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Abstract

Games have historically been a fruitful area for artificial intelligence (AI) research, and
StarCraft in particular has been an important grand challenge because of its strategic com-
plexity, multi-agent dynamics, partial observability, large action spaces, delayed rewards,
and robust human competitive scene. These complexities mean that approaches common
in other game AIs, like Monte-Carlo Tree Search in Go or searching over the action space
in Atari, cannot be easily applied to StarCraft. Thus, though there has been significant
research, many approaches use handcrafted systems and no approach is competitive with
even strong casual players.

In this thesis, we go into detail on AlphaStar, the first AI system to reach the highest
tier of human performance in a widely professionally played esport. AlphaStar combines
new and existing approaches in imitation learning, reinforcement learning, and multi-agent
learning at scale in a general agent with minimal handcrafting. AlphaStar reached a rating
above 99.8% of active ranked human players.

In particular, designing an effective interface is an essential component of AI research in
games that has historically been under-explored. This thesis lists principles for designing
effective interfaces and human-like constraints for deep learning research in games, and
explores those principles with AlphaStar as a case study. Though the agent has minimal
handcrafting, it needs to interact with the game through an interface that is human-like,
expressive enough to capture the game’s complexities, and amenable to deep learning in
order to produce transferable research insights.
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Chapter 1

Introduction

Games have been a core domain for artificial intelligence (AI) research from its inception.
In 1959 AI systems could play checkers [72], and decades later computers started to match
or exceed top human players in games like Backgammon [86], chess [14], Jeopardy [30],
Go [77], and now StarCraft II [92]. Yet, superhuman performance in games is not a goal
in and of itself. These domains are a stepping stone to complex, real-world interactions
because they provide a way to make progress on key AI problems in simplified environments
without dealing with the myriad engineering and research challenges involved in interacting
with the real world (from building a robot, to physical performance variations and limited
learning time [56]).

That is, games capture discrete problems humans find meaningful and interesting,
as otherwise they would not have been made. However, for insights from them to be
transferable and meaningful, it’s important to approach game interfaces in the correct
way. For turn-based board games, this means following the rules and not playing, say, a
variant of chess where every piece can move anywhere on the board. Even for chess there
are more complexities though. Playing with no time limits turns chess into a much simpler
brute-force search problem, while playing with time limits of one microsecond makes it a
program optimization problem with minimal opportunity for planning. Giving the chess-
playing system access to expert-crafted observations can improve performance [14], but
it specializes the approach to a specific game and means that applying the system to a
different domain where such observations are not available becomes significantly harder.
In modern video-games, designing an interface only becomes more complex as human
interaction with the game becomes increasingly complicated. Alterations from how humans
interact with a given game distort the game itself, and therefore can shift the focus away
from what initially made it of interest to AI.
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The game that this thesis focuses on is StarCraft, a domain that involves strategic
depth, large state spaces, planning across thousands of timesteps, imperfect information,
and a structured action space [93], all properties shared with many other applications. It
has a thriving professional esports community with hundreds of tournaments every year,
yet has not yielded AI systems of comparable skill to humans despite significant research
interest [29].

The main contributions of this thesis are:

1. AlphaStar, the first agent to reach the highest tier of human performance in a widely
professionally played esport (StarCraft II) [92]. AlphaStar uses a complex array of
new and existing state-of-the-art techniques within deep multi-agent reinforcement
learning. The author previously published AlphaStar in collaboration with many
others at DeepMind [92].

2. A novel examination of considerations for designing a game interface for fruitful AI
deep learning research, with our design of the interface for AlphaStar as a case study.

1.1 Outline

Chapter 2 will describe the background and prior work in StarCraft, deep learning, and
reinforcement learning relevant for understanding this thesis.

Chapter 3 gives a description of the entire AlphaStar system and how its various com-
ponents work together, along with results and analysis.

Chapter 4 presents the considerations and complexities of developing an interface for
a complex game like StarCraft II, and discusses how to develop interfaces suitable for
learning deep neural networks.

Chapter 5 introduces fairness in games, both various metrics of what it means to be
fair and why fairness is an important proxy for researching the correct problems.

Chapter 6 looks more in depth into the interface of AlphaStar, and how it was designed
in light of the previous chapters.

Finally, Chapter 7 presents the conclusions of this thesis and possible future work.
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Chapter 2

Background and Related Work

2.1 Deep Learning

Within the last decade, deep learning (DL) has arisen as a dominant field within machine
learning and AI research as a whole [51]. It has gained great popularity in domains such
as image recognition [49], speech recognition [35], recommendation systems [17], health-
care [28], and finance [25]. Other research areas, like sociology [62], and law [15], have
adopted deep learning techniques. A full description of deep learning is far beyond the
scope of this thesis, and in fact may not be relevant for understanding many sections
which are layers of abstraction removed from the underlying mathematics. Therefore, we
will only present deep learning, and reinforcement learning, at a high-level.

Fundamentally, deep learning views a complex agent as a graph (called a neural net-
work), where each node of the graph is a real valued number. These nodes are grouped
into layers, where each node is a function of the nodes in all previous layers (e.g. the dot
product of all nodes in the previous two layers by some vector), the nodes on the first layer
are set to observations of the network (e.g. the red, green, and blue (RGB) values of an
image), and the nodes on the last layer are the outputs of the agent (e.g. an action the
agent will take, encoded as a real number). Some of the functions used to generate the
values of each node have trainable parameters (the vector that the previous two layers are
taken the dot product with in a previous example), which means we adjust those functions
to improve the probability of getting a better output. The most common way of doing this
is to evaluate the entire network on a series of examples, and adjust the functions in some
small way that shifts the output towards a correct output using gradient descent [9].
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Each layer builds on the computations and representations done in previous layers. For
example, when classifying an image, each subsequent layer could identify edges and lines,
tails and paws, bodies, and finally entire dogs. Deep learning networks are composed of
many such layers, each of which relies on work done previously.

Central to deep learning research are:

1. Creating the functions that generate the values for each node. While neural networks
with single intermediate layers of sufficient sizes are universal approximators [40],
they require infeasible amounts of nodes and often lead to intractable optimization
objectives. Instead, research tries to impose priors that bias learning towards solu-
tions that are more correct, while still maintaining expressivity. Notable examples
of this include convolutions [53], which only looks at nodes from the previous layer
which are nearby in space and reuses the same trainable variables in many functions,
transformers [90], where a node weights nodes on a previous layer depending on rel-
ative importance for the current computation, and batch normalization [43], which
normalizes the inputs to have certain statistics to make the gradients of the network
more stable.

2. Defining the inputs and the outputs of the network. Because of how networks are
defined and trained, certain inputs and outputs will work better than others. For
example, real-valued inputs should all fall within the same range of values, such as in
[−1, 1]. Additionally, adjusting the inputs and outputs can add memory to a network,
like in long short-term memory architectures (LSTMs) [39] which takes the current
network’s memory as input, transforms that memory through some functions, and
outputs the transformed memory.

3. Correctly adjusting the trainable variables within a function based on data. The
simplest way is stochastic gradient descent which computes the gradient of the out-
put on a batch of data with respect to each variable, and adjusts each variable to
make the output more correct [9]. There are countless extensions possible however.
Adam [48] adds momentum to gradient descent and improves convergence by track-
ing the gradients and their second moments, while second-order methods [57] instead
estimate the Hessian and use that to compute updates.

4. Applying the above more fundamental research and generating new insights to imple-
ment deep learning on a specific domain. WaveNet [66] for example uses scaled raw
audio waveforms (as well as conditioning information, like text if applied to Text-to-
Speech) as input, uses functions (including stacked dilated causal convolutions, gated
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activation units, softmax, and residual connections) for each node, and outputs new
audio samples corresponding to the next sound.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a sub-field of AI where an agent acts within an environment.
More formally, reinforcement learning is typically modeled as a Markov decision process
(MDP) that consists of (S,A, Pa, Ra) [82]:

• A set of environment states S.

• A set of possible actions A that an agent can take.

• A transition function Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) that defines the proba-
bility of transitioning to a state s′ ∈ S given that at time t ∈ N an agent is in state
s ∈ S and takes action a ∈ A.

• A reward function Ra(s, s
′) = E[rt+1|st+1 = s′, st = s, at = a] that defines the

expected immediate reward rt+1 ∈ R from transitioning from state s to state s′ by
the action a.

In the case where the agent cannot observe the true complete environment state, like
Atari, StarCraft II, or the real world, this becomes a Partially observable Markov decision
process (POMDP) that consists of (S,A, Pa, Ra,Ω, O) [82] where S,A, Pa, Ra are defined
as above and:

• Ω is the set of possible observations.

• O(s′, a) = Pr(o|s′, a) is the probability of the agent receiving the observation o ∈
Ω given the environment state s′ and taken action a. A history is then ht =
(o1, a1, o2, a2, ..., ot, at), the combination of observations and actions taken since the
beginning of the environment.

An agent is then a policy function π(at|ht) = Pr(at|ht) that selects which actions to
take at each timestep. The objective of the agent is the maximize the expected future re-
wards Rt =

∑∞
i=t ri, or in some cases expected discounted future rewards Rt =

∑∞
i=t γ

i−tri
to weight rewards that happen earlier more heavily by applying a discount factor γ mul-
tiplicatively. When applied to deep learning, the agent policy function becomes πθ(at|ht)
defined by a neural network with parameters θ. This framework is, perhaps surprisingly,
applicable to almost all cases where an agent acts within an environment.
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2.2.1 Reinforcement Learning Updates

There are many ways of updating the parameters θ, creating the objectives to adjust the
network outputs towards in order to improve the expected future rewards. These include
Monte Carlo methods [82], Deep Q-Learning [61], Proximal Policy Optimization [75], and
IMPALA [27]. Under reasonable assumptions, with sufficient exploration, and assuming the
policy function πθ is a universal function approximator, these methods are guaranteed to
converge to the optimal policy eventually [74, 27, 82], however they differ in their behavior
while converging, assumptions, and the rate of convergence. Because AlphaStar mainly
uses IMPALA, we will describe it in more detail.

IMPALA combines Asynchronous Advantage Actor-Critic (A3C) [60] with an off-policy
correction method called V-trace [27]. Actor critic methods combine the policy function πθ
with a value function Vθ(ht) = E[Rt|ht, πθ] whose goal is to estimate the expected future
rewards the agent would get from its current state if it acts according to the function πθ.
By running the policy πθ on an environment many times, we can generate a trajectory of
experience and train Vθ to produce the correct output reward on that trajectory, and then
use the value function as a critic to have the actor policy take actions that produce better
than average rewards more often, and worse than average rewards less often.

