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Abstract

The western boreal forest (WBF) is an important breeding area for North American

ducks, second only to the prairie pothole region (PPR). The WBF is experiencing intensive

industrial development, causing habitat loss and fragmentation. Land use change can have

profound effects on predator-prey interactions and influence population dynamics. In most

avian species, nest success is critical to population persistence. Therefore, species are under

intense selective pressure to choose a safe nest site. Currently, we have limited knowledge

of duck nesting ecology in the WBF, including the influence of changing land use practices

on how ducks select nest sites, how those decisions influence nest survival, what predators

eat duck nests, and how land use change effects predator communities.

To answer these questions, we conducted extensive field research, which involved search-

ing for and monitoring nests of ground nesting boreal ducks, using camera traps to identify

predators at real and artificial nests, and using camera traps to monitor predator occu-

pancy across our study area. We located 167 duck nests of 8 different species between 2016

and 2018 by nest searching across a gradient of industrial development. We investigated

nest-site selection of ground nesting ducks in the WBF of Alberta at multiple levels and

spatial scales using logistic regression-based resource selection functions. We also inves-

tigated how land use, landcover, and nest attributes (e.g., nest age, nest initiation date)

influenced the daily survival rate of nests using the logistic exposure model. Finally, we

evaluated land use and landcover characteristics that predicted predator occupancy using

multiscale occupancy models from camera trap data across our study area to understand

how predator communities are affected by industrial development.

Our results provide the first descriptive studies of the nesting ecology of boreal ducks

from Canada. We identified that ducks selected greater overhead cover and proportion of
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grass at nest sites, relative to paired-random locations. We also identified that nest-site

selection strategies at the microhabitat level were different across nesting guilds and species

in relation to vegetation structure and composition, which may facilitate coexistence. At

a macrohabitat level, we identified strong selection for marsh habitat, with avoidance of

pipelines and seismic lines. We also demonstrated how considering multiple spatial scales

while investigating habitat selection is critical by illustrating scale dependent responses to

different resources. We then spatially predicted our best model and its error to identify

important nesting habitat for boreal ducks, which can be used to help prioritize habitat

conservation in the region. Nest survival was relatively low across species (0.212 [85% CI:

0.152 - 0.282]) and increased with nest age and varied annually. At the microhabitat scale,

nest survival increased with greater graminoid, forb, and shrub cover at the nest. At the

macrohabitat scale, nest survival decreased with greater proportion of fen habitat, and

increased with greater lengths of pipelines and roads in proximity to the nest. We did not

find evidence that oil and gas development negatively affected duck nest survival.

We identified 8 different species that predated boreal duck nests including American

black bear, weasel spp., American marten, Canada lynx, coyote, red squirrel, common

raven, and red-tailed hawk. Next, we found that predator species were more likely to use

habitats associated with industrial development as opposed to prey species that avoided

industrial development. Specifically, coyotes, black bears, and gray wolves had a higher

probability of being detected in association with industrial development suggesting they

might be more active or abundant in these areas. Considering this evidence with our

nesting ecology data, we suggest that ducks appear to be resilient to current levels of

development through avoiding predators during nest-site selection. However, continued

development combined with climate change has the potential to continue to alter these

relationships.
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This dissertation represents a first step towards understanding the nesting ecology of

ducks in the boreal forest. We provide multiple lines of evidence from our study to help

improve our understanding of the effect of industrial development on ducks. The human

demand for natural resources is likely to continue to increase the industrial footprint in the

boreal forest, a region once considered pristine. To successfully conserve wildlife in this

region, continued research is required to deepen our understanding of how the industrial

footprint influences habitat selection and space use of predators and prey. The evidence

provided herein can be used to revise and adapt our current hypotheses and assumptions to

direct further research questions to produce strong inference about ducks and development

in the boreal forest.
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Chapter 1

Introduction

Wildlife population persistence is an indicator of ecosystem health and promotes human

well-being (Dietsch et al. 2016; Manfredo et al. 2016). Functioning ecosystems (i.e., bal-

anced energy flows and stable feed-back loops) deliver ecosystem services (e.g., carbon

storage, water retention, and fresh water) that can be identified by observing expected

populations dynamics of associated wildlife species (Green & Elmberg 2014; Kubiszewski

et al. 2017). These wildlife species hold cultural and socio-economic value to humans for

consumptive (e.g., subsistence or recreational harvest) and non-consumptive use (e.g., aes-

thetic and cultural beliefs) (Manfredo 2008; Teel & Manfredo 2010). Therefore, in-depth

knowledge of how wildlife populations interact with their ecosystems (i.e., ecology) will

help to ensure population persistence and promote human well-being now and into the

future (Balmford & Bond 2005).

The most pervasive threat to wildlife populations is human induced land use change

(Sih et al. 2011; Tscharntke et al. 2012; Allred et al. 2015). Historically, habitat loss

due to conversion of land to agricultural production and urbanization was the strongest
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threat to wildlife (Fahrig 2003; Tscharntke et al. 2012). However, recent decades have

seen rapid growth in industrial development, such as oil and gas and forestry (Naugle

2011; Butt et al. 2013; Allred et al. 2015; Pickell et al. 2015). Specifically, industrial

development is rapidly expanding into previously unaltered landscapes and the resulting

effect on wildlife is largely unknown (Naugle 2011; Fisher & Burton 2018). The pervasive

and rapid expansion of the human footprint will challenge the adaptive capacity of many

species. The persistence of wildlife populations, therefore, will rely on their responses to

potential changes in ecosystem regulation and their ability to shift their use of space and

resources accordingly. To ensure wildlife persist in these landscapes, we require effective

conservation strategies and planning based on a sound understanding of species ecology.

Most ecological inquiry is focused on determining what, where, when, why, and how

organisms are distributed across space (MacArthur 1972; Peterson et al. 2011; Tucker et al.

2018). Traditional approaches have relied on observing, counting, or detecting the loca-

tion of an organism in geographic space (Aarts et al. 2012). Then, to understand why

an organism uses a location, we associate environmental space, comprising local site con-

ditions (e.g., forest cover, temperature), with geographic space. The association between

geographic and environmental space can reveal patterns leading to improved ecological

understanding of species distributions on a landscape (Peterson et al. 2011).

Niche theory has been applied as a common framework to help understand these ques-

tions (Hirzel & Le Lay 2008; Peterson et al. 2011). For example, the fundamental niche

represents an n-dimensional hypervolume of abiotic factors that permit species existence

or occurrence (Grinnell 1917; Hutchinson 1957). Details related to inter-and-intraspecific

species interactions, and their environment, can further shape species distributions (Elton

1927; Hutchinson 1957). Consequently, the realized niche accounts for the biotic inter-

actions that shape distributions (Hutchinson 1957; Soberón 2007). Using this framework
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to understand the spatial and temporal distribution of species has greatly improved our

understanding of species, populations, and community ecology (Elith & Graham 2009).

However, interpretation of the ecological niche is fundamentally altered by different as-

sumptions related to the spatial extent and resolution of inquiry, the mechanisms that

drive biotic interactions, how resources are represented in the niche, and how the niche

changes across time scales (Soberón 2007).

1.1 Predator-Prey Interactions

Predator-prey interactions are fundamental to the structure and function of ecological

communities (Sih et al. 2011; Gorini et al. 2012). Predation shapes life history evolution and

influences prey decisions, such as habitat selection (Martin 1995; McLoughlin et al. 2005).

Theoretically, predators respond to prey densities numerically or functionally (Solomon

1949). A numerical response occurs when the abundance of predators in a population

increase as a function of increasing prey densities. Alternatively, a functional response

represents an increase in foraging efficiency by the predator (i.e., increased encounter rate)

as a result of increased prey density. Therefore, the product of these responses, which most

likely falls along some theoretical continuum between a functional and numerical response,

will influence the observed predation rate (Messier 1994).

Space use can fundamentally modify predator-prey interactions by influencing a preda-

tor’s ability to search, encounter, kill, and consume prey (Muhly et al. 2011; Gorini et al.

2012). Consequently, human induced land use change has strong potential to modify these

complex relationships between predator and prey. This could result in cascading effects

throughout the food web and alter the stability of predator-prey dynamics and, in turn,

the ecosystem as a whole (Sih et al. 2011; Gorini et al. 2012). Prey try to minimize
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while predators try to maximize their overlap in geographic space use (Muhly et al. 2011).

Habitat heterogeneity can, therefore, have a profound effect on this relationship through

influencing kill rates and the density of predators or prey (Schneider 2001; Bergström

et al. 2006; Gorini et al. 2012). For example, space use by prey is mediated by direct con-

sumption (Kauffman et al. 2007) and the relative influence of trait-mediated mechanisms

(e.g., fear) on perceived predation risk (Preisser et al. 2005). Research now recognizes

the substantial impacts of trait-mediated interactions, because of the potential reduced

prey foraging effort, energy income, fitness, and potential increased vulnerability to other

predators (Preisser et al. 2005; Suraci et al. 2016).

Foraging strategies, such as specialist versus generalist, are also important when con-

sidering predator-prey interactions (Holt 2002; Ryall & Fahrig 2006; Devictor et al. 2008;

Clavel et al. 2011; Tscharntke et al. 2012). Specialist species generally decline with land-

scape fragmentation and habitat loss, while generalist predators tend to increase, poten-

tially increasing the predation rate on some prey species and altering the availability of

prey on the landscape (Clavel et al. 2011). Therefore, considering how community, or

multi-species, dynamics shape these interactions is critical to understanding predator-prey

relationships. For example, apparent competition results when one or more predator species

consumes one or more prey species and is often mediated by space use of predator and

prey (Holt & Lawton 1994; DeCesare et al. 2010).

1.2 Wildlife and Land Use Change

Habitat loss and fragmentation have been identified as major threats to the persistence

of wildlife species globally (Fahrig 2003; Tscharntke et al. 2012). Habitat loss can be

considered as the removal of habitat, while fragmentation can be considered as the breaking
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apart of habitat (Fahrig 2003). There is overwhelming evidence to suggest that habitat loss

results in negative effects on the survival of many species and biodiversity overall (Schneider

2001; Schmiegelow & Mönkkönen 2002; Fahrig 2003; Tucker et al. 2018). However, the

effects of habitat fragmentation have been less well understood and species responses may

change depending on their trophic role, the spatial scale of observation, or the amount of

fragmentation on the landscape (Fahrig 2003; 2017; 2019; Ryall & Fahrig 2006; Fletcher

et al. 2018).

The boreal forest is one of the largest global ecosystems and has vast, but finite, re-

sources imposing a tradeoff between economic growth and ecological integrity (Carlson &

Browne 2015). Conserving boreal biodiversity and developing the globally relevant oil and

gas industry is a major challenge and, therefore, a global conservation issue (Hebblewhite

2017). The intensity of industrial development and the presence of multiple overlapping

industry sectors results in cumulative effects, the combined direct and indirect effects of

human activities over time, in the boreal forest (Carlson & Browne 2015; Pickell et al.

2015; Johnson et al. 2019).

The majority of research on human induced land use change in the boreal forest has

focused on large mammal responses to development (Latham et al. 2011c;b;a; Tigner et al.

2014; Dickie et al. 2017; DeMars & Boutin 2018; Scrafford et al. 2017; Toews et al. 2017).

Considerably less research has investigated the response of birds (Bayne et al. 2005; Slat-

tery et al. 2011; Morissette et al. 2019; Mahon et al. 2019; Roy et al. 2019). This lack of

knowledge is particularly concerning for ducks because the boreal forest provides important

breeding habitat that supports 12-15 million ducks annually (Slattery et al. 2011). Some

research suggests that duck species in the boreal have declined in association with devel-

opment features; however, the mechanisms underlying the declines are unknown (Slattery

et al. 2011; Singer et al. 2020).
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1.3 Nesting Ecology

Birds select habitats repeatedly throughout their life cycles at multiple spatial scales due to

the mobility provided by flight and migratory behaviour (Eichholz & Elmberg 2014). Nest

site selection by females is a major evolutionary driver where decisions affect the survival

of their offspring (Refsnider & Janzen 2010). The first decision ducks make in selecting

nesting habitat is to migrate to northern latitudes from their southern wintering range

to exploit seasonal food resources, avoid predation, reduce exposure to disease and para-

sites, maximize day lengths, and reduce competition (Eichholz & Elmberg 2014). Females

make decisions regarding nest site selection related to maximizing nest and egg survival,

maximizing female survival, proximity to suitable habitat for offspring, natal philopatry,

and indirect selection via mate-choice (Refsnider & Janzen 2010). The prominent driver

of nest site selection related to nest survival is the avoidance of nest predation, which is

the dominant source of nest mortality for avifauna (Ricklefs 1969; Refsnider & Janzen

2010). Selecting sites that avoid nest predation involve a tradeoff between concealment

of the nest, while also maintaining adequate view of the surroundings to avoid predation

(Götmark et al. 1995; Refsnider & Janzen 2010). However, in predator dense habitats,

safe nest sites may not be achievable. In these systems a generalist strategy to nest site

selection is driven more by other ecological factors, such as food availability (Refsnider &

Janzen 2010).

For many avian species, nest success is the most influential vital rate on population

dynamics and for ducks predation is the most common cause of nest failure (Sargeant et al.

1993; Sovada et al. 2001; Hoekman et al. 2002; Pieron & Rohwer 2010; Howerter et al. 2014).

Research in prairie ecosystems has revealed that landscape change, such as conversion to

agriculture, can alter the composition, distribution, abundance, and foraging efficiency of
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predators, resulting in reduced nest success for ducks (Batt et al. 1992; Pasitschniak-Arts

& Messier 1995; Pieron & Rohwer 2010). More recently, prairie research has revealed that

ducks appear to be relatively resilient to oil and gas development (Ludlow & Davis 2018;

Kemink et al. 2019; Skaggs et al. 2020). However, the community of nest predators and

land use and management strategies differ in the boreal forest, raising the question of

how transferable knowledge is between these ecosystems. Preliminary results from Ducks

Unlimited Canada’s boreal research program have indicated some negative associations

with industrial development for both pair abundance and productivity (i.e., brood:pair

ratios; Ducks Unlimited Canada 2014; Singer et al. 2020). These patterns are consistent

with a predation limiting hypotheses where predators exert top-down control on prey

resulting in reduced prey populations (Terbough & Estes 2010). However, direct empirical

data is lacking for the boreal forest in relation to what and where are important nesting

areas; what habitat variables effect nest success; who are the important nest predators;

and how does land use change effect predators? Answers to these questions would allow

us to further test the predation limiting hypothesis and strengthen conservation planning

activities. This dissertation fills these knowledge gaps and advances our understanding of

boreal ducks, their predators, and the effect of industrial development on the boreal forest

to improve conservation and management.

1.4 Dissertation Organization

1.4.1 Scope and Objectives

The scope of my dissertation was to understand how industrial development affects the

nesting ecology of boreal ducks. The goal of my research was to understand how indus-
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trial development affects nest-site selection and nest success in the western boreal forest.

Specifically, I asked:

1. What land use and land cover variables influence nest-site selection of boreal ducks

(Chapters 2 and 3);

2. What land use and land cover variables influence nest survival of boreal ducks (Chap-

ter 4);

3. What species eat duck eggs (Chapter 5), and;

4. How does land use influence duck predators (Chapter 6)?

To answer my research questions, we located waterfowl nests and identified predator

species across a gradient of industrial development. Using our empirical data in combina-

tion with existing spatial data, we produced predictive resource selection functions (RSFs)

across multiple spatial scales for nest-site selection. Then, I investigated how nest-site

choices influenced nest success to determine variation in habitat-demography relation-

ships. Next, I identified nest predators and investigated predator occupancy dynamics

to understand how industrial development might affect predation risk for ducks. Collec-

tively, answering our research questions have provided new information regarding boreal

waterfowl ecology that will help guide and support recommendations for conservation pol-

icy related to waterfowl management, industrial development, the restoration of developed

land (e.g., linear features), and habitat conservation.
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1.4.2 Study Design Overview

Study Area

The western boreal forest (WBF) is an expansive ecosystem containing a large diversity of

resources, including wildlife and energy (Carlson & Browne 2015). A quarter of Canada’s

boreal forest occurs in the Mackenzie river watershed and two-thirds of the watershed is

intact or undisturbed (Carlson et al. 2007). Ecosystem services of the watershed are valued

at 483 billion dollars (Carlson & Browne 2015). However, in boreal Alberta, only 38% of

the landscape remains intact (Carlson & Browne 2015). The WBF contains one third of

the world’s proven oil and gas reserves and Alberta’s energy industry is responsible for

25% of Canada’s GDP, exporting 90% of its oil and gas production to the United States

of America (Hebblewhite 2017).

Alberta’s provincial policy is to maximize revenue from oil and gas production indicat-

ing that provincial support is behind further development (Hebblewhite 2017). Bitumen

production has increased ten-fold over the past three decades and timber production has

quadrupled in the region (Carlson & Browne 2015). Of concern, the forest industry’s rapid

expansion has been facilitated by oil and gas access roads, and surpassed the footprint

of the oil and gas industry (Pickell et al. 2015; ABMI 2017; Hebblewhite 2017)(ABMI

2017, Hebblewhite 2017). The majority (81%) of Alberta’s oil and gas reserves are subsur-

face requiring in-situ extraction techniques (i.e, steam assisted gravity drainage [SAGD]),

which represents an area 50 times larger than the Fort MacMurray open pit mining area

(Schneider & Dyer 2006).

Our study was located north of the town of Slave Lake, Alberta with study sites dis-

tributed to the north and east of Utikuma Lake (Figure 1.1). All sites occur in Canada’s

boreal plains ecozone and within Alberta’s boreal forest natural region (Downing & Petta-
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piece 2006). Within Alberta’s boreal forest natural region, the study sites occur in the dry

mixedwood and the central mixedwood natural subregions (Downing & Pettapiece 2006).

The region’s climate is characterized by short summers with long and cold winters. There

is typically only one or two months of the year where the mean daily temperature exceeds

15◦C and it falls well below -10◦C for at least four months during the winter (Downing &

Pettapiece 2006). From 1971 - 2000, the region received approximately 470 mm of precip-

itation annually, with 70% falling between April and August with the peak occurring in

July (Downing & Pettapiece 2006).

The boreal landscape is a combination of deciduous, mixed wood, and coniferous forests

interspersed by extensive wetland complexes and industrial development (Downing & Pet-

tapiece 2006). Historically, land cover has been shaped by natural disturbance events, such

as insect outbreaks and wildfire. Dominant tree species include trembling aspen (Popu-

lus tremuloides), balsam poplar (Populus balsamifera), white spruce (Picea glauca), black

spruce (Picea mariana), and jack pine (Pinus banksiana). The main wetland types are

black spruce, shrub, or sedge fens. Luvisol soils dominate upland habitats, while mesisols

are most common in the wetlands (Downing & Pettapiece 2006). Presently, land cover

types have been dramatically changed by not only historical natural drivers (i.e., forest

fires), but by increasing pressure from industrial development related to oil and gas explo-

ration and extraction and forestry (Dawe et al. 2014; Carlson & Browne 2015; Pickell et al.

2015). Industrial development has resulted in the creation of high density linear features

(e.g., seismic lines, roads, pipelines) and large block features (e.g., well pads, pumping

stations, mines) that did not exist traditionally on the landscape (Pickell et al. 2015).

To specifically select study sites, we used a hierarchy of criteria related to project objec-

tives. We considered development intensity, duck density, and accessibility. Additionally,

we consider habitat type and exclude recently burned or logged areas to control for their
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confounding effects. Development intensity and duck density layers used for study site

selection were provided and developed by Ducks Unlimited Canada (Barker et al. 2014;

Ducks Unlimited Canada 2014). Overall, selected sites have the highest probability of

encountering duck nests and occur across a gradient of development. I used QGIS and

R to select sites with layers developed and provided by Ducks Unlimited Canada (DUC),

Altalis, Alberta Environment and Parks (AEP), and the Alberta Biodiversity Monitoring

Institute (ABMI).
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Figure 1.1: Map of the study area near Utikuma Lake, Alberta showing study sites cate-

gorized by development intensity. Study extent was produced by buffering all study sites

and nest locations by 10 km. Inlay highlights the province of Alberta and a polygon repre-

senting the study extent relative to Canada. Panels to the right offer a finer scale example

of a high development site (top), medium development site (middle), and low development

site (bottom).
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Field Sampling

Locating ducks nests in the boreal forest is challenging because of low nest densities and

remote, often inaccessible, nesting habitats. Therefore, we used a combination of nest

searching for real nests and the placement of artificial nests across the nesting period over

multiple nesting seasons (2016-2018) (Klett et al. 1986; Gunnarsson & Elmberg 2008).

We nest searched on foot by systematically searching around wetland bodies located at

study sites (Klett et al. 1986). When a nest was found we collected relevant data and

monitored it to determine its fate. We also collected fine scale habitat data at all nests and

a paired random location following hatch date, including vegetation species identification

and cover characteristics to assess microhabitat preferences. For macrohabitat features of

each nest we used remote sensing data. To identify predators and understand the effect of

development on predator communities we used camera traps (Burton et al. 2015; Steenweg

et al. 2017). We installed camera traps on a subsample of real and artificial nests to identify

important nest predators. We also installed camera traps at study sites over the duration

of the nesting season to detect terrestrial predators use across the gradient of development.

To maximize our probability of detection for terrestrial predators, we combined camera

traps with scent lure.

All of the field work conducted for this dissertation was reviewed and approved under

the auspices of University of Waterloo Animal Use Protocols (16-04, 17-03), a Canadian

Wildlife Service Scientific Research Permit (16-AB-SC004), a Canadian Wildlife Service

Migratory Bird Banding Permit (0077AR), and Alberta Environment and Parks Wildlife

Research and Collection permits (55236, 55237, 56909, 56910, 18-419). Copies can be

found in Appendix C and further detail is available upon request (e.g., standard operating

procedures, project outlines). Details regarding our approach are provided in each chapter.
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Chapter 2

Microhabitat nest-site selection by

ducks in the boreal forest

2.1 Overview

The boreal forest is one of North Americas most important breeding areas for ducks, but

information about the nesting ecology of ducks in the region is limited. We collected micro-

habitat data related to vegetation structure and composition at 157 duck nests and paired

random locations in Alberta’s boreal forest region from 2016 to 2018. We identified fine-

scale vegetation features selected by ducks for all nests, between nesting guilds, and among

five species using conditional logistic regression. Ducks in the boreal forest selected nest

sites with greater overhead and graminoid cover, but less forb cover than random sites.

Characteristics of the nest sites of upland- and overwater-nesting guilds differed, with

species nesting in upland habitat selecting nests that provided greater shrub cover and less

lateral concealment and species nesting over water selecting nests with less shrub cover.
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We examined the characteristics of nest sites of American Wigeon (Mareca americana),

Blue-winged Teal (Spatula discors), Green-winged Teal (Anas crecca), Mallards (Anas

platyrhynchos), and Ring-necked Ducks (Aythya collaris), and found differences among

species that may facilitate species coexistence at a regional scale. Our results suggest that

females of species nesting in upland habitat selected nest sites that optimized concealment

from aerial predators while also allowing detection of and escape from terrestrial predators.

Consequently, alteration in the composition and heterogeneity of vegetation and predator

communities caused by climate change and industrial development in the boreal forest of

Canada may affect the nest-site selection strategies of boreal ducks.

2.2 Introduction

The selection of a nest site is one of the most important choices a bird makes and is preceded

by decisions at large spatial scales, but ultimately influenced by fine-scale microhabitat

characteristics, such as vegetation structure and composition that provide concealment

(Johnson 1980; Jones 2001; Eichholz & Elmberg 2014). Nest concealment can reduce the

risk of predation for eggs and incubating adults (Martin 1993; Borgmann & Conway 2015).

For ground-nesting birds, selecting a nest site is more complex than simply maximizing

concealment because of the risk of predation for incubating adults, likely resulting in a

tradeoff between nest concealment and predator detection (Wiebe & Martin 1998; Devries

et al. 2003; Amat & Masero 2004; Miller et al. 2007; Fedy & Martin 2011). Therefore,

nest-site selection represents a strategy of balancing current (i.e., concealment of eggs) and

future (i.e., escaping predation) reproductive success (Lima & Dill 1990; Götmark et al.

1995; Martin 1998).
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The boreal forest is the second most productive breeding area for ducks in North Amer-

ica and may serve as an important refuge for prairie waterfowl in dry years due to the

abundance of permanent wetlands (Derksen & Eldridge 1980; Batt et al. 1992; Slattery

et al. 2011). However, little is known about the nesting ecology of ducks in the boreal

forest (Petrula 1994; Walker & Lindberg 2005; Slattery et al. 2011). Variation in nest-site

selection among species is driven by habitat availability, weather and climate patterns, and

predation pressure (Batt et al. 1992). All of these variables are different in the boreal forest

compared to the prairies (i.e., Prairie Pothole Region and the Canadian Prairie-Parklands),

where most studies of North American ducks have been conducted (Keith 1961; Greenwood

et al. 1995; Drever et al. 2012; Baldassarre 2014). The importance of the boreal forest for

breeding ducks is likely to increase under most climate-change scenarios that predict dis-

tributional shifts north for many species of birds with increasingly warm and dry prairie

climates (Drever et al. 2012; Cumming et al. 2014; Stralberg et al. 2015; Zhao et al. 2019).

As such, additional studies are needed to improve our understanding of the nesting ecology

of boreal ducks.

Our objectives, therefore, were to quantify microhabitat nest-site selection by different

nesting guilds and five species of ducks in the boreal forest. We predicted a tradeoff between

overhead and lateral cover because adults and their eggs are both at risk of predation

during incubation. We also predicted that if resource partitioning facilitates coexistence

of boreal nesting ducks (Schoener 1974; Rosenzweig 1981; Nudds 1983), we would detect

differences in nest-site selection between nesting guilds (upland or overwater nesters) and

among species.
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2.3 Methods

Our study was conducted north of Slave Lake, Alberta, Canada, near Utikuma Lake in

Canada’s boreal plains ecozone and Alberta’s boreal forest natural region (Fig. 2.1; Down-

ing & Pettapiece 2006). Specifically, our study area included the dry mixedwood and

central mixedwood natural subregions of Alberta. The landscape is a mosaic of deciduous,

mixed wood, and coniferous forests interspersed with extensive wetland complexes and

industrial development (Downing & Pettapiece 2006). Historically, land cover has been

shaped by natural disturbance events, such as insect outbreaks and wildfire (Carlson &

Browne 2015). Dominant tree species included trembling aspen (Populus tremuloides),

balsam poplar (Populus balsamifera), white spruce (Picea glauca), black spruce (Picea

mariana), and jack pine (Pinus banksiana). The main wetland types were black spruce,

shrub, or sedge fens (Downing & Pettapiece 2006).

We selected sites for nest searching using a hierarchical selection criteria based on

spatial layers provided by Ducks Unlimited Canada, the Alberta Government, and the

Alberta Biodiversity Monitoring Institute. We considered cumulative energy development,

duck density, accessibility, land cover type, and excluded recently burned or logged areas

(within 20 years). We selected sites that were representative of the gradient of industrial

development density on the landscape, had predicted duck densities greater than the me-

dian for the region (4 pairs/2.5 km2; Ducks Unlimited Canada 2014), were accessible (i.e.,

within ≈3 km of a road or trail), and contained at least one water body (>1 ha).
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Figure 2.1: Locations of study sites and the number of nests found at each site indicated

by point size for ducks nesting in boreal forest near Utikuma Lake, Alberta, Canada. Inlay

displays the location of the study area in the boreal forest relative to the province of

Alberta, Canada.
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2.3.1 Field Methods

We searched 16 sites in 2016, 24 sites in 2017, and 25 sites in 2018. We searched most sites

in subsequent years, with the exception of one site that was only searched in 2016 and one

site searched in 2016 and 2018. We completed two searches of each site in 2016, two to

three searches of each site in 2017, and three searches of each site in 2018 between 10 May

and 31 July. Search efforts were separated by 15 to 25 days and were conducted on foot

using a ‘willow switch’ (i.e. ≈1.2 m willow branch) to disturb vegetation and increase the

probability of disturbing an incubating female (Klett et al. 1986). Nest-searching efforts

involved 3 to 6 searchers walking abreast around wetlands ≈5 – 20 m apart and parallel

to the shore. We estimated site size by buffering GPS search tracks by 20 m, dissolving

the buffers together, and calculating an area, which resulted in sites with a mean size of

27.46 +/− 12.15 (SD) ha. We searched for nests between 08:00 and 16:00 (Gloutney et al.

1993). In 2018, as part of a concurrent pilot study, we also located three Mallard nests

using radio-telemetry.

At each nest, we identified the duck species, recorded the number of eggs, and estimated

the stage of incubation by candling and floating eggs (Weller 1956). We estimated nest-

initiation date by subtracting the estimated incubation stage and assuming an interval of

one egg laid per day plus one skipped laying day from the day the nest was found (e.g.,

date found - incubation stage - clutch size - 1; Batt et al. 1992; Emery et al. 2005). We

sampled nest-site vegetation at all nests and paired random locations on the same day

once the fate of nests was determined in 2016 and within 5 d of estimated hatch date in

2017 and 2018 to control for temporal variation in vegetation measurements (Gibson et al.

2016; McConnell et al. 2017; Ringelman & Skaggs 2019).

We recorded a complete plant species inventory and estimated mean height and percent
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canopy cover of each species present within a 1 m radius of the nest bowl. Overhead cover

centered over the nest bowl was estimated using a 12.5 x 12.5 cm square grid with individual

2.5 x 2.5 cm squares. We estimated the percent cover of each individual square from 120

cm above the nest bowl (Guyn & Clark 1997; Borgo & Conover 2016). We summarized

overhead cover by calculating the mean of all estimated cells (25) from the cover grid. We

measured lateral cover (i.e., visual obstruction) with a Robel pole that was 120 cm high

and marked with alternating black and white bands by decimeter (Robel et al. 1970; Nudds

1977; Traylor et al. 2004). We summarized lateral cover by scoring each observation as the

number of consecutive bands 100% occluded, starting from the bottom of the pole, then

calculated the mean of the scores for each plot. In 2016, we estimated percent cover of

each band from 1 m from the nest bowl with the observer’s eyes level with the top of the

pole at 0 and from a random bearing. In 2017 and 2018, we estimated lateral cover at 1

m from each cardinal direction. We identified random locations by generating a random

compass bearing (0 – 360) and distance from a nest (2 – 40 m). We chose our confined

random distance range to ensure no overlap with the nest site and to keep the random

location within a relatively similar habitat classification.

2.3.2 Data Analysis

We evaluated microhabitat nest-site selection by comparing nest sites with paired random

locations using conditional logistic regression, where the nest was the grouping variable

(Johnson 1980; Hosmer & Lemeshow 2000; Compton et al. 2002; Thomas & Taylor 2006).

We summarized data on vegetation structure and composition at nests and random sites

prior to analysis (Table 2.1). We pooled plant species into functional groups, including

graminoids (e.g., grasses, sedges, and rushes), forbs (e.g., herbaceous plants), and shrubs
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(e.g., shrubs, trees, and woody plants) A, to assess the influence of plant composition

(Blondel 2003). We summed the percent cover for species in each group to calculate

proportional cover and extracted the mean height of all species among groups for the

vegetation height variable (Table 2.1). The sum of proportional cover for groups could

exceed 100% when pooled because we estimated species cover in three-dimensional space

(i.e., canopy cover). In 2016, we did not collect vegetation height data for early nest

attempts (N = 15), so we used the mean value to replace the missing data to retain mean

vegetation height as a predictor. As a result, models with vegetation height as a top

predictor have corresponding deflated confidence intervals.

We quantified microhabitat nest-site selection at three levels, including 1) all species, 2)

nesting guild (upland or overwater nesters), and 3) individual species. We grouped species

by guilds consistent with past research from the region (Ducks Unlimited Canada 2014).

We standardized all predictor variables prior to analysis (subtracted mean and divided by

standard deviation), resulting in the mean for each predictor equalling 0 and the standard

deviation equalling 1.

We ran all possible model combinations for all species, guilds, and individual species.

