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Abstract 

The advancement in high-resolution X-ray tomography image acquisition techniques has 

enabled imaged-based modelling of pore-scale transport processes to better understand structural 

performance relationship in porous media. The porous components in electrochemical energy 

storage devices such as lithium-ion batteries, fuel cell and redox flow batteries are subject to 

intense research to maximize performance and hence reduce the cost of energy storage systems. 

The image-based pore-scale modelling approaches such as direct numerical simulation (DNS) are, 

however, very computationally expensive and it gets infeasible to simulate a representative 

element volume of porous structure on a standard workstation or laptop machine. Pore network 

modelling (PNM) approach has been previously used to simulate large size porous domains of fuel 

cell and redox flow batteries at substantially lower computational cost, however, its application in 

lithium-ion batteries  has not been attempted due to the multiphysics and transient nature of 

transport mechanism involved during charging and discharging process. Lithium-ion batteries are 

considered as the top candidate for electrochemical energy storage, so modelling their structure-

performance relationship at less computational cost will enable development of efficient numerical 

pore network modelling framework. Therefore, this thesis aims towards developing pore network 

modelling framework for lithium-ion batteries to study the impact of microstructure on 

multiphysics transport processes occurring inside battery electrodes.  

The development of lithium-ion battery pore network model requires enhancements in the 

current implementation of pore network modelling algorithms. For example, current pore network 

extraction algorithms only extract a single phase from a tomography image (usually the pores). On 

the other hand, lithium-ion battery electrodes contain three phases, namely active material (e.g. 
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NMC), carbon binder, and electrolyte filled void phase. To resolve this issue, multiphase pore 

network extraction algorithms were developed that connect any two phases via interconnections. 

This allowed investigating inter- and intra-phase transport processes between phases which are 

common in lithium-ion battery. The extraction algorithms were tested on random sphere packings 

and three-phase lithium-ion battery cathode and found to agree well with experimental data and 

DNS model. Computational performance of PNM model was also compared with other modelling 

approaches and found to give appreciable performance gain on large size porous domains, while 

yielding similar or equivalent results. 

Although modelling of transport process using the PNM approach is computationally 

efficient, extracting pore networks from tomography images is a computationally expensive task. 

Also, image resolution plays a vital role to determine the relative accuracy of extracted geometrical 

properties and hence simulation accuracy. To remove these bottlenecks, an efficient, parallelized 

network extraction technique was developed that enabled pore network extraction from massive 

size images. A geometric domain decomposition technique was adopted to reduce the 

computational cost of extraction. The network extraction was observed 7 times faster and 

consumed 50% less RAM when used in parallel and serial mode respectively. Finally, a case study 

was performed to reduce the effect of resolution during pore network extraction. This enabled 

more reliable extracted pore networks for pore network modelling studies.  

Finally, pore network modelling of lithium-ion batteries cathodes was performed to study 

galvanostatic discharge behaviour of half-cells. A massive reduction in computational cost was 

observed when compared with DNS approach. The structural features of two electrodes were 

investigated to understand the performance-structural relationship. Also, particle-to-particle and 

pore-to-pore analysis was performed to analyze the state of lithiation, solid-phase potential 
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distribution and lithium-ion concentration distribution, electrolyte phase potential distribution in 

solid and electrolyte phase respectively. The study enabled modelling of large size lithium-ion 

electrodes to analyze the impact of internal microstructure on the overall performance of the cell.  

The presented work in this thesis is focused on developing, validating, and applying a pore 

network modelling framework for lithium-ion battery discharge. It has enabled the study of 

structural performance relationship of battery electrodes on a particle to particle basis without 

estimating effective transport properties using empirical or experimental data. The excellent 

computational performance of PNMs has allowed multiphysics modelling on standard workstation 

or laptop with minimal computational resources. Although developed for lithium-ion battery 

cathodes the developed framework can be used for any anode structure or study thermal 

performance-structure relationship as well. 
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Chapter 1 Introduction 

1.1. Background 

Due to potential environment change, fossil fuel limitations and ever-increasing energy demand, the 

need for electrochemical energy storage devices that can work with renewable energy sources like wind 

and solar is increasing at a rapid rate. Electrochemical devices like lithium-ion batteries, fuel cells, redox 

flow batteries and supercapacitors are being extensively used as alternative power sources in various 

applications like electronic devices, electric vehicles and energy storage systems [1]. This rapid increase in 

demand requires more detailed modelling of such systems for better prediction of performance, durability, 

and efficiency. The deeper understanding offered by such modeling will help in developing next-generation 

energy storage systems for longer cycling life, safe operation, lower cost and higher capacity.  

Rechargeable batteries store and transform energy through diffusion and ionic migration in porous 

negative and positive electrodes separated by an enabling porous separator that restrict electron conduction 

while allowing ion transfer across the membrane. The porous electrodes and separator are immersed in an 

electrolyte solution where ionic transport processes take place to carry out the electrochemical reaction. 

Transport and reaction processes strongly depend on pore and solid structure of the porous electrodes and 

contribute significantly to the overall efficiency of power supply or energy storage in a particular device 

[2]. Two materials which have the same porosity can have drastically different transport and reaction rates 

because of the difference in pore size, shape, and connectivity, etc [3,4]. Moreover, structural features of 

the solid phase also impact the overall performance due to different electron and heat transport pathways 

of electrochemical materials. Designing optimized porous materials with enhanced performance, therefore, 

requires a detailed study on performance-structure relationship in electrochemical energy storage devices.  

Image-based modelling of porous media is gaining importance due to the development of advance 

high-resolution imaging techniques like X-ray microtomography and FIB-SEM. Most lab-scale X-ray 

tomographic scanners can give 3D images of porous media of resolution close to 1 µm while some advanced 
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recent generation scanners can give high-resolution images up to 10 to 20 nm voxels [5]. It is now possible 

to image and segment multiphase porous materials to understand key structural information like size and 

shapes of pores and particles in different phases [6,7]. Beside structural information the advancement in 

imaging technologies has led to increasing interest of studying the performance of 3D microstructures at 

various operating conditions for massive size domains, although excessive computational resource 

requirements remain a challenge [8].  

In recent years, the computational power and memory of common workstations or laptops have 

increased rapidly while the cost of hardware has decreased significantly. This has greatly enabled 

researchers to investigate transport and reaction processes of porous media by making a computational 

mesh of 3D images and performing simulation on it. The numerical approach of this type is known as direct 

numerical simulation (DNS). This approach is limited to small size porous domains due to a large number 

of mesh nodes required to solve transport on the image and requires an exponential increase in 

computational cost as the size and complexity of simulation increases. To avoid this high computational 

cost, approximate approaches like pore network modelling are used that reduces million of mesh nodes into 

thousands of network nodes by making simplifications and assumptions about porous structure in 3D 

images. These approximations allow simulating substantially bigger size domains at very low 

computational cost and enable better understanding of local transport and reaction effects on overall 

performance of porous material in electrochemical devices [9].  

Lithium-Ion batteries are currently a top candidate for many applications amongst all electrochemical 

energy storage devices due to their high energy densities, low self-discharge capacity, high open-circuit 

voltage and long life span. The high energy densities lithium-ion batteries are currently used in most of the 

electric vehicles in automobile industries and research to find more efficient materials is still very active. 

With regards to modelling of lithium-ion batteries there has been significant contributions in the last 

decades but modelling a 3D microstructure of porous electrode remains a challenge. One dimensional 

macroscopic mathematical models to represent porous heterogeneous electrodes are difficult to define 
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properly as they represent reality only in an average sense. The porous electrodes consist of multiple phases 

that include a network of interconnected voids and throats in the electrolyte solution. Similarly, solid phase 

consists of a network of active material particles that are interconnected with carbon binder domain.  These 

active particles are subjected to lithium intercalation, while solid conducting materials enhance the 

electronic mobility by providing a conductive path for a current collector to the surface of active materials 

particles. The transport of Li-Ions takes place inside electrolyte solution. The lithium intercalation is 

affected by porous structure and material properties of the composite electrode, as it is sensitive to the 

effective interfacial area per unit volume between active particles and an electrolyte solution. These 

properties greatly influence the concentration changes and potential drop in both void and solid phases 

[10,11]. Capturing all of these various phenomena with a macroscopic model requires many assumptions 

and correlations about the structure. 

The macroscopic modelling of lithium-ion battery porous electrodes stems from porous electrode 

theory established by Newman et al [12,13]. The model uses approximate macroscopic quantities averaged 

over a region of porous electrodes and does not locally address microstructural geometry and processes. To 

describe the electrochemical process, the electrolytic solution and solid material are approximated as 

superimposed continua, ensuring perfect connection at all points while the battery separator is considered 

homogenous containing only electrolytic solution. Different non-linear partial differential equations are 

used to describe the transport and reaction process in the electrolyte and solid phase in an average 

phenomenological way and effective transport properties like effective diffusivity and conductivity are 

based on experimental data or empirical relations. The Pseudo 2D model developed by Doyle et al in 1993 

is still used as a reference mathematical model for lithium-ion battery. Although accurate for a certain range 

of conditions the model has certain limitations[14–16]. For example, because of the assumption of 

macroscopically averaged geometrical properties, it requires many structural and transport parameters to 

be found using experimental techniques. Moreover, it does not describe processes in detail at the 

microscopic scale so cannot provide insights into the role of microstructure on performance. A detailed 
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investigation of macroscopic homogenous models to describe Li-Ion battery can be found in  Jones et al 

[16], where at high C-rates and high temperature, the poor predictive capacity of the model is highlighted.  

To enhance the performance of lithium-ion batteries, multiphysics modelling incorporating 

geometrical heterogeneity of porous electrodes is a powerful tool. This will not only provide a better 

understanding of charging and discharging dynamics at different mode of operation but also help in 

developing next-generation electrode materials. Therefore, this thesis aims at developing Multiphysics 

models for lithium-Ion batteries to relate the microstructural heterogeneities of porous electrodes with a 

cell’s performance. Given the advantages of pore network modelling over direct numerical simulation 

(DNS) and availability of visualization techniques to capture details of porous material, a modelling 

framework of lithium-Ion battery electrode was developed. This pore network model of Li-ion battery was 

used to study structural-performance characteristics to help remove bottlenecks in 3D mictrostructure and 

predict next-generation battery electrodes that perform optimally at a given set of conditions. 

1.2. Motivation and Organization 

This thesis is centered on understanding the transport and reaction processes in porous components of 

electrochemical energy storage devices, and specifically lithium-ion batteries. Most of the modelling 

studies in this regard are based on macroscopic models that neglect the microscopic geometrical 

heterogeneities of the porous material. Study of such heterogeneities will allow understanding of local 

effects in microstructure and hence allow increasing the performance of the battery by tailoring structural 

information of the electrode. Recently, there have been  some studies on pore-scale modelling of transport 

processes in fuel cell and redox flow batteries [17–19] but lithium-ion batteries modelling studies including 

internal structure information are very few [3,20].  This is due to the transient, non-linear and multiphysics 

nature of transport and reaction processes that are computationally expensive to simulate on a large size 

porous domain. This gap in the literature can be filled by adopting less computationally expensive 

modelling approaches like pore network modelling which is well established in geoscience but to date has 

not been used to simulate lithium-ion batteries.  
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Therefore, the motivation behind this thesis is to develop a modelling framework which incorporates 

pore network modelling of lithium-ion batteries to understand multiphysics transport phenomena occurring 

inside porous electrodes based only on tomographic images of microscale structure. Given the advantages 

of pore network modelling (PNM ) over direct numerical simulation (DNS),  the framework will integrate 

structural features of porous electrodes to study the effect of material heterogeneities on charging and 

discharging cycle of the batteries. For this purpose, many advances in PNMs were required before 

modelling batteries at pore-scale level. For example, solid-phase structural properties are overlooked in 

current pore network models and only void phase structure is considered. However, in battery modelling, 

solid structure is equally important as it provides surface area for Li-intercalation, volume for Li storage, 

and transport pathway of electrons. Moreover, in order to simulate a truly large domain of porous electrodes, 

efficient algorithms for extracting void and solid networks are required which incorporates accurate 

geometrical features of the porous structure in large size domains. The solution of these challenges will not 

only enable the investigation of charging and discharging dynamics of porous electrodes in Li-Ion batteries 

but also it will open a new avenue in understanding many different transport processes like reaction-

diffusion in catalyst beds and conductive and convective heat transfer in porous media.  

The thesis is organized into six chapters. Chapter 1 describes the general background and motivation 

behind current work. Chapter 2 provides a literature survey on the subjects of multiphysics modelling of 

lithium-ion battery, pore network modelling approach, its benefits, and application of pore network 

modelling in lithium-ion batteries. Chapter 3 describes a dual network extraction algorithm developed as 

part of this work that extracts networks of void and solid microstructures from 3D images along with 

interconnections between void and solid phase. This study was performed to investigate multiple transport 

processes in both solid and void phase which are common in lithium-ion batteries. Chapter 4 extends the 

dual network algorithm to an arbitrary number of phases and applies it to a 3-phase image of a Li-ion 

cathode material to extract active material, carbon binder and electrolyte phase networks. The 

interconnected network was then used to simulate a reaction-diffusion and reaction-conduction transport 
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process in the void and solid-phase respectively to validate interphase transport and reaction kinetics. 

Chapter 5 describes an efficient methodology utilizing parallelization to extract networks from massive size 

tomograms in less computational time. Chapter 6 combines the work of the previous chapters to implement 

a transient Multiphysics pore network model of lithium-ion cathodes to study discharge dynamics at various 

C-rates. This model allowed us to analyze the effects of microstructural heterogeneities on the performance 

of lithium-ion battery. Lastly, Chapter 7 summarizes important findings and conclusions from all studies 

mentioned above. Some key ideas are suggested for future work.  
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Chapter 2 Literature Review 

This chapter provides general information and background on the main parts of the thesis. Section 2.1 

describes the standard, continuum-based multiphysics models of lithium-ion battery and highlights the key 

issues faced to model such systems on a porous domain. Section 2.2 describes pore network modelling 

approach along with its benefits and limitations in comparison to other modelling approaches. Section 2.3 

is dedicated to network extraction algorithms used to obtain pore networks from tomography images. 

Section 2.4 explains mathematical formulation of pore network modelling on real geometries. Section 2.5 

is dedicated to highlighting current efforts to model lithium-ion batteries using pore network modelling and 

importance of present studies in the context of lithium-ion battery modelling. 

2.1. Transport Process in lithium-Ion Batteries 

The basic components of lithium-ion battery are the same as other electrochemical energy storage 

devices with two porous electrodes separated by a porous membrane and current collectors connected with 

each electrode as shown in Figure 2.1. The porous cathode consists of electrochemically active material 

like lithium nickel manganese cobalt oxide (LiNi0.33Mn0.33Co0.33O2), lithium cobalt oxide (LiCoO2), lithium 

iron phosphate (LiFePO4) surrounded by carbon and binder material that enhance the electronic 

conductivity of solid phase. The solid phase (active material + carbon and binder) is surrounded by 

electrolyte solution in porous phase that contains lithium-ion during charging and discharging process. The 

anode is made up of carbon or lithium metal that provides electrons and lithium-ion during battery 

operation. The porous membrane is used as a separator between the electrodes and contains pores that are 

approximately 1/10th the size of pores in the electrodes.  The current collectors are made up of metals such 

as copper and aluminum to collect or receive electrons during battery operations.  

During the discharge process, lithium-ion and electrons are generated at anode side and travel 

towards the cathode through the porous membrane and external circuit, respectively. The electrochemical 

reaction takes place at the electrolyte-active material interface where lithium-ion gain an electron and 
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convert into lithium that accumulates or intercalates into the active material. This process of lithium-Ion 

travelling from anode to cathode and back to anode greatly depends on the transport pathways and reactions 

kinetics in porous electrodes. The reversible reaction of lithium-ion battery with lithium metal as anode and 

LiNi0.5Mn0.3Co0.2O2 as cathode material is shown in following equation. 

Anode:  Li   ⇌ Li+  + e-  

Cathode: Li+ + e- + Ni0.5Mn0.3Co0.2O2 ⇌ LiNi0.5Mn0.3Co0.2O2 

Overall: Li + Ni0.5Mn0.3Co0.2O2  ⇌ LiNi0.5Mn0.3Co0.2O2  (2.1) 

 

 

Figure 2.1 a) Lithium Ion battery full cell schematic, b) Porous cathode structure 

 

In the past, many approaches had been used to model lithium-ion batteries. These models can be 

classified as either empirical or physics-based models. The empirical models rely on experimental discharge 

data and not directly concerned with the microstructure variations in battery electrode and separator and 

therefore, will not be discussed in detail in this thesis.  

On the other hand, physics-based models are based on electrochemical transport and kinetic 

equations of ions and electrons and follows porous electrode theory of Newman et al. In this regard Pseudo 

two dimensional (P2D) models are most widely used. Other physics-based models include single particle 
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and multi-particle models and are simplifications of the P2D approach that attempt to reduce the 

computational cost. This thesis focus on eliminating many structural simplifications of P2D model on 

lithium ion electrodes using pore network modelling framework so this model is briefly discussed later in 

this section. 