In more detail, the parameters θ are updated to minimize the temporal difference errors
of the value function: rt + γ ∗ Vt− Vt−1 where Vi = Vθ(hi) which is a more stable objective
than the approximating the total rewards directly [82]. Parameters θ also update the
reward through ∆θ log πθ(at|ht)(Rt − Vt), which is an unbiased estimate of ∆θE[Rt − Vt],
where Rt− Vt is the advantage of taking the chosen action over the expected policy action
(using the advantage instead of the reward directly decreases the variance of the objective).

IMPALA modifies this slightly by weighting the updates of the value and policy by
importance sampling weights, which takes into account how different the behavior policy
µ that generated a trajectory is from the current policy. This is necessary for distributed
computation and using a single trajectory for multiple training steps [82, 95]. These im-
portance sampling weights are ct = min(c̄, π(at|ht)

µ(at|ht)), ρt = min(ρ̄, π(at|ht)
µ(at|ht)) for the value and

policy respectively, where ρ̄ ≥ c̄ ≥ 1.

2.3 StarCraft

StarCraft is a domain that consists of two real-time strategy video-games, StarCraft: Brood
War and StarCraft II, created by Blizzard Entertainment and first released in 1998. The
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Figure 2.1: Screenshot of a StarCraft II game in progress. Copyright Blizzard Entertain-
ment.

game is set in a science fiction universe in which three races (human Terran, insectoid Zerg,
and technologically advanced Protoss) interact to decide the fate of a sector of the Milky
Way galaxy. Over the decades, StarCraft has become the most popular real-time strategy
game of all time, with a thriving competitive esports scene and tens of millions of dollars
of prize money. An image of StarCraft II in progress, playing as Protoss, can be seen in
Figure 2.1.

In the standard competitive setting, two players select either one of the three races, or a
random race, in which case the opponent is not told the other player’s starting race. Each
player begins with an initial home base and a dozen worker units seen in the upper-left of
Figure 2.1. The race decides the set of units and buildings available to each player, each of
which has its own abilities, advantages, and disadvantages. For example, the Zerg Infestor
can take control of enemy units or slow and deal damage to a group of enemy units, but
cannot attack. Over the course of the game, players mine resources (top-left corner), create
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new units and buildings (center), research new technologies, develop new bases to expand
their territory (visible in the minimap in the bottom-left), all while competing against an
opponent who is trying to do the same. A player loses if they no longer have any buildings.
In order to win, players must balance high level economic and research strategy, called
macro, with low-level control of hundreds of individual units, called micro, in a real-time
setting that necessitates issuing hundreds of distinct actions per minute.

2.3.1 Challenges of StarCraft

StarCraft is such a difficult and appealing domain for AI research because it contains
many challenges not found in other games. Its raw complexity is extremely high (in our
representation there are 1026 possible actions at each step), there can be tens of thousands
of timesteps within a single game, and the observations consist of many streams of data
including visual, entity, and scalar information [93]. The game itself is partially observable;
the only information visible to a player is information within a certain distance of a unit
or building the player controls, and the player only receives full information on a section of
the map that they focus on [93]. In Figure 2.1, the entire high-level map is in the bottom
left, and the opponent is too far away to be observed. StarCraft is also real-time and
actions are issued continuously, so unlike turn-based games there is no defined time for
planning. Players have to balance their attention between planning, gathering information
(by positioning units and by moving the camera), responding to unforeseen events, and
actually executing their plans.

Finally, StarCraft has a complex game-theoretic strategic landscape with cycles and
intransitive strategies. These strategies rely on planning across thousands of timesteps
often based on a single initial observation and theory-of-mind expectation of the oppo-
nents future interactions. This means that naive self-play exploration across the possible
action-observation histories will almost never develop useful strategies, and furthermore
any strategies developed by an agent that does not interact with humans may not be rel-
evant when deployed with humans. For example, to take advantage of someone who does
not build adequate defenses against the harassing air units called Banshees, a player would
need to scout an opponent to see what researches and defenses they have available, build
a series of buildings necessary to produce a Banshee and eventually produce the Banshee
itself, research Cloak so that the Banshee can turn invisible, and finally position, retreat,
cloak, and uncloak the Banshee itself at the correct times. Executing this strategy with
any component missing is worse than avoiding the strategy entirely, so it must either be
discovered at once or not at all. This high-level description could span the entire game in
which many other strategies and tactics are used.
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The challenges present in StarCraft are also present for an agent deployed in the real-
world. Such an agent will also have to reason and plan across long time-horizons and
complex actions, integrate information from different data streams, observe a limited part
of the true environment, and issue actions continuously, all while acting in a human-aligned
way.

2.4 Prior Work

2.4.1 AlphaStar’s Implementation

AlphaStar depends on a massive body of prior work of deep, reinforcement learning. The
network architecture consists of deep learning techniques including transformers [90], con-
volutions [53], LSTMs [39], pointer networks [94], autoregressive actions [58], and residual
layers [36], albeit combined in novel ways different from other applications. Beyond rein-
forcement learning techniques mentioned in prior sections [27, 82], the network parameters
are updated in other ways common to deep learning: a supervised cross-entropy loss to
imitate labelled data [33], a regularizing entropy loss [34], and concurrent work on priv-
ileged baselines [3, 16]. Similar to AlphaStar’s conditioning on human data, other work
has used human preferences [63, 42] or human intervention [18] to create reinforcement
learning reward functions. The idea of training a supervised policy to imitate humans,
then using that policy as a prior was used by AlphaGo [77].

AlphaStar also arises from existing work in multi-agent research, in particular train-
ing a population of agents that compete against each other as in Quake III Arena [44].
More theoretically, league training is an extension of the Policy Space Response Oracle
framework [50].

2.4.2 Reinforcement Learning in Games

Creating policies for games has long been a focus of reinforcement learning and artificial
intelligence research. They define natural MDPs and POMDPs (where the game has its
own logic that defines the state, possible actions, transitions, rewards, and observations
seen by the player), and therefore can often be approached in transferable ways. Computers
have achieved superhuman performance in games like chess [14], Go [77], Atari [61], and
Capture the Flag [44].
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Real-time strategy (RTS) games are a particular sub-genre of games which present a
grand challenge for AI [13], and many games in the genre share some of the complexities of
StarCraft. There has been research on particular sub-tasks of RTS games (e.g. controlling
units), or RTS games in simplified environments [12, 19, 99, 89, 97, 73], and StarCraft
has become the focus of the overall RTS AI research in a complete game [93, 1]. Prior
work has looked at both StarCraft: Brood War and StarCraft II, examining strategy
selection [41], simulation [83], reinforcement learning for micro [89, 76, 7, 85], imitation
learning for strategies [47], search [88], game state prediction [84], and high-level hand-
crafted actions [80]. StarCraft: Brood War and StarCraft II have active AI development
communities [96, 1, 79, 78]. However, no prior work has overcome even strong casual
players [29], even though almost all of them ignore considerations of fairness or human-like
constraints (with some bots issuing tens of thousands of distinct actions per minute), or
have components specific to StarCraft II [20, 78].

OpenAI 5 recently beat top professional players and 99.4% of professional players in
Dota 2 [8], a recent video-game that shares several challenges with StarCraft II. In Dota 2,
two teams of five players who each control a single hero unit face off against one another in a
setting with complex strategies, long time horizons, and imperfect information. The agents
within OpenAI 5 were trained together using PPO [75] and, in contrast with AlphaStar,
used hand-crafted intermediate rewards, scripted high-level actions, a limited rule-set, and
shared observations between all agents. They also used a technique they call surgery to
train a single agent over 10 months by resuming training from a previous checkpoint as
the domain shifted and new features were added [8].

2.4.3 Game Interfaces for Deep Learning

A game interface is the protocol through which an AI agent receives observations of a
game and sends actions. For example, in Atari the agent could receive at each frame a
2D 210x160 grid observation, where each element is one of the 128 possible color values,
and send an integer corresponding to the 18 possible actions with no delay or limit on
processing time.

There has been minimal work focusing on developing effective interfaces for deep learn-
ing research; most work has been within a paper and tried to demonstrate that a particular
agent or approach is fair. They tend to focus on reaction times, or present an interface
with minimal explanation. OpenAI 5 discussed hiding information that would not be vis-
ible to humans, the delays present within their agents, and how often their agents could
act in comparison to humans [8]. AlphaGo set time limits for the agents to be comparable
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to humans [77]. Work in Quake III Arena Capture the Flag compared agent and human
reaction times and reaction accuracies [44]. As far as we know, there is no standalone work
discussing interfaces and human-like constraints for deep learning agents.

Significant work has also focused on developing safe interfaces for deep learning, where
there are safety or performance constraints that limit how much an agent can explore [31].
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Chapter 3

Overview of AlphaStar

AlphaStar consists of different systems and stages that work together to create a unified
whole. An overview can be seen in Figure 3.1. The following sections will go into more
detail on each component, but at a high level an AlphaStar agent is a policy πθ(at|ht, z) =
Pr(at|ht, z), defined as in 2.2 with the addition of a statistic z which encodes a general
strategy extracted from the record of a human game called a replay. This statistic could
be seen as an additional component of the initial observations o1 in the formal definition,
but is separated here for clarity. Each timestep t, the agent uses the previous action at−1,
the current observation o, the statistic z, and an LSTM state from the agent processing
all previous observations and actions o1, a1, ..., at−2, ot−1 (thereby extending the memory of
the agent through the entire history) to decide which action to take next. The interaction
of the agent with the environment, modulated by action limits and delays, can be seen in
Figure 3.1 a.

To do the processing, AlphaStar uses a transformer [90] to embed unit information, a
series of convolutions [53] to process the map, fully-connected layers [33] to embed scalar
information, novel scatter connections to combine spatial and non-spatial data, a deep
LSTM [39] to track memory, and an autoregressive policy with a pointer net [58, 94] to
select the final action. The architecture, though designed for StarCraft, does not contain
components that are specific to it, and it processes the multiple input streams and de-
composes the action in a way that makes the entire problem amenable to learning. An
opposing agent, or human, will simultaneously act.

The parameters of the policy were first trained in supervised learning to imitate a human
policy (Figure 3.1 b). We used a large dataset of human replays, generated the actions
the humans and observations the human saw each timestep, and trained the network to
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maximize the probability of taking the same actions given the previous history (conditioned
on the statistic z a fixed probability of the time) and some additional regularization. The
purpose of supervised learning is to establish a strong prior for taking meaningful actions,
alleviating the exploration problem, while capturing diverse, human aligned strategies.
The statistic z ensures that the network does not converge too early during reinforcement
learning and that diverse strategies are sufficiently represented through the rest of the
training process.

After supervised learning, the network is trained through multi-agent reinforcement
learning (MARL), shown in Figure 3.1 c. Agents are paired against opponents in league
training, which manages a continually expanding and learning set of players which bal-
ances finding weaknesses for top strategies, finding systematic weaknesses of all strategies,
creating new strategies that overcome those weaknesses, and making existing strategies
more robust. League training attempts to address the game-theoretic strategic landscape
inherent in StarCraft.