To control for multicollinearity, we assessed correlation among all predictor variables and

excluded highly correlated predictors (Pearson’s r |0.65|) from occurring together in the

same model (i.e., treated them as competing models; Doherty et al. 2012). We ranked com-

peting models using Akaike’s Information Criterion adjusted for small sample sizes (AICc)

and selected the top-ranked model with the lowest AICc score (Burnham & Anderson

2002). We removed nested subsets of the top model that contained uninformative param-

eters from our model sets and present competing models within 4 AICc scores of the top

model (Arnold 2010). We did not build species-specific models for species with fewer than

15 nest observations. Marginal effects plots are useful for visualization of model predicted
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covariates, but developing these plots within a conditional logistic regression framework is

not possible. Therefore, to visualize key variables in our top models, we also developed

logistic regression models and used them to generate plots. In all cases, we confirmed that

coefficient estimates were within confidence intervals of conditional logistic models prior to

presenting effects plots. We performed all analyses in program R (version 3.3.2) and used

the clogit function from package ‘survival’ (Therneau 2015).
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Table 2.1: Summary (mean (SD)) of microhabitat vegetation measurements at nests and

random locations for all species, guilds, and individual species from 2016 to 2018 in the

boreal forest of Alberta, Canada.

Speciesa Plot Overhead (%) Lateral Height (cm) Graminoid (%) Forb (%) Shrub (%)

All Nest 46.9 (32.7) 2.1 (1.8) 99.9 (71.3) 50.4 (35.6) 22.1 (24.0) 48.7 (48.7)

Random 29.7 (29.4) 1.8 (1.8) 100.5 (60.2) 39.3 (37.1) 27.3 (30.2) 42.1 (45.8)

Upland Nest 46.6 (33.6) 1.8 (1.7) 105.8 (77.6) 47.1 (36.2) 21.6 (24.1) 56.2 (49.1)

Random 30.2 (30.0) 1.7 (1.8) 104.2 (60.3) 40.6 (37.4) 26.4 (30.2) 41.2 (43.5)

Overwater Nest 48.3 (29.5) 3.2 (1.9) 78.6 (34.1) 63.9 (30.2) 24.4 (23.5) 18.3 (32.8)

Random 27.8 (26.8) 2.1 (1.9) 87.4 (59.0) 34.0 (35.8) 30.7 (30.2) 45.6 (55.0)

AMWI Nest 62.1 (35.7) 2.0 (1.6) 126.5 (61.3) 35.5 (33.9) 29.4 (29.8) 76.7 (52.2)

Random 42.3 (27.2) 1.1 (1.4) 98.4 (59.5) 39.7 (37.4) 46.6 (39.1) 40.0 (43.8)

BWTE Nest 32.7 (21.8) 1.1 (0.9) 75.6 (35.3) 65.9 (29.2) 16.3 (17.2) 28.6 (29.8)

Random 25.5 (28.1) 1.5 (1.7) 94.4 (53.8) 47.0 (38.2) 23.2 (27.2) 34.2 (37.4)

CANV Nest 0 (NA) 4.0 (NA) 190 (NA) 10 (NA) 0 (NA) 75 (NA)

Random 70.8 (NA) 2.5 (NA) 210 (NA) 0 (NA) 5 (NA) 130 (NA)

GWTE Nest 61.2 (37.5) 1.9 (1.5) 135.0 (69.9) 36.3 (31.7) 35.7 (26.2) 75.2 (45.9)

Random 29.9 (36.5) 1.3 (2.0) 97.7 (57.2) 49.5 (38.3) 29.3 (31.3) 35.8 (38.9)

LESC Nest 53.3 (42.3) 3.9 (2.2) 77.7 (41.3) 26.9 (31.8) 15.0 (17.9) 67.2 (49.3)

Random 40.0 (27.4) 2.2 (2.3) 143.9 (61.2) 37.2 (42.8) 14.1 (18.9) 46.6 (43.3)

MALL Nest 53.7 (37.3) 2.4 (2.2) 146.3 (121.8) 29.3 (34.8) 20.8 (28.2) 81.1 (53.6)

Random 28.5 (31.9) 2.2 (2.0) 114.0 (70.7) 29.1 (34.1) 22.7 (29.4) 50.9 (52.9)

NSHO Nest 30.2 (34.2) 1.1 (0.9) 120 (NA) 105.0 (21.2) 28.8 (33.6) 12.5 (10.6)

Random 47.8 (14.7) 2.0 (0.0) 30 (NA) 20.0 (14.1) 38.8 (26.5) 91.3 (30.1)

RNDU Nest 49.9 (28.6) 3.2 (1.9) 74.9 (27.6) 65.7 (28.9) 25.2 (23.5) 16.4 (31.6)

Random 26.3 (26.0) 2.1 (1.9) 83.3 (55.4) 35.1 (35.9) 31.6 (30.4) 42.8 (53.6)

a AMWI= American Wigeon, BWTE=Blue-winged Teal, CANV=Canvasback, GWTE= Green-winged Teal,

LESC=Lesser Scaup, MALL=Mallard, NSHO=Northern Shoveler, RNDU=Ring-necked Duck
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2.4 Results

We located 167 nests from 2016 to 2018 and collected vegetation data at 157 nests and

paired random sites (Table 2.1, Fig. 2.1). We located 126 nests of upland-nesting species,

including 16 American Wigeon (Mareca americana), 52 Blue-winged Teal (Spatula discors),

15 Green-winged Teal (Anas crecca), eight Lesser Scaup (Aythya affinis), 33 Mallard (Anas

platyrhynchos), and two Northern Shoveler (Anas clypeata) nests (Table 2.1). We also lo-

cated 31 nests of overwater-nesting species, including one Canvasback (Aythya valisineria)

nest and 30 Ring-necked Duck (Aytha collaris) nests (Table 2.1).

Our best model that predicted the microhabitat of ducks in our study included over-

head, forb, and graminoid cover (Table 2.2, Fig. 2.2). Ducks in the boreal forest selected

nest sites with greater overhead (β = 0.65, 85% CI = 0.44 – 0.86) and graminoid cover (β

= 0.47, 85% CI = 0.22 – 0.73), but less forb cover (β = -0.38, 85% CI = -0.66 – -0.01)

compared to paired random sites (Table 2.2, Figs. 2.2 and 2.3). Upland nesting ducks

selected nest sites with greater overhead (β = 0.54, 85% CI = 0.29 – 0.80), graminoid (β

= 0.46, 85% CI = 0.14 – 0.77), and shrub cover (β = 0.44, 85% CI = 0.15 – 0.74), but less

lateral concealment (β = -0.28, 85% CI = -0.54 – -0.02) and forb cover (β = -0.33, 85% CI

= -0.65 – -0.01) (Figs. 2.2 and 2.3). For species nesting over water, the top model included

overhead, forb, and shrub cover (Fig. 2.2). Ducks nesting over water selected nest sites

with greater overhead (β = 2.47, 85% CI = 0.82 – 4.12) and less forb (β = -1.69, 85% CI

= -2.98 – -0.40) and shrub (β = -3.47, 85% CI = -6.13 – -0.81) cover (Table 2.2, Figs. 2.2

and 2.3).
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Table 2.2: Model sets for nest-site selection by ducks in boreal forest and by nesting guild

in Alberta, Canada, from 2016 to 2018. Model sets represent the competing models within

4 AICc scores of the top model from all possible model combinations.

Model K LL ∆AICca ωi

All

Overhead + Forb + Graminoid 3 -89.24 0 0.73

Overhead + Graminoid 2 -91.29 2.02 0.27

Upland

Overhead + Forb + Graminoid + Shrub + Lateral 5 -72.49 0 0.22

Overhead + Graminoid + Shrub + Lateral 4 -73.7 0.25 0.2

Overhead + Forb + Graminoid + Shrub 4 -73.8 0.43 0.18

Overhead + Graminoid + Shrub 3 -75.01 0.72 0.16

Overhead + Forb + Graminoid 3 -75.54 1.78 0.09

Overhead + Forb 2 -76.62 1.86 0.09

Overhead + Graminoid 2 -77.05 2.71 0.06

Overwater

Overhead + Forb + Shrub 3 -9.19 0 0.4

Overhead + Graminoid + Shrub 3 -9.49 0.6 0.3

Overhead + Graminoid 2 -10.95 1.05 0.24

Graminoid 1 -13.43 3.72 0.06

aLowest AICc score for all species: 184.64, upland: 155.49, and overwater: 25.27.
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Figure 2.2: Coefficient plot for top-ranked microhabitat nest-site selection models for all

species and upland and overwater nesting guilds in the boreal forest, Alberta, Canada,

from 2016 to 2018. Error bars represent 85% confidence intervals.

Figure 2.3: Effects plots for microhabitat nest-site selection by all ducks and guilds in

the boreal forest in Alberta, Canada from 2016 to 2018. Plots compare and contrast the

response of duck species to their respective important predictor variables. Shaded areas

represent 85% confidence intervals.
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Microhabitat nest-site characteristics also varied among species (Table 2.3, Figs. 2.4

and 2.5). American Wigeon selected nest-sites with greater shrub cover (β = 1.82, 85% CI

= 0.23 – 3.41). Blue-winged Teal selected greater overhead (β = 0.74, 85% CI = 0.27 –

1.21) and graminoid (β = 0.71, 85% CI = 0.18 – 1.25) cover, but less lateral concealment

(β = -1.02, 85% CI = -1.59 – -0.45), shorter vegetation (β = -0.54, 85% CI = -1.00 – -0.08),

and forb cover (β = -1.09, 85% CI = -1.83 – -0.34). Green-winged Teal selected nest-sites

with greater overhead cover (β = -1.70, 85% CI = 0.21 – 3.19) and taller vegetation (β =

3.67, 85% CI = 0.76 – 6.59). Mallards selected overhead (β = 1.03, 85% CI = 0.29 – 1.78)

and shrub cover (β = 0.80, 85% CI = 0.12 – 1.48). Finally, Ring-necked Ducks selected

nest-sites with greater overhead cover (β = 4.38, 85% CI = 1.27 – 7.50), but less forb (β

= -2.21, 85% CI = -3.70 – -0.72) and shrub cover (β = -4.43, 85% CI = -8.02 – -0.84).
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Table 2.3: Model sets for nest-site selection by ducks in boreal forests in Alberta, Canada,

from 2016 to 2018. Model sets represent competing models within 4 AICc scores of the

top-ranked model from all possible model combinations.

Model K LL ∆AICca ωi

American Wigeon

Forb + Graminoid + Shrub 3 -3.68 0 0.49

Forb + Shrub 2 -5.65 0.85 0.32

Shrub 1 -7.51 1.95 0.19

Blue-winged Teal

Height + Overhead + Forb + Graminoid + Lateral 5 -21.96 0 0.41

Overhead + Forb + Graminoid + Lateral 4 -23.59 0.81 0.27

Height + Overhead + Forb + Lateral 4 -24.08 1.79 0.17

Forb + Graminoid + Lateral 3 -26 3.29 0.08

Overhead + Graminoid + Lateral 3 -26.12 3.53 0.07

Green-winged Teal

Height + Overhead 2 -4.34 0 0.64

Shrub 1 -7.16 2.95 0.15

Height + Lateral 2 -6 3.33 0.12

Height 1 -7.62 3.87 0.09

Mallard

Overhead + Shrub 2 -15.66 0 0.57

Overhead 1 -17.32 1.04 0.34

Shrub 1 -18.61 3.62 0.09

Ring-necked Duck

Overhead + Forb + Shrub 3 -6.41 0 0.71

Overhead + Graminoid 2 -8.57 1.83 0.29

aLowest AICc score for American Wigeon = 15.36, Blue-winged Teal = 55.22,

Green-winged Teal = 13.68, Mallard = 35.73, and Ring-necked Duck = 19.75.



Figure 2.4: Coefficient plots for the top-ranked microhabitat nest-site selection models for

duck species in the boreal forest, Alberta, Canada, from 2016 to 2018. Error bars represent

85% confidence intervals.

Figure 2.5: Effects plots for microhabitat nest-site selection models for duck species in

the boreal forest in Alberta, Canada, from 2016 to 2018. Plots compare and contrast the

response of boreal duck species to their respective important predictor variables. Shaded

areas represent 85% confidence intervals.
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2.5 Discussion

Our results suggest that female ducks nesting in upland habitat selected nest sites that

balanced nest concealment from aerial predators with the need to detect approaching ter-

restrial predators (Götmark et al. 1995). Our hierarchical approach of modelling all species,

guilds, and individual species provided insights into shifts in selection across these levels

of organization. Variation in microhabitat nest-site characteristics between nesting guilds

and species in our study is consistent with a strategy to maximize space differentiation be-

tween coexisting species through resource partitioning (Lack 1945; Schoener 1974; Nudds

1983; Martin 1996; Marini 1997).

Ducks in our study selected overhead nest concealment across guilds, which is common

across many species of birds and likely related to avoiding avian predators (Guyn & Clark

1997; Clark & Shutler 1999; Traylor et al. 2004; Dassow et al. 2012; Borgo & Conover 2016).

Avian predators of both adults and eggs are common in our study region, e.g., Common

Ravens (Corvus corax ), Red-tailed Hawks (Buteo jamaicensus), and Great Horned Owls

(Bubo virginianus) (M. Dyson, pers. obs.). Overhead cover provides visual obstruction

from avian predators and likely provides a favorable microclimate for eggs and incubating

adults (e.g., protection from sunlight, precipitation, and wind) (Gloutney & Clark 1997;

Fogarty et al. 2017). Consistent selection across species and guilds for overhead cover

suggests this feature may represent an adaptive peak (Latif et al. 2012), which could make

it difficult to detect an effect of this variable on survival.

Prairie-nesting ducks generally select nest sites with greater lateral cover (Lokemoen

et al. 1984; Eichholz & Elmberg 2014; Borgo & Conover 2016), but upland species in

the boreal forest in our study selected nest sites with less lateral concealment. Although

this relationship was primarily driven by Blue-winged Teal, we did not detect selection
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for lateral cover by our other focal species. These differences may be driven, in part, by

different predator communities. Red foxes (Vulpes vulpes) are one of the most common

predators of duck nests on the prairies, along with increasing numbers of striped skunks

(Mephitis mephitis) and raccoons (Procyon lotor) (Klett et al. 1988; Ransom et al. 2001;

Sovada et al. 2001). Olfactory foraging is likely more profitable in landscapes where ducks

nest at higher densities (Nams 1997; Larivière & Messier 1998; Ringelman 2014). As such,

selecting nest sites with lateral concealment on the prairies may help dissipate scent more

effectively and reduce the likelihood of nests being located by olfactory predators (Fogarty

et al. 2017; 2018; Shutler 2019). Boreal forest predators (e.g., black bear, Canada lynx,

and Mustela spp.; Chapter 5) may use different foraging strategies or encounter nests

opportunistically, which may favor random placement of nests with respect to lateral cover

and is more consistent with our observations. Given our paired study design, we are

confident that lateral cover is available to ducks (i.e., the resource is present for animals

to select). The lower nest densities and different predator communities of the boreal

forest may change the associated predation risk to eggs and incubating adults, resulting in

different strategies of nest-site selection.

Patterns of nest-site selection by our focal species were generally consistent with ob-

servations from the prairies (Klett et al. 1988; Higgins et al. 1992; Greenwood et al.

1995; Baldassarre 2014). Nest sites of American Wigeon have been found to be associ-

ated with greater concealment and distances from wetlands in upland habitats (Higgins

et al. 1992; Kruse & Bowen 1996; Baldassarre 2014) and we observed selection for greater

shrub cover at nests. Nest sites of Blue-winged Teal in our study had greater graminoid

cover (Glover 1956; Keith 1961; Higgins et al. 1992), shorter vegetation, and less lateral

concealment, which is consistent with patterns observed in prairie habitat (Livezey 1981;

Borgo & Conover 2016). Microhabitat nest-site data for Green-winged Teal are limited,
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but nests are generally well concealed (Keith 1961; Higgins et al. 1992; Baldassarre 2014),

and we observed selection for nest sites with overhead cover and tall vegetation. Mallards

are considered habitat generalists and select nest sites with overhead and woody cover

(Cowardin et al. 1985; Hoekman et al. 2006; Baldassarre 2014), which is consistent with

our results. Finally, nest sites of Ring-necked Ducks are typically associated with open

cover and graminoid hummocks/mats or floating vegetation because they nest over water

(Maxson & Riggs 1996; Koons & Rotella 2003; Baldassarre 2014), which is consistent with

our observation that they avoid shrub and forb cover, but select nest sites with overhead

concealment.

The results of previous studies suggest that forb cover is important for ducks nesting

in prairies (Higgins et al. 1992; Eichholz & Elmberg 2014), but our results suggest that

boreal ducks generally selected nest sites with less forb cover. Ducks in our study may have

selected shrubs or graminoid cover (including standing dead) early in the season because of

the structure it provides. The phenology of forbs may preclude them from being selected

by ducks nesting earlier in the spring because many forbs are not fully grown until late

spring when most ducks have already selected nest sites in the boreal forest region.

Variation in microhabitat selection strategies among species in our study likely repre-

sents a broad niche space that may help limit predation and facilitate species diversity

of ducks in the boreal forest region (Schoener 1974; Ricklefs 1989; Martin 1996; Marini

1997). Nest-site selection strategies across duck species have been proposed to occur along

a continuum of cover (Safine & Lindberg 2008). In addition, variation in nest placement

strategies between regionally coexisting species may hinder development of visual or olfac-

tory search images by predators (Chalfoun & Martin 2009). This variation is consistent

with the potential-prey-site hypothesis, where individuals place nests in heterogeneous

habitat with numerous potential nest locations to reduce the foraging efficiency of preda-
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tors (Martin 1993; Chalfoun & Martin 2009). Considering the low density of duck nests in

the boreal forest, this hypothesis deserves further study relative to the nesting strategies

of boreal ducks.

We focused on patterns of nest-site selection to identify microhabitat characteristics

important for ducks in the boreal forest. Our study design allowed us to develop predictive

models that quantified selection relative to the availability of nest sites. This provides in-

formation that is otherwise not available in studies where investigators only assess habitat

characteristics at nest sites either in a qualitative manner or in the context of a survival

analysis. Detecting relationships between nest habitat and survival can be difficult if birds

are already selecting nest sites in optimal locations (i.e., limited variation in important

habitat covariates at nest sites), predation is incidental, or differences between the char-

acteristics of nest sites are subtle (Götmark et al. 1995; Clark & Shutler 1999; Latif et al.

2012). For example, if ducks select nest sites with overhead cover (as suggested by our

data), then modeling efforts to identify factors that influence survival using only known

nest sites and associated habitat information may not be able to identify cover as an im-

portant covariate because of the limited variation in the covariate across nests or from a

limited sample size. Investigating factors that influence survival (i.e., the process) are cer-

tainly critical to our understanding of nest-site selection (Clark & Shutler 1999; Chalfoun

& Schmidt 2012), but the decision of where to nest relative to what is available should

not be overlooked. We can then use our knowledge of these patterns to make predictions

about adaptive responses, providing a stronger base to work from in new study systems.

The boreal forest region is currently experiencing changes caused by climate change

(Drever et al. 2012; Cumming et al. 2014) and industrial development (Schneider & Dyer

2006; Slattery et al. 2011) that are causing functional and numerical responses in predator

communities (DeMars & Boutin 2018; Fisher & Burton 2018) that could ultimately affect
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nest-site selection strategies by ducks. For example, novel predators (e.g., raccoons and

red foxes) may infiltrate the boreal forest, resulting in increased rates of nest predation if

selection strategies are not optimized for these predators (Latham 2008). Alternatively,

vegetation communities changing as a result of climate change could favor alternative

species assemblages of ducks based on their vegetation preferences. For example, more

grasslands may develop in the boreal forest as bogs and peatlands dry out (Stralberg

et al. 2019). Additional research is needed to address landscape-scale influences on nest-

site selection and nest survival to help understand demographic consequences of industrial

development on predation and predator communities. These efforts will be critical for

ensuring effective conservation and management of ducks in the boreal forest.
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Chapter 3

Multiscale nest-site selection of ducks

in the western boreal forest of

Alberta

3.1 Overview

Context – There is limited data regarding the nesting ecology of boreal ducks and their

response to industrial development, despite this region being an important North American

breeding area.

Objectives – Determine what land cover and industrial features influence third-order nest-

site selection of boreal ducks.

Methods – We located duck nests in Alberta’s western boreal forest between 2016 and

2018. We used multiscale analysis to identify how scale affects the selection of a resource

using general linear models and determined what scale-optimized combination of landscape
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features were most important in describing where ducks nest. We spatially predicted our

best model to identify important duck nesting habitat.

Results – We located 136 nests of 6 species of upland nesting ducks between 2016 and

2018. The magnitude, direction, and best spatial scale varied by resource. For land cover,

ducks selected nest-sites associated with marsh at a 300 m scale. For land use variables

related to industrial development, ducks responded at scales less than 1000 m; avoiding

greater lengths of seismic lines (300 m) and pipelines (300 m), but selecting for nest-sites

associated with borrow pits (300 m), primary roads (1000 m) and secondary roads (90 m).

Conclusions – Our predictive maps identify important duck nesting habitat in the bo-

real forest, which can support conservation and management decisions. We recommend

conservation of marsh and associated habitats that have limited seismic line or pipeline

development. Further research is necessary to understand the adaptive consequences of

nest-site selection and how industrial development influences important nest predators.

3.2 Introduction

Our interpretation of how animals perceive their environment and make decisions about

resource use is fundamentally linked to our decisions about spatial scales of investigation

(i.e., grain and extent; Wiens 1989; Levin 1992; Boyce 2006; Doherty et al. 2016; McGarigal

et al. 2016; Zeller et al. 2017). Scale-dependent selection of a resource by animals is often

conceptualized as hierarchical orders of selection (Johnson 1980; Meyer & Thuiller 2006;

Decesare et al. 2012). Within and across orders of selection, animal responses occur along

a continuum and the optimal scale of response is species and resource specific (Meyer &

Thuiller 2006; Mayor et al. 2007; 2009; Martin & Fahrig 2012; Boyce et al. 2017). Termed
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the functional response (Mysterud & Ims 1998), selection for a given resource will be condi-

tional on its availability (Northrup et al. 2013). Critically, how we integrate our perception

with the selection process of animals is an important consideration that influences our in-

terpretation (i.e., choice of scale). Multiscale resource selection functions (MRSFs) provide

an explicit framework to incorporate and understand an animal’s functional response to

resources across spatial scales (Laforge et al. 2015a; McGarigal et al. 2016; Bauder et al.

2018).

Investigation of how anthropogenic land use alters resource selection patterns by ani-

mals is of imminent conservation relevance (Fahrig 2003; Allred et al. 2015; Muhly et al.

2019). In the boreal forest, rapid growth of oil and gas development in recent decades

has created habitat loss and fragmentation as a result of block (e.g., well pads, industrial

facilities) and linear features (LFs; e.g., roads, pipelines, seismic lines) (Schneider & Dyer

2006; Carlson & Browne 2015; Pickell et al. 2015; Hebblewhite 2017; Fisher & Burton

2018). Development in these working landscapes (Stewart et al. 2019b) has produced a

heterogeneous mosaic of natural and anthropogenic features resulting in altered species

space use patterns and interactions that have benefitted some species (e.g., generalists) to

the detriment of others (e.g., specialists) (Fisher & Burton 2018).

Species-specific responses to development in the boreal forest have been investigated for

mammals (Latham et al. 2011c; Tigner et al. 2014; Dickie et al. 2017; Hebblewhite 2017;

DeMars & Boutin 2018) and birds (Bayne et al. 2016; Shonfield & Bayne 2017; Mahon

et al. 2019; Morissette et al. 2019). In general, mammalian predators (e.g., wolves [Canis

lupus ] and American black bears [Ursus americanus ]) have benefitted from industrial de-

velopment as a result of increased access to prey provided by linear features (e.g., roads,

pipelines, seismic lines) (Ehlers et al. 2014; Tigner et al. 2014; Dickie et al. 2017; DeMars

& Boutin 2018). Conversely, populations of prey species, particularly woodland caribou
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(Rangifer tarandus caribou), have declined because fragmentation of refugia has increased

spatial overlap with predators (Ehlers et al. 2014; Mumma et al. 2017; 2018; DeMars &

Boutin 2018). For song birds, species associated with older, intact forests have declined in

association with industrial development, while species associated with more open forests

have increased (Bayne et al. 2016; Mahon et al. 2019). In addition, there is mounting

evidence from the boreal forest that species-specific responses to habitat and industrial de-

velopment are scale dependent (Decesare et al. 2012; Bayne et al. 2016; Toews et al. 2017;

Mumma et al. 2019; Stewart et al. 2019b). For example, wolves, caribou, and moose (Alces

alces), exhibited scale-dependent resource selection with varying availability in northeast-

ern British Columbia, where selection for seismic lines for wolves tended to increase with

expanding available distances (Mumma et al. 2019). It is critical to assess the scale de-

pendence of species resource use patterns in response to industrial disturbance to make

effective management recommendations that aim to reduce the impacts of disturbance.

Ducks (Family: Anatidae), like many other boreal avian species (Schmiegelow & Mönkkönen

2002), are migratory and rely on the boreal forest for reproduction (Barker et al. 2014;

Adde et al. 2020a). Nest success plays an important role in regulating duck populations

and is influenced by predation and environmental conditions (Hoekman et al. 2002; Coluccy

et al. 2008; Howerter et al. 2014; Koons et al. 2014). The decision of where to nest is one

of the most important choices a duck makes, because it influences the probability of hen

and nest survival, access to forage during incubation, and options for brood-rearing habitat

(Gibson et al. 2016; Dyson et al. 2018). Therefore, patterns of nest-site selection should

represent long-term optima and provide insight into identifying important nesting habitats

(Clark & Shutler 1999). There is a lack of empirical data related to the nesting ecology

of boreal ducks, despite this region being the second most important breeding area on the

continent (Slattery et al. 2011). Consequently, understanding how land cover and indus-
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trial development affect nest-site selection at various spatial scales will fill key knowledge

gaps in both basic life history and conservation and management of boreal ducks.

We previously investigated microhabitat (i.e., fourth order) nest-site selection of boreal

ducks, providing fundamental insights into species biology and life history (Dyson et al.

2019). However, nest site selection is hierarchical and conservation and management deci-

sions are more consistent with macrohabitat characteristics (Howerter et al. 2008; Smith

et al. 2020) or where ducks choose to nest relative to habitats available within their breeding

home range (i.e., third order selection; sensu Johnson 1980). For example, remotely sensed

landscape data typically represent macrohabitat characteristics and allow large-scale con-

servation planning and habitat prioritization efforts (Howerter et al. 2008). Importantly,

the spatial scales used to quantify biologically-relevant macrohabitat variables are criti-

cally important (Stephens et al. 2005) and should be constrained within the corresponding

selection order of inference (Laforge et al. 2015a; Bauder et al. 2018). The strongest in-

ference and predictive ability of resource selection functions should occur when the top

ranked scale of selection is identified for each variable (Fisher et al. 2011; Bauder et al.

2018). Therefore, investigating multi-scale responses of nest-site selection of boreal ducks

at the third order of selection provides an opportunity to integrate scientific knowledge with

management decisions, strengthening the link between research and management (Roberts

et al. 2017).

We investigated the relationships between nest site selection of upland nesting ducks

and land cover and industrial development variables within a single hierarchical order

(i.e., third-order). Within the single order, we used a multi-scale (McGarigal et al. 2016)

analysis to identify how scale affects the selection of a resource and what scale-optimized

combination of landscape features were most important in describing where ducks nest. Our

application of the multiscale approach to duck nest-site selection is relatively novel and
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provides a framework for future research on anthropogenic change on duck nesting ecology.

We subsequently spatially predicted our models to identify important duck nesting habitat

in the boreal forest with the goal of helping inform the conservation and management of

boreal ducks.

3.3 Methods

3.3.1 Field Sampling

Our study area was located north of Slave Lake, Alberta, Canada, near Utikuma Lake

in Canada’s Boreal Plains ecozone and Alberta’s boreal forest natural region, hereafter,

the western boreal forest (WBF; Fig 3.1). The landscape is a mosaic of deciduous, mixed

wood, and coniferous forests interspersed by extensive wetland complexes and industrial

development. Historically, land cover has been shaped by natural disturbance events, such

as insect outbreaks and wildfire (Carlson & Browne 2015). Presently, land cover types have

been dramatically changed by historical natural drivers (i.e., forest fires) and increasing

activity from industrial development related to forestry and oil and gas exploration and

extraction (Dawe et al. 2014; Carlson & Browne 2015). Industrial development has resulted

in the creation of high density linear features (e.g., seismic lines, roads, pipelines) and

large block features (e.g., well pads, pumping stations, industrial sites) that did not exist

traditionally on the landscape (Schneider & Dyer 2006; Fisher & Burton 2018).

We selected sites for nest-searching using a hierarchical selection criteria based on spa-

tial layers provided by Ducks Unlimited Canada (DUC) and the Alberta Biodiversity Moni-

toring Institute (ABMI; ABMI 2017). We considered cumulative energy development, duck

pair density, accessibility, land cover type. We excluded sites that were recently logged or
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burned (within 20 years) because we were interested in understanding effects of industrial

development on ducks and wanted to control other confounding factors such as forestry.

We selected sites that were representative of the gradient of industrial development density

on the landscape and only considered sites with a predicted duck density greater than the

median for the region (4 pairs/2.5 km2; Barker et al. 2014), assuming that would result in

a higher probability of locating nests. Finally, all potential sites had to be accessible (i.e.,

within ≈ 3 km of a vehicle accessible road) and contain at least 1 water body (> 1 ha). A

more detailed description of the study area and our process of site selection can be found

in (Dyson et al. 2019).

We searched 16 sites in 2016, 24 sites in 2017, and 25 sites in 2018 between 01 May

and 31 July (Fig. 3.1). We searched most sites in subsequent years, with the exception

of one site that was searched in only 2016 and one site that was searched in 2016 and

2018. We completed two searches of each site in 2016, two to three searches of each site

in 2017, and three searches of each site in 2018. Search efforts were separated by 15 –

25 days and were performed on foot by teams of 3 – 6 searchers. They systematically

searched around wetlands by disturbing vegetation to increase the probability of detecting

an incubating female (Klett et al. 1986). Our target species were any upland (i.e. ground)-

nesting duck. Ducks are often grouped into nesting guilds of upland, overwater, and cavity

nesting species (Barker et al. 2014). Upland species often nest close to water in graminoid

or shrub cover and include species such as Mallard (Anas platyrhynchos) or Blue-winged

Teal (Spatula discors), overwater species nest on floating vegetation such as sedge or cattail

mats and include species such as Canvasback (Aythya valisineria) or Ring-necked Duck

(Aythya collaris), and cavity nesting species nest in trees and include Bufflehead (Bucephala

albeola) and Common Goldeneye (Bucephala clangula). We estimated site size by buffering

GPS search tracks by 20 m, dissolving the buffers together, and calculating an area, which
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resulted in sites with a mean size of 27.46 +/− 12.15 (SD) ha. We provide estimates of

land cover and land use variables that occurred in our searched areas and how they were

related to what was available across the study extent (Table 3.1). We searched for nests

between 0800h and 1600h (Gloutney et al. 1993) and located an additional 3 radio-tagged

Mallard nests in 2018 with VHF telemetry as part of a pilot study. Nests of marked birds

were found in similar habitat to unmarked birds, so we combined them with our sample.

When a nest was located, we identified the duck species, recorded the number of eggs (i.e.,

clutch size) and estimated the nest age by candling and floating eggs (Weller 1956; Klett

et al. 1986; Dyson et al. 2019).
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Figure 3.1: Map of study extent and nest searching site locations (n = 26) from 2016 –

2018 with the enhanced wetland classification land cover layer underplayed and the general

location of the study area in the boreal forest of Alberta, Canada in the context of the

provincial natural regions (inlay; top-left).
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Table 3.1: Spatial layers included in macrohabitat multi-scale nest-site selection models

including their summary statistics of the mean and standard deviation for the study extent,

estimated searched area, used, and available calculated at a 30 m resolution (i.e., mean per

30 m pixel).