2.1.1. Pseudo-two-dimensional models 

Starting in 1975, Newman and his coworkers established porous electrode theory for battery 

applications [12].  They applied the continuum approximation which assumes that the porous structure is a 

continuous domain with effective properties, both predicted and measured. This model does not incorporate 

microstructural features of Li-Ion electrodes which is essential to find the interfacial area between the solid 

and void phase, and hence effects the overall electrochemical dynamics. This model is by far the most 

widely used approach to predict the performance of Li-Ion batteries and is validated and thoroughly tested 

by Doyle et al. with experimental and mathematical data [21]. 

 

 

Figure 2.2  Schematic of Pseudo Two Dimensional (P2D) Model  
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As shown in Figure 2.2 in the P2D model considers the porous structure of electrodes as spherical 

particles surrounded by an electrolyte solution. However, the spheres are not explicitly resolved but are 

assumed to impact transport through the continuum using effective medium approximations (i.e. 

Bruggeman expression), the reliability of which is still controversial for non-spherical particles [22].  The 

transport of Li-Ions through intercalation and deintercalation occurs at the interfacial area of the spherical 

particles which is also predicted via correlations. Moreover, ion transport is considered to be unidirectional 

so 1-D mathematical equations can be applied in the model. The main governing equations of the P2D 

model are as follows.  

Table 2.1 Nomenclature 

Definition Symbol 

Concentration of Li-Ion in solid phase 𝑐𝑠 

Diffusivty of active material phase 𝐷𝐴𝑀 

Radius of particle 𝑟 

Effective diffusivty in void phase 𝐷𝑒𝑓𝑓
𝐿𝑖+  

Interfacial area of porous electrode 𝑎𝑘 

Transference number 𝑡+ 

Pore-wall flux density averaged over interfacial area 𝐽𝑘 

Concetration of Li-ion in electrolyte and separator 𝑐𝑒𝑙𝑒𝑐 

Effective conductivty of active material phase 𝜎𝑒𝑓𝑓
𝐴𝑀 

Effective conductivty of carbon binder phase 𝜎𝑒𝑓𝑓
𝐶𝐵𝐷 

Solid phase potential 𝜑𝑠 

Faradays constant 𝐹 

Effective conductivity of solution phase 𝑘𝑒𝑓𝑓 

Electric potential of electrolyte phase 𝜑𝑒𝑙𝑒𝑐 

Current 𝐼 

Concentration of Li-ion at surface of particle 𝑐𝑠
𝑠𝑢𝑟𝑓

 

Concentration of Li-ion at center of particle 𝑐𝑠
𝑚𝑎𝑥 

Surface overpotential  𝑢𝑠 

Open circuit voltage  𝑈𝑘 

State of charge soc 

 



11 

 

The solid phase transport of Li-Ion inside sp erical particles is described  sin  Fick’s second law of 

diffusion.: 

 𝜕𝑐𝑠

𝜕𝑡
=  

𝐷𝐴𝑀

𝑟2
 
𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠

𝜕𝑟
) (2.2) 

 

The definition of terms is shown in Table 2.1.   The transport of Li-Ion inside electrolyte phase of 

cathode/anode and separator is described using conservation equation ((2.3) and Fickian diffusion 

equation ((2.4) respectively: 

 𝜕𝑐𝑒𝑙𝑒𝑐

𝜕𝑡
=   

𝜕

𝜕𝑥
(𝐷𝑒𝑓𝑓

𝐿𝑖+ 𝜕𝑐𝑒𝑙𝑒𝑐

𝜕𝑥
) +

𝐷𝑒𝑓𝑓
𝐿𝑖+𝑧𝐹

𝑅𝑇

𝜕

𝜕𝑥
(𝑐𝐿𝑖+

𝜕𝜑𝑒𝑙𝑒𝑐

𝜕𝑥
) (2.3) 

 𝜕𝑐𝑠𝑒𝑝

𝜕𝑡
=   

𝜕

𝜕𝑥
(𝐷𝑒𝑓𝑓

𝐿𝑖+
𝜕𝑐𝑠𝑒𝑝

𝜕𝑥
) (2.4) 

 

The electric potential of the  active material p ase is calc lated  sin  O m’s Law. The charge balance in 

active material particle is represented by equation (2.5) as follows: 

 𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓

𝐴𝑀 𝜕𝜑𝑠

𝜕𝑥
) =   𝑎𝑘 . 𝐹. 𝐽𝑘 (2.5) 

 

The electric potential of the carbon binder domain  p ase is calc lated  sin  O m’s Law: 

 𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓

𝐶𝐵𝐷 𝜕𝜑𝑠

𝜕𝑥
) =  0 (2.6) 
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The electric potential in the liquid phase ((2.7) and in the separator ((2.8) is calculated using ohms and 

Kirc off’s law: 

 
−𝜎𝑒𝑓𝑓

𝜕𝜑𝑠

𝜕𝑥
− 𝑘𝑒𝑓𝑓

𝜕𝜑𝑒𝑙𝑒𝑐

𝜕𝑥
+

2𝑘𝑒𝑓𝑓𝑅𝑇

𝐹
(1 − 𝑡+)

𝜕𝑙𝑛 𝑐𝑒𝑙𝑒𝑐

𝜕𝑥
=   𝐼 (2.7) 

 

 
−𝑘𝑒𝑓𝑓

𝜕𝜑𝑒𝑙𝑒𝑐

𝜕𝑥
+

2𝑘𝑒𝑓𝑓𝑅𝑇

𝐹
(1 − 𝑡+)

𝜕𝑙𝑛 𝑐𝑒𝑙𝑒𝑐

𝜕𝑥
=   𝐼 (2.8) 

 

The flux of Li-Ion the solid-void interface is calculated using Butler-Volmer kinetics equation: 

 
𝐽𝑘 = 𝐾𝑘(𝑐𝑠

𝑚𝑎𝑥 − 𝑐𝑠
𝑠𝑢𝑟𝑓

)
0.5

(𝑐𝑠
𝑠𝑢𝑟𝑓

)
0.5

(𝑐𝑒𝑙𝑒𝑐)
0.5 [𝑒𝑥𝑝 (

0.5𝐹𝑢𝑠

𝑅𝑇
)

−  𝑒𝑥𝑝 (−
0.5𝐹𝑢𝑠

𝑅𝑇
)] 

(2.9) 

 

 𝑢𝑠 = 𝜑𝑠 − 𝜑𝑒𝑙𝑒𝑐 − 𝑂𝐶𝑉 (2.10) 

 

 𝑉𝑐𝑒𝑙𝑙 = 𝜑𝑠|𝑥=0 − 𝜑𝑠|𝑥=𝐿 (2.11) 

 

The open-circuit potential (OCV) depends on the type of material and battery operating temperature. In 

battery modelling, SOC-OCV models are used to fit with experimental data. This fitting can either is based 

polynomial, logarithmic, exponential or hybrid in nature[23]. For example, a general form of hybrid SOC- 

OCV model is as follows: 

 𝑂𝐶𝑉(𝑠𝑜𝑐) = p0socn + p1soc
n−1 …… pn−1soc1 + pn + 𝑞. 𝑒𝑟.  𝑠𝑜𝑐𝑠

 (2.12) 
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Based on equation (2.12) , SOC-OCV for LiNi0.5Mn0.3Co0.2O2 cathode material is as follows[10]: 

 OCV = -3640 soc14 + 13176 soc13 - 14557 soc12 - 1571 soc11 + 12656 soc10 - 2058 

soc9 - 10744 soc8 +  8698 soc7 - 829.8 soc6 - 2074 soc5 + 1190 soc4 - 272.5 

soc3 + 27.23 soc2 - 4.158 soc + 5.3147 - 5.5732e-4 exp(6.56 soc41.48) 

(2.13) 

 

For the simultaneous solution of these equation numerical approaches like finite element method, finite 

volume method and finite difference methods are used as currently there are no complete analytical 

solutions to this model available. The commercial software like COMSOL Multiphysics and Battery Design 

Studio (BDS) use FDM and FEM approaches to solve P2D model efficiently.  

2.2. Pore Network Modelling 

Pore Network Modelling (PNM) is a well-established pore-scale modelling approach most widely 

used in geosciences. It’s typically used to find effective properties and percolation mechanism in partially 

water saturated porous rock samples, which are difficult to obtain experimentally. This approach treats a 

porous domain as a network of interconnected pores where two pores bodies are connected via throat. This 

assembly of two pores and throat is called conduit and a simple representation is shown in Figure 2.3. The 

conductance of each conduit takes place from the centre of one pore to other pore center via series resistor 

theory expressed as:  

 

𝐺𝑐𝑜𝑛𝑑𝑢𝑖𝑡𝑖,𝑗

𝑡𝑟 = (
1

𝑔𝑝𝑜𝑟𝑒𝑖

𝑡𝑟 +
1

𝑔𝑡ℎ𝑟𝑜𝑎𝑡𝑖,𝑗

𝑡𝑟 +
1

𝑔𝑝𝑜𝑟𝑒𝑗

𝑡𝑟 )

−1

 (2.14) 

where the superscript 𝑡𝑟 indicates the type of transport process like diffusion, advection etc. 𝑔 is the 

conductance values of individual pore or throat and 𝐺 is the overall conductance of conduit obtained via 

series resistor theory. 
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Figure 2.3 Simple pore-throat-pore conduit schematic in pore network modelling 

 

The pore locations correspond to real positions of voids inside porous materials and interconnections 

between two pores is known as a throat that constricts the path between two pores. In typical pore-scale 

modelling approach like finite element method (FEM) and Lattice Boltzmann method (LBM) the individual 

pores are further subdivided into small mesh elements or lattice cells that fill the porous structure, but pore 

network modelling assumes one pore as one element without any further subdivision. The PNM 

approximation therefore greatly decreases the number of elements to be solved for a particular transport 

process and enables user to simulate relatively bigger size porous domain than FEM or LBM approach.  

In pore network modelling the definition of a pore as one element leads to many simplifications in 

modelling transport processes without losing structural information of the porous material. For example, 

one-dimensional conservation laws, which generally have simple analytical solutions, can be used to model 

transport phenomena by simplifying the governing equations. This reduces the total number of unknown 

for three-dimensional problem and increases the computational efficiency of model solution. Lastly, since 

a pore represents a region in porous domains any local change in transport property can be monitored 

independently. This enables the investigation of structural effects by, for instance, removing certain choke 
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points from the porous material to ascertain which how the performance may increase and it such measures 

should be considered experimentally.  The connection between structure and performance is fully explicit. 

To quantitatively compare the computational efficiency of pore network modelling with direct 

numerical simulation like FEM or LBM Figure 2.4 shows a two meshed surface using FEM method and 

extracted pore network of porous material. The total number of mesh elements in 2D porous domain has 

approximately 77815 respectively while the equivalent pore network has only 77 number of pores. It can 

be seen that solution of a transport process in pore network will be very fast as compared to FEM method 

because of the vastly smaller number of unknown elements. As a general rule, most of the mathematical 

solvers in programming languages can solve approximately 106 unknowns with ease on a standard 

workstation. On average, it takes 104 elements to mesh a single pore using FEM method. This allows only 

simulating about 100 pores in whole domain. On the other hand, pore network modelling can simulate one 

pore for each unknown, i.e. 1,000,000 pores, for a 10,000 x increase in comparable domain volumes. This 

computational benefit not only allows simulating bigger domains but also transient simulations and coupled 

multiphysics that require iterations can be performed without too much computational cost. This key feature 

of pore network modelling becomes very important for lithium-ion battery modelling where overall 

transport processes are transient, non-linear and multiphysics in nature. 
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Figure 2.4 a) Meshed domain of porous materials for direct numerical simulation, b) Extracted pore network of same 

porous material 

 

2.3. Pore Network Extraction 

Although pore network modelling is computationally more efficient than FEM or LBM method, this 

efficiency comes at a cost of losing geometrical details of individual pores or throats because of abstraction 

in porous material structural information. For example, pores are assumed as sphere or cubes and throats 

are considered cylinder or rectangular ducts in a 3D dimensional domain. This approximation results in a 

decrease in accuracy or modelling results and greatly depends on how these abstractions are extracted from 

the porous domain.  

Pore networks can be classified into two categories: The generated network and extracted network 

as seen in Figure 2.5. Generated networks are used when acquiring 3D image of porous media is difficult, 

t e domain size is ver  bi , or it’s not readil  available. Such networks represent porous media only in an 

idealized manner and geometrical properties are adjusted iteratively until a good agreement is achieved 

with actual porous media. On the other hand, extracted networks are based on direct mapping a network 

onto the porous structure. This approach involves extracting the pore network from actual tomographic 

a) b) 
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image of porous material using image processing techniques and gives one to one spatial correspondence 

between extracted network and corresponding porous domain. This approach gives a more accurate 

representation of porous material since spatial locations, geometric information, as well as its connections 

with neighbour pores can be estimated directly. All of the studies performed in this thesis are based on 

extracted, therefore the literature related to this approach is reviewed below. There are three main models 

used to extract irregular networks from 3D images.  

 

 

Figure 2.5 a) Generated Network, b) Extracted Network 

 

2.3.1. Medial Axis Models 

The medial axis approach transforms void space in 3D image into a topological skeleton that runs 

approximately in the centre of the void space. The method was first studied by Lindquist et al [24]. Since 

then different types of medial axis algorithms have been used, mainly differing based on the order of 

thining, the type of distance transform used and the steps adopted to retain the topology of the material. The 

medial axes can be obtained by the morphological thinning approach developed by Baldwin et al [25] or 

by voxel space burning algorithm developed by Lindquist et al [24]. The latter approach uses erosions 

a) b) 
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technique to reduce void space from grain surface until the voxel burning reaches one voxel from different 

directions. The pore locations were determined at node points while pore throats were determined by 

dilating the medial axis to a point where it touches with grain surface.  

Although medial axis preserves the void topology effectively, it is difficult to identify pores 

properly. Voids space sometimes covers multiple medial axis junctions and predicts higher coordination 

number. Therefore, it requires complex trimming rules to merge medial axis skeleton junctions into each 

other to avoid unrealistically high coordination numbers [26]. Moreover, it also requires a throat threshold 

factor which requires the examination of flow simulations for accurate prediction. In general, medial axis 

algorithm is good in defining the topology of void structure but they pose problems in identifying the voids. 

2.3.2. Maximal Inscribed Ball Models 

This algorithm was first developed by Silin et al [27] and later extended by Al-Kharusi and Blunt. 

The algorithm finds the largest inscribed spheres at each voxel inside the void space and trims off spheres 

that are engulfed by larger inscribed spheres. The remaining spheres are labelled as maximal balls which 

describe the void space, while small balls connecting two maximal balls are labelled as throats. To define 

voids and throats effectively Dong et al developed a clustering process in which all remaining balls were 

hierarchized by family trees based on their size and rank. In this clustering process, the ancestor or master 

balls were labelled as void location and common child balls were labelled as throats. The method, however, 

is computationally expensive and time-consuming and was limited to a small number of voids. It also 

predicted high coordination numbers, and throat sizes are underpredicted leading to erroneous capillary 

pressures [28]. 

2.3.3. Watershed Segmentation Models  

Watershed segmentation is a well-known image partitioning technique, often used for separating 

cells on microscope slide image. It has great potential to extract void networks from tomographic images 

as it can represent voids space as catchment basin in the contour map. The earliest research for developing 
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void network models can be traced back to the work of Thompson et. al [29] they used watershed 

segmentation to partition grain space. They then used Delaunay tessellation to determine the void centres 

by morphological analysis inside Delaunay tetrahedron. The algorithm was validated on low porosity 

sandstone image. The validity of this method for non- spherical grains and high porosity images poses 

issues due to image over-segmentation. In general, the algorithms computational cost was an order of 

magnitude lower than maximal ball algorithm. 

The next advancement in network extraction using watershed segmentation came with the studies of 

A.P Sheppard et al [30] and Rabbani el al [31]. Sheppard et al extracted and analysed pore networks on 

several different rocks such as sandstones, carbonates, unconsolidated cores and sphere packings. Similarly, 

Rabbani et. al developed an algorithm to extract void network using distance transform and watershed 

segmentation. They extracted pore networks of Berea sandstone and carbonate rocks and found excellent 

agreement with maximal inscribed ball algorithm explained above. Their algorithm was demonstrated for 

low porosity samples but also suffered from over-segmentation of void space regions in high porosity 

regions. 

 Recently, Gostick [28] refined the watershed-based approach for high porosity material by 

extracting a sub-network of the over-segmented watershed (SNOW). This algorithm utilized a special 

version of the watershed transform that allows custom specification of the basin locations.  This was 

leveraged by removing several types of spurious peaks in the distance transform that lead to over-

segmentation in the watershed step, especially in high porosity images.  Importantly, the SNOW algorithm 

was shown to generally work for both high and low porosity materials. The SNOW algorithm accepts a 

binar  ima e wit  0’s as solid p ase and 1’s as void phase and performs distance transform on it. A 

maximum filter is applied to find peaks which will become the basins of the watershed transform, and then 

extraneous peaks are trimmed which is the key to avoiding over-segmentation. In the next step, watershed 

segmentation is performed on the remaining peaks to get void regions as catchment basins in the network. 