Trajectories of experience from the games assigned by league training are replayed [95]
to asynchronously update the agents themselves in reinforcement learning to maximize the
win rate in the assigned match-up (i.e. compute a best response to the distribution of
strategies it is matched up against). This is depicted in Figure 3.1 b, The network loss
function is given by a combination of IMPALA [27] losses to update the policy, TD(λ) [81]
losses to update the value network, a novel loss called UPGO to update the policy, and a
distillation loss towards the initial supervised network [71, 67] to ensure the policy stays
diverse and does not collapse during training. When z is given as input to the network,
agents are given an additional reward for following the strategy encoded in z. The com-
bination of distillation loss and z form human exploration that explores a wide variety of
human aligned strategies.

3.1 Interface

The interfaces and motivations behind how it is designed will be explored in greater detail in
Chapter 6, and are shown at a high level in Figure 3.1 a. The observations are described in
Table 3.1, and consist of all visible entities in the game and their attributes, the map and its
layers of information, various scalar player data, and game statistics. Data is hidden from
the observations if it would also be hidden to humans, except some data which would need
to be remembered or inferred. An example of hidden data is an underground enemy unit
that would not appear in the entity list unless there is a way to detect it, or it starts moving
in which case humans would see a moving underground unit. An example of information
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Category Field Description

Entities:
up to 512

Unit type E.g. Drone or Forcefield
Owner Agent, opponent, or neutral
Status Current health, shields, energy
Display type E.g. Snapshot, for opponent buildings in the fog of

war
Position Entity position
Number of workers For resource collecting base buildings
Cooldowns Attack cooldown
Attributes Invisible, powered, hallucination, active, in cargo,

and/or on the screen
Unit attributes E.g. Biological or Armored
Cargo status Current and maximum amount of cargo space
Building status Build progress, build queue, and add-on type
Resource status Remaining resource contents
Order status Order queue and order progress
Buff status Buffs and buff durations

Map:
256x256
grid

Height Heights of map locations
Visibility Whether map locations are currently visible
Creep Whether there is creep at a specific location
Entity owners Which player owns entities
Alerts Whether units are under attack
Pathable Which areas can be navigated over
Buildable Which areas can be built on

Player
data

Race Agent and opponent requested race, and agent actual
race

Upgrades Agent upgrades and opponent upgrades, if they would
be known to humans

Agent statistics Agent current resources, supply, army supply, worker
supply, maximum supply, number of idle workers,
number of Warp Gates, and number of Larva

Game
statistics

Camera Current camera position. The camera is a 32 × 20
game-unit sized rectangle

Time Current time in game

Table 3.1: The observations the agent receives through the raw interface. [92]
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Field Description

Action type Which action to execute. Some examples of actions are moving a unit,
training a unit from a building, moving the camera, or no-op. See PySC2
for a full list [93]

Selected units Entities that will execute the action
Target An entity or location in the map discretized to 256x256 targeted by the

action
Queued Whether to queue this action or execute it immediately
Repeat Whether or not to issue this action multiple times
Delay The number of game time-steps to wait until receiving the next observa-

tion

Table 3.2: The action arguments the agents can submit through the raw interface as part
of an action. [92]

that needs to be inferred or remembered is the map, because humans see a single RGB
image while an agent views the layers of information about the map including information
humans would not be explicitly told, like which areas of the map can be traversed by foot.

The components of each action an agent can take are described in Table 3.2. Note that
this is a highly structured action space, and that though the network submits all arguments
for each action, some arguments are ignored depending on the action type. One argument
of an action is the delay, which defines the number of game steps until the agent will next
receive an observation and issue an action. Agents can only issue 22 non-duplicate actions
per 5 second window (which also therefore limits how often they can observe), which loosely
matches the action-rate of top professional players.

AlphaStar’s observations and actions were modulated through a camera view, similar
to how humans only focus on a section of the larger map at a time. This camera can be
moved as an action to focus on different sections of the map. A minimap displays high
level information about entities that are outside the current camera (e.g. their position)
and allows certain actions to be issued outside the camera (e.g. moving a group of units),
so we limited the observations and possible actions outside the camera accordingly.
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3.2 Architecture

AlphaStar’s policy network embeds three different types (entity, map, and scalar) of infor-
mation, concatenates them together, passes that concatenation and previous LSTM states
through a Deep LSTM [39], and uses the LSTM output to autoregressively sample each
action argument one at a time [58]. The value network instead uses the LSTM output and
additional baseline features to generate a baseline. An overview of the architecture can be
seen in Figure 3.2.

AlphaStar has one of the most complex network architectures in a deep learning project.
However, because of the scale AlphaStar needs to run at, it was infeasible to iterate on the
architecture purely through performance in multi-agent reinforcement learning. This was
compounded by the inherent variability present in RL; the performance improvement from
an architecture change could easily be overshadowed by variance in performance between
runs. Instead, the architectural choices (and in fact, any changes that could be evaluated
this way including interface and dataset ones) were made through supervised learning,
which is a more stable objective that could be evaluated much faster. We trained a model
with different adjustments to convergence in imitation learning, and made decisions based
on the accuracies, losses, and performance against built-in StarCraft bots and AlphaStar
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players from previous experiments. Note that performance in actual play is the most
important metric here because, for example, giving the network access to the entire previous
action improves accuracies (because humans tend to repeat the same action multiple times)
but can lead to worse play (because repeating an action is often not a useful strategy).
Real performance acts as a validation metric that the network does not directly optimize.
If the choice managed to better capture and reproduce human play, we would integrate it
into larger MARL experiments.

We will now go into more detail on the architecture, though a full description of layer
sizes and other details can be found in the supplementary information of the original
publication.

3.2.1 Policy Network

The entity list is a list of every discrete visible entity, including units, buildings, resources,
and interactable terrain, in the game. The list has a maximum size of 512, and any entities
after 512 are ignored. We found through analysis of supervised games that about 1%
of recorded games had over 512 entities at any point in the game. Each entity has a 1D
vector of information corresponding to that entity (for example, its position, unit type, and
whether or not it is invisible) and data in those vectors is preprocessed to either fall within
a uniform range around [0, 1] or encoded as one-hot vectors. The preprocessed entities
are then fed through a 3-layer transformer [90] with 2-headed self-attention. The mean of
the transformer output across all entities is processed through a linear layer and rectified
linear unit (ReLU) [64] to yield an embedding of all the entities that will be concatenated
with data from the map and scalars, and the output for each entity is processed through
a ReLU, 1D convolution, and another ReLU to yield embeddings of each entity that will
be used both to enrich the embedding of the map and as a skip connection to help select
entity action arguments.

The spatial encoder embeds the 2D visual information from the map enriched through
scatter connections by entity embeddings. The map consists of several layers preprocessed
to either fall within a uniform range or to be one-hot. Entity embeddings are converted into
size 32 vectors by a 1D convolution and ReLU and transformed into a spatial representation
with 32 layers where the entry at a specific (x, y) coordinate corresponds to the embedding
of the entity that would be found at that coordinate. We call this a scatter connection
because it scatters information about entities in space to where they would be found,
allowing us to combine spatial and entity information. The map layers and entity layers
are concatenated and down-sampled through a series of convolutions and ResBlocks [36],
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and finally collapsed and embedded into a 1D tensor that will be concatenated with data
from the entities and scalars. The spatial information at each step of down-sampling is
saved and used when selecting spatial action arguments.

All data that is not an entity or spatial is embedded by the scalar encoder. This
includes the list of available actions, the amount of resources available to players, and the
statistic z. Each scalar feature is preprocessed, similar to entities and spatial features, and
individually embedded by linear layers or small transformers, then concatenated together
as the overall scalar embedding. Certain features that are relevant for action type selection
(e.g. the statistic z and the available actions) are also concatenated into a separate vector
that will be used for action type selection.

The concatenated entity, spatial, and scalar embeddings are combined into a single 1D
tensor, and passed through a 3-layer LSTM which adds memory between timesteps.

Subsequently, each action argument is selected autoregressively [58]. That is, by the
chain rule, the probability of selecting an action a with arguments a1, a2, ..., an is Pr(a|ht) =
Pr(a1|ht) ∗ Pr(a2, ..., an|ht, a1) = ... = Pr(a1|ht) ∗ Pr(a2|ht, a1) ∗ ... ∗ Pr(an|ht, a1, ..., an−1).
This selection decomposes the action space from 1026 to something tractable and easier to
learn on while letting the selection of each argument be aware of all previous argument
selections, to avoid events like building with a unit that cannot build.

Argument selection then consists of several heads, one for each argument type, where
each head is conditioned on the action type argument (except the action type head and
the delay head) and a 1D autoregressive embedding that encodes all previous argument
selections (except the action type head, which is first and uses the LSTM output). Each
head outputs its corresponding argument, along with a new autoregressive embedding that
is updated through a fully connected network to include the new argument. The action type
head processes the LSTM output through several ResBlocks [36] and a gated linear unit [22]
gated by the previously mentioned scalar information to select the action type. The delay
head processes the autoregressive embedding through a fully-connected network to select
the delay, and the queued head processes the embedding through a fully connected network
to select whether or not to queue the action. The selected units head computes a key for
each entity corresponding to the previously mentioned entity embedding skip connection,
masked by whether or not the entity is a valid selection, and uses those keys in a recurrent
pointer network [94] to decide which of up to 64 selected entities to apply the action to.
The target unit head is similar, except selecting a single unit. Finally, the location head
reshapes the autoregressive embedding to the same shape as the final previously mentioned
map skip-connections, concatenates the embedding and skip connections, and processes the
concatenation through a series of up-scaling convolutions, Gated ResBlocks [22] (gated by
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the autoregressive embedding), and FiLM [69] layers to select the location arguments.
Through this process, the network can reason about sampling an action.

3.2.2 Value Network

The last part of the network architecture are the split baselines which constitute the value
network. The agent rewards in reinforcement learning consist of the win-loss reward and
the reward for following the statistic z, both of which will be described in the following
sections. There is a separate baseline for each distinct reward component, which improves
learning by disentangling the various rewards. Each baseline gathers and preprocesses
various input information, including some of the scalar features, the selected action type,
and the LSTM output. Notably, each baseline also has access to privileged information
that is not available to the policy network, like the opponent observations (a concept which
was developed concurrently with several other publications [3, 16]), and does not bias the
converged objective. The various input features are concatenated and passed through a
series of ResBlocks, and finally re-scaled to generate the baseline value for each baseline.

