
AWS Identity-based Policies with
“Read”, “Write” and “Execute”

Actions

by

Boyun Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Boyun Zhang 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis addresses Amazon Web Service (AWS) identity-based policies with “read”,
“write” and “execute” actions. AWS is a large provider of cloud computing, security is
an important property that an application running in AWS must meet. Towards this,
AWS provides users with their services, a powerful mechanism and associated syntax,
to articulate identity-based policies which manages and grants permission to an identity
includes the IAM user, group or role. The current design for AWS policy syntax requires
the specification, by the owner of cloud application, of the actions that users or role can
be allowed to execute. While file system with traditional UNIS permissions also manages
resources in a manner similarly to AWS but with three actions only: “read”, “write” and
“execute”. We propose a new syntax for AWS identity-based policy that all the possible
actions are restricted to “read”, “write” and “execute”. We expect this new syntax will be
more usable than the current design from the standpoint of ease and accuracy. We discuss
the design and carry out a small-scale human participant study with 20 participants to
validate this hypothesis. The result of study demonstrates that current specifying AWS
policy helps AWS community developers easier to adhere least-privilege and brings users
more convenience on access control.

iii

Acknowledgements

I would like to thank my supervisor, Mahesh Tripunitara, for his continuing engagement
and help on my master thesis. I would also like to express my thank to the committee
members,Professor Werner Dietl and Professor Derek Rayside, for taking their time to
review my work and provide with professional suggestions. Last but not least, I would like
to express my sincere gratitude to my parents for all their support and encouragement in
the way of pursuing my master’s degree.

iv

Dedication

I want to give a special dedication to my parents, a sincere gratitude to my father and
mother who have always support me during this process.I hope that this accomplishment
will make you all proud.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Problem Statement . 2

1.2 Our Work . 2

1.3 Outline . 3

2 Study of File System and Permission Control 5

2.1 File System and Permissions . 5

2.1.1 File Systems with traditional UNIX permissions 5

2.1.2 Components . 6

2.1.3 File System Management and Traditional Unix Permission 7

2.1.4 Types of File Systems . 10

2.1.5 Andrew File System . 11

2.2 Least Privilege for the Operations in File System 12

2.3 Conclusion . 13

3 AWS Identity-based Policy Design 15

3.1 AWS IAM . 15

3.1.1 Identity-based Policy . 18

vi

3.1.2 ARN . 19

3.2 Resource Mapping . 20

3.3 Identity-based Policy Output Optimization 21

3.4 Compiler . 24

4 Small-scale Human Participant Study 28

4.1 Participants . 28

4.2 Study Setup . 29

4.3 Training . 29

4.4 Tasks . 30

4.4.1 Task 1: Get Cart Item . 32

4.4.2 Task 2: Checkout Cart . 33

4.4.3 Task 3: Migrate Cart . 35

4.4.4 Procedure . 37

4.4.5 Ethics Clearance . 37

4.4.6 Limitation . 39

5 Data Analysis 40

5.1 Time and Accuracy . 41

5.1.1 Time . 41

5.1.2 Accuracy . 43

5.2 Usability of default directory permission and improvement 44

5.3 Conclusion . 45

6 Conclusions and Future Work 46

References 47

vii

List of Figures

2.1 Permission before the modification . 9

2.2 Permission modification . 10

2.3 Permission after the modification . 10

2.4 File System Example . 12

3.1 An IAM example to create the AWS IAM policy to decide whether AWS
Lambda function have permission accessing to the AWS DynamoDB table,
regard the serverless application Lambda function as a role, the IAM create
the policy and attached to Lambda to grant permission to the DynamoDB
service, the policy also allow Lambda function write functions to the AWS
CloudWatch Logs. 17

3.2 Elastic Transcoder Resource Types . 20

3.3 Mapping Elastic Transcoder Resource Type to the file system with tradi-
tional UNIX permissions . 21

4.1 Mapping DynamoDb Resource Type to the file system 31

4.2 Mapping SQS Resource Type to the file system 31

4.3 Recruitment Email for the Study . 37

4.4 Introduction and Instructions for the Study in Consent Letter 38

4.5 Study Acknowledgement in Consent Letter 39

5.1 Mean Time of Completion . 42

5.2 Accuracy Proportion . 43

viii

List of Tables

2.1 Least Privileges of the File System Operations 13

3.1 Compiler Input and Output on the Elastic Transcoder’s Resource Type:
Preset . 25

3.2 Compiler Input and Output on the Elastic Transcoder’s Resource Type:
Pipeline . 26

3.3 Compiler Input and Output on the Elastic Transcoder’s Resource Type: Job 27

ix

Chapter 1

Introduction

Within decades, increasing number of developers are using cloud provider to develop
and run applications as a Software-as-a-Service (SaaS) to make benefit of cloud computing.
Cloud computing offers a scalable and flexible network access to a shared pool of a storage
computing resources. The resource can be provisioned and the user is allowed to purchase
the resource they are using.[22] Business are seeking different ways to reduce the hardware
and management costs, while the cloud providers are improved its adoption according to
this. With the popularity of the using of cloud service, one of an inevitable problem based
on this the security problem for different cloud users.

Given an security policy helps to better prepare for the security challenges. It’s a spec-
ification of how to implement security principles and technologies. Amazon Web Services
(AWS) has become the largest cloud computing provider in the past few years. And in
order to let developers make control of every execution, the AWS Identity and Access
Management(IAM)[9] plays an important role during the process. The service provides
both authentication and authorization. IAM has a notion of policy which is a high level
representation of the actions a user is allowed to perform on resources. It’s a web service
helps securely control access to actions and resources for each services. The permissions
granted by a policy rely on the interactions of different statements and conditions. The
policy can either grant access or revoke access to the specific resources. In addition, the
statement conditions can be passed on access details such as the MFA (multi-factor au-
thentication) and other configuration options.

1

1.1 Problem Statement

AWS provides constructs which is a high level representation of the actions IAM user,
group or role. The policy provide the permission for an identity to control what actions
the identity can perform on the specific resources with conditions.

The right permissions is the first priority for users to grant in their policy to finish
the needed actions. Due to the fact that the users may not fully take into account the
semantics of the policy language, even some users have used the heuristic-based syntactic
checks that detect policy patterns: the use of a wildcard but the syntactic checks ate
unsound. While others are attempting to enumerate all the possible actions to a policy
but find this intractable and complex.

While according to our observation, the miscellaneous amounts of actions of each AWS
services will make trouble and cause some security troubles like over-privilege for developers
when controlling access to the resource.

1.2 Our Work

In this study, we got the inspiration from the traditional UNIX permission of the file
system, which only consider “read”, “write” and “execute” actions to control each action
access to the resource. And developing a new format of the AWS identity-based policy
output to let AWS community developers make an easier access control method. And we
also investigate the usability of the newly proposed AWS identity-based policy format,
which is how easy for an AWS developer use the identity-based policy to make access
control to the needed actions on the specific resources with conditions.

Matthew mentioned that “Previous research on the use of least privilege practices in the
context of operating systems revealed that the overwhelming majority of study participants
did not utilize least privilege policies.”[5] This was due to their partial understanding of the
security risks, as well as a lack of motivation to create and enforce such policies. Failing to
create least privilege policies in a cloud computing environment is especially high risk due
to the potentially severe security consequences. Which explain an usual issue happened in
our cloud services nowadays, finding a way to reduce the happening of over-privilege in the
AWS and other cloud service’s access control policy is becoming pressing. The modification
should not be only on the AWS customers but also on the AWS policy themselves.

Gaoshou explained that “Permission/privilege division is the essential way to solve sys-
tematic security problem. In another word, security performance of a system is dependent

2

on the way of permission/privilege division”[24]. This suggests that the permission division
plays an important role of solving the policy security problem. While the popularity of
traditional UNIX permissions with the “read”, “write” and “execute” permission combi-
nations will greatly decrease the complexity of the current AWS IAM policy permissions.

Based on the commonly-happened over-privilege problem in the cloud service access
control policy and the advantage of the concise file system permission, we have point out
a design hypothesis:

Combining the file system with traditional UNIX permission with the AWS identity-
based policy will help developer decrease the occurrence possibility of the AWS access-control
security problem.