Lastly, the segmented image is scanned one region at a time to extract the network information such as pore 
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size and neighbour throats. The algorithm is efficient in terms of computational performance in comparison 

with the maximal inscribed ball and predicts geometrical properties accurately in wide porosity range of 

materials. The results of these steps is shown in Figure 2.6. 

 

Figure 2.6 a) Binary image with yellow color is void phase, b) Peaks detected by SNOW algorithm to perform watershed 

segmentation overlayed on distance transformed image, c) Watershed segmentation calculated at specified marker, d) 

Pore network extracted from segmented image 

 

2.4. Pore Network Modelling Mathematical Formulation 

Although pore network modelling is extensively used to simulate steady state transport processes in porous 

rocks as well as in energy storage systems such as fuel cell and redox flow batteries but its usage in transient 

problems is not widely utilized. Therefore, in order to simulate transient nature of lithium ion batteries, pore 

network modelling algorithm capabilities needs to be extended for transient processes. This section explains 
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the implementation and validation of the transient algorithm in open source python package OpenPNM 

[32]. 

2.4.1. Implementation of transient algorithm 

As shown in Figure 2.7 the unsteady state material balance around void i surrounded by its neighboring 

void j without any source term can be written according to equation (2.15). 

 
𝑉𝑖

𝑑𝑐𝑖

𝑑𝑡
=  ∑𝐷𝑏𝑢𝑙𝑘

𝑖,𝑗

𝑗

𝐴𝑖,𝑗
(𝑐𝑖 − 𝑐𝑗)

∆𝑥𝑖,𝑗
 

(2.15) 

also  

𝑟𝑖,𝑗 = 
∆𝑡 𝐷𝑏𝑢𝑙𝑘

𝑖,𝑗
 𝐴𝑖,𝑗

𝑉𝑖∆𝑥𝑖,𝑗
 

 

(2.16) 

where V is the volume of void i. c is the concentration inside voids. D is bulk diffusion coefficient of fluid. 

A is the cross-sectional area of throat connecting two voids and ∆x is void to void length which includes 

two half voids and complete interconnecting throat length.  

 

 

Figure 2.7 Connectivity of void i with all other neighboring void j 

 

 

 

 

 

 

   , 
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For steady state process the left hand side of equation (2.15) is zero and 𝑟𝑖,𝑗 does not have 𝑉𝑖 and ∆𝑡 terms. 

The discretized equation (2.15) can be solved numerically using finite difference methods (FDM) for 

example explicit method, implicit method and Crank Nicolson technique. The generalized solution of all 

these methods can be written as follows: 

Explicit Method: 

 Ct+∆t = 𝐀. Ct (2.17) 

Implicit Method: 

 𝐁. Ct+∆t = Ct (2.18) 

Crank Nicolson Method: 

 𝐃. Ct+∆t = 𝐄. Ct (2.19) 

The explicit method is computationally faster but less stable. It requires small time interval to set for 

stability reasons and becomes infeasible for long time simulation. On the other hand, Crank Nicolson 

technique is more stable but relatively requires high computational cost then explicit and implicit scheme. 

The Implicit scheme is a good compromise between accuracy and computational time.  

In the above-mentioned schemes, A, B, D and E represent (𝑁 𝑥 𝑁) matrices containing associated 

geometrical and transport properties terms in each void-throat-void conduit of 𝑁 number of voids.  Ct+∆t 

and Ct are column vectors of concentration in N number of voids. The structure of A, B, D and E is different 

in equation (2.17), (2.18), and (2.19) and is highly dependent on the coordination number of voids inside 

the pore network. As shown in Figure 2.8, for a 2D dimensional random network with 9 voids including 

one boundary void label 0, A, B, D, E and Ct can be represented as follows: 
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 𝑨 =  

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
𝑟10 1 − 𝑟10 − 𝑟12 − 𝑟14 𝑟12 0 𝑟14 0 0 0 0
0 𝑟12 1 − 𝑟12 − 𝑟25 0 0 𝑟25 0 0 0
𝑟30 0 0 1 − 𝑟30 − 𝑟34 − 𝑟36 𝑟34 0 𝑟36 0 0
0 𝑟41 0 𝑟43 1 − 𝑟41 + 𝑟43 − 𝑟45 − 𝑟47 𝑟45 0 𝑟47 0
0 0 𝑟52 0 𝑟54 1 − 𝑟52 − 𝑟54 − 𝑟58 0 0 𝑟58

0 0 0 𝑟63 0 0 1 − 𝑟63 − 𝑟67 𝑟67 0
0 0 0 0 𝑟74 0 𝑟76 1 − 𝑟74 − 𝑟76 − 𝑟78 𝑟78

0 0 0 0 0 𝑟85 0 𝑟87 1 − 𝑟85 − 𝑟87]
 
 
 
 
 
 
 
 

 

𝑩 =

[
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0
−𝑟10 1 + 𝑟10 + 𝑟12 + 𝑟14 −𝑟12 0 −𝑟14 0 0 0 0
0 −𝑟12 1 + 𝑟12 + 𝑟25 0 0 −𝑟25 0 0 0

−𝑟30 0 0 1 + 𝑟30 + 𝑟34 + 𝑟36 −𝑟34 0 −𝑟36 0 0
0 −𝑟41 0 −𝑟43 1 + 𝑟41 + 𝑟43 + 𝑟45 + 𝑟47 −𝑟45 0 −𝑟47 0
0 0 −𝑟52 0 −𝑟54 1 + 𝑟52 + 𝑟54 + 𝑟58 0 0 −𝑟58

0 0 0 −𝑟63 0 0 1 + 𝑟63 + 𝑟67 −𝑟67 0
0 0 0 0 −𝑟74 0 −𝑟76 1 + 𝑟74 + 𝑟76 + 𝑟78 −𝑟78

0 0 0 0 0 −𝑟85 0 −𝑟87 1 + 𝑟85 + 𝑟87]
 
 
 
 
 
 
 
 

 

𝑫 =

[
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0
−𝑟10 2 + 𝑟10 + 𝑟12 + 𝑟14 −𝑟12 0 −𝑟14 0 0 0 0

0 −𝑟12 2 + 𝑟12 + 𝑟25 0 0 −𝑟25 0 0 0
−𝑟30 0 0 2 + 𝑟30 + 𝑟34 + 𝑟36 −𝑟34 0 −𝑟36 0 0

0 −𝑟41 0 −𝑟43 2 + 𝑟41 + 𝑟43 + 𝑟45 + 𝑟47 −𝑟45 0 −𝑟47 0
0 0 −𝑟52 0 −𝑟54 2 + 𝑟52 + 𝑟54 + 𝑟58 0 0 −𝑟58

0 0 0 0. −𝑟63 0 0 2 + 𝑟63 + 𝑟67 −𝑟67 0
0 0 0 0 −𝑟74 0 −𝑟76 2 + 𝑟74 + 𝑟76 + 𝑟78 −𝑟78

0 0 0 0 0 −𝑟85 0 −𝑟87 2 + 𝑟85 + 𝑟87]
 
 
 
 
 
 
 
 

 

𝑬 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
𝑟10 2 − 𝑟10 − 𝑟12 − 𝑟14 𝑟12 0 𝑟14 0 0 0 0
0 𝑟12 2 − 𝑟12 − 𝑟25 0 0 𝑟25 0 0 0
𝑟30 0 0 2 − 𝑟30 − 𝑟34 − 𝑟36 𝑟34 0 𝑟36 0 0
0 𝑟41 0 𝑟43 2 − 𝑟41 + 𝑟43 − 𝑟45 − 𝑟47 𝑟45 0 𝑟47 0
0 0 𝑟52 0 𝑟54 2 − 𝑟52 − 𝑟54 − 𝑟58 0 0 𝑟58

0 0 0 𝑟63 0 0 2 − 𝑟63 − 𝑟67 𝑟67 0
0 0 0 0 𝑟74 0 𝑟76 2 − 𝑟74 − 𝑟76 − 𝑟78 𝑟78

0 0 0 0 0 𝑟85 0 𝑟87 2 − 𝑟85 − 𝑟87]
 
 
 
 
 
 
 
 

 

 

 
 

 
 

 

 

 
 

 

 
 

 
 

 

 

 
 

a) b) 

Figure 2.8 a) Random Pore network model without source term b) Pore network model with source 

term.  Label 5 and 8 pores are going through reaction 
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𝐶𝑡 =

[
 
 
 
 
 
 
 
 
𝑐0

𝑐1

𝑐2
𝑐3

𝑐4
𝑐5

𝑐6
𝑐7

𝑐8]
 
 
 
 
 
 
 
 
𝑡

 

2.4.2. Validation 

Validity of pore network modelling framework of transient Fickian diffusion algorithm was performed to 

check the accuracy of modeling technique on a real porous structure. For this purpose X-ray tomography 

images of SGL24AA and Toray120A gas diffusion layers of PEMFC were used for which experimental 

effective diffusion coefficients have been measured by Rashapov et al [33]. The geometrical properties for 

both GDLs are mentioned in Table 2.2.  

 

Table 2.2 Geometrical Properties of gas diffusion layers 

 SGL25AA Toray120A 

Dimension (voxels) 1500 x 1500 x 150 1500 x 1500 x 221 

Resolution (µm/voxel) 1.33 1.33 

Porosity (%) 81.2 65.3 

 

Oxygen with bulk diffusivity Db of 2.14 x 10-5
 cm2/s was diffused transiently from one boundary of GDL. 

The concentration of oxygen at the opposite side was measured with time. The results of extracted pore 

network from XCT images were compared by fitting analytical expression equation (2.20) on experimental 

data as shown in Figure 2.9.  
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𝐶 = 𝐶0  ∑ {𝑒𝑟𝑓

ℎ + 2𝑛𝑙 − 𝑥

4√𝐷𝑡
+ 𝑒𝑟𝑓

ℎ − 2𝑛𝑙 + 𝑥

4√𝐷𝑡
}

∞

𝑛= −∞

 (2.20) 

where 𝑛 ranges from 0 to ∞. l is the total length of GDL. h is confinement region where diffusion needs to 

be calculated. x is a spatial interval where concentration is calculated. It can be seen in Figure 2.8 that 

transient mass diffusion fits well with experimental data for both SGL25A and Toray 120A. The 

comparison of effective diffusivity can be seen in Table 2.3 for both studies.  

 

Table 2.3 Validation of pore network model with experimental data 

Model SGL25A Toray120A 

Deff (mm2/s) Deff (mm2/s) 

Rashapov et al (2016) 14.54 12 

Pore Network Model 12 9.8 
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Figure 2.9 a) XCT image of SGL25A b) XCT image of Toray120A, c) and d) Extracted pore network transient Fickian 

simulation at 0.1s for SGL25A and Toray120A respectively, e) and f) Validation of pore network model with experimental 

data 

 

2.4.3. Implementation of transient algorithm with source term  

Along with unsteady transient transport process of species in lithium ion batteries, reactions play a 

significant role in overall performance of cell. So, implementation of source or sink terms is also needed in 

a) b) 

c) d) 

e) f) 
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the mass and charge balance to simulate coupled transport and reaction kinetics processes. In order to add 

source terms in equation (2.17), (2.18), (2.19) the reaction terms need to be linearized. For power law 

kinetics mentioned in equation (2.21) the linearization of reaction equation gives two linear terms as shown 

in equation (2.22): 

 𝑟 = 𝑘𝑐𝑛 (2.21) 

 𝑟 = 𝑆1 ×  𝑐 +  𝑆2 (2.22) 

where  

 𝑆1 = 𝑘𝑛𝑐𝑛−1  (2.23) 

 𝑆2 = 𝑘(1 − 𝑛)𝑐𝑛  (2.24) 

The generalized solution for implicit finite difference scheme can be written by using equation (2.15) and 

(2.16)as follows: 

 𝐁. Ct+∆t = Ct + ∆𝑡 𝑟 (2.25) 

Once the source terms are linearized, they are added in 𝑩 and 𝐶𝑡 matrix in equation (2.25). For example, if 

label 5 and 8 are reaction pores then 𝑆1 term is subtracted in diagonal of 𝑩 matrix and 𝑆2 is added in 𝐶𝑡 at 

5th and 8th row of both matrices. The resulting 𝑩 and 𝐶𝑡 matrix can now be represented as follows whereas 

the validation of Fickian diffusion algorithm with source terms can be seen in Chapter 2 and Chapter 6. 

𝑩 = 

[
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0
−𝑟10 1 + 𝑟10 + 𝑟12 + 𝑟14 −𝑟12 0 −𝑟14 0 0 0 0
0 −𝑟12 1 + 𝑟12 + 𝑟25 0 0 −𝑟25 0 0 0

−𝑟30 0 0 1 + 𝑟30 + 𝑟34 + 𝑟36 −𝑟34 0 −𝑟36 0 0
0 −𝑟41 0 −𝑟43 1 + 𝑟41 + 𝑟43 + 𝑟45 + 𝑟47 −𝑟45 0 −𝑟47 0
0 0 −𝑟52 0 −𝑟54 1 + 𝑟52 + 𝑟54 + 𝑟58 − ∆𝒕(𝑺𝟏) 0 0 −𝑟58

0 0 0 −𝑟63 0 0 1 + 𝑟63 + 𝑟67 −𝑟67 0
0 0 0 0 −𝑟74 0 −𝑟76 1 + 𝑟74 + 𝑟76 + 𝑟78 −𝑟78

0 0 0 0 0 −𝑟85 0 −𝑟87 1 + 𝑟85 + 𝑟87 − ∆𝒕(𝑺𝟏)]
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𝐶𝑡 =

[
 
 
 
 
 
 
 
 

𝑐0

𝑐1

𝑐2
𝑐3

𝑐4

𝑐5 + ∆𝒕(𝑺𝟐)
𝑐6
𝑐7

𝑐8 + ∆𝒕(𝑺𝟐)]
 
 
 
 
 
 
 
 
𝑡

 

 

2.5. Application of Pore Network Modelling in Energy Storage Devices 

The application of pore network modelling in electrochemical energy storage devices has mostly 

focused on fuel cells [34,35] and redox flow batteries [36]. There are very few studies that discuss lithium-

ion batteries because of complex Multiphysics involved during charging and discharging process [20]. In 

the following sections, some significant applications are highlighted for different energy storage devices.  

2.5.1. Pore network modelling of Fuel Cells 

Pore network modelling in fuel cells can be dived into two classes. The first class deals with only 

transport properties estimation while second analyses the structural performance relationship of fuel cells. 

For transport process modelling, Nam and Kaviany [37] in 2003 presented the first pore network model on 

gas diffusion layer of polymer electrolyte membrane fuel cell. They calculated effective diffusivity of 

partially saturated GDL and fed it into multiphase continuum model to analyze fuel cell performance.  The 

fibrous GDL structure was created by making the analogy of porous structure with a stack of screens. The 

random sizes of screen opening were adjusted by changing the horizontal spacing while keeping vertical 

spacing fixed. Their GDL porous structure can be regarded as regular cubic network with random 

adjustment of horizontal spacing. The effect of porosity and saturation dependence were correlated and 

used as inputs in a continuum-based model to calculate fuel cell performance. Their network model does 

not include any pore size structural information like volume, diameter and length of throats etc. 
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Gostick et al [38] studied the PEMFC gas diffusion layer by considering its structure as regular cubic 

packing. The model was used to describe pore-scale distribution of water and gas inside GDL during 

drainage conditions by using invasion percolation algorithm. The transport properties like relative 

permeability and effective diffusivity of water and gas phase were calculated using series resistor theory. 

The developed pore network model was also used to estimate limiting current of PEMFC during operating 

conditions which requires only solving the diffusion equation, so no kinetics or coupled multiphysics was 

required.  

The PEMFC pore network modelling based on irregular networks has also been performed by many 

authors. Luo et al [39] used the topologically equivalent network model to represent two types of GDL 

microstructures. Their structurally equivalent network provided a framework to design GDL with improved 

water management. The results showed the dependence of GDL morphology on water transport 

characteristics, which supported the need for developing GDL structure-performance relationships. 

Similarly, Gostick [40] also generated pore network of fibrous GDL in PEMFC using Delaunay and 

Voronoi tessellations. The voids were represented by Delaunay network while Voronoi tessellations were 

used to represent the fibre structure of GDL. The model gave useful insights for in-plane and through-plane 

relative effective diffusivity in partial water-saturated GDL.   

Starting with the work of Aghighi et al [41] polarization behavior of fuel cells was included in pnms 

along with modelling usual transport processes. Aghighi et al developed pore network model of the full 

fuel cell electrode assembly, that included the multiphysics. This included transport of gas inside GDL and 

catalyst layer, transport of protons in catalyst layer and membrane and water percolation in MEA assembly 

of PEMFC, and Butler-Volmer kinetics to describe the reaction rates. This study shows the true potential 

of pore network modelling of an electrochemical system. It was found that presence of water inside GDL 

not only affect the concentration polarization but also changes ohmic polarization as protons generated at 

anode side will require to travel more distance to reach cathode active sites due to the presence of water 



30 

 

inside GDL/CL. One limitation of this work was that simple cubic pore network model was used instead of 

topological equivalent networks which require many assumptions to represent void structure.   

