.

Comparison to PAD: Figure 6.5 compares RepulsionPak and PAD [KSH+16]. Pack-
ing (a) is a result from the PAD paper; Packing (b) was created with RepulsionPak using

106



the same elements, and calibrated to have the same negative space as (a). Note that the
PAD packing actually has several overlapping elements (for example, the tooth and the
horse), but white haloes around elements artfully conceal overlaps with little degradation
in visual quality. Our packing avoids overlaps by design. The SCP plot in (c) shows that
our packing has a lower value at dgap/2, indicating more even negative space, and has a
shorter tail, indicating fewer large empty areas. Our result also has a histogram bump
around dgap/2, and a lower overlap function.

Comparison to an Artist-Made Packing: In Figure 6.6 we show a RepulsionPak
result created using the elements from the artist-made packing. Our packing was calibrated
to match the artist’s. Looking closely, the artist’s packing has a few elements separated
by narrow gaps, such as the cherries and the corn on the top left. Our result has fewer
large empty gaps, as indicated by a short tail in its SCP. Our result also has a histogram
bump around dgap/2, and a lower overlap function. The result shows the effectiveness of
the repulsion forces in successfully discovering compatibilities in the element boundaries
and filling the space effectively.

Comparison to Rigid Packings: To evaluate the effect of deformation on negative
space, we compute all three metrics under increasing values of kedg, the edge force relative
strength (Section 4.5). Note that we only modify the strengths of edge springs and shear
springs, leaving the strengths of negative space springs unchanged. Increasing kedg allows
the element meshes to resist deformation, ultimately approximating a rigid packing algo-
rithm. We created 15 packings, five for each of three values of kedg (5, 250, and 1000).
Each packing used 25 elements chosen at random from a library of 60, with no secondary
elements. All packings are partly calibrated: they all have the same negative space ratio,
but elements are chosen at random and have some variation in their sizes. As shown in
Figure 6.7, a low value of kedg leads to greater deformation and steeper SCPs. The more
pronounced histogram bump at r = dgap/2 suggests more even negative space. The lower
overlap functions indicate fewer narrow gaps between elements. This comparison corre-
sponds to our intuition that edge forces allow us to trade off between element deformation
and evenness of negative space.
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(c) (d)

(b) RepulsionPak(a) PAD

(e)

Figure 6.5: A comparison between a PAD packing shown in (a) and a RepulsionPak packing
in (b) with their corresponding SCPs (c), distance histograms (d), and overlap functions (e).
The PAD and RepulsionPak packings are calibrated to have the same negative space ratio. We
visualize the statistics of the PAD packing and the RepulsionPak packing as red curves and blue
curves, respectively. Our SCP is lower and shorter than the PAD’s result, our histogram shows
higher concentration around dgap/2, indicating more even negative space, and our packing has
a lower overlap function.
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(c) (d)

(e)

(b) RepulsionPak(a) Artist

Figure 6.6: A comparison between the artist-made packing (Artist: Balabolka on Shutter-
stock) shown in (a), and a RepulsionPak packing with the same elements in (b). We plot
the corresponding SCPs (c), distance histograms (d), and overlap functions (e). For compari-
son purposes we remove secondary elements from the artist’s packing. Our SCP is lower and
shorter than the artist’s result, our histogram shows more concentration around dgap/2, and
RepulsionPak also has a lower overlap function.
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(c) (d)

(e)

(b)(a) (c)

Figure 6.7: A demonstration of the effect of deformation on the evenness of negative space.
The packings in (a), (b) and (c) are representative results using three values of the edge force
strength kedg, from rigid (kedg = 1000) to moderate (kedg = 250) to deformable (kedg = 5). We
construct five random packings for each value of kedg, and plot their SCPs (d), histograms (e),
and overlap functions (f). Packings with the most deformation have steeper and shorter SCPs,
more histogram concentrations around dgap/2, and lower overlap functions.
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6.5 Conclusions and Future Work

We believe that evenness of negative space is an indicator of the quality of a packing. The
more the elements interlock, the more even the negative space. We evaluated the evenness
of negative space using spherical contact probabilities, histograms of distance transform,
and overlap functions. A packing with a more even negative space has a steeper and shorter
SCP, more histogram concentrations around dgap/2, and a lower overlap function.