3.3 Supervised Learning

Supervised learning, where the AlphaStar agent learns to imitate human actions and strate-
gies, is the first step of training an AlphaStar agent. Because learning to imitate an existing
expert policy is significantly easier and more reliable than exploring to discover that policy,
this step helps address the representational, exploration, and strategic difficulties inherent
in the problem. Our objective was to create a policy that would be useful for reinforcement
learning and so develop not necessarily the strongest policy possible, but instead a policy
that meaningfully captures a wide variety of human strategies. This step proceeds similarly
to most supervised learning applications: the observations the human would have seen and
inputted into the policy, and the outputs of the policy are adjusted by gradient descent to
improve the probability of selecting the actions the human actually selected. This can be
seen in Figure 3.1 b (bottom).

3.3.1 Dataset

The dataset consisted of 971000 replay recordings of human games, gathered by Blizzard
Entertainment, played on StarCraft II versions 4.8.2 to 4.8.6, which we then filtered to
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only include players with matchmaking rating (MMR) greater than 3500, approximately
the top 22%. MMR is a metric similar to Elo [26] or TrueSkill [38] which records both a
player’s estimated skill level and the uncertainty of that skill window. Different versions of
StarCraft II have slightly different rulesets, but strategies and representations are generally
transferable. The replays were executed in StarCraft to generate a stream of observations
and actions, and all observations where the human did not act were filtered out (with the
delay argument for the action set to when the human would next act). This both improved
performance, because the policy network did not have to act on every game step and much
less data needed to be sent between processes, but also imposed a human prior for how
often an agent would act.

3.3.2 Strategy Statistic z

The statistic z was extracted from the replays. It encodes an overall view of the strategy
into a summary vector, and is used to encourage the policy to follow a specific strategy
by conditioning agents during supervised learning, and both conditioning and explicitly
rewarding agents during reinforcement learning. z consists of each player’s cumulative
statistics and build order. The cumulative statistics are a 1-hot vector of whether or not
each unit, building, effect (e.g. a force-field, which is produced by a special ability), or
research upgrade was present at any point in the game, which gives a high-level overview
of the strategy the player executed. The player’s build order is the first 20 units and
buildings the player constructed during the game, as well as the positions of the buildings.
Build orders are a common way of summarizing a player’s opening strategy in StarCraft.
Agents are conditioned only on z extracted from a randomly sampled replay corresponding
to the top 2% of players, and only from replays where the match-up and map matches
the one the agent is currently playing (e.g. playing as Zerg against Protoss on the map
Kairos Junction). One limitation of this formulation of z is that strategies in StarCraft
are reactive, and depend on observation of the opponents strategy, so while agents may
be diverse they may not be sufficiently reactive. Therefore, during the final evaluation
described in 3.7, agents do not use z.

Though the specification of z is specific to StarCraft, the idea of conditioning based on
high-level human strategies is transferable to other domains. During supervised learning,
the cumulative statistics portion of z is used 50% of the time, and the build order portion
is used 80% of the time.
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3.3.3 Supervised Learning Training

A separate agent is trained for each of the three StarCraft races (Terran, Protoss, and Zerg),
though all agents can play versus any of the three races. Each step of a replay, we compute
the logits corresponding to sampling each action argument of at for the policy πθ(at|ht, z),
and minimize the cross-entropy between these logits and the true human actions. The cross-
entropies are weighted differently for each argument (e.g. the action type is more important
than whether or not the action is queued), there is an additional L2 regularization loss [33],
and the combined losses are applied with an Adam optimizer [48] with a learning rate that
decays by 0.2 every 5 ∗ 109 observations.

After the policy has converged, there is an additional fine-tuning step in which the
agent is trained on replays only from the perspective of the winning player, and only from
players with MMR ≥ 6200, which yields about 16000 games. In fine tuning, the learning
rate starts lower and decays more often, every 1.5 ∗ 109 observations. Note that the policy
is given as an input the MMR of the player it is imitating, and during evaluation this
MMR is set at 6200.

Fine-tuned agents perform surprisingly well even though they have never received a
single reward and are only trained to imitate humans. They can win 96% of the time
against the built-in AI in Protoss versus Protoss matches, and were evaluated as performing
within the top 16% of players. However, more importantly for the next stage, they are
capable of executing and responding to a wide variety of strategies across games.

3.4 Reinforcement Learning

Agents are matched against distributions of other agents and historical players by the
AlphaStar League, the matches generate trajectories of experience, and that experience
is used to asynchronously refine the policy and value networks, with the policy initialized
from supervised learning, through reinforcement learning. This can be seen in Figure 3.1
b (top).

3.4.1 Rewards

The reinforcement learning rewards are the win-loss final reward (+1 on a victory, 0 on
a draw, and -1 on a loss), and the rewards from following a statistic z. The win-loss
reward is not discounted so that agents take a longer term strategic view and do not
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converge to "rush" strategies that can be executed quickly. The rewards from z are the
build order rewards, the change from step to step in the negative Levenshtein distance
between z and the build order executed in the game with an additional penalty term for
building buildings in a different location from z, and the cumulative statistics rewards,
the change from step to step of the Hamming distance between the z and an indicator for
whether each unit, building, research upgrade, and effect is present within the game. The
cumulative statistic rewards decrease to half after 8 minutes, a quarter after 16 minutes,
and 0 after 24 minutes (the average game is around 20 minutes) so that agents do not delay
victory in order to gather as much cumulative statistic reward as possible. In contrast to
supervised learning, the policy is conditioned on the build order 25% of the time, and on
the cumulative statistics 25% of the time. As described in 3.2.2, there is a separate value
function for each reward component, which is an easier learning objective than learning all
parts of a multi-faceted reward jointly.

3.4.2 Exploration

There is no explicit ε-greedy style exploration present in AlphaStar’s training, and in fact
such exploration would be intractable due to the sizes of the environment space and action
space. Instead, we use human exploration to explore the action and strategic space of
StarCraft. As mentioned in 3.4.1, the agent is rewarded for following a human strategy,
and we can therefore force an agent to consider a strategy it would have otherwise avoided.
The agent is also initialized from a supervised checkpoint, and through a distillation loss
forced to not diverge too far from the initial checkpoint [71, 67]. That is, the supervised
policy and the current reinforcement learning policy are both run on the same observation,
and the optimizer minimizes the KL divergence between each supervised and RL action
argument. This distillation loss ensures that the policy does not collapse prematurely to
a single strategy (it can be seen as a regularization entropy loss except with a supervised
prior instead of a zero prior), and also ensures that the agent continues to be able to explore
a diverse array of strategies throughout training. Without this exploration, policies quickly
collapse to local minima.

3.4.3 Reinforcement Learning Training

Distributed actors play matches to generate trajectories (each trajectory consists of 128
timesteps of StarCraft) of experience, those trajectories are sent to a replay buffer [95]
that repeats each trajectory twice, and a central learner samples from the replay buffer
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to generate experience for updates. Because computation is distributed, the policy that
generated trajectories may be different from the current policy on the learner (because of
delays in receiving updated parameters and sending trajectories) so on-policy reinforcement
learning methods like A3C need to have their updates adjusted [82].

Therefore, there is a modified IMPALA [27] actor-critic loss for each reward and corre-
sponding baseline. The actor policy network loss needs to be corrected by V-trace to avoid
instability, but the critic value network loss can instead be updated using just TD(λ) [81]
which, though biased because it learns the value for a slightly different policy, decreases
variance and improves learning efficiency. This bias for the critic is necessary because the
action space is large and structured, so many different actions can have similar or even
identical effects. For similar reasons, even though we applied V-trace to the policy, we as-
sumed independence between action arguments and applied corrections to them separately.
This is also biased, but necessary because the large action spaces means that V-trace would
otherwise down-weight even slightly off-policy trajectories.

AlphaStar also introduces a novel, general policy update called the upgoing policy
update (UPGO) which delays bootstrapping and instead looks at n-step returns [68] as
long the actions in the trajectory are better than average. This objective is similar to
self-imitation learning [65], and uses:

Gt =

{
rt +Gt+1 if r + Vθ(ht+2, z) ≥ Vθ(ht+1, z)

rt + Vθ(ht+1, z) otherwise
(3.1)

Gt is used instead of the directly bootstrapped rt + Vθ(ht+1, z) to compute advantages
for the UPGO loss, which is otherwise similar to an IMPALA actor loss. UPGO propagates
information for partial trajectories that perform better than average faster than normal
actor critic losses.

The TD(λ) losses for each baseline, the V-trace policy losses for each baseline, an
UPGO loss for the win-loss baseline, the KL divergence loss from the supervised policy,
and a standard entropy regularization loss are all combined and optimized using Adam [48]
with a fixed, non-decaying learning rate. The learning rate does not decay because the
objective changes throughout training as the opponents learn and adapt.

3.5 Multi-agent Learning

The novel league training procedure introduced in AlphaStar manages the complex strate-
gic landscape present within StarCraft by maintaining a pool of historical players and
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constantly training live agents. It assigns match-ups to distributed actors to generate rein-
forcement learning trajectories and to estimate the Elo of everything within the population,
stores snapshots of live agents into a pool of historical players, and replaces live agents with
new ones (initialized from supervised learning) when necessary. In StarCraft, as in many
multi-agent partially observable domains, there is no single dominant strategy, and single
purpose strategies that are weak against most others (called "cheeses" in StarCraft) can
exploit more generally robust ones. Gathering information and responding appropriately
to a wide variety of unexpected tactics is core to this partially observable environment,
and league training attempts to instill this responsiveness onto its agents. A visualization
of league training can be seen in Figure 3.1 c.

3.5.1 Matchmaking Algorithm

League training uses three matchmaking strategies: self-play, prioritized fictitious self-play
(pFSP) focusing on hard opponents, and pFSP focusing on a smooth curriculum. Self-play,
the most familiar setting, means that a set of agents are matched against one another and
learn in parallel.

Naive self-play matchmaking between two agents quickly adapts but can devolve into
cycles even in simple games [4]. For example, in rock-paper-scissors if one agent always
plays rock, the other will learn to always play paper, so the first will learn to always
play scissors, and so-on. To avoid this, fictitious self-play (FSP) plays against all previous
players in a pool which avoids cycles entirely and converges to a Nash equilibrium in
zero-sum two-player games [10, 55, 37]. However, because FSP plays uniformly across all
previous players, it both wastes compute by playing an agent against many strategies it
can already beat, but also learns to maximize performance against the average strategy
in the pool. Humans can take advantage of this by shifting the distribution of strategies
they sample from to strategies that an agent is weak against. Even if the agent has learned
to maximize the average win-rate, if there is a single strategy the agent is weak against,
that weakness can be exploited many times. Instead, the agent should learn to maximize
performance against strategies it is weakest against, which has the side effect of providing
more learning signal by not playing games against already beaten opponents.