We also designed an usability study which participants are trained separately on the
AWS currently-used identity-based policy and our modified AWS identity-based policy
with “read”, “write” and “execute” actions. Then we showed the example of the identity-
based policy generation based on the given code snippets. Finally several code snippets
were given and asked the participants to generate the identity-based policy based on their
previous training and understanding.

1.3 Outline

The chapters of the thesis are organized as below.

In Chapter 2 we focused on different file system operations which include but not limit
to create, modify, delete, rename, get content from file/ directory. We have construct a file
system example with traditional UNIX permission. By simulating different actions of file
system with traditional UNIX permission from C language and enumerating each possible
permission combination from each layer of the structure, we have figured out the least
available permission to achieve the execution.

In Chapter 3, we made a brief introduction of AWS IAM, another introduction on the
structure of general IAM identity-based policy will be provided which include statements,
actions and resources(ARN). Then provided the method for mapping the AWS service
resource to the file system according to the file system hierarchy with traditional UNIX
permissions. Which include the way of determine the root directory and the distinguish
of each layer. Based on the previous research on the permission of file system actions, we
analyzed the achieved goals and the using resources for each action from AWS services,
and instead with “read”, “write” and “execute” actions, we also simplified the output
of the identity-based policy, which only contain “read”, “write” and “execute” in the

3

Action element. Finally, we discussed the expected compiler generated policy based on the
resource, and due to the fact that some actions need more permissions than the others,
the compiler outputs all the possible actions with the given resource and the permission
for each layer of the directory. We used the AWS service Elastic Transcoder for the case
study for the compiler.

In Chapter 4, we performed a small-scale human participant study which used to record
the accuracy and time for task completion, each individual task was aimed to generate
the AWS identity-based policy based on the giving AWS service. The participants were
randomly divided into two group to have different training materials, one group was trained
on the AWS general structure of the identity-based policy with actions and resources, while
the other was given an introduction of the mapping procedure on AWS service resource to
the file system with traditional UNIX permission and the AWS identity-based policy with
“read”, “write” and “execute” actions. Each group was given a policy generation example
by the given code snippet. After training, the participant completed several tasks based on
the action on single service or several actions on different services. The detailed information
will be provided by section which include: The qualification of the participants, the setup
for the study, training procedure , the introduction of each task and corresponding solution.
We had also made the analysis based on the small-scale human participant study result.

4

Chapter 2

Study of File System and Permission
Control

In this chapter, the study includes the introduction of different file systems with tradi-
tional UNIX permission and Access Control List(ACL) permissions, the permission control
with traditional UNIX permission and Andrews File System(AFS), and the mechanism of
basic operations in the file system. Then a file system is created as an example, and
procedures are explained to figure out the least privilege for the operations.

2.1 File System and Permissions

In this chapter, a concise overview of the different file systems with traditional UNIX
permissions and Access Control List(ACL) permission are presented. Which include the
file system structure,components and permission control.

2.1.1 File Systems with traditional UNIX permissions

Unlike ACL-based systems, permissions on Unix-like systems are not inherited. Files
created within a directory do not necessarily have the same permissions as that directory.

A file system is the combination of files and directories in a hierarchy. File system may
be individually added or deleted from the file and directories in global namespace. A specific
location is allocated for each file system in namespace. File system has a hierarchical file
structure as it contains a root directory and its sub-directories. All other directories can

5

be accessed from the root directory. A partition usually has only one file system. The root
directory of file system can reach to this location.The parent directory of all file systems is
located in the root of namespace “/”, which is called the root file system. Root file system
is always existed in file system. The end of each file system branch contains the leaves or
the regular file.

File systems are usually existed physically in the hard disks which always reside on the
block storage devices. On the other hand, Linux support per-process namespace, which
allow each process to have the access to the file and directory optionally. Each process is
inherited the namespace of its parent by default, but the process is also allowed to create
its own namespace which will take the owner of several storage location and a specific root
directory.

There are different kinds of file systems with traditional UNIX permission such as Ext,
Ext2, Ext3 and Ext4. In this thesis, we are focused on the file system with traditional
UNIX permissions.

2.1.2 Components

File is the most basic and fundamental abstraction in the file system. “Everything is
file” is the basic theory followed by the file system with traditional UNIX permissions.
Apart from file, the directory, hard link and special file are the other commonly used
components in the file systems.

2.1.2.1 Regular Files

The most common opponent in file system, which contain bytes of data and organized
into a linear array called the byte stream. There is no solid format for file system to define
as a regular file. And also not enforced any structure in file except tree byte stream in
system level[19].

Regular file is usually accessed through filename, but they are not associated with name.
A regular file usually referenced by an inode, which is a data structure that describes the
attributes and the file disk block locations of the file. Usually the inode stores the metadata
which we called the attributes of the file include the file permission, file timestamp, size
and the other file attributes. The kernel can access to the regular file through the inode
number.

6

2.1.2.2 Directory

A File system cataloging structure which contains references to other computer files
or other directories. The regular file can opened from user space by a name not a inode
number. Directory is acted as a mapping of readable names to the inode numbers which
the directory contained to viewed like the normal file.

There is only one directory “/” on the disk initially. In a hierarchical file system, a
directory contained inside another directory is called a sub-directory.[3] The terms “parent”
and “child”” are often used to describe the relationship between a sub-directory and the
directory in which it is cataloged, the latter being the parent. The top-most directory in
such a file system, which does not have a parent of its own, is called the root directory[19].

Although the directories are acted as normal files, the kernel only allowed them to be
manipulated by using some special system calls. These system calls allow for the adding
and removing of links, which are the only two sensible operations anyhow.

2.1.2.3 Hard Links

Hard links are directory entries that associate names with files in the file system. All
the directory-based file systems should have at least one hard link giving the original name
for each file. Hard links also allow multi path names point to the same data in the file
system. Hard link can either be in the same directory or in two more directories.

2.1.2.4 Special Files

Special file is a type of file store in the file system, also called as device file. For the file
system with traditional UNIX permissions, there are four types of special file: character
device file, named pipes, Unix domain sockets and block device files. Special files are a
way to let certain abstractions fit into the file system. Special files usually provide simple
interfaces to standard devices, but can also be used to access specific unique resources on
those devices, such as disk partitions.

2.1.3 File System Management and Traditional Unix Permission

For the file systems with traditional UNIX permissions, multiple users are allowed to
work on the same server without disrupting each other. While individuals share the file
access will cause the risk or the loss of data if other users secretly access to the files or

7

directories. File system have added the permission to specify the user privilege which is
given to each file or directory.

2.1.3.1 File/Directory Ownership

There are three types of owner for each file or directory in the file system with traditional
UNIX permissions.

• User: The user who creates the file, which also becomes the owner of the file.

• Group: The group is created to have the same permission to file or directory, all
users in the group will be given the same access to file or directory.

• Other The permission of all the other user to file or directory. The user have neither
create the file nor belong to any of the group.

2.1.3.2 Traditional UNIX Permission

Every file and directory in the file system with traditional UNIX permissions have the
combinations of the following three permissions:

• Read: The permission given the user to open and read the content of the file. Read
permission on the directory given the user ability to list all the filenames belong to
the directory.

• Write: The permission given the user ability to modify the contents of the file. Write
permission on the directory authorize the user to rename, delete or create the file
from the directory.

• Execute: The permission allows the user to execute and run the file. The execute
permission on a directory enable the affected user to enter the directory, and access
the belonging files and directories.

2.1.3.3 Default File/Directory Permission

Umask is a command that determines the newly created file/directory permissions. It’s
also a function that sets the user mask. The user mask is a grouping of bits formed as
four-digit octal number, each number restricts the permission on the corresponding group,
the format for the user mask is as below:

8

• The first digit sets permissions for the user.

• The second sets permissions for group.

• The third sets permissions for other, also referred to as “world”.

The pre-defined initial permissions for files and directories are 666 and 777 respectively.
The default umask permissions for root user and remaining users are 022 and 002 respec-
tively. Which means that without any change, all files created by user root will get 644
permissions as default, the file will have read and write permission on the user group, but
only read permission on the other two groups. For files, the default granted permission are
755, which means read and execute permission for everyone and also write permission for
the owner of the directory.