There are a few ideas that we would like to explore to improve packing evaluation:

• Due to its random initial placement, the evenness of negative space of RepulsionPak
results can vary slightly, as shown in Figure 6.7. For each RepulsionPak result in
Figure 6.5 and 6.6, we run the simulation a few times and choose one that we like.
Although we believe that RepulsionPak generates consistent results, we would like
to improve the comparisons by aggregating data from multiple simulations.

• We would like to conduct experiments that investigate the extent to which quanti-
tative measurements of the evenness of negative space in a packing correlate with
the human perception of a packing’s quality. In informal evaluations, some viewers
found that the packing in Figure 6.6b, created with RepulsionPak, was packed more
tightly than the artist’s packing in Figure 6.6a, even though both have the same total
amount of negative space.

• We would like to investigate better visualizations for the SCP. When comparing
calibrated packings, SCPs communicate differences in the evenness of negative space,
but the differences between SCPs can be subtle. A better visualization might amplify
these differences to make evaluation easier.

• Our metrics are all based on Euclidean distance which is equivalent to Minkowski
sums with discs. With this model of distance, offsets of sharp corners are rounded
off. Yet, when visually evaluating the evenness of negative space, we might implicitly
visualize mitered corners as being even, as in the square grid of Figure 6.2b. It would
be worthwhile to investigate statistical measures based on pseudodistance metrics
that treat mitering as perceptually even.

• In a sense, the local maxima of the distance transform are the points that yield the
most information about the distribution of negative space: any non-maximal point
is subordinate to some nearby maximum. During this work, we investigated whether
we could limit the computation of the distance transform to its local maxima. The
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Figure 6.8: A medial axis generated from the negative space of the Unilever packing using
the Zhang-Suen thinning algorithm [ZS84]. The medial axis structure can be used to identify
local maxima of the distance transform. However, branches can touch or nearly touch sharp
concave corners, and do not correspond to human judgment of negative space.

obvious choice of the medial axis is error-prone, and produces branches in corners
that can misrepresent the perception of negative space (Figure 6.8). The area Voronoi
diagram of the elements is promising, but ignores channels bounded by distant parts
of the same element. More work is needed to identify a geometric skeleton that can
serve as a scaffolding for evaluating the distance transform.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

We presented three deformation-driven packing methods. FLOWPAK is a method to
deform and pack long thin elements to follow a vector field. RepulsionPak is a method
that uses repulsion forces to pack and deform elements that are represented as mass-spring
systems. AnimationPak is an extension of RepulsionPak that packs animated 2D elements,
each an extruded 3D shape in a spacetime domain.

We discussed the evenness of negative space as an indicator of the quality of a packing.
We measured the evenness using three statistical metrics: spherical contact probabilities,
histograms of distance transforms, and overlap functions.

Given a small element library, we demonstrated that deformation-driven methods can
create element compatibilities and fill the container effectively. Repeated elements give a
sense of uniformity but deformation creates a sense of variety.

Informally, the packings our methods have generated received a lot of positive feedback.
In particular, FLOWPAK and RepulsionPak are sufficiently stable and automatic that they
could be used in a general graphic design context to create simple packings. Of course, this
level of automation will never fully capture the semantic intent of a design, for example, the
placement of an animal form’s eye. A real-world tool will have to integrate our simulations
into the larger context of manual drawing and editing. Lastly, the animations produced by
AnimationPak are a promising first step, but will require further refinement before they
can be deployed in motion graphics.
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7.2 Future Work

This thesis is only the tip of the iceberg of packing research and we see many possibilities
for future work.

7.2.1 Spacious Element Arrangements

We would like to create element arrangements with varying and wider negative space gaps.
Evenness of negative space is only one of many design considerations to create aesthetically
pleasing element packings. As discussed in Chapter 1, variations in the balance of positive
and negative space can be used to emphasize focal points. It would be interesting to
incorporate a density field, similar to stippling artwork by Secord [Sec02]. In a low density
area, elements are smaller and negative space is wider. Conversely, a high density area can
be represented by bigger elements and narrower negative space.

Another potential extension to our deformation-driven methods is synthesizing dis-
crete textures, where element distributions are more important than element interlocking.
Because of the generous negative space, we could run RepulsionPak without the growth
process. However, the main challenge is to modify our simulation to incorporate inter-
element spatial relationships extracted from an exemplar. Additionally, we can adapt
AnimationPak to generate animated discrete textures, in a similar style to work by Ma et
al. [MWLT13]. Lastly, generating a pleasing arrangement from a fully automated method
is difficult, so it also would be interesting to incorporate an interactive tool by Reinert et
al. [RRS13] that can infer an artist’s intention while creating an artistic arrangement.