Therefore, AlphaStar introduced prioritized fictitious self-play (pFSP) which plays an
agent A against an opponent B from a pool of opponents C according to:

f(Pr(A wins against B))∑
c∈C f(Pr(A wins against C))

(3.2)
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where f(x) = (1−x)2 or f(x) = min(0.5, 1−x) if the goal is to focus on opponents who
cannot yet be beaten (with the former version weighting such opponents more heavily), or
f(x) = x(1− x) if the goal is to focus on opponents of similar skill levels. The latter goal
is useful when there are much stronger opponents.

pFSP relies heavily on accurate win-rate estimations, so a payoff matrix is continually
estimated and updated during league training.

3.5.2 League Agents

There are three main types of agents within the league training, each of which differs in
their matchmaking algorithm, when they are saved to the global pool of past players, and
when they are replaced with a new agent initialized to the supervised learning policy. They
are main agents, which are intended to be the strongest and least exploitable agents, league
exploiters, which find systematic weaknesses in the league, and main exploiters, which find
weaknesses specifically in the main agents.

There are three main agents trained simultaneously, one for each of the three StarCraft
races. Main agents are trained against each other in self-play 35% of the time (although
if the expected win-rate against another main agent is below 0.3 they will instead play
curriculum pFSP against that agent’s previously saved checkpoints). Main agents play
hard opponents pFSP (using f(x) = (1 − x)2) against all previous players saved in the
league pool 50% of the time. The remaining matches, 15% of the time, main agents play
hard opponents pFSP (using f(x) = (1 − x)2) against saved main exploiter players that
it has a win-rate below 0.3 against, and saved main agent players against which the agent
used to have, but no longer has, a win-rate above 0.7. Checkpoints of main agents are
saved to the global pool of players every 2 ∗ 109 steps, and main agents are never reset.
The main agents are meant to be robust against the entire league pool and its various
exploiters, and stay robust throughout training while continually improving.

There are six league exploiters trained at any point, two for each StarCraft race. League
exploiters match with hard opponents pFSP (using f(x) = min(0.5, 1− x) because unlike
main agents they are reinitialized through training and the normal hard opponents objec-
tive against a mature league would be too difficult), and are checkpointed into the player
pool either every 2 ∗ 109 steps if they can defeat all players in the pool more than 70%
of the time, or every 4 ∗ 109 steps otherwise. Each time the agent is checkpointed, there
is a 25% chance it will be reinitialized to supervised parameters. League exploiters find
weaknesses within the entire league, though note that no other agents will see the league
exploiter’s strategy until it has been checkpointed (at which point there is a chance it will
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Figure 3.3: Training infrastructure. Diagram of the training setup for the entire league. [92]

be reinitialized) and added to the player pool so unlike main agents the league exploiters
do not always have to be robust.

Finally, there are three main exploiters. If the main exploiters can win more than 20% of
the time against main agents, they will play against main agents 50% of the time and spend
the rest of the time playing curriculum pFSP against all previous checkpoints of the main
agents. Otherwise, main exploiters will only play curriculum pFSP against previous main
agents. The curriculum is necessary here because, like league exploiters, main exploiters
can reinitialize and therefore may be much younger than main agents. Main exploiters are
checkpointed and reset either when they can beat all three main agents 70% of the time or
after 4 ∗ 109 steps. Main exploiters find weaknesses in main agents and, like league agents,
no other agents play against main exploiters until they checkpoint and so main exploiters
are not expected to be robust.
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3.6 Infrastructure

AlphaStar trained in a distributed setting with actors, which run the agent network to
generate trajectories of experience; learners, which use those trajectories to update param-
eters; environments, which run the StarCraft II game instances; evaluators, which update
the payoff matrix for league training; a coordinator, which decides matchups for the actors
to play; coordinator cachers, which cache requests to and from the coordinator, and learner
cachers, which cache requests for parameters from the learner server. A simplified diagram
of this can be seen in Figure 3.3.

Each agent in the league runs 16000 parallel StarCraft II game instances (on the equiv-
alent of 150 modern 28-core processors) and 16 actors (on TPUv3 instances with 8 TPU
cores [46]). Actors request parameters and matches from the learner cachers and coordi-
nator cachers respectively, and execute matches by asynchronously executing StarCraft II
game instances and batching together neural network executions to maximize use of the
TPU. To perform this batching, the interface and network preprocessing were implemented
with highly performant C++ or in-network TensorFlow code. The StarCraft II instances
were run with rendering and other unnecessary features disabled.

Each agent also used a 128-core TPU learner, which updated the parameters of the
network using trajectories of experience from the actors with a total batch size of 512
trajectories at once. Each trajectory is placed into a replay buffer and replayed twice for
efficiency. Actors and evaluators request parameters from the learner through the learner
cachers. There are 5 learner cachers per learner which cache the parameters of the learners,
requesting new parameters up to once per second. Each learner can process approximately
50000 steps per second.

There are 6000 additional evaluator StarCraft II instances run on CPU that help up-
date the payoff matrix. These instances receive matches from coordinator cachers, receive
parameters from learner cachers, and send results of matches to coordinator cachers. A
central coordinator performs the duties described in 3.5 and maintains the payoff matrix
for all players. Two coordinator cachers batch calls to and from the coordinator.

In total, AlphaStar was trained for 44 days of league training with this setup.

3.7 Evaluation and Results

AlphaStar was evaluated three times: in an initial series of demonstration matches, in a
more rigorous Battle.net evaluation, and in a more casual public exposition.

28



3.7.1 Battle.net Evaluation

The most rigorous and formal evaluation of AlphaStar was on Battle.net, Blizzard’s online
multiplayer system. Humans play on Battle.net, starting with an initial MMR that is
updated based on the results of subsequent matches, and the goal was to see what perfor-
mance level AlphaStar would reach in this anonymized human setting. AlphaStar reached
a Grandmaster rating in all three StarCraft races, the highest rating tier possible, with a
rating higher than 99.8% of all players who played enough games in the months before to
be assigned to a rating tier (about 90000 players).

Games were played using Battle.net’s matchmaking system, on StarCraft II version
4.9.3 in the Summer of 2019, against players who had opt-ed in to play against AlphaS-
tar [24] (most players opted in), using a single machine with a consumer GPU. AlphaStar
played on the maps Kairos Junction, New Repugnancy, Cyber Forest, and King’s Cove.
Though there were seven maps matches could take place on, humans can also decide to
play on a subset of four of those seven. The maps were selected because they were the only
maps common from when training AlphaStar began to when AlphaStar was evaluated.
AlphaStar also played under an anonymous account name, which humans also frequently
do, for blind conditions where neither AlphaStar nor its opponent were aware of the other’s
identity. Note that this focuses on evaluating AlphaStar against approximately stationary
conditions, not exploitation under repeated trials. To avoid identification and conform to
community standards, AlphaStar would communicate opening greetings ("gl hf", which
stands for "good luck, have fun", or some variation of that message) and closing end-of
game messages ("gg", which stands for "good game), and we would manually resign if
there appeared to be no way for AlphaStar to win a given game. Note that premature
resignation would only decrease AlphaStar’s performance.

We evaluated AlphaStar at three points in time: AlphaStar Supervised, the supervised
policy, AlphaStar Mid, the league main agents after 27 days of league training, and Al-
phaStar Final, the league main agents after 44 days of league training. Each evaluation
consisted of one agent for each of the three StarCraft races. Though they were trained with
the statistic z, they were not conditioned on z during evaluation because of responsiveness
issues mentioned in 3.3.2.

AlphaStar Supervised and AlphaStar Mid agents were evaluated by playing 30 and
60 matches respectively starting from a newly created account. AlphaStar Supervised’s
rating was found to have approximately converged after those 30 matches. Evaluation of
AlphaStar Mid was halted after 60 games because its anonymity assumptions were violated
after 50 games. Players had identified the accounts AlphaStar Mid used by analyzing
irregularities in AlphaStar’s play, and were taking advantage of the matchmaking system
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Figure 3.4: Win probability versus gap in MMR. The shaded grey region shows MMR
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win rates for players above 6,000 MMR and AlphaStar Final, respectively. Both human
and AlphaStar win rates closely follow the MMR model. [92]

to target it. This meant both that players began the game knowing they were playing
against AlphaStar, and therefore would play differently from normal, and players would
deliberately play against AlphaStar multiple times, moving the evaluation into a different
repeated trial domain.

Because of the exposure from AlphaStar Mid, AlphaStar Final was evaluated on another
30 games regularly switching accounts to avoid identification. Each account had an MMR
seeded at the average MMRs of AlphaStar Mid evaluations. Battle.net’s MMR system
could not compute AlphaStar Final’s ratings because the games were played over multiple
accounts, so we computed the ratings based on a maximum-likelihood estimate of the
underlying probabilistic model. The maximum likelihood estimate was validated on the last
200 matches of profession StarCraft II player Dario "TLO" Wünsch, yielding an estimate
of 6334 compared to the value reported by Battle.net 6336, and validated on the matches
AlphaStar Final played in Figure 3.4.

Results of this evaluation can be seen in Figure 3.5. AlphaStar Supervised reached
an average MMR rating of 3699, within the top 16% of human players. AlphaStar Mid’s
rating did not fully converge, so its MMR is unreliable.

AlphaStar Final achieved a rating of 6048 for Terran, 5835 for Zerg, and 6275 for
Protoss, higher than 99.8% of active human players and within Grandmaster level in all
three races. Results of AlphaStar Final in individual StarCraft race match-ups can be seen
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to Grandmaster, according to their ratings (MMR). We played three variants of AlphaS-
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won against opponents shown in green and lost to those shown in red. Blue is our MMR
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in Figure 3.6. Account switching managed to keep AlphaStar Final anonymous for the
duration of the remaining trials, though some of the games were identified in later weeks.

Additional details of the performance of each instance of AlphaStar Mid and AlphaStar
Final can be seen in Figure 3.7. Note that because of how MMR is calculated, AlphaStar
Final Protoss was placed at 6275 MMR despite not beating any players above 6000 MMR
because of consistently high win-rates against other players.

3.7.2 BlizzCon Matches

AlphaStar was evaluated in a more casual and open setting in November 2019 at BlizzCon,
Blizzard’s yearly convention for their games. At the convention, we set up a demo sta-
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tion with up to 20 machines where attendees could play against AlphaStar in non-blind,
repeated trial conditions (and therefore different conditions from the Battle.net evalua-
tion). Two versions of AlphaStar were available to play: AlphaStar Basic, a distribution of
agents including AlphaStar supervised and weak main and league exploiters, and AlphaS-
tar Advanced, a distribution of agents including AlphaStar Final, AlphaStar Final with
the statistic z, and strong league exploiters.

These matches were under less scientific conditions because they took place in the
convention hall, and though players could customize some settings (e.g. hotkeys) they
were using different keyboard, mice, and headphones from those they were normally used
to playing with. Matches also took place on the same balance patch and maps as those
used in the Battle.net evaluation, which at that point were several months out of date.
Many players played against AlphaStar repeatedly, testing strategies and trying to find
systemic weaknesses.