2.1.3.4 Permission Checking and Modification

After get used to the ownership and the permission, user have another ability to check
and change the access permission to the file or the directory[25].

User can can use the command ‘ls-l’ to check all the files or directories permission
under the current path.

User can use command ‘chmod’ to change the file or directory permission on user,
group or other.

Below an example is given to describe the process of the checking and changing the
directory permission.

1. We first use the command ‘ls-l’ to check the all the file/directory permission under
the current path, and find that we have a directory ‘user1’ which have the permission:
‘read-write-execute’ on user.

Figure 2.1: Permission before the modification

2. Then, use the ‘chmod’ command to change the ‘user1’ permission, and only grant
the ‘execute’ permission to user.

9

Figure 2.2: Permission modification

3. Finally we check again the for the file/directory permission under the current path,
and find that the permission of directory ‘user1’ have changed successfully.

Figure 2.3: Permission after the modification

2.1.4 Types of File Systems

There are different types of file systems with traditional UNIX permissions. File systems
can be classified into disk file system, network file system(NFS) and file systems from other
Unix systems.

2.1.4.1 Disk File System

Disk file systems are file systems which manage data on permanent storage devices.
File system usually store physically. For this type of file system, it take advantage of the
ability of disk storage media to randomly address data in a short amount of time while
also permits multiple users (or processes) access to various data on the disk without regard
to the sequential location of the data. The examples include: ext2, ext3, ext4, etc.

2.1.4.2 Network File System

NFS is regarded as a distributed file system protocol allowing user on the client com-
puter to access files over the computer network. Programs using local interfaces can trans-
parently create, manage and access hierarchical directories and files in remote network-
connected computers.

10

2.1.5 Andrew File System

AFS is a distributed file system designed to be similar to the UNIX file system, with
security and scalability as the major goal. It enables users to share remote file in an
easier way that AFS users can share all the files under the /afs root directory after given
appropriate privileges. Kerberos is used for authentication, and implements access control
list(ACL)s on directories for users and groups.

2.1.5.1 Permission

There are seven standard AFS ACL permission,and they can be divided into directory
and file based on the function.

The four directory permissions are meaningful with the respect to the directory itself.

• Lookup(l): Allows a user to list the files names and sub-directories in the AFS
directory, obtain complete status information for the directory element itself.

• Insert(i): Enables the user to add new files or sub-directories to the directory.

• Delete(d): This enables the user to remove files and sub-directories from the direc-
tory or move them into other directories.

• Administer(a): This permission enables a user to change the directory’s ACL.

The three permissions below are more meaningful on the files or sub-directories in a
directory.

• Read(r): Grants users to get file content of files in a directory and list files in
sub-directories.

• Write(w): Enables users to modify files or change file content in a directory.

• Lock(k): This permission lets users to run programs that issue system calls to lock
files in the directory.

AFS provides eight additional permissions (A-H) that do not have a defined mean-
ing, the permissions can be assigned by the system administrator based on the written
application programs.

11

2.2 Least Privilege for the Operations in File System

In this section, we have designed a file system with traditional UNIX permissions, the
verification procedures for the least privilege of the actions are introduced.

Figure 2.4: File System Example

At the top level of the system, we use ‘Home’ at the root directory. Which initially
contained a sub-directory ‘User1’. Inside the sub-directory which also contained the initial
file ‘Userfile1’.

We have set the actions below to figure out the least privilege for the operations ap-
peared in the file system with traditional UNIX permissions.

• Create Function on Directory: Create another sub-directory ‘User2’.

• Create Function on File: Create another file ‘Userfile2’ under sub-directory ‘User1’.

• Delete Function on Directory: Delete sub-directory ‘User2’.

• Delete Function on File: Delete file ‘Userfile2’.

12

• List Function on Directory: Get file names under sub-directory ‘User1’.

• Read Function on File: Get file content on file ‘UserFile1’.

• Rename Function on Directory: Rename sub-directory ‘User1’ to ‘User1-rename’.

• Rename Function on File: Rename file ‘Userfile1’ to ‘Userfile1-rename’.

• Edit Function on File: Edit the file content in file ‘Userfile1’.

We have created a C script with system calls from C library to realize the operations
above. We enumerated the file/directory permission on each layer in file system and figure
out the least privilege to achieve each operations. A table have generated to illustrate the
least privilege of each layer for the operation.

Operation Home Home/User1 Home/User2 Home/User1/Userfile1 Home/User1/Userfile2
Create-Directory (User2) (w+x) (-) (-) (-) (-)

Create-File (Userfile2) (x) (w+x) (-) (-) (-)
Delete-Directory (User2) (w+x) (-) (-) (-) (-)

Delete-File (Userfile2) (x) (w+x) (-) (-) (-)
List-Directory (User1) (x) (r) (-) (-) (-)
Read-File (Userfile1) (x) (x) (-) (r) (-)

Rename-Directory (User1-rename) (w+x) (-) (-) (-) (-)
Rename-File (Userfile1-rename) (x) (w+x) (-) (-) (-)

Edit-File (Userfile1) (x) (x) (-) (w) (-)

Table 2.1: Least Privileges of the File System Operations

For the table above, we can conclude that for create, delete and rename action, the
permission is only needed to grant on parent directory for the target file and directory.
Each of the above three actions is needed the same least privilege for completing the
operation. While for edit and read action, the permission is not only be granted on all
the parent directories but also the target file and directories.

Thus through the example, we get the understanding of the least permission in order
to control the file system actions, which have built a foundation for our thesis research on
mapping the AWS service resource to file system and figure out the least privilege to AWS
service actions.

2.3 Conclusion

In this chapter, we get a concise overview of file system with traditional UNIX permis-
sion, We also create a file system template with traditional UNIX permission and figure

13

out the least possible permission to achieve the actions for the file system with traditional
UNIX permissions. In next chapter, we will start the study of the access control on AWS,
and propose an optimized output for the AWS identity-based policy based on the file
system permission research of this chapter.

14

Chapter 3

AWS Identity-based Policy Design

In this chapter, we analyze the identity-based policy on AWS and propose a different
syntax. Firstly, an introduction of the AWS IAM service is given, which include the
control management of the service, resource control and identity-based policy structure.
Later we are focus on the resource of AWS service Elastic Transcoder and introduce the
mapping procedure to the file system with traditional UNIX permissions. Then we propose
a modification for the AWS identity-based policy syntax. A compiler is given to generated
the modified AWS identity-based policy with “read”, “write” and “execute” actions for
the given AWS service resources and actions.

3.1 AWS IAM

Amazon web service(AWS) have provided the service IAM(identity and access man-
agement) helping user securely control access to the service resource. The service provide
not only authentication but also authorization. The IAM is a Role-based access control
management(RBAC)[7]. In IAM, user can implement RBAC by creating different polices
and attached to different identity which include IAM users, groups of users, or IAM roles.

AWS IAM have also provided another authentication strategy called Attribute-based
access control(ABAC) which is no longer needed for user to update and modify the current
polices when the access resources changed.[6] The permissions for the new resources are
automatically granted based on the attributes.

The access management portion of AWS IAM which is also regarded as authorization
helping user to define what actions are allowed for the role in the AWS services. User can

15

also manage access in AWS IAM by creating and attaching policies to the IAM identities
which include the role, users, the groups of the users or AWS services resources. When the
policy is associated with the resource or an identity, the permissions can be defined. AWS
makes an evaluation of the created policies when a principle requested by the identities.
The users of IAM are regarded as identity in the service.[23] When a new IAM user is
created, there is no permission granted until user create and attach the policy to the IAM
user. IAM user can also organized to the IAM groups, when attaching a policy to the
IAM group, all the members in group will be granted the same permissions by the policy.
Users and groups can attach multiple polices which will grant different permissions. The
permission of the user or the groups are depended on the combination of all the granted
policies.

For managing the AWS resources, user usually needs to grant different AWS services to
finish the task. For example, user needs to use an AWS event-driven, serverless comput-
ing platform given by AWS(Lambda Function) to accomplish the image processing which
stored in the AWS key-value and document database service(DynamoDB)[16]. For ac-
complishing the actions above, the user needs to grant Lambda functions permissions to
edit the DynamoDB service. While combining with AWS IAM policy, the process can be
simplified. User can create the policy to the IAM role, and the role grants the Lambda
Function permissions accessing to the DynamoDB. By using the IAM policy and IAM role,
user do not need to embed credentials in code and can tightly access control to the expected
functions in the service. For Figure 3.1,the IAM access policy is authorized to grant the
required permissions to the DynamoDB table and CloudWatch Logs(an AWS monitoring
and observability service)[13]. The policy is attached to the role, and this role will then be
attached to a Lambda function, which will assume the required access to DynamoDB and
CloudWatch Logs.