2.5.2. Pore network modelling of Redox Flow Batteries  

Sadeghi et al  [19] used PNMs to explore the impact electrode microstructure on the performance 

of hydrogen Bromine battery. The model’s low computational cost enabled them to carry out a parametric 

sweep to search for optimum electrode structure. It was found that aligning the electrode fibres in the flow 

direction increases the performance to a certain extent after which diminishing results were obtained. The 

algorithm framework was kept general so that it can be applied on any sort of electrochemical species.  

Lambarodo et al [17] implemented a transient Multiphysics pore network model in X-ray 

tomography image of porous carbon paper electrode. Transport phenomena and reaction kinetics of 

vanadium flow battery were analyzed at the microscale level. The developed algorithm was used to simulate 

convective and diffusive transport and showed restrictive flow in certain local portion of the electrode. 

Later, migration and reaction kinetics were coupled with connective/diffusive transport electrochemical 

transport phenomena was studied in porous structure. The developed algorithm only used a single core in 

workstation to perform simulation and highlights the computational benefit of pore network modelling 

while simulating complex transport phenomena. 

2.5.3. Pore network modelling of lithium-Ion Batteries 

Pore network modelling in lithium-ion batteries has not been attempted. There are a couple of PNM 

studies of other components such as the membrane, but none look at the intercalation reaction occurring at 

the cathode electrode.  

Lagadec et al [42] focused on the transport through the membrane separator, which is porous.   Their 

study investigated the drawback of using volume averaged approach to simulate Li-Ion battery separator 

and highlighted the influence of void space connectivity on Li-Ion transport through the separator. Their 

work investigated the concentration variation of Li ions in different structures of separators. It was found 



31 

 

that the variation of concentration depends on pore space connectivity. This connectivity of void space was 

calculated based on topological and network analysis. Despite being about Li-ion batteries, this study 

included no electrochemical analysis of the electrode and was limited to basic diffusion through the porous 

separator.  Nonetheless, it shows the importance that pore structure has in these devices.   

Toreyev A. et al [3] used pore network model to study the electrochemical performance of lithium-

oxygen battery. The model included the microstructural effects to study the discharge curves of four 

different domains of the porous domain of lithium-oxygen cathode. It was found that due to structural 

variation or different interconnectivity of pores that discharge capacity curve shows slight variations. The 

drawback of the model was that it was applied to the porous phase while solid phase properties were 

assumed constant. In a lithium-ion battery, however, we have three phases i.e electrolyte, solid and carbon 

binder domain and transport process in each domain effects overall performance so a pore network model 

that includes all three phases is inevitable. 
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Chapter 3 Dual Network Extraction for Multiphase Transport 

3.1. Preface 

The paper extended the capability of current network extraction algorithm to dual-phase 

extraction that includes solid and void phase and interconnections between these phases. The 

developed algorithm also includes a technique to estimate the cross-sectional area of throats 

accurately and hence improve the accuracy of calculations.  

3.2. Overview 

Image processing of 3D tomographic images to extract structural information of porous materials 

has become extremely important in porous media research with the commoditization of x-ray tomography 

equipment to the lab scale. Extracted pore networks from images using image analysis techniques enable 

transport properties calculation for bigger domains at a low computational cost, allowing pore-scale 

investigation of porous media over meaningful macroscopic length scales. The present study reports a pore 

network extraction algorithm to simultaneously extract void and solid networks from tomographic images 

of porous materials using simple image analysis techniques. Crucially, it includes connectivity and 

geometrical information of both void and solid phases as well as the interlinking of these phases with each 

other.  Validation was obtained on networks extracted from simple cubic and random sphere packings over 

a range of porosities. The effective diffusivity in the void phase and thermal conductivity in the solid phase 

was then calculated and found to agree well with direct numerical simulation results on the images, as well 

as a range of experimental data. One important outcome of this work was a novel and accurate means of 

calculating interfacial areas between grains and voids directly from digital images, which is critical to many 

phenomena where phase interactions occur. The efficient ‘d al network’ algorithm is written in PYTHON 

using open source tools and provides a new way to study critical processes that depend on transport in both 

void and solid phase such as catalytic reactors and electrochemical systems. 
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3.3. Introduction 

Transport in porous media plays an essential part in many prominent applications such as oil recovery 

and aquifer management in naturally occurring rocks and soils [43], but also devices containing engineered 

porous media such as battery electrodes [35], filters [44], membranes [45] and catalyst particles [46]. 

Transport and reaction processes strongly depend on the void and solid structure. Two materials which have 

the same porosity can have drastically different transport and reaction rates because of differences in pore 

size, shape, and connectivity, etc [47]. An often overlooked or neglected aspect of porous media studies is 

the transport in the solid phase (i.e. heat and electrons), which is subject to the same performance-structure 

competition as the void phase.  In applications such as battery electrodes and catalysts supports, the solid 

structure provides reactive surface area and transport pathways.  Moreover, the void and solid phases also 

impact the transport and reaction processes in opposing phases, so designing optimized materials with 

enhanced performance requires a detailed study of both phases simultaneously.  

Visualization has always been a vital tool in porous media analysis, from optical imaging of serial 

sections and 2D micromodels to modern tools such as FIB-SEM and X-ray tomography. High-resolution 

X-ray tomography has become the standard platform to understand the internal structure of porous media 

[48]. Most benchtop X-ray tomography scanners can produce 3D images of resolution as good as 1-µm 

voxel, while the recent generation can give a resolution of 20 nm [49]. The deluge of information provided 

by X-ray tomography [50] has highlighted the need for efficient means of extracting valuable information 

from these tomograms given the massive size of the image, often over 1 billion elements (10003 voxels). 

Quantitative image analysis can be used to obtain a range of information about void structure, such 

as the two-point correlation function [51] or chord-length distribution [52]. However, finding the 

connectivity of void space from a porous material is one of the most important aspects since it is directly 

related to the most important properties: tortuosity and permeability. Researchers have tried to extract this 

structural information from tomographic images using many different algorithms. A network extraction 

algorithm that is widely used in pore network extraction is maximal ball algorithm by [27], then adopted 
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and developed by [53]. Their method was time-consuming and tended to predict high coordination number. 

To prevent this issue, [54] made a two-step algorithm that defines voids and throats through a clustering 

process. In addition to these network extraction algorithms, [55] developed 3DMA software using medial 

axis transform.  [56] developed similar network extraction algorithms based on skeletonization techniques 

to characterize solid data.  [47] performed void space partitioning based on morphological skeletonization 

by using fully parallel thinning algorithm. They investigated stochastically reconstructed porous media 

images and shows that identical porosities exhibit a significant difference in geometry and connectivity. 

Pore network extraction using watershed segmentation was originally investigated by [29] and [30].[31] 

used this approach to extract network for low porosity sandstone. [57] applied watershed segmentation on 

the gas diffusion layer of proton exchange membrane fuel cell. Recently, [28] refined the watershed method 

for high porosity material by extracting a sub-network of the over-segmented watershed (SNOW). This 

algorithm succeeds by removing several types of spurious peaks in the distance transform that lead to over-

segmentation in the watershed step, especially in high porosity images.  Importantly, the SNOW algorithm 

was shown to generally work for both high and low porosity materials.  

The commonality in these algorithms is that all of them have been tuned to find void phase structure 

since transport in the void is of general interest, while solid phase is often ignored. In many chemical 

engineering applications, however, electron and heat transport through the solid phase is equally important, 

which demands the need for solid structure extraction. In principle, any existing algorithm can be applied 

to the solid phase by inverting the image [58], but this would only yield two independent networks, while 

the interactions and interconnections with void phase have significant importance. Heat can be transferred 

between the void and solid, and reactions happen at the void-solid interface. Consider a reaction-diffusion 

process in porous catalyst particles. Here solid-phase requires consideration as the kinetics of chemical 

reaction is highly dependent on temperature, so modelling heat transfer within the particles is vital [59]. 

Figure 3.1 shows a catalytic fixed bed reactor along with different transport phenomena taking place inside, 

including convective heat and mass transfer in void phase region, mass diffusion due to the concentration 
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gradient between void and solid phase, reaction process occurring at the interface of catalyst particle and 

intraparticle heat conduction between catalyst particles. Therefore, in order to get maximum benefit from 

network modelling, it is necessary to extract a dual network that incorporates both void and solid phases as 

well as the local interconnection of these phases. 

 

 

Figure 3.1 Importance of transport phenomena and reaction processes in solid and void phases of catalytic fixed bed 

reactor 

 

In this work, we present an algorithm that simultaneously extracts both the solid and void network 

from a tomo rap ic ima e, incl din  t e interlinkin  of t ese p ases wit  eac  ot er, to create a ‘d al 

network’.    e presented al orit m is an extension of t e recently published SNOW algorithm [28], which 

was selected based on its low computational cost, applicability to high porosity materials, and ability to 

reliably extract the key structural features. The presented algorithm provides a new avenue for pore network 
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modelling, opening the way to investigate many critical processes that require transport in both void and 

solid phase such as reaction-diffusion in catalyst particles and charging and discharging dynamics of porous 

electrodes in batteries. To the best of our knowledge, this is first dual network extraction effort in pore 

network modelling. 

3.4. Algorithm 

The watershed segmentation algorithm has many benefits for network extraction, but most 

appealingly it matches the intuitive definition of what constitutes a pore body, as discussed by [60] in his 

recent monograph. In the present study the watershed approach was used, building on the recently published 

report of the SNOW extraction algorithm (Sub-Network of an Over-segmented Watershed) [28]. The 

general procedure to extract only void network is outlined in Figure 3.2a. The algorithm works in two steps.  

This first is the partitioning of the image into discrete regions for each pore, and the second is to analyze 

the regions in the partitioned image to extract geometrical and topological information for the network.  The 

proced re starts wit  a binar  ima e of 0’s as solid p ase and 1’s as void phase, then performs distance 

transform on it the void. A maximum filter is applied to find peaks which will become the basins of the 

watershed transform, but first any extraneous peaks are trimmed which is the key to avoiding over-

segmentation. In the next step, marker-based watershed segmentation is performed on the remaining peaks 

to get void regions as catchment basins in the network. Lastly, the segmented image is scanned one region 

at a time to extract the network information such as pore size and neighbours. The details of all relevant 

geometrical properties can be found in our previous work [28].  

3.4.1. Detailed Description of Dual Network Extraction Algorithm 

The dual network extraction algorithm presented here was developed on the premise that the 

analysis of the partitioned image is agnostic to whether the regions are void, solid or either.  As such, the 

basic outline of the algorithm is that the void and solid phases are partitioned using the normal approach 

described above, but the two images are combined into a single composite image prior to extracting the 
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geometrical and topological information for each region.  A post-processing step determines which regions 

belong to each phase and labels them accordingly.  The present incarnation of the algorithm also includes 

the ability to include boundary nodes on the image prior to extraction, so they appear in the resultant 

network.  The basic framework of the dual network is shown in Figure 3.2b and discussed in following 

sections. The open-source code is implemented in PYTHON using the SCIPY stack [61] and is provided 

as part of PoreSpy [62].  

 

Figure 3.2 a) Void network extraction algorithm using subnetwork of over segmented watershed (SNOW) algorithm b) 

Dual network extraction algorithm 

 

(a) 
(b) 
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3.4.2. Applying SNOW algorithm 

Given a binar  ima e wit  1’s indicatin  void and 0’s for solid, the SNOW algorithm is applied to 

both void and solid-phase separately giving the result shown in Figure 3.3. While applying SNOW on the 

solid phase, t e ima e was inverted to represent solid b  1’s and void b  0’s. The SCIKIT-IMAGE package 

was used to apply marker-based watershed segmentation [63].  

3.4.3. Merging watershed segmentation 

Next, the void and solid-phase segmentations are merged into a single composite image. The largest 

value of peak label in the void segmentation was added to solid-phase segmentation in order to differentiate 

between void and solid properties labels (thus void regions are labelled 1 → NV, and solid regions NV + 1 

→ NV + NS = NT). Figure 3.3(a,b) represents watershed segmentation applied on void and solid-phase 

independently. In Figure 3.3c the merged watershed segmentation of void and solid phases is shown with 

void labelled as 1,2,3,4 and 5 and solid labelled as 6,7, and 8. Similarly, the distance transforms of void and 

solid phase were also merged in order to provide combined distance transform; this is necessary so the sizes 

of the underlying region, such as diameter of an inscribed sphere, can be found during the network 

extraction phase.   
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Figure 3.3 a) Void phase labeled watershed segmentation, b) Solid phase labeled watershed segmentation c) Merged 

watershed segmentation of pore and solid regions 

 

3.4.4. Defining boundary nodes 

Defining boundary conditions in an irregular pore network is a challenging task because of rough 

surfaces at boundary faces. This problem gets more complicated in the dual network as now two phases 

with different voids and solid orientation exist at the boundary of the network. These irregular faces lead to 

many difficulties during simulation of transport process. Firstly, domain length and area cannot be 

calculated precisely, which can either over- or underestimate the effective property calculation (e.g. 

effective diffusivity) which depend on domain area and length. It is also difficult to calculate flux as there 

is no definitive control surface which complicates simulation of transport process. This issue was discussed 

in previous work [40] for randomly generated Voronoi and Delaunay network.  In that work, a method was 

developed to create flat boundary faces by mirroring the base points outside the working domain and 

trimming outside pores after tessellation. A similar approach was applied in the present work: 

(a) (c) 
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Figure 3.4 a) Image segmentation without boundary nodes, b) Image segmentation with boundary nodes showing dead 

zones in black color to avoid boundary nodes interconnections 

 

The merged watershed segmentation containing both phases was padded with a layer of extra 

voxels. This process copied the void and solid labels at the surface of the image and formed an external 

layer of void and solid labels. Subsequently, all labels on the padded surface were given new values (starting 

at NT + 1 where NT was the total number of labels in the merged watershed image) so that they could be 

extracted as separate nodes in the dual network. In the next step, interconnections of boundary nodes with 

each other were prevented by using the SCIPY-NDIMAGE find_boundaries function. This created a 

boolean mask of boundary faces identifying boundary nodes interconnections location which was then 

labelled as 0’s to represent a border re ion between bo ndary labels.  Note that any values in the watershed 

image labelled 0 will be ignored during the network extraction step.  Figure 3.4 shows segmented images 

with and without specifying boundary nodes. The black colour on the boundary surfaces represents 

(a) (b) 
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fictitious solid regions to avoid interconnections of boundary nodes, while coloured regions show boundary 

nodes interconnected with adjacent void/solid inside the segmented image.     

 

Figure 3.5 a) Simple cub packing of 45 spheres in a (148,148,249) voxels container, b) Extracted dual network of cubic 

packing with void and solid-phase represented in silver and copper colour respectively while interconnection and 

boundary nodes are represented in silver and copper colour respectively while interconnection and boundary nodes are 

represented in green and red colour respectively, c) Unit cell of extract dual network for better illustration 

 

3.4.5. Extracting Dual Network Information 

After defining boundary nodes, the merged watershed segmentation and distance transform were 

scanned to extract the geometrical and topological properties of the void, solid and throats. The process 

treats all labelled segments as voids (or more generally nodes) so calculates the connectivity and 

geometrical properties of the solid phase by treating it as a void phase. To measure size, area, volume etc. 

each labelled region is isolated from its neighbouring region and the number of voxels associated with the 

specific geometrical property are analyzed. Similarly, throat properties are calculated by scanning 

(a) (b) 

(c) 
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neighbouring regions and analyzing the size of the boundary defined by shared voxels. This process is 

outlined in detail in previous work [28]. 

3.4.6. Labelling Phases and Finding Interconnections  

The output of the previous step contains no information about which nodes or connections belong 

to which phase, so a post-processing procedure was necessary.  The data from the previous step was stored 

in arrays of length NT or NC, where NT is the total number of nodes in the network (solid + void) and NC is 

the total number of connections.  Because of the way the regions were numbered it is known that the first 

NV entries correspond to voids and the remaining NS values the solid phase. Similarly, the connections can 

be identified by the node numbers being connected.  The options are void-to-void, solid-to-solid, and void-

to-solid.  All this information is stored by labelling each entry accordingly.   

3.4.7. Finding interface surface area 

The interfacial area between two nodes is one of the most critical aspects of the geometric analysis, 

but it is difficult to determine.  Two neighbouring regions share a common set of voxels, so analyzing the 

shape of this common set can provide a wealth of information about the connection between the regions, 

such as interfacial surface area.  For instance, as shown in Figure 3.3c void 1 is connected with grains 6 and 

7, and grain 8 shares surface area with voids labelled as 3,4 and 5.  Although simple in principle, surface 

areas are difficult to determine in a voxel image [64]. In the present work, this was accomplished using the 

marching cubes algorithm [65] but a few considerations were necessary.  The marching-cubes algorithm 

operates by constructing a tetrahedral mesh around the perimeter of the region, and the surface area can be 

found from the triangular facets on the exterior surface. The quality of the mesh is dependent on the input 

image, however.  For instance, a Boolean image will result in a mesh that conforms exactly to the voxel 

facets so the area estimate will be no better than just counting cube faces.  An image with blurry boundaries 

allows the algorithm to construct a smoother mesh, so in the present work, each region was subjected to 

mean filter with a 33 cubic structuring element prior to analysis. It was confirmed on images of single 
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spheres at different resolutions that this approach yields the correct value within 5% as long as diameter of 

voids or solids is more than 10 voxels. The other consideration is that the marching cubes algorithm does 

not work well on 2D (or nearly 2D) regions, so the interface between two regions cannot be analyzed 

directly.  A simple and elegant workaround was developed here, whereby the surface area of region A and 

region B were found independently, and then for A and B combined.  The interfacial surface area between 

A and B can be found from the sum of the individual areas, minus the combined area then halved.    

