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Abstract

Over the last decade, the spectral sparsification technique has become a powerful tool in
designing fast graph algorithms for various problems with numerous applications. In this
thesis, we extend this spectral approach, and show that it is also very powerful in designing
approximation algorithms for classical network design and experimental design problems.

The central piece in this thesis is a problem called spectral rounding, which is inspired
by spectral sparsification and studied in an earlier work on experimental design. In this
problem, we are given vectors v1, . . . , vm each with a non-negative cost, and a fractional
solution x ∈ [0, 1]m. The task is to find an integral solution z ∈ {0, 1}m such that the
spectrum of the integral solution is similar to the one of the fractional solution, i.e.

∑
i z(i)·

viv>i ≈
∑

i x(i) · viv>i , and the integral cost is approximately equal to the fractional cost.

We observe that the spectral rounding problem underlies a large family of network de-
sign and experimental design problems. With this perspective, we bring new insights into
these well-studied problems. For network design, we show that the spectral rounding tech-
nique provides a novel and general approach to significantly extend the scope of problems
that can be solved efficiently. For experimental design, we show that the spectral rounding
technique provides a unified and elegant framework that matches and improves all known
existing algorithmic results.

There are two key techniques that we will use in this thesis. The first one is regret
minimization, which is well-known to the online optimization community and has been
used for spectral sparsification. We use it to control the spectrum of the integral solution
in the spectral rounding problem. The second key technique is concentration inequalities
for analyzing adaptive random sampling processes, which enable us to satisfy spectral and
linear constraints simultaneously with high probability.
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Chapter 1

Introduction

In the past decade, the linear algebraic perspective to solving graph problems has become
a powerful tool in designing fast graph algorithms [132, 44, 21, 7, 9, 128]. In this thesis, we
extend this spectral approach and find new connections and interesting results in network
design and experimental design.

1.1 The Central Problem: Spectral Rounding

The following spectral rounding problem is the central problem in this thesis. The version
we stated in the abstract is equivalent to the following one by a simple reduction (see, e.g.,
Section 6.1.3).

Question 1.1.1 (Spectral Rounding). Suppose we are given vectors v1, . . . , vm ∈ Rd and
x ∈ [0, 1]m such that

∑m
i=1 x(i) · viv>i = Id, where Id is the d-dimensional identity matrix.

Given a non-negative “cost” vector c ∈ Rm
+ , find z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i ≈ Id and 〈c , z〉 ≈ 〈c , x〉.

This problem is similar to the spectral sparsification problem introduced by Spielman
and Teng [133]. In spectral sparsification, the goal is to find a sparse non-negative vector
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y ∈ Rm
+ to approximate the spectral properties of a given fractional vector x . Spectral

rounding is different in that we want to find an integral vector z ∈ {0, 1}m to approximate
the spectral properties of x and preserve the cost simultaneously.

To approximate the spectral properties of a fractional vector, we consider two different
settings.

• One-sided spectral rounding: Find z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i & Id and 〈c , z〉 ≈ 〈c , x〉.

• Two-sided spectral rounding: Find z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i ≈ Id and 〈c , z〉 ≈ 〈c , x〉.

The one-sided spectral rounding was formulated and studied by Allen-Zhu, Li, Singh,
and Wang [6] when the cost vector c = 1m. We extend their results to incorporate general
costs. The following is our main algorithmic result for the one-sided spectral rounding.

Theorem (Informal). Suppose we are given vectors v1, . . . , vm ∈ Rd and x ∈ [0, 1]m such
that

∑m
i=1 x(i) · viv>i = Id. For any given non-negative vector c ∈ Rm

+ , if 〈c , x〉 is large
enough, then one-sided spectral rounding is always possible. In particular, there is a poly-
nomial time randomized algorithm that returns a solution z ∈ {0, 1}m with high probability
such that

m∑
i=1

z(i) · viv>i < Id and 〈c , z〉 ≈ 〈c , x〉.

We design an iterative randomized rounding algorithm to prove the above theorem.
Initially, each vector vi is selected at random with probability x(i) independently. Then,
in each iteration, the algorithm adaptively samples a vector vi to remove from the current
solution set S, and samples a vector vi to add into S. The sampling probabilities of
vi and vj are based on their contributions to the spectrum of the current solution and

2



the corresponding fractional values x(i) and x(j). This adaptive randomized sampling
approach is the main theme in this thesis, which allows us to improve the spectrum and
preserve linear constraints simultaneously.

When all the vectors are short and the cost constraint is ignored, a recent result of
Kyng, Luh, and Song [91] proves that two-sided spectral rounding is always possible. We
extend their result to show that the two-sided spectral rounding with short vectors and
general costs is always possible. We remark that these are existential results, as the proofs
use the nonconstructive interlacing polynomial method.

1.2 Applications to Network Design

Network design is a central topic in combinatorial optimization, approximation algorithms
and operations research. The general setting of network design is to find a minimum cost
subgraph satisfying certain requirements. The most well-studied problem is the survivable
network design problem [71, 1, 73, 67], where the requirement is to have at least a specified
number fuv of edge-disjoint paths between every pair of vertices u, v. A seminal work of
Jain [79] introduced the iterative rounding method for linear programming to design a 2-
approximation algorithm for the survivable network design problem, and this method has
been extended to various more general settings [62, 66, 43, 93, 94, 56, 64, 96, 16]. There
are also other linear programming based algorithms such as randomized rounding [135,
68, 32, 12, 75] to obtain important algorithmic results for network design. It is widely
recognized that linear programming is the most general and powerful approach in designing
approximation algorithms for network design problems.

Using spectral rounding, we provide a completely different approach to this well-studied
topic. The spectral requirement in the spectral rounding problem not only captures pair-
wise edge connectivity requirements in survivable network design, but also allows us to
have a control over many other useful and interesting properties, e.g., algebraic connectiv-
ity, graph expansion, pairwise effective resistance, etc. Before our work, there was no good
approximation algorithm for these properties, even individually. The spectral approach
provides us a powerful tool to tackle a generalized network design problem that incorpo-
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rates connectivity constraints, effective resistance constraints, algebraic connectivity con-
straints, and some other unstructured linear constraints simultaneously. The following is
our main result for the generalized network design problem, which significantly extends the
scope of useful properties that a network designer could control simultaneously to design
better networks.

Theorem (Informal). For any ε, there is a convex programming based polynomial time
randomized algorithm to return an integral solution z of the generalized network design
problem that simultaneously satisfies all the connectivity constraints, the effective resistance
constraints, the algebraic connectivity constraint and the capacity constraints exactly with
high probability. The cost of the integral solution z is

〈c , z〉 6 (1 +O(ε)) · opt +O

(
n ‖c‖∞

ε

)
with high probability, where opt is the cost of an optimal (fractional) solution, n is the
number of vertices in the graph and ‖c‖∞ is the maximum cost of an edge. Furthermore,
unstructured linear constraints can be satisfied approximately with high probability.

Besides the generalized network design problem, we also show that spectral rounding
can be applied to spectral network design problems with spectral objective functions, e.g.,
maximizing algebraic connectivity [69], minimizing total effective resistance [70], etc. Fi-
nally, we mention that the spectral rounding techniques are useful for graph problems other
than network design. For example, we use it to design new algorithms for additive spectral
sparsification, a new notion of sparsification recently introduced by by Bansal, Svensson
and Trevisan [20].

1.3 Applications to Experimental Design

Experimental design is a classical topic in statistics [60, 13, 121, 74]. Recently, it has found
applications in various areas, e.g., machine learning [10, 29, 114, 34], signal processing [80,
37, 40, 41], numerical linear algebra [50, 51, 28, 15], etc.
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In experimental design problems, we are given vectors u1, . . . , un ∈ Rd and a budget
b > d, the goal is to choose a (multi-)subset S of b vectors so that S is a representative
of all the n vectors. There are different objective functions to measure the quality of the
representative set S. The most popular and well-studied objective functions are related to
spectral properties of those vectors in S:

• D-design: Maximizing
(
det
(∑

i∈S viv>i
)) 1

d .

• A-design: Minimizing tr
((∑

i∈S viv>i
)−1
)
.

• E-design: Maximizing λmin

(∑
i∈S viv>i

)
.

All three experimental design problems are NP-hard [33, 142] and also APX-hard [136,
118, 33]. Despite the long history and the wide interest, strong approximation algorithms
for these problems have been obtained only very recently [6, 131, 118]. These state-of-the-
art algorithms use completely different techniques for each different experimental design
problem.

We show that the spectral rounding technique leads to an elegant framework to design
and analyze both rounding algorithms and combinatorial algorithms for experimental de-
sign problems. This framework provides a unifying approach to match and improve all
known results in D/A/E-design and to obtain new results in previously unknown settings.

Theorem (Informal). For rounding algorithms, there is a unified randomized local-search
framework that matches and improves all known rounding algorithms for D/A/E-design.
Furthermore, the framework works in the more general setting to approximately satisfy
multiple knapsack constraints.

For combinatorial algorithms, a similar framework provides a new analysis of the clas-
sical Fedorov’s exchange method. The new analysis shows this simple local search algorithm
works well as long as there exists an almost optimal solution with good condition number.
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1.4 Beyond Spectral Rounding

In [38], together with our coauthors, we proposed to incorporate effective resistance metric
into network design, as an interpolation of shortest path distance and edge-connectivity
between vertices. Incorporating effective resistances can also allow one to control some
natural quantities about random walks on the resulting subgraph, such as the commute
time between vertices [39] and the cover time [112, 52]. We note that effective resistances
have interesting connections to many other graph problems, including spectral sparsifi-
cation [132], maximum flow computation [44, 109, 120], asymmetric traveling salesman
problem [9], and random spanning tree generation [115, 128]. We believe that it is a useful
property to be incorporated into network design. We also would like to remark that our
work in [38] inspired the subsequent work on spectral rounding and applications to network
design in this thesis.

In the last part of this thesis, we present our results for the s-t effective resistance
network design problem, which was proposed in [38]. In this problem, we are given an
input graph, two designated vertices s and t, and a non-negative integer k. The goal is to
find a subgraph with at most k edges to minimize the effective resistance between s and t.
The following is our main result.

Theorem (Informal). The s-t effective resistance network design problem is NP-hard, and
there exists a randomized O(1)-approximation algorithm for this problem.

It is worth pointing out that the spectral rounding technique leads to a (1 + ε)-
approximation algorithm when k > Ω(n/ε2), where n is the number of vertices in the
graph. Nevertheless, the constant approximation algorithm in the above theorem outper-
forms the spectral rounding based algorithm significantly when k � n.

1.5 Organization

• In Chapter 2, we introduce concepts and present preliminary results that will be used
in this thesis, e.g., linear algebra, convex optimization, graph theory, electrical net-
works, etc. Furthermore, we survey some particularly important and relevant topics
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in this chapter, which include spectral sparsification and the interlacing polynomial
method.

• In Chapter 3, we survey some basic concentration inequalities and prove a new con-
centration inequality for self-adjusting random processes, which is a key tool in this
thesis.

• In Chapter 4, we provide a comprehensive review of the regret minimization frame-
work, which is another key technique in this thesis. We first review two equivalent
algorithmic frameworks, the Follow-The-Regularizer-Leader algorithm and the mir-
ror descent method for regret minimization. Then, we derive a generic regret bound,
which slightly generalizes the known bounds. Finally, we present a new random-
ized spectral sparsification algorithm with the regret minimization framework, which
illustrates the key theme in this thesis.

• In Chapter 5, we formally formulate the spectral rounding problem, and present an
iterative randomized rounding algorithm for the one-sided spectral rounding and a
non-constructive proof for the two-sided spectral rounding.

• In Chapter 6, we show the applications of spectral rounding techniques to various
graph problems, including generalized survivable network design, spectral network
design, and additive spectral sparsification.

• In Chapter 7, we present a refined analysis of spectral rounding, and provide a
unifying algorithmic framework for experimental design problems.

• In Chapter 8, we present both algorithmic and hardness results of the s-t effective
resistance network design problem.

• Finally, in Chapter 9, we conclude the thesis and discuss future directions.
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Chapter 2

Preliminaries

We write R and R+ as the sets of real numbers and non-negative real numbers, and Z and
Z+ as the sets of integers and non-negative integers. We also write C as the set of complex
numbers. Given a positive integer d > 1, we denote [d] := {1, . . . , d} as the set of integers
from 1 to d, and denote 2[d] := {S ⊆ [d]} as the power set of [d]. We use P [·] to denote the
probability of a random event, and E[·] to denote the expectation of a random variable.

2.1 Linear Algebra

Throughout this thesis, we use italic sans-serif fonts for vectors and matrices, e.g., x , A,
and all the vectors and matrices only have real entries.

2.1.1 Vectors

Let Rd denote the d-dimensional Euclidean space. Given a finite set S, let RS denote
the |S|-dimensional Euclidean space where the Cartesian coordinates are indexed by S.
We write 1d as the d-dimensional all-one vector or simply 1 when the dimension is clear
from the context. We denote {e1, . . . , ed ∈ Rd} as the standard basis of the d-dimensional
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Euclidean space. Given a vector x ∈ Rd, we write x(i) as the i-th entry of vector x , and
write x(S) :=

∑
i∈S x(i) for any subset S ⊆ [d]. For p > 1, we denote

‖x‖p :=

(
d∑
i=1

|x(i)|p
) 1

p

as the `p-norm of x . For example, ‖x‖2 is the Euclidean norm, and ‖x‖∞ = maxi |x(i)| is
the maximum norm.

A vector v ∈ Rd is a column vector, and its transpose is denoted by v>. Given two
vectors x , y ∈ Rd, the inner product is defined as 〈x , y〉 :=

∑d
i=1 x(i) · y(i). The Cauchy-

Schwarz inequality says that
〈x , y〉 6 ‖x‖2 · ‖y‖2 .

2.1.2 Matrices and Eigenvalues

We denote the d×d identity matrix by Id or simply I when the dimension is clear from the
context. The inverse of a square matrix M ∈ Rd×d, denoted by M−1, is a square matrix in
Rd×d that satisfies MM−1 = Id. We write M(i, j) as the (i, j)-th entry of a matrix M.

Given a matrix M ∈ Rd×d, a nonzero vector v ∈ Cd is an eigenvector of M if there
exists λ ∈ C such that Mv = λv , where the scalar λ is known as the eigenvalue associated
with v . Given an eigenvalue λ of a matrix M ∈ Rd×d, the subspace defined by E := {v |
(M−λId)v = 0} is called the eigenspace of M associated with λ, and the dimension of E is
called the geometric multiplicity of λ. The following is a simple but useful fact about the
eigenvalues of the product of two matrices.

Lemma 2.1.1. Let A ∈ Rd1×d2 and B ∈ Rd2×d1 for some integers d1, d2 > 1. Then, the
matrices AB and BA have the same set of nonzero eigenvalues.

Proof. For any nonzero eigenvalue λ of the matrix AB associated with an eigenvector
v ∈ Rd1 , we can verify that (BA)Bv = B(AB)v = λBv . Thus, Bv ∈ Rd2 is an eigenvector
of BA with eigenvalue λ. The same argument applies to the nonzero eigenvalues of matrix
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BA. Therefore, we can find a one-to-one mapping between the nonzero eigenvalues of AB

and BA.

Remark. The above proof can be extended to show that the eigenvalue λ of AB and BA

have the same multiplicity, but this simpler version is enough for our applications.

A matrix M ∈ Rd×d is symmetric if M = M>, where M> is the transpose of M. We
denote the set of all d-dimensional symmetric matrices by Sd. It is a fundamental result that
any d× d real symmetric matrix has d real eigenvalues λ1 6 . . . 6 λd and an orthonormal
basis of eigenvectors, which is known as the Spectral Theorem for real symmetric matrices.

Theorem 2.1.2 (Spectral Theorem, see, e.g., [77]). Let M ∈ Sd be a real symmetric
matrix. Then, all the eigenvalues λ1, . . . , λd of M are real. Furthermore, M has a set of
orthonormal real eigenvectors v1, . . . , vd ∈ Rd such that

M =
d∑
i=1

λi · viv>i and 〈vi, vj〉 = 0 for all i 6= j and ‖vi‖2 = 1 for all i ∈ [d].

Let M ∈ Sd be a real symmetric matrix. We refer to M =
∑d

i=1 λi · viv>i defined in
Theorem 2.1.2 as the eigendecomposition of M. We write λmax(M) and λmin(M) as the
maximum and the minimum eigenvalue of the real symmetric matrix M. The following
variational characterization of eigenvalues is well-known.

Theorem 2.1.3 (see, e.g., Theorem 4.2.2 in [77]). Let M ∈ Sd be a real symmetric matrix
with eigendecomposition M =

∑d
i=1 λi · viv>i , where λ1 6 . . . 6 λd. Then,

λk = v>k Mvk = sup
x∈span{v1,...,vk}

and ‖x‖2=1

x>Mx = inf
x∈span{vk,...,vd}

and ‖x‖2=1

x>Mx , for all k ∈ [d].

The following theorem shows that a factorization, which generalizes eigendecomposition
of a real symmetric matrix, always exists for a general rectangular matrix.

Theorem 2.1.4 (Singular Value Decomposition (SVD), see, e.g., [77]). Let M ∈ Rd1×d2

be a rectangular matrix with rank r 6 d := min{d1, d2}. There exist a diagonal matrix
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Σ = diag(σ1, . . . , σr) where σ1, . . . , σr > 0, two matrices U ∈ Rd1×r,V ∈ Rd2×r both
with orthonormal columns such that M = UΣV>. Furthermore, σ1, . . . , σr are uniquely
determined by the positive square root of the positive eigenvalues of MM> (the same as
M>M).

Based on the SVD decomposition, we can define a generalized inversion of a general
rectangular matrix.

Definition 2.1.5 (Moore–Penrose Inverse). Let M = UΣV> be the SVD decomposition of
the matrix M ∈ Rd1×d2 with rank r. The Moore–Penrose inverse (or simply pseudoinverse)
of M is defined as M† := V Σ−1U>.

It is easy to verify that the pseudoinverse of matrix M satisfies MM†M = M and
M†MM† = M†. When M ∈ Sd is a symmetric square rank-r matrix with eigendecomposi-
tion M =

∑r
i=1 λi ·viv>i , then the pseudoinverse of M can be written as M† =

∑r
i=1

1
λi
·viv>i

2.1.3 Positive Semidefinite/Definite Matrices

Definition 2.1.6 (Positive Semidefinite Matrix). A real symmetric matrix M ∈ Sd is called
a positive semidefinite (PSD) matrix, denoted as M < 0, if any of the following equivalent
conditions holds

• All the eigenvalues of M are non-negative.

• The quadratic form x>Mx > 0 for any vector x ∈ Rd.

• There exists a matrix U ∈ Rn×d for some n > 1 such that M = U>U.

The square root of a PSD matrix M < 0 is defined as M
1
2 :=

∑
i

√
λi · viv>i . We denote

M � 0 as a positive definite (PD) matrix M, which is real symmetric and all eigenvalues are
positive. We use A < B to denote A− B < 0 and A � B to denote A− B � 0 for matrices
A and B . We write Sd+ as the set of all d-dimensional PSD matrices, and Sd++ as the set of
all d-dimensional PD matrices. The following Lemma characterizes the semidefiniteness of
a blocked matrix by its Schur complement.
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Lemma 2.1.7 (see, e.g., [3, 77]). Let M ∈ Sd be a blocked symmetric matrix

M =

(
A B

B> C

)
.

Then, M < 0 if and only if A < 0, (I − AA†)B = 0, and C − B>A†B < 0. The matrix
C − B>A†B is called the generalized Schur complement of A in M.

The following is a useful fact that we will use in multiple occasions.

Claim 2.1.8. Given X ∈ Sd++ and Y ∈ Rd×d1, then Y >X−1Y ≺ Id1 if and only if YY > ≺ X .
Similarly, Y >X−1Y 4 Id1 is equivalent to YY > 4 X .

Proof. Since Y >X−1Y = Y >X−
1
2 X−

1
2 Y , it follows from Lemma 2.1.1 that

λmax(X−
1
2 YY >X−

1
2 ) = λmax(Y >X−1Y ).

Since A ≺ I is equivalent to λmax(A) < 1 for symmetric matrix A, the condition Y >X−1Y ≺
Id1 is equivalent to X−

1
2 YY >X−

1
2 ≺ Id, which is further equivalent to YY > ≺ X . The second

part of the claim follows by the same argument.

Given two real matrices A and B of the same size, the Frobenius inner product of A,B
is denoted as 〈A,B〉 :=

∑
i,j A(i, j) · B(i, j). The following is a standard fact.

Fact 2.1.9. Let A < 0 and B < C < 0, then it holds that 〈A,B〉 > 0 and 〈A,B〉 > 〈A,C 〉.

We write ‖M‖F :=
√
〈M,M〉 as the Frobenius norm of a matrix M, and write ‖M‖op :=

max‖x‖2=1 ‖Mx‖2 as the operator norm of a matrix M. For symmetric matrices, the operator
norm is just the largest absolute value of its eigenvalues. For positive semidefinite matrices,
the operator norm is just its largest eigenvalue.
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2.1.4 Trace and Determinant

The trace of a matrix M ∈ Rd×d, denoted by tr(M), is defined as the sum of the diagonal
entries of M. We can check by definition that trace satisfies cyclic property, i.e. tr(AB) =

tr(BA) for A and B with appropriate sizes. We also note that 〈A,B〉 = tr(A>B) for A and
B of the same size. A PSD matrix M < 0 with tr(M) = 1 is called a density matrix. We
denote ∆d := {M < 0 |

∑d
i=1 λi(M) = 1} as the set of all d-dimensional density matrices.

The determinant of a matrix M ∈ Rd×d, denoted by det(M), is defined as det(M) :=∑
σ∈Sd sgn(σ)

∏d
i=1 M(i, σ(i)), where Sd is the set of all permutations on [d] and sgn(σ) is

the signature of σ. It is well-known that both trace and determinant are related to the
eigenvalues of a matrix. In particular,

tr(M) =
d∑
i=1

λi(M) and det(M) =
d∏
i=1

λi(M),

where λi(M) denotes the i-th eigenvalue of M.

The following is a simple claim that bounds the trace of the square root of a density
matrix, which will be invoked multiple times in this thesis.

Claim 2.1.10. For any d× d matrix A < 0 satisfying tr(A) = 1, tr
(
A

1
2

)
6
√
d.

Proof. Let λ1, . . . , λd be the eigenvalues of A. It holds that

tr
(
A

1
2

)
=

d∑
i=1

√
λi 6

√
d ·

√√√√ d∑
i=1

λi =
√
d,

where the inequality follows by Cauchy-Schwartz, and the last equality follows by the
assumption tr(A) = 1.

The following two lemmas describe the change of the determinant function under rank-
one and rank-two updates. The first one is the well-known matrix determinant lemma.

Lemma 2.1.11 (Matrix Determinant Lemma, see, e.g., [77]). For any invertible matrix X

and any vector v ∈ Rd,

det(X ± vv>) = det(X )(1± 〈vv>,X−1〉).
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The following determinant lower bound under a rank-two update is a simple conse-
quence and was implicitly contained in [108]. We provide a proof for completeness.

Lemma 2.1.12. Given a matrix A � 0 and two vectors u, v ∈ Rd, if 〈uu>,A−1〉 6 1, then

det(A− uu> + vv>) > det(A)
(
1− 〈uu>,A−1〉

) (
1 + 〈vv>,A−1〉

)
.

Proof. We first consider the case when 〈uu>,A−1〉 < 1. This is equivalent to uu> ≺ A by
Claim 2.1.8. Thus A− uu> � 0. Applying Lemma 2.1.11 twice,

det(A− uu> + vv>) = det(A) ·
(
1− 〈uu>,A−1〉

)
·
(
1 + 〈vv>, (A− uu>)−1〉

)
> det(A)

(
1− 〈uu>,A−1〉

) (
1 + 〈vv>,A−1〉

)
,

where the last inequality holds as 0 ≺ A− uu> 4 A.

In the case when 〈uu>,A−1〉 = 1, the RHS of the lemma is zero. Claim 2.1.8 implies
A− uu> < 0, thus it follows that the LHS is non-negative.

2.1.5 Matrix Inversion with Perturbations

The following lemmas describe the change of matrix inversion under rank-one and general
perturbations.

Lemma 2.1.13 (Sherman-Morrison Formula [129]). Suppose A ∈ Rd×d is an invertible
matrix, and u, v ∈ Rd. Then, A + uv> is invertible if and only if 1 + v>A−1u 6= 0, and
under this case (

A + uv>
)−1

= A−1 − A−1uv>A−1

1 + v>A−1u
.

The following is a corollary of Sherman-Morrison formula, which follows by restricting
to the eigenspaces associated with nonzero eigenvalues of the matrix A.

Corollary 2.1.14. Suppose we are given a symmetric matrix A ∈ Sd, a vector v ∈ Rd that
lives in the eigenspaces associated with nonzero eigenvalues of A, and a number c ∈ R. If
1 + c · v>A†v 6= 0, then (

A + c · vv>
)†

= A† − c · A†vv>A†

1 + c · v>A†v
.
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Lemma 2.1.15 (Woodbury Matrix Identity [143]). Suppose A ∈ Rd×d and C ∈ Rk×k are
two invertible matrices, and U ∈ Rd×k,V ∈ Rk×d. Then, A + UCV is invertible if and only
if C−1 + VA−1U is also invertible, and under this case

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1.

2.2 Convex Analysis and Convex Optimization

In this section, we review some basic notions and facts in convex analysis and convex
optimization that we will see throughout this thesis. Most of the contents follow the
exposition of two textbooks, by Boyd and Vandenberghe [31] and by Hiriart-Urruty and
Lemaréchal [76]. We include some short proofs for completeness.

2.2.1 Differentiation in Euclidean Space

Given a point x ∈ Rd, the ε-neighbourhood around x is defined as {y ∈ Rd | ‖x − y‖2 < ε}
for ε > 0. Given a set S ⊆ Rd and a point x ∈ S, we say x is in the interior of S if there
exists an ε > 0 such that the ε-neighbourhood around x is contained in S. We denote
int(S) as the set of all interior points of S. A set S ⊆ Rd is open if and only if S = int(S).

Let f : D → Rm be a vector-valued function defined on an open domain D ⊆ Rd. We
say f is continuous at x ∈ D if

lim
h→0
‖f(x + h)− f(x)‖2 = 0.

We denote L(Rd,Rm) as the set of all linear maps from Rd to Rm. Every linear map in
L(Rd,Rm) can be uniquely represented by a matrix in Rm×d.

We say f is differentiable at x ∈ D if there exists a (necessarily unique) linear map
J ∈ L(Rd,Rm) such that

lim
h→0

‖f(x + h)− f(x)− J(h)‖2

‖h‖2

= 0. (2.1)
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Note that the Euclidean norms in the denominator and numerator are defined in different
dimensions, and we can replace the Euclidean norms by any other norms in finite dimen-
sional spaces. The unique linear map J is called the differential of f at x , which is also
known as the Jacobian operator of f at x . We denote the differential of f at x by f ′(x), or
by d

dxf(x) when we want to specify the varying variable. Note that f ′(x) is a linear map
from Rd to Rm, which can be uniquely represented by a Jacobian matrix in Rm×d. Thus,
f ′ can be treated as a function that maps from Rd to Rm×d. We say the differential f ′(x)

exists in S ⊆ D if f ′(x) exists and there exists some ε > 0 such that the ε-neighbourhood
around x is contained in S.

We say f is continuously differentiable at x ∈ D if f is differentiable at x and the
function defined by the differentials f ′ : Rd → L(Rd,Rm) is continuous at x .

The above definitions for vector-valued functions can be naturally generalized to matrix-
valued functions with matrix domains, where the inner product is replaced by Frobenius
inner product, and the Euclidean norm is replaced by Frobenius norm.

For a real function f : D → R defined on a domain D ⊆ Rd, the differential of f at x ,
i.e. f ′(x), can be uniquely represented by a column vector in Rd. We refer to this vector as
the gradient of f at x , and denote it by ∇f(x). Note that f ′ : Rd → L(Rd,R) is a function
that maps a vector x ∈ D to the differential of f at x .

Let x ∈ D be some point where f is finite. The directional derivative of f at x with
respect to some direction d ∈ Rd is defined as

f ′(x ; d) := lim
λ→0

f(x + λd)− f(x)

λ
.

As a special case, we denote ∂jf(x) := f ′(x ; ej) as the partial derivative of f with respect
to the variable at the j-th coordinate. We say the directional derivative f ′(x ; d) exists in
S ⊆ D, if there exists ε > 0 such that an ε-neighbourhood of x along the direction d is
contained in S.

If f is differentiable at x , then all directional derivatives and partial derivatives of f at
x exist. The gradient can be written as a column vector ∇f(x) = (∂1f(x), . . . , ∂df(x))>,
and f ′(x ; d) = 〈∇f(x), d〉.
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It is a well-known fact in analysis that, if all the partial derivatives exist and are
continuous, then the function is continuously differentiable.

Theorem 2.2.1 (see, e.g., [127]). Let f be a function that maps D in Rd to R. Then,
f is continuously differentiable at x ∈ D if and only if the partial derivative ∂jf exists
and is continuous at x for all j ∈ [d]. Furthermore, the statement still holds if we replace
the partial derivatives {∂jf(x)}j∈[d] by a collection of directional derivatives {f ′(x , di)}i∈[d],
where d1, . . . , dd form a basis of Rd.

We will need the gradients of the following functions in this thesis. We provide proofs
in Appendix A.1 for completeness.

Fact 2.2.2. Let f : Sd++ → R be defined as f(X ) = log det(X ). Then, f is differentiable
at any X � 0 with ∇f(X ) = X−1.

Fact 2.2.3. Let f : Sd++ → R be defined as f(X ) = tr(X−1). Then, f is differentiable at
any X � 0 with ∇f(X ) = −X−2.

Fact 2.2.4. Let f : Sd+ → R be defined as f(X ) = tr(X
1
2 ). Then, f is differentiable at any

X � 0 with ∇f(X ) = 1
2
X−

1
2 .

For a positive definite matrix X ∈ Sd++ with eigendecomposition X = UΛU> where
Λ = diag(λ1, . . . , λd), we define log X := U diag(log λ1, . . . , log λd)U>.

Fact 2.2.5. Let f : Sd+ → R be defined as f(X ) = 〈X , log X − Id〉. Then, f is differentiable
at any X � 0 with ∇f(X ) = log X .

A real function f is twice differentiable at x if f is continuously differentiable at x and
the first order differential f ′ : Rd → L(Rd,R) is differentiable at x . By the definition of
differentiability, there exists a unique linear map H ∈ L(Rd,L(Rd,R)) that satisfies (2.1)
with f = f ′ and J = H. We call this unique linear map H the Hessian of f at x . When f
is twice differentiable at x , the Hessian of f at x can be represented by a symmetric matrix
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in Sd with the second order partial derivative ∂2
i,jf(x) at the (i, j)-th entry. We call this

matrix the Hessian matrix of f at x and denote it by ∇2f(x).

A real function f : D → R is a continuous (differentiable, continuously differentiable,
twice differentiable) function if f is continuous (differentiable, continuously differentiable,
twice differentiable) on the whole domain D.

2.2.2 Convex Set and Convex Function

A set C is convex if, for any two points x , y ∈ C, the whole line segment between x and y ,
i.e. λx + (1− λ)y ∈ C for all 0 6 λ 6 1, is contained in C.

A function f : D → R is a convex function, if the domain D is convex and for any
x , y ∈ D and λ ∈ [0, 1] the following inequality holds

f(λx + (1− λ)y) 6 λf(x) + (1− λ)f(y). (2.2)

Note that it suffices to check the mid-point λ = 1
2
to establish convexity for continuous

function f . The well-known Jensen’s inequality follows from the convexity of a function
immediately.

Lemma 2.2.6 (Jensen’s Inequality, see, e.g., [31]). Let f : D → R be a convex function,
x1, . . . , xn ∈ D be n points in the domain of f . For any λ1, . . . , λn > 0 with

∑n
i=1 λi = 1, it

holds that,

f

(
n∑
i=1

λixi

)
6

n∑
i=1

λif(xi).

There is a geometric view of the convex functions through the notion of epigraph. Let
f : D → R be a function defined on the domain D ⊆ Rd. The epigraph of a function f is
defined as epi(f) := {(x , u) | x ∈ D, u > f(x)} ⊆ Rd+1. The following simple fact follows
from definition directly, but insightfully connects convex functions with convex sets.

Lemma 2.2.7 (see, e.g., [31]). A function f is convex if and only if the epigraph epi(f) is
a convex set.
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A function f : D → R is a strictly convex function, if D is convex and (2.2) holds with
strict inequality

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y) for all x 6= y ∈ D and 0 < λ < 1.

There is an equivalent way to define convexity (or strict convexity) by restricting to a
single variable function.

Lemma 2.2.8 (see, e.g., [31]). A function f : D → R is a (strictly) convex function if and
only if for any x , y ∈ D, the single variable function gx ,y (t) := f(x + t(y − x)) is (strictly)
convex on [0, 1].

The following is a necessary and sufficient condition known as the first order condition
for a differentiable function f being (strictly) convex.

Lemma 2.2.9 (First Order Condition, see, e.g., [31]). A differentiable function f : D → R
with a convex domain D is convex if and only if f(y) > f(x) + 〈∇f(x), y − x〉 for all
x , y ∈ D. The function f is strictly convex if and only if f(y) > f(x) + 〈∇f(x), y − x〉 for
all x 6= y ∈ D.

When f is not fully differentiable but the directional differential derivative exists at
some point with respect to some direction, we still have a similar necessary condition.

Lemma 2.2.10 (see, e.g., [31]). Let f : D → R be a convex function. If the directional
derivative of f at x ∈ D with respect to a direction d ∈ Rd exists, then for any t such that
y = x + td ∈ D it holds that f(y) > f(x) + tf ′(x ; d).

The following is a necessary and sufficient condition known as the second order condition
for a twice differentiable function f being convex.

Lemma 2.2.11 (Second Order Condition, see, e.g., [31]). Let f : D → R be a twice
differentiable function on a convex domain D. If the Hessian matrix ∇2f(x) < 0 for all
x ∈ D, then f is convex. Conversely, when the domain D is open, f is convex implies that
the Hessian matrix ∇2f(x) < 0 for all x ∈ D.
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Remark. In the necessity of the second order condition, the openness assumption of the
domain D is important. Consider a two variable function f(x, y) = x2 − y2 with domain
D = R × {0}. The Hessian matrix ∇2f(x, y) = ( 2 0

0 −2 ) is nowhere positive semidefinite,
but the function f is convex on the domain D.

The following is a sufficient condition for f being strictly convex. However, we remark
that this condition is not a necessary condition for strict convexity.

Lemma 2.2.12 (see, e.g., [31]). Given a function f : D → R, if the domain D is convex
and the Hessian matrix ∇2f(x) � 0 for all x ∈ D, then f is strictly convex.

A function f : D → R is concave/strictly concave if −f is convex/strictly convex.
The following fact says that taking pointwise infimum over a family of concave functions
preserves concavity.

Lemma 2.2.13 (see, e.g., [31]). Let f : DX × DY → R be a function such that f(x , y) is
concave in x for any given y ∈ DY , where the domain DY could be an infinite set. Then,
the function g : DX → R defined by g(x) = infy∈DY f(x , y) is concave.

The following lemma is a simple corollary.

Lemma 2.2.14. Let M ∈ Sd be a real symmetric matrix. The function of the smallest
eigenvalue λmin(M) is a concave function on Sd, and the function of the largest eigenvalue
λmax(M) is a convex function on Sd.

Proof. By Theorem 2.1.3, we can write the smallest eigenvalue of M ∈ Sd as

λmin(M) = inf
x∈Rd and ‖x‖2=1

〈xx>,M〉,

which is the point-wise infimum of a family of linear functions in M. By Lemma 2.2.13,
λmin(M) is concave in M. The convexity of λmax(M) follows from similar argument.
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Examples of Convex/Concave Functions

The following are two well-known concave functions. We provide proofs in Appendix A.2
for completeness.

Fact 2.2.15. The function f(X ) = log det(X ) is concave on Sd++.

Fact 2.2.16. The function f(X ) = det(X )
1
d is concave on Sd+.

Then, we show convexity/concavity of some trace related functions. We follow an
idea from the lecture notes of Lee [99], which lifts the convexity/concavity of univariate
functions to trace related functions with a matrix domain.

Given an interval I ⊆ R, define a set of symmetric matrices

SdI := {X ∈ Sd | all eigenvalues of X belong to I.}

By Lemma 2.2.14, λmax is convex and λmin is concave. Thus, we can verify that SdI is a
convex set.

Then, we lift a function g : I → R to a function that maps SdI to R as follows. For any
matrix X ∈ SdI with eigendecomposition X = UΛU> where Λ = diag(λ1, . . . , λd), we define

g(X ) := U

g(λ1)
. . .

g(λd)

U>.

Lemma 2.2.17. For any interval I ⊆ R, if a function g : I → R is (strictly) convex on I,
then the function X 7→ tr(g(X )) is (strictly) convex on SdI .

Proof. We prove the convexity, and the strict convexity follows by the same argument.

For any X ,Y ∈ SdI , we are going to show

tr
(
f(λX + (1− λ)Y )

)
6 λ tr

(
f(X )

)
+ (1− λ) tr

(
f(Y )

)
. (2.3)
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Let {ui} be the orthonormal basis of the eigenvectors of λX + (1 − λ)Y . The i-th
eigenvalue of λX + (1− λ)Y is equal to 〈ui, (λX + (1− λ)Y )ui〉 by Theorem 2.1.3. Thus,

tr
(
f(λX + (1− λ)Y )

)
=

d∑
i=1

f(〈ui, (λX + (1− λ)Y )ui〉)

=
d∑
i=1

f(λ〈ui,Xui〉+ (1− λ)〈ui,Yui〉)

6
d∑
i=1

(
λf(〈ui,Xui〉) + (1− λ)f(〈ui,Yui〉)

)
,

where the last inequality follows by the convexity of f : I → R.

Let {vj} be the orthonormal basis of the eigenvectors of X . For any ui, we can write it
as ui = (

∑d
j=1 vjv>j )ui =

∑d
j=1〈vj, ui〉vj. This implies that 〈ui,Xui〉 =

∑d
j=1〈vj, ui〉2〈vj,Xvj〉

since {vj} are eigenvectors of X .

Using the fact that ui is a unit vector and {vj} is an orthonormal basis, it follows that

d∑
j=1

〈vj, ui〉2 = u>i

( d∑
j=1

vjv>j

)
ui = ‖ui‖2

2 = 1. (2.4)

Since f : I → R is a convex function, we apply Jensen’s inequality Lemma 2.2.6 to show

f(〈ui,Xui〉) = f
(∑d

j=1
〈vj, ui〉2〈vj,Xvj〉

)
6

d∑
j=1

〈vj, ui〉2f(〈vj,Xvj〉).

This implies that

d∑
i=1

λf(〈ui,Xui〉) 6 λ

d∑
j=1

(
f(〈vj,Xvj〉) ·

d∑
i=1

〈vj, ui〉2
)

= λ tr
(
f(X )

)
,

where we used
∑d

i=1〈vj, ui〉2 = ‖vj‖2
2 = 1 (follows similarly as (2.4)). Applying the same

argument, we can upper bound the term (1−λ)
∑d

i=1 f(〈ui,Yui〉) by (1−λ) tr
(
f(Y )

)
, thus

the inequality (2.3) follows.
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We can use the second order condition Lemma 2.2.12 to check that x 7→ x−1 is strictly
convex on (0,+∞), x 7→ −2

√
x is strictly convex on [0,+∞), and x log x − x is strictly

convex on [0,+∞). Therefore, the following facts follow by Lemma 2.2.17.

Fact 2.2.18. The function f(X ) = tr(X−1) is strictly convex on Sd++.

Fact 2.2.19. The function f(X ) = −2 tr(X
1
2 ) is strictly convex on Sd+.

Fact 2.2.20. The function f(X )=〈X , log X−Id〉=tr(X log X−X ) is strictly convex on Sd+.

2.2.3 Optimality Conditions in Convex Optimization

The following is a general formulation of an optimization problem.

optP := minimize
x∈D

f0(x)

subject to fi(x) 6 0, i ∈ {1, . . . ,m},
hj(x) = 0, j ∈ {1, . . . , p},

(2.5)

where f0, f1, . . . , fm, h1, . . . , hp are functions defined over domain D ⊆ Rd. We denote the
set of all feasible solutions by

X := {x ∈ D : fi(x) 6 0, ∀i = 1, . . . ,m and hj(x) = 0,∀j = 1, . . . , p}.

The following simple fact gives a necessary condition for a solution x∗ ∈ Rd being
optimal based on directional derivatives.

Lemma 2.2.21. Given the general optimization program (2.5) with a feasible set X , let
x∗ ∈ X be an optimal solution. If there exists some direction d ∈ Rd such that the
directional derivative f ′0(x∗; d) exists in X , then the directional derivative f ′0(x∗; d) = 0.

The lemma holds since if f ′0(x∗; d) 6= 0 then moving x∗ to x∗− εf ′0(x∗)d would decrease
the value of the objective function. Note that we do not assume convexity or differentia-
bility in general.
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We say (2.5) is a convex program for a convex optimization problem if the objective
function f0 and inequality constraints f1, . . . , fm are convex functions, and equality con-
straints h1, . . . , hp are affine functions in the form of 〈aj, x〉 − bj for all j = 1, . . . , p. In the
following, we assume (2.5) is a convex program with some special cases being explicitly
mentioned.

The following is a necessary and sufficient condition for a point in the domain being an
optimal solution.

Lemma 2.2.22 (see, e.g., [31]). Suppose f0 is a differentiable convex objective function,
then x ∈ X is an optimal solution to the convex optimization problem (2.5) if and only if

〈∇f0(x), y − x〉 > 0 for all y ∈ X . (2.6)

Proof. Since f0 is a differentiable convex function, by the first order condition Lemma 2.2.9,
for any x , y ∈ X , it holds that

f0(y) > f0(x) + 〈∇f0(x), y − x〉.

Thus, if x ∈ X satisfies (2.6), then for any y ∈ X it holds that f0(y) > f0(x), which shows
x is an optimal solution to (2.5).

Conversely, if x is an optimal solution but (2.6) does not hold, then there exist some
y ∈ X such that 〈∇f0(x), y−x〉 < 0. Let g(t) = f0(zt), where zt = x +t(y−x) for t ∈ [0, 1].
Note that g′(t) |t=0= 〈∇f0(x), y − x〉 < 0. Thus, for small enough 0 6 t 6 1, it holds that
g(t) < g(0), which is equivalent to f0(zt) < f0(x). Since both x , y ∈ X , zt is also in X
by the convexity of X . Thus, we have a feasible solution zt with strictly smaller objective
value than that of x , a contradiction.

Corollary 2.2.23. Suppose f0 is convex and differentiable at x ∈ X with ∇f0(x) = 0,
then x is an optimal solution to (2.5).

Corollary 2.2.24. Suppose f0 is a differentiable convex function and the feasible set X is
open. Then, x ∈ X is an optimal solution to the convex optimization problem (2.5) if and
only if ∇f0(x) = 0.
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Proof. Suppose x ∈ X is an optimal solution and ∇f0(x) 6= 0. Since X is open, the
point y = x − ε∇f0(x) is still in X for small enough ε > 0. However, 〈∇f0(x), y − x〉 =

−ε ‖∇f0(x)‖2
2 < 0, which implies x is not optimal by Lemma 2.2.22, a contradiction. The

other direction of the corollary follows from Corollary 2.2.23.

2.2.3.1 Lagrangian Duality

Given the convex optimization problem in (2.5), which is referred by the primal problem, we
introduce a dual variable λi > 0 for each inequality constraint fi(x) 6 0 for all i = 1, . . . ,m.
We also introduce a dual variable νj ∈ R for each affine constraint hj(x) = 0 for all
j = 1, . . . , p. Define the Lagrangian function L : D × Rm × Rp → R as

L(x , λ, ν) := f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x).

The Lagrange dual function, or simply dual function, g : Rm × Rp → R is defined as

g(λ, ν) := inf
x∈D

L(x , λ, ν).

The dual program of the convex program in (2.5) is defined as

optD := maximize
λ∈Rm,ν∈Rp

g(λ, ν)

subject to λ > 0.
(2.7)

Notice that the following weak duality property always holds regardless the problem is
convex or not:

optD = max
λ>0,ν∈Rp

inf
x∈D

L(x , λ, ν) 6 inf
x∈X

f0(x) = optP ,

where we recall that X is the feasible set of the primal problem (2.5). The inequality holds
as, for any fixed λ > 0 and ν, we have λifi(x) 6 0, ∀i ∈ [m] and νjhj(x) = 0,∀j ∈ [p] for
all feasible x ∈ X , which implies that L(x , λ, ν) 6 f0(x) for x ∈ X ⊆ D.

Weak duality shows that the duality gap, i.e. optP−optD, is nonnegative. We refer to the
property that the primal and dual problem have zero duality gap by strong duality, which
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does not necessarily hold in general. It usually holds for convex programs, but requires
some additional conditions on the constraints.

Before we formally state one of the conditions, we first introduce two related notions.
Given a set C, the affine hull of C is defined by

aff(C) :=

{
k∑
i=1

λixi
∣∣∣ k > 1; x1, . . . , xk ∈ C;

k∑
i=1

λi = 1

}
.

Given a set C, the relative interior of C is defined by

relint(C) := {x ∈ C | ∃r > 0, B(x , r) ∩ aff(C) ⊆ C} ,

where B(x , r) := {y | ‖y − x‖2 6 r} is a ball around x with radius r. The following is a
commonly used condition to guarantee the strong duality for convex programs.

Definition 2.2.25 (Slater’s Condition).

∃x ∈ relint(D) such that fi(x) < 0, ∀i = 1, . . . ,m and hj(x) = 0, j = 1, . . . , p.

We state the following theorem without proof, and refer the readers to Section 5.3.2
of [31] for a proof.

Theorem 2.2.26 (see, e.g., [31]). If the convex program in (2.5) satisfies Slater’s condition,
then strong duality holds and the dual optimal is attained with zero duality gap.

2.2.3.2 Karush–Kuhn–Tucker Conditions

The following is the well-known Karush-Kuhn-Tucker (KKT) conditions in optimization.

(Primal feasibility) fi(x) 6 0 ∀i = 1, . . .m and hj(x) = 0 ∀j = 1, . . . , p,

(Dual feasibility) λ(i) > 0 ∀i = 1, . . . ,m,

(Complementary slackness) λ(i)fi(x) = 0 ∀i = 1, . . . ,m,

(Lagrangian optimality) ∇f0(x) +
m∑
i=1

λ(i)∇fi(x) +

p∑
j=1

ν(j)∇hj(x) = 0,
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The following proposition says that KKT conditions are both necessary and sufficient for
a convex program to attain strong duality. Note that convexity is not required for the
necessity.

Proposition 2.2.27. Suppose f0, f1, . . . , fm are all convex and differentiable functions over
an open domain D, then there exist x∗ ∈ D, λ∗ ∈ Rm, ν∗ ∈ Rp that satisfy KKT conditions
if and only if there exists an primal optimal solution x∗ to (2.5) and a dual optimal solution
(λ∗, ν∗) to (2.7) that attain zero duality gap.

Proof. We first prove the necessity. If x∗ is an optimal solution of the primal problem and
(λ∗, ν∗) is an optimal solution of the dual problem, then the primal feasibility and dual
feasibility conditions are automatically satisfied. By the zero duality gap assumption, it
follows that

f0(x∗) = g(λ∗, ν∗) = inf
x∈D

L(x , λ∗, ν∗)

= inf
x∈D

{
f0(x) +

m∑
i=1

λ∗(i)fi(x) +

p∑
j=1

ν∗(j)hj(x)

}

6 f0(x∗) +
m∑
i=1

λ∗(i)fi(x∗) +

p∑
j=1

ν∗(j)hj(x∗) (2.8)

6 f0(x∗),

where the last inequality follows as λ∗(i)fi(x∗) 6 0 and hj(x∗) = 0 by the feasibility of x∗

and (λ∗, ν∗). Thus, the two inequalities should hold with equality.

In particular, the last inequality is an equality implies that λ∗(i)fi(x∗) = 0 for all i ∈ [m]

due to the feasibility of x∗ and λ∗, thus the complementary slackness condition holds. The
second last inequality being an equality implies that x∗ minimizes the function L(x , λ∗, ν∗)

over the open domain D. The minimizer of L(x , λ∗, ν∗) over an open domain, x∗, should
satisfy

∇xL(x∗, λ∗, ν∗) = ∇f0(x) +
m∑
i=1

λ∗(i)∇fi(x∗) +

p∑
j=1

ν∗(j)∇hj(x∗) = 0.
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Thus, x∗, λ∗, ν∗ also satisfy the Lagrangian optimality condition.

Then, we prove the sufficiency. Assume that there exist x∗ ∈ D, λ∗ ∈ Rm, ν∗ ∈ Rp

that satisfy KKT conditions. The primal and dual feasibility conditions ensure that x∗ is
feasible to the primal problem and (λ∗, ν∗) is feasible to the dual problem. Since λ∗ > 0,
f0, f1, . . . , fm are convex and h1, . . . , hp are affine, the Lagrangian function L(x , λ∗, ν∗) is
convex in x . The Lagrangian optimality condition says that ∇xL(x∗, λ∗, ν∗) = 0, thus x∗ is
a minimizer of L(x , λ∗, ν∗) over the convex domain D by Corollary 2.2.23. Thus, it follows
that

g(λ∗, ν∗) = inf
x∈D

L(x , λ∗, ν∗) = L(x∗, λ∗, ν∗)

= f0(x∗) +
m∑
i=1

λ∗(i)fi(x∗) +

p∑
j=1

ν∗(j)hj(x∗) = f0(x∗),

where the last equality follows by primal feasibility that hj(x∗) = 0 for all j ∈ [p] and
complementary slackness condition that λ∗(i)fi(x∗) = 0 for all i ∈ [m].

Hence, x∗ and (λ∗, ν∗) attain zero duality gap, and they are primal optimal and dual
optimal solutions separately.

If the primal convex program (2.5) satisfies Slater’s condition, then strong duality holds,
and thus Proposition 2.2.27 implies the following theorem.

Theorem 2.2.28. Suppose f0, f1, . . . , fm are all convex and differentiable functions over
an open domain D, and the primal convex program (2.5) satisfies Slater’s condition. Then,
x∗ ∈ D is an primal optimal solution of (2.5) if and only if there exist λ∗ ∈ Rm, ν∗ ∈ Rp,
together with x∗, satisfy KKT conditions.

When the convex optimization problem contains only affine equality constraints, the
Slater’s condition is satisfied, and the following fact is a direct consequence of Theo-
rem 2.2.28.

Corollary 2.2.29. Suppose f0 is a differentiable convex objective function and there are
only affine constraints of the form Ax = b with A ∈ Rp×d and b ∈ Rp in problem (2.5).
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Then, x is an optimal solution to the primal problem (2.5) if and only if there exists ν ∈ Rp

such that
∇f0(x) + A>ν = 0 and Ax = b.

For those problems with nondifferentiable objective or constraint functions, Proposi-
tion 2.2.27 and Theorem 2.2.28 cannot be applied. The subdifferential theory for convex
functions [126, 76] can deal with those nondifferentiable functions. However, in this thesis
we do not need to use the full strength of the advanced background. The following special
treatment of Proposition 2.2.27 suffices for our application in Chapter 8.

Proposition 2.2.30. Suppose f0, f1, . . . , fm are functions over a domain D. If there exist
a primal optimal solution x∗ to (2.5) and a dual optimal solution (λ∗, ν∗) to (2.7) that
attain zero duality gap, then x∗, λ∗ and ν∗ satisfy the primal/dual feasibility conditions
and the complementary slackness condition. Furthermore, for some direction d ∈ Rd, if
the directional derivative f ′i(x∗; d) exits in D for all i = 0, 1, . . . ,m, then the following
condition holds.

f ′0(x∗; d) +
m∑
i=1

λ∗(i)f ′i(x
∗; d) +

p∑
j=1

ν∗h′j(x
∗; d) = 0.

Proof. The necessity of the primal/dual feasibility and complementary slackness condi-
tions follows from exactly the same argument as in the proof of Proposition 2.2.27. The
only difference is the implications of the inequality (2.8) being a equality. Recall that
this means x∗ is a minimizer of the function L(x , λ∗, ν∗) over the domain D. By the as-
sumption that f ′0(x∗; d), f ′1(x∗; d), . . . , f ′m(x∗; d) exist in D, we know that L′(x∗, λ∗, ν∗) also
exists in D (with L(x , λ∗, ν∗) being a function in x). The proposition follows by applying
Lemma 2.2.21.

2.3 Graphs and Laplacian Matrices

Let G = (V,E) be an undirected graph with edge weight w(e) > 0 on each edge e ∈ E.
The number of vertices and the number of edges are denoted by n := |V | and m := |E|.
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For a subset of edges F ⊆ E, the total weight of edges in F is w(F ) :=
∑

e∈F w(e). For
a subset of vertices S ⊆ V , the set of edges with one endpoint in S and one endpoint
in V − S is denoted by δ(S). For a vertex v, the set of edges incident on a vertex v is
δ(v) := δ({v}), and the weighted degree of v is deg(v) := w(δ(v)). The expansion of a set
S and expansion of a graph G are defined as

φ(S) :=
|δ(S)|
|S|

and φ(G) := min
06|S|6n

2

φ(S).

The symbol φ is usually used for graph conductance. However, we will not use graph
conductance in this thesis, thus we save φ for expansion.

The adjacency matrix A ∈ Rn×n of the graph is defined as A(u, v) = w(uv) for all
uv ∈ E, and A(u, v) = 0 otherwise. The Laplacian matrix L ∈ Rn×n of the graph is defined
as L = D − A where D ∈ Rn×n is the diagonal degree matrix with D(u, u) = deg(u) for all
u ∈ V . Similarly, the signless Laplacian matrix L+ ∈ Rn×n is defined as L+ = D + A. For
each edge e = uv ∈ E, let be := χu − χv where χu ∈ Rn is the vector with one in the u-th
entry and zero otherwise. The Laplacian matrix of G with respect to edge weight w can
also be written as

Lw =
∑
e∈E

w(e) · beb>e = BWB>,

where W = diag(w) and B ∈ RV×E is the n-by-m matrix with be being the e-th column.

Let λ1 6 λ2 6 . . . 6 λn be the eigenvalues of L with corresponding orthonormal
eigenvectors v1, v2, . . . , vn so that L =

∑n
i=1 λi · viv>i . It is well-known that the Laplacian

matrix is positive semidefinite. It is also well-known that λ1 = 0 with v1 = 1√
n
1 as the

corresponding unit eigenvector. The second smallest eigenvalue λ2 is known as algebraic
connectivity, and λ2 > 0 if and only if G is connected. The pseudoinverse of the Laplacian
matrix L of a connected graph is defined as

L† :=
n∑
i=2

1

λi
· viv>i ,

which maps every vector b orthogonal to v1 to a vector y such that Ly = b. We write L
†
2

as the square root of L†.
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The following fact is useful for eigenvalue maximization and imposing eigenvalue lower
bounds. The proof is similar to the one of Lemma 2.2.14, with an additional observation
that Lw ’s first eigenvector v1 = 1√

n
1 for any w > 0.

Lemma 2.3.1 (see, e.g., [69]). λ2(Lw ) is a concave function with respect to w for w > 0.

2.4 Electrical Flow and Effective Resistance

In this section, we introduce the notions of electric network, electrical flow and effective
resistance. An undirected graph G = (V,E) with edge weights w ∈ RE can be interpreted
as an electric network, where each edge e ∈ E is treated as a resistor with resistance
re = 1

w(e)
.

To define an electrical flow on graph G, we start with defining a unit s-t flow on an
undirected graph G = (V,E). We first fix an orientation of the edges of G arbitrarily. Let
B ∈ RV×E be the matrix defined in Section 2.3 that is consistent with this orientation,
i.e. for an edge e = uv ∈ E oriented from u to v, B(u, e) = 1, B(v, e) = −1, and zero
otherwise in the e-th column of B . A unit s-t flow f : E → R is an m-dimensional vector
that satisfies flow conservation constraints:

Bf = bst or equivalently
∑

e=uv : u∈δ+(v)

f (e)−
∑

e=uv : u∈δ−(v)

f (e) =


1 v = s

−1 v = t

0 otherwise,

where bst := χs−χt, and δ+(v) and δ−(v) are the set of outgoing and incoming neighbours
of v with respect to the fixed orientation. Note that positive f (e) indicates the flow on e
is in the same direction as the orientation of e, while negative f (e) indicates the opposite.

The unit s-t electrical flow is a unit s-t flow f that also satisfies the Ohm’s law: There
exists a potential vector ϕ ∈ RV such that for all e = uv ∈ E oriented from u to v,

f (e) = w(e) · (ϕ(u)− ϕ(v)).
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Given a potential vector ϕ, we will use the orientation where all edges are pointing from
the high potential endpoint to the low potential endpoint, so that f (e) is nonnegative for
all e ∈ E in the rest of this thesis. Notice that the constraints imposed by Ohm’s law can
be written as a linear system in f and ϕ

f = WB>ϕ, (2.9)

where W ∈ RE×E is a diagonal matrix with w(e) in the (e, e)-th entry, and B ∈ RV×E is
defined in Section 2.3 with signs of the e-th column defined according to the orientation of
edge e. Combining the flow conservation constraint and the Ohm’s law, we can check that
the potential vector ϕ ∈ RV of the unit s-t electrical flow is a solution to the linear system

BWB>ϕ = bst =⇒ Lw · ϕ = bst.

Note that if G is connected ϕ = L†wbst is a solution, and any solution is given by ϕ+c ·1
for c ∈ R. Thus, the electrical flow f satisfying (2.9) is uniquely defined. Furthermore, the
effective resistance between s and t in G can be uniquely defined as

ReffG(s, t) := ϕ(s)− ϕ(t), (2.10)

which is the potential difference between s and t when one unit of electrical flow is sent
from s to t. When s and t are disconnected in the underlying graph, we can not send
electrical flow from s to t. In this case, ReffG(s, t) is defined to be +∞. The s-t effective
resistance can be interpreted as the resistance of the whole graph G as a big resistor when
an electrical flow is sent from s to t.

We describe some notational conventions for effective resistance in this thesis. The
subscript G in ReffG(s, t) is dropped when G is clear from the context. We write Reffw (s, t)

to emphasize that the underlying graph has edge weights w . We also need to frequently
refer to the s-t effective resistance as a function of w . In this case we write

Reffst(w) := Reffw (s, t).

2.4.1 Formulas for Effective Resistance

For series and parallel electrical circuits, effective resistances are easy to compute.
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Fact 2.4.1 (resistance of series and parallel circuits). Let s, t be two designated vertices.

• If s and t are connected by a series of k edges, each with resistance r1, ..., rk, then the
s-t effective resistance is Reff(s, t) = r1 + · · ·+ rk.

• If s and t are connected by k parallel edges, each with resistance r1, ..., rk, then the
s-t effective resistance is Reff(s, t) =

(
1
r1

+ · · ·+ 1
rk

)−1.

For general graphs, one can write the effective resistance in terms of the Laplacian
matrix. When G is connected and ϕ is the potential vector satisfies the Ohm’s law,
ϕ = L†wbst + c · 1 by the discussion above the definition (2.10). Thus, we can write

Reffw (s, t) = ϕ(s)− ϕ(t) = b>stL
†
wbst.

In general, the above expression also applies to s-t connected graphs. Given edge
weights w ∈ RE

+, we say w is s-t connected if s and t are connected in the subgraph
spanned by those edges in the support of w , i.e. {e ∈ E | w(e) > 0}. The set of all s-t
connected edge weights can be formally defined by

Dst := {w ∈ RE
+ | w(δ(S)) > 0, for all S ⊆ V with s ∈ S and t 6∈ S}. (2.11)

Note that Dst is the intersection of some halfspaces, which is a convex set.

Then, we observe that Reffst(w) coincides with b>stL
†
wbst over those w ∈ Dst.

Fact 2.4.2. w ∈ Dst if and only if bst lives in the range of Lw , i.e. (I − LwL†w )bst = 0.
Furthermore, Reffst(w) = b>stL

†
wbst for any w ∈ Dst, and Reffst(w) = +∞ otherwise.

Proof. When w ∈ Dst, s and t are in the same connected component S ⊆ V . The matrix Lw

is in a block form with blocks corresponding to S and its complement S̄ (could be empty),
i.e. Lw =

(
LS 0
0 LS̄

)
. Let bst be also in a block form with bst =

(
bSst
0

)
where bSst ∈ RS. Then,

LwL†wbst =

(
LSL

†
S 0

0 LS̄L
†
S̄

)(
bSst
0

)
=

(
LSL

†
Sb

S
st 0

0 0

)
= bst,
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where the last equality follows as S is a connected component, the null space of LS is
spanned by 1S, and bSst is orthogonal to 1S. This also implies b>stL

†
wbst = (bSst)

>L†Sb
S
st.

Since restricting to the component S does not change effective resistance, thus we have
Reffst(w) = b>stL

†
wbst.

When w 6∈ Dst, we assume s is in a connected component S and t ∈ S̄. Clearly,
Reffst(w) = +∞ by definition. We show that bst is not in the range of Lw . Note that bst

is in the following block form bst =

(
χS
s

−χS̄t

)
, where χSs ∈ {0, 1}S is the indicator vector of

s restricted to S and χS̄t is similar. Thus

LwL†wbst =

(
LSL

†
S 0

0 LS̄L
†
S̄

)(
χS
s

−χS̄t

)
=

(
LSL

†
S
χS
s 0

0 −LS̄L
†
S̄
χS̄
t

)
6= bst,

where the last inequality follows as, 1S spans the null space of LS for connected S and χSs is
not orthogonal to 1S, which implies that LSL

†
S
χS
s 6= χS

s after the projection onto the range
of LS.

2.4.2 Thomson’s Principle and Rayleigh’s Monotonicity Principle

The effective resistance can also be characterized by the energy of a flow. The energy of
an s-t flow f is defined as

E(f ) :=
∑
e∈E

f (e)2

w(e)
=
∑
e∈E

re · f (e)2.

Thomson’s principle [84] states that the unit s-t electrical flow is the unique unit s-t flow
that minimizes the energy.

Theorem 2.4.3 (Thomson’s principle [84]). Let f ∗ be the unit electrical s-t flow in an s-t
connected graph G. Then

ReffG(s, t) = min
f
{E(f ) | f is a unit s-t flow in G} = E(f ∗).
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Proof. If there is any edge with weight w(e) = 0, the edge has resistance∞ and any energy
minimizer f sends 0 unit of flow on e (otherwise the energy is unbounded). Thus, we can
assume that w > 0 by removing all zero-weight edges without loss of generality. We rewrite
the energy minimization problem in the following form (the rescaling does not affect the
optimizer).

minimize
f ∈RE

1

2
· f > diag(w)−1f

subject to Bf = bst.

This is an optimization problem with a quadratic objective function and linear equality
constraints. The optimizer of the convex program is unique due to the strict convexity of
the objective function. By Corollary 2.2.29, a flow f is the unique optimizer if and only if
there exists ϕ ∈ RV such that

Bf = bst and ∇f

(
1

2
· f > diag(w)−1f

)
− B>ϕ = diag(w)−1f − B>ϕ = 0.

The second equality implies f (e) = w(e) · (ϕ(u)−ϕ(v)) for each edge e = uv ∈ E oriented
from u to v according to B , and the first equality guarantees f is a unit s-t flow. The
unique optimizer f satisfies Ohm’s law with respect to potential vector ϕ, and hence is
equal to the unit s-t electrical flow f ∗.

To see that the energy is equal to the effective resistance, note that the flow value on edge
e = uv in the unit s-t electrical flow satisfies f ∗(e) = w(e) · (ϕ(u)−ϕ(v)) = w(e) · b>e L†wbst
and thus

E(f ∗) =
∑
e∈E

w(e) · (b>e L†wbst)2 = b>stL
†
w

(∑
e∈E

w(e) · beb>e

)
L†wbst

= b>stL
†
wLwL†wbst = b>stL

†
wbst = ReffG(s, t),

where the second equality follows as (b>e L†wbst)2 = b>stL
†
wbeb>e L†wbst.

A corollary of Thomson’s principle is the following intuitive fact known as the Rayleigh’s
monotonicity principle.

35



Theorem 2.4.4 (Rayleigh’s monotonicity principle). The s-t effective resistance cannot
increase if the resistance of an edge is decreased.

Proof. Let w ∈ RE
+ be the original edge weights. We increase the edge weight of the e-th

entry (or equivalently decrease the resistance) to make a new vector w ′ for an arbitrary
edge e ∈ E. Let f be the unit electrical flow with respect to w . Then, it follows that

Reffw (s, t) =
∑
e∈E

f (e)2

w(e)
>
∑
e∈E

f (e)2

w ′(e)
> inf

f ′: unit s-t flow

∑
e∈E

f ′(e)2

w ′(e)
= Reffw ′(s, t),

where the first inequality follows as w ′ > w , and the last equality follows by Thomson’s
principle Theorem 2.4.3.

2.4.3 Convexity and Differentiability of Effective Resistance

We will also use the convexity of effective resistance to write convex programming relax-
ations for problems with effective resistance objective function (or constraints).

In [70], Ghosh, Boyd, and Saberi showed that s-t effective resistance is convex with
respect to the edge weights w over the domain where the support of w spans the whole
graph. We can extend the domain to RE

+ by a continuity argument. In the following, we
slightly extend the proof of [70] (or the one in Example 3.4 of [31]) without invoking the
continuity argument.

Lemma 2.4.5. The s-t effective resistance on a graph G = (V,E; w) is a convex function
with respect to the edge weights w on the domain RE

+.

Proof. For any given w ,w ′ ∈ RE
+ and λ ∈ [0, 1], if w is s-t disconnected, then the inequality

Reffst(λw + (1−λ)w ′) 6 λReffst(w) + (1−λ) Reffst(w ′) always holds, as Reffst(w) = +∞
by Fact 2.4.2. Thus, it suffices to consider the restricted domain Dst. We claim that the
following is an equivalent characterization of the domain Dst.

Dst = {w ∈ RE
+ | (I − LwL†w )bst = 0} = {w ∈ RE

+ | (I − LwL†w )bst = 0, Lw < 0}.
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The first equality follows from Fact 2.4.2. For the second equality, note that the condition
Lw < 0 is redundant given w ∈ RE

+, but it will be useful in the following characterization.

To prove Reffst(w) is convex on the domain w ∈ Dst, according to Lemma 2.2.7, it
suffices to show that the following epigraph of the s-t effective resistance is convex:

epi(Reffst) = {(w , u) ∈ Rm+1 | w ∈ Dst, b>stL†wbst 6 u}

= {(w , u) ∈ Rm+1 | w ∈ RE
+, (I − LwL†w )bst = 0, Lw < 0, b>stL

†
wbst 6 u},

where the second equality follows by the equivalent characterization of Dst. By the Schur
complement characterization of semidefiniteness in Lemma 2.1.7, it follows that

epi(Reffst) =

{
(w , u) ∈ Rm+1

∣∣∣∣w ∈ RE
+,

(
Lw bst
b>st u

)
< 0

}
.

For any (w1, u1), (w2, u2) ∈ epi(Reffst) and λ ∈ [0, 1], we can check that the convex combi-
nation (w , u) = λ(w1, u1) + (1− λ)(w2, u2) satisfies

w = λw1 + (1− λ)w2 > 0 and

(
Lw bst
b>st u

)
= λ

(
Lw1 bst
b>st u1

)
+ (1− λ)

(
Lw2 bst
b>st u2

)
< 0,

where both inequalities follow by the fact that (w1, u1), (w2, u2) ∈ epi(Reffst).

Finally, we consider the differentiability of Reffst(w). It is not difficult to verify that
if w > 0, then Reffst(w) is differentiable at w , We also have discussed that Reffst(w) has
finite value when w ∈ Dst. Can we say Reffst(w) is differentiable over the whole domain
Dst? The answer is no, because there are many points w ∈ RE

+ contain zero entries and
lay on the boundary of Dst. Reffst(w) is undefined when w contains negative edge weights,
thus Reffst(w) is differentiable at w if and only if w ∈ RE

++. Nevertheless, we still can show
that partial derivatives of Reffst(w) exist at w ∈ Dst with respect to those coordinates
with w(e) > 0.

Lemma 2.4.6. Given any w ∈ Dst, if w(e) > 0, then ∂e Reffst(w) exists in Dst and
∂e Reffst(w) = −(b>stL

†
wbe)2.

37



Proof. By the definition of directional derivatives in Section 2.2.1,

∂e Reffst(w) = lim
λ→0

Reffst(w + λχe)− Reffst(w)

λ
.

We consider the term Reffst(w + λχe). For small enough λ (could be negative), w + λχe is
still s-t connected. By Fact 2.4.2,

Reffst(w) = b>stL
†
wbst and Reffst(w + λχe) = b>stL

†
w+λχe

bst = b>st
(
Lw + λbeb>e

)†
bst.

Since w(e) > 0, be lives in the range of Lw. For small enough λ, 1 + λb>e L†wbe 6= 0. Thus,
by Corollary 2.1.14, for small enough λ we have(

Lw + λbeb>e
)†

= L†w −
λ

1 + λb>e L†wbe
· L†wbeb>e L†w ,

which implies

Reffst(w + λχe) = Reffst(w)− λ(b>stL
†
wbe)2

1 + λb>e L†wbe
.

Thus,

∂e Reffst(w) = lim
λ→0
− (b>stL

†
wbe)2

1 + λb>e L†wbe
= −(b>stL

†
wbe)2.

2.5 Spectral Sparsification

In the study of combinatorial graph algorithms, a natural yet powerful idea is to use a
sparse object as the representative of the input graph to help solve the original problem
more efficiently [57]. Various notions of sparse representatives have been proposed and
studied in the literature. Among them, the cut-sparsifier that approximately preserves
values of all cuts [82, 83] is one of the most well-studied notions. In an influential work,
Benczúr and Karger [23] showed that every graph admits a cut-sparsifier of size O(n logn

ε2
)

that preserves values of all cuts up to a (1 ± ε) factor, and furthermore the cut-sparsifier
can be constructed in nearly linear time. Later, Spielman and Teng [133] introduced a
more general notion, spectral sparsification, which is defined as follows.
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Definition 2.5.1 (Spectral Sparsifier). Given an undirected graph G = (V,EG; w) with
edge weights w ∈ REG

+ , an undirected graph H = (V,EH ; w̃) on the same vertex set V with
edge weights w̃ ∈ REH

+ is a (1 + ε)-spectral sparsifier of G for some ε > 0 if the following
holds

(1 + ε)−1 · x>LGx 6 x>LHx 6 (1 + ε) · x>LGx , for all x ∈ RV ,

where LG and LH are Laplacian matrices of the edge-weighted graph G and H.

When we restrict the constraints to those vectors x ∈ {0, 1}V , then the above definition
is exactly the same as that for cut sparsification. This shows spectral sparsification is a
strictly stronger notion than cut sparsification.

Spielman and Teng [133] gave the first algorithm to construct a (1+ε)-spectral sparsifier
of size O(n logc n

ε2
) (for some large constant c) in nearly linear time, and the constructed

spectral sparsifier is a reweighted subgraph of the input. Spectral sparsification was a
key ingredient in Spielman and Teng’s first nearly linear time Laplacian linear system
solver [134]. Since then, spectral sparsifers have found many applications in designing fast
algorithms, e.g., faster solver for Laplacian linear systems and generalizations [89, 88, 90],
computing maximum flow [44, 109, 120], fast random spanning trees sampling [115, 54, 128],
measuring edge centrality [103], etc.

Besides numerous applications, spectral sparsification has became an interesting re-
search topic in itself. The techniques that developed to attack spectral sparsification led
to a solution to the famous Kadison-Singer problem [110, 111]. In the remaining of this
section, we briefly survey several important developments about constructing spectral spar-
sifiers.