AlphaStar Basic won approximately 90% of its 500 games at BlizzCon, and AlphaStar
Advanced won approximately 95% of its 500 games. Notably, professional player Joona
"Serral" Sotala, ranked number one in the 2018 StarCraft II World Championship Series,
played 5 games against AlphaStar Final (not AlphaStar Advanced) at BlizzCon under
these conditions and AlphaStar won four out of the five games.

3.7.3 Demonstration Matches

An earlier version of AlphaStar played five matches against Dario "TLO" Wünsch and
Grzegorz "MaNa" Komincz in December 2018, although TLO played Protoss instead of the
race he plays professionally. AlphaStar won all ten games in these demonstration matches,
although it lost a follow-up game in January that added an early camera prototype. This
earlier version differed from the final one in that it only played with and against one
of the StarCraft races, it had a less limited and less human-like interface (for example,
it could act inhumanely often), league training was manually managed and agents were
manually selected, and the architecture and losses were iterated on several times after the
matches [91]. The goal of those matches was to measure what progress the project had
made.
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Figure 3.8: Ablations for key components of AlphaStar. These experiments use a sim-
plified setup: one map (Kairos Junction), one race match-up (Protoss versus Protoss),
reinforcement learning and league experiments limited to 1010 steps, only main agents,
and a 50%–50% mix of self-play and pFSP, unless stated otherwise. The first column
shows Elo ratings [26] against ablation test agents (each rating was estimated with 11,000
full games of StarCraft II). [92]
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3.8 Analysis

We ran several additional internal ablations and analyses of AlphaStar, the results of which
can be seen in Figure 3.8. Analysis of that figure follows.

(a) Figure 3.8 a shows the Elo improvement of main agents when adding exploiters into
league training.

(b) Figure 3.8 b shows the relative population performance of all league agents, a measure
of exploitability, when adding exploiters.

(c) Figure 3.8 c shows the Elo of main agents trained alone according to different match-
making algorithms.

(d) Figure 3.8 d shows the minimum win-rate of main agents trained alone according
to different matchmaking algorithms against past versions of themselves, averaged
over training. Note that self-play agents can learn rapidly, but forgets how to defeat
its past versions. More detailed analysis can be seen in Figure 3.9. pFSP decreases
exploitability against rare counter strategies that a uniform mixture could more easily
avoid considering.

(e) Figure 3.8 e shows the impact of different human exploration strategies on Elo. Su-
pervised is supervised learning by itself, human init is initializing from the supervised
checkpoint followed by RL, and supervised KL is both initializing and then continuing
to distill from the supervised checkpoint in RL.

(f) Figure 3.8 f shows the change in win-rate against the hardest non-cheating built-
in AI when training a Protoss supervised network using different neural network
architecture components. Action delays refers to the action argument requesting
when next to act, seen in Table 3.2.

(g) Figure 3.8 g shows the Elo performance when trained with different action-per-minute
(APM) limits relative to the one used in AlphaStar. Lower APM limits decrease
performance because agents are not able to execute enough actions. High APM limits
also decrease performance because agents learn to control individual units. This
shifts the strategy distribution away from human ones (making evaluation against
other agents more difficult) and is harder to learn because of competition against the
supervised KL and because there are more timesteps per game (the more often an
agent acts the more often it observes) which makes the learning problem harder.
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(h) Figure 3.8 h shows the change in win-rate against the hardest non-cheating built-in
AI when training a Protoss supervised network using different camera interfaces.

(i) Figure 3.8 i shows the average win-rate improvements of different RL off-policy cor-
rections against a fixed set of opponents.

(j) Figure 3.8 j shows the Elo of the hardest and easiest non-cheating built-in AIs, and
an agent that never acts which anchors the scale.

(k) Figure 3.8 k shows the average win rate improvements of using privileged information
in the RL value function.

The distribution of units constructed by Protoss AlphaStar Supervised and Protoss
AlphaStar Final are shown in Figure 3.10. AlphaStar Supervised is capable of building
every unit in the game, which indicates it is effectively capturing a diverse range of human
strategies.

Multi-agent learning dynamics were evaluated through both a round-robin tournament
of all players produced throughout league training, shown in Figure 3.11, and through play
against a held-out set of validation agents trained to exhibit specific human strategies,
shown in Figure 3.12. Main agents continued to improve in both internal Elo and robustness
against the held-out strategies as training progressed. Main exploiters in Figure 3.11 grew
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Figure 3.10: Distribution of units built in a game. Units built by Protoss AlphaStar
Supervised (left) and AlphaStar Final (right) over multiple self-play games. AlphaStar
Supervised can build every unit. [92]
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Figure 3.13: The Nash distribution (mixture of the least exploitable players) of the players
in the league, as training progressed. It puts the most weight on recent players, suggesting
that the latest strategies largely dominate earlier ones, without much forgetting or cycling.
For example, player 40 was part of the Nash distribution from its creation at day 20 until
5 days later, when it was completely dominated by newer agents. [92]

weaker as training progressed, indicating that it became harder to find new strategies that
could exploit the main agents.

Figure 3.13 shows the Nash equilibrium of main agents through training. As expected,
new agents continuously entered the Nash equilibrium and old agents left as they became
dominated. Old agents rarely re-enter the Nash after leaving it, which indicates that league
training successfully avoids degenerate cycles.

Figure 3.14 shows a portion of the payoff matrix used during league training. Each row
is a different player in the league, with age within an agent type increasing further down
the matrix. As we would expect, main agents trained to be the strongest agents in the
league have transitive payoffs, continuing to win against older agents, while exploiters who
have different objectives do not share this transitivity.

Figure 3.15 shows the units constructed throughout training, which gives insight into
strategic diversity as each unit has a specific purpose. The unit compositions change
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Figure 3.14: Payoff matrix (limited to only Protoss versus Protoss games for simplicity)
split into agent types of the league. Blue means a row agent wins, red loses, and white
draws. There are around 3,000,000 rock–paper–scissor cycles (with requirement of at least
70% win rates to form a cycle) that involve at least one exploiter, and around 200 that
involve only main agent. [92]
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Figure 3.15: Average number of each unit built by the Protoss agents over the course
of league training, normalized by the most common unit. Unlike the main agents, the
exploiters rapidly explore different unit compositions. Worker units have been removed for
clarity. [92]

throughout training, even late in the training of the main agents which never reset back to
initial checkpoints, indicating that meaningfully different strategies continue to be explored
and agents have not converged by the end.
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Chapter 4

Complexities in Deep Learning Game
Interfaces

4.1 Complexities in Game Interfaces

Artificial intelligence agents cannot feasibly interact with computers and games in the
same way humans can. Even a robot that has sensors to view a computer screen and
fingers to press keys will perceive the screen display differently from humans, and the gulf
between humans and agents grows much wider when interacting through a non-physical
interface. Direct interfaces are necessary because humanoid manipulation is a difficult
unsolved problem that can be disentangled from the other research directions that games
present.

However, this means that the interfaces that humans use must be adapted in some
way to APIs that can be used by computers. For board games, this can be relatively
straightforward. The interface can expose the state of the board and all pieces on it,
though this can already have complexities of whether or not the agent can see the clock
(for games like chess or Go) or the face and emotional state of opponents (particularly for
social games like Poker or Diplomacy). Interface design for many games does not have a
clear solution, though there are few Poker agents that look at their opponents faces, and
there are two areas of consideration that go into developing an interface: what should be
exposed in an interface and how should it be exposed.

42



4.1.1 What should be exposed

In simpler domains like chess or Poker, it is apparent what data a human has access to
and what actions they can take when playing the game, and the essential question is
instead what is and is not relevant for research purposes. However, while questions about
relevance are certainly present in more complex games like StarCraft II, determining what
humans see and do is much more complicated and requires a significant amount of domain
knowledge. In modern video games:

1. Information may be conveyed by appearances. For example, in StarCraft II, there is
a building called a bunker that units can be placed within. If units are within the
bunker, internal lights present in the bunker sprite will be turned on, and otherwise
the lights will be turned off. There are dozens of examples of this in StarCraft II,
from research upgrades changing the sprites of units in subtle ways (e.g. adding wings
to Zerglings if a movement upgrade for them is researched) to showing a distorted
image of the unit a Stargate building is currently constructing.

2. Information may be transmitted through multiple streams. For example, Nydus
worms trigger a sound alert whenever an enemy constructs them, even if they are not
within the section of the map a player can see. Similarly, first-person shooter games
generate footstep sounds when players move, and because the sound is directional it
is possible to figure out the relative orientation of those players even when they are
behind walls or floors.

3. Information may be from a side channel that does not affect the game-theoretic
solution. These include chat messages and voice communication present in many
games. These also include external resources, like wikis or videos of other players,
that provide information about the game.

4. Interfaces may be player-specific. For example, the screen aspect ratio usually affects
how much information is exposed at once, because using a constant aspect ratio with
empty borders would look bad to most players. This affects both observations, but
also the set of available actions. Also, many games allow game modifications that
expose extra additional information (e.g. many World of Warcraft UI mods [5, 23]),
and players may use different input mechanisms (e.g. controllers vs. keyboards).

5. Information may be hidden in the interface. For example, by selecting an enemy unit
in StarCraft, it is possible to see some of the research upgrades the unit has active.
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6. Information may be intentionally obscured. For example, invisible units in StarCraft
cannot be targeted and many of their features are hidden, but it is possible to see
their position and unit type because they distort what is behind them in ways that
are different for each unit type.

7. Actions may be technically possible, but infeasible for humans. Many games have
vulnerabilities where inputting an exact sequence of actions can reprogram the game
itself which has been used to great effect in the speedrunning community (which aims
to complete games as fast as possible) [54]. In StarCraft II, while it is possible to
issue commands through the side minimap, humans find it difficult to click precisely
on the small area and tend to avoid it for many actions.

8. Human skill and attention affects the interface. More experienced, enervated players
will tend to react more precisely and faster to perceived stimuli, while lower skill
players may not even notice subtle appearance changes. Experienced players will
also tend to act more often.

Each of these factors can require careful thought and significant domain experience,
and there are many equally valid choices for what should be exposed.

4.1.2 How it should be exposed

However, even when what should be exposed is decided, how observations and actions
should be exposed to an agent requires additional thought. These are beyond the, ad-
mittedly complex, difficulties inherent in implementing a programmatic interface for real
systems. Some additional decisions that need to made are:

1. Some observations and actions may take more effort to use than others. Clicking
on a precise region of the screen, in a first-person shooter, is usually harder than
pressing a key. In StarCraft, even if players can identify an invisible unit, detecting
the characteristic shimmer is harder than seeing a normal unit (one reason why
professional players often play on the lowest possible graphics settings).