3.5. Generation of Sphere Packings for Validation 

For validation of the extracted networks, images of simple cubic and random sphere packings of 

monosized spheres were used.  These were generated using open-source discrete element software Yade 

[66]. For simple cubic packing regularOrtho function was used to get 45 equal sized spheres of 50 voxels 

diameter () in a rectangular chamber of 148 × 148 × 249 voxels size in x, y and z coordinates respectively. 

As shown in Figure 3.5a. This packing was used for direct validation discussed in detail in algorithm 

validation section. The SpherePack function was used to generate random spheres packing in a 5253 voxels 

container. After generation, periodic compression was performed with PerilsoCompressor to stuff as many 

spheres as possible. The final porosity of random sphere packing after compression was 0.44. 

 

Figure 3.6 Random sphere packing densification by increasing particle radius from 50 mm to 68 mm 

 

 = 50 mm 

 = 44.2% 

 = 54 mm 

 = 31.5% 

 = 60 mm 

 = 16.2% 

 = 68 mm 

 = 5.1% 
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It was of interest to validate the extracted networks on packings of various porosities, but sphere 

packings always have a porosity near 0.44, so instead, the spheres were dilated to create overlaps.  This 

overlapping was analogous to a sintering effect in solid phase which gradually decreased the porosity () 

from 0.44 to 0.052 [67]. 2D slices of four different porosities packings are shown in Figure 3.6. It can be 

seen clearly that some spheres at low porosity overlap into each other and form a cluster of solid-phase 

while many voids are isolated from neighbouring voids in void phase.  Overall eight different porosity 

packings were used to investigate the performance of the dual network across a range of scenarios.   

3.6. Results and Validation 

3.6.1. Validation on Periodic Packings 

3.6.1.1. Topology and Geometry Structure 

The present algorithm was validated directly by comparing the extracted network to that of simple 

packing which has known coordination number and size distribution in both void and solid phase. For this 

purpose, regular orthogonal cubic packing of porosity 0.487 and sphere diameter of 50 voxels was chosen, 

as shown in Figure 3.5a. It has a nominal coordination number of 6 (surface, edge and corner sites have 

less) and known solid radius of 25 voxels. The total size of the container in x, y and z coordinates was 148 

× 148 × 249 voxels respectively.  After applying the present algorithm, the resulting extracted network can 

be seen in Figure 3.5b. The solid, voids and throats of individual phases are shown in copper and silver 

colour respectively. Similarly, interconnections between solid and void phase, as well as, boundary throats 

are shown in green and red colour respectively. For better visualization, a representative unit cell of cubic 

packing is shown in Figure 3.5c. Each solid is connected with 6 neighbouring spheres and 8 neighbouring 

voids with a total coordination number of 14. The diameter of solids and their respective throats in the 

extracted network is approximately 50 voxels and 7 voxels. For void phase, the coordination number 

depends on the location of a void in the image. Each void is connected with 6 neighbouring voids, as well 

as interconnected with solid spheres depending upon its location (surface, edge, or corner). The total 

coordination number in void phase is 7, 8,  10 and 14 at corners, edges, faces and inside body respectively. 
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Unlike solid phase, the size of voids and throats depends on their location in the extracted network. The 

diameter is highest inside body of cubic packing while it is lowest at edges and corners, which occurs 

because the walls of the container are implicitly included in the extraction. Table 3.1 shows a comparison 

of extracted and theoretical values of the packing obtained by summing up voxels of the image for a 

particular property. These results show a very good match of the structural properties in both void and solid 

phase of simple cubic packing.  

Table 3.1 Comparison between extracted and theoretically calculated properties of simple cubic 

packings 

Value Extracted Theoretical 

Porosity (%) 46.9 46.9 

Solids - Ns 45 45 

Voids - Nv 96 96 

Solids throats - Nts 96 96 

Void throats - Ntv 224 224 

Soid-Void Interconnections -Nint 360 360 

Boundary Nodes - Nb 206 206 

Coordination Number (Solid Phase) 14 14 

Spheres Diameter (voxels) 49.6 50 

Spheres throat diameter (voxels) 8 8 

 B F E C B F E C 

Coordination Number (Void Phase) 14 10 8 7 14 10 8 7 

Voids Diameter (voxels) 48 38 29 23 49 - - - 

Voids throat diameter (voxels) 23 16 10 10 22 - 9.8 9.26 

 

*B,F,E,C are abbrevation of Body, Faces, Edges and Corner respectively 
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Table 3.2 Comparison of SNOW DUAL and analytical values of interfacial area in void and solid 

phase 

Phase 

SNOW DUAL 

Interfacial Area 

Analytical Solution 

Interfacial Area 

Relative Error (%) 

Void Structure:     

Interphase 7396.0 7171 3.04 

Intraphase 2760 2937 3.29 

Total 10156 10108 0.47 

Solid Grain:     

Interphase 7806.17 7851 0.57 

Intraphase 3.0 3.0 0 

Total 7809.17 7854 0.57 

 

 

3.6.1.2. Interfacial Surface Area 

Validation of interfacial surface area of individual solid and void for irregular geometries is a 

challenging task because there is no analytical solution to compare against given the random nature of the 

particle contacts. In the present study, validation is performed on a regular cubic packing, which allows the 

exact determination of interfacial area of solid and void from analytical expressions. Figure 3.7 shows the 

structure of a single void connected with solid grains in a regular cubic packing. The area associated with 

neighbouring solids and voids is represented as green and yellow coloured faces respectively. The total 

surface area of the void structure and solid grain calculated analytically are given in Table 3.2. The surface 

area of the void structure was calculated analytically according to: 
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 𝐴𝑠 = 24𝑟2 −  2𝜋𝑟2 − 6𝜋𝑟𝑠𝑡
2 − 24𝑟𝑠𝑡. 𝑤 (3.1) 

where 𝑟 is the radius of spherical grain, 𝑟𝑠𝑡 is the radius of the throat between two spherical grains and 𝑤 is 

the width of the corner in the void structure. The value of 𝑟𝑠𝑡 = 6 and 𝑤 = 2 voxels were obtained by visual 

examination of the 3D image.  

Equation (3.2) was then used to find the surface area 𝐴𝑐 of region 1 associated with region 2. The intraphase 

and interphase parts are determined by checking if the two connecting regions belong to same or different 

phase respectively 

 
𝐴𝑐 =

1

2
(𝐴𝑟𝑒𝑔𝑖𝑜𝑛 1 + 𝐴𝑟𝑒𝑔𝑖𝑜𝑛 2 − 𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) (3.2) 

where 𝐴𝑟𝑒𝑔𝑖𝑜𝑛 1 and  𝐴𝑟𝑒𝑔𝑖𝑜𝑛 2 is the surface area of region 1 and region 2 respectively while 𝐴𝑐 is the 

surface area of region 1 associated with region 2 as shown in Figure 3.7c.  

Also shown in Table 3.2 are the interfacial surface areas between the void and solid as determined using 

the image analysis technique outlined in Section 3.4.7.  There is less than 5% error between these two 

values, indicating a good agreement between SNOW DUAL estimated area and analytical solution. 
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Figure 3.7 a) Interfacial surface area of one solid grain and void in regular cubic packing. Interphase and intraphase 

interfacial area are shown in cyan and red color for solid and green and yellow color in void respectively. b) Vertex 

diagram of same solid and void after applying marching cube algorithm in SNOW DUAL. c) Intraphase and interphase 

surface area calculation schematic using marching cube algorithm 

 

Figure 3.8 a) Random sphere packing of 1250 spherical particles of 50 voxels diameter in a 5253 voxel container, b) 

Extracted dual network of random sphere packing with void and solid phase reprsented in silver and copper color 

respectvely while interconnection and boundary nodes are represented in green and red color respectvely 

 

a) 
b) 

Region 1 

𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 
𝐴𝑟𝑒𝑔𝑖𝑜𝑛 1 𝐴𝑟𝑒𝑔𝑖𝑜𝑛 2 𝐴𝑐 

c) 

Region 2 

(a) (b) 
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3.6.2. Validation on Random Packings: Transport Properties 

Although direct validation on a well-defined periodic packing gives insight into the accuracy of the 

extracted dual network, more realistic packings are of interest.  A validation study was carried out by 

simulating the effective thermal and diffusive conductivity in the solid and void phase respectively of a 

random packing of spheres and comparing the results with other modelling methods and published 

experimental data where available. A dual network was extracted from a 5253
 voxel image containing 1250 

spheres as shown in Figure 3.8. The initial diameter of all spheres was 50 voxels, but they were 

morphologically opened using a 1 voxel spherical structuring element to ensure they fully touched each 

other and avoid digitization artefacts. The void and solid phases are shown in silver and copper while 

interconnections and boundary throats are coloured green and red respectively.   

In order to estimate steady-state thermal conductivity in the solid phase network, heat flow into and 

out of each solid sphere was calculated. For each sphere, i, in the solid phase network, thermal equilibrium 

requires that: 

 
∑𝐽𝑖 = 0

𝑛

𝑖=1

 (3.3) 

where J is heat flow in W and n is the number of contacts of the sphere i.e number of thermal conductance 

elements connected with sphere i under consideration. In this simulation, steady-state Fo rier’s law was 

applied to calculate heat flow in the solid phase. Heat conduction between sphere i at temperature Ti and 

sphere j at temperature Tj can be calculated according to the following discretized form of the 1-dimensional 

Fourier equation: 

 
𝐽𝑖̇,𝑗 = 𝑘𝐴

(𝑇𝑖 − 𝑇𝑗)

∆𝑥
= 𝑔𝑖,𝑗(𝑇𝑖 − 𝑇𝑗) (3.4) 

where k is bulk thermal conductivity of the material in W/m.K. A is the area of cross-section in m2 between 

sphere i and j and x (m) is the length between sphere i centroid to sphere j centroid. These terms can be 
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represented as thermal conductance gi,j. Moreover, since the area between sphere i and j is not uniform, the 

term gi,j with an interconnected throat k is calculated using linear resistor theory for resistors in series: 

 1

𝑔𝑖,𝑗
= 

1

𝑔𝑖,𝑘
+

1

𝑔𝑘
+

1

𝑔𝑘,𝑗
 (3.5) 

For the thermal conductance calculation, the connections between spheres resulted in a situation 

where 𝑔𝑘 in equation (3.5) was 0 since the length of the neck between the two grains was 0.  Even as the 

grains were dilated to decrease the porosity, and new connections where made, the neck (or throat) had 0 

lengths.  This is illustrated in Figure 3.9a.  

 

Figure 3.9 a) Square Pyramid model without throats for overlapping spherical particles (Case 1), b) Square pyramid model 

with throats for void phase of random sphere packing (Case 2) 

The thermal conductance in each sphere was determined by accounting for the nonuniform area of 

the sphere cross-section by representing the sphere with an equal volume pyramid as shown in  Figure 3.9a. 

Although an exact geometrical model could be obtained for the spherical cross-section of the grains, this 

was not possible for the void space as discussed below, so the same pyramidal approximation was applied 

to both phases. The resulting expression for solid-phase thermal conductance in sphere i can be calculated 

by the following expression: 

  j 

k 

  j 
(a) (b) 
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 𝑔𝑖,𝑘 = 4𝑘
𝑟𝑖𝑟𝑘
∆𝑥𝑖

 (3.6) 

where ri and rk are radii of sphere i and constriction, respectively, while ∆xi is the length of sphere i from 

the centroid to constriction boundary. 

An analogous approach was adopted to estimate steady-state effective diffusivity in the void phase. 

Therefore, 1-  Fick’s laws for stead -state and diffusive conductance between void i and j can be 

represented in discretized form as equation (3.7), (3.8) and (3.9) respectively. 

 
∑𝑞𝑖 = 0

𝑛

𝑖=1

 (3.7) 

 
𝑞̇𝑖,𝑗 =

𝐷𝐴

𝑅𝑇

(𝑝𝑖 − 𝑝𝑗)

∆𝑥
= 𝑑𝑖,𝑗(𝑝𝑖 − 𝑝𝑗) (3.8) 

 1

𝑑𝑖,𝑗
= 

1

𝑑𝑖,𝑘
+

1

𝑑𝑘
+

1

𝑑𝑘,𝑗
 (3.9) 

where q is the molar flow rate in mol/s. p is the partial pressure of the gas in the respective void. D is bulk 

diffusion coefficient of specie in void phase, d is diffusive conductance in void phase, T is the temperature 

of voids and R is universal gas constant.  

Unlike the solid phase, the pores in the void phases did not form overlapping spheres but instead 

consisted of inscribed spheres at the interstices of the grains, and throats connecting them.  This is shown 

in  Figure 3.9b.  The same pyramidal shape was applied to the void pores as for the solid grains, resulting 

in the following formula:  

 
𝑑𝑖,𝑘 =

4𝐷

𝑅𝑇

𝑟𝑖𝑟𝑘
∆𝑥𝑖

 (3.10) 
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The total conductance between pores also included a throat section.  The value of 𝑑𝑘 in equation 7 was 

found by assuming the throat has a square cross-sectional area that did not vary, thus:  

 
𝑑𝑘 =

4𝐷

𝑅𝑇

𝑟𝑘
2

𝐿
 (3.11) 

where L is the length of the throat.   

Boundary conditions in both solid and void phase were applied to opposite faces of the extracted 

network in the x-direction. The temperature of the solid at x = 0 and x = 525 µm was set to 373K and 298 

K respectively. The spherical particle was assumed to be of copper material with intrinsic thermal 

conductivity k of 385 W/m.K. Similarly, the partial pressure oxygen in void phase at x = 0 and x = 525 µm 

was fixed to 21 kPa and 0 kPa respectively and oxygen bulk diffusivity D of 2.09 × 10-5 m2/s in air was 

assumed in void phase.  

 

Figure 3.10 a) 1-dimensional steady state thermal conduction in solid phase, b) 1-dimensional steady state diffusion void 

phase 

 

(a) (b) 
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The simulation performed in solid and void phase on the extracted dual network using OpenPNM 

[32] open-source software, yielding the temperature and concentration profiles shown in Figure 3.10. 

Moreover, algorithm validation was performed by comparing the results of effective transport properties 

with Lattice Boltzmann and random walker simulation [68], which are described in more detail in the 

following sections. 

3.6.2.1. Lattice-Boltzmann Simulation 

Lattice-Boltzmann calculations were performed using the open-source software Palabos to model 

steady-state conduction and diffusion in solid and void phase. D3Q7 lattice was used as descriptor and 

Bhatnagar–Gross–Krook (BGK) collision model was used to describe dynamics of heat and mass flow. A 

tolerance value of 10-4 was selected to calculate normalized values of effective transport properties. The 

simulation was carried out along all three axes of 5253 mm3
 image and an average value of the effective 

property is reported.  The main benefit of the LBM solver is that the voxel image is used directly as the 

computational mesh, thereby avoid the time consuming and error prone process of creating a mesh suitable 

for FEM solvers. 

3.6.2.2. Random Walker Simulation 

Discrete-time random walker method was used to find the tortuosity of solid and void phase in 

random sphere packing by calculating the mean square displacement of 1×105 random walkers. The method 

and its open-source, parallelized implementation are described in detail in a recent work [69] The 

probability density function p(x,t) of a walker at location x and time t [70] can be described according to 

the equation (3.12): 

 
𝑝(𝑥, 𝑡) =

1

√4𝜋𝐷𝑡
exp (

−𝑥2

4𝐷𝑡
) (3.12) 

The variance of equation 9 is termed as mean square displacement (MSD) and can be written as: 
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𝑀𝑆𝐷 = ∫ 𝑥2𝑝(𝑥, 𝑡)𝑑𝑥

∞

−∞

 (3.13) 

The mean square displacement (MSD) of a simple walker with unbiased movement is assumed to 

follow a Gaussian distribution and the gradient of MSD when plotted over a period of time gives tortusity 

factor 𝜏-1
. The tortuosity 𝜏 calculated is used to find effective coefficient in sphere packing of known void 

fraction  according to [71]: 

 𝐷𝑒𝑓𝑓

𝐷
=  



τ
 

(3.14) 

The normalized effective conductivity as a function of solid fraction for SNOW DUAL, Lattice 

Boltzmann and random walker simulation is shown in Figure 3.11a. The results of [72,73] for 304L stainless 

steel spherical powder is also reported. From the graph, it can be seen that SNOW dual results agree well 

with other modelling approaches for spherical particles. The normalized value of effective conductivity 

increases with increasing solid fraction. This agrees with equation (3.4) as at high solid fraction more area 

is exposed for heat conduction in the solid phase. Moreover, as tortuosity factor in equation (3.14) decreases 

with increasing solid fraction, effective conductivity value becomes higher at high solid fraction. Figure 

3.11b shows the normalized effective diffusivity value against void fraction in spherical particles. The 

results obtained by [67] and [74] are also reported, which agree well with SNOW Dual simulation. The 

effective diffusivity values decrease with increasing sintering effect in the solid phase. At 0.045 solid 

volume fraction, almost no diffusion takes place in void phase because of high tortuosity and small exposed 

area available for diffusion.  