We start with reducing the problem into a nicer form by a preprocessing step. Let LG =∑
e∈EG w(e) · beb>e be the Laplacian matrix of the input graph. Without loss of generality,

we assume the graph G is connected, so that LG is of rank n−1 with a null space spanned
by the all-one vector 1 . Let LG =

∑n
i=2 λi ·uiu>i = UΛU> be the eigendecomposition of LG,

where Λ ∈ R(n−1)×(n−1) is a diagonal matrix with Λ(i, i) = λi, and U ∈ Rn×(n−1) contains
the i-th eigenvecotr ui at the i-th column. We consider the following linear transformation

ve := U>L
†
2
Gbe ∈ Rn−1 for all e ∈ EG. (2.12)
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Note that the squared vector length ‖ve‖2
2 = b>e L†Gbe is exactly the effective resistance

between the two endpoints of edge e in the input graph, and∑
e∈EG

w(e) · vev>e = U>L
†
2
G

( ∑
e∈EG

w(e) · beb>e
)

L
†
2
GU = U>L

†
2
GLGL

†
2
GU = U>U = In−1,

as the columns of U are orthonormal. Thus, we have transformed the construction of
spectral sparsifier into the following nicer form, where we only need to ensure that the
maximum and minimum eigenvalue of the solution are close to one. After solving the
following problem, we can easily turn the solution into a solution of the original problem
by reversing the preprocessing step.

Problem 2.5.2. Suppose we are given vectors v1, . . . , vm ∈ Rn and weights w ∈ Rm
+ such

that
∑m

i=1 w(i) · viv>i = In. For some given ε > 0, find a reweighting w̃ ∈ Rm
+ such that

(1 + ε)−1In 4
m∑
i=1

w̃(i) · viv>i 4 (1 + ε)In and |{i ∈ [m] : w̃(i) 6= 0}| is small.

2.5.1 Effective Resistance Sampling

Spielman and Srivastava proposed a randomized algorithm in [132] to construct a (1 + ε)-
spectral sparsifier of sizeO(n logn

ε2
) in nearly linear time, which matches and extends Benczúr

and Karger’s result for cut sparsification [23]. The algorithm is a very simple and elegant
sampling algorithm.

Effective Resistance Sampling

1. Initialization: Z0 ← 0 and τ ← O(n logn
ε2

).

2. For t← 1 to τ do

(a) Independently sample a vector it = i ∈ [m] with probability

P [it = i] ∝ w(i) · ‖vi‖2
2 .

(b) Let ∆t := n
τ‖vit‖

2
2
vitv>it , and update Zt ← Zt−1 + ∆t.
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The term w(i) · ‖vi‖2
2 in the sampling probability is known as the leverage score of

vector vi. In the graph setting, it is the effective resistance of an edge when the input
graph is unweighted. The size of each update ∆t is bounded by

∥∥ n
τ‖vit‖

2
2
· vitv>it

∥∥
op = n

τ
, and

the expected update of each iteration is E
[

n
τ‖vit‖

2
2
· vitv>it

]
= 1

τ
Id, where we need to use the

fact that
∑m

i=1 w(i) · ‖vi‖2
2 = n. By matrix concentration inequalities (e.g., matrix cher-

noff bound Theorem 3.4.1, matrix Bernstein’s inequality Theorem 3.4.3, see Section 3.4 for
more details), after τ = O(n logn

ε2
) iterations the resulting subgraph is a (1+ε)-spectral spar-

sifier with high probability. Note that with the independent effective resistance sampling
approach, the log n factor cannot be improved, since Ω(n log n) iterations are required to
guarantee that no isolated vertex exists when the input is an unweighted complete graph.

2.5.2 Barrier Function Methods

Batson, Spielman, and Srivastava designed a new deterministic algorithm to construct
a (1 + ε)-spectral sparsifier of size O( n

ε2
) in polynomial time [21]. We will refer to the

algorithm by BSS in this thesis. This result is quite remarkable in several aspects. It
beats the independent random sampling, and the dependence of ε in the bound O( n

ε2
) is

tight up to a constant factor. Furthermore, the barrier function idea led to a solution to
Kadison-Singer problem, which we will explain more in Section 2.6.

To illustrate the idea of the BSS algorithm, we first consider a naive plan as follows.
Through an iterative process, we maintain an upper barrier ut and a lower barrier lt
to ensure the whole spectrum of the current solution is located within the range of the
barriers [lt, ut]. In each iteration, we select a vector vit from the input and add an update
∆t = ct ·vitv>it with appropriately chosen reweighting ct > 0. Then, we increase a nontrivial
amount in both barriers such that the gap between the barriers ut − lt is approximately
preserved and the spectrum of the new solution is still contained in [lt, ut]. After certain
number of iterations, when lt is large enough (in the order of Ω(ut−lt

ε
)), the condition

number of the solution is bounded by ut
lt

= 1 + ut−lt
lt

= 1 +O(ε).

However, as the maximum and the minimum eigenvalue are very sensitive to the solution
update, it is not easy to control how much we should shift the barriers algorithmically.
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Thus, instead of controlling the maximum and the minimum eigenvalue directly, Batson,
Spielman, and Srivastava introduced two barrier potential functions which are more robust
to the solution updates

Φu(Z ) = tr
(
(uI − Z )−1

)
and Φl(Z ) = tr

(
(Z − lI )−1

)
, (2.13)

where Z is the current solution. Intuitively, when lI ≺ Z ≺ uI , the barrier potential
functions measure how far the eigenvalues of Z are from the barriers. In particular, if any
of the eigenvalues of Z approaches a barrier, the corresponding potential function will blow
up dramatically.

Thus, the key task of the algorithm is to add an appropriately reweighted vector v
such that Φut+δu(Zt + vv>) 6 Φut(Zt) and Φlt+δl(Zt + vv>) 6 Φlt(Zt) (with significant
shifts of δu, δl where δu ≈ δl). With an averaging argument, they showed that there always
exists a vector from the input that can be reweighted to satisfy all the desired properties.
With appropriately chosen parameters, it only takes O( n

ε2
) iterations to return a (1 + ε)-

spectral sparsifier. Moreover, they showed that this is the optimal dependence in ε by
using Ramanujan graph as a tight example.

2.5.3 Regret Minimization Reformulation

Allen-Zhu, Liao, and Orecchia [7] proposed an algorithm for spectral sparsification based on
a general regret minimization framework (which is well-known to the online optimization
community). There are several advantages of their algorithm. For example, there is no
need to explicitly maintain the shift of the barriers, and the algorithm analysis can be done
in a more principled way within a general mirror descent framework.

They recovered the optimal approximation guarantee of BSS using the same poten-
tial function. By introducing a generalized potential function in the regret minimization
framework, they managed to improve the running time to almost-quadratic time (a naive
implementation of the BSS algorithm takes Ω(n4) time).

As a key tool in this thesis, we will have a comprehensive review of the regret mini-
mization framework in Chapter 4.
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2.5.4 Potential Function Guided Adaptive Sampling

The barrier potential functions in the BSS algorithm provide a nice way to control the
eigenvalues of a solution, which is the key ingredient in achieving the optimal approximation
guarantee. However, the choice of the parameters looks a bit mysterious. In particular,
the existence of a good vector and the appropriate reweighting in each iteration in the BSS
algorithm is guaranteed by an averaging argument. The relation between the reweighting
and the shift of the barriers is not explicit. Also, we may get the impression that there are
very few good vectors and we need to pick a good vector very carefully in each iteration.

To design a fast algorithm for spectral sparsification, Lee and Sun [101] combined the
random sampling approach in [132] with the potential function approach in [21]. The
algorithm provides an explicit description of how we shall reweight the edges. Moreover,
their algorithm shows that we have much more flexibility in choosing vectors and assigning
reweightings in each iteration. In particular, they proved that choosing a random vector
following an approximate probability distribution would work, and there is no need to
maintain that the potential value is non-increasing.

Lee and Sun first combined the two potential functions in the BSS algorithm into a
single one

Φu,l(Z ) = tr
(
(uIn − Z )−1

)
+ tr

(
(Z − lIn)−1

)
,

and they introduced a sampling procedure based on this single potential function.

Potential Function Guided Adaptive Sampling

1. Initialization: Z1 ← 0, l1 ← −d
ε
, u1 ← d

ε
, and τ ← O( n

ε2
).

2. For t← 1 to τ do

(a) Let Wt ← Φut,lt(Zt) be the current potential value.

(b) Sample a vector it = i ∈ [m] with probability

pi =
w(i)

Wt

·
(
〈viv>i , (utIn − Zt)−1〉+ 〈viv>i , (Zt − ltIn)−1〉

)
.
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(c) Let ∆t ← w(it)
pit

vitv>it , and update Zt+1 ← Zt + ∆t.

(d) ut+1 ← ut + 1
1−Wt

and lt+1 ← lt + 1
1+Wt

.

We make some brief remarks about the algorithm description. First, the expected
change of solution in each iteration is E[∆t] =

∑m
i=1 w(i) ·viv>i = In. Second, the two terms

〈viv>i , (utIn − Zt)−1〉 and 〈viv>i , (Zt − ltIn)−1〉 in the sampling probability can be treated as
“relative effective resistance”. Finally, the above description of the algorithm is not exactly
the same as the one in [101], however it captures all the essential elements.

When the potential value Wt is not too large, the change of the potential value (before
shifting the barriers) is bounded by

Φut,lt(Zt + ∆t) 6 Φut,lt(Zt) +
〈∆t, (utIn − Zt)−2〉

1−Wt

− 〈∆t, (Zt − ltIn)−2〉
1 +Wt

.

Hence, given the current solution Zt, the expected change of the potential value can be
bounded by

E[Φut,lt(Zt + ∆t)]− Φut,lt(Zt) 6
tr((utIn − Zt)−2)

1−Wt

− tr((Zt − ltIn)−2)

1 +Wt

= − 1

1−Wt

· ∂
∂ut

Φut,lt(Zt)−
1

1 +Wt

· ∂
∂lt

Φut,lt(Zt).

Notice that if we increase ut by 1
1−Wt

and lt by 1
1+Wt

, then the potential value approximately
increases by

1

1−Wt

· ∂
∂ut

Φut,lt(Zt) +
1

1 +Wt

· ∂
∂lt

Φut,lt(Zt).

This means that we can shift the upper barrier ut+1 ≈ ut + 1
1−Wt

and the lower barrier
lt+1 ≈ lt + 1

1+Wt
to maintain that the potential value is not increased in expectation.

Therefore, if we start with small enough potential value, then we can maintain that the
potential value is small and the gap between ut − lt is approximately preserved. If we
select a vector deterministically to preserve small potential value in each iteration, then a
similar argument as in BSS would go through and the algorithm will return a linear-sized
sparsifier.
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One of the main advantages of this randomized approach is that we can do batch update
for the sampling probabilities. Together with a different but related potential function
suggested in [7], Lee and Sun managed to improve the running time of the algorithm to
almost-linear time. In a followup work, Lee and Sun [100] finally improved the construction
time of spectral sparsifier to nearly-linear time. The key ingredient of the followup work
is a completely new potential function, and a SDP-based one-sided sparsifier construction.
We are not going to discuss more technical details of this work, as it is beyond our focus
in this thesis.

Going back to the potential based adaptive sampling process, the potential value Wt

is a random variable. Thus, analyzing the final value of uτ and lτ requires more work.
However, with a more careful analysis, one can show that uτ and lτ are highly concentrated
around their expectations, and the expectations give the desired condition number. We will
discuss more details of the analysis of adaptive sampling based algorithm in Section 4.3, and
provide an algorithm unifying the regret minimization algorithms in [7] and the adaptive
sampling algorithm in [101].

Finally, we remark that our iterative randomized rounding algorithm for spectral round-
ing was inspired by the adaptive sampling idea in [101].

2.6 Interlacing Polynomials

In Chapter 5, we will apply a result from discrepancy theory [91] to the two-sided spectral
rounding problem. The result in [91] is based on the method of interlacing polynomials.
For completeness, we review some background of interlacing polynomials in this section.

To motivate the techniques of interlacing polynomials for the problems in this thesis,
we consider the connections between spectral sparsification and Weaver’s conjecture.

Conjecture 2.6.1 (Weaver’s Conjecture KS2 [141]). Given vectors u1, . . . , um ∈ Rd such
that

∑m
i=1 uiu>i = Id and ‖ui‖2

2 6 ε for some ε ∈ (0, 1) for all i ∈ [m], there exists a subset
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S ⊆ [m] and a constant ε′ > 0 (independent of m and d) such that(1

2
− ε′

)
· Id 4

∑
i∈S

uiu>i 4
(1

2
+ ε′

)
· Id.

Comparing with spectral sparsification (Problem 2.5.2), Weaver’s conjecture considers
a setting where we are not allowed to reweight the vectors, i.e. the output vectors are
unreweighted. Another difference is the short vector assumption ‖ui‖2

2 6 ε for all i ∈ [m].
To see the assumption is necessary, suppose there is a vector with ‖ui‖2

2 > 1− δ, then the
partition contains i would have maximum eigenvalue > 1− δ and the other partition that
does not contain i would have minimum eigenvalue < δ.

Weaver [141] showed that the above discrepancy theoretical statement is equivalent to
the Kadison-Singer problem, a famous problem in functional analysis with its origin from
quantum physics [81]. In 2013, Marcus, Spielman and Srivastava [111] resolved the problem
affirmatively using interlacing polynomial techniques and a barrier function argument.

2.6.1 Solution to Kadison-Singer Problem

To solve the Kadison-Singer problem, Marcus, Spielman and Srivastava proved a proba-
bilistic statement summarized in the following theorem.

Theorem 2.6.2 (Theorem 1.4 in [111]). Let v1, . . . , vm ∈ Rd be independent random vectors
with finite support such that

E

[
m∑
i=1

viv>i

]
= Id and E

[
‖vi‖2

2

]
6 ε for all i ∈ [m],

then

P

∥∥∥∥∥
m∑
i=1

viv>i

∥∥∥∥∥
op

6 (1 +
√
ε)2

 > 0.

Weaver’s conjecture can be derived from Theorem 2.6.2 using the following reduction.
Let u1, . . . , um ∈ Rd be the input vectors satisfying the conditions in Conjecture 2.6.1.
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We define independent random vectors v1, . . . , vm ∈ R2d such that vi is chosen uniformly
at random from the set {

(√
2ui
0

)
,
(

0√
2ui

)
}. We can verify that E[

∑m
i=1 viv>i ] = I2d and

‖ui‖2
2 6 2ε for all i ∈ [m]. Thus, Theorem 2.6.2 implies that there exists an outcome of

vi’s, or a subset S ⊆ [m], such that∥∥∥∥∥
m∑
i=1

viv>i

∥∥∥∥∥
op

=

∥∥∥∥∥
(

2
∑

i∈S uiu>i
2
∑

j 6∈S uju>j

)∥∥∥∥∥
op

6 (1 +
√

2ε)2.

Since
∑m

i=1 uiu>i = Id, this implies (1
2
−O(

√
ε)) · Id 4

∑
i∈S uiu>i 4 (1

2
+O(

√
ε)) · Id, which

confirms Conjecture 2.6.1.

In the following, without giving rigorous proofs, we describe some key ideas and tech-
niques used in proving Theorem 2.6.2. To establish Theorem 2.6.2, Marcus, Spielman
and Srivastava considered the expected characteristic polynomial of the random matrix∑m

i=1 viv>i , i.e. E
[
χ
[∑m

i=1 viv>i

]
(x)

]
, where χ[M](x) := det(xId −M) is the characteristic

polynomial of matrix M.

The plan of proving Theorem 2.6.2 in [111] consists of two steps:

• Step 1: Show that there exists an outcome of vi’s with the largest root of the charac-
teristic polynomial (i.e. λmax(

∑m
i=1 viv>i )) upper bounded by the largest root of the

expected characteristic polynomial

max-root

(
det

(
x · Id −

m∑
i=1

viv>i

))
6 max-root

(
E
[
χ
[ m∑
i=1

viv>i

]
(x)

])
.

• Step 2: Bound the largest root of the expected characteristic polynomial by

max-root

(
E
[
χ
[ m∑
i=1

viv>i

]
(x)

])
6 (1 +

√
ε)2.

Interlacing Argument for Step 1

Marcus, Spielman and Srivastava [111] gave an equivalent way to describe the expected
characteristic polynomial, which is crucial in both Step 1 and Step 2.
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Theorem 2.6.3 (Theorem 4.1 in [111]). Let v1, . . . , vm ∈ Rd be independent random vectors
with finite support, and Ai = E[viv>i ] for i = 1, . . . ,m. Then, it holds that

E
[
χ
[ m∑
i=1

viv>i

]
(x)

]
= µ[A1, . . . ,Am](x),

where

µ[A1, . . . ,Am](x) :=

( m∏
i=1

(
1− ∂xi

))
det

(
xI +

m∑
i=1

xiAi

)∣∣∣∣
x1=0,...,xm=0

is referred as the mixed characteristic polynomial of A1, . . . ,Am.

To get some intuition about the theorem, we consider a simpler setting, where there is
a deterministic invertible matrix B and a random vector v such that E[vv>] = A. It holds
that

E
[

det(B − vv>)
]

= E
[

det(B)
(

1− tr
(
B−1vv>

))]
= det(B)

(
1− tr

(
B−1A

))
,

where we used Lemma 2.1.11 for the first equality, and the last equality follows by linearity
of expectation and trace. Then, we consider a univariate polynomial in x,

det(B + xA) = det(B) det(I + xB−1A) = det(B) ·
d∏
i=1

(1 + xλi),

where λ1, . . . , λd are the eigenvalues of B−1A. We apply the operator (1− ∂x) to the above
polynomial, and then set x = 0, it follows that

(1− ∂x) det(B + xA) |x=0= det(B)

(
1−

d∑
i=1

λi

)
= det(B)

(
1− tr

(
B−1A

))
.

Thus, we have established that, for invertible B , it holds that

E
[

det(B − vv>)
]

= (1− ∂x) det(B + xE[vv>]) |x=0 .

The key observation here is that, when A is rank-one, det(B +xA) is a affine-linear function
in x. By a continuity argument, we can show the conclusion still holds for singular B . The-
orem 2.6.3 follows by applying this argument repeatedly together with the independence
of vi’s. The following is a simple observation based on a similar argument.
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Lemma 2.6.4. Let Ai = E[viv>i ] for all i ∈ [m]. The mixed characteristic polynomial
µ[A1,A2, . . . ,Am](x) is a convex combination of {µ[w1w>1 ,A2, . . .Am](x)}w1, where w1 ∈
support(v1).

The mixed characteristic polynomial characterization is important as it connects the
expected characteristic polynomial with a key notion called stable polynomials.

Definition 2.6.5 ((Real) Stable Polynomials). A multivariate polynomial p(x1, . . . , xm) is
stable if p(x1, . . . , xm) has no root in the region {(x1, . . . , xm) : Im(zi) > 0 for all i ∈ [m]}.
p(x1, . . . , xm) is real stable if p is stable and all the coefficients of p are real.

The definition directly implies a univariate polynomial is real stable if and only if it is
real-rooted. The following is an important example of real stable polynomial.

Lemma 2.6.6 (Proposition 2.4 in [26]). The polynomial p(x1, . . . , xm) = det(
∑m

i=1 xiAi)

is real stable for A1, . . . ,Am < 0.

Many operations can preserve real stability. Here are two related examples.

Lemma 2.6.7 (see, e.g., [139]). Let p(x1, . . . , xm) be a real stable polynomial with m vari-
ables.

• (Restrictions): For any a ∈ R, p(a, x2, . . . , xm) is a real stable polynomial with m−1

variables.

• (Differentiation): For any t ∈ R, (1 + t∂x1)p(x1, . . . , xm) is a real stable polynomial
with m variables.

Using the above facts, the mixed characteristic polynomial µ[A1, . . . ,Am](x) is real
stable (or real-rooted) for positive semidefinite matrices A1, . . . ,Am. Note that the state-
ment works for any choices of PSD matrices A1, . . . ,Am. Therefore, fixing the outcome
of v1, . . . , vk being w1, . . . ,wk for some k ∈ [m], the mixed characteristic polynomial
µ[w1w>1 , . . . ,wkw>k ,Ak+1, . . . ,Am](x) is also real-rooted. Together with Lemma 2.6.4, the
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real-rooted polynomial µ[A1, . . . ,Am](x) is a convex combination of real-rooted polynomi-
als {µ[w1w>1 ,A2, . . . ,Am](x)}w1 , where w1’s come from the support of v1. Therefore, the
following lemma implies that there exists an outcome of v1, say w , such that the largest
root of µ[ww>,A2, . . . ,Am](x) is upper bounded by µ[A1, . . . ,Am](x).

Lemma 2.6.8 (see, e.g., [61, 49, 45]). Let p1(x), . . . , pk(x) be univariate real-rooted poly-
nomials of the same degree with positive leading coefficients. For λ1, . . . , λk > 0 and∑k

i=1 λi = 1, if the convex combination p =
∑k

i=1 λipi is also real-rooted, then there exists
an i ∈ [k] such that the largest root of pi is at most the largest root of p.

Apply the same argument inductively, we can show that there exists outcome vi’s
such that the largest root of µ[v1v>1 , . . . , vmv>m](x) = det(xI −

∑m
i=1 viv>i ) is at most the

largest root of µ[A1, . . . ,Am](x). This finishes the high level description of the proof of
Step 1. Marcus, Spielman and Srivastava introduced a new notion “interlacing family of
polynomials” to formally prove Step 1, see [111] for more details. Notice that Step 1 is not
constructive, as we don’t know how to evaluate the largest root of a mixed characteristic
polynomial efficiently in general. In each level, we can only guarantee that there exists a
polynomial in the next level having a smaller root, but cannot efficiently identify it.

Multivariate Barrier Argument for Step 2

Marcus, Spielman and Srivastava [111] generalized the barrier potential function argument
in [21] to bound the largest root of the mixed characteristic polynomial µ[A1, . . . ,Am](x).

We start with defining a sequence of polynomials with m+1 variables x, x1, . . . , xm.

Pk(x, x1, . . . , xm) :=

( k∏
i=1

(
1− ∂xi

))
det

(
xI +

m∑
i=1

xiAi

)
, for all k = 0, 1, . . . ,m.

Note that Pm(x, 0, . . . , 0) is exactly the mixed characteristic polynomial µ[A1, . . . ,Am](x).

The plan is to inductively prove that some zk = (zk0 , z
k
1 , . . . , z

k
m) ∈ Rm+1 is above

the roots of Pk(x, x1, . . . , xm), i.e. Pk(z) > 0 for any z > zk. We denote the set of all
points above the roots of p by Abp. The final goal is to prove that zm = (z∗, 0, . . . , 0)
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is above the roots of Pm(x, x1, . . . , xm), which is enough to show the largest root of the
µ[A1, . . . ,Am](x) is upper bounded by z∗. We remark that this plan is slightly different
from the original presentation in [111]. We follow the presentation in [91] in order to make
the later comparison more clear.

The candidate choice of zk is

zk = (t+ δ, 0, . . . , 0︸ ︷︷ ︸
k zeros

,−δ, . . . ,−δ︸ ︷︷ ︸
(m−k) of −δ’s

) for some t > 0 and δ > 0.

For the base case, it is easy to verify that for any y = (y, y1, . . . , ym) > 0,

P0(z0 + y) = det

(
(t+ δ + y)I +

m∑
i=1

(yi − δ)Ai
)

= det

( m∑
i=1

(t+ y + yi)Ai

)
> det(tI ) > 0,

where we used
∑m

i=1 Ai =
∑m

i=1 E[viv>i ] = I and all A1, . . . ,Am < 0. Thus, the base case
holds. To proceed by induction, we need to quantify the impact of the operator (1− ∂xk)
on the upper barrier zk, i.e. how much do we need to shift the upper barrier. This was
done by introducing a notion of multivariate barrier function. Let p(x1, . . . , xm) be a real
stable polynomial, and z ∈ Abp. Define the barrier function of p at the direction i at z as

Φi
p(z) := ∂xi log p(z) =

∂xip(z)

p(z)
. (2.14)

The key property of this multivariate barrier function (see [111] for a proof) is that, when
the polynomial p is real stable and z ∈ Abp, then the univariate function

Φi
p(z + tej) : t→ R is non-negative, non-increasing, and convex for t > 0.

Let’s consider a simple example to get some intuition. Let A ∈ Sd be a symmetric
matrix with eigenvalues λ1 > . . . > λd, and let p(x) = det(xI − A) =

∏d
i=1(x− λi) be the

univariate characteristic polynomial of A. Then, the barrier function Φp(x) =
∑d

i=1
1

x−λi
is exactly the barrier potential function used in [21]. This function is non-negative, non-
increasing and convex for x > λ1 the largest eigenvalue of A. In particular, the value of
the barrier function blows up when x is approaching the boundary of Abp. This intuition
carries over to the multivariate barrier function. If we can keep the value of Φi

p(z) small,
then z is far away from the boundary of Abp in the i-th direction, we have more flexibility
to modify the polynomial p.
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Lemma 2.6.9 (Lemma 5.9 and 5.10 in [111]). Suppose p(x1, . . . , xm) is real stable, z ∈
Abp, and δ > 0 satisfies Φj

p(z) 6 1− δ−1 for some j ∈ [m]. Then, for all i ∈ [m], it holds
that Φi

p−∂xj p
(z + δej) 6 Φi

p(z). Furthermore, z + δej is above the roots of (1− ∂xj)p.

The above lemma in [111] says that, if the barrier function of p at the direction j

at z is small enough (measured in terms of δ), i.e. z is far away from the boundary of
Abp in the j-th direction, then moving the upper barrier z by δ in the j-th direction
suffices to maintain a valid upper barrier and also to guarantee the barrier functions of
(1 − ∂xj)p are not increased in all directions. The proof of this lemma crucially relies on
the monotonicity and convexity of the multivariate barrier function, which are guaranteed
by the real stability of polynomials P0, . . . , Pm.

Thus, it remains to set the parameters t and δ such that t + δ is as small as possible
and the induction proof based on Lemma 2.6.9 can go through. By setting t = ε +

√
ε

and δ = 1 +
√
ε, we can make sure that Φi

P0
(z0) 6 1− δ−1 for all i ∈ [m]. Thus, applying

Lemma 2.6.9 repeatedly, we can finally conclude that t+ δ = (1 +
√
ε)2 is larger than any

root of the mixed characteristic polynomial µ[A1, . . . ,Am](x), and establish Step 2.

2.6.2 Kyng, Luh and Song’s Extension

Kyng, Luh and Song proved the following theorem in [91].

Theorem 2.6.10 (Theorem 1.4 in [91]). Let v1, ..., vm ∈ Rd, and ξ1, ..., ξm be independent
random scalar variables with finite support. There exists a choice of outcomes ε1, ..., εm in
the support of ξ1, ..., ξm such that∥∥∥∥∥

m∑
i=1

E [ξi] · viv>i −
m∑
i=1

εi · viv>i

∥∥∥∥∥
op

6 4

∥∥∥∥∥
m∑
i=1

Var[ξi](viv>i )2

∥∥∥∥∥
1
2

op

.

The above theorem does not directly generalize Theorem 2.6.2 since the rank-one ran-
dom matrices involved in Theorem 2.6.10 always have a rank-one expectation, while the
rank-one random matrices can have arbitrary PSD expectation in Theorem 2.6.2. However,
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the above theorem is sufficient to prove Weaver’s Conjecture. Let v1, . . . , vm ∈ Rd satisfy
the conditions in Conjecture 2.6.1, i.e.

∑m
i=1 viv>i = I and ‖vi‖2

2 6 ε. Let ξi be independent
uniform random variable over {±1} for all i ∈ [m]. Then, Theorem 2.6.10 implies there
exists εi ∈ {±1} for all i ∈ [m] such that∥∥∥∥∥

m∑
i=1

εi · viv>i

∥∥∥∥∥
op

6 4

∥∥∥∥∥
m∑
i=1

Var[ξi](viv>i )2

∥∥∥∥∥
1/2

op

6 4

∥∥∥∥∥max
i∈[m]
‖vi‖2

2 ·
m∑
i=1

Var[ξi]viv>i

∥∥∥∥∥
1/2

op

6 4
√
ε,

where the last inequality follows as Var[ξi] = 1, viv>i 6 εI and
∑m

i=1 viv>i = I . This
further implies the existence of the partition required by Conjecture 2.6.1, with slightly
worse constant than [111].

While Theorem 2.6.2 requires a normalized expectation Id, Theorem 2.6.10 allows the
sum of rank-one random matrices to have expectations in arbitrary forms. This gives us
some more flexibility in applications, e.g., the two-sided spectral rounding in Chapter 5.
Theorem 2.6.10 also allows us to have a refined control of the deviation from the expectation
by incorporating individual Var[ξi] and ‖vi‖2

2 into the upper bound.

In the following, we denote σ2 =
∥∥∑m

i=1 Var[ξi](viv>i )2
∥∥

op
, and µi := E[ξi] and τi :=√

Var[ξi] for all i ∈ [m].

To prove Theorem 2.6.10, Kyng, Luh and Song followed a similar two-step framework as
in [110, 111] with several new ideas. The first challenge is that the framework in [110, 111]
cannot deal with the largest and smallest eigenvalues simultaneously. A simple and nice
idea in [91] to overcome this difficulty is, instead of reasoning the characteristic polynomial
of
∑m

i=1(ξi − µi)viv>i , they reason about the polynomial

det

(
x2I−

( m∑
i=1

(ξi−µi)viv>i
)2)

= det

(
xI−

m∑
i=1

(ξi−µi)viv>i
)
·det

(
xI +

m∑
i=1

(ξi−µi)viv>i
)
,

where the largest root is exactly the operator norm of
∑m

i=1(ξi−µi)viv>i . The expectation
of the above polynomial has the following form.

Proposition 2.6.11 (Proposition 3.3 in [91]). Let v1, . . . , vm ∈ Rd, let ξi be independent
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random variable with mean µi and variance τ 2
i , then

E

[
det

(
x2I −

( m∑
i=1

(ξi − µi)viv>i
)2)]

=

( m∏
i=1

(
1− 1

2
∂2
xi

))
det

(
xI +

m∑
i=1

xiτiviv>i

)2∣∣∣∣
x1=···=xm=0

. (2.15)

A key observation here is that (1 − ∂2
x) = (1 + ∂x)(1 − ∂x) is also a real stability

preserving operation. Thus, the expected polynomial in (2.15) is real stable. With similar
interlacing argument in Step 1 of the proof for Theorem 2.6.2, there exists an outcome εi
in the support of ξi for all i ∈ [m] such that

∥∥∑m
i=1(εi − µi)viv>i

∥∥
op is at most the largest

root of (2.15).

To upper bound the largest root of (2.15), again we define some intermediate polyno-
mials with m+1 variables x, x1, . . . , xm.

Pk(x, x1, . . . , xm) :=

( k∏
i=1

(
1− 1

2
∂2
xi

))
det

(
xI +

m∑
i=1

xiτiviv>i

)2

, for all i ∈ [m].

The goal is to show, for all k = 0, . . . ,m,

zk = (4σ, 0, . . . , 0︸ ︷︷ ︸
k zeros

,−δk+1, . . . ,−δm) (2.16)

is above the roots of Pk inductively, where δi = 2τi
σ
‖vi‖2

2 for all i ∈ [m]. In particular, if this
is true for k = m, then we can conclude that the largest root of (2.15) is upper bounded
by 4σ.

The induction proof works similarly as Step 2 in the proof of Theorem 2.6.2. Kyng,
Luh and Song used the same multivariate barrier functions defined in (2.14) to guide the
induction steps. The key difference is that they need to deal with the operator 1 − 1

2
∂2
xi

instead of 1− ∂xi .

This operator has been studied by Anari and Oveis Gharan [8] for another variant of
Theorem 2.6.2, where the random vectors vi’s are associated with an underlying strong
Rayleigh distribution. As observed by Anari and Oveis Gharan, informally, the effect of
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(1− ∂xi) is up shifting the barrier by 1 + Θ(δi), and the effect of (1 + ∂xi) is down shifting
the barrier by 1−Θ(δi), thus the total effect of (1− ∂2

xi
) = (1− ∂xi)(1 + ∂xi) is shifting the

barrier by at most ±Θ(δi). Note that the multivariate barrier function analysis in [111]
cannot tolerant any shift smaller than 1. This shows that the operator (1− ∂2

xi
) is crucial

to enable the small shift δi of the barriers zk in (2.16).

Using a similar analysis in [8], Kyng, Luh and Song proved an analog of Lemma 2.6.9.

Lemma 2.6.12 (Lemma 5.3 in [91]). Suppose p(x1, . . . , xm) is real stable and z ∈ Abp.
If Φj

p(z) <
√

2, then z ∈ Ab(1− 1
2
∂2
xj

)p. Further, if δ−1Φj
p(z) + 1

2
Φj
p(z)2 6 1 for some δ > 0,

then Φi
(1− 1

2
∂2
xj

)p
(z + δej) 6 Φi

p(z) for all i ∈ [m].

This lemma guarantees that a similar induction as Step 2 in the proof of Theorem 2.6.2
goes through for the choices of upper barriers zk’s in (2.16), which suffices to establish
Theorem 2.6.10.
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Chapter 3

Concentration Inequalities

In probability theory, concentration inequalities aim at analyzing the probability of a ran-
dom variable deviating from certain value (typically its expectation). In this thesis, we
crucially rely on concentration inequalities to analyze several randomized algorithms in
Chapter 4, Chapter 5, Chapter 7, and Chapter 8. In this chapter, we introduce those
concentration inequalities that will be used.

We start with an elementary yet useful inequality.

Fact (Markov’s Inequality). Let X be a nonnegative random variable. For any δ > 0,

P [X > δ] 6
E [X]

δ
.

When we take δ = c · E [X] for some c > 1, the probability of X deviating from the
expectation by a factor of c can be bounded by 1

c
.

Markov’s inequality could be tight in general. However, when X has some nice prop-
erties, we can derive stronger, even exponential, tail bounds. A generic approach to derive
an exponential tail bound is based on the following observation,

P [X > δ] = P
[
eλX > eλδ

]
6

E
[
eλX
]

eλδ
,
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for any λ > 0, where the inequality follows from Markov’s inequality. By optimizing over
λ > 0, we get a tail bound known as Chernoff inequality,

P [X > δ] 6 inf
λ>0

{
e−λδ · E

[
eλX
]}
. (3.1)

The term E
[
eλX
]
can be treated as a function in λ, which is known as moment gener-

ating function of the random variable X. Bounding the moment generating function is a
key step in deriving a good tail bound.

3.1 Sum of Independent Random Variables

One of the most well-studied and well-understood setting in concentration inequalities is
X being the sum of independent random variables, i.e. X =

∑n
i=1Xi, where X1, . . . , Xn

are independent random variables. In this setting, due to the independence, it suffices to
consider the moment generating function of each random variable Xi separately, as the
moment generating function of X can be written as

E
[
eλX
]

=
n∏
i=1

E
[
eλXi

]
. (3.2)

Different approaches in bounding E
[
eλXi

]
provide different (sometimes incomparable)

tail bounds. For example, when Xi’s are i.i.d. 0-1 random variables, we can bound E
[
eλXi

]
by

E
[
eλXi

]
= (1− E[Xi]) + E[Xi] · eλ = 1 + (eλ − 1) · E[Xi] 6 exp((eλ − 1) · E[Xi]), (3.3)

where we used 1 + p 6 ep for any p ∈ R for the last inequality. Based on the above bound,
we can derive the well-known Chernoff bound.

Theorem 3.1.1 (Chernoff Bound, see, e.g., [27]). Let X1, . . . , Xn ∈ {0, 1} be i.i.d. random
variables. Let X =

∑n
i=1 Xi and µ = E[X], then for any δ > 0,

P [X > (1 + δ)µ] 6
( eδ

(1 + δ)1+δ

)µ
for δ > 0, and

P [X 6 (1− δ)µ] 6
( e−δ

(1− δ)1−δ

)µ
for δ ∈ [0, 1].
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Proof. By independence of Xi’s and (3.3), for any λ > 0 it holds that

E[eλX ] 6 exp

(
(eλ − 1) ·

n∑
i=1

E[Xi]

)
6 exp((eλ − 1) · µ).

By Chernoff inequality (3.1),

P [X > (1 + δ)µ] 6 inf
λ>0
{e−(1+δ)µ · E[eλX ]} 6 inf

λ>0
e−λ(1+δ)µ+(eλ−1)µ.

Optimizing λ over the function (eλ − 1 − λ(1 + δ))µ, we obtain the first bound in the
theorem by taking λ = ln(1 + δ). With a similar argument, for any δ ∈ [0, 1], we can prove
the second bound in the theorem.

In a more general setting, Hoeffding’s lemma addresses the case where each Xi is
bounded with a slightly more sophisticated argument than (3.3).

Lemma 3.1.2 (Hoeffding’s Lemma, see, e.g., [27]). Let X be a real random variable such
that a 6 X 6 b, then for any λ > 0

E
[
eλX
]
6 eλE[X]+ 1

8
·λ2(b−a)2

.

Based on Hoeffding’s Lemma, the following widely applied Hoeffding bound is just
a simple consequence, which can be proved with a similar treatment as in the proof of
Theorem 3.1.1.

Theorem 3.1.3 (Hoeffding’s Inequality, see, e.g., [27]). Let X1, . . . , Xn ∈ [0, R] be n

independent random variables. Let X =
∑n

i=1Xi, and µ = E [X], then for any δ > 0,

P [X > (1 + δ)µ] 6 e−
2δ2µ2

nR2 .

As another example, Bernstein’s inequality bounds the term E[eλXi ] using the the vari-
ance of Xi explicitly, which produces a different tail bound. Usually, Bernstein’s inequality
has the assumption |Xi| 6 R, we learnt the idea of relaxing the lower bound Xi > −R
from [137]. We provide a proof for Bernstein’s inequality in a more general setting in the
next section (see Theorem 3.2.3).
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Theorem 3.1.4 (Bernstein’s Inequality, see, e.g., [27]). Let X1, . . . , Xn be n independent
random variables such that E[Xi] = 0 and Xi 6 R for some R > 0, ∀i ∈ [n]. Let
X =

∑n
i=1Xi and σ2 =

∑n
i=1 E[X2

i ], then for any δ > 0

P [X > δ] 6 e
− δ2/2

σ2+δR/3 .

We may notice that Hoeffiding bound and Bernstein’s inequality are not comparable,
i.e. we cannot say one is strictly better than the other. When the sum of variance σ2 ≈ nR2,
then Hoeffiding bound is better. When σ2 � nR2 and t is not too large, then Bernstein’s
inequality is better.

3.2 Martingales

Many of the concentration inequalities for sum of independent random variables can be
extended to the setting where the random variables are weakly correlated. One particular
useful and well-studied setting is about martingales.

Definition 3.2.1 (Martingale). A sequence of random variables Y1, . . . , Yt, . . . is a martin-
gale with respect to a sequence of random variables Z1, . . . , Zt, . . . if for all t > 0, it holds
that

1. Yt is a function of Z1, . . . , Zt−1;

2. E [|Yt|] <∞;

3. E [Yt+1 − Yt|Z1, . . . , Zt−1] = 0.

The sequence {Xt = Yt − Yt−1}t is known as the difference sequence of martingale {Yt}t.

Note that if the difference sequence {Xt}t is formed by independent random variables
with finite expectation then {Yt}t is a martingale. An important observation to generalize
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the techniques used in concentration inequalities for sum of independent random variables
to the martingale setting is that

E
[
eλ
∑τ
t=1Xt

]
= E

[
eλ
∑τ−1
t=1 Xt · E[eλXτ | X1, . . . , Xτ−1]

]
. (3.4)

Therefore, if we can bound the conditional expectation E[eλXt | X1, . . . , Xt−1], then we will
still be able to bound the tails using Chernoff inequality (3.1).

Based on this observation, several concentration inequalities for the sum of independent
variables have their counterparts in martingale settings. Freedman’s inequality is one of
the most frequently used martingale inequalities, which generalizes Bernstein’s inequality
Theorem 3.1.4.

Theorem 3.2.2 (see, e.g., [63, 137]). Let {Yt}t be a real-valued martingale with respect to
{Zt}t, and {Xt = Yt − Yt−1}t be the difference sequence. Assume that Xt 6 R determinis-
tically for all t > 1. Let Wt :=

∑t
j=1 E[X2

j |Z1, ..., Zj−1] for t > 1. Then, for all δ > 0 and
σ2 > 0,

P
(
∃t > 1 : Yt > δ and Wt 6 σ2

)
6 exp

(
−δ2/2

σ2 +Rδ/3

)
.

Informally, Freedman’s inequality says the martingale {Yt}t deviates from 0 (the expec-
tation) only when the difference sequence accumulates large enough “energy” (i.e. variance)
in the random process. Note that, in Theorem 3.2.2, Wt is the sum of conditional variances
of Xj’s, which is a random variable. To prove the exact statement (i.e. ∃t > 1) in Theo-
rem 3.2.2, we need to invoke some martingale specific stopping time argument. However,
in this thesis we mainly care about the deviation of Yτ at some fixed time step τ . Thus,
instead of proving the original Freedman’s inequality, we provide a proof for the following
simplified version, which is sufficient for our applications.

Theorem 3.2.3. Let {Yt}t be a real-valued martingale with respect to {Zt}t, and {Xt =

Yt − Yt−1}t be the difference sequence. Suppose we are given some fixed R > 0 and σ2
t > 0

for 1 6 t 6 τ . Assume Xt 6 R and E [X2
t |Z1, ..., Zt−1] 6 σ2

t deterministically for 1 6 t 6 τ ,
and further assume that σ2 :=

∑τ
t=1 σ

2
t > 0. Then, for all δ > 0,

P [Yτ > δ] 6 exp

(
−δ2/2

σ2 +Rδ/3

)
.
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Proof. For any λ > 0 and t ∈ [τ ],

eλXt = 1 + λXt + fλ(Xt) ·X2
t , where fλ(x) :=

 eλx−1−λx
x2 , x 6= 0

λ2

2
, x = 0

.

We prove that fλ(x) is monotone increasing in x by showing the derivative f ′λ(x) > 0

for all x ∈ R. Note that,

f ′λ(0) =
λ3

3!
> 0 and f ′λ(x) =

x(ex + 1)− 2(ex − 1)

x3
for x 6= 0.

Let g(x) := x(ex + 1) − 2(ex − 1). To prove fλ(x) is monotone increasing, it suffices to
show that g(x) > 0 for all x > 0 and g(x) < 0 for all x < 0. Since g(0) = 0, it is enough
to show that g′(x) > 0 for all x 6= 0. This follows from

g′(0) = 0 and g′′(x) = xex

> 0, when x > 0

< 0, when x < 0
.

Thus, we have established the monotonicity of f ′λ(x).

In the following, we denote Et[·] as E[· | Z1, . . . , Zt−1] for simplicity. Since Xt 6 R and
Et[Xt] = 0, it holds that

eλXt 6 1 + λXt + fλ(R) ·X2
t

=⇒ Et
[
eλXt

]
6 1 + fλ(R) · Et[X2

t ] 6 exp(fλ(R) · Et[X2
t ]) 6 exp(fλ(R) · σ2

t ),

where the second last inequality follows by 1 + p 6 ep for all p ∈ R, and the last inequality
follows by the assumption Et[X2

t ] 6 σ2
t .

Applying the observation (3.4) repeatedly, we have

E[eλYτ ] = E
[
eλYτ−1 · Eτ [eλXτ ]

]
6 E[eλYτ−1 ] · efλ(R)·σ2

τ 6 · · · 6 efλ(R)·
∑τ
t=1 σ

2
t = efλ(R)·σ2

.

Then, by Chernoff inequality (3.1),

P [Yτ > δ] 6 inf
λ>0

exp
(
−λδ + fλ(R) · σ2

)
.
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Optimizing λ over the function −λδ+ fλ(R) · σ2, we take λ = 1
R

ln(1 + δR
σ2 ) (notice that

δR
σ2 > 0 by our assumption). It follows that

P [Yτ > δ] 6 exp

(
− δ
R

ln
(

1 +
δR

σ2

)
+
σ2

R2

(
δR

σ2
− ln

(
1 +

δR

σ2

)))
= e−

σ2

R2 ·h
(
δR
σ2

)
,

where h(x) := (1 + x) ln(1 + x) − x. We can verify that h(x) > f(x) := x2

2(1+x/3)
for

x > 0 by a similar argument at the beginning of the proof. More specifically, we can check
h′′(x) − f ′′(x) = 1

1+x
− 27

(x+3)3 > 0 for all x > 0. This shows h′(x) − f ′(x) is monotone
increasing when x > 0. Since h′(0) = f ′(0) = 0 and h(0) = f(0) = 0, h(x) − f(x) is
also monotone increasing and nonnegative for all x > 0. Therefore, we finish the proof by
observing that

P [Yτ > δ] 6 e−
σ2

R2 ·h
(
δR
σ2

)
= e

− δ2/2

σ2+δR/3 .

3.3 Concentration Inequality for Self-adjusting Random

Process

Recently, some variants of Freedman’s inequality for martingales have been applied to
obtain algorithmic discrepancy results [18, 17]. For the applications in this thesis, we
prove another variant which applies to non-martingales with a “self-adjusting” property,
that if Yt is (more) positive then E[Yt+1]− Yt is (more) negative and vice versa. With this
self-adjusting property, intuitively Yt cannot be too far away from zero, and the following
theorem provides a quantitative bound that is similar to that in Freedman’s inequality.
Although the proof of the theorem follows from relatively standard techniques, to the best
of our knowledge, we are not aware of similar inequalities in the literature. The theorem
will be a key tool in analyzing the algorithm for the spectral rounding problem in Chapter 5.

Theorem 3.3.1. Let {Yt}t be a sequence of random variables, and Xt := Yt − Yt−1 be the
difference sequence. Suppose that there exist R, σ > 0, βu, βl > 0 and γ1 ∈ (0, 1

2
), γ2 > 0

with γ1 6 γ2/R such that the following properties hold for all t > 1:
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1. (Bounded difference:) |Xt| 6 R with probability one.

2. (Self adjusting:) −γ1Yt−1 − βl 6 E[Xt | Y0, ..., Yt−1] 6 −γ1Yt−1 + βu.

3. (Bounded variance:) E[X2
t | Y0, . . . , Yt−1] 6 γ2Yt−1 + σ.

4. (Initial concentration:) For any a ∈ [− 1
R
, 1
R

], the initial random variable Y0 satisfies
E
[
eaY0

]
6 ea

2σ/γ1.

Then, for any η > 0 and any t > 0, it holds that

P
[
Yt >

βu
γ1

+ η

]
6 exp

(
− η2γ1/γ2

4(σ/γ2 + βu/γ1) + 2η

)
and

P
[
Yt 6 −

βl
γ1

− η
]
6 exp

(
− η2γ1/γ2

4σ/γ2 + η

)
.

Proof. The proof is by computing the moment generating function of Yt and applying
Markov’s inequality, which is standard in concentration inequalities as we have seen. In
the following, we write the conditional expectation as Et[·] := E[·|Y0, ..., Yt−1] for simplicity.

Upper Tail: We start with the proof for the upper tail. For any a ∈ [0, γ1/γ2], the
conditional moment generating function of Xt with any given Y0, ..., Yt−1 is

Et
[
eaXt

]
= Et

[
∞∑
l=0

alX l
t

l!

]
6 Et

[
1 + aXt +

X2
t

R2

∞∑
l=2

(aR)l

l!

]

= 1 + aEt[Xt] + Et[X2
t ] · e

aR − 1− aR
R2

6 1 + aEt[Xt] + a2Et[X2
t ]

6 1− aγ1Yt−1 + aβu + a2γ2Yt−1 + a2σ

6 exp
(
a2σ + aβu − (γ1 − aγ2)aYt−1

)
,

where the first inequality is by the bounded difference property that |Xt| 6 R always, the
second inequality is by aR 6 1 for a ∈ [0, γ1/γ2] because γ1 6 γ2/R and the inequality
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ep 6 1 + p + p2 for p 6 1, the third inequality is by the self-adjusting property and the
bounded variance property and a > 0, and the last inequality uses 1 + p 6 ep for p ∈ R.
Then we can bound the moment generating function of Yt as

EY0,...,Yt

[
eaYt
]

= EY0,...,Yt−1

[
eaYt−1 · Et

[
eaXt

]]
6 EY0,...,Yt−1

[
exp

(
a2σ + aβu + (1− (γ1 − aγ2))aYt−1

)]
6 exp

(
a2σ + aβu

)
· EY0,...,Yt−1 [exp (a (1− (γ1 − aγ2))Yt−1)]

= exp
(
a2σ + aβu

)
· EY0,...,Yt−1 [exp (f(a) · Yt−1)] ,

where we define f(a) := a(1 − (γ1 − aγ2)). Note that, γ1 − aγ2 ∈ [0, 1] for a ∈ [0, γ1/γ2],
which implies f(a) ∈ [0, a]. Define the sequence a(0) = a and a(i) = f(a(i−1)) for i > 1.
Apply the same argument inductively, it follows that

EY0,...,Yt

[
eaYt
]
6 exp

(
t−1∑
i=0

(
a2

(i)σ + a(i)βu

))
· EY0

[
ea(t)Y0

]
6 exp

(
t−1∑
i=0

(
a2

(i)σ + a(i)βu

)
+
a2

(t)σ

γ1

)
,

where the last inequality follows from the initial concentration property of Y0 for a(t) 6

a 6 γ1/γ2 6 1/R. To bound the moment generating function, we use the following claim
whose proof follows from the definition of the sequence {a(i)}i.

Claim 3.3.2. The sequence {a(i)}i>0 is decreasing and dominated by the geometric sequence
{ari}i>0 with common ratio r := 1 − (γ1 − aγ2). The sequence {a2

(i)}i is also decreasing
and dominated by the geometric sequence {a2r2i}i>0 with common ratio r2. Furthermore,
r2 < r < 1 when a ∈ [0, γ1/γ2).

Using Claim 3.3.2, when a ∈ [0, γ1/γ2), we can upper bound the moment generating
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function by

EY0,...,Yt

[
eaYt
]
6 exp

((
a2σ + aβu

) t−1∑
i=0

ri +
a2σrt

γ1

)

= exp

((
a2σ + aβu

)
· 1− rt

1− r
+
a2σrt

γ1

)
= exp

(
a2σ + aβu
γ1 − aγ2

· (1− rt) +
a2σrt

γ1

)
6 exp

(
a2σ + aβu
γ1 − aγ2

)
,

where the last inequality uses a ∈ [0, γ1/γ2). By Markov inequality, for any a ∈ [0, γ1/γ2)

and any η > 0,

P
[
Yt >

βu
γ1

+ η

]
= P

[
eaYt > e

a
(
βu
γ1

+η
)]

6 EY0,...,Yt

[
eaYt
]
· e−a

(
βu
γ1

+η
)

6 exp

(
a2σ + aβu
γ1 − aγ2

− a
(βu
γ1

+ η
))

= exp

(
a2(σ + γ2βu/γ1)

γ1 − aγ2

− aη
)

= exp

(
a2(σ/γ2 + βu/γ1)

γ1/γ2 − a
− aη

)
To prove the best upper bound, we optimize over a and set

a =
γ1

γ2

·

(
1−

√
σ/γ2 + βu/γ1

(σ/γ2 + βu/γ1) + η

)
=
γ1

γ2

·
(

1−
√

ν

ν + η

)
,

where we use ν := σ/γ2 + βu/γ1 as a shorthand. Notice that a ∈ [0, γ1/γ2) as σ, γ2, η > 0

and βu > 0, so the above probability bound applies. Putting this choice of a back into the
exponent on the right hand side, the exponent is

a2(σ/γ2 + βu/γ1)

γ1/γ2 − a
− aη =

γ1

γ2

·

(
(1−

√
ν/(ν + η))2 · ν√
ν/(ν + η)

−
(

1−
√

ν

ν + η

)
· η

)
︸ ︷︷ ︸

(∗)

.

65



Simplifying the second term on the right hand side,

(∗) =

(
1 +

ν

ν + η
− 2

√
ν

ν + η

)
·
√
ν(ν + η)−

(
1−

√
ν

ν + η

)
· η

=
√
ν(ν + η) + ν

√
ν

ν + η
− 2ν − η + η

√
ν

ν + η

= −(2ν + η) + 2
√
ν(ν + η)

= −(2ν + η) +
√

(2ν + η)2 − η2

= −(2ν + η) + (2ν + η)

√
1− η2

(2ν + η)2

6 − η2/2

2ν + η
,

where we used
√

1− p 6 1−p/2 for p ∈ [0, 1] in the last inequality. Therefore, we conclude
that

P(Yt > η) 6 exp

(
a2(σ/γ2 + βu/γ1)

γ1/γ2 − a
− aη

)
6 exp

(
− η2γ1/γ2

4(σ/γ2 + βu/γ1) + 2η

)
,

which completes the proof for the upper tail.

Lower Tail: The proof for the lower tail is quite similar to that for the upper tail. The
main difference is that we work with the moment generating function E[e−aYt ], instead of
E[eaYt ]. For any a ∈ [0, γ1/γ2], the conditional moment generating function of −Xt is

Et
[
e−aXt

]
= Et

[
∞∑
l=0

(−a)lX l
t

l!

]
6 Et

[
1− aXt +

X2
t

R2

∞∑
l=2

(aR)l

l!

]

= 1− aEt[Xt] + Et[X2
t ] · e

aR − 1− aR
R2

6 1− aEt[Xt] + a2Et[X2
t ]

6 1 + aγ1Yt−1 + aβl + a2γ2Yt−1 + a2σ

6 exp
(
a2σ + aβl + (γ1 + aγ2)aYt−1

)
,

where the first inequality is by the bounded difference property |Xt| 6 R and a > 0, the
second inequality is by aR 6 1 for a ∈ [0, γ1/γ2] because γ1 6 γ2/R and the inequality
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ep 6 1 + p + p2 for p 6 1, the third inequality is by the self-adjusting property and the
bounded variance property and a > 0, and the last inequality is by 1 + p 6 ep for p ∈ R.
Then we can bound the moment generating function of Yt as

EY0,...,Yt

[
e−aYt

]
= EY0,...,Yt−1

[
e−aYt−1 · Et

[
e−aXt

]]
6 EY0,...,Yt−1

[
exp

(
a2σ + aβl − a(1− (γ1 + aγ2))Yt−1

)]
6 exp

(
a2σ + aβl

)
· EY0,...,Yt−1 [exp (−a (1− (γ1 + aγ2))Yt−1)]

= exp
(
a2σ + aβl

)
· EY0,...,Yt−1 [exp (−g(a) · Yt−1)] ,

where we define g(a) := a(1− (γ1 + aγ2)). By the given condition γ1 ∈ (0, 1
2
), it holds that

γ1 + aγ2 ∈ [0, 1] for a ∈ [0, γ1/γ2] which implies g(a) ∈ [0, a].

Define the sequence a(0) = a and a(i) = g(a(i−1)) for i > 1. Apply the same argument
inductively, it follows that

EY0,...,Yt

[
e−aYt

]
6 exp

(
t−1∑
i=0

(
a2

(i)σ + a(i)βl

))
· EY0

[
e−a(t)Y0

]
6 exp

(
t−1∑
i=0

(
a2

(i)σ + a(i)βl

)
+
a2

(t)σ

γ1

)
,

where the last inequality follows from the initial concentration property of Y0 for a(t) 6

a 6 γ1/γ2 6 1/R. To bound the moment generating function, we use the following claim
whose proof follows from the definition of the sequence {a(i)}i.

Claim 3.3.3. The sequence {a(i)}i>0 is decreasing and dominated by the geometric sequence
{ari}i>0 with common ratio r := 1 − (γ1 + aγ2). The sequence {a2

(i)}i is also decreasing
and dominated by the geometric sequence {a2r2i}i>0 with common ratio r2. Furthermore,
r ∈ (0, 1) for a ∈ [0, γ1/γ2] with γ1 ∈ (0, 1

2
) and γ2 > 0.

Using Claim 3.3.3, when a ∈ [0, γ1/γ2], we can upper bound the moment generating
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function by

EY0,...,Yt

[
e−aYt

]
6 exp

((
a2σ + aβl

) t−1∑
i=0

ri +
a2σrt

γ1

)

= exp

((
a2σ + aβl

)
· 1− rt

1− r
+
a2σrt

γ1

)
= exp

(
a2σ + aβl
γ1 + aγ2

· (1− rt) +
a2σrt

γ1

)
6 exp

(
a2σ + aβl

γ1

· (1− rt) +
a2σrt

γ1

)
6 exp

(
a2σ + aβl

γ1

)
,

where we used aγ2 > 0 and r ∈ (0, 1) in the second last inequality.

By Markov inequality, for any a ∈ [0, γ1/γ2] and any η > 0,

P
[
Yt 6 −

βl
γ1

− η
]

= P
[
e−aYt > e

a
(
βl
γ1

+η
)]

6 EY0,...,Yt

[
e−aYt

]
· e−a

(
βl
γ1

+η
)

6 exp

(
a2σ + aβl

γ1

− a
(βl
γ1

+ η
))

= exp

(
a2σ

γ1

− aη
)
.

When η 6 2σ/γ2, we set a = (ηγ1)/(2σ) ∈ [0, γ1/γ2], so the above probability bound
applies and gives

P
[
Yt 6 −

βl
γ1

− τ
]
6 exp

(
−η

2γ1

4σ

)
6 exp

(
− η2γ1/γ2

4σ/γ2 + η

)
.

When η > 2σ/γ2, we simply set a = γ1/γ2, and the above probability bound gives

P
[
Yt 6 −

βl
γ1

− η
]
6 exp

(
γ1

γ2

·
(
σ

γ2

− η
))

6 exp

(
− η2γ1/γ2

4σ/γ2 + η

)
,

where the last inequality holds by the assumption that η > 2σ/γ2. This finishes the proof
for the lower tail and thus the proof of Theorem 3.3.1.

68



3.4 Matrix Concentration Inequalities

All the previously mentioned concentration inequalities in Section 3.1 and Section 3.2
have their counterparts in matrix settings. In this section, we briefly survey these matrix
concentration inequalities, which were used to analyze the effective resistance sampling
algorithm in Section 2.5. Since we will not use these matrix concentration inequalities
further in this thesis, we only give a high level overview without getting into technical
details, most of the contents can be found in [137, 138].

For the matrix concentration inequalities, the main setting of the studies is as follows.
Given a sequence of random matrices Xi in Sd, bound the following tail probability

P
[
λmax

(∑
i
Xi
)
> δ
]
.

Similar to the scalar random variables case, for any θ > 0 we can bound by Markov’s
inequality that

P
[
λmax

(∑
i
Xi
)
> δ
]
6 P

[
eθλmax(

∑
i Xi) > eθδ

]
6 e−θδ · E

[
eθλmax(

∑
i Xi)
]
.

Notice that

eθλmax(
∑
i Xi) 6

d∑
k=1

eθλk(
∑
i Xi) = tr

(
e
∑
i θXi
)
,

for any fixed symmetric matrices Xi’s. Thus, we can derive an analog of Chernoff inequal-
ity (3.1) as follows

P
[
λmax

(∑
i
Xi
)
> δ
]
6 inf

θ>0

{
e−θδ · E

[
tr
(
e
∑
i θXi
)]}

.

However, controlling the term E
[

tr
(
e
∑
i θXi
)]
, i.e. the trace of the matrix moment

generating function, is very challenging, which requires powerful tools. To demonstrate
the idea, we assume Xi’s are independent in the following discussions.

Ahlswede and Winter [2] dealt this term with Golden–Thompson inequality (see, e.g.,
[24] for a proof)

tr
(
eA+B) 6 tr

(
eA · eB

)
.
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With Golden-Thompson inequality, the trace of the matrix moment generating function
can be bounded as follows

E
[

tr
(
e
∑n
i=1 θXi

)]
6 E

[
tr
(
e
∑n−1
i=1 θXi · eθXn

)]
= tr

((
Ee
∑n−1
i=1 θXi

)
·
(
EeθXn

))
6 tr

(
Ee
∑n−1
i=1 θXi

)
· λmax

(
EeθXn

)
,

where the equality follows by independence of Xi’s and linearity of trace and expectation.
Repeatedly applying Golden-Thompson inequality, we have

E
[

tr
(
e
∑
i θXi
)]

6 tr(Id) ·
∏

i
λmax

(
EeθXi

)
6 d · exp

(∑
i
λmax

(
logEeθXi

))
. (3.5)

In [138], Tropp used another powerful tool Lieb’s theorem [104] to deal with the trace
of matrix moment generating function, and managed to improve the above bound. Lieb’s
theorem says, for a fixed matrix M ∈ Sd, the function X 7→ tr

[
exp(M + log X )

]
is concave

on Sd++. With Lieb’s theorem, we can deal with the trace of matrix moment generating
function as follows. Let Ek[·] denotes E[· | X1, . . .Xk−1]. It holds that

En
[

tr
(
e
∑n
i=1 θXi

)]
= En

[
tr
(
e
∑n−1
i=1 θXi+log eθXn

)]
6 tr

(
e
∑n−1
i=1 θXi+logEn[eθXn ]

)
= tr

(
e
∑n−1
i=1 θXi+logE[eθXn ]

)
,

where the inequality follows by Jensen’s inequality Lemma 2.2.6 for the concave trace
function in Xn (by Lieb’s theorem), and the last equality follows by the independence of
Xi’s. Then, we consider Xn−1,

En−1En
[

tr
(
e
∑n
i=1 θXi

)]
6 En−1

[
tr
(
e
∑n−1
i=1 θXi+logE[eθXn ]

)]
= En−1

[
tr
(
e
∑n−2
i=1 θXi+logE[eθXn ]+θXn−1

)]
6 tr

(
e
∑n−2
i=1 θXi+logE[eθXn ]+logE[eθXn−1 ]

)
where the last inequality follows by the same argument as previous step. Repeat the same
argument for Xn−2, . . . ,X1 one by one, it follows that

E
[

tr
(
e
∑
i θXi
)]

6 tr
(

exp
(∑

i
logE[eθXi ]

))
6 d · exp

(
λmax

(∑
i
logE[eθXi ]

))
. (3.6)
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It is not hard to see the bound in (3.6) is always better than the one in (3.5). Although
the two bounds give the same result in the worst case, Tropp pointed out that (3.5) can
be worst than (3.6) by a factor of d in many situations [138].

Using (3.6), Tropp proved the following generalization of Chernoff bound, Hoeffding
bound, and Bernstein’s inequality for sequences of independent random matrices [138].

Theorem 3.4.1 (Matrix Chernoff Bound [138]). Let {Xi}i be a sequence of independent
random matrices in Sd+. Assume λmax(Xi) 6 R for each i deterministically. Let µmin :=

λmin(
∑

i E[Xi]) and µmax := λmax(
∑

i E[Xi]). Then

P
[
λmax

(∑
i
Xi
)
> (1 + δ)µmax

]
6 d ·

( eδ

(1 + δ)1+δ

)µmax/R

for δ > 0, and

P
[
λmin

(∑
i
Xi
)
6 (1− δ)µmin

]
6 d ·

( e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1].

Theorem 3.4.2 (Matrix Hoeffding Bound [138]). Let {Xi}i be a sequence of independent
random matrices in Sd. Let Ai be a sequence of deterministic matrices in Sd. Assume
E[Xi] = 0 and X 2

i 4 A2
i for each i deterministically. Then, for any δ > 0

P
[
λmax

(∑
i
Xi
)
> δ
]
6 d · e−

δ2

8σ2 where σ2 :=
∥∥∥∑

i
A2
i

∥∥∥
op
.

Theorem 3.4.3 (Matrix Bernstein’s Inequality [138]). Let {Xi}i be a sequence of indepen-
dent random matrices in Sd. Assume E[Xi] = 0 and λmax(X 2

i ) 6 R for each i determinis-
tically. Then, for any δ > 0

P
[
λmax

(∑
i
Xi
)
> δ
]
6 d · e−

δ2/2

σ2+Rδ/3 where σ2 :=
∥∥∥∑

i
E[X 2

i ]
∥∥∥

op
.

When the sequence of random matrices are not independent but form a matrix mar-
tingale, Tropp proved a generalized Freedman’s inequality using Lieb’s theorem in [137].

A sequence of random matrices Y1, . . . ,Yt, . . . is a matrix martingale if

E[Yt+1 − Yt | Y1, . . . ,Yt] = 0 and E
[
‖Yt‖op

]
< +∞ for all t > 1.
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Theorem 3.4.4 (Matrix Freedman’s Inequality [137]). Let {Yt}t be a matrix martin-
gale, where each matrix Yt ∈ Sd. Let {Xt}t be the difference sequence, and denote Wt :=∑t

j=1 E[X 2
j | Y1, . . . ,Yj−1] for t > 1. Assume λmax(Xt) 6 R deterministically for some

R > 0. Then, for any δ > 0 and σ2 > 0,

P
[
∃t > 1 : λmax(Yt) > δ and ‖Wt‖op 6 σ2

]
6 d · e−

δ2/2

σ2+Rδ/3 .

Finally, we remark that the matrix Chernoff bound, matrix Bernstein’s inequality,
and the matrix Freedman’s inequality (except matrix Hoeffding bound) can be applied
in the analysis of the effective resistance sampling algorithm for spectral sparsification in
Section 2.5.
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Chapter 4

Regret Minimization Framework

In this chapter, we review the regret minimization framework for spectral sparsification
and one-sided spectral rounding [7, 6], and derive several slightly more general statements
than those in [7, 6]. Based on the regret minimization framework, we design a new ran-
domized algorithm to construct linear-sized spectral sparsifiers, which unifies the regret
minimization based algorithm in [7] and the potential function guided adaptive sampling
algorithm in [101]. The randomized adaptive sampling idea used in this new variant will
be repeatedly used in later chapters (e.g., Chapter 5 and Chapter 7).

The regret minimization framework is for optimization in an online setting. In each
iteration t, the player chooses an action matrix At from the set of density matrices ∆d :=

{A ∈ Sd | A < 0, tr(A) = 1}, which can be understood as a probability distribution over
the set of unit vectors. The player then observes a feedback matrix Ft and incurs a loss of
〈At,Ft〉. After τ iterations, the regret of the player is defined as

Rτ :=
τ∑
t=1

〈At,Ft〉 − inf
B∈∆d

τ∑
t=1

〈B ,Ft〉 =
τ∑
t=1

〈At,Ft〉 − λmin

(
τ∑
t=1

Ft

)
,

which is the difference between the loss of the player actions and the loss of the best fixed
action B , that can be assumed to be a rank one matrix vv>. The objective of the player
is to minimize the regret. A well-known algorithm for regret minimization is Follow-The-
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Regularized-Leader (FTRL), which plays the action

At = argminA∈∆d

{
w(A) + α ·

t−1∑
i=0

〈A,Fi〉
}

for all t > 1, (4.1)

where w : Rd×d → R is a convex differentiable (on Sd++) regularizer and α is a parameter
called the learning rate that balances the loss and the regularization. We remark that,
similar to [6], our setting allows us to have a nonzero initial feedback matrix F0 which is
given before the game starts. This will give us more flexibility in some applications.

Different choices of regularization give different algorithms for regret minimization. A
popular choice is the entropy regularizer

w(A) = 〈A, log A− I 〉.

Entropy regularizer gives the well-known matrix multiplicative weight update algorithm
(see Remark 4.1.19).

For the purpose of spectral sparsification, however, the ultimate goal is not to control
the regret, but instead to control the objective value of the best offline action matrix
infB∈∆d

∑τ
t=1〈B ,Ft〉. For this task, it turns out that the `1− 1

q
-regularizer

w(A) = − q

q − 1
tr
(
A1− 1

q
)

introduced in [7] is more effective. The ` 1
2
-regularizer with q = 2 is already sufficient to

provide an optimal algorithm for spectral sparsification. The `1− 1
q
-regularizer with large

constant q can be used to improve the running time of the algorithm [7, 101]. As the
running time is not our main concern, we will be focusing on ` 1

2
-regularizer throughout

this thesis.

Organization

In this chapter, we will review the FTRL algorithm for regret minimization and show how
to apply the framework to construct spectral sparsifiers.
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We first review the mirror descent method, an equivalent description of the FTRL
algorithm in Section 4.1. Then we derive a generic regret bound with general feedback
matrices in Section 4.2. Finally, with the machinery from regret minimization, we present
an alternative randomized sampling algorithm for spectral sparsification that unifies known
algorithms in [7] and [101] in Section 4.3.

4.1 FTRL Algorithm and Mirror Descent Method

As we have mentioned, there is an equivalent description of the FTRL algorithm using the
mirror descent method framework. In this section, we formally prove the equivalence. We
start with introducing an important notion. Given a (strictly) convex function w : D → R
which is differentiable on the interior of the domain int(D), the Bregman divergence with
respect to w is defined as

Dw(x , y) := w(x)− w(y)− 〈∇w(y), x − y〉, (4.2)

where x ∈ D and y ∈ int(D). For example, for the entropy regularizer w(X ) = 〈X , log X−I 〉
for X < 0, with the gradient given in Fact 2.2.5, the Bregman divergence can be written
as

Dw(X ,Y ) = 〈X , log X − I 〉 − 〈Y , log Y − I 〉 − 〈log Y ,X − Y 〉
= tr(Y − X ) + 〈X , log X − log Y 〉

for X < 0 and Y � 0. For the ` 1
2
-regularizer w(X ) = −2 tr(X

1
2 ) for X < 0, with the

gradient given in Fact 2.2.4, the Bregman divergence can be written as

Dw(X ,Y ) = −2 tr(X
1
2 ) + 2 tr(Y

1
2 ) + 〈Y −

1
2 ,X − Y 〉

= 〈Y −
1
2 ,X 〉+ tr(Y

1
2 )− 2 tr(X

1
2 )

(4.3)

for X < 0 and Y � 0. More properties of Bregman divergence will be discussed in
Section 4.1.1.

Then, we formally describe the mirror descent method for regret minimization.
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Mirror Descent Method for Regret Minimization

1. A1 ← argminA∈∆d{w(A) + α〈A,F0〉}.

2. For t← 2, 3, . . . do the following

Ãt ← argmin
A<0

{
Dw(A,At−1) + α〈A,Ft−1〉

}
, (4.4)

At ← argmin
A∈∆d

{Dw(A, Ãt)}. (4.5)

We remark that we set the initial action matrix to ensure that the mirror descent
method is equivalent to the FTRL algorithm (see Section 4.1.4 for more details).

Informally, Bregman divergence measures the “distance” between two points with re-
spect to the convex function w. The mirror descent method first returns a PSD matrix
Ãt that has a small loss with respect to the new feedback matrix Ft−1, but also does not
deviate too much from the previous action matrix At−1. Then, it projects Ãt back to the
space of action matrices (density matrices).

This subsection is organized as follows. In Section 4.1.1, we first review some properties
of Bregman divergence, which will be useful in the later analysis. Then, we discuss some
desired properties of the regularizers in Section 4.1.2 and use these properties to show
the mirror descent method is well-defined in Section 4.1.3. Finally, in Section 4.1.4, we
formally prove the equivalence between the FTRL algorithm and mirror descent method
for those regularizers with the desired properties.

4.1.1 Bregman Divergence

Since Bregman divergence is a key notion in the mirror descent method, we first review
several classical properties of Bregman divergence which will be useful in further analysis.

76



Lemma 4.1.1. Let w : D → R be a (strictly) convex function that is differentiable on
int(D). Then, the Bregman divergence associated with w satisfies the following properties.

• Given y ∈ int(D), x 7→ Dw(x , y) is a (strictly) convex function with gradient ∇w(x)−
∇w(y) for x ∈ int(D).

• Non-negativity: Given any x ∈ D and any y ∈ int(D), it holds that Dw(x , y) > 0.

• Three-point-equality: Given any x , y ∈ int(D) and any z ∈ D, it holds that Dw(z , x)+

Dw(x , y)−Dw(z , y) = 〈∇w(x)−∇w(y), x − z〉.