The architecture in figure 3.1 is using the Lambda Function to made read API calls
such as ‘GET’ and write API calls such as ‘UPDATE’ to the DynamoDB table[15], and
make write calls to CloudWatch in order to create the log files and record the log process
during the period. All the service calls above are granted and attached by the IAM created
policy.

16

Figure 3.1: An IAM example to create the AWS IAM policy to decide whether AWS
Lambda function have permission accessing to the AWS DynamoDB table, regard the
serverless application Lambda function as a role, the IAM create the policy and attached
to Lambda to grant permission to the DynamoDB service, the policy also allow Lambda
function write functions to the AWS CloudWatch Logs.

For the example in Figure 3.1, the architecture of the solution using read API calls such
as ‘GET’ and write API calls ‘UPDATE’ to modify the DynamoDB table. The Lambda
function also create the log file and record the log process during the period to CloudWatch.
All the service calls above are granted by created and attached IAM policies[15].

On the other hand, the resource request to the service is also authenticated by IAM
as well. [21]IAM policy are divided into two types based on the different authentication
purpose to the Identity-based policies which is used to control what actions the identity
can perform, on which resources, and under what conditions, the Resource-based policies
control what actions a specified principal can perform on the resource and under what
conditions. For the purpose of this thesis, we are focus on the identity-based policy.

17

3.1.1 Identity-based Policy

AWS Identity-based policy managed the granted permission to an identity which include
the IAM user, group or role. The identity-based policy can be further divided into inline
policies and the managed policy. For the inline policy, the policy are created and attached
for the specific user, group or role. While other identities do not have the ability to attach
it[10].

A managed policy can be further classified as AWS managed policy and customer
managed policy. The AWS managed policy is created and managed by AWS, user have no
other permission but only attach the policy to different identities. The customer managed
policy can be fully created and controlled by the user, which not only include modify the
policy but also attach the policy to different user, role or groups. When the modification
occurred to the policy, all the identity which the policy previously attached is taking the
effect.

Most identity-based policies are stored in AWS as JSON documents. While the user
can be assisted by the AWS IAM visual editor to create and edit policy.

For the JSON structure of identity-based policy, it’s consists of three mandatory com-
ponents and four other optional components. The three mandatory components are as
below:

• Effect: Using Allow or Deny to indicate whether is policy is allowed or not to the
including actions and resources.

• Action: The list of service actions which is allowed or denied affected by Effect.

• Resource: The service resource which the actions apply. Format as ARN (Amazon
Resource Names).

The rest optional components are as below:

• Version: The policy language version, the commonly used version is the latest 2012-
10-17 version.

• Sid: The specific ID to differentiate statement.

• Statement: Use as the container to the policy components of Effect, Action, Re-
source and Condition.

• Condition: Specify the circumstances and qualifications for the granted policy.

18

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "S3-CreateBucket",

"Effect": "Allow",

"Action": "s3:CreateBucket",

"Resource": "arn:aws:s3:::bucket-test"

}

]

}

The identity-based above allow an action ‘CreateBucket ’ from AWS service Simple
Service Storage(S3) on the specific AWS S3 bucket ‘bucket-test ’. While the identity-based
policy can be expanded with various statements which include lists of actions from different
services. The policy permission is the union for all the allowed or denied statements.

3.1.2 ARN

Amazon Resource Paths is an unique way to represent the resource path in AWS IAM
identity-based policy. ARN is needed to specify resource precisely across AWS.

The general format of ARN is represented as below:

arn:partition:service:region:account-id:resource

Some resources omits the ‘region’, ‘account-id ’ or both. The function of each compo-
nents of ARN is as below:

• partition: Represent the location of the resource, each AWS account scoped to one
partition.

• service: The namespace of the AWS service identification.

• region: The belonging area for the service, some service may not be available in
specific regions according to the official user guide.

• account-id: The specific digits ID which represent the AWS account that own the
resources.

19

• resource: The identifier of the resource, this part can be the name or the path which
partitioned by slashes of the resource.

ARN path can include the wildcard (*) to match all the available resource in the
partition. While for the ARN component ‘principle’, the wildcard is not supported to
represent all the users.

3.2 Resource Mapping

In this section, we are using the AWS resource types table and combining the theory of
file system in Section 2.1.1 to map the AWS service resource to file system with traditional
UNIX permissions. The process of the mapping procedure is provided. In this section, we
are using AWS service Elastic Transcoder[8] for the case study.

Elastic Transcoder is a media operating service provided by AWS which allows user
to format and convert media file from AWS S3[8]. User can create a job for the work of
encoding under the pipeline which is used to manage the transcoding jobs. The preset
provide the template that contain most of the setting for transcoding media file.

The resource type table list all the resource types that user can specify as the ARN
in ‘Resource’ element for AWS identity-based policy. The resource type can also define
condition keys which the policy can be included.

Figure 3.2: Elastic Transcoder Resource Types

Figure 3.2 represents the resource types of Elastic Transcoder, according to the def-
inition of ARN and ARN format, all the three resource types keep identical except the
partition after the last component which represent the resource path for Elastic Transcoder
ARN, we regard the whole part before the last component ‘Resource’ as the root directory
in the file system. Each layer of the subdirectory and the regular file for file system can be

20

separated based on slashes (/) for Elastic Transcoder resource path, the leaves of the path
is automatically became the regular file according to the definition of the file system.[20]

Figure 3.3: Mapping Elastic Transcoder Resource Type to the file system with traditional
UNIX permissions

The portions in Figure 3.3 which preceded by the label ($) should be replaced by the
actual values or the policy variable depending on the user setting. Each service may have
different mapping of the file system depending on the constitution of resource type and the
format of service ARN.

3.3 Identity-based Policy Output Optimization

In this section, we are combining the research of file system with traditional UNIX
permissions and the Mapping of AWS resource type in order to make the optimization on
AWS identity-based policy[9]. We are keep using the AWS service Elastic Transcoder as the
case study and focus on the actions of Elastic Transcoder to figure out the corresponding
operations on the file systems with traditional UNIX permissions.

Based on the permission control in file system with traditional UNIX permissions and
the syntax of the AWS identity-based policy, we have made the hypothesis as below:

• Based on the access control of traditional UNIX permissions, we set the ‘Effect ’
element as ‘Allow’.

21

• The possible set of component ‘Action’ are restricted to “read”, “write” and “exe-
cute” which follow the access control rule in the file system with traditional UNIX
permissions.

• The component ‘Resource’ and the component ‘Conditions ’ is keep following the
original policy syntax.

According to the hypothesis given above, we have gone through the actions in Elastic
Transcoder, for each identity-based policy generated by the IAM visual editor with the
current syntax, we have figured out the operation with same semantics on how the file
system manage the resource with actions “read”, “write” and “execute”.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Elastic-Read-Preset",

"Effect": "Allow",

"Actions": [

"elastictranscoder:ReadPreset"

],

"Resources":[

"arn:aws:elastictranscoder:region:

account:preset/apple-mp4"

]

}

]

}

22

The policy above is an identity-based policy ‘Elastic-Read-Preset’ with the current
design of syntax, which use the Elastic Transcoder action ‘ReadPreset’ to get the preset
configuration content on preset named ‘apple-mp4’.

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Actions": [

"read"

],

"Resources":[

"arn:aws:elastictranscoder:

region:account:preset/apple-mp4"

]

},

{

"Effect": "Allow",

"Actions": [

"execute"

],

"Resources":[

"arn:aws:elastictranscoder:

region:account:preset"

]

}

]

}

Followed the hypothesis we propose above, the least privilege on the operations of the
file systems with traditional UNIX permissions in Chapter 2 and the mapping of the Elastic
Transcoder Resource Type to the file system with traditional UNIX permissions, we can
conclude that the ‘ReadPreset’ action in Elastic Transcoder has the same semantic of
the ‘Read-File’ Function in the file system, we have generated the policy based on the
syntax we suppose above with least privilege on the same service resource ARN.