3.6.3. Resolution Study 

In order to check the robustness of dual extraction, a resolution study was conducted. Random 

sphere packings were produced as described above and spheres of diameter 54 voxels were inserted into 

the image containing 5253 voxels. The resolution of the image was changed by decreasing or increasing the 
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number of voxels using nearest neighbour interpolation. The resulting values of effective conductivity and 

effective diffusivity in solid and void phase as the resolution was varied from 0.5 to 1.7 of the original 

image is shown in Figure 3.12. At low resolution, the relative error in both void and solid phase at resolution 

0.5 was 3.8% and 16% respectively which is acceptable to get preliminary results with low computational 

cost and low memory (RAM) usage while simulating bigger porous material domains which is currently 

not feasible in direct numerical simulation and Lattice-Boltzmann modelling. It should be noted that robust 

behaviour towards resolution is not expected to translate to noisy images.  Obtaining clean and correct 

segmentations from greyscale images remains a challenge [75].  

 

 

Figure 3.11 a) Normalized thermal conductivity in solid phase, b) Normalized diffusivity in void phase of random sphere 

packing at different porosities 

(a) (b) 
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Figure 3.12 Resolution study of random sphere packing in both void and solid phase. 

3.6.4. Performance  

Modern X-ray tomography scanners can produce images at a high resolution of 10003 voxels or 

more, so any network extraction algorithm must process this large amount of data in a realistic time. 

Moreover, the algorithm should run on easily accessible computational resources such as desktop 

computers or laptops rather than depending on supercomputers. Good computational performance was 

ensured while developing dual network extraction algorithm by using Numpy array operations and the 

scipy.ndimage library for image analysis. Figure 3.13 shows algorithm run time as a function of image size. 

Five image sizes, from 2003 to 10003 voxels, were used to analyze performance. The total function time 

includes the time required to apply SNOW algorithm on both pore and solid phase, as well as processing 

0.5 1 1.7 
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time of SNOW_DUAL. For 6003 voxels image, it takes 37 minutes to extract whole dual network, which 

is passable though speed-ups would be welcome. 

 

Figure 3.13 Algorithm run time and memory usage for different image sizes.  Simulations were performed on a Dell 

Precision T5610 Workstation with a Xeon E5-2665 Processor (16 cores) and 128GB of RAM. 

 

Although the dual network extraction algorithm is light in terms of computational resources, the 

watershed segmentation step in SNOW algorithm requires large RAM for images with billions of voxels.  

Figure 3.13 shows the amount of RAM usage in SNOW algorithm for different image sizes. It can be seen 

that until 4003 voxels image size, the RAM usage is below 16 GB, indicating easy implementation of code 

on a normal workstation. An image having a size of 10003 voxels requires approximately 50 GB RAM and 

network extraction time is close to 3 hours. This huge amount of RAM usage can be avoided by using a 

low-resolution image which is discussed in the Resolution Study section above.  The watershed step is also 

computationally slow, comprising the majority of the extraction time.  A recent article by [76] compares 
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performance of different watershed implementations, although preliminary testing suggests that the 

difference disappear when images approach 10003 and have hundreds of basins. 

 

Figure 3.14 a) CPU processing time comparison b) RAM usage comparison in RW, Dual Network and LBM in void and 

solid phase of random sphere packing 
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The computational performance of extracted dual network was also compared with random walker 

simulation and Lattice boltzmann simulation. The CPU processing time and RAM usage for all 8 samples 

in random sphere packings were measured on both solid and void phases to find effective thermal 

conductivity and diffusivity respectively. The computational study was performed on a Dell Precision 

T5500 workstation with Xeon X5650 processor (12 Cores) and 72 GB of RAM. For the LBM and RW 

simulations, 10 cores were used, while for the PNM simulations all Python UMFPACK module was used 

which utilizes all 12 cores of CPU.  The results are shown in Figure 3.14. It can be seen that the dual 

network is relatively more efficient in comparison with random walker and Lattice Boltzmann simulation.  

3.7. Conclusions 

The motivation behind the current study was to investigate the transport processes in porous materials 

at the microstructural level. The transport of reactive species in the void phase and heat and/or electrons in 

the solid phase is of central interest to chemical engineers wishing to design or analyze porous catalyst 

structures, but traditional porous media research in pore network modelling field almost exclusively 

neglects transport in the solid phase.  The advent of x-ray tomographic imaging can provide extremely 

detailed images of the internal structures, but computer modelling remains prohibitively expensive.  The 

present work utilized an alternative approach to modelling transport at the pore-scale by extracting network 

models from the images, thereby achieving an extremely significant model-order reduction.  The novelty 

of the present approach is that both void and solid-phase networks are extracted simultaneously, including 

the interconnections between the phases. Additionally, an elegant and accurate scheme for determining the 

interfacial surface area was developed, which is not straightforward for voxelized images.   

The model output was validated directly on simple cubic packing with known connectivity and 

void/solid sizes, and the network properties were in good agreement with the known structural information 

of simple cubic packing. Simulations were also performed on random sphere packing by calculating 

effective conductivity and diffusivity in solid and void phase respectively. The results were compared with 

LBM, random walker and experimental data and were found in good agreement across a wide range of 
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porosities. The current work opens a new avenue to study void-solid interactions in reactive systems where 

microstructural features such as connectivity, interfacial contact, and heterogeneity play a significant role 

in performance.   
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Chapter 4 Structure-Performance Relationship of Lithium-Ion 

Battery 

4.1. Preface 

This study extends the capability of dual-phase extraction algorithm to N phase network extraction 

algorithm. This was essential as most of the lithium-ion cathode material usually consists of three phases 

such as active material, electrolyte phase and carbon and binder domain phase. The developed algorithm 

extracts these three phases from fully resolved X-ray tomography image of NMC-811 cathode. The 

algorithm performance was tested by simulating reaction-diffusion and reaction conduction transport 

processes and results were compared with direct numerical simulations. Moreover, the importance of 

including carbon binder phases was highlighted to understand performance structure relationship.   

4.2. Overview 

Pore-scale simulations of Li-ion battery electrodes were conducted using both pore-network 

modelling and direct numerical simulation. Ternary tomographic images of NMC811 cathodes were 

obtained and used to create the pore-scale computational domains. A novel network extraction method was 

developed to manage the extraction of N-phase networks which was used to extract all three phases of 

NMC-811 electrode along with their interconnections Pore network results compared favourably with direct 

numerical simulations (DNS) in terms of effective transport properties of each phase but were obtained in 

significantly less time. Simulations were then conducted with combined diffusion-reaction to simulate the 

limiting current behaviour. It was found that when considering only ion and electron transport, the electrode 

structure could support current densities about 300 times higher than experimentally observed values. 

Additional case studies were conducted to illustrate the necessity of ternary images which allow separate 

consideration of carbon binder domain and active material. The results showed a 24.4% decrease in current 

density when the carbon binder was treated as a separate phase compared to lumping the CBD and active 
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material into a single phase. The impact of nanoporosity in the carbon binder phase was also explored and 

found to enhance the reaction rate by 16.8% compared to solid binder. In addition, the developed technique 

used 1.8 times larger domain volume than DNS which opens up the possibility of modelling much larger 

tomographic data sets, enabling representative areas of typically inhomogeneous battery electrodes to be 

modelled accurately, and proposes a solution to the conflicting needs of high-resolution imaging and large 

volumes for image-based modelling. For the first time, three-phase pore network modelling of battery 

electrodes has been demonstrated and evaluated, opening the path towards a new modelling framework for 

lithium-ion batteries.  

4.3. Introduction 

Lithium-Ion batteries (LIBs) are the most widely used electrochemical energy storage devices for 

portable electronics and electric vehicles (EVs). They offer a good trade-off in terms of energy density, 

cycle life, low weight, low self-discharge, and high power-density and these advantageous properties have 

driven the revolution in portable electronics and, more recently, EVs. However, there is a continual need to 

improve their realizable energy density, enhance their safety, and extend their lifetime [77] as well as to 

reduce their cost. The positive electrodes in LIBs are composed of active material (typically a layered metal 

oxide material) into which Li-ion intercalation/deintercalation occurs, and a conductive additive (usually 

carbon black) that improves electrical conductivity throughout the electrode. These two components are 

combined with a binder into a porous structure and the remaining void space is filled with Li+ containing 

electrolyte, creating a 3-phase porous electrode. Understanding the multiple, coupled transport processes 

within this porous electrode is key to enhancing the transport of Li ions and electrons, and hence to optimise 

design of LIBs.   

To this end, mathematical modelling techniques are an essential tool to guide the experimental 

development of novel electrode structures. On one end of the spectrum lie the volume-averaged models 

originally developed by Newman et al [12]. The majority of these efforts focus on developing more accurate 

and/or complete continuum scale models that require less computational cost [78,79]. The drawback of 
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continuum models is that they only include the microstructural properties of porous electrodes through 

volume-averaged correlations, but it is well known that structure plays a key role in the species transport 

and ultimately device performance. At the other end of the spectrum, models based on direct numerical 

simulation (DNS) techniques using 3D images of the electrode microstructure as the computational mesh 

have been developed [80–82]. The relatively recent growth in application of 3D X-ray tomographic imaging 

to electrochemical devices and DNS models [83,84] have greatly enhanced the understanding of transport 

processes occurring inside the electrode by capturing details of the geometrical structure; however, DNS is 

computationally expensive. To incorporate all the necessary multiphysics, as well as transient behaviour, 

is prohibitively demanding, such that even simulating the entire thickness of the cathode (on the order of 

30-75 µm) is an unreasonable task. Thus only DNS of small sections of electrode can be undertaken, and 

these are not large enough to be representative of a real LIB. There is thus a strong need to develop a 

modelling framework that can bridge the gap between the continuum models of entire devices and DNS on 

subsections of microstructure, but at low computational expense while maintaining the crucial 

microstructural details. To meet this objective, pore network models are a promising option.  

Briefly, pore network modelling is a method whereby a porous material is abstracted as a network of 

nodes and interconnections that represent pores and throats. It is possible using image processing to extract 

geometrical and topological details of porous media from a tomography image, then map this onto a 

network of interconnected nodes. Each node is a single unknown to be solved for, which approximates 

some of the pore-scale details of electrodes but allows simulation of large porous domains with very low 

computational cost as compared to DNS, with minimal difference in output (if the network extraction is 

performed correctly). Recently, pore network modelling has been used to model various electrochemical 

energy conversion and storage devices. For example, Aghighi et al [41] developed a pore network model 

to simulate a polymer electrolyte fuel cell (PEMFC) membrane electrode assembly. Aghighi et al [35] later 

extended this model to measure the effect of phase change in a PEMFC cathode. El Hannach et al [85] 

developed a pore network model to analyze water management and electrical performance of a PEMFC 
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cathode catalyst layer. Their model discussed both pore and solid-phase networks and integrated different 

transport phenomena as well as electrochemical reactions in the catalyst layer. Similarly, pore network 

models have been utilized to study multiphysics transport processes in redox flow batteries (RFB)with the 

recent work of Sadeghi et al [86] that developed a multiphysics pore network model to study the impact of 

electrode microstructure in redox flow batteries (RFBs). Gayon Lombardo et al [87] used an X-ray CT 

image of an RFB electrode to extract a topological equivalent pore network and studied transient convective 

and diffusive transport processes. The results showed that concentration and pressure distribution inside 

electrodes greatly depends on microstructural properties. Some volume averaged approaches has also been 

adopted for fuel cell recently [88,89]. Together these recent works illustrate a new trend toward more 

complex multiphysics modelling using PNMs. 

To date, no PNMs have been applied to Li-ion battery electrodes. Lagadec et al [90] have simulated 

the diffusion of Li-ions through a porous membrane separator, but they did not investigate the electrode 

structure or electrochemical reactions. Torayev et al [91] used a pore network model of Li-O2 batteries. 

They applied their model to four different regions of the electrode and found that galvanostatic discharge 

curves in each region varied significantly in terms of capacity and overpotential, supporting the notion that 

pore interconnectivity and macroscopic arrangement play a crucial role in performance. In another article, 

Torayev et al [92] compared the ability of continuum and pore network modelling techniques to measure 

the impact of discharge performance and electrode pore size in Li-O2 batteries. They concluded that 

continuum models should be used with caution as they are unable to capture important microstructural 

effects. It was also noteworthy that the pore network model, which explicitly captured pore 

interconnectivity, matched more closely with experimental data. These two studies were performed on the 

3D reconstruction of super-P carbon electrodes with only pore and solid phase under consideration. 

Commercial lithium-ion battery cathode electrodes consist of three phases; electrolyte, carbon binder 

domain (CBD) and active material such as lithium iron phosphate (LiFePO4, or LFP), lithium nickel 

manganese cobalt oxide (LiNiMnCoO2, or NMC) and lithium cobalt oxide (LiCoO2, or LCO). Treating the 
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solid carbon binder and active material phases separately cannot only change the measured active surface 

area available, but also the transport mechanism of electrons in the solid phase because of significantly 

higher conductivity of the carbon binder domain (CBD) compared to active material [93]. Assuming carbon 

binder and active material as a single solid phase can significantly alter the electrochemical performance of 

the model. Hence, a computationally efficient pore network model is required that includes all the three 

phases with interphase and intraphase connectivity taken into consideration. As such, tomographic images 

containing all three phases are also essential. 

The main objective of the present work is to apply and validate pore network modelling for studying 

the multiphysics involved in three-phase porous lithium-ion electrodes. A network extraction algorithm 

was developed to extract an arbitrary number of phases from X-ray CT images. The developed extraction 

algorithm is a continuation of previous work [94] and is used here to extract a topologically mapped network 

from a ternary tomogram of a LiNi0.8Mn0.1Co0.1O2 (NMC-811) electrode. The pore network was then used 

to simulate diffusion of lithium-ions in the electrolyte phase, conduction of electrons inactive material and 

carbon binder phase and the reaction of lithium and electrons at the interface of active material and 

electrolyte phases of the porous cathode. Finally, two case studies are performed to highlight the importance 

of simulating three-phase lithium-ion cathodes and the influence of the CBD nanopores on maximum 

attainable current density and voltage distribution. The presented pore network model provides a new 

avenue to study critical transport and reaction process in lithium-ion battery porous electrodes. To the best 

of our knowledge, this is the first network extraction of a lithium-ion battery cathode. The algorithm is 

written in python and is shared in the open-source project PoreSpy [95] available at 

https://github.com/PMEAL/porespy. 

4.4. Methodology 

4.4.1. Electrode Material 

The material explored in this work is a nickel-rich lithium-ion cathode: Li(Ni0.8Mn0.1Co0.1)O2 or 

NMC-811, and was fabricated by Targray (Kirkland QC) via printing from a slurry onto an aluminium 
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current collector and subsequently calendared to reduce electrode porosity. Additional information 

provided by the supplier can be found within the supplementary material Table S4- 1 and Table S4- 2.  

4.4.2. X-ray Computed Tomography  

To prepare the sample for imaging, a disk ca. 1.0 mm in diameter was punched from the electrode 

sheet and fixed atop of a 1.0 mm diameter, 10.0 mm tall steel dowel using quick-set epoxy. A single X-ray 

tomogram was collected using a Versa micro-CT instrument (Zeiss Xradia 520 Versa, Carl Zeiss., CA, 

U.S.A.). Imaging was conducted with a source accelerating voltage of 80 kV at a power of 7 W using a 

tungsten target for an un-filtered, polychromatic emission with a characteristic peak at 58 keV. The 

tomogram was collected using 3201 radiograph projections, each with an exposure of 16 s. Geometric 

magnification coupled with a scintillator and 20× optical magnification resulted in an image with a pixel 

size of 400 nm. These radiographs were then reconstructed using standard cone-beam, filtered-back-

projection (FB ) al orit ms  sin  commercial software (‘Reconstr ctor  co t-and- can’, Carl Zeiss., CA, 

U.S.A.). After reconstruction, the tomogram data was processed using a non-local means filter to improve 

the image quality for segmentation. The data was then cropped, the greyscale values were segmented 

according to cathode particles (NMC811), binder and void/pore space. Further information on the quality 

of the image contrast, filtering and segmentation can be found in the supplementary material Figure S4- 1, 

Figure S4- 2 and Figure S4- 3. All filtering, cropping and segmentation were achieved using Avizo Fire 

software (Avizo, Thermo Fisher Scientific, Waltham, Massachusetts, U.S.). 

4.4.3. Pore Network Extraction  

4.4.3.1. N-Phase Extraction Algorithm 

The developed network extraction algorithm is based on the watershed segmentation technique 

which defines the porous regions and throat connectivity in a visually intuitive manner [60,96]. The current 

algorithm is based on our previously published SNOW algorithm (Sub-Network of an Over-segmented 

Watershed) [97] and its extension SNOW_DUAL algorithm [94]. The basic SNOW algorithm consists of 
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two steps. Firstly, marker-based watershed segmentation is performed to partition the image into pore 

regions. Before applying this step, however, spurious markers are trimmed by applying several filters 

(Figure 4.1a) to avoid over-segmentation by the watershed filter. Secondly, the discretized regions are 

further analyzed one at a time to extract geometrical and topological properties of the pore regions. The 

basic steps involved in the network extraction process are shown in Figure 4.1a. The SNOW algorithm was 

later extended to the SNOW_DUAL algorithm to extract both solid and void phases and, crucially, the 

interlinking of these phases with each other to study transport and reaction mechanisms in catalyst packings. 