Name Units Study Extent Searched Used Available

Bog % 0.13 (0.27) 0.13 (0.10) 0.10 (0.22) 0.12 (0.26)

Fen % 0.10 (0.25) 0.18 (0.14) 0.18 (0.30) 0.11 (0.27)

Swamp % 0.14 (0.27) 0.17 (0.11) 0.20 (0.29) 0.14 (0.27)

Marsh % 0.02 (0.08) 0.05 (0.04) 0.06 (0.15) 0.01 (0.08)

Open Water % 0.07 (0.26) 0.02 (0.04) 0.05 (0.21) 0.05 (0.21)

Forest % 0.42 (0.41) 0.27 (0.19) 0.19 (0.35) 0.44 (0.45)

Borrow Pits % 0.0021 (0.0355) 0.0354 (0.0930) 0.0872 (0.2118) 0.0036 (0.0380)

Industrials % 0.0014 (0.0301) 0.0025 (0.0087) 0.0037 (0.0429) 0.0025 (0.0433)

Pipelines km 4.77 (25.41) 9.86 (16.77) 10.97 (40.40) 6.98 (30.72)

Primary Roads km 2.73 (18.43) 10.44 (13.30) 11.48 (31.67) 4.96 (24.67)

Secondary Roads km 1.27 (12.44) 4.98 (9.69) 4.96 (21.68) 1.20 (12.23)

Seismic km 29.54 (59.88) 24.68 (15.30) 15.60 (39.35) 32.37 (61.79)

Wells % 0.0071 (0.0664) 0.0185 (0.0254) 0.0192 (0.1158) 0.0102 (0.0760)

3.3.2 Landscape Definitions

We developed a suite of landscape predictors based on spatial layers that represented

land cover and land use features, which we predicted to be important for duck nest-site

selection (Table 3.1). Land cover variables were developed from Ducks Unlimited Canada’s

Enhanced Wetland Classification layer (Ducks Unlimited Canada 2011). This layer was

generated from Landsat Thematic Mapper satellite imagery collected from 1999 - 2002
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and field truthed from 2000-2002. The raw data included 27 land cover classes that we

summarized in 6 thematic groups: bog, fen, marsh, swamp, open water, and forest at a 30 m

resolution. Briefly bogs included open, shrubby, and treed bogs; fens included graminoid,

shrubby, and treed rich and poor fens; swamp included shrub, hardwood, mixedwood,

tamarack, and conifer swamp; marsh included aquatic bed, mudflats, emergent marsh, and

meadow marsh; open water included open water; and forest included conifer, deciduous,

and mixedwood forests.

Land use layers were developed from the Alberta Biodiversity Monitoring Institute’s

(ABMI) Human Features Inventory database produced in 2017 (ABMI 2017). These layers

were retrieved as individual vector layers for each feature of interest, which we converted to

rasters (i.e., pixels; 30 m resolution) to facilitate analysis. We converted polygonal features

to rasters by calculating the percent area (i.e., percent cover) within a pixel and line

features were converted by calculating the sum of the length of each line feature in a pixel.

Specifically we quantified borrow pits, which included all borrow pits, sumps, dugouts,

and lagoons; industrials, which included camps, facilities, mills, oil and gas buildings, gas

plants, gravel or sand pits, coal mines, oilsands, or peatmines; pipelines, which included

any under or overground pipes of substantial length and capacity used for conveyance of

petrochemicals and we included transmission lines in this feature because we assumed they

were similar to pipeline right of ways and relatively sparse on the landscape; primary roads

included all paved and gravel roads; secondary roads included all vegetated roads, winter

roads, and trails; seismic lines included all seismic line feature types; and wells included

all active and inactive wells. All land cover and land use variables were mapped at a 30 m

resolution across our study area. Therefore, we used a constant minimum 30 m resolution

in all multiscale analysis described below (Timm et al. 2016).

To implicitly incorporate scale in our models, we summarized the landscape predictors
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at multiple spatial scales using moving windows (Hagen-Zanker 2016). There has been

limited application of the multiscale approach for duck nest site selection and because

our study was in a novel area, we selected moving window radii sizes based on duck

biology and management relevance (Wheatley & Johnson 2009; Ducks Unlimited Canada

2014). Specifically, we limited our investigation to moving window radii sizes of 30, 90,

300, 1000, 2500, and 5000 m. We considered moving windows less than 1000 m to be

fine scale and consistent with expected movement of a breeding hen within her nesting

home range (Cowardin et al. 1995; Howerter 2003; Ducks Unlimited Canada 2014). We

chose a 30 m radii to represent the landscape context surrounding a use location (30 m

resolution). Next, we chose 90 and 300 m because they were consistent with previous

distribution modelling and investigation in this region and they were multiples of the raw

data resolution (Ducks Unlimited Canada 2014). We chose 1000 m to approximate the

home range or foraging distance that a hen mallard might travel from the nest site during

incubation (Howerter 2003). We considered moving windows greater than 1000 m coarse

scale and expected variables selected at this scale to be more consistent with predator

ecology or avoidance (Tigner et al. 2014; Fisher & Burton 2018). For example, the 2500 m

radii should approximately capture a bear home range in the spring (Brodeur et al. 2008).

Finally, we chose a 5000 m radii as our coarsest scale and assumed it approximated the

home range of a Common Raven (Corvus corax ) and a scale more consistent with landscape

planning (Bruggers 1988; Burton et al. 2014). Moving window analysis calculated the mean

resource value within the moving window radius for each pixel with the exception of linear

features, which were summarized as the total length of resource within each window for

each pixel.
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3.3.3 Study Extent and Used and Available Points

We defined the spatial extent of our study for model development by generating a 10 km

buffer around all nest locations and the centroids of searched areas (Northrup et al. 2013).

Prior to generating pseudo-absence points, we generated an exponential decay surface of

the form e(-d/α) where d represents road distances from each pixel centroid and α was fixed

to 3 km, because we selected sites to search that were within 3 km of a road (Fedy et al.

2014). The resulting layer was a probability surface, where pixels within 3 km of roads had

a probability close to 1 and pixels outside of 3 km of roads had probabilities approaching

0. We used the decay surface to generate pseudo-absence locations so that our random

sampling of non-nest locations was consistent with our nest searching efforts. We generated

pseudo-absence locations at a ratio of 20:1 to ensure we saturated the landscape with

available locations to accurately quantify the heterogeneity on the landscape (Northrup

et al. 2013; Fedy et al. 2014).

3.3.4 Statistical Analysis

Prior to extracting landscape predictor data associates with nest and non-nest locations,

we standardized (x - x /sd) all raster surfaces to improve computation, model fit, and

prediction. Next, we extracted data for each nest and non-nest location for all landscape

predictors and respective moving window sizes. We then developed multigrain resource

selection functions (MRSFs; Laforge et al. 2015a;b). We used a weighted general linear

model with a logit link as the base form of our MRSF, where the weighting was used to

account for the skewed nest to non-nest ratio (1:20), so that nest and non-nest locations

contributed equally in the model (Muff et al. 2020).

We used a pseudo-optimized multi-scale approach to identify the best scale for each

47



landscape predictor in a univariate modelling framework from 6 spatial scales and used

AICc to select the best scale (McGarigal et al. 2016; Bauder et al. 2018). We then combined

all covariates at their best pseudo-optimized spatial scale into a multi-scale global model

and tested for collinearity between the covariates using a Pearson’s r > |0.65| as the cutoff.

When we identified correlated variables, we allowed the individual variables to remain in

the model set, but did not allow them to occur in the same model. We then tested all

combinations of the fully saturated pseudo-optimized model and used AICc to select the

top model (Doherty et al. 2012).

We developed predictive surfaces using our top ranked model for nest-site selection

to identify important nesting habitats for upland-nesting ducks in the boreal forest. We

also spatially predicted the standard error from our top-ranked model to visualize the

uncertainty in our model predictions. We evaluated spatial autocorrelation using bubble

plots and model fit using area under the curve (AUC; Boyce et al. 2002; Hirzel et al. 2006;

Fedy et al. 2018).

3.4 Results

We located 136 nests of upland nesting duck species between 2016 and 2018. We located

nests of 16 American Wigeon (Mareca americana), 54 Blue-winged Teal, 16 Green-winged

Teal (Anas crecca), 12 Lesser Scaup (Aythya affinis), 36 Mallard, and 2 Northern Shoveler

(Anas clypeata). For the purpose of our analysis, we modeled upland nesting ducks as an

entire guild, because we expected them to exhibit similar patterns of selection in respect

to our covariates at our spatial scales of interest.

We observed ducks selecting different resources at different spatial scales and the best

spatial scale that predicted nest site selection for each resource varied (Fig 3.2, Fig 3.3).
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We also detected changes in the magnitude and direction of selection for resources across

spatial scales (Fig 3.2). We observed consistent selection across spatial scales for fen,

marsh, pipelines, and primary roads, consistent avoidance of forest, and varying responses

across spatial scales for the remaining eight resources (Fig 3.2). For example, swamp,

open water, and borrow pits were selected at fine spatial scales (<1000 m), but avoided

at coarse spatial scales (>1000 m; Fig 3.2). The most predictive spatial scale for each

covariate, determined by AICc, was: fen (5000 m), marsh (300 m), open water (2500 m),

swamp (5000 m), forest (90 m), borrow pits (300 m), industrials (1000 m), pipelines (300

m), hard roads (1000 m), soft roads (90 m), and seismic lines (300 m) (Fig 3.3). The

next most competitive scale for each variable was greater than ∆22 AICc scores, with the

exception of open water (∆1 AICc score) and pipelines (∆6 AICc scores); however, the

effect size was similar for each competing scale (Fig 3.3).
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Figure 3.2: Multiscale functional response curves for each covariate considered derived

from univariate resource selection functions. Black dots represent beta coefficients with

85% confidence intervals. Line joining points is provided for display only.
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Figure 3.3: AICc ranks for each scale considered from the univariate resource selection

functions.
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Our best multiscale model for nest-site selection included the land cover variables fen,

marsh, open water, swamp, forest, and land use variables borrow pits, primary and sec-

ondary roads, industrials, pipelines, and seismic lines (Table 3.2, Fig 3.4). There was only

one other competing model within ∆4 AICc scores of our top model and it differed by

excluding fen as a variable.

Table 3.2: Model rankings for nest site selection of upland nesting boreal ducks from 2016-

2018. Models only shown that composed 0.90 of the cumulative weight.

Model K LL ∆AICca ωi

Fen 5000 + Marsh 0300 + Open Water 2500 +

Swamp 5000 + Forest 0090 + Borrow Pits 0300 + In-

dustrials 1000 + Pipelines 0300 + Hard Roads 1000 +

Soft Roads 0090 + Seismic 0300

12 -2467.76 0 0.74

Marsh 0300 + Open Water 2500 + Swamp 5000 +

Forest 0090 + Borrow Pits 0300 + Industrials 1000 +

Pipelines 0300 + Hard Roads 1000 + Soft Roads 0090

+ Seismic 0300

11 -2469.84 2.13 0.26

aLowest AICc score was 4959.64
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Figure 3.4: Standardized beta coefficients from top multiscale resource selection functions

for upland nesting ducks in the western boreal forest of Alberta, Canada. The dashed

horizontal line indicates no selection, and everything above is selected for and below is

selected against. The vertical line separates land cover from land use variables. The

optimized scale can be interpreted from the suffix of the variable name (e.g., Fen 5000 is

Fen at 5000 m scale).
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Ducks responded to land cover variables at coarse (>1000 m) and fine (<1000 m)

spatial scales (Table 3.3). The steepest response was observed for marsh land cover at

a fine spatial scale, where less than 20% marsh cover within 300 m resulted in a steep

decrease in probability of nest-site selection (Fig 3.5). Fen, swamp, and open water land

cover variables all displayed a decreased probability of nest-site selection with increasing

proportional area at coarse scales (2500 – 5000 m), while forest cover within 90 m of a nest

decreased the probability of nest-site selection at a fine spatial scale (Fig 3.5).

Table 3.3: Coefficient estimates and 85% confidence intervals for the best multiscale re-

source selection function (MRSF) explaining upland nesting boreal duck nest site selection

in Alberta. Canada.

Resource Estimate SE 85% LCI 85% UCI

Fen 5000 -0.08 0.04 -0.14 -0.02

Marsh 0300 1.12 0.06 1.04 1.2

Open Water 2500 -0.55 0.07 -0.66 -0.45

Swamp 5000 -0.21 0.05 -0.28 -0.13

Forest 0090 -0.47 0.05 -0.53 -0.4

Borrow Pits 0300 0.29 0.03 0.24 0.33

Industrials 1000 -0.42 0.09 -0.56 -0.3

Pipelines 0300 -0.27 0.05 -0.33 -0.2

Hard Roads 1000 0.71 0.05 0.63 0.78

Soft Roads 0090 0.26 0.03 0.22 0.3

Seismic 0300 -0.36 0.04 -0.42 -0.3
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Figure 3.5: Effect plots for resources in the top multiscale nest-site selection model for

upland nesting ducks in the western boreal forest of Alberta, Canada from 2016 - 2018.

For land use variables, ducks responded at fine spatial scales (<1000 m). For block

features (i.e., polygonal features), borrow pits exhibited the steepest response, where the

probability of nest site selection sharply increased when the proportional area of borrow

pits increased from 10 and 20% within 300 m of a nest (Fig 3.5). Ducks strongly avoided

potential nest site locations with greater than 10% industrial feature cover within 1000

m (Fig 3.5). Nest-site selection responses also varied with linear feature type. Ducks

increased their probability of nest-site selection with increasing lengths of primary and

secondary roads within 1000 and 90 km of a nest site, respectively (Fig 3.5). Conversely,

the probability of nest-site selection decreased with increased lengths of pipelines and

seismic lines within 300 m of a nest (Fig 3.5). From a univariate framework (Figure 3.2),

pipelines were consistently selected for; however, in our best multivariate model, pipelines

were avoided (Table 3.3).

55



We spatially predicted (i.e. mapped outputs from) our top model of nest site selection

for boreal ducks to identify high probability nesting habitat (Fig 3.6). In addition, we also

mapped uncertainty in our spatial predictions of our best model (i.e., standard error; Fig

3.6). We did not observe any spatial autocorrelation in our predictions and our final model

had an AUC score of 0.89 indicating strong predictive performance.

Figure 3.6: Top upland nesting duck multi grain resource selection function predicted

across the study extent to highlight critical nesting habitat in the boreal forest (left) and

the associated error with that prediction (right).
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3.5 Discussion

We identified multiscale macrohabitat nest-site selection strategies of ducks in the boreal

forest by simultaneously assessing both habitat and disturbance. By considering multiple

spatial scales when quantifying our land cover and land use variables, we were able to

identify the most predictive scales of selection for each resource and better understand

how ducks might perceive those resources across spatial scales (Figure 3.2). Our results

provide novel insights into how ducks respond to development, specifically oil and gas, in

the boreal forest and we provide a map that extrapolates our findings to help prioritize

conservation of high probability nesting habitats in this region (Figure 3.6). We observed

negative associations between nest-site selection and some industrial development features

(e.g., pipelines and seismic lines; Figure 3.5) consistent with negative population trends

observed for pair settling in this region (Singer et al. 2020).

3.5.1 Land cover

The response with the greatest magnitude for nest-site selection was for marsh land cover

within 300 m of a nest site. In our study, marsh included aquatic beds, emergent marsh,

and meadow marsh, which form the intermediary transition between open water and other

wetland types (e.g., swamp, bog, fen) or forest habitats (Smith et al. 2007). Importantly,

this does not suggest that ducks are only nesting on upland patches in marshes per se.

Rather it identifies the importance of proximity to marsh for nest sites, likely providing

hens easy access to foraging and brood-rearing habitat (Bloom et al. 2012). Ducklings hatch

precocial but flightless and therefore early brood-rearing habitat close to nests increases

survival (Bloom et al. 2012; Dyson et al. 2018). Additionally, the top-ranked scale of 300

m suggests that within the nesting home range (approximately 1000 m; Cowardin et al.
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1995) there are other important land cover types, such as open water, peatland, or forest,

that may help satisfy nutritional or other cover related requirements during the nesting

period and subsequent brood-rearing periods (Krapu 1981; Gurney et al. 2016). In North

Dakota, wetland size and emergent cover were the strongest predictors of brood abundance

in association with oil and gas development at the finest spatial scale of investigation (320

m; Kemink et al. 2019). While these authors did not allow different scales to compete in

the same model and only investigated scales up to 1510 m, their results are consistent with

our findings related to the scale and the importance of marsh habitat to breeding ducks.

Our results suggested variation in the strength and direction of nest site selection across

other wetland types found in our study area (Smith et al. 2007). Swamp habitats are char-

acterized by a dominance of woody vegetation, including trees (e.g, Picea mariana, Betula

spp.) or shrubs (Salix spp. and Alnus spp.), and wide variation in nutrient availability

(Smith et al. 2007). In our study swamp was avoided with increasing coverage within

5000 m of a nest site; however, we did observe that swamp was selected for at smaller

spatial scales (Figure 3.2). Fens are peatland wetlands that are level with the surrounding

terrain and characterized by short trees, if present (e.g., P. mariana, Larix laricina), and

Betula and Salix spp. shrubs with wide ranging nutrient variation depending on adjacent

habitats (Smith et al. 2007). Fen was also avoided after accounting for variation in other

land cover and land use variables (Figure 3.4), suggesting that ducks avoided nesting in

large patches of fen. We observed variation in selection for fen across spatial scales and the

characteristic scale of selection was positive at a univariate scale (Figure 3.2), but includ-

ing other variables in the models resulted in a coefficient direction instability and ducks

appeared to avoid fen (Figure 3.4). Bog land cover, which is relatively similar to fen but

with poorer nutrient regimes and greater tree cover (Smith et al. 2007), did not receive

support for inclusion in our best model. Previous research in the prairies suggested that
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habitats with perennial woody vegetation can have a negative relationship with Mallard

duckling survival (Bloom et al. 2013). Overall, swamps and fens may not provide adequate

open water resources in proximity to the nest site for foraging or brood-rearing or may be

riskier due to the presence of predators.

The presence of open water is an important habitat component for ducks (Pimm 1994).

We found that ducks avoided greater open water coverage within 2500 m of a nest site,

which we interpret as avoidance of large bodies of water (Figure 3.5). At finer spatial scales,

we observed use in proportion to availability of open water, which might indicate that boreal

ducks use smaller ponds associated with nesting habitat similar to ducks elsewhere in North

America (Gilmer et al. 1975; Batt et al. 1992; Krapu et al. 1997; Baldassarre 2014). We also

found that ducks avoided forest land cover within 90 m of a nest site (Figure 3.4, Figure

3.5), which may be a predator avoidance technique if predation is greater in forests or along

forest edges (Lahti 2001; Ball et al. 2008). In grassland dominated systems, negative effects

of woody vegetation were not found in association with nest success (Thompson et al. 2012)

but forest cover in proximity to brood habitat was found riskier for Mallard ducklings

(Bloom et al. 2013). Selection away from forest cover, therefore, may be a response to

selecting nest sites associated with higher quality brood habitat. Our observation may be

explained by our guild approach because some duck species, such as Mallard, American

Wigeon, and Green-winged Teal are known to nest in forests; whereas Blue-winged Teal

use more open habitats (Keith 1961; Baldassarre 2014; Dyson et al. 2019). Alternatively,

our nest searching efforts focused on predicted areas of high density nesting ducks and

therefore under sampled available forest land cover (Table 3.1) where detection is also

predicted to be reduced (Petrula 1994). We are unable to quantify this with our data, but

suspect that if ducks were commonly nesting further into the forest away from wetlands,

we would have located more nests in these locations than we did given our search efforts

59



(Table 3.1). We hypothesize that the abundance of marsh and open water land cover in

the boreal forest allows ducks to avoid potentially less optimal habitats, such as forest for

nesting, particularly if overland travel for ducklings is more risky in the boreal post-hatch.

3.5.2 Land Use: Industrial Development

We found variation in the direction and magnitude of duck nest-site selection relative to

industrial disturbance at the macrohabitat scale and identified resource-specific effects on

nest-site selection (Figure 3.4). The top-ranked scale of response for industrial develop-

ment features were all within the approximate home range size of nesting ducks (< 1000 m)

suggesting that ducks are actively responding to industrial development for nest-site selec-

tion (Figure 3.3; (Moraga et al. 2019)). We observed the strongest response to industrial

features for borrow pits, which were strongly selected for in close proximity to nests (within

300 m; Figure 3.5). Borrow pits are created during road construction following the removal

of the substrate for roadbeds and are generally rectangular (<3 ha) in size (Kuczynski &

Paszkowski 2012). These industrial features are often associated with grassy buffers in an

otherwise forested landscape that may provide important microhabitat characteristics for

nesting ducks (Eichholz & Elmberg 2014; Dyson et al. 2019). A previous study of species

occurrence on borrow pits in Alberta found that forest cover influenced species composition

on borrow pits (Kuczynski & Paszkowski 2012). When borrow pits had less than 33% forest

cover, Mallard, Lesser Scaup and American Coot (Fulica americana) occurred most often,

while borrow pits with greater than 33% forest cover had, Bufflehead, Ring-necked Duck,

Green-winged Teal, and American Wigeon (Kuczynski & Paszkowski 2012). In addition,

horned grebes (Podiceps auritus) were more likely to produce offspring on borrow pits with

greater amounts of riparian vegetation (Kuczynski et al. 2012). Currently, the quality of
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borrow pits for breeding ducks warrants investigation, because they are often oligotrophic

or mesotrophic, with low levels of dissolved oxygen (Stevens et al. 2006), which may rep-

resent poor brood habitat if alternative habitat is not available in close proximity. Boreal

ducks also avoided nesting in areas that contained greater than 10% cover of industrial

sites or mines at a 1000 m scale (Figure 3.5), which may be explained by avoidance of large

scale industrial features (e.g., processing stations, camps) in association with industrial

noise or human activity at these features (Francis et al. 2011; Shonfield & Bayne 2017).

Roads are a common linear feature in the boreal forest and ducks selected nest sites

that were associated with primary (i.e., paved or gravel) and secondary roads (vegetated

or winter roads; Figure 3.4, Figure 3.5). This pattern was similar to prairie Mallards

and Blue-winged Teal, that occupied nest sites close to roads and wells in an oil and gas

landscape more than expected (Pasitschniak-Arts et al. 1998; Ludlow & Davis 2018). More

than half of our sample consisted of Mallard or Blue-winged Teal nests, which may have

contributed to this similarity. Roads may act as predator refugia for ducks if dominant

predators of nests and adults avoid them thereby increasing nest success (Pasitschniak-Arts

et al. 1998; Roy 2018). In addition, vegetation associated with road margins often consists

of pioneer species, including grasses and other dense exotics (Emery et al. 2005), which are

beneficial to nesting ducks (Dyson et al. 2019).

Ducks avoided nesting in areas associated with increased length of seismic and pipelines

within 300 m. Singer et al. (2020) observed a consistent pattern, where population declines

of upland nesting ducks occurred in regions with higher density of seismic and pipelines.

Linear features, like pipelines and seismic lines, may act as predator corridors (Slattery

et al. 2011; McKenzie et al. 2012), allowing easier access to nesting habitat and an increased

probability of nest failure. Previous work has found predators such as wolverines, wolves,

and bears use seismic lines for travel supporting the hypothesis that these features act as
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predator corridors (Tigner et al. 2014; Dickie et al. 2017; Scrafford et al. 2017) with bears,

among other predators, being identified as important nest predators in this region (Dyson

et al. 2020).

Overall, evidence from previous research investigating the effects of habitat loss and

fragmentation on the nesting ecology and reproduction of ducks and other precocial birds

has been inconsistent. In the prairie-parklands, high proportions of nests were located in

right-of-ways and untilled fallow fields suggesting tolerance for disturbance (Greenwood

et al. 1995). (Skaggs et al. 2020) found that nest survival was driven mostly by grassland

cover and did not detect an effect of oil and gas development. Other evidence from North

Dakota suggests a small negative effect of oil and gas development on brood abundance;

however, the effect was only evident for a small percentage of the population (Kemink et al.

2019). Sharp-tailed grouse (Tympanuchus phasianellus) in North Dakota also experienced

greater nest survival in association with oil and gas development (Burr et al. 2017).

In Alaska, greater white-fronted geese (Anser albifrons) took more incubation breaks in

disturbed sites and had greater nest survival with further distance from industrial features

(Meixell & Flint 2017). In the context of these findings, our results suggest that industrial

development does affect ducks during nest-site selection, but the direction and magnitude

of those effects are resource specific, highlighting the value of our approach that evaluated

resource specific effects as opposed to lumping all development variables together.

Our approach extends previous multiscale nest-site selection analysis as applied to ducks

and supports the hypothesis that multi-scale models are superior (Stephens et al. 2005;

Howerter et al. 2008). We identified the top-ranked scale of response for each independent

resource prior to building predictive models that explicitly controlled for ecological con-

text. Understanding the scale effect of the response to different resources can help identify

threshold values for habitat quantity and quality, tolerance to perturbations, and cumu-
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lative effects (Doherty et al. 2016). Importantly, the top-ranked scale of response may

vary temporally depending on life history phase (e.g, nesting, brood-rearing, moulting)

(Sovada et al. 1995; Chalfoun et al. 2002; Stephens et al. 2005), which will require further

investigation in regards to the connection of resource selection across pair settling, nest-site

selection, and subsequent use of brood-rearing habitat.

3.5.3 Conservation and Management Implications

We developed a predictive map based on our best model of nest-site selection for upland

nesting boreal ducks, which can be used to prioritize conservation efforts in the region for

areas most likely to support nesting ducks (Figure 3.6). Our model predicted well (AUC

= 0.89), but we caution against extrapolating our predictions outside our study extent

without testing its predictive ability against independent data or explicitly accounting for

variation in availability at novel sites (Matthiopoulos et al. 2011; Barker et al. 2014; Smith

et al. 2020; Adde et al. 2020a; Winiarski et al. 2020). To assist managers with the inherent

uncertainty associated with our modelling approach, we also mapped uncertainty in our

estimates (Figure 3.6). Predicting uncertainty provides potential future targets for data

collection where sampling may not have been adequate to represent available habitats

or allows managers to explicitly incorporate uncertainty into the conservation planning

process by potentially exercising addition precaution in areas of greater uncertainty in

model predictions (Johnson & Gillingham 2008; Barker et al. 2014).

Our research adds to the body of literature aimed at understanding changes to ecosys-

tem structure and function driven by industrial development in the boreal forest by pro-

viding novel insights into the effects of industrial development on the nesting ecology of

boreal ducks. Our spatial predictions provide a tool that is useful for managers to pri-
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oritize key nesting habitats to improve conservation planning in this important breeding

region for ducks. Investigating the consequences of nest site selection decisions on survival

is the next step for understanding how industrial development affects the nesting ecology

of boreal ducks. Given our current findings, greatest short-term benefit to nesting ducks

may come from continued efforts that focus on conservation of marsh and nearby habitats

that have limited seismic lines and pipelines.
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Chapter 4

Duck nest survival in the western

boreal forest

4.1 Overview

Nest survival drives population demographics of most avian species. For ducks, researchers

and managers have focused studies on investigating nest success in association with climate,

land use change (e.g., agriculture), and predators in the Prairie and Arctic biomes. The

boreal forest is also a key duck breeding area and some regions have undergone rapid

land use change caused by industrial development (e.g., oil and gas; forestry). However,

duck nesting ecology has received little attention in this biome. Therefore, we investigated

nest survival of upland nesting ducks in the western boreal forest of Alberta, Canada

from 2016 – 2018. We specifically evaluated how daily survival rates of nests (N = 96)

were affected by a suite of natural and anthropogenic variables measured at the nest-site

(microhabitat) and landscape level (macrohabitat). Nest survival was low (0.212 [85%
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CI: 0.152 - 0.282]) and comparable to low nest survival estimates for ducks elsewhere in

North America, including the Prairies. Nest survival increased with nest age and varied

annually. At the microhabitat scale, nest survival increased with greater graminoid, forb,

and shrub cover at the nest. At the macrohabitat scale, nest survival decreased with more

fen habitat, and increased with greater lengths of pipelines and roads in proximity to the

nest. We did not find evidence that oil and gas development negatively affected duck nest

survival. However, by comparing to our companion study investigating nest-site selection,

we revealed adaptive and maladaptive behaviours associated with nesting ecology and

suggest that some resources might be selected at an adaptive peak. Our findings highlight

the importance of investigating the effect of anthropogenic disturbance at multiple scales

to gain a more nuanced understanding of species responses.

4.2 Introduction

Predator-prey relationships shape ecological communities and strongly influence variation

in species life history strategies (Ricklefs 1969; Sih et al. 2011). For birds, nesting is a

critical life stage under selective pressures to optimize survival. In addition to influencing

evolutionary trajectories, nest survival often drives population demographics and predation

is the primary cause of nest failure (Ricklefs 1969; Martin 1995). The magnitude and

effect of nest predation varies geographically and temporally in association with changing

dynamics of nest predator distribution, abundance, and foraging efficiency, all of which

are changing in response to human induced landscape change (Rodewald & Kearns 2011;

DeGregorio et al. 2016). Understanding the causes and consequences of these changing

predator-prey dynamics is critical to species evolution, ecology, and avian management

and conservation (Chalfoun et al. 2002; Sih et al. 2011; Hethcoat & Chalfoun 2015a).
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Habitat fragmentation and loss from human induced land use change affects predator-

prey dynamics across ecosystems (Stephens et al. 2003; Tscharntke et al. 2012; Northrup

et al. 2013; Fahrig 2017; 2019; Fletcher et al. 2018). It can modify predator-prey inter-

actions by influencing a predator’s ability to search, encounter, kill, and consume prey

(Muhly et al. 2011; Gorini et al. 2012; Tucker et al. 2018). Changes in predator func-

tional response can cause cascading effects throughout food webs and alter the stability

and resilience of ecosystems (Sih et al. 2011; Gorini et al. 2012; Roos et al. 2018). These

changes are context dependent and can produce positive outcomes for predators or prey.

Predators may use habitat edges created through fragmentation as travel corridors caus-

ing an increase in predator abundance, colonization of novel habitats, or predators may

experience improved hunting efficiency and access to prey (Salo et al. 2010; Latham et al.

2011c; Tigner et al. 2014; Dickie et al. 2017). In general, fragmentation benefits generalist

predators and is detrimental to specialists as predicted by niche theory because generalists

should benefit from more heterogeneous habitats (Holt 2002; Ryall & Fahrig 2006; Devic-

tor et al. 2008; Clavel et al. 2011; Tscharntke et al. 2012). Additionally, land use change

can result in the removal or reduction of top predators resulting in mesopredator release

and increased predation risk for numerous prey species, particularly birds (Crooks & Soulé

1999). Changes in vegetation composition and structure due to disturbance may result in

increased abundance of prey providing additional alternative prey or possibly resulting in

predator swamping (Andrén 1994; Ryall & Fahrig 2006; Fahrig & Rytwinski 2009). Al-

ternatively, if land use change creates predator avoidance then it may create prey refugia

resulting in a redistribution of prey on the landscape and effectively reducing a predator’s

ability to encounter prey (Kauffman et al. 2007). Understanding these context-dependent

responses requires system, region, and taxon specific evaluation to establish appropriate

conservation recommendations.
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The effect of industrial development on nest survival of birds can be negative across a

range of species (Chalfoun et al. 2002; Liebezeit et al. 2009; Hethcoat & Chalfoun 2015b).

Songbird nest predation increased with habitat loss caused by natural gas development

in Wyoming, USA (Hethcoat & Chalfoun 2015a). Nest success for grouse species in this

region has been found to decline in association with industrial development (Kirol et al.

2015; 2020; Burr et al. 2017). In Canada’s boreal forest, industrial development has been

found to cause the direct loss of nesting habitat or destruction of nests during construction

for passerines (Van Wilgenburg et al. 2013). However, nest survival was not different

between fragmented and non-fragmented forests for ground nesting passerines and nest

survival increased near forest edges (Ball et al. 2008). If industrial development is affecting

predator communities, then it will likely have the most prominent effect on ground nesting

birds because they are at a greater risk to predation of both the nest and the incubating

female (Wiebe & Martin 1998; Amat & Masero 2004).