2. Interfaces can be complex with one-off or ad-hoc data. In modern games, information
can appear in hard-to-generalize ways, like knowing whether a bunker is occupied in
StarCraft II, or knowing what unit at Stargate is producing.
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3. Some observations are inferred or remembered by humans. In a first-person shooter,
as in many genres, it is possible to be attacked by someone not currently visible or
outside your field of view. The existence of those entities is inferred by the lost health
and graphical screen effects. Similarly, observations may be remembered by humans
in partially observable domains, such as enemy research upgrades in StarCraft which
are only accessible when the corresponding enemy entity is within the visible area.

4. Interfaces change over time. Obviously, updates to games can change the interface
itself. However, even on the same game version, the interface can constantly shift
due to factors like latency between the player’s machine and a central server.

4.2 Deep Learning Interfaces

At this point a clear solution is to have an interface as close to humans as possible. A deep
learning agent could view the same pixels (or rather a 3D tensor of the color values for each
location), hear raw directional audio waveforms, and input keystrokes, mouse movements,
and mouse clicks. Many issues are naturally addressed by such an interface, though some
issues still remain, like whether or not an agent is allowed to watch online video tutorials
while playing the game, differences between interfaces different players use, and the ability
for computers to detect minute differences in appearance more easily (and generally process
information faster) than humans.

The main reasons to avoid this are that using such an interface alters the problem by
removing much of the focus that makes the problem appealing for research, by decreasing
the performance of final systems, and by dramatically increasing the amount of resources
necessary to address the problem.

First, humans are wonderfully complex systems capable of creating and integrating
representations across multiple modalities. Unfortunately, artificial intelligence systems
are not yet at that level and, while deep learning has made tremendous strides in rep-
resentation learning, an agent that needs to interact with its environment in the same
ways as humans means tackling many more difficult problems simultaneously. Games and
simplified environments are useful for research precisely because they allow researchers to
focus on specific problems, like hierarchical planning or partial observability, without si-
multaneously tackling other domains, like humanoid locomotion or image processing. Even
though it can make creating an interface more complex, using a structured, clearly defined
observation space and action space trivializes some aspects of the representation learning
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challenge, the same way that giving an image classifier direct class information about the
objects in the images it classifies is an almost meaningless problem.

Second, adding additional challenges to a neural network will make it perform worse
than a well designed agent without those challenges. This is not simply a factor for pro-
ducing exciting sounding results but also, similar to the first point, a factor relevant to
making any progress at all. A certain amount of performance is necessary for determining
failure modes of an integrated learning system. If that system has trouble identifying the
entities within the game and cannot beat the weakest of opponents, the fact that a network
architecture cannot position itself in an environment will never become apparent. This was
very common in AlphaStar. It was only when the agent reached a certain baseline level of
performance and we investigated its play did we notice certain deficiencies, such as missing
observations in the interface or inability to combine spatial and entity information. Lower
performance can obscure flaws in a research direction.

Third and most simply, using interfaces more similar to humans tends to increase the
amount of resources needed to run experiments. These can come from a variety of factors.
For example, information needs to be rendered which increases the amount of simulation
compute needed, a harder learning problem increases the amount of training needed to
address it, and robots are expensive and cannot generate much experience, in the extreme
case of acting in the real world. All of these are barriers to fast and flexible research
iteration.

4.2.1 Low-level Interface Design

The low-level designing of interfaces for deep learning, that represent a problem in a way
that is straightforward for a neural network to learn, is a subject not typically covered in
research. Instead, learning tends to happen through osmosis in a combination of examples,
tutorials, and experience that generates a toolbox of tricks and ways of preprocessing data.
Low-level design is relevant for designing a new interface and so will be briefly covered
here.

Fundamentally, an interface should be uniform, separated, and not misleading. Uni-
formity means that inputs to a neural network should tend to have the same ranges and
variances so as to not take precedence over one another. The exact ranges depend on
the network architecture (some networks can accommodate less uniform inputs [43]) and
initialization (e.g. Glorot initialization [32]), but normally fall within [−1, 1].

Separation means that the interface should try to have as few axes of variation within
an input as possible in order to simplify the learning problem. For example, an image has
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several more axes of variation than that image decomposed into several 2D layers, where
each layer has information about particular types of objects present within that image.

Not misleading means that structure within network inputs should be meaningful. The
most common example of this is one-hot encoding [33]. Instead of representing categorical
variables as single real values that vary from [−1, 1], categorical values are instead repre-
sented as 1D vectors where a 0 entry means that the object does not fall in the category
and 1 means that it does. Using a real value for, for example, the city a person is born
in could be misleading because it imposes the inductive bias that two cities that are close
together in the real number scale would be similar.

These design principles for interfaces often take precedence over other desirable factors,
such as conciseness; separating an input into several layers or one-hot encoding an input
is preferable yet much more verbose than the alternatives.
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Chapter 5

Fairness in Games

Interface design is complex, but why does research in games not use as permissive an
interface as possible that exposes all observations and actions (within the confines of the
rules of the game) and manipulate that interface to be as easy as possible for research.
Agents could act hundreds of times per second with inhuman precision, perceiving the
game through a resolution that exposes more information than humans would typically see.
There is the informal notion that some methods may be unfair for comparisons to humans,
which is certainly a concern for fair evaluation, but another concern is that research in
these distorted domains is less meaningful. To explore fairness, we will first examine why
real games are used at all and why fairness matters from a research perspective, followed
by various notions of what it means for an agent to play games fairly.

5.1 Real Domains for Research

As a brief aside, we will first discuss the advantages of real domains over synthetic domains
created solely for research. Such synthetic domains often focus on a single research direction
(for example, trying to create a system that can find patterns in data [21] or understand
basic language [6]), and avoid most interface and fairness issues entirely. These synthetic
domains are extremely useful for iterating on specific problems or testing ideas without
using many resources.

Nevertheless, such domains may represent problems that are not relevant to the real
world and thus solutions found in such domains may not scale when applied to more
complex ones. Even if designed to test a single competency like hierarchical planning,
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without careful human testing the domain could require a different solution entirely. Well-
designed domains can also produce solutions that do not apply to similar larger instances,
common when trying to apply a technique developed on MNIST [52] to a larger domain
like ImageNet [70]. Many problems are also created by the same researchers who use them
and some research areas also have a multitude of such synthetic problems, both of which
can make reproducing research and comparing results difficult. Real-world domains are
recognizable and evaluate factors that are important for human intelligence.

5.2 Fairness for Research

We can now address why concerns about fairness are important from a research perspective,
beyond comparisons with humans. Changes to game interfaces, but especially changes that
make the game unfair, fundamentally change the learning objective and in extreme cases
can shift the research objectives away from what made the real domain attractive for
research in the first place.

As mentioned earlier in 1, one reason chess is interesting for research is that it involves
planning multiple moves into the future. Chess no longer becomes a useful domain for
planning, however, if time limits are significantly changed from human ones (because no
time limits turns it into brute-force search and strict time limits decrease time available
for planning). While it is still possible to approach this modified game with decision rules
like Minimax [98], it no longer becomes necessary. Even smaller changes can change the
problem; giving the relevant upgrades a unit has instead of the sprite of the image in
StarCraft II means that while long-term planning and strategic complexity is still present,
an agent no longer has to learn to detect some minute changes in its environment.

Domains should be evaluated in the regime they are designed for, which often means
using as fair and human-like an interface as possible, so they exhibit the research complex-
ities they are intended for. Of course, there is a trade-off between having as fair interfaces
as possible described in 4.1, and interfaces that make research feasible described in 4.2. To
design an interface that balances these competing factors, it is important to understand
exactly which complexities a domain are and aren’t focused on, as well as the different
ways in which an interface can be fair.
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5.3 Notions of Fairness

There are many different ways in which an agent’s capabilities within a game can be seen as
unfair, and each can be important for different purposes. While these notions are related to
complexities involved in game interfaces described in 4.1, deciding what notions of fairness
are and are not important often guides interface design choices considered there.

• An agent can have access to hidden information or actions a human would never
be able to access. For example, "map hacks" allow players to see everything in the
game, including entities that would normally be hidden (behind obstacles or outside
a player’s field of view). Alternatively, by directly modifying the game logic it is
often possible to change the game state in a way that is not allowed by normal play.
Almost all game interfaces disallow this kind of interaction.

• An agent could gather information faster than humans. For example, the OpenAI
Five, similar to a pre-publication versions of AlphaStar, could simultaneously view
every unit on the map, their items, and when they could next use their cooldowns,
subject to game visibility rules mentioned in the first point [8]. This example would
be akin to players manually clicking to view every region of the game and every unit
each observation. Less extreme examples would be how agents can typically process
an entire observation simultaneously, instead of viewing one part of a screen at a
time with foveal vision.

• An agent can receive information that humans would need to remember or learn.
For example, an agent could refer to game tutorial information while it executes, or
continue to receive observations of the last positions of a unit even when that unit is
not visible.

• An agent can act or react faster than humans. Agents might immediately locate and
respond to stimuli, as in aimbots, or simply execute tens of thousands of actions per
minute, as in many bots designed for real-time strategy games.

• An agent can use more energy, FLOPS, or other resources than humans. Humans
thinking and learning is remarkably efficient. Deep learning agents often require
many orders of magnitude more resources to learn than humans, and slightly fewer
orders of magnitude more resources to execute.

Whether or not each of these notions of fairness are relevant depend on the application,
and adhering to one set of notions is not necessarily better than adhering to any other.
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Chapter 6

Interface in AlphaStar

We will now look at AlphaStar as a case study of applying the considerations and discus-
sions in the previous chapters to develop a game interface.

When developing this deep learning game interface, we examined our research ob-
jectives, used those research objectives to shape which notions of fairness from 5.3 were
important, and applied those notions to the many inherent interface complexities described
in 4.1.

As mentioned in 2.3.1 some interesting challenges in StarCraft, and the challenges we
focused research on, were the raw complexity (the large action space, length of games, and
different modalities of data), partial observability, acting in a real-time setting, complex
strategic possibilities, exploration, and human-alignment. The goal was also to produce
research insights generally applicable to other problems, not necessarily producing the best
StarCraft agent possible.

With these in mind, we approached the agent’s capability with respect to each notion
of fairness as follows:

• Hidden information or impossible actions: These were never allowed because they
would, for example, modify the strategic landscape.

• Faster information gathering: Partial observability and acting in real-time are im-
portant challenges within StarCraft, and gathering information faster would subvert
that. Mild violations of these were allowed when they would simplify the interface
(for example, avoiding the need to select enemy units in order to determine their
basic research upgrades because the interface has no notion of selection) and extreme
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violations were not allowed (for example, a camera view that encompasses the whole
map instead of a section). Because of the complexities of the interface, there were
many gray areas.