7.2.2 Element Construction

We would like to explore techniques to assist users in constructing element shapes. A simple
example can be seen in a FLOWPAK packing, where we allow the user to construct addi-
tional motifs automatically by tracing the shapes of pockets of negative space (Figure 3.15).
Another approach may be to identify salient shapes in a source photograph to construct
fixed elements. We first perform an image segmentation algorithm [CP02, ASS+12] and
the artist can select regions they think are important. Each region is then vectorized to
create a new fixed element.

Earlier data-driven packing techniques achieve variety by assembling a large library
of element shapes. In FLOWPAK and RepulsionPak, we used deformation to amplify
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Element Subparts Modular Elements

Figure 7.1: Examples of modular elements assembled from smaller parts.

the variety of a much smaller element library. Other approaches may allow us to generate
variety in different ways. For example, we could construct modular elements by assembling
them from smaller subparts (Figure 7.1). Past research has explored example-based and
part-based assembly of modular objects [BA06, RHDG10, KCKK12, HL12], but more work
is needed to make these tools practical and useful in the context of packings. Modularity
is itself a kind of discrete mode of deformation, and we could mix-and-match parts during
packing to improve packing quality. When fitting elements to the container boundary
(Section 4.7) we could begin by choosing subparts that optimize the fit, and then build
elements that contain those subparts. Of course, compatibility could be further improved
by deforming modular elements using the techniques in this thesis.

In the context of FLOWPAK, we are interested in exploring a simpler form of modu-
larity, in which short subparts are assembled into larger shapes by threading them along
curves, as illustrated in Figure 7.2a. This approach to modularity might adapt itself
particularly well to floral ornamentation. In that case, it would be natural to explore ex-
tensions to FLOWPAK that support branching structures instead of isolated curves, as in
Figure 7.2b. A challenge here is to identify pairs of subparts, and points on them, that
support high-quality attachments. This quality can be measured geometrically, possibly
aided by new algorithms for content-aware blending of vector shapes. It also has a semantic
component; for example, a leaf shape can be attached to a stem, but not directly to a twig.
Past research on ornament synthesis, such as DecoBrush [LBW+14] may be relevant here.
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(a) (b)

Figure 7.2: Plant-style modular elements. (a) A larger element is constructed by threading
multiple subparts along a curve. (b) Multiple streamlines are joined in a branching structure.

7.2.3 Beyond 2D

Inspired by the 3D shaded skull packing in Figure 4.14, we would like to explore the use
of deformation-driven methods to create packings on surfaces. To realize this idea, it
should be possible to adapt RepulsionPak by computing geodesic distances to generate
physical forces. Packings on surfaces are also useful in a fabrication context, for example,
creating printed objects in the style of previous work like that of Chen et al. [CML+17]. We
could exploit boundary compatibilities to discover ideal locations to connect neighbouring
elements. Alternatively, it would be interesting to 3D print the negative space, which is
already connected due to the absence of overlaps. The resulting packing would be more
like a filigree [CZX+16], with thin wires bounding holes in the shapes of the elements.

Many of the techniques in this thesis could be adapted to develop a deformation-driven
method for packing purely spatial 3D objects in a 3D container. We would like to evaluate
the expressivity and visual quality of deformation-driven 3D packings in comparison to
other 3D packing techniques. One potential issue is that elements in the middle of the
container may be fully occluded by their neighbours, which would render them useless as
they cannot be viewed. This problem will arise especially in a dense 3D packing of small
elements.

It may also be possible to construct interesting packings of 3D objects constrained to
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Figure 7.3: Bas-reliefs from Borobudur temple. These bas-reliefs give us an idea to generate
a packing of 3D objects on a surface. Individual element can still rotate in 3D to align itself
with its neighbours. The photographer of the left image was Michael Gunther, and the right
image was taken by Michel Estermann.

lie near a surface. Figure 7.3 shows two stone bas-reliefs from the Borobudur temple on
the island of Java. Each relief consists of a tight, albeit non-interlocking, arrangement of
human shapes. We are interested in constructing similar arrangements using deformation-
driven packing, with elements that are required to lie on a shared surface. The interactions
between elements during the packing process may cause them to occlude each other but
without interpenetration. We are curious to know how occlusions affect aesthetics in the
context of bas-reliefs like these.