For ducks, research in prairie ecosystems has revealed that landscape change, such as

conversion to agriculture, can alter the community composition, distribution, abundance,

and foraging efficiency of nest predators, resulting in reduced nest success (Batt et al.

1992; Pasitschniak-Arts & Messier 1995; Stephens et al. 2005; Pieron & Rohwer 2010).

However, few studies have investigated the effect of oil and gas on duck nest survival

to date. In the prairies of North Dakota, oil and gas extraction activities had no effect

on nest survival across species, but nest density declined in association with oil and gas

development, suggesting avoidance (Skaggs et al. 2020). In southern Alberta’s prairies,

authors detected variable and weak effects of industrial features on the nest success of

ducks (Ludlow & Davis 2018). These results suggest that upland nesting duck nest-site

selection and survival may be resilient to current levels of industrial development in those

regions; however, in the boreal forest, where landscape, climate, and predator communities
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differ, the response may be different.

The boreal forest of is one of the most extensive, intact, forests remaining on the

globe (Schmiegelow & Mönkkönen 2002; Haddad et al. 2015). In Alberta, Canada, it

has undergone rapid oil and gas development in recent decades (Schneider & Dyer 2006;

Carlson & Browne 2015). Industrial development for oil and gas exploration and extraction

results in a footprint from industrial block features, such as well pads and mines, and linear

features, including roads, pipelines, and seismic lines (Northrup et al. 2013; Pickell et al.

2015; Dabros et al. 2018). The industrial footprint and associated high density linear

features (Dabros et al. 2018), has altered predator-prey relationships often resulting in

predator species benefitting at the expense of their prey (DeMars & Boutin 2018; Fisher

& Burton 2018; Mumma et al. 2019; Tattersall et al. 2020).

The boreal forest is also an important, but understudied, breeding area for North

American ducks supporting 12 – 15 million pairs annually (Slattery et al. 2011). Upland

nesting ducks were found to be experiencing steeper declines in this region in association

with industrial development features, such as wells, pipelines, and seismic lines (Singer

et al. 2020). While redistribution could explain population declines, declines in associ-

ation with industrial features might suggest a demographic response is occurring, with

decreased nest success being a primary mechanism hypothesized to explain the declines

(Slattery et al. 2011). We previously found that upland nesting boreal ducks selected

greater overhead, graminoid, and shrub cover at a nest site (Dyson et al. 2019) and at

broader landscape scales, these ducks selected nest sites in areas with marsh, roads, and

borrow pits, but avoided open water, fen, swamp, forest, seismic lines, and pipelines ref-

macrohabitat. Importantly, if we assume nest-site selection is adaptive, we would expect

that selected features provide increased nest survival at the scale of the nest (i.e., fourth

order) and at broader spatial scales (i.e., third order) related to the distribution and abun-
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dance of predator communities (Johnson 1980; Stephens et al. 2005).

We investigated how nest-site selection affected nest survival relative to industrial de-

velopment features (e.g., pipelines and seismic lines) and surrounding land cover. We

hypothesized that our observed nest-site selection patterns would be adaptive and; there-

fore, predicted that industrial development (i.e., pipelines and seismic lines) would have

a negative relationship with nest survival (Clark & Shutler 1999; Chalfoun et al. 2002).

To test our hypothesis, we investigated factors at multiple spatial scales within third and

fourth order nest-site selection (Johnson 1980; McGarigal et al. 2016). Our study provides

novel insights into boreal duck ecology that can help conservation practitioners understand

the effect of oil and gas development on duck nest survival and revise current assumptions

associated with duck management and conservation.
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4.3 Methods

4.3.1 Study Area and Site Selection

We conducted our study north of Slave Lake, Alberta, Canada, near Utikuma Lake in

Alberta’s boreal forest natural region within Canada’s Boreal Plains ecozone; hereafter

the western boreal forest (WBF; Figure 4.1). The landscape is a mosaic of deciduous,

mixed-wood, and coniferous forests interspersed by extensive wetland complexes and in-

dustrial development. Historically, land cover change was driven primarily by natural

disturbance events, such as insect outbreaks and wildfire (Downing & Pettapiece 2006;

Carlson & Browne 2015). More recently, land cover types have been dramatically changed

by increasing pressure from human land use, including industrial development related to

forestry practices and oil and gas exploration and extraction (Carlson & Browne 2015;

Pickell et al. 2015). Industrial development has created high density linear features (e.g.,

seismic lines, roads, pipelines) and large block features (e.g., well pads, pumping stations,

industrial sites) that did not previously exist on the landscape (Schneider & Dyer 2006).
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Figure 4.1: Study sites for duck nesting ecology research in the western boreal forest of

Alberta, Canada from 2016 – 2018. Dot size for each study site (n = 21) indicates the

number of nests found at each site across years included in survival analysis (n = 96) and

development class represents the industrial development density used for site selection.

Sites where nests were not located are not shown.
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We selected study sites using a hierarchical selection criteria guided by spatial layers

provided by Ducks Unlimited Canada (DUC) and the Alberta Biodiversity Monitoring

Institute (ABMI; ABMI 2017). We considered cumulative energy development, duck pair

density, accessibility, land cover type, and excluded recently burned or logged areas (within

20 years). We excluded sites that were recently logged or burned because we were interested

in understanding the effects of energy development on ducks and wanted to control for these

potentially confounding factors (Chapter 2). We selected sites that were representative of

the gradient of industrial development density and had a predicted duck density greater

than the median for the region (Ducks Unlimited Canada 2014). Additionally, sites had

to be accessible (i.e., within ≈ 3 km of a vehicle accessible road) and contain at least 1

water body (> 1 ha). A more detailed description of the study area and our process of site

selection can be found in (Dyson et al. 2019).

4.3.2 Field Methods

We searched 16 sites in 2016, 24 sites in 2017, and 25 sites in 2018 between 01 May and 31

July (Figure 4.1; (Dyson et al. 2019). We searched most sites annually, with the exception

of 1 site that was only searched in 2016 and 1 site that was only not searched in 2017. We

completed a minimum of two searches of each site in 2016, two to three searches of each site

in 2017, and three searches of each site in 2018. We separated searches by 15 – 25 days and

searched on foot with teams of 3 – 6 searchers approximately 20 m apart systematically

searching around wetlands (Klett et al. 1986). Our focal species were upland-nesting ducks

(i.e., we did not target overwater or cavity nesting species). We estimated the total area

searched at sites as a mean size of 27.46 +/− 12.15 ha (SD). We searched for nests starting

at least 3 hours after sunrise (≈ 0800h) until 1600h (Gloutney et al. 1993). We located
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an additional 3 radio-tagged Mallard nests in 2018 with VHF telemetry as part of a pilot

study. We included these marked birds in our sample, because nests were found in similar

habitat to unmarked birds.

We determined species and estimated the stage of incubation through a combination of

egg candling and floating at each nest (Weller 1956; Klett et al. 1986). We estimated nest

initiation date by subtracting the estimated incubation stage from the date the nest was

found and assumed an interval of one egg laid per day plus one skipped day during laying

(Batt et al. 1992; Emery et al. 2005). We monitored nests every 7 – 10 days until fate

was determined. In addition, we installed camera traps (n ≈ 20 each year; Moultrie 1100i,

Moultrie Feeders, Birmingham, AB, USA) at nests suitable for installation (i.e., able to

install inconspicuously without disturbing nesting cover) to detect predation events and

identify predator species (Dyson et al. 2020). We used the presence of egg shell membranes

to determine if an egg had hatched and considered a nest successful if > 1 egg hatched

(Klett et al. 1986). We measured overhead cover using a cover grid placed in the nest bowl,

lateral cover using a Robel pole, and estimated vegetation species composition within 1

m of the nest bowl (Guyn & Clark 1997; Dyson et al. 2019). We took microhabitat

measurements within 5 days of hatch or predicted hatch date (Dyson et al. 2019). We

did not include nests that were abandoned (e.g., flooded or failed because of investigator

disturbance) or were originally found predated or hatched in our sample.

4.3.3 Analytical Approach

Animal habitat use is commonly conceptualized across four orders of selection in which the

fourth order represents selection of particular habitat features such as vegetation where

a nest is placed and third order represents broader habitat such as selection of a nest-
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site within an individual’s home range (Johnson 1980; Eichholz & Elmberg 2014). Nest

survival can be influenced by features associated with the nesting habitat at both the

fourth (hereafter microhabitat) and third (hereafter macrohabitat) orders of habitat use

(Stephens et al. 2005; Howerter et al. 2008). Therefore, we evaluated the daily survival rate

(DSR) of nests at the microhabitat level with habitat data collected in the field and at the

macrohabitat level with land use and land cover data obtained from a GIS. We considered

microhabitat and macrohabitat models separately; however, we accounted for the effect

of the nonhabitat variables (e.g., nest age, year) with a baseline model consistent across

both hierarchical levels of selection. To accommodate for the affect of scale on variation in

macrohabitat survival, we first investigated the affect of variables at multiple spatial scales

and identified the top-ranked scale for each variable (Fisher et al. 2011) prior to developing

a multi-scale macrohabitat model explaining nest DSR.

Model Variables

We considered a suite of variables that have been previously found important for duck nest

survival and additional variables relevant to our specific hypotheses about industrial land

use. Variables that were not captured by micro or macrohabitat were treated as baseline

variables (e.g., site, year, nest age). We investigated the effect of site and year to account

for spatial and annual variation in predation pressure or environmental conditions (Ringel-

man et al. 2018). We considered the effect of species to account for potential differences in

survival related to species-specific variation in nest-site selection strategies (Dyson et al.

2019) or other behaviours. We tested for the effect of nest camera presence, because previ-

ous studies have shown a positive association of cameras with nest survival, potentially due

to predator neophobia (Richardson et al. 2009). Next, we considered variables associated

with nesting phenology, which included age of nest when found and nest initiation date
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(Shaffer 2004; Pieron et al. 2012). Nest vulnerability can change with age as a function of

hen attendance and nests initiated earlier often experience a greater probability of success

because they are initiated by more experienced hens (Klett & Johnson 1982; Stephens et al.

2005; Devries et al. 2008). We also considered the quadratic effect of initiation and nest

age to account for nonlinear responses (Webb et al. 2012; Setash et al. 2020; Skaggs et al.

2020). We did not include any variables related to nest density (Ringelman 2014; Skaggs

et al. 2020) because nest density is low in the boreal forest and our relatively small sample

size precluded us from conducting the analysis.

We predicted the direction of each effect for microhabitat and macrohabitat variables

would be similar to our previously reported nest-site selection analyses (Chapter 2, Chapter

3), because nest-site selection should be adaptive (Clark & Shutler 1999; Chalfoun &

Schmidt 2012; Setash et al. 2020). These microhabitat variables and their measurements

were previously described in Chapter 2. Briefly, we investigated the influence of overhead

and lateral cover, vegetation height, and the proportion of graminoid, forb, and shrub

cover. We predicted that upland nesting ducks would have greater nest DSR at nests with

greater overhead and graminoid cover, and lower nest DSR at nests with greater forb cover

consistent with our microhabitat nest-site selection analysis (Dyson et al. 2019).

At the macrohabitat scale, we previously described and quantified a suite of land cover

and land use variables hypothesized to affect nest-site selection of boreal ducks (Chapter

3). These land cover variables represent the surface cover related to vegetation on the

ground and we included emergent marsh, fen, bog, swamp, upland forest, and open wa-

ter, which were derived from Ducks Unlimited Canada’s Enhanced Wetland Classification

layer (Ducks Unlimited Canada 2011). We also included land use variables related to

anthropogenic modification of the landscape derived from the 2016 Alberta Biodiversity

Monitoring Institute’s Human Features Inventory (ABMI 2017), and quantified the area
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of block features, such as borrow pits, industrials, and well pads, and the length of linear

features, such as primary roads, secondary roads, pipelines, and seismic lines (Chapter 3).

As a brief description, borrow pits are small excavated areas of soil and substrate to create

roads and well pads and often become flooded; industrials include any block feature not

captured by our other categories (e.g., gravel pit, processing plant); and well pads include

both active and abandoned wells. Linear features included primary roads, which were

any paved or gravel road in the study area, secondary roads were any vegetated road or

trail, pipelines included above and below ground infrastructure and were maintained (i.e.,

vegetation removed) at a variety of widths across the study area, and seismic lines were rel-

atively thin lines (2- 5 m, but up to 10 m) and were created at high densities for oil deposit

exploration purposes and exist across the landscape at various levels of regeneration (Lee &

Boutin 2006). We created 30 m resolution rasters for our land cover and land use variables

and developed spatial covariates by summarizing the landscape using moving windows at

six spatial scales (radii: 30, 90, 300, 1000, 2500, 5000 m) associated with species biology or

management relevance (Chapter 3; Hagen-Zanker 2016). Consistent with our observations

from nest-site selection patterns (Chapter 3), we predicted that DSR would be greater at

nests with a greater proportion of marsh, borrow pits, and greater lengths of roads in the

surrounding landscape; and lower at nests with greater proportions of fens, swamps, open

water, upland, industrials, and greater lengths of pipelines and seismic lines.

Model Structure and Construction

We modeled nest DSR with the logistic exposure model in a generalized linear model

framework (Shaffer 2004) and defined the exposure period to contain both laying and

incubation (Blomberg et al. 2015). We used a two-step variable inclusion approach to

evaluate microhabitat and macrohabitat nest survival models (Webb et al. 2012). The

77



first step involved evaluation of the top baseline model, which we then carried forward for

analysis of microhabitat and macrohabitat additive affects on nest survival. We included

site as a random intercept, but we did not consider year as a random effect because we

only had 3 years of data and random effects perform better with greater than 5 levels.

Therefore, we retained it as a fixed effect (Stephens et al. 2005; Bolker et al. 2009). We

screened variables for the baseline model by first testing them in a univariate framework

and used AICc to include only variables that performed better than the intercept-only

model in our candidate set. Next, we considered all combinations of the baseline variables

and used the top-ranked model to move forward to the next step. We built a global

microhabitat model using the baseline model in addition to all microhabitat variables. For

macrohabitat, we used pseudo-optimization (sensu McGarigal et al. 2016) to determine the

top-ranked scale (Fisher et al. 2011; Stuber & Gruber 2020) for each variable. We included

the baseline model during the pseudo-optimization procedure to account for variation in

nest DSR not explained by macrohabitat features (Chapter 3). Variables were removed

from further consideration in our analysis if the baseline model performed better than any

variable scale we considered based on AICc rank. We then moved the top-ranked scale for

each variable forward in an additive framework with the baseline model to create a global

multi-scale macrohabitat model for nest survival.

We standardized continuous covariates to promote convergence and comparison across

covariates measured on different scales. We then used AICc on all combinations of our

global models for each step to select the best combination of predictor variables that ex-

plained nest survival. We present candidate model sets for each step with more complex

variants of the top ranked model removed because these models create unnecessary model

selection uncertainty in association with an all combinations approach by including un-

informative parameters (Richards 2008; Arnold 2010; Doherty et al. 2012). We present
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estimates of nest DSR and nest success rate by species across years with 85% confidence

intervals. We calculated nest success for each species by raising the DSR to the power of

the average age of the nest at hatch, which we drew from previous literature (Klett et al.

1986; Skaggs et al. 2020). For species specific estimates of nest survival, we used exposure

periods of 35 days for Mallard (Anas platyrhynchos) and Lesser Scaup (Aythya affinis), 34

days for Blue-winged Teal (Spatula discors), and 33 days for American Wigeon (Mareca

americana) and American Green-winged Teal (Anas crecca). For effects plots, we used

a 35 day exposure period to derive nest survival curves. We performed all analysis in R

version 3.6.2 “Dark and Stormy Night” (R Core Team 2019).

4.4 Results

We located a total of 136 active nests of upland nesting ducks and removed nests not

suitable for survival analysis, which included 2 Northern Shoveler (Anas clypeata) nests

eliminated due to small sample size. Our final sample for survival analysis included 96 nests

of 5 different species, including 14 American Green-winged Teal, 11 American Wigeon, 39

Blue-winged Teal, 8 Lesser Scaup, and 24 Mallard (Table 4.1). We also removed two nests

for microhabitat analysis because of missing habitat data (n = 94); but we retained all

nests for macrohabitat analysis (n = 96).
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We did not find any support for site as a random effect and therefore, proceeded to

only consider fixed effects using general linear models (Stephens et al. 2005). We also did

not detect any variation in nest DSR across species (Figure 4.2). American Green-winged

Teal had a DSR of 0.974 (85% CI: 0.945 to 0.988) and an estimated nest success rate of

0.425 (85% CI: 0.155 to 0.677). American Wigeon had a DSR of 0.963 (85% CI: 0.916 to

0.984) and an estimated nest success rate of 0.284 (85% CI: 0.055 to 0.584). Blue-winged

Teal had a DSR of 0.955 (85% CI: 0.934 to 0.969) and an estimated nest success rate of

0.209 (85% CI: 0.098 to 0.348). Lesser Scaup had a DSR of 0.943 (85% CI: 0.863 to 0.977)

and an estimated nest success of 0.128 (85% CI: 0.006 to 0.450). Finally, Mallard had a

DSR of 0.945 (85% CI: 0.911 to 0.966) and an estimated nest success rate of 0.137 (85%

CI: 0.039 to 0.297; Figure 4.2).

Figure 4.2: Estimated nest success (top) and daily survival rate (DSR; bottom) for species

of upland nesting ducks with 85% confidence intervals from the western boreal forest of

Alberta, Canada across 2016 – 2018. See Table 4.1 for definitions of species codes.
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Our top baseline model explaining nest DSR included the age of the nest when found

(AgeFound) and year (Table 4.2). Nests that were older when found had a greater DSR

and we observed an increasing trend in DSR across years (Table 4.3, Figure 4.3). We used

this model structure to carry forward to account for unexplained variation not related to

habitat for the microhabitat and macrohabitat models.

Figure 4.3: Effects plots for top nest characteristics model of nest success for nests of

upland nesting ducks in the Western boreal forest of Alberta, Canada across 2016 – 2018.

Nest age (in days) when found and year effects with 85% confidence intervals. Nest success

Our top microhabitat DSR model included proportion of graminoid, forb, and shrub

cover in addition to the baseline model (Table 4.2). We observed a positive association

for vegetation cover and DSR for graminoid, forb, and shrub species at a nest (Table 4.3,

Figure 4.4). Structural cover variables including lateral and overhead cover at the nest

also received some support for inclusion (Table 4.2); however, we considered the data was

best supported by the top-ranked model. Consistent with our predictions, we observed a

positive effect on survival for greater proportions of graminoid and shrub cover at nests;

however, forb cover was avoided during nest site selection but provided increased survival

(Chapter 3).

82



Table 4.2: Competitive candidate models for baseline, microhabitat, and macrohabitat

variables for explained variation in daily survival rate (DSR) for nests of upland nesting

ducks in the western boreal forest of Alberta, Canada from 2016 – 2018. Candidate sets

are reduced to remove more complex models of top model that occurred in the model set

following the all subsets procedure and the macrohabitat models are further trimmed to

only include models that account for the cumulative sum of 0.90 of model weight.

Model K LL ∆AICcb ωi

Baseline

AgeFound + Yeara 4 -98.39 0 0.32

Year 2 -99.87 0.95 0.20

AgeFound 3 -101.69 2.57 0.09

(.) 1 -103.28 3.73 0.05

Microhabitat

Forb + Graminoid + Shrub + BASE 7 -91.70 0 0.23

Graminoid + Shrub + BASE 6 -92.80 0.16 0.21

Graminoid + Lateral + BASE 6 -93.20 0.96 0.14

Forb + Graminoid + BASE 6 -93.47 1.50 0.11

Overhead + Graminoid + BASE 6 -93.53 1.62 0.1

Graminoid + BASE 5 -94.65 1.82 0.09

Lateral + BASE 5 -95.10 2.73 0.06

BASE 4 -96.30 3.09 0.05

Macrohabitat

Fen 0090 + Pipelines 0090 + Primary Roads 0030 + Secondary

Roads 2500 + BASE

8 -86.82 0 0.32

Forest 5000 + Borrow Pits 0300 + Pipelines 0090 + Primary

Roads 0030 + Secondary Roads 2500 + BASE

9 -86.71 1.84 0.13

Forest 5000 + Pipelines 0090 + Primary Roads 0030 + Secondary

Roads 2500 + BASE

8 -87.81 1.98 0.12

Fen 0090 + Primary Roads 0030 + Secondary Roads 2500 + BASE 7 -89.09 2.51 0.09

Forest 5000 + Borrow Pits 0300 + Primary Roads 0030 + Secondary

Roads 2500 + BASE

8 -88.42 3.2 0.06

aTop baseline model forms the BASE model in subsequent steps

bLowest AICc score for Baseline = 204.83, Microhabitat = 197.56, Macrohabitat = 189.84



Table 4.3: Beta coefficients and 85% confidence intervals for top models of nest character-

istics, microhabitat, and macrohabitat effects on nest daily survival rate (DSR) of upland

nesting ducks in the Western boreal forest of Alberta, Canada across 2016 – 2018.

Nest Characteristics Microhabitat Macrohabitat

β 85% CI β 85% CI β 85% CI

Intercept 2.75 2.45 to 3.07 3.33 2.89 to 3.81 2.80 2.48 to 3.14

AgeFound 0.23 0.04 to 0.44 0.32 0.11 to 0.55 0.50 0.26 to 0.78

Year (2017) 0.25 -0.22 to 0.73 -0.47 -1.11 to 0.17 0.04 -0.48 to 0.56

Year (2018) 0.93 0.40 to 1.51 0.21 -0.43 to 0.88 1.74 1.11 to 2.41

Graminoid . . 0.54 0.27 to 0.83 . .

Forb . . 0.24 0.01 to 0.48 . .

Shrub . . 0.37 0.08 to 0.66 . .

Fen (90m) . . . . -0.41 -0.64 to -0.19

Pipelines (90 m) . . . . 0.41 0.12 to 0.77

Primary Roads (30 m) . . . . 0.46 0.20 to 0.77

Secondary Roads (2500 m) . . . . 0.54 0.31 to 0.80



The pseudo-optimization procedure identified non-zero scales of effect for bog, fen,

swamp, and forest land cover variables and borrow pits, pipelines, and primary and sec-

ondary road land use variables to affect nest DSR (Figure 4.5 and 4.6). The remaining

variables had confidence intervals that overlapped zero across scales suggesting that inclu-

sion of those variables did not improve upon the baseline model (Figure 4.5); however, we

did observe some general trends in the data. For example, seismic lines had a consistent

negative effect; however, 85% confidence intervals overlapped zero (Figure 4.5). For most

variables, all the confidence intervals overlapped zero (Figure 4.5) and the majority of spa-

tial scales for each variable ranked within 3 AICc scores of the top ranked scale, or baseline

model, suggesting some uncertainty in scale selection (Figure 4.6).

Figure 4.4: Effects plots with 85% confidence intervals for top microhabitat model of nest

survival for nests of ducks in the western boreal forest of Alberta, Canada across 2016

– 2018. Effect plots are only shown for proportion of graminoid, forb, and shrub cover

because effects of nest age when found and year are shown previously.
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Figure 4.5: Functional response curves of daily survival rate (DSR) to land cover and land

use variables in addition to the baseline model for nests of ducks in the western boreal forest

of Alberta, Canada from 2016 – 2018 . Moving window sizes without coefficient estimates

failed to converge due to a lack of data and estimates without confidence intervals exceeded

the plot space and overlapped zero.
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Figure 4.6: Delta AICc score for the baseline model plus the functional response of daily

survival rate (DSR) for nests to land cover and land use resources of ducks in the western

boreal forest of Alberta, Canada from 2016 – 2018. The baseline model performed best for

variables where points along the line for moving window size do not intersect 0.

We identified the top-ranked scale for variables affecting nest survival for bog at 2500

m, fen at 90 m, swamp at 2500 m, upland forest at 5000 m, borrow pits at 300 m, pipelines

at 90 m, primary roads at 30 m, and secondary roads at 2500 m (Figure 4.7), which we

added to the baseline model for our global model for macrohabitat survival. Subsequently,

the top-ranked multi-scale model explaining macrohabitat variation in nest DSR included
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fen, pipelines, primary, and secondary road variables in addition to the baseline model

(Table 4.2; Figure 4.7). Nest DSR decreased with increasing proportion of fen habitat at

the 90 m scale and increased with greater lengths of pipelines within 90 m of the nest,

primary roads within 30 m of the nest, and secondary roads within 2500 m of the nest

(Table 4.3; Figure 4.7).

Figure 4.7: Effects plots for top macrohabitat model of nest survival for nests of ducks

in the western boreal forest of Alberta, Canada between 2016 – 2018 as a function of

proportion of fen habitat, and length of pipelines, and primary and secondary roads in

addition to the baseline model, with 85% confidence intervals.

4.5 Discussion

We provide nest survival estimates of upland nesting ducks from Canada’s western boreal

forest. Based on the suite of variables we considered over the duration of our study and

our sample size, we did not find any negative effects of oil and gas development on nest

survival. Nest survival was influenced by annual variation and the age of the nest when

found. Nest-site selection was adaptive for graminoid and shrub cover at the microhabitat

scale and roads at a landscape scale (Chapter 3; Dyson et al. 2019). Our estimates suggest
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that boreal duck populations have similar nest survival estimates to ducks elsewhere in

North America, including the Prairie Potholes, and currently exceed an estimate of 15%

needed to sustain populations (Cowardin et al. 1985; Hoekman et al. 2002). Our assessment

of nest survival across a gradient of industrial development essentially substituted space

for time and, therefore, it is difficult to make inference to whether our survival estimates

accurately predict pre-development survival rates in the region because we lacked a baseline

(i.e., a non-developed control site was nonexistent).

4.5.1 Baseline Model

We found support for variables not associated with habitat for nest survival including the

age of the nest when found and annual variation. Nest survival increasing with nest age is

ubiquitous for waterfowl across their breeding range and was further supported from our

study (Stephens et al. 2005; Ludlow & Davis 2018; Setash et al. 2020). Older nests have

a higher probability of hatching (less exposure time remaining) and nest defense should

increase for older nests (Forbes et al. 1994; Gunness & Weatherhead 2002). Our nest

searching approach precluded us from detecting an adequate number of nests in the laying

stage because there is a lower probability of detecting nests while searching when hens may

be absent from nests. If nest survival during laying differs from incubation, then our esti-

mates are likely biased high. Annual conditions can affect nest survival through variation

in water availability, temperature, or changing predator populations. In a long-term study

on nest success of prairie ducks, large-scale environmental variables often outperformed

more local variables suggesting that annual environmental conditions can have a relatively

larger effect on nest survival than variables specific to the nest site (Ringelman et al. 2018).

We only considered nests that failed because of predation in our study; however, the
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number of nests that were not successful as a result of flooding (10 nests) or abandonment

due to other reasons (28 nests; Table 4.1) was not negligible. We did not include flooded

nests in our sample because we expected flooding to be a separate process from predation

and during data exploration we detected no difference in DSR when we included nests

that flooded in our sample (M. Dyson, unpublished data). Flooding was also a prominent

source of nest failure in a study of nest survival in the boreal forest of Alaska and was

suggested to affect predator accessibility to nest sites (Petrula 1994; Walker & Lindberg

2005). In our study area, we observed flooding events midseason (M. Dyson, pers. obs.).

We suspect that environmental variation in precipitation, beaver activity (Nummi et al.

2013; Lapointe St-Pierre et al. 2017), and industrial development interact in the boreal

forest to create a dynamic hydrological landscape that requires further investigation in the

context of duck demography. In addition, understanding if flooding is compensatory or

additive to the predation process presents an opportunity for future inquiry in this system.

4.5.2 Microhabitat

At the microhabitat scale ducks likely maximize nest concealment to avoid detection by

predators (Ringelman et al. 2018; Borgmann & Conway 2015). We found that DSR in-

creased with a greater proportion of vegetative cover, consistent with ducks having in-

creased survival in thicker vegetation (Ringelman et al. 2018). Evidence for increased

survival with more graminoid cover is consistent with prairie research (Livezey 1981; Clark

& Shutler 1999; Setash et al. 2020). Graminoid cover likely provides concealment for

nesting ducks and Blue-winged Teal prefer nest-sites in graminoid cover, which composed

approximately 40% of our sample size (Gloutney & Clark 1997; Baldassarre 2014; Dyson

et al. 2019; Rohwer et al. 2020).

90



The nest concealment hypothesis is commonly proposed to explain nest-site decisions

by birds (Borgmann & Conway 2015; Borgo & Conover 2015). However, other authors

have noted the important tradeoff related to nest and adult survival, which is particularly

relevant for ground nesting precocial birds, such as ducks (Götmark et al. 1995; Amat

& Masero 2004). We found greater survival at nests that had increased forb cover, but

detected avoidance of forb during the selection process. We suspect that hens likely tradeoff

between increased cover at the nest site and their ability to detect incoming predators to

avoid mortality, resulting in the need to get it ‘just right’. This tradeoff process may

manifest itself in lifetime fitness where hens that optimize the tradeoff (i.e., goldilocks

hens) experience the greatest fitness.

4.5.3 Macrohabitat

At the macrohabitat scale we did not detect any negative effects of industrial development

on nest survival of ducks similar to other recent studies (Ludlow & Davis 2018; Skaggs et al.

2020). Nest success increased with increasing density of pipelines (90 m), primary roads

(30 m), and secondary roads (2500 m). Primary and secondary roads were also features

that ducks selected (Chapter 3) suggesting that associating with roads may be adaptive.

Similar results have been observed for numerous duck species across biomes (Pasitschniak-

Arts et al. 1998; Raquel et al. 2015; Roy 2018; Skaggs et al. 2020). Collectively, these

result support the hypothesis that roads may create nest predator refuges because some

duck predators avoid them (Pasitschniak-Arts et al. 1998; Tucker et al. 2018), and may

provide a fitness benefit for ducks. We also observed greater survival for nests with higher

densities of pipelines within 90 m, which was opposite our prediction based on observed

avoidance in nest site selection (Chapter 3). Here, the scale of effect was at 90 m, while for
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avoidance it was at 300 m, which may explain the opposite trend; however, it might also

indicate a nonlinear response to pipelines. In our study area, pipelines are often wider than

other anthropogenic linear features like seismic lines and might be more similar to roads

due to the fact that vegetation is often maintained on these features or they are used as

travel corridors for oil and gas service and monitoring, possibly providing a refugia effect.

Gravel roads represented most primary roads throughout our study area with the excep-

tion of 2 major paved highways (Alberta Highway 88 and 750). Gravel roads experienced

a range of vehicle travel and maintenance based on industrial activity, which could affect

how roads influence predator-prey interactions (Northrup et al. 2012; Lamb et al. 2018).

For example, roads with regular traffic may provide a stronger refuge effect if it increases

predator avoidance (Northrup et al. 2012); however these responses are likely predator

species-specific if different predators vary in their response to roads. For example, wolves

select roads for travel (Dickie et al. 2017; Newton et al. 2017) and wolves may reduce the

prevalence of mesopredators (e.g., coyote) in association with roads (Berger et al. 2008). In

our study area, we did not detect wolves predating duck nests but coyotes were important

nest predators (Dyson et al. 2020). Therefore, if wolves do functionally exclude coyotes

from habitat near roads, then it may create predator refugia for ducks. Bears were also

a common duck nest predator in our region, and might avoid roads due to mortality risk

from vehicle collisions (Lamb et al. 2018) or hunting access; however, other research sug-

gests that bears may select roads for travel (Tigner et al. 2014; DeMars & Boutin 2018).

Considering the differing effects of spatial scale on survival in association with primary

and secondary roads, we interpret that duck nests close to primary roads received a di-

rect predator refuge effect (i.e., lower probability of encounter with nest predator), while

secondary roads selected at a broader spatial scale potentially acted as indicators of lower

duck nest predator densities if predators are avoiding these features.
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We only found a land cover effect on nest survival for fen within 90 m. However, we

observed a stable negative effect of peatland land cover (fens and bogs) on nest survival

across spatial scales, which suggests that peatlands are not beneficial nesting habitat for

ducks. More generally, peatlands often lack open water habitats with vegetative cover

for broods and may be less productive, and have less forage for incubating females or

offspring relative to marsh. Peatlands might also provide more foraging opportunities for

predators if movement is easier relative to marsh or if there is less visual obstruction for

avian predators. However, peatlands also provide important hydrologic functions such as

water retention and nutrient storage that might be more critical to maintaining suitability

of nearby open water systems for ducks (Smith et al. 2007). Predators, such as bears, that

are important nest predators in our study area (Dyson et al. 2020), have been found to

use industrial features to access fen habitats more than expected, particularly in spring

to depredate caribou neonates (DeMars & Boutin 2018). If this relationship is occurring

throughout the boreal forest, then it may also increase predation risk in these habitats for

ducks.