Proof. The (strict) convexity of the function Dw(·, y) follows from the (strict) convexity of
w and the fact that Dw(x , y) is equal to w(x) plus a linear function in x (see (4.2)). The
gradient of Dw(·, y) follows directly from the definition.

Given x ∈ D and y ∈ int(D), w is differentiable at y . By the first order condition
Lemma 2.2.9, w(x) > w(y) + 〈∇w(y), x − y〉. Rearranging the terms, the nonnegativity
follows.

The three-point-equality can be checked from the definition.

Dw(z , x) +Dw(x , y) = w(z)− w(x)− 〈∇w(x), z − x〉+ w(x)− w(y)− 〈∇w(y), x − y〉

= Dw(z , y) + 〈∇w(y), z − x〉 − 〈∇w(x), z − x〉

= Dw(z , y) + 〈∇w(x)−∇w(y), x − z〉.

Given a point x ∈ D where f is differentiable at x and a closed convex set C ⊆ D, the
Bregman projection of x onto C with respect to w is defined as

x∗ = argminz∈C Dw(z , x). (4.6)

We recall a simple fact about strictly convex functions.

Fact 4.1.2. Let f be a strictly convex function on a convex domain D. If there exists a
minimizer of f over D, then it is unique.
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Proof. Assume there exists two distinct minimizer x 6= y ∈ D with f(x) = f(y) =

minz∈D f(z). We consider the function value of the mid-point between x and y , i.e. x+y
2
.

By strict convexity of f , it holds that

f
(x + y

2

)
<
f(x) + f(y)

2
= min

z∈D
f(z).

Since D is convex, we find a point x+y
2
∈ D with strictly smaller value than the minimizer

over D, contradiction.

Therefore, when w is strictly convex (Dw(·, x) is also strictly convex by Lemma 4.1.1),
the Bregman projection in (4.6) is uniquely defined since C is a closed set. Bregman
projection generalizes the notion of orthogonal projection. To see this, we can take w(x) =

‖x‖2
2 and verify that Dw(x , y) = ‖x − y‖2

2.

Finally, we show that the Bregman divergence satisfies a generalized Pythagorean the-
orem.

Theorem 4.1.3 (Generalized Pythagorean Theorem, see, e.g., [7, 35]). Suppose w : D → R
is a strictly convex function that is differentiable on D, and C ⊆ D is a closed convex set.
Let x ∈ D and x∗ = argminz∈C Dw(z , x) be the Bregman projection of x onto C with respect
to w. Then, for any y ∈ C, it holds that

Dw(y , x) > Dw(y , x∗) +Dw(x∗, x).

This further implies Dw(y , x) > Dw(y , x∗) due to the nonnegativity of Bregman divergence.

Proof. By the three-point-equality in Lemma 4.1.1,

Dw(y , x∗) +Dw(x∗, x)−Dw(y , x) = 〈∇w(x∗)−∇w(x), x∗ − y〉.

Thus, it suffices to show 〈∇w(x∗)−∇w(x), x∗ − y〉 6 0 for any y ∈ C.

Let f(z) = Dw(z , x) for the given x , which is a strictly convex function by Lemma 4.1.1.
Since x∗ = argminz∈C Dw(z , x) = argminz∈C f(z) is the minimizer of the convex function f
over the convex set C, by Lemma 2.2.22, it implies

〈∇f(x∗), y − x∗〉 > 0 ∀y ∈ C =⇒ 〈∇w(x∗)−∇w(x), y − x∗〉 > 0 ∀y ∈ C,

78



where we used ∇Dw(x∗, x) = ∇w(x∗)−∇w(x) for a fixed x by Lemma 4.1.1.

Remark 4.1.4. Note that, in the above theorem, we assume that w is differentiable over the
whole domain. However, some regularizers are not differentiable on boundary points. Thus,
the term Dw(y , x∗) is not defined for this type of regularizers if x∗ lays on the boundary.
In Section 4.1.2, we will introduce some restrictions on the regularizers to ensure that it
does not happen.

4.1.2 Choices for Regularizers

Consider the definition of Bregman divergence Dw(x , y) in (4.2), if y is on the boundary
of D (which is not differentiable), then Dw(x , y) is undefined. Thus, in the mirror descent
steps (4.4) and (4.5), we need to guarantee that At−1 � 0 and Ãt � 0. Furthermore, the
domain of computing Ãt is unbounded, thus we also need to make sure that the minimum
in step (4.4) is attained. Finally, a not crucial but naturally desirable property is that the
minimizers in both (4.4) and (4.5) are uniquely defined. To summarize, we would like to
choose regularizer w such that

1. The minimizers of (4.4) and (4.5) stay away from the boundary, i.e. Ãt,At � 0.

2. The minimizer Ãt of (4.4) is attained.

3. The minimizers of (4.4) and (4.5) are uniquely defined.

The first and the third point depend on the properties of the function Dw(·, y) for
a given y ∈ int(D). After throwing away those terms that do not depend on the first
variable x in the Bregman divergence, minimizing Dw(·, y) is equivalent to minimizing
w(·)−〈∇w(y), ·〉. Thus, the objective functions in the two steps (4.4) and (4.5) essentially
have the same form, i.e. w(x)− 〈c , x〉.

For the first point, one option is to choose w(x) to be a barrier function, which blows
up when x approaches the boundary. However, this requirement is too restrictive. For
example, both the entropy regularizer and `1− 1

q
-regularizer do not meet this requirement.
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Potentially, this might also exclude many good solutions. Another option is to require
that, when the solution approaching the boundary from some direction, the directional
derivative of w in that direction blows up. As we will show later, this requirement can
effectively prevent the minimizer from staying on the boundary.

As for the second point, the property does not solely depend on the regularizer w. It
also depends on the feedback matrix Ft−1. Thus, we need to make further assumption on
Ft−1 to guarantee the minimizer of (4.4) is attained.

If w is a strictly convex function, we can guarantee the uniqueness in the last point
easily by Fact 4.1.2.

We will formally prove the mirror descent steps (4.4) and (4.5) are well-defined in Sec-
tion 4.1.3. In the remaining of this subsection, we formally introduce the desired properties
of the regularizers, and analyze those properties for further use.

Desired Properties of the Regularizers and Implications

In the following discussions of this subsection, we do not restrict the domain to Sd+, instead
we consider a general closed domain D ⊆ Rn in a finite dimensional Euclidean space Rn.

Definition 4.1.5 (Legendre Function). A convex function w : D → R is a Legendre
function (or a convex function of Legendre type), if w satisfies the following conditions.

1. (Interior Differentiability:) w is differentiable on int(D), where int(D) 6= ∅.

2. (Interior Strict Convexity:) w is strictly convex on int(D).

3. (Boundary Barrier:) For any x ∈ D\ int(D) on the boundary and any y ∈ int(D) in
the interior, it holds that

lim
t↓0
〈∇w(x + t(y − x)), y − x〉 = −∞,

where t ↓ 0 denotes t approaching 0 from the side larger than 0.
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Remark. Legendre functions have many nice properties, especially in terms of their convex
conjugates. In this thesis, we will not get into the details of conjugate duality theory. We
refer the interested readers to the text of Rockafellar (Chapter 26 in [126]) for a nice
treatment of this topic.

We first consider a useful fact about strictly convex functions.

Fact 4.1.6. Let f be a strictly convex function on a convex domain D. If f is differentiable
at two distinct points x 6= y ∈ D, then ∇f(x) 6= ∇f(x).

Proof. By the first order condition Lemma 2.2.9, for x 6= y ∈ D, it follows that

f(x) > f(y) + 〈∇f(y), x − y〉 and f(y) > f(x) + 〈∇f(x), y − x〉.

If ∇f(x) = ∇f(y), then adding the two inequality up gives f(x) + f(y) > f(x) + f(y),
contradiction.

A direct consequence of the Fact 4.1.6 is that ∇f is a one-to-one mapping from the
differentiable points of f to their gradients.

Corollary 4.1.7. Let f be a strictly convex function on a convex domain D, and let S ⊂ D
be the set of differentiable points of f . Then, there exists a one-to-one mapping from S to
∇f(S), i.e. we can define an inverse map (∇f)−1 such that (∇f)−1(∇f(x)) = x for any
x ∈ S, and ∇f((∇f)−1(y)) = y for any y ∈ ∇f(S).

Next, we show that if the regularizer w satisfies the interior differentibility and boundary
barrier conditions in Definition 4.1.5, then the minimizer of the function w(x) − 〈c , x〉 (if
exist) should not stay on the boundary. Note that the function w(x) − 〈c , x〉 is closely
related to the objective function in (4.4) and (4.5), and we do not need strict convexity for
this lemma.

Lemma 4.1.8. Let w be a convex regularizer satisfying the interior differentibility and
boundary barrier conditions in Definition 4.1.5. Let c be an arbitrary vector in Rn, and
C ⊆ Rn be a convex set such that C∩int(D) 6= ∅. If the minimizer x∗ = argminx∈D∩C{w(x)−
〈c , x〉} exists, then x∗ ∈ int(D) ∩ C.
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Proof. For the sake of contradiction, suppose there exists a feasible minimizer x∗ 6∈ int(D)∩
C (thus x∗ lays on the boundary D\ int(D)). Fix any y ∈ int(D) ∩ C, we consider the
function g : [0, 1]→ R defined by

g(t) = w(x∗ + t(y − x∗))− 〈c , x∗ + t(y − x∗)〉.

Note that x∗+t(y−x∗) ∈ int(D)∩C for t ∈ (0, 1] by convexity of D and C. Since w satisfies
the interior differentiability condition in Definition 4.1.5, g is differentiable on (0, 1] with
derivative

g′(t) = 〈∇w(x∗ + t(y − x∗), y − x∗〉 − 〈c , y − x∗〉.

Since 〈c , y−x∗〉 does not depend on t, the boundary barrier condition in Definition 4.1.5
implies limt↓0 g

′(t) = −∞. By the convexity of g (induced by the convexity of w) and the
first order condition Lemma 2.2.9, we have g(0) > g(t) − tg′(t). Thus, for small enough
t > 0, it holds that g(0) > g(t). This implies w(x∗) − 〈c , x∗〉 > w(zt) − 〈c , zt〉, where
zt = x∗ + t(y − x∗) ∈ int(D) ∩ C for some small enough t > 0. This contradicts to the
assumption that x∗ is a global minimizer on D ∩ C.

Then, we show that if w is a Legendre function (Definition 4.1.5) subject to some
restrictions on c , then the minimizer of w(x)− 〈c , x〉 behaves nicely.

Lemma 4.1.9. Suppose we are given a Legendre function w and a vector c ∈ Rd. There
is a unique minimizer x∗ = argminx∈D{w(x) − 〈c , x〉} if and only if c ∈ ∇w(int(D)).
Furthermore, the unique minimizer x∗ = (∇w)−1(c) ∈ int(D).

Proof. As w is a Legendre function (Definition 4.1.5), we can apply Lemma 4.1.8 with
C = Rn and conclude that if x∗ exists then it must be in int(D). Therefore, instead of
the whole domain D, we can equivalently optimize f0(x) = w(x)− 〈c , x〉 over the interior
int(D), i.e.

min
x∈D

f0(x) = min
x∈int(D)

f0(x).
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Since w is strictly convex on int(D), if x∗ exists, then it is necessarily unique by Fact 4.1.2.
Thus, it suffices to show that the minimum of minx∈int(D) f0(x) is attained if and only if
c ∈ ∇w(int(D)).

As int(D) is open and w is differentiable over int(D) by the interior diferentiability
condition in Definition 4.1.5, x ∈ int(D) is an optimal solution if and only if ∇f0(x) =

∇w(x)− c = 0 (by Corollary 2.2.24).

Thus, if the minimizer x∗ exists, then c = ∇w(x∗) ∈ ∇w(int(D)). On the other hand,
as w is strictly convex on int(D), we can apply Corollary 4.1.7 to show ∇w is invertible
on int(D). Therefore, if c ∈ ∇w(int(D)) then there exists a unique x∗ ∈ int(D) such that
∇w(x∗) = c , i.e. x∗ = (∇w)−1(c), which attains the the global minimum of f0 on D.

Remark. Given a convex function w : D → R, we can define Fenchel conjugate of w
as w∗(c) := − infx∈D{w(x) − 〈c , x〉}. The relationship between w and its conjugate in
Lemma 4.1.9 can be generalized to general convex function settings in terms of subdif-
ferentials. To keep the exposition simple, we do not introduce the new notions and refer
interested readers to [126, 76] for more details.

It is easy to verify whether a univariate function is Legendre or not. For a function
with matrix domain, it is less trivial to verify it. However, there is a nice way to lift a
univariate Legendre function to a function with matrix domain that are unitary-invariant
and symmetric with respect to the eigenvalues of the input matrix (see [22] and [102] for
more details). In particular, by lifting the univariate Legendre functions x log x − x and
− q
q−1

x1− 1
q , one can show that the entropy regularizer and the general `1− 1

q
-regularizer (for

q > 1) are both Legendre functions. We include an elementary but not so insightful proof
for ` 1

2
-regularizer in Appendix A.3.

Lemma 4.1.10 (see, e.g., [22] and [102]). The entropy regularizer w(X ) = 〈X , log X − I 〉
and `1− 1

q
-regularizer w(X ) = − q

q−1
tr(X 1− 1

q ) (for q > 1) are Legendre functions.
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4.1.3 Mirror Descent Method

In this subsection, we formally prove that the two steps (4.4) and (4.5) in mirror descent
method are well-defined when the regularizer w is a Legendre function.

The first step (4.4) is an easy consequence of Lemma 4.1.9.

Lemma 4.1.11. Suppose the regularizer w : Sd+ → R is a Legendre function. For t > 2 in
step (4.4), if At−1 � 0 and ∇w(At−1)−αFt−1 ∈ ∇w(Sd++), then the minimizer in (4.4) can
be uniquely determined as Ãt = (∇w)−1(∇w(At−1)− αFt−1) � 0.

Proof. By the definition of Bregman divergence (4.2),

Dw(A,At−1) = w(A)− w(At−1)− 〈∇w(At−1),A− At−1〉

= w(A)− 〈∇w(At−1),A〉 −
(
w(At−1)− 〈∇w(At−1),At−1〉

)
.

As the second part does not depend on A, the optimization in (4.4) is equivalent to

argminA<0{Dw(A,At−1) + α〈A,Ft−1〉} = argminA<0{w(A)− 〈∇w(At−1)− αFt−1,A〉}.

Since ∇w(At−1)− αFt−1 ∈ ∇w(Sd++) and w is a Legendre function, we apply Lemma 4.1.9
with c = ∇w(At−1)−αFt−1 and conclude that Ãt = (∇w)−1(∇w(At−1)−αFt−1) � 0 is the
unique minimizer for (4.4).

Before we deal with the second step (4.5) of mirror descent method, we prove the
following lemma which is also useful for the analysis of FTRL algorithm.

Lemma 4.1.12. Suppose the regularizer w : Sd+ → R is a Legendre function and is con-
tinuous on the set of density matrices ∆d. For any symmetric matrix C ∈ Sd,

min
X∈∆d
{w(X )− 〈C ,X 〉} (4.7)

has a unique minimizer defined as

X ∗ = (∇w)−1(C + c · Id) � 0,

where c ∈ R is a unique scalar such that C + c · Id ∈ (∇w)−1(Sd++) and tr(X ∗) = 1.
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Proof. It is well-known that the infimum of a continuous function over a closed and bounded
set is attained (see, e.g., [127]). As w(·) − 〈C , ·〉 is continuous on ∆d by the assumption
on w and ∆d is closed and bounded, there exists at least one X ∗ ∈ ∆d that attains the
minimum. It remains to show the uniqueness and derive the expression for the minimizer
X ∗.

As w is a Legendre function, we can apply Lemma 4.1.8 with D = Sd+ and C = {X ∈
Sd+ | tr(X ) = 1}, and conclude that the minimizer X ∗ of (4.7) must stay in the interior of
Sd+, i.e. X ∗ � 0. Thus, the optimization in (4.7) is equivalent to

min
X∈∆d
{w(X )− 〈C ,X 〉} = min

X�0: tr(X )=1
{w(X )− 〈C ,X 〉}. (4.8)

As w is strictly convex over on Sd++, the uniqueness of the minimizer X ∗ follows from
Fact 4.1.2.

To derive the expression for X ∗, we note that the objective function is differentiable
over the open domain Sd++ and there is only one linear constraint. By Corollary 2.2.29, X ∗

is an optimal solution if and only if there exists a c ∈ R such that

∇w(X ∗)− C − c · Id = 0 and tr(X ∗) = 1.

As ∇w is invertible on Sd++ by the strict convexity of w (Corollary 4.1.7), it holds that
X ∗ = (∇w)−1(C + c · Id) � 0. The uniqueness of c follows from the uniqueness of the
minimizer X ∗.

In the second step of mirror descent method, given an Ãt � 0, we would like to project
it onto the closed and bounded set ∆d according to the “distance” defined by the Bregman
divergence.

Lemma 4.1.13. Suppose the regularizer w : Sd+ → R is a Legendre function and is con-
tinuous on the set of density matrices ∆d. For t > 2 in step (4.5), if Ãt � 0, then the
minimizer in (4.5) can be uniquely determined as

At = (∇w)−1(∇w(Ãt) + rt · Id) � 0,

where rt is the unique value such that ∇w(Ãt) + rt · Id ∈ ∇w(Sd++) and tr(At) = 1.
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Proof. Similar to the proof of Lemma 4.1.11, the optimization in (4.5) is equivalent to

argminA∈∆d{Dw(A, Ãt)} = argminA∈∆d{w(A)− 〈∇w(Ãt),A〉}.

Thus, the lemma follows by applying Lemma 4.1.12 with C = ∇w(Ãt).

Remark. We make the continuous assumption of w to guarantee that the optimal of the
convex program (4.8) is attained. We may want to use strong duality of (4.8) to achieve
the same goal. However, the strong duality that follows from the Slater’s condition only
guarantees that the dual optimal is attained. Consider a simple example infx>0 x

−1, the
optimal is not attained.

Nevertheless, we remark that the continuous assumption of w can be replaced by the
assumption that w is a closed proper convex function, which is part of the definition of
Legendre function in [126]. In general, based on the Bregman divergence induced by a Leg-
endre function, the projection of an interior point onto a closed convex set (not necessarily
bounded) is unique and staying in the interior (of the general domain). As Lemma 4.1.13
is already enough for our application, we decide to keep the exposition simple and not to
prove the general statement and refer the readers to Bauschke and Borwein’s work [22] for
more details.

From the proof Lemma 4.1.13, we see that if the regularizer w is a Legendre function,
then the Bregman projection of any X ∈ Sd++ onto ∆d with respect to w, i.e. X ∗ =

argminA∈∆d Dw(A,X ), is in Sd++. Thus, w is differentiable at X ∗. This resolves the issue
mentioned in Remark 4.1.4. Thus, we can avoid the non-differentiable issue and derive the
following corollary of the generalized Pythagorean theorem (Theorem 4.1.3), which will be
used later.

Corollary 4.1.14. Suppose w : Sd+ → R is a Legendre function. Let X ∈ Sd++ and
X ∗ = argminZ∈∆d Dw(Z ,X ) be the Bregman projection of X onto ∆d with respect to w.
Then, for any Y ∈ ∆d, it holds that Dw(Y ,X ) > Dw(Y ,X ∗).

Finally, we notice that if the initial action matrix A1 is a positive definite matrix, then
applying Lemma 4.1.11 and Lemma 4.1.13 repeatedly shows the mirror descent method is
well-defined for each subsequent iteration t > 2.
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4.1.4 Equivalence of FTRL Algorithm andMirror Descent Method

Now, we are ready to formally prove the equivalence of FTRL algorithm and mirror descent
method. We first derive the expression for the action matrices of the FTRL algorithm
without any assumptions on the feedback matrices.

Lemma 4.1.15. Suppose the regularizer w : Sd+ → R is a Legendre function and is con-
tinuous on the set of density matrix ∆d. The FTRL algorithm returns a unique minimizer
of (4.1)

At = (∇w)−1

(
− α

t−1∑
i=0

Fi + lt · Id
)
� 0 for all t > 0,

where lt ∈ R is the unique scalar such that −α
∑t−1

i=0 Fi + lt · Id ∈ ∇w(Sd++) and tr(At) = 1.

Proof. The lemma follows by applying Lemma 4.1.12 with C = −α
∑t−1

i=1 Fi.

With some additional assumptions on the feedback matrices, we show the equivalence
of the FTRL algorithm and mirror descent method.

Proposition 4.1.16. Suppose the regularizer w : Sd+ → R is a Legendre function and is
continuous on the set of density matrix ∆d. If the feedback matrices Ft’s satisfy ∇w(At)−
αFt ∈ ∇w(Sd++) for all t > 1, then both the mirror descent method and FTRL algorithm
play the following action matrix

At = (∇w)−1

(
− α

t−1∑
i=0

Fi + lt · Id
)
� 0 for all t > 1

where lt ∈ R is the unique scalar such that −α
∑t−1

i=0 Fi + lt · Id ∈ ∇w(Sd++) and tr(At) = 1.

Proof. By Lemma 4.1.15, the FTRL algorithm will play the action matrices claimed in the
proposition, even without the assumption on Ft’s. In the following, we prove by induction
the claim that mirror descent method also plays the same sequence of action matrices.

Take t = 1 as the base case, the claim follows by the initial setting of the mirror
descent method. Furthermore, Lemma 4.1.15 guarantees A1 � 0. Thus, we can apply
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Lemma 4.1.11 and Lemma 4.1.13 inductively. Assume the claim is true for the first t− 1

iterations. We consider the t-th iteration. By the induction hypothesis, At−1 = (∇w)−1
(
−

α
∑t−2

i=0 Fi + lt−1 · Id
)
� 0. Together with the assumption ∇w(At−1) − αFt−1 ∈ ∇w(Sd++),

we can apply Lemma 4.1.11 and find a unique minimizer of (4.4)

Ãt = (∇w)−1(∇w(At−1)− αFt−1) = (∇w)−1

(
− α

t−1∑
i=0

Fi + lt−1 · Id
)
� 0,

where the last equality follows by the induction hypothesis on At−1. Then, we apply
Lemma 4.1.13 and conclude that

At = (∇w)−1(∇w(Ãt) + rt · Id) = (∇w)−1

(
− α

t−1∑
i=0

Fi + lt−1 · Id + rt · Id
)
� 0,

where rt ∈ R is the unique scalar such that −α
∑t−1

i=0 Fi + (lt−1 + rt) · Id ∈ ∇w(Sd++) and
tr(At) = 1. Due to the uniqueness of lt−1 and lt (for the FTRL algorithm), we must have
lt = lt−1 + rt.

Remark. Notice that we do not make any assumption on the initial feedback matrix F0.
This will give us more flexibility in applications (e.g., in Chapter 5). This is exactly the
reason that we set the initial action matrix for mirror descent method from iteration t = 1

instead of t = 0.

Remark. As mentioned by Allen-Zhu, Liao, and Orrichia in [7], for the equivalence in
Proposition 4.1.16, the assumption on the feedback matrices, i.e. ∇w(At)−αFt ∈ ∇w(Sd++)

for all t > 1, can be removed if we use a one-step mirror descent update that combines (4.4)
and (4.5). More specifically, using At = argminA∈∆d{Dw(A,At−1) + α〈Ft−1,A〉} in the
mirror descent method is exactly equivalent to the FTRL algorithm. However, we focus on
the two-step description as it is crucial in the analysis of the regret bound.

After proving the equivalence of the FTRL algorithm and the mirror descent method
for general regularizers that are Legendre functions, we consider the special cases of ` 1

2
-

regularizer and entropy regularizer.
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Corollary 4.1.17. For the ` 1
2
-regularizer w(A) = −2 tr(A

1
2 ), if the feedback matrices Ft’s

satisfy A−
1
2

t + αFt � 0 for all t > 1, then both FTRL algorithm and mirror descent method
play the following action matrix

At =

(
α

t−1∑
i=0

Fi − lt · Id
)−2

for all t > 1, (4.9)

where lt is the unique scalar such that At � 0 and tr(At) = 1.

Proof. For A � 0, ∇w(A) = −A−
1
2 by Fact 2.2.4. Thus, (∇w)−1(A) = A−2 for A � 0

and ∇w(Sd++) = {X ≺ 0}. The condition ∇w(At) − αFt ∈ ∇w(Sd++) is equivalent to
A−

1
2

t +αFt � 0. We have checked that ` 1
2
-regularizer is a Legendre function in Lemma 4.1.10,

and it is obvious that ` 1
2
-regularizer is continuous on ∆d. Therefore, the corollary follows

from Proposition 4.1.16 directly.

Corollary 4.1.18. For the entropy regularizer w(A) = 〈A, log A−Id〉, both FTRL algorithm
and mirror descent method play the following action matrix

At = exp

(
lt · Id − α

t−1∑
i=0

Fi

)
for all t > 1, (4.10)

where lt is the unique scalar such that At � 0 and tr(At) = 1.

Proof. For A � 0, ∇w(A) = log A by Fact 2.2.5. Thus, (∇w)−1(A) = eA for A � 0 and
∇w(Sd++) = Sd. Therefore, we do not need to impose any restriction on the feedback matri-
ces Ft’s. Since entropy regularizer is a Legendre function (Lemma 4.1.10) and the entropy
regularizer is continuous on ∆d, the corollary follows from Proposition 4.1.16 directly.

Remark 4.1.19. Note that the scalar lt in (4.10) is used to normalize the matrix to a
density matrix, thus At can be rewritten as

At =
exp

(
− α

∑t−1
i=0 Fi

)
tr
(

exp
(
− α

∑t−1
i=0 Fi

)) .
This is exactly the action matrix used by the matrix multiplicative update method (see, e.g.,
Arora, Hazan, and Kale’s survey [11] for more details).
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4.2 A Generic Regret Bound with General Feedback

Matrices

In this section, we first derive a regret bound (Lemma 4.2.1) with respect to a general
regularizer that is a Legendre function. Then, we start to focus on the ` 1

2
-regularizer and

derive a generic regret bound with general feedback matrices (Theorem 4.2.6). This generic
bound will be used later in Section 6.3. With this generic bound, we derive some corollaries
with feedback matrices of specific forms (e.g., rank-one matrices and rank-two matrices).
These corollaries will be used in Section 4.3 in this chapter and in Chapter 5.

We start with a regret bound for general regularizers.

Lemma 4.2.1. Suppose we are given a regularizer w : Sd+ → R which is a Legendre
function. Let F0, . . . ,Fτ be the feedback matrices. We run the mirror descent method on
these feedback matrices. Let Ã2, . . . , Ãτ+1 be the intermediate matrices defined in (4.4), and
A1, . . . ,Aτ be the action matrices defined in (4.5). We further assume the feedback matrices
and action matrices satisfy ∇w(At)−αFt ∈ ∇w(Sd++) for all t > 1. Then, for any U ∈ ∆d,
the regret with respect to U can be bounded by

Rτ (U) =
τ∑
t=1

〈Ft,At − U〉 6 1

α
·
(
Dw(U,A1) +

τ∑
t=1

Dw(At, Ãt+1)

)
.

Proof. For any given t > 1, ∇w(At) − αFt ∈ ∇w(Sd++) by the assumption. Thus, Ãt+1 =

(∇w)−1(∇w(At)− αFt) � 0 by Lemma 4.1.11, which implies

∇w(At)−∇w(Ãt+1) = αFt.

Therefore, the regret (rescaled by a factor α) at iteration t > 1 is given by

〈αFt,At − U〉 = 〈∇w(At)−∇w(Ãt+1),At − U〉

= Dw(U,At) +Dw(At, Ãt+1)−Dw(U, Ãt+1)

6 Dw(U,At)−Dw(U,At+1) +Dw(At, Ãt+1),
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where the second inequality follows from the three-point-equality in Lemma 4.1.1, and
the last inequality follows by the corollary of the generalized Pythagorean theorem in
Corollary 4.1.14.

With a telescoping sum over all t > 1, it holds that

τ∑
t=1

〈αFt,At − U〉 6 Dw(U,A1)−Dw(U,Aτ+1) +
τ∑
t=1

Dw(At, Ãt+1)

6 Dw(U,A1) +
τ∑
t=1

Dw(At, Ãt+1),

where the last inequality follows as Dw(U,Aτ+1) > 0 by the non-negativity of Bregman
divergence in Lemma 4.1.1.

Remark. We make some remark about the assumption ∇w(At)− αFt ∈ ∇w(Sd++). As we
mentioned before, without this assumption, the FTRL algorithm is still well-defined.

However, the following example shows that this assumption is important anyway in
order to get a good regret bound. Consider the case where F0 = 0, then A1 = 1

d
Id for both

entropy and ` 1
2
-regularizers. When τ = 1 and U is the rank-one projection onto the top

eigenspace of F1 and F1 ≺ 0, then

〈F1,A1 − U〉 = 〈F1,A1〉+ ‖F1‖op =
1

d
tr(F1) + ‖F1‖op .

The error term ‖F1‖op is much larger than the loss 〈F1,A1〉 when F1 is rank-one.

Nevertheless, it is still interesting to see whether we can bypass the two-step mirror
descent analysis and directly analyze the FTRL algorithm.

In the remaining of this section, we specialize to the ` 1
2
-regularizer.

Proposition 4.2.2. Let F0, . . . ,Fτ be the feedback matrices. We run the mirror descent
method on these feedback matrices. Let Ã2, . . . , Ãτ+1 be the intermediate matrices defined
in (4.4), and A1, . . . ,Aτ be the action matrices defined in (4.5). We further assume the
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feedback matrices and action matrices satisfy A−
1
2

t + αFt � 0 for all t > 1. Then, for any
U ∈ ∆d, the regret with respect to U can be bounded by

Rτ (U) =
τ∑
t=1

〈Ft,At − U〉 6
τ∑
t=1

〈Ft,At〉+
1

α

τ∑
t=1

(
tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

))
+
Dw(U,A1)

α
.

The regret bound further implies

λmin

(
τ∑
t=0

Ft

)
> − 1

α

τ∑
t=1

(
tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

))
− 2
√
d

α
+ λmin(F0). (4.11)

Proof. Let w(A) = −2 tr(A
1
2 ) be the ` 1

2
-regularizer. Then, ∇w(A) = −A−

1
2 by Fact 2.2.4,

and ∇w(Sd++) = {X ≺ 0}. Thus, A−
1
2

t +αFt � 0 is equivalent to ∇w(At)−αFt ∈ ∇w(Sd++).
We can apply Lemma 4.2.1 and show that for any U ∈ ∆d,

τ∑
t=1

〈Ft,At − U〉 6 1

α
·
(
Dw(U,A1) +

τ∑
t=1

Dw(At, Ãt+1)

)
.

Then, we consider each Bregman divergence term in the summation

Dw(At, Ãt+1) = 〈Ã−
1
2

t+1,At〉+ tr
(
Ã

1
2
t+1

)
− 2 tr

(
A

1
2
t

)
= 〈A−

1
2

t + αFt,At〉+ tr
(
Ã

1
2
t+1

)
− 2 tr

(
A

1
2
t

)
= 〈αFt,At〉+ tr

(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

)
,

where we used (4.3) for the first equality. To prove the second last equality, we notice that

Ãt+1 = (∇w)−1(∇w(At)− αFt) = (−A−
1
2

t − αFt)−2 = (A−
1
2

t + αFt)−2, (4.12)

where the first equality follows by Lemma 4.1.11, and the second equality follows as
∇w(X ) = −X−

1
2 and (∇w)−1(X ) = X−2 by Fact 2.2.4.

Therefore, with ` 1
2
-regularizer, the regret with respect to U ∈ ∆d can be bounded by

τ∑
t=1

〈Ft,At − U〉 6
τ∑
t=1

〈Ft,At〉+
1

α

τ∑
t=1

(
tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

))
+
Dw(U,A1)

α
. (4.13)
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Then, we move on to prove the lower bound for the minimum eigenvalue of
∑τ

t=0 Ft. Let
U be a rank-one projection on the minimum eigenspace of

∑τ
t=0 Ft. We will show that

Dw(U,A1) 6 〈αF0,U〉+ 2
√
d− αλmin(F0). (4.14)

Note that

Dw(U,A1) = 〈A−
1
2

1 ,U〉+ tr(A
1
2
1 )− 2 tr(U

1
2 ) (by (4.3))

6 tr
(
A

1
2
1

)
+ 〈A−

1
2

1 ,U〉 (since U < 0)

= tr
(
A

1
2
1

)
+ 〈αF0 − l1I ,U〉 (by (4.9) for A1)

6
√
d+ 〈αF0,U〉 − l1,

where the last inequality follows by the fact that both A1,U are density matrices and
Claim 2.1.10. It remains to lower bound l1. Since F0 < λmin(F0) · Id, tr(A1) = 1 and A1 � 0,
it holds that

1 = tr(A1) 6
tr(Id)

(αλmin(F0)− l1)2
=

d

(αλmin(F0)− l1)2
=⇒ l1 > αλmin(F0)−

√
d. (4.15)

Thus, we established (4.14). The lemma follows from (4.13) by plugging in the upper
bound (4.14) of Dw(U,A1).

Proposition 4.2.2 shows that the term

tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

)
(4.16)

is crucial in controlling the minimum eigenvalue of
∑τ

t=0 Ft. This term was handled with
respect to feedback matrices Ft’s in some special forms in the literature. For example,
Allen-Zhu, Liao and Oreicchia [7] considered the cases where Ft’s are rank-one matrices,
positive semidefinite matrices or negative semidefinite matrices. Later, Allen-Zhu, Li, Singh
and Wang [6] considered the cases where Ft’s are rank-two matrices with both positive and
negative eigenvalues.
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In the remaining of this section, we show that the techniques in [7, 6] can be easily
generalized to handle feedback matrices in general form. More specifically, we consider
feedback matrices of the form

Ft = PtP>t − NtN>t and satisfying A−
1
2

t + αFt � 0,

where Pt ∈ Rd×d1 and Nt ∈ Rd×d2 for some d1, d2 > 0. Note that, this form is general
enough to capture all symmetric feedback matrices.

To bound (4.16), we start with considering the matrix Ã
1
2
t+1. Since A−

1
2

t + αFt � 0 by

assumption and At � 0, both A−
1
2

t and A−
1
2

t + αFt are invertible. By Woodbury matrix
identity Lemma 2.1.15,

Ã
1
2
t+1 =

(
A−

1
2

t + αPtP>t − αNtN>t
)−1

=

(
A−

1
2

t + α
(
Pt Nt

)(Id1

−Id2

)(
P>t
N>t

))−1

= A
1
2
t − αA

1
2
t

(
Pt Nt

)((Id1

−Id2

)
+ α

(
P>t
N>t

)
A

1
2
t

(
Pt Nt

))−1(
P>t
N>t

)
A

1
2
t .

(4.17)
To spectrally control this matrix, we need the following technical lemma, which is a gen-
eralization of Claim 2.10 in [6].

Lemma 4.2.3. Let E =
(

Id1
−Id2

)
, and suppose X ∈ Rd1×d1 ,Y ∈ Rd2×d2 and Z ∈ Rd1×d2.

If
(

X Z
Z> Y

)
< 0 and 2Y ≺ Id2, then we have(

E +

(
X Z

Z> Y

))−1

<

(
E +

(
2X

2Y

))−1

.

We note that the matrix E +
(

X Z
Z> Y

)
may not be positive definite, otherwise the lemma

is easy to prove. We defer the proof to the end of this section.

With the above technical lemma, we are ready to control the spectrum of Ã
1
2
t+1 and

tr(Ã
1
2
t+1)− tr(A

1
2
t ).

Lemma 4.2.4. Suppose we are given P ∈ Rd×d1 ,N ∈ Rd×d2, and A ∈ Sd++. If 2N>A−1N ≺
Id2, then it holds that A + PP> − NN> � 0 and(

A + PP> − NN>
)−1

4 A−1−A−1P(Id1 +2P>AP)−1P>A−1+A−1N(Id2−2N>AN)−1N>A−1.

94



Proof. By the assumption 2N>A−1N ≺ Id2 , apply Claim 2.1.8 with X = A and Y = N, it
follows that A + PP>−NN> � 0. We can apply Woodbury matrix identity Lemma 2.1.15
and derive

(
A + PP> − NN>

)−1 − A−1

= −A−1
(
P N

)((Id1

−Id2

)
+

(
P>A−1P P>A−1N

N>A−1P N>A−1N

))−1(
P>

N>

)
A−1. (4.18)

For A � 0, we can verify that(
P>A−1P P>A−1N

N>A−1P N>A−1N

)
=

(
P>

N>

)
A−1

(
P N

)
< 0.

Together with the assumption 2N>A−1N ≺ Id2 , we can apply Lemma 4.2.3 with X =

P>A−1P , Y = N>A−1N and Z = P>A−1N to conclude that((
Id1

−Id2

)
+

(
P>A−1P P>A−1N

N>A−1P N>A−1N

))−1

<

(
Id1 + 2P>A−1P

2N>A−1N − Id2

)−1

.

The lemma follows by applying the above inequality to (4.18) and rearranging the terms.

We mention a direct consequence of Lemma 4.2.4 which is useful in applications in
Chapter 7. By specializing Lemma 4.2.4 into rank-two updates and using Fact 2.1.9, we
have the following lemma (which was implicitly contained in the proof of Lemma 2.5 in [6]).

Lemma 4.2.5. Let A ∈ Rd×d � 0 and v , u ∈ Rd. If 2〈vv>,A−1〉 < 1, then it holds for any
X < 0 that

〈X ,
(
A− vv> + uu>

)−1〉 6 〈X ,A−1〉+
〈X ,A−1vv>A−1〉
1− 2〈vv>,A−1〉

− 〈X ,A
−1uu>A−1〉

1 + 2〈uu>,A−1〉
.

Finally, we are ready to present the main generic regret bound in this section.
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Theorem 4.2.6. Suppose the action matrix At ∈ Rd×d is of the form of (4.9) for some
α > 0. Suppose the initial feedback matrix F0 ∈ Sd is a symmetric matrix, and for all
t > 1, each feedback matrix Ft is of the form PtP>t −NtN>t for some Pt ∈ Rd×d1, Nt ∈ Rd×d2

(d1, d2 > 0) such that α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op
< 1

2
. Then, for any density matrix U ∈ ∆d, the

regret with respect to U can be bounded by

Rτ (U) 6
τ∑
t=1

(2α〈NtN>t ,At〉 ·
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

1− 2α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

+
2α〈PtP>t ,At〉 ·

∥∥∥A 1
4
t PtP>t A

1
4
t

∥∥∥
op

1 + 2α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

)
+
Dw(A1,U)

α
.

The above regret bound implies that

λmin

(
τ∑
t=0

Ft

)
>

τ∑
t=1

(
〈PtP>t ,At〉

1 + 2α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

− 〈NtN>t ,At〉

1− 2α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

)
−2
√
d

α
+λmin(F0).

Proof. Recall that (4.12) says Ãt+1 =
(
A−

1
2

t + αFt
)−2

=
(
A−

1
2

t + αPtP>t − αNtN>t
)−2

. By

Lemma 2.1.1, the matrices A
1
4
t NtN>t A

1
4
t and N>t A

1
2
t Nt have the same nonzero eigenvalues.

Thus, the assumption α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op
< 1

2
implies αN>t A

1
2
t Nt ≺ Id, which further implies

A−
1
2

t − αNtN>t � 0 by Claim 2.1.8. Thus, Ãt+1 � 0 is well-defined.

Applying Lemma 4.2.4 with A = A−
1
2

t , P =
√
αPt, N =

√
αNt, and then take trace on

both sides, we have

tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

)
6 α〈N>t AtNt, (Id2 − 2αN>t A

1
2
t Nt)

−1〉 − α〈P>t AtPt, (Id1 + 2αP>t A
1
2
t Pt)−1〉

Note that

Id2 − 2αN>t A
1
2
t Nt <

(
1− 2α

∥∥∥N>t A
1
2
t Nt

∥∥∥
op

)
· Id2 and

∥∥∥N>t A
1
2
t Nt

∥∥∥
op

=
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op
,

Id1 + 2αP>t A
1
2
t Pt 4

(
1 + 2α

∥∥∥P>t A
1
2
t Pt
∥∥∥

op

)
· Id1 and

∥∥∥P>t A
1
2
t Pt
∥∥∥
op

=
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op
.
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Thus,

tr
(
Ã

1
2
t+1

)
− tr

(
A

1
2
t

)
6

α〈NtN>t ,At〉

1− 2α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

− α〈PtP>t ,At〉

1 + 2α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

,

where we used the assumption α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op
< 1

2
. The theorem follows by plugging

the above bound into Proposition 4.2.2 and rearranging the terms.

Remark. We remark that, if the feedback matrices are either positive or negative semidef-
inite, then the constant factor 2 in the denominators can be removed by applying Woodbury
matrix identity directly instead of applying Lemma 4.2.4.

Recovering Results in Special Settings

When we specialize into rank-two feedback matrices, we have the following theorem, which
recovers the bound in [6], and will be used in Chapter 5 and Chapter 7.

Theorem 4.2.7. Suppose the action matrix At ∈ Rd×d is of the form of (4.9) for some
α > 0. Suppose the initial feedback matrix F0 ∈ Sd is a symmetric matrix, and for all
t > 1, each feedback matrix Ft is of the form vjtv>jt − vitv>it for some vjt , vit ∈ Rd such that

α〈vitv>it ,A
1
2
t 〉 < 1

2
. Then the minimum eigenvalue of

∑τ
t=0 Ft is bounded by

λmin

(
τ∑
t=0

Ft

)
>

τ∑
t=1

(
〈vjtv>jt ,At〉

1 + 2α〈vjtv>jt ,A
1
2
t 〉
−

〈vitv>it ,At〉

1− 2α〈vitv>it ,A
1
2
t 〉

)
− 2
√
d

α
+ λmin(F0).

When we specialize into rank-one positive/negative semidefinite matrices, we have the
following theorem, which essentially recovers the bound in [7, 5], and will be used in
Section 4.3.

Theorem 4.2.8. Suppose we are given vectors vit ∈ Rd for t > 1 and a learning rate
parameter α > 0. Let the initial feedback matrix F0 = 0, and the action matrix Xt ∈ Rd×d
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be of the form of (4.9) with respect to feedback matrix Ft = vitv>it for t > 1. Then the
minimum eigenvalue of

∑τ
t=1 vitv>it is bounded by

λmin

(
τ∑
t=1

vitv
>
it

)
>

τ∑
t=1

〈vitv>it ,Xt〉

1 + 2α〈vitv>it ,X
1
2
t 〉
− 2
√
d

α
.

Let the action matrix Yt ∈ Rd×d be of the form of (4.9) with respect to feedback matrix
Ft = −vitv>it for t > 1. Suppose the vectors vit’s further satisfy α〈vitv>it ,Y

1
2
t 〉 < 1

2
for all

t > 1, then the maximum eigenvalue of
∑τ

t=1 vitv>it is bounded by

λmax

(
τ∑
t=1

vitv
>
it

)
6

τ∑
t=1

〈vitv>it ,Yt〉

1− 2α〈vitv>it ,Y
1
2
t 〉

+
2
√
d

α
.

When Allen-Zhu, Li, Singh, and Wang applied Theorem 4.2.7 in [6] and Theorem 4.2.8
in [5], a key technical issue is to bound the term 〈Zt,At〉 and 〈Zt,A

1
2
t 〉, where Zt :=

∑t−1
i=0 Fi

is the partial solution at time t. Since Zt and At have the same eigenbasis due to the closed-
form (4.9), we can control the two terms by the following lemma (Claim 2.11 in [6]), which
will be used in Chapter 5 and Chapter 7. We include the proof here for completeness.

Lemma 4.2.9 (Claim 2.11 in [6]). Let Z < 0 be an d × d positive semidefinite matrix
and A = (αZ − lI )−2 for some α > 0 where l is the unique constant such that A � 0 and
tr(A) = 1. Then

〈Z ,A〉 6
√
d

α
+ λmin(Z ) and α〈Z ,A

1
2 〉 6 d+ α

√
d · λmin(Z ).

Proof. Since A and Z have the same eigenbasis, without loss of generality, we can assume
both A and Z are diagonal matrices to bound 〈Z ,A〉. Let λ1, . . . , λd be the eigenvalues of
Z , it holds that

〈Z ,A〉 =
d∑
i=1

λi
(αλi − l)2

=
1

α

d∑
i=1

αλi − l
(αλi − l)2

+
d∑
i=1

l/α

(αλi − l)2
=

tr(A
1
2 )

α
+
l

α
6

√
d

α
+λmin(Z ),

where the last equality holds as tr(A) = 1 and A � 0 implies αλi− l > 0 for all i ∈ [d], and
the last inequality holds as tr(A

1
2 ) 6

√
d (Claim 2.1.10 and tr(A) = 1) and l < αλmin(Z )

since αλmin(Z )− l > 0 (A � 0).
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By a similar argument, for the second inequality in the lemma, it holds that

α〈Z ,A
1
2 〉 =

d∑
i=1

αλi
αλi − l

= d+
d∑
i=1

l

αλi − l
6 d+ l ·

√
d 6 d+ α

√
d · λmin(Z ).

4.2.1 Deferred Proof of the Technical Lemma

Proof of Lemma 4.2.3. We first show that both E +
(

X Z
Z> Y

)
and E + ( 2X

2Y ) are indeed
invertible. By the assumption

(
X Z

Z> Y

)
< 0, we have X < 0, which implies Id1 + 2X � 0.

By the assumption 2Y ≺ Id2 , we also have −Id2 + 2Y ≺ 0. This verifies that E + ( 2X
2Y )

is invertible. Then, we consider the matrix E +
(

X Z
Z> Y

)
. For the sake of contradiction, we

assume there is a non-zero vector ( v1
v2 ) such that(

E +

(
X Z
Z> Y

))
·

(
v1

v2

)
= 0 =⇒

{
(Id1 + X )v1 + Zv2 = 0

Z>v1 + (Y − Id2)v2 = 0
.

It further implies that 0 = v>2 Z>v1 + v>2 (Y − Id2)v2 = −v>1 (Id1 + X )v1 + v>2 (Y − Id2)v2.
This contradicts with Id1 + X � 0 and −Id2 + Y ≺ 0 (which follows from our assumption
X ,Y < 0 and 2Y ≺ Id2). Thus, E +

(
X Z

Z> Y

)
is also invertible.

We write the positive semidefinite matrix
(

X Z
Z> Y

)
as(

X Z
Z> Y

)
= QQ> =

(
Q1

Q2

)(
Q>1 Q>2

)
,

where Q ∈ R(d1+d2)×r, Q1 ∈ Rd1×r, Q2 ∈ Rd2×r and r is the rank of the matrix
(

X Z
Z> Y

)
.

Then, notice that we also have

Q̃Q̃> :=

(
Q1

−Q2

)(
Q>1 −Q>2

)
=

(
X −Z
−Z> Y

)
< 0.
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Now, we consider the difference between
(
E +

(
X Z

Z> Y

))−1 and (E + ( 2X
2Y ))

−1

(
E +

(
X Z
Z> Y

))−1

−

(
E +

(
2X

2Y

))−1

=

(
E +

(
2X

2Y

)
− Q̃Q̃>

)−1

−

(
E +

(
2X

2Y

))−1

=

(
E +

(
2X

2Y

))−1

Q̃

Ir−Q̃>
(

E +

(
2X

2Y

))−1

Q̃

−1

Q̃>
(

E +

(
2X

2Y

))−1

where the last equality follows by Woodbury matrix identity Lemma 2.1.15, note that we
have already verified that both E +

(
X Z

Z> Y

)
and E + ( 2X

2Y ) are invertible.

For any given A ∈ R(d1+d2)×r and B ∈ Sr, if B < 0 then ABA> < 0, as we can verify
that x>ABA>x = y>By > 0 for any x ∈ Rd1+d2 and y = A>x . Therefore, to prove the
lemma, it suffices to show

Ir − Q̃>
(

E +

(
2X

2Y

))−1

Q̃ � 0.

By the condition 2Q2Q>2 = 2Y ≺ Id2 , it holds that

Q̃>
(

E +

(
2X

2Y

))−1

Q̃ =
(
Q>1 −Q>2

)((Id1 + 2X )−1

(2Y − Id2)−1

)(
Q1

−Q2

)
= Q>1 (Id1 + 2Q1Q>1 )−1Q1 + Q>2 (2Q2Q>2 − Id2)−1Q2

≺ Q>1 (Id1 + 2Q1Q>1 )−1Q1.

It remains to show that Q>1 (Id1 + 2Q1Q>1 )−1Q1 ≺ Ir. Apply Woodbury matrix identity
Lemma 2.1.15,

Q>1 (Id1 + 2Q1Q>1 )−1Q1 = Q>1 (Id1 − 2Q1(Ir + 2Q>1 Q1)−1Q>1 )Q1

= Q>1 Q1 − 2Q>1 Q1(Ir + 2Q>1 Q1)−1Q>1 Q1.
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Let Q1 = UΛV> be the singular value decomposition of Q1, where Λ ∈ Rr×r is a diagonal
matrix, U ∈ Rd1×r and V ∈ Rr×r are column orthonormal matrices. Thus, it holds that

Q>1 (Id1 + 2Q1Q>1 )−1Q1 = V Λ2V> − 2V Λ2V>(Ir + 2V Λ2V>)−1V Λ2V>

= V Λ2V> − 2V Λ2(Ir + 2Λ2)−1Λ2V>

= V
(
Λ2 − 2Λ2(Ir + 2Λ2)−1Λ2

)︸ ︷︷ ︸
M

V>,

where the second equality holds as V ∈ Rr×r is a column orthonormal matrix, which
implies V>V = VV> = Ir and (Ir + 2V Λ2V>)−1 = V (Ir + 2Λ2)−1V>.

Note that matrix M is a r-dimensional diagonal matrix with diagonal M(i, i) = Λ(i,i)2

1+2Λ(i,i)2

at the (i, i)-th entry. Since the function x
1+2x

< 1 for any x > 0, it follows that M ≺ Ir and
Q>1 (Id1 + 2Q1Q>1 )−1Q1 ≺ Ir as desired.

4.3 Regret Minimization Based Randomized Sampling

for Spectral Sparsification

In this section, we demonstrate how to apply the regret minimization framework to design
a randomized sampling algorithm for spectral sparsification. This randomized approach is
the main theme in this thesis.

We first recall the general version of the spectral sparsification problem.

Problem 2.5.2. Suppose we are given vectors v1, . . . , vm ∈ Rn and weights w ∈ Rm
+ such

that
∑m

i=1 w(i) · viv>i = In. For some given ε > 0, find a reweighting w̃ ∈ Rm
+ such that

(1 + ε)−1In 4
m∑
i=1

w̃(i) · viv>i 4 (1 + ε)In and |{i ∈ [m] : w̃(i) 6= 0}| is small.

To apply the regret minimization framework on spectral sparsifiaction, the sparsifier
construction algorithm will act in the role of adversary in the online game setting, and it

101



plays against two sequences of action matrices ({Xt}t for controlling the minimum eigen-
value and {Yt}t for controlling the maximum eigenvalue). In the t-th iteration, the algo-
rithm picks a vector vit from the input. With some appropriate reweighting ct > 0, the
algorithm uses Ft = ct · vitv>it as a feedback matrix for the action matrix Xt and uses −Ft
as a feedback matrix for the action matrix Yt. Both {Xt}t and {Yt}t use the FTRL algo-
rithm/mirror descent method with the ` 1

2
-regularizer. For the sequence of {Xt}t, it follows

from Theorem 4.2.8 that

λmin

( τ∑
t=1

Ft

)
>

τ∑
t=1

〈Ft,Xt〉

1 + 2α〈Ft,X
1
2
t 〉
− 2
√
n

α
.

For the sequence of {Yt}t, Theorem 4.2.8 implies

λmin

( τ∑
t=1

−Ft

)
>

τ∑
t=1

〈−Ft,Yt〉

1 + 2α〈−Ft,Y
1
2
t 〉
− 2
√
n

α
.

Note that λmin(−A) = −λmax(A) for A ∈ Sd. Thus, the above lower bound is equivalent to

λmax

( τ∑
t=1

Ft

)
6

τ∑
t=1

〈Ft,Yt〉

1− 2α〈Ft,Y
1
2
t 〉

+
2
√
n

α
.

Therefore, we can control both the maximum/minimum eigenvalues of the final solution.

The deterministic algorithm in [7] essentially follows the above plan but deviates slightly
by using different reweightings for the two sequences {Xt}t and {Yt}t. In particular, it picks
a vector vit in each iteration, and maintains two sequences of action matrices Xt and Yt
such that

Xt :=

(
α

t−1∑
l=1

vilv
>
il

〈vilv>il ,Xl〉
1
2

− ltIn

)−2

and Yt :=

(
utIn − α

t−1∑
l=1

vilv
>
il

〈vilv>il ,Yl〉
1
2

)−2

.

The two sequences of action matrices are connected by the restriction that the selected vec-
tor vit in the t-th iteration should satisfy 〈vitv>it ,Xt〉 > 〈vitv

>
it ,Yt〉. When 〈vitv>it ,Xt〉 is large,

the vector vit has large contribution to the lower eigenspace of the matrix
∑t−1

l=1

vitv
>
it

〈vitvit ,Xl〉
1
2
.

We have similar explanation for large 〈vitv>it ,Yt〉. Thus, intuitively, this restriction says we
want to find a vector vit that can move lower eigenvalues more than the higher eigenvalues.
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The existence of such a vector vit follows by an averaging argument as both Xt and Yt are
density matrices. Finally, the algorithm returns

∑τ
t=1

vitv
>
it

〈vitv
>
it
,Xt〉

1
2
after at most τ = O(n/ε2)

iterations.

Connections to BSS Algorithm

We make some observations about the connections between the barrier function based
BSS algorithm and the regret minimization framework based algorithm. We consider the
action matrix Xt for controlling the minimum eigenvalue as an example. As the action
matrix Xt � 0, lt naturally serves as a lower bound of the minimum eigenvalue of the
current solution. Then, we recall a key quantity in controlling the eigenvalues via the
regret bound, i.e. (4.16),

tr
(
X̃

1
2
t+1

)
− tr

(
X

1
2
t

)
= tr

((
αFt + α

t−1∑
l=1

Fl − ltIn
)−1

)
− tr

((
α

t−1∑
l=1

Fl − ltIn
)−1

)
,

where Ft is the feedback matrix for the sequence of Xt. The function tr(X
1
2
t ) has very similar

form as the lower barrier potential function in BSS algorithm, and tr(X̃
1
2
t+1) corresponds to

the value of potential function after adding the solution update Ft but without shifting the
current lower barrier. The difference in the two algorithms is that BSS maintains the two
barriers and the potential values explicitly, but the regret minimization based framework
adjusts the barriers implicitly and adaptively by requiring tr(Xt) = 1.

Based on the above observation, we translate the potential function guided adaptive
sampling algorithm in [101] (see Section 2.5 for a more technical discussion about the
algorithm in [101]) into the regret minimization framework.

4.3.1 Unifying Regret Minimization and Potential Function Sam-

pling
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Regret Minimization Based Randomized Sampling Algorithm

Input: vectors v1, . . . , vm ∈ Rn and weights w ∈ Rm
+ such that

∑m
i=1 w(i) ·viv>i = In.

1. Initialization: Z1 ← 0, α← ε and τ = n/ε2.

2. For t← 1 to τ do

(a) Compute Xt := (αZt− ltIn)−2 and Yt := (utIn−αZt)−2, where lt is the unique
scalar such that Xt � 0 and tr(Xt) = 1, and ut is the unique scalar such that
Yt � 0 and tr(Yt) = 1.

(b) Set Wt ← tr
(
X

1
2
t

)
+ tr

(
Y

1
2
t

)
.

(c) Sample a vector it = i with probability

pi :=
w(i)

Wt

·
(
〈viv>i ,X

1
2
t 〉+ 〈viv>i ,Y

1
2
t 〉
)
.

(d) Set

∆t ←
w(i)

pit
√
n
· vitv>it .

(e) Zt+1 ← Zt + ∆t and t← t+ 1.

3. Return Zτ as the solution.

Remark 4.3.1. We make some remark on the implementation of Step 2(a), which was
handled in [7] with a binary search. The key here is to find the unique scalar lt and ut. As
the calculations of lt and ut are similar, we only consider lt here. First, we observe that
lt < αλmin(Zt) as Xt � 0. Then, with a similar argument as in (4.15), we can show that
lt > αλmin(Zt)−

√
n, which implies that lt lays in an interval of length

√
n. Thus, we can

compute lt up to ±δ precision within O(log
√
n
δ

) binary search iterations, which suffices for
all the applications in this thesis. Therefore, we ignore the numerical issue and assume we
can find the exact value for lt and ut throughout the thesis.
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Notice that we have a
√
n factor in the denominator of the reweighting for the solution

update ∆t. The following simple observation explains the reason of using the
√
n factor.

Claim 4.3.2. For all t > 1, it holds that Wt 6 2
√
n and 〈∆t,X

1
2
t 〉, 〈∆t,Y

1
2
t 〉 < 2.

Proof. Since Xt and Yt are density matrices, tr(X
1
2
t ), tr(Y

1
2
t ) 6

√
n by Claim 2.1.10. Thus,

Wt 6 2
√
n. Then, we consider 〈∆t,Y

1
2
t 〉.

〈∆t,Y
1
2
t 〉 =

Wt√
n
·

〈vitv>it ,Y
1
2
t 〉

〈vitv>it ,X
1
2
t 〉+ 〈vitv>it ,Y

1
2
t 〉

< 2,

where we used Wt 6 2
√
n that we have just proved, and Xt � 0. Similarly, we have

〈∆t,X
1
2
t 〉 < 2.

From the above proof we see that the motivation of introducing the
√
n factor in ∆t is

to cancel the term Wt (i.e. the potential value) so that 〈∆t,X
1
2
t 〉 and 〈∆t,Y

1
2
t 〉 can be kept

small. Therefore, when α < 1
4
, we have 2α〈∆t,Y

1
2
t 〉 < 1 for all t > 1. Thus, we can apply

Theorem 4.2.8 with feedback matrix Ft = ∆t for action matrix Xt and feedback matrix
Ft = −∆t for action matrix Yt for t > 1, which gives

λmin

( τ∑
t=1

∆t

)
>

τ∑
t=1

〈∆t,Xt〉

1 + 2α〈∆t,X
1
2
t 〉
− 2
√
n

α
and

λmax

( τ∑
t=1

∆t

)
6

τ∑
t=1

〈∆t,Yt〉

1− 2α〈∆t,Y
1
2
t 〉

+
2
√
n

α
.

(4.19)

We denote the change of the lower bound on the minimum eigenvalue and the upper
bound on the maximum eigenvalue in each iteration as

Γ−t :=
〈∆t,Xt〉

1 + 2α〈∆t,X
1
2
t 〉

and Γ+
t :=

〈∆t,Yt〉

1− 2α〈∆t,Y
1
2
t 〉
.

We consider the conditional expectation of Γ−t and Γ+
t . We denote Et[Γ+

t ] as the con-
ditional expectation of Γ+

t given ∆1, . . . ,∆t−1 and Xt, and write Et[Γ−t ] similarly.
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Lemma 4.3.3. Let α < 1
4
. For each 1 6 t 6 τ , it holds that

1√
n(1 + 4α)

6 Et
[
Γ−t
]
6

1√
n

and
1√
n
6 Et[Γ+

t ] 6
1√

n(1− 4α)
.

Proof. The expected change of the spectral lower bound is

Et[Γ−t ] =
m∑
i=1

pi ·
w(i)
pi
√
n
· 〈viv>i ,Xt〉

1 + 2α · 〈∆t,X
1
2
t 〉

=
1√
n
·
m∑
i=1

w(i) · 〈viv>i ,Xt〉

1 + 2α · 〈∆t,X
1
2
t 〉

Note that the denominator 1 + 2α〈∆t,X
1
2
t 〉 < 1 + 4α by Claim 4.3.2. Together with∑m

i=1 w(i) · viv>i = In and tr(Xt) = 1, it holds that

Et[Γ−t ]


>

1

(1 + 4α)
√
n
·
m∑
i=1

w(i) · 〈viv>i ,Xt〉 =
1

(1 + 4α)
√
n

6
1√
n
·
m∑
i=1

w(i) · 〈viv>i ,Xt〉 =
1√
n

as desired. The bounds on Et[Γ+
t ] follows by similar calculations.

Et[Γ+
t ] =

m∑
i=1

pi ·
w(i)
pi
√
n
· 〈viv>i ,Yt〉

1− 2α · 〈∆t,Y
1
2
t 〉

=
1√
n
·
m∑
i=1

w(i) · 〈viv>i ,Xt〉

1− 2α · 〈∆t,Y
1
2
t 〉

Now, the denominator 1 − 2α · 〈∆t,Y
1
2
t 〉 > 1 − 4α > 0 by Claim 4.3.2 and the condition

α < 1
4
. Together with

∑m
i=1 w(i) · viv>i = In and tr(Yt) = 1, it holds that

Et[Γ+
t ]


>

1√
n
·
m∑
i=1

w(i) · 〈viv>i ,Yt〉 =
1√
n

6
1

(1− 4α)
√
n
·
m∑
i=1

w(i) · 〈viv>i ,Yt〉 =
1

(1− 4α)
√
n
.

In expectation, the spectrum of the final solution lays in the range of
√
n

α2 ±Θ(
√
n
α

) after
n/α2 iterations (according to (4.19)). This implies a 1 ± Θ(α) condition number of the
final solution, as desired.
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With Freedman’s inequality Theorem 3.2.3, we show that the behavior of the expec-
tation is indeed typical, i.e. the sum of Γ−t and Γ+

t are highly concentrated around the
expectation.

Lemma 4.3.4. For α < 1
5
and any δ > 0, it follows that

P

[
τ∑
t=1

Γ+
t >

τ∑
t=1

Et[Γ+
t ] + δ

]
6 exp

(
−Ω
( δ2

τ/
√
n+ δ

))
and

P

[
τ∑
t=1

Γ−t 6
τ∑
t=1

Et[Γ−t ]− δ

]
6 exp

(
−Ω
( δ2

τ/
√
n+ δ

))
.

Proof. We first deal with the sum of Γ+
t . We define a martingale as follows.

Xt := Γ+
t − Et[Γ+

t ] and Yt :=
t∑
l=1

Xl, ∀1 6 t 6 τ.

Then, we upper bound Γ+
t deterministically.

Γ+
t =

〈∆t,Yt〉

1− 2α〈∆t,Y
1
2
t 〉

=
〈vitv>it ,Yt〉

√
npit/w(it)− 2α〈vitv>it ,Y

1
2
t 〉

=
〈vitv>it ,Yt〉

(
√
n

Wt
− 2α)〈vitv>it ,Y

1
2
t 〉+

√
n

Wt
〈vitv>it ,X

1
2
t 〉

6
〈vitv>it ,Yt〉

(
√
n

Wt
− 2α)〈vitv>it ,Y

1
2
t 〉

6
2

1− 4α
,

where we used α < 1
5
, Wt 6 2

√
n and 〈vitv>it ,Yt〉 6 〈vitv

>
it ,Y

1
2
t 〉 (since 0 ≺ Yt ≺ In) in the

last inequality.

Since Γ+
t > 0, we can also bound the second moment of Γ+

t by

Et[(Γ+
t )2] 6

2

1− 4α
· Et[Γ+

t ] = O
( 1√

n

)
,

where the last inequality follows by Lemma 4.3.3. Thus, we have

Xt 6
2

1− 4α
= O(1) and Et[X2

t ] 6 Et[(Γ+
t )2] = O

( 1√
n

)
∀t ∈ [τ ].
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Apply Freedman’s inequality Theorem 3.2.3 with R = O(1), σ2
t = O( 1√

n
) for all t ∈ [τ ],

and σ2 = O( τ√
n
), we have

P [Yτ > δ] 6 exp

(
−Ω
( δ2

τ/
√
n+ δ

))
.

The first probability bound in the lemma (about the deviation of sum of Γ+
t ) follows by

observing Yτ > δ is equivalent to
∑τ

t=1 Γ+
t >

∑τ
t=1 Et[Γ

+
t ] + δ. The second probability

bound in the lemma about the deviation of sum of Γ−t follows from essentially the same
proof.

Finally, we are ready to show the Regret Minimization Based Randomized Sampling
Algorithm returns a (1 +O(ε))-spectral sparsifier with high probability.

Theorem 4.3.5. For τ = n/ε2 and α = ε, the Regret Minimization Based Randomized
Algorithm returns a (1 + O(ε)) spectral sparsifier of size at most n/ε2 with probability at
least 1− exp(−Ω(

√
n)).

Proof. By Lemma 4.3.3,
τ∑
t=1

Et[Γ+
t ] 6

τ

(1− 4α)
√
n
.

Together with (4.19), the event

λmax(Zτ ) >
τ

(1− 4α)
√
n

+
3
√
n

α
=⇒

τ∑
t=1

Γ+
t +

2
√
n

α
> λmax(Zτ ) >

τ∑
t=1

Et[Γ+
t ]+

3
√
n

α
.

Take τ = n/ε2 and α = ε, we have

P
[
λmax(Zτ ) >

√
n

(1− 4ε)ε2
+

3
√
n

ε

]
6 P

[
τ∑
t=1

Γ+
t >

τ∑
t=1

Et[Γ+
t ] +

√
n

ε

]

6 exp

(
−Ω
( n/ε2

√
n/ε2 +

√
n/ε

))
6 exp(−Ω(

√
n)).
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where the second last inequality follows by applying Lemma 4.3.4 with δ =
√
n/ε. Similarly,

we can bound the probability of having small minimum eigenvalue,

P
[
λmin(Zτ ) 6

√
n

(1 + 4ε)ε2
− 3
√
n

ε

]
6 exp(−Ω(

√
n)).

Therefore, with probability at least 1 − exp(−Ω(
√
n)), the condition number of Zτ is

bounded by
λmax(Zτ )
λmin(Zτ )

6

√
n

(1−4ε)ε2
+ 3

√
n
ε

√
n

(1+4ε)ε2
− 3

√
n
ε

= 1 +O(ε).

Discussions

We make some remarks about the Regret Minimization Based Randomized Sampling Al-
gorithm which unifies the regret minimization framework and barrier potential function
guided adaptive sampling algorithm.

The algorithm in [7] uses different reweightings for the two sequences of action matrices.
The choices of the reweightings are not very intuitive and the analysis of the algorithm is
more involved. The reweightings in the Regret Minimization Based Randomized Sampling
Algorithm were intuitively designed such that the expected update is proportional to the
identity matrix. The analysis of the algorithm is also very straight forward. One disad-
vantage of the Regret Minimization Based Randomized Sampling Algorithm is that it does
not seem easy to derandomize the algorithm to give a deterministic algorithm.

As in BSS algorithm, the potential function guided adaptive sampling algorithm in [101]
maintains the barriers explicitly, and there are more parameters that need to be kept track
of, e.g., the initial potential value, the step size of the solution update, the upper/lower
barrier shifts, etc. In contrast, using the machinery from regret minimization, the algorithm
we proposed in this section is more principled with only one parameter α to adjust. We can
perform the algorithm analysis within a single framework. In particular, we do not need
to worry about how to shift the upper/lower barriers in the analysis, as they are handled
by the regret minimization framework (with the requirement that each action matrix is a
density matrix). Furthermore, the potential value of each iteration can be easily bounded
as in Claim 4.3.2, thus the analysis of the eigenvalue bounds also becomes simpler.
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Finally, we remark that the most important advantage of using the random sampling
idea (as in [101] and this section) is that we can find solutions that satisfy many differ-
ent properties simultaneously due to the concentration properties of the algorithm. For
example, the algorithm can return a sparsifier that maintains the cost of the input graph.
We will demonstrate this idea with more concrete examples in Chapter 5, Chapter 6, and
Chapter 7.
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Chapter 5

Spectral Rounding

In this chapter, we study the spectral rounding problem, which is the central problem in
this thesis. We recall the problem statement in Chapter 1.

Question 1.1.1 (Spectral Rounding). Suppose we are given vectors v1, . . . , vm ∈ Rd and
x ∈ [0, 1]m such that

∑m
i=1 x(i) · viv>i = Id, where Id is the d-dimensional identity matrix.

Given a non-negative “cost” vector c ∈ Rm
+ , find z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i ≈ Id and 〈c , z〉 ≈ 〈c , x〉.

This problem is similar to the spectral sparsification problem introduced by Spielman
and Teng [133] (see Section 2.5). In spectral sparsification, the goal is to find a sparse non-
negative vector y ∈ Rm

+ to approximate the spectral properties of a given fractional vector
x . Spectral rounding is different in that we want to find an integral vector z ∈ {0, 1}m to
approximate the spectral properties of x and preserve the cost simultaneously.

To approximate the spectral properties of a fractional vector, we will consider two
different settings.

• One-sided spectral rounding: Find z ∈ {0, 1}m such that
m∑
i=1

z(i) · viv>i & Id and 〈c , z〉 ≈ 〈c , x〉.
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• Two-sided spectral rounding: Find z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i ≈ Id and 〈c , z〉 ≈ 〈c , x〉.

Organization

We present the previous work about both settings of spectral rounding and state our
main results in Section 5.1. Then, we present our one-sided spectral rounding algorithm
in Section 5.2. We present our non-constructive two-sided spectral rounding bound in
Section 5.3. Finally, we gave some tight examples about one-sided spectral rounding in
Section 5.4.

5.1 Previous Work and Our Contributions

The most relevant works for spectral rounding are from spectral sparsification and discrep-
ancy theory. There are two previous theorems that imply non-trivial results for spectral
rounding.

One-Sided Spectral Rounding

Allen-Zhu, Li, Singh, and Wang [6] formulated and proved the following spectral rounding
theorem, using a regret minimization framework for spectral sparsification [7] (see Chap-
ter 4).

Theorem 5.1.1 (Theorem 2.1 in [6]). Let v1, v2, . . . , vm ∈ Rd, x ∈ [0, 1]m and k =∑m
i=1 x(i). Suppose

∑m
i=1 x(i) · viv>i = Id and k > 5d/ε2 for some ε ∈ (0, 1

3
]. Then there is

a polynomial time algorithm to return a subset S ⊆ [m] with

|S| 6 k and
∑
i∈S

viv>i < (1− 3ε) · Id.
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Theorem 5.1.1 can be understood as a one-sided spectral rounding result, where the
fractional solution x is rounded to a zero-one solution while the budget constraint is satisfied
and the spectral lower bound is approximately satisfied. Through a general reduction, this
theorem implies near-optimal approximation algorithms for a large class of experimental
design problems (see Section 7.2).

Two-Sided Spectral Rounding

The techniques in spectral sparsification have been extended greatly to prove discrepancy
theorems in spectral settings [111, 9, 91]. The following recent result by Kyng, Luh,
and Song [91] provides the most refined formulation in the discrepancy setting, using the
method of interlacing polynomials and the barrier arguments developed in [110, 111, 9]
(see Section 2.6 for a more detailed survey).

Theorem 2.6.10 (Theorem 1.4 in [91]). Let v1, ..., vm ∈ Rd, and ξ1, ..., ξm be independent
random scalar variables with finite support. There exists a choice of outcomes ε1, ..., εm in
the support of ξ1, ..., ξm such that∥∥∥∥∥

m∑
i=1

E [ξi] · viv>i −
m∑
i=1

εi · viv>i

∥∥∥∥∥
op

6 4

∥∥∥∥∥
m∑
i=1

Var[ξi](viv>i )2

∥∥∥∥∥
1
2

op

.

We note that Theorem 2.6.10 implies the following two-sided spectral rounding result,
which is very similar to Corollary 1.7 in [91] but with a weaker assumption, where we only
need

∥∥∑m
i=1 x(i) · viv>i

∥∥
op

6 1 instead of
∥∥∑m

i=1 viv>i
∥∥

op
6 1 as in [91]. The proof will be

presented in Section 5.3 in a more general setting.