23

3.4 Compiler

Based on the study of the AWS identity-based policy optimization, the compiler is
conducted in order to bring convenience to the AWS community developer and help better
understanding of the policy optimization. The design is based on transferring the optimized
policy to the policy in currently-used AWS syntax. The compiler input is based on three
mandatory components of the optimized policy which include ‘Action’ and ‘Resource’. Due
to the fact that the component ‘Effect ’ is set as Allow as default based on the hypothesis
for the optimized policy, the compiler no longer consider it as the input element. The
compiler expected output contain two mandatory components ‘Action’ and ‘Resource’
based on the AWS currently-used policy syntax, the component ‘Effect ’ is keep setting as
Allow in current design[2].

According to our experiment, the scope of the resources and the actions containing
“read”, “write” and “execute” of some AWS service actions is wider than the other, the
compiler will generate all possible sets of actions based on the input in order to help
developers reducing the possibilities when accessing control to the actions and resources.

We are keep using the system calls from the service Elastic Transcoder as the case
study, make a summary for all the actions of Elastic Transcoder in AWS, and according to
their corresponding resource types we divide the actions to three types: Preset, Pipeline
and Job.

For each resource type, the input resource is strictly followed ARN syntax, while the
actions is authorized to “read”, “write” and “execute” in each portion of the resource path
on Elastic Transcoder. For each input with the same action combinations, the resource
scope of the input is compared the wider range including wildcard with more restrictive
range which contain the specific resource ID.

24

Input
Output

Action Set Resource

1

a
Resource arn:aws:elastictranscoder:*:*: preset/ *

DeletePreset
arn:aws:elastictranscoder:

Action (w+x) (-) *:*:preset/*

b
Resource

arn:aws:elastictranscoder:
preset/ presetId

arn:aws:elastictranscoder:
region:account: DeletePreset region:account:preset/presetId

Action (w+x) (-)

2

a
Resource arn:aws:elastictranscoder:*:*: preset/ * CreatePreset, arn:aws:elastictranscoder:
Action (w+x) (w) DeletePreset *:*:preset/*

b
Resource

arn:aws:elastictranscoder:
preset/ presetId

CreatePreset, arn:aws:elastictranscoder:
region:account: DeletePreset region:account:preset/presetId

Action (w+x) (w)

3

a
Resource arn:aws:elastictranscoder:*:*: preset/ *

ReadPreset
arn:aws:elastictranscoder:

Action (x) (r) *:*:preset/*

b
Resource

arn:aws:elastictranscoder:
preset/ presetId

arn:aws:elastictranscoder:
region:account: ReadPreset region:account:preset/presetId

Action (x) (r)

4

a
Resource arn:aws:elastictranscoder:*:*: preset/ * ListPresets, arn:aws:elastictranscoder:
Action (r+x) (r) ReadPreset *:*:preset/*

b
Resource

arn:aws:elastictranscoder:
preset/ *

ListPresets, arn:aws:elastictranscoder:
region:account: ReadPreset region:account:preset/*

Action (r+x) (r)

Table 3.1: Compiler Input and Output on the Elastic Transcoder’s Resource Type: Preset

25

Input
Output

Action Set Resource

1

a
Resource arn:aws:elastictranscoder:*:*: Pipeline/ *

ReadPipeline
arn:aws:elastictranscoder:

Action (x) (r) *:*:Pipeline/*

b
Resource

arn:aws:elastictranscoder:
Pipeline/ PipelineId

arn:aws:elastictranscoder:region
region:account: ReadPipeline :account:Pipeline/PipelineId

Action (x) (r)

2

a
Resource arn:aws:elastictranscoder:*:*: Pipeline/ * ListPipelines, arn:aws:elastictranscoder:
Action (r+x) (r) ReadPipeline *:*:Pipeline/*

b
Resource

arn:aws:elastictranscoder:
Pipeline/ *

ListPipelines, arn:aws:elastictranscoder:region
region:account: ReadPipeline :account:Pipeline/*

Action (r+x) (r)

3

a
Resource arn:aws:elastictranscoder:*:*: Pipeline/ * DeletePipeline arn:aws:elastictranscoder:
Action (w+x) (-) *:*:Pipeline/*

b
Resource

arn:aws:elastictranscoder:
Pipeline/ PipelineId

arn:aws:elastictranscoder:region
region:account: DeletePipeline :account:Pipeline/PipelineId

Action (w+x) (-)

4

a

Resource arn:aws:elastictranscoder:*:*: Pipeline/ *
UpdatePipeline,
UpdatePipeline arn:aws:elastictranscoder:

Action (x) (w)
Notifications, *:*:Pipeline/*

UpdatePipeline
Status

b

Resource
arn:aws:elastictranscoder:

Pipeline/ PipelineId
UpdatePipeline,

region:account: UpdatePipeline arn:aws:elastictranscoder:region

Action (x) (w)
Notifications, :account:Pipeline/PipelineId

UpdatePipeline
Status

5

a

Resource arn:aws:elastictranscoder:*:*: Pipeline/ *
CreatePipeline,
DeletePipeline,

Action (w+x) (w)

UpdatePipeline, arn:aws:elastictranscoder:
UpdatePipeline *:*:Pipeline/*
Notifications,

UpdatePipeline
Status

b

Resource
arn:aws:elastictranscoder:

Pipeline/ PipelineId
CreatePipeline,

region:account: DeletePipeline,

Action (w+x) (w)

UpdatePipeline, arn:aws:elastictranscoder:region
UpdatePipeline :account:Pipeline/PipelineId
Notifications,

UpdatePipeline
Status

Table 3.2: Compiler Input and Output on the Elastic Transcoder’s Resource Type: Pipeline

26

Input
Output

Action Set Resource

1

a
Resource arn:aws:elastictranscoder:*:*: job/ *

CancelJob
arn:aws:elastictranscoder:

Action (w+x) (-) *:*:job/*

b
Resource

arn:aws:elastictranscoder:
job/ jobId

arn:aws:elastictranscoder:
region:account: CancelJob region:account:job/jobId

Action (w+x) (-)

2

a
Resource arn:aws:elastictranscoder:*:*: job/ *

ReadJob
arn:aws:elastictranscoder:

Action (x) (r) *:*:job/*

b
Resource

arn:aws:elastictranscoder:
job/ jobId

arn:aws:elastictranscoder:
region:account: ReadJob region:account:job/jobId

Action (x) (r)

3

a

Resource arn:aws:elastictranscoder:*:*: job/ * CreateJob, arn:aws:elastictranscoder:
Action (w+x) (w+x) CancelJob, *:*:job/*

Resource arn:aws:elastictranscoder:*:*: preset/ * ListPipelines, arn:aws:elastictranscoder:
Action (r+x) (r) ReadPipeline, *:*:preset/*

Resource arn:aws:elastictranscoder:*:*: pipeline/ * ListPresets, arn:aws:elastictranscoder:
Action (r+x) (r) ReadPreset *:*:pipeline/*

b

Resource
arn:aws:elastictranscoder:

job/ jobId
arn:aws:elastictranscoder:region

region:account: :account:job/jobId
Action (w+x) (w+x) CreateJob,

Resource
arn:aws:elastictranscoder:

preset/ presetId
CancelJob, arn:aws:elastictranscoder:region

region:account: ListPipelines, :account:preset/presetId
Action (r+x) (r) ReadPipeline,

Resource
arn:aws:elastictranscoder:

pipeline/ pipelineId
ListPresets, arn:aws:elastictranscoder:region

region:account: ReadPreset :account:pipeline/pipelineId
Action (r+x) (r)

Table 3.3: Compiler Input and Output on the Elastic Transcoder’s Resource Type: Job

In the case study above for Elastic Transcoder, the actions and resource types we con-
sidered is restricted to the policy attached to the application, while for more complex uses
of attached policies, such as granting access to services, user is able to call the AssumeRole
API [12]. This API call returns a set of temporary credentials that the service can use
in subsequent API calls. Actions attempted with the temporary credentials have only the
permissions granted by the associated role.