7.2.4 Collaborations with Artists

Collaborations with artists can provide us invaluable feedback for our deformation-driven
methods. Two artists have used RepulsionPak to generate packings in Figure 4.14, al-
though we did not collect formal feedback or data on their experiences. After RepulsionPak
was demonstrated at a large public event, we also received expressions of interest and en-
thusiasm from online graphic design communities.

We would like to develop an interactive user interface for our packing methods. Ex-
amples of recent work in this style include research by Zehnder et al. [ZCT16], Gieseke et
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Figure 7.4: A young artist, Joe Whale, is drawing a doodle mural. The photograph is taken
from instagram.com/thedoodleboy.co.uk.

al. [GALF17], and Hsu et al. [HWYZ20], which let the user directly place and manipulate
elements while a composition is being created. Inspired by doodle murals by Joe Whale
(Figure 7.4), it would be interesting to develop an interactive installation in which users
could interact with a live packing on a large touch-screen display.

It would also be interesting to create a system to assist artists in creating arrangements
of physical objects. One approach could make use of a camera-equipped augmented reality
headset. We use the camera to scan elements, which are then processed by the system.
The headset displays a suggestion of an element arrangement which the artist can follow.
As the artist moves the elements around, the system rescans the current element placement
and recomputes a new suggestion.

In the context of animated packings, we were only able to find a single example from
The Simpsons (Figure 5.1). We believe these designs are rare because they have been so
difficult to create using conventional software. We would like to engage with artists to
understand the aesthetic value and limitations of AnimationPak.
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7.2.5 Packing Evaluation

We would like to develop other quantitative metrics to evaluate how well an ornamental
design fulfills other design principles. In Chapter 3, we argue that visual flow and “uni-
formity amidst variety” are important in attractive packings. In another study, Wong et
al. [WZS98] describe basic design principles for decorative arts: repetition, balance, and
conformation to geometric constraints.

Currently, we measure only the evenness of negative space. A measure of element
deformation in a composition would permit a comparison against future deformation-driven
techniques. In RepulsionPak, we can measure a packing’s potential energy at equilibrium.
However, there are some questions to answer. Can we measure how deformations are
perceived? How much they affect the aesthetics of packings? Such measurements could help
us develop better deformation algorithms in general, not just in the context of packings.

All three metrics described in Chapter 6 are only for evaluating 2D packings. While
they extend naturally to three purely spatial dimensions, it is not clear whether they can
be adapted to the spacetime context. We would like to investigate spatial statistics for the
quality of animated packings created by AnimationPak.

More broadly, although our algorithms and measurements are derived from careful
study of packings created by artists, there is no guarantee that a statistic like the evenness
of negative space is a suitable proxy for human aesthetic judgment. Future work should
seek to articulate mathematical criteria that correlate with qualitative packing quality,
using perceptual studies on human subjects.
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Appendix A

Animation Videos

This appendix consists of animation videos that correspond to several figures in this thesis.

The file names of the videos are:

• fig 3.1 iterative refinement.mp4

• fig 3.10 lion iterative refinement.mp4

• fig 3.10 unicorn iterative refinement.mp4

• fig 4.1 animals.mp4

• fig 4.7 rhinoceros.mp4

• fig 4.9 cats.mp4

• fig 4.10 butterflies.mp4

• fig 4.11 giraffes penguins.mp4

• fig 5.6 simulation process.mp4

• fig 5.14 aquatic fauna.mp4

• fig 5.15 snake bird.mp4

• fig 5.16 penguins to giraffes.mp4
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• fig 5.17 traveling bird.mp4

• fig 5.18 lions mane.mp4

• fig 5.19 animals.mp4

• fig 5.20 cavd vs spectral vs animationpak.mp4

• fig 5.21 time spring stiffness comparison.mp4

• fig 5.22 beam and circles.mp4

• fig 6.4 overlap viz.mp4

• fig 6.6 overlap viz.mp4

If you accessed this thesis from a source other than the University of Waterloo, you
may not have access to these files. You may access them by searching for this thesis at
http://uwspace.uwaterloo.ca.
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