4.5.4 Nest Site Selection and Survival: Pattern from Process

Studies of nest-site selection patterns and the process of nest survival often hypothesize that

nest-site selection is adaptive in the context of natural selection (Clark & Shutler 1999).

Investigators have commonly failed to demonstrate this congruence between the pattern

of selection and process of survival. This is not surprising if nest-site selection patterns

represent long term optima (Clark & Shutler 1999), otherwise known as the adaptive peak

hypothesis (Latif et al. 2012). Under this hypothesis, if ducks already nest in habitats that

minimize predation risk, then there is not enough variation to detect relationships between
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nest site selection and nest success (Latif et al. 2012).

We found evidence of both adaptive and maladaptive nest-site selection and relation-

ships more consistent with adaptive peaks in our study. Selection for road density appears

to be adaptive from our study, because ducks selected this feature (Chapter 3) and had

greater survival. Alternatively, we found hens selected nest sites with less forb cover than

available (Chapter 2) but found that increased forb cover conferred a nest survival benefit.

We did not observe a positive effect of overhead cover on survival, which we predicted

would increase nest success given the importance of avian predators in our study area

(Dyson et al. 2019; 2020). However, if ducks are already selecting adequate overhead cover

(i.e., are at an adaptive peak), then we would not have been able to detect this relationship

for survival. The relationship between selection and survival was also context dependent

based on the scale of resources measured (Martin & Fahrig 2012; Moraga et al. 2019). The

difference in scales of importance between our nest-site selection and nest survival analysis

are likely driven by the different factors influencing these processes and are difficult to

explain without further study. For example, scale effects are likely duck species-specific

and related to predator responses in the region (Stuber & Fontaine 2019). Therefore, we

predict that scales of effect should vary by duck species and spatially in relationship to the

landscape context, resource availability, and predator communities.

Considering pattern and process consecutively allowed us to gain a more complete

understanding of how ducks are responding to landscape change. Specifically, our first

step compared nest sites to available locations (i.e., landscape context) providing inference

to how ducks are using the landscape (Chapter 3). Then, comparing successful nests to

unsuccessful nests allowed us to consider the consequences of those decisions. However,

the latter analysis (i.e., this manuscript) was only against a subset of variability that exists

on the landscape that potentially masks important relationships that a selection analysis
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can reveal. For example, we would have missed the avoidance of pipelines or seismic lines

if we had only performed an analysis on nest survival from our data. This is particularly

relevant if ducks adapt their behaviour from a perceived risk as opposed to adjusting

after nest failure (Eichholz et al. 2012; Bleicher 2017). Therefore, we suggest that to

comprehensively understand nesting ecology, researchers must evaluate nest-site selection

and survival (i.e., the pattern and the process) consecutively or together as opposed to

only evaluating nest survival.

If we assume that ducks can assess predation risk on the landscape prior to nesting

(Eichholz et al. 2012), then we might interpret our evidence from nest-site selection and

survival along with temporal changes in settling patterns in the region (Singer et al. 2020)

to indicate that ducks are adapting to anthropogenic landscape change. By avoiding set-

tling and nesting in areas with high density seismic lines and selecting areas with higher

densities of roads or pipelines for nesting that may provide predator refugia, ducks may

avoid potential negative effects of industrial development during the nesting period. How-

ever, the degree to which ducks can adapt without demographic implications may become

constrained as development exceeds current levels, reducing options for avoidance. Many

questions remain regarding the long-term health of duck populations in the boreal forest

of Canada. For example, at what level might industrial development result in negative

demographic consequences and how does that interact with predicted changes in duck

abundance in the boreal forest under climate change scenarios (Drever et al. 2012)? How

does forestry and natural disturbance like wildfire interact with these relationships? Are

there any time-lagged responses to landscape and climate change by predators or prey that

could alter these observed relationships (Ringelman et al. 2018)? Our results improve our

understanding of boreal duck nesting ecology; however, continued research in this impor-

tant breeding area is critical for developing a better understanding and managing boreal
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ducks.

4.5.5 Conservation and Management Implications

Decisions about how to manage the boreal forest for ducks should consider evidence from

both habitat selection and survival. Many conservation programs for ducks focus on ef-

forts to increase nest survival; however, given our relatively low predation rates from this

region of the boreal forest, efforts to improve our understanding of survival during other

phases of the annual cycle may prove more effective (Cowardin et al. 1979; Hoekman et al.

2002). Investigation into how ducks respond to ongoing restoration efforts of linear features

(Tattersall et al. 2019) would also be valuable for making effective conservation decisions.

Additional investigation from long term data would help to continue to evaluate the po-

tential interactive or synergistic effects of disturbance on nesting ducks. Continuing to

advance our understanding of species-specific processes and relationships across different

life-history phases, including settling, nest-site selection, survival, and brood-rearing, will

likely provide the greatest benefit to conservation of ducks in the boreal forest.
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Chapter 5

Nest predators of ducks in the boreal

forest

5.1 Overview

Nest predation is often the primary cause of nest failure for ducks throughout North Amer-

ica. Tremendous efforts have been made to identify the predators responsible for nest pre-

dation to benefit the conservation and management of ducks. However, we are unaware of

empirical evidence that identifies the nest predators of ducks in the boreal forest, which is

an important breeding area. We used camera traps on real (n = 53) and artificial nests

(n = 164) from 2016 – 2018 to identify predators of boreal duck nests. We identified

8 species of duck nest predators that ate or removed eggs from nests including, Ameri-

can black bear (Ursus americanus), short-tailed or least weasel (Mustela spp.), Canada

lynx (Lynx canadensis), coyote (Canis latrans), American marten (Martes americana),

red squirrel (Tamiasciurus hudsonicus), Common Raven (Corvus corvax ), and Red-tailed
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Hawk (Buteo jamaicensis). Despite a long history of duck nest predator research, our study

confirmed previously undocumented nest predators of ducks from the boreal forest. The

suite of nest predators was different from common prairie nest predators and we did not

observe common prairie nest predators at our study area. Climate change and industrial

development are altering predator-prey interactions causing changes to wildlife communi-

ties in this region and our data provide an initial step in improving our understanding of

boreal ducks.

5.2 Introduction

For birds, nesting is a critical life stage and success at this stage has population-level

effects (Hoekman et al. 2002). In particular, nest failure caused by predation is a dominant

factor driving population dynamics and life history evolution (Ricklefs 1969; Martin 1993).

Therefore, the identification of nest predators is a fundamental step in understanding

nesting ecology (Major 1991; Latif et al. 2012).

Identifying nest predators can be challenging, because it involves locating a nest and

monitoring its fate in a manner that allows for accurate identification of the predator and

minimal disturbance at the nest site (Major 1991). Artificial nests provide an alternative

to locating real nests to achieve adequate sample sizes; however, the validity of inference to

real nests has been cautioned by numerous studies (Major & Kendal 1996; Butler & Rotella

1998; Pärt & Wretenberg 2002; Zanette 2002). Camera systems, including continuous video

recordings and still camera traps, have been used to monitor avian nest predators and are

a valuable tool to identify species-specific nest predators (Pietz et al. 2000; King et al.

2001; Richardson et al. 2009; Ball & Bayne 2012; Ellis-Felege & Carroll 2012; Croston

et al. 2018; Ellis et al. 2018). Nest cameras can accurately identify nest predators and
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discriminate from those species that visit pre-or-post-predation (Thompson III & Ribic

2012; Ellis-Felege & Carroll 2012; Kirol et al. 2018). Studies that combine the use of real

and artificial nests along with camera traps can help to identify nest predators, provided

researchers consider the potential differences between the two nest types when interpreting

their results (Esler & Grand 1993; Ball et al. 2008).

Considerable effort has identified a suite of duck nest predators from the prairie and

arctic biomes (Sargeant et al. 1993; 1998; Sovada et al. 2001) and the relative importance

of these predators to nest success varies regionally (Pieron & Rohwer 2010). In addition,

predator impacts on duck demography are consistently greater in areas where habitat

loss or fragmentation alters predator abundance, community composition, or access to

previously isolated areas (Greenwood et al. 1995; Sovada et al. 2001; Phillips et al. 2003;

Pieron & Rohwer 2010). Identification of major duck nest predators has been used to

guide large-scale predator management initiatives on the prairies with the overall goal of

increased duck production (Clark et al. 1995; Garrettson & Rohwer 2001; Chodachek &

Chamberlain 2006; Pieron & Rohwer 2010; Amundson et al. 2013). Thus, an important

step is to correctly identify the regional predator community in order to inform effective

management and conservation decision making.

In the boreal forest, the second most important breeding area for ducks in North Amer-

ica, we do not know the identity and relative importance of different avian and mammalian

species to duck hen and egg predation (Slattery et al. 2011). Many typical predator species

from the prairies either do not occur or only occur at low densities in the boreal forest,

and so we cannot readily infer relationships in the boreal from prairie results. In addition,

composition of boreal duck predator communities may be shifting because of rapid habitat

change from oil and gas and forestry activity over the past twenty years, coupled with

increasing evidence for effects of climate change, which can also influence predator-prey
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interactions (Dawe et al. 2014; Hebblewhite 2017; DeMars & Boutin 2018; Fisher & Bur-

ton 2018). Therefore, identifying current nest predators of boreal ducks will fill a critical

knowledge gap for North American waterfowl conservation and management.

Our objective was to identify duck nest predators using camera traps on real and

artificial nests in the boreal forest. Herein we identify duck nest predators from the western

boreal forest of Alberta, Canada, which can be used as the foundation to further understand

factors influencing nest survival, population dynamics, and the effect of land use change

on predator-prey dynamics.

5.3 Study Area

Our study was in Canada’s Boreal Plains ecozone and Alberta’s boreal forest region,

hereafter, the western boreal forest (WBF), north of Slave Lake, Alberta, Canada, near

Utikuma Lake (Fig. 5.1; (Downing & Pettapiece 2006)). We selected study sites using a

hierarchical selection criteria based on spatial layers, which considered cumulative energy

development, duck density, land cover type, and excluded recently burned or logged areas

(Dyson et al. 2019). We selected sites that represented the gradient of industrial devel-

opment density on the landscape and had predicted duck pair densities greater than the

median for the region (4 pairs/2.5 km2; Ducks Unlimited Canada 2014), were accessible

(i.e., within ≈3 km of a road or trail), and contained at least one water body (> 1 ha;

Dyson et al. 2019).
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Figure 5.1: Map of the study area including locations of study sites where real and artificial

nests were monitored from 2016 – 2018 in the boreal forest near Utikuma Lake, Alberta,

Canada. Inlay displays the location of the study area in the boreal forest relative to the

province of Alberta, Canada.
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5.4 Methods

We located nests of ground nesting ducks by nest searching on foot around the shoreline

of wetlands (Klett et al. 1986). We searched 16 sites in 2016, 24 sites in 2017, and 25 sites

in 2018. We searched most sites in subsequent years, except for one site that was only

searched in 2016 and one site searched in 2016 and 2018 (Fig. 5.1). When a nest was

discovered, we identified the species of duck nest based on a combination of characteristics

of the hen, down and breast feathers in the nest, and egg morphology. We also recorded

clutch size and the age of the nest as determined by candling and floating eggs (Weller

1956; Dyson et al. 2019).

We installed camera traps (Moultrie 1100i, Moultrie Feeders, Birmingham, AB, USA)

between 1 and 3 m from the nest bowl on natural vegetation features (e.g., trees or shrubs)

that provided suitable locations for inconspicuous installation (i.e., we were able to in-

stall the camera without disturbing nesting cover). Cameras were positioned using the

viewfinder option on the camera to ensure the nest bowl occurred in the field of view.

Cameras were set to take a burst of 3 still images when triggered with a 5 second quiet

period between triggers. We chose a short quiet period to maximize our probability of de-

tecting a nest predation event. Day time images were captured in colour, while nighttime

images were black and white and illuminated by an infrared flash.

We also placed artificial nests (n = 120 – 140 per year) at a subsample of 12 – 14 sites

(10 nests/site) where we searched for real nests (Major & Kendal 1996; Bayne & Hobson

1997; Gunnarsson & Elmberg 2008; Ringelman et al. 2012). Artificial nests were deployed

during the early (≈ 15 May initiation) and late (≈15 June initiation) nesting period (60 –

70 nests/period; 6 – 7 sites/period). Nests were placed along 2 – 300 m transects at each

site perpendicular to the water’s edge at 0, 50, 100, 200, and 300 m. Transects were set
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up at each site to maximize the distance between the two transects to achieve the greatest

coverage at each respective study site. We placed nests along transects in approximate

locations that closely resembled real nests nearest the transect and formed nest bowls and

deposited 3 – 9 eggs/nest to mimic the appearance of real nests (Gunnarsson et al. 2006).

We attempted to place 9 eggs in all nests in 2016 and 6 eggs in all nests in 2017 and 2018;

however, logistical constraints (e.g., cracked or broken eggs) resulted in less eggs being

placed in nests on some occasions.

We used large chicken eggs for artificial nests that were dyed to mimic the appearance

of Mallard (Anas platyrhynchos) eggs with food coloring and tea (2016), tea only (2017),

or willow sapling bark shavings (2018; Guyn & Clark 1997). We found that willow bark

shavings provided the desired color and did not fade or wash off over time compared to

the tea and food coloring. Artificial goose down was used in all nests constructed during

the early period in 2016 and half of the nests in the late period to mimic the presence of

duck down; however, we did not continue its use in 2017 and 2018. We were not able to

procure duck down for our study (Gunnarsson & Elmberg 2008) and following the use of

goose down in 2016, we decided it was not necessary to achieve the objective of identifying

potential nest predators of boreal ducks. All nests were partially covered with down or

vegetation before the departure of an observer.

In 2016, we distributed camera traps (n = 15) on artificial nests as follows: 2 sites

received 5 traps applied to one whole transect (all 5 nests), 1 site received 3 traps applied

to one transect on nests 1, 3, and 5 and one site received 2 traps on nests 2 and 4 during

the early period. We repeated that strategy during the late nesting period; however, 2

additional sites received 2 cameras for a total of 19 cameras deployed during the late

period. In 2017 and 2018, we installed camera traps (n = 30) on half of the artificial nests

at each site (5 cameras/site), placing traps on nests 1, 3, and 5 on one transect and nests 2
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and 4 on the other at each site to maximize our ability to identify species-specific predation

events. We determined transect camera distribution prior to the site visit by flipping a

coin.

We monitored nests every 7 – 10 days by visiting the nest site to confirm the status of

the nest and count the number of eggs present. Once the fate of a nest was confirmed, we

reviewed camera photos and identified nest predators for nests that were not successful.

One reviewer (M. Dyson) identified all images of predators to species whenever possible;

however, all weasel predation events were recorded as Mustela spp., because short-tailed

(M. erminea) and least weasels (M. nivalis) occur in the study area and it was difficult to

differentiate the species in most images. We did not identify predators for nests that were

not monitored with cameras, because evidence from only nest remains can produce biased

results (Sargeant et al. 1998; Larivière 1999). Field work practices and procedures were

approved and permitted by University of Waterloo Animal Use Protocols (16-04,17-03), a

Canadian Wildlife Service Scientific Research Permit (16-AB-SC004), a Canadian Wildlife

Service Migratory Bird Banding Permit (0077AR), and Alberta Environment and Parks

Wildlife Research and Collection permits (55236, 55237, 56909, 56910, 18-419).

5.5 Results

We found 167 duck nests, of which 147 were active when found and deployed 380 artifi-

cial nests from 2016 – 2018 (Table 5.1). We located nests of American Wigeon (Mareca

americana), Blue-winged Teal (Spatula discors), Canvasback (Aythya valisineria), Green-

winged Teal (Anas crecca), Lesser Scaup (Aythya affinis), Mallard, Northern Shoveler

(Anas clypeata), and Ring-necked Duck (Aytha collaris) nests (Table 5.1). We installed

camera traps on 43% of artificial nests (n = 164) and 36% of real nests (n = 53) over
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3 years (Table 5.2). We detected nest predation events at 41% of nests monitored with

camera traps (n = 89), with 45% (n = 24) at real nests and 40% (n = 65) at artificial

nests. We did not detect any partial predation events.

Table 5.1: Summary of nest searching and monitoring efforts of real and artificial nests in

the western boreal forest, Alberta, Canada, from 2016 to 2018.

Nest typea # of nests % Apparent suc-

cess

% Abandoned or

flooded

% Predated

2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018

Artificial 120 140 120 43 51 71 5 0 0 53 49 29

Early 60 70 60 12 54 58 3 0 0 85 46 42

Late 60 70 60 73 49 83 7 0 0 20 51 17

Real 57 54 56 21 35 38 16 11 18 63 54 45

AGWT 7 9 1 57 44 0 0 22 100 43 33 0

AMWI 4 3 7 25 67 29 0 0 29 75 33 43

BWTE 15 15 19 13 33 47 20 0 5 67 67 47

LESC 4 3 3 75 0 33 0 0 33 25 75 33

MALL 12 10 10 8 40 40 25 10 30 67 50 30

CANV 0 0 1 0 0 100 0 0 0 0 0 0

NSHO 1 0 1 0 0 0 0 0 0 100 0 100

RNDU 5 10 14 20 40 29 60 20 14 20 40 50

Unknown 9 4 0 0 0 0 0 25 0 100 75 0

aAGWT = American Green-winged Teal, AMWI = American Wigeon, BWTE = Blue-winged Teal,

LESC = Lesser Scaup, MALL = Mallard, CANV = Canvasback, NSHO = Northern Shoveler,

RNDU = Ring-necked Duck.
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We identified 8 species of duck nest predators; 6 mammal and 2 avian species (Table

5.3). Common Raven (Corvus corvax ; hereafter ravens) and American black bear (Ursus

americanus ; hereafter black bears) were the most frequent nest predators detected at real

and artificial nests combined (Table5.3; Fig.5.2; Fig.5.3). However, short-tailed or least

weasel (Mustela spp.) were the most common mammalian predator of real nests. Real

nests were also predated by Canada lynx (Lynx canadensis), coyote (Canis latrans), and

Red-tailed Hawk (Buteo jamaicensis) (Table 5.1; Fig.5.2). More specifically, we confirmed

predation of the incubating hen at 3 of the 4 lynx events and 1 of the 3 coyote events.

Additionally, we suspect that both of the Red-Tailed hawk predation events also targeted

the hen (Fig. 5.2) and not the eggs, but we did not record confirmation of the hen being

carried off or recover a carcass at either event. We also detected a Blue-winged Teal

narrowly escaping a Red-tailed Hawk on another occasion; however, her nest was ultimately

successful. Artificial nests differed from real nests in that we did not observe predation

by Canada lynx or Red-tailed Hawk. Two additional species were identified predating or

disturbing artificial nests; American marten (Martes americana) predated eggs and red

squirrels (Tamiasciurus hudsonicus) removed or rolled eggs around the nest bowl (Table

5.3; Fig. 5.3).
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Table 5.2: Summary of cameras deployed on artificial and real duck nests from 2016 to

2018 in the western boreal forest, Alberta, Canada.

2016 2017 2018 Total

Nest Artificial Real Artificial Real Artificial Real Artificial Real

Successful 18 8 41 4 47 7 106 19

Abandoned 0 3 0 2 0 4 0 9

Predated 16 9 29 4 13 12 58 25

Total 34 20 70 10 60 23 164 53

Table 5.3: Summary of observed western boreal forest duck nest predators at artificial and

real nests as detected by cameras from 2016 to 2018 in Alberta, Canada.

Artificial Real

Predator 2016 2017 2018 Total Percent 2016 2017 2018 Total Percent

Common Raven 6 11 8 25 38% 1 0 2 3 13%

Red-tailed Hawk 0 0 0 0 0% 1 0 1 2 8%

American black bear 7 10 2 19 29% 3 1 0 4 17%

Mustela spp.a 0 1 1 2 3% 1 2 3 6 25%

American marten 0 1 0 1 2% 0 0 0 0 0%

Canada lynx 0 0 0 0 0% 1 1 2 4 17%

Coyote 0 0 1 1 2% 1 0 2 3 13%

Red squirrel 1 4 1 6 9% 0 0 0 0 0%

Unknown 6 5 0 11 17% 1 0 1 2 8%

Total 20 32 13 65 100% 9 4 11 24 100%

aShort-tailed or least weasel.
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Figure 5.2: Images captured of nest predation events from real duck nests in the boreal

forest of Alberta, Canada. American black bear predating an American Green-winged Teal

nest (A). American black bear predating an American Wigeon nest (B). Coyote predates

an egg from a Blue-winged Teal nest (C). Canada lynx encounters a Mallard nest (D).

Canada lynx carries its Ring-necked Duck quarry following a predation event (E). Mustela

spp. predating Mallard nests, with circles around the individual for aid in locating (F and

I). Red-tailed Hawk lands beside a Blue-winged Teal nest during a predation event (G).

Common Raven carries away a Lesser Scaup egg during a predation event (H).
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Figure 5.3: Images captured of nest predation events from artificial duck nests in the boreal

forest of Alberta, Canada. American black bear sow and her cubs (A). American black

bear (B). Coyote carries an egg away (C). American marten (D). Mustela spp. (E). Red

squirrel carries an egg (F). Common Ravens (G – J).
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5.6 Discussion

We identified 8 species of duck nest predators in the boreal forest using camera traps (Table

5.3; Fig. 5.2; Fig. 5.3). Our results fill a research gap by identifying important predators of

duck nests in the boreal forest, a continentally significant breeding area. Notably, Common

Raven were identified as a primary nest predator, which is consistent from other breeding

areas and with other precocial birds (Sargeant et al. 1993; Dinkins et al. 2014). However,

the primary mammalian predators were different from other regions (Sovada et al. 2001),

suggesting that boreal ducks likely face unique predation pressures, and therefore, require

different considerations for management and conservation strategies.

We observed differences in predator species richness and frequency of predation between

real and artificial nests (Table 5.3), which may be related to predator foraging strategies,

differences between predators of eggs vs hens, or bias associated with artificial nests (Butler

& Rotella 1998; Thompson & Burhans 2004; Ball et al. 2008). Considering the results of real

and artificial nests together suggest that black bear and Common Raven were responsible

for the majority of nest predation (Table 5.3). However, considering only real nests, we did

not identify an individual species responsible for the majority nest predation, while nest

predation in other regions is often largely driven by one or two primary species (Sargeant

et al. 1993; Sovada et al. 2001). Predators that were only detected at real nests (e.g.,

Canada lynx, Red-tailed Hawk) likely have a specific foraging tactic related to identifying

the hen on the nest as opposed to the eggs (Table 5.3; Fig. 5.2). These predators may have

used visual cues of the hen entering and exiting the nest site to locate the nest (Whelan

et al. 1994; Clark & Wobeser 1997; Roper & Goldstein 1997; Opermanis 2004). For other

species, such as red squirrels, hen presence at nests could deter predation through nest

defence or nest crypsis (Montgomerie & Weatherhead 1988). We hypothesize that the lack
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of a dominant nest predator from real nest detections may be a result of duck nests being

an opportunistic prey item, because they occur at lower nest densities in the boreal forest,

which result in inefficient search efforts for many predators. Artificial nests provided us

a viable technique for our study objectives; however, we concur with other authors that

caution should be taken when making inference from these data as they can over or under

represent predators of interest (Butler & Rotella 1998; Zanette 2002; Ball et al. 2008).

To our knowledge, our results provide the first confirmed observations in the literature

of black bears and Canada lynx predating ducks nests. Black bears were egg predators and

we did not record black bears predating hens. Other studies have suspected black bears

as predators (Esler & Grand 1993; Corcoran et al. 2007) or observed black bears predat-

ing a Canada Goose (Branta canadensis) nest in the Arctic (Abraham et al. 1977) and

grizzly (Ursus arctos horribilis) and polar bears (Ursus maritimus) have been detected eat-

ing Lesser Snow Goose (Anser caerulescens caerulescens) and Common Eider (Somateria

mollissima sedentaria) nests (Johnson & Noel 2005; Gormezano et al. 2017). As general-

ist, opportunistic predators, we suspect that black bears likely randomly encounter boreal

duck nests on the landscape while foraging in productive wetland riparian areas in the early

spring (McDonald & Fuller 2005; Mosnier et al. 2008; Bastille-Rousseau et al. 2011; Popp

et al. 2018). For example, black bears are calorically limited following hibernation and

often forage on new shoots of graminoid species (Noyce et al. 1997; Bastille-Rousseau et al.

2011), which are often abundant along wetland edges and is important to microhabitat

selection of boreal ducks (Dyson et al. 2019).

Canada lynx likely fill a similar niche in the boreal forest that bobcats (Lynx rufus)

occupy elsewhere and have been reported as predators of precocial birds (e.g., sage-grouse;

Lockyer et al. 2013; Kirol et al. 2018, ; bobwhites, Staller et al. (2005)). The predation

events that we observed resulted in confirmed hen mortality and likely egg consumption on

111



3 of 4 occasions (Staller et al. 2005; Lockyer et al. 2013). Canada lynx are an interesting

predator to consider in the boreal due to the observed cyclic population fluctuations with

their primary prey (Krebs et al. 1995), snowshoe hares (Lepus americanus). Duck nests,

or incubating hens, may provide an abundant alternative prey item (Mowat et al. 2001;

Squires et al. 2010) for Canada lynx during spring and predation risk to hens could vary

annually with hare abundance (Boutin et al. 1995). Lynx often engage in a sight foraging

approach (Squires et al. 2010), which may result in lynx visually identifying nest sites of

their potential prey by observing hen activity.

Corvids have been identified as important nest predators for many avian species (An-

dren 1992; Clark et al. 1995; Latif et al. 2012; Dinkins 2013; DeGregorio et al. 2016), and

different corvid species exist in varying abundances across the entire breeding range of

ducks. American Crow (Corvus brachyrhynchos) have been identified as important preda-

tors in some regions (Sargeant et al. 1993; Clark et al. 1995), but Common Raven are likely

more important predators where they occur across the prairie, boreal, and into parts of

the arctic biomes, because they are often behaviourally dominant and have a larger body

size (Freeman & Miller 2018). Of concern, Common Raven abundance and distribution

has been increasing with human development and disturbance, which could increase the

risk over time for boreal nesting ducks (Angelstam 1986; Andren 1992; Bui et al. 2010;

Dinkins et al. 2014). Birds of prey (i.e., raptors; Orders Accipitriformes, Strigiformes, and

Facloniformes) may be under represented in our sample and pose a threat to incubating

hens in the boreal forest (Table 5.3), because they are relatively abundant and they may

use the hen as a visual cue for locating nests (Blohm et al. 1980; Opermanis et al. 2001;

Opermanis 2004). For example, cameras may fail to detect predation events by raptors

if they occur relatively quickly or outside of the cameras field of view and failed preda-

tion attempts on the hen may result in nest abandonment or predation characterization of
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‘unknown’ (Opermanis et al. 2001).

Species of the genus Mustela were the most frequently detected predator of real nests

(Table 5.3). We did not detect any Mustela spp. attempts at predating the incubating

hen (Fleskes 1988). In other studies, weasels often removed or foraged on eggs over an

extended time period interspersed with the return of the hen (Fleskes 1988). In our study,

weasels caused abandonment following the initial encounter by removing eggs from the

nest. Estimates of nest predation by weasels has not been well documented for ducks,

and may have been historically underestimated, and could play a large role in nest failure

for ducks (Keith 1961; Fleskes 1988). We also observed coyotes predating nests; however,

we did not observe any nest predation by red foxes (Vulpes vulpes) or gray wolves (Canis

lupus). Wolves are known to exclude coyotes and foxes from areas, which may help to

reduce the risk of nest predation from canids (Levi et al. 2012); however, changes in the

boreal forest may create more hospitable conditions for coyotes and could be a concern

moving forward (Latham et al. 2013).

Climate and land use change are among the greatest threats to wildlife in the boreal

forest (Slattery et al. 2011; Stralberg et al. 2015; Hebblewhite 2017). These changes have

the potential to influence predator communities, altering their distribution and abundance,

and therefore, have potential to influence waterfowl demographics (Fisher & Burton 2018).

For example, black bear and Common Raven have increased in abundance in relation to

industrial development (Andren 1992; Dinkins 2013; Tigner et al. 2014; DeMars & Boutin

2018). Canada lynx and coyote have been shown to be development tolerant species (Fisher

& Burton 2018); however, these relationships are expected to vary regionally. For example,

in response to land use change, predator management in the boreal forest has reduced wolf

populations to benefit caribou (Hervieux et al. 2013; Serrouya et al. 2019), which could

increase the abundance of coyotes on the landscape (Levi et al. 2012; Newsome & Ripple
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2015). Finally, climate and land use change can result in the introduction of novel predators

as ranges shift (Heim et al. 2017). For example, predators such as striped skunk (Mephitis

mephitis) and norther raccoon (Procyon lotor) are currently rare in the boreal; however,

species abundance seems to be increasing in the boreal transition zones with predicted

further range expansion north (Pybus 1988; Larivière 2004; Latham 2008).

Our work provides baseline data necessary to build our understanding of ducks breed-

ing in the boreal forest. Identifying boreal duck nest predators provides ecologists and

managers with information needed to make predictions and decisions regarding the affect

of land use and climate change on boreal waterfowl populations. A broader understanding

is still required on how duck nest predator communities vary across space and time in the

boreal forest and how rapid land use change and climate change will interact to influence

predator-prey dynamics.
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Chapter 6

Anthropogenic disturbance alters

space use of terrestrial mammals in

the western boreal forest of Alberta,

Canada

6.1 Overview

Large scale anthropogenic disturbance is causing biodiversity loss and altering mammal

community composition and abundance at a global scale. In Alberta’s boreal forest, oil and

gas exploration and extraction activities have produced a variegated landscape exposing

wildlife to intensive local disturbance and broad landscape disturbance, particularly from

anthropogenic linear features. Effects of disturbance on boreal woodland caribou and their

predators, including wolves and black bears, have been well studied; however, the effect of
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oil and gas on the broader community of boreal mammals remains less well understood. As

part of a broader study to understand the effect of industrial development on the nesting

ecology of ducks, we deployed 133 camera traps across 59 sites for a corrected total of 7857

trap nights from 2016 – 2018. We found predator species as a group had higher detection

probabilities with greater industrial footprint, whereas prey species had lower detection

probabilities. Coyotes showed both an increased detection probability and probability of

use in association with industrial footprint, while bears and wolves had a higher detection

probability with greater industrial footprint and Canada lynx did not appear to respond to

development. For prey species, deer detection probability was lower in areas with increased

industrial footprint, while snowshoe hare had an increased probability of detection, and

moose appeared to show no response. In addition, we observed species specific responses to

detection probability on linear features, suggesting varying behavioural responses to these

industrial features. Our evidence suggests that industrial development is altering habitat

use of predators and prey in the boreal forest. Together with previous identification of

duck nest predators, our results highlight that industrial development increases habitat

use and activity by predators in duck nesting habitat increasing predation risk. Our study

provides further evidence of the far reaching effects of industrial development on boreal

forest mammal communities highlighting the need for further study.
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6.2 Introduction

Understanding species-habitat relationships is central to effective conservation and man-

agement. Globally, anthropogenic land use is changing species-habitat relationships leading

to altered species interactions and biodiversity loss (Tscharntke et al. 2012). One mech-

anism of biodiversity loss involves alteration to predator-prey interactions, which shape

ecosystem function and affect distribution and abundance of organisms (Sih et al. 2011).

Altered competition dynamics among species can decouple coexistence mechanisms, such

as spatial segregation associated with space use and resource availability, which can funda-

mentally change predator and prey community structure (Amarasekare 2003; Gorini et al.

2012). Examining the response of multiple species to anthropogenic change documents

community shifts and provides insight into potential underlying mechanisms that can be

used to guide management and improve our understanding of species ecology (Burgar et al.