• Remembering or access to information in external resources. Though important
in StarCraft, memory was not a major research focus so we often allowed agents
to receive at each step information they had gathered in the past. Information
not present in the game was used on occasion, though game-specific hand-coded
information would lead to less generalizable insights and was therefore avoided when
possible.

• Superhuman action rate and reaction time. The action and reaction times present
in StarCraft are a key part of its nature as a real-time game, and changing this
aspect dramatically alters which strategies are viable. For example, units that take a
fraction of a second to target another unit are no longer relevant when the targeting
can be responded to by immediately moving the target and all units around it. For
this reason, we attempted to limit our action and reaction times to those of top
professional players.

• Energy and resource usage. Though we were limited in the scale of experiments we
could run and we made many optimizations to improve efficiency, direct comparisons
to humans were not a concern.

These fairness principles and research directions played a key role in shaping the exact
interface which will be examined in more detail throughout the rest of this chapter. The
interface was developed in consultation with and using the expert domain knowledge of
Blizzard employees and professional StarCraft II players, and importantly (because there
are trade-offs inherent in the interface that are hard to evaluate quantitatively) AlphaStar’s
play under this interface was professional-player approved.

6.1 Camera

Humans interact with StarCraft through a camera interface, where a single region of the
map is viewed with at any point in time and only high-level information is given about
entities outside that region through a small minimap. This can be seen in Figure 2.1 where
only a small segment of the entire map is focused on, denoted on the minimap in the
bottom-left by a white-bordered polygon. Actions targeting a unit can generally only be
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issued within the camera view, and actions that target a location can be issued through the
minimap or the camera view, though humans lack the precision to issue most commands
through the minimap.

AlphaStar used a similar camera-like interface. Agents only receive complete informa-
tion about entities within their current camera view and can move around their camera
as an action, and some actions can only be issued if their target is within the camera.
Thus AlphaStar too has an attention-economy, trading off issuing commands for gathering
information and allowing future actions.

The camera view is a 32x20 game unit sized rectangle. Because the camera view varies
based on human monitor resolution, AlphaStar’s dimensions were chosen by analyzing
where players tend to issue commands relative to the center of the camera, creating a
bounding box that captures the majority of human actions. Similarly, which actions could
be feasibly issued when the target was outside the current camera view (because they
require more precision than actions within the camera) was decided by sorting the possible
action types based on how often humans issued that action to somewhere outside their
camera, and allowing all actions above a cutoff. Related, because AlphaStar uses a single
spatial argument for the entire map, it can target locations outside the camera more
precisely than humans and locations inside the camera less precisely.

Because of the protocol we selected, there is also no notion of selecting units, or assigning
units to control groups. Humans typically select units before they issue commands to them,
and save groups of units to control groups (seen just above the bottom-middle bar in Figure
2.1) for more convenient selection in the future. Fully-flexible unit selection is only possible
within the camera view. AlphaStar, however, is capable of issuing commands to arbitrary
subsets of units, no matter where they are on the map, although it does not seem to exploit
these capabilities.

6.2 APM Limits

AlphaStar is limited to acting at a rate roughly equivalent to weak professional players
by a monitoring layer. Like the attention-economy for the camera, this introduces an
action-economy that requires certain actions be prioritized.

Counting the number of actions-per-minute (APM) a player uses is a complicated sub-
ject in StarCraft. Some actions are repeated actions, may take more effort to execute
than others, may require precision, or may be no-ops with no effect. StarCraft II therefore
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Figure 6.1: Win probability of AlphaStar Supervised against itself, when applying various
agent action rate limits. [92]

tracks a metric called effective actions-per-minute (eAPM) that removes many repeated
and no-op actions, and serves as a better metric.

Even ignoring the difficulty of executing different actions, the interface we use has no
simple conversion to either eAPM or APM; although the game reports both statistics for
our agents, those metrics (used throughout the paper) are overestimates. Agent actions
are decomposed into 2-3 game actions. For example, casting a force field would require
selecting a unit that can create force fields, activating force field targeting, and selecting
the location to place the force field. Notice that if another action was issued that used the
same units, the selection would happen an additional time even though it is not necessary
to re-select already selected units.

Because of these complexities, and because computers can precisely execute different
actions in sequence, we conservatively limited agents to executing at most 22 non-duplicate
actions in every 5 second window. This action limit was selected to not decrease the
performance of the supervised agent trained to follow a human policy (seen in Figure 6.1),
and the in-game APM distribution was lower in all respects when compared to humans.
Comparison of reported APM and eAPM can be seen in Figure 6.2. Figure 3.8 g shows
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Figure 6.3: Distribution of how long agents request to wait without observing between
observations. [92]

the impact of different APM limits on final performance.

6.3 Delays

Humans are limited in how fast they react to stimuli, with various experiments pointing
to numbers including 250ms [45], 180ms [87], or 400ms [59] depending on the methodology
and the task. AlphaStar also has two sources of delays. First, AlphaStar decides ahead
of time when to next observe and therefore act, so unexpected situations can lead to a
delayed response. This delay, seen in Figure 6.3 is on average 369ms but especially at the
beginning of the game when there is less activity can be several seconds. Second, due to
observation creation and processing, network evaluation, action processing, and network
latency there is a delay between when a frame is first observed and when an action is
executed. This delay, seen in Figure 6.4 is on average 113ms.

The combination of these delays leads to human-like behavior and AlphaStar does not
respond to stimuli instantly, especially when the camera is positioned elsewhere. Nonethe-
less, the delay due to deciding when to act next is suboptimal because humans make such
decisions continuously. That delay is unfortunately necessary for efficiency reasons, as oth-
erwise every frame would need to be rendered and executed upon, and for network training,

56



0 50 100 150 200 250 300 350 400

Delay (ms)

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

Fr
ac

ti
on

 o
f f

ra
m

es
  113 ms

Figure 6.4: Distribution of delays between when the game generates an observation and
when the game executes the corresponding agent action. [92]

as otherwise there would be many steps where an agent issues no action, complicating the
optimization objective and memory capacity (seen in Figure 3.8 f).

6.4 Observation Details

There are many additional observation details that were considered in the interface, with
aspects particularly relevant to complexities in game interfaces or fairness discussed below.
The list of observations can be found in Table 3.1.

• There are many observations that human players can use which are not exposed.
These are typically edge-cases which do not significantly alter strategies, like an
indication of whether or not units are present within a bunker, the radius sensor
towers can detect within, queued research, which units are targeting others with
abilities such as Neural Parasite, and other assorted interface features and bugs.

• Entities normally appear as sprites on the screen. We disentangle them, passing
entities through a separate observation category, because learning to identify entity
concepts was not a research focus and the separation provided a more suitable deep
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learning objective (see 4.2.1). In particular edge cases, this led to a trade-off of faster
information gathering by exposing information such as entities that are fully occluded
by other entities.

• As previously mentioned, agents could also gather information marginally faster by
seeing unit research upgrades without needing to either select them or have them
inside the camera view, because selecting a unit was not possible within the final
interface. Some other examples of this include units that are stored in cargo, which
are only visible when the storage is selected, and how close a building is to completing
its current tasks, which is only visible when the building is selected.

• The map was enriched by additional static map information about what areas can be
built on, and which areas can be navigated over. Which areas can be navigated over
is something that is normally inferred by humans. This information could largely be
inferred by comparing relative elevations of tiles, and is a minor instance of using
external information.

• The time until entities can next attack is another example of information which
humans would have to remember based on when they last attacked, since it is not
displayed in the game.
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Chapter 7

Conclusion

AlphaStar is the first agent to reach the highest tier of human performance in a widely
played professional esport. This thesis presented AlphaStar, and the combination of novel
and existing general-purpose techniques that it was built with. Some novel techniques
include league training, which used various matchmaking strategies and introduced priori-
tized fictitious self-play to maintain a continually improving multi-agent league of players;
scatter connections, which integrate spatial and entity information; UPGO, a self-imitation
based update rule that improves off-policy learning; and the statistic z, which encodes high-
level human strategic information and uses it as a basis for human-aligned exploration.

This thesis also presented fairness, game complexities, and deep learning concerns that
are necessary when designing interfaces for deep learning, specifically focused on games
and game-like domains, with a deeper look into how those principles applied to the design
of AlphaStar’s StarCraft II interface. Interface design is a hard problem with different
trade-offs depending on what research problems need to be addressed, and being aware of
the constraints and possibilities is necessary to make the right trade-offs.

Though unconstrained agents are useful for many applications (e.g. nuclear fusion
plasma confinement), human-like behavior and interfaces can serve many purposes beyond
facilitating progress on research problems. In the future, AI systems could teach humans
how to perform tasks more effectively or act to minimize the spread of disease. Under-
standing how humans interact with the world and finding comprehensible improvements
is important in both applications. In other domains, limiting an AI to act as a human
would even after it undergoes some optimization is critical; when driving, people rely on
theory of mind predictions of other drivers, so self-driving cars that violate these predic-
tions can lead to accidents. Human-like constraints could serve as a prior to develop more
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general intelligence, both to encourage learning of transferable representations and skills
we know humans have, but also to ensure a final agent’s actions and limitations are better
understood.

However, such agents also have extra associated ethical concerns. Besides privacy
concerns about using human data in deep learning and the risks of exposing personally
identifiable information, systems might also learn human biases. Large language models
trained on human natural language exhibit biases and stereotypes with respect to race, re-
ligion, and gender because they are trained to model an internet that has such biases [11].
These biases can cause real harm to people by perpetuating stereotypes and creating neg-
ative portrayals, for example in inverse reinforcement learning where a self-driving car
value function could learn to value different people differently. While biases may be less
of a concern in StarCraft II, future research is critical to ensure deployed systems are not
prejudiced.

StarCraft has properties in common with real-world applications. Agents interact with
other agents in partially-observable environments, with complex action spaces in domains
like self-driving cars, energy management, and personalized healthcare. While AlphaStar
is far from an artificial general intelligence, techniques and algorithms used by it will
hopefully lead to progress in many other domains.

7.1 Future Work

There is a significant amount of future work possible. Applying or refining the interface
design principles in other domains is an interesting future step. Of particular note are
applying them to non-game domains, and especially real-world domains where fairness is
not a major concern, or creating quantifiable metrics for human-like interfaces.

Algorithms introduced in AlphaStar could be iterated upon to make them more general-
purpose. League training in particular, though effective, consists of hand-crafted niches of
agent populations.

StarCraft is also not a solved domain. Interesting future directions include reducing the
amount of human demonstrations necessary for training or eliminating reliance on them
entirely (using intrinsic motivation for exploration [2]), creating agents that are robust
under non-blind repeated trial conditions, or using the same graphical interface available
to humans.
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