
Deep Learning Based Approaches for
Imputation of Time Series Models

by

Muhammad Saad

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Muhammad Saad 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Five publications have resulted from the work presented in the thesis:

1. L. Nassar, I. E. Okwuchi, M. Saad, F. Karray, K. Ponnambalam and P. Agrawal.
“Prediction of strawberry yield and farm price utilizing deep learning”. (Accepted
to IEEE World Congress in Computational Intelligence 2020)

2. L. Nassar, I. E. Okwuchi, M. Saad, F. Karray and K. Ponnambalam. “Deep learning
based approach for fresh produce market price prediction”. (Accepted to IEEE World
Congress in Computational Intelligence 2020).

3. M.Saad, M.Chaudhary, F.Karray and V. Gaudet. ”Machine Learning Based Ap-
proaches for Imputation in Time Series Data and their Impact on Forecasting.” (Ac-
cepted to IEEE International Conference on Systems, Man and Cybernetics 2020)

4. M.Saad, L.Nassar, F.Karray and V.Gaudet. ”Tackling Imputation Across Time Se-
ries Models Using Deep Learning and Ensemble Learning.” (Accepted to IEEE In-
ternational Conference on Systems, Man and Cybernetics 2020)

5. L.Nassar, M.Saad, I. E. Okwuchi, M.Chaudhary, F.Karray and K. Ponnambalam.
”Imputation Impact on Strawberry Yield and Farm Price Prediction Using Deep
Learning.” (Accepted to IEEE International Conference on Systems, Man and Cy-
bernetics 2020)

In papers 1 and 2, I was responsible for data preprocessing and building the deep
learning model which includes LSTM. The work in papers 1 and 2 formed part of sections
4.3.1 in the thesis.

For paper 3, I performed the comparison between the statistical, machine learning and
deep learning models and also gauged its impact on prediction. The work in paper 3 formed
part of sections 4.2.1 in the thesis.

In paper 4, I created the recommendation framework for imputation of various types
of time series data. The content of this work form part of section 4.2.2 and 4.2.3 in the
thesis.

In paper 5, I was responsible for data preprocessing, model building and determining
the impact of imputation on forecasting. The content of this work appear in sections 4.3.1
of the thesis.

iii

Abstract

Market price forecasting models for Fresh Produce (FP) are crucial to protect retailers
and consumers from highly priced FP. However, utilizing the data for forecasting is ob-
structed by the occurrence of missing values. Therefore, it is imperative to develop models
to determine the value for those missing instances thereby enabling effective forecasting.
Usually this problem is tackled with conventional methods that introduce bias into the
system which in turn results in unreliable forecasting results. Therefore, in this thesis,
numerous imputation models are developed alongside a framework enabling the user to
impute any time series data with the optimal models. This thesis also develops novel fore-
casting models which are used as a gauging mechanism for each tested imputation mode.
However, those forecasting models can also be used as standalone models.

The growth and success of deep learning has largely been attributed to the availability
of big data and high end computational power along with the theoretical advancement . In
this thesis, multiple deep learning models are built for imputing the missing values and also
for forecasting. The data used in building these deep learning models comprise California
weather data, California strawberry yield, California strawberry farm-gate prices, USA
corn yield data, Brent oil type daily prices and a synthetic time series dataset. For impu-
tation, mean squared error is used as an metric to gauge the performance of imputation
whereas for forecasting a new aggregated error measure (AGM) is proposed in this thesis
which combines mean absolute error, mean squared error and R2 which is the coefficient
of determination.

Different models are found to be optimal for different time series. These models are
illustrated in the recommendation framework developed in the thesis. Different stacking
ensemble techniques such as voting regressor and stacking ML ensemble are then utilized to
have better imputation results. The experiments show that the voting regressor yields the
best imputation results. To gauge the robustness of the imputation framework, different
time series are assessed. The imputed data is used for forecasting and the forecasting
results are compared with market deep and non-deep learning models. The results show
the best imputation models recommended based on work with the synthesized datasets
are in fact the best for the tested incomplete real datasets with Mean Absolute Scaled
Error (MASE) <1 i.e. better than the naive forecasting model. Also, it is found that the
best imputation models have higher impact on reducing the forecasting errors compared
to other deep or non-deep imputation models found in literature and market.

iv

Acknowledgements

I thank my supervisors Professor Fakhri Karray and Professor Vincent Gaudet for all
the guidance and support that they provided during my Master’s degree. I also thank them
for the opportunity to work on this research project. I also thank all my colleagues and
team members of this project: Dr. Lobna Nassar, Professor Jamshid Mousavi and Mohita
Chaudhary. I would also like to acknowledge their contributions: Dr. Nassar’s contribution
to experiment ideas, helping with data extraction, result compilation, documentation and
revision and Ms. Chaudhary’s help with data preprocessing.

I also wish to thank the members of my thesis committee, Professor Mark Crowley
and Professor Kumaraswamy Ponnambalam for taking the time to provide an in-depth
review of the thesis and provide very helpful feedback. Your efforts and support are deeply
appreciated.

I acknowledge and am thankful for the financial support from Loblaw Companies Lim-
ited, Natural Sciences and Engineering Research Council, University of Waterloo and Elec-
trical and Computer Engineering department.

I thank my parents Mr Shahid Muhammad Dean and Mrs Aisha Shahid for their
constant love, prayers, support and sacrifices that allowed me to pursue my Master’s degree.
My deepest appreciation also goes to my siblings, relatives and friends for their support.

v

Table of Contents

List of Figures x

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Motivation . 2

1.3 Scope . 2

1.4 Objective . 3

1.5 Thesis Organization . 3

2 Background and Literature 4

2.1 Fresh Produce (FP) Procurement . 4

2.2 Time Series (TS) Modeling . 5

2.2.1 Univariate Time Series . 6

2.2.2 Multivariate Time Series . 6

2.3 Nondeep Machine Learning Models . 7

2.3.1 Linear Regression . 8

2.3.2 Support Vector Regression (SVR) 8

vi

2.3.3 K-Nearest Neighbours (KNN) . 9

2.3.4 Decision Tree Based Models . 10

2.4 Deep Machine Learning Models . 12

2.4.1 Artificial Neural Network (ANN) 12

2.4.2 Recurrent Neural Network (RNN) 13

2.4.3 Long Short Term Memory (LSTM) 15

2.4.4 Gated Recurrent Unit (GRU) . 16

2.4.5 Convolutional Neural Networks (CNN) 17

2.4.6 Convolutional LSTM (ConvLSTM) 19

2.4.7 SeriesNet . 21

2.4.8 Attention Mechanism . 22

2.5 Ensemble Learning . 23

2.5.1 Bootstrap Aggregation (Bagging) 24

2.5.2 Voting Regressor . 24

2.5.3 Stacking . 24

2.6 Performance Measures . 25

2.6.1 Mean Squared Error (MSE) . 25

2.6.2 Root Mean Squared Error (RMSE) 26

2.6.3 Mean Absolute Error (MAE) . 26

2.6.4 Mean Absolute Scaled Error (MASE) 26

2.6.5 Coefficient of Determination (R2) 27

2.7 Related Work . 28

2.7.1 Imputation . 28

2.7.2 Time Series Forecasting . 29

2.8 Conclusion . 30

vii

3 Proposed Solution 31

3.1 Introduction . 31

3.2 Datasets . 32

3.2.1 California Weather Data Set . 32

3.2.2 California Yield and Price . 32

3.2.3 Corn Yield Dataset . 32

3.2.4 Oil Price Dataset . 33

3.2.5 Complete Synthetic Time Series . 33

3.3 Imputation Framework . 37

3.4 Non-Machine learning (Non-ML) Models 39

3.4.1 Conventional Models . 39

3.4.2 Statistical Models . 40

3.4.3 Nondeep Machine Learning Models 40

3.4.4 Deep Learning Models . 40

3.4.5 Ensemble Technique . 49

3.5 Evaluation Metric . 50

3.6 Model Tuning . 50

3.7 Conclusion . 51

4 Experiments & Result Analysis 52

4.1 Introduction . 52

4.2 Imputation Phase . 52

4.2.1 Methodology Selection . 52

4.2.2 Model Selection . 58

4.2.3 Models Ensemble . 61

4.3 Benchmarking Phase . 63

4.3.1 Impact of Imputation on Forecasting 63

4.3.2 Selection of Forecasting Model . 67

viii

4.3.3 Benchmarking on Oil Dataset . 69

4.3.4 W2P Benchmarking . 73

4.3.5 W2Y Benchmarking . 75

4.4 Conclusion . 77

5 Conclusion 79

References 81

ix

List of Figures

2.1 Artificial Neural Network (ANN) Architecture 13

2.2 Recurrent Neural Network (RNN) Architecture 15

2.3 Illustration of the LSTM structure. 16

2.4 Illustration of the GRU structure. 17

2.5 Typical CNN Architecture [9] . 19

2.6 A ConvLSTM Cell [141] . 21

2.7 Architecture of SeriesNet [114] . 22

3.1 Trend time series. 34

3.2 Seasonal time series. 35

3.3 Combined (T&S) time series. 36

3.4 Random time series. 37

3.5 Illustration of the imputation framework [79]. 39

3.6 Residual Network. 41

3.7 Encoder-Decoder Network . 42

3.8 SeriesNet with LSTM . 43

3.9 SeriesNet with GRU . 44

3.10 SeriesNet with CNN-LSTM . 45

3.11 SeriesNet with ConvLSTM . 46

3.12 SeriesNet with ConvLSTM & CNN-LSTM 47

3.13 SeriesNet with CNN-LSTM & GRU . 48

x

3.14 SeriesNet with ConvLSTM & GRU . 49

3.15 Ensemble architecture . 49

4.1 Imputation Methodology . 54

4.2 Snapshot of the results of the models. 55

4.3 Comparison between the different imputation methods that are being used. 56

4.4 Illustration of AGM on each predictive step. 57

4.5 Performance comparison of the utilized imputation methods. 60

4.6 Ensemble Technique block diagram. 62

4.7 ML ensembles performance comparison with each of the four time series types. 63

4.8 Prediction results of different imputation techniques. 66

4.9 Prediction results of different imputation models. 69

4.10 Roadmap for Oil dataset. 69

4.11 Prediction results of different imputation models. 71

4.12 Prediction results of different imputation models. 72

4.13 Roadmap for Weather and Price Dataset. 73

4.14 Forecasting results of different imputation models. 75

4.15 Roadmap for Weather and Yield Dataset. 76

4.16 Forecasting results of different imputation models. 77

xi

List of Tables

4.1 Results of imputation by the models employed. 56

4.2 AGM and overall AAGM for each imputation method. 58

4.3 AGE of each imputation method against each time series. The bold figures
illustrate the top 2 performing models for each type. 59

4.4 ML stacking ensemble models AGE for each time series type. 62

4.5 Imputation combinations. 65

4.6 Dates mapping. 65

4.7 Prediction results of different imputation techniques. 66

4.8 Prediction results of different imputation models. 68

4.9 Time series classification combinations . 70

4.10 MASE results of different imputation models. 73

4.11 MASE results of different imputation models. 75

4.12 MASE results of different imputation models. 77

xii

List of Abbreviations

AGM Aggregated Error Measure
AI Artificial Intelligence
ANN Artificial Neural Network

CIMIS California Irrigation Management Information System
CNN Convolutional Neural Network
ConvLSTM Convolutional Long Short Term Memory

DBN Deep Belief Networks
DC Distribution Center
DL Deep Learning
DNN Deep Neural Network

ETo Evapotranspiration

FC Food Company
FP Fresh Produce

GARCH Generalized Autoregressive Conditional Heteroskedastic
GBR Gradient Boosting Regressor
GRU Gated Recurrent Unit

LR Linear Regression
LSTM Long Short Term Memory

MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error

xiii

ML Machine Learning

PCA Principal Component Analysis

R2 Coefficient of Determination
RMSE Root Mean Squared Error
RNN Recurrent Neural Network

SES Simple Exponential Smoothing
SVM Support Vector Machine
SVR Support Vector Regressions

VAR Vector Autoregression
VR Voting Regressor

WTI West Texas Intermediate

XGBoost Extreme Gradient Boosting

xiv

Chapter 1

Introduction

1.1 Problem Definition

Well-established firms related to the food industry (FC) in Canada employ a large number
of labours and also ensure to deliver fresh produce (FP) items in other parts of the country
from their Distribution Centre (DC). This means that these firms play a crucial role in
upholding the economy of the country by providing employment and fulfilling the needs of
the people. Ensuring that all the demands are fulfilled, these firms take in large warehouses
as their DCs at which certain temperature conditions are maintained in order to avoid
deterioration of the food quality. These warehouses are also responsible for ordering and
distributing the produce to various retailers.

The supply chain of a fresh produce (FPSC) is not as simple as it might sound, there
are multiple parameters that play an important role in making it a complicated task. For
instance, the ordering of FP is dependent on the fluctuating procurement prices which in
turn is dependent on the expected crop yield and other factors. Hence proper timing in
terms of ordering is really vital to minimize waste and maximize profits. For example, U.S.
estimates an annual loss of 5.9 and 6.1 billion pounds for fresh fruit and fresh vegetables,
respectively [17] and a big part of these losses can be attributed to poor planning. In
short, prices are dependent on multiple factors related to supply (weather conditions, soil,
irrigation, etc.) and demand (environment, culture, consumer elasticity, etc.). These
factors may also be affected by high uncertainty due to environmental and socioeconomic
effects such as income, labor and other trade issues. Due to the fast paced technological
advancement, today many of these factors are becoming even more uncertain which makes
the procurement task a challenging one.

1

1.2 Motivation

The FP procurement process follows a form of bidding process where the buyer (DC)
makes an offer to the vendor or farmer and the decision to sell or not is up to them. This
means that having the estimate for the future minimum cost that the farmer or vendor
might accept is critical. This is because these procurement prices are important for the DC
owning firms to survive in today’s economy. Due to the great volume of transactions and
monetary value (over $10 billion by the food company), a saving of even a micro cent in each
FP transaction transfers to benefits of tens of millions of dollars each year for Canada. The
resulting benefits would be a lower FP prices at the consumer level and less wastage or losses
at the corporate level. Hence, it is imperative to develop a forecasting model to predict the
prices thereby maximizing the profits. However, one problem which hinders this activity
is the problem of missing values in the dataset. These missing values may be caused by
various factors ranging from human mistakes to device or equipment noise/malfunctioning
[149, 85]. In order to mitigate this issue various methods are employed and the accuracy of
those methods plays an essential role in making the results of the forecasting model reliable
and accurate. Therefore, this research tackles this problem by introducing various novel
imputation frameworks and models to provide greater accuracy and gauge its impact on
FP forecasting. Utilizing these models is a new research problem which has not yet been
tackled by anyone.

The success of the imputation models is due to the availability of large computational
resources and development of powerful AI algorithms. These factors aid in making reliable
imputation models with high accuracy. By utilizing these models, the data fed to the AI
forecasting models is wholesome, helping the models to make more reliable predictions
which in turn aids the firms to have a greater profitability and consumers to have greater
affordability.

1.3 Scope

This research focuses on the development of imputation models which range from statistical
to complex deep learning models. These models were developed for multiple applications.
Despite the fact that the framework used for imputation is utilized in various applications,
limited application is seen in the domain of FP. For this research, strawberry is chosen as
the case study and studies show that the majority of strawberries in Canada are procured
from Southern California, so datasets covering that region are considered.

2

1.4 Objective

The main objective of this work is to impute various types of datasets using the most
suitable imputation models in order to enhance the precision of any forecasting model
using these datasets as input. To reach this main objective, the following steps are carried
out:

1. Compare imputation models of different domains (statistical, machine learning and
deep learning) on complete datasets to explore the best performing domain by de-
veloping complex models in that domain.

2. Collect data of the parameters that affects the strawberry produce which includes
weather, yield and price data.

3. Develop forecasting models for forecasting yield and price.

4. Perform forecasting using the unimputed datasets then compare the results with those
attained from forecasting using the datasets imputed with the developed models.

5. Evaluate the models by comparing them against market models to gauge the effec-
tiveness of the built models.

1.5 Thesis Organization

This thesis comprises five chapters. The current chapter gives an overview of the problems
encountered in FP procurement and how solving this unique problem can be beneficial to
businesses and society. It went on to outline the scope and the objectives of this research.
Chapter 2 covers the background and literature review. It reviews FP procurement, time
series modelling, machine learning techniques, performance evaluation and related work. In
chapter 3, the proposed solution is described including proposed models and our proposed
evaluation metric. Chapter 4 provides details of the various experiments carried out.
Finally, chapter 5 summarizes the major findings derived from this research work.

3

Chapter 2

Background and Literature

2.1 Fresh Produce (FP) Procurement

In today’s fast paced economy, improved understanding of market signals, whether it be
price or any other factor, is imperative to facilitate not only better decision making but
also to point out opportunities to extract greater value for food companies. Fair pricing is
a common economics term which refers to the situation where market equilibrium, supply
and demand curves intersection, results in a price at which the participants, buyers and
sellers, attain normal profit over time [2]. The work in this research looks into opportunities
for added value that can be achieved at the FP procurement field using numerous artificial
intelligence (AI) and machine learning (ML) algorithms.

To enable the utilization of the AI-based systems, it is important to prepare the data
and make it acceptable for the algorithms. One of the problems that hinders this process is
having missing values. Prior to AI techniques, various non-machine learning models were
used to solve this issue, but with the recent advancement in AI, there is a great improvement
in imputation which ultimately results in better decision making in terms of procurement.
To place good procurement orders, it is vital to have a clear and complete view of the costs
and value-adding factors that determine fresh produce prices over time. For instance, the
supply side is affected by external factors such as climate change, government policies etc.
Whereas, the demand side is affected by the changing preferences of consumers such as
preference of purchasing organic food rather than inorganic.

The factors that influence the pricing of the fresh produce in the Canadian markets
[128] are:

4

1. The relationship between the farm gate and retail prices

2. The stages through which the produce go

Studies show that the farmer’s share of retail value is significant for the FP [2]. This
means that the factors that impact production cost and yield are paramount for forecasting
models and therefore having complete data for those factors is necessary. Retail price is
dependent on, not only farm gate price, but also on transportation, distribution and storage
costs. Additionally, there are 4 significant regional and seasonal price variations mainly
due to supply and demand. These analyses are of paramount importance in the data
pre-processing stage.

Although there are many supply regions in Canada, the majority, over 50%, of the
fresh produce is imported from California, which is undergoing significant changes in many
factors that affect FP. Some of the examples are the changing weather, falling groundwater
levels and labor. Recently, there is another development in which farmers are demanding
more share of water to mitigate their needs of food growing [118]. These factors greatly
influence the price of FP and hence consideration of these parameters is imperative.

Since the business costs are commercially confidential, market knowledge and intelli-
gence are the key features to fill the gap and help the procurement professionals to negotiate
their orders. Industry efforts to improve transparency are highly dependent on the capa-
bilities of the organizations and their willingness to share data. The FC team provides
us their data, information and experiences, e.g. past procurement transactions, that are
inaccessible otherwise. Publicly available climate-related data and agricultural data are
also collected to train, calibrate and validate the AI models.

2.2 Time Series (TS) Modeling

A time series is a set of observations xt recorded over the period of time t [16]. Amongst
numerous applications of time series modeling the most widely used application is time
series forecasts in different sectors such as health care, financial market, etc. [79]. The
two most commonly used approaches for time series forecasting are exponential smoothing
and the auto-regressive integrated moving average (ARIMA) models. While exponential
smoothing models are based on the trend and seasonality in the data, ARIMA models
aim to describe the autocorrelations in the data [60]. The main difference of utilizing time
series methods as opposed to other methods is that time series methods take into account
the internal structure of the data that plays an important role in the forecasting [16].

5

2.2.1 Univariate Time Series

Univariate time series refers to the time series that has scalar observations over the period of
time. A classical example would be the daily maximum temperature in Waterloo, Canada.
Univariate methods include time series forecasting methods [59, 66, 30], which use previous
prices to predict the future price. Univariate TS may possess the following characteristics:

1. Trend: A trend time series moves in a simple linear fashion. The trend shows the
general tendency of the data to increase or decrease during a long period of time.
The increase or decrease does not need to be in the same direction throughout the
given period of time [153].

2. Seasonality: A seasonal pattern exists when a series is influenced by seasonal factors
(e.g., the quarter of the year, the month, or day of the week). Seasonality is always of
a fixed and known period. Hence, seasonal time series are sometimes called periodic
time series [50].

3. Combined: Many time series data contain the trend and seasonal patterns as its basic
components. Trend and seasonality are very commonly encountered in economic and
business time series [43].

4. Stationarity: It is an important characteristic of time series. A time series is referred
as stationary if its statistical properties do not change over time. In other words,
it has a constant mean and variance and it is independent of time [71]. Stochastic
time series can be classified as stationary, e.g. the autoregressive (AR), moving aver-
age (MA), and auto-regressive moving average (ARMA) [77], and the non-stationary
ones, e.g. the auto-regressive integrated moving average (ARIMA) [45] and the gen-
eralized autoregressive conditional heteroskedastic (GARCH) [46]. All these models
are used for short time horizons.

2.2.2 Multivariate Time Series

Contrary to univariate time series, multivariate time series has more than one time depen-
dent variable. This means that each variable not only depends on its own past values but
it also depends on the other variable values [19]. This cross dependency among variables
influences the forecasting and hence it is important to incorporate that in the models. In
terms of multivariate time series, xt includes multiple univariate time series which con-
tribute towards forecasting yt+1. The choice of these series is guided via both empirical
and domain knowledge [119].

6

Due to cross dependencies of the variable, multivariate time series models have large
number of unknown parameters and these parameters increase drastically when non-
linearity is introduced. Ideally the concept of extending the univariate time series models
to multivariate seems straightforward but in practice, it is difficult to conclude on what
the best approach is because some level of experimentation has to be done to determine
the best approach [119].

2.3 Nondeep Machine Learning Models

The volatility in agricultural commodities makes the simple models less reliable and the
complex ones less robust. In order to overcome this shortcoming, there is a need to use ML
models that not only can cater the non-linearities in the data but are also robust enough to
be generalized. Today with the advent of big data and advancement in computation power,
utilization of ML models is found to be convenient. The ML model takes into account all
factors that impact cost and yield of the FP and that is why it is also considered as
multivariate model.

ML models can be broadly classified into two main categories which are: supervised and
unsupervised learning. Supervised learning is the technique in which the model is fed the
input along with its output and the model is expected to find the relationship between the
two. On the other hand, the unsupervised learning is a technique in which the ML models
find the patterns within the data itself. The main difference between the two is that in
the supervised learning the output is provided to the model whereas this is not applicable
in the unsupervised learning. A large percentage of machine learning applications today
are built using supervised learning. Supervised learning is applied to classification and
regression problems.

Forecasting and imputation both fall in the domain of supervised learning, specifically
they utilize the regression algorithm. ML algorithms within this sub-group include deep
learning as well as non-deep learning models. The linear regression (LR), support vector
regression (SVR), K-nearest neighbours and gradient boosting regression (GBR) are ex-
amples of the nondeep learning ML models. More details regarding these algorithms are
outlined below.

7

2.3.1 Linear Regression

Linear regression (LR) is the most basic approach for determining the relationship between
the dependent and independent variables. In case there is a single independent variable,
it is known as simple linear regression. On the contrary, having multiple independent
variables changes the name of the model to multiple linear regression [38].

The relationships in the linear regression are determined using the linear predictor
functions whose model parameters are estimated from the data. These models are referred
to as linear models [111]. Similar to the other regression analysis, linear regression looks
into the conditional probability distribution of the dependent variable given the values of
independent variables [102].

Consider an example where Xi = {x1, x2, ..., xn} is the vector of independent variables
while yi is the dependent variable. The linear regression model aims to find the relationship
between the two and in doing so it finds a plane that can illustrate this relation. The
relationship is expressed as follows:

yi = βo + β1xi + β2x2 + ...+ βnxn (2.1)

By vectorization we can reduce the eq. (2.1) as:

yi = Xiβ
T (2.2)

where β is the row vector of βo, β1, β2, .., βn and Xi is the row vector of all the independent
variables , x1, x2, x3, .., xn. The product Xiβ

T indicates the dot product between the two
vectors.

2.3.2 Support Vector Regression (SVR)

The Support Vector Machine (SVM) is an elegant machine learning algorithm proposed
by Cortes and Vapnik [29]. The basic concept behind the algorithm is structural risk
minimization. It is a concept in which the generalization is achieved by balancing the
model complexity against its ability of fitting the training data. The regression version
of SVM is proposed in [36] and is widely used in time series prediction and imputation
[124, 10].

Consider a time series where Xi = {x1, x2, x3, ..., xn} is the vector of independent vari-
ables while yi is the output and N is the total number of observations. The regression
function for such a time series will be defined as:

8

yi = f(Xi) = W Tφ(Xi) + b (2.3)

where W is the weight vector, b is the bias, and φ(Xi) is the function that maps the input
vector to the higher dimension feature space. W and b are obtained using the following
optimization function:

min
1

2
‖W‖2 + C

N∑
i=1

(εi + ε∗i) (2.4a)

subject to yi −WT (φ(x))− b 6 ε+ εi (2.4b)

W T (φ(x)) + b− yi 6 ε+ εi (2.4c)

εi + ε∗i > 0 (2.4d)

(2.4e)

where C is the predefined regularization parameter which maintains the balance between
the model simplicity and generality, εi and ε∗i are the cost of the errors. SVR has the
capability to cater for non-linearities by using a kernel function and that is the main
reason SVR is preferred in time series.

2.3.3 K-Nearest Neighbours (KNN)

The k-nearest neighbours algorithm (KNN) is a non-parametric method proposed by
Thomas Cover used for classification and regression [7]. In regression as well as in clas-
sification, the input consists of the k closest training examples in the feature space. The
output depends on whether KNN is used for classification or regression:

• In classification, the output is a class membership. An object is classified by a
majority vote of its neighbors, with the object being assigned to the class most
common among its k nearest neighbors (k is a positive integer, typically small). If k
= 1, then the object is simply assigned to the class of that single nearest neighbor.

• In KNN regression, the output is the property value for the object. This value is the
average of the values of k nearest neighbors.

KNN is a type of instance-based learning, or lazy learning, where the function is only
approximated locally and all computation is deferred until function evaluation. Since this

9

algorithm relies on distance for classification, normalizing the training data can improve
its accuracy dramatically [92, 56]

Both for classification and regression, a useful technique can be to assign weights to the
contributions of the neighbors, so that the nearer neighbors contribute more to the average
than the more distant ones. A common weighting scheme involves giving each neighbor a
weight of 1

d
, where d is the distance to the neighbor.

The neighbors are taken from a set of objects for which the class (classification) or the
object property value (regression) is known. This can be thought of as the training set for
the algorithm, though no explicit training step is required.

2.3.4 Decision Tree Based Models

Decision trees are a prominent method in machine learning [105]. The main reason for
their popularity is the human understandability that they pertain unlike other algorithms.
The main objective of the model is to predict the value of the target given a set of input
variables.

In case of classification, all input features are considered to have finite and discrete
domains and there is a single target label against each sample. The group of members
sharing the same target label is referred as a class. A decision tree is a tree in which the
input variables are represented by the nodes and the arcs from each node signify either the
possible value of the target class or they lead to other input variables. Every tree leaf is
labelled with a class or probability distribution over the classes, meaning that the tree has
categorized the data set into either a specific class or a particular probability distribution
[113, 98]. In simpler terms, a decision tree model is a tree-like model which learns the
pattern in the data via if-else decision rules. The complexity of the model is proportional
to the depth of the tree.

The concept of a decision tree can also be extended to regression problems [15]. The
regression tree also works in a similar fashion except that in a regression tree, the value
in the terminal node is the mean of the observations falling in that region [103]. Hence
in case an unseen observation falls in that region, mean value is taken as the prediction
result as opposed to classification where the class label is obtained at the terminal node. A
common feature that both tree types have is dividing the independent variables into non-
overlapping regions and following a top-down greedy approach known as binary splitting
[98]. One downside of decision trees is that it is prone towards overfitting which ultimately
leads to poor accuracy on unseen data. In order to tackle overfitting, pruning is used.

10

Pruning is a technique which reduces the number of leaves and nodes thereby reducing the
model complexity.

The top-down approach followed by that decision tree is accomplished by selecting the
variables that result in the best split for the input [103]; different algorithms are deployed
for this purpose. The algorithms generally measure how homogeneous the target variable
is within the subsets. Some examples of these metrics are residual sum of squares, Gini
impurity, information gain and variance reduction [15].

Another way to mitigate the problem of overfitting is using the combination of multiple
decision trees. The most common combinations are boosted trees such as gradient boosting
and bagging trees such as random forests [39]. Gradient boosted trees are perceived as
a machine learning technique applicable to both classification and regression. The model
begins by fitting an initial model to the data then fitting another model in order to overcome
the shortcomings of the initial model [40]. The process is continued until the overall
prediction error is minimized. Combining the best possible model with the previously
found models minimizes the overall prediction error.

The decision tree models of fixed size are used as weak learners on different subsets of
the data. The predictions from all the weak learners are then combined to make a final
prediction. The gradient boosted decision trees, just like the boosting algorithm, build an
additive model in a greedy way that can be represented by Equation (2.5).

Fm(x) = Fm−1(x) + γmhm(x) (2.5)

where hm(x) is the newly added tree that tries to minimise the loss function L of previous
model which is Fm−1 in boosting. It is also known as the weak learner.

hm = arg min
h

n∑
i

L(yi, Fm−1(xi) + h(xi)) (2.6)

The steepest descent method is used to minimize the error, in this method the direction of
the steepest descent is the negative gradient of the loss function evaluated at the current
model which can be calculated for any differentiable loss function.

Fm = Fm−1(x)− γm
n∑
i=1

∇FL(yi, Fm−1(xi)) (2.7)

Here, γm is the size of the step and is given by:

γm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi)− γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
(2.8)

11

2.4 Deep Machine Learning Models

Deep Learning (DL) is a subfield of machine learning inspired by the structure and function
of the brain. Despite the wonders of nondeep machine learning techniques, they are limited
in terms of processing data in its raw form. This means that careful engineering and
considerable domain expertise are required to design a feature extractor that can convert
the raw data into a form suitable for the nondeep machine learning models [52]. DL
methods are representation learning methods that possess multiple levels of representation.
This is attained by combining simple non-linear modules that transform the representation
from a raw input level to a higher and slightly more abstract level. Using this composition,
DL methods are able to learn complex functions [52].

Due to the robustness and increased capabilities, a lot of research is performed in ex-
ploring multiple architectures of DL. Some examples are deep neural networks (DNN), deep
belief networks (DBN), recurrent neural networks (RNN), convolutional neural networks
(CNN) etc. The foundation of these architectures is the artificial neural network (ANN).
These architectures are applied to different fields including, computer vision, natural lan-
guage processing, machine translation, speech recognition, etc., where they have produced
results comparable to and in some cases better than human expert performance [26, 69].

2.4.1 Artificial Neural Network (ANN)

The artificial neural networks represent an important tool in DL. As the name suggests,
this technique mimics the activity of a human brain. The human brain is perhaps the most
complex living structure on the face of the earth. As per current knowledge, the brain is
composed of about 86 million neurons which have over 100 trillion interconnections amongst
themselves. Artificial neural networks are also composed of neurons and they replicate the
structure of neural activity of a human mind. These systems ’learn’ to carry out tasks by
going through examples, usually without needing task-specific rules; supervised learning.

A lot of improvement has been made in ANNs to solve a large variety of problems
such as computer vision, speech recognition, machine translation, playing board and video
games, medical diagnosis, forecasting, anomaly detection, etc. [110]. An ANN is composed
of the following:

• Neurons: These are the units that receive input, combine it with the internal state and
apply a non-linear activation function to it to produce output. Activation functions
have to be smooth while providing differentiable transitions with changes in input
values.

12

• Connections and weights: Connections link the neurons which help input to prop-
agate to become output. Each connection is assigned a weight which increases or
decreases the significance of that connection.

As a machine learning algorithm, ANN learn to minimize the cost function. This is
achieved by adjusting the connection weights to compensate for each error found during
learning. This adjustment is attained via backpropagation (backprop) algorithm. Techni-
cally, backprop calculates the derivative of the cost function associated with a given state
with respect to the weights. The weight is updated using stochastic gradient descent.

Figure 2.1. Artificial Neural Network (ANN) Architecture

2.4.2 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) are a class of ANNs where connections between nodes
create a directed graph along a temporal sequence. RNNs are similar to traditional time
series models as they are both able to model time dependent relationships in the data.
In RNNs each node in a given layer is connected with a directed, one-way, connection to
every other node in the next successive layer. Every node has a time-varying real-valued
activation function and each connection (synapse) has a modifiable real-valued weight.
Nodes are either: input nodes receiving data from outside the network, output nodes
yielding results, or hidden nodes that modify the data enroute from input to output.

At time t, nodes with recurrent edges receive input from the current data point xt and
also from the hidden node value ht−1 in the network’s previous state. The output ŷt is

13

calculated and the output is transmitted to hidden node ht at time t. This means that the
input xt−1 at time t − 1 influences the output ŷt at time t and later by way of recurrent
connections [74]. The computations carried out in the process is as follows:

ht = σ(Whxxt +Whhht−1 + bh) (2.9)

ŷt = softmax(Wyhht + by) (2.10)

where σ is the sigmoid activation function which is a non-linear transformation that
maps the value between 0 and 1, Whx is the matrix of conventional weights between the
input and the hidden layer and Whh is the matrix of conventional weights between the
hidden layer and itself at adjacent time step. The vectors bh and by are bias parameters
which help neural networks to learn the offset [74]. The output ŷt is the predicted value of
the sequence.

The architecture of a neural network can be illustrated in Fig. 2.2. As evident from the
figure, RNN can be interpreted not just as cyclic but also as a deep layer per time step with
shared weights across the various time steps. The unfolded network can be trained across
multiple time steps using backpropagation. Since in RNN we propagate through time, the
backprop algorithm is named as backpropagation through time (BPTT) [136]. Despite the
wonders of RNN, it suffers from couple of limitations. While training the network, when
gradients are propagating back in time, all the way up to the initial layer, the gradients go
through multiple simultaneous matrix multiplications and as a result of using Chain Rule, if
they have values less than 1 (<1), they diminish exponentially until they become negligible
or ‘vanish’. This deems the network model impossible to learn anything as weights won’t
be updated. This is known as the ‘Vanishing Gradient Problem.’ Similarly, if the values
of gradients propagating back in time are greater than 1 (>1), their values escalate and
eventually destroy the model’s capability to learn anything making it unstable. This is
known as the ‘Exploding Gradient Problem.’

14

Figure 2.2. Recurrent Neural Network (RNN) Architecture

2.4.3 Long Short Term Memory (LSTM)

If a long sequence of data is fed to RNNs, they encounter a problem of carrying the
information from the earlier time steps to a later one causing them to miss important
information. Also, RNNs suffer through the problem of vanishing gradients. To overcome
these issues LSTMs [57] are developed. They are called LSTMs as they can keep the short
term memory for a longer time. The LSTMs are similar to the RNNs except that they have
memory blocks in them. The memory blocks have gates through which the information is
let through. The gates use sigmoid activation units to control whether they are triggered
or not. The sigmoid function assigns a value between zero and one, which decides how
much information should be let through the gates.

LSTMs have three gates: the forget gate, input gate, and output gate. The forget gate
layer, which is a sigmoid layer, helps decide what information needs to be discarded. It
looks at the previous hidden state ht−1 and the current input xt and outputs a number
between 0 and 1 for the cell state ct−1, which decides how much information needs to be
forgotten. It is denoted as ft and is given as:

ft = σ(Wf .[ht−1, xt] + bf) (2.11)

The input gate conditionally decides to update the memory state on the basis of the input.
The input layer gate, which is composed of a sigmoid activation function, helps decide what
information has to be updated. The next tanh layer in the input gate creates a vector of
the new candidate values, which can be added to the state.

it = σ(Wi.[ht−1, xt] + bi (2.12)

15

~Ct = tanh(Wc.[ht−1, xt] + bc) (2.13)

In the next update layer the new vector ~Ct is combined with the previous cell state Ct−1.
The old state is multiplied by ft to forget the values that were decided to be forgotten
initially.

Ct = ft ∗ Ct−1 + it ∗ ~Ct (2.14)

Then comes the output gate which decides what to output.

σt = σ(Wo[ht−1, x] + bo) (2.15)

ht = σt ∗ tanh(Ct) (2.16)

The sigmoid decides which part of the cell state is generated. The output of the sigmoid
is filtered through tanh. LSTMs are illustrated in the Fig. 2.3

Figure 2.3. Illustration of the LSTM structure.

2.4.4 Gated Recurrent Unit (GRU)

GRU [33] is a newer version of RNNs and is quite similar to LSTMs [41]. GRUs use
hidden states rather than using the cell state or memory to transfer the information. They
have two gates, a reset gate and an update gate. The update gate acts similarly to the
forget and input gates of LSTM. The reset gate, on the contrary, is used to decide how

16

much past information has to be forgotten. GRUs are faster than LSTMs since they have
fewer tensor operations. Both LSTMs and GRUs are designed to overcome the short term
memory issues faced by RNNs. Fig. 2.5 represents the GRU structure.

Figure 2.4. Illustration of the GRU structure.

2.4.5 Convolutional Neural Networks (CNN)

Convolutional Neural Networks also known as CNN or ConvNet are usually applied to
image recognition and analysis. CNNs are also called shift invariant or space invariant ar-
tificial neural network since they use shared weights and translation invariance. Invariance
to translation means that if we translate the inputs the CNN will still be able to detect
the class to which the input belongs. In terms of time series, it implies that the pattern
in the sequences is deciphered regardless of what part of the sequence these patterns ap-
pear [93]. CNNs have been applied to a variety of domains such as image analysis and
detection [134, 3], recommender systems [130], natural language processing [28], time series
modelling [127], etc.

One of the key features of CNN is that it is a regularized version of fully connected
network. CNN tackles the problem of overfitting by employing weight sharing. For in-
stance, in a fully connected network a small greyscale image of size 100 x 100 will cause
each neuron to have weights of 10,000. CNN eradicates this issue by reducing the number
of free parameters allowing the network to be deeper with fewer parameters [3]. The term

17

“convolutional neural network” comes from the implementation of a mathematical opera-
tion called convolution. Hence, CNNs are ANNs that use convolution in place of general
matrix multiplication in their layers [52]. CNNs consist of an input and an output layer,
as well as several hidden layers. The hidden layers of a CNN typically consist of a series
of convolutional layers that convolve with a dot product. The most common activation
function is RELU, and is subsequently followed by additional convolutions such as pooling
layers, fully connected layers and normalization layers. The various parts of a CNN are
described as follows:

• Convolution: It is the building block of CNNs. A small matrix of number (also
known as filter or kernel) is passed over the data and transform it based on its
values. The kernel shifts from left to right and passes onto the data. This shifting
is known as stride. In a CNN, the input is typically a tensor with size (number
of images x image width x image height x image depth), so after passing the image
through the convolutional layer, the resultant size becomes (number of images, feature
map width, feature map height, feature map channels). Hence, in the network a
convolutional layer should have a kernel defined by height and width, number of
input and output channels and number of kernels. Building onto that, for time series
problem a kernel is passed over 1D sequence using a sliding window. The primary
purpose of sliding window is to convert the sequence to a supervised learning problem.
The input sequence shape is modified to yield a tensor (number of sequences, sequence
length which is the length of the 1D sequence, sequence height which takes the
value 1, sequence depth which takes the value 1) so after convolution the shape
becomes (number of sequences, feature map length, feature map height of 1, feature
map channels of 1). This is essentially a 1D convolution. Unlike ANN, the same
convolution filter, weights, is used across all time steps making the CNN learn filters
that are invariant across time dimension.

• Pooling: : In order to reduce the dimensionality, pooling layers are utilized in CNN.
Pooling layers reduce the dimension by combining multiple output of neurons and
clustering them into one. There are two types of pooling layers which are, local pool-
ing layer and global pooling layer. Local pooling combines small clusters, typically
2 x 2. Global pooling acts on all the neurons of the convolutional layer [27, 69]. In
terms of operation, the most common operations performed is taking the maximum
or average. Max Pooling takes the maximum value in the cluster and takes that as
a single output [145, 26] while Average Pooling takes the average of the cluster and
generates the output [84]. In this research for the time series problem 1D pooling is
utilized. The loss of information during convolution and pooling does not reduce the

18

predictive power but rather helps extract the relevant information from the raw data
into a smaller dimensionality which is much easier to learn from.

Figure 2.5. Typical CNN Architecture [9]

2.4.6 Convolutional LSTM (ConvLSTM)

LSTMs are extraordinary at recognizing temporal relationships yet they don’t perform
well in perceiving spatial connections. CNNs on the other hand are great in finding spatial
connections however not temporal relations. To handle this, Convolutional LSTMs (Con-
vLSTM) are built which caters spatiotemporal connections simultaneously in the data
[115]. In time series, spatial relationship refers to the pattern that exists based on the lo-
cation of one data point relative to others. Whereas temporal relationship is the sequential
order of the data points.

In comparison to conventional LSTM, ConvLSTM is able to cater the spatiotempo-
ral structures by vectorizing the spatial information thereby overcoming the limitation of
vector-variate representations in LSTM where spatial information is lost [135]. In ConvL-
STM all the inputs x1, x2, x3, ..., xt, cell outputs c1, c2, c3, ..., ct, hidden states h1, h2, h3, .., ht
and gates it, ft, gt, ot are 3D tensors in RPxMxN , where the first dimension is the number
of samples, whereas the last two dimensions are the spatial dimensions. In order to utilize
the model for time series forecasting, a slight modification is done. The first dimension is
considered as the number of samples and the second dimension is taken as the sequence
length whereas, the third dimension is set to 1. To get a better picture of the inputs and
states, we may imagine them as vectors standing on a spatial grid. ConvLSTM determines
the future state of a certain cell in the MN grid by the inputs and past states of its local

19

neighbors. This is easily achievable by using the convolutional operators in state-to-state
and input-to-state transition [135].

Mathematically, it can be expressed as follows:

gt = tanh(Wxg ∗ xt +Whg ∗ ht−1 + bg (2.17)

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci � ct−1 + bi (2.18)

ft = σ(Wxf ∗ xt + whf ∗ ht−1 +Wcf � ct−1 + bf (2.19)

ct = ft � ct−1 + it � gt (2.20)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco � ct + bo (2.21)

ht = ot � tanh(ct) (2.22)

where σ is the element wise sigmoid activation funtion, * is the convolution operator and
� represents Hadamard product. If we view the states as the hidden representations of
moving objects, a ConvLSTM with a larger transitional kernel should be able to capture
faster motions while one with a smaller kernel can capture slower motions [115]. Similar
to conventional LSTM, the gates in ConvLSTM help prevent gradient from vanishing by
trapping it in the memory. The sigmoid and tanh activation functions here also work
individually on all the components of the vectors. ConvLSTMs have been applied to pre-
cipitation nowcasting [115], air quality (PM 2.5) prediction [144], temperature prediction
[73], video compression artifact reduction [143], etc.

20

Figure 2.6. A ConvLSTM Cell [141]

2.4.7 SeriesNet

Since the traditional time series forecasting models cannot effectively extract good enough
sequence of data features, researchers came up with a novel forecasting architecture named
SeriesNet [114]. The SeriesNet consists of two networks. Typically, it is composed of an
LSTM network and a dilated causal convolution network.

The dilated convolution is proposed to handle the loss of resolution or coverage due
to the down-sampling operation in image semantic segmentation [150]. It uses dilated
convolutions to systematically aggregate multi-scale contextual information and improve
the accuracy of image recognition. The causal convolution is to ensure that the convolution
kernel of CNN can perform convolution operations exactly in time sequence [131], and that
the convolution kernel can only read the current information and historical information.
The LSTM network, on the other hand, aims to learn holistic features and to reduce
dimensionality of multi-conditional data.

The combined results of the networks help the models to learn multi-range and multi-
level features from time series data, hence it has higher predictive accuracy compared to
other models using fixed time intervals. Moreover, this model adopts residual learning

21

and batch normalization to improve generalization. The architecture of the network is
illustrated in Fig. 2.7.

Figure 2.7. Architecture of SeriesNet [114]

2.4.8 Attention Mechanism

The attention mechanism is established to help memorize long source sentences in neural
machine translation (NMT) [11]. Rather than building a single context vector out of the
encoder’s last hidden state, using attention allows creating shortcuts between the context

22

vector and the entire source input. The weights of these shortcut connections are cus-
tomizable for each output element. In short, the purpose behind the attention mechanism
is to aid the model to focus on the important aspects of the input data rather than con-
sidering all available information. An attention function is a mapping of a query and a set
of key-value pairs to an output, where the query, keys, values, and output are all vectors
[132].

Self-attention mechanism which is also known as intra-attention mechanism is an at-
tention mechanism relating different positions of a single sequence in order to compute
a representation of the same sequence. It has been shown to be very useful in machine
reading, abstractive summarization, or image description generation. There are different
variants of attention; additive attention is the attention implemented in this work. This
attention is computed as follows:

ht,t′ = tanh(xt
TWt + xt′

TWx + bt) (2.23)

et,t′ = σ(Waht,t′ + ba) (2.24)

at = softmax(et) (2.25)

lt =
∑
t′

at,t′xt′ (2.26)

where σ is the element wise sigmoid function, Wt and Wx are weight matrices corresponding
to xt

T and x′t
T , Wa is the weight matrix corresponding to their non-linear combination and

bt and ba are bias vectors [132]. Equation (2.26) explains how the attention lt is calculated.
In order to attain this, the probability distribution at in (2.25) of the compatibility score
et,t′ in (2.24) is calculated first. This compatibility score is computed based on ht,t′ , the
hidden representation ofxt andxt′ computed in (2.23).

2.5 Ensemble Learning

Ensemble pertains to combining results of two or more models and using them to perform
the original task and this results in obtaining a better predictive performance than from
the individual models [90, 94, 104]. Although machine learning models offer flexibility and

23

scalability to the amount of training data due to their non-linear behavior, a downside
of this is that they learn via stochastic training algorithms, which makes them sensitive
to the specifics of training data. This means that a different set of weights can be found
each time the model is trained, which in turn produces different predictions. The resulting
model is referred to as a model with high variance which can be strenuous when trying to
develop one final prediction model. A successful approach for reducing the variance of the
model is to train multiple models instead of a single one then combine their predictions
[157]. This is called ensemble learning and it doesn’t only reduce the variance of predic-
tions but also results in better predictions. In short, ensemble learning is the process by
which multiple models, such as classifiers, are strategically combined to solve a particular
computational intelligence problem [95]. Common types of ensembles are outlined in the
following subsections.

2.5.1 Bootstrap Aggregation (Bagging)

In this ensemble methodology, each model in the ensemble makes prediction and then
the predictions from all the models are taken as votes with equal weights. In terms of
regression, the average is taken of all the models’ predictions. Furthermore, in order to
minimize the variance, each model in bagging is trained on a randomly drawn subset of the
training set. An example of bagging ensemble is Random Forest algorithm which combines
multiple decision trees where each decision tree is trained on a randomly selected subset
of the data [95, 13].

2.5.2 Voting Regressor

A voting ensemble works by combining the predictions from multiple models. It can be
used for classification or regression. In the case of regression, this involves calculating the
average of the predictions from the models. In the case of classification, the predictions
for each label are summed and the label with the majority vote is predicted.

2.5.3 Stacking

A bagging ensemble or voting regressor combines the predictions from multiple trained
models. A limitation of this approach is that each model contributes the same amount to
the ensemble prediction, regardless of how well the model performs. A variation of this
approach, called a weighted average ensemble, weighs the contribution of each ensemble

24

member by the expected performance of the model on a holdout dataset. This allows well-
performing models to contribute more and low-performing models to contribute less. The
weighted average ensemble provides an improvement over the model average ensemble. A
further generalization of this approach is replacing the linear weighted sum model, e.g.
linear regression, used to combine the predictions of the sub-models with any learning
algorithm. This approach is called stacked generalization, or stacking for short. In stacking,
an algorithm takes the outputs of the sub-models as input and attempts to learn how to
best combine the input predictions to make a better output prediction. Stacking typically
yields better performance than any single one of the trained models [138, 14].

2.6 Performance Measures

The metric that is chosen to evaluate the machine learning model is very crucial. The choice
of metrics influences how the performance of machine learning algorithms is measured and
compared. Most commonly used performance metrics in literature as in [4, 117, 61, 125, 96]
[89, 90, 91] are the mean squared error (MSE), root mean square error (RMSE), mean
absolute error (MAE), and mean absolute scaled error (MASE). Amongst them, R2 is also
a metric used to measure the degree of correlation between the predicted and actual values
[5].

2.6.1 Mean Squared Error (MSE)

One of the most popular and preferred metrics is the mean squared error (MSE). It works
by taking the average of the squared difference between actual and predicted values. Since
it takes the square difference, it highly penalizes large errors. This metric is preferred
mainly due to the fact that it is differentiable and hence it can be optimized. The only
downside of MSE is that it is not robust to outliers [117, 61]. Mathematically, it is defined
as follows:

MSE =
1

n

∑
(yi − y′i)2 (2.27)

where yi is the actual value whereas, y′i is the predicted value and n is the sample size.

25

2.6.2 Root Mean Squared Error (RMSE)

RMSE is also widely used in regression problems. RMSE is the square root of MSE so it
is a square root of the squared difference between the actual and predicted values. Since
it takes in the squared difference, it penalizes large errors then the square root brings the
error back to the same scale as of the target. This means that RMSE is advantageous
when large errors are undesirable. It is calculated as follows:

RMSE =

√
1

n

∑
(yi − y′i)2 (2.28)

where yi is the actual value whereas, y′i is the predicted value and n is the sample size.

2.6.3 Mean Absolute Error (MAE)

Another metric is the mean absolute error (MAE). It calculates the absolute difference
between the actual and predicted values, i.e. the errors, then calculates the average differ-
ence or error. MAE is sometimes preferred over MSE or RMSE since it is robust towards
outliers. The only downside is that it is non- differentiable [137]. It is given as follows:

MAE =
1

n

∑
|yi − y′i| (2.29)

where yi is the actual value whereas, y′i is the predicted value and n is the sample size.

2.6.4 Mean Absolute Scaled Error (MASE)

Mean absolute scaled error (MASE) is the mean absolute error of the forecast values,
divided by the mean absolute error of the in-sample naive forecast. It was proposed in
2005 by Hyndman and Koehler, who described it as a “generally applicable measurement
of forecast accuracy without the problems seen in the other measurements” [61]. MASE has
a favorable property when compared to other methods for calculating forecast errors, such
as RMSE, and is therefore recommended for determining accuracy of forecasts compared
with naive forecasting [37]. The reason it is recommended as opposed to RMSE or other
measure is because it is a scale-less measure and hence the scale of the sample does not
impact it. The only downside is that it illustrated the accuracy of forecast in comparison
to naive forecast. If the value is less than 1 (<1), the forecasting model is a good model

26

for forecasting whereas if the accuracy is greater than 1 (>1), the forecasting model is not
a good model for forecasting. Mathematically it is defined as follows:

MASE =
1
J

∑
j |ej|

1
T−1

∑T
t=2 |Yt − Yt−1|

(2.30)

where the numerator ej is the forecast error for a given period (with J , the number of
forecasts), defined as the actual value (Yj) minus the forecast value (Fj) for that period:
ej = Yj − Fj, and the denominator is the MAE of the one-step “naive forecast method”
on the training set which uses the actual value from the prior period as the forecast: Ft =
Yt−1

2.6.5 Coefficient of Determination (R2)

The coefficient of determination is a statistical measurement that examines how differences
in one variable can be explained by the difference in a second variable, when predicting
the outcome of a given event. It provides a measure of how well observed outcomes are
replicated by the model, based on the proportion of total variation of outcomes explained
by the model [18, 51, 35]. It measures the goodness of fit of a model and it lies between
0 and 1 [70]. However, in practical problems if the regression line is worse than using the
mean value, the R2 value will be negative. When a negative value occurs, it implies that
the mean of the dataset fits the dependent variables better than the values provided by
the model and there is a complete lack of fit [70]. This happens when an inappropriate
model is chosen to solve a particular problem. TThe best result occurs when the predicted
values are the same as actual values and that yield to R2 being 1. Whereas, a model which
always predict the mean will result in R2 to be 0. In case where R2 is 1, it implies that
the residual sum of squares is low whereas, in case of R2 = 0 the residual sum of squares
will be high.

In this work and in other machine learning projects R2 s normally used to provide a
relative score of the model performance on scale of 0 to 1. Unlike other metrics like MAE or
MSE, R2 provides value which is more intuitive to gauge the model performance. Despite
the wonders of R2, it has some drawbacks; its value increases as the number of explanatory
variable increases and it doesn’t account for collinearity in the predictor variables. R2 can
be mathematically defined as follows:

SSRes =
∑
n

(yi − y′i)2 (2.31)

27

SSTot =
∑
n

(yi − ȳi)2 (2.32)

R2 = 1− SSRes
SSTot

(2.33)

where SSRes and SSTot are the residual sum of squares and total sum of squares respectively,
yi is the actual value, y′i is the predicted value, ȳi is the mean value and n is the sample
size.

2.7 Related Work

Two aspects are tackled in this work: imputation and forecasting. The related work to
each of these aspects is illustrated in the following subsections.

2.7.1 Imputation

Missing values imputation is an active research area and various methods exist for deal-
ing with it. The most direct way to tackle this issue is to discard incomplete or empty
records. Common examples are listwise deletion, which removes all instances with at least
one missing value, or pairwise deletion, which removes an instance if the used variables
contain missing values [58]. Unfortunately, these methodologies don’t only introduce bias
in the dataset but also reduce the amount of data available, thereby providing incorrect
forecasting [156, 86, 109, 6]. Additionally, a method like linear interpolation is considered
primitive. Despite the fact that this method fits a smooth curve to the given dataset and
fills the missing values using local interpolations, this method fails to take into considera-
tion the dependencies of features over time [42].

On the other hand, methods like SARIMA for seasonal [121] and ARIMA for non-
seasonal time series [65] are auto-regressive methods yet their performance deteriorates
when the dataset contains consecutive missing values. Nevertheless, better results might
be attained by combining ARIMA and Kalman filter in the state space model [55].

Furthermore, imputation methods using K-nearest neighbors are also applicable for
time series. In this approach, the method identifies k instances which are most similar to
the missing value. Then a predefined rule, e.g. weighted average [126], or kernel function,
e.g. exponential kernel [152], is applied to impute the values. Besides that, there are

28

certain pattern matching approaches as in [22], but these approaches work best only in
certain cases.

Many researchers have also utilized Recurrent Neural Networks (RNN) to impute the
missing values [21, 24, 75, 148]. Che et al. in [21] proposed a modified GRU, GRU-D,
that imputes the missing values in a health care dataset. Its underlying assumption is that
the missing variable can be represented as a combination of the last available value and
the global mean. The GRU-D model has aided in harnessing the power of the RNNs [23]
and the informativeness of the missing patterns in the data. The model uses GRU [25]
and two representations of the informative missing patterns, which are masking and the
time interval. Masking informs the model whether the input is present or not whereas the
time interval illustrates the input observation patterns. The model is not only capable of
capturing long term temporal dependencies of time series but also utilizing the missing
patterns to improve the prediction results. GRU-D performed well on the health care
dataset but it might exhibit limitations on other datasets.

Another state of the art algorithm that uses residual networks and graph-based tem-
poral dependency in imputation is named LIME-RNN and is found to perform remarkable
on various datasets [97]. In particular, it introduces a linear memory vector called the
residual sum vector (RSV) and integrates it over previous hidden states of the RNN, to fill
the missing values.

In this work, various novel AI based imputation models are built. Those models are
not only compared with other DL domain model, such as LIME-LSTM, but also compared
with the market models, such as mean imputation, median imputation, mode imputation,
interpolation, Last observed carry forward, KNN-imputation, linear regression, support
vector regressor and gradient boosting regression. Moreover, a recommendation framework
is provided to decide the most optimal imputation strategy for each type of time series
under consideration. Since the models use RNN and its variants, it is able to cater the
long-term dependencies.

2.7.2 Time Series Forecasting

A lot of research is done in the domain of crop yield forecasting. The majority of this yield
prediction has been for grains. Wheat yield prediction using ARIMA models was done
in [100, 91, 83]. Rice time series forecasting has been tackled using statistical models as
shown in [112, 101, 47]. More recently, advanced machine learning techniques have been
applied to grain yield forecasting as seen in [67, 88, 81, 44, 123, 89, 82]. As mentioned,
these articles focused on grain yield production, yet in terms of fresh produce there are very

29

limited articles found in literature. This number reduces dramatically for articles utilizing
advanced machine learning for FP yield prediction [31].

Price forecasting has been an active research area in other domain such as electricity
[34, 116, 106, 12], stock prices [54, 154, 62, 146, 8], real estate prices [49, 80, 78], etc. Prior
to ML, statistical methods were employed in these domain but in recent times, advanced
deep learning methods have been applied in some domains such as in the electricity price
prediction [129, 20, 155, 63, 72], stock price prediction [139, 107, 76, 151] and real estate
price prediction [48, 142, 64, 133]. Despite having a diverse and vast application where
research is being performed, not much work is conducted in FP price prediction.

In this work, forecasting is used as a tool to measure the imputation performance due
to the absence of the actual values required for the application of all popular performance
measures listed in Section 2.6. Therefore, the impact of imputation on forecasting is
gauged and used as the imputation performance indicator; the lower the forecasting error
after imputation vs. before it, the higher the imputation performance. In pursuit of this
several models for fresh produce yield and price forecasting are built. Those models cover
the gaps in literature by forecasting FP prices in addition to yield, using compound DL
models capable of learning complex relations.

2.8 Conclusion

The chapter covered the FP procurement and the unique challenges that entails it. It then
went on to review the work which is being done in FP yield and price modelling.

The techniques used for imputation and forecasting are being described in details. Since
the research deals with time series, different type of time series are being explored. This
is followed by the traditional machine learning models are reviewed. After which deep
learning models and the adjustments that are required to work with our time series are
explained. Ensemble learning for improving model performance is reviewed next and then
common evaluation metrics that are usually being employed in time series are illustrated.
Finally, the research work related to this thesis is being outlined and the voids being filled
by this research is being highlighted.

30

Chapter 3

Proposed Solution

3.1 Introduction

Tackling the problem of missing values requires careful consideration of different aspects.
These aspects are covered in the following sections:

• Data: since the analysis of all the models is based on the data, it is imperative
that it should be extracted correctly. Especially utilized weather data which require
additional consideration since it is pre-processed in accordance to the length of the
prior weather period for yield/price.

• Imputation Models: Different architectures for various imputation models are de-
veloped. The models range from statistical to deep learning and hence they cater
the spectrum of complexity. The deep learning models are split into simple and
compound DL models which are further improved by ensemble techniques.

• Forecasting Models: Various novel forecasting architectures are utilized. These fore-
casting models are used to gauge the impact of imputation on forecasting perfor-
mance.

• Evaluation Metrics: It is very crucial to come up with the appropriate metric to
evaluate the models in order to ensure that the models selected are operating cor-
rectly and optimally. Therefore, in order to gauge the performance of the imputation
models, the mean squared error is used, whereas for the forecasting models, an ag-
gregated measure (AGM), which combines mean squared error, mean absolute error
and R2, is used.

31

This chapter provides a detailed description of the aforementioned work aspects.

3.2 Datasets

Different datasets are used in building and testing the models proposed in this work.
Detailed descriptions of these datasets are provided in the following sections.

3.2.1 California Weather Data Set

Since the majority of the strawberries are imported from California, consideration of this
region’s weather is critical and important. The weather data is collected from the main
station in California, Santa Maria. The reason behind the selection of this specific station
is the fact that more than 80% of the strawberry production comes from that station.
The data is obtained from California Irrigation Management Information System (CIMIS)
[120]. CIMIS records hourly, daily and yearly weather data. The data ranges from 2006
to 2019 and the obtained data has some missing values which are imputed using different
methods. The experiments are carried out on the daily version of the data.

3.2.2 California Yield and Price

The strawberry yield and price are extracted from the California Strawberry Commission
website [122]. The website has daily values which are used directly. The missing daily
values are imputed via different advanced imputation models.

3.2.3 Corn Yield Dataset

The dataset involves a combined data of corn yield which was collected from the U. S.
Department of Agriculture (USDA) that issues a monthly World Agricultural Supply and
Demand Estimate (WASDE) report which includes projections for the Supply and Demand
for various U. S. crops. The dataset included years from 2007 to 2018 with a total of 248
rows [1].

32

3.2.4 Oil Price Dataset

The crude oil price dataset consists of daily Brent and WTI oil prices [2]; these oil prices
are univariate time series. The set is used to compare the proposed imputation models
to one another and against the market models. The dataset ranges from 22/01/2008 to
22/08/2018. The dataset has 30% missing values which are filled using different imputation
models and then the effectiveness of these models is gauged using forecasting models. For
Brent, the forecasting is assessed in four different horizons: one day ahead, two days ahead,
three days ahead and one week ahead whereas for WTI the forecasting model is assessed
from one to twenty days ahead.

3.2.5 Complete Synthetic Time Series

Each time series exhibits different characteristics; hence it is difficult to generalize one
imputation method to fit all types of time series. Therefore, four commonly used time
series: trend, seasonal, combined and random time series are generated and examined to
find the best imputation method for each.

3.2.5.1 Trend Time Series (T)

A trend time series moves in a simple linear fashion. The trend shows the general tendency
of the data to increase or decrease during a long period of time. The increase or decrease
does not need to be in the same direction throughout the given period of time [153]. Figure
3.1 shows the created trend time series.

33

Figure 3.1. Trend time series.

3.2.5.2 Seasonal Time Series (S)

A seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter
of the year, the month, or day of the week). Seasonality is always of a fixed and known
period. Hence, seasonal time series are sometimes called periodic time series [50]. Figure
3.2 shows the seasonal time series.

34

Figure 3.2. Seasonal time series.

3.2.5.3 Combined Time Series (T&S)

Many time series data contain the trend and seasonal patterns as its basic components.
Trend and seasonality are very commonly encountered in economic and business time series
[43]. Figure 3.3 shows the combined time series utilized in this work.

35

Figure 3.3. Combined (T&S) time series.

3.2.5.4 Random Time Series

A random time series is a time series that does not fall in any of the aforementioned
categories; as illustrated in Fig. 3.4.

36

Figure 3.4. Random time series.

3.3 Imputation Framework

The proposed model is inspired by the work of Ma et al. [79]. The model is an RNN or
its variant (LSTM or GRU) which has a learned linear combination of the previous states.
The neural network is trained on the data and a vector, called Residual Sum Vector (RSV),
is added to it. RSV is the weighted sum of the model’s previous hidden states and is called
RSV in analogy to the residual connections in a ResNet. The learned memory weights are
then used to impute the missing values in the dataset.

37

The network operates in such a way that it learns and predicts simultaneously. When-
ever the network finds the input variable present, it learns to regress it, and when the values
are missing, they are filled based on this regression. This framework imputes randomly
missing values in the dataset.

The considered time series are of T length as X = {x1, x2, ...xT} where xi∈Rn. An
indicator vector of missing values is introduced, since the considered time series are in-
complete, M = {m1,m2,mT} where mt∈{0,1}n. The mit indicates whether the value
is present at the ith position or not. mit = 0 indicates that the value is present, while
mit = 1 portrays otherwise.

The RSV is deployed in the neural network in order to incorporate the past information
from the hidden states. The output of RSV at time t is an RSV denoted by rt∈Rm and its
dimension is same as ht. rt is defined as:

rt =

{
f(ht), if t = 1.

f(ht + g(Wr, rt−1)), if t = 2, 3, ..., T
(3.1)

here, g and f are the vector valued functions, Wr∈Rmxm, and ht∈Rm denotes the output
of the neural network hidden layer at time t. The next input is approximated using:

zt+1 = Wimprt (3.2)

zt+1 is trained to approximate xt+1 if it is present and is used to impute xt+1 if it is
missing.

The training of the model is done using back propagation of error. The process runs in
two specific cases, approximation and imputation. If the next input xt+1 is present in the
dataset then the output zt+1 is trained to approximate the input xt+1. In the case where
xt+1 is a missing value then zt+1 is directly copied to xt+1. The approximating loss, Lt approx,
at each time step t, is the squared error loss between the original and approximated value,
according to the existence of input xt.

Lt approx(zt, xt) =‖ (zt − xt ◦ ¬mt) ‖22 (3.3)

here, the ¬mt is masking off the missing data from the approximation loss.

The overall training loss has two components, the total approximating loss term (3.4)
and the task related loss term (3.5), which are as follows:

Ltotal approx =
N∑
k=1

T−1∑
t=1

Lt approx(z
(k)
t+1, x

(k)
t+1) (3.4)

38

Ltotal target =
N∑
k=1

Ltarget(d
(k), y

(k)
t) (3.5)

The superscript k here denotes the kth sample of the time series. The d(k) and y
(k)
t

denote the task related target and the output of the kth value. The total training loss,
Ltotal, is obtained by combining (3.4) and (3.5).

Ltotal = Ltotal approx + λtargetLtotal target (3.6)

where λtarget is a coefficient weighing the importance of the task loss. This loss function is
optimized by the Back Propagation Through Time algorithm. The overall working of the
framework is illustrated in Fig. 3.5.

Figure 3.5. Illustration of the imputation framework [79].

3.4 Non-Machine learning (Non-ML) Models

Various types of models are built to tackle the issue of imputation. They are highlighted
in the following subsections.

3.4.1 Conventional Models

1. Complete Deletion Case (CCA): This is the case where the rows having missing
values are deleted and hence not considered while feeding the data into the model.

2. Last observed value carried forward (LOCF): In this model, the previously observed
values are used in place of the missing values.

39

3.4.2 Statistical Models

1. Mean Imputation: The missing values are replaced by the mean of the feature.

2. Median Imputation: The missing values are replaced by the median of the feature.

3. Mode Imputation: The missing values are replaced by the mode of the feature.

3.4.3 Nondeep Machine Learning Models

For the nondeep learning models, the following models are implemented:

1. Linear Regression

2. Support Vector Regression

3. K-nearest Neighbours

4. Gradient Boosting Regression

For all the aforementioned models, default parameters are used except for Gradient
Boosting Regression where the “huber” loss function [87] is utilized for optimal results.

3.4.4 Deep Learning Models

Deep learning models have the ability to learn complex patterns in the data and they also
continuously improve with the increase in data size [52]. Due to these abilities, deep learn-
ing models are considered as part of the proposed solution. The deep learning models are
categorized into simple, compound and attention-based compound deep learning models.

3.4.4.1 Simple Deep Learning Models

The simple deep learning models proposed in this work are: RNN, LSTM and GRU.

1. RNN : The architecture of the RNN model starts with one layer of RNN with 100
units. The MSE loss function is used and the optimizer is Adam [68].

40

2. LSTM : The architecture of the LSTM model starts with one layer of LSTM with
100 units. The MSE loss function is used and the optimizer is Adam [68].

3. GRU : The architecture of the GRU model starts with one layer of GRU with 100
units. The MSE loss function is used and the optimizer is Adam [68].

3.4.4.2 Compound Deep Learning Models

The compound deep learning models utilized in this thesis are explained as follows:

1. Residual GRU : Single layer of GRU with residual unit attached to it is used in this
model. Residual network connects input in front of the layer directly to the output
layer as illustrated Figure 3.6.

Figure 3.6. Residual Network.

2. LSTM-GRU : This is a special type of neural network. It consists of two hidden
layers where one layer is LSTM followed by GRU layer. This type of model produces
promising results in stock price prediction as demonstrated in [99]. A total of 100
nodes are used for each layer. MSE is used as the loss function and the utilized
optimizer is Adam [68].

3. Deep GRU : The model is a deeper version of simple GRU. It consists of 2 layers of
GRU. A total of 50 nodes are used for each layer. MSE is used as the loss function
and the utilized optimizer is Adam [68].

4. LSTM- Deep GRU : The model is composed of an additional GRU layer with the
LSTM-GRU configuration. A total of 100 nodes are used for each of the layer. MSE
is used as the loss function and the utilized optimizer is Adam [68].

41

5. Deep LSTM-GRU : The model is a deeper version of the LSTM-GRU model. It
consists of 4 layers under the configuration LSTM-GRU-LSTM-GRU. A total of 50
nodes are used for each layer. MSE is used as the loss function and the utilized
optimizer is Adam [68].

6. Encoder-Decoder : The encoder-decoder architecture is a neural network design pat-
tern. As shown in Figure 3.7, , the architecture is partitioned into two parts, the
encoder and the decoder. The encoder’s role is to encode the inputs into a state which
often contains several tensors. Then that state passes into the decoder to generate
the outputs. The model has shown great performance in the field of natural language
processing [147].In time series, the input sequence is the historic data whereas the
output sequence is the forecasting. In this research, 3 layers of GRU are utilized for
both encoder and decoder each with 35 nodes. MSE is used as the loss function and
the utilized optimizer is Adam [68].

Figure 3.7. Encoder-Decoder Network

3.4.4.3 Attention Based Models - SeriesNet

The architecture of the network is illustrated in Section 2.4.7. This section will highlight
all the features and modification that are being implemented in the architecture to make
more robust.

The architecture of SeriesNet consists of 2 or more networks. One network is of dilated
causal convolution and other ones are variety of the networks. The distinguishing factor
of this network is that it is has attention module in it thereby, improving its forecasting
accuracy.

42

The dilated causal convolution is composed of 7 layers of dilated convolution operations
followed by a 1D convolution layer. The filters used in the dilated convolution operation
are 32 while the dilation rate is increased 2 times for each layer. The output of the 1D
convolution layer is passed through the attention layer after which it is flattened and fed
to single neuron dense layer.

Outputs from all of the networks are concatenated and passed through Relu activation
function to give the overall output. The optimizer utilized is Adam [68] and the loss
function of MSE is used.

3.4.4.4 SeriesNet with LSTM

In this model, along with dilated causal convolution, LSTM is employed as another network.
The LSTM network is a two layer network between which attention module is introduced.
The output at the end is flattened and fed to single neuron dense layer. The number of
layers and neurons alter as per the application. The architecture of the model can be
summarized in the block diagram below.

Figure 3.8. SeriesNet with LSTM

43

3.4.4.5 SeriesNet with GRU

In this model, GRU is used alongside dilated causal convolution. The GRU network is a
two layer network between which attention module is introduced. The output at the end
is flattened and fed to single neuron dense layer. The number of layers and neurons alter
as per the application. The architecture of the model can be summarized in the block
diagram below.

Figure 3.9. SeriesNet with GRU

3.4.4.6 SeriesNet with CNN-LSTM

The model consists of a network of CNN-LSTM along with the network of dilated causal
convolution. The CNN-LSTM network is a 4 layer convolutional followed by 2 layers of
LSTM network after which attention module is introduced. The output at the end is
flattened and fed to single neuron dense layer. The convolutional layer has 12 filters, stride
of 1 and a kernel size of 3. Whereas, LSTM network has 100 nodes in each layer. The
architecture of the model can be summarized in the block diagram below.

44

Figure 3.10. SeriesNet with CNN-LSTM

3.4.4.7 SeriesNet with ConvLSTM

The model uses a network of ConvLSTM along with dilated causal convolution. The
ConvLSTM network is a two sets of 2D ConvLSTM layers with 128 filters and kernel
size (1, 3) each immediately followed by batch normalization. A self- attention layer with
sigmoid activation follows after that. The output at the end is flattened and fed to single
neuron dense layer. The architecture of the model can be summarized in the block diagram
below.

45

Figure 3.11. SeriesNet with ConvLSTM

3.4.4.8 SeriesNet with CNN-LSTM and ConvLSTM

The architecture consists of 3 networks. One network is of dilated causal convolution,
second one is the network of ConvLSTM and the third network is of CNN-LSTM. The
ConvLSTM network is a two sets of 2D ConvLSTM layers with 128 filters and kernel
size (1, 3) each immediately followed by batch normalization. A self- attention layer with
sigmoid activation follows after that. The output at the end is flattened and fed to single
neuron dense layer. The CNN-LSTM network is a 4 layer convolutional followed by 2 layers
of LSTM network after which attention module is introduced. The output at the end is
flattened and fed to single neuron dense layer. The convolutional layers have 120 filters,
stride of 1 and a kernel size of 3. Whereas, LSTM network has 100 nodes in each layer.
The architecture of the model can be summarized in the block diagram below.

46

Figure 3.12. SeriesNet with ConvLSTM & CNN-LSTM

3.4.4.9 SeriesNet with CNN-LSTM and GRU

The architecture consists of 3 networks. One network is of dilated causal convolution,
second one is the network of CNN-LSTM and the third network is of GRU. The network
configuration is the same as mention in the previous architectures. The architecture of the
model can be summarized in the block diagram below.

47

Figure 3.13. SeriesNet with CNN-LSTM & GRU

3.4.4.10 SeriesNet with ConvLSTM and GRU

The architecture consists of 3 networks. One network is of dilated causal convolution,
second one is the network of ConvLSTM and the third network is of GRU. The network
configuration is the same as mention in the previous architectures. The architecture of the
model can be summarized in the block diagram below.

48

Figure 3.14. SeriesNet with ConvLSTM & GRU

3.4.5 Ensemble Technique

For imputation as well as for forecasting, an ensemble is built for the top two performing
models. They are selected primarily on the basis of the experiments results. It is found that
usually creating an ensemble of the top two models helps in imputation whereas it doesn’t
give a significant improvement in forecasting. The techniques used are those mentioned in
chapter 2, voting regression and stacking. The stacking algorithm is comprised of Linear
regression, support vector regression (SVR) and Gradient Boosting regression (GBR).

Figure 3.15. Ensemble architecture

49

3.5 Evaluation Metric

All the evaluation metrics are described in Section 2.6 along with their pros and cons. For
the imputation phase, the mean squared error is used to gauge the effectiveness of the
model. However, gauging the effectiveness of forecasting is more complicated. Since each
metric has its own merit and demerit, more than one metric is used. In order to decide
one best model, one aggregated performance value is needed for each model. Hence, a new
error metric is proposed for forecasting which is the Aggregate Error Measure (AGM). This
aggregated measure is developed to combine the three utilized popular metrics: RMSE,
MAE and R2. It is calculated by averaging RMSE (square root of MSE) and MAE and
multiplying the result by (1-R2). The factor (1-R2) represents the portion of variance that
is not captured by the model. Since the R2 is a dimensionless constant, the final error
maintains the same scale as the dependent variable. The selection of the forecasting error
and benchmarking is done via AGM.

3.6 Model Tuning

One of the most difficult tasks in setting up the deep learning model is tuning the hyper-
parameters. Amongst all the hyper-parameters, learning rate is the most important one
[140]. It is the step size that the algorithm follows as it moves towards the global/local
minimum. This would imply that in case the learning rate is small, the convergence of the
algorithm will be slow [140]. On the contrary, in case a large learning rate is set, it will be
stuck in a local minimum [140]. Therefore, model tuning is important in terms of making
the model generalizable; i.e. it neither overfits nor underfits. The term overfit refers to
a situation where the model learns the training data and is not able to find the pattern
within that data. This would mean that the model has a poor accuracy with test data.
Overfitting can happen due to having a small dataset, complex model, etc. In order to
solve the model complexity issue, regularization is usually done which makes it difficult for
the model to learn and hence enabling it to find the pattern in the data. Underfitting is
the situation where the model is neither able to generalize the training data nor the test
data. Finding the balance between both scenarios is the aim of every supervised learning
task.

In order to select the parameters of the models the following steps were done.

• Model checkpoint was used. Model checkpoint saves the weights of the models based
on the set condition. In this work, the minimum loss of validation data is set as

50

the condition for model checkpoint. This is helpful because it tackles the overfitting
problem that can cause due to high number of epochs.

• Manual iterations were used to determine learning rate, model size, optimizer algo-
rithm, error function, regularization parameter, etc.

3.7 Conclusion

This chapter outlines the various datasets that are being utilized in the experiments carried
out in this thesis. The datasets include the following:

• California weather data obtained from Santa Maria which comprises of 13 weather
parameters.

• California strawberry yield and price dataset.

• Daily oil prices dataset.

• Corn yield dataset illustrating corn yield in USA.

• Synthetic time series dataset having complete time series data generated syntheti-
cally.

Next, details regarding the structure of the proposed models are outlined. The models
were categorized into non-machine learning models, non-deep machine learning models
and deep learning models. Finally, a new evaluation metric for choosing the prediction is
proposed. The next chapter will highlight the details of the experiments and the results
obtained by them.

51

Chapter 4

Experiments & Result Analysis

4.1 Introduction

The previous chapter covers the proposed solution for imputation and forecasting. It also
encompasses the datasets, models and evaluation metrics used to derive the best solution.
In this chapter, the experiments carried out are outlined. These experiments can be divided
into two main categories which are imputation and forecasting. Experiments belonging to
each are explained in details in the following sections.

4.2 Imputation Phase

The imputation phase follows the strategy in which first the methodology for imputation
is selected, which is followed by the model exploration or selection and at the end, the
models are improved by ensembling techniques. Each component of the strategy will be
explained in details.

4.2.1 Methodology Selection

Since imputation is an active research topic, multiple models belonging to different domains
are developed. Therefore, it is imperative for us to determine the optimal domain then
move further. Hence the first step in the imputation roadmap deals with the determination
of the best domain for imputation. In this experiment, three main domains of imputation

52

namely non-machine learning, non-deep machine learning and deep learning methods are
explored. Although there exists a long list of models under each methodology, the focus is
on the three most common models under each domain. Under the non-machine learning
methodology, models like mean, mode, and median are used. The Linear Regression,
Support Vector Regression and Gradient Boosting Regression models are used under the
non-deep machine learning methodology. Finally, Linear Memory Vector Recurrent Neural
Network (LIME-RNN), Linear Memory Vector Long Short Term Memory (LIME-LSTM),
and Linear Memory Vector Gated Recurrent Unit (LIME-GRU) are used under the deep
learning methodology. The comparative performance analysis is performed on one dataset
for the three mentioned methodologies.

The missing values are generated randomly in a complete-time series dataset (with no
missing values) of corn yield [1] and various models belonging to the mentioned method-
ologies above are used to impute the missing values in the dataset. The imputed values are
then compared with the original values to deduce the method providing the most appro-
priate imputation results. Once the performance analysis of each model is obtained, the
worst and best performing models are applied on the WTI oil price dataset [2], to validate
the method and gauge its impact on prediction. For prediction a window of 20 days is
used.

Hence the experiment is divided into two phases. The first phase deals with the com-
parative study between the imputation methodologies (non-machine learning, Nondeep
Machine Learning and Deep Learning methodologies), while the second phase determines
the impact of imputation on forecasting.

For imputation, the time series dataset on monthly corn yield, which had no missing
values, is used. 50% random missing values are generated in the complete dataset, and
aforementioned imputation techniques are used to impute those. The imputed values
are compared with the original values, and the Mean Squared Error (MSE) is calculated
between both. The block diagram in Figure 4.1 can be referenced for the overall imputation
methodology.

53

Figure 4.1. Imputation Methodology

After calculating the MSE for each imputation model, the worst and best-performing
models are applied to impute the missing values in the oil price dataset. The resulting
imputed datasets are used to forecast the oil prices. A 20 days ahead prediction is made
using a single LSTM hidden layer with 100 nodes and 150 epochs. The metric used for
prediction is AGM as explain in Section 2.6.

The results of imputation are summarized in Table 4.1 and Figure 4.5. A snapshot of
these results can be viewed in Figure 4.2.

54

Figure 4.2. Snapshot of the results of the models.

The left hand side of Figure 4.2 illustrates the results from statistical models. As
evident, the models do not provide satisfactory results. Amongst these three statistical
models, mode imputation provides the worst performance results with the highest MSE
value. The reason behind the poor performance is that the statistical models do not
consider the dependencies in the time series. They compute the mean, median, or mode of
the dataset and replace it with the missing value, thereby creating a bias in the dataset.
As per the results, it is also observed that the mean and median imputations provide
comparable results, which highlights the fact that both features (Area Planted and Area
Harvested) follow almost the same distribution.

The middle section of Figure 4.2 shows the results of the machine learning models. It is
observed that the machine learning models predict the missing values with greater accuracy
than the statistical models. This is by virtue of their learning mechanism. Amongst the
three models, Linear Regression has the worst results, and that is due to its inability to
cater to any non-linearity in the dataset. Support vector regression and Gradient boosting
regression provide similar results as they are able to consider the non-linearity in the
dataset, thereby imputing the missing values with better precision.

The right side section of Figure 4.2 shows the imputation results of the LIME frame-
work. All the models, except for LIME-RNN, achieve a higher accuracy amongst all the
examined imputation models, as evident from Table 4.1. The degraded performance of
LIME-RNN is due to the lack of a memory unit which is present in LIME-LSTM and
LIME-GRU. This hinders LIME-RNN in catering to the dependencies between the miss-

55

ing value and the previous values. Additionally, it is also observed that LIME-GRU has a
lower MSE than LIME-LSTM. This is due to the more straightforward structure of GRU,
which allows the error to backpropagate without vanishing too quickly as it bypasses mul-
tiple temporal steps [25].

Table 4.1
Results of imputation by the models employed.

Figure 4.3. Comparison between the different imputation methods that are being used.

To further validate the results, the worst and best-performing imputation models are
applied to the WTI oil price dataset [2], and their impact on its prediction capabilities

56

is observed. To compare the performance of learning models with different forecasting
horizons, forecasting from one day to twenty days ahead is done. Moreover, 80% of the
data points in the dataset are used for training, while the remaining 20% are used for
testing. The results can be viewed in Table 4.2 and Figure 4.4. As can be observed,
the imputation via LIME-GRU gives a better prediction results. Overall, there is a 39%
improvement in the prediction errors when LIME-GRU is used as a imputation model as
opposed to mode imputation. This validates the results found previously.

Figure 4.4. Illustration of AGM on each predictive step.

57

Table 4.2
AGM and overall AAGM for each imputation method.

All in all, a comparative study between the three methodologies: non-machine learning,
non-deep machine learning, and deep learning shows that the deep learning methodology
provides the most accurate imputation results compared to the other examined approaches.
This result is further validated via a predictive model. However, the only drawback in the
utilization of the deep learning models is the computational resources required. Since deep
learning models by virtue of it architecture requires a lot of resources whereas, machine
learning or statistical model don’t require that much of the resource.

4.2.2 Model Selection

Once the methodology is decided in Section 4.2.1, further exploration is done to find the
most accurate imputation models within that methodology . Therefore, in this experiment,
four types of time series are considered: (1) Trend (T) time series, (2) Seasonal (S) time
series, (3) Combined Trend and Seasonal (T&S) time series, and (4) Random (R) time
series and seven different DL models are applied to impute the missing values in each of
these time series. The utilized imputation models range from the most basic to the highly
complex ones, thereby allowing coverage of the spectrum of complexity. The performance

58

analysis of the imputation methods helps in finding the best model for each time series
type. The reason for determining optimal imputation for each time series type is because
every time series carry its unique characteristic and therefore, generalizing one model for
all is not possible.

The utilized imputation models are: (1) Simple DL models including the Long Short-
Term Memory (LSTM) and the Gated Recurrent Unit (GRU). (2) Compound DL models
which involve the Residual GRU, LSTM-GRU, Deep GRU, LSTM-Deep GRU, and Deep
LSTM-GRU. The models are also compared against a non-DL model that uses linear
function for interpolation. In order to gauge the effectiveness of the model with one value,
AGE is used to determine the top two imputation models for each tested time series
type; AGE is calculated by comparing imputed values with actual ones. The results are
summarized in Table 4.3 and are depicted in Figure 4.5.

Table 4.3
AGE of each imputation method against each time series. The bold figures illustrate the

top 2 performing models for each type.

59

Figure 4.5. Performance comparison of the utilized imputation methods.

It can be seen that in both Trend and Seasonal time series the Residual GRU Network
provides the best imputation results. This is because the network introduces the non-
linearity in the system which enables it to predict and impute values close to the actual
ones. Compared to the Residual GRU Network, more complex models tend to deteriorate
the results as they are unable to predict the values with high precision. Similarly, simple
DL models, i.e. LSTM and GRU, are unable to cater the non-linearity of the time series
since they are rudimentary models.

In the combined (T&S) time series, it is evident that GRU based neural networks are in
general the most suitable choice for imputation. Since the combined time series incorporate
the characteristics of both Trend and Seasonal time series, GRU based neural networks are
found to be optimal in both.

It is also observed that in this case the simple GRU network is the best performing
model compared to the other models. The optimal results obtained by the GRU are due to
the simpler structure that enables it to take into account the non-linearity. Furthermore,
the GRU performs better than LSTM because GRU allows the errors to back-propagate
without vanishing too quickly as it bypasses multiple temporal steps [25].

In the Random time series, almost all the models are found to be suitable for imputation.
Each of the models has almost the same AGE value and thus, any of them can be used.
Such results are found due to the randomness in data. Since it is a random time series, it

60

consists of all the components of the time series, hence all the models produce comparable
results.

4.2.3 Models Ensemble

Once the most appropriate imputation model for each time series is determined from Sec-
tion 4.2.2, the next step of the process is to further improve the performance by employing
ensemble techniques. Since it is the continuation of the previous experimentation, the same
synthetic time series dataset used in Section 4.2.2 is used. Two different types of ensemble
techniques are utilized which are Voting Regressor and Stacking ensemble.

In voting regressor, the top two performing models are averaged out whereas in stacking
ensemble, 3 machine learning (ML) ensemble techniques are utilized. These ML techniques
include Linear Regression (LR), Support Vector Regressor (SVR), and Gradient Boosting
(GB) ensembles.

The application of voting regressor is straightforward as it is the simple average of the
output of the top two performing imputation models. Conversely, Stacking ML ensemble
is a bit is more complicated. To apply the ML ensemble, an additional 10% of the values
from the original dataset, which originally had 50% missing values, have to be masked. The
top 2 imputation methods are applied on the resulting dataset. From imputation results of
these DL models, the 10% masked values which are imputed are stacked along with their
original values. The imputed values are considered as the input, while the actual values
are considered as the output for training the ML ensemble model. Masking of the values
is done because ML models are supervised models that require both the output along with
its corresponding input to train itself. After the model is trained, it is used to impute
the 50% missing values from the original dataset. The ensemble techniques can also be
illustrated in the Figure 4.6.

61

Figure 4.6. Ensemble Technique block diagram.

In terms of parameters, LR model uses the default parameters, SVR uses linear as its
kernel and huber function is used for calculating the loss in GB ensemble [87].

The results based on the AGE metric are illustrated in Figure 4.7 and Table 4.4 for
all four tested types of time series. As evident from Table 4.4 and Figure. 4.7, the ML
ensemble did not provide satisfactory results. This is due to the masking of additional 10%
of the input data to the ML ensemble which is needed to train the ML model. This in
turn means that the DL models have a greater portion of missing values to impute, which
results in higher AGE. However, voting ensemble did outperform all the ensemble as well
as DL imputation models.

Table 4.4
ML stacking ensemble models AGE for each time series type.

62

Figure 4.7. ML ensembles performance comparison with each of the four time series types.

4.3 Benchmarking Phase

The steps follow the logical order by first determining how far the imputation helps in
prediction. In case it helps, the next step follows to compare it with the other models in
the market to determine the effectiveness of the model against the other ones.

4.3.1 Impact of Imputation on Forecasting

The first step is to determine whether imputation has an impact on forecasting or not. In
order to do so, different imputation models are compared against the strategy in which all
the missing values are deleted (Complete Case Analysis - CCA). The utilized dataset in this
experiment is California’s weather data as well as strawberries yield and price information
from Oxnard and Santa Maria stations downloaded from two publicly available websites
[120, 122] from 2011 to 2019. The imputation models used are the following:

63

• Last Observation Carried Forward (LOCF): In this model the imputed value is based
on the assumption that the last non-missing observed value for yield or price is carried
forward. A bi-directional version is used in this work where preceding values are used
to fill following missing values and vice versa.

• Linear Function: The linear interpolation function as used in [32] is a function in
Python language which ignores the index and treats all the values as equally spaced.
It sees the trend and then fills up the missing values using the trend in the dataset.
In order to increase the robustness of the interpolation method the bi-directional
interpolation is used which fills missing values in both directions (forward and back-
ward). This enables filling any missing values in the first row of the dataset since
those are not filled by the forward interpolation.

• KNN-Imputation: The KNN-imputation is a methodology where the k nearest neigh-
bours are used to impute the missing values in the dataset. This way the cross-relation
between variables in the multivariate time series is intact as the all the variables are
considered while imputing the missing values.

• LSTM: In this LSTM the imputation framework is used to impute the missing values.

The imputation models are applied to the incomplete California time series. The output
files imputed by each of these models, (weather, yield and price files), are used as input to
the prediction model of simple LSTM. The imputation performance of each of the tested
imputation models is judged the prediction accuracy.

To make the comparison, simple LSTM model is trained using the imputed weather,
price and yield files to predict yield and prices 5 weeks ahead using the previous 5 months’
weather. The winning imputation model is the one with the least AGM value as mentioned
in Section 2.6.

In California dataset, yield and price data are imputed differently from the weather.
The yield and price data are interpolated in two ways: Filling using closest time value
based on the Last observed value (LOCF) and simple LSTM model. LOCF is based on
filling the yield and price with the previous available value (one day before or after) and if
that is not available, the same dates of the previous year for the same or closest station is
used. Therefore, it is done by first looking one day behind, if the price from Santa Maria
station is available the missing value is filled with that last observed price if not then the
price one day ahead is used instead. If both preceding and following values are missing, the
window is expanded to consider Santa Maria’s yields and prices one year back. If Santa
Maria’s last year value for the same date is present then it is taken otherwise the value the

64

day before or after is taken based on availability. In situations where none of these values
are present, the value is filled using the closest station, Oxnard, and the same methodology
of selecting the date is reapplied. Weather, on the other hand, is imputed using LSTM in
addition to the Linear function.

Four files are created based on four different combinations of these imputation methods,
see Table 4.5. All the four files are created based on the five months weather lag and
the 5 weeks ahead prediction. It should be noted that the M2M file represents the file
preprocessed by the CCA; no imputation since all records with missing values are discarded.

Table 4.5
Imputation combinations.

Price and yield predictions are then conducted using the three imputed files as input to
the simple DL LSTM prediction model along with the file without any imputation, M2M.
Five months weather lag is used for predicting the price 5 weeks ahead as illustrated in
Table 4.6 .

Table 4.6
Dates mapping.

65

Based on the aggregated measure AGM, it is found that the LSTM imputation model for
weather, price and yield leads to the best prediction performance across both applications
of price and yield prediction using weather; W2P and W2Y. Furthermore, it can also
be seen that with imputation there is an improvement in the prediction thereby making
imputation a vital task in the pre-processing stage. The LM2LM input file results in the
least AGM as listed in Table 4.8 and illustrated in Figure 4.9.

Table 4.7
Prediction results of different imputation techniques.

Figure 4.8. Prediction results of different imputation techniques.

66

4.3.2 Selection of Forecasting Model

Once the importance of imputation is deduced the next step is to validate the claim of
the framework as mentioned in Section 4.2.2. In order to gauge the effectiveness of the
imputation model, the imputed data is fed to the forecasting model and AGM is calculated.

To select the forecasting model, 9 DL models and 3 ensemble models are used. The
models are as follows:

1. DL models

(a) Encoder-Decorder

(b) SeriesNet with LSTM with Attention

(c) SeriesNet with GRU with Attention

(d) SeriesNet with CNN-LSTM with Attention

(e) SeriesNet with ConvLSTM with Attention

(f) SeriesNet with CNN-LSTM ConvLSTM with Attention

(g) SeriesNet with LSTM GRU with Attention

(h) SeriesNet with CNN-LSTM GRU with Attention

(i) SeriesNet with ConvLSTM GRU with Attention

2. Ensemble Models

(a) Voting Regressor

(b) Stacking ML Ensemble (SVR)

(c) Stacking ML Ensemble (GBR)

The experimentation is carried out on daily prices for Brent oil. The prices are fore-
casted for 1, 2, 3 and 7 days ahead. The univariate time series is converted to a supervised
learning problem with a sequence of 10 days as input and some point after that sequence as
output depending on the step ahead being utilized. For each horizon, AGM is calculated
and then overall AAGM is calculated.

The AAGM results are illustrated in Table 4.8 and in Figure 4.9. As evident from
the results SeriesNet with GRU outperforms all the other models. The reason for the
performance is by virtue of its architecture. The architecture has dilated CNN which caters

67

the long- term spatial features and GRU which cater the temporal features. Additionally,
it is also observed that SeriesNet with GRU has a lower AAGM than SeriesNet with
LSTM. This is due to the more straightforward structure of GRU, which allows the error
to backpropagate without vanishing too quickly as it bypasses multiple temporal steps [25].

It is also observed that voting regressor gives a comparable result with SeriesNet with
GRU but since voting regressor requires more computational time hence SeriesNet with
GRU is a better choice.

The experiment aids in determining the forecasting model that is to be used while
gauging the imputation against the market models. The results illustrates that SeriesNet
with GRU is the optimal choice and hence it will be used for all the analysis on market
benchmarking.

Table 4.8
Prediction results of different imputation models.

68

Figure 4.9. Prediction results of different imputation models.

4.3.3 Benchmarking on Oil Dataset

Now that the forecasting model is selected, the benchmarking is carried out. The road
map followed for the benchmarking in case of oil dataset is as follows:

Figure 4.10. Roadmap for Oil dataset.

69

4.3.3.1 Identification of TS Type

As evident from the road map, the first step is the identification of the time series that the
dataset is following. For the Identification, the time series is decomposed into trend and
seasonal components and each of the components is then analyzed separately.

For the trend component, the data is divided into two sections and for each section the
mean is calculated. In case the difference between the means of both sections is within
10% of each other, the data is classified as having no trend. Conversely, if the means of
both sections have a difference greater than 10%, the data is said to have trend in it. The
threshold of 10% is set after conducting various tests on different time series datasets and it
is found to be most suitable. Thresholds below 10% are found to be too stringent whereas
more than 10% are found to be quite relaxed.

For identifying the seasonal component, the Savitzky–Golay filter [108] is employed.
The seasonal component is passed through the filter and MAE is calculated between the
filtered data and the original data. If the MAE is found to be in the proximity of zero,
the data is declared as seasonal otherwise in case it is greater than 1, it is concluded that
there is no seasonality component in it.

On the basis of the above tests, the category is decided. The summarized version is
illustrated in Table 4.9

Table 4.9
Time series classification combinations

The time series classification test is applied on the oil dataset and the results suggest
that the oil dataset follows a combined time series that has components of both trend and
seasonality. Under this circumstance, the most suitable imputation method is the ensemble
of the GRU and Residual as per the results of Section 4.2.2.

70

4.3.3.2 Internal Benchmarking

In order to validate this claim, the dataset is imputed via the common top 4 imputation
methods among the set of all top 2 models found internally by the system for all the 4 time
series types. The hypothesis is that the top performing models are as per the framework
recommended earlier. The results of the four imputation models are gauged using the
forecasting model in which the forecasting is performed for the horizon of 1,2,3 and 7 days
ahead. The metric used is the AAGM which is the average of the AGM of all the steps
ahead (i.e. 4 in this case).

The results of the internal benchmarking are illustrated in Figure 4.11. It is observed
that the top two performing models are GRU and Residual GRU which validates the claim
stated earlier.

Figure 4.11. Prediction results of different imputation models.

4.3.3.3 External Benchmarking

Here the ensemble model is compared with the common market deep and non-deep models.
The utilized deep learning model is LIME LSTM whereas Interpolation technique using
linear function is used in the category of non-deep learning models. The ensemble is the
average of the results of GRU and Reisdual-GRU. The horizon is the same as it is in internal

71

benchmarking. To gauge the performance AAGM is calculated which is the average of the
AGM of all the steps ahead (i.e. 4 in this case).

The results of this step is illustrated in Figure 4.12. It is found via the results that the
ensemble of GRU and Residual GRU is outperforming the common models of the market.
As evident from the figure, when compared with the market deep learning model (LIME-
LSTM), ensemble imputation provides an improvement of 0.5% in forecasting whereas,
when compared with non-deep learning model (interpolation), the improvement is found
to be around 2%.

Figure 4.12. Prediction results of different imputation models.

Furthermore, in order to compare the models with naive forecasting, MASE is also
calculated for each model. The results are illustrated in the Table 4.10. As evident from
the Table 4.10, all the models have an MASE of less than one, which portrays that the
models are better than naive forecasting.

72

Figure 4.13. Roadmap for Weather and Price Dataset.

Table 4.10
MASE results of different imputation models.

4.3.4 W2P Benchmarking

For W2P the roadmap is illustrated in Figure. 4.13. As evident from the Figure 4.13 the
steps are more or less the same as the oil dataset. Since the weather dataset is a multivariate
time series, the time series determination test is not conducted on it. However, the test
for time series is conducted on price dataset.

For weather and price different imputation models are employed. For ensemble impu-
tation, weather is imputed via GRU because it is found in Section 4.2.2 that GRU based
neural networks are found to be most suitable for imputation, though the complexity varies
from time series to time series. Whereas for KNN and LIME, the same model is used for

73

both price and weather. After imputation the weather for 20 weeks prior to the price
forecasting date is taken as input to forecast future prices 5 weeks from that date. This
means that the input weather data is used to train the model to forecast the price 5 week
after the weather period. To get the input variables, weather values of each day are stacked
horizontally so that each day has 13 weather features, hence there are 1820 features for
140 days (20 weeks) which get mapped to one price at some step into the future. Principal
component analysis (PCA) is applied to compress the 1820 features to 104 while retaining
77% of the variance. These daily weather values across 20 weeks affect the price. The
horizontal stacking of the daily data is created and implemented to transform the daily
data into a set covering a 20-week span. This stacking introduces a new problem since
the number of features for the model became 1820. This number is too much for the size
of the dataset and could lead to possible overfitting hence the need for PCA to reduce
the dimensionality to 104. Depending on the model being applied, this input data with a
dimensionality of 104 is reshaped again to suit the kind of input expected by the model.

For price, the dataset is passed through the time series classifier and it is found that the
price follows a combined time series that is it has a component of both trend and seasonality.
Based on the framework in Section 4.2.2, ensemble of GRU and Residual GRU imputation
is conducted on the prices. The experiment doesn’t require internal benchmarking as it is
already conducted and validated in Section 4.3.3.

For external benchmarking, LIME LSTM and KNN-imputation are conducted to be
compared against the ensemble imputation. The imputed files of weather and price are
combined as per the time frames and fed into the forecasting model that is SeriesNet with
GRU. To gauge the performance of the forecasting, AGM is calculated for each of the
methods. Furthermore, based on validation results, hyper- parameters such as dropout is
also tweaked to either tackle overfitting or underfitting. The best weights are saved during
training based on the least validation loss so as to combat overfitting caused by too many
epochs. The results are illustrated in Figure 4.14. As evident from the results, the ensemble
model provides the best forecasting results. As evident from the figure, ensemble model
provides an improvement of around 57% in forecasting errors when compared with deep
learning model (LIME-LSTM) and an improvement of 66% when compared with non-deep
learning model (KNN-imputation).

74

Figure 4.14. Forecasting results of different imputation models.

The models are also compared with naive forecasting, and hence MASE is also calcu-
lated for each model. The results are illustrated in the Table 4.11. As evident from the
Table 4.11, all the models have an MASE of less than one, which portrays that the models
are better than naive forecasting.

Table 4.11
MASE results of different imputation models.

4.3.5 W2Y Benchmarking

For W2Y, the following roadmap is followed.

75

Figure 4.15. Roadmap for Weather and Yield Dataset.

As evident from the Figure 4.15 the steps are more or less the same as the experiment
in Section 4.3.4. Since the weather dataset is a multivariate time series, the time series
determination test is not conducted on it. However, the test for time series is conducted
on the yield dataset.

For weather the same preprocessing is conducted on it as mentioned in Section 4.3.4.
For yield, however, the dataset is passed through the time series classifier which shows
that the yield follows a seasonal time series. Based on the framework in Section 4.2.2,
the ensemble of Residual GRU and LSTM-Deep GRU imputation is conducted on the
yield. The experiment doesn’t require internal benchmarking as it is already conducted
and validated in Section 4.3.3.

For external benchmarking, LIME-LSTM and KNN-imputation is conducted as the
comparison against the ensemble imputation. The imputed files of weather and price are
combined as per the time frames and fed into the forecasting model that is SeriesNet with
GRU. To gauge the performance of the forecasting, AGM is calculated for each of the
methods. Furthermore, based on validation results, hyper- parameters such as dropout
are also tweaked to either tackle overfitting or underfitting. The best weights are saved
during training based on the least validation loss so as to combat overfitting caused by too
many epochs. The results are illustrated in Figure 4.16. As evident from the results, the
ensemble model provides the best forecasting results. It is being observed from the figure
that when compared with LIME, ensemble imputation model provides an improvement of
35% whereas, with KNN-imputation the improvement is found to be around 67%.

76

Figure 4.16. Forecasting results of different imputation models.

The models are also compared with naive forecasting by calculating MASE. The results
of which are illustrated in the Table 4.12. As evident from the Table 4.12, all the models
have an MASE of less than one, which portrays that the models are better than naive
forecasting.

Table 4.12
MASE results of different imputation models.

4.4 Conclusion

The chapter started off with the determination of the approach most fit for imputation.
In order to do this, corn yield dataset is being utilized and it was found that the deep

77

learning approach is found to be optimal for imputation.

The next step in the chapter, is the determination of the best suited imputation model
for each time series. The reason for this is because, every time series follow a different
trajectory therefore, it is not possible to generalize one model to all the types of time
series. The experiment results, further validated this claim and this enabled us to come up
with a recommendation framework for each type of time series in order to have the best
imputation results.The results of the models are further improved using different ensemble
techniques making the models more robust and effective.

Once the models are determined, the next step is to benchmark them with the models
used in literature and guage their effective with respective to them. To perform this, three
different type of incomplete time series datasets are being used and the imputation is
being performed with recommended models and literature models. In order to determine
the effectiveness of imputation, forecasting model is being developed and used. It is found
from the experimentation that the recommended model gives a lesser forecasting error as
opposed to the other models. In oil price dataset, it gives an improvement of upto 2%
whereas in W2P and W2Y it gives an improvement of upto 66%.

78

Chapter 5

Conclusion

The objective of this thesis is to tackle the problem of fresh produce yield and price
forecasting. However, one problem which hinders this activity is the problem of missing
values in the dataset. Therefore, this research handles this problem by introducing various
novel imputation frameworks and models to provide greater accuracy and gauge its impact
on FP forecasting. There are models which exist in the current literature but they are either
limited to certain domains, e.g. medical fields, or assume linearity in the system which is
usually not the case. This thesis fills the void by introducing various imputation models
that range from simple to complex models including ensemble techniques. Furthermore,
it also provides a recommendation framework for different types of time series which are
commonly observed. The performance of these imputations are gauged by the improvement
in forecasting for which multiple novel attention-based models are developed. Strawberries
are selected as the case study for FP because of its extra difficulty caused by its short shelf
life.

Since the research tackles two aspects of the problem, imputation and forecasting, both
aspects are discussed and experimented and throughout the work, it is presumed that
the time series is stationary. The results from the imputation phase, suggests that the
averaging ensemble leads to having the least forecasting error and hence is the optimal
solution for the missing values. It is also observed that the GRU based neural networks
generally perform better as opposed to other models though the complexity of the model
varies from time series to time series.

In the forecasting phase, amongst different novel forecasting, SeriesNet with GRU is
found to outperform other models. Moreover, the imputation framework is being validated
and compared with the existing models in the market and it is found that the imputation

79

of via the framework results in a better forecasting results when compared to other market
models. Quantitative in the oil dataset, the ensemble model provided a 0.5% and 2%
improvement in the forecasting error when compared with market deep and non-deep
method respectively. In W2P dataset the improvement noted was 57% when compared
with LIME and 66% when compared with KNN-imputation. In the W2Y, the improvement
was 35% and 67% when compared with LIME and KNN-imputation.

Despite having a versatile framework for imputation, the model is limited to cater
only missing values that occur at random which is more probable and frequently observed.
Therefore, the future work can cater this aspect and alter the model to be robust enough
to tackle large chunks of missing values. The reason that large chunk of missing values
is difficult to impute is because each time series carries information within itself and the
absence of a chunk of values makes it harder for the neural network to determine the
trend of the series. Furthermore, advanced neural networks such as Generative Adversarial
Networks (GANs) [53] can also be applied and explored for imputation.

In terms of forecasting, the following can be considered as the future tasks:

• Predicting FP farm-gate prices as a function of yield should be explored to determine
the best approach to price modelling.

• Incorporate other external factors such as soil parameters, irrigation, etc. to improve
model performance.

• Although California is the major supplier of strawberries, weather data from other
areas which form the minority can be considered in determining strawberry prices.

• Satellite imagery which provide information vegetation and land can be explored as a
source of additional information which deep learning models can utilize in modelling
yield and price.

• Extending the work in this thesis to other FP similar to or different from strawberry
and see how well it is generalizable to other crops.

80

References

[1] Corn & soybean prices 2008-2017 — kaggle. https://www.kaggle.com/ainslie/

usda-wasde-monthly-corn-soybean-projections#USDAProj_Corn_2007to2008.

csv. (Accessed on 12/20/2019).

[2] US Energy Information Administration. Spot prices for crude oil and petroleum
products. https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm. (Accessed on
07/07/2020).

[3] Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to convolutional neural
networks. New York, NY: Springer, 10:978–973, 2017.

[4] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An
empirical comparison of machine learning models for time series forecasting. Econo-
metric Reviews, 29(5-6):594–621, 2010.

[5] David LJ Alexander, Alexander Tropsha, and David A Winkler. Beware of r 2:
simple, unambiguous assessment of the prediction accuracy of qsar and qspr models.
Journal of chemical information and modeling, 55(7):1316–1322, 2015.

[6] Paul D Allison. Missing data, volume 136. Sage Publications, 2001.

[7] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992.

[8] M. F. Anaghi and Y. Norouzi. A model for stock price forecasting based on arma
systems. In 2012 2nd International Conference on Advances in Computational Tools
for Engineering Applications (ACTEA), pages 265–268, 2012.

[9] Aphex34. File:typical cnn.png - wikimedia commons. https://commons.wikimedia.
org/wiki/File:Typical_cnn.png. (Accessed on 07/05/2020).

81

https://www.kaggle.com/ainslie/usda-wasde-monthly-corn-soybean-projections#USDAProj_Corn_2007to2008.csv
https://www.kaggle.com/ainslie/usda-wasde-monthly-corn-soybean-projections#USDAProj_Corn_2007to2008.csv
https://www.kaggle.com/ainslie/usda-wasde-monthly-corn-soybean-projections#USDAProj_Corn_2007to2008.csv
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png

[10] Ibrahim Berkan Aydilek and Ahmet Arslan. A hybrid method for imputation of
missing values using optimized fuzzy c-means with support vector regression and a
genetic algorithm. Information Sciences, 233:25–35, 2013.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate, 2014.

[12] Rita Beigaite, Tomas Krilavičius, and Ka Lok Man. Electricity price forecasting
for nord pool data. In 2018 International Conference on Platform Technology and
Service (PlatCon), pages 1–6. IEEE, 2018.

[13] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[14] Leo Breiman. Stacked regressions. Machine learning, 24(1):49–64, 1996.

[15] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifica-
tion and regression trees. CRC press, 1984.

[16] Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting.
springer, 2016.

[17] Jean C Buzby, Jeanine T Bentley, Beth Padera, Cara Ammon, and Jennifer Cam-
puzano. Estimated fresh produce shrink and food loss in us supermarkets. Agricul-
ture, 5(3):626–648, 2015.

[18] RG Carpenter. Principles and procedures of statistics, with special reference to the
biological sciences. The Eugenics Review, 52(3):172, 1960.

[19] NH Chan. Time series: Co-integration. 2001.

[20] Z. Chang, Y. Zhang, and W. Chen. Effective adam-optimized lstm neural network for
electricity price forecasting. In 2018 IEEE 9th International Conference on Software
Engineering and Service Science (ICSESS), pages 245–248, 2018.

[21] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu.
Recurrent neural networks for multivariate time series with missing values. Sci. Rep.,
8(1):6085, 2018.

[22] Sirapat Chiewchanwattana, Chidchanok Lursinsap, and Chee-Hung [Henry Chu].
Imputing incomplete time-series data based on varied-window similarity measure of
data sequences. Pattern Recognit Lett, 28(9):1091 – 1103, 2007.

82

[23] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[24] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. Doctor ai: Predicting clinical events via recurrent neural networks. In
Proc. Mach. Learn. Healthcare Conf., pages 301–318, 2016.

[25] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

[26] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for
image classification. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3642–3649, 2012.

[27] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. Flexible, high performance convolutional neural networks for
image classification. In Twenty-Second International Joint Conference on Artificial
Intelligence, 2011.

[28] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, page 160–167, New York,
NY, USA, 2008. Association for Computing Machinery.

[29] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[30] Jesús [Crespo Cuaresma], Jaroslava Hlouskova, Stephan Kossmeier, and Michael
Obersteiner. Forecasting electricity spot-prices using linear univariate time-series
models. Applied Energy, 77(1):87 – 106, 2004.

[31] Sandya De Alwis, Yishuo Zhang, Myung Na, and Gang Li. Duo attention with
deep learning on tomato yield prediction and factor interpretation. In Pacific Rim
International Conference on Artificial Intelligence, pages 704–715. Springer, 2019.

[32] Chäım De Mulder, T Flameling, S Weijers, Youri Amerlinck, and Ingmar Nopens.
An open software package for data reconciliation and gap filling in preparation of

83

water and resource recovery facility modeling. Environmental Modelling & Software,
107:186–198, 2018.

[33] R. Dey and F. M. Salem. Gate-variants of gated recurrent unit (GRU) neural net-
works. In Proc. IEEE 60th Int. Midwest Symp. Circuits Syst. (MWSCAS), pages
1597–1600, 2017.

[34] A. Diallo, E. Kácsor, and M. Vancsa. Forecasting the spread between hupx and eex
dam prices the case of hungarian and german wholesale electricity prices. In 2018
15th International Conference on the European Energy Market (EEM), pages 1–5,
2018.

[35] Norman R Draper and Harry Smith. Applied regression analysis, volume 326. John
Wiley & Sons, 1998.

[36] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and Vladimir
Vapnik. Support vector regression machines. In Advances in neural information
processing systems, pages 155–161, 1997.

[37] Philip Hans Franses. A note on the mean absolute scaled error. International Journal
of Forecasting, 32(1):20–22, 2016.

[38] David A Freedman. Statistical models: theory and practice. Cambridge University
Press, 2009.

[39] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232, 2001.

[40] Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data Anal.,
38(4):367 – 378, 2002. Nonlinear Methods and Data Mining.

[41] R. Fu, Z. Zhang, and L. Li. Using LSTM and GRU neural network methods for traffic
flow prediction. In Proc. 31st Youth Academic Annu. Conf. Chin. Assoc. Automat.
(YAC), pages 324–328, 2016.

[42] David S Fung. Methods for the estimation of missing values in time series. Master’s
thesis, Edith Cowan University Perth, 2006.

[43] Min Gan, Yu Cheng, Kai Liu, and Gang lin Zhang. Seasonal and trend time series
forecasting based on a quasi-linear autoregressive model. Appl. Soft Comput., 24:13
– 18, 2014.

84

[44] Y. Gandge and Sandhya. A study on various data mining techniques for crop yield
prediction. In 2017 International Conference on Electrical, Electronics, Communica-
tion, Computer, and Optimization Techniques (ICEECCOT), pages 420–423, 2017.

[45] Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of
forecasting, 4(1):1–28, 1985.

[46] Everette S Gardner Jr. Exponential smoothing: The state of the art—part ii. Inter-
national journal of forecasting, 22(4):637–666, 2006.

[47] Anshul Garg and Bindu Garg. A robust and novel regression based fuzzy time series
algorithm for prediction of rice yield. In 2017 International Conference on Intelligent
Communication and Computational Techniques (ICCT), pages 48–54. IEEE, 2017.

[48] C. Ge. A lstm and graph cnn combined network for community house price fore-
casting. In 2019 20th IEEE International Conference on Mobile Data Management
(MDM), pages 393–394, 2019.

[49] N. N. Ghosalkar and S. N. Dhage. Real estate value prediction using linear regression.
In 2018 Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA), pages 1–5, 2018.

[50] Eric Ghysels and Denise R Osborn. The econometric analysis of seasonal time series.
Cambridge University Press, 2001.

[51] SA Glantz and BK Slinker. Primer of applied regression and analysis of variance,
2001. Columbus, OH: McGraw-Hill Education, 2.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[54] E. Hadavandi, H. Shavandi, and A. Ghanbari. A genetic fuzzy expert system for
stock price forecasting. In 2010 Seventh International Conference on Fuzzy Systems
and Knowledge Discovery, volume 1, pages 41–44, 2010.

85

[55] Andrew C Harvey. Forecasting, structural time series models and the Kalman filter.
Cambridge university press, 1990.

[56] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media,
2009.

[57] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 06(02):107–116, 1998.

[58] Ming Hua and Jian Pei. Cleaning disguised missing data: A heuristic approach. In
KDD, KDD ’07, page 950–958, New York, NY, USA, 2007.

[59] Darren Hudson. Agricultural markets and prices. Technical report, 2007.

[60] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[61] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy.
International journal of forecasting, 22(4):679–688, 2006.

[62] J. Jagwani, M. Gupta, H. Sachdeva, and A. Singhal. Stock price forecasting us-
ing data from yahoo finance and analysing seasonal and nonseasonal trend. In 2018
Second International Conference on Intelligent Computing and Control Systems (ICI-
CCS), pages 462–467, 2018.

[63] L. Jiang and G. Hu. Day-ahead price forecasting for electricity market using long-
short term memory recurrent neural network. In 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV), pages 949–954, 2018.

[64] Z. Jiang and G. Shen. Prediction of house price based on the back propagation neural
network in the keras deep learning framework. In 2019 6th International Conference
on Systems and Informatics (ICSAI), pages 1408–1412, 2019.

[65] W.L. Junger and A. [Ponce de Leon]. Imputation of missing data in time series for
air pollutants. Atmos. Environ., 102:96 – 104, 2015.

[66] Terry L Kastens, Rodney Jones, and Ted C Schroeder. Futures-based price fore-
casts for agricultural producers and businesses. Journal of Agricultural and Resource
Economics, pages 294–307, 1998.

86

[67] Saeed Khaki, Lizhi Wang, and Sotirios V Archontoulis. A cnn-rnn framework for
crop yield prediction. Frontiers in Plant Science, 10:1750, 2020.

[68] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[70] Tarald O. Kv̊alseth. Cautionary note about r 2. The American Statistician,
39(4):279–285, 1985.

[71] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, Yongcheol Shin, et al. Testing
the null hypothesis of stationarity against the alternative of a unit root. Journal of
econometrics, 54(1-3):159–178, 1992.

[72] Y. Li, R. Liang, Z. Li, J. Gao, Y. Wang, and T. Wu. Research on electricity price
forecasting method based on genetic algorithm and neural network in power market.
In 2018 2nd IEEE Conference on Energy Internet and Energy System Integration
(EI2), pages 1–6, 2018.

[73] Hong Lin, Yunzi Hua, Leiming Ma, and Lei Chen. Application of convlstm network
in numerical temperature prediction interpretation. In Proceedings of the 2019 11th
International Conference on Machine Learning and Computing, ICMLC ’19, page
109–113, New York, NY, USA, 2019. Association for Computing Machinery.

[74] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning, 2015.

[75] Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data
in sequences with rnns: Improved classification of clinical time series. In Proc. Mach.
Learn. Healthcare Conf., pages 253–270, 2016.

[76] H. Liu and B. Song. Stock price trend prediction model based on deep residual net-
work and stock price graph. In 2018 11th International Symposium on Computational
Intelligence and Design (ISCID), volume 02, pages 328–331, 2018.

[77] Lon-Mu Liu, Siddhartha Bhattacharyya, Stanley L Sclove, Rong Chen, and William J
Lattyak. Data mining on time series: an illustration using fast-food restaurant fran-
chise data. Computational Statistics & Data Analysis, 37(4):455–476, 2001.

87

[78] S. Lu, Z. Li, Z. Qin, X. Yang, and R. S. M. Goh. A hybrid regression technique
for house prices prediction. In 2017 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), pages 319–323, 2017.

[79] Q. Ma, S. Li, L. Shen, J. Wang, J. Wei, Z. Yu, and G. W. Cottrell. End-to-end incom-
plete time-series modeling from linear memory of latent variables. IEEE Transactions
on Cybernetics, pages 1–13, 2019.

[80] C. R. Madhuri, G. Anuradha, and M. V. Pujitha. House price prediction using
regression techniques: A comparative study. In 2019 International Conference on
Smart Structures and Systems (ICSSS), pages 1–5, 2019.

[81] R. Medar, V. S. Rajpurohit, and S. Shweta. Crop yield prediction using machine
learning techniques. In 2019 IEEE 5th International Conference for Convergence in
Technology (I2CT), pages 1–5, 2019.

[82] Meeradevi and H. Salpekar. Design and implementation of mobile application for crop
yield prediction using machine learning. In 2019 Global Conference for Advancement
in Technology (GCAT), pages 1–6, 2019.

[83] Lucie Michel and David Makowski. Comparison of statistical models for analyzing
wheat yield time series. PLoS One, 8(10):e78615, 2013.

[84] Sparsh Mittal. A survey of fpga-based accelerators for convolutional neural networks.
Neural computing and applications, pages 1–31, 2020.

[85] Steffen Moritz, Alexis Sardá, Thomas Bartz-Beielstein, Martin Zaefferer, and Jörg
Stork. Comparison of different methods for univariate time series imputation in R,
2015.

[86] Shinichi Nakagawa and Robert P. Freckleton. Missing inaction: the dangers of ig-
noring missing data. Trends Ecol. Evol., 23(11):592 – 596, 2008.

[87] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Front.
Neurorobot., 7:21, 2013.

[88] Petteri Nevavuori, Nathaniel Narra, and Tarmo Lipping. Crop yield prediction
with deep convolutional neural networks. Computers and electronics in agriculture,
163:104859, 2019.

88

[89] A. Nigam, S. Garg, A. Agrawal, and P. Agrawal. Crop yield prediction using machine
learning algorithms. In 2019 Fifth International Conference on Image Information
Processing (ICIIP), pages 125–130, 2019.

[90] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of artificial intelligence research, 11:169–198, 1999.

[91] AN Patowary, PC Bhuyan, MP Dutta, J Hazarika, PJ Hazarika, et al. Development
of a time series model to forecast wheat production in india. Environment & Ecology,
35(4D):3313–3318, 2017.

[92] S Madeh Piryonesi and Tamer E El-Diraby. Role of data analytics in infrastruc-
ture asset management: Overcoming data size and quality problems. Journal of
Transportation Engineering, Part B: Pavements, 146(2):04020022, 2020.

[93] Kim Plunkett and Jeffrey L Elman. Exercises in rethinking innateness: A handbook
for connectionist simulations. Mit Press, 1997.

[94] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, 6(3):21–45, 2006.

[95] Robi Polikar. Ensemble learning. In Ensemble machine learning, pages 1–34.
Springer, 2012.

[96] P. Przymus, Y. Hmamouche, A. Casali, and L. Lakhal. Improving multivariate time
series forecasting with random walks with restarts on causality graphs. In 2017
IEEE International Conference on Data Mining Workshops (ICDMW), pages 924–
931, 2017.

[97] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cot-
trell. A dual-stage attention-based recurrent neural network for time series prediction.
arXiv preprint arXiv:1704.02971, 2017.

[98] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[99] Akhter Mohiuddin Rather, Arun Agarwal, and V.N. Sastry. Recurrent neural network
and a hybrid model for prediction of stock returns. Expert Syst. Appl., 42(6):3234 –
3241, 2015.

[100] Mrinmoy Ray, Anil Rai, V Ramasubramanian, and KN Singh. Arima-wnn hybrid
model for forecasting wheat yield time-series data. J. Ind. Soc. Agric. Stat, 70(1):63–
70, 2016.

89

[101] P Chandra Shaker Reddy and A Sureshbabu. An applied time series forecasting
model for yield prediction of agricultural crop. In International Conference on Soft
Computing and Signal Processing, pages 177–187. Springer, 2019.

[102] Alvin C Rencher. Methods of multivariate analysis, volume 492. John Wiley & Sons,
2003.

[103] L. Rokach and O. Maimon. Top-down induction of decision trees classifiers - a
survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 35(4):476–487, 2005.

[104] Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33(1-2):1–39,
2010.

[105] Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and
applications, volume 69. World scientific, 2008.

[106] K. B. Sahay and K. Singh. Short-term price forecasting by using ann algorithms. In
2018 International Electrical Engineering Congress (iEECON), pages 1–4, 2018.

[107] L. Sayavong, Z. Wu, and S. Chalita. Research on stock price prediction method
based on convolutional neural network. In 2019 International Conference on Virtual
Reality and Intelligent Systems (ICVRIS), pages 173–176, 2019.

[108] R. W. Schafer. What is a savitzky-golay filter? [lecture notes]. IEEE Signal Process-
ing Magazine, 28(4):111–117, 2011.

[109] Gabriel L Schlomer, Sheri Bauman, and Noel A Card. Best practices for missing
data management in counseling psychology. J. Couns. Psychol., 57(1):1, 2010.

[110] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85 – 117, 2015.

[111] Hilary L Seal. The historical development of the Gauss linear model. Yale University,
1968.

[112] A Shabri, R Samsudin, Z Ismail, et al. Forecasting of the rice yields time series
forecasting using artificial neural network and statistical model. Journal of Applied
Sciences, 9(23):4168–4173, 2009.

[113] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge University Press, 2014.

90

[114] Z. Shen, Y. Zhang, J. Lu, J. Xu, and G. Xiao. Seriesnet:a generative time series fore-
casting model. In 2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2018.

[115] Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-
chun WOO. Convolutional lstm network: A machine learning approach for precip-
itation nowcasting. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages
802–810. Curran Associates, Inc., 2015.

[116] A. Shiri, M. Afshar, A. Rahimi-Kian, and B. Maham. Electricity price forecasting
using support vector machines by considering oil and natural gas price impacts. In
2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE),
pages 1–5, 2015.

[117] Manish Shukla and Sanjay Jharkharia. Agri-fresh produce supply chain management:
a state-of-the-art literature review. International Journal of Operations & Production
Management, 2013.

[118] K. Silverstein. Trump administration to divert more of cal-
ifornia’s water to farming, impacting power production and
wildlife. https://www.forbes.com/sites/kensilverstein/2020/02/21/

trump-administration-to-divert-more-of-californias-water-to-farming-impacting-power-production-and-wildlife/

#521d69672195. (Accessed on 07/04/2020).

[119] James H Stock. Forecasting economic time series. A Companion to Theoretical
Econometrics, Blackwell Publishers, pages 562–84, 2001.

[120] The California strawberry Commission website. Home — california strawberry com-
mission. https://www.calstrawberry.com/en-us/. (Accessed on 07/07/2020).

[121] K. Sutiene, G. Vilutis, and D. Sandonavicius. Forecasting of GRID job waiting time
from imputed time series. Elektron Elektrotech, 114(8):101–106, Oct. 2011.

[122] The California Irrigation Management Information System. Cimis. https://cimis.
water.ca.gov/. (Accessed on 07/07/2020).

[123] A. S. Terliksiz and D. T. Altýlar. Use of deep neural networks for crop yield pre-
diction: A case study of soybean yield in lauderdale county, alabama, usa. In 2019
8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pages
1–4, 2019.

91

https://www.forbes.com/sites/kensilverstein/2020/02/21/trump-administration-to-divert-more-of-californias-water-to-farming-impacting-power-production-and-wildlife/#521d69672195
https://www.forbes.com/sites/kensilverstein/2020/02/21/trump-administration-to-divert-more-of-californias-water-to-farming-impacting-power-production-and-wildlife/#521d69672195
https://www.forbes.com/sites/kensilverstein/2020/02/21/trump-administration-to-divert-more-of-californias-water-to-farming-impacting-power-production-and-wildlife/#521d69672195
https://www.calstrawberry.com/en-us/
https://cimis.water.ca.gov/
https://cimis.water.ca.gov/

[124] U Thissen, R Van Brakel, AP De Weijer, WJ Melssen, and LMC Buydens. Using
support vector machines for time series prediction. Chemometrics and intelligent
laboratory systems, 69(1-2):35–49, 2003.

[125] Andres M. Ticlavilca and Dillon M. Feuz. Forecasting agricultural commodity prices
using multivariate bayesian machine. 2010.

[126] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie,
Robert Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation
methods for DNA microarrays . Bioinformatics, 17(6):520–525, 06 2001.

[127] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis.
Forecasting stock prices from the limit order book using convolutional neural net-
works. In 2017 IEEE 19th Conference on Business Informatics (CBI), volume 01,
pages 7–12, 2017.

[128] Dalhousie University and University of Guelph.
Canada food price report eng 2018 .pdf. https://cdn.dal.ca/content/dam/

dalhousie/pdf/management/News/News%20&%20Events/Canada_Food_Price_

Report_Eng_2018_.pdf. (Accessed on 07/04/2020).

[129] H. Ur-Rehman, S. Mujeeb, and N. Javaid. Dcnn and lda-rf-rfe based short-term
electricity load and price forecasting. In 2019 International Conference on Frontiers
of Information Technology (FIT), pages 71–715, 2019.

[130] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-
based music recommendation. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 2643–2651. Curran Associates, Inc., 2013.

[131] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio, 2016.

[132] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc., 2017.

92

https://cdn.dal.ca/content/dam/dalhousie/pdf/management/News/News%20&%20Events/Canada_Food_Price_Report_Eng_2018_.pdf
https://cdn.dal.ca/content/dam/dalhousie/pdf/management/News/News%20&%20Events/Canada_Food_Price_Report_Eng_2018_.pdf
https://cdn.dal.ca/content/dam/dalhousie/pdf/management/News/News%20&%20Events/Canada_Food_Price_Report_Eng_2018_.pdf

[133] F. Wang, Y. Zou, H. Zhang, and H. Shi. House price prediction approach based
on deep learning and arima model. In 2019 IEEE 7th International Conference on
Computer Science and Network Technology (ICCSNT), pages 303–307, 2019.

[134] J. Wang and Y. Hu. An improved enhancement algorithm based on cnn applicable
for weak contrast images. IEEE Access, 8:8459–8476, 2020.

[135] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Pre-
drnn: Recurrent neural networks for predictive learning using spatiotemporal lstms.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
879–888. Curran Associates, Inc., 2017.

[136] P Werbos. Backpropagation through time: What it is and how to do it. In IEEE
Proceedings, 1989.

[137] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance.
Climate research, 30(1):79–82, 2005.

[138] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[139] J. Wu and C. Lu. Computational intelligence approaches for stock price forecasting.
In 2012 International Symposium on Computer, Consumer and Control, pages 52–55,
2012.

[140] Y. Wu, L. Liu, J. Bae, K. Chow, A. Iyengar, C. Pu, W. Wei, L. Yu, and Q. Zhang.
Demystifying learning rate policies for high accuracy training of deep neural networks.
In 2019 IEEE International Conference on Big Data (Big Data), pages 1971–1980,
2019.

[141] A. Xavier. An introduction to convlstm - neuronio - medium. https://

medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7. (Accessed
on 07/05/2020).

[142] L. Xiao and T. Yan. Prediction of house price based on rbf neural network algorithms
of principal component analysis. In 2019 International Conference on Intelligent
Informatics and Biomedical Sciences (ICIIBMS), pages 315–319, 2019.

[143] Yi Xu, Longwen Gao, Kai Tian, Shuigeng Zhou, and Huyang Sun. Non-local convlstm
for video compression artifact reduction. In The IEEE International Conference on
Computer Vision (ICCV), October 2019.

93

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

[144] Zhe Xu and Yi Lv. Att-convlstm: Pm2.5 prediction model and application. In
Yong Liu, Lipo Wang, Liang Zhao, and Zhengtao Yu, editors, Advances in Natural
Computation, Fuzzy Systems and Knowledge Discovery, pages 30–40, Cham, 2020.
Springer International Publishing.

[145] Kouichi Yamaguchi, Kenji Sakamoto, Toshio Akabane, and Yoshiji Fujimoto. A neu-
ral network for speaker-independent isolated word recognition. In First International
Conference on Spoken Language Processing, 1990.

[146] T. Ye. Stock forecasting method based on wavelet analysis and arima-svr model.
In 2017 3rd International Conference on Information Management (ICIM), pages
102–106, 2017.

[147] Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. Generating chinese classical poems with
rnn encoder-decoder. In Maosong Sun, Xiaojie Wang, Baobao Chang, and Deyi
Xiong, editors, Chinese Computational Linguistics and Natural Language Process-
ing Based on Naturally Annotated Big Data, pages 211–223, Cham, 2017. Springer
International Publishing.

[148] Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Multi-directional
recurrent neural networks : A novel method for estimating missing data. 2017.

[149] Ceylan Yozgatligil, Sipan Aslan, Cem Iyigun, and Inci Batmaz. Comparison of
missing value imputation methods in time series: the case of turkish meteorological
data. Theor. Appl. Climatol., 112(1-2):143–167, 2013.

[150] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-
tions, 2015.

[151] M. Yu and J. Wu. Ceam: A novel approach using cycle embeddings with attention
mechanism for stock price prediction. In 2019 IEEE International Conference on
Big Data and Smart Computing (BigComp), pages 1–4, 2019.

[152] T. Yu, H. Peng, and W. Sun. Incorporating nonlinear relationships in microarray
missing value imputation. EEE/ACM Trans. Comput. Biol. Bioinform., 8(3):723–
731, 2011.

[153] G.Peter Zhang and Min Qi. Neural network forecasting for seasonal and trend time
series. Eur. J. Oper. Res., 160(2):501 – 514, 2005. Decision Support Systems in the
Internet Age.

94

[154] C. Zheng and J. Zhu. Research on stock price forecast based on gray relational
analysis and armax model. In 2017 International Conference on Grey Systems and
Intelligent Services (GSIS), pages 145–148, 2017.

[155] S. Zhou, L. Zhou, M. Mao, H. Tai, and Y. Wan. An optimized heterogeneous structure
lstm network for electricity price forecasting. IEEE Access, 7:108161–108173, 2019.

[156] Xiao-Hua Zhou, George J. Eckert, and William M. Tierney. Multiple imputation in
public health research. Stat Med, 20(9-10):1541–1549, 2001.

[157] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could
be better than all. Artif. Intell., 137(1):239 – 263, 2002.

95

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Definition
	Motivation
	Scope
	Objective
	Thesis Organization

	Background and Literature
	Fresh Produce (FP) Procurement
	Time Series (TS) Modeling
	Univariate Time Series
	Multivariate Time Series

	Nondeep Machine Learning Models
	Linear Regression
	Support Vector Regression (SVR)
	K-Nearest Neighbours (KNN)
	Decision Tree Based Models

	Deep Machine Learning Models
	Artificial Neural Network (ANN)
	Recurrent Neural Network (RNN)
	Long Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Convolutional Neural Networks (CNN)
	Convolutional LSTM (ConvLSTM)
	SeriesNet
	Attention Mechanism

	Ensemble Learning
	Bootstrap Aggregation (Bagging)
	Voting Regressor
	Stacking

	Performance Measures
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Scaled Error (MASE)
	Coefficient of Determination (R2)

	Related Work
	Imputation
	Time Series Forecasting

	Conclusion

	Proposed Solution
	Introduction
	Datasets
	California Weather Data Set
	California Yield and Price
	Corn Yield Dataset
	Oil Price Dataset
	Complete Synthetic Time Series

	Imputation Framework
	Non-Machine learning (Non-ML) Models
	Conventional Models
	Statistical Models
	Nondeep Machine Learning Models
	Deep Learning Models
	Ensemble Technique

	Evaluation Metric
	Model Tuning
	Conclusion

	Experiments & Result Analysis
	Introduction
	Imputation Phase
	Methodology Selection
	Model Selection
	Models Ensemble

	Benchmarking Phase
	Impact of Imputation on Forecasting
	Selection of Forecasting Model
	Benchmarking on Oil Dataset
	W2P Benchmarking
	W2Y Benchmarking

	Conclusion

	Conclusion
	References