Corollary 5.1.2. Let v1, ..., vm ∈ Rd and x ∈ [0, 1]m. Suppose
∑m

i=1 x(i) · viv>i = Id and
‖vi‖2 6 ε for all i ∈ [m]. Then there exists a subset S ⊆ [m] satisfying

(1−O(ε)) · Id 4
∑
i∈S

viv>i 4 (1 +O(ε)) · Id.

Comparing to Theorem 5.1.1, the advantage of Corollary 5.1.2 is that it provides a two-
sided spectral approximation. On the other hand, Corollary 5.1.2 requires the assumption

113



that all vectors are short, and it has no guarantee on the size of S. Also, it is important to
point out that the proof of Corollary 5.1.2 does not provide a polynomial time algorithm
to find such a subset.

5.1.1 Our Contributions

We extend the previous results on spectral rounding to incorporate non-negative linear con-
straints, which can satisfy the requirements for network design problems (see Section 6.1).

Our main result for spectral rounding considers one-sided spectral rounding.

Theorem 5.1.3. Suppose we are given v1, ..., vm ∈ Rd and x ∈ [0, 1]m such that
∑m

i=1 x(i) ·
viv>i = Id. For any ε ∈ (0, 1

4
), there is a polynomial time randomized algorithm that returns

a solution z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i < Id

with probability at least 1 − exp (−Ω(d)). Furthermore, for any c ∈ Rm
+ , the solution z

satisfies the upper bound

〈c , z〉 6 (1 + 6ε)〈c , x〉+
15d ‖c‖∞

ε

with probability at least 1− exp(−Ω(d)), and the solution z satisfies the lower bound

〈c , z〉 > 〈c , x〉 − δd ‖c‖∞

with probability at least 1− exp (−Ω (min{εδ, εδ2} · d)) for δ > 0.

The main advantage of Theorem 5.1.3 over Theorem 5.1.1 is that we can prove 〈c , z〉 is
not too far from 〈c , x〉 for an arbitrary vector c ∈ Rm

+ with high probability. Note that the
guarantee on linear constraints can be applied to up to exponentially many constraints.
This allows us to incorporate multiple linear constraints in applications to network design
(see Chapter 6) and experimental design (see Chapter 7).
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We note that there are examples showing that the additive error term O(d ‖c‖∞ /ε) in
Theorem 5.1.3 is tight up to a constant factor (see Section 5.4).

For two-sided spectral rounding, we show that Corollary 5.1.2 can be extended to
incorporate one given non-negative linear constraint.

Theorem 5.1.4. Let v1, ..., vm ∈ Rd, x ∈ [0, 1]m and c ∈ Rm
+ . Suppose

∑m
i=1 x(i)·viv>i = Id,

‖vi‖ 6 ε < 1
8
for all i ∈ [m] and ‖c‖∞ 6 ε2〈c , x〉. Then there exists z ⊆ {0, 1}m such that

(1− 8ε) · Id 4
m∑
i=1

z(i) · viv>i 4 (1 + 8ε) · Id and (1− 8ε)〈c , x〉 6 〈c , z〉 6 (1 + 8ε)〈c , x〉.

Note that the linear constraint c in Theorem 5.1.4 is required to be given as part
of the input, while it is not required so in Theorem 5.1.3. Theorem 5.1.4 is useful in
bounding the integrality gap for convex programs for network design problems, showing
strong approximation results when the assumptions are satisfied (see Section 6.1.4). Also,
we will show in Section 6.3 that it can be used in the study of additive unweighted spectral
sparsification [20], proving an optimal existential result.

Technical Overview for the One-Sided Spectral Rounding Algorithm

Our algorithms for one-sided spectral rounding is based on the regret minimization frame-
work developed in [7, 6] for spectral sparsification and experimental design. Let us first
review the previous work. To prove Theorem 5.1.1, Allen-Zhu, Li, Singh, and Wang [6]
analyzed a local search algorithm where they start from an arbitrary subset S0 of k vectors,
and in each iteration t > 1 they find a pair of vectors i ∈ St−1 and j /∈ St−1 so that roughly
speaking λmin(

∑
l∈St−1−i+j vlv>l ) > λmin(

∑
l∈St−1

vlv>l ), and then they set St = St−1−it+jt.
Using the framework of regret minimization, with the ` 1

2
-regularizer introduced in [7], they

proved that the task of finding a pair to improve the minimum eigenvalue can be reduced
to finding a pair it ∈ St−1 and jt /∈ St−1 so that

〈vjtv>jt ,At〉

1 + 2α〈vjtv>jt ,A
1
2
t 〉
−

〈vitv>it ,At〉

1− 2α〈vitv>it ,A
1
2
t 〉

> ∆ > 0, (5.1)

115



where At is the action matrix defined in (4.9) based on the current solution St−1. Us-
ing a delicate argument, they proved that if it ∈ St−1 (subject to the restriction that
2α〈viv>i ,A

1
2
t 〉 < 1) is chosen to minimize 〈viv>i ,At〉/

(
1 − 2α〈viv>i ,A

1
2
t 〉
)
and jt /∈ St−1 is

chosen to maximize 〈vjv>j ,At〉/
(
1 + 2α〈vjv>j ,A

1
2
t 〉
)
, then this pair it, jt satisfies the above

inequality with ∆ = ε
k
as long as λmin(

∑
l∈St−1

vlv>l ) 6 1− 3ε. This implies, by the regret
minimization framework, that the local search algorithm will succeed to find a solution Sτ
with λmin(

∑
l∈Sτ vlv>l ) > 1 − 3ε within τ 6 k

ε
iterations. See Chapter 4 for more details

about the regret minimization framework.

To incorporate non-negative linear constraints, our idea is to turn the deterministic
local search algorithm into an iterative randomized rounding algorithm. In this randomized
rounding algorithm, we first construct an initial solution S0 by adding each i into S0 with
probability x(i) independently. This will ensure that c(S0) ≈ 〈c , x〉 with high probability.
In each iteration t > 1, based on the current solution St−1, we construct a probability
distribution to sample a vector vit to be removed from St−1, and a probability distribution
to sample a vector vjt to be added to St−1. To maintain c(St) ≈ 〈c , x〉, the basic idea is
to remove a vector vi with probability proportional to 1 − x(i) and add a vector vj with
probability proportional to x(j), but doing so may not satisfy the spectral lower bound
with good probability. Instead, we prove that if we recompute the sampling probability so
that a vector vi is removed with probability proportional to (1− x(i)) · (1− 2α〈viv>i ,A

1
2
t 〉)

and a vector vj is added with probability proportional to x(j) · (1 + 2α〈viv>i ,A
1
2
t 〉), then

(5.1) is satisfied with expected progress E [∆] > ε
k
as long as λmin(

∑
l∈St−1

vlv>l ) 6 1− 2ε.
Informally, a vector pointing to a direction that is not well covered by the current solution
is more likely to be added and less likely to be removed, to ensure that the spectral lower
bound will be satisfied. However, this changes the expectation on the linear constraint,
but we can bound the error by the additive term O(

d‖c‖∞
ε

). Note that there are examples
showing that this additive error is unavoidable if our goal is to satisfy the spectral lower
bound exactly (see Section 5.4), so our analysis is tight up to a constant factor. Compared
to the deterministic approach in [6], this randomized approach uses the fractional solution
x more crucially in the rounding procedure, and we note that it can be used to give a
simpler proof of the deterministic local search algorithm in [6] (see Remark 5.2.5).

The advantage of the randomized approach is that we can prove that the random

116



variables are concentrated around their expected values, so that we can handle multiple
non-negative linear constraints simultaneously. Since the sampling probabilities change
over time based on the previous samples, the random variables that we consider are not a
sum of independent random variables and thus Chernoff type bounds cannot be applied.
For the spectral lower bound, we will define a martingale and use Freedman’s inequality to
prove that the total progress we make in (5.1) is concentrated around its expected value.
For the non-negative linear constraints, we show that they satisfy an interesting “self-
adjusting” property, such that if c(St) − 〈c , x〉 is (more) positive then E [c(St+1)] − c(St)

is (more) negative and vice versa, so intuitively c(St) ≈ 〈c , x〉 with high probability for
any t. This sequence of random variables is not a martingale and so Freedman’s inequality
cannot be applied. Instead, we prove a new concentration inequality (see Section 3.3) for
this self-adjusting process that provides a quantitative bound similar to that in Freedman’s
inequality. We note that the iterative randomized rounding algorithm does not even need
to know the linear constraint c in advance in order to return a solution S with c(S) ≈
〈c , x〉. This property is quite similar to that of a recent rounding algorithm by Bansal [16]
combining iterative rounding and randomized rounding as we will discuss in Section 6.1.5.

We remark that our approach to turn a deterministic algorithm into a randomized
algorithm is inspired by the fast algorithm for spectral sparsification by Lee and Sun [101],
where they turned the deterministic algorithm by Batson, Spielman and Srivastava [21] into
a randomized algorithm that recomputes the sampling probabilities in different phases (see
Section 2.5 for more details). In their algorithm, the advantage of the randomized algorithm
is to sample many vectors in parallel instead of carefully choosing one vector at a time as
in [21]. In our algorithm, the advantage of the randomized algorithm is to approximately
preserves many linear constraints simultaneously using arguments about expectation and
concentration, while it is not clear how to modify the proofs in the deterministic local
search algorithm in [6] to prove that there is always a pair of vectors vi, vj which makes
enough progress in (5.1) and at the same time c(j)− c(i) is small, even if there is only one
constraint c and it is given in advance. We believe that this probabilistic approach will be
useful in designing algorithms using the regret minimization framework.
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5.2 Constructive One-Sided Spectral Rounding

In this section, we first present our iterative randomized rounding algorithm for one-sided
spectral rounding and state the main technical result, a bicriteria approximation theorem,
in Section 5.2.1. Then, we prove the bicriteria approximation theorem by analyzing the
probability of approximately meeting the spectral requirement in Section 5.2.2 and ana-
lyzing the probability of approximately satisfying the linear constraint in Section 5.2.3.
Finally, we prove our main result for one-sided spectral rounding Theorem 5.1.3 in Sec-
tion 5.2.4.

5.2.1 Iterative Randomized Rounding Algorithm

We modify the deterministic local search algorithm in [6] to an iterative randomized round-
ing algorithm so as to approximately satisfy arbitrary non-negative linear constraints. In
this randomized algorithm, we first construct an initial solution S0 by adding each vector
vi into S0 with probability x(i) independently. In each iteration t > 1, based on the current
solution St−1, we construct a probability distribution to sample a vector vit to be removed
from St−1, and a probability distribution to sample a vector vjt to be added to St−1. The
basic idea is that a vector vi is removed with probability proportional to 1 − x(i) and a
vector vj is added with probability proportional to x(j), but the probability is also adjusted
based on the vector’s contribution to the minimum eigenvalue of the current solution. We
remark that it is possible that no vector is removed and/or no vector is added in an itera-
tion. The algorithm stops when the minimum eigenvalue of the current solution is at least
1− 2ε. The following is the formal description of the algorithm.
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Iterative Randomized Swapping Algorithm

Input: v1, ..., vm ∈ Rd and x ∈ [0, 1]m with
∑m

i=1 x(i)·viv>i = Id, and an error parameter
γ ∈ (0, 1

2
).

Output: a subset S ⊆ [m] such that
∑

i∈S viv>i < (1 − 2γ)Id and c(S) ≈ 〈c , x〉 for any
c ∈ Rm

+ with high probability.

1. Initialization: S0 ← ∅, α←
√
d
γ
, k ← m+ 2α

√
d.

2. Add i into S0 independently with probability x(i) for each i ∈ [m].

3. Let Z1 ←
∑

i∈S0
viv>i and t← 1.

4. While λmin(Zt) < 1− 2γ do

(a) Compute the action matrix At ← (αZt− ltId)−2, where lt ∈ R is the unique
value such that At � 0 and tr(At) = 1.1

(b) Define S ′t−1 := {i ∈ St−1 : 2α〈viv>i ,A
1
2
t 〉 < 1

2
}.

(c) Sample it from the following probability distribution:

P [it = i] =
1

k
(1− x(i))(1− 2α〈viv>i ,A

1
2
t 〉) for i ∈ S ′t−1,

and P [it = ∅] = 1−
∑

i∈S′t−1
P [it = i].

(d) Sample jt from the following probability distribution:

P [jt = j] =
x(j)

k
(1 + 2α〈vjv>j ,A

1
2
t 〉) for j ∈ [m]\St−1,

and P [jt = ∅] = 1−
∑

j∈[m]\St−1
P [jt = j].

(e) Set St ← St−1 ∪ {jt}\{it}, Zt+1 ←
∑

i∈St viv
>
i , and t← t+ 1.

5. Return S = St−1 as the solution.
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Before we state the main result of this algorithm, we first check that the algorithm is
well-defined.

Claim 5.2.1. The probability distributions in each iteration of the iterative randomized
swapping algorithm are well-defined.

Proof. To verify that the probability distribution for sampling it is well-defined, we need
to show that P [it = i] > 0 for i ∈ S ′t−1 and

∑
i∈S′t−1

P [it = i] 6 1. Since At � 0, x(i) ∈ [0, 1]

and 2α〈viv>i ,A
1
2
t 〉 6 1

2
for i ∈ S ′t−1, it follows that for i ∈ S ′t−1 we have

0 6 P [it = i] =
1

k
(1− x(i))(1− 2α〈viv>i ,A

1
2
t 〉) 6

1

k
,

and this implies that
∑

i∈S′t−1
P [it = i] 6

|S′t−1|
k

6 m
k
< 1 by the definition of k.

Next we verify that the probability distribution for sampling jt is well-defined. It is
clear that P [jt = j] > 0 as At � 0 and x(j) ∈ [0, 1]. We claim that∑

j∈[m]\St−1

P [jt = j] 6
∑
j∈[m]

P(jt = j) 6 1

as

∑
j∈[m]

P [jt = j] =
1

k

m∑
j=1

x(j) · (1 + 2α〈vjv>j ,A
1
2
t 〉) =

1

k

(
m∑
j=1

x(j) + 2α tr(A
1
2
t )

)

6
1

k

(
m+ 2α

√
d
)

= 1,

where the second equality is by the assumption that
∑m

j=1 x(j) ·vjv>j = Id, the last equality
is by the definition of k, and the inequality uses that x(j) ∈ [0, 1], and the bound that
tr(A

1
2
t ) 6

√
d from Claim 2.1.10.

The following is the main technical result for one-sided spectral rounding.
1Step 4(a) can be implemented with a binary search step as mentioned in Remark 4.3.1.
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Theorem 5.2.2. Suppose we are given v1, ..., vm ∈ Rd, x ∈ [0, 1]m such that
∑m

i=1 x(i) ·
viv>i = Id. For any γ ∈ (0, 1

2
), the iterative randomized swapping algorithm returns a subset

S ⊆ [m] satisfying ∑
i∈S

viv>i < (1− 2γ) · Id

within qk
γ

iterations with probability at least 1 − exp
(
−Ω(q

√
d)
)
for q > 2. Furthermore,

for any c ∈ Rm
+ and any δ1 ∈ [0, 1], δ2 ∈ [0, 1] and δ3 > 0, the probability that the returned

solution S satisfies the cost upper bound is

P
[
c(S) 6 (1 + δ1)〈c , x〉+

15d ‖c‖∞
γ

]
> 1− exp

[
−Ω

(
δ1d

γ

)]
,

and the probability that the returned solution S satisfies the cost lower bound is

P [c(S) > (1− δ2)〈c , x〉 − δ3d ‖c‖∞] > 1− exp
[
− Ω

(
min{δ2δ3, γδ

2
3} · d

)]
.

Remark. If we set δ1 = δ2 = γ and δ3 = 1
γ
, then Theorem 5.2.2 states that the returned

solution S satisfies

(1− γ)〈c , x〉 − d ‖c‖∞
γ

6 c(S) 6 (1 + γ)〈c , x〉+
15d ‖c‖∞

γ

with probability at least 1− exp(−Ω(d)) for any c ∈ Rm
+ . We introduce δ1, δ2, δ3 to have a

more refined control of the failure probability of the lower bound, and this will be relevant
in showing that linear covering constraints can be almost satisfied.

As a corollary of Theorem 5.2.2, we can also satisfy the linear constraint c(S) 6 〈c , x〉
exactly when 〈c , x〉 is large by sacrificing a little bit in the spectral lower bound.

Corollary 5.2.3. Let v1, . . . , vm ∈ Rd and x ∈ [0, 1]m. Let c ∈ Rm
+ and C = 〈c , x〉.

Suppose
∑m

i=1 x(i) · viv>i = Id and C > 15d‖c‖∞
γ2 for some γ ∈ (0, 1

2
). Then, there is a

randomized polynomial time algorithm that returns an integral solution z ∈ {0, 1}m such
that 〈c , z〉 6 C and

∑m
i=1 z(i) · viv>i < (1− 4γ)Id with probability at least 1− exp(−Ω(d)).

121



Proof. The idea is to scale down x then apply Theorem 5.2.2. We let η = 1 − 2γ and set
y := ηx and ui := vi√

η
, which implies

〈c , y〉 = η〈c , x〉 = ηC and
m∑
i=1

y(i) · uiu>i =
m∑
i=1

x(i) · viv>i = Id.

We apply Theorem 5.2.2 on u1, . . . , um and y , c with δ1 = γ, q =
√
d to obtain z ∈ {0, 1}m

so that
m∑
i=1

z(i) · uiu>i < (1− 2γ)Id =⇒
m∑
i=1

z(i) · viv>i < η(1− 2γ)Id < (1− 4γ)Id.

and
〈c , z〉 6 (1 + γ)〈c , y〉+

15d ‖c‖∞
γ

6 (1 + γ)(1− 2γ)C + γC < C,

where we use the assumptions that 15d‖c‖∞
γ2 6 C. The failure probability is at most

exp(−Ω(d)).

5.2.2 Analysis of the Minimum Eigenvalue

In this subsection, we first show that the minimum eigenvalue of the current solution Zt
reaches the target 1− 2γ within polynomial time with high probability in Section 5.2.2.1.
This establishes the first part of Theorem 5.2.2.

Then we show that, if we continue the randomized swapping process after reaching the
minimum eigenvalue target, the minimum eigenvalue of Zt can be maintained at a relatively
high level for a period of time with high probability in Section 5.2.2.2. We do not need
the bounded minimum eigenvalue property for the results in this chapter. However, it is
a key property in the analysis of the improved rounding algorithms for D/A-design (see
Section 7.3).

5.2.2.1 Reaching the Minimum Eigenvalue Target

We first prove that, during the execution of the iterative randomized swapping algorithm,
the probability of the minimum eigenvalue of Zt is less than 1− 2γ for all the first τ = qk

γ
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iterations is at most exp(−Ω(q
√
d)) for q > 2.

We will bound the minimum eigenvalue of the solution using the regret minimization
framework (see Chapter 4). The initial feedback matrix is F0 = Z1, which is constructed
randomly using x . In each iteration t > 1, after computing the action matrix At, the
algorithm responds with the feedback matrix Ft = vjtv>jt −vitv>it . Note that Zτ+1 =

∑τ
t=0 Ft.

Define

∆+
t :=

〈vjtv>jt ,At〉

1 + 2α〈vjtv>jt ,A
1
2
t 〉
, ∆−t :=

〈vitv>it ,At〉

1− 2α〈vitv>it ,A
1
2
t 〉

and ∆t := ∆+
t −∆−t . (5.2)

Note that 2α〈vitv>it ,A
1
2
t 〉 < 1

2
< 1 for t > 1 by the definition of S ′t−1, and so ∆−t is well-

defined for t > 1. We also note that F0 < 0, thus Theorem 4.2.7 implies that

λmin (Zτ+1) = λmin

( τ∑
t=0

Ft

)
>

τ∑
t=1

∆t −
2
√
d

α
+ λmin(F0) >

τ∑
t=1

∆t − 2γ. (5.3)

To lower bound the minimum eigenvalue, we will prove that
∑τ

t=1 ∆t > 1 with high prob-
ability. In the following, we bound the expected value of

∑τ
t=1 ∆t, and then use Freeman’s

martingale inequality to bound the probability that
∑τ

t=1 ∆t deviates significantly from
its expected value. In the remaining of this section, we write Et[·] := E[· | St−1] as the
expectation conditional on the set St−1.

Lemma 5.2.4. Let τ > τ ′ > 0 be two time steps in the iterative randomized swapping
algorithm. Let λ := maxτ ′<t6τ λmin(Zt). Then

τ∑
t=τ ′+1

Et[∆t] >
τ∑

t=τ ′+1

1

k

(
1−
√
d

α
− λmin(Zt)

)
>
τ − τ ′

k

(
1−
√
d

α
− λ
)
.

Proof. We first consider the expected gain of adding the vector jt. By the definition of the
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probability distribution of jt,

Et[∆+
t ] =

1

k

∑
j∈[m]\St−1

x(j) · (1 + 2α〈vjv>j ,A
1
2
t 〉) ·

〈vjv>j ,At〉

1 + 2α〈vjv>j ,A
1
2
t 〉

=
1

k

∑
j∈[m]\St−1

x(j) · 〈vjv>j ,At〉

=
1

k

(
1−

∑
j∈St−1

x(j)〈vjv>j ,At〉
)
,

(5.4)

where the last equality is by
∑m

j=1 x(j) · vjv>j = Id and tr(At) = 1 by the definition of At.

Then we consider the expected loss of removing the vector it. By the definition of the
probability distribution of it,

Et[∆−t ] =
∑
i∈S′t−1

1

k
(1− x(i))(1− 2α〈viv>i ,A

1
2
t 〉) ·

〈viv>i ,At〉

1− 2α〈viv>i ,A
1
2
t 〉

=
1

k

∑
i∈S′t−1

(1− x(i))〈viv>i ,At〉

6
1

k

∑
i∈St−1

(1− xi)〈viv>i ,At〉

6
1

k

(
λmin(Zt) +

√
d

α
−
∑
i∈St−1

x(i) · 〈viv>i ,At〉
)
,

(5.5)

where the first inequality is because x(i) ∈ [0, 1] and 〈viv>i ,At〉 > 0 as At � 0, and the last
inequality follows from Lemma 4.2.9 that 〈Zt,At〉 6

√
d
α

+ λmin(Zt).

The lemma follows by combining (5.4) and (5.5) and summing over t and using λ =

maxt λmin(Zt).

Remark 5.2.5. If we sample it with probability

P [it = i] =
(1− x(i))(1− 2α〈viv>i ,A

1
2
t 〉)∑

j∈S′t−1
(1− x(j))(1− 2α〈vjv>j ,A

1
2
t 〉)

for i ∈ S ′t−1,
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so that
∑

i∈S′t−1
P [it = i] = 1 and define probability of sampling jt likewise. We can main-

tain the size of St unchanged. Thus, we can start with a solution with l :=
∑m

i=1 x(i)+O(d
ε
)

vectors and guarantee that the solution at each iteration still has exactly l vectors. A sim-
ilar statement about the expected progress as in Lemma 5.2.4 can be proved. This implies
that there exists a good pair it ∈ St−1 and jt 6∈ St−1, which gives a solution set of size l
satisfying the spectral lower bound approximately. Together with a preprocessing step as in
Section 5.2.4, this gives a simpler proof of the deterministic algorithm of [6]. We use this
idea to design a combinatorial algorithm for E-design without solving a convex program.
When the input vectors to the combinatorial algorithm are normalized by the optimal frac-
tional solution, the algorithm recovers the result in [6]. See Section 7.4.3 for more details.

Lemma 5.2.6. Let τ > τ ′ > 0 be two time steps in the iterative randomized swapping
algorithm2. Let λ := maxτ ′<t6τ λmin(Zt). Then, for any η > 0,

P

[
τ∑

t=τ ′+1

∆t 6
τ∑

t=τ ′+1

Et[∆t]− η

]
6 exp

(
− η2αk/2

(τ − τ ′)(1 + λ+
√
d/α) + ηk/3

)
.

Proof. We define the following sequences of random variables where

Xt := Et[∆t]−∆t, Yt :=
t∑

l=τ ′+1

Xl, for all t ≥ τ ′ + 1, and Yτ ′ = 0.

Observe that {Yt}t is a martingale with respect to {St}t. We use Freedman’s inequality to
bound P[Yτ > η]. To apply Freedman’s inequality, we need to upper bound Xt and Et[X2

t ].
Note that

0 6 ∆+
t =

〈vjtv>jt ,At〉

1 + 2α〈vjtv>jt ,A
1
2
t 〉

6
〈vjtv>jt ,At〉

2α〈vjtv>jt ,A
1
2
t 〉

6
1

2α
,

where the last inequality holds as 0 ≺ At 4 I . Also,

0 6 ∆−t =
〈vitv>it ,At〉

1− 2α〈vitv>it ,A
1
2
t 〉

6
〈vitv>it ,A

1
2
t 〉

1− 2α〈vitv>it ,A
1
2
t 〉

6
1

2α
,

2We introduce an arbitrary starting time step τ ′ for flexibility in later applications.
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where the second last inequality is by 0 ≺ At 4 I, and the first and last inequality are
because it is chosen from the set S ′t−1 := {i | 4α〈viv>i ,A

1
2
t 〉 < 1}. (We remark that this

upper bound on ∆−t is exactly the reason for the definition of S ′t−1.) As these lower and
upper bounds on ∆+

t and ∆−t hold with probability one, we have the deterministic upper
bound Xt 6 R := 1

α
as

Xt = Et[∆t]−∆t 6 Et[∆+
t ] + ∆−t 6

1

α
= R.

Next, we upper bound

Et[X2
t ] 6 Et[∆2

t ] 6 R · Et[|∆t|] 6
1

α

(
Et[∆+

t ] + Et[∆−t ]
)

6
1

αk

(
1 + λ+

√
d

α

)
,

where the last inequality follows from (5.4) and (5.5) that Et[∆+
t ] 6 1

k
and Et[∆−t ] 6

λ+
√
d/α
k

. Applying Freedman’s inequality Theorem 3.2.3 with R = 1
α
, σ2

t = 1+λ+
√
d/α

αk
for all

τ ′ < t 6 τ , and σ2 = (τ−τ ′)(1+λ+
√
d/α)

αk
, it follows that3

P(Yτ > η) 6 exp

(
− η2/2

σ2 +Rη/3

)
= exp

(
− η2αk/2

(τ − τ ′)(1 + λ+
√
d/α) + ηk/3

)
.

The lemma follows as Yτ > η is equivalent to
∑τ

t=1 ∆τ ′+1 6
∑τ

t=τ ′+1 Et[∆t]− η.

We are ready to prove that the algorithm terminates in a polynomial number of itera-
tions with high probability.

Theorem 5.2.7. Let τ > 0 be the first time such that the solution set Sτ of the iterative
randomized swapping algorithm satisfies

∑
i∈Sτ viv>i < (1 − 2γ) · Id. Then, the probability

that τ 6 qk
γ

for q > 2 is at most exp(−Ω(q
√
d)).

Proof. Let τ = qk
γ
. Suppose λ = max0<t6τ+1 λmin(Zt) < 1− 2γ. Then, since α =

√
d
γ
, apply

Lemma 5.2.4 with τ ′ = 0 gives that
τ∑
t=1

Et[∆t] >
τ

k

(
1−
√
d

α
− λ
)

=
q

γ
(1− γ − λ) > q,

3Recall that the sequence {Yt} starts from Yτ ′ , instead of Y0.
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and the regret minimization bound in (5.3) implies that

1− 2γ > λmin(Zτ+1) >

(
τ∑
t=1

∆t

)
− 2γ =⇒

τ∑
t=1

∆t < 1.

Therefore,

P

[
τ+1⋂
t=1

(
λmin(Zt) < 1− 2γ

)]
6 P

[
τ∑
t=1

∆t <

τ∑
t=1

Et[∆t]− (q − 1)

]

6 exp

(
− (q − 1)2αk/2

(qk/γ)(1 + (1− 2γ) +
√
d/α) + (q − 1)k/3

)
6 exp(−Ω(q

√
d)),

where the second inequality is by Lemma 5.2.6 with η = q − 1 and τ = qk
γ
, τ ′ = 0 and the

last inequality is by the assumption that q > 2 and α =
√
d
γ
.

So, for example, the probability that the algorithm does not terminate in 2k
γ

iterations

is at most exp(−Ω(
√
d)) and the probability that it does not terminate in k

√
d

γ
iterations

is at most exp(−Ω(d)).

5.2.2.2 Maintaining the Minimum Eigenvalue

We show that, once the minimum eigenvalue of the current solution Zt reaches the target
1 − 2γ, the minimum eigenvalue of Zt can be maintained being at least a constant for a
period of time. We do not need this property to solve the one-sided spectral rounding
problem, but it will be useful in applications to experimental design (see Section 7.3 for
details).

Proposition 5.2.8. Suppose 0 < γ 6 1
8
. Assume there is no termination condition in

the iterative randomized swapping algorithm, and the minimum eigenvalue hit the target
λmin(Zτ1) > 1− 2γ at some time step τ1, then the probability that λmin(Zt) > 1

4
for all the

next τ steps τ1 6 t 6 τ1 + τ is at least 1− τ 2 · e−Ω(
√
d).
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Proof. Consider the bad event that there exists a time t ∈ [τ1, τ1 + τ ] with λmin(Zt) < 1
4
.

As the initial solution Zτ1 satisfies λmin(Zτ1) > 1 − 2γ, there must exist a time period
[t0, t1] ⊆ [τ1, τ1 +τ) such that λmin(Zt0) > 1−2γ, λmin(Zt1+1) < 1

4
, and λmin(Zt) ∈ [1

4
, 1−2γ)

for all t ∈ [t0 + 1, t1].

We show that the decrease of the minimum eigenvalue from t0 to t1 implies that the
sum of ∆t defined in (5.2) has decreased significantly. Let Ft0 = Zt0 and Ft = vjtv>jt − vitv>it
for all t ∈ [t0 + 1, t1]. Note that α〈vitv>it ,A

1
2
t 〉 6 1

4
holds for for any t > 1. So, it follows

from Theorem 4.2.7 with α =
√
d
γ

that

1

4
> λmin(Zt1+1) >

t1∑
t=t0+1

∆t−
2
√
d

α
+λmin(Zt0) >

t1∑
t=t0+1

∆t+1−4γ =⇒
t1∑

t=t0+1

∆t < 4γ − 3

4
.

On the other hand, ∆t is expected to be positive when λmin(Zt) < 1− 2γ. The expec-
tation bound in Lemma 5.2.4 with τ ′ = t0, τ = t1, λ < 1 − 2γ and α =

√
d/γ implies

that
t1∑

t=t0+1

Et[∆t] >
(t1 − t0)γ

k
.

So, the sum has a large deviation from the expectation, i.e.
t1∑

t=t0+1

∆t 6
t1∑

t=t0+1

Et[∆t]−
(

3

4
− 4γ +

(t1 − t0)γ

k

)
.

We can apply the concentration bound in Lemma 5.2.6 with η = 3
4
− 4γ + (t1−t0)γ

k
and

λ < 1− 2γ to upper bound this probability by

P

[
t1∑

t=t0+1

∆t 6
t1∑

t=t0+1

Et[∆t]−
(3

4
− 4γ +

(t1 − t0)γ

k

)]

6 exp

(
−

(
3
4
− 4γ + (t1−t0)γ

k

)2

αk/2

(t1 − t0)(1 + 1− 2γ +
√
d/α) +

(
3
4
− 4γ + (t1−t0)γ

k

)
k/3

)

6 exp
(
−Ω(
√
d)
)
,
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where the last inequality follows as the denominator is in the order of Θ(k + t1 − t0) for
α =

√
d
γ

and 0 < γ 6 1
8
, and the numerator is in the order of Ω

(
1+ (t1−t0)γ

k
+ (t1−t0)2γ2

k2

)
· k
√
d

γ
=

Ω(k
γ

+ t1 − t0) ·
√
d for α =

√
d
γ

and 0 < γ 6 1
8
. The proposition follows by applying the

union bound over the at most τ 2 possible pairs of t0 and t1 from time τ1 to τ1 + τ .

5.2.3 Analysis of the Linear Constraint

For an arbitrary non-negative linear constraint c ∈ Rm
+ , the goal in this subsection is

to prove that c(St) ≈ 〈c , x〉 with high probability for any t by using the concentration
inequality for self-adjusting random processes (Theorem 3.3.1) in Section 3.3. We recall
that c(St) :=

∑
i∈St c(i) is the “cost” of the solution at time t. We first bound the expected

change of the cost in an iteration.

Lemma 5.2.9. Suppose λmin(Zt) < 1. Then

1

k

(
〈c , x〉 − c(St−1)

)
6 Et[c(jt)− c(it)] 6

1

k

(
〈c , x〉 − c(St−1) +

14d ‖c‖∞
γ

)
.

Proof. We first bound the conditional expectation of c(jt). By the probability distribution
of jt,

Et[c(jt)] =
1

k

∑
j∈[m]\St−1

c(j)x(j)(1 + 2α〈vjv>j ,A
1
2
t 〉)

=
1

k

(
〈c , x〉 −

∑
j∈St−1

c(j) · x(j) + 2α
∑

j∈[m]\St−1

c(j)x(j)〈vjv>j ,A
1
2
t 〉
)
.

Note that

0 6 2α
∑

j∈[m]\St−1

c(j)x(j)〈vjv>j ,A
1
2
t 〉 6 2α ‖c‖∞

m∑
j=1

x(j)〈vjv>j ,A
1
2
t 〉

= 2α ‖c‖∞ tr(A
1
2
t ) 6

2d ‖c‖∞
γ

,
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where the equality holds as
∑m

j=1 x(j) · vjv>j = Id and the last inequality is by Claim 2.1.10
and α =

√
d
γ
. Therefore,

1

k

(
〈c , x〉 −

∑
i∈St−1

c(i)x(i)

)
6 Et[c(jt)] 6

1

k

(
〈c , x〉 −

∑
i∈St−1

c(i)x(i) +
2d ‖c‖∞

γ

)
. (5.6)

Next we bound the expectation of c(it). By the probability distribution of it,

Et[c(it)] =
1

k

∑
i∈S′t−1

c(i)(1− x(i))(1− 2α〈viv>i ,A
1
2
t 〉)

=
1

k

( ∑
i∈S′t−1

c(i)(1− x(i))− 2α
∑
i∈S′t−1

c(i)(1− x(i))〈viv>i ,A
1
2
t 〉
)

=
1

k

(
c(St−1)−

( ∑
i∈St−1

c(i)x(i)

)
−

∑
i∈St−1\S′t−1

c(i)(1− x(i))

− 2α
∑
i∈S′t−1

c(i)(1− x(i))〈viv>i ,A
1
2
t 〉
)
.

We would like to bound the last two terms of the right hand side. Recall that S ′t−1 := {i ∈
St−1 | 4α〈viv>i ,A

1
2
t 〉 < 1}. This implies that

|St−1 \ S ′t−1| 6
∑

i∈St−1\S′t−1

4α〈viv>i ,A
1
2
t 〉 6 4α

∑
i∈St−1

〈viv>i ,A
1
2
t 〉

6 4
(
d+ α

√
d · λmin(Zt)

)
6

8d

γ
,

where the second last inequality uses Lemma 4.2.9 and the last inequality is by α =
√
d
γ

and the assumption that λmin(Zt) < 1. Since x ∈ [0, 1]m and c > 0, it follows that the
second last term is

0 6
∑

i∈St−1\S′t−1

c(i)(1− x(i)) 6 ‖c‖∞ · |St−1\S ′t−1| 6
8d ‖c‖∞

γ
.
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Similarly, for the last term,

0 6 2α
∑
i∈S′t−1

c(i)(1− x(i))〈viv>i ,A
1
2
t 〉 6 2 ‖c‖∞ · α

∑
i∈St−1

〈viv>i ,A
1
2
t 〉

6 2 ‖c‖∞ (d+ α
√
d · λmin(Zt))

6
4d ‖c‖∞

γ
.

Plugging back these upper and lower bounds for the last two terms, we obtain

1

k

(
c(St−1)−

( ∑
i∈St−1

c(i)x(i)

)
− 12d ‖c‖∞

γ

)
6 Et[c(it)] 6

1

k

(
c(St−1)−

∑
i∈St−1

c(i)x(i)

)
.

(5.7)
The lemma follows by combining the bounds for the expectations of c(it) and c(jt) in (5.6)
and (5.7).

To bound the difference between c(St) and 〈c , x〉, we consider the following sequences
of random variables where

Yt := c(St)− 〈c , x〉 for t > 0 and Xt := Yt − Yt−1 = c(jt)− c(it) for t > 1. (5.8)

Note that Lemma 5.2.9 shows that the sequence {Yt}t has the “self-adjusting” property
that if Yt is (more) positive then E[Yt+1 | Yt] − Yt is (more) negative and vice versa, so
intuitively Yt cannot be too far away from zero. The sequence {Yt}t is not a martingale,
and so we cannot apply Freedman’s inequality to prove concentration. Instead, we will
use Theorem 3.3.1 to prove that the absolute value of Yt is small with high probability.
To apply Theorem 3.3.1, we need to bound the conditional second moment of Xt and the
moment generating function of the initial solution S0.

Lemma 5.2.10. Suppose λmin(Zt) < 1. Then

Et[(c(jt)− c(it))
2] 6

‖c‖∞
k
·
(
〈c , x〉+ c(St−1) +

2d ‖c‖∞
γ

)
.
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Proof. Since c(i) > 0 for all 1 6 i 6 m,

Et[(c(jt)− c(it))
2] 6 max

it,jt
|c(jt)− c(it)| · Et[|c(jt)− c(it)|]

6 ‖c‖∞ · Et[c(jt) + c(it)]

6
‖c‖∞
k

(
〈c , x〉+ c(St−1) +

2d ‖c‖∞
γ

)
,

where the last inequality is by (5.6) and (5.7).

We use the fact that the initial solution S0 is generated randomly to bound its moment
generating function.

Lemma 5.2.11. For a ∈
[
− ‖c‖−1

∞ , ‖c‖−1
∞
]
,

E
[
eaY0

]
6 ea

2‖c‖∞〈c,x〉.

Proof. Let χi be the indicator variable where χi = 1 if i ∈ S0 and χi = 0 otherwise. Since
the algorithm constructs S0 by sampling each vector independently with probability x(i),
it follows that

E
[
eac(S0)

]
= E

[
ea
∑m
i=1 χic(i)

]
=

m∏
i=1

E
[
eaχic(i)

]
=

m∏
i=1

(
1− x(i) + x(i)eac(i)

)
.

Note that ac(i) 6 1 as a ∈
[
− ‖c‖−1

∞ , ‖c‖−1
∞
]
and c(i) 6 ‖c‖∞, and thus eac(i) 6 1 +

ac(i) + a2c(i)2 as ep 6 1 + p+ p2 for p 6 1. Therefore,

E
[
eac(S0)

]
6

m∏
i=1

(
1 + ac(i)x(i) + a2c(i)2x(i)

)
6exp

(
m∑
i=1

(
ac(i)x(i) + a2 ‖c‖∞ c(i)x(i)

))
= exp

(
(a+ a2 ‖c‖∞)〈c , x〉

)
,

where the second inequality uses 1 + p 6 ep for p ∈ R and ci 6 ‖c‖∞ for 1 6 i 6 m. The
claim follows as Y0 = c(S0)− 〈c , x〉.

We are ready to apply the concentration inequality Theorem 3.3.1 to bound the cost.
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Theorem 5.2.12. Suppose the solution set St of the iterative randomized swapping al-
gorithm satisfies λmin(

∑
i∈St viv

>
i ) < 1 for all 0 6 t 6 τ . Then, for any c ∈ Rm

+ and
δ1 ∈ [0, 1],

P
[
c(Sτ ) 6 (1 + δ1)〈c , x〉+

15d ‖c‖∞
γ

]
> 1− exp

[
−Ω
(δ1d

γ

)]
.

Also, for any δ2 ∈ [0, 1] and δ3 > 0,

P
[
c(Sτ ) > (1− δ2)〈c , x〉 − δ3d ‖c‖∞

]
> 1− exp

(
− Ω

(
min{δ2δ3, γδ

2
3} · d

) )
.

Proof. We will apply Theorem 3.3.1 on the sequences {Xt}t and {Yt}t as defined in (5.8).
Firstly, note that |Xt| 6 ‖c‖∞ by definition for all t > 1. Secondly, as Et[Xt] = Et[(c(jt)−
c(it))] and Yt−1 = (c(St−1)− 〈c , x〉), Lemma 5.2.9 implies that

Et[Xt] 6
1

k

(
〈c , x〉 − c(St−1) +

14n ‖c‖∞
γ

)
= −Yt−1

k
+

14d ‖c‖∞
kγ

,

and
Et[Xt] >

1

k

(
〈c , x〉 − c(St−1)

)
= −Yt−1

k
.

Thirdly, since Et[X2
t ] = Et[(c(jt)− c(it))

2], Lemma 5.2.10 implies that

Et[X2
t ] 6

‖c‖∞
k

(
〈c , x〉+ c(St−1) +

2d ‖c‖∞
γ

)
=
‖c‖∞
k

Yt−1 +
2 ‖c‖∞
k

(
〈c , x〉+

d ‖c‖∞
γ

)
.

Finally, Lemma 5.2.11 states that E[eaY0 ] 6 exp(a2 ‖c‖∞ 〈c , x〉) for a ∈ [−‖c‖−1
∞ , ‖c‖−1

∞ ].
By setting

R = ‖c‖∞ , γ1 =
1

k
, γ2 =

‖c‖∞
k

, βu =
14d ‖c‖∞

kγ
, βl = 0, σ =

2 ‖c‖∞
k

(
〈c , x〉+d ‖c‖∞

γ

)
,

we can check that all the conditions of Theorem 3.3.1 are satisfied, including the conditions
on the range of parameters (in particular, γ1 ∈ (0, 1

2
), γ2 > 0 and γ1 6 γ2R

−1). Applying
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Theorem 3.3.1 with η = δ1〈c , x〉+
d‖c‖∞
γ

for δ1 ∈ [0, 1],

P
[
c(St) > (1 + δ1)〈c , x〉+

15d ‖c‖∞
γ

]
= P

[
Yt >

βu
γ1

+ η

]
6 exp

[
− η2γ1/γ2

4(σ/γ2 + βu/γ1) + 2η

]
= exp

[
− η2/ ‖c‖∞

8〈c , x〉+ 64d ‖c‖∞ /γ + 2η

]
6 exp

[
−Ω
(δ1d

γ

)]
,

where the last inequality is because η = O(〈c , x〉 +
d‖c‖∞
γ

) and thus the denominator is
Θ(〈c , x〉+

d‖c‖∞
γ

), and the numerator is (note that δ1 ∈ [0, 1])

η2

‖c‖∞
=

η

‖c‖∞

(
δ1〈c , x〉+

d ‖c‖∞
γ

)
>
dδ1

γ

(
〈c , x〉+

d ‖c‖∞
γ

)
.

Similarly, for the cost lower bound, we apply Theorem 3.3.1 with η = δ2〈c , x〉+δ3d ‖c‖∞
for δ2 ∈ [0, 1] and δ3 > 0 to obtain

P [c(St) 6 (1− δ2)〈c , x〉 − δ3d ‖c‖∞] = P
[
Yt 6 −

βl
γ1

− η
]

6 exp

[
− η2γ1/γ2

4σ/γ2 + η

]
= exp

[
− η2/ ‖c‖∞

8(〈c , x〉+ d ‖c‖∞ /γ) + η

]
6 exp

[
−Ω

(
δ3d(δ2〈c , x〉+ δ3d ‖c‖∞)

〈c , x〉+ d ‖c‖∞ /γ + δ3d ‖c‖∞

)]
6 exp

[
−Ω

(
min{δ2δ3, γδ

2
3} · d

)]
,

where the second last inequality is by similar calculations as in the previous case.

5.2.4 Exact One-Sided Spectral Rounding

Theorem 5.2.2 follows directly from Theorem 5.2.7 and Theorem 5.2.12. This shows that
the iterative randomized swapping algorithm will return a solution S with

∑
i∈S viv>i <
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(1− 2γ) · Id and c(St) ≈ 〈c , x〉 with high probability for any c ∈ Rm
+ .

To prove Theorem 5.1.3 where the goal is to return a solution S with
∑

i∈S viv>i < Id,
our idea is to scale up the fractional solution x and then apply Theorem 5.2.2. The following
is the detailed description of the algorithm.

Exact One-Sided Spectral Rounding

Input: v1, ..., vm ∈ Rd and x ∈ [0, 1]m with
∑m

i=1 x(i)viv>i = Id, and an error parameter
ε ∈ (0, 1

4
).

Output: a subset S ⊆ [m] such that
∑

i∈S viv>i < Id and c(S) ≈ 〈c , x〉 for any c ∈ Rm
+

with high probability.

1. Define y(i) := x(i)
1−2ε

and ui :=
√

1− 2ε · vi for i ∈ [m]. Note that∑m
i=1 y(i) · uiu>i = Id.

2. Let Sbig := {i ∈ [m] : y(i) > 1}, Ssmall := {i ∈ [m] : 0 6 y(i) 6 1}, and
Zbig =

∑
i∈Sbig

y(i) · uiu>i .

3. Define wi := (Id−Zbig)−
1
2 ui for each i ∈ Ssmall, so that

∑
i∈Ssmall

y(i)·wiw>i = Id4.

4. Apply the iterative randomized swapping algorithm with γ = ε and {wi | i ∈
Ssmall} and {y(i) | i ∈ Ssmall} as input to obtain a solution set S ′small ⊆ Ssmall

with
∑

i∈S′small
wiw>i < (1− 2ε) · Id.

5. Return S := Sbig ∪ S ′small as the solution.

Theorem 5.1.3. Suppose we are given v1, ..., vm ∈ Rd and x ∈ [0, 1]m such that
∑m

i=1 x(i) ·
viv>i = Id. For any ε ∈ (0, 1

4
), there is a polynomial time randomized algorithm that returns

4If Id − Zbig is singular, we first project the vectors to the orthogonal complement of the nullspace
before applying the transformation. We can add dummy coordinates to keep the vectors to have the same
dimension d for simplicity of the analysis.
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a solution z ∈ {0, 1}m such that

m∑
i=1

z(i) · viv>i < Id

with probability at least 1 − exp (−Ω(d)). Furthermore, for any c ∈ Rm
+ , the solution z

satisfies the upper bound

〈c , z〉 6 (1 + 6ε)〈c , x〉+
15d ‖c‖∞

ε

with probability at least 1− exp(−Ω(d)), and the solution z satisfies the lower bound

〈c , z〉 > 〈c , x〉 − δd ‖c‖∞

with probability at least 1− exp (−Ω (min{εδ, εδ2} · d)) for δ > 0.

Proof. We first analyze the spectral lower bound. Applying Theorem 5.2.2 with γ = ε

and q =
√
d to Step 4, we find a solution set S ′small ⊆ Ssmall with probability at least

1− exp(−Ω(d)) in polynomial time such that∑
i∈S′small

wiw>i < (1− 2ε) · Id =⇒
∑

i∈S′small

uiu>i < (1− 2ε) · (Id − Zbig)

=⇒
∑

i∈S′small

viv>i < Id − Zbig.

For the vectors in Sbig, as x(i) ∈ [0, 1],∑
i∈Sbig

viv>i <
∑
i∈Sbig

x(i) · viv>i =
∑
i∈Sbig

y(i) · uiu>i = Zbig.

Therefore, it follows that∑
i∈S

viv>i =
∑

i∈S′small

viv>i +
∑
i∈Sbig

viv>i < (Id − Zbig) + Zbig = Id.
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Next, we prove that c(S) ≈ 〈c , x〉 with high probability for any vector c ∈ Rm
+ . Let

〈c , x〉small :=
∑

i∈Ssmall
c(i) · x(i) and 〈c , x〉big :=

∑
i∈Sbig

c(i) · x(i). For the vectors in Sbig,
as y(i) > 1 for i ∈ Sbig and y(i) = x(i)

1−2ε
for all i ∈ [m], it follows that

〈c , x〉big 6 c(Sbig) 6 〈c , y〉big =
〈c , x〉big

1− 2ε
.

For the vectors in Ssmall, applying Theorem 5.2.2 with δ1 = ε and γ = ε, the returned set
S ′small in Step 4 satisfies the cost upper bound

c(S ′small) 6 (1 + ε)〈c , y〉small +
15d ‖c‖∞

ε
=

(1 + ε)〈c , x〉small

1− 2ε
+

15d ‖c‖∞
ε

with probability at least 1− exp(−Ω(d)), which implies that for ε ∈ (0, 1
4
),

c(S) = c(Sbig) + c(S ′small) 6
1 + ε

1− 2ε

(
〈c , x〉big + 〈c , x〉small

)
+

15d ‖c‖∞
ε

6 (1 + 6ε)〈c , x〉+
15d ‖c‖∞

ε
.

Similarly, by Theorem 5.2.2 with γ = ε, δ2 = ε and δ3 = δ for some δ > 0, the returned set
S ′small in Step 4 satisfies the cost lower bound

c(S ′small) > (1− ε)〈c , y〉small− δd ‖c‖∞ =
1− ε
1− 2ε

〈c , x〉small− δd ‖c‖∞ > 〈c , x〉small− δd ‖c‖∞

with probability at least 1− exp(−Ω(min{εδ, εδ2} · d)), which implies that

c(S) = c(Sbig) + c(S ′small) > 〈c , x〉big + 〈c , x〉small − δd ‖c‖∞ = 〈c , x〉 − δd ‖c‖∞ .

5.3 Non-constructive Two-Sided Spectral Rounding

In this section, we show that the two-sided spectral rounding result in Theorem 2.6.10 can
be extended to incorporate one non-negative linear constraint that is given as part of the
input.

There is a standard reduction used in [48] to construct spectral sparsifiers that sat-
isfy additional linear constraints. Suppose Corollary 5.1.2 were to work for rank two
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matrices, then we can simply incorporate the linear constraint to the input matrices
as Ai :=

(
viv>i 0

0 c(i)/〈c,x〉

)
so that

∑m
i=1 x(i) · Ai = Id+1, and any z ∈ {0, 1}m so that∑m

i=1 z(i) · Ai ≈ Id+1 would have 〈c , z〉 ≈ 〈c , x〉. But the rank one assumption is cru-
cial in the proof of Theorem 2.6.10 and it is an open problem to generalize it to work with
higher rank matrices.

Our idea is to use the following signing trick, suggested to us by Akshay Ramachandran,
to essentially carry out the same reduction using only rank one matrices. We state the
results in a more general form, where

∑m
i=1 x(i)·viv>i is not necessarily equal to the identity

matrix, so that we can also apply them to additive spectral sparsifiers in Section 6.3.

Lemma 5.3.1. Suppose we are given c ∈ Rm
+ , and v1, . . . , vm ∈ Rd, x ∈ [0, 1]m such that∥∥∑m

i=1 x(i) · viv>i
∥∥

op
6 λ and ‖vi‖2 6 l for 1 6 i 6 m. There exists a signing s ∈ {±1}m

such that if we let ui :=

(
vi

s(i)
√

c(i)λ/〈c , x〉

)
∈ Rd+1 then

∥∥∑m
i=1 x(i) · uiu>i

∥∥
op

6 λ+ l
√
λ.

Proof. By the definition of ui,

m∑
i=1

x(i) · uiu>i =


∑m

i=1 x(i) · viv>i
∑m

i=1 s(i)x(i)

√
c(i)λ

〈c , x〉
vi

∑m
i=1 s(i)x(i)

√
c(i)λ

〈c , x〉
v>i

∑m
i=1

c(i)x(i)λ

〈c , x〉



=

(∑m
i=1 x(i) · viv>i 0

0 λ

)
+


0

∑m
i=1 s(i)x(i)

√
c(i)λ

〈c , x〉
vi

∑m
i=1 s(i)x(i)

√
c(i)λ

〈c , x〉
v>i 0


The operator norm of the second matrix is bounded by

∥∥∥∑m
i=1 s(i)x(i)

√
c(i)λ
〈c,x〉 vi

∥∥∥
2
. It

follows from triangle inequality that
∥∥∑m

i=1 x(i) · uiu>i
∥∥

op
6 λ+

∥∥∥∑m
i=1 s(i)x(i)

√
c(i)λ
〈c,x〉 vi

∥∥∥
2
.

We show that there is a signing s ∈ {±1}m such that∥∥∥∥∥
m∑
i=1

s(i)x(i)

√
c(i)λ

〈c , x〉
· vi

∥∥∥∥∥
2

6 l
√
λ,
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and this will complete the proof. Take a uniform random signing and consider

Es∈{±1}m

∥∥∥∥∥
m∑
i=1

s(i)x(i)

√
c(i)λ

〈c , x〉
vi

∥∥∥∥∥
2

2

=
m∑
i=1

Es

[
s(i)2x(i)2 ‖vi‖2

2

λc(i)

〈c , x〉

]
+
∑
i 6=j

Es

[
s(i)s(j)x(i)x(j)〈vi, vj〉

λ
√

c(i)c(j)

〈c , x〉

]

=
m∑
i=1

x(i)2 ‖vi‖2
2

λc(i)

〈c , x〉
6 l2

m∑
i=1

λc(i)x(i)

〈c , x〉
= l2λ,

where the last line uses that s(i)2 = 1, E[s(i)s(j)] = E[s(i)] · E[s(j)] = 0, and x(i) ∈ [0, 1],
‖vi‖2 6 l in the inequality. This implies that there exists such a signing.

We apply the signing in Lemma 5.3.1 to incorporate one non-negative linear constraint
into the two-sided spectral rounding result of Kyng, Luh and Song [91].

Theorem 5.3.2. Suppose we are given c ∈ Rm
+ , and v1, . . . , vm ∈ Rd, x ∈ [0, 1]m such that∥∥∑m

i=1 x(i) · viv>i
∥∥

op
6 λ and ‖vi‖2 6 l for 1 6 i 6 m. Suppose further that ‖c‖∞ 6 l2〈c,x〉

λ

and l 6
√
λ. Then there exists z ∈ {0, 1}m such that∥∥∥∥∥

m∑
i=1

x(i) · viv>i −
m∑
i=1

z(i) · viv>i

∥∥∥∥∥
op

6 8l
√
λ and |〈c , x〉 − 〈c , z〉| 6 8l√

λ
〈c , x〉

Proof. Let ui =
( vi

s(i)
√

c(i)λ/〈c,x〉

)
for 1 6 i 6 m, where s ∈ {±1}m is the signing promised

by Lemma 5.3.1. By the assumption that ‖c‖∞ 6 l2〈c,x〉
λ

, it follows that ‖ui‖2
2 = ‖vi‖2

2 +
c(i)λ
〈c,x〉 6 2l2. Let ξi be a zero-one random variable with probability x(i) being one. Applying
Theorem 2.6.10 on u1, . . . , um and ξ1, . . . , ξm, there exists z ∈ {0, 1}m such that∥∥∥∥∥

m∑
i=1

x(i) · uiu>i −
m∑
i=1

z(i) · uiu>i

∥∥∥∥∥
op

6 4

∥∥∥∥∥
m∑
i=1

Var[ξi](uiu>i )2

∥∥∥∥∥
1
2

op

6 4

∥∥∥∥∥
m∑
i=1

x(i) ‖ui‖2
2 uiu>i

∥∥∥∥∥
1
2

op

6 4

√
2l2(λ+ l

√
λ),
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where we use that Var[ξi] = x(i)(1− x(i)) 6 x(i), ‖ui‖2
2 6 2l2 and

∥∥∑m
i=1 x(i) · uiu>i

∥∥
op

6

λ+ l
√
λ by Lemma 5.3.1. By looking at the top left d× d block, this implies that∥∥∥∥∥

m∑
i=1

x(i) · viv>i −
m∑
i=1

z(i) · viv>i

∥∥∥∥∥
op

6 4

√
2l2(λ+ l

√
λ) 6 8l

√
λ

where we use the assumption that l 6
√
λ. By looking at the bottom right entry, we have∣∣∣∣∣

m∑
i=1

x(i)c(i)λ

〈c , x〉
−

m∑
i=1

z(i)c(i)λ

〈c , x〉

∣∣∣∣∣ 6 4

√
2l2(λ+ l

√
λ) 6 8l

√
λ,

which implies |〈c , x〉 − 〈c , z〉| 6 8l√
λ
〈c , x〉.

This proves Theorem 5.1.4 that incorporates one non-negative linear constraint into
Corollary 5.1.2, by plugging λ = 1 and l = ε into Theorem 5.3.2.

5.4 Tight Examples

We provide two examples showing the tightness of Theorem 5.1.3.

First, consider the following simple example, which shows the d ‖c‖∞ additive error
term is necessary.

Example 5.4.1. There are m = 2d vectors v11, v12, ..., vd1, vd2 ∈ Rd, a vector x ∈ [0, 1]m, a
vector c ∈ Rm

+ , and a parameter ε. They are defined as follows

x(i1) = 1, vi1 =
√

1− ε · ei, c(i1) = 0 and

x(i2) = ε, vi2 = ei, c(i2) = ‖c‖∞ , ∀i ∈ {1, ..., d}.

Note that 〈c , x〉 = εd ‖c‖∞ and
∑d

i=1

∑
j=1,2 x(ij) · vijv>ij = Id.

Claim 5.4.2. For any constant α > 1, any z ∈ {0, 1}m satisfying the spectral lower bound
in Example 5.4.1 must have 〈c , z〉 > α〈c , x〉+ Ω(d ‖c‖∞).
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Proof. Note that the only vector z ∈ {0, 1}m that satisfies the spectral lower bound exactly
is z = 1m. This implies that 〈c , z〉 − α〈c , x〉 = d ‖c‖∞ − αεd ‖c‖∞ = (1− αε)d ‖c‖∞. For
any α > 1, there exists ε such that 〈c , z〉 − α〈c , x〉 is at least say d‖c‖∞

2
.

Next, we modify an integrality gap example in [118] to show that, even if c = 1 and
we are allowing integral-solution instead of zero-one solution, the additive error O(

d‖c‖∞
ε

)

in Theorem 5.1.3 is best possible.

Example 5.4.3. The example contains m =
(
n
2

)
vectors v1, ..., vm ∈ Rn−1, a vector

x ∈ [0, 1]m and a vector c = 1m. Let U ∈ R(n−1)×n be a matrix where the rows form
an orthonormal basis of the (n − 1)-dimensional subspace orthogonal to 1n. Given some
parameter k, we define

vij =

√
n− 1

2k
· U(χi − χj) and x(ij) =

2k

n(n− 1)
, ∀1 6 i < j 6 n.

Note that 〈c , x〉 = k and
∑

i<j x(ij) · vijv>ij = In−1 and x has the smallest ‖x‖1 among all
vectors satisfying

∑
x(ij) · vijv>ij < In−1.

We will use the following result from [118].

Theorem 5.4.4 (Theorem 7.2 in [118]). Let G = (V,E) be a graph with average degree
davg = 2m

n
, and let LG be its unnormalized Laplacian matrix. Then, as long as davg is large

enough, and n is large enough with respect to davg,

λ2(LG) 6 davg − ρ
√
davg,

where λ2(LG) is the second smallest eigenvalue of LG, and ρ > 0 is an absolute constant.
Furthermore, the upper bound for λ2(LG) still holds for graphs with parallel edges.

Using the above theorem, we can prove the following lemma.

Lemma 5.4.5. Let {vij}, c , x be defined as in Example 5.4.3. For any z ∈ Zm+ , if it satisfies∑
16i<j6n z(ij) · vijv>ij < In−1, then we have

〈c , z〉 > k + Ω(
√
kn+ n).
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Proof. Given any z ∈ Zm+ , let Gz be the multi-graph corresponding to z with Laplacian
matrix

Lz =
∑

16i<j6n

z(ij)(χi − χj)(χi − χj)>

=⇒ ULzU> =
2k

n− 1

( ∑
16i<j6n

z(ij) · vijv>ij

)
<

2k

n− 1
In−1,

where the last inequality holds by the assumption on z . Since U is the projection onto the
(n−1)-dimensional subspace that orthogonal to the minimum eigenvector 1n, λ2(Lz) > 2k

n−1
.

On the other hand, since the average degree of Gz is davg =
2‖z‖1
n

, we apply Theo-
rem 5.4.4 with properly chosen n, for some constant ρ we have

λ2(Lz) 6 davg − ρ
√
davg =⇒ λ2(Lz) 6

2 ‖z‖1

n
− ρ
√

2 ‖z‖1

n
.

Combining with λ2(Lz) > 2k
n−1

, we have

2k

n− 1
6

2 ‖z‖1

n
− ρ
√

2 ‖z‖1

n
=⇒ 2k 6 2 ‖z‖1 − ρ

√
2n ‖z‖1.

For the quadratic inequality 2y2−ρ
√

2ny−2k > 0, we know that the nonnegative solution
for y should satisfy

y >
ρ
√

2n+
√

2ρ2n+ 16k

4
.

Therefore, letting y =
√
‖z‖1, we have

〈c , z〉 = ‖z‖1 > (ρ
√

2n+
√

2ρ2n+ 16k)2/16

= ρ2n/4 + k + ρ
√

4ρ2n+ 32kn/8

> k + ρ
√

2kn/2 + ρ2n/4

> k + Ω(
√
kn+ n).
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Suppose we set the parameter k = qn for q > 16 in Example 5.4.3. If we apply
Theorem 5.1.3 to the vectors v1, ..., vm ∈ Rn−1 and x ∈ [0, 1]m defined in Example 5.4.3
with ε =

√
n/k < 1/4, then there exists a z ∈ {0, 1}m such that

∑
16i<j6n

z(ij) · vijv>ij < In−1 and 〈c , z〉 6 (1 + 6ε)〈c , x〉+
15n ‖c‖∞

ε
= k +O(

√
kn),

where the last equality uses 〈c , x〉 = k. Note that if the additive error term O(ε〈c , x〉 +
n‖c‖∞
ε

) has a better dependency on ε, then we can set ε accordingly such that the cost upper
bound will contradict with the lower bound in Lemma 5.4.5. For example, if Theorem 5.1.3
were improved to 〈c , z〉 6 (1 + 6ε)〈c , x〉+ 15n‖c‖∞√

ε
, then we could set ε = (n

k
)

2
3 which would

imply that 〈c , z〉 6 k+O(k
1
3n

2
3 ), contradicting with the lower bound 〈c , z〉 > k+ Ω(

√
kn)

when k is large enough. This shows Theorem 5.1.3 is tight up to a constant factor in the
additive error term n‖c‖∞

ε
.
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Chapter 6

Applications of Spectral Rounding to

Graph Problems

In this chapter, we show the applications of spectral rounding techniques to various graph
problems. We first show that spectral rounding significantly extends the scope of the well-
studied survivable network design in Section 6.1. Then, we apply spectral rounding to
some spectral network design problems in Section 6.2. Finally, we show applications of
spectral rounding to additive spectral sparsification in Section 6.3.

6.1 Generalized Survivable Network Design

In this section, we show that the spectral rounding results provide a new approach for
the survivable network design problem. The main advantage of this approach is that it
significantly extends the scope of useful properties that can be incorporated into survivable
network design.
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6.1.1 Previous Work on Network Design and Our Main Results

In network design, we are given a graph G = (V,E) where each edge has a cost c(e), and the
objective is to find a minimum cost subgraph that satisfies certain requirements. In surviv-
able network design [71, 79], the requirements are pairwise edge-connectivities, that every
pair of vertices u, v should have at least fuv edge-disjoint paths for u, v ∈ V . This captures
several classical problems as special cases, including minimum Steiner tree [32], minimum
Steiner forest [1, 73], and minimum k-edge-connected subgraph [67]. Jain introduced the
iterative rounding method for linear programming to design a 2-approximation algorithm
for the survivable network design problem [79]. His proof exploits the nice structures of
the connectivity constraints to show that there is always a variable x(e) with value at least
1
2
in any extreme point solution to the linear program. His work leads to many subsequent

developments in network design [62, 43, 66, 67, 42], and the iterative rounding algorithm
is still the only known constant factor approximation algorithm for the survivable network
design problem.

Motivated by the need of more realistic models for the design of practical networks,
researchers study generalizations of survivable network design problems where we can in-
corporate additional useful constraints. One well-studied problem is the degree-constrained
survivable network design problem, where there is a degree upper bound dv on each vertex
v to control its workload. There is a long line of work on this problem [122, 125, 72, 93,
56, 64, 96] and the iterative rounding method has been extended to incorporate degree
constraints into survivable network design successfully. In the general setting [93, 106, 96],
there is a polynomial time algorithm to find a subgraph that violates the cost and the
degree constraints by a multiplicative factor of at most 2. For interesting special cases
such as finding a spanning tree [72, 130] or a Steiner tree [95, 96], there is a polynomial
time algorithm that returns a solution that violates the degree constraint by an additive
constant.

More generally, one can consider to add linear packing constraints and linear covering
constraints into survivable network design [25, 19, 119, 105], but not as much is known
about how to approximately satisfy these constraints simultaneously especially when the
linear constraints are unstructured.
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Another natural constraint is to control the shortest path distance between pairs of
vertices, but unfortunately this is proved to be computationally hard [53] to incorporate
into network design.

In [38], together with our coauthors, we propose to incorporate the effective resistance
metric (see Section 2.4 for a definition) into network design, as an interpolation of shortest
path distance and edge-connectivity between vertices. Incorporating effective resistances
can also allow one to control some natural quantities about random walks on the resulting
subgraph, such as the commute time between vertices [39] and the cover time [112, 52]. We
note that effective resistances have interesting connections to many other graph problems,
including spectral sparsification [132], maximum flow computation [44], asymmetric trav-
eling salesman problem [9], and random spanning tree generation [115, 128]. We believe
that it is a useful property to be incorporated into network design.

There are many other natural spectral constraints that could help in designing bet-
ter networks, including total effective resistances [70], algebraic connectivity (and graph
expansion) [69], and the mixing time of random walks [30]. These constraints are also
well-motivated and were studied individually before (without taking other constraints to-
gether into consideration, e.g., connectivity requirements), but not much is known about
approximation algorithms with nontrivial approximation guarantees for these constraints
(see Section 6.2).

Convex Relaxation for Generalized Survivable Network Design

It would be ideal if a network designer can control all of these properties simultaneously
to design a good network that suits their need. We can write a convex programming
relaxation for this general network design problem incorporating all these constraints.

In the following, the input graph is G = (V,E) with |V | = n and |E| = m. The
fractional solution is x ∈ Rm where the intended solution is to set x(e) = 1 if we choose
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edge e and x(e) = 0 otherwise. The convex program can be written as follows.

min
x
〈c , x〉

x(δ(S)) > f(S) ∀S ⊆ V (connectivity constraints)

x(δ(v)) 6 dv ∀v ∈ V (degree constraints)

Ax 6 a A ∈ Rp×m
+ , a ∈ Rp

+ (linear packing constraints)

Bx > b B ∈ Rq×m
+ , b ∈ Rq

+ (linear covering constraints)

Reffuv(x) 6 ruv ∀u, v ∈ V (effective resistance constraints)

Lx < M M < 0 (spectral constraints)

λ2(Lx) > λ (algebraic connectivity constraint)

0 6 x(e) 6 1 ∀e ∈ E (capacity constraints)

(CP)

Let us explain the constraints one by one. For the connectivity constraints, we have a
connectivity requirement fuv that there are at least fuv edge-disjoint paths between every
pair u, v of vertices. For each subset S ⊆ V , we let f(S) := maxu,v:u∈S,v /∈S fuv and write
a constraint that at least f(S) edges in δ(S) should be chosen, where x(δ(S)) denotes∑

e∈δ(S) x(e). By Menger’s theorem, if an integral solution satisfies all these constraints,
then all the connectivity requirements are satisfied. For the degree constraints, each vertex
has a degree upper bound dv and we write a constraint that at most dv edges in δ(v) can be
chosen, where x(δ(v)) :=

∑
e∈δ(v) x(e). For the linear packing and covering constraints, all

the entries in A,B , a, b are nonnegative, and we assume that A,B have at most a polynomial
number of rows in n,m. For effective resistance constraints, we have an upper bound ruv on
the effective resistance between every pair u, v ∈ V . As in Section 2.4, we write Reffuv(x)

as the effective resistance between u and v in the fractional solution x where each edge
e has conductance x(e). In the spectral and the algebraic connectivity constraints, we
write Lx :=

∑
e∈E x(e) · Le as the Laplacian matrix of the fractional solution x where Le is

the Laplacian matrix of an edge as defined in Section 2.3. In the spectral constraint, we
require that Lx < M for a positive semidefinite matrix M. One could have polynomially
many constraints of this form (just as linear packing and covering constraints), but we only
write one for simplicity. In the algebraic connectivity constraint, we require the second
smallest eigenvalue of the Laplacian matrix of the solution is at least λ, which is related
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to the graph expansion of the fractional solution as described in Section 2.3.

This convex program can be solved by the ellipsoid method in polynomial time in n

and m. There are exponentially many connectivity constraints but we can use a max-flow
min-cut algorithm as a polynomial time separation oracle for these constraints (see, e.g.,
[79]). Other linear constraints can easily be checked efficiently, as we assume there are
only polynomially many of them. Next we consider the non-linear constraints. For the
effective resistance constraints, it is known (see Lemma 2.4.5) that Reffuv(x) is a convex
function in x . For the algebraic connectivity constraint, it is known (see Lemma 2.3.1)
that λ2 is a concave function in x . For the spectral constraint, the feasible set is a positive
semidefinite cone and is convex in x . So the feasible set for these non-linear constraints
form a convex set. Also, these non-linear constraints can all be checked in polynomial time
using standard numerical computations. Therefore, we can use the ellipsoid algorithm to
find an ε-approximate solution to this convex program in polynomial time in n and m with
dependency on ε being log(1

ε
).

Statements of Main Results

Our first result for network design is the following approximation algorithm for this general
problem. We remark that the degree constraints are not handled in the following result.

Theorem 6.1.1 (Informal, see Theorem 6.1.5 for a formal statement). Suppose we are
given an optimal solution x to the convex program (CP). There is a polynomial time ran-
domized algorithm to return an integral solution z to (CP) that simultaneously satisfies all
the connectivity constraints, the effective resistance constraints, the spectral constraints, the
algebraic connectivity constraint and the capacity constraints exactly with high probability.
The objective value of the integral solution z is

〈c , z〉 6 (1 +O(ε)) · cp +O

(
n ‖c‖∞

ε

)
with high probability, where n is the number of vertices in the graph and ‖c‖∞ is the
maximum cost of an edge. Furthermore, the linear packing constraints and the linear
covering constraints are satisfied approximately with high probability.
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We remark that the one-sided spectral rounding theorem in [6] (i.e. Theorem 5.1.1)
can be modified to prove similar but more restrictive results for network design when
the objective function c is the all-one vector and there are no linear covering and packing
constraints. This already extends the scope of unweighted network design significantly, but
this connection was not made before. For network design, it is desirable to have different
costs on edges, and these weighted problems are usually more difficult to solve than the
unweighted problems (e.g., minimum k-edge-connected subgraphs [67] vs [79], minimum
bounded degree spanning trees [65] vs [72], etc.).

Theorem 6.1.1 provides a (1 + O(ε))-approximation algorithm if cp & n‖c‖∞
ε2

, and a
constant factor approximation algorithm if cp & n ‖c‖∞. We remark that, for surviv-
able network design, the (1 + O(ε))-approximation algorithm does not improve on the
2-approximation algorithm of Jain’s result, as Jain’s algorithm always returns a solution
with cost at most cp + 2n ‖c‖∞.

The main advantage of the spectral approach is that it significantly extends the scope
of useful properties that can be incorporated into network design, while previously there
were no known non-trivial approximation algorithms even for some individual constraints.
We demonstrate the use of Theorem 6.1.1 with one concrete setting.