2018; Farr et al. 2019).

Perturbations in predator-prey interactions as a result of anthropogenic disturbance

have caused major ecological change globally (Venter et al. 2016; Burton et al. 2011;

Packer et al. 2013; Lamb et al. 2017; Hebblewhite 2017). Agriculture and urbanization

have historically been leading causes of land use change (Meyer 1992; Bayne & Hobson

1998; Rashford et al. 2011); however, industrial development from oil and gas exploration

is a contemporary threat causing habitat loss and fragmentation across biomes (Naugle

2011; Allred et al. 2015; Hebblewhite 2017; Meixell & Flint 2017). Varying responses by

mammals from predator and prey guilds to development create difficulty in arriving at

generalizations from individual species responses, highlighting the value of simultaneous,

multi-species approaches (Heim et al. 2019). For mammals, populations of some species

may increase while others may experience declines in response to anthropogenic distur-
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bance (Fisher & Burton 2018). For example, habitat generalist species (e.g., coyote, Canis

latrans ; white-tailed deer, Odocoileus virginianus) are typically predicted to increase in

abundance (Latham et al. 2011a; 2013; Fisher et al. 2020), while habitat specialist species

(e.g., wolverine, Gulo gulo; woodland caribou, Rangifer tarandus caribou) are predicted to

decline (Sorensen et al. 2008; Stewart et al. 2016; Scrafford et al. 2017).

In North America, few ecosystems exist that are not experiencing wildlife community

change as a result of anthropogenic disturbance (Caro et al. 2012). In the intermountain

west, oil and gas development has altered avian and mammal communities with increased

nest predation on sage grouse (Centrocercus urophasianus) and songbirds (Fedy et al. 2015;

Hethcoat & Chalfoun 2015a; Kirol et al. 2020). In the prairies, land conversion to agri-

culture has resulted in mesopredator release greatly increasing predation on nesting birds,

particularly ducks (Crooks & Soulé 1999; Phillips 2001; Frey & Conover 2006; Prugh et al.

2009). With the global demand for oil and gas resources predicted to increase, information

about multiple species responses to development will improve our ability to effectively mit-

igate negative consequences and conserve wildlife on these working landscapes (Northrup

et al. 2013; Tattersall et al. 2020).

In the boreal forest of North America, substantial growth in resource extraction indus-

tries, which include oil and gas and forestry, are causing landscape alteration as a result of

industrial infrastructure and exploration activities (Pickell et al. 2015; Hebblewhite 2017).

Current disturbance levels caused by industrial infrastructure exceed the historical range

of variability caused by natural disturbance from wildfire and pests in this region raising

concerns for the persistence of boreal wildlife (Pickell et al. 2015). Industrial linear features

are the most prominent oil and gas associated infrastructure and include roads, pipelines,

and seismic lines, which can be particularly influential on wildlife populations (Pickell et al.

2015; DeMars & Boutin 2018). The most common and widely distributed industrial linear
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features are seismic lines (Dabros et al. 2018), which are used to explore for oil and gas and

can occur at high densities (Lee & Boutin 2006; Latham et al. 2011b; Dabros et al. 2018).

These industrial linear features not only facilitate future development (i.e., drilling of wells,

establishment of pipelines; (Johnson et al. 2020), but they also facilitate the movement of

some wildlife (McKenzie et al. 2012) allowing for more efficient travel (Latham et al. 2011b;

Dickie et al. 2017; Finnegan et al. 2018) and access for existing and novel predator species

(Latham 2008; Latham et al. 2013; DeMars & Boutin 2018).

The wolf-caribou system has received the greatest amount of attention in the literature

(Festa-Bianchet et al. 2011; Boutin et al. 2012; Serrouya et al. 2016; 2019; Hebblewhite

2017; Mumma et al. 2018; Johnson et al. 2019). In summary, strong evidence suggests

the creation of early seral habitat from forestry cutblocks has resulted in an increase in

abundance of primary prey (e.g., moose, Alces alces ; white-tailed deer) for gray wolves

(Canis lupus) resulting in increased wolf abundance (DeCesare et al. 2010; Hervieux et al.

2013). Subsequently, the creation of industrial linear features, namely seismic lines, fa-

cilitates wolf travel and provides access to habitat that was previously difficult to access,

such as peatlands favored by caribou. This results in increased predation rates on caribou

due to reduced isolation from wolves (Latham et al. 2011b; Muhly et al. 2015; Serrouya

et al. 2016; Newton et al. 2017; Mumma et al. 2018; Pigeon et al. 2020). Other predators,

such as black bears (Ursus americanus), select linear features for travel over interior forest

(Tigner et al. 2014).

Considering a broad suite of species and impact of intervention on their interactions

in management recommendations will likely produce the greatest conservation return on

investment (Heim et al. 2019; Tattersall et al. 2020; Wittische et al. 2020). For example,

wolves can play an important role in mediating mesopredator populations, such as coyote

(Levi et al. 2012; Latham et al. 2013), whom are predators of small mammals and avian
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species (Latham et al. 2013; Dyson et al. 2020). Therefore, it is plausible that predator

control efforts (Hervieux et al. 2014; Serrouya et al. 2019) could have unintended con-

sequences on alternative prey species (e.g., small mammals or ducks) if novel predators

like coyotes or other mesocarnivores (e.g., red fox, Vulpes vulpes ; striped skunk, Mephitis

mephitis ; northern racoon, Procyon lotor) are able to colonize the boreal forest (Latham

2008; Latham et al. 2013). There is concern for the effect of predator community change

on nesting birds (Mahon et al. 2019; Roy et al. 2019; Dyson et al. 2020) with habitat

alteration and increased predation leading to biotic homogenization of avian communities

(Mahon et al. 2016). Broader understanding of species responses to industrial footprint in

the boreal forest outside of the caribou-wolf system is clearly needed to effectively conserve

wildlife in this landscape.

In this study, we monitored how terrestrial mammals (hereafter mammals) responded

to industrial development in central Alberta’s boreal forest using camera traps. Specif-

ically, we sought to understand if distribution and habitat use by mammalian predator

and prey species differed as a response to the industrial footprint. Our efforts were part

of a broader study investigating the effect of industrial development on ducks (Family

Anatidae), a prey species of many terrestrial mammals in the region (Dyson et al. 2020).

Consistent with previous research (Burgar et al. 2018; Fisher & Burton 2018; Tattersall

et al. 2020), we hypothesized that the industrial footprint affected predator and prey space

use. We predicted that in areas with greater industrial footprint there would be a higher

probability of detecting predator species given a higher probability of use and abundance,

while prey species would have a lower detection probability because of a lower probability

of use and abundance due to a greater risk of predation. We also predicted that responses

would vary by species within guilds having important consequences for management and

conservation. Our multispecies approach provides further information about mammal re-
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sponses to industrial development and advances conservation efforts for Alberta’s boreal

forest.

6.3 Methods

6.3.1 Study Area

Our study was located north of Slave Lake, Alberta, Canada, in the province’s boreal for-

est natural region which is within Canada’s Boreal Plains ecozone; hereafter the western

boreal forest (WBF; Fig. 6.1). This region contains interspersed deciduous, mixed-wood,

and coniferous forests in combination with extensive wetland complexes. Historically, nat-

ural disturbance events, such as insect outbreaks and wildfire have shaped this landscape

(Downing & Pettapiece 2006; Carlson & Browne 2015). However, increasing pressure from

human land use related to forestry and oil and gas development over the past few decades

have created a prominent industrial footprint (Carlson & Browne 2015; Pickell et al. 2015).

This study was co-located with other research investigating relationships between in-

dustrial development, duck nest success, and their predators (Dyson et al. 2019; 2020).

Therefore, our sites were selected to prioritize duck nesting areas and focused on wetlands

using a hierarchical selection criteria (Dyson et al. 2019). We considered cumulative en-

ergy development, duck pair density, accessibility, land cover type, and forestry activities.

We excluded sites that were recently logged or burned (within 20 years), because we were

interested in understanding the effect of industrial development on ducks and their preda-

tors and wanted to control for potentially confounding factors (Dyson et al. 2019). We

selected sites across the gradient of industrial development levels found in the study area

that were within at least 3 km of a vehicle accessible road and contained at least 1 water
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body (>1 ha). A description of the study area and our process of site selection can be

found in (Dyson et al. 2019, or Chapter 2).

Figure 6.1: Map of the study area and study sites in the western boreal forest of Alberta,

Canada from 2016 to 2018. Symbology for industrial development features is presented in

the legend. Also shown is the gradient of industrial footprint summarized with a moving

window at the 2500 m scale from light to dark. The right panels are examples of camera

placement by year for 3 separate sites with a scale bar provided for reference. The top

panel is a high development site, the middle panel is a low development site and the lower

panel is a medium development site including different camera placement in 2016, 2017,

and 2018.

122



6.3.2 Field Methods

We established 12–25 study sites per year from 2016 to 2018 and installed 2-4 cameras

(Reconyx Hyperfire PC900, Reconyx Inc., Holmen, Wisconsin, USA) at each site for 20–90

days (Table 6.1, Table 6.2). In 2016, we had 20 cameras, therefore, we used shorter

deployment periods (20–30 days), more cameras per site (2–4) and switched cameras to

different sites half way through the season to maximize spatial coverage. We purchased an

additional 20 cameras for 2017 and 16 cameras for 2018 and used 2 cameras per site that

were left in place for the duration of the study period ( 90 days) in those years.

We installed cameras to maximize detection probability by placing them within ap-

proximately 500 m of a wetland along areas of anticipated wildlife use, which included

industrial linear features at more developed sites and existent wildlife trails at sites that

lacked industrial linear features (Cusack et al. 2015). We separated cameras by a mini-

mum of 150 m in 2016 and at least 500 m in 2017 and 2018. We positioned cameras on

trees at 50–100 cm above ground to capture medium to large-sized mammals and secured

cameras to trees with python locks (Master Lock, Oak Creek, Wisconsin, USA) or steel

wire. Cameras were triggered by an infrared motion sensor and we programmed cameras

to high sensitivity, 5 pictures per trigger with a 3 second interval, and a 30 second quiet

period. Pictures were recorded at a resolution of 1080P and each camera stored images on

a 32 GB class 10 SD card (SanDisk, Milpitas, California, USA). For night time images,

we used the illuminator and high quality setting. Cameras were powered by 12 AA NiMH

rechargeable batteries. We monitored cameras every 7 – 21 days related to field logistics

and replaced SD cards, batteries when they were below 50%.

In 2017 and 2018, cameras were paired with a scent lure (hereafter lure; O’Gorman’s

Long Distance Call, Broadus, Montana, USA) to maximize detection probability and a
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hair snag for noninvasive genetic sampling, where the scent lure and hair snag were placed

within each camera’s field of view 3–5 m from the camera (Fisher et al. 2016; Stewart et al.

2016). We decided to use lure after a low number of detections in 2016. In 2017, we added

lure to 1 of 2 cameras per site and in 2018 we added it to all cameras. We applied scent

lure using a medical tongue depressor and smeared approximately 1 tablespoon of lure on

a tree directly across the camera at approximately 8 feet high. In 2017, we determined

what camera received lure by flipping a coin. Lure was reapplied at each camera visit.

Lure can increase the amount of time an individual spends in detection range, increasing

the probability of detection, particularly for carnivores and lure does not have a negative

effect on herbivores (Fisher & Burton 2012; Buyaskas et al. 2020; Holinda et al. 2020). We

used lure to maximize detection probability and assumed that the zone of influence for lure

was smaller in spatial scale than our site occupancy estimates (Stewart et al. 2019a). We

were primarily interested in occupancy patterns across space and sampled the same sites

annually across all years. We accounted for the variation in sampling with our modeling

approaches by explicitly including a lure term for detection and a year term for occupancy.
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Table 6.1: Description of study design and variables used to investigate occupancy.

Study design

Site Sites are independent of each other in terms of occupancy status. Each site consists

of 2-4 cameras separated by a minimum of 200 m and median of 541 m.

Method In 2016, we placed 2 – 4 cameras per site with no lure for up to 30 days at a time.

In 2017 and 2018, we placed 2 cameras per site for the whole season (≈ 90 days; see

Table 6.1). In 2017, we randomly selected one of two cameras at each site for lure

application and in 2018 we used lure at all cameras.

Camera One Reconyx PC900 infrared motion-triggered camera.

Parameters

p – detection

probability

The probability of detecting a species given it occupies the site and is available to

be detected at a camera.

Θ – availability The probability that at least one individual is using the area immediately surround-

ing the site on a given 10 day survey occasion (i.e., available for detection).

Ψ – habitat use

or occupancy

The probability of habitat use at a site. The probability of an individual using the

habitat surrounding a site over the course of our survey (2016 – 2018).

Variables

Lurea Whether scent lure was used at the camera.

Linea Whether the camera was on an industrial linear feature (e.g., road, seismic line,

pipeline).

Yearb Year of study (2016, 2017, 2018)

Wetland Proportion of wetland surrounding a site centroid (for Ψ and Θ) or camera (for p).

Upland Proportion of upland surrounding a site centroid (for Ψ and Θ) or camera (for p).

Footprint Proportion of cumulative industrial development features (e.g., well pads, seismic

lines, pipelines) surrounding a site centroid (for Ψ and Θ) or camera (for p).

Scales

90 90 m buffer surrounding a camera used for detection models p

300 300 m buffer surrounding a camera used for detection models p

1000 1000 m buffer surrounding a camera used for detection models p

2500 2500 m buffer from the centroid of the study site used for Ψ

5000 5000 m buffer from the centroid of the study site used for Ψ

aIncluded only as covariates on detection probability

bIncluded only as a covariate on habitat use to account for the stacked design



Table 6.2: Summary of camera operation (mean and range) from 2016 – 2018 in the western

boreal forest of Alberta, Canada.

Variable 2016 2017 2018

Number of sites 12 22 25

Number of nights 97.5 (72 – 124) 134.4 (78 – 158) 156.7 (112 – 176)

Active nights 97.5 (72 – 124) 131.1 (77 – 158) 152.1 (105 – 176)

Cameras/site 3.25 (2 – 4) 2 (NA) 2 (NA)

Setup dates Jun 06 (May 15 – Jun 26) May 19 (May 08 – Jun 19) May 14 (May 06 – Jun 05)

Retrieval dates Jul 07 (Jun 17 – Jul 26) Jul 26 (Jul 25 – Jul 28) Aug 01 (Jul 31 – Aug 02)

6.3.3 Analytical Methods

We processed camera images and identified species using Timelapse 2 software (Green

et al. 2019). We created detection histories for mammals at each camera using camtrapR

(Niedballa et al. 2016). We considered detection events independent when there were at

least 60 minutes between detections of the same species. We defined an occasion as a

10-day period, so all images captured were collapsed into a 10-day detection history of 0

(not detected) or 1 (detected). Many cutoffs are used to define occasion lengths (Burton

et al. 2015) and we chose 10-days to accommodate the low detection rates at our study

area and to facilitate comparisons across species.

We used single-season, single-species multi-scale occupancy models (Nichols et al. 2008;

Evans et al. 2019) because they allowed us to explicitly account for the hierarchical nature of

our study design with regards to multiple cameras a site. We stacked years to accommodate

low detection rates across sites and years (Linden & Roloff 2013; Fogg et al. 2014; Burnett

& Roberts 2015; Ahlering & Merkord 2016; Fuller et al. 2016; Linden et al. 2017). Stacking

is equivalent to estimating probability of occurrence across space and time. When stacking,

126



occurrence and persistence are lumped into the same probability as opposed to the separate

parameter estimates required when using a multi-season or dynamic occupancy model

(e.g., extinction and colonization rates; MacKenzie et al. 2006). We treated each site-year

combination as a unique site and then included year as a site covariate on occupancy.

We required a minimum of 10 sites with detections for a species to be included in our

analysis (Buyaskas et al. 2020) to facilitate model convergence. We divided species detected

into functional groups of predators and prey to investigate broader ecological patterns in

addition to species-specific models to investigate species-specific patterns (Table 6.3).
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Table 6.3: Summary table providing the number of detections and number of sites where

detections occurred and the parameter estimates for the top models by species from

2016 - 2018 in the western boreal forest of Alberta, Canada. Species without parameter

estimates were not modelled because of the low number of detections.

Species Detections Sites Ψ Θ p

β LCI UCI β LCI UCI β LCI UCI

Predator 0.973 0.842 0.996 0.847 0.661 0.94 0.366 0.279 0.462

Black bear 273 54 0.954 0.612 0.992 0.818 0.55 0.943 0.303 0.206 0.415

Canada lynx 26 15 0.424 0.104 0.657 0.879 0 1 0.057 0.007 0.326

Cougar 1 1 - - - - - - - - -

Coyote 43 20 0.462 0.238 0.681 1 0 1 0.091 0.044 0.175

Fisher 9 8 - - - - - - - - -

Wolf 47 19 0.485 0.194 0.763 0.757 0.053 0.994 0.114 0.032 0.315

Marten 2 2 - - - - - - - - -

Weasel sp. 1 1 - - - - - - - - -

Prey 1 - - 0.803 0.033 0.731 0.58 0.499 0.659

Caribou 14 6 - - - - - - - - -

Deer 672 50 0.865 0.694 0.95 0.705 0.615 0.781 0.542 0.446 0.637

Elk 3 3 - - - - - - - - -

Moose 83 35 0.74 0.528 0.878 0.822 0.055 0.997 0.13 0.058 0.269

Snowshoe hare 115 19 0.568 0.364 0.751 1 0 1 0.091 0.054 0.158
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Variables

We developed a suite of biologically relevant variables to include in our multiscale oc-

cupancy models (Table 6.1). We included whether a camera was on an industrial linear

feature (e.g., seismic line, pipeline) or not and the presence of lure for the detection process

only and we included year for the occupancy process to account for the stacked nature of

our data. Variables related to land cover and land use were considered for both detection

and occupancy processes, which were represented by wetland and upland land cover derived

from Ducks Unlimited Canada’s Enhanced Wetland Classification layer (Ducks Unlimited

Canada 2011). We also included a cumulative industrial development layer for detection

and occupancy that included the aerial footprint of all industrial features occurring on the

landscape, which we derived from the Alberta Biodiversity Monitoring Institute’s Human

Features Inventory (ABMI 2017).

We wanted to consider the scale effect for the land cover and land use variables because

we predicted that spatial scale would affect species responses (Fisher et al. 2011; Toews

et al. 2017; Stuber & Fontaine 2019). Therefore, we quantified these variables at multiple

spatial scales using moving windows summarized across buffers (90, 300, 1000, 2500, and

5000 m). To account for the spatial relationship between parameters in our model, we

only considered buffers from 90, 300, and 1000 m for detection (i.e., p) and buffers of

2500 and 5000 m for site occupancy (i.e., Ψ; Table 6.1). We expected that the probability

of detection would be associated with features closer to a camera trap (within 1000 m),

whereas, features associated with broader site occupancy would be affected by features at

broader spatial scales consistent with our multiscale approach.
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Model Development

We constructed models by first fitting the detection function (p) with unsaturated habitat

use or occupancy (Ψ) and availability (Θ) parameters (i.e., intercept only). To reduce

the number of candidate models to build, we tested all detection variables in a univariate

framework and only carried forward variables that performed better than the intercept-

only model into an additive framework and we did not consider interaction terms. We

considered intercept only forms of Θ, because we assumed it was a nuisance parameter and

is sufficient in this form to account for dependence in detections between the cameras at

a site. Upland and wetland land cover were strongly negatively correlated across spatial

scales, therefore, we did not include them in the same model for the estimation of any

single parameter.

We moved the top-ranked detection model from the additive framework forward to the

next step where it was held constant while we tested what spatial scale for each variable

performed best to explain occupancy (Ψ) in a univariate framework. We then moved

forward the top-ranked scale for each variable for occupancy into a multi-variable additive

framework. In addition, we tested for a year effect on Ψ to account for the stacked nature

of our data and selected the best model with AICc.

We fit multiscale occupancy models in R version 3.6.3 (R Core Team 2019) with the

RPresence package version 13.5 (Nichols et al. 2008; Hines 2020). For all steps of the

model fitting process, we excluded models that caused convergence issues (i.e, convergence

warning < 3) from the final candidate set. Our models likely violate the closure assumption

between sampling occasions and, therefore, we interpret our results to indicate habitat use

and not occupancy (Latif et al. 2016).
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6.4 Results

We had a total of 59 sites and 133 cameras deployed over 8044 trap nights corrected to a

total of 7857 active nights to account for camera malfunction (e.g., tampering, equipment

malfunction) across an annual trapping period starting mid May and ending at the end

of July (Table 6.2). The most commonly detected species were deer (white-tailed and

mule deer [Odocoileus hudsonicus ]), followed by black bear, and moose (Table 6.3). Our

predator multiscale occupancy models included black bear, gray wolf, coyote, and Canada

lynx (Lynx rufus), and our prey models combined deer, moose, and snowshoe hare (Lepus

americanus). Overall, detection probabilities were low (<20%) for most species except for

deer and black bear (Table 6.3). Black bear had the greatest probability of use across

the study area (Table 6.3). Here, we interpret occupancy to represent changes in habitat

use (Latif et al. 2016) and detection to reflect the intensity of use as a function of animal

abundance and selection (Steenweg et al. 2017).

The top-ranked predator model indicated that predators had a higher detection prob-

ability on industrial linear features, with lure, and with increasing industrial footprint

within 90 m of the camera (Table 6.4, Figure 6.2). Conversely, the top-ranked prey model

indicated no relationship with lure, a lower detection probability at cameras on indus-

trial linear features and with increasing industrial footprint within 1000 m of cameras and

an increased probability of detection with increasing upland land cover within 1000 m of

cameras (Table 6.4, Figure 6.2).

Species-specific responses were fairly consistent within the predator group. Black bear

probability of detection increased with lure and increasing industrial footprint within 90

m of the camera but decreased with greater proportion of wetland within 1000 m (Figure

6.3). Black bears were also less likely to use sites with greater wetland cover within 2500 m
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of a site centroid (Figure 6.3). Wolf detection probability was greater on industrial linear

features and with increasing industrial footprint within 1000 m of cameras, but declined

with lure. Wolf site use was greater in 2017 compared to 2016 and 2018 and increased

with greater proportions of upland land cover within 2500 m of a site. Coyote detection

probability increased on industrial linear features and with industrial footprint within 90 m

but decreased with increasing upland within 1000 m (Figure 6.3). Coyotes were more likely

to use sites with a greater proportion of industrial footprint within 2500 m of a site (Figure

6.3). Canada lynx had an increased probability of detection with lure and with wetlands

within 90 m (Figure 6.3). Canada lynx habitat use decreased with greater proportions of

upland within 2500m of a site and was greater in 2017 and 2018 (Figure 6.3). We were

unable to quantify the effect of industrial footprint on habitat use for the lynx models due

to convergence issues because of the low number of detections (Table 6.4).

For prey species, deer had a decreased probability of detection on lines, with increasing

wetland land cover within 1000 m, and with increasing industrial footprint within 1000

m of cameras (Table 6.5, Figure 6.4). Deer also had greater habitat use with increasing

upland land cover within 2500 m of a site (Figure 6.4). We did not include a year effect on

habitat use for the deer model because they were detected at all sites in 2017, which caused

convergence issues when included. Moose did not appear to be affected by any variables

that we tested (Figure 6.4). Snowshoe hare had an increased probability of detection on

industrial linear features, with lure, with increasing wetland land cover within 300 m and

with increasing industrial footprint within 300 m (Figure 6.4). Full model selection tables

for predator and prey species are presented in Appendix B
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Table 6.4: Multiscale occupancy model selection results summary table showing competing

models for predator species in the western boreal forest of Alberta, Canada from 2016 to

2018. Models shown are competing models (< 2 AICc) from the final stage of the model

fitting procedure (Ψ). Numbers following underscores represent the top-ranked spatial scale

for each covariate (e.g., Footprint 0090 is industrial footprint within 90 m). Full model

candidate model sets and selection procedures (e.g., p) are available in the supplementary

material for each species.

Model K LL ∆AICca ωi

Predators

Ψ() Θ() p(Lure + Footprint 0090 + Line) 6 1055.41 0 0.24

Ψ(Upland 2500) Θ() p(Lure + Footprint 0090 + Line) 7 1053.67 0.85 0.16

Ψ(Wetland 2500) Θ() p(Lure + Footprint 0090 + Line) 7 1053.73 0.9 0.15

Black bear

Ψ(Wetland 2500) Θ() p(Lure + Footprint 0090 + Wetland 1000) 7 801.18 0 0.33

Ψ(Upland 2500) Θ() p(Lure + Footprint 0090 + Wetland 1000) 7 801.52 0.33 0.28

Wolf

Ψ(Year) Θ() p(Footprint 1000 + Line + Lure) 8 253.14 0 0.25

Ψ(Upland 2500 + Year) Θ() p(Footprint 1000 + Line + Lure) 9 250.42 0.07 0.25

Ψ(Wetland 2500 + Year) Θ() p(Footprint 1000 + Line + Lure) 9 250.74 0.39 0.21

Ψ(Upland 2500 + Footprint 5000 + Year) Θ() p(Footprint 1000 +

Line + Lure)

10 249.19 1.75 0.11

Coyote

Ψ(Footprint 2500) Θ() p(Upland 1000 + Footprint 0090 + Line) 7 282.16 0 0.41

Canada lynx

Ψ(Upland 2500 + Year) Θ() p(Lure + Wetland 0090) 8 185.32 0 0.34

Ψ(Upland 2500) Θ() p(Lure + Wetland 0090) 6 190.98 0.39 0.28

Ψ(Wetland 5000) Θ() p(Lure + Wetland 0090) 6 192.06 1.47 0.16

Ψ(Wetland 5000 + Year) Θ() p(Lure + Wetland 0090) 8 186.96 1.63 0.15

aLowest AICc score for Predators = 1069.02, black bear = 817.38, wolf = 272.02,

coyote = 298.35, Canada lynx = 204.20



Table 6.5: Multiscale occupancy model selection results summary table showing competing

models for prey species in the western boreal forest of Alberta, Canada from 2016 to 2018.

Models shown are competing models (< 2 AICc) from the final stage of the model fitting

procedure (Ψ). Full model candidate model sets and selection procedures (e.g., p) are

available in the supplementary material for each species.

Model K LL ∆AICca ωi

Prey

Ψ() Θ() p(Upland 1000 + Line + Footprint 1000) 6 1137.26 0 0.48

Deer

Ψ(Upland 2500) Θ() p(Line + Wetland 1000 + Footprint 1000) 7 954.14 0 0.25

Ψ(Wetland 2500) Θ() p(Line + Wetland 1000 + Footprint 1000) 7 954.51 0.36 0.21

Ψ() () p(Line + Wetland 1000 + Footprint 1000) 6 957.46 0.73 0.18

Ψ(Footprint 5000) Θ() p(Line + Wetland 1000 + Footprint 1000) 7 955.16 1.01 0.15

Ψ(Upland 2500 + Footprint 5000) Θ() p(Line + Wetland 1000 +

Footprint 1000)

8 953.21 1.75 0.11

Ψ(Wetland 2500 + Footprint 5000) Θ() p(Line + Wetland 1000 +

Footprint 1000)

8 953.26 1.8 0.1

Moose

Ψ() Θ() p() 3 475.23 0 0.32

Ψ(Upland 5000 + Footprint 5000) Θ() p() 5 471.78 1.25 0.17

Ψ(Footprint 5000) Θ() p() 4 474.75 1.82 0.13

Snowshoe hare

Ψ() Θ() p(Line + Wetland 0300 + Footprint 0300 + Lure) 7 322.38 0 0.28

Ψ(Upland 2500) Θ() p(Line + Wetland 0300 + Footprint 0300 +

Lure)

8 320.55 0.86 0.18

Ψ(Wetland 2500) Θ() p(Line + Wetland 0300 + Footprint 0300 +

Lure)

8 320.84 1.15 0.16

aLowest AICc score for prey = 1150.87, deer = 970.34, moose =

481.67, Snowshoe hare = 338.58
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Figure 6.2: Beta coefficients and 85% confidence intervals for top models of predator and

prey species use (Ψ), availability (Θ), and detection probability (p) in the western boreal

forest of Alberta, Canada from 2016 to 2018. The beta coefficient for the prey model was

fixed to a real parameter of 1 (i.e., 100% use) and therefore is displayed at a beta estimate

of 0 with no error.
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Figure 6.3: Beta coefficients and 85% confidence intervals for top models of predator species

for use (Ψ), availability (Θ), and detection probability (p) in the western boreal forest of

Alberta, Canada from 2016 to 2018. If a parameter estimate and error for any given

parameter are not presented for a species, they were not included in the top model.
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Figure 6.4: Beta coefficients and 85% confidence intervals for top models of prey species

for use (Ψ), availability (Θ), and detection probability (p) in the western boreal forest of

Alberta, Canada from 2016 to 2018.
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6.5 Discussion

Our results indicate altered space use patterns of predators and prey caused by industrial

footprint, consistent with results elsewhere in Alberta suggesting mammal communities in

Alberta’s boreal forest are experiencing broad scale change (Burgar et al. 2018; Fisher &

Burton 2018; Tattersall et al. 2020). Increased use and detection probability for predators

in areas with greater densities of industrial footprint may indicate a behavioural shift,

making it more difficult for prey to avoid predation because of a more permanent predation

risk (Tigner et al. 2014). Prey often mitigate this potential increased risk through spatial or

temporal segregation from predators; however, this strategy may become more difficult over

time with increasing development pressure and associated shifts in mammal community

structure in the boreal forest (DeMars & Boutin 2018; Wittische et al. 2020).

Predators, as a guild, appeared to benefit from industrial footprint in our study because

of greater use and detection probability in association with industrial features, comple-

mentary to other recent research (Wittische et al. 2020). Higher detection probability of

coyotes, black bears, and wolves at cameras surrounded by more development may indi-

cate greater abundance or more frequent use of these areas (Steenweg et al. 2018). These

responses were scale dependent, where coyotes and bears showed a stronger response to

development within 90 m while wolves responded at a coarser scale of 1000 m, possibly

related to home range size (Fisher et al. 2011). Coyotes also tended to have greater use of

sites with more industrial footprint, consistent with the hypothesis that industrial footprint

facilitates coyote establishment in the boreal forest (Wheeldon et al. 2010; Latham et al.

2013). Meanwhile, our results suggest that wetlands are a preferred land cover type for

lynx and likely provide valuable foraging habitat in the spring which overlaps with hare

distribution and could facilitate opportunity to predate female ducks and their nests or
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other avian species (Dyson et al. 2020). Bears had a decreased probability of detection

in wetland habitat, consistent with bear ecology, which would predict greater detection in

upland habitat (Czetwertynski et al. 2007; Latham et al. 2011c; Tigner et al. 2014). Bears

also demonstrated a positive association with industrial footprint and are known to prefer

travel along seismic lines or roads which may also provide forage subsidies (Tigner et al.

2014; DeMars & Boutin 2018). Both canid species had increased detection on industrial

linear features, which is consistent with canid movement and foraging ecology (Latham

et al. 2013; Dickie et al. 2017). If industrial features facilitate incursions of predators into

marginal habitat or habitat that was previously more difficult to access, such as wetlands,

then predators may increase encounter rates with prey.

Prey appeared to avoid predators through decreased use or activity in areas with greater

footprint or on industrial features and with greater use of upland habitat. We found

deer were less likely to be detected with increasing footprint, which is consistent with

other research in this region (Fisher et al. 2020). Although Fisher et al. (2020) found

positive associations with block features (e.g., wells, industrials) for deer, they detected

negative association with trails or unpaved roads, which we suspect might have driven

our observed negative relationship. The increased use of upland land cover and lower

detection probability in wetland habitat is generally consistent with deer ecology for use

of preferred foraging habitat; however, their habitat preference likely varies seasonally

(Latham et al. 2011a; Dawe et al. 2014; Fisher et al. 2020). Seismic lines may have more

abundant herbaceous forage preferred by snowshoe hares promoting greater use of those

features and potentially resulting in increased abundance of this important prey species

on this landscape (Finnegan et al. 2018; MacDonald et al. 2020). None of the variables we

examined explained variation in use or detection for moose, perhaps because of the spatial

and temporal scale we measured or because moose are habitat generalists (Gillingham &
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Parker 2008; Burgar et al. 2018).