27

Chapter 4

Small-scale Human Participant Study

A small-scale human participant study was conducted for 22 participants. The aim of
the study was for the usability of AWS identity-based policies with “read”, “write” and
“execute” actions. The study had received ethics clearance from the Office of Research
Ethics prior to the study start.

The design of the study is followed by a between-participant mode. While the first
two participants were regarded as pilot participants. 10 of the participants took part
in the study with the currently-used AWS identity-based policy structure and syntax,
while the other 10 participants used the modified AWS identity-based policy with “read”,
“write” and “execute” actions. Each group of the participants were given training materials
and finished three tasks for generating AWS identity-based policy with the provided code
snippets on one or more AWS services.

4.1 Participants

The study participants were the upper-year undergraduates and graduate students from
computer engineering and computer science at the University of Waterloo. The invitations
were sent via email and on the community bulletin board. In order to make the test
result as persuasive as possible, a participant should be familiar or have experience on the
basic operations of file system with traditional UNIX permissions and are conversant with
UNIX permissions in the file system. The participants should possess no prior knowledge of
identity-based policies in Amazon Web Services (AWS), nor know anything about serverless
applications in AWS. We also anticipated the participants have the ability to quickly

28

learn the AWS identity-based policy or the basic operation of Linux command line. Each
participant got $20 for the reward.

4.2 Study Setup

The study was conducted on a Microsoft Teams Live Video Chat. Only the participant
and the study conductor were presented for the whole process of the study in the live chat.
Due to the aim of the data collection, before the start of the study, the participant signed
a consent letter which indicate the agreement of the audio collection, screen sharing during
the whole process of the study and share the solution through the online editable word
document which were used for recording their thinking process after the study. All the
actions above were only for the use of study and would not send to anybody for other use.
Each participant was given a hard copy of the training materials and the tasks. During
the task, the participant was only allowed using the web page and resource as below:

• The actions of the service which is using in the task.

• Resources for the needed service.

After the study, we recorded the final policy the user created, and gave a confidence rating
as that indicated how confident the participant was in having completed the task accurately.

4.3 Training

Before the commencement for the task, both sets of the participants had trained on
their corresponding study objective. Users were initially shown the following:

• A brief introduction of the background and the aim of the study.

• Instructions on how to think aloud

For participants got trained on the currently used AWS identity-based policy, the training
tasks were as follows:

• Participants were given an introduction of the AWS identity-based policy, which
include the structure and the resource path.

29

• An example was given for generating an AWS identity-based policy according to the
provided code snippet.

For another part of the participants, the training tasks were involved the following:

• A brief review of the basic operation on file system with traditional UNIX permissions
based on the Command line and the permission control in the file system supported
by Linux Operating System.

• An introduction of the mapping procedure from the AWS service resource to file
system with traditional UNIX permissions.

• An introduction of the modified AWS identity-based policy syntax with “read”,
“write” and “execute” actions.

• An example was given for generating an AWS identity-based policy according to the
provided code snippet.

All the training procedures were recorded as training videos, and provided watching to
the participants during the study to guarantee the fairness. Participants were allowed to
ask questions during the training, the questions were the clarifications about the technical
aspect of the study.

4.4 Tasks

The participants were given three tasks to complete. The tasks were based on the
aws-serverless-shopping-cart application, which was a serverless application simulate the
shopping cart with the functions such as list cart, delete from cart, get cart total amount.
The application had a total of ten lambda functions and the code snippet for each task was
selected from these functions. For each task, a code snippet was given and the participant
was asked to generate an AWS identity-based policy based on the code snippet. The
difficulty of the task was increased by order and the subconscious bias were not accounted
for the experiment.

An appendix was provided to participants for the task solving, the appendix included
all the AWS services which were appeared in code snippets. Each service contained two
tables. The resource table can be used to the mapping of AWS service resource to the file
system, while the action table included all the needed actions from the code snippets with
descriptions and the corresponding resource types.

30

The task description and the possible solutions for each group are provided below.
Depending on the syntax and the structure of the AWS identity-based policy, the solution
are not the only possible one, we accept any solution which meet the objection for the code
snippet.

The mapping for all the appeared AWS service in code snippets to file system with
traditional UNIX permissions are as below:

Figure 4.1: Mapping DynamoDb Resource Type to the file system

Figure 4.2: Mapping SQS Resource Type to the file system

The portions of figure which preceded by the label ($) should be replaced by the actual
values or the policy variable depending on the user setting.

31

4.4.1 Task 1: Get Cart Item

The code snippet for Task 1:

dynamodb = resource('dynamodb')

def lambda_handler(dynamodb):

response = dynamodb.GetItem(

TableName='item-name'

)

return response

Solution for the currently used AWS identity-based policy : Having an action
GetItem from the AWS service: DynamoDb, using the Dynamodb resource type: Table.

{

"Statement": [{

"Effect": "Allow",

"Actions": [

"dynamodb:GetItem"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table/item-name"

]

}]

}

Solution for the modified AWS identity-based policy with “read”, “write”
and “execute” actions : According to the mapping of the AWS service resource to
file systems with traditional UNIX permissions and the action descriptions, GetItem need
“read” action for the resource type : Table on the target table and “execute” from all its
parent directory.

{

"Statement": [{

"Effect": "Allow",

"Actions": [

"execute"

],

32

"Resources":[

"arn:aws:dynamodb:region:accountId:table"

]

},

{

"Effect": "Allow",

"Actions": [

"read"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table/item-name"

]

}]

}

4.4.2 Task 2: Checkout Cart

The code snippet for Task 2:

dynamodb = resource('dynamodb')

def lambda_handler(dynamodb):

response = dynamodb.CreateTable(

TableName='item-category'

)

item_in_cart = response.get('Items')

for item in item_in_cart:

dynamodb.DeleteItem(

TableName='item-category',

)

return response

Solution for the currently used AWS identity-based policy : Having two actions
CreateTable and DeleteItem from the AWS service: DynamoDb, using the Dynamodb
resource type: Table.

{

"Statement": [{

33

"Effect": "Allow",

"Actions": [

"dynamodb:CreateTable",

"dynamodb:DeleteItem"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table/item-category"

]

}]

}

Solution for the modified AWS identity-based policy with “read”, “write”
and “execute” actions : According to the mapping of the AWS service resource to
file system with traditional UNIX permissions and the action description, CreateTable
need the “write” action for the resource type : Table on its parent directory, while the
action DeleteItem need “write” action on the target table, “execute” from all the parent
directories.

{

"Statement": [{

"Effect": "Allow",

"Actions": [

"execute"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table"

]

},

{

"Effect": "Allow",

"Actions": [

"write"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table", "arn:aws:dynamodb:region:accountId:table/item-category"

]

}]

}

34

4.4.3 Task 3: Migrate Cart

The code snippet for Task 3:

dynamodb = resource("dynamodb")

sqs = resource("sqs")

def update_table(dynamodb):

dynamodb.UpdateTable(

TableName="item-category"

)

def lambda_handler(dynamodb,sqs):

sqs.UpdateQueue(

QueueName="update-success"

)

response = dynamodb.DeleteItem(

TableName="item-category"

ItemName="item1"

)

return response

Solution for the currently used AWS identity-based policy : Having two actions
UpdateTable and DeleteItem from the AWS service: DynamoDb, using the Dynamodb
resource type: Table. Also have an action DeleteQueue from the AWS service: SQS, using
the SQS resource type: Queue.

{

"Statement": [{

"Effect": "Allow",

"Actions": [

"dynamodb:UpdateTable",

"dynamodb:DeleteItem"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:table/item-category"

]

},

35

{

"Effect": "Allow",

"Actions": [

"sqs:UpdateQueue"

],

"Resources":[

"arn:aws:sqs:region:accountId:update-success"

]

}]

}

Solution for the modified AWS identity-based policy with “read”, “write”
and “execute” actions: According to the mapping of the AWS service resource to file
system with traditional UNIX permissions and the action description, UpdateTable and
DeleteItem need “write” action for the resource type : Table on the target table, “execute”
from all the parent directories. For the AWS service SQS action UpdateQueue, “write”
action is needed for the resource type : Queue on the target queue.

{

"Statement": [{

"Effect": "Allow",

"Actions": [

"execute"

],

"Resources":"arn:aws:dynamodb:region:accountId:table"

},

{

"Actions": [

"write"

],

"Resources":[

"arn:aws:dynamodb:region:accountId:

table/item-category"

"arn:aws:sqs:region:accountId:

update-success"

]

}]

}

36

4.4.4 Procedure

Each group of participants were given the same task code snippet for the task, with
an extra appendix containing all the actions and resources for the services used in the
task for the reference. Each task statement was presented in the Microsoft Word file
and was shared through Microsoft OneDrive. After the participant finished each task, the
complement time was calculated. The order of the tasks was same for all participants. The
participants were asked to record the confidence for the answer. After finished all tasks,
the participants were asked about their experience of the whole process for the study.

4.4.5 Ethics Clearance

Due to the fact that this study involved human participants, the study has been re-
viewed and received ethics clearance through University of Waterloo Research Ethics Com-
mittee. The whole session for the study was recorded for analysis and further development
for the study area. But all the collected data was kept anonymous for the privacy protec-
tion.

Figure 4.3: Recruitment Email for the Study

37

Figure 4.4: Introduction and Instructions for the Study in Consent Letter

38

Figure 4.5: Study Acknowledgement in Consent Letter

4.4.6 Limitation

We have chosen the order of the task based on what we believe to have the increasing
difficulty.This could also lead to effects due to the ordering that we have not considered. In
this study, we also have not considered the seasoned technicians with previous experience
of AWS identity-based policy, but only the students familiar or have experience on the
operations of the file system with traditional UNIX permissions and are conversant with
UNIX permissions in file systems, we believe that the population of the participants is still
appropriate given the thesis that we seek to prove.

39

Chapter 5

Data Analysis

In this chapter, the data analysis result is presented based on the collected data on the
small-scale human participant study.

Two participants were treated as pilot participants, they were used to optimize the
manner in which the user study we conducted to the rest of the participants. Each of them
was participated in different group which was divided in Chapter 4. The one who took part
in the user study with currently used AWS identity-based policy had difficulty of under-
standing the structure of appendix and another had confusion of the mapping procedure
from the AWS service resource to the file system with traditional UNIX permissions. Thus
the training material was changed to mention these confusions as mistakes to be avoided.

We present the results with accuracy and time for the task completion which are the
two main criteria we consider. The graphs are presented for the means of time and the
proportions of correct completion. Considered the statistical significance, APA format is
considered to be used in the presentation[4], the APA style guide details precise require-
ments for citing the results of statistical tests, as well as getting the basic format right,
the presentation also watch out for punctuation, the placing of brackets, italicisation. We
select non parametric test instead of t-test, due to the fact that we are not sure whether
the collected data resemble a normal distribution. We used the Mann Whitney U test
for statistical significance of interval variables.[18] While for the non-interval variables, we
used one sided Fisher’s exact test for the accurate rate for the task.

40

5.1 Time and Accuracy

In this section, each criteria is considered in two types, first is for the study-wide
result and another result is considered for each specific task. For each non-parametric
test, we adopt a threshold of 0.05 for the p value to regard as the difference of statistically
significance. If the p value is smaller than 0.001, we report as “<0.001” for the result. Our
null hypothesis for both time and accuracy is that the performance of AWS currently-used
identity-based policy is no better than the AWS identity-based policy with “read”, “write”
and “execute” actions. Which also means that the participants take at least as much time,
and are at most as the same accuracy.

5.1.1 Time

Study-Wide Results

For each group of participants, we had 10 participants to finish 3 tasks for the user
study. That is, our result included the time taken for each participant to accurately
finished the tasks. For the participants from the group of AWS identity-based policy with
“read”, “write” and “execute” actions, it took 9:37 (minutes : seconds) to finish a task,
while for the participants from the group of AWS currently-used identity based policy, the
mean time was 7:12. Then the Mann Whitney U Test was launched to check the statistical
significance of difference. The result was: N = 20, U = 26.5, presult = 0.041. Based on the
result that the presult is lower than the threshold we set before, we reject the hypothesis and
conclude that the AWS currently-used identity-based policy perform better than the AWS
identity-based policy with “read”, “write” and “execute” actions from the standpoint of
mean time to complete a task.

41

Specific Task Result

Figure 5.1: Mean Time of Completion

Figure 5.1 presented the result of mean time for each task being completed by partici-
pants, and also illustrated the mean time of the task completion which is regard as correct.
Another sets of Mann Whitney U Tests were launched to check the statistical significance
of difference for each task.

• For Task 1, AWS identity-based policy with “read”, “write” and “execute” actions
spend significantly more time than the AWS currently-used identity-based policy
group:
N = 19, U = 16.5, presult = 0.011.

• For Task 2, the result of Mann Whitney U Test is hard to reject the null hypothesis:
N = 11, U = 6.5, presult = 0.07.

• For Task 3, the result of Mann Whitney U Test is hard to reject the null hypothesis:
N = 10, U = 9, presult = 0.159.

According to the result above for each task, we strongly reject the hypothesis in Task 1,
and establish that the AWS currently-used identity-based policy perform better than the
AWS identity-based policy with “read”, “write” and “execute” actions. While for task 2
and task 3, it’s hard for us to reject the null hypothesis based on the time of accurately
finish the task.

42

5.1.2 Accuracy

Study-Wide Results

For each group of the participants, we figured out the proportion of 10 × 3 = 30
tasks for each group of participants to accurately finished. For the participants from the
group of AWS identity-based policy with “read”, “write” and “execute” actions, 18/30
was correctly completed, and 21/30 for the currently-used AWS identity based policy
group. Then the Mann Whitney U Test was launched to check the statistical significance
of difference for the proportion of each participants correctly finishing the three tasks:
N = 20, U = 38, presult = 0.109. Hence, the null hypothesis cannot be rejected and
it’s hard for us to conclude that the AWS identity-based policy with “read”, “write” and
“execute” actions performs significantly better than the currently-used AWS identity-based
policy based on the accuracy.

Specific Task Result

Figure 5.2: Accuracy Proportion

Figure 5.2 presented the accuracy proportion for each task. To figure out the statistical

43

significance of difference, a set of one sided Fisher’s exact test were launched for each task.

• For Task 1, the result of Fisher’s Exact Test is hard to reject the null hypothesis:
AWS identity-based policy with “read”, “write” and “execute” actions: 9/10,
AWS currently-used identity-based policy: 10/10,
presult = 1.0.

• For Task 2, the result of Fisher’s Exact Test is hard to reject the null hypothesis:
AWS identity-based policy with “read”, “write” and “execute” actions: 5/10,
AWS currently-used identity-based policy: 6/10,
presult = 0.757.

• For Task 3, the result of Fisher’s Exact Test is hard to reject the null hypothesis:
AWS identity-based policy with “read”, “write” and “execute” actions: 4/10,
AWS currently-used identity-based policy: 6/10,
presult = 0.757.

From the result above, we cannot reject the null hypothesis for all three tasks based on
the accuracy.

5.2 Usability of default directory permission and im-

provement

According to the small-scale human participants study result, neglect considering the
directory permission happened frequently for participants. According to the concept of file
system and traditional UNIX permissions we discussed in Chapter 2, the default permission
of a directory is set by the command umask, while the user is no needed to manually define
the permission for directory creation which caused the permission omission in the study.

After analyzing the mistakes occurred by the participants of AWS identity-based policy
with “read”, “write” and “execute” actions group. All the occurred problems are concluded
as below:

• 4 of the total 10 participants have occurred the permission omission problem in one
or more tasks, that they ignored considering the permission for the parent directory
of the target file.

44

• 4 of the 10 participants did not have a solid understanding of the traditional UNIX
permission and had an incorrect using of permission. For example, participants have
given “read” permission to the ‘edit-file” action.

• 2 of the 10 participants have provided extra permissions for the actions.

8 of 10 participants have occurred one or more problems mentioned above, and 2 partic-
ipants have correctly finished all the three tasks. The permission omission and the incorrect
using of permission are the two biggest problems throughout the participants.

Therefore we have some suggestions for the future user study procedure, the default
directory permission can be given following the default permission of the umask setting,
while the user is able to manually modify the default permission after the directory is
created which can improved the result accuracy.

5.3 Conclusion

Based on the above analysis for time and accuracy of the user study, the null hypothesis
can be rejected in Task 1, while it’s hard to yield the significant difference in task 2 and task
3. For task 2 and task 3, the participants of the AWS identity-based policy with “read”,
“write” and “execute” actions group have more procedures to consider not only the syntax
of the policy but also the mapping from the AWS service resource to file system with
traditional UNIX permissions which have spent more times. And some participants from
this group did not have a solid understanding of traditional UNIX permissions after the
training, which caused the accuracy of this group did not perform significantly better than
another group. The under-privilege is the most common mistakes while the participants
ignored considering the permission of all the parent directories for the target file. Overall,
the result of the user study is meeting our expectation.

45

Chapter 6

Conclusions and Future Work

In this thesis we have conducted a detailed observation of the current syntax design
on the AWS identity-based policy. Based on the legacy of file systems with traditional
UNIX permissions using three actions: “read”, “write” and “execute” on the resource
management, we have made the modification on the syntax of the AWS identity-based
policy in order to help AWS community developer easier to adhere least-privilege and let
user more convenient on access control. The compiler has conducted in order to translate
and provide all possible sets of actions based on the optimized policy in order to bring
convenience for user to manage the service access. We have presented the design and
launched a small-scale human participant study to made an observation on our hypothesis.
The study result establish that in some scenarios, AWS currently-used identity-based policy
perform better than the AWS identity-based policy with “read”, “write” and “execute”
actions. But it is still understandable and modification on the syntax of the AWS identity-
based policy can help AWS community developer easier to adhere least-privilege and let
user more convenient on access control.

There are amounts of topics and research areas for future works. The scope of the study
participants can be expanded to a larger field-study with experienced AWS community
developers as to whether there is a difference to them between two types of policies. If the
modification and the hypothesis is proved to be feasible, the project can be kept forwarding
to automate the transformation from the optimized policies with “read”, “write” and
“execute” actions to the currently-used AWS identity-based policy syntax, and the policies
can be deployed in conjunction with the cloud application. Besides, another interesting
piece of work is to expand this syntax of policy to all the other services in AWS, even other
cloud providers can be examined in the same manner as we do in this work.

46

References

[1] Aaron Blankstein and Michael J Freedman. Automating isolation and least privilege
in web services. Security and Privacy (SP), 2014 IEEE Symposium on.IEEE, pages
133–148, 2014.

[2] Dick Grune and Ceriel J.H. Jacobs. Modern Compiler Design, volume 3. 2012.

[3] Robert Love. Linux System Programming, volume 1. 2013.

[4] Nadim Nachar. A test for assessing whether two independent samples come from the
same distribution. 2008.

[5] Mathew Sanders and Chuan Yue. Automated software engineering least privileges in
cloud-basedweb services. Proceedings of the fifth ACM/IEEE Workshop on Hot Topics
in Web Systems and Technologies, 3:1–6, 2017.

[6] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for
role-based administration of roles. ACM Transactions on Information and System
Security (TISSEC), 3(1):106–109, 1999.

[7] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based
access control models. Computer, 29(2):38–47, 1996.

[8] Amazon Web Service. Amazon elastic transcoder. https://docs.aws.amazon.com/

elastictranscoder/latest/developerguide/elastictranscoder-dg.pdf, 2012.
Accessed: 2020-09-30.

[9] Amazon Web Service. Identity-based policies and resource-based policies. https:

//aws.amazon.com/iam/, 2013. Accessed: 2020-06-23.

[10] Amazon Web Service. Identity-based policies and resource-based poli-
cies. https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_

identity-vs-resource.html, 2014. Accessed: 2020-08-13.

47

https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/elastictranscoder-dg.pdf
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/elastictranscoder-dg.pdf
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

[11] Amazon Web Service. Aws lambda – run code without thinking about servers; pay only
for the compute time you consume. https://aws.amazon.com/dynamodb/lambda,
2016. Accessed: 2020-05-21.

[12] Amazon Web Service. Aws sdk for python reference. https://boto3.amazonaws.

com/v1/documentation/api/latest/reference/services/elastictranscoder.

html, 2016. Accessed: 2020-09-21.

[13] Amazon Web Service. Amazon cloudwatch observability of your aws resources
and applications on aws and on-premises. https://aws.amazon.com/dynamodb/

cloudwatch, 2018. Accessed: 2020-07-16.

[14] Amazon Web Service. Editing iam policy. https://docs.amazonaws.cn/en_us/IAM/
latest/UserGuide/access_policies_manage-edit.html, 2018. Accessed: 2020-08-
11.

[15] Amazon Web Service. How to create an aws iam policy to grant aws lambda ac-
cess to an amazon dynamodb table. https://aws.amazon.com/cn/blogs/security/
how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access/, 2018. Ac-
cessed: 2020-07-24.

[16] Amazon Web Service. Amazon dynamodb – fast and flexible nosql database service
for any scale. https://aws.amazon.com/dynamodb/, 2020. Accessed: 2020-06-11.

[17] Amazon Web Service. Amazon s3 – object storage built to store and retrieve any
amount of data from anywhere. https://aws.amazon.com/dynamodb/S3, 2020. Ac-
cessed: 2020-10-21.

[18] Rosie Shier. The mann-whitney u test. https://www.statstutor.ac.uk/

resources/uploaded/mannwhitney.pdf, 2004. Accessed: 2020-10-21.

[19] Wenjie Tu, Haibing Guan, and Yingcai Bai. Enhancing access control function in
linux file system. Computer Applications and Software, 23:117–119, 2006.

[20] Jaideep Vaidya, Vijayalakshmi Atluri, and Janice Warner. Roleminer:mining roles
using subset enumeration. In Proceedings of the 13th ACM conference on Computer
and communications security(ACM), pages 144–153, 2006.

[21] Yongzheng Wu, Jun Sun, and Yang Liu. Automatically partition into least privi-
lege components using dynamic data dependency analysis. IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2013.

48

https://aws.amazon.com/dynamodb/lambda
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/elastictranscoder.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/elastictranscoder.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/elastictranscoder.html
https://aws.amazon.com/dynamodb/cloudwatch
https://aws.amazon.com/dynamodb/cloudwatch
https://docs.amazonaws.cn/en_us/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.amazonaws.cn/en_us/IAM/latest/UserGuide/access_policies_manage-edit.html
https://aws.amazon.com/cn/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access/
https://aws.amazon.com/cn/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/S3
https://www.statstutor.ac.uk/resources/uploaded/mannwhitney.pdf
https://www.statstutor.ac.uk/resources/uploaded/mannwhitney.pdf

[22] S. Yu, Wang, Ren C., and Lou K. Achieving secure, scalable, and fine-grained data
access control in cloud computing. INFOCOM, pages 534–542, 2010.

[23] Zahoor, Perrin E., and Bouchami O. A cloud based authorization framework with
trust and temporal aspects. 10th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing, CollaborateCom, pages 285–
294, 2014.

[24] Gaoshou Zhai and Yaodong Li. Analysis and study of security mechanisms inside linux
kernel. In International Conference on Security Technology, pages 194–201, 2008.

[25] Gaoshou Zhai, Jie Zeng, Miaoxia Ma, and Liang Zhang. Implementation and auto-
matic testing for security enhancement of linux based on least privilege. IEEE CS
Proceedings of The 2nd International Conference on Information Security and Assur-
ance (ISA 2008), pages 181–186, 2008.

49

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Our Work
	Outline

	Study of File System and Permission Control
	File System and Permissions
	File Systems with traditional UNIX permissions
	Components
	File System Management and Traditional Unix Permission
	Types of File Systems
	Andrew File System

	Least Privilege for the Operations in File System
	Conclusion

	AWS Identity-based Policy Design
	AWS IAM
	Identity-based Policy
	ARN

	Resource Mapping
	Identity-based Policy Output Optimization
	Compiler

	Small-scale Human Participant Study
	Participants
	Study Setup
	Training
	Tasks
	Task 1: Get Cart Item
	Task 2: Checkout Cart
	Task 3: Migrate Cart
	Procedure
	Ethics Clearance
	Limitation

	Data Analysis
	Time and Accuracy
	Time
	Accuracy

	Usability of default directory permission and improvement
	Conclusion

	Conclusions and Future Work
	References