Example 6.1.2. Suppose the connectivity requirement satisfies fuv > k for all u, v ∈ V

(e.g., to find a k-edge-connected subgraph). Assume the cost c(e) of each edge e satisfies
1 6 c(e) 6 O(k). Then Theorem 6.1.1 provides a constant factor approximation algorithm
for this survivable network design problem. To our knowledge, the only known constant
factor approximation algorithm even restricted to this special case is Jain’s iterative round-
ing algorithm. The algorithm in Theorem 6.1.1 provides a completely different spectral
algorithm to achieve constant factor approximation in this special case.

Furthermore, the constant factor approximation algorithm can be achieved while incor-
porating additional effective resistance constraints (e.g., to upper bound commute times
between pairs of vertices), spectral constraints (e.g., to dominate another graph/topology
in terms of the number of edges in cuts), algebraic connectivity constraint (e.g., to lower
bound graph expansion). Also, additional linear packing and covering constraints can be
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satisfied approximately, even when they are unstructured. See Section 6.1.3 for an in-depth
discussion.

Recently, Bansal [16] designed a rounding technique that achieves the guarantees by
iterative rounding and randomized rounding simultaneously, and he showed various inter-
esting applications of his techniques. However, he left it as an open question whether there
is an O(1)-approximation algorithm for survivable network design while satisfying some
concentration property of the output. Theorem 6.1.1 provides some progress towards his
question (e.g., in the setting in Example 6.1.2), as the guarantees on the linear packing and
linear covering constraints satisfy some concentration property as shown in Theorem 6.1.5.
We defer to Section 6.1.5 for details.

Our second result for network design is a strong upper bound on the integrality gap of
the convex program that incorporates degree constraints as well, assuming the fractional
solution x satisfies some additional properties.

Theorem 6.1.3 (Informal). Suppose we are given a solution x to the convex program (CP).
Assume that Reffx(u, v) 6 ε2 for every uv ∈ E and ‖c‖∞ 6 ε2〈c , x〉 for some ε ∈ [0, 1].
Then, there exists an integral solution z that approximately satisfies all the connectivity
constraints, degree constraints, effective resistance constraints, spectral constraints, alge-
braic connectivity constraints, and capacity constraints with 〈c , z〉 6 (1 +O(ε))〈c , x〉.

We remark that Theorem 6.1.3 does not provide a polynomial time algorithm to find
such an integral solution, as it is proved using the non-constructive results in discrepancy
theory. Also, we note that Theorem 6.1.3 does not handle linear covering and packing
constraints. The assumption Reffx(u, v) 6 ε2 for every uv ∈ E may not be satisfied in
applications, and we will explain in Section 6.1.4 when it will be satisfied and show that it
is not too restrictive.

The organization of remaining of this section is as follows. We begin by explaining
how the spectral rounding results can be used to find a solution for this general survivable
network design problem in Section 6.1.2. Then we will see the implications of Theorem 5.1.3
to network design in Section 6.1.3 and of Theorem 5.1.4 to network design in Section 6.1.4.
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Finally, we discuss how these new results make some progress towards Bansal’s question [16]
of designing an approximation algorithm for survivable network design with concentration
property in Section 6.1.5.

6.1.2 Implications of Spectral Rounding

Suppose we are given an optimal solution x to the convex programming relaxation (CP).
To design approximation algorithms, the task is to round this fractional solution x into an
integral solution z so that z satisfies all the constraints and 〈c , z〉 is close to 〈c , x〉. There
are many different types of constraints and it seems difficult to handle them simultaneously.
In the spectral approach, the main observation is that if we can find an integral solution
z such that

∑
e∈E z(e)Le ≈

∑
e∈E x(e)Le and 〈c , x〉 ≈ 〈c , z〉, then all the constraints can

be (approximately) satisfied simultaneously. We state this observation in the following
lemma.

Lemma 6.1.4. Let x ∈ Rm
+ be a feasible solution to (CP). For ε ∈ [0, 1

2
], any z ∈ Zm+

satisfies

∑
e∈E

z(e) · Le < (1− ε)
∑
e∈E

x(e) · Le =⇒



z(δ(S)) > (1− ε)f(S) for all S ⊆ V

Reffz(u, v) 6 (1 + 2ε)ruv for all u, v ∈ V

Lz < (1− ε) ·M,

λ2(Lz) > (1− ε)λ.

For ε ∈ [0, 1], any z ∈ Zm+ satisfies∑
e∈E

z(e) · Le 4 (1 + ε)
∑
e∈E

x(e) · Le =⇒ z(δ(v)) 6 (1 + ε)dv for all v ∈ V.

Proof. Let Lx :=
∑

e∈E x(e)Le and Lz :=
∑

e∈E z(e)Le. We start with the connectivity
constraints. For any S ⊆ V , let χS ∈ Rn be the characteristic vector of S with χS(i) = 1

if i ∈ S and zero otherwise. It is well-known that

χ>S LzχS = χ>
S

(∑
e∈E

z(e)Le

)
χS =

∑
e∈E

z(e)χ>S LeχS =
∑
e∈δ(S)

z(e) = z(δ(S))
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and similarly χ>S LxχS = x(δ(S)). So, if Lz < (1− ε)Lx , then for all S ⊆ V we have

z(δ(S)) = χ>
S LzχS > (1− ε)χ>S LxχS = (1− ε)x(δ(S)) > (1− ε)f(S).

For the effective resistance constraints, since Lz < (1 − ε)Lx , it implies that L†z 4 (1 −
ε)−1L†x 4 (1 + 2ε)L†x for ε ∈ [0, 1

2
], and thus

Reffz(u, v) = b>uvL
†
zbuv 6 (1 + 2ε)b>uvL

†
xbuv = (1 + 2ε) Reffx(u, v) 6 (1 + 2ε)ruv.

The statements about the spectral lower bound and the algebraic connectivity constraint
follows directly from the assumption that Lz < (1−ε)Lx . Finally, for the degree constraints,
suppose we are given Lz 4 (1 + ε)Lx , then it follows that

z(δ(v)) = χ>
v Lzχv 6 (1 + ε)χ>v Lxχv = (1 + ε)x(δ(v)) 6 (1 + ε)dv.

Lemma 6.1.4 says that if z satisfies the spectral lower bound Lz < Lx , then the solution
z will simultaneously satisfy all connectivity constraints, effective resistance constraints,
spectral constraints, and the algebraic connectivity constraint exactly. Moreover, if z also
satisfies the spectral upper bound approximately, then the solution z will approximately
satisfy all degree constraints as well.

6.1.3 Applications of One-Sided Spectral Rounding

We apply Theorem 5.1.3 to design approximation algorithms for network design problems
that significantly extend the scope of existing techniques.

cp :=min
x
〈c , x〉

x(δ(S)) > f(S) ∀S ⊆ V (connectivity constraints)

Ax 6 a A ∈ Rp×m
+ , a ∈ Rp

+ (linear packing constraints)

Bx > b B ∈ Rq×m
+ , b ∈ Rq

+ (linear covering constraints)

Reffuv(x) 6 ruv ∀u, v ∈ V (effective resistance constraints)

Lx < M M < 0 (spectral constraint)

λ2(Lx) > λ (algebraic connectivity constraint)

0 6 x(e) 6 1 ∀e ∈ E (capacity constraints)

(CP1)
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In network design, a zero-one solution corresponds to a subset of edges where each
edge is used at most once (satisfying the capacity constraints). The following theorem is a
consequence of Theorem 5.1.3.

Theorem 6.1.5. Suppose we are given an optimal solution x to the convex program (CP1).
For any ε ∈ (0, 1

4
), there is a polynomial time randomized algorithm to return a zero-one

solution z ∈ {0, 1}m to (CP1) satisfying all the constraints exactly with probability at least
1− exp(−Ω(n)) except for the linear constraints. The solution z has objective value

〈c , z〉 6 (1 + 6ε)cp +
15n ‖c‖∞

ε

with probability at least 1− exp(−Ω(n)), and satisfies

〈A(i, :), z〉 6 (1 + 6ε)a(i) +
15n ‖A(i, :)‖∞

ε

with probability at least 1− exp(−Ω(n)) for each linear packing constraint, where A(i, :) is
the i-th row of A, and satisfies

〈B(j, :), z〉 > b(j)− δn ‖B(j, :)‖∞ ,

with probability at least 1−exp(−min{εδ, εδ2}·Ω(n)) for any δ > 0 for each linear covering
constraint, where B(j, :) is the j-th row of B.

Proof. We assume without loss of generality that the graph G = (V,E; x) formed by the
support of the fractional solution x is connected, and so Lx has rank n−1. Then, we apply
a transformation similar to (2.12).

Let Lx =
∑n

i=2 λi · uiu>i = UΛU> be the eigendecomposition of Lx , where Λ =

diag(λ2, . . . , λn) is a diagonal matrix that contains the n−1 nonzero eigenvalues of Lx , and
the columns of U ∈ Rn×(n−1) are the corresponding eigenvectors. We define

ve := U>L
†
2
x be, for all e ∈ E. (6.1)
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Note that each ve ∈ Rn−1. Then

∑
e∈E

x(e) · vev>e = U>L
†
2
x

(∑
e∈E

x(e)beb>e

)
L
†
2
x U = U>L

†
2
x LxL

†
2
x U = In−1.

For any ε ∈ (0, 1
4
), we apply Theorem 5.1.3 to x ∈ [0, 1]E and {ve}e∈E to find a zero-

one solution z ∈ {0, 1}E such that
∑

e∈E z(e) · vev>e < In−1 with probability at least
1− exp(−Ω(n)).

Since the columns of U are the eigenvectors (ui’s) of Lx which span the (n − 1)-
dimensional subspace orthogonal to 1n, it holds that

UU> = In −
1

n
11> =⇒

L
1
2
x UU>L

1
2
x = Lx ,

L
1
2
x UU>L

†
2
x = In.

Thus,
∑

e∈E z(e) · vev>e < In−1 is equivalent to U>L
†
2
x

(∑
e∈E z(e) ·beb>e

)
L
†
2
x U < In−1, which

further implies

L
1
2
x UU>L

†
2
x

(∑
e∈E

z(e) · beb>e
)

L
†
2
x UU>L

1
2
x < L

1
2
x UU>L

1
2
x =⇒

∑
e∈E

z(e) · beb>e < Lx . (6.2)

Therefore, the zero-one solution z satisfies all the constraints in (CP1) except for the
linear constraints by Lemma 6.1.4.

Theorem 5.1.3 also guarantees that with probability at least 1 − exp(−Ω(n)) the ob-
jective value of z is at most

〈c , z〉 6 (1 + 6ε)〈c , x〉+
15n ‖c‖∞

ε
.

The guarantees for the linear packing constraints follow the same way as for the objec-
tive function, and the guarantees for the linear covering constraints follow from the lower
bound part of Theorem 5.1.3.
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We demonstrate the use of Theorem 6.1.5 in some concrete settings. The first example
shows that Theorem 6.1.5 provides a spectral alternative to Jain’s iterative rounding algo-
rithm to achieve O(1)-approximation for a fairly general subclass of the survivable network
design problem.

Example 6.1.6. Theorem 6.1.5 is a constant factor approximation algorithm as long as
n ‖c‖∞ = O(cp). Suppose that in our network design problem the average degree is at least
davg and the costs on edges are positive integers with ‖c‖∞ = O(davg) (e.g., in the minimum
k-edge-connected subgraph problem every vertex has degree at least k and 1 6 c(e) 6 O(k)

for e ∈ E, or the solution requires a connected subgraph and 1 6 ce 6 O(1) for e ∈ E,
etc). Then cp > Ω(davgn) > Ω(‖c‖∞ n) and Theorem 6.1.5 provides a constant factor
approximation algorithm.

The additive error term n ‖c‖∞ is the reason that we could not achieve constant factor
approximation in general, but this term is unavoidable in the one-sided spectral rounding
setting when we need to satisfy the spectral lower bound exactly. See Section 5.4 for
examples showing the limitations. Heuristically, we can compute cp and if n ‖c‖∞ = O(cp)

then we know Theorem 6.1.5 will provide good approximate solutions.

The second example shows that Theorem 6.1.5 returns good approximate solution to
survivable network design while incorporating many other constraints simultaneously.

Example 6.1.7. Suppose the connectivity requirement is to find a k-edge-connected sub-
graph, or more generally fuv > k for all u, v ∈ V . Assume the cost c(e) of each edge e is
at least one. Then cp > Ω(kn).

When the cost function satisfies ‖c‖∞ = O(k), then Theorem 6.1.5 implies that there
is a polynomial time randomized algorithm to return a simple k-edge-connected subgraph
satisfying all the constraints in (CP1) except for the linear constraints (with some non-
trivial guarantees), and the cost of the subgraph is at most a constant factor of the optimal
value.

When the cost function satisfies ‖c‖∞ = O(1), then Theorem 6.1.5 implies that there is
a polynomial time randomized algorithm to return a k-edge-connected subgraph satisfying
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all the constraints in (CP1) except for the linear constraints, and the cost of the subgraph
is at most 1 +O

(
1√
k

)
factor of the optimal value by setting ε = Θ

(
1√
k

)
.

The third example shows when the linear packing and covering constraints can be
satisfied up to a multiplicative constant factor. See also Section 6.1.5 for a related question
asked by Bansal [16].

Example 6.1.8. For linear covering constraints, suppose they are of the form
∑

e∈F x(e) >

bj for some subset F ⊆ E where bj > n, then the returned solution z will almost satisfy
this constraint as

∑
e∈F z(e) > b(j) − δn ‖B(j, :)‖∞ > (1 − δ)b(j) for some δ > 0. So,

these unweighted covering constraints with large right hand side can be incorporated into
survivable network design, even though they can be unstructured. By a similar argument,
any unweighted packing constraints with large right hand side will be only violated by at most
a multiplicative constant factor with high probability. It was not known that Jain’s iterative
rounding can be adapted to incorporate these linear covering and packing constraints.

We will present more applications of Theorem 6.1.5 in Section 6.2, where they can
be used to design approximation algorithms for network design problems with spectral
requirements. These problems were studied in the literature before but not much is known
about approximation algorithms with performance guarantees.

6.1.4 Applications of Two-Sided Spectral Rounding

If we can achieve two-sided spectral rounding in network design, then we can also approx-
imately satisfy the degree constraints by Lemma 6.1.4. However, to apply Theorem 5.1.4,
we need to satisfy the assumption that the vector lengths are small. It is known that the
vector lengths in the spectral rounding setting corresponds to the effective resistance of the
edges in the fractional solution x . In the following, we describe when two-sided spectral
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rounding can be applied, and discuss what are the implications for network design.

cp := min
x
〈c , x〉

x(δ(S)) > f(S) ∀S ⊆ V (connectivity constraints)

x(δ(v)) 6 dv ∀v ∈ V (degree constraints)

Reffuv(x) 6 ruv ∀u, v ∈ V (effective resistance constraints)

Lx < M M < 0 (spectral lower bound)

λ2(Lx) > λ (algebraic connectivity constraint)

0 6 x(e) 6 1 ∀e ∈ E (capacity constraints)

(CP2)

Theorem 6.1.9. Suppose we are given an optimal solution x to the convex program (CP2).
For any ε ∈ [0, 1], if Reffx(u, v) 6 ε2 for every uv ∈ E and ‖c‖∞ 6 ε2〈c , x〉, then there
exists a zero-one solution z ∈ {0, 1}m

(1−O(ε))Lx 4 Lz 4 (1 +O(ε))Lx and (1−O(ε))〈c , x〉 6 〈c , z〉 6 (1 +O(ε))〈c , x〉

This implies that all the constraints of (CP2) will be approximately satisfied by z (e.g.,
z(δ(S)) > (1−O(ε))f(S) for all S ⊆ V and z(δ(v)) 6 (1 +O(ε))dv for all v ∈ V ) and the
objective value of z is at most (1 +O(ε))cp.

Proof. We apply the same transformation as in (6.1) to obtain vector ve for each edge
e ∈ E such that

∑
e∈E x(e) · vev>e = In−1 as in the proof of Theorem 6.1.5. Using the

assumption that Reffx(i, j) 6 ε2 for every edge ij ∈ E, it follows that

‖vij‖2 = b>ijL
†
2
x

(
In −

1

n
11>

)
L
†
2
x bij = b>ijL

†
xbij = Reffx(i, j) 6 ε2 for all ij ∈ E,

and thus the assumption in Theorem 5.1.4 is satisfied. We can then apply Theorem 5.1.4
on {ve}e and c to conclude that there exists z ∈ {0, 1}E such that

(1−O(ε))In−1 4
∑
e∈E

z(e) · vev>e 4 (1 +O(ε))In−1 and 〈c , z〉 6 (1 +O(ε))〈c , x〉.

By the definition of ve’s, this implies that

(1−O(ε))Lx 4 Lz =
∑
e∈E

z(e) · beb>e 4 (1 +O(ε))Lx .
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By Lemma 6.1.4, the zero-one solution z satisfies all the constraints of (CP2) approxi-
mately.

In the following, we compare Theorem 6.1.9 to Theorem 6.1.5.

1. Approximation guarantees: When Theorem 6.1.9 applies, it can handle degree
constraints as well and basically preserves all properties of the fractional solution
(e.g., upper bound and lower bound on every cut). It also gives strong approxima-
tion guarantee for the objective value, getting arbitrarily close to the optimal value.
However, the constraints are only approximately satisfied, while in Theorem 6.1.5
they are exactly satisfied. Theorem 6.1.9 can only handle one linear constraint,
which is used for the objective function, while Theorem 6.1.5 can handle many linear
constraints simultaneously with an additive error term.

2. Assumptions: Theorem 6.1.5 apply without any assumptions, but Theorem 6.1.9
only applies when Reffx(u, v) 6 ε2 for all uv ∈ E and ‖c‖∞ 6 ε2〈c , x〉. The as-
sumption about the cost is moderate, as it only requires the maximum cost of an
edge is at most ε2 fraction of the total cost of the solution, which should be satis-
fied in many applications with small ε. The main restriction is the first assumption
about effective resistances, which may not be satisfied in network design applications,
and we would like to provide some combinatorial characterizations under which the
assumption will hold. Let Reffdiam := maxu,v Reff(u, v) be the effective resistance
diameter of a graph; note that the maximum is taken over all pairs (not just for
edges as required in Theorem 6.1.9). For example, it is known that [39] a d-regular
graph with constant expansion has Reffdiam 6 O(1

d
). So, if the fractional solution

x is close to a d-regular expander graph, then Theorem 6.1.9 can be applied with
ε > 1√

d
. It is proved in [4] that a much milder expansion condition guarantees small

effective resistance diameter. For example, in a d-regular graph G, as long as for
some 0 < η 6 1

2
,

|δ(S)| > Ω
(

(d|S|)
1
2

+η
)

for all S ⊆ V =⇒ Reffdiam 6 O

(
1

d2η

)
.
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Note that a d-regular graph with constant expansion satisfies the much stronger
assumption that |δ(S)| > Ω(d|S|). Informally, the above result only requires |δ(S)|
to be roughly the square root of d|S| to show that the graph has a small effective
resistance diameter (e.g., 3-dimensional mesh). So, as long as the fractional solution
x is a mild expander as defined in [4], the assumption in Theorem 6.1.9 will be
satisfied with small ε. As another example, if the algebraic connectivity λ2(Lx) of the
fractional solution is at least say 1

2ε2
, then we have Reffdiam 6 ε2 so that Theorem 6.1.9

can be applied. Heuristically, if one could add the constraints that Reffuv(x) 6 ε2

for uv ∈ E so that the convex program (CP2) is still feasible without increasing the
objective value too much, then one could then apply Theorem 6.1.9 to bound the
integrality gap of the convex program.

3. Algorithms: There are polynomial time algorithms to return the solutions guaran-
teed in Theorem 6.1.5, while the proof of Theorem 6.1.9 is non-constructive. In net-
work design, Theorem 6.1.5 give us approximation algorithms, while Theorem 6.1.9
only gives us integrality gap results for the convex programming relaxation (that
there exists a zero-one solution almost satisfying all the constraints with objective
value close to the optimal value).

6.1.5 Concentration Property in Survivable Network Design

Recently, Bansal [16] designed a rounding technique that achieves the guarantees by it-
erative rounding and randomized rounding simultaneously. Suppose there is an iterative
rounding algorithm for a problem satisfying some technical assumptions. Bansal’s algo-
rithm will satisfy essentially the same guarantees of the iterative rounding algorithm, and
simultaneously the following concentration property with β = O(1) with respect to linear
constraints as if the algorithm does independent randomized rounding.

Definition 6.1.10 (β-concentration). Let β > 1. For a vector valued random variable
X = (X1, ..., Xm), where Xi are possible dependent 0-1 random variables, we say X is
β-concentrated around the mean x ∈ Rm where x(i) = E[Xi], if for every a ∈ Rn with
M := maxi |a(i)|, 〈a, X〉 is well-concentrated and satisfies Bernstein’s inequality up to a
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factor of β in the exponent, i.e.

P [〈a, X〉 − 〈a, x〉 > t] 6 exp

(
− t2/β

2(
∑m

i=1 a(i)2x(i)(1− x(i)) +Mt/3)

)
.

Bansal showed various interesting applications of his techniques, with x being the frac-
tional solution to the linear programming relaxation and X being the zero-one solution
output by the approximation algorithm. However, he left it as an open question whether
there is an O(1)-approximation algorithm for survivable network design (the guarantee
achieved by Jain’s iterative rounding algorithm) with O(1)-concentration property.

Our iterative randomized swapping algorithms satisfy similar but weaker concentration
properties. Let x ∈ [0, 1]m be the fractional solution to the one-sided spectral rounding
problem. The algorithm in Theorem 5.1.3 will output a vector-valued random variable
X ∈ {0, 1}m such that for any a ∈ Rn

+ with M := maxi a(i),

E[〈a, X〉] 6 (1 +O(ε))〈a, x〉+O
(nM

ε

)
and

P[〈a, X〉 − E[〈a, X〉] > η] 6 exp

[
−Ω

(
η2

σ2 +Mη

)]
,

where n is the dimension of the problem (i.e. the dimension of the vectors) and σ2 =

O(M(〈a, x〉+nM/ε)) is a term related to the variance of the randomized swapping process.
In other words, the random variable 〈a, X〉 is concentrated around the expected value
E[〈a, X〉], but the expected value E[〈a, X〉] could deviate from 〈a, x〉 by O(ε〈a, x〉+nM/ε)

and the concentration property is weaker than the one required in β-concentration, as
the upper bound of σ2 we can obtain is larger than the term

∑m
i=1 a(i)2x(i)(1 − x(i))

in the β-concentration definition. We note that both Bansal’s proof and our proof use
Freedman’s concentration inequality or its variant. Using Theorem 6.1.5, we made some
progress towards Bansal’s question.

Corollary 6.1.11. Let x ∈ [0, 1]m be an optimal fractional solution to the survivable net-
work design problem (i.e. (CP1) with only connectivity and capacity constraints). Suppose
n ‖c‖∞ = O(〈c , x〉). Then there is a randomized polynomial time algorithm to return a so-
lution z ∈ {0, 1}m to the survivable network design problem so that 〈c , z〉 6 O(〈c , x〉) with
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probability at least 1−exp(−Ω(n)). Furthermore, for any a ∈ Rm
+ and δ ∈ (0, 1) it holds that

〈a, x〉−δn ‖a‖∞ 6 〈a, z〉 6 O(〈a, x〉+n ‖a‖∞) with probability at least 1−O(exp(−Ω(δ2n))).

We remark that one can add linear constraints a to the convex program in our framework
before we apply the rounding, so that we have some control over 〈a, x〉 of the fractional
solution x and hence some control over 〈a, z〉 of the zero-one solution z . But it may
not be possible to add linear constraints to the relaxation in Bansal’s setting, as adding
constraints may make the underlying iterative rounding algorithm stops working (e.g., we
do not know of an iterative rounding algorithm for the survivable network design problem
with additional linear packing or covering constraints). See Example 6.1.8 for a related
discussion. Our results suggest that the spectral approach is perhaps more suitable for
achieving concentration property for survivable network design.

6.2 Spectral Network Design

There are several previous work on network design problems with spectral requirements.
In this section, we will see that these problems are special cases of the general network
design problem in Section 6.1, and our results provide improved approximation algorithms
for these problems and also generalize these problems to incorporate many additional
constraints.

6.2.1 Maximizing Algebraic Connectivity

Ghosh and Boyd [69] study the problem of choosing a subgraph that maximizes the al-
gebraic connectivity (the second smallest eigenvalue of its Laplacian matrix) subject to a
cost constraint. The problem is formulated as follows:

λopt := max
x∈RE

λ2

(∑
e∈E

x(e) · beb>e

)
subject to

∑
e∈E

c(e) · x(e) 6 C,

x(e) ∈ {0, 1}, ∀e ∈ E,

(6.3)
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where c(e) is the cost of edge e for e ∈ E and C is the given cost budget. As mentioned
in [69], the algebraic connectivity is a good measure on the well-connectedness of a graph,
as

λ2(LG) 6 min
S⊆V

n|δ(S)|
|S||S̄|

6 2 min
06|S|6n

2

|δ(S)|
|S|

where the first inequality is proved in [59]. Thus, any graph with large λopt has no sparse
cuts, which also implies that the mixing time of random walks is small.

Ghosh and Boyd show that if the constraint x(e) ∈ {0, 1} is relaxed to x(e) ∈ [0, 1],
then the relaxation is convex and can be written as a semidefinite program. They proposed
a greedy heuristic based on the Fiedler vector for the zero-one cost setting (where c(e) ∈
{0, 1} for all e), but they do not provide any approximation guarantee of their heuristic
algorithm.

Kolla, Makarychev, Saberi and Teng [86] provide the first algorithm with non-trivial
approximation guarantee in the zero-one cost setting. Using subgraph sparsification tech-
niques, they give an algorithm that returns a solution which violates the cost constraint
by a factor of at most 8 and having algebraic connectivity at least Ω(λ2

opt/∆) where ∆ is
the maximum degree of the graph.

We observe that if we project the vectors be onto the rank n − 1 subspace orthogonal
to the all-one vector, then the objective function of (6.3) is simply the reciprocal of the
objective function of the E-optimal design problem (see Chapter 7). This immediately
implies that the result of Allen-Zhu, Li, Singh and Wang [6] (Theorem 5.1.1) can be
applied to give a (1 + ε)-approximation algorithm for the unweighted problem as long as
C > 5n/ε2, although this connection was not made before.

The one-sided spectral rounding results in Chapter 5 imply the following approximation
result for general non-negative cost functions.

Theorem 6.2.1. Suppose C > 15n‖c‖∞
ε2

for some ε ∈ (0, 1
2
]. There is a polynomial time

randomized algorithm which returns a zero-one solution z ∈ {0, 1}E for (6.3) with with
probability at least 1− exp(−Ω(n)) such that

λ2

(∑
e∈E

z(e) · beb>e

)
> (1−O(ε))λopt and

∑
e∈E

c(e) · z(e) 6 C.
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Proof. We apply the same transformation as in (6.1) to obtain vector ve for each edge
e ∈ E such that

∑
e∈E x(e) · vev>e = In−1. Then, apply Corollary 5.2.3 with γ = ε on {ve},

x and c to find a z ∈ {0, 1}E such that∑
e∈E

z(e) · vev>e < (1− 4ε)In−1 and 〈c , z〉 6 C

with probability at least 1−exp(−Ω(n)). The theorem follows by the reverse transformation
of ve’s in (6.2).

As shown in Section 6.1, the constraint λ2(
∑

e∈E x(e) ·beb>e ) > λopt can be incorporated
into network design, and so Theorem 6.1.5 implies the following result.

Theorem 6.2.2. There is a polynomial time randomized algorithm which returns a zero-
one solution z ∈ {0, 1}m with probability at least 1− exp(−Ω(n)) such that

λ2

(∑
e∈E

z(e) · beb>e

)
> λopt and

∑
e∈E

c(e) · z(e) 6 (1 +O(ε))C +O
(n ‖c‖∞

ε

)
.

Furthermore, this can be done while incorporating other constraints (e.g., connectivity con-
straints) as described in Theorem 6.1.5.

6.2.2 Minimizing Total Effective Resistance

Ghosh, Boyd and Saberi [70] study the problem of designing a network that minimizes the
total effective resistance. The problem is formulated as follows.

Ropt := min
x∈R|E|

1

2

∑
u,v∈V

Reffuv(x)

subject to
∑
e∈E

x(e) 6 k,

x(e) ∈ {0, 1},∀e ∈ E.

(6.4)

They showed that if the constraint x(e) ∈ {0, 1} is relaxed to x(e) ∈ [0, 1], then the
relaxation is convex and can be written as a semidefinite program. They did not provide
any result for the discrete optimization version in (6.4).
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Ghosh, Boyd and Saberi [70] also show that the total effective resistance is a useful
measure in different problems, e.g., average commute time, power dissipation in a resistor
network, Elmore delay in a RC Circuit, total time constant of an averaging network, and
euclidean variance. Furthermore, they established a connection between (6.4) and the A-
design problem described in Chapter 7. To see this, note that the objective of (6.4) can
be written as

1

2

∑
u,v∈V

Reffx(u, v) =
1

2

∑
u6=v∈V

b>uvL
†
xbuv =

〈
L†x ,

1

2

∑
u6=v∈V

buvb>uv

〉
=
〈
L†x , nIn − 1n1>n

〉
= n tr

(
L†x
)
,

where the last equality follows as L†x is orthogonal to 1n. Hence, minimizing total effective
resistance is equivalent to minimizing tr(L†x) = tr

(
(
∑

e∈E x(e)beb>e )†
)
, which is the same as

the A-design objective function after we project the vectors onto the subspace orthogonal
to the all-one vector.

With this connection, all the recent algorithms for the A-optimal design can be applied
to solve (6.4). For instances, the regret minimization algorithm in [6] gives a (1 + ε)-
approximation algorithm when k > Ω(n/ε2), and the proportional volume sampling in [118]
achieves (1 + ε)-approximation with weaker assumption k > Ω(n/ε).

With a same reduction as in Theorem 6.2.1, we obtain the following approximation
result for the more general weighted setting, where every edge has a cost c(e) and we are
given a cost budget C as in (6.3).

Theorem 6.2.3. Suppose C > 15n‖c‖∞
ε2

. There is a polynomial time randomized (1+O(ε))-
approximation algorithm for the weighted version of (6.4).

The assumption of C can be improved to C ≥ Ω(
n‖c‖∞
ε

) by a refined analysis of the
iterative randomized rounding algorithm (see Corollary 7.1.7).

As shown in Section 6.1, the effective resistance constraints can be incorporated into
network design, and so Theorem 6.1.5 implies the following result.
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Theorem 6.2.4. There is a polynomial time randomized algorithm which returns a zero-
one solution z ∈ {0, 1}m with probability at least 1− exp(−Ω(n)) such that

1

2

∑
u,v∈V

Reffz(u, v) 6 Ropt and
∑
e∈E

c(e) · x(e) 6 (1 +O(ε))C +O
(n ‖c‖∞

ε

)
.

Furthermore, this can be done while incorporating other constraints (e.g., connectivity con-
straints) as described in Theorem 6.1.5.

6.2.3 Network Design for Effective Resistances

Using similar reduction as in Theorem 6.2.1 and Theorem 6.2.3, we can handle network
design problems with a budget constraint and the objective function being the sum of mul-
tiple pairs of effective resistances. We can obtain similar guarantees as in Theorem 6.2.3.

However, we would like to point out that when the budget C is small, e.g., sublinear
in n, the spectral rounding technique cannot provide good approximation guarantee. This
is unavoidable as suggested by the tight examples of spectral rounding (see Section 5.4).
In Chapter 8, we consider a special case in this regime, and manage to find a constant
approximation algorithm without using spectral rounding in special settings.

We leave it as an open problem that whether the spectral techniques can help to design
good approximation algorithm in this regime.

6.3 Unweighted Spectral Sparsification

We show that the spectral rounding results can also be applied to the study of unweighted
spectral sparsification.

6.3.1 Previous Work

Batson, Spielman, and Srivastava [21] proved that any graph has a (1 ± ε)-spectral spar-
sifier with only O(n/ε2) edges, by carefully reweighting the edges of the original graph
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where different edges may have different weights (see Section 2.5 for more details). If we
require all the edges to have the same weight, then there are simple examples (e.g., barbell
graphs) showing that linear-sized spectral sparsification is not always possible. In a recent
paper [20], Bansal, Svensson and Trevisan asked whether there is a non-trivial notion of
unweighted spectral sparsification with which linear-sized spectral sparsification is always
possible. They study a notion suggested by Oveis Gharan.

Definition 6.3.1 (Additive Unweighted Spectral Sparsifier). Given a graph G = (V,E)

with n vertices, m edges and maximum degree dmax, a subgraph G̃ = (V, F ) with m̃ edges
is an additive spectral sparsifier with error ε ∈ [0, 1] if

−εdmaxIn 4
m

m̃
LG̃ − LG 4 εdmaxIn.

Bansal, Svensson and Trevisan [20] prove that sparse additive unweighted spectral
sparsification is always possible, and they provide both deterministic and randomized al-
gorithms for constructing these sparsifiers.

Theorem 6.3.2 (Randomized Construction [20]). Given a graph G = (V,E) with n ver-
tices, m edges, maximum degree dmax, and ε ∈ (0, 1), there is a polynomial time randomized
algorithm that finds a subset of edges F ⊆ E with size m̃ = |F | = O(nε−2 log(1/ε)3) such
that G̃ = (V, F ) satisfies

−εdmaxIn 4
m

m̃
LG̃ − LG 4 εdmaxIn.

Theorem 6.3.3 (Deterministic Construction [20]). Given a graph G = (V,E) with n

vertices, m edges, maximum degree dmax, and ε ∈ (0, 1), there is a polynomial time deter-
ministic algorithm that finds a multi-set F of edges with size m̃ = |F | = O( n

ε2
) such that

G̃ = (V, F ) satisfies

2
m

m̃
DG̃ − 2DG − εdmaxI 4

m

m̃
LG̃ − LG 4 εdmaxI ,

where DG is the diagonal degree matrix of G and DG̃ is the diagonal degree matrix of G̃.
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The proof of Theorem 6.3.2 is by Lovász local lemma and the converse of expander
mixing lemma by Bilu and Linial. The proof of Theorem 6.3.3 is by the regret minimization
framework of Allen-Zhu, Liao and Orecchia [7].

Note that Theorem 6.3.3 has a slightly weaker spectral lower bound guarantee than
Theorem 6.3.2. Also, Theorem 6.3.3 can only return a multi-set solution where some
edges can be used more than once, and so the sparsifier is integer weighted rather than
unweighted where every edge has the same weight.

6.3.2 Nonconstructive Spectral Rounding and Unweighted Spec-

tral Sparsification

We show that the existence of a linear-sized additive unweighted spectral sparsifier follows
from the two-sided rounding result in Theorem 5.3.2. The idea is to view the original graph
as a fractional solution where every edge e has x(e) = m̃/m, and then use Theorem 5.3.2 to
round this fractional solution to a zero-one solution while preserving the spectral properties
of the original graph. The additional linear constraint in Theorem 5.3.2 allows us to bound
the number of edges in the sparsifier.

Theorem 6.3.4. Suppose we are given a graph G = (V,E) with n vertices, m edges, and
maximum degree dmax. For any ε ∈ (0, 1], there exists a subset of edges F ⊆ E with
|F | ∈ [(1− 4

√
2ε)m̃, (1 + 4

√
2ε)m̃] where m̃ = n

ε2
such that

−8
√

2εdmaxIn 4 LG −
m

m̃

∑
e∈F

beb>e 4 8
√

2εdmaxIn.

Proof. The plan is to apply Theorem 5.3.2 with ve := be, x(e) := m̃
m

and c := 1m. We will
first define the parameters λ and l and check that the assumptions l 6

√
λ and ‖c‖∞

6l2〈c,x〉
λ

in Theorem 5.3.2 are satisfied. Note that∥∥∥∥∥∑
e∈E

x(e) · vev>e

∥∥∥∥∥
op

=
m̃

m
‖LG‖op 6

2dmaxm̃

m
and ‖ve‖ =

√
2 for all e ∈ E.
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So we define λ := 2dmaxm̃
m

and l :=
√

2. We check that λ = 2dmaxm̃
m

= 2dn
ε2m

> 2
ε2

> 2 = l2, and
l2〈c,x〉
λ

= 2m̃
2dmaxm̃/m

= m
dmax

> 1 = ‖c‖∞. Therefore, we can apply Theorem 5.3.2 to conclude
that there exists a subset of edges F ⊆ E (corresponding to the zero-one solution z) such
that ∥∥∥∥∥∑

e∈E

x(e) · vev>e −
∑
e∈F

vev>e

∥∥∥∥∥
op

6 16

√
dmaxm̃

m
and∣∣∣∣∣∑

e∈E

x(e)c(e)−
∑
e∈F

c(e)

∣∣∣∣∣ 6 8

√
m

dmaxm̃
· 〈c , x〉.

Plugging in x(e) = m̃
m

and c = ~1 and m̃ = n
ε2
, the first statement implies that∥∥∥∥∥LG − m

m̃

∑
e∈F

vev>e

∥∥∥∥∥
op

=

∥∥∥∥∥∑
e∈E

vev>e −
m

m̃

∑
e∈F

vev>e

∥∥∥∥∥
op

6 16

√
dmaxm

m̃

= 16

√
ε2dmaxm

n
6 8
√

2εdmax,

where the last inequality uses m 6 dmaxn
2

as the maximum degree is dmax. Finally, the
second statement implies that

∣∣m̃− |F |∣∣ 6 8

√
ε2m

dmaxn
· m̃ 6 4

√
2εm̃.

Note that Theorem 6.3.4 improves Theorem 6.3.2 slightly by removing a factor of
log3(1/ε) in the number of edges of the sparsifier. This confirms the existence of unweighted
additive spectral sparsifiers with O( n

ε2
) edges, which was not known before. More generally,

we can use the same proof with a cost function c with ‖c‖∞ 6 ‖c‖1
dmax

to obtain a sparsifier
with m̃ = n

ε2
and ∥∥∥∥∥LG − m

m̃

∑
e∈F

vev>e

∥∥∥∥∥
op

6 8
√

2εdmax and

(1− 4
√

2ε)
∑
e∈E

c(e) 6
m

m̃

∑
e∈F

c(e) 6 (1 + 4
√

2ε)
∑
e∈E

c(e).
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We remark that the same reduction in [20] can be used to replace dmaxI by DG + davgI
where DG is the diagonal degree matrix of G and davg is the average degree in G.

The main disadvantage of Theorem 6.3.4 is that it does not provide a polynomial time
algorithm to find such a sparsifier. It is a major open problem to make the method of
interlacing polynomials used in [110, 111, 91] constructive.

6.3.3 Constructive Spectral Rounding and Unweighted Spectral

Sparsification

For the determinstic algorithm, using similar techniques in [5, 6] which proves Lemma 4.2.9,
we can strengthen Theorem 6.3.3 by returning a subgraph with no parallel edges.

Theorem 6.3.5. Given a graph G = (V,E) with n vertices, m edges, maximum degree
dmax, and ε ∈ (0, 1

10
), there is a polynomial time deterministic algorithm that finds a subset

F of edges with size m̃ = |F | = O( n
ε2

) such that G̃ = (V, F ) satisfies

2
m

m̃
DG̃ − 2DG −O(ε)dmaxIn 4

m

m̃
LG̃ − LG 4 O(ε)dmaxIn.

The algorithm is a slight modification of the algorithm in [20], which is a greedy al-
gorithm based on the regret minimization framework. The analysis of the algorithm is
also slightly different from the one in [20] that we apply the generic regret bound in Theo-
rem 4.2.6 with feedback matrices in general form (do not need to be positive semidefinite
or negative semidefinite). In particular, the feedback matrices are of the following form

F0 = 0 and Ft =

(
LG −mLe

L+
G −mL+

e

)
for some e ∈ E and t > 1,

where LG is the Laplacian matrix of the original graph, L+
G := DG + AG is the signless-

Laplacian of the original graph, and Le and L+
e are the Laplacian and signless-Laplacian

matrix of a single edge e. Note that we always have Ft 4 2dmaxIn, as LG 4 2dmaxIn and
L+
G 4 2dmaxIn for a graph G of maximum degree dmax.
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Greedy Additive Spectral Sparsification

Input: An error parameter ε ∈ (0, 1), and a graph G = (V,E) with n vertices, m > 2n
ε2

edges and maximum degree dmax.

Output: A subgraph G̃ of G with m̃ = O( n
ε2

) edges satisfying

2
m

m̃
DG̃ − 2DG −O(ε)dmaxIn 4

m

m̃
LG̃ − LG 4 O(ε)dmaxIn.

1. Initialization: Set S0 ← ∅, F0 ← 0, τ ← n
ε2
, and α← ε√

dmaxm
.

2. For t = 1 to τ do

(a) Compute the action matrix At = (α
∑t−1

j=0 Fj + ltI2n)−2, where lt ∈ R is the
unique value such that At � 0 and tr(At) = 11.

(b) Select an edge et ∈ E\St−1 such that〈
At,

(
LG −mLet

L+
G −mL+

et

)〉
> −2

√
n

αm
= −εdmax.

(c) Set

Ft ←

(
LG −mLet

L+
G −mL+

et

)
and St ← St−1 ∪ {et}.

3. Return G̃ = (V, Sτ ) as the solution.

Note that we can assume m > 2n
ε2

= 2τ , as otherwise we can simply return G̃ = G

as our solution. The only difference with the algorithm in [20] is in Step 2(b), where we
insist on choosing an edge et ∈ E \St−1 to guarantee that the returned solution is a simple
subgraph. If there is no such restriction, then a simple averaging argument in [20] shows

1Step 2(a) can be implemented with a binary search step as mentioned in Remark 4.3.1.
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that there is an edge e ∈ E with the inner product in Step 2(b) being non-negative. With
this restriction, we will use the closed-form of the action matrix and Lemma 4.2.9 to show
that there is still an edge with the inner product in Step 2(b) being not too small. The
following lemma is the new ingredient for the proof of Theorem 6.3.5.

Lemma 6.3.6. For each 1 6 t 6 τ and α = ε√
dmaxm

, there always exists an edge e ∈ E\St−1

such that 〈
At,

(
LG −mLe

L+
G −mL+

e

)〉
> −2

√
n

αm
> −εdmax.

Proof. The sum of the inner product over all edges in E\St−1 is∑
e∈E\St−1

〈
At,
(

LG−mLe
L+
G−mL+

e

)〉
=
∑
e∈E

〈
At,
(

LG−mLe
L+
G−mL+

e

)〉
−
∑
e∈St−1

〈
At,
(

LG−mLe
L+
G−mL+

e

)〉
=
〈
At,
(
mLG−m

∑
e∈E Le

mL+
G−m

∑
e∈E L+

e

)〉
−

〈
At,

∑
e∈St−1

(
LG−mLe

L+
G−mL+

e

)〉

=−

〈
At,

∑
e∈St−1

(
LG−mLe

L+
G−mL+

e

)〉
,

where the last equality follows from
∑

e∈E Le = LG and
∑

e∈E L+
e = L+

G. Let

Zt :=
∑
e∈St−1

(
LG −mLe

L+
G −mL+

e

)
,

and let the eigenvalues of Zt be λ1, ..., λ2n. Note that λmin(Zt) 6 0 as tr(LG) = tr(L+
G) = 2m

and m tr(Le) = m tr(L+
e ) = 2m which imply that tr(Zt) = 0.

Observe that At = (ltI2n + αZt)−2 and so At and Zt have the same eigenbasis, and the
i-th eigenvalue of At is (lt + αλi)

−2. It follows that

−〈At,Zt〉 =
2n∑
i=1

−λi
(lt + αλi)2

=
2n∑
i=1

lt/α

(lt + αλi)2
− 1

α

2n∑
i=1

lt + αλi
(lt + αλi)2

=
lt
α
− tr(A

1
2
t )

α
> −λmin(Zt)−

tr(A
1
2
t )

α
> −
√
n

α
,
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where the first equality in the second line is because tr(At) = 1 and (lt +αλi)
−1 is the i-th

eigenvalue of A
1
2
t , the second last inequality is by At � 0 which implies that lt > −αλmin(Zt),

and the last inequality is by λmin(Zt) 6 0 and tr(A
1
2
t ) 6

√
n from Claim 2.1.10.

Since |E \ St−1| = m − t + 1, an averaging argument shows that there exists an edge
e ∈ E\St−1 such that〈

At,

(
LG −mLe

L+
G −mL+

e

)〉
> −

√
n

α(m− t+ 1)
> −2

√
n

αm
,

where the last inequality is because m − t + 1 > m − τ + 1 > m/2 by our assumption
τ = n

ε2
6 m

2
. Finally, when α = ε√

dmaxm
,

2
√
n

αm
=

2

ε

√
dmaxn

m
6
√

2dmax 6 εdmax,

where the first inequality is by our assumption τ = n
ε2

6 m
2
, and the second inequality

follows from dmaxn > m > 2n
ε2

which implies ε >
√

2
dmax

.

Given Lemma 6.3.6, the rest of the proof is similar to the one in [20], the main difference
is that we apply the regret bound in Theorem 4.2.6 instead of the one in [7]. The following
lemma bounds several crucial terms in the regret bound in Theorem 4.2.6.

Lemma 6.3.7. Let Pt :=
(

LG
L+
G

) 1
2 and Nt :=

(
mLet

mL+
et

) 1
2 such that PtP>t −NtN>t = Ft.

If α = ε√
dmaxm

, then

〈PtP>t ,At〉 6 2dmax, α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

6 ε and

〈NtN>t ,At〉 6 (2 + ε)dmax, α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

6 3ε.

Proof. Since 0 4 LG, L+
G 4 2dmaxIn, it follows that 0 4 PtP>t =

(
LG

L+
G

)
4 2dmaxI2n. The

density matrix At has trace one, thus 〈PtP>t ,At〉 6 2dmax.
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Since the feedback matrices Ft have a block diagonal structure, by the closed-form
solution of the action matrix in (4.9), At also has the same block diagonal structure

At =

(
Bt

Ct

)
, where 0 4 Bt,Ct 4 In.

Therefore, ∥∥∥A 1
4
t PtP>t A

1
4
t

∥∥∥
op

= max

{∥∥∥B 1
4
t LGB

1
4
t

∥∥∥
op
,
∥∥∥C 1

4
t L+

GC
1
4
t

∥∥∥
op

}
6 2dmax, (6.5)

where the last inequality follows by 0 4 LG, L+
G 4 2dmaxIn and 0 4 Bt,Ct 4 In. For

α = ε√
dmaxm

, it holds that α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

6 ε. Note that this is pretty loose bound.

Then, we consider the term 〈NtN>t ,At〉. The choice of edge et and Lemma 6.3.6 guar-
antee that

〈PtP>t ,At〉 − 〈NtN>t ,At〉 =
〈
At,
(

LG−mLet
L+
G−mL+

et

)〉
> −εdmax.

As we already proved that 〈PtP>t ,At〉 6 2dmax, it follows that

〈NtN>t ,At〉 6 (2 + ε)dmax. (6.6)

Finally, we consider the term α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op
. Similar to (6.5), it hols that∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

= max

{
m
∥∥∥B 1

4
t LetB

1
4
t

∥∥∥
op
, m

∥∥∥C 1
4
t L+

etC
1
4
t

∥∥∥
op

}
.

We will just bound the first term, as the second term can be bounded the same way.

Let Bt =
∑n

i=1 λi · yiy>i be the eigendecomposition of Bt, and let w =
√
m · bet so that

ww> = mLet and ‖w‖2 =
√

2m. Then

m
∥∥∥B 1

4
t LetB

1
4
t

∥∥∥
op

= w>B
1
2
t w =

n∑
i=1

√
λi · 〈w , yi〉2

6

√∑n

i=1
〈w , yi〉2 ·

√∑n

i=1
λi · 〈w , yi〉2

= ‖w‖2 ·
√

w>Btw

=
√

2m ·
√
m〈Bt, Let〉,
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where the inequality is by Cauchy-Schwartz, and the last equality follows from w>Btw =

m〈Bt, Let〉. Notice thatm〈Bt, Let〉+m〈Ct, L+
et〉 = 〈NtN>t ,At〉 and both 〈Bt, Let〉, 〈Ct, L+

et〉 > 0,
thus it follows from (6.6) that m〈Bt, Let〉 6 (2 + ε)dmax, which implies

m
∥∥∥B 1

4
t LetB

1
4
t

∥∥∥
op

6 2

√(
1 +

ε

2

)
dmaxm.

The same arguments gives the same upper bound on m‖C
1
4
t L+

etC
1
4
t ‖. Therefore, for

α = ε√
dmaxm

with ε ∈ (0, 1),

α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

6
ε√

dmaxm
· 2
√(

1 +
ε

2

)
dmaxm 6 3ε.

We are ready to prove Theorem 6.3.5 with Theorem 4.2.6.

Theorem 6.3.5. Given a graph G = (V,E) with n vertices, m edges, maximum degree
dmax, and ε ∈ (0, 1

10
), there is a polynomial time deterministic algorithm that finds a subset

F of edges with size m̃ = |F | = O( n
ε2

) such that G̃ = (V, F ) satisfies

2
m

m̃
DG̃ − 2DG −O(ε)dmaxIn 4

m

m̃
LG̃ − LG 4 O(ε)dmaxIn.

Proof. Let Pt :=
(

LG
L+
G

) 1
2 and Nt :=

(
mLet

mL+
et

) 1
2 . By Lemma 6.3.7, when α = ε√

dmaxm

with small enough ε (e.g., ε ∈ (0, 1
6
)), it follows that α‖A

1
4
t NtN>t A

1
4
t ‖ 6 3ε 6 1

2
for all t.

Therefore, we can apply Theorem 4.2.6 and get

λmin

(
τ∑
t=0

Ft

)
>

τ∑
t=1

(
〈PtP>t ,At〉

1 + 2α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

− 〈NtN>t ,At〉

1− 2α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

)
− 2
√
n

α
.

Since α
∥∥∥A 1

4
t PtP>t A

1
4
t

∥∥∥
op

6 ε and α
∥∥∥A 1

4
t NtN>t A

1
4
t

∥∥∥
op

6 3ε by Lemma 6.3.7, it follows that

λmin

(
τ∑
t=0

Ft

)
>

τ∑
t=1

(
〈PtP>t ,At〉

1 + 2ε
− 〈NtN>t ,At〉

1− 6ε

)
− 2
√
n

α

=
τ∑
t=1

〈PtP>t − NtN>t ,At〉 − 6ε〈PtP>t ,At〉 − 2ε〈NtNt,At〉
(1 + 2ε)(1− 6ε)

− 2
√
n

α
.
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By Lemma 6.3.6 〈PtP>t − NtN>t ,At〉 > −εdmax, and by Lemma 6.3.7 〈PtP>t ,At〉 6 2dmax

and 〈NtN>t ,At〉 6 (2 + ε)dmax. Thus for α = ε√
dmaxm

, τ = n
ε2
, and ε ∈ (0, 1

10
) it holds that

λmin

(
τLG−

τ∑
t=1

mLet

τL+
G−

τ∑
t=1

mL+
et

)
=λmin

(
τ∑
t=0

Ft

)
>−O(ε)τdmax−

2
√
dmaxmn

ε
>−O(ε)τdmax,

where the last inequality holds as dmaxmn 6 d2
maxn

2 = ε4d2
maxτ

2.

Let m̃ := τ and LG̃ =
∑τ

t=1 Let . From the first block, we have

τLG −
τ∑
t=1

mLet < −O(ε)τdmaxIn =⇒ m

m̃
LG̃ − LG 4 O(ε)dmaxIn.

From the second block, we have

τL+
G −

τ∑
t=1

mL+
et < −O(ε)τdmaxIn =⇒ m

m̃
LG̃ − LG < 2

m

m̃
DG̃ − 2DG −O(ε)dmaxIn,

where we used that L+
G = 2DG − LG and L+

G̃
= 2DG̃ − LG̃.
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Chapter 7

Applications of Spectral Rounding to

Experimental Design

7.1 Introduction

In experimental design problems, we are given vectors u1, . . . , un ∈ Rd and a parameter
b > d, and the goal is to choose a (multi-)subset S of b vectors so that

∑
i∈S uiu>i optimizes

some objective function. The most popular and well-studied objective functions are:

• D-design: Maximizing
(
det
(∑

i∈S uiu>i
)) 1

d .

• A-design: Minimizing tr
((∑

i∈S uiu>i
)−1
)
.

• E-design: Maximizing λmin

(∑
i∈S uiu>i

)
.

Two settings are studied in the literature. One is the “with repetition” setting where each
vector is allowed to be chosen multiple times, and the other is the “without repetition”
setting where each vector is allowed to be chosen at most once. By making b copies of each
vector, we can reduce the with repetition setting to the without repetition setting easily.
All the results in this chapter apply in the more general without repetition setting.
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These problems of choosing a representative subset of vectors have a wide range of
applications.

• Experimental design is a classical topic in statistics with extensive literature [60, 13,
121, 74], where the goal is to choose b (noisy) linear measurements from u1, . . . , un ∈
Rd so as to maximize the statistical efficiency of estimating an unknown vector in
Rd.

• In machine learning, they are used in active learning [10], feature selection [29], and
data summarization [114, 34].

• In numerical linear algebra, they are used in column subset selection [15], sparse least
square regression [28], and matrix approximation [50, 51].

• In signal processing, they are used in sensor placement problems [80], and optimal
subsampling in graph signal processing [37, 40, 41].

• In network design, the problem of choosing a subgraph with at most b edges to min-
imize the total effective resistance [70, 98] is an A-design problem, and the problem
of choosing a subgraph with at most b edges to maximize the algebraic connectiv-
ity [69, 86, 98] is an E-design problem.

We refer the interested readers to [140, 131, 108, 118, 6] for more discussions of these
applications and further references on related work.

7.1.1 Our Results

We present both rounding algorithms and combinatorial algorithms for experimental design
problems. A main contribution in this chapter is to show that these two types of algorithms
can be analyzed using the same local search framework. Using this framework, we match
and improve all known results and also obtain some new results.

7.1.1.1 Rounding Algorithms for Convex Programming Relaxations

There are natural convex programming relaxations for the D/A/E-design problems. The
best known rounding algorithms for these three problems are all quite different, i.e. approx-
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imate positively correlated distributions for D-design [131], proportional volume sampling
for A-design [118], and regret minimization for E-design [6]. Although the one-sided spec-
tral rounding result in [6] provides a general solution for a large class of experimental
design problems including D/A/E-design, this only works under the stronger assumption
that b ≥ Ω

(
d
ε2

)
and it was unclear how to unify the best known algorithmic results.

Surprisingly, the iterative randomized swapping algorithm in Section 5.2 not only
matches the best known result for E-design, but also matches and improves the previous
results for D/A-design with slight modification. Moreover, the new algorithmic framework
can extend previous results to handle multiple knapsack constraints. To match and im-
prove the best known results for D/A-design, we bypass the one-sided spectral rounding
problem. Instead, we perform a refined analysis for the iterative randomized swapping
algorithm, in which the minimum eigenvalue of the current solution plays an unexpectedly
crucial role for D/A-design as well. This provides a unified rounding algorithm to achieve
the optimal results for the natural convex programming relaxations for these experimental
design problems.

In D/A/E-design problems with knapsack constraints (we refer to them as weighted
experimental design problems), we are given vectors u1, . . . , un ∈ Rd, knapsack constraints
c1, . . . , cm ∈ Rn

+ and budgets b1, . . . , bm > 0. The goal is to find a solution z ∈ {0, 1}n with
〈cj, z〉 6 bj for 1 6 j 6 m to optimize the D/A/E-design objective value. Consider the
following natural convex programming relaxations for D/A/E-design.

min
x∈Rd,X∈Sd++

fD(X ) or fA(X ) or fE(X )

subject to X =
n∑
i=1

x(i) · uiu>i ,

〈cj, x〉 6 bj, for 1 6 j 6 m,

0 6 x(i) 6 1, for 1 6 i 6 n,

(7.1)

where fD(X ) := det(X )−
1
d , fA(X ) := tr(X−1), and fE(X ) := (λmin(X ))−1 are objective

functions for D/A/E-design respectively.

The convexity of fA follows by Fact 2.2.18. The convexity of fD and fE follow by the
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concavity of det(X )
1
d (Fact 2.2.16) and λmin(X ) (Lemma 2.2.14), and then applying the

following well-known fact with h(x) = x−1.

Fact (see, e.g., Section 3.2.4 in [31]). Let g : Sd++ → R++ be a concave function, h : R++ →
R be a convex nonincreasing function over R++. Then, the composition function f = h ◦ g
is a convex function over Sd++.

Remark. The authors of [6] claimed that fD(X ) = det(X )−
1
d is not convex. Hence, they

considered another convex function fD(X ) = −1
d

log det(X ) instead. Although this does not
make a difference for the results in [6] and this chapter, we can show that det(X )−

1
d is

actually indeed convex as mentioned above.

The above convex program can be solved by the ellipsoid method to inverse exponential
accuracy which is sufficient for the rounding algorithm. Using the iterative randomized
swapping algorithm from Section 5.2, we prove the following theorem that matches and
generalizes the known results in [6].

Theorem 7.1.1. Suppose we are given an optimal fractional solution x ∈ [0, 1]n to convex
programming relaxation (7.1) of the weighted experimental design problem. For any fixed
ε 6 1

5
, if bj >

15d‖cj‖∞
ε2

for all j ∈ [m], there exists a polynomial time randomized algorithm
that returns an integral vector z ∈ {0, 1}n such that

f

(
n∑
i=1

z(i) · uiu>i

)
6 (1 +O(ε)) · f

(
n∑
i=1

x(i) · uiu>i

)
, where f = fD or fA or fE,

with probability at least 1 − e−Ω(d). Furthermore, each knapsack constraint 〈cj, z〉 6 bj is
satisfied with probability at least 1− e−Ω(d).

Remark 7.1.2. More generally, the above theorem holds for any convex objective function
f satisfying the following conditions that were suggested in [6].

• Monotonicity: For any A,B ∈ Sd++, if A 4 B, then f(A) > f(B).

• Reciprocal sublinearity: For any A ∈ Sd++ and t ∈ (0, 1), it holds that f(tA) 6 1
t
f(A).
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We can verify that all fD, fA, and fE satisfy the above conditions.

By slightly modifying the iterative randomized swapping algorithm from Section 5.2,
we achieve the following improved results for D/A-design.

Theorem 7.1.3. Let x ∈ [0, 1]n be an optimal fractional solution to the convex program-
ming relaxation (7.1) for D/A-design with knapsack constraints. For any ε 6 1

200
, if

each knapsack constraint budget satisfies bj >
2d‖cj‖∞

ε
, then there is a randomized ex-

change algorithm which returns in polynomial time an integral solution
∑n

i=1 z(i) · uiu>i
with z(i) ∈ {0, 1} for 1 6 i 6 n such that

det

( n∑
i=1

z(i) · uiu>i
) 1

d

>
(
1−O(ε)

)
· det

( n∑
i=1

x(i) · uiu>i
) 1

d

for D-design,

tr

(( n∑
i=1

z(i) · uiu>i
)−1)

6 (1 + ε) · tr
(( n∑

i=1

x(i) · uiu>i
)−1)

for A-design

with probability at least 1 − O
(
k2

ε2
· e−Ω(

√
d)
)

where k = O(d2 + m). Furthermore, each
knapsack constraint 〈cj, z〉 6 bj, j ∈ [m] is satisfied with probability at least 1− e−Ω(εd).

Note that D/A-design with a cardinality constraint is the special case when there is
only one cost constraint (m = 1) and c = 1 . In this special case, Theorem 7.1.3 im-
proves the previous results in [131, 118] by removing the term O

(
1
ε2

log
(

1
ε

))
from their

assumption b > Ω
(
d
ε

+ 1
ε2

log
(

1
ε

))
, and this achieves the optimal integrality gap result for

D-design [131] and A-design [118]. In the general case with knapsack constraints, Theo-
rem 7.1.3 improves the result of Theorem 7.1.1, which requires a stronger assumption that
bj > Ω

(
d‖cj‖∞
ε2

)
to obtain the same approximation guarantee. The knapsack constraints

can be used for incorporating fairness constraints in experimental design, which we will
discuss in Section 7.1.1.3.

7.1.1.2 Combinatorial Algorithms

The Fedorov’s exchange method [60] starts with an arbitrary initial set S0 of b vectors, and
in each step t > 1 it aims to exchange one of the vectors, St ← St−1−ui+uj where ui ∈ St−1
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and uj /∈ St−1, to improve the objective value, and stops if such an improving exchange is
not possible. The simplicity of this algorithm and its good empirical performance [47, 113,
116] make the method widely used [14]. The approximation guarantee of this method is
only analyzed rigorously in a recent work [108], and we extend their analysis in multiple
directions. We remark that we only consider the unweighted experimental design problems
with a single cardinality constraint in the discussions of combinatorial algorithms.

For D-design, it was proved in [108] that Fedorov’s exchange method gives a polynomial
time approximation algorithm for all inputs in the with repetition setting, and we extend
their result to the without repetition setting.

Theorem 7.1.4. The Fedorov’s exchange method is a b−d−1
b

-approximation polynomial
time algorithm for D-design in the without repetition setting. In particular, this is a (1−ε)-
approximation algorithm whenever b > d+ 1 + d

ε
for any ε > 0.

For A-design, it was shown in [108] that there are arbitrarily bad local optimal solu-
tions for the Fedorov’s exchange method. Interestingly, we prove that Fedorov’s exchange
method works well as long as there exists an almost optimal solution with good condition
number. This provides a new insight about when the local search method works well, and
this condition may hold in practical instances. As a corollary, this also extends the anal-
ysis of Fedorov’s exchange method in [108] when all the vectors are short to the without
repetition setting (see Section 7.4.2).

Theorem 7.1.5. Let X :=
∑n

i=1 x(i) ·uiu>i with
∑n

i=1 x(i) = b and xi ∈ [0, 1] for 1 6 i 6 n

be a fractional solution to A-design. For any ε ∈ (0, 1), the Fedorov’s exchange method
returns an integral solution Z =

∑n
i=1 z(i) · uiu>i with

∑n
i=1 z(i) 6 b and z(i) ∈ {0, 1} for

1 6 i 6 n such that

tr
(
Z−1

)
6 (1 + ε) · tr(X−1) whenever b > Ω

(d+
√

tr(X ) tr (X−1)

ε

)
.

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗, then the

Fedorov’s exchange method gives a (1 + ε)-approximation algorithm for A-design whenever
b > Ω

(
(1+
√
κ)·d
ε

)
, and the time complexity is polynomial in n, d, 1

ε
, κ.
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For E-design, there are no known combinatorial local search algorithms, and there
are examples showing that Fedorov’s exchange method does not work even if there exists
a well-conditioned optimal solution (see Section 7.4.3.2). Using the regret minimization
framework in [7, 6], however, we prove that a modified local search algorithm using a
“smoothed” objective function for E-design works as long as there exists an almost optimal
solution with good condition number.

Theorem 7.1.6. Let X :=
∑n

i=1 x(i) · uiu>i with
∑n

i=1 x(i) = b and x(i) ∈ [0, 1] for 1 6

i 6 n be a fractional solution to E-design. For any ε ∈ (0, 1), there is a combinatorial local
search algorithm which returns an integral solution Z =

∑n
i=1 z(i) ·uiu>i with

∑n
i=1 z(i) 6 b

and z(i) ∈ {0, 1} for 1 6 i 6 n such that

λmin(Z ) > (1−O(ε)) · λmin (X ) whenever b > Ω

(
d

ε2

√
λavg(X )

λmin(X )

)
,

where λavg(X ) = tr(X )
d

is the average eigenvalue of X .

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗,

then the combinatorial local search method gives a polynomial time (1− ε)-approximation
algorithm for E-design whenever b > Ω

(
d
√
κ

ε2

)
, and the time complexity is polynomial in

n, d, 1
ε
, κ.

A combinatorial “capping” procedure was used in [108] to reduce the A-design problem
to the case when every vector is “short”, for which Fedorov’s exchange method works. This
capping procedure, however, crucially leveraged that a vector can be chosen multiple times.
We do not have a preprocessing procedure to reduce A-design and E-design in the without
repetition setting to the case when Theorem 7.1.5 and Theorem 7.1.6 apply. We leave it
as an open problem to design a fully combinatorial algorithm for A-design and E-design in
the general case.

7.1.1.3 Some Applications

We discuss some applications of our results in specific instances of experimental design
problems.

182



Fair and Diverse Data Summarization: In the data summarization problem, we
are given n data points u1, . . . , un ∈ Rd, and the objective is to choose a subset of b data
points that provides a “fair” and “diverse” summary of the data. For diversity, the D-design
objective of maximizing determinant is a popular measure used in previous work [114, 34].
For fairness, the partition constraints [117, 34] for D-design are used to partition the set
X of data points into p disjoint groups X1 ∪ · · · ∪Xp and to ensure that bi data points are
chosen in Xi where

∑p
i=1 bi = b.

We believe that Theorem 7.1.3 for D-design with knapsack constraints provides an al-
ternative solution for this problem. The main advantage is that the knapsack constraints
are more flexible in that they do not require the groups to be disjoint. For instance, we can
have knapsack constraints on arbitrary subsetsX1, . . . , Xp ⊆ X of the form

∑
j∈Xi x(j) 6 bi

to ensure that at most bi data points are chosen in group Xi, so that we can handle con-
straints of overlapping groups such as race, age, gender (e.g., at most 50% of the chosen
vectors correspond to men/women), etc. Also, the approximation guarantee in Theo-
rem 7.1.3 is stronger than the constant factor approximation for D-design with partition
constraint [117], and the convex programming relaxation used in Theorem 7.1.3 is simpler
and easier to be solved than the more sophisticated one used in [117].

Minimizing Total Effective Resistance: Ghosh, Boyd and Saberi [70] studied the
problem of choosing a subgraph with at most b edges to minimize the total effective re-
sistance, and showed that this is a special case of A-design (see Section 6.2.2 for more
background about the problem). The proportional volume sampling algorithm by Nikolov,
Singh and Tantipongpipat [118] achieves a (1 + ε)-approximation for this problem when
b > Ω(n

ε
+ 1

ε2
log 1

ε
) where n is the number of vertices in the graph. In Section 6.2.2, we

considered the weighted problem of choosing a subgraph with total edge cost at most b to
minimize the total effective resistance, and gave a (1 + ε)-approximation algorithm when
b > Ω

(
n‖c‖∞
ε2

)
where c is the cost vector of the edges. Theorem 7.1.3 improves these two

results.

Corollary 7.1.7. For any 0 < ε < 1, there is a polynomial time randomized (1 + ε)-
approximation algorithm for minimizing total effective resistance in an edge weighted graph
whenever b > Ω

(
n‖c‖∞
ε

)
.
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Maximizing Algebraic Connectivity: Ghosh and Boyd [69] studied the problem of
choosing a subgraph with total cost at most b that maximizes the algebraic connectivity,
i.e. the second smallest eigenvalue of its Laplacian matrix. Kolla, Makarychev, Saberi and
Teng [86] provided the first algorithm with non-trivial approximation guarantee in the
zero-one cost setting. In Section 6.2.1, we observed that this is a special case of E-design
and gave a (1−ε)-approximation algorithm when b > Ω

(
n‖c‖∞
ε2

)
where c is the cost vector

of the edges.

All previous results are based on convex programming. Theorem 7.1.6 provides a com-
binatorial algorithm for the unweighted problem, where the goal is to choose b edges to
maximize the algebraic connectivity, and shows that it has a good performance as long as
the optimal value is large.

Corollary 7.1.8. For any 0 < ε < 1, there is a polynomial time combinatorial (1 −
ε)-approximation algorithm for maximizing algebraic connectivity in an unweighted graph
whenever b > Ω

(
n

ε4λ∗2

)
, where λ∗2 is the optimal value for the problem.

7.1.2 Technical Overview

Rounding Algorithm for Weighted Experimental Design: In [6], Allen-Zhu, Li,
Singh, and Wang observed that the experimental design problem with a general convex
objective function satisfying conditions in Remark 7.1.2 and a single cardinality constraint
can be reduced to the one-sided spectral rounding problem with uniform cost. More specif-
ically, they first solve the natural convex programming relaxation for experimental design
with a cardinality constraint, and obtain a solution x ∈ Rn. After performing a normaliza-
tion transformation to turn the input vectors ui’s into vi’s such that

∑n
i=1 x(i) · viv>i = I ,

they reduce the problem to one-sided spectral rounding problem with uniform cost. They
use a deterministic greedy algorithm to prove Theorem 5.1.1 to solve the problem (see
Section 5.1 for more details).

To solve the experimental design problem with multiple knapsack constraints, we use
the same reduction. We first obtain an optimal solution x to the convex programming
relaxation (7.1). Then reduce the problem to the one-sided spectral rounding problem with

184



general cost. Finally, we use the iterative randomized swapping algorithm in Section 5.2 to
solve the problem. We remark that the random sampling idea for the rounding is a key to
satisfy the knapsack constraints and achieve good approximation guarantee simultaneously.
See Section 7.2 for more details about the reduction.

Improved Analysis for D/A-Design: For the rounding algorithm for D/A-design with
knapsack constraints, surprisingly we prove that a minor modification of the iterative
randomized swapping algorithm in Section 5.2 would work with improved approximation
guarantees! Essentially, we just use the same algorithm but only require that the solution
to have minimum eigenvalue 3

4
rather than 1− ε. Our analysis has two phases. In the first

phase, using the results in Section 5.2, we show that the randomized exchange algorithm
will find a solution with minimum eigenvalue at least 3

4
in polynomial time with high

probability whenever b > Ω
(
d
ε

)
(rather than b > Ω

(
d
ε2

)
in order to achieve minimum

eigenvalue at least 1 − ε). In the second phase, we prove that the minimum eigenvalue
will maintain to be at least 1

4
with high probability when ε is not too tiny, and then

the objective value for D-design and A-design will improve to (1 ± ε) times the optimal
objective value in polynomial time with high probability. The condition that the minimum
eigenvalue is at least 1

4
is used crucially in multiple places for the analysis of the second

phase. Interestingly, it is used in showing that the same sampling probability distributions
in the iterative randomized swapping algorithm (which aim at improving the E-design
objective) are also good for improving the objective value for D-design and A-design.
Moreover, it is crucially used in the martingale concentration argument, e.g., to show that
the martingale is bounded and to prove upper bounds on the variance of the changes. For
the martingale concentration argument, we also use the optimality conditions for convex
programs to prove that the vectors with fractional value are “short” in order to bound
the quantities involved. Overall, the analysis for the rounding algorithm is quite involved,
but it provides a unifying algorithm to achieve the optimal results for the natural convex
relaxations for D/A/E-design. Please refer to Section 7.3 for a more detailed outline of the
analysis.

Analysis of Combinatorial Algorithms: In the last part of this chapter, we use the
randomized approach in Section 5.2 to analyze combinatorial algorithms. For combinatorial
local search algorithms, one difference from the previous analysis in [108] is that we compare
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the objective of the current integral solution to that of an optimal fractional solution.
When the objective value of the fractional solution is considerably better than that of the
current integral solution, we use the fractional solution to define appropriate probability
distributions similar to that in the iterative randomized sampling algorithm to sample it
and jt so that the expected objective value of St ← St−1−uit +ujt improves, and this would
imply the existence of an improving pair in Fedorov’s exchange method. One advantage of
this approach is that this allows us having the flexibility to compare the current integral
solution to a fractional solution with smaller budget which still has its objective value close
to the optimal one.

Our analysis is arguably simpler than that in [108] which uses a dual fitting method
while we only do a primal analysis. More importantly, our analysis shows that if the optimal
fractional solution is well-conditioned (e.g.,

∑n
i=1 x(i) · uiui = I ), then the Fedorov’s ex-

change method indeed performs as well as the best known rounding algorithms. This gives
us a new insight that the only important step in rounding algorithms for the unweighted
experimental design problems is the ability to first transform the optimal fractional solu-
tion to the identity matrix. For E-design, simply doing Fedorov’s exchange method on the
objective function λmin

(∑
i∈St uiu

>
i

)
would not work (see Section 7.4.3.2), and instead we

apply the Fedorov’s exchange method to the potential function in the regret minimization
framework, which is morally the same as the potential function tr

(
(
∑

i∈St uiu
>
i − lId)−1

)
used by Batson, Spielman and Srivastava for spectral sparsification [21].

7.1.3 Previous Work

The D/A/E experimental design problems are NP-hard [33, 142] and also APX-hard [136,
118, 33]. Despite the long history and the wide interest, strong approximation algorithms
for these problems are only obtained recently.

D-design: Singh and Xie [131] designed an (1 − ε)-approximation algorithm for D-
design in the with repetition setting when b > 2d

ε
, and in the without repetition setting

when b = Ω
(
d
ε

+ 1
ε2

log 1
ε

)
. Their algorithm is by rounding an optimal solution to a natural

convex program relaxation using approximate positively correlated distributions.
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Madan, Singh, Tantipongpipat and Xie [108] analyzed the Fedorov’s exchange method
and proved that it gives an (1−ε)-approximation algorithm for D-design as long as b > d+ d

ε
,

which improves upon the above result. However, they only provide a polynomial time
implementation of the local search algorithm to achieve this guarantee in the less general
with repetition setting.

A-design: Nikolov, Singh and Tantipongpipat [118] designed an (1+ε)-approximation
algorithm for A-design in the with repetition setting when b > d + d

ε
, and in the without

repetition setting when b = Ω
(
d
ε

+ 1
ε2

log 1
ε

)
. Their algorithm is by rounding an optimal

solution to a natural convex program relaxation using proportional volume sampling. Their
algorithm also works for D-design with the same guarantee.

Madan, Singh, Tantipongpipat and Xie [108] also analyzed the Fedorov’s exchange
method for A-design, and showed that there are arbitrarily bad local optimal solutions.
On the other hand, they proved that Fedorov’s exchange method works when all the input
vectors are “short”, and they designed a “capping procedure” to reduce the general case to
the case when all vectors are short. As a result, they obtained a combinatorial (1 + ε)-
approximation algorithm, without solving convex programs, for A-design when b > Ω

(
d
ε4

)
in the with repetition setting.

E-design: Allen-Zhu, Li, Singh and Wang [5, 6] designed an (1 − ε)-approximation
algorithm for E-design in the with and without repetition settings when b > Ω

(
d
ε2

)
. Their

algorithm is by rounding an optimal solution to a natural convex program relaxation using
the regret minimization framework, which was initially developed for the spectral sparsifi-
cation problem [7]. They formulated and solved a “one-sided spectral rounding problem”
(see Section 5.1), and showed that experimental design with any objective function satis-
fying some mild regularity assumptions, including D/A/E-design, can be reduced to the
one-sided spectral rounding problem. Their algorithm for one-sided spectral rounding can
be viewed as a local search algorithm, and this was the starting point of the current work
in this chapter.

Nikolov, Singh and Tantipongpipat [118] showed that the assumption b > Ω
(
d
ε2

)
is

necessary to achieve (1− ε)-approximation for E-design using the natural convex program,
and in Section 5.4 we showed that the assumption b > Ω

(
d
ε2

)
is necessary for the one-sided
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spectral rounding problem. These suggest that the regret minimization framework may
not be used to match the results for D/A-design, but we bypass the one-sided spectral
rounding problem to prove Theorem 7.1.3.

Experimental design with additional constraints: Using more sophisticated con-
vex programming relaxations, Nikolov and Singh [117] designed an approximation algo-
rithm for D-design under partition constraints. Recently, Madan, Nikolov, Singh and Tan-
tipongpipat [107] designed an approximation algorithm for D-design under general matroid
constraints.

Organization

We first show how to use the one-sided spectral rounding to solve weighted experimental
design problems in Section 7.2. Then, we present slightly modified rounding algorithms and
analysis for D/A-Design in Section 7.3. Finally, we present our results about combinatorial
algorithms in Section 7.4.

7.2 Rounding Algorithm for Weighted Experimental De-

sign

In this section, we use a simple black box reduction to reduce the weighted experimental
design problems to the one-sided spectral rounding problem and prove Theorem 7.1.1.

Theorem 7.1.1. Suppose we are given an optimal fractional solution x ∈ [0, 1]n to convex
programming relaxation (7.1) of the weighted experimental design problem. For any fixed
ε 6 1

5
, if bj >

15d‖cj‖∞
ε2

for all j ∈ [m], there exists a polynomial time randomized algorithm
that returns an integral vector z ∈ {0, 1}n such that

f

(
n∑
i=1

z(i) · uiu>i

)
6 (1 +O(ε)) · f

(
n∑
i=1

x(i) · uiu>i

)
, where f = fD or fA or fE,
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with probability at least 1 − e−Ω(d). Furthermore, each knapsack constraint 〈cj, z〉 6 bj is
satisfied with probability at least 1− e−Ω(d).

Proof. Let X :=
∑n

i=1 x(i) · uiu>i � 0. We do the following transformation

vi := X−
1
2 ui for all i ∈ [n],

so that
∑n

i=1 x(i) · viv>i = Id.

Then, the idea is similar to the one in the proof of Corollary 5.2.3, where we scale down
x and apply Theorem 5.2.2. Let η = 1− 2ε and set y := ηx and wi := 1√

η
vi such that

m∑
i=1

y(i) · wiw>i =
m∑
i=1

x(i) · viv>i = Id and 〈cj, y〉 = η〈cj, x〉 6 ηbj for all j ∈ [m].

We run the iterative randomized swapping algorithm and apply Theorem 5.2.2 on the
vectors w1, . . . ,wm and y with δ1 = γ = ε, q =

√
d to obtain a z ∈ {0, 1}m so that

m∑
i=1

z(i) · wiw>i < (1− 2ε)Id =⇒
m∑
i=1

z(i) · viv>i < η(1− 2ε)Id < (1− 4ε)Id

=⇒
m∑
i=1

z(i) · uiu>i < (1− 4ε)X

The failure probability of this event is at most e−Ω(d). Since the objective function f satisfies
the monotonicity and the reciprocal sublinearity conditions mentioned in Remark 7.1.2, it
follows that

f

(
n∑
i=1

z(i) · uiu>i

)
6 f((1− 4ε)X ) 6 (1 +O(ε)) · f

(
n∑
i=1

x(i) · uiu>i

)
.

For each knapsack constraint cj ∈ Rm
+ with bj >

15d‖cj‖∞
ε2

, Theorem 5.2.2 implies that

〈cj, z〉 6 (1 + ε)〈cj, y〉+
15d ‖cj‖∞

ε
6 (1 + ε)(1− 2ε)bj + εbj < bj,

where we used 〈cj, y〉 6 ηbj and the assumption that 15d‖cj‖∞
ε2

6 bj for all j ∈ [m]. The
failure probability is at most e−Ω(d).

189



7.3 Improved Analysis for D/A-Design

In this section, we propose the following randomized exchange algorithm to solve the D/A-
design problems with knapsack constraints and improve the approximation guarantee in
Theorem 7.1.1.

Randomized Exchange Algorithm

Input: n vectors u1, ..., un ∈ Rd, an accuracy parameter ε ∈ (0, 1), and m knapsack
constraints cj ∈ Rn

+ with budgets bj >
d‖cj‖∞

ε
for all j ∈ [m].

1. Solve the convex programming relaxation (7.1) for D-design or A-design and
obtain an optimal solution x ∈ [0, 1]n with at most d2 + m fractional entries,
i.e. |{i ∈ [n] | 0 < x(i) < 1}| ≤ d2 +m. Let X =

∑n
i=1 x(i) · uiu>i .

2. Preprocessing: Let vi ← X−
1
2 ui for all i ∈ [n], so that

∑n
i=1 x(i) · viv>i = In.

3. Initialization: S0 ← ∅, α← 8
√
d, and k ← 16d+ d2 +m.

4. Add i into S0 independently with probability x(i) for each i ∈ [n].

5. Let Z1 ←
∑

i∈S0
viv>i and t← 1.

6. While the termination condition is not satisfied and t = O
(
k
ε

)
do the following,

where the termination conditions for D-design and A-design are respectively

det(Zt)
1
d > 1− 10ε and 〈X−1,Z−1

t 〉 6 (1 + ε) tr(X−1).

(a) St ← Exchange(St−1).

(b) Set Zt+1 ←
∑

i∈St viv
>
i and t← t+ 1.

7. Return St−1 as the solution.

The exchange subroutine is described as follows.
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Exchange Subroutine

1. Compute the action matrix At ← (αZt − ltI )−2, where Zt =
∑

i∈St−1
viv>i and lt

is the unique scalar such that At � 0 and tr(At) = 1.

2. Let S ′t ← {i ∈ St−1 | 2α〈viv>i ,A
1
2
t 〉 6 1

2
}.

3. Sample it ∈ S ′t−1 from the following probability distribution

P[it = i] =
1− x(i)

k
·
(

1− 2α〈viv>i ,A
1
2
t 〉
)
, for i ∈ S ′t−1 and

P[it = ∅] = 1−
∑
i∈S′t−1

1− x(i)

k
·
(

1− 2α〈viv>i ,A
1
2
t 〉
)
.

4. Sample jt ∈ [n]\St−1 from the following probability distribution

P[jt = j] =
x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
, for j ∈ [n]\St−1 and

P[jt = ∅] = 1−
∑

j∈[n]\St−1

x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
.

5. Return St ← St−1 ∪ {jt}\{it}.

Remark 7.3.1. The randomized exchange algorithm is almost the same as the iterative
randomized swapping algorithm in Section 5.2. There are only two differences. One is that
α ← 8

√
d instead of α ←

√
d
γ

in Section 5.2. The other is that the termination condition
λmin(Zt) > 1−2γ, is replaced by the termination condition for D-design or the termination
condition for A-design.

The parameter α is used to control the approximation guarantee of the iterative random-
ized swapping algorithm. If the termination condition is λmin(Zt) > 3

4
, then it is proved

in Theorem 5.2.7 that the algorithm will terminate successfully in O(k) steps with high
probability.
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Intuition and Proof Ideas

Based on the above remark, we see that the sampling distribution in the exchange subrou-
tine is actually designed for the one-sided spectral rounding problem (or E-design). It is
quite surprising that it also works for D/A-design.

We will use some other sampling distributions to analyze the combinatorial algorithms
(Fedorov’s exchange method) for D-design and A-design in Section 7.4. It appears at
first sight that those distributions are more natural to use in the exchange subroutine for
D/A-design.

Here, we use D-design to illustrate the difficulty of analyzing the natural distributions
P[it = i] ∝ 1− xi and P[jt = j] ∝ x(j) in Section 7.4.1 and to motivate the modifications
made in the randomized exchange algorithm. By applying Lemma 2.1.12 repeatedly, for
any τ > 1,

det(Zτ+1) > det(Z1) ·
τ∏
t=1

(
1− v>it Z

−1
t vit

) (
1 + v>jtZ

−1
t vjt

)
.

Using the natural distributions in Section 7.4.1, Lemma 7.4.1 and Lemma 7.4.2 shows that
there exist it ∈ St−1 and jt /∈ St−1 such that setting St ← St−1 − it + jt will improve the
D-design objective in each iteration. However, if we randomly sample it and jt from these
distributions, we cannot prove that the objective value is consistently improving with good
probability. For D-design, we are analyzing a product of random variables where each
random variable could have a large variance, and existing martingale inequalities are not
applicable to establish concentration of the product.

To bound the variance, one important observation is that when x is an optimal fractional
solution, it follows from the optimality condition of the convex programming relaxation
that any vector vi with x(i) ∈ (0, 1) satisfies ‖vi‖2

2 6 ε. The current algorithm is motivated
by the observation that if we can also lower bound the minimum eigenvalue of Zt, then
we can upper bound v>Z−1

t v and this would allow us to establish concentration of the
objective value. So our idea is to use the same algorithm in Section 5.2 to ensure that
the minimum eigenvalue of Zt is at least Ω(1) as mentioned in Remark 7.3.1. Surprisingly,
we prove that sampling from the distributions for E-design can also improve the objective
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values for D-design and A-design, and this is particularly interesting for A-design where
the minimum eigenvalue condition is needed to prove so. Having these in place, we can
use Freedman’s martingale inequality to prove that the objective values for D-design and
A-design will be improving consistently if the minimum eigenvalue of the current solution
is at least Ω(1).

Proof Outline and Organization

In the analysis of the randomized exchange algorithm, we conceptually divide the algorithm
into two phases. In the first phase, we show that the minimum eigenvalue of the current
solution will reach 3

4
in O(k) iterations with high probability. In the second phase, we prove

that the objective value for D/A-design will be a (1± ε)-approximation of the optimal in
O
(
k
ε

)
iterations with high probability. The following is an outline of the proof steps.

1. In Section 7.3.1.1, we first prove that the randomized exchange algorithm is well-
defined. In particular, we show that a fractional optimal solution to the convex
relaxation (7.1) with at most O(d2 +m) fractional entries can be found in polynomial
time, and the probability distributions in the exchange subroutine are well-defined
for k = O(d2 +m).

2. In Section 7.3.1.2, we prove that the minimum eigenvalue will reach 3
4
in O(k) iter-

ations with high probability. Furthermore, the minimum eigenvalue will be at least
1
4
during the next Θ

(
k
ε

)
iterations with good probability, for which we require the

assumption that ε is not too small. The proofs are based on the regret minimization
framework [7, 6] and the iterative randomized swapping algorithm in Section 5.2.

3. In Section 7.3.2 and Section 7.3.3, we prove that the objective value of D-design
and A-design will improve consistently with high probability. These are the more
technical parts of the proof. We use the minimum eigenvalue condition in multiple
places, both in the martingale concentration arguments for D/A-design and in the
expected improvement of the A-design objective.
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4. In Section 7.3.1.3, we prove the main approximation results including Theorem 7.1.3
for experimental design, by combining the previous steps and using the concentra-
tion inequality for the knapsack constraints proved in Section 5.2.3. As a corollary,
we slightly improve the previous results of D/A-design with a single cardinality con-
straint in [131, 118]. We also prove Corollary 7.1.7 as an application of the main
result.

7.3.1 Analysis of the Common Algorithm

The algorithm is identical for D-design and A-design except the termination condition. In
this subsection, we will present the proofs of the common parts and the main results, and
then present the specific proofs for D-design and A-design in Section 7.3.2 and Section 7.3.3
respectively.

7.3.1.1 Sparse Optimal Solution and Probability Distributions in the Ex-

change Subroutine

In this subsection, we first show that we can find an optimal fractional solution to the
convex programming relaxation (7.1) with sparse support in polynomial time. The sparsity
of an optimal solution to the convex program (7.1) was proved and used in [140, 107] for
experimental design problems. The following lemma is proved using similar ideas.

Lemma 7.3.2. Given any feasible fractional solution x̂ to the convex relaxation (7.1),
there exists another feasible fractional solution x with |{i ∈ [n] | 0 < x(i) < 1}| ≤ d2 + m

such that

det

(
n∑
i=1

x(i) · uiu>i

)
= det

(
n∑
i=1

x̂(i) · uiu>i

)
for D-Design, or

tr

(( n∑
i=1

x(i) · uiu>i
)−1

)
= tr

(( n∑
i=1

x̂(i) · uiu>i
)−1

)
for A-Design.

Furthermore, the solution x can be found in polynomial time.
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Proof. Given the feasible fractional solution x̂ , we compute an extreme point solution x to
the following polytope, which can be done in polynomial time.

n∑
i=1

x(i) · uiu>i =
n∑
i=1

x̂(i) · uiu>i ,

〈cj, x〉 ≤ bj, for 1 ≤ j ≤ m,

0 ≤ x(i) ≤ 1, for 1 ≤ i ≤ n.

In the extreme point solution x , the number of variables is equal to the number of linearly
independent tight constraints attained by x . Clearly, the number of integral variables in x is
equal to the number of linear independent tight constraints in 0 ≤ x(i) ≤ 1 for 1 ≤ i ≤ n

attained by x . So, the number of fractional variables in x is equal to the number of
linear independent tight constraints in

∑n
i=1 x(i) · uiu>i =

∑n
i=1 x̂(i) · uiu>i and 〈cj, x〉 ≤

bj for 1 ≤ j ≤ m attained by x . As there are only d2 + m such constraints in the above
linear program, there are at most d2 + m fractional entries in x . Due to the first matrix
equality constraint of the polytope, x and x̂ have the same objective value.

Then, we make a simple observation of the randomized exchange algorithm, that only
vectors with fractional entries will be exchanged, as those vectors with x(i) = 1 will always
be in the solution and vectors with x(i) = 0 will always not be in the solution.

Observation 7.3.3. For any t ≥ 0, it holds that i ∈ St for all i with x(i) = 1 and
j ∈ [n]\St for all j with x(j) = 0. This further implies that P(it = i) = 0 for all i with
x(i) ∈ {0, 1} and P(jt = j) = 0 for all j with x(j) ∈ {0, 1}.

Proof. The observation follows as all vectors with x(i) = 1 are selected and all vectors
with x(j) = 0 are not selected initially. In each iteration, the probability distributions
in the exchange subroutine guarantee that vectors with x(i) = 1 have zero probability to
be removed from the solution set, and vectors with x(j) = 0 have zero probability to be
added into the solution set. Therefore, the exchange subroutine of the algorithm would
only exchange those vectors with fractional entries x(i)’s.
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Finally, we are ready to show that the probability distributions in the exchange sub-
routine are well-defined for k = O(d2 +m), which will be used to upper bound the number
of iterations and the failure probability of the algorithm.

Claim 7.3.4. The probability distributions at any t-th iteration of the randomized exchange
algorithm are well-defined for k = 16d+ d2 +m.

Proof. First, we verify that the probability distribution for sampling it is well-defined. We
need to show that P(it = i) ≥ 0 for i ∈ S ′t−1 and

∑
i∈S′t−1

P(it = i) ≤ 1. Since At � 0 and

xi ∈ [0, 1] and 2α〈viv>i ,A
1
2
t 〉 ≤ 1/2 for i ∈ S ′t−1, it holds for i ∈ S ′t−1 that

0 ≤ P(it = i) =
1

k
(1− x(i))(1− 2α〈viv>i ,A

1
2
t 〉) ≤

1

k
.

Thus,
∑

i∈S′t−1
P(it = i) ≤ 1

k
|{i ∈ [n] | 0 < x(i) < 1}| < 1, where the first inequality follows

by Observation 7.3.3, and the second inequality follows by the the choice of k = 16d+d2+m

and Lemma 7.3.2.

Next, we verify that the probability distribution for sampling jt is well-defined. It is
clear that P(jt = j) ≥ 0 as At � 0 and x(j) ∈ [0, 1]. Then, we consider∑

j∈[n]\St−1

P(jt = j) =
1

k

∑
j∈[n]\St−1

x(j) ·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)

≤ 1

k

( ∑
j∈[n]\St−1

x(j) + 2α tr
(
A

1
2
t

))
,

where the inequality is by
∑n

j=1 x(j) · vjv>j = Id. Notice that
∑

j∈[n]\St−1
x(j) ≤ |{i ∈ [n] |

0 < x(i) < 1}| ≤ d2 +m by Observation 7.3.3 and Lemma 7.3.2. Thus,∑
j∈[n]\St−1

P(jt = j) ≤ 1

k

(
d2 +m+ 2α tr(A

1
2
t )
)
≤ 1

k
(d2 +m+ 16d) ≤ 1,

where the second last inequality is by α = 8
√
d and tr

(
A

1
2
t

)
≤
√
d from Claim 2.1.10, and

the last inequality is by the choice of k.

Combining Lemma 7.3.2 and Claim 7.3.4, we have shown that the randomized exchange
algorithm is well-defined.
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7.3.1.2 Lower Bounding Minimum Eigenvalue

As discussed above, the minimum eigenvalue of Zt plays a key role in our analysis of the
algorithm. We conceptually divide the execution of the randomized exchange algorithm
into two phases. In the first phase, we show that the minimum eigenvalue of the current
solution will reach 3

4
in O(k) iterations with high probability.

Proposition 7.3.5. The probability that the randomized exchange algorithm has termi-
nated successfully within 16k iterations or there exists τ1 6 16k with λmin(Zτ1) > 3

4
is at

least 1− exp(−Ω(
√
d)).

Proof. As noted in Remark 7.3.1, except for the termination condition, the randomized
exchange algorithm is exactly the same as the algorithm in Section 5.2 with α = 8

√
d. So,

the proposition follows from Theorem 5.2.7 with γ = 1
8
and q = 2.

Recall that Proposition 5.2.8 shows that with good probability the minimum eigenvalue
of Zt remains at least 1

4
for a period of time after hitting 1− 2γ.

Proposition 5.2.8. Suppose 0 < γ 6 1
8
. Assume there is no termination condition in

the iterative randomized swapping algorithm, and the minimum eigenvalue hit the target
λmin(Zτ1) > 1− 2γ at some time step τ1, then the probability that λmin(Zt) > 1

4
for all the

next τ steps τ1 6 t 6 τ1 + τ is at least 1− τ 2 · e−Ω(
√
d).

Apply Proposition 5.2.8 with γ = 1
8
and τ = 2k

ε
, we obtain the following corollary.

Corollary 7.3.6. Suppose λmin(Zτ1) > 3
4
for some τ1. In the randomized exchange algo-

rithm, the probability that λmin(Zt) > 1
4
for all τ1 6 t 6 τ1 + 2k

ε
is at least 1− 4k2

ε2
· e−Ω(

√
d).

7.3.1.3 Main Approximation Results

In this subsection, we prove the main approximation results for experimental design, in-
cluding Theorem 7.1.3. We will do so by first assuming the following theorem about the
improvement of the objective value in the second phase, which will be proved in Sec-
tion 7.3.2 for D-design and in Section 7.3.3 for A-design.
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Theorem 7.3.7. Suppose that λmin(Zτ1) > 3
4
and λmin(Zt) > 1

4
for t > τ1. For both D-

design and A-design, if bj >
d‖cj‖∞

ε
for all j ∈ [m] for some ε 6 1

100
, then the probability

that the randomized exchange algorithm has not terminated by time τ1 + 2k
ε

is at most
e−Ω(

√
d).

First, we prove the following bicriteria approximation result for D/A-design with knap-
sack constraints, by combining the previous steps and using the concentration inequality
for the knapsack constraints proved in Section 5.2.

Theorem 7.3.8. Given ε 6 1
100

, if bj >
d‖cj‖∞

ε
for all j ∈ [m], then the randomized

exchange algorithm returns a solution set S within 16k + 2k
ε
iterations such that

det

(∑
i∈S

uiu>i

) 1
d

> (1− 10ε) · det (X )
1
d or tr

((∑
i∈S

uiu>i

)−1)
6 (1 + ε) · tr

(
X−1

)
for D-design and A-design respectively with probability at least 1−O

(
k2

ε2
·e−Ω(

√
d)
)
, where X

is an optimal fractional solution to the convex relaxation (7.1). Moreover, for each j ∈ [m],
the solution set S satisfies

cj(S) 6 (1 + ε)bj + 120d ‖cj‖∞ 6
(
1 +O(ε)

)
bj

with probability at least 1− e−Ω(εd).

Proof. We start with defining some bad events for the randomized exchange algorithm.

• B1: the algorithm has not terminated successfully within 16k iterations and τ1 > 16k

where τ1 is the first time such that λmin(Zτ1) ≥ 3
4
.

• B2: there exists some τ1 ≤ t ≤ τ1 + 2k
ε
such that λmin(Zt) < 1/4.

• B3: the termination condition for D/A-design is not satisfied for all τ1 ≤ t ≤ τ1 + 2k
ε
.

If none of the bad events happens, then either the algorithm has terminated successfully
within 16k iterations or the termination condition for D/A-design will be satisfied at some
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time t ≤ τ1 + 2k
ε
≤ 16k + 2k

ε
. So, the probability that the randomized exchange algorithm

has not satisfied the termination condition within 16k+ 2k
ε
iterations is upper bounded by

P[B1 ∪B2 ∪B3] ≤ P[B1] + P[B2 ∩ ¬B1] + P[B3 ∩ ¬B2 ∩ ¬B1]

≤ O
(
e−Ω(

√
d)
)

+O

(
k2

ε2
· e−Ω(

√
d)

)
+O

(
e−Ω(

√
d)
)

≤ O

(
k2

ε2
· e−Ω(

√
d)

)
,

where P[B1] is bounded in Proposition 7.3.5, P[B2 ∩ ¬B1] is bounded in Corollary 7.3.6,
and P[B3 ∩ ¬B2 ∩ ¬B1] is bounded in Theorem 7.3.7.

For D-design, since vi = X−
1
2 ui, the termination condition implies the approximation

guarantee as

det

(∑
i∈S

viv>i

) 1
d

> 1− 10ε =⇒ det

(∑
i∈S

uiu>i

) 1
d

≥ (1− 10ε) · det(X )
1
d .

For A-design, note that〈
X−1,

(∑
i∈S

viv>i

)−1〉
=

〈
X−1,

(∑
i∈S

X−
1
2 uiu>i X−

1
2

)−1〉

=

〈
I ,
(∑

i∈S

uiu>i

)−1〉
= tr

((∑
i∈S

uiu>i

)−1)
,

(7.2)

and so the termination condition also implies the approximation guarantee as〈
X−1,

(∑
i∈S

viv>i

)−1〉
≤ (1 + ε) tr(X−1) =⇒ tr

((∑
i∈S

uiu>i

)−1)
≤ (1 + ε) tr(X−1).

Finally, we consider the knapsack constraints. Note that the termination conditions of
both D/A-design imply λmin(Zt) < 1 before the algorithm terminates. So, we can apply
Theorem 5.2.12 with γ = 1

8
to conclude that the returned solution S satisfies

cj(S) ≤ (1 + ε)〈cj, x〉+ 120d ‖cj‖∞ ≤ (1 + ε)bj + 120d ‖cj‖∞ ≤ (1 +O(ε))bj

with probability at least 1 − exp(−Ω(εd)), where the last inequality follows from bj ≥
d‖cj‖∞

ε
.
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We are ready to prove main theorem in this section by turning the above bicriteria
approximation result to a true approximation result using a simple scaling argument.

Theorem 7.1.3. Let x ∈ [0, 1]n be an optimal fractional solution to the convex program-
ming relaxation (7.1) for D/A-design with knapsack constraints. For any ε 6 1

200
, if

each knapsack constraint budget satisfies bj >
2d‖cj‖∞

ε
, then there is a randomized ex-

change algorithm which returns in polynomial time an integral solution
∑n

i=1 z(i) · uiu>i
with z(i) ∈ {0, 1} for 1 6 i 6 n such that

det

( n∑
i=1

z(i) · uiu>i
) 1

d

>
(
1−O(ε)

)
· det

( n∑
i=1

x(i) · uiu>i
) 1

d

for D-design,

tr

(( n∑
i=1

z(i) · uiu>i
)−1)

6 (1 + ε) · tr
(( n∑

i=1

x(i) · uiu>i
)−1)

for A-design

with probability at least 1 − O
(
k2

ε2
· e−Ω(

√
d)
)

where k = O(d2 + m). Furthermore, each
knapsack constraint 〈cj, z〉 6 bj, j ∈ [m] is satisfied with probability at least 1− e−Ω(εd).

Proof. Let b1, . . . , bm be the input budgets for the m knapsack constraints. We scale
down the budget to b̃j =

bj
1+100ε

for each j ∈ [m]. Since ε ≤ 1
200

and bj ≥ 2d‖cj‖∞
ε

by
the assumption, the rescaled budget b̃j ≥ d‖cj‖∞

ε
. Therefore, the budget assumptions in

Theorem 7.3.8 are satisfied by all b̃1, ..., b̃m. In the following, we prove the theorem for
D-design only, as the proof for A-design follows by the same argument.

Let x̃ ∈ [0, 1]n be an optimal fractional solution of (7.1) with budget b̃j for j ∈ {1, ...,m}.
Let X̃ :=

∑n
i=1 x̃(i) · viv>i and X =

∑n
i=1 x(i) · viv>i . We run the randomized exchange

algorithm with budgets b̃1, ..., b̃m. By Theorem 7.3.8, with probability at least 1− O
(
k2

ε2
·

e−Ω(
√
d)
)
, the algorithm returns a solution set S within O(k

ε
) iterations such that

det

(∑
i∈S

uiu>i

) 1
d

≥ (1− 10ε) · det(X̃ )
1
d ≥ 1− 10ε

1 + 100ε
· det(X )

1
d =

(
1−O(ε)

)
· det(X )

1
d ,

where the second inequality holds as 1
1+100ε

· X is a feasible solution to (7.1) with budget
b̃1, ..., b̃m. Furthermore, for each knapsack constraint j ∈ [m], it follows from Theorem 7.3.8
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that
cj(S) ≤ (1 + ε)b̃j + 120d‖cj‖∞ ≤

1 + ε

1 + 100ε
· bj + 60εbj ≤ bj,

with probability at least 1 − exp(−Ω(εd)), where the second inequality follows by the
assumption bj ≥ 2d‖cj‖∞

ε
and the last inequality follows as ε ≤ 1

200
.

Unweighted D/A-Design: Using the main result, we improve the previous result on
D/A-design with a single cardinality constraint by replacing the assumption in [131, 118],
i.e. b ≥ Ω

(
d
ε

+ 1
ε2

log
(

1
ε

))
, with b ≥ 2d

ε
, although there is a mild assumption on the range

of ε.

Corollary 7.3.9. For any 1
200
≥ ε ≥ e−δ

√
d for a small enough constant δ, if b ≥ 2d

ε
, then

there is a randomized polynomial time algorithm that returns a
(
1 + O(ε)

)
-approximate

solution for D/A-design with constant probability.

Proof. We apply Theorem 7.1.3 on the input. The probability that the output is a
(
1 +

O(ε)
)
-approximate solution and satisfies the cardinality constraint is at least 1− e−Ω(εd)−

e−Ω(
√
d) as k = O(d2). When εd = Ω(1), this success probability is at least a constant for

large enough d. Otherwise, this success probability can be lower bounded by

1− e−Ω(εd) − e−Ω(
√
d) ≥ Ω(εd)− e−Ω(

√
d) ≥ max

{
e−Ω(

√
d),Ω

(d2

n

)}
≥ Ω

(d2

n

)
,

where the first inequality is by e−Ω(εd) ≤ 1−Ω(εd) for εd = o(1), and the second inequality
is by the assumption ε ≥ exp(−δ

√
d) for a small enough δ and the fact that we can assume

ε ≥ 2d
n

without loss of generality. Therefore, we can amplify the success probability to be
a constant by applying Theorem 7.1.3 at most O

(
n
d2

)
times, and the total time complexity

is still polynomial in n and d.

Minimizing Total Effective Resistance: We present an application of the main result
to the total effective resistance minimization problem. In this problem, we are given a
graph G = (V,E) with Laplacian matrix LG =

∑
e∈E beb>e and a cost vector c ∈ Rm

+ on
the edges, and the goal is to find a subgraph H with cost at most b to minimize the sum
of all pairs effective resistances

∑
u,v ReffH(u, v) = n · tr(L†H).
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Corollary 7.1.7. For any 0 < ε < 1, there is a polynomial time randomized (1 + ε)-
approximation algorithm for minimizing total effective resistance in an edge weighted graph
whenever b > Ω

(
n‖c‖∞
ε

)
.

Proof. As observed in Section 6.2.2, total effective resistance minimization can be reduced
to A-design problem with a transformation described in (6.1). Let x∗ ∈ [0, 1]m be an
optimal fractional solution to the problem and let Lx∗ :=

∑
e∈E x∗(e) · beb>e . Since b >

Ω
(
n‖c‖∞
ε

)
, by Theorem 7.1.3, there is a randomized algorithm that returns a subgraph

H with tr
(
L†H
)
6
(
1 + O(ε)

)
· tr
(
L†x∗
)
within O

(
k
ε

)
iterations with probability at least

1 − O
(
k2

ε2
· e−Ω(

√
n)
)
where k = O(n2). Moreover, the cost constraint is satisfied with

probability at least 1 − e−Ω(εn). Since the number of edges m = O(n2), we can assume
ε > n

m
= Ω( 1

n
) without loss of generality. The running time is polynomial in the graph

size and the failure probability of the algorithm is at most O
(
k2

ε2
· e−Ω(

√
n)
)

+ e−Ω(εn) 6

e−Ω(
√
n) + e−Ω(1), a constant bounded away from 1, when n is large enough.

7.3.2 Analysis of the D-Design Objective

We will prove Theorem 7.3.7 for D-design in this subsection. Let τ1 be the start time of
the second phase. For the ease of notation, we simply reset τ1 = 1 as the first time step in
the second phase. By assumption, λmin(Z1) > 3

4
and λmin(Zt) > 1

4
for all t > 1, which will

be crucial in the analysis.

To analyze the objective value for D-design, our plan is to transform the product of
random variables in Lemma 2.1.12 into a sum of random variables in the exponent as
follows,

det(Zτ+1) > det(Z1) ·
τ∏
t=1

(
1− 〈vitv>it ,Z

−1
t 〉
) (

1 + 〈vjtv>jt ,Z
−1
t 〉
)

> det(Z1) · exp

( τ∑
t=1

(
(1− 4ε) 〈vjtv>jt ,Z

−1
t 〉︸ ︷︷ ︸

gain gt

−(1 + 5ε) 〈vitv>it ,Z
−1
t 〉︸ ︷︷ ︸

loss lt

))
, (7.3)
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where the inequalities 1−x > e(1−4ε)x and 1−x > e−(1+5ε)x only hold when x ∈ [0, 4ε] and
ε is small enough such as ε 6 1

50
.

So, for our plan to work, we need to bound the gain term 〈vjtv>jt ,Z
−1
t 〉 and the loss term

〈vitv>it ,Z
−1
t 〉. To do so, we prove in Lemma 7.3.13 that in an optimal fractional solution

x , every vector vi with 0 < x(i) < 1 satisfies the condition that ‖vi‖2
2 6 ε. Recall that,

Observation 7.3.3 implies 0 < x(it), x(jt) < 1 for all t ≥ 1. Therefore, Lemma 7.3.13
implies that ‖vit‖

2
2 6 ε and ‖vjt‖

2
2 6 ε for all t > 1. Together with the assumption that

Zt < 1
4
I for all t > 1, we can ensure that 〈vjtv>jt ,Z

−1
t 〉 6 4ε and 〈vitv>it ,Z

−1
t 〉 6 4ε for all

t > 1, and hence (7.3) holds.

Once this transformation is done and (7.3) is established, we can apply Freedman’s
martingale inequality to prove concentration of the exponent. In the following, we define
the gain gt, loss lt and progress Γt in the t-th iteration as

gt := 〈vjtv>jt ,Z
−1
t 〉, lt := 〈vitv>it ,Z

−1
t 〉, and Γt := (1− 4ε)gt − (1 + 5ε)lt.

In Section 7.3.2.1, we will prove that the expected progress is large if the current solution
is far from optimal. Then, in Section 7.3.2.2, we will prove that the total progress is
concentrated around its expectation, where the minimum eigenvalue assumption is crucial
in the martingale concentration argument. Finally, we finish the proof of Theorem 7.3.7 for
D-design in Section 7.3.2.3, and present the proof of the optimality condition Lemma 7.3.13
in Section 7.3.2.4.

7.3.2.1 Expected Improvement of the D-Design Objective

Here we bound the conditional expectation of progress Γt, and show that Et[Γt] is large if
the current objective value det(Zt)

1
d is small, where we denote Et[·] := E[· | St−1].

Before that, we prove a useful lemma which will be used to relate the numerator of the
gain term to the current objective value det(Zt)

1
d .

Lemma 7.3.10. For any given d× d positive definite matrices A,B � 0,

〈A,B〉 > d · det(A)
1
d · det(B)

1
d .

203



Proof. Let A =
∑d

i=1 aiuiu
>
i and B =

∑d
j=1 bjwjw>j be the spectral decompositions of A

and B .

1

d
· 〈A,B〉 =

∑
16i,j6d

aibj ·
〈ui,wj〉2

d
>

∏
16i,j6d

(
aibj
) 〈ui,wj〉2

d

=

( d∏
i=1

d∏
j=1

a
〈ui,wj〉

2

d
i

)( d∏
j=1

d∏
i=1

b
〈ui,wj〉

2

d
j

)

=
d∏
i=1

a
1
d
i ·

d∏
j=1

b
1
d
j

= det(A)
1
d det(B)

1
d ,

where the inequality follows by the weighted AM-GM inequality as
∑d

i,j=1〈ui,wj〉2 = d,
and the second last equality follows as {ui}di=1 and {wj}dj=1 are orthonormal bases.

We are ready to analyze the conditional expectation of progress Γt.

Lemma 7.3.11. Let γ > 1. Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv>i

for 1 6 t 6 τ . Suppose det(Zt)
1
d 6 λ for 1 6 t 6 τ . Then

τ∑
t=1

Et[Γt] >
(

1− 4ε

λ
− (1 + 5ε)

)
· dτ
k
.

Proof. Let t ∈ [1, τ ]. Using the probability distribution for sampling vjt in the randomized
exchange algorithm, the expected gain of adding vector vjt is

Et[gt] =
∑

j∈[n]\St−1

x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
· 〈vjv>j ,Z−1

t 〉

>
∑

j∈[n]\St−1

x(j)

k
· 〈vjv>j ,Z−1

t 〉

=
1

k

(
tr(Z−1

t )−
∑
i∈St−1

x(i) · 〈viv>i ,Z−1
t 〉
)
,

where the last equality uses
∑n

j=1 x(j) · vjv>j = I .
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Using the probability distribution for sampling vit in the randomized exchange algo-
rithm, the expected loss of removing vector vit is

Et[lt] =
∑
i∈S′t−1

1− x(i)

k
·
(

1− 2α〈viv>i ,A
1
2
t 〉
)
· 〈viv>i ,Z−1

t 〉

6
1

k

∑
i∈S′t−1

(
1− x(i)

)
· 〈viv>i ,Z−1

t 〉

6
1

k

∑
i∈St−1

(
1− x(i)

)
· 〈viv>i ,Z−1

t 〉

=
1

k

(
d−

∑
i∈St−1

x(i) · 〈viv>i ,Z−1
t 〉
)
,

(7.4)

where the two inequalities hold as 1− 2α〈viv>i ,A
1
2
t 〉 6 1 and (1− xi) · 〈viv>i ,Z−1

t 〉 > 0 for
all i ∈ [n], and the last equality holds as

∑
i∈St−1

viv>i = Zt.

Therefore, the expected progress is

Et[Γt] = Et[(1− 4ε)gt − (1 + 5ε)lt]

>
1− 4ε

k

(
tr(Z−1

t )−
∑
i∈St−1

x(i) · 〈viv>i ,Z−1
t 〉
)
− 1 + 5ε

k

(
d−

∑
i∈St−1

x(i) · 〈viv>i ,Z−1
t 〉
)

>
1

k

(
(1− 4ε) · tr(Z−1

t )− (1 + 5ε) · d
)

>
1

k

(
(1− 4ε) · d

det(Zt)
1
d

− (1 + 5ε) · d
)

>

(
1− 4ε

λ
− (1 + 5ε)

)
· d
k
,

where the second last inequality follows from Lemma 7.3.10, and the last inequality is
by the assumption that maxt det(Zt)

1
d 6 λ. The lemma follows by summing over all

1 6 t 6 τ .
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7.3.2.2 Martingale Concentration Argument

Here we show that the total progress is concentrated around the expectation. The proof
uses the minimum eigenvalue assumption and the short vector condition from Lemma 7.3.13
to bound the variance of the random process.

Lemma 7.3.12. Suppose Zt < 1
4
I and ‖vit‖

2
2 6 ε and ‖vjt‖

2
2 6 ε for ε 6 1

100
for all

1 6 t 6 τ . Then, for any η > 0,

P

[
τ∑
t=1

Γt 6
τ∑
t=1

Et[Γt]− η

]
6 exp

(
− Ω

( η2k

ετd1.5 + εηk

))
.

Proof. We define two sequences of random variables {Xt}t and {Yt}t, where Xt := Et[Γt]−
Γt and Yt :=

∑t
l=1Xl. It is easy to check that {Yt}t is a martingale with respect to {St}t.

We will use Freedman’s inequality to bound P[Yτ > η].

To apply Freedman’s inequality, we need to upper bound Xt and Et[X2
t ]. Note that

0 6 gt = 〈vjtv>jt ,Z
−1
t 〉 6 4ε and 0 6 lt = 〈vitv>it ,Z

−1
t 〉 6 4ε

by our assumptions that Zt < 1
4
I and ‖vit‖

2
2 6 ε and ‖vjt‖

2
2 6 ε for 1 6 t 6 τ . These imply

that
Xt = Et[Γt]− Γt 6 (1− 4ε) · Et[gt] + (1 + 5ε) · lt 6 (2 + ε) · 4ε 6 10ε,

where the last inequality holds for ε 6 1
2
.

To upper bound Et[X2
t ], we first upper bound Et[gt] and Et[lt]. Note that

Et[gt] =
∑

j∈[n]\St−1

x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
· 〈vjv>j ,Z−1

t 〉

6
1 + 16ε

√
d

k
·
∑

j∈[n]\St−1

x(j) · 〈vjv>j ,Z−1
t 〉

6
1 + 16ε

√
d

k
· tr(Z−1

t )

6
4d+ 64εd1.5

k
,
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where the first inequality holds as α = 8
√
d, At 4 I and ‖vj‖2

2 6 ε for j ∈ [n] \ St−1 with
x(j) > 0, the second inequality follows as

∑n
i=1 x(i)·viv>i = I , and the last inequality follows

from the assumption that Zt < 1
4
I . Note also that Et[lt] 6 d

k
from (7.4) in Lemma 7.3.11.

So, we can upper bound Et[X2
t ] by

Et[X2
t ] 6 10ε · Et[|Xt|] 6 20ε ·

(
(1− 4ε) · Et[gt] + (1 + 5ε) · Et[lt]

)
6 O

(
εd1.5

k

)
,

where the first inequality is by the upper bound on Xt, and the last inequality is by the
loose bound that Et[gt] 6 O

(
d1.5

k

)
.

Finally, we can apply Freedman’s inequality Theorem 3.2.3 with R = 10ε, σ2
t =

O
(
εd1.5

k

)
for all t ∈ [τ ], and σ2 = O

(
ετd1.5

k

)
to conclude that

P[Yτ > η] 6 exp
(
− η2/2

σ2 +Rη/3

)
= exp

(
− Ω

( η2k

ετd1.5 + εηk

))
.

The lemma follows by noting that Yτ > η is equivalent to
∑τ

t=1 Γt 6
∑τ

t=1 Et[Γt]− η.

7.3.2.3 Proof of Theorem 7.3.7 for D-design

We are ready to prove Theorem 7.3.7 for D-design. Let τ = 2k
ε
. Suppose the second phase

of the algorithm has not terminated by time τ . Then λ = max16t6τ+1 det(Zt)
1
d < 1− 10ε.

Thus, Lemma 7.3.11 implies that
τ∑
t=1

Et[Γt] >
(1− 4ε

λ
− (1 + 5ε)

)
· dτ
k

>
εdτ

k
= 2d.

On the other hand, the initial solution of the second phase satisfies Z1 < 3
4
I , which implies

that det(Z1) >
(

3
4

)d. As the knapsack constraints satisfy bj >
d‖cj‖∞

ε
for j ∈ [m], we know

from Lemma 7.3.13 that ‖vi‖2
2 6 ε for each i with 0 < x(i) < 1. Note that, in the ran-

domized exchange algorithm, all it and jt satisfy 0 < x(it), x(jt) < 1 by Observation 7.3.3.
Together with the assumption that Zt < 1

4
I for all 1 6 t 6 τ , we have 〈vjtv>jt ,Z

−1
t 〉 6 4ε

and 〈vitv>it ,Z
−1
t 〉 6 4ε for all 1 6 t 6 τ . Hence, we can apply (7.3) to deduce that

1 > det(Zτ+1) > det(Z1)·exp

( τ∑
t=1

Γt

)
>
(3

4

)d
exp

( τ∑
t=1

Γt

)
=⇒

τ∑
t=1

Γt 6 d·ln 4

3
6 d.
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Therefore, we can apply Lemma 7.3.12 with η = d and τ = 2k
ε
to conclude that

P
[

max
16t6τ+1

det(Zt)
1
d < 1− 10ε

]
6 P

[
τ∑
t=1

Γt <
τ∑
t=1

Et[Γt]− d

]

6 exp

(
− Ω

(
d2k

ε
(

2k
ε

)
d1.5 + εdk

))

6 exp(−Ω(
√
d)).

7.3.2.4 Optimality Condition of the Convex Program for D-Design

The following lemma uses the assumption about the budgets to prove that all vectors with
fractional value are short.

Lemma 7.3.13. Let x ∈ [0, 1]n be an optimal fractional solution of the convex programming
relaxation (7.1) for D-design. Let X =

∑n
i=1 x(i) · uiu>i , and vi = X−

1
2 ui for 1 6 i 6 n.

Suppose bj >
d‖cj‖∞

ε
for 1 6 j 6 m. Then ‖vi‖2

2 6 ε for each 1 6 i 6 n with 0 < x(i) < 1.

Proof. Since both x−
1
d and log x are monotone functions for x > 0, minimizing fD(X ) =

det(X )−
1
d on Sd++ is equivalent to maximizing log det(X ) on Sd++. Thus, the following

convex relaxation of D-design (log det(X ) is concave on Sd++ by Fact 2.2.15) would have
exactly the same optimizer and optimal solution characterization as (7.1) for D-design.

max
x∈Rd,X∈Sd++

log det (X )

subject to X =
n∑
i=1

x(i) · uiu>i ,

〈cj, x〉 6 bj, ∀j ∈ [m],

0 6 x(i) 6 1, ∀i ∈ [n].

As the gradient of ∇fD(X ) = −1
d

det(X )−
1
dX−1 has a more complicated form then that

of ∇ log(X ) = X−1, without loss of generality, we analyze the above convex program for
D-design for the ease of notations.
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We will use the Lagrangian duality (see Section 2.2.3.1) to investigate the length of
the vectors vi’s. We introduce a dual variable Y for the first equality constraint, a dual
variable µj > 0 for each of the budget constraint bj − 〈cj, x〉 > 0, a dual variable β−i > 0

for each non-negative constraint x(i) > 0, and a dual variable β+
i > 0 for each capacity

constraint 1− x(i) > 0. The Lagrange function L(x ,X ,Y , µ, β+, β−) is defined as

L(x ,X ,Y , µ, β+, β−) = log det(X ) +

〈
Y ,

n∑
i=1

x(i) · uiu>i − X
〉

+
m∑
j=1

µj

(
bj − 〈cj, x〉

)
+

n∑
i=1

β−i x(i) +
n∑
i=1

β+
i (1− x(i)),

Rearrange the terms, we have

L(x ,X ,Y , µ, β+, β−) = log det(X )− 〈Y ,X 〉+
m∑
j=1

µjbj +
n∑
i=1

β+
i

+
n∑
i=1

x(i) ·
(
〈Y , uiu>i 〉 −

m∑
j=1

µjcj(i) + β−i − β+
i

)
.

The Lagrangian dual function is

g(Y , µ, β+, β−) = max
x ,X�0

L(x ,X ,Y , µ, β+, β−).

It is easy to verify that x = δ1 is a strictly feasible solution of the primal program for
a small enough δ. By Theorem 2.2.26, Slater’s condition implies that strong duality holds.
In the primal convex program, we can relax the constraint X � 0 to X < 0 without loss of
generality, as log det(X ) blows up to −∞ when X approaches the boundary of Sd+. Thus,
the feasible solution space is closed and bounded, and the primal optimal is attained. Let
x ∈ [0, 1]n,X � 0 be an optimal solution for the primal program, Theorem 2.2.28 says
there exists a dual optimal solution Y , µ, β+, β− > 0 together with x ,X satisfy the KKT
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conditions. In particular, it holds that (we recall ∇ log det(X ) = X−1 by Fact 2.2.2)

(Complementary slackness) β−i · x(i) = 0, β+
i · (1− x(i)) = 0 ∀i ∈ [n],

(Lagrangian optimality) ∇XL = X−1 − Y = 0,

∇x(i)L = 〈Y , uiu>i 〉 −
m∑
j=1

µjcj(i) + β−i − β+
i = 0, ∀i ∈ [n].

By strong duality, the primal optimal and the dual optimal attain the same objective
value, i.e. log det(X ) = g(Y , µ, β+, β−) = L(x ,X ,Y , µ, β+, β−). Thus, it holds that

log det(X ) = L(x ,X ,Y , µ, β+, β−) = log det(X )− d+
m∑
j=1

µjbj +
n∑
i=1

β+
i ,

where the last equality holds by Lagrangian optimality, 〈Y , uiu>i 〉 =
∑m

j=1 µjcj(i) − β
−
i +

β+
i = 0 for all i ∈ [n] and Y = X−1. Since β+ > 0, it further implies

m∑
j=1

µjbj 6 d =⇒
m∑
j=1

µj ‖cj‖∞ 6 ε,

where the last implication follows by the assumption bj >
d‖cj‖∞

ε
for each j ∈ [m].

Finally, by the complementary slackness condition, we must have β+
i = β−i = 0 for each

i with 0 < x(i) < 1. Together with the Lagrangian optimality, 〈Y , uiu>i 〉 =
∑m

j=1 µjcj(i)−
β−i + β+

i = 0 for all i ∈ [n], for any i ∈ [n] with 0 < x(i) < 1 it holds that

m∑
j=1

µjcj(i) = 〈Y , uiu>i 〉 = 〈X−1, uiu>i 〉 = ‖vi‖2
2 =⇒ ‖vi‖2

2 6
m∑
j=1

µj ‖cj‖∞ 6 ε.

7.3.3 Analysis of the A-Design Objective

We will prove Theorem 7.3.7 for A-design in this subsection. Let τ1 be the start time of
the second phase. For ease of notation, we simply reset τ1 = 1, as the first time step in the
second phase. By assumption, λmin(Z1) > 3

4
and λmin(Zt) > 1

4
for all t > 1, which will be

crucial in the analysis.
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To analyze the A-design objective tr
((∑

i∈St−1
uiu>i

)−1), we analyze the equivalent
quantity 〈X−1,Z−1

t 〉 after the linear transformation vi = X−
1
2 ui as shown in (7.2). By

Lemma 4.2.5, if 2〈vitv>it ,Z
−1
t 〉 < 1, then the change of the objective value is bounded by

〈X−1,Z−1
t+1〉 = 〈X−1, (Zt − vitv

>
it + vjtv

>
jt )
−1〉

6 〈X−1,Z−1
t 〉+

〈X−1,Z−1
t vitv>it Z

−1
t 〉

1− 2〈vitv>it ,Z
−1
t 〉

−
〈X−1,Z−1

t vjtv>jtZ
−1
t 〉

1 + 2〈vjtv>jt ,Z
−1
t 〉

.

In Section 7.4.2, when analyzing the combinatorial algorithm for A-design, we will show
in Lemma 7.4.4 and Lemma 7.4.5 that if we sample it and jt from the distributions

P[it = i] ∝
(
1− x(i)

)
·
(
1− 2〈viv>i ,Z−1

t 〉
)

and P[jt = j] ∝ x(j) ·
(
1 + 2〈vjv>j ,Z−1

t 〉
)
,

then the objective value will improve in expectation when the current objective value is
far from optimal. In the randomized exchange algorithm, however, we sample it and jt

from the E-design distributions. An important observation is that the quantities in these
two distributions can be related to each other when the minimum eigenvalue assumption
holds. The following lemma will be proved in Section 7.3.3.1.

Lemma 7.3.14. If Zt < 1
4
Id, then 〈viv>i ,Z−1

t 〉 6 α · 〈viv>i ,A
1
2
t 〉 6 αλmin(Zt) · 〈viv>i ,Z−1

t 〉
for 1 6 i 6 n.

In the exchange subroutine of the randomized exchange algorithm, only those it with
2α · 〈vitv>it ,A

1
2
t 〉 6 1

2
are sampled. So, when the minimum eigenvalue assumption holds,

Lemma 7.3.14 implies that the randomized exchange algorithm only samples it that satisfies
2〈vitv>it ,Z

−1
t 〉 6 1

2
. Therefore, we can apply Lemma 4.2.5 repeatedly to obtain that for any

τ > 1,

〈X−1,Z−1
τ+1〉 6 〈X−1,Z−1

1 〉 −
τ∑
t=1

(〈X−1,Z−1
t vjtv>jtZ

−1
t 〉

1 + 2〈vjtv>jt ,Z
−1
t 〉

−
〈X−1,Z−1

t vitv>it Z
−1
t 〉

1− 2〈vitv>it ,Z
−1
t 〉

)
. (7.5)

As in Section 7.3.2, we define gain gt, loss lt and progress Γt in the t-th iteration as
follows

gt :=
〈X−1,Z−1

t vjtv>jtZ
−1
t 〉

1 + 2〈vjtv>jt ,Z
−1
t 〉

, lt :=
〈X−1,Z−1

t vitv>it Z
−1
t 〉

1− 2〈vitv>it ,Z
−1
t 〉

, and Γt := gt − lt.
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In Section 7.3.3.1, we will prove Lemma 7.3.14, and use it to prove that the expected
progress is large if the current objective value is far from optimal. Then, in Section 7.3.3.2,
we will prove that the total progress is concentrated around its expectation, while the
minimum eigenvalue assumption and the optimality condition of the convex programming
relaxation are crucial in the martingale concentration argument. Finally, we complete
the proof of Theorem 7.3.7 for A-design in Section 7.3.3.3, and present the proof of the
optimality condition in Section 7.3.3.4.

7.3.3.1 Expected Improvement of the A-Design Objective

We first prove Lemma 7.3.14, which will be useful in bounding the expectation.

Proof of Lemma 7.3.14. Recall that At = (αZt − ltId)−2 where lt is the unique value such
that At � 0 and tr(At) = 1. Since Zt < λmin(Zt) · Id, it follows that

1 = tr(At) 6 (αλmin(Zt)− lt)−2 · tr(Id) =⇒ αλmin(Zt)− lt 6
√
d =⇒ lt > 0,

where the last implication holds as α = 8
√
d and λmin(Zt) > 1

4
. This implies that A

1
2
t =

(αZt − ltId)−1 < α−1Z−1
t , proving the first inequality.

For the second inequality, consider the eigen-decomposition of Zt =
∑d

j=1 λjwjw>j ,
where 0 < λ1 6 . . . 6 λd are the eigenvalues and {wj}j are the corresponding orthonormal
eigenvectors. Then,

〈viv>i ,A
1
2
t 〉

〈viv>i ,Z−1
t 〉

=

∑d
j=1

〈vi,wj〉2
αλj−lt∑d

j=1
〈vi,wj〉2
λj

6 max
j∈[d]

λj
αλj − lt

6
λ1

αλ1 − lt
6 λ1,

where the first inequality holds since αλj − lt > 0 as At � 0, the second inequality holds
as lt > 0 and the function f(x) = x

αx−lt is decreasing for x > lt
α
when lt > 0, and the last

inequality follows as 1 = tr(At) > (αλ1 − lt)−2 which implies αλ1 − lt > 1.

Before analyzing the expectation, we prove another useful lemma, which will also be
used in the analysis of combinatorial local search algorithm later in this chapter.
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Lemma 7.3.15. For any given d× d positive definite matrices A,B � 0,

〈A,B2〉 > (tr(B))2

tr
(
A−1

) and (7.6)

〈A,B〉 6
√

tr(A) · 〈A,B2〉. (7.7)

Proof. Let A =
∑d

i=1 aiuiu
>
i and B =

∑d
j=1 bjwjw>j be the eigendecomposition of A and

B . Then,

tr(B) =
d∑
j=1

bj =
∑

16i,j6d

bj · 〈ui,wj〉2 =
∑

16i,j6d

√
aibj〈ui,wj〉 ·

1
√
ai
〈ui,wj〉

6

√ ∑
16i,j6d

aib2
j〈ui,wj〉2 ·

∑
16i,j6d

1

ai
〈ui,wj〉2

=
√
〈A,B2〉 · tr(A−1),

where the second equality and the last equality hold as {ui}di=1 and {wj}dj=1 are orthonormal
bases, and the inequality is by Cauchy-Schwarz. For the second inequality in this lemma,

〈A,B〉 =
∑

16i,j6d

aibj〈ui,wj〉2 6
√ ∑

16i,j6d

ai〈ui,wj〉2 ·
∑

16i,j6d

aib2
j〈ui,wj〉2 =

√
tr(A) · 〈A,B2〉,

where the equalities hold as {ui}i and {wj}j are orthonormal bases and the inequality is
by Cauchy-Schwarz.

The following lemma shows that the expected progress is large if the current objective
value is far from optimal. Note that, in contrast to Section 7.3.2 for D-design, the minimum
eigenvalue assumption is needed in the proof.

Lemma 7.3.16. Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv>i for 1 6 t 6 τ .

Suppose Zt < 1
4
I and 〈X−1,Z−1

t 〉 > λ · tr (X−1) for λ > 1 for 1 6 t 6 τ . Then

τ∑
t=1

Et[Γt] >
(λ− 1)τ

k
· tr(X−1).
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Proof. The expected gain of adding vector vjt is

Et[gt] =
∑

j∈[n]\St−1

x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
·
〈X−1,Z−1

t vjv>j Z−1
t 〉

1 + 2〈vjv>j ,Z−1
t 〉

>
∑

j∈[n]\St−1

x(j)

k
· 〈X−1,Z−1

t vjv>j Z−1
t 〉

=
1

k

(
〈X−1,Z−2

t 〉 −
〈

X−1,Z−1
t

( ∑
i∈St−1

x(i) · viv>i
)

Z−1
t

〉)
,

where the inequality follows from Lemma 7.3.14 and the last equality follows as
∑n

j=1 x(j) ·
vjv>j = I . The expected loss of removing vector vit is

Et[lt] =
∑
i∈S′t−1

1− x(i)

k
·
(

1− 2α〈viv>i ,A
1
2
t 〉
)
· 〈X

−1,Z−1
t viv>i Z−1

t 〉
1− 2〈viv>i ,Z−1

t 〉

6
1

k

∑
i∈S′t−1

(
1− x(i)

)
· 〈X−1,Z−1

t viv>i Z−1
t 〉

6
1

k

∑
i∈St−1

(
1− x(i)

)
· 〈X−1,Z−1

t viv>i Z−1
t 〉

=
1

k

(
〈X−1,Z−1

t 〉 −
〈

X−1,Z−1
t

( ∑
i∈St−1

x(i) · viv>i
)

Z−1
t

〉)
, (7.8)

where the first inequality follows from Lemma 7.3.14 and 2α〈viv>i ,A
1
2
t 〉 6 1

2
by the definition

of S ′t−1, and the last equality holds as
∑

i∈St−1
viv>i = Zt.

Therefore, the expected progress is

Et[Γt] = Et[gt]− Et[lt] >
1

k

(
〈X−1,Z−2

t 〉 − 〈X−1,Z−1
t 〉
)
.

The term 〈X−1,Z−2
t 〉 can be lower bounded by

〈X−1,Z−2
t 〉 >

〈X−1,Z−1
t 〉2

tr(X−1)
> λ · 〈X−1,Z−1

t 〉,
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where the first inequality follows from (7.7) in Lemma 7.3.15, and the second inequality
follows from our assumption of this lemma. This implies that

Et[Γt] >
λ− 1

k
· 〈X−1,Z−1

t 〉 =
λ− 1

k
· tr
(( ∑

i∈St−1

uiu>i

)−1)
>
λ− 1

k
· tr(X−1),

where the equality is from (7.2) and the last inequality is because X is an optimal solution.
The lemmas follows by summing over t.

7.3.3.2 Martingale Concentration Argument

Here we prove that the total progress is concentrated around the expectation. The proof
uses the minimum eigenvalue assumption and the optimality condition in Lemma 7.3.18
in Section 7.3.3.4 to bound the variance of the random process.

Lemma 7.3.17. Suppose Zt < 1
4
I and 〈X−1, vitv>it 〉 6 ε

d
· tr(X−1) and 〈X−1, vjtv>jt 〉 6

ε
d
· tr(X−1) for all 1 6 t 6 τ . Then, for any η > 0,

P

[
τ∑
t=1

Γt 6
τ∑
t=1

Et[Γt]− η

]
6 exp

(
− Ω

(
η2kd

ετ
√
d · tr(X−1)2 + εηk · tr(X−1)

))
.

Proof. We define two sequences of random variables {Xt}t and {Yt}t, where Xt := Et[Γt]−
Γt and Yt :=

∑t
l=1Xl. It is easy to check that {Yt}t is a martingale with respect to {St}t.

We will use Freedman’s inequality to bound P[Yτ > η].

To apply Freedman’s inequality, we need to upper bound Xt and Et[X2
t ]. To upper

bound Xt, we first prove an upper bound on gt and lt. Note that

〈X−1,Z−1
t vitv

>
it Z

−1
t 〉 = 〈Z−1

t X−1Z−1
t , vitv

>
it 〉 =

〈
X

1
2

( ∑
j∈St−1

uju>j

)−2

X
1
2 , vitv

>
it

〉
= 〈X−

1
2 Z−2

t X−
1
2 , vitv

>
it 〉 6 16〈X−1, vitv

>
it 〉 6

16ε

d
· tr(X−1),
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where the second equality uses the fact that Zt = X−
1
2

(∑
j∈St−1

uju>j
)

X−
1
2 , the first

inequality uses the assumption Zt < 1
4
I , and the last inequality follows from the assumption

that 〈X−1, vitv>it 〉 6
ε
d
· tr(X−1). This implies that

gt =
〈X−1,Z−1

t vjtv>jtZ
−1
t 〉

1 + 2〈vjtv>jt ,Z
−1
t 〉

6
16ε

d
·tr(X−1) and lt =

〈X−1,Z−1
t vitv>it Z

−1
t 〉

1− 2〈vitv>it ,Z
−1
t 〉

6
32ε

d
·tr(X−1),

where the second inequality holds as 2〈vitv>it ,Z
−1
t 〉 6 2α〈vitv>it ,A

1
2
t 〉 6 1

2
by Lemma 7.3.14

and the definition that it ∈ S ′t−1 in the exchange subroutine. Therefore,

Xt = Et[Γt]− Γt 6 Et[gt] + lt 6
48ε

d
· tr(X−1).

Next, we upper bound Et[X2
t ] by

Et[X2
t ] 6

48ε

d
· tr(X−1) · Et[|Xt|] 6

96ε

d
· tr(X−1) ·

(
Et[gt] + Et[lt]

)
.

Using (7.8), we bound the expected loss term by

Et[lt] 6
1

k
· 〈X−1,Z−1

t 〉 6
4

k
· tr(X−1),

where the last inequality follows by the assumption that Zt < 1
4
I . Then, we bound the

expected gain term by

Et[gt] =
∑

j∈[n]\St−1

x(j)

k
·
(

1 + 2α〈vjv>j ,A
1
2
t 〉
)
·
〈X−1,Z−1

t vjv>j Z−1
t 〉

1 + 2〈vjv>j ,Z−1
t 〉

6
1

k
·max
j∈[n]

{
α〈vjv>j ,A

1
2
t 〉

〈vjv>j ,Z−1
t 〉

}
·

n∑
j=1

x(j) · 〈X−1,Z−1
t vjv>j Z−1

t 〉

6
1

k
· αλmin(Zt) · 〈X−1,Z−2

t 〉

6
32
√
d

k
· tr
(
X−1

)
,

where the first inequality follows from the first inequality in Lemma 7.3.14, and the second
inequality follows from the second inequality in Lemma 7.3.14 and

∑n
j=1 x(j) · vjv>j = I ,
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and the last inequality holds as α = 8
√
d, Z−2

t 4 λmin(Zt)−2I , and λmin(Zt) > 1
4
by our

assumption. Therefore,
Et[X2

t ] 6 O
( ε

k
√
d

)
· tr
(
X−1

)2
.

Finally, we can apply Freedman’s inequality Theorem 3.2.3 with R = 48ε
d
· tr(X−1), σ2

t =

O
(

ε
k
√
d

)
· tr
(
X−1

)2 for all t ∈ [τ ], and σ2 = O
(
ετ
k
√
d

)
· tr
(
X−1

)2 to conclude that

P[Yτ > η] 6 exp

(
− η2/2

σ2 +Rη/3

)
= exp

(
−Ω

(
η2kd

ετ
√
d tr(X−1)2 + εηk tr(X−1)

))
.

The lemma follows by noting that Yτ > η is equivalent to
∑τ

t=1 Γt 6
∑τ

t=1 Et[Γt]− η.

7.3.3.3 Proof of Theorem 7.3.7 for A-Design

We are ready to prove Theorem 7.3.7 for A-design. Let τ = 2k
ε
. Suppose the second phase

of the algorithm has not terminated by time τ . Then λ = min16t6τ+1
〈X−1,Z−1

t 〉
tr(X−1)

> (1 + ε).
Thus, Lemma 7.3.16 implies that

τ∑
t=1

Et[Γt] >
(λ− 1)τ

k
· tr
(
X−1

)
> 2 tr

(
X−1

)
.

On the other hand, the initial solution of the second phase satisfies Z1 < 3
4
I , which implies

that 〈X−1,Z−1
1 〉 6 4

3
tr(X−1). By the minimum eigenvalue assumption, we know from

Lemma 7.3.14 that 2〈vitv>it ,Z
−1
t 〉 6 2α · 〈vitv>it ,A

1
2
t 〉 6 1

2
, and so we can apply (7.5) to

deduce that

tr(X−1) < 〈X−1,Z−1
τ+1〉 6 〈X−1,Z−1

1 〉 −
τ∑
t=1

Γt 6
4

3
· tr
(
X−1

)
−

τ∑
t=1

Γt

=⇒
τ∑
t=1

Γt 6
1

3
· tr
(
X−1

)
.

As the knapsack constraints satisfy bj >
d‖cj‖∞

ε
for j ∈ [m], the optimality conditions in

Lemma 7.3.18 imply that 〈X−1, viv>i 〉 6 ε
d
· tr(X−1) for each i with 0 < x(i) < 1. Note

that, in the randomized exchange algorithm, all it and jt satisfy 0 < x(it), x(jt) < 1 by
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Observation 7.3.3. Therefore, we can apply Lemma 7.3.17 with η = 5
3
· tr(X−1) and τ = 2k

ε

to conclude that

P
[

min
16t6τ+1

〈X−1,Z−1
t 〉 > (1 + ε) tr(X−1)

]
6 P

[
τ∑
t=1

Γt <
τ∑
t=1

Et[Γt]−
5

3
· tr(X−1)

]

6 exp

(
− Ω

(
tr(X−1)2 · kd

ε
(

2k
ε

)√
d · tr (X−1)2 + εk · tr (X−1)2

))
6 exp

(
−Ω(
√
d)
)
.

7.3.3.4 Optimality Condition for the Convex Program of A-Design

This lemma follows from the optimality condition of the convex programming relaxation
and the assumption about the budgets.

Lemma 7.3.18. Let x ∈ [0, 1]n be an optimal fractional solution of the convex programming
relaxation (7.1) for A-design. Let X =

∑n
i=1 x(i) · uiu>i , and vi = X−

1
2 ui for 1 6 i 6 n.

Suppose bj >
d‖cj‖∞

ε
for 1 6 j 6 m. Then, for each 1 6 i 6 n with 0 < x(i) < 1,

〈X−1, viv>i 〉 6
ε

d
· tr(X−1).

Proof. We recall the convex relaxation (7.1) for A-design.

min
x∈Rd,X∈Sd++

tr
(
X−1

)
subject to X =

∑n

i=1
x(i) · uiu>i

〈cj, x〉 6 bj, ∀j ∈ [m],

0 6 x(i) 6 1, ∀i ∈ [n].

The proof is very similar to the one of Lemma 7.3.13. We will use the Lagrangian
duality (see Section 2.2.3.1) to investigate the length of the vectors vi’s. We introduce a
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dual variable Y for the first equality constraint, a dual variable µj > 0 for each of the
budget constraint bj − 〈cj, x〉 > 0, a dual variable β−i > 0 for each non-negative constraint
x(i) > 0, and a dual variable β+

i > 0 for each capacity constraint 1 − x(i) > 0. The
Lagrange function L(x ,X ,Y , µ, β+, β−) is defined as

L(x ,X ,Y , µ, β+, β−) = tr(X−1) +

〈
Y ,X −

n∑
i=1

x(i) · uiu>i
〉

+
m∑
j=1

µj

(
〈cj, x〉 − bj

)
−

n∑
i=1

β−i x(i) +
n∑
i=1

β+
i (x(i)− 1),

Rearrange the terms, we have

L(x ,X ,Y , µ, β+, β−) = tr(X−1) + 〈Y ,X 〉 −
m∑
j=1

µjbj −
n∑
i=1

β+
i

−
n∑
i=1

x(i) ·
(
〈Y , uiu>i 〉 −

m∑
j=1

µjcj(i) + β−i − β+
i

)
.

The Lagrangian dual function is

g(Y , µ, β+, β−) = max
x ,X�0

L(x ,X ,Y , µ, β+, β−).

It is easy to verify that x = δ1 is a strictly feasible solution of the primal program
for a small enough δ. By Theorem 2.2.26, Slater’s condition implies that strong duality
holds. In the primal convex program, we can relax the constraint X � 0 to X < 0 without
loss of generality, as tr(X−1) blows up when X approaches the boundary of Sd+. Thus,
the feasible solution space is closed and bounded, and the primal optimal is attained. Let
x ∈ [0, 1]n,X � 0 be an optimal solution for the primal program, Theorem 2.2.28 says
there exists a dual optimal solution Y , µ, β+, β− > 0 together with x ,X satisfy the KKT
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conditions. In particular, it holds that (we recall ∇ tr(X−1) = −X−2 by Fact 2.2.3)

(Complementary slackness) β−i · x(i) = 0, β+
i · (1− x(i)) = 0 ∀i ∈ [n],

(Lagrangian optimality) ∇XL = −X−2 + Y = 0,

∇x(i)L = 〈Y , uiu>i 〉 −
m∑
j=1

µjcj(i) + β−i − β+
i = 0, ∀i ∈ [n].

By strong duality, the primal optimal and the dual optimal attain the same objective
value, i.e. tr(X−1) = g(Y , µ, β+, β−) = L(x ,X ,Y , µ, β+, β−). Thus, it holds that

tr(X−1) = L(x ,X ,Y , µ, β+, β−) = 2 tr(X−1)−
m∑
j=1

µjbj −
n∑
i=1

β+
i ,

where the last equality holds by Lagrangian optimality, 〈Y , uiu>i 〉 =
∑m

j=1 µjcj(i) − β
−
i +

β+
i = 0 for all i ∈ [n] and Y = X−2. Since β+ > 0, it further implies

m∑
j=1

µjbj 6 tr(X−1) =⇒
m∑
j=1

µj ‖cj‖∞ 6
ε

d
· tr(X−1),

where the last implication follows by the assumption bj >
d‖cj‖∞

ε
for each j ∈ [m].

Finally, by the complementary slackness condition, we must have β+
i = β−i = 0 for

each i with 0 < x(i) < 1. Together with the Lagrangian optimality, Y = X−2 and
〈Y , uiu>i 〉 =

∑m
j=1 µjcj(i)− β

−
i + β+

i = 0 for all i ∈ [n], for any i ∈ [n] with 0 < x(i) < 1 it
holds that

m∑
j=1

µjcj(i) = 〈Y , uiu>i 〉 = 〈X−1, viv>i 〉 =⇒ 〈X−1, viv>i 〉 6
m∑
j=1

µj ‖cj‖∞ 6
ε

d
· tr(X−1).

7.4 Combinatorial Algorithms

In this section, we present combinatorial local search algorithms for D/A/E-design prob-
lems. In Section 7.4.1, we show that Fedorov’s exchange method is a polynomial time
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algorithm to achieve b−d−1
b

-approximation for D-design, which extends the result in [108]
to the without repetition setting. In Section 7.4.2, we analyze Fedorov’s exchange method
for A-design, and prove that it works well as long as there is a well-conditioned optimal so-
lution. As a corollary, this extends the result in [108] for A-design to the without repetition
setting, with an arguably simpler proof. In Section 7.4.3, we show that Fedorov’s exchange
method does not work with the minimum eigenvalue objective, and we propose a modified
local search algorithm and prove that it works well as long as there is a well-conditioned
optimal solution.

A common theme in the analysis of all these algorithms is that we compare the current
integral solution S to an optimal fractional solution x . As long as the objective value of
x is significantly better than that of S, we use x to define two probability distributions to
sample a pair of vectors ui, uj so that the expected objective value of S − i + j improves
that of S considerably, and so we can conclude that the combinatorial algorithms will find
such an improving exchange pair. One advantage of this approach is that this allows us
the flexibility to compare with a fractional solution with smaller budget (which still has
objective value close to the optimal one), and this makes the analysis easier and simpler.

The following notations will be used throughout this section. Given a fractional solution
x ∈ [0, 1]n and an integral solution S ⊆ [n], we denote

X :=
n∑
i=1

x(i) · uiu>i , XS :=
∑
i∈S

x(i) · uiu>i , x(S) :=
∑
i∈S

x(i), Z :=
∑
i∈S

uiu>i .

7.4.1 Combinatorial Local Search Algorithm for D-Design

We analyze the following version of Fedorov’s exchange method for D-design, where we
always choose a pair that maximizes the improvement of the objective value and we stop
as soon as the improvement is not large enough.
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Fedorov’s Exchange Method for D-Design
Input: n vectors u1, ..., un ∈ Rd, a budget b > d.

1. Let S0 ⊆ [n] be an arbitrary set of full-rank vectors with |S0| = b.

2. Let t← 1 and Z1 :=
∑

i∈St−1
uiu>i .

3. Repeat

(a) Find it ∈ St−1 and jt ∈ [n] \ St−1 such that

(it, jt) = arg max
(i,j):i∈St−1,j∈[n]\St−1

det
(
Zt − uiu>i + uju>j

)
.

(b) Set St ← St−1 ∪ {jt} \ {it} and Zt+1 ← Zt − uitu>it + ujtu>jt and t← t+ 1.

Until det(Zt) <
(

1 + d
4b3

)
det(Zt−1).

4. Return St−2 as the solution set.

To analyze the change of the objective value in each iteration, note that 〈uitu>it ,Z
−1
t 〉 6 1

for any t as it ∈ St−1, and so it follows from Lemma 2.1.12 that

det(Zt+1) = det(Zt − uitu
>
it + ujtu

>
jt) > det(Zt) · (1− 〈uitu>it ,Z

−1
t 〉︸ ︷︷ ︸

loss

) · (1 + 〈ujtu>jt ,Z
−1
t 〉︸ ︷︷ ︸

gain

).

Therefore, in order to lower bound the determinant of the solution, we lower bound the
“gain” term and upper bound the “loss” term to quantify the progress in each iteration.
First, we prove the existence of it with small loss, with respect to a fractional solution x
with ‖x‖1 = q < b.

Lemma 7.4.1 (Loss). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n] with
|S| = b, there exists i ∈ S with

〈uiu>i ,Z−1〉 6 d− 〈XS,Z−1〉
b− x(S)

.
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Proof. Consider the probability distribution of removing a vector ui where each i ∈ S is
sampled with probability

(
1− x(i)

)
/
∑

j∈S
(
1− x(j)

)
, so that the “staying” probability is

proportional to the value x(i). Note that the denominator is positive as x(S) 6 q < b,
and thus the probability distribution is well-defined. Then, the expected loss using this
probability distribution is

E
[
〈uitu>it ,Z

−1〉
]

=

∑
i∈S
(
1− x(i)

)
· 〈uiu>i ,Z−1〉∑

j∈S
(
1− x(j)

) =
d− 〈XS,Z−1〉
b− x(S)

,

where the last equality follows as
∑

i∈S uiu>i = Z and |S| = b. Therefore, there must exist
one vector i with 〈uiu>i ,Z−1〉 at most the expected value.

Next, we prove the existence of jt with large gain, again with respect to a fractional
solution x with ‖x‖1 = q < b.

Lemma 7.4.2 (Gain). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n] with
|S| = b and x(S) < q, there exists j ∈ [n]\S with

〈uju>j ,Z−1〉 > 〈X ,Z
−1〉 − 〈XS,Z−1〉
q − x(S)

.

Proof. Consider the probability distribution of adding a vector uj where each j ∈ [n] \ S
is sampled with probability x(j)/

∑
i∈[n]\S x(j), so that the “adding” probability is propor-

tional to the value x(i). Note that the denominator is positive by our assumption that
x(S) < q, and so the probability distribution is well-defined. Then, the expected gain using
this probability distribution is

E[〈uju>j ,Z−1〉] =

∑
j∈[n]\S x(j) · 〈uju>j ,Z−1〉∑

i∈[n]\S x(i)
=
〈X ,Z−1〉 − 〈XS,Z−1〉

q − x(S)
.

Therefore, there must exist one vector j with 〈uju>j ,Z−1〉 at least the expected value.

The following is the main technical result for D-design, which lower bounds the im-
provement of the objective value in each iteration. In the proof, we compare our current
integral solution S with size b to a fractional solution y with size q = b− d− 1

2
.
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Proposition 7.4.3 (Progress). Let x ∈ [0, 1]n be a feasible solution to the convex program-
ming relaxation (7.1) for D-design with

∑n
i=1 x(i) = b for b > d+ 1. Let Zt be the current

solution in the t-th iteration of Fedorov’s exchange method. Then

det(Zt)
1
d 6

b− d− 1

b
· det(X )

1
d =⇒ det(Zt+1) >

(
1 +

d

4b3

)
· det(Zt).

Proof. We consider the following scaled-down version y ,Y of the fractional solution x ,X .
Define

q := b− d− 1

2
, y :=

q

b
· x , Y :=

n∑
i=1

y(i) · uiu>i =
q

b
· X .

Note that det(Y )
1
d = q

b
· det(X )

1
d and 1

2
6 q < b. Let S := St−1 be the current solution

set at time t. Note that we can assume x(S) < b and hence y(S) < q, as otherwise
det(Zt) > det(X ) and there is nothing to prove. Hence, we can apply Lemma 7.4.1 and
Lemma 7.4.2 on Y and S to ensure the existence of it ∈ S and jt ∈ [n] \ S such that

det(Zt+1) > det(Zt) ·
(

1− d− 〈YS,Z−1
t 〉

b− y(S)

)
·
(

1 +
〈Y ,Z−1

t 〉 − 〈YS,Z−1
t 〉

q − y(S)

)
> det(Zt) ·

(
1− d− 〈YS,Z−1

t 〉
b− y(S)

)
·

(
1 +

d · det(Y )
1
d · det(Z−1

t )
1
d − 〈YS,Z−1

t 〉
q − y(S)

)

> det(Zt) ·
(

1− d− 〈YS,Z−1
t 〉

b− y(S)

)
·

(
1 +

d · q
b

det(X )
1
d · b

b−d−1
det(X )−

1
d − 〈YS,Z−1

t 〉
q − y(S)

)

= det(Zt) ·
(

1− d− 〈YS,Z−1
t 〉

b− y(S)

)
·

(
1 +

(
1 + 1

2q−1

)
d− 〈YS,Z−1

t 〉
q − y(S)

)
,

where the second inequality follows from Lemma 7.3.10, the third inequality follows from
Y = q

b
X and the assumption det(Zt)

1
d 6 b−d−1

b
det(X )

1
d , and the last equality is by q =

b− d− 1
2
.

To lower bound the improvement, we write a := d−〈YS,Z−1
t 〉 as a shorthand, and then
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the multiplicative factor is(
1− d− 〈YS,Z−1

t 〉
b− y(S)

)
·

(
1 +

(
1 + 1

2q−1

)
d− 〈YS,Z−1

t 〉
q − y(S)

)

=

(
1− a

b− y(S)

)
·

(
1 +

a+ d
2q−1

q − y(S)

)

= 1 +
(b− q)a− a2 + (b−y(S))d

2q−1
− ad

2q−1(
b− y(S)

)
·
(
q − y(S)

)
> 1 +

(b− q)a− a2 + (b−q)d
2q−1

− ad
2q−1(

b− y(S)
)
·
(
q − y(S)

) ,

where the last inequality follows as y(S) 6 q. Let f(x) = −x2 + (b − q)x − dx
2q−1

+ (b−q)d
2q−1

be a univariate quadratic function in x. Note that f ′′(x) < 0, and thus minx∈[x1,x2] f(x) is
attained at one of the two ends x = x1 or x = x2. Since a = d − 〈YS,Z−1

t 〉 ∈ [0, d], the
numerator of the second term above is lower bounded by

f(a) > min
x∈[0,d]

f(x) > min{f(0), f(d)} = min

{
(b− q)d
2q − 1

,
2qd(b− q − d)

2q − 1

}
= min

{
(d+ 1

2
)d

2(b− d− 1)
,
(b− d− 1

2
)d

2(b− d− 1)

}
>

d

4(b− d− 1)
,

where the equality in the second line is by plugging in q = b−d− 1
2
, and the last inequality

follows the assumption b > d+ 1. Therefore, we conclude that

det(Zt+1) > det(Zt) ·
(

1 +
d

4(b− d− 1)
(
b− y(S)

)(
q − y(S)

)) > det(Zt) ·
(

1 +
d

4b3

)
.

The main result in this subsection follows immediately from Proposition 7.4.3.

Theorem 7.1.4. The Fedorov’s exchange method is a b−d−1
b

-approximation polynomial
time algorithm for D-design in the without repetition setting. In particular, this is a (1−ε)-
approximation algorithm whenever b > d+ 1 + d

ε
for any ε > 0.

Proof. Let X ∗ =
∑n

i=1 x∗(i) · uiu>i be an optimal fractional solution for D-design with
budget b for x∗ ∈ [0, 1]n. Let Z1 � 0 be an arbitrary initial solution.
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When the combinatorial local search algorithm terminates at the τ -th iteration, the
termination condition implies that det(Zτ+1) <

(
1 + d

4b3

)
det(Zτ ). It follows from Propo-

sition 7.4.3 with X = X ∗ that

det(Zτ )
1
d >

b− d− 1

b
· det(X ∗)

1
d ,

and thus the returned solution of the Fedorov’s exchange method is an b−d−1
b

-approximate
solution.

Finally, we bound the time complexity of the algorithm. If the algorithm runs for
τ > 8b3

d
ln det(X∗)

det(Z1)
iterations, then the termination condition implies that the determinant

of Zτ+1 is at least

det(Zτ+1) >

(
1 +

d

4b3

)τ
· det(Z1) > e

dτ
8b3 · det(Z1) > det(X ∗),

where the second inequality follows as (1 + d
4b3

) > e
d

8b3 for d
4b3

6 1
4
. It was proved in

Appendix C of [108] that ln det(Z∗)
det(Z1)

is polynomial in d, b and `, where ` is the maximum
number of bits to represent the numbers in the entries of the vectors. Specifically, they
proved that det(Z1) > 2−4(2b`+1)d2 and det(X ∗) 6 24(2n`+1)d2 , and so τ = O(db3n`) iterations
of the algorithm is enough.

7.4.2 Combinatorial Local Search Algorithm for A-Design

We analyze the following version of Fedorov’s exchange method for A-design, where we
always choose a pair that maximizes the improvement of the objective value and we stop
as soon as the improvement is not large enough.
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Fedorov’s Exchange Method for A-Optimal Design
Input: n vectors u1, ..., un ∈ Rd, a budget b > d, and an accuracy parameter ε ∈ (0, 1).

1. Let S0 ⊆ [n] be an arbitrary set of full-rank vectors with |S0| = b.

2. Let t← 1 and Z1 ←
∑

i∈S0
uiu>i .

3. Repeat

(a) Find it ∈ St−1 and jt ∈ [n] \ St−1 such that

(it, jt) = arg min
(i,j):i∈St−1,j∈[n]\St−1

tr
((

Zt − uiu>i + uju>j
)−1)

.

(b) Set St ← St−1 ∪ {jt} \ {it} and Zt+1 ← Zt − uitu>it + ujtu>jt and t← t+ 1.

Until tr(Z−1
t ) >

(
1− ε

b

)
tr(Z−1

t−1).

4. Return St−2 as the solution set.

To analyze the change of the objective value in each iteration, we apply Lemma 4.2.5
which states that if 2〈uitu>it ,Z

−1
t 〉 < 1 then

tr(Z−1
t+1)− tr(Z−1

t ) 6
〈uitu>it ,Z

−2
t 〉

1− 2〈uitu>it ,Z
−1
t 〉︸ ︷︷ ︸

loss

−
〈ujtu>jt ,Z

−2
t 〉

1 + 2〈ujtu>jt ,Z
−1
t 〉︸ ︷︷ ︸

gain

. (7.9)

Therefore, to upper bound the A-design objective of the solution, we upper bound the loss
term and lower bound the gain term to quantify the progress in each iteration.

In the following lemma, we first prove the existence of it with small loss term, with
respect to a fractional solution x with ‖x‖1 = q < b − 2d. Note that we only restrict our
choice of it to those vectors that satisfy 2〈uitu>it ,Z

−1
t 〉 < 1 so that (7.9) applies, clearly

Fedorov’s exchange method could only do better by considering all possible vectors in the
current solution.
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Lemma 7.4.4 (Loss). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b − 2d and any S ⊆ [n]

with |S| = b, there exists i ∈ S ′ := {j ∈ S : 2〈uju>j ,Z−1〉 < 1} with

〈uiu>i ,Z−2〉
1− 2〈uiu>i ,Z−1〉

6
tr(Z−1)− 〈XS,Z−2〉

b− x(S)− 2d
.

Proof. Consider the probability distribution of removing a vector ui with probability

P[it = i] =

(
1− x(i)

)
·
(
1− 2〈uiu>i ,Z−1〉

)∑
j∈S′

(
1− x(j)

)
·
(
1− 2〈uju>j ,Z−1〉

) for each i ∈ S ′.

We first check that the probability distribution is well-defined. Note that the numerator
is non-negative as 1− 2〈uiu>i ,Z−1〉 > 0 for each i ∈ S ′. The denominator is∑

j∈S′

(
1− x(j)

)
·
(
1− 2〈uju>j ,Z−1〉

)
>
∑
j∈S

(
1− x(j)

)
·
(
1− 2〈uju>j ,Z−1〉

)
>
∑
j∈S

(
1− x(j)

)
− 2

∑
j∈S

〈uju>j ,Z−1〉

= b− x(S)− 2d > 0,

where the first inequality holds as 1 − 2〈uju>j ,Z−1〉 6 0 for j ∈ S \ S ′, the second in-
equality follows from 1 − x(j) 6 1 for each j ∈ [n], and the equality is by |S| = b

and 〈
∑

j∈S uju>j ,Z
−1〉 = 〈Z ,Z−1〉 = d, and the strict inequality is by the assumption

b > q+ 2d > x(S) + 2d. Thus, P[it = i] > 0 for each i ∈ S ′, and clearly
∑

i∈S′ P[it = i] = 1.

The expected loss using this probability distribution is

E
[
〈uitu>it ,Z

−2〉
1− 2〈uitu>it ,Z−1〉

]
=
∑
i∈S′

(
1− x(i)

)
·
(
1− 2〈uiu>i ,Z−1〉

)∑
j∈S′

(
1− x(j)

)
·
(
1− 2〈uju>j ,Z−1〉

) · 〈uiu>i ,Z−2〉
1− 2〈uiu>i ,Z−1〉

=

∑
i∈S′

(
1− x(i)

)
· 〈uiu>i ,Z−2〉∑

j∈S′
(
1− x(j)

)
·
(
1− 2〈uju>j ,Z−1〉

)
6

tr(Z−1)− 〈XS,Z−2〉
b− x(S)− 2d

,
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where the last inequality follows from the inequality above for the denominator and∑
i∈S′

(
1− x(i)

)
· 〈uiu>i ,Z−2〉 6

∑
i∈S

(
1− x(i)

)
· 〈uiu>i ,Z−2〉

= 〈Z ,Z−2〉 − 〈XS,Z−2〉 = tr(Z−1)− 〈XS,Z−2〉

for the numerator. Therefore, there exists an i ∈ S ′ with loss at most the expected
value.

Next we show the existence of jt with large gain term, again with respect to a fractional
solution x .

Lemma 7.4.5 (Gain). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n] with
|S| = b and x(S) < q, there exists j ∈ [n] \ S with

〈uju>j ,Z−2〉
1 + 2〈uju>j ,Z−1〉

>
〈X ,Z−2〉 − 〈XS,Z−2〉
q − x(S) + 2〈X ,Z−1〉

.

Proof. Consider the probability distribution of adding a vector uj where each j ∈ [n] \ S
is sampled with probability

P[jt = j] =
x(j) ·

(
1 + 2〈uju>j ,Z−1〉

)∑
i∈[n]\S x(i) ·

(
1 + 2〈uiu>i ,Z−1〉

) for each j ∈ [n] \ S.

Note that the denominator is positive by the assumption x(S) < q which implies that
x([n] \ S) > 0, and so the probability distribution is well-defined.

The expected gain using this probability distribution is

E

[
〈ujtu>jt ,Z

−2〉
1 + 2〈ujtu>jt ,Z−1〉

]
=
∑

j∈[n]\S

x(j) ·
(
1 + 2〈uju>j ,Z−1〉

)∑
i∈[n]\S x(i) ·

(
1 + 2〈uiu>i ,Z−1〉

) · 〈uju>j ,Z−2〉
1 + 2〈uju>j ,Z−1〉

=

∑
j∈[n]\S x(j) · 〈uju>j ,Z−2〉∑

i∈[n]\S x(i) ·
(
1 + 2〈uiu>i ,Z−1〉

)
=

〈X ,Z−2〉 − 〈XS,Z−2〉
q − x(S) +

∑
i∈[n]\S 2x(i) · 〈uiu>i ,Z−1〉

>
〈X ,Z−2〉 − 〈XS,Z−2〉
q − x(S) + 2〈X ,Z−1〉

,
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where the third equality is by
∑n

i=1 x(i) = q, and the last inequality holds as
∑

i∈[n]\S x(i) ·
uiu>i 4 X . Therefore, there exists j ∈ [n]\S with gain at least the expected value.

We are about ready to analyze when the objective value would decrease. We will use
the following simple claim to lower bound the gain term, whose proof is by checking the
derivatives of f(x) and g(x).

Claim 7.4.6. The functions f(x) = x−c1
c2+c3

√
x
and g(x) = x−c1

c2+c3x
with c1, c2, c3 > 0 are

monotone increasing for x > 0.

The following is the main technical result for A-design, which lower bounds the improve-
ment of the objective value in each iteration. Note that the result depends on tr(X )·tr(X−1).

Proposition 7.4.7 (Progress). Let x ∈ [0, 1]n be a fractional solution with
∑n

i=1 x(i) = q.
Let Zt be the current solution in the t-th iteration of Fedorov’s exchange method. For any
ε > 0, if

tr(Z−1
t ) > (1 + ε) tr(X−1) and b > q + 2d+ 2(1 + ε)

√
tr(X ) · tr(X−1),

then
tr
(
Z−1
t+1

)
6
(

1− ε

b

)
· tr
(
Z−1
t

)
.

Proof. Let S := St−1 be the current solution set at time t. Note that x(S) < q, as otherwise
tr(Z−1) 6 tr(X−1) and the assumption does not hold. Hence, we can apply Lemma 7.4.5
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to prove the existence of a jt ∈ [n]\S such that the gain term is

〈ujtu>jt ,Z
−2〉

1 + 2〈ujtu>jt ,Z−1〉
>
〈X ,Z−2〉 − 〈XS,Z−2〉
q − x(S) + 2〈X ,Z−1〉

>
〈X ,Z−2〉 − 〈XS,Z−2〉

q − x(S) + 2
√

tr(X ) · 〈X ,Z−2〉

>

tr(Z−1)2

tr(X−1)
− 〈XS,Z−2〉

q − x(S) + 2
√

tr(X ) · tr(Z−1)2

tr(X−1)

=

tr(Z−1)
tr(X−1)

· tr(Z−1)− 〈XS,Z−2〉

q − x(S) + 2 tr(Z−1)
tr(X−1)

·
√

tr(X ) · tr(X−1)

>
(1 + ε) tr(Z−1)− 〈XS,Z−2〉

q − x(S) + 2(1 + ε)
√

tr(X ) · tr(X−1)

>
(1 + ε) tr(Z−1)− 〈XS,Z−2〉

b− x(S)− 2d
,

where the second inequality is by (7.7), the third inequality follows from 〈X ,Z−2〉 >
(tr(Z−1))2

tr(X−1)
by (7.6) and an application of Claim 7.4.6 with f(x) = x−c1

c2+c3
√
x

to establish
monotonicity, the fourth inequality follows from the first assumption that tr(Z−1) >

(1 + ε) tr(X−1) and another application of Claim 7.4.6 with g(x) = x−c1
c2+c3x

to estab-
lish monotonicity, and the last inequality follows from the second assumption that b >

q + 2d+ 2(1 + ε)
√

tr(X ) · tr(X−1).

For the loss term, note that q < b − 2d by the assumption on b, and so we can apply
Lemma 7.4.4 to prove the existence of an it ∈ S ′ ⊆ S such that the loss term is

〈uitu>it ,Z
−2〉

1− 2〈uitu>it ,Z−1〉
6

tr(Z−1)− 〈XS,Z−2〉
b− x(S)− 2d

.

Since it ∈ S ′ satisfies 2〈uitu>it ,Z
−1
t 〉 < 1, we can apply (7.9) to conclude that

tr(Z−1
t+1)− tr(Z−1

t ) = tr
(
(Zt − uitu

>
it + ujtu

>
jt)
−1
)
− tr

(
Z−1
t

)
6

〈uitu>it ,Z
−2〉

1− 2〈uitu>it ,Z−1〉
−

〈ujtu>jt ,Z
−2〉

1 + 2〈ujtu>jt ,Z−1〉
6
−ε tr(Z−1

t )

b− x(S)− 2d
6 −ε

b
tr(Z−1

t ).
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The main result in this subsection follows from Proposition 7.4.7 by a simple scaling
argument.

Theorem 7.1.5. Let X :=
∑n

i=1 x(i) ·uiu>i with
∑n

i=1 x(i) = b and xi ∈ [0, 1] for 1 6 i 6 n

be a fractional solution to A-design. For any ε ∈ (0, 1), the Fedorov’s exchange method
returns an integral solution Z =

∑n
i=1 z(i) · uiu>i with

∑n
i=1 z(i) 6 b and z(i) ∈ {0, 1} for

1 6 i 6 n such that

tr
(
Z−1

)
6 (1 + ε) · tr(X−1) whenever b > Ω

(d+
√

tr(X ) tr (X−1)

ε

)
.

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗, then the

Fedorov’s exchange method gives a (1 + ε)-approximation algorithm for A-design whenever
b > Ω

(
(1+
√
κ)·d
ε

)
, and the time complexity is polynomial in n, d, 1

ε
, κ.

Proof. We consider the following scaled-down version y ,Y of the fractional solution x ,X .
Let

q := b− 2d− 2(1 + ε)
√

tr(X ) · tr((X )−1), y :=
q

b
· x , Y :=

n∑
i=1

y(i) · uiu>i =
q

b
· X .

Note that tr(Y ) · tr (Y −1) = tr(X ) · tr (X−1) and so it holds that b > q + 2d + 2(1 +

ε)
√

tr(Y ) · tr(Y −1). Thus, we can apply Proposition 7.4.7 on y to conclude that if the
algorithm terminates at the τ -th iteration such that tr

(
Z−1
τ+1

)
>
(

1− ε
b

)
tr (Z−1

τ ) then

tr
(
Z−1
τ

)
< (1 + ε) · tr

(
Y −1

)
=

(1 + ε)b

q
· tr
(
X−1

)
6
(
1 +O(ε)

)
· tr
(
X−1

)
,

where the last inequality follows from the assumption b = Ω
(

1
ε

(
d+
√

tr(X ) tr(X−1)
))

which
implies that q > (1 − O(ε))b. This proves the approximation guarantee of the returned
solution.

Finally, we bound the time complexity of the algorithm. If the algorithm runs for
τ > b

ε
ln

tr(Z−1
1 )

tr(X−1)
iterations, then the termination condition implies that the objective value

of Zτ+1 is at most

tr(Z−1
τ+1) 6

(
1− ε

b

)τ
· tr
(
Z−1

1

)
6 e−

ετ
b · tr

(
Z−1

1

)
6 tr

(
X−1

)
.
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Note that ln
tr(Z−1

1 )

tr(X−1)
is upper bounded by a polynomial in d, n and the input size as proved

in [108] (and the corresponding bound for D-design is discussed in the proof of Theo-
rem 7.1.4 in Section 7.4.1).

As a corollary, we extend the analysis of Fedorov’s exchange method with short input
vectors in [108] to the more general without repetition setting.

Corollary 7.4.8. Let x ∈ [0, 1]n be a fractional solution to the convex programming relax-
ation (7.1) for A-design with

∑n
i=1 x(i) = b. If ‖ui‖2 6 ε2b

2 tr(X−1)
for each 1 6 i 6 n and

b > Ω
(
d
ε

)
for some ε ∈ (0, 1), then Fedorov’s exchange method for A-design returns a solu-

tion with at most b vectors with objective value at most
(
1 +O(ε)

)
· tr (X−1) in polynomial

time.

Proof. It follows from the assumption ‖ui‖2 6 ε2b
2 tr(X−1)

that

tr
(
X−1

)
· tr(X ) = tr

(
X−1

)
·

n∑
i=1

x(i) · ‖ui‖2
2 6 tr(X−1) · ε2b2

2 tr(X−1)
=
ε2b2

2
.

Thus, for b > Ω
(
d
ε

)
, it holds that b>Ω

(
1
ε

(
d+
√
ε2b2/2

))
=Ω

(
1
ε

(
d+
√

tr(X ) tr(X−1)
))

,
and so Theorem 7.1.5 implies that Fedorov’s exchange method will find a (1 + O(ε))-
approximate solution in polynomial time.

7.4.3 Combinatorial Local Search Algorithm for E-Design

Unlike D-design and A-design, there are simple examples (see Section 7.4.3.2) showing that
Fedorov’s exchange method does not work for E-design, even if there is a well-conditioned
optimal solution.

Instead, we prove that the rounding algorithm by Allen-Zhu, Li, Singh and Wang [6]
for E-design can be used as a combinatorial local search algorithm as well. The only
difference is that the rounding algorithm in [6] will first compute an optimal fractional
solution x to the convex programming relaxation and then perform a linear transformation
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so that
∑n

i=1 x(i) · uiu>i = I , before applying the following combinatorial algorithm. Our
analysis will show that the combinatorial algorithm works well as long as there is an
approximately optimal fractional solution with good condition number, so this tells us
that the only essential use of an optimal fractional solution in the rounding algorithm is
for preconditioning.

The following algorithm assumes the knowledge of the objective value λ∗ of the targeted
fractional solution. We will guess this value in the proof of Theorem 7.1.6.

Combinatorial Local Search Algorithm for E-Optimal Design

Input: n vectors u1, ..., un ∈ Rd, a budget b > d, an accuracy parameter ε ∈ (0, 1), and
a targeted objective value λ∗.

1. Initialization: Let S0 ⊆ [n] be an arbitrary set with |S0| = b. Set α ←
√
d

ελ∗
and

t← 0.

2. Repeat

(a) Set t← t+ 1.

(b) Let Zt :=
∑

i∈St−1
uiu>i . Compute At ← (αZt − ltI )−2 where lt ∈ R is the

unique scalar such that At � 0 and tr(At) = 1.

(c) Let S ′t−1 := {i ∈ St−1 : 2α〈uiu>i ,A
1/2
t 〉 < 1}.

(d) Find it ∈ S ′t−1 and jt ∈ [n] \ St−1 such that

(it, jt)= arg max
(i,j): i∈S′t−1, j∈[n]\St−1

Φ(At, i, j) :=
〈uju>j ,At〉

1 + 2α〈uju>j ,A
1
2
t 〉
− 〈uiu>i ,At〉

1− 2α〈uiu>i ,A
1
2
t 〉
.

(e) Set St ← St−1 ∪ {jt} \ {it}.

Until Φ(At, it, jt) < ελ∗

b
or λmin(Zt) > (1− 2ε)λ∗.

3. Return St−1 as the solution set.
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The regret minimization framework developed in [7, 6] bounds the minimum eigenvalue
of the current solution using the potential functions Φ(At, i, j) that we are optimizing
in each iteration. Applying Theorem 4.2.7 with feedback matrices F0 = Z1 < 0 and
Ft = ujtu>jt − uitu>it for t > 1, as long as 1 > 2α〈uitu>it ,A

1
2
t 〉 for all 1 6 t 6 τ , we have

λmin(Zτ+1)>
τ∑
t=1

(
〈ujtu>jt ,At〉

1 + 2α〈ujtu>jt ,A
1
2
t 〉︸ ︷︷ ︸

gain

−
〈uitu>it ,At〉

1− 2α〈uitu>it ,A
1
2
t 〉︸ ︷︷ ︸

loss

)
− 2
√
d

α
=

τ∑
t=1

Φ(At, it, jt)−
2
√
d

α
.

(7.10)

Therefore, in order to lower bound the minimum eigenvalue of the solution, we upper bound
the loss term and lower bound the gain term to quantify the progress in each iteration.

First, we show the existence of a good it with small loss, with respect to a fractional
solution x .

Lemma 7.4.9 (Loss). Let S := St−1, S ′ := S ′t−1, Z := Zt and A := At. For any x ∈ [0, 1]n

with
∑n

i=1 x(i) = q < b− 2α〈Z ,A 1
2 〉, there exists i ∈ S ′ with

〈uiu>i ,A〉
1− 2α〈uiu>i ,A

1
2 〉

6
〈Z ,A〉 − 〈XS,A〉

b− x(S)− 2α〈Z ,A 1
2 〉
.

Proof. Consider the probability distribution of removing a vector ui with probability

P[it = i] =
(1− x(i))(1− 2α〈uiu>i ,A

1
2 〉)∑

j∈S′(1− x(j))(1− 2α〈uju>j ,A
1
2 〉)

for all i ∈ S ′.

We check that the probability distribution is well-defined. Note that the numerator is
non-negative as 1− 2α〈uiu>i ,A

1
2 〉 > 0 for each i ∈ S ′. The denominator is∑

j∈S′

(
1− x(j)

)
·
(
1− 2α〈uju>j ,A

1
2 〉
)
>
∑
j∈S

(
1− x(j)

)
·
(
1− 2α〈uju>j ,A

1
2 〉
)

>
∑
j∈S

(
1− x(j)

)
− 2α

∑
j∈S

〈uju>j ,A
1
2 〉

= b− x(S)− 2α〈Z ,A
1
2 〉 > 0
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where the first inequality holds as 1−2α〈uju>j ,A
1
2 〉 6 0 for j ∈ S \S ′, the second inequality

follows from 1 − x(j) 6 1 for each j ∈ [n], and the equality is by |S| = b, and the strict
inequality is by the assumption b > q+ 2α〈Z ,A 1

2 〉 > x(S) + 2α〈Z ,A 1
2 〉. Thus, P[it = i] > 0

for each i ∈ S ′, and clearly
∑

i∈S′ P[it = i] = 1.

The expected loss using this probability distribution is

E

[
〈uitu>it ,A〉

1− 2α〈uitu>it , A
1
2 〉

]
=
∑
i∈S′

(
1− x(i)

)
·
(
1− 2α〈uiu>i ,A

1
2 〉
)∑

j∈S′
(
1− x(j)

)
·
(
1− 2α〈uju>j ,A

1
2 〉
) · 〈uiu>i ,A〉

1− 2α〈uiu>i ,A
1
2 〉

=

∑
i∈S′

(
1− x(i)

)
· 〈uiu>i ,A〉∑

j∈S′
(
1− x(j)

)
·
(
1− 2α〈uju>j ,A

1
2 〉
)

6
〈Z ,A〉 − 〈XS,A〉

b− x(S)− 2α〈Z ,A 1
2 〉
,

where the inequality is from the above inequality for the denominator and∑
i∈S′

(
1− x(i)

)
· 〈uiu>i ,A〉 6

∑
i∈S

(
1− x(i)

)
· 〈uiu>i ,A〉 = 〈Z ,A〉 − 〈XS,A〉

for the numerator. Therefore, there exists an i ∈ S ′ with loss at most the expected
value.

Next, we show the existence of jt with large gain term, again with respect to a fractional
solution.

Lemma 7.4.10 (Gain). Let S := St−1 and A := At. For any x ∈ [0, 1]n with
∑n

i=1 x(i) =

q < b and x(S) < q, there exists j ∈ [n] \ S with

〈uju>j ,A〉
1 + 2α〈uju>j ,A

1
2 〉

>
〈X ,A〉 − 〈XS,A〉

q − x(S) + 2α〈X ,A 1
2 〉
.

Proof. Consider the probability distribution of adding a vector uj where each j ∈ [n] \ S
is sampled with probability

P[jt = j] =
x(j) ·

(
1 + 2α〈uju>j ,A

1
2 〉
)∑

i∈[n]\S x(i) ·
(
1 + 2α〈uiu>i ,A

1
2 〉
) for each j ∈ [n] \ S.
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Note that the denominator is positive by the assumption x(S) < q which implies that
x([n] \ S) > 0.

The expected gain with respect to this probability distribution is

E

[
〈ujtu>jt ,A〉

1 + 2α〈ujtu>jt ,A
1
2 〉

]
=
∑

j∈[n]\S

x(j) ·
(
1 + 2α〈uju>j ,A

1
2 〉
)∑

i∈[n]\S x(i)
(
1 + 2α〈uiu>i ,A

1
2 〉
) · 〈uju>j ,A〉

1 + 2α〈uju>j ,A
1
2 〉

=

∑
j∈[n]\S x(j) · 〈uju>j ,A〉∑

i∈[n]\S x(i) ·
(
1 + 2α〈uiu>i ,A

1
2 〉
)

=
〈X ,A〉 − 〈XS,A〉

q − x(S) + 2α
∑

i∈[n]\S x(i)〈uiu>i ,A
1
2 〉

>
〈X ,A〉 − 〈XS,A〉

q − x(S) + 2α〈X ,A 1
2 〉
.

where the third equality is by
∑n

i=1 x(i) = q and the last inequality holds as
∑

i∈[n]\S x(i) ·
uiu>i 4 X . Therefore, there exist j ∈ [n] \ S with gain at least the expected value.

The following is the main technical result for E-design, which lower bounds the im-
provement of the potential function in each iteration. Note that the result depends on the
condition number of the fractional solution.

Proposition 7.4.11 (Progress). Let x ∈ [0, 1]n be a fractional solution with
∑n

i=1 x(i) = q.
Let Zt =

∑
i∈St−1

uiu>i be the current solution in the t-th iteration. For any 0 < ε < 1
2
, if

α =

√
d

ε · λmin(X )
, λmin(Zt) 6 (1− 2ε) · λmin(X ), and b > q+ 2

(
d+

d

ε

)
+

2d

ε

√
λavg(X )

λmin(X )

where λavg(X ) = tr(X )
d

is the average eigenvalue of X , then the value of the potential function
is

Φ(At, it, jt) =
〈ujtu>jt ,At〉

1 + 2α〈ujtu>jt ,A
1
2
t 〉
−

〈uitu>it ,At〉

1− 2α〈uitu>it ,A
1
2
t 〉

>
ε

b
· λmin(X ).

Proof. Let S := St−1 be the current solution set at time t, A = At and Z = Zt. Note that
x(S) < q, as otherwise λmin(Z ) > λmin(X ) and the assumption does not hold. Hence, we
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can apply Lemma 7.4.10 to show the existence of jt ∈ [n]\S with gain

〈ujtu>jt ,A〉
1 + 2α〈ujtu>jt ,A

1
2 〉

>
〈X ,A〉 − 〈XS,A〉

q − x(S) + 2α〈X ,A 1
2 〉

>
〈X ,A〉 − 〈XS,A〉

q − x(S) + 2α
√

tr(X ) · 〈X ,A〉

>
λmin(X )− 〈XS,A〉

q − x(S) + 2α
√

tr(X ) · λmin(X )
=

λmin(X )− 〈XS,A〉

q − x(S) + 2d
ε

√
λavg(X )

λmin(X )

,

where the second inequality in the first line is by (7.7) in Lemma 7.3.15, the first inequality
in the second line is by Claim 7.4.6 and the fact that 〈X ,A〉 > 〈λmin(X ) · I ,A〉 > λmin(X ) as
tr(A) = 1, and the last equality is by the choice α =

√
d

ελmin(X )
and the definition of λavg(X ).

For the loss term, we need to check the condition that b > q+2α〈Zt,A
1
2 〉 before applying

Lemma 7.4.9. It follows from Lemma 4.2.9 and the assumptions of α, λmin(Z ), and b that

α〈Z ,A
1
2 〉 6 d+ α

√
d · λmin(Z ) < d+

d

ε
=⇒ b > q + 2α · 〈Z ,A

1
2 〉.

Hence, Lemma 7.4.9 implies the existence of an it ∈ S with loss

〈uitu>it ,A〉
1− 2α〈uitu>it ,A

1
2 〉

6
〈Zt,A〉 − 〈XS,A〉

b− x(S)− 2α〈Z ,A 1
2 〉

6
λmin(Z ) +

√
d
α
− 〈XS,A〉

b− x(S)− 2
(
d+ d

ε

)
6

(1− ε)λmin(X )− 〈XS,A〉

q − x(S) + 2d
ε

√
λavg(X )

λmin(X )

,

where the second inequality is by Lemma 4.2.9 and the inequality above about α〈Z ,A 1
2 〉,

and the last inequality is by our assumptions about α, λmin(Z ) and b.

Therefore, we conclude that the progress in each iteration is

Φ(A, it, jt)=
〈ujtu>jt ,A〉

1 + 2α〈ujtu>jt ,A
1
2 〉
−

〈uitu>it ,A〉
1− 2α〈uitu>it ,A

1
2
〉
>

ε · λmin(X )

q − x(S) + 2d
ε

√
λavg(X )

λmin(X )

>
ε

b
·λmin(X ),

where the last inequality follows from the assumption about b.

By guessing the targeted objective value, the main result in this subsection follows from
Proposition 7.4.11 by a simple scaling argument.
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Theorem 7.1.6. Let X :=
∑n

i=1 x(i) · uiu>i with
∑n

i=1 x(i) = b and x(i) ∈ [0, 1] for 1 6

i 6 n be a fractional solution to E-design. For any ε ∈ (0, 1), there is a combinatorial local
search algorithm which returns an integral solution Z =

∑n
i=1 z(i) ·uiu>i with

∑n
i=1 z(i) 6 b

and z(i) ∈ {0, 1} for 1 6 i 6 n such that

λmin(Z ) > (1−O(ε)) · λmin (X ) whenever b > Ω

(
d

ε2

√
λavg(X )

λmin(X )

)
,

where λavg(X ) = tr(X )
d

is the average eigenvalue of X .

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗,

then the combinatorial local search method gives a polynomial time (1− ε)-approximation
algorithm for E-design whenever b > Ω

(
d
√
κ

ε2

)
, and the time complexity is polynomial in

n, d, 1
ε
, κ.

Proof. We consider the following scaled-down version y ,Y of the fractional solution x ,X .
Let

q = b− 2
(
d+

d

ε

)
− 2d

ε

√
λavg(X )

λmin(X )
, y :=

q

b
· x , Y :=

n∑
i=1

y(i) · uiu>i =
q

b
· X .

Note that λl(Y ) = q
b
· λl(X ) for each 1 6 l 6 d, and this implies that b = q + 2

(
d + d

ε

)
+

2d
ε

√
λavg(Y )

λmin(Y )
.

Suppose the combinatorial local search algorithm is running with the accuracy parame-
ter ε and λ∗ := λmin(Y ) and terminates at the τ -th iteration. If Φ(Aτ , iτ , jτ ) < ε

b
·λmin(Y ),

then we can apply Proposition 7.4.11 on y to conclude that

λmin(Zτ ) > (1− 2ε) · λmin(Y ) =
(1− 2ε)q

b
· λmin(X ) >

(
1−O(ε)

)
· λmin(X ),

where the last inequality is by the assumption that b = Ω
(
d
ε2

√
λavg(X )

λmin(X )

)
. This proves the

approximate guarantee of the returned solution if the algorithm is run with λ∗ = λmin(Y ).

Our final algorithm runs the local search algorithm on different values of λ∗. Initially, we
start from an upper bound on λmin(X ) by setting λ∗ = λmin

(∑n
i=1 uiu>i

)
. Then it runs the
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local search algorithm with targeted objective value λ∗. If the returned solution Z satisfies
λmin(Z ) >

(
1− O(ε)

)
· λ∗ then it stops and returns Z as our final solution; otherwise, we

set λ∗ ← (1 − ε) · λ∗ and repeat until the first time that the local search algorithm finds
a solution with λmin(Z ) >

(
1 − O(ε)

)
· λ∗. For correctness, it is enough to show that the

algorithm will stop when (1 − ε) · λmin(X ) 6 λ∗ 6 λmin(X ). This follows by applying the
argument in the previous paragraphs on X ′ := λ∗

λmin(X )
· X , so that λmin(X ′) = λ∗ and then

the returned solution Z ′ will satisfy λmin(Z ′) >
(
1−O(ε)

)
·λmin(X ′) >

(
1−O(ε)

)
·λmin(X ).

Finally, we bound the time complexity of the algorithm. Note that b
n

∑b
i=1 uiu>i is a

feasible solution with objective value b
n
· λmin

(∑n
i=1 uiu>i

)
. This implies that the number

of executions of the local search algorithm is at most O
(

1
ε

log n
b

)
. In each execution with

a fixed λ∗, if the algorithm runs for τ > b
ε
iterations, the termination condition together

with (7.10) imply that

λmin(Zτ+1) >
τ∑
t=1

Φ(At, it, jt)−
2
√
d

α
> τ

(ελ∗
b

)
− 2ελ∗ > (1− 2ε)λ∗,

and so it would stop. Thus, the total number of iterations is at most O
(
b
ε2

log n
b

)
. Each

iteration can be implemented in polynomial time as shown in [6].

The following is a corollary in the short vector setting.

Corollary 7.4.12. Let x ∈ [0, 1]n be a fractional solution to the E-design problem with
budget b. For any 0 < ε < 1, if ‖ui‖2 6 ε2 ·λmin(X ) for 1 6 i 6 n and b > Ω

(
d
ε2

)
, then the

combinatorial local search algorithm for E-design returns a solution with at most b vectors
and objective value at least

(
1−O(ε)

)
· λmin(X ) in polynomial time.

Proof. It follows from the assumption ‖ui‖2 6 ε2 · λmin(X ) that

λavg(X ) =
tr(X )

d
6
bε2 · λmin(X )

d
=⇒ 2d

ε2

√
λavg(X )

λmin(X )
6

2
√
bd

ε
.

Thus, for b > Ω( d
ε2

), it follows that b > Ω(
√
bd
ε

) > Ω
(
d
ε2

√
λavg(X )

λmin(X )

)
, and so Theorem 7.1.6

implies that the combinatorial local search algorithm will find a
(
1 − O(ε)

)
-approximate

solution in polynomial time.
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7.4.3.1 Maximizing Algebraic Connectivity

In this problem, we are given a graph G = (V,E) with Laplacian matrix LG =
∑

e∈E beb>e ,
and the goal is to find a subgraph H with at most b edges to maximize λ2(LH). This
problem is known as maximizing algebraic connectivity in the literature (see Section 6.2.1
for more background about the problem). It is a special case of E-design and Theorem 7.1.6
bounds the performance guarantee of a simple combinatorial local search algorithm.

Corollary 7.1.8. For any 0 < ε < 1, there is a polynomial time combinatorial (1 −
ε)-approximation algorithm for maximizing algebraic connectivity in an unweighted graph
whenever b > Ω

(
n

ε4λ∗2

)
, where λ∗2 is the optimal value for the problem.

Proof. Note that this is an E-design problem by a similar transformation as in (6.1). Let
H∗ be an optimal subgraph with b edges. Note that λavg(LH∗) = tr(LH∗ )

n
6 2b

n
, and so

b > Ω

(
n

ε4 · λ2(LH∗)

)
=⇒

√
b > Ω

(
1

ε2

√
n

λ2(LH∗)

)
=⇒ b > Ω

(
n

ε2

√
2b

nλ2(LH∗)

)
> Ω

(
n

ε2

√
λavg(LH∗)
λ2(LH∗)

)
.

Therefore, by Theorem 7.1.6, the combinatorial local search algorithm for E-design returns
a subgraph H with λ2(LH) >

(
1 − O(ε)

)
· λ2(LH∗) in polynomial time whenever b >

Ω
(

n
ε4λ2(LH∗ )

)
.

7.4.3.2 Bad Examples for Local Search Algorithms

We first present a simple example showing that Fedorov’s exchange method does not work
with the E-design objective function, even if there is a well-conditioned optimal solution.
The reason is simply that the E-design objective function is not smooth and sometimes it
is impossible to improve it by an exchange operation.

Example 7.4.13. Suppose the input vectors v1, ..., vn are in Rd for some d > 3. Suppose
that we have an initial solution set S0 ⊆ [n] such that Z1 =

∑
i∈S0

viv>i = I . For any i1 ∈ S0
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and j1 ∈ [n]\S0, note that λmin(Z1 − vi1v>i1 + vj1v>j1) 6 1. Therefore, Fedorov’s method
fails to improve the objective value even if there is a well-conditioned optimal solution say
Ne1, . . . , Ned for a large N .

Then, we present an example where all exchanges strictly decrease the minimum eigen-
value, even though the current solution is far away from the well-conditioned optimal
solution.

Example 7.4.14. Let N > 0 be some large scalar. The input contains exactly b
2
copies of

each v1, v2,w1,w2 ∈ R2 defined as follows:

v1v>1 =

(
1 0

0 0

)
, v2v>2 =

(
0 0

0 1

)
,

w1w>1 =
N

2

(
1 1

1 1

)
, w2w>2 =

N

2

(
1 −1

−1 1

)
.

The optimal solution Z ∗ contains b
2
copies of w1w>1 and w2w>2 . Suppose the algorithm

starts with the solution Z1 containing b
2
copies of v1v>1 and v2v>2 such that

Z ∗ =

(
bN
2

bN
2

)
with λmin(Z ∗) =

bN

2
, Z1 =

(
b
2

b
2

)
with λmin(Z1) =

b

2
.

Without loss of generality, we assume the exchange step removes v1 and adds w1. After
the exchange, the solution is

Z2 =

(
b+N

2
− 1 N

2
N
2

b+N
2

)
.

We can verify that the minimum eigenvalues of Z2 is b−1+N−
√
N2−1

2
, which tends to b−1

2

when N → ∞. Since all other exchanges are symmetric, we conclude that all exchanges
will decrease the objective value by 1

2
, and thus Fedorov’s exchange method fails.

Finally, we adopt an example by Madan, Singh, Tantipongpipat and Xie [108] to show
that even we use a smooth objective function from the regret minimization framework,
the combinatorial local search algorithm may return bad solution when there are no well-
conditioned optimal solutions.
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Example 7.4.15. Let N > 0 be some large scalar. The input contains M � b > 3 copies
of each v1, v2,w1,w2 ∈ R2 defined as follows:

v1v>1 =

(
N2 1

1 1
N2

)
, v2v>2 =

(
N2 −1

−1 1
N2

)
,

w1w>1 =
1

b
·

(
N8 N4

N4 1

)
, w2w>2 =

1

b
·

(
N8 −N4

−N4 1

)
.

Lemma 7.4.16. The combinatorial local search algorithm proposed in this subsection may
return a solution with an unbounded approximation ratio.

Proof. Note that b
2
copies of w1w>1 and b

2
copies of w2w>2 form an optimal solution Z ∗ with

budget b such that

Z ∗ =

(
N8

1

)
and λmin(Z ∗) = 1.

So our algorithm will choose α =
√
d

ελmin(Z∗) =
√
d
ε

=
√

2
ε
.

Consider an initial solution Z containing b
2
copies of v1v>1 and b

2
copies of v2v>2 such

that

Z =

(
bN2

b
N2

)
and λmin(Z ) =

b

N2
.

The approximation ratio between Z and Z ∗ is N2

b
, which is unbounded for fixed b when

N →∞.

With Z as the current solution, the action matrix A is

A = (αZ − lI )−2 =

(√
2bN2

ε
− l

√
2b

εN2 − l

)−2

≈

(
ε2

2b2N4

1

)
,

where the last approximate equality holds when N →∞ as tr(A) = 1.

The loss of removing a vector v1 (removing v2 is similar) from the current solution is

〈v1v>1 ,A〉
1− 2α〈v1v>1 ,A

1
2 〉
≈

ε2

2b2N2 + 1
N2

1− 2
√

2
ε

(
ε√
2b

+ 1
N2

) >
1

N2
,
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where we used b > 3 and N is large for the last inequality.

The gain of adding vector v2 is strictly less than the loss of removing v1

〈v2v>2 ,A〉
1 + 2α〈v2v>2 ,A

1
2 〉
<

〈v1v>1 ,A〉
1− 2α〈v1v>1 ,A

1
2 〉
,

as 〈v2v>2 ,A〉 = 〈v1v1,A〉 and 〈v2v>2 ,A
1
2 〉 = 〈v1v1,A

1
2 〉. Also, the gain of adding a vector w1

(adding w2 is similar) to the current solution is

〈w1w>1 ,A〉
1 + 2α〈w1w>1 ,A

1
2 〉
≈

ε2N4

2b3
+ 1

b

1 + 2
√

2
ε

( εN
6√

2b2
+ 1

b
)
6

ε2

4bN2
+

b

2N6
.

For fixed b ≥ 3 and ε ≤ 1, this gain is always less than the loss when N →∞. Therefore,
the combinatorial local search algorithm will stop and return the initial solution Z .
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Chapter 8

Network Design for s-t Effective

Resistance

In this chapter, we study a basic problem in designing networks with a spectral requirement
– the effective resistance between two vertices.

Definition (The s-t effective resistance network design problem). The input is an undi-
rected graph G = (V,E), two specified vertices s, t ∈ V , and a budget k. The goal is to
find a subgraph H of G with at most k edges that minimizes ReffH(s, t), where ReffH(s, t)

denotes the effective resistance between s and t in the subgraph H. See Section 2.4 for the
definition of effective resistance and Section 8.2.1 for a mathematical formulation of the
problem.

The s-t effective resistance is an interpolation between s-t shortest path distance and
s-t edge connectivity. To see this, let f ∈ R|E| be a unit s-t flow in G and define the `p-
energy of f as Ep(f ) := (

∑
e |f (e)|p)

1
p , and let Ep(s, t) := minf {Ep(f ) | f is a unit s-t flow}

be the minimum `p-energy of a unit s-t flow that the graph G can support. Thomson’s
principle (see Theorem 2.4.3) states that ReffG(s, t) = E2

2 (s, t), so that a graph of small s-t
effective resistance can support a unit s-t flow with small `2-energy. Note that the shortest
path distance between s and t is E1(s, t) (as the `1-energy of a flow is just the average path
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length and is minimized by a shortest s-t path), and so a graph with small E1(s, t) has a
short path between s and t. Note also that the edge-connectivity between s and t is equal
to the reciprocal of E∞(s, t) (because if there are k edge-disjoint s-t paths, we can set the
flow value on each path to be 1

k
), and so a graph with small E∞(s, t) has many edge-disjoint

s-t paths. As `2 is between `1 and `∞, the objective function Reff(s, t) = E2
2 (s, t) takes

both the s-t shortest path distance and the s-t edge-connectivity into consideration.

A simple property suggests that `2-energy may be even more desirable than `1 and
`∞ as a connectivity measure. Conceptually, adding an edge e to G would make s and t
more connected. For `1 and `∞, however, adding e would not yield a better energy if e
does not improve the shortest path and the edge connectivity respectively. In contrast,
the `2-energy would typically be improved after adding an edge, and so `2-energy provides
a smoother quantitative measure that better captures our intuition how well s and t are
connected in a network.

Traditionally, the effective resistance has many useful probabilistic interpretations, such
as the commute time [39], the cover time [112], and the probability of an edge in a random
spanning tree [85]. These interpretations suggest that the effective resistance is a useful
distance function and have applications in the study of social networks. Recently, effective
resistance has found surprising applications in solving problems about graph connectivity,
including constructing spectral sparsifiers [132] (by using the effective resistance of an edge
as the sampling probability), computing maximum flow [44, 109, 120], finding thin trees
for ATSP [9], and generating random spanning trees [115, 128].

Thomson’s principle also states that the electrical flow between s and t is the unique
flow that minimizes the `2-energy (see Section 2.4 for a proof). So, designing a network with
small s-t effective resistance has natural applications in designing electrical networks [55,
70, 78]. One natural formulation is to keep at most k wires in the input electrical network
to minimize Reff(s, t), so that the electrical flow between s and t can still be sent with
small energy while we switch off many wires in the electrical network.

Based on the above reasons, we believe that the effective resistance is a nice and natural
alternative connectivity measure in network design. More generally, it is an interesting di-
rection to develop techniques to solve network design problems with spectral requirements.
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In this chapter, we explore both hardness and algorithmic results of the s-t effective
resistance network design problem.

8.1 Our Contributions

8.1.1 Main Results

Unlike the classical problems of shortest path and min-cost flow (corresponding to the `1

and `∞ versions of the problem), the s-t effective resistance network design problem is
NP-hard.

Theorem 8.1.1. The s-t effective resistance network design problem is NP-hard.

On the other hand, we would like to design good approximation algorithms for this
problem. As we only want to connect a single pair of vertices, the budget k could be
much less than the number of vertices in the graph. In this regime, spectral rounding,
the main technique in this thesis, cannot provide a good approximation ratio (as discussed
in Section 6.2.3). Thus, we need to go beyond spectral rounding to design a constant
approximation algorithm. The following is the main algorithmic result in this chapter.

Theorem 8.1.2. There is a convex programming based randomized algorithm that returns
an 8-approximate solution in polynomial time with high probability for the s-t effective
resistance network design problem.

The algorithm crucially uses a nice characterization of the optimal solutions to the
convex program (Lemma 8.2.2) to design a randomized path-rounding procedure (Sec-
tion 8.2.2) for Theorem 8.1.2.

A simple example shows that the integrality gap of the convex program is at least two.
When the budget k is much larger than the length of a shortest s-t path, we show how
to achieve an approximation ratio close to two with a randomized “short” path rounding
algorithm (Section 8.2.5).
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Theorem 8.1.3. There is a (2 + O(ε))-approximation algorithm for the s-t effective re-
sistance network design problem, when k > 2dst

ε10 where dst is the length of a shortest s-t
path.

8.1.2 Other Results

We consider some variants of the s-t effective resistance network design problem, including
the weighted version, the dual version.

There is a natural weighted generalization of the s-t effective resistance network design
problem, where we associate a cost c(e) and resistance r(e) to each edge e of the input
graph.

Definition (The weighted s-t effective resistance network design problem). The input is
an undirected graph G = (V,E) where each edge e has a non-negative cost c(e) and a
non-negative resistance r(e), two specified vertices s, t ∈ V , and a cost budget k. The goal
is to find a subgraph H of G that minimizes ReffH(s, t) subject to the constraint that the
total edge cost of H is at most k. In the following, we may refer to this problem as the
weighted problem for simplicity.

In the weighted problem, the integrality gap of the convex program (Section 8.2.1)
becomes unbounded, even when the cost on the edges are the same (c(e) = 1 for all
e ∈ E). This suggests that the weighted version may be strictly harder. Indeed, we
show stronger hardness result for the weighted problem assuming the small-set expansion
conjecture [123, 124].

Theorem 8.1.4. Assuming the small-set expansion conjecture, it is NP-hard to approxi-
mate the weighted s-t effective resistance network design problem within a factor of 2 − ε
for any ε > 0, even when c(e) = 1 for every edge e.

On the other hand, when the cost on the edges are the same, the following approxima-
tion follows from the randomized path rounding algorithm in a black box manner.
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Corollary 8.1.5. There is a convex programming based O(R)-approximation randomized
algorithm for the weighted s-t effective resistance network design problem when c(e) = 1

for every edge e, where R = maxe r(e)/mine r(e) is the ratio between the maximum and
minimum resistance.

We also consider the “dual” problem where we set the effective resistance as a hard
constraint, and the objective is to minimize the number of edges in the solution subgraph.
We present similar results as the original problem in Section 8.2.6.

8.1.3 Related Work

In the survivable network design problem, we are given an undirected graph and a con-
nectivity requirement ruv for every pair of vertices u, v, and the goal is to find a minimum
cost subgraph such that there are at least ruv edge-disjoint paths for all u, v. This problem
is extensively studied and captures many interesting special cases [71, 1, 73, 67]. The best
approximation algorithm for this problem is due to Jain [79], who introduced the technique
of iterative rounding to design a 2-approximation algorithm. His result has been extended
in various directions, including element-connectivity [62, 43], directed graphs [66, 67], and
with degree constraints [93, 56, 64, 96].

Other combinatorial connectivity requirements were also considered. A natural varia-
tion is to require ru,v internally vertex disjoint paths for every pair of vertices u, v. This
problem is much harder to approximate [87, 92], but there are good approximation algo-
rithms for global connectivity [58, 42] and when the maximum connectivity requirement is
small [36, 46]. Another natural problem is to require a path of length lu,v between every pair
of vertices u, v. This problem is also hard to approximate in general but there are better
approximation algorithms when every edge has the same cost and the same length [53].

Spectral connectivity requirements were also studied, including algebraic connectiv-
ity [69, 86] (closely related to graph expansion), total effective resistances [70], and mixing
time [30]. In particular, Ghosh, Boyd and Saberi [70] studied the related problem of
minimizing the sum of effective resistances over all pairs of vertices. They gave a convex
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programming relaxation of the problem but did not provide any result for the discrete opti-
mization setting. Most of the earlier works only proposed convex programming relaxations
and heuristic algorithms, and approximation guarantees are only obtained recently for the
more general experimental design problems. When every edge has the same cost, there is
a (1 + ε)-approximation algorithm for minimizing the total effective resistance when the
budget is at least Ω( |V |

ε
+ 1

ε2
log 1

ε
) [118], and there is a (1 + ε)-approximation algorithm for

both maximizing the algebraic connectivity and minimizing the total effective resistance
when the budget is at least Ω( |V |

ε2
) [6]. For general edge costs, there is a randomized (1+ε)-

approximation algorithm for both maximizing the algebraic connectivity and minimizing
the total effective resistance when the budget is at least Ω(

|V |·‖c‖∞
ε2

), where ‖c‖∞ is the
maximum edge cost in the input graph (see Section 6.2.1 and Section 6.2.2 in this thesis).

We remark that the one-sided spectral rounding based methods ([6] or Chapter 5)
can only apply to the s-t effective resistance network design problem when k > Ω( |V |

ε2
)

for the desired precision ε < 1. In this chapter, the interesting regime is when k is much
smaller than |V |, where the techniques in [6, 118, 98] cannot guarantee good approximation
(including the spectral rounding technique in Chapter 5). We have developed a set of
new techniques for analyzing and rounding the solutions to the convex program that will
hopefully find applications for solving related problems in the regime when k is small.

8.1.4 Technical Overview

Our main technical contribution is in designing rounding techniques for a convex program-
ming relaxation of our problem. There is a natural convex programming relaxation, by
using the conductance (reciprocal of the resistance) of the edges as variables, and writ-
ing the s-t effective resistance as the objective function and noting that it is convex with
respect to the variables (Section 8.2.1).

We show that optimal solutions of this convex program enjoy some nice properties1.
Given an optimal fractional solution x∗ and the unit s-t electrical flow f ∗ supported in

1We can also show that there exists an optimal solution such that the fractional edges form a forest,
but this is not included in the paper as we have not used this property in the rounding algorithm.
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x∗, we derive from the convex optimality conditions that there is a flow-conductance ratio
α > 0 such that f ∗(e) = αx∗(e) for every fractional edge e with 0 < x∗(e) < 1 and f ∗(e) > α

for every integral edge e with x∗(e) = 1. The flow-conductance ratio α is crucial in the
rounding algorithm and the analysis.

The rounding techniques in recent papers on experimental design [6, 118, 98] considered
each edge/vector as a unit. In [6, 98], a potential function as in spectral sparsification is
used to guide a local search algorithm to swap two edges/vectors at a time to improve
the current solution. In [118], a probability distribution on the edges/vectors is carefully
designed for an independent randomized rounding. These techniques only work in the
case when the solutions form a spanning set so that the “contribution” of each individual
edge/vector is well-defined. This is basically the reason why the results in [6, 118, 98] only
apply when the budget k is at least |V |.

Our approach is based on a randomized rounding procedure on s-t paths. Given x∗,
we compute the unit s-t electrical flow f ∗ supported in x∗, and decompose f ∗ as a convex
combination of s-t paths. The rounding algorithm has τ = 1/α iterations (recall that α is
the flow-conductance ratio of the optimal solution x∗), where we pick a random path Pi

from the convex combination in each iteration, and returnH := ∪τi=1Pi as our solution. One
difference from the previous techniques in the literature is that each unit in the rounding
algorithm is a s-t path, so in particular s and t are always connected in our solution.
Another difference is that our problem has some extra structure, so that we can compute
the electrical flow f ∗ to guide our rounding procedure, where the variables f ∗(e) are not in
the convex program. These allow us to obtain a constant factor approximation algorithm
for all budget k > dst, the shortest path distance between s and t (note that when k < dst

there is no feasible integral solution).

In the analysis, we prove in Lemma 8.2.6 that the expected number of edges in H

is at most k, and in Lemma 8.2.7 that the expected effective resistance is ReffH(s, t) 6

2 Reffx∗(s, t). To bound the expected effective resistance, we use Thomson’s principle and
construct a unit s-t flow f to show that ReffH(s, t) 6 EH(f ) 6 2 Reffx∗(s, t). To construct
the unit s-t flow f , we keep the flow-conductance ratio and send α units of flow on each
sampled path Pi (i.e. f (e) = α and x(e) = 1). The flow-conductance ratio plays a crucial
role in the proofs of both lemmas. This is because the rounding algorithm is based on

251



the flow variables f ∗(e), and thus the performance guarantees are in terms of f ∗(e), but
the ratio α allows us to relate them back to the variables x∗(e) in the convex program.
Combining the two lemmas give us a constant factor bicriteria approximation algorithm for
the problem. This can be turned into a true approximation algorithm by scaling down the
budget to k

2
and run the bicriteria approximation algorithm with some additional claims

(Section 8.2.4).

The improvement on the approximation ratio when budget k is large comes from two
observations. The first is that if k is much larger than the length of the shortest s-t path,
then the number of independent iterations in the rounding scheme is large (Lemma 8.2.3).
The second is that we can ignore some s-t paths in the flow decomposition with many
fractional edges without affecting the performance much. Combining these, we can apply
a Chernoff-Hoeffding bound to show that the number of edges is at most (1 + ε)k with
high probability. Then it is not necessary to scale down the budget by a factor of 2 and
we can prove a stronger bound that the effective resistance is at most 2 + O(ε) times the
optimal value.

Organization

We present the convex programming relaxation and our two rounding procedures in Sec-
tion 8.2. The NP-hardness and small set expansion hardness results are provided in Sec-
tion 8.3.

8.2 Convex Programming Algorithms

In this section, we analyze a convex programming relaxation for our problem. We first
describe the convex program and prove a characterization of the optimal solutions in Sec-
tion 8.2.1. We then present a randomized rounding algorithm using flow decomposition in
Section 8.2.2, and show that it is a constant factor bicriteria approximation algorithm in
Section 8.2.3. Then, we show how to convert the bicriteria approximation algorithm into
a true approximation algorithm in Section 8.2.4, and how to modify the algorithm slightly
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to achieve a better approximation guarantee when the budget k is large in Section 8.2.5.
Finally, we discuss the dual problem of minimizing the cost while satisfying the effective
resistance constraint in Section 8.2.6.

8.2.1 Convex Programming Relaxation

The formulation is for the weighted problem, where each edge has a weight w(e) := 1
r(e)

. We
introduce a variable x(e) for each edge e to indicate whether e is chosen in our subgraph.
Let Reffst(x) be the s-t effective resistance of the graph with conductance x(e)w(e) on edge
e ∈ E. The following is a natural convex programming relaxation for the problem.

minimize
x∈RE

Reffst(x)

subject to
∑
e∈E

c(e) · x(e) 6 k,

0 6 x(e) 6 1, ∀e ∈ E.

(st-CP)

This is an exact formulation if x(e) ∈ {0, 1} for all e ∈ E. The objective function is
convex in x by Lemma 2.4.5. The convex program can be solved in polynomial time by
the ellipsoid method to inverse exponential accuracy, or by the techniques described in [6]
to inverse polynomial accuracy, which are both sufficient for the rounding algorithm.

8.2.1.1 Integrality Gap Examples

We show some limitations of the convex program for general w(e) and c(e). The following
figure shows a simple example where the integrality gap is unbounded if the cost could be
arbitrary.

s t

. . .

Figure 8.1: Integrality gap example with arbitrary cost and unit resistance.
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In this graph, the top path has length n−2 where each edge has cost 1
n−2

. The bottom
path has two edges with cost 1. The resistance of each edge is 1, and the budget is k = 1.
The integrality gap of this example is Ω(n). To see this, the integral solution can only
afford the top path, and the effective resistance is n−2. However, the fractional solution
can set x(e) = 1

2
for each of the two bottom edges, and the effective resistance of this

fractional solution is 4.

The following figure shows another simple example where the integrality gap is un-
bounded if the edge costs are the same but the resistances could be arbitrary.

s t

. . .

Figure 8.2: Integrality gap example with arbitrary resistance and unit cost.

In this example, the top path has length n−1 with each edge of resistance 1. The
bottom path has only one edge with resistance R. All edges have cost 1 and the budget
k = 2. The integral solution can only afford the bottom path, with effective resistance R.
The fractional solution can set x(e) = 2

n−1
for each edge in the top path, with effective

resistance O(n2). When R � n2, the integrality gap could be arbitrarily large. Notice
that this example also excludes the possibility of bicriteria approximation via the weighted
convex program.

Even in the unit-cost unit-resistance case, the integrality gap is unbounded if k is
smaller than the s-t shortest path distance. Henceforth, in view of these observations we
assume the following in the rest of this section.

Assumption 8.2.1. We assume that c(e) = w(e) = r(e) = 1 for every edge e ∈ E, which
is the setting of the s-t effective resistance network design problem, and the budget k is at
least the shortest path distance dst between s and t in the input graph.

The integrality gap of the convex program is still at least two with Assumption 8.2.1.
For a simple example, consider a graph with two vertex-disjoint s-t paths, each of length
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k
2

+ 1, and the budget is k. Then the optimal integral value is k
2

+ 1 while the optimal
fractional value is close to k

4
, and so the integrality gap gets arbitrarily close to two.

We will show that the integrality gap of the convex program is at most 8 with these
assumptions. Note that just to connect s and t, then k must be at least the s-t shortest
path distance. It is interesting that this small additional assumption could reduce the
integrality gap from unbounded to a constant.

8.2.1.2 Characterization of Optimal Solutions

In the case c(e) = w(e) = r(e) = 1 for all edges e ∈ E, we will prove that the electrical
flow f ∗ supported in the optimal solution x∗ to (st-CP) satisfies a crucial property about
the flow-conductance ratio f ∗(e)

x∗(e) .

Lemma 8.2.2 (Characterization of Optimal Solution). Let G = (V,E) be the input graph
with c(e) = w(e) = 1 for all edges e ∈ E. Let x∗ : E → R>0 be an optimal solution to the
convex program (st-CP). Let EF ⊆ E be the set of fractional edges with 0 < x∗(e) < 1,
and EI ⊆ E be the set of integral edges with x∗(e) = 1. Let f ∗ : E → R>0 be the unit s-t
electrical flow supported in x∗. There exists α > 0 such that

f ∗(e) = αx∗(e) ∀e ∈ EF and f ∗(e) > α ∀e ∈ EI .

Before starting the proof, we make some remarks. Notice that f (e)
x(e)

is the potential
difference between the two endpoints of edge e. When s and t are connected in the graph,
we have

( f (e)
x(e)

)2
= (beL†xbst)

2. Further, when Reffst(x) is differentiable at x , we have the
partial derivative ∂e Reffst(x) = −(b>e L†xbst)

2. Ideally, we want to use KKT conditions The-
orem 2.2.28 to characterize these partial derivatives. However, as observed in Section 2.4,
one subtle issue is that Reffst(x) is not differentiable over the whole domain. For many
instances, we expect that an optimal solution would have many edges with x∗(e) = 0.
Those boundary points are not differentiable as Reffst(x) is undefined for nonnegative edge
weights. Thus, we cannot apply Theorem 2.2.28 directly. This issue can be resolved using
the more general subdifferential theory for convex functions [76, 126]. We use modified
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KKT conditions (Proposition 2.2.30) as a necessary condition for optimality to bypass this
issue without invoking the more advanced subdifferential theory.

Proof of Lemma 8.2.2. By Fact 2.4.2, Reffst(x) = +∞ when x 6∈ Dst, where Dst is the set
of all s-t connected edge weights x defined in (2.11). Without loss of generality, we can
rewrite the convex program as

minimize
x∈Dst

Reffst(x)

subject to
∑
e∈E

x(e) 6 k,

0 6 x(e) 6 1, ∀e ∈ E.

Notice that the set {x ∈ RE |
∑

e x(e) ≤ k, x(e) ∈ [0, 1], ∀e ∈ E} is closed and bounded,
Reffst(x) is continuous over Dst, and Reffst(x) blows up when approaching to the boundary
of Dst, thus there exists an optimal solution x∗ that attains the optimal value of the above
convex program.

Let µ be the dual variable for the budget constraint
∑

e∈E x(e) 6 k, and λ+(e) and
λ−(e) be the dual variables for the upper bound x(e) 6 1 and the nonnegative constraint
x(e) > 0 respectively.

By taking x = δ1m for small enough δ > 0, it is obvious that the above convex program
satisfies the Slater’s condition. Thus, strong duality holds by Theorem 2.2.26, i.e. there
exists an optimal dual solution λ∗+, λ∗− ∈ RE

+ and µ∗ ∈ R+ that attain zero duality gap
together with x∗.

Given any optimal solution x∗ ∈ Dst, for any e ∈ E with x∗(e) > 0, ∂e Reffst(x∗)

exists and ∂e Reffst(x∗) = −(b>stL
†
x∗be)2 by Lemma 2.4.6. Since all the budget, capacity,

and nonnegativity constraints are affine constraints, they are differerentiable. Applying
the modified KKT necessary conditions Proposition 2.2.30 with direction d = χe for all
e ∈ E with x∗(e) > 0, we can show that the complement slackness condition holds

λ∗+(e) = λ∗−(e) = 0 ∀e ∈ EF and λ∗−(e) = 0 ∀e ∈ EI . (8.1)
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Furthermore, we also have

−(b>stL
†
x∗be)

2 + λ∗+(e)− λ∗−(e) + µ∗ = 0 ∀e ∈ EF ∪ EI . (8.2)

Combine (8.1) and (8.2) and the fact λ∗+ > 0, it follows that

(b>stL
†
x∗be)

2 = µ∗ e ∈ EF and (b>stL
†
x∗be)

2 > µ∗ ∀e ∈ EI .

Let ϕ be a potential vector of the electrical flow f ∗ supported in x∗. For an edge
e = uv ∈ E, ( f ∗(e)

x∗(e)

)2

= (ϕ(u)− ϕ(v))2 =
(
b>e L†x∗bst

)2

,

where the first equality is by Ohm’s law and the assumption that w(e) = 1 for all uv ∈ E,
and the second equality uses that Lx∗ϕ = bst as explained in Section 2.4. The lemma then
follows from the above paragraph and writing µ as α2.

The flow-conductance ratio α will be crucial in the rounding algorithm and its analysis.
The following lemma shows an upper bound on α using the budget k and the shortest path
distance dst between s and t.

Lemma 8.2.3. Under the conditions in Assumption 8.2.1, it holds that α2 6 dst
k

6 1.

Proof. Let x∗ be an optimal solution to (st-CP), and f ∗ be the unit s-t electrical flow
supported in x∗. As k > dst, a shortest path is a feasible solution to (st-CP), and thus
Reffx∗(s, t) 6 dst. On the other hand, by Thomson’s principle and Lemma 8.2.2,

Reffx∗(s, t) =
∑
e∈E

f ∗(e)2

x∗(e)
=
∑
e∈EI

f ∗(e)2 +
∑
e∈EF

f ∗(e)2

x∗(e)

>
∑
e∈EI

α2 +
∑
e∈EF

α2x∗(e) = α2
∑
e∈E

x∗(e) = α2k,

where the last equality holds since we can assume
∑

e∈E x∗(e) = k for the optimal solution
x∗ without loss of generality by Rayleigh’s principle (or otherwise we have an integral
optimal solution). The lemma follows by combining the upper bound and the lower bound.

257



8.2.2 Randomized Path-Rounding Algorithm

Our rounding algorithm uses the unit electrical flow f ∗ supported in the optimal solution
x∗ to construct an integral solution. The algorithm will first decompose the flow f ∗ as a
convex combination of flow paths, and then randomly choose the flow paths and return
the union of the chosen flow paths as our solution.

The following lemma about flow decomposition is by the standard argument to remove
one (fractional) flow path at a time, which holds for any unit directed acyclic s-t flow.

Lemma 8.2.4 (Flow Decomposition). Given the unit s-t electrical flow f , there is a poly-
nomial time algorithm to find a set P of s-t paths with |P| 6 |E| such that the flow vector
f : RE

>0 can be written as a convex combination of the characteristic vectors of the paths in
P, i.e.

f =
∑
p∈P

vp · χp and
∑
p∈P

vp = 1 and vp > 0 for each p ∈ P ,

where χp ∈ RE is the characteristic vector of the path p with one on each edge e ∈ p and
zero otherwise.

With the flow decomposition, we are ready to present the rounding algorithm.

Randomized Path Rounding Algorithm

1. Let x∗ be an optimal solution to the convex program (st-CP). Let f ∗ be the unit
s-t electrical flow supported in x∗. Let α be the flow-conductance ratio defined
in Lemma 8.2.2.

2. Compute a flow decomposition P of f ∗ as defined in Lemma 8.2.4.

3. For i from 1 to τ := b 1
α
c do

• Let Pi be a random path from P where each path p ∈ P is sampled with
probability vp.

4. Return the subgraph H formed by the edge set ∪τi=1Pi.
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The following lemma shows that the rounding algorithm will always return a non-empty
subgraph.

Lemma 8.2.5. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
Let x∗ be an optimal solution to (st-CP) and α > 0 be the flow-conductance ratio as defined
in Lemma 8.2.2. Then

1

α
> τ >

1

2α
> 0.

Proof. Since we assumed that the budget k is at least the length dst of a shortest s-t path,
it follows from Lemma 8.2.3 that α 6 1. This implies that

1

α
> τ =

⌊
1

α

⌋
> max

{
1,

1

α
− 1

}
=⇒ 1 > τα > max{α, 1− α} > 1

2
.

8.2.3 Bicriteria Approximation

The analysis of the approximation guarantee goes as follows. First, we show that the
expected number of edge in the returned subgraph H is at most the budget k. Then, we
prove that the expected effective resistance of the returned subgraph is at most two times
that of the optimal fractional solution. Both of these steps use the flow-conductance ratio
α crucially. These combine to show that the randomized path rounding algorithm is a
constant factor bicriteria approximation algorithm.

Let x∗ be an optimal solution to (st-CP). Let EF and EI be the set of fractional edges
and integral edges in x∗. We assume that each edge e ∈ EI will be included in the subgraph
H returned by the rounding algorithm. We focus on bounding the number of edges in EF
that will be included in H.

Lemma 8.2.6 (Expected Budget). Let x∗ be an optimal solution to (st-CP) when w(e) = 1

for all edges e ∈ E. Let Xe be an indicator variable of whether e is included in the returned
subgraph H by the rounding algorithm, Then,

E

[∑
e∈EF

Xe

]
6 τα

∑
e∈EF

x∗(e) 6
∑
e∈EF

x∗(e).
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Proof. Note that an edge e is contained in Pi with probability
∑

p∈P:p3e vp. By the union
bound, an edge e is included in the returned subgraph H by the rounding algorithm with
probability

P [Xe = 1] 6
τ∑
i=1

∑
p∈P:p3e

vp = τ
∑

p∈P:p3e

vp = τ f ∗e ,

where the last equality holds by the property of the flow decomposition P of the electrical
flow f ∗ in Lemma 8.2.4.

By Lemma 8.2.2, f ∗(e) = αx∗(e) for each fractional edge e ∈ EF , and this implies that

P [Xe = 1] 6 τ f ∗(e) = ταx∗(e) ∀e ∈ EF .

Therefore,

E

[∑
e∈EF

Xe

]
=
∑
e∈EF

P [Xe = 1] 6 τα
∑
e∈EF

x∗(e) =

⌊
1

α

⌋
α
∑
e∈EF

x∗(e) 6
∑
e∈EF

x∗(e).

The key step is to show that E [ReffH(s, t)] 6 2 Reffx∗(s, t). To prove this, we construct
a unit s-t flow f and show that E [EH(f )] 6 2 Reffx∗(s, t), and hence by Thomson’s principle
E [ReffH(s, t)] 6 E [EH(f )] 6 2 Reffx∗(s, t). To construct the flow f , the idea is to follow
the ratio α in the fractional solution x∗ and send α units of flow on each path Pi selected.

Lemma 8.2.7 (Expected Effective Resistance). Suppose the input instance satisfies the
conditions in Assumption 8.2.1. Let x∗ be an optimal solution to (st-CP) and f ∗ be the
unit s-t electrical flow supported in x∗. The expected s-t effective resistance of the subgraph
H returned by the rounding algorithm is

E [ReffH(s, t)] 6

(
1− 1

τ
+

1

τα

)
· Ex∗(f ∗) =

(
1− 1

τ
+

1

τα

)
· Reffx∗(s, t) 6 2Reffx∗(s, t).

Proof. Consider the flow vector f : RE
>0 defined by sending α units of flow on each path

Pi chosen by the rounding algorithm, i.e. the random variable f =
∑τ

i=1 α · χPi with
f (e) = α · |{Pi | 1 6 i 6 τ, Pi 3 e}| for each edge e ∈ E. We would like to upper bound
the expected energy EH(f ) in order to upper bound ReffH(s, t).
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Each Pi is a random s-t path sampled from the flow decomposition P of the flow vector
f ∗ : RE

>0 of the unit s-t electrical flow supported in x∗, and χPi ∈ {0, 1}E is its characteristic
vector with expected value

E [χPi ] =
∑
p∈P

vp · χp = f ∗.

Since each edge in H is of conductance one, the expected energy of f in H is

E [EH(f )] = E

[∑
e∈E

f (e)2

]
= E [〈f , f 〉]

= E

[〈 τ∑
i=1

α · χPi ,
τ∑
j=1

α · χPj
〉]

=
τ∑
i=1

τ∑
j=1

α2 · E
[
〈χPi , χPj〉

]
.

As each path Pi is sampled independently, for i 6= j,

E
[
〈χPi , χPj〉

]
= 〈E [χPi ] ,E

[
χPj
]
〉 = 〈f ∗, f ∗〉 =

∑
e∈E

f ∗(e)2.

For i = j,

E [〈χPi , χPi〉] =
∑
p∈P

vp〈χp, χp〉 =
∑
p∈P

vp
∑
e∈p

1 =
∑
e∈E

∑
p∈P:p3e

vp =
∑
e∈E

f ∗(e),

where the last equality follows from the property of the flow decomposition in Lemma 8.2.4.
Combining these two terms, it follows that

E [EH(f )] = α2τ
∑
e∈E

f ∗(e) + α2τ(τ − 1)
∑
e∈E

f ∗(e)2.

Thomson’s principle states that the ReffH(s, t) is upper bounded by the energy of any one
unit s-t flow. Note that f is an s-t flow of τα units, and τα > 0 by Lemma 8.2.5. Scaling
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f to a one unit s-t flow by dividing the flow on each edge by τα gives an upper bound on

E [ReffH(s, t)] 6
E [EH(f )]

τ 2α2
=

1

τ

∑
e∈E

f ∗(e) +
(

1− 1

τ

)∑
e∈E

f ∗(e)2

6
1

τα

∑
e∈E

f ∗(e)2

x∗(e)
+
(

1− 1

τ

)∑
e∈E

f ∗(e)2

x∗(e)

=

(
1− 1

τ
+

1

τα

)
· Ex∗(f ∗)

=

(
1− 1

τ
+

1

τα

)
· Reffx∗(s, t),

where the second inequality follows from Lemma 8.2.2 that f ∗(e)
x∗(e) > α for every edge e ∈ E

and also x∗(e) 6 1 for every edge e ∈ E, and the last equality is from Thomson’s principle
that Reffx∗(s, t) = Ex∗(f ∗). Finally, notice that 1− 1

τ
+ 1

τα
6 2 as 1

α
− 1 6 b 1

α
c = τ .

Combining Lemma 8.2.6 and Lemma 8.2.7, it follows from a simple application of
Markov’s inequality that there is an outcome of the randomized path-rounding algorithm
which uses at most 2k edges with s-t effective resistance at most 4 Reffx∗(s, t). In the
following, we apply Markov’s inequality more carefully to show that the success probability
is at least Ω(α). In the next subsection, we will argue that α can be assumed to be Ω( 1

m
)

and so the path-rounding algorithm is a randomized polynomial time algorithm.

Theorem 8.2.8 (Bicriteria Approximation). Suppose the input instance satisfies the con-
ditions in Assumption 8.2.1. Let x∗ be an optimal solution to (st-CP). Given x∗, the
randomized path rounding algorithm will return a subgraph H with at most 2k edges and
ReffH(s, t) 6 4 Reffx∗(s, t) with probability at least Ω(α).

Proof. First, we bound the probability that the subgraph H has more than 2k edges. Let
Xe be an indicator variable of whether the edge e is included in the returned subgraph
H. Recall that EF and EI denote the set of fractional edges and integral edges in x∗

respectively. We assume pessimistically that all edges in EI will be included in the subgraph
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H returned by the rounding algorithm. Then, by Markov’s inequality and Lemma 8.2.6,

P

[∑
e∈E

Xe > 2k

]
6 P

[∑
e∈EF

Xe > 2k − |EI |

]
6

E
[∑

e∈EF Xe

]
2k − |EI |

6
τα
∑

e∈EF x∗(e)
2k − |EI |

6
τα

2
,

where the last inequality is by
∑

e∈EF x∗(e) 6 k − |EI |.

Next, we bound the probability that ReffH(s, t) > 4 Reffx∗(s, t). By Markov’s inequality
and Lemma 8.2.7,

P [ReffH(s, t) > 4 Reffx∗(s, t)] 6
1

4

(
1− 1

τ
+

1

τα

)
=
τα + 1

4τα
− 1

4τ
6
τα + 1

4τα
− Ω(α),

where the last inequality is because τ = b 1
α
c 6 1

α
.

To prove the lemma, it remains to show that

τα

2
+
τα + 1

4τα
6 1 ⇐⇒ 2(τα)2 − 3(τα) + 1 = (2τα− 1)(τα− 1) 6 0,

which follows from Lemma 8.2.5.

8.2.4 Constant Factor Approximation

We showed that the randomized path rounding algorithm is a bicriteria approximation
algorithm. To achieve a true approximation algorithm, a natural idea is to scale down the
budget from k to k

2
and apply the randomized path rounding algorithm. The following

lemma takes care of the case of k
2
< dst, when the shortest path assumption does not hold

after scaling, by showing that simply returning a shortest s-t path is already a good enough
approximation.

Lemma 8.2.9. When the budget k is at least the length dst of a shortest s-t path, any s-t
shortest path is a ( k

dst
)-approximate solution for the s-t effective resistance network design

problem.

Proof. When k > dst, a s-t shortest path is a feasible solution to the problem with s-t
effective resistance at most dst. To prove the lemma, we will show that Reffx(s, t) > d2

st

k
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for any feasible solution x to (st-CP), and so an s-t shortest path is already a ( k
dst

)-
approximation.

Let Gx be the graph G with fractional weight x(e) on each edge e ∈ E. To show a lower
bound on Reffx(s, t), we identify the vertices in Gx to a form a path graph Px as follows:
For each i > 0, let Ui be the set of vertices in G with shortest path distance i to s, where
the shortest path distance is defined where each edge in G is of length one. First, for each
0 6 i 6 dst−1, we identify the vertices in Ui to a single vertex ui. Then, we identify all the
vertices in ∪i>dstUi to a single vertex udst . The path graph Px has vertex set {u0, . . . , udst}
and edge set {ab ∈ E | a ∈ Ui and b ∈ Ui+1 for 0 6 i 6 dst − 1}. For each edge e in Px ,
its weight x(e) in Px is the same as that in Gx . As an electrical network, identifying two
vertices uv is equivalent to adding an edge of resistance zero between u and v. So, it follows
from Rayleigh’s monotonicity principle (Theorem 2.4.4) that ReffGx (s, t) > ReffPx (u0, udst)

as s ∈ U0 and t ∈ Udst .

As Px is a series-parallel graph, we can compute ReffPx (s, t) directly. For each 1 6 i 6

dst, let Ei be the set of parallel edges connecting ui−1 and ui in Px , and ci =
∑

e∈Ei x(e)

be the effective conductance between ui−1 and ui in Px . Then, by Fact 2.4.1,

ReffPx (ui−1, ui) =
1

ci
and ReffPx (u0, udst) =

dst∑
i=1

ReffPx (ui−1, ui) =
dst∑
i=1

1

ci
.

Note that
∑dst

i=1 ci =
∑dst

i=1

∑
e∈Ei x(e) 6

∑
e∈E x(e) 6 k for any feasible solution x . Using

Cauchy-Schwarz inequality,

dst =
dst∑
i=1

√
ci ·

1
√
ci

6

√√√√ dst∑
i=1

ci ·

√√√√ dst∑
i=1

1

ci
6
√
k ·
√

ReffPx (u0, udst).

Therefore, we conclude that ReffGx (s, t) > ReffPx (u0, udst) >
d2
st

k
.

We are ready to prove our main approximation result.

Theorem 8.2.10. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
There is a polynomial time 8-approximation algorithm for the s-t effective resistance net-
work design problem.
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Proof. If the budget k 6 2dst, then Lemma 8.2.9 shows that simply returning an s-t
shortest path would give a 2-approximation. Henceforth, we assume k > 2dst.

Let opt(k) be the objective value of an optimal solution x∗ to the convex program
(st-CP) with budget k, so Reffx∗(s, t) = opt(k). As 1

2
x∗ is a feasible solution to (st-CP)

with budget 1
k
, by Thomson’s principle,

opt

(
k

2

)
6 Reff 1

2
x∗(s, t) = b>st

(∑
e∈E

x∗e
2
beb
>
e

)†
bst

= 2b>st
(∑
e∈E

x∗(e) · beb>e
)†

bst = 2 Reffx∗(s, t) = 2opt(k).

Given the original budget k > 2dst, our algorithm is to find an optimal solution z∗ to
(st-CP) with budget k

2
> dst, and use the path-rounding algorithm with input z∗ to return

a subgraph H. By Theorem 8.2.8, with probability Ω(α), the subgraph H satisfies

|E(H)| 6 2
∑
e∈E

z∗(e) 6 2

(
k

2

)
= k and ReffH(s, t) 6 4opt

(
k

2

)
6 8opt(k),

and soH is an 8-approximate solution to the s-t effective resistance network design problem.

Finally, we consider the time complexity of the algorithm. The number of iterations
in the path rounding algorithm is O

(
1
α

)
, and we need to run the path rounding algorithm

O
(

1
α

)
times to boost the success probability to a constant. This is a randomized polynomial

time algorithm when α = Ω
(

1
m

)
.

In the following, we show that when α 6 1
4m

, it is easy to obtain a 2-approximate
solution without running the path-rounding algorithm. Let x∗ be an optimal solution to
(st-CP) with budget k, and f ∗ be the unit s-t electrical flow supported in x∗. Let P be
the flow decomposition of f ∗ as in Lemma 8.2.4. We call a path p ∈ P an integral path if
every edge e ∈ p has x∗(e) = 1; otherwise we call p a fractional path. When α 6 1

4m
, we

simply return the union of all integral paths as our solution H. Clearly, H has at most
k edges as it only contains integral edges. Next, we bound ReffH(s, t) by the energy of
the flow supported in the integral paths. By Lemma 8.2.2, an edge e with x∗(e) < 1 has
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f ∗(e) = αx∗(e) < α 6 1
4m

. This implies that each fractional path p has vp 6 1
4m

. Since P
has at most m paths (Lemma 8.2.4), the total flow in the fractional paths is at most 1

4
,

and thus the total flow in the integral paths is at least 3
4
. By scaling the flow supported in

the integral paths to a one unit s-t flow, we see that

ReffH(s, t) 6
Ex∗(f ∗)

(3
4
)2

6 2Ex∗(f ∗) = 2 Reffx∗(s, t).

To summarize, in all cases including k < 2dst and α 6 1
4m

, there is a polynomial time
algorithm to return an 8-approximate solution to the s-t effective resistance network design
problem.

We make two remarks about improvements of Theorem 8.2.10.

Remark 8.2.11 (Approximation Ratio). The analysis of the 8-approximation algorithm is
not tight. By a more careful analysis of the expected energy in Lemma 8.2.7 and the short
path idea used in the next subsection, we can show that the approximation guarantee of the
same algorithm in Theorem 8.2.10 is less than 5. However, the analysis is quite involved
and not very insightful, so we have decided to omit those details and only keep the current
analysis.

Remark 8.2.12 (Deterministic Algorithm). Using the standard pessimistic estimator tech-
nique, we can derandomize the path-rounding algorithm to obtain an 8-approximation de-
terministic algorithm. The analysis is standard and we omit the details that would take a
few pages.

8.2.5 The Large Budget Case

In this subsection, we show how to modify the algorithm in Theorem 8.2.10 to achieve
a better approximation ratio when the budget is much larger than the s-t shortest path
distance.

The observation is that when k � dst, then α is small by Lemma 8.2.3, and so there are
many iterations in the path-rounding algorithm. Since each iteration is independent, we
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can use Chernoff-Hoeffding’s bound to prove a stronger bound on the probability that the
number of edges in the returned solution is significantly more than k (which outperforms
the bound proved in Lemma 8.2.6 using Markov’s inequality). We can then show that
the expected s-t effective resistance is close to two times the optimal value by arguments
similar to the proof of Lemma 8.2.7.

Modified Rounding Algorithm

For our analysis, we slightly modify the path-rounding algorithm to ignore “long” paths in
the flow decomposition, so that we have a worst case bound to apply Chernoff-Hoeffding’s
bound. Unlike the flow decomposition in Lemma 8.2.4, the short path flow decomposition
definition is specific to the electrical flow of an optimal solution to (st-CP). In the following
definition, c is a parameter which will be set as 1

ε
> 1 to achieve a (2+O(ε))-approximation.

Definition 8.2.13 (Short Path Decomposition of Electrical Flow of Optimal Solution).
Let x∗ be an optimal solution to the convex program (st-CP). Let f ∗ be the unit s-t electrical
flow supported in x∗. Let α be the flow-conductance ratio defined in Lemma 8.2.2.

Let P∗ be a flow decomposition of f ∗ as defined in Lemma 8.2.4. Let x∗F :=
∑

e∈EF x∗(e)

be the total fractional value on the fractional edges EF in the optimal solution x∗.

We call a path p ∈ P∗ a long path if p has at least cαx∗F edges in EF , i.e. |p∩EF | > cαx∗F .
Otherwise we call a path p ∈ P∗ a short path.

Let P := {p ∈ P∗ | p is a short path} be the collection of short paths in P∗. Let
fP :=

∑
p∈P vpχp be the s-t flow defined by the short paths, and vP :=

∑
p∈P vp be the total

flow value of fP .

The modified algorithm is very similar to the randomized path-rounding algorithm in
Section 8.2.3. The only difference is that we only sample the paths in the short path flow
decomposition in Definition 8.2.13, and we adjust the sampling probability of a path p to
vp
vP

so that the sum is one.

267



Randomized Short Path Rounding Algorithm

1. Let x∗ be an optimal solution to the convex program (st-CP). Let f ∗ be the unit
s-t electrical flow supported in x∗. Let α be the flow-conductance ratio defined
in Lemma 8.2.2.

2. Compute a short path flow decomposition P of f ∗ as described in Defini-
tion 8.2.13.

3. For i from 1 to τ = b 1
α
c do

• Let Pi be a random path from P where each path p ∈ P is sampled with
probability vp

vP
.

4. Return the subgraph H formed by the edge set ∪τi=1Pi.

The following simple lemma shows that the total flow on the long paths is negligible
when c is large, which will be useful in the analysis.

Lemma 8.2.14. For the short path flow decomposition in Definition 8.2.13, vP > 1− 1
c
.

Proof. Using αx(e)∗ = f ∗(e) for e ∈ EF from Lemma 8.2.2 and the properties of the flow
decomposition P∗ of f ∗ in Lemma 8.2.4,

αx∗F =
∑
e∈EF

f ∗(e) =
∑
p∈P∗

vp ·|p∩EF | >
∑

p∈P∗−P

vp ·|p∩EF | > cαx∗F
∑

p∈P∗−P

vp = cαx∗F (1−vP),

where the last inequality is by the definition of long paths and the last equality is because
f ∗ is a unit s-t flow.

Analysis of Approximation Guarantee

First, we consider the expected s-t effective resistance of the returned subgraph H. For
intuition, we can think of the modified rounding algorithm as applying the rounding algo-

268



rithm in the scaled flow fP/vP , and so it should follow from Lemma 8.2.7 that

E [ReffH(s, t)] 6 2Ex∗
(

fP
vP

)
=

2

v2
P
Ex∗(fP) 6

2

v2
P
Ex∗(f ∗) =

2

v2
P

Reffx∗(s, t),

which will be at most (2 +O(ε)) Reffx∗(s, t) when c = 1/ε from Lemma 8.2.14.

We cannot directly apply Lemma 8.2.7 as stated, as the flow fP does not satisfy the
flow-conductance ratio α in Lemma 8.2.2, but essentially the same proof will work to get
the same conclusion (but not exactly the same intermediate step).

Lemma 8.2.15. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
Let x∗ be an optimal solution to (st-CP) and f ∗ be the unit s-t electrical flow supported
in x∗. The expected s-t effective resistance of the subgraph H returned by the randomized
short path rounding algorithm is

E [ReffH(s, t)] 6
2

v2
P
Ex∗(f ∗) =

2

v2
P

Reffx∗(s, t),

where P is the short path flow decomposition of f ∗ as described in Definition 8.2.13.

The main difference of the analysis is to apply the Hoeffding’s inequality (instead of
Markov’s inequality) to bound the probability that the returned subgraph has significantly
more than k edges.

Lemma 8.2.16. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
Let x∗ be an optimal solution to (st-CP) and f ∗ be the unit s-t electrical flow supported in
x∗. Let H be the subgraph returned by the randomized short path rounding algorithm given
x∗ as input, and |E(H)| be the number of edges in H. Then, for any δ > 0,

P [|E(H)| > (1 + δ)k] 6 exp

(
−2δ2

c2α

)
,

where c is the parameter in the short path flow decomposition in Definition 8.2.13 and α
is the flow-conductance ratio of f ∗ and x∗ as defined in Lemma 8.2.2.
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Proof. As in Lemma 8.2.6, we assume pessimistically that all integral edges EI will be
included in H, and so we focus on the fractional edges EF . Let Xi,e be the indicator
variable of whether the edge e is sampled in the i-th iteration of the short path rounding
algorithm, and Xi,F :=

∑
e∈EF Xi,e be the total number of fractional edges sampled in

the i-th iteration. Let XF be the total number of fractional edges in H. Note that
XF 6

∑τ
i=1 Xi,F , since if some fractional edge was sampled in different iterations, we only

count it once in XF . By linearity of expectation, E [XF ] 6
∑τ

i=1 E [Xi,F ].

Let P∗ be the flow path decomposition of f ∗ in Lemma 8.2.4, and P be the short
path flow decomposition of f ∗ as described in Definition 8.2.13. For an edge e, recall that
fP(e) =

∑
p∈P:p3e vp is the total flow value on e from the short paths in P . As we scaled

the probability of each path by 1/vP in the rounding algorithm, the probability that edge
e is sampled in the i-th iteration is fP(e)/vP . Let f (e) := f ∗(e) − fP(e) be the total flow
value on e from the long paths in P∗ − P . The expected value of Xi,F is

E [Xi,F ] =
∑
e∈EF

E [Xi,e] =
∑
e∈EF

fP(e)

vP
=
∑
e∈EF

f ∗(e)− f (e)

vP
=
∑
e∈EF

αx∗(e)− f (e)

vP

By the definition of the long paths,∑
e∈EF

f (e) =
∑
e∈EF

∑
p∈P∗−P

vp =
∑

p∈P∗−P

vp · |p ∩ EF | > cαx∗F
∑

p∈P∗−P

vp = cαx∗F (1− vP),

where we recall that x∗F =
∑

e∈EF x
∗
e. Therefore,

E [Xi,F ] =
∑
e∈EF

αx∗(e)− f (e)

vP
6 αx∗F ·

1− c+ cvP
vP

= αx∗F · (c−
c− 1

vP
) 6 αx∗F ,

where the last inequality uses that vP 6 1 and c > 1. It follows that E [XF ] 6 ταx∗F 6 x∗F .

As each iteration is independent, the random variables Xi,F for 1 6 i 6 τ are indepen-
dent. Since we only use short paths, the maximum value of each Xi,F is at most cαx∗F . So
we can apply Hoeffding’s inequality Theorem 3.1.3 to show that

P [XF > (1 + δ)x∗F ] 6 exp

(
− 2δ2(x∗F )2

τc2α2(x∗F )2

)
6 exp

(
−2δ2

c2α

)
.
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Let XI be the total number of integral edges in H. As XI 6 |EI |, we conclude that

P [|E(H)| > (1 + δ)k] = P [XI +XF > (1 + δ)(|EI |+ x∗F )]

6 P [XF > (1 + δ)x∗F ] 6 exp

(
−2δ2

c2α

)
.

As in Section 8.2.3, we can combine Lemma 8.2.16 and Lemma 8.2.15 to show that the
randomized short path rounding algorithm is a bicriteria approximation algorithm.

Theorem 8.2.17. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
Suppose further that k > dst/ε

10, where ε > 0 is an error parameter satisfying ε 6 η for
a small constant η. Let x∗ be an optimal solution to (st-CP). Given x∗, the randomized
short path rounding algorithm with c = 1

ε
will return a subgraph H with at most (1 + ε)k

edges and ReffH(s, t) 6 (2 + 10ε) · Reffx∗(s, t) with probability at least ε.

Proof. The additional assumption k > dst/ε
10 implies that α 6 ε5 by Lemma 8.2.3.

Setting c = 1
ε
and δ = ε, it follows from Lemma 8.2.16 that

P [|E(H)| > (1 + ε)k] 6 exp

(
−2δ2

c2α

)
6 exp

(
−2

ε

)
< ε,

where the last inequality holds for ε > 0.

Since c = 1
ε
, Lemma 8.2.14 implies that vP > 1−ε for the short path flow decomposition

in Definition 8.2.13. Using Markov’s inequality and Lemma 8.2.15, for sufficiently small ε
we have

P [ReffH(s, t) > (2 + 10ε) · Reffx∗(s, t)] 6
E [ReffH(s, t)]

(2 + 10ε) · Reffx∗(s, t)

6
2

v2
P(2 + 10ε)

6
2

(1− ε)2(2 + 10ε)
< 1− 2ε.

Therefore, with probability at least ε, the subgraph H returned by the randomized short
path rounding algorithm satisfies both properties.
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Using the same arguments as in Section 8.2.4, we can turn the above bicriteria approx-
imation algorithm into a true approximation algorithm.

Theorem 8.2.18. Suppose the input instance satisfies the conditions in Assumption 8.2.1.
Suppose further that k > 2dst/ε

10, where ε > 0 is an error parameter satisfying ε 6 η for a
small constant η. There is a polynomial time (2 + O(ε))-approximation algorithm for the
s-t effective resistance network design problem.

Proof. As in the proof of Theorem 8.2.10, we apply the bicriteria approximation algorithm
in Theorem 8.2.17 with input x∗, an optimal solution to (st-CP) with the scaled-down
budget k

1+ε
, to return a subgraph H. As the new budget k

1+ε
is still greater than dst/ε10,

by Theorem 8.2.17, with probability at least ε the subgraphH satisfies |E(H)| 6 (1+ε)k
1+ε

= k

and

ReffH(s, t) 6
(
2 +O(ε)

)
· opt

(
k

1 + ε

)
6
(
2 +O(ε)

)
(1 + ε) · opt(k) 6

(
2 +O(ε)

)
· opt(k),

where we used the notations and arguments in Theorem 8.2.10.

For the time complexity, note that α 6 ε5 by Lemma 8.2.3 and the large budget
assumption, and so we can assume that ε5 > α > 1

4m
, as otherwise there is a simple 2-

approximation algorithm in the case α 6 1
4m

described in Theorem 8.2.10. Therefore, the
success probability can be boosted to a constant in polynomial number of executions of
the bicriteria algorithm in Theorem 8.2.17.

8.2.6 Cost Minimization with s-t Effective Resistance Constraint

In this subsection, we consider a “dual” problem of the s-t effective resistance minimization
problem. In the dual problem, we are given a graph G = (V,E) and a target effective
resistance R, and the objective is to find a subgraph H of minimum number of edges such
that ReffH(s, t) 6 R. The same NP-hardness proof in Section 8.3.1 can be used to show
that the dual problem is NP-complete.
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Using the same techniques for the s-t effective resistance minimization problem, we
can obtain a constant factor bicriteria approximation algorithm for this problem. As the
proofs are very similar, we will just state the results and highlight the differences. The main
difference is that the convex program has unbounded integrality gap, and as a consequence
we cannot turn the bicriteria approximation algorithm into a true approximation algorithm
as in the s-t effective resistance network design problem. Using the same technique as in
Theorem 8.2.10, however, we can return an 8-approximation to the optimal number of
edges without violating the effective resistance constraint, if we are allowed to buy up to
four copies of the same edge (see Theorem 8.2.19).

Convex Programming Relaxation

We consider the following natural convex programming relaxation for the dual problem.

minimize
x∈RE

∑
e∈E

x(e)

subject to Reffst(x) 6 R,

0 6 x(e) 6 1 ∀e ∈ E.

(DCP)

Integrality Gap Examples

Unlike the s-t effective resistance network design problem, the convex program (DCP)
has unbounded integrality gap. Consider the following example in Figure 8.3, where the
top path has length n−1, and the bottom path has only one edge. The target effective
resistance is R = (n−1)2

(n−1)2+ε
for some constant ε > 0. Since R < 1, to satisfy the effective

resistance constraint, any integral solution must contain both paths and thus has cost n.
However, the fractional solution can set x(e) = ε

n−1
for each edge in the top path and set

x(e) = 1 for the bottom edge. It can be checked that this fractional solution satisfies the
constraint, and the total cost is 1+ε. Therefore, the integrality gap of this example is Ω(n).
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. . .

Figure 8.3: Ω(n) integrality gap example.

Optimal Solutions

Although the convex program (DCP) has a large integrality gap, the same rounding tech-
nique can be used to obtain a constant factor bicriteria approximation algorithm.

Exactly the same characterization of the optimality conditions as in the s-t effective
resistance network design problem holds, such that any optimal solution satisfies the flow-
conductance ratio α > 0 as described in Lemma 8.2.2.

Analogous to Lemma 8.2.3, we can prove an upper bound on α that

α2 6
R

dst
.

Analogous to Lemma 8.2.9, we can prove a lower bound on any optimal solution x that

opt :=
∑
e∈E

x(e) >
d2
st

R
.

We can assume that R < dst, as otherwise a shortest s-t path is an optimal solution, and
so we can assume that 0 < α < 1.

Rounding Algorithm

The rounding algorithm is exactly the same as in Section 8.2.3. The same proofs as in
Lemma 8.2.6 and Lemma 8.2.7 will imply that, with probability Ω(α), the subgraph H

returned by the randomized path rounding algorithm satisfies

|E(H)| 6 2
∑
e∈E

x∗(e) and ReffH(s, t) 6 4 Reffx∗(s, t),

where x∗ is an optimal solution to (DCP) and so |E(H)| 6 2opt. The same lower bound on
α = Ω( 1

m
) as described in Theorem 8.2.10 applies, and so this is a randomized polynomial

time algorithm.
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An Alternative Bicriteria Approximation Algorithm

In the s-t effective resistance network design problem, we turn a bicriteria approximation
algorithm into a true approximation algorithm, by scaling down the budget k by a factor of
two and running the bicriteria approximation algorithm. For the proof, we argue opt(k

2
) 6

2opt(k) by scaling down an optimal solution x∗ with budget k to a solution 1
2
x∗ with budget

k
2
.

In the dual problem, we can also try a similar approach, by scaling down the target
effective resistance R by a factor of 4 and run the bicriteria approximation algorithm.
However, we cannot argue that opt(R

4
) 6 4opt(R), as an optimal solution x∗ with effective

resistance R may not be able to scale up to 4x∗ with effective resistance R/4 because of the
capacity constraints 0 6 x(e) 6 1 for e ∈ E. This approach would work if we are allowed
to violate the capacity constraint by a factor of 4.

Theorem 8.2.19. Given an weighted input graph G = (V,E), there is a polynomial time
algorithm for the dual problem which returns a multi-subgraph H with |E(H)| 6 8opt and
ReffH(s, t) 6 R where there are at most 4 parallel copies of each edge.

8.3 Hardness

In this section, we first prove that the s-t effective resistance network design problem is NP-
hard in Section 8.3.1. Then, we prove that the weighted problem is APX-hard assuming
the small-set expansion conjecture in Section 8.3.2.

8.3.1 NP-Hardness

We will prove Theorem 8.1.1 in this subsection. The following is the decision version of
the problem.

Problem 8.3.1 (s-t effective resistance network design).
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Input: An undirected graph G = (V,E), two vertices s, t ∈ V , and two parameters k
and R.

Question: Does there exist a subgraph H of G with at most k edges and ReffH(s, t) 6

R?

We will show that this problem is NP-complete by a reduction from the 3-Dimensional
Matching (3DM) problem.

Problem 8.3.2 (3-Dimensional Matching).

Input: Three disjoint sets of elements X = {x1, . . . , xq}, Y = {y1, . . . , yq}, Z =

{z1, . . . , zq}; a set of triples T ⊆ X × Y × Z where each triple contains exactly one
element in X, Y, Z.

Question: Does there exist a subset of q pairwise disjoint triples in T ?

Reduction: Given an instance of 3DM with {(X, Y, Z), T }, let τ = |T | and denote the
triples by T = {T1, . . . , Tτ}. We construct a graph G = (V,E) as follows:

Figure 8.4: An illustration of the construction of the graph G from a 3DM instance.

276



Vertex Set: The vertex set V is the disjoint union of five sets {s}, {t}, VA, VB, and D.
Each vertex in VA corresponds to a triple in T , that is VA = {T1, . . . , Tτ}. Each vertex in
VB corresponds to an element in X ∪Y ∪Z, that is VB = {x1, . . . , xq, y1, . . . , yq, z1, . . . , zq}.
Let l = 3τ + 3q. The set D consists of τ · l “dummy” vertices {di,j | 1 6 i 6 τ, 1 6 j 6 l}.
So, there are totally τ + 3q+ 2 + τ(3τ + 3q) vertices in G, which is polynomial in the input
size of the 3DM instance.

Edge Set: The edge set E is the disjoint union of three edge sets F1, F2 and P . There
are 3τ edges in F1, where we have three edges (T, xa), (T, yb) and (T, zc) for each triple
T = (xa, yb, zc) ∈ T . There are 3q edges in F2, where there is an edge from each vertex in
VB to t. There are τ(l + 1) edges in P , where there is a path Pi := (s, di,1, di,2, . . . , di,l, Ti)

for each triple Ti ∈ T , 1 6 i 6 τ . So, there are totally 3τ + 3q + τ(3τ + 3q + 1) edges in
E, which is polynomial in the input size of the 3DM instance.

The following claim completes the proof of Theorem 8.1.1.

Lemma 8.3.3. Let k = q(l + 1) + 3τ + 3q and R = (3(l + 1) + 2)/3q. The 3DM instance
has q disjoint triples if and only if the graph G has a subgraph H with at most k edges and
ReffH(s, t) 6 R.

Proof. One direction is easy. If there are q disjoint triples in the 3DM instance, say
{T1, . . . , Tq}, then H will consist of the q paths P1, . . . , Pq, the 3q edges in F1 incident on
T1, . . . , Tq, and all the 3q edges in F2. There are (l + 1)q + 3q + 3q 6 k edges in H, and
ReffH(s, t) = l+1

q
+ 1

3q
+ 1

3q
= 3(l+1)+2

3q
= R, as in the graph in Figure 8.5.

The other direction is more interesting. If there do not exist q disjoint triples in the
3DM instance, then we need to argue that ReffH(s, t) > R for any H with at most k edges.
First, note that k < (q+1)(l+1), and so the budget is not enough for us to buy more than
q paths. As it is useless to buy only a proper subset of a path, we can thus assume that H
consists of q paths and all the edges in F1, F2. H has a total of exactly q(l+1)+3τ+3q = k

edges. For any such H, we will argue that ReffH(s, t) > R. Without loss of generality,
assume that H consists of P1, . . . , Pq and all edges in F1 and F2. As T1, . . . , Tq are not
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disjoint, there are some vertices in VB that are not neighbors of T1 ∪ . . . ∪ Tq. Call those
vertices U .

We consider the following modifications of H to obtain H ′, and use ReffH′(s, t) to lower
bound ReffH(s, t). For every pair of vertices in VB, we add an edge of zero resistance. For
each edge incident on Tq+1, . . . , Tτ , we decrease its resistance to zero. By the monotonicity
principle, the modifications will not increase the s-t effective resistance, as we either add
edges with zero resistance or decrease the resistance of existing edges. The modifications
are equivalent to contracting the vertices with zero resistance edges in between, and so H ′

is equivalent to the graph in Figure 8.5. Therefore, we have ReffH(s, t) > ReffH′(s, t) > R.

Figure 8.5: The subgraph H when the 3DM instance has q disjoint triples.

Figure 8.6: The subgraph H when U is non-empty.

We will prove that one of the inequalities in ReffH(s, t) > ReffH′(s, t) > R must be
strict when U 6= ∅ (Figure 8.6). To argue the strict inequality, we look at the unit s-t
electrical flow f in H and consider two cases.
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• If there exists some vertex u ∈ U with no incoming electrical flow, then we can
delete such a vertex without changing ReffH(s, t). But then in the modified graph
H ′, the number of parallel edges to t is now strictly smaller than 3q, and therefore
ReffH′(s, t) > R.

• If there exists some vertex u ∈ U with some incoming electrical flow, then f(Tju) > 0

for some j > q + 1. Since we have decreased the resistance of such an edge Tju to 0,
the energy of f in H ′ is strictly smaller than the energy of f in H. By Thomson’s
principle, we have ReffH′(s, t) 6 EH′(f) < EH(f) = ReffH(s, t).

Since the 3DM instance has no q disjoint triples, it follows that U 6= ∅ and thus one of the
above two cases must apply. In either case, we have ReffH(s, t) > R and this completes
the proof of the other direction.

8.3.2 Improved Hardness Assuming Small-Set Expansion Conjec-

ture

In this subsection, we will prove Theorem 8.1.4 that it is NP-hard to approximate the
weighted s-t effective resistance network design problem within a factor smaller than 2.
First, we will state the small-set expansion conjecture and its variant on bipartite graphs,
and present an overview of the proof in Section 8.3.2.1. Next, we will reduce the bipartite
small-set expansion problem to the weighted s-t effective resistance network design problem
in Section 8.3.2.2, and then reduce the small-set expansion problem to the bipartite small-
set expansion problem in Section 8.3.2.3 to complete the proof.

8.3.2.1 The Small-Set Expansion Conjecture and Proof Overview

The gap small-set expansion problem is formulated by Raghavendra and Steurer [123]. We
use the version stated in [124].
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Definition 8.3.4 (Gap Small-Set Expansion Problem [123, 124]). Given an undirected
graph G = (V,E), two parameters 0 < β < α < 1 and δ > 0, the (α, β)-gap δ-small-set
expansion problem, denoted by SSEδ(α, β), is to distinguish between the following two cases.

• Yes: There exists a subset S ⊆ V with vol(S) = δ vol(V ) and φ(S) 6 β.

• No: Every subset S ⊆ V with vol(S) = δ vol(V ) has φ(S) > α.

It is conjectured in [123] that the gap small-set expansion problem becomes harder
when δ becomes smaller.

Conjecture 8.3.5 (Small-Set Expansion Conjecture [123, 124]). For any ε ∈ (0, 1
2
), there

exists sufficiently small δ > 0 such that SSEδ(1− ε, ε) is NP-hard even for regular graphs.

It is known that the small-set expansion conjecture implies the Unique Game conjec-
ture [123] and is equivalent to some variant of the Unique Game Conjecture [124].

We will show the SSE-hardness of the weighted s-t effective resistance network design
problem in two steps, and use the small-set expansion problem on regular bipartite graphs
as an intermediate problem.

Proposition 8.3.6. For any ε > 0, there is a polynomial time reduction from SSEδ(1−ε, ε)
on d-regular graphs to SSEδ(1− 16ε, ε) on d-regular bipartite graphs.

Proposition 8.3.7. Given an instance of SSEδ(α, β) on a d-regular bipartite graph B,
there is a polynomial time algorithm to construct an instance of the weighted s-t effective
resistance network design problem with graph G and cost budget k satisfying the following
properties.

• If B is a Yes-instance, then there is a subgraph H of G with cost at most k and

ReffH(s, t) 6
2

(1− β)dk
.
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• if B is a No-instance, then every subgraph H of G with cost at most k has

ReffH(s, t) >
2

(1− α
2
)dk

.

Theorem 8.1.4 will follow immediately from the two propositions.

Theorem 8.3.8. For any ε′ > 0, it is NP-hard to approximate the weighted s-t effective
resistance network design problem to within a factor of 2− ε′, assuming that SSEδ(1− ε, ε)
is NP-hard on regular graphs for sufficiently small ε > 0.

Proof. First, given a d-regular instance of SSEδ(1 − ε, ε), we apply Proposition 8.3.6 to
obtain a d-regular bipartite instance of SSEδ(1− 16ε, ε). Then, we apply Proposition 8.3.7
with α = 1 − 16ε and β = ε and see that the ratio between the s-t effective resistance of
the No-case and the Yes-case is at least

(1− β)dk

(1− α
2
)dk

=
1− ε
1
2

+ 8ε
=

2(1− ε)
1 + 16ε

> 2− ε′,

for sufficiently small ε.

We prove Proposition 8.3.7 in Section 8.3.2.2 and Proposition 8.3.6 in Section 8.3.2.3.

8.3.2.2 From Bipartite Small-Set Expansion to weighted s-t Effective Resis-

tance Network Design

We prove Proposition 8.3.7 in this subsection. In the Yes-case of bipartite SSE, we use the
small dense subgraph (from the small low conductance set) to construct a small subgraph
with small s-t effective resistance. In the No-case of bipartite SSE, we argue that every
small subgraph has considerably larger s-t effective resistance.

Construction: Given an SSEδ(α, β) instance with a d-regular bipartite graph B =

(VX , VY ;EB), we construct an instance of the weighted s-t effective resistance network
design problem with graph G = (V,E) as follows. See Figure 8.7 for an illustration.
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s

x1

...

xi

...

xn

y1

...

yj

...

yn

t

VX VY

Figure 8.7: Reduction from bipartite small set expansion to weighted s-t effective resis-
tance network design.

Vertex Set: The vertex set V of G is simply the disjoint union of {s}, VX , VY , {t}.

Edge Set: The edge set E of G is the disjoint union of three edge sets Es, EB, Et.
The edge set Es has |VX | edges, where there is an edge from s to each vertex v ∈ VX .
The edge set Et has |VY | edges, where there is an edge from each vertex v ∈ VY to t.

Costs and Resistances: Every edge e in EB has ce = 0 and re = 1. Every edge
e ∈ Es ∪ Et has ce = 1 and re = 0.

Budget: The cost budget k is δ|VX ∪ VY |.

Yes-case: Suppose B is a Yes-instance of SSEδ(α, β). Since B is regular, there exist
subsets X ⊆ VX and Y ⊆ VY such that |X ∪ Y | = δ|VX ∪ VY | = k and φB(X ∪ Y ) 6 β.
We construct the subgraph H of G as follows.

Subgraph H: The subgraph H includes all the edges from s to X, all the edges
from X to Y , and all the edges from Y to t. Since edges from X to Y are of cost
zero, the total cost in H is equal to |X|+ |Y | = k.
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s tX Y

Z

|X| edges
...

|Y | edges
...

...

> 1
2
(1− β)dk edges

... ...

Figure 8.8: In the Yes-case, the solid edges are included in H and the dashed edges are
deleted.

The following claim will complete the proof of the first item of Proposition 8.3.7.

Lemma 8.3.9. ReffH(s, t) 6 2
(1−β)dk

.

Proof. Since B is a d-regular bipartite graph, we have

d(|X|+ |Y |) = volB(X ∪ Y ) = |δB(X ∪ Y )|+ 2|EB(X, Y )|,

where EB(X, Y ) denotes the set of edges with one endpoint in X and one endpoint in Y .
Since φB(X ∪ Y ) 6 β, we have |δB(X ∪ Y )| 6 β · volB(X ∪ Y ) = dβ(|X| + |Y |). Hence,
the number of edges between X and Y is

|EB(X, Y )| = d(|X|+ |Y |)− |δB(X ∪ Y )|
2

>
1

2
(1− β)d(|X|+ |Y |) =

1

2
(1− β)dk.

In terms of s-t effective resistance, H is equivalent to the graph in Figure 8.8, where
Z = (VX\X) ∪ (VY \Y ) is the set of vertices not in X and Y . Since the edges from s to X
and from Y to t have zero resistance and edges between X and Y have resistance one, we
have ReffH(s, t) 6 2

(1−β)dk
.

No-case: We will prove the second item of Proposition 8.3.7 by arguing that every
subgraph of B with total cost at most k has considerably larger s-t effective resistance.
Since all the edges between VX and VY have zero cost and adding edges never increases
s-t effective resistance (by Rayleigh’s monotonicity principle), we can assume without loss
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of generality that any solution H to the weighted s-t effective resistance network design
problem takes all edges between VX and VY and also takes exactly k edges from Es ∪ Et.
Consider an arbitrary subgraph H with the above properties. Let X ⊆ VX be the set
of neighbors of s and Y ⊆ VY be the set of neighbors of t, with |X| + |Y | = k. Let
φ := φB(X ∪ Y ). Note that φ > α as we are in the No-case where φB(X ∪ Y ) > α for
every |X ∪ Y | = k. Using the same calculation as above, we have

|EB(X, Y )| = 1

2
(1− φB(X ∪ Y ))dk =

1

2
(1− φ)dk.

The subgraph H is shown in Figure 8.9, where Z = (VX\X)∪ (VY \Y ) is the set of vertices
not in X and Y , and the edges within Z are not shown. To lower bound ReffH(s, t), we
modify H to obtain H ′ and argue that ReffH(s, t) > ReffH′(s, t) and then show a lower
bound on ReffH′(s, t).

s tX Y

Z

|X| edges
...

|Y | edges
...

...
6 1

2
(1− α)dk edges

... ...

Figure 8.9: The subgraph H ′ is obtained by identifying the subsets X, Y, Z into single
vertices.

To obtain H ′ from H, we simply identify the three subsets of vertices X, Y, Z to three
vertices, which is equivalent to adding a clique of zero resistance edges to each of these three
subsets. By Rayleigh’s monotonicity principle, this could only decrease the s-t effective
resistance and so we have ReffH(s, t) > ReffH′(s, t).

In terms of s-t effective resistance, the subgraph H ′ is equivalent to the graph with two
paths between X and Y (with parallel edges): one path P1 of length one with |EB(X, Y )|
parallel edges between X and Y , another path P2 of length two with |EB(X,Z)| parallel
edges between X and Z and |EB(Z, Y )| parallel edges between Z and Y . To lower bound
ReffH′(s, t), we lower bound the resistance of P1 and P2, denoted by r(P1) and r(P2). Note
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that
r(P1) =

1

EB(X, Y )
=

2

(1− φ)dk
.

For r(P2), let x = |δB(X,Z)| and y = |δB(Y, Z)|, then

r(P2) =
1

x
+

1

y
=

1

x+ y
· (x+ y)2

xy
=

1

x+ y
·
(
x

y
+
y

x
+ 2

)
>

4

x+ y
=

4

φdk
,

where the inequality holds since a + 1/a > 2 for any a > 0, and the last equality holds
because x+ y = |δB(X ∪ Y )| = φdk. Finally, by Fact 2.4.1,

ReffH(s, t) > ReffH′(s, t) =
1

1/r(P1) + 1/r(P2)

>
1

1
2
(1− φ)dk + 1

4
φdk

=
2

(1− φ/2)dk
>

2

(1− α/2)dk
,

where the last inequality is because we are in the No-case. This completes the proof of
the second item of Proposition 8.3.7.

Remark 8.3.10. In this subsection, we show the hardness of the weighted s-t effective
resistance network design problem, when the edge cost and the edge resistance could be
arbitrary. Using a similar argument as in the proof of Theorem 8.1.1, the reduction can be
modified to the unit-cost case if we replace the edges from s to VX and VY to t by sufficiently
long paths (so that the cost of connecting s to a vertex in VX is much larger than the cost
of connecting a vertex in VX to a vertex in VY ). Therefore, the same (2− ε)-SSE-hardness
also holds in the case when every edge has the same cost.

8.3.2.3 From Small Set Expansion to Bipartite Small Set Expansion

We prove Proposition 8.3.6 in this subsection.

Construction: Given an instance SSEδ(1− ε, ε) on a d-regular graph G = (V,E), we
construct a d-regular bipartite graph B = (VX , VY ;EB) as follows. For each vertex v in V ,
we create a vertex vX ∈ VX and a vertex vY ∈ VY , so that |VX | = |VY | = |V |. For each
edge uv ∈ E, we add two edges uXvY and uY vX to EB. It is clear from the construction
that B is d-regular.
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Correctness: To prove Proposition 8.3.6, we will establish the following two claims.

1. Yes-case: If there is a set S ⊆ V with |S| = δ|V | and φG(S) 6 ε in G, then there
exist X ⊆ VX and Y ⊆ VY with |X|+ |Y | = δ(|VX |+ |VY |) and φB(X ∪ Y ) 6 ε in B.

2. No-case: If every set S ⊆ V with |S| = δ|V | has φG(S) > 1 − ε in G, then every
sets X ⊆ VX and Y ⊆ VY with |X|+ |Y | = δ(|VX |+ |VY |) has φB(X ∪ Y ) > 1− 16ε

in B.

Yes-case: Let S ⊆ V be a subset with |S| = δ|V | and φG(S) 6 ε in G. Let SX :=

{vX | v ∈ S} and SY := {vY | v ∈ S}, with |S| = |SX | = |SY |. By construction,
an edge uv ∈ δG(S) if and only if both uXvY and vXuY are in δB(SX ∪ SY ), and thus
|δB(SX ∪ SY )| = 2|δG(S)|. Since |SX ∪ SY | = |SX | + |SY | = 2|S| and B is d-regular, we
have

φB(SX ∪ SY ) =
|δB(SX ∪ SY )|
volB(SX ∪ SY )

=
|δB(SX ∪ SY )|
d(|SX |+ |SY |)

=
2|δG(S)|

2d|S|
= φG(S) 6 ε.

No-case: Consider arbitrary subsets X ⊆ VX and Y ⊆ VY with |X| + |Y | = δ(|VX | +
|VY |) = 2δ|V |. To lower bound φB(X ∪Y ), we will upper bound |EB(X, Y )|. We partition
X into groups X1, . . . , Xa where every group except the last group is of size δ|V |/2 and
the last group is of size at most δ|V |/2. We partition Y into groups Y1, . . . , Yb in a similar
way. The following claim uses the small-set expansion property in G to show that there is
no small dense subset in B.

Lemma 8.3.11. Suppose G is a No-instance of SSEδ(1− ε, ε). Then, for any 1 6 i 6 a

and 1 6 j 6 b,
|EB(Xi, Yj)| 6 εδd|V |.

Proof. We first argue that there is no small dense subset in G, and then we will use
it to bound |EB(Xi, Yj)|. Suppose S ⊆ V with |S| = δ|V |. As G is a No-instance,
we know that φG(S) > 1 − ε and thus |δG(S)| > (1 − ε) volG(S) = (1 − ε)d|S|. Since
d|S| = volG(S) = |δG(S)| + 2|EG(S, S)|, it follows that |EG(S, S)| 6 εd|S|/2 = εδd|V |/2.
Note that this also implies trivially that |EG(Z,Z)| 6 εδd|V |/2 for any Z with |Z| 6 δ|V |.
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Given Xi and Yj, let Z := {v ∈ G | vX ∈ Xi or vY ∈ Yj}. In words, Z is the set of
vertices in G which have at least one copy in Xi ∪ Yj in B. Since each Xi and Yj is of size
at most δ|V |/2, it follows that |Z| 6 δ|V |. Also, note that |EB(Xi, Yj)| 6 2|EG(Z,Z)|, as
each edge in EB(Xi, Yj) corresponds to one edge in EG(Z,Z) while each edge in EG(Z,Z)

is corresponded to at most two edges in EB(Xi, Yj). Therefore, we can apply the bound in
the previous paragraph to conclude that |E(Xi, Yj)| 6 2|EG(Z,Z)| 6 εδd|V |.

We now use the lemma to bound |EB(X, Y )|. Since |X| + |Y | = 2δ|V |, it follows that
a 6 4 and b 6 4, and therefore

|EB(X, Y )| 6
a∑
i=1

b∑
j=1

|EB(Xi, Yj)| 6 abεδd|V | 6 16εδd|V |.

As B is bipartite,

|δB(X ∪ Y )| = volB(X ∪ Y )− 2|EB(X, Y )| > 2δd|V | − 32εδd|V | = 2(1− 16ε)δd|V |.

Therefore, we have

φB(X ∪ Y ) =
|δB(X ∪ Y )|
volB(X ∪ Y )

>
2(1− 16ε)δd|V |

2δd|V |
= 1− 16ε.

This completes the proof of Proposition 8.3.6. We remark that a more careful argument
gives |EB(X, Y )| 6 6εδd|V | and thus φB(X ∪ Y ) > 1 − 6ε, but this constant does not
matter for the proof of Theorem 8.3.8.
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Chapter 9

Conclusion and Future Work

In this thesis, we studied the spectral rounding problem, which is an extension of the spec-
tral sparsification problem introduced by Spielman and Teng [133]. We demonstrated that
the spectral rounding problem underlies a large family of network design and experimental
design problems. Our results showed that this spectral approach significantly extends the
scope of the traditional survivable network design, and also finds applications in various
other graph problems (e.g., spectral network design problems, additive spectral sparsifica-
tion) in the literature. We also showed that the techniques developed for spectral rounding
provide a unified framework for the experimental design problems, which matches and im-
proves the state-of-the-art. Going beyond spectral rounding, we studied the s-t effective
resistance network design problem. We provided a constant approximation algorithm that
works in the regime where spectral rounding does not apply.

We believe that the linear algebraic perspective and spectral approach will bring new
techniques and stronger results to network design and potentially other combinatorial
optimization problems. The spectral approaches that we discussed in this thesis opens up
many interesting new directions to investigate.

• Our current result of the two-sided spectral rounding is based on Theorem 2.6.10
from [91], whose argument relies on the nonconstructive method of interlacing poly-
nomials. Can we find an efficient algorithm for the two-sided spectral rounding result
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Theorem 5.1.4? It is a major open problem to achieve constructive results for the
method of interlacing polynomials.

• For network design problems in Section 6.1, there are several interesting questions
that one can investigate. Can we recover Jain’s iterative rounding result with a
spectral approach for survivable network design on undirected graphs? Can we extend
the spectral approach to settings such as directed graphs, vertex-connectivity, etc.?
Note that Jain’s iterative rounding has good performance under these settings.

• We can also ask another question regarding to the generalized network design prob-
lem. As shown by the tight example in Section 5.4, the additive error term in the
approximation guarantee of Theorem 6.1.9 is optimal even if there is only an alge-
braic connectivity constraint. Nevertheless, can we improve the additive error term if
there are only effective resistance constraints involved? In particular, can we improve
the dependence of ε?

• For the experimental design problems in Chapter 7, it is natural to consider mini-
mizing

(
tr
(

1
d
(
∑

i∈S uiu>i )−p
)) 1

p as the objective. Note that this objective function is
an interpolation between D-design (p→ 0), A-design (p = 1) and E-design (p→∞)
objectives. Can we extend the current techniques to solve experimental design with
this general objective function?

• Similarly, for the s-t effective resistance network design problem in Chapter 8, can
we find a good approximation algorithm for minimizing the generalized `p-energy for
all p ≥ 1?
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Appendix A

Omitted Proofs in the Main Text

A.1 Calculation of Gradients

Fact 2.2.2. Let f : Sd++ → R be defined as f(X ) = log det(X ). Then, f is differentiable
at any X � 0 with ∇f(X ) = X−1.

Proof. For any X � 0, it suffices to show

lim
H→0

log det(X + H)− log det(X )− 〈X−1,H〉
‖H‖op

= 0.

We consider the term log det(X + H). It follows that

log det(X + H) = log det(X ) det(Id + X−
1
2 HX−

1
2 )

= log det(X ) + log
d∏
i=1

(1 + λi)

= log det(X ) +
d∑
i=1

log(1 + λi),

where λ1, . . . , λd are eigenvalues of the matrix X−
1
2 HX−

1
2 . Thus,
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log det(X + H)− log det(X )− 〈X−1,H〉 =
d∑
i=1

log(1 + λi)− tr(X−
1
2 HX−

1
2 )

=
d∑
i=1

(log(1 + λi)− λi) =
d∑
i=1

(
− λ2

i

2
+ o(λ2

i )
)
,

where the last equality follows by the Taylor series of log(1 + x). Let α = ‖H‖op. Since
X � 0, it follows that |λi| 6 α · λmin(X )−1 for all i ∈ [d]. Therefore, when α→ 0

| log det(X + H) = log det(X ) · det(Id + X−
1
2 HX−

1
2 )|

‖H‖op

6
d∑
i=1

O(α)

λmin(X )2
→ 0.

Fact 2.2.3. Let f : Sd++ → R be defined as f(X ) = tr(X−1). Then, f is differentiable at
any X � 0 with ∇f(X ) = −X−2.

Proof. The proof is similar to the previous one, where we verify the solution by the defini-
tion. Let H ∈ Sd with rank r. Let H = UΛU> be the eigendecomposition with Λ ∈ Rr×r

being the diagonal matrix contains all the nonzero eigenvalues. We consider the matrix
(X + H)−1. For small enough H, X + H is invertible as X � 0, thus

(X + H)−1 = (X + UΛU>)−1 = X−1 − X−1U(Λ−1 + U>X−1U)−1U>X−1,

where the last equality follows by Woodburry matrix identity Lemma 2.1.15. Thus,

tr((X + H)−1)− tr(X−1) + 〈X−2,H〉 = − tr(X−1U(Λ−1 + U>X−1U)−1U>X−1) + 〈X−2,H〉

= −〈U>X−2U, (Λ−1 + U>X−1U)−1〉+ 〈U>X−2U,Λ〉

= 〈U>X−2U,Λ− (Λ−1 + U>X−1U)−1〉

= 〈U>X−2U,ΛU>(X + UΛU>)−1UΛ〉,

where we apply Woodburry matrix identity Lemma 2.1.15 again in the last equality.

(Λ−1 + U>X−1U)−1 = Λ− ΛU>(X + UΛU>)−1UΛ.
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Let α = ‖H‖op = ‖Λ‖op. For small enough α, it holds that X+UΛU> < (λmin(X )−α)Id � 0.
Thus, ∥∥ΛU>(X + UΛU>)−1UΛ

∥∥
op

6
α2

λmin(X )− α
,

which further implies that, when α→ 0,

| tr((X + H)−1)− tr(X−1) + 〈X−2,H〉|
‖H‖op

6
α tr(U>X−2U)

λmin(X )− α
→ 0.

Fact 2.2.4. Let f : Sd+ → R be defined as f(X ) = tr(X
1
2 ). Then, f is differentiable at any

X � 0 with ∇f(X ) = 1
2
X−

1
2 .

Proof. The proof for this fact needs a bit more work then the previous two, since we do
not have a nice formula to expand (X + H)

1
2 . Instead of verifying by definition, we are

going to calculate the partial derivatives directly, and then use the continuity of the the
partial derivatives together with Theorem 2.2.1 to prove the fact.

For i, j ∈ [d], let Ei,j ∈ Rd×d denote a matrix with (i, j)-th entry being one and all other
entries being 0.

Given a matrix X � 0, let λ1 > . . . > λd > 0 be the eigenvalues of X , and let
X = UΛU> be the eigendecomposition of X , where Λ = diag(λ1, . . . , λd), and U ∈ Rd×d is
an orthonormal matrix. Let Dij := U(Ei,j+Ej,i)U> for all 1 6 i < j 6 d, and Dii := UEi,iU>

for i ∈ [d]. We notice that the d(d+1)
2

matrices {Dij}16i6j6d form a basis for the d(d+1)
2

-
dimensional vector space Sd.

We first calculate the directional derivative f ′(X ; Dii) for i ∈ [d]. By definition

f ′(X ; Dii) = lim
δ→0

tr((X + δDii)
1
2 )− tr(X

1
2 )

δ
= lim

δ→0

tr((Λ + δEi,i)
1
2 )− tr(Λ

1
2 )

δ

= lim
δ→0

√
λi + δ −

√
λi

δ
= lim

δ→0

1

2
√
λi + δ

=
1

2
√
λi
,

where the second last inequality follows by L’Hôpital’s rule.

Then, we consider the directional derivative f ′(X ; Dij) for i 6= j ∈ [d]. Without loss of
generality, we assume i = 1 and j = 2. We consider the difference of function values of
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moving in D12 direction by δ. Since Λ is a diagonal matrix, and D12 only have two nonzero
entries, we have

tr((X + δD12)
1
2 )− tr(X

1
2 ) = tr((Λ + δ(E1,2 + E2,1))

1
2 )− tr(Λ

1
2 ) = tr (M)−

√
λ1 −

√
λ2,

where M =
(
λ1 δ
δ λ2

) 1
2 . Notice that(

tr(M)
)2

= (λ1(M)+λ2(M))2 = λ1(M)2 +λ2(M)2 +2λ1(M)λ2(M) = tr(M2)+2
√

det(M2).

Since M2 =
(
λ1 δ
δ λ2

)
, we have tr(M2) = λ1 + λ2 and det(M2) = λ1λ2 − δ2. It follows that

tr((X + δD12)
1
2 )− tr(X

1
2 ) =

√
λ1 + λ2 + 2

√
λ1λ2 − δ2 −

√
λ1 −

√
λ2.

By definition, the directional derivative is equal to

f ′(X ; D12) = lim
δ→0

tr((X + δD12)
1
2 )− tr(X

1
2 )

δ

= lim
δ→0

√
λ1 + λ2 + 2

√
λ1λ2 − δ2 −

√
λ1 −

√
λ2

δ

= lim
δ→0

d

dδ

(√
λ1 + λ2 + 2

√
λ1λ2 − δ2 −

√
λ1 −

√
λ2

)
,

where the last equality is by L’Hôpital’s rule. When δ → 0, we have

d

dδ

(√
λ1 + λ2 + 2

√
λ1λ2 − δ2 −

√
λ1 −

√
λ2

)
= −(λ1 + λ2 + 2

√
λ1λ2 − δ2)−

1
2 (λ1λ2 − δ2)−

1
2 δ → 0.

Thus, we have proved f ′(X ; Dij) = 0 for all i 6= j ∈ [d], and f ′(X ; Dii) = 1
2λi

for all i ∈ [d].
Since the eigenvalues of a matrix is a continuous function with respect to the entries of the
matrix (see, e.g. [77]), all the directional derivatives with respect to the basis {Dij}i,j exist
and are continuous. By Theorem 2.2.1, the function f is continuously differentiable at X .
The gradient with respect to the basis {Dij}i,j can be written as 1

2
Λ−

1
2 . Transforming back

to the standard basis, the gradient can be represented by∇f(X ) = 1
2
UΛ−

1
2 U> = 1

2
X−

1
2 .

With a similar analysis as in the proof of Fact 2.2.4, we can also prove Fact 2.2.5 for
the negative entropy function.
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A.2 Convexity and Concavity

Fact 2.2.15. The function f(X ) = log det(X ) is concave on Sd++.

Proof. According to Lemma 2.2.8, it suffices to show g(t) = log det(X +t(Y−X )) is concave
on [0, 1] for any X ,Y ∈ Sd++. Since X � 0, we rewrite g(t)

g(t) = log det(X + t(Y − X )) = log det(X
1
2 (I + t(X−

1
2 YX−

1
2 − I )X

1
2 )

= log det(X ) + log det(I + t(X−
1
2 YX−

1
2 − I )) = log det(X ) +

d∑
i=1

log(1 + tλi),

where λ1, . . . , λd ∈ R are eigenvalues of X−
1
2 YX−

1
2 − I . Since both X ,Y � 0, we have

λ1, . . . , λd > −1, and 1 + tλi > 0 for t ∈ [0, 1] and all i = 1, . . . , d. Thus, we have

g′(t) =
d∑
i=1

λi
1 + tλi

and g′′(t) = −
d∑
i=1

λ2
i

(1 + tλi)2
.

Hence, g′′(t) is non-positive on t ∈ [0, 1]. Thus, g is concave on [0, 1] by Lemma 2.2.11.

Fact 2.2.16. The function f(X ) = det(X )
1
d is concave on Sd+.

Proof. Given X ,Y < 0, assume one of them is singular, say det(X ) = 0. Then, for any
λ ∈ [0, 1], Jensen’s inequality holds

λ det(X )
1
d + (1− λ) det(Y )

1
d = (1− λ) det(Y )

1
d = det((1− λ)Y )

1
d 6 det(λX + (1− λ)Y )

1
d ,

where the last inequality follows by X ,Y < 0.

It remains to consider the case where X ,Y � 0. By Lemma 2.2.8, it suffices to show
g(t) = det(X + t(Y − X ))

1
d is concave on [0, 1]. With similar calculations as in the proof

of Fact 2.2.15, we have

g(t) = det(X )
1
d · det(I + t(X−

1
2 YX−

1
2 − I ))

1
d = det(X )

1
d ·

d∏
i=1

(1 + tλi)
1
d ,
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where λ1, . . . , λd > −1 are eigenvalues of X−
1
2 YX−

1
2 − I . Note that 1 + tλi > 0 for t ∈ [0, 1]

for all i = 1, . . . , d. Then, we consider the first and second derivative of g.

g′(t) = det(X )
1
d

d∏
i=1

(1 + tλi)
1
d ·

d∑
i=1

λi
d(1 + tλi)

,

g′′(t) = det(X )
1
d

d∏
i=1

(1 + tλi)
1
d ·

( d∑
i=1

λi
d(1 + tλi)

)2

−
d∑
i=1

λ2
i

d(1 + tλi)2

 .

By Cauchy-Schwartz, we have
(∑d

i=1
λi

d(1+tλi)

)2

6 d ·
∑d

i=1
λ2
i

d2(1+tλi)2 =
∑d

i=1
λ2
i

d(1+tλi)2 . To-
gether with the fact that 1 + tλi > 0 for all t ∈ [0, 1], we have g′′(t) 6 0 on [0, 1].

Have considered all cases, f(X ) is concave on Sd+.

A.3 Legendre Function

Lemma A.3.1. The ` 1
2
-regularizer w(X ) = −2 tr(X

1
2 ) is a Legendre function.

Proof. w(X ) = −2 tr(X
1
2 ) is a continuous function with a closed domain D = Sd+. The

differentiability on Sd++ follows from Fact 2.2.4. The strict convexity on Sd++ follows from
Fact 2.2.19. It remains to verify the boundary barrier condition.

Let X ∈ Sd+ be a singular matrix with rank < d, let Y ∈ Sd++ be an arbitrary positive
definite matrix. For any t ∈ (0, 1], X + t(Y − X ) � 0. Thus, ∇w(X + t(Y − X )) =

−(X + t(Y − X ))−
1
2 by Fact 2.2.4, and

〈∇w(X + t(Y − X )),Y − X 〉 = −〈(X + t(Y − X ))−
1
2 ,Y − X 〉.

Let λ1 > . . . > λd > 0 be the eigenvalues of X + t(Y − X ), and
∑d

i=1 λiviv
>
i be the

corresponding eigendecomposition. We first upper bound the smallest eigenvalue λd. Take
any unit vector v from the null space of X . It holds that

λd 6 v>(X + t(Y − X ))v = t · v>Yv 6 t · λmax(Y ), (A.1)
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where the first and the last inequality hold by Theorem 2.1.3.

Let S := {i ∈ [d] | λi < 1
2
λmin(Y )} be set of small eigenvalues and L := {i ∈ [d] | λi >

1
2
λmin(Y )} be the set of large eigenvalues. Note that for small enough t, λd 6 t ·λmax(Y ) <

1
2
λmin(Y ). Thus, S is not empty. Now, we further rewrite the directional derivative,

〈∇w(X + t(Y − X )),Y − X 〉

= −
〈(∑d

i=1
λiviv>i

)− 1
2
,Y − X

〉
=

d∑
i=1

−1√
λi
·
(
v>i (Y − X )vi

)
=
∑
i∈S

−1√
λi
·
(
v>i (Y − X )vi

)
+
∑
i∈L

−1√
λi
·
(
v>i (Y − X )vi

)
. (A.2)

Consider the first summation in (A.2). For the small eigenvalues i ∈ S, it holds that
1

2
λmin(Y ) > λi = v>i (X + t(Y − X ))vi = (1− t)v>i Xvi + tv>i Yvi > (1− t)v>i Xvi,

where the last inequality follows as Y � 0 and t > 0. However, v>i Yvi > λmin(Y ) for all
i ∈ [d]. Thus, v>i (Y − X )vi > 1

3
λmin(Y ) > 0 for t 6 1

4
for all i ∈ S. Therefore, when t ↓ 0,

the first summation in (A.2)∑
i∈S

−1√
λi
· v>i (Y − X )vi 6

−1√
λd
· v>d (Y − X )vd 6 −

λmin(Y )/3√
t · λmax(Y )

→ −∞,

where the first inequality follows as we have proved v>i (Y −X )vi > 0 for all i ∈ S, the last
inequality follows by (A.1).

For the second summation in (A.2), we can upper bound it by∑
i∈L

−1√
λi
· v>i (Y − X )vi 6

∑
i∈L

v>i Xvi√
λi

6

√
2dλmax(X )√
λmin(Y )

,

where the first inequality follows as Y � 0, and the second inequality follos as |L| 6 d,
X < 0, and λi > 1

2
λmin(Y ) > 0 for i ∈ L. Notice that the above upper bound does not

depend on t.

Combining the first and second summation in (A.2), limt↓0〈∇w(X +t(Y −X )),Y −X 〉 =

−∞ as desired.
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