However, lithium-ion cathode material consists of three phases, namely active material, CBD and 

electrolyte phase. Therefore, the dual approach was generalized to an N-phase extraction algorithm which 

can be applied to any material with an arbitrary number of phases. The developed model can be used for 

any kind of commercial cathode material such as lithium iron phosphate (LiFePO4) and lithium cobalt oxide 

(LiCoO2) if 3-phase tomograms were provided – or indeed for any tomographic data set of N-segmented 

phases.  

 

Figure 4.1 a) SNOW algorithm basic steps b) SNOW_N extraction algorithm flow chart 
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The N-phase network extraction algorithm (SNOW_N) was developed on the premise that the 

watershed segmentation can be applied on each phase in an image individually, and then these individual 

segmentations can be combined to form a composite image. The overall algorithm implementation is shown 

in Figure 4.1b. Firstly, each phase (1 to N) is partitioned into regions using the SNOW algorithm 

individually. Before recombining the segmentations, the partitioned regions of the 𝑗𝑡ℎ phase are relabeled 

in order to differentiate it from other phases. For this, if Npi is the maximum label of ith phase region then 

jth phase first label will begin from Npi + 1. After the relabeling process, all partitioned regions are merged 

together to form a composite watershed segmentation image. In the next step, boundary nodes are added to 

specify boundary conditions during the simulation process [94]. After assigning boundary nodes, the 

geometrical and structural features of each region are extracted one at a time without considering its phase 

association. The connectivity of the region under consideration is determined by scanning its neighbouring 

regions. This allows extracting throat properties of connected regions, including pore-to-pore, pore-to-

CBD, binder-to-NMC, and so forth. Once all the geometrical and connectivity information is determined, 

the next step is to label the interconnections between each phase with other phases. This step finds throats 

that interlink any two phases with each other and stores it in the form of separate arrays. For N phases there 

will be NC2 interconnection arrays. Next, the interfacial area between any two phases is determined using 

the marching cube algorithm which has been demonstrated to produce much more accurate values for 

interfacial area between regions [94]. Lastly, the extracted information is stored in the form of a Python 

dictionary which can be opened directly in the open-source modelling package OpenPNM [98]. The code 

is implemented in Python and is included in the open-source package PoreSpy [95].  
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Figure 4.2 a) X-µCT image of lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2) cathode, b) Extracted three-

phase network of (a), c) Two-phase image of porous cathode where active material and CBD correspond to one solid 

phase, d) Extracted two-phase network of (c) 

 

To illustrate the impact of treating the binder and active material as a single phase, the developed 

SNOW_N algorithm was used to extract both two-phase and three-phase networks of the Li-ion NMC-811 

cathode. The two-phase network was extracted by assuming the carbon binder domain (CBD) and active 

material phase as one solid phase.  The extracted networks are shown in Figure 4.2. The green, purple and 

orange colour shows electrolyte, carbon binder and active material phase, respectively. The pore and 

particle size distribution for all phases is shown in Figure 4.3 and properties of both networks and original 

image are presented in Table 4.1. 
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Figure 4.3 a) Pore size distribution of electrolyte phase in both two and three-phase network, b) Active material particle 

size distribution in two and three-phase network, c) Carbon binder particle size diameter in three-phase network 

 

Table 4.1 Properties of image and Extracted Pore Networks 

Value X-µCT image Three Phase Network Two Phase Network 

Dimension [voxels] 568 x 639 x 65 568 x 639 x 65 568 x 639 x 65 

Voxel Size [nm] 400 400 400 

Phase [vol %] 

1. Electrolyte 

2. Active Material  

3. Carbon Binder 

 

38.6 

39.6 

21.9 

 

38.23 

39.53 

22.23 

 

38.1 

61.9 

- 

Electrolyte Phase: Np, NT - 1648, 3619 1648, 3619 

Active Material Phase: Np, NT - 1712, 2057 1726, 5316 

CBD Phase: Np, NT - 1976, 4227 - 

Interconnections: 

1. Electrolyte-Active Material 

2. Electrolyte-CBD 

3. Active Material-CBD  

 

- 

- 

- 

 

6888 

8878 

7435 

 

11419 

- 

- 

 



71 

 

4.4.4. Network Validation by Direct Numerical Simulation 

The SNOW network extraction algorithm has been previously validated for sandstone, fibrous 

media, and artificial foams (Voronoi tessellations) [97], and the SNOW-dual was validated for sphere packs 

[94], but it is still necessary to validate 3-phase extraction on the present Li-ion battery material image. The 

triple phase nature of the material (and its requirement for a triple phase boundary to exist) leads to specific 

sensitivities of the modelling. 

The most direct validation is obtained by performing direct numerical simulation (DNS) on the 

image using a finite volume approach. This provides reference values for effective diffusivity of the pore 

space (i.e. tortuosity) and effective conductivity of the solid phase (including both NMC and CBD 

particles). These values can then be compared to those predicted by the extracted network to ensure that it 

accurately represents the porous structure. The following sections detail the procedure used to obtain the 

DNS results. 

4.4.4.1. DNS Model Formulation 

The predictive capabilities of the pore-network model were validated against the results computed 

by a DNS model, implemented in the FVM-based code ANSYS Fluent. The numerical domain was created 

using a direct mapping between the voxel image of the electrode and a hexahedral mesh generated with the 

same resolution (23,591,880 cells). Species and charge conservation equations (i.e., Laplace equation) were 

solved via user-defined scalars to determine the lithium-ion concentration and electronic potential, 

respectively. Therefore, the governing equation is given by: 

 ∇ ∙ (Γ∇𝜙) = 0 (4.1) 

where Γ is either the mass diffusivity or electrical conductivity, and 𝜙 is the corresponding solution variable. 

In all cases, the Laplace equation was discretized in ANSYS Fluent using second-order central difference.   

Several user-defined functions were used to customize the model, including boundary conditions, 

transport properties and output results. The material properties and boundary conditions were similar to 
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those prescribed in the pore-network model. The only difference is that boundary conditions were also set 

at internal interfaces. Consequently, in the reaction-diffusion simulation, zero concentration was imposed 

at the electrolyte/active material interface to model limiting-current conditions, rather than prescribing a 

high reaction-rate constant at electrolyte/active material interface (as done in the pore-network model 

described below). Similarly, in the reaction-conduction simulation, current density at the electrolyte/active 

material interface was determined b  direct application of Farada ’s law on t e interfacial diff sive fl x 

determined previously. A no-flux boundary condition was set at the electrolyte/CBD interface, while a 

coupled (i.e., continuity) boundary condition was prescribed at the active material/binder interface.  

4.4.5. Pore-Network Formulation 

The present study focuses on the cathode electrode of Li-ion battery that includes current collector 

and lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2) porous cathode operating under pseudo 

steady-state conditions. Figure 4.4 illustrates the schematic of a cell of lithium-ion battery domain. During 

discharge, lithium ions travel from the membrane side, through the electrolyte phase (pores) and intercalate 

into the active material (NMC-811) surface to form lithium nickel manganese cobalt oxide according to 

following electrochemical reaction: 

 𝑥Li+ + 𝑥𝑒− + 𝐿𝑖𝑦𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1𝑂2 → 𝐿𝑖𝑥+𝑦𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1𝑂2  (4.2) 

 

The physical processes occurring in the lithium-ion battery cathode during discharge are (a) 

diffusion and migration of lithium-ions in the electrolyte phase, (b) conduction of electrons in the active 

material and carbon binder domain and (c) reaction (i.e., intercalation) of lithium-ion at the interface of 

electrolyte and active material. Several simplifying assumptions were made in this work since the focus 

was on the pore-scale transport processes rather than complete battery operation. The generation and 

transport of heat were neglected, as were any side reactions such as SEI formation. Migration of ions due 

to electric fields were also neglected. Electrochemical kinetics were not included, but rather it was assumed 
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that the kinetics of the lithium intercalation reaction was very fast on the surface of the active material. This 

assumption simplifies the problem by decoupling the electrolyte and solid-phase potentials, reducing it to 

reaction-diffusion in the electrolyte phase and reaction-conduction inactive material phase. It was also 

assumed that effective transport properties are not concentration-dependent as recently suggested in 

[99,100]. We assume all transport properties to be constant with changing concentration. The extension of 

this model to transient conditions relevant to charging and discharging will also be left for future work. The 

transport and kinetic equations that were used in the developed pore network model are given in the 

following sections. 

 

Figure 4.4 Schematic diagram of full cell lithium-Ion battery. The applied boundary conditions are shown in red colour 

 

4.4.5.1. Lithium-ion transport 

The lithium-ion transport in the electrolyte phase was considered to follow a reaction-diffusion 

process during the discharge cycle of the battery. The conservation of lithium-ions around a pore i in pore 

network under steady-state conditions can be represented by: 
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∑𝑞𝑖,𝑗

𝑁𝑖

𝑗=1

= 𝑅𝑖 = 𝑘𝑐𝑖 (4.3) 

where 𝑞 is the molar flow rate in 𝑚𝑜𝑙/𝑠. 𝑅𝑖 is the net reaction rate of Li-ions in pore i. k refers to the 

reaction constant and ci refers to the concentration of Li-Ion in pore i. Ni is the number of neighbour pores 

to pore i.  

The molar flow rate qij between pore i and j can be defined using 1D Fickian diffusion:  

 
𝑞𝑖,𝑗 =

𝐷𝐿𝑖+𝐴

𝑥𝑖,𝑗
(𝑐𝑖 − 𝑐𝑗) =  𝑑𝑖,𝑗(𝑐𝑖 − 𝑐𝑗) (4.4) 

where DLi+ is the bulk diffusion coefficient of Li+ ions in the electrolyte phase. A is the cross-sectional area 

of conduit from pore i to pore j , 𝑥𝑖,𝑗 is the length of conduit from pore i to pore j, cj is the concentration of 

Li ion in the neighbouring pore j and 𝑑𝑖,𝑗 is the diffusive conductance between pore i and j. 

4.4.5.2. Electron transport 

The charge conservation for an arbitrary solid particle i is represented by the following governing 

equation: 

 

∑ 𝐼𝑖,𝑗

𝑁𝑖
𝐴𝑀

𝑗=1

= 𝑅𝑖
𝑒 =  z ⋅ 𝐹 ⋅ 𝑅𝑖 (4.5) 

where Ii,j is the rate of charge transport from solid particle i to solid particle j in Coulombs s-1. 𝑅𝑖
𝑒 is the net 

reaction rate of electrons at surface of particle i. F is Faraday's constant and z is the number of electrons. 

The rate of charge transport is proportional to the potential difference between particle i and j as stated by 

O m’s law:  

 
𝐼𝑖,𝑗 =

𝜎𝑒𝐴

𝑙𝑖,𝑗
(𝜑𝑖 − 𝜑𝑗) = 𝜎𝑖,𝑗(𝜑𝑖 − 𝜑𝑗) (4.6) 
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where φi and φj are the electric potentials inactive material at particle i and j respectivel . σe is the bulk 

electronic conductivity of active material (NMC-811). li,j is the conduit length from particle i and j. Ai,j is 

the cross-sectional area of the conduit. 𝜎𝑖,𝑗 is the electrical conductance between active material particle i 

and j. 

It is assumed that no reaction takes place in the carbon binder phase. Therefore, the governing equation for 

charge conversation in this phase is as follows  

 

∑ 𝐼𝑖,𝑗
𝐶𝐵

𝑁𝑖
𝐶𝐵

𝑗=1

= 0 (4.7) 

The rate of charge transport in carbon binder p ase can be represented as 1  O m’s law  nder stead -state 

conditions as 

 
𝐼𝑖,𝑗 =

𝜎𝐶𝐵𝐴

𝑘𝑖,𝑗
(𝜑𝑖

𝐶𝐵 − 𝜑𝑗
𝐶𝐵) = 𝜎𝑖,𝑗

𝐶𝐵(𝜑𝑖
𝐶𝐵 − 𝜑𝑗

𝐶𝐵) (4.8) 

where 𝜎𝑒
𝐶𝐵 is the electronic conductivity of carbon binder domain. 𝜑𝑖

𝐶𝐵 and 𝜑𝑗
𝐶𝐵 are potential difference in 

carbon binder region i and j respectively. 𝑘𝑖,𝑗 is the conduit length in carbon binder region i and j 

respectively. The overall summary of the parameters used in this study is shown in Table 4.2. 

Table 4.2 Summary of the parameters used in this study 

Parameter Value Units Description 

Lcathode 2.6 x 10-5 m Cathode thickness 

Across-section 5.807 x 10-8 m2 Cross-sectional area of cathode 

Vcathode 1.51 x 10-12 m3 Volume of cathode 

𝐷𝐿𝑖+ 1.81 x 10-10 m2.s-1 Bulk diffusivity of Li ion in electrolyte phase [80] 

𝜎𝐶𝐵𝐷 760 S. m-1 Electronic conductivity of carbon binder phase [101] 

𝜎𝑒 1.7 x 10-3 S. m-1 Electronic conductivity of NMC-811 [102] 

CIN 1000 kg.m-3 Concentration of lithium ion at membrane-cathode interface 

𝜑𝐼𝑁 0 Volt Voltage at cathode current collector 

F 96485 C. mol−1 Farada ’s constant 
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4.4.5.3. Boundary conditions 

The boundary conditions implemented for mass and current transport for different cases were as 

follows: 

1. In the electrolyte phase, a Dirichlet boundary condition of 1000 mol m-3 concentration of lithium 

ions was assigned in inlet pores at the separator surface. For the simulation in which only effective 

diffusivity is calculated, a Dirichlet boundary condition of 0 mol m-3 at outlet pores (near the current 

collector) and zero-diffusive flux at solid/electrolyte interface was applied, while for reaction-

diffusion simulation Neumann boundary condition of zero diffusive flux was set in the outlet 

boundary pores.  

2. In the active material and carbon binder phase, 0-volt Dirichlet boundary conditions were 

implemented at the current collector. For simulations which calculate effective conductivities of 

the active material and carbon binder phases, 1 volt Dirichlet boundary conditions at outlet particles 

and zero-conductive flux at solid/electrolyte interface were applied, while for reaction-conduction 

simulation, Neumann boundary condition of zero flux of charge was implemented at outlet 

particles.  

4.4.5.4. Pore-scale conductance models 

To calculate the transport rate between two pores 𝑖 and 𝑗 it is necessary to determine the total 

conductance of the conduit between the two pores, which consists of half of pore 𝑖, the throat, and half of 

pore 𝑗. In the present work, a custom geometrical model for the conductance of each pore was applied, 

based on truncated pyramids as shown in Figure 4.5. Due to the generally spherical nature of the grains in 

the electrode (both NMC and CBD phases), the contacts between two pores essentially have no throat of 

length greater than zero. This overlapping sphere-sphere contact was modelled as the intersection of pairs 

of 4-sided truncated pyramids. The base of the pyramids was found from the diameter of pore, and the 

truncated side was set to the throat diameter. In this model, the conductance of the throat was assumed 

negligible because of zero length and the effect of the constriction between pores was included in each 
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pore’s contrib tion. The total conductance, 𝐺, in a conduit made up of pores i and j and throat 𝑘 can be 

calculated since the resistances act in series: 

 1

𝐺𝑖,𝑗
=

1

𝑔𝑖−𝑘
+

1

𝑔𝑗−𝑘
 (4.9) 

where 𝑔𝑖−𝑘 and 𝑔𝑗−𝑘 are found for each individual pore-throat section as described below.  

This results in the following expression for the electrical conductance of pore 𝑖 connected to throat 𝑘: 

 
𝑔𝑖−𝑘

𝑒 = 𝜎
𝑑𝑖𝑑𝑘

𝐿
 (4.10) 

where dk is the diameter of throat, 𝐿 is the distance from centroid of pore i to centroid of throat k and di is 

the diameter of pore i which is adjusted so that volume of truncated pyramid is equal to half of the volume 

of pore i.  

The pore space is defined by the interstitial regions between grains of solid material. In this case, 

like the solid phase discussed above, the throats are essentially constrictions defined by the converging-

diverging nature of the spheres. As such, the same truncated pyramid model was also applied:  

 
𝑔𝑖−𝑘

𝑑 = 𝒟𝐿𝑖+
𝑑𝑖𝑑𝑘

𝐿
 (4.11) 

where 𝒟𝐿𝑖+  is the diffusion coefficient of the Li-ion in the electrolyte and the geometrical properties are 

defined as above. All of the lengths and diameter values were determined during the network extraction 

stage described above. 
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Figure 4.5 Schematic of geometric properties of pore scale conduit in network model 

4.5. Results and discussion 

4.5.1. PNM validation against DNS 

4.5.1.1. Effective Transport Properties 

The pore network model (PNM) results were compared with direct numerical simulations (DNS) 

for two different conditions. In the first case, effective transport properties were determined using both 

PNM and DNS in both the electrolyte and solid phase under steady-state conditions. Dirichlet boundary 

conditions were used in both inlet and outlet pores as described in section 4.4.5. The comparison of results 

is shown in Table 4.3. The combined effective conductivities in the active material and carbon binder phase 

were calculated using both approaches and the relative error was found to be approximately 3%. The 

normalized effective diffusivity of Li-ions in the electrolyte phase is 0.178 in PNM in comparison to 0.145 

in DNS simulation, meaning that the PNM model overestimated diffusivity by 18.5% (taking the DNS 

result as correct), which is not as close as the solid phase, but still quite acceptable. These higher relative 

errors in this case of diffusion can be attributed to the simplification of irregular pore-scale conduit 

 eometr  to tr ncated p ramids, w ic  evidentl  works better for t e solid p ase beca se it’s  enerall  
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spherical than the pore phase. Given that the pore network modelling approach takes significantly less 

computational time than DNS the relative errors reported in Table 4.3 are acceptable for performing 

engineering design and optimization calculations. The simulation results in terms of concentration and 

voltage profiles are compared for both cases in Figure 4.6.  

Table 4.3 Summary of results in this study 

Variable Pore Network Model Direct Numerical Model Relative Error (%) 

Deff/Dbulk 0.178 0.145 18.5 

σeff 31.9 30.92 3.07 

Li+ fluxvoid-NMC 1.481x10-2 mol/m2s 1.496x10-2 mol/m2s 0.67 

ivoid-NMC 1429.8 A/m2 1411.7 A/m2 1.26 
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Figure 4.6 (a) and (b) Comparison of DNS and PNM model in pure diffusion simulation, (c) 

and (d) DNS and PNM model comparison in pure conduction simulation 
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Figure 4.7 a) Direct Numerical simulation of Li ion diffusion and reaction, b) Pore network modelling simulation for same 

case as in (a), c) Direct numerical simulation of conduction-reaction in active material and carbon binder phase, d) Pore 

network modelling simulation of same case as (c) 
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4.5.1.2. Comparison of Computational Costs 

One of the benefits of pore network modelling over direct numerical method is low computational 

cost required for simulations. To study the computational cost of the simulations described above we have 

divided computational time into two parts. 1) Meshing or extraction time and 2) Problem solution time. In 

this study, the approximate time taken to build 25.5 million mesh elements domain was 1 hr. On the other 

hand, in pore network modelling the equivalent to meshing is extracting the network, which required 

approximately 5 minutes to extract 6460 nodes. However, when comparing the computational cost of 

running the simulations, the average solution time in DNS and PNM was 25 min and 1.21 seconds 

respectively. The computational time was calculated in Inter Xeon E5-2640, 2.40 GHz, 128 GB RAM and 

20 Cores. For direct numerical simulation, the solver was parallelized across 10 cores to achieve residual 

below 10-8 while PNM solution was calculated using only 1 core. This comparison highlights the major 

advantage of the PNM approach over DNS, especially while simulating large electrode domains. The 

comparative advantage of PNMs would become even more important when considering multiphysics such 

as migration of ions, and transient behaviour. 

4.5.2. Coupled Electron Conduction and Diffusion-Reaction 

With the pore-network extraction and geometrical representation validated by the comparison of 

overall effective transport properties above, the model was then used to predict the maximum achievable 

current density. For this study, reaction-diffusion of lithium-ions in the electrolyte phase and reaction-

conduction of electrons in the active material and carbon binder domain phases were analyzed 

simultaneously in the presence of a fast reaction of Li-ions at the NMC phase surface, as discussed in 

section 4.4.5. This assumption forces Li-Ion reaction to follow first-order kinetics instead of Butler-Volmer 

kinetics as per equation (4.3). Although actual Butler-Volmer kinetics can be implemented in the PNM 

model [86], the purpose of this work was to explore the impact of structure on the maximum performance 

of Li-ion cells and to validate our PNM approach to solve lithium-ion battery problems as a foundation for 

future work. As can be seen in Table 4.3, the PNM and DNS models predict a maximum or limiting current 
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density of 1.43 and 1.41 mA mm-2, respectively. These values are substantially higher than experimentally 

observed values, which are typically in the range of 1x10-3-2x10-2 mA mm-2 [80]. It was expected that the 

present simulations would be higher than an operational battery since mass transfer limited conditions were 

forced by applying very high reaction rates at the electrolyte-active material boundary. Moreover, we did 

not consider that Li-ions must diffuse into the active material after intercalation occurs. It is actually quite 

instructive to note that the pore structure is capable of supporting such high current densities and that the 

cumulative effect of the real phenomena not considered in this study hinders the reaction rate substantially. 

Adding more complexity to the pore network model in future work will be valuable for understanding the 

contribution of each process.  

It is also observed that both the DNS and PNM simulations give very similar results for this case 

study. The average Li-Ion flux at electrolyte-active material interface differs by less than 1% between the 

PNM and DNS approaches. The results of the two approaches in terms of concentration and voltage 

distributions are shown in Figure 4.7. From the results in Table 4.3 it can be visually confirmed that the 

PNM approach produces results well within acceptable error to be used as an alternative modelling method 

for simulating Li-Ion battery problems.  

4.5.3. Impact of Electrode Structure 

Most pore-scale models of lithium-ion batteries in the literature treat the electrode as a two-phase 

system consisting of void and solid, meaning the active material and carbon binder domain are treated as a 

single phase. Given that carbon is specifically added to overcome the poor electrical conductivity of the 

active material, it is expected that such a simplification can produce erroneous results. This simplification 

was necessary since previously available tomography images only contained binary phase information.  

Attempts to work around this limitation have been made by algorithmically adding CBD to the solid phase 

[103,104].  The available of a true 3-phase image in the present work provides an opportunity to better 

understand the importance of treating CBD as a separate phase. he developed pore network was used to 

study two different cases described below. 
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4.5.3.1. Impact of treating carbon binder as a separate phase 

As described in section 4.4.4, the SNOW_N algorithm was used to extract both two and three-

phase networks of lithium-ion cathode. The schematic diagram of both networks is shown in Figure 4.2. 

These networks were used to perform comparisons of electrodes with and without carbon binder phase as 

shown in Figure 4.3. Table 4.4 shows the surface area, effective conductivities and current density 

calculated in both two-phase and three-phase network. As expected, the average particle size in the two-

phase network is larger than the three-phase case due to the fact that carbon binder particles are lumped 

together with the active material.  

As a limiting case, the maximum current density that can be supported by the structure was 

calculated by simultaneously modelling the diffusion of Li-ions with a rapid reaction in the active material. 

Limiting current may not be observed practice, but it is an interesting modelling target since it reveals that 

maximum current that can be supported by the electrode structure if electrolyte phase transport were the 

only source of mass transfer resistance.  The current density was found by calculating the total rate in mol 

s-1 of Li-ions entering the domain from the membrane, converting to total current, 𝐼,  sin  Farada ’s law, 

then normalizing by the cross-sectional area of the current collector. As shown in Table 4.4 the current 

density is 24.4% higher in the two-phase network compared to the three-phase case. This decrease when 

considering the CBD is due to the reduction in reactive surface area available when CBD is treated 

explicitly. It should be noted that the few studies which did treat the CBD as a separate phase used DNS. 

Due to high computational cost,  these studies were limited to a domain volume of approximately 20.2 µm 

× 18.13 µm × 12.4 µm [80] compared to the electrode volume of 227.2 µm × 255.6 µm × 26 µm used in 

the current study; approximately 1.8 times larger when the voxel sizes are considered. The volume 

limitation in the present work was not due to computational cost, but rather the field of view of the image. 

This has considerable implications for battery modelling – using a PNM approach it would be possible to 

model whole electrodes imaged via 3D stitching of several CT data sets without compromising on 

acquisition resolution. 



85 

 

Table 4.4 Summary of results in case study 1 

Variable Units Three Phase Network Two Phase Network 

SAinterface m2 1.08x10-7 2.84x10-7 

σeffl S/m 31.9 8.32x10-4 

Li+ fluxvoid-NMC mol/m2s 1.481x10-2 7.44x10-3 

icurrent collector mA/mm2 2.652 3.51  

 

4.5.3.2. The role of nanopores in the carbon binder phase 

It has been reported that nanoporosity of the carbon binder phase in the porous cathode affects 

overall ionic and electronic transport process [93,103,105]. This nanoporosity not only alters ionic diffusion 

pathways and access to the active material, but also affects the electron conducting network. To understand 

the importance of nanopores in the carbon binder phase, a parametric study was conducted where the 

porosity for the carbon binder was varied. These nanopores were not modelled explicitly as this would 

massively increase the computation demand of the model, negating the value of the PNM approach. Instead, 

the effect of nanoporosity was included by altering the effective conductivity and diffusivity of the CBD 

nodes in the network. To scale these transport parameters as a function of nanoporosity a Bruggeman-type 

relation was used [106], given by equation (4.12) and (4.13): 

 𝐷𝐶𝐵𝐷
𝐿𝑖+ = 𝒟𝐿𝑖+(𝜀𝐶𝐵𝐷)𝑛 (4.12) 

 𝜎𝑒𝑓𝑓 = 𝜎𝐶𝐵𝐷 (1 − 𝜀𝐶𝐵𝐷)𝑛 (4.13) 

where  𝜀𝐶𝐵𝐷 is the nanoporosity of the carbon binder phase, 𝒟𝐿𝑖+  is the intrinsic diffusivity of Li-ion in 

electrolyte phase, 𝜎𝐶𝐵𝐷 is the intrinsic electronic conductivity of carbon binder phase. 𝒟𝐿𝑖+,𝐶𝐵𝐷 and 𝜎𝑒𝑓𝑓 

represent effective diffusivity and electronic conductivity after inclusion of nanopores in the carbon binder 

phase. n represents the Bruggeman constant which depends on how the nanopores are connected. 
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Traditionally, 𝑛 = 1.5 for a sphere pack, but is often higher for real random structures, so in this study, 𝑛 

was varied between 1.5 and 3. 

Figure 4.8 shows the impact of varying 𝜀𝐶𝐵𝐷 on various aspects of the electrode performance with 

n as a parameter. Figure 4.8a shows how the effective electrical conductivity of the entire network decreases 

as the nanopore fraction of the carbon binder increases. As 𝜀𝐶𝐵𝐷 → 1 the electrical conductivity for the 

electrode nears 0 for all values of 𝑛, since the conducting carbon material is sacrificed. Figure 4.8b shows 

that the effective diffusivity of the network increases as ions are able flow through the nanoporosity. As 

𝜀𝐶𝐵𝐷 → 0 the effective diffusivity approaches the value obtained in 4.5.1.1 for the pore network. The 

electrolyte phase tortuosity 𝜏𝐿𝑖+ = 
𝜀𝐷

𝐿𝑖+

𝐷𝑒𝑓𝑓
 matc  well wit  recent st d  on LIB’s transport “distortion”[107]. 

It was observed that addition of high amounts of nanoporosity more than doubles the ability of Li ions to 

transport throughout the network. It is unlikely, however, that such high amounts of porosity could be 

achieved. Moreover, as already seen, high porosity drives the electrical conductivity of the network toward 

zero value so is not a practical target anyway. For both transport processes, the value 𝑛 has only a small 

impact, except at low values of 𝜀𝐶𝐵𝐷. For 𝜀𝐶𝐵𝐷 < 0.2, the effective diffusivity is almost unchanged while 

the electrical conductivity decreases noticeably. Note that equation (4.12) and (4.13) do not include 

percolation effects, which would make this behaviour at low 𝜀𝐶𝐵𝐷 even more pronounced.  

More interesting is the interplay between increasing effective diffusivity and decreasing 

conductivity as the nanoporosity is increased. Simulations were performed with the ion diffusion-reaction 

coupled to the electron conduction, such that the voltage drop in each particle was determined that ensure 

a sufficient flow of electrons were delivered to each active site to match the consumption of ions there. 

Figure 4.8c shows the voltage of each NMC and CBD particle in the network as a function of position in 

the thickness direction of the electrode. These results were obtained for 𝜀𝐶𝐵𝐷 = 0 and 𝑛 = 3. It can be seen 

that a small number of NMC particles display a high voltage.  This may indicate that these particles suffer 

from artificially decreased connectivity with the current collector due to edge effects from image cropping.  

None of these particles are fully disconnected (i.e. floating in space) as sometimes occurs due to image 
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cropping, but the topology near the edges is unavoidably impacted and this could explain the observed 

voltages.  

 

Figure 4.8 a)Effective electronic conductivity of solid matrix (NMC+CBD) vs nanoporosity of CBD, b) Effective 

diffusivity of Li-Ion in electrolyte phase vs nanoporosity of CBD, c) Potential difference in solid matrix vs distance from 

membrane at ε_CB=0 and n=3, d  Current density of solid matrix vs CBD nanoporosity. 

 

Figure 4.8d shows current density simulated at different 𝜀𝐶𝐵 values. It can be seen that current density 

increases from 2.65 mA.mm-2 to 3.1 mA.mm-2 by changing the nanoporosity from 0 to 80% phase. This 

represents an 16.8% increase in maximum current density, but it must be conceded that simulation is not 

indicative of actual performance, since in reality, the reaction rate would drop significantly in sites with a 

high ohmic overpotential due to the exponential dependence of electrochemical kinetics on voltage. The 

observed behaviour is due to more available reaction area and more Li-ion pathways available from the 

electrolyte phase to active material due to the presence of nanopores in CBD. The loss of electrical 



88 

 

conductivity is not factored into this result, and it is quite likely that a peak in current would be observed 

as some intermediate value of 𝜀𝐶𝐵𝐷, though this is outside the scope of the present work.  

4.6. Conclusions 

In this work, a pore network extraction algorithm was developed to extract connectivity and 

geometrical information from a ternary X-ray tomography image of a three-phase lithium nickel manganese 

cobalt oxide (𝐿𝑖𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1𝑂2) porous cathode. The extracted three-phase network not only includes 

geometric information of each phase but also topological information such as the interlinking of all phases 

with themselves and each other. This enables the study of pore-scale transport through the structure while 

considering the transport process in each phase. 

For validation, effective transport properties including the effective diffusivity of the pore phase and 

effective conductivity of the solid phase were calculated using DNS as a reference solution, and results 

compared favourably with the extracted network. Once the model was validated, more sophisticated 

simulations were performed by considering reaction-diffusion and reaction-conduction process in 

electrolyte and solid phase of three-phase network. These studies mimicked battery operation for the 

limiting case of maximum current since only diffusion in the electrolyte phase and very fast kinetics at the 

electrolyte-active material interface were considered. This revealed that the maximum currents that can be 

supported by the electrode structure are substantially higher than experimentally observed currents.  

The developed pore network model was used in two case studies to highlight the effect of 

incorporating nanopores in the carbon binder phase, as well as the importance of using three-phase network 

over two-phase network of lithium-ion battery. The results showed a 24.4% decrease in current density 

when the carbon binder was treated as a separate phase compared to lumping the CBD and active material 

into a single phase, as is often done in previous pore-scale simulations on binary images. Moreover, it was 

observed that ionic and electronic transport properties are affected by inclusion of nanopores in the carbon 
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binder phase. The current density was observed to increase by 16.8% as the nano-porosity of CBD increases 

from 0 to 80%.  

As compared to direct numerical simulation, the present work uses relatively large electrode domain 

to model multiple coupled phases together in a computationally efficient way. With the increased ability to 

stitch larger regions of electrode images together and decreasing data acquisition time, the approach 

explored here will become increasingly necessary in order to accurately describe realistic Li-ion battery 

electrodes and the inhomogeneities that can be present across their entire area. Also, the current study 

focuses only on steady-state processes, but due to low computational cost of pore network models, a 

transient approach to simulate porous media can be adopted.  
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Chapter 5 Efficient Extraction of Massive Size Pore Networks  

5.1. Preface 

This paper removes a major bottleneck in network extraction algorithms and enables the extraction 

of massive size tomograms without running out computational limits of standard workstation or laptop 

machine. The developed algorithm uses geometric domain decomposition approach to divide large size 

image into smaller sub-domains and stitching processed subdomains as a postprocessing step. The study 

also addresses an important drawback of image-based modelling i.e resolution effects that can lead to 

inaccurate results and highlights the importance of using high-resolution images for extraction for pore 

network modelling studies.   

5.2. Overview 

Image-based modelling of porous media to study the transport and reaction processes has become an 

essential tool. The availability of increasingly large image datasets at high resolution creates a need to 

develop algorithms that can process massive size images at a low computational cost. This study presents 

an efficient workflow to extract pore networks form large size porous domains using a watershed 

segmentation with geometrical domain decomposition. The method subdivides a porous image into smaller 

overlapping subdomains and performs a watershed segmentation on each subdomain in parallel or serial 

modes of operation to save CPU time or memory RAM, respectively. The computational performance of 

the algorithm was analyzed on a large size image and found to consume 50 percent less memory and up to 

7 times less CPU time than the standard watershed implementation. Pore networks of four massive digital 

rock images were extracted and the effective permeability predicted by the networks agreed well with 

previously investigated values illustrating the accuracy of the method. An additional application of this 

methods, taking advantage of the reduced computational cost, is the