Our study suggests that spatial patterns of use may be changing for mammals in re-

sponse to anthropogenic disturbance. While mechanisms underlying change are unclear,

interspecific interactions likely play a role in addition to land cover and land use features

(Burgar et al. 2018; Wittische et al. 2020). For example, coyote and wolf detections were

driven by a different suites of variables, consistent with interspecific competition causing

coyotes to avoid wolves (i.e., coyotes avoided upland and wolves selected; Latham et al.

2013). In a separate study, coyotes selected areas away from upland boundaries and used

bogs and fens more than wolves (Latham et al. 2013). Deer appeared to use habitat associ-

ated with development less frequently given their lower detection probability, potentially as

a spatial avoidance mechanism from their primary predators, wolves and coyotes (Latham

et al. 2011a; Dawe et al. 2014). Lynx and hare both had increased detection probabil-

ity associated with greater amounts of wetland habitat and we would expect that lynx

would have strong overlap with their most common prey species (Aubry et al. 2001; Krebs

et al. 2001; Peers et al. 2020). Emerging analytical frameworks that allow for evaluation

of coexistence and community structure and behaviour from camera trap data provide

promise for future avenues of research and will improve our ability to understand the role

of species interactions on distribution and abundance (Rota et al. 2016; Frey et al. 2017;

Wittische et al. 2020). For example, while not an objective of our study, quantifying the

strength of co-occurrence within species communities or temporal niche partitioning of

spatially overlapping species could provide valuable additional insight into boreal mammal

communities.

A primary motivation for our study was to understand how shifting predator commu-

nities might affect duck nest success (Dyson et al. 2019; 2020). Our results support the

hypothesis that duck predators, such as bears and coyotes, may be more active in developed

140



areas and, therefore, have a higher probability of encountering duck hens and their nests

(Phillips et al. 2003). In addition, if coyotes are increasing their abundance and distribu-

tion in the boreal forest (Latham et al. 2013), and spatially separating from wolves by using

wetland habitats more, then ducks may face additional predation pressure that previously

did not exist in the boreal forest, if coyote predation is additive. While bears appeared

to avoid wetland habitat suggesting reduced spatial overlap with ducks, we grouped fen,

bog, and marsh into a large wetland category. Bears are known to avoid peatland habitat

(DeMars & Boutin 2018); however, we also found similar patterns of avoidance of fen and

bog habitat for ducks (Chapter 3) and marsh habitat may create areas of spatial overlap

between ducks and bears. We also previously identified that weasels (short or long tailed

weasels; Mustela ermina, M. nivalis) were important predators of duck nests in this re-

gion (25% of observed nests depredated; Dyson et al. 2020); however, we did not detect

enough mustelids for this analysis (Table 6.3) to explicitly model their relationship with

industrial footprint. Research from other regions in Alberta suggests that distributions

of larger mustelids (e.g, American marten, Martes americana; fisher, Pekani pennanti ;

and wolverine, Gulo gulo) are also changing in response to industrial footprint and that

densities are generally lower in developed areas possibly reducing predation risk for some

species (Fisher et al. 2013; Tigner et al. 2015; Stewart et al. 2016; Scrafford et al. 2017).

Finally, we also identified that common ravens (Corvus corax ) were common avian nest

predators (13% of observed nests depredated; Dyson et al. 2020); however, we were unable

capture their relationship with industrial footprint with our study design and suggest that

inclusion of avian predator community responses to development in the boreal forest is

needed. For example, ravens have generally increased in other areas with anthropogenic

development and have been expanding across western North America resulting in increased

nest predation rates of other avian species (Brussee & Coates 2018; Coates et al. 2020).
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The energy sector has invested resources into mitigating the negative effects of indus-

trial footprint through planning and restoration efforts (Dabros et al. 2018; Tattersall et al.

2019), particular for reducing wolf-caribou interactions (Finnegan et al. 2018; Pigeon et al.

2020). These efforts could have consequences for other species and influence predator-prey

interactions. For example, there is uncertainty regarding line restoration practices and

natural regeneration given that wildlife trails often remain in existence following restora-

tion and regeneration (M. Dyson personal obs., Tigner et al. 2014). In addition, while

black bear use did decrease on regenerating lines, it was still greater than use of interior

forest highlighting the potential for legacy effects of seismic lines (Tigner et al. 2014). Cur-

rent restoration efforts do not appear to have an immediate impact on reducing wildlife

use (Tattersall et al. 2019), therefore, prioritizing areas for protection with low or no de-

velopment should be an immediate goal for protected areas. Controversial management

techniques, which include wolf culling (Hervieux et al. 2014; Serrouya et al. 2019), appear

to offer temporary relief to caribou in the absence of habitat regeneration and protection.

However, these techniques may also result in unintended ecological consequences to other

species, which might include mesopredator release (e.g. increased coyotes) resulting in

increasing predation risk for other prey species in the boreal forest (e.g., ducks, hares,

rodents). Furthermore, borrow pits, a common industrial feature that produce artificial

ponds attractive to nesting ducks (Chapter 3), may increase attractiveness to predators to

frequent borrow pits because of prey availability (Scrafford et al. 2020).

Considering our results in context of other research in the region (Toews et al. 2017;

Burgar et al. 2018; Fisher & Burton 2018; Heim et al. 2019; Tattersall et al. 2020; Wittische

et al. 2020), continued effort will be required to improve our understanding of the effect

of industrial development on wildlife communities as well as the non mutually exclusive

hypothesis of climate change driven shifts in species interactions, distribution, and abun-
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dance (Peers et al. 2020). Continued research is needed to investigate effects of individual

features (e.g., roads, seismic lines, well pads) to improve more targeted conservation efforts,

which will require broad spatial and temporal replication to appropriately address species-

specific responses. Companion studies, such as telemetry studies that provide insight into

behavioural modifications to space use, will also provide valuable insight into finer scale re-

sponses than camera traps can provide. We expect effective conservation and management

of the boreal forest to require comprehensive approaches that integrate species specific

approaches to inform community level responses.
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Chapter 7

Discussion

This dissertation provides new information about the nesting ecology of boreal ducks which

will be used to support conservation and management initiatives in the boreal forest under

continued anthropogenic pressure. We identified nest-habitat associations for ducks at

multiple orders and spatial scales and evaluated the consequences of those choices on nest

success. In addition, we identified the important nest predators of ducks in the boreal forest

and investigated how industrial development altered predator habitat use. Together, this

work produces multiple lines of evidence to help improve our understanding of boreal duck

ecology and also provides a foundation for necessary future work in this important breeding

area that is expected to face continued expansion of the industrial footprint.

Our results indicate that industrial development is currently and has the potential to

continue to alter the nesting ecology of boreal ducks. While we did not detect negative

effects of development on nest survival, we did provide evidence of avoidance during nest-

site selection for some industrial features (e.g., seismic lines, pipelines) as well as altered

space use by important nest predators. Our results indicate that ducks are resilient to
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current levels of disturbance during nesting. It is important to note that we did not evaluate

the consequences on brood survival, where negative effects could also manifest and reduce

recruitment (Bloom et al. 2012; Gibson et al. 2016). Proximity to suitable brood-habitat

may be just as important as nest-site selection because fitness is predicated not only on a

successful nest but also on the survival of offspring to independence (Refsnider & Janzen

2010). Additionally, sub-lethal effects that could result in carry over effects (COEs) and

ultimately reduced survival and fitness would not have been detected with our approach

(Sedinger & Alisauskas 2014). For example, females could have reduced nesting or renesting

propensity or duckling survival may be reduced if food availability is lower in areas with

greater footprint (i.e., bottom up; Arnold et al. 2010).

Our approach was mostly limited to considering duck species by nesting guild; how-

ever, we suspect that responses to industrial development are species-specific. At the

microhabitat scale, we were able to identify variation among species in nest-site selection

strategies and suggest that this variation facilitates coexistence through resource partition-

ing (Chapter 2; Dyson et al. 2019). At the landscape scale, our sample did not allow us to

investigate species-specific multiscale variation because there was not enough nests across

a large spatial extent to detect variation between nests of different species. Therefore,

we considered the nesting guild as a grouping variable (Chapter 3, Chapter 4). There is

variation in population trends among boreal nesting species (Canadian Wildlife Service

Waterfowl Committee 2019). Blue-winged Teal are increasing, while Mallard, American

Green-winged Teal, American Wigeon, and Ring-necked Duck are in decline. Further data

collection and evaluation of the mechanisms underlying these trends will prove beneficial

to management and understanding expected population trajectories.

Our results are also consistent with previous research showing broad scale community

change of mammal communities in the boreal forest as a result of industrial development
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(Burgar et al. 2018; Fisher & Burton 2018; Heim et al. 2019; Wittische et al. 2020). Varia-

tion in the response among species is consistent with the identification of winners and losers

on this landscape, where some species appear to benefit from development, particularly

predators like bears and coyotes (Burgar et al. 2018; Fisher & Burton 2018; Mahon et al.

2019). Continued evaluation of species-specific responses to development by predators and

prey will be important in association with estimates of species abundance or density, which

will affect species interactions. With the predicted changes to the boreal climate, novel

predators such as striped skunks (Mephitis mephitis) and northern racoons (Procyon lotor)

may expand into the boreal forest (Latham 2008) and red fox (Vulpes vulpes) may increase

in response to changes in abundance of wolves and coyotes (Newsome & Ripple 2015).

Our work provides a conceptual framework and baseline for understanding the effect

of anthropogenic disturbance on nesting ecology for ducks. By investigating nest-site se-

lection and survival as separate processes as well as identifying predators and changes in

their distribution, we were able to provide stronger inference. Specifically, we demonstrate

an avoidance to industrial development during nest-site selection that may reduce survival

consequences at current development levels. With this evidence and our evidence demon-

strating positive effects of industrial development on important nest predators, we suspect

that negative demographic effects may not yet be realized or might manifest in other vital

rates. To improve our understanding of boreal ducks, further data should be collected to

cover the range of environmental variation expected for boreal ducks and increase sample

size to allow for a more robust assessment of species-specific relationships.
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7.1 Caveats and Limitations

Prior to our work, large scale on-the-ground surveys of nesting ducks had not occurred

in the boreal forest. Consequently, we adapted techniques used primarily in the prairies

and Arctic for nest searching (Klett et al. 1986; Petrula 1994). We acknowledge that our

approach limited the number of locations nests could be found to our searched areas. For

example, our efforts focussed on searching in proximity to wetlands and bodies of water. If

predation risk is greater near wetlands, then ducks may avoid nesting in close proximity to

wetlands (Greenwood et al. 1995). If ducks are selecting nest sites farther from water, in

the upland habitats, it would increase the area required to search. While we do not have

explicit evidence to determine if our sample was missing nests, we did search or explore

habitat up to 300 m away from a wetland and over 3 years we located only a few nests

greater than 100 m from a waterbody. In addition, wetlands are common on this landscape

and therefore, we suspect that our efforts likely provided a representative sample of duck

nests but acknowledge the potential for ducks to nest further from water in upland habitats

and see opportunity in efforts to resolve this question.

We were primarily interested in the effect of industrial development (i.e., oil and gas)

on nest success. As a result, we excluded the confounding effects of forest harvest and

fire from our study design. Consequently, this limits our ability to generalize our results

across the broader boreal landscape because these important drivers of landscape change

are ubiquitous and likely interact with industrial development. Climate change can further

exacerbate land cover and land use change in the region (Adde et al. 2020b), which we

did not specifically study. Transferability of predictive models to novel areas have long

been questioned and landscape context has been identified as a primary reason for lack

of correspondence between models trained in one area and applied in another (Winiarski
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et al. 2020). To help alleviate some of these concerns, we also quantified the predictive

error from our models to help provide practitioners the ability to evaluate the strength

of evidence for some areas. We recommend that independent data is needed to test the

predictive ability of our models applied in in novel habitats such as areas of forest harvest

or wildfire.

Avian predators, particularly common ravens, were also important nest predators in

our study, but our camera trap design precluded us from investigating changes in their use

of habitat in association with industrial development. Formal avian point count surveys

or nest counting efforts could produce more appropriate indices of abundance for avian

predators such as ravens or raptor species (Bosakowski & Smith 1998; Dinkins et al. 2016;

Brussee & Coates 2018). Our camera trap design was also not as effective for capturing

small mammal species, like weasels (Genus Mustela). Approaches that would allow for

entire community assessment are rare because of the challenge of adequately sampling for

every species within a community (Ferreras et al. 2016; Connor et al. 2017). Additional

cameras positioned to capture small mammals or supplementary approaches such as track

plates would also improve our ability to detect small mammal species (Shonfield & Bayne

2019; Brown et al. 2020).

7.2 Future Work

A common theme in scientific research is that most studies generate more questions and

ours is no exception. Importantly, our study occurred over a period of 3 years making

it challenging to capture the range of environmental variation or time-lagged effects that

might affect populations dynamics of ducks (Stephens et al. 2005; Ringelman et al. 2018).

There is no substitute for the value of long term research studies to investigating complex
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ecological questions and the future trajectories for wildlife in the boreal forest certainly

constitute a complex challenge.

The effects of forestry practices on ducks are beginning to be understood (Lemelin et al.

2007; McLean 2020); however, there remains much work to do. Understanding the effect

of harvest block size, age, and regeneration along with cumulative effects and interactions

with other disturbances are important areas of future inquiry. In addition, wildfire has

played an important role in maintaining the boreal forest landscape and fire regimes are

expected to change rapidly with the changing climate (Wilkinson et al. 2019; Wang et al.

2020). While there has been some research on duck responses to fire (Lewis et al. 2015;

2016), it is evident that more effort is needed to understand how predicted increase in fire

return will affect boreal ducks.

Another important avenue for waterfowl research in the boreal forest is co-management

strategies with Indigenous groups as well as the incorporation of traditional ecological

knowledge in decision making (Schang et al. 2020; Wong et al. 2020). Ducks and their eggs

are an important food resource in this region and understanding the effect of consumptive

use during the breeding period and beyond would be valuable to our understanding of

population dynamics. Furthermore, traditional ecological knowledge of important duck

nesting habitat could help improve our ability to identify or confirm protected areas in

accordance with our predictive models and knowledge of duck abundance (Barker et al.

2014; Polfus et al. 2014; Adde et al. 2020a; Singer et al. 2020). Continued conservation

efforts in the boreal forest will be maximized through collaboration and consultation with

local Indigenous peoples (Wong et al. 2020).

Restoration of linear features and forest recovery following development and fire is an

active area of research in the boreal forest. Current efforts do not appear to be having a

strong short-term effect on wildlife (Tattersall et al. 2019); however, long-term effects and
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benefits are yet to be realized. The potential for legacy effects (i.e., permanent or long-

term effects) following industrial disturbance can permanently change these landscapes and

should be incorporated into the planning process. For example, many researchers report the

establishment of wildlife trails on linear features following recovery or restoration (Tigner

et al. 2014, , M.Dyson pers. obs.), which could counteract the benefits of restoration

and recovery efforts. Consequently, these efforts must focus on restoring landscapes to

functional equivalents in addition to using other measures of success such as canopy height

or stem densities (Van Rensen et al. 2015; Finnegan et al. 2018). Restoration efforts are

likely to increase in this region over the coming years and active research and monitoring

on effective techniques will prove valuable to sustaining wildlife populations.

Sample size is often a challenge in observational studies and we faced some limitations

associated with sample size related to investigating species specific effects and industrial

feature specific effects. Systematic sampling of high probability nesting areas might help

alleviate some concerns associated with habitat biased nest searching efforts and increased

searching effort could help locate a more suitable number of nests for detailed investigation.

Alternatively, telemetry can provide unbiased estimates of nest locations; however, this

approach often limits research to one species (Howerter et al. 2014). We attempted to use

telemetry approaches to locate nest sites of Mallards as part of this work but found low

nesting propensity for marked birds among other logistical challenges associated with the

boreal landscape. We are working to report and publish these findings separate from this

dissertation. Future consideration of telemetry approaches should consider the effects of

modern transmitters (i.e., satellite or GPS Kesler et al. 2014; Kirol et al. 2020) on nesting

by evaluating transmitter attachment methods (sensu Rotella et al. 1993) and their effect

on movement, reproduction, survival, and behaviour.

Advances in remote sensing continue to benefit wildlife research (Matasci et al. 2018;
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Lewis et al. 2018; Mahdianpari et al. 2020). We used a publicly available data set from

the Alberta Biodiversity Monitoring Institute for land use features (ABMI 2017) paired

with a proprietary land cover layer produced by Ducks Unlimited Canada (Ducks Unlim-

ited Canada 2011). One advantage to using these available data sets is for reproducibility

because other users can find and implement these layers in their own work as opposed

to privately digitized layers. In addition, continued improvement in data resolution from

satellites will allow for finer scale questions to be answered such as possibilities of measuring

and predicting microhabitat characteristics using remotely sensed data . Unmanned aerial

vehicles (UAV) could allow specific high resolution data to be collected that could help

answer questions related to regeneration and restoration efforts or to understand the influ-

ence of microtopography (Gonzalez et al. 2016; Chen et al. 2017). UAVs have also proven

useful for counting broods using thermal imagery and have been used for locating nests;

but with limited success (Pöysä et al. 2018; Bushaw et al. 2019; Bushaw 2020). Infrared

cameras may also provide an opportunity to locate and monitor nests of cavity nesters (e.g.,

Bufflehead, Common Goldeneye) in the boreal forest, a chronically understudied group of

ducks.

Finally, our camera trap approach could be improved by employing a grid based design,

sampling across the entire landscape as opposed to in association with our nest searching

efforts. A grid based design is better suited for occupancy modelling approaches and would

allow for investigation of abundance through the use of approaches like the Royle-Nichols

extension of a single-season occupancy model or spatial mark recapture (Royle & Nichols

2003; Fuller et al. 2016; Dupont et al. 2020). Currently, advances are being made in this

field to allow researchers to estimate abundance of unmarked animals, which could provide

more accurate density estimates over time to help understand community responses to land

cover and land use change (Burgar et al. 2018). Evidently, continued technological advances
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in field methodology and statistical approaches will improve our ability to understand these

complex remote landscapes.

7.3 Final Remarks

This dissertation provides new information to scientists, managers, and practitioners that

will be used for conservation planning in the region but many questions still remain. Ef-

fective conservation and management for boreal ducks is poorly understood because we

are only beginning to understand the species-habitat relationships and demographic im-

plications of industrial development. Our work provides a framework and baseline for

future research to explore species-specific responses of ducks and to continue to evaluate

responses over time in association with environmental variation and climate change. Con-

tinued efforts to improve our understanding of species ecology and community responses

that affect the distribution and abundance of wildlife in the boreal forest are urgently

needed to maintain healthy wildlife populations.
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Hirzel, Alexandre H., & Le Lay, Gwenaëlle. 2008. Habitat Suitability Modelling and Niche

Theory. Journal of Applied Ecology, 45, 1372–1381.
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tion to Low Productivity in the Boreal Forest. Écoscience, 15, 485–497.
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Full model selection tables from

occupancy modelling of terrestrial
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Supplementary Material 1. Predator Models 

Model  K  LL ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Lure)  4  1065.687  0.0000  0.97  

𝛹() θ() p(Line)  4  1074.009  8.3226  0.02  

𝛹() θ() p(Footprint_0090)  4  1074.317  8.6308  0.01  

𝛹() θ() p()  3  1081.807  13.8160  0.00  

𝛹() θ() p(Wetland_0090)  4  1081.118  15.4316  0.00  

𝛹() θ() p(Wetland_0300)  4  1081.141  15.4544  0.00  

𝛹() θ() p(Upland_1000)  4  1081.324  15.6374  0.00  

𝛹() θ() p(Footprint_0300)  4  1081.415  15.7281  0.00  

𝛹() θ() p(Upland_0090)  4  1081.520  15.8329  0.00  

𝛹() θ() p(Wetland_1000)  4  1081.529  15.8427  0.00  

𝛹() θ() p(Upland_0300)  4  1081.553  15.8664  0.00  

𝛹() θ() p(Footprint_1000)  4  1081.737  16.0501  0.00  

Additive Detection Models          

𝛹() θ() p(Lure + Footprint_0090 + Line)  6  1055.408  0.0000  0.56  

𝛹() θ() p(Lure + Line)  5  1059.915  2.0239  0.20  

𝛹() θ() p(Lure + Footprint_0090)  5  1060.057  2.1654  0.19  

𝛹() θ() p(Lure)  4  1065.687  5.4041  0.04  

𝛹() θ() p(Footprint_0090 + Line)  5  1068.052  10.1612  0.00  

𝛹() θ() p(Line)  4  1074.009  13.7267  0.00  

𝛹() θ() p(Footprint_0090)  4  1074.317  14.0349  0.00  

𝛹() θ() p()  3  1081.807  19.2201  0.00  

𝛹 Scale Models          

𝛹() θ() p(Lure + Footprint_0090 + Line)  6  1055.408  0.0000  0.26  

𝛹(Upland_2500) θ() p(Lure + Footprint_0090 + Line)  7  1053.674  0.8466  0.17  

𝛹(Wetland_2500) θ() p(Lure + Footprint_0090 + Line)  7  1053.727  0.8994  0.17  

𝛹(Wetland_5000) θ() p(Lure + Footprint_0090 + Line)  7  1054.391  1.5638  0.12  

𝛹(Upland_5000) θ() p(Lure + Footprint_0090 + Line)  7  1054.518  1.6912  0.11  

𝛹(Footprint_2500) θ() p(Lure + Footprint_0090 + Line)  7  1054.898  2.0712  0.09  

𝛹(Footprint_5000) θ() p(Lure + Footprint_0090 + Line)  7  1055.139  2.3114  0.08  

𝛹 Occupancy Models          

𝛹() θ() p(Lure + Footprint_0090 + Line)  6  1055.408  0.0000  0.24  

𝛹(Upland_2500) θ() p(Lure + Footprint_0090 + Line)  7  1053.674  0.8466  0.16  

𝛹(Wetland_2500) θ() p(Lure + Footprint_0090 + Line)  7  1053.727  0.8994  0.15  

𝛹(Footprint_2500) θ() p(Lure + Footprint_0090 + Line)  7  1054.898  2.0712  0.08  

𝛹(Upland_2500 + Year) θ() p(Lure + Footprint_0090 + Line)  9  1049.494  2.1439  0.08  

𝛹(Year) θ() p(Lure + Footprint_0090 + Line)  8  1052.778  2.6347  0.06  

𝛹(Wetland_2500 + Year) θ() p(Lure + Footprint_0090 + Line)  9  1050.142  2.7919  0.06  

𝛹(Wetland_2500 + Footprint_2500) θ() p(Lure + Footprint_0090 + Line)  8  1053.368  3.2245  0.05  

𝛹(Upland_2500 + Footprint_2500) θ() p(Lure + Footprint_0090 + Line)  8  1053.479  3.3362  0.04  

𝛹(Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + Line)  9  1051.404  4.0542  0.03  

𝛹(Upland_2500 + Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + 

Line)  
10  1049.097  4.6570  0.02  

𝛹(Wetland_2500 + Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + 

Line)  
10  1049.509  5.0689  0.02  

aLowest AICc score for Univariate = 1074.427; Additive =1069.023; Scale = 1069.023; Occupancy = 1069.023 
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Supplementary Material 2. Bear Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Lure)  4  815.3709  0.0000  0.94  

𝛹() θ() p(Footprint_0090)  4  823.0502  7.6793  0.02  

𝛹() θ() p(Line)  4  825.1480  9.7771  0.01  

𝛹() θ() p(Wetland_1000)  4  825.7271  10.3562  0.01  

𝛹() θ() p()  3  828.2733  10.5980  0.00  

𝛹() θ() p(Upland_1000)  4  826.1631  10.7922  0.00  

𝛹() θ() p(Footprint_1000)  4  826.4753  11.1044  0.00  

𝛹() θ() p(Upland_0300)  4  826.6226  11.2517  0.00  

𝛹() θ() p(Footprint_0300)  4  827.1181  11.7472  0.00  

𝛹() θ() p(Wetland_0300)  4  827.6224  12.2515  0.00  

𝛹() θ() p(Upland_0090)  4  827.7661  12.3952  0.00  

𝛹() θ() p(Wetland_0090)  4  828.1545  12.7836  0.00  

Additive Detection Models          

𝛹() θ() p(Lure + Footprint_0090 + Wetland_1000)  6  806.1521  0.0000  0.38  

𝛹() θ() p(Lure + Footprint_0090 + Line + Wetland_1000)  7  804.6922  1.1200  0.22  

𝛹() θ() p(Lure + Footprint_0090)  5  810.8774  2.2400  0.12  

𝛹() θ() p(Lure + Footprint_0090 + Line)  6  809.3251  3.1700  0.08  

𝛹() θ() p(Lure + Wetland_1000)  5  812.0324  3.4000  0.07  

𝛹() θ() p(Lure + Wetland_1000 + Line)  6  810.4253  4.2700  0.05  

𝛹() θ() p(Lure)  4  815.3709  4.3400  0.04  

𝛹() θ() p(Lure + Line)  5  813.5099  4.8700  0.03  

𝛹() θ() p(Footprint_0090 + Wetland_1000 + Line)  6  816.1616  10.0100  0.00  

𝛹() θ() p(Footprint_0090 + Line)  5  820.1445  11.5100  0.00  

𝛹() θ() p(Footprint_0090)  4  823.0502  12.0200  0.00  

𝛹() θ() p(Line)  4  825.1480  14.1200  0.00  

𝛹() θ() p(Wetland_1000 + Line)  5  822.8614  14.2300  0.00  

𝛹() θ() p(Wetland_1000)  4  825.7271  14.7000  0.00  

𝛹() θ() p()  3  828.2733  14.9400  0.00  

𝛹 Scale Models          

𝛹(Wetland_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  801.1839  0.0000  0.28  

𝛹(Upland_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  801.5156  0.3300  0.23  

𝛹(Upland_5000) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  802.0176  0.8300  0.18  

𝛹(Wetland_5000) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  802.1166  0.9300  0.17  

𝛹() θ() p(Lure + Footprint_0090 + Wetland_1000)  6  806.1521  2.3900  0.08  

𝛹(Footprint_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  806.0673  4.8800  0.02  

𝛹(Footprint_5000) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  806.1021  4.9200  0.02  

𝛹 Occupancy Models          

𝛹(Wetland_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  801.1839  0.0000  0.33  

𝛹(Upland_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  801.5156  0.3300  0.28  

𝛹() θ() p(Lure + Footprint_0090 + Wetland_1000)  6  806.1521  2.3900  0.10  

𝛹(Wetland_2500 + Footprint_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  8  800.9840  2.4800  0.10  

𝛹(Upland_2500 + Footprint_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  8  801.0390  2.5400  0.09  

𝛹(Footprint_2500) θ() p(Lure + Footprint_0090 + Wetland_1000)  7  806.0673  4.8800  0.03  

𝛹(Wetland_2500 + Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  9  800.7645  5.0600  0.03  

𝛹(Upland_2500 + Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  9  801.0817  5.3800  0.02  

𝛹(Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  8  805.5284  7.0300  0.01  

𝛹(Wetland_2500 + Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  10  800.4600  7.6600  0.01  

𝛹(Upland_2500 + Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  10  800.5093  7.7100  0.01  

𝛹(Footprint_2500 + Year) θ() p(Lure + Footprint_0090 + Wetland_1000)  9  805.2396  9.5300  0.00  
aLowest AICc score for Univariate = 824.1116; Additive = 819.7675; Scale = 817.3800; Occupancy = 817.3800  

219



Supplementary Material 3. Lynx Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Wetland_0090)  4  202.8085  0.0000  0.33  

𝛹() θ() p(Wetland_1000)  4  204.1244  1.3159  0.17  

𝛹() θ() p(Upland_0090)  4  204.3863  1.5778  0.15  

𝛹() θ() p(Upland_1000)  4  204.7304  1.9219  0.13  

𝛹() θ() p(Wetland_0300)  4  205.7571  2.9486  0.07  

𝛹() θ() p(Lure)  4  206.5438  3.7353  0.05  

𝛹() θ() p(Upland_0300)  4  207.0709  4.2624  0.04  

𝛹() θ() p(Footprint_0090)  4  207.9143  5.1058  0.03  

𝛹() θ() p(Line)  4  208.6623  5.8538  0.02  

𝛹() θ() p()  3  211.5394  6.4265  0.01  

𝛹() θ() p(Footprint_0300)  4  211.2272  8.4187  0.00  

𝛹() θ() p(Footprint_1000)  4  211.5003  8.6918  0.00  

Additive Detection Models          

𝛹() θ() p(Wetland_0090 + Lure)  5  197.8560  0.0000  0.29  

𝛹() θ() p(Wetland_0090 + Footprint_0090 + Lure)  6  196.1980  0.8253  0.19  

𝛹() θ() p(Wetland_0090 + Line + Lure)  6  196.9017  1.5290  0.13  

𝛹() θ() p(Wetland_0090 + Footprint_0090)  5  200.1311  2.2751  0.09  

𝛹() θ() p(Wetland_0090)  4  202.8085  2.5612  0.08  

𝛹() θ() p(Wetland_0090 + Footprint_0090 + Line + Lure)  7  195.7955  3.0035  0.06  

𝛹() θ() p(Wetland_0090 + Line)  5  201.5742  3.7182  0.04  

𝛹() θ() p(Wetland_0090 + Footprint_0090 + Line)  6  199.5692  4.1965  0.04  

𝛹() θ() p(Footprint_0090 + Lure)  5  203.5178  5.6618  0.02  

𝛹() θ() p(Lure)  4  206.5438  6.2965  0.01  

𝛹() θ() p(Line + Lure)  5  204.1680  6.3120  0.01  

𝛹() θ() p(Footprint_0090 + Line + Lure)  6  202.1487  6.7760  0.01  

𝛹() θ() p(Footprint_0090)  4  207.9143  7.6670  0.01  

𝛹() θ() p(Footprint_0090 + Line)  5  205.8732  8.0172  0.01  

𝛹() θ() p(Line)  4  208.6623  8.4150  0.00  

𝛹() θ() p()  3  211.5394  8.9877  0.00  

𝛹 Scale Models          

𝛹(Upland_2500) θ() p(Lure + Wetland_0090)  6  190.9785  0.0000  0.33  

𝛹(Upland_5000) θ() p(Lure + Wetland_0090)  6  191.2410  0.2625  0.29  

𝛹(Wetland_5000) θ() p(Lure + Wetland_0090)  6  192.0628  1.0843  0.19  

𝛹(Wetland_2500) θ() p(Lure + Wetland_0090)  6  193.2184  2.2399  0.11  

𝛹() θ() p(Lure + Wetland_0090)  5  197.8560  4.3942  0.04  

𝛹(Footprint_5000) θ() p(Lure + Wetland_0090)  6  195.9697  4.9912  0.03  

𝛹(Footprint_2500) θ() p(Lure + Wetland_0090)  6  197.0705  6.0920  0.02  

𝛹 Occupancy Models          

𝛹(Upland_2500 + fYear) θ() p(Lure + Wetland_0090)  8  185.3247  0.0000  0.34  

𝛹(Upland_2500) θ() p(Lure + Wetland_0090)  6  190.9785  0.3892  0.28  

𝛹(Wetland_5000) θ() p(Lure + Wetland_0090)  6  192.0628  1.4735  0.16  

𝛹(Wetland_5000 + fYear) θ() p(Lure + Wetland_0090)  8  186.9568  1.6321  0.15  

𝛹() θ() p(Lure + Wetland_0090)  5  197.8560  4.7834  0.03  

𝛹(fYear) θ() p(Lure + Wetland_0090)  7  193.1750  5.1664  0.03  
aLowest AICc score for Univariate = 211.5492; Additive = 208.9881; Scale = 204.5939; Occupancy = 204.2047 
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Supplementary Material 4.Coyote Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Upland_1000)  4  296.3111  0.0000  0.2000  

𝛹() θ() p(Wetland_0300)  4  296.6579  0.3468  0.1700  

𝛹() θ() p(Footprint_0090)  4  297.0124  0.7013  0.1400  

𝛹() θ() p(Wetland_1000)  4  297.3082  0.9971  0.1200  

𝛹() θ() p(Upland_0300)  4  297.5367  1.2256  0.1100  

𝛹() θ() p(Line)  4  297.9728  1.6617  0.0900  

𝛹() θ() p(Upland_0090)  4  299.3204  3.0093  0.0500  

𝛹() θ() p()  3  301.9253  3.3098  0.0400  

𝛹() θ() p(Wetland_0090)  4  300.2218  3.9107  0.0300  

𝛹() θ() p(Footprint_1000)  4  301.1522  4.8411  0.0200  

𝛹() θ() p(Lure)  4  301.5265  5.2154  0.0200  

𝛹() θ() p(Footprint_0300)  4  301.9245  5.6134  0.0100  

Additive Detection Models          

𝛹() θ() p(Upland_1000 + Footprint_0090 + Line)  6  287.1758  0.0000  0.4212  

𝛹() θ() p(Upland_1000 + Line)  5  290.5439  0.8848  0.2706  

𝛹() θ() p(Footprint_0090 + Line)  5  292.3522  2.6931  0.1096  

𝛹() θ() p(Upland_1000 + Footprint_0090)  5  292.9325  3.2734  0.0820  

𝛹() θ() p(Upland_1000)  4  296.3111  4.2607  0.0500  

𝛹() θ() p(Footprint_0090)  4  297.0124  4.9620  0.0352  

𝛹() θ() p(Line)  4  297.9728  5.9224  0.0218  

𝛹() θ() p()  3  301.9253  7.5705  0.0096  

𝛹 Scale Models          

𝛹(Footprint_2500) θ() p(Upland_1000 + Footprint_0090 + Line)  7  282.1581  0.0000  0.4100  

𝛹(Footprint_5000) θ() p(Upland_1000 + Footprint_0090 + Line)  7  282.5837  0.4256  0.3300  

𝛹() θ() p(Upland_1000 + Footprint_0090 + Line)  6  287.1758  2.4370  0.1200  

𝛹(Wetland_2500) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.0996  4.9415  0.0300  

𝛹(Upland_5000) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.1638  5.0057  0.0300  

𝛹(Wetland_5000) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.1725  5.0144  0.0300  

𝛹(Upland_2500) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.1727  5.0146  0.0300  

𝛹 Occupancy Models          

𝛹(Footprint_2500) θ() p(Upland_1000 + Footprint_0090 + Line)  7  282.1581  0.0000  0.4100  

𝛹() θ() p(Upland_1000 + Footprint_0090 + Line)  6  287.1758  2.4370  0.1200  

𝛹(Upland_5000 + Footprint_2500) θ() p(Upland_1000 + Footprint_0090 + 

Line)  
8  282.0606  2.5864  0.1100  

𝛹(Wetland_2500 + Footprint_2500) θ() p(Upland_1000 + Footprint_0090 + 

Line)  
8  282.1565  2.6823  0.1100  

𝛹(Footprint_2500 + fYear) θ() p(Upland_1000 + Footprint_0090 + Line)  9  279.7659  3.0852  0.0900  

𝛹(fYear) θ() p(Upland_1000 + Footprint_0090 + Line)  8  284.3166  4.8424  0.0400  

𝛹(Wetland_2500) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.0996  4.9415  0.0300  

𝛹(Upland_5000) θ() p(Upland_1000 + Footprint_0090 + Line)  7  287.1638  5.0057  0.0300  

𝛹(Wetland_2500 + Footprint_2500 + fYear) θ() p(Upland_1000 + 

Footprint_0090 + Line)  
10  279.7268  5.9560  0.0200  

𝛹(Upland_5000 + Footprint_2500 + fYear) θ() p(Upland_1000 + 

Footprint_0090 + Line)  
10  279.7439  5.9731  0.0200  

𝛹(Wetland_2500 + fYear) θ() p(Upland_1000 + Footprint_0090 + Line)  9  284.1503  7.4696  0.0100  

𝛹(Upland_5000 + fYear) θ() p(Upland_1000 + Footprint_0090 + Line)  9  284.3140  7.6333  0.0100  
aLowest AICc score for Univariate = 305.0518; Additive = 300.7912; Scale = 298.3542; Occupancy = 298.3542  
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Supplementary Material 5. Wolf Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Footprint_1000)  4  269.3389  0.0000  0.64  

𝛹() θ() p(Line)  4  272.8172  3.4783  0.11  

𝛹() θ() p(Footprint_0300)  4  273.2838  3.9449  0.09  

𝛹() θ() p(Lure)  4  274.3958  5.0569  0.05  

𝛹() θ() p()  3  277.6146  5.9713  0.03  

𝛹() θ() p(Upland_0090)  4  277.0059  7.6670  0.01  

𝛹() θ() p(Footprint_0090)  4  277.0075  7.6686  0.01  

𝛹() θ() p(Upland_0300)  4  277.2696  7.9307  0.01  

𝛹() θ() p(Wetland_1000)  4  277.5198  8.1809  0.01  

𝛹() θ() p(Wetland_0090)  4  277.5452  8.2063  0.01  

𝛹() θ() p(Wetland_0300)  4  277.5516  8.2127  0.01  

𝛹() θ() p(Upland_1000)  4  277.6057  8.2668  0.01  

Additive Detection Models          

𝛹() θ() p(Footprint_1000 + Line)  5  266.7990  0.0000  0.24  

𝛹() θ() p(Footprint_1000 + Lure)  5  266.9401  0.1411  0.23  

𝛹() θ() p(Footprint_1000)  4  269.3389  0.1486  0.23  

𝛹() θ() p(Footprint_1000 + Line + Lure)  6  264.7921  0.4764  0.19  

𝛹() θ() p(Line)  4  272.8172  3.6269  0.04  

𝛹() θ() p(Line + Lure)  5  270.5294  3.7304  0.04  

𝛹() θ() p(Lure)  4  274.3958  5.2055  0.02  

𝛹() θ() p()  3  277.6146  6.1199  0.01  

𝛹 Scale Models          

𝛹() θ() p(Footprint_1000 + Line + Lure)  6  264.7921  0.0000  0.22  

𝛹(Upland_2500) θ() p(Footprint_1000 + Line + Lure)  7  262.5210  0.3096  0.19  

𝛹(Wetland_2500) θ() p(Footprint_1000 + Line + Lure)  7  262.6641  0.4527  0.17  

𝛹(Upland_5000) θ() p(Footprint_1000 + Line + Lure)  7  262.9995  0.7881  0.15  

𝛹(Wetland_5000) θ() p(Footprint_1000 + Line + Lure)  7  263.1430  0.9316  0.14  

𝛹(Footprint_5000) θ() p(Footprint_1000 + Line + Lure)  7  264.4364  2.2250  0.07  

𝛹(Footprint_2500) θ() p(Footprint_1000 + Line + Lure)  7  264.7406  2.5292  0.06  

𝛹 Occupancy Models          

𝛹(Year) θ() p(Footprint_1000 + Line + Lure)  8  253.1384  0.0000  0.25  

𝛹(Upland_2500 + Year) θ() p(Footprint_1000 + Line + Lure)  9  250.4176  0.0727  0.25  

𝛹(Wetland_2500 + Year) θ() p(Footprint_1000 + Line + Lure)  9  250.7379  0.3930  0.21  

𝛹(Upland_2500 + Footprint_5000 + Year) θ() p(Footprint_1000 + Line + Lure)  10  249.1851  1.7500  0.11  

𝛹(Wetland_2500 + Footprint_5000 + Year) θ() p(Footprint_1000 + Line + Lure)  10  249.8764  2.4413  0.08  

𝛹(Footprint_5000 + Year) θ() p(Footprint_1000 + Line + Lure)  9  253.0853  2.7404  0.06  

𝛹() θ() p(Footprint_1000 + Line + Lure)  6  264.7921  6.3891  0.01  

𝛹(Upland_2500) θ() p(Footprint_1000 + Line + Lure)  7  262.5210  6.6987  0.01  

𝛹(Wetland_2500) θ() p(Footprint_1000 + Line + Lure)  7  262.6641  6.8418  0.01  

𝛹(Upland_2500 + Footprint_5000) θ() p(Footprint_1000 + Line + Lure)  8  260.1579  7.0195  0.01  

𝛹(Wetland_2500 + Footprint_5000) θ() p(Footprint_1000 + Line + Lure)  8  260.8557  7.7173  0.01  

𝛹(Footprint_5000) θ() p(Footprint_1000 + Line + Lure)  7  264.4364  8.6141  0.00  
aLowest AICc score for Univariate = 278.0796; Additive = 277.9311; Scale = 278.4075; Occupancy = 272.0184 
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Supplementary Material 6. Prey Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p(Footprint_1000)  4  1146.331  0.0000  0.99  

𝛹() θ() p(Upland_1000)  4  1155.486  9.1551  0.01  

𝛹() θ() p(Wetland_1000)  4  1159.808  13.4770  0.00  

𝛹() θ() p(Wetland_0090)  4  1161.047  14.7164  0.00  

𝛹() θ() p(Upland_0300)  4  1162.649  16.3184  0.00  

𝛹() θ() p(Upland_0090)  4  1162.936  16.6047  0.00  

𝛹() θ() p(Line)  4  1163.490  17.1586  0.00  

𝛹() θ() p(Wetland_0300)  4  1164.417  18.0859  0.00  

𝛹() θ() p()  3  1170.754  22.1184  0.00  

𝛹() θ() p(Footprint_0300)  4  1169.968  23.6372  0.00  

𝛹() θ() p(Lure)  4  1170.411  24.0802  0.00  

𝛹() θ() p(Footprint_0090)  4  1170.655  24.3240  0.00  

Additive Detection Models          

𝛹() θ() p(Upland_1000 + Line + Footprint_1000)  6  1137.259  0.0000  0.36  

𝛹() θ() p(Wetland_1000 + Line + Footprint_1000)  6  1137.712  0.4530  0.29  

𝛹() θ() p(Upland_1000 + Footprint_1000)  5  1141.371  1.6287  0.16  

𝛹() θ() p(Wetland_1000 + Footprint_1000)  5  1141.692  1.9499  0.14  

𝛹() θ() p(Footprint_1000)  4  1146.331  4.1975  0.04  

𝛹() θ() p(Upland_1000 + Line)  5  1149.255  9.5128  0.00  

𝛹() θ() p(Upland_1000)  4  1155.486  13.3526  0.00  

𝛹() θ() p(Wetland_1000 + Line)  5  1153.422  13.6795  0.00  

𝛹() θ() p(Wetland_1000)  4  1159.808  17.6745  0.00  

𝛹() θ() p(Line)  4  1163.490  21.3561  0.00  

𝛹() θ() p()  3  1170.754  26.3159  0.00  

𝛹 Scale Models          

𝛹() θ() p(Upland_1000 + Line + Footprint_1000)  6  1137.259  0.0000  0.38  

𝛹(Upland_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹(Wetland_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹(Footprint_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹(Upland_5000) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹(Wetland_5000) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹(Footprint_5000) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.10  

𝛹 Occupancy Models          

𝛹() θ() p(Upland_1000 + Line + Footprint_1000)  6  1137.259  0.0000  0.48  

𝛹(Wetland_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.13  

𝛹(Footprint_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.13  

𝛹(Upland_2500) θ() p(Upland_1000 + Line + Footprint_1000)  7  1137.259  2.5807  0.13  

𝛹(fYear) θ() p(Upland_1000 + Line + Footprint_1000)  8  1137.259  5.2646  0.03  

𝛹(Upland_2500 + Footprint_2500) θ() p(Upland_1000 + Line + Footprint_1000)  8  1137.259  5.2646  0.03  

𝛹(Wetland_2500 + Footprint_2500) θ() p(Upland_1000 + Line + Footprint_1000)  8  1137.259  5.2646  0.03  

𝛹(Upland_2500 + fYear) θ() p(Upland_1000 + Line + Footprint_1000)  9  1137.259  8.0581  0.01  

𝛹(Footprint_2500 + fYear) θ() p(Upland_1000 + Line + Footprint_1000)  9  1137.259  8.0581  0.01  

𝛹(Wetland_2500 + fYear) θ() p(Upland_1000 + Line + Footprint_1000)  9  1137.259  8.0581  0.01  

𝛹(Upland_2500 + Footprint_2500 + fYear) θ() p(Upland_1000 + Line + 

Footprint_1000)  
10  1137.259  10.9679  0.00  

𝛹(Wetland_2500 + Footprint_2500 + fYear) θ() p(Upland_1000 + Line + 

Footprint_1000)  
10  1137.259  10.9679  0.00  

aLowest AICc score for Univariate = 1155.072; Additive = 1150.874; Scale = 1150.874; Occupancy = 1150.874  
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Supplementary Material 7. Deer Models 

Model  K  LL  ΔAICca ωi 

Univariate Detection Models          

𝛹() θ() p(Upland_1000)  4  968.7533  0.0000  0.59  

𝛹() θ() p(Wetland_1000)  4  970.7720  2.0187  0.22  

𝛹() θ() p(Wetland_0300)  4  971.7694  3.0161  0.13  

𝛹() θ() p(Wetland_0090)  4  974.9768  6.2235  0.03  

𝛹() θ() p(Upland_0300)  4  975.3437  6.5904  0.02  

𝛹() θ() p(Upland_0090)  4  977.4044  8.6511  0.01  

𝛹() θ() p(Footprint_1000)  4  977.5321  8.7788  0.01  

𝛹() θ() p(Line)  4  983.6837  14.9304  0.00  

𝛹() θ() p(Footprint_0090)  4  985.8073  17.0540  0.00  

𝛹() θ() p()  3  990.9391  19.8814  0.00  

𝛹() θ() p(Footprint_0300)  4  989.4854  20.7321  0.00  

𝛹() θ() p(Lure)  4  990.6972  21.9439  0.00  

Additive Detection Models          

𝛹() θ() p(Line + Wetland_1000 + Footprint_1000)  6  957.4564  0.0000  0.32  

𝛹() θ() p(Line + Upland_1000 + Footprint_1000)  6  957.6465  0.1901  0.29  

𝛹() θ() p(Upland_1000 + Line)  5  960.7695  0.8298  0.21  

𝛹() θ() p(Wetland_1000 + Line)  5  963.1899  3.2502  0.06  

𝛹() θ() p(Wetland_1000 + Footprint_1000)  5  963.2259  3.2862  0.06  

𝛹() θ() p(Upland_1000 + Footprint_1000)  5  963.9841  4.0444  0.04  

𝛹() θ() p(Upland_1000)  4  968.7533  6.4223  0.01  

𝛹() θ() p(Wetland_1000)  4  970.7720  8.4410  0.00  

𝛹() θ() p(Footprint_1000)  4  977.5321  15.2011  0.00  

𝛹() θ() p(Line)  4  983.6837  21.3527  0.00  

𝛹() θ() p()  3  990.9391  26.3037  0.00  

𝛹 Scale Models          

𝛹(Upland_2500) θ() p(Line + Wetland_1000 + Footprint_1000)  7  954.1432  0.0000  0.21  

𝛹(Wetland_2500) θ() p(Line + Wetland_1000 + Footprint_1000)  7  954.5054  0.3622  0.17  

𝛹(Upland_5000) θ() p(Line + Wetland_1000 + Footprint_1000)  7  954.8733  0.7301  0.15  

𝛹() θ() p(Line + Wetland_1000 + Footprint_1000)  6  957.4564  0.7325  0.14  

𝛹(Footprint_5000) θ() p(Line + Wetland_1000 + Footprint_1000)  7  955.1565  1.0133  0.13  

𝛹(Wetland_5000) θ() p(Line + Wetland_1000 + Footprint_1000)  7  955.2997  1.1565  0.12  

𝛹(Footprint_2500) θ() p(Line + Wetland_1000 + Footprint_1000)  7  955.9900  1.8468  0.08  

𝛹 Occupancy Models          

𝛹(Upland_2500) θ() p(Line + Wetland_1000 + Footprint_1000)  7  954.1432  0.0000  0.25  

𝛹(Wetland_2500) θ() p(Line + Wetland_1000 + Footprint_1000)  7  954.5054  0.3622  0.21  

𝛹() θ() p(Line + Wetland_1000 + Footprint_1000)  6  957.4564  0.7325  0.18  

𝛹(Footprint_5000) θ() p(Line + Wetland_1000 + Footprint_1000)  7  955.1565  1.0133  0.15  

𝛹(Upland_2500 + Footprint_5000) θ() p(Line + Wetland_1000 + Footprint_1000)  8  953.2089  1.7496  0.11  

𝛹(Wetland_2500 + Footprint_5000) θ() p(Line + Wetland_1000 + 

Footprint_1000)  
8  953.2553  1.7960  0.10  

aLowest AICc score for Univariate = 977.4940; Additive = 971.0718; Scale = 970.3393; Occupancy = 970.3393 
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Supplementary Material 8. Moose Models 

Model  K  LL  ΔAICca  ωi 

Univariate Detection Models          

𝛹() θ() p()  3  475.2305  0.0000  0.1931  

𝛹() θ() p(Wetland_0090)  4  474.3592  1.4331  0.0943  

𝛹() θ() p(Lure)  4  474.3895  1.4634  0.0929  

𝛹() θ() p(Upland_0090)  4  474.4531  1.5270  0.0900  

𝛹() θ() p(Footprint_1000)  4  474.7380  1.8119  0.0780  

𝛹() θ() p(Wetland_1000)  4  475.0599  2.1338  0.0664  

𝛹() θ() p(Upland_0300)  4  475.0828  2.1567  0.0657  

𝛹() θ() p(Footprint_0300)  4  475.0859  2.1598  0.0656  

𝛹() θ() p(Footprint_0090)  4  475.1100  2.1839  0.0648  

𝛹() θ() p(Upland_1000)  4  475.1229  2.1968  0.0644  

𝛹() θ() p(Line)  4  475.1510  2.2249  0.0635  

𝛹() θ() p(Wetland_0300)  4  475.2238  2.2977  0.0612  

Additive Detection Models          

𝛹() θ() p()  3  475.2305  0.0000  0.2500  

𝛹() θ() p(Wetland_0090)  4  474.3592  1.4331  0.1200  

𝛹() θ() p(Lure)  4  474.3895  1.4634  0.1200  

𝛹() θ() p(Upland_0090)  4  474.4531  1.5270  0.1200  

𝛹() θ() p(Footprint_1000)  4  474.7380  1.8119  0.1000  

𝛹() θ() p(Wetland_0090 + Footprint_1000)  5  473.2771  2.7423  0.0600  

𝛹() θ() p(Upland_0090 + Footprint_1000)  5  473.2899  2.7551  0.0600  

𝛹() θ() p(Wetland_0090 + Lure)  5  473.5694  3.0346  0.0500  

𝛹() θ() p(Upland_0090 + Lure)  5  473.6200  3.0852  0.0500  

𝛹() θ() p(Lure + Upland_0090 + Footprint_1000)  6  472.3650  4.3135  0.0300  

𝛹() θ() p(Lure + Wetland_0090 + Footprint_1000)  6  472.4253  4.3738  0.0300  

𝛹 Scale Models          

𝛹() θ() p()  3  475.2305  0.0000  0.3200  

𝛹(Footprint_5000) θ() p()  4  474.7510  1.8249  0.1300  

𝛹(Footprint_2500) θ() p()  4  474.7681  1.8420  0.1300  

𝛹(Upland_5000) θ() p()  4  474.9645  2.0384  0.1200  

𝛹(Upland_2500) θ() p()  4  475.1022  2.1761  0.1100  

𝛹(Wetland_5000) θ() p()  4  475.2224  2.2963  0.1000  

𝛹(Wetland_2500) θ() p()  4  475.2268  2.3007  0.1000  

𝛹 Occupancy Models          

𝛹() θ() p()  3  475.2305  0.0000  0.3200  

𝛹(Upland_5000 + Footprint_5000) θ() p()  5  471.7799  1.2451  0.1700  

𝛹(Footprint_5000) θ() p()  4  474.7510  1.8249  0.1300  

𝛹(Upland_5000) θ() p()  4  474.9645  2.0384  0.1200  

𝛹(Wetland_5000) θ() p()  4  475.2224  2.2963  0.1000  

𝛹(Wetland_5000 + Footprint_5000) θ() p()  5  473.9400  3.4052  0.0600  

𝛹(fYear) θ() p()  5  474.6061  4.0713  0.0400  

𝛹(Upland_5000 + Footprint_5000 + fYear) θ() p()  7  471.2065  5.7357  0.0200  

𝛹(Footprint_5000 + fYear) θ() p()  6  474.2830  6.2315  0.0100  

𝛹(Upland_5000 + fYear) θ() p()  6  474.3026  6.2511  0.0100  

𝛹(Wetland_5000 + fYear) θ() p()  6  474.5887  6.5372  0.0100  

𝛹(Wetland_5000 + Footprint_5000 + fYear) θ() p()  7  473.3243  7.8535  0.0100  
aLowest AICc score for Univariate = 481.6669; Additive = 481.6669; Scale = 481.6669; Occupancy = 481.6669 
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Supplementary Material 9. Snowshoe Hare Models 

Model  K  LL  ΔAICca ωi 

Univariate Detection Models          

𝛹() θ() p(Footprint_0300)  4  356.0041  0.0000  0.30  

𝛹() θ() p(Wetland_0300)  4  356.8629  0.8588  0.19  

𝛹() θ() p(Lure)  4  357.1065  1.1024  0.17  

𝛹() θ() p(Upland_0300)  4  357.3947  1.3906  0.15  

𝛹() θ() p(Line)  4  358.1350  2.1309  0.10  

𝛹() θ() p(Wetland_1000)  4  360.9644  4.9603  0.02  

𝛹() θ() p(Upland_1000)  4  361.6004  5.5963  0.02  

𝛹() θ() p(Footprint_0090)  4  362.1865  6.1824  0.01  

𝛹() θ() p(Upland_0090)  4  362.5163  6.5122  0.01  

𝛹() θ() p()  3  366.0158  7.7073  0.01  

𝛹() θ() p(Wetland_0090)  4  364.0582  8.0541  0.01  

𝛹() θ() p(Footprint_1000)  4  365.9691  9.9650  0.00  

Additive Detection Models          

𝛹() θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  7  322.3803  0.0000  0.67  

𝛹() θ() p(Line + Upland_0300 + Footprint_0300 + Lure)  7  323.8199  1.4396  0.32  

𝛹() θ() p(Wetland_0300 + Line + Footprint_0300)  6  334.3774  9.4164  0.01  

𝛹() θ() p(Upland_0300 + Line + Footprint_0300)  6  336.0305  11.0695  0.00  

𝛹() θ() p(Wetland_0300 + Footprint_0300)  5  345.9344  18.4901  0.00  

𝛹() θ() p(Upland_0300 + Lure)  5  347.1908  19.7465  0.00  

𝛹() θ() p(Wetland_0300 + Lure)  5  347.2817  19.8374  0.00  

𝛹() θ() p(Upland_0300 + Line)  5  348.4502  21.0059  0.00  

𝛹() θ() p(Upland_0300 + Footprint_0300)  5  348.4715  21.0272  0.00  

𝛹() θ() p(Wetland_0300 + Line)  5  349.0186  21.5743  0.00  

𝛹() θ() p(Lure + Line)  5  349.8387  22.3944  0.00  

𝛹() θ() p(Footprint_0300)  4  356.0041  26.1685  0.00  

𝛹() θ() p(Wetland_0300)  4  356.8629  27.0273  0.00  

𝛹() θ() p(Lure)  4  357.1065  27.2709  0.00  

𝛹() θ() p(Upland_0300)  4  357.3947  27.5591  0.00  

𝛹() θ() p(Line)  4  358.1350  28.2994  0.00  

𝛹() θ() p()  3  366.0158  33.8758  0.00  

𝛹 Scale Models          

𝛹() θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  7  322.3803  0.0000  0.27  

𝛹(Upland_2500) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  320.5525  0.8561  0.17  

𝛹(Wetland_2500) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  320.8439  1.1475  0.15  

𝛹(Upland_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  320.9980  1.3016  0.14  

𝛹(Wetland_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  321.0937  1.3973  0.13  

𝛹(Footprint_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  322.2971  2.6007  0.07  

𝛹(Footprint_2500) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  322.3431  2.6467  0.07  

𝛹 Occupancy Models          

𝛹() θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  7  322.3803  0.0000  0.28  

𝛹(Upland_2500) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  320.5525  0.8561  0.18  

𝛹(Wetland_2500) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  320.8439  1.1475  0.16  

𝛹(Footprint_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  8  322.2971  2.6007  0.08  

𝛹(fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  9  319.5267  2.6238  0.08  

𝛹(Upland_2500 + Footprint_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  9  319.9795  3.0766  0.06  

𝛹(Wetland_2500 + Footprint_5000) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  9  320.5078  3.6049  0.05  

𝛹(Upland_2500 + fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  10  317.7486  3.7556  0.04  

𝛹(Wetland_2500 + fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  10  318.1713  4.1783  0.03  

𝛹(Footprint_5000 + fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  10  319.5062  5.5132  0.02  

𝛹(Upland_2500 + Footprint_5000 + fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  11  317.5195  6.5601  0.01  

𝛹(Wetland_2500 + Footprint_5000 + fYear) θ() p(Line + Wetland_0300 + Footprint_0300 + Lure)  11  318.0646  7.1052  0.01  
aLowest AICc score for Univariate = 364.7448; Additive = 338.5764; Scale = 338.5764; Occupancy = 338.5764 
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#18-419

Alberta Environment and Parks
Policy and Planning Division
Fish and Wildlife Policy Branch General Permit - GP

Region: Lower PeaceRESEARCH PERMIT
FEE $ NIL

PERMITTEE: Brad Fedy, University of Waterloo

ADDRESS: 200 University Ave. W, Waterloo, MB N2L3G1

IS AUTHORIZED TO: Trap and Band waterfowl within research area, attach radio transmitters and track
waterfowl, Nest search and monitor nests with nest camera traps, place and monitor Predator camera
traps, lure and hair snag sites.

DATE OF EXPIRY: December 31, 2018DATE OF ISSUE: April 06, 2018

Signature of Permittee

Natalka Melnycky

IN ACCORDANCE WITH: The approved research plan (application # 12864207) and Class Protocol(s)
#002, #011

Class Protocols are reviewed by the Alberta Wildlife Animal Care Committee and approved by the Director of Fish
and Wildlife Policy.Class Protocols are available at http://aep.alberta.ca/fish-wildlife/wildlife-research-
collection/default.aspx.

Conditions:

1. The Permit is subject to all conditions listed in the attached Appendix 1.

Individuals banding waterfowl must have current federal banding permit.2.

Signs must be placed at nearest access point, indicating the presence of a hair-snag site with lure at all
hair-snag sites.

3.

Field staff must follow bear smart principles when working in proximity of hair-snag sites, including carrying
bear-spray and being trained in how to use it.

4.
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#18-419

Alberta Environment and Parks
Policy and Planning Division
Fish and Wildlife Policy Branch

Licence - CN

Region: Lower PeaceCOLLECTION LICENCE
FEE $ NIL

NAME: Brad Fedy, University of Waterloo

ADDRESS: 200 University Ave. W, Waterloo, MB N2L3G1

Is authorized, subject to the conditions of this licence, and in accordance with the approved research plan 
# 12864207, to hunt* or collect, the following wildlife species: Waterfowl unintentionally killed during 
waterfowl research. 

This Licence authorizes the use of the following equipment and methods: Radio transmitter attachment 
will use standard surgical instruments and supplies as outlined in our Animal Care Protocol. See 
abbreviated list below. Decoy traps, Camera traps, Wire, Lure, Surgical Instruments: Needle Driver (5 
Olsen-Hegar) Adson forceps with Debaky toothing 12.5cm #3 Scalpel handle #11 Scalpel blades Blunt 
forceps 14cm Surgery Supplies: Gauze sponges 1ml syringes with single use needles Replacement 
injection needles single use Transmitter Telemetry Receiver to test transmitters PDS II Sutures 3-0 Taper 
(RB-1) 3-0 Prolene (2-metric) blue monofilament Peel-off cucumber facial mask Surgical Solutions etc: 
Betadine solution in flip top bottle Isopropyl alcohol in flip top bottle Endure Sterile water for injection 
Rubbermaid containers (size 4-cup) for holding instruments in glutaraldehyde solution Sterile water for 
rinsing 

This Licence is valid (location): Lower Peace, Upper Athabasca

DATE OF EXPIRY: December 31, 2018EFFECTIVE DATE: April 01, 2018

Hunting and/or collection is to be conducted by: Brad Fedy, Matt Dyson, PhD Candidate, University of 
Waterloo Dr. Stuart Slattery, Ducks Unlimited Canada Dr. Jim Devries, Ducks Unlimited Canada Howie 
Singer, Ducks Unlimited Canada Jared Knockaert, Ducks Unlimited Canada Research Technician 1 (RT1)
RT2 RT3 RT4 RT5

April 06, 2018Date of issue:

Signature of Licencee (not valid until signed by the Licencee)

Licence must be carried while hunting or collecting.

Natalka Melnycky

*The meaning of the word "hunt" is inclusive of activities within the definition of "hunt" in the Wildlife Act except that
the activity authorized by this licence is limited to what is expressly stated in it and, to be lawful, that activity must
occur in accordance with the approved research plan and licence conditions.

Conditions:

Any mortalities associated with the research must be reported to AEP wildlife staff during field operations.1.

Prior to any capture work being done, AEP wildlife biologists should be contacted and kept informed.2.
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Appendix 1: Research Permit General Permit Conditions

Addendum to Research Permit #18-419

Environment and Parks

1. All research must be conducted according to the approved Research Plan (the approved application).

2. It is the responsibility of the Permittee to contact the appropriate Regional Wildlife Biologist and District Fish and 
Wildlife Officer and the appropriate landowner prior to the commencement of any permitted activities. Contact 
information for Wildlife Management staff is available at: http://aep.alberta.ca/about-us/contact-us/fisheries-wildlife-
management-area-contacts.aspx or by calling 310-0000 and asking for the appropriate Wildlife Management office.

3. The permit is valid only for research and collection activities in the specific area and for the dates identified on the 
permit.

4. For activities in any Provincial Park, Ecological Reserve, Wildland Provincial Park, Natural Area, or Wilderness Area, 
additional approvals for access may be required. Please contact your local Alberta Environment and Parks, Parks 
Division authority.

5. The Permittee is responsible for ensuring that public safety is not endangered by activities associated with the project.

6. The Permittee shall be held accountable for damages to resources or property arising directly or indirectly from the 
project.

7. The issuance of this Permit does not exempt the holder from any other Canadian Laws that might otherwise apply.

8. All captured animals must be handled in a humane manner and according to the approved Research Plan (the approved 
application) as well as any additional approvals or instructions provided by the Wildlife Animal Care Committee.

9. Animals captured using immobilization drugs must follow the Chemical Immobilization of Wildlife: Drug Volume 
Calculation Tables: http://aep.alberta.ca/fish-wildlife/wildlife-research-collection/documents/WR-
ChemicalImmobilizationWildlife-DrugVolumeCalculation-2016.pdf

10. If radio telemetry is a component of the research, the Permittee is responsible for providing up-to-date information on 
frequency deployment including date, general location, species, transmitter type, manufacturer, and expected transmitter 
life. 

11. A report of the past year’s activities (which can be part of the renewal application), including any issues such as 
accidental mortality/oversampling exceeding 10%, is required before permits will be renewed or new permits will be 
issued. If the project has finished and the permit will not be renewed, the report is due within 30 days of the expiry of 
the permit.

12. All observations made during your project are to be provided within either:
a) A FWMIS Load Form, or
b) Where USFWS bands are used in the project, a “Band Manager” or “BANDIT” digital export. Note: Banding data 
locations are to be provided as Latitude/Longitude in Degrees-Minutes-Seconds. 

FWMIS.xls digital files can be accessed at the following web site: 
http://aep.alberta.ca/fish-wildlife/fwmis/wildlife-load-forms.aspx

Instructions for submitting banding data are available at:
http://aep.alberta.ca/fish-wildlife/wildlife-research-collection/default.aspx

This completed data file, including the permit number, is to be attached to your annual or final progress report, upon 
completion of the project (no later than December 1st annually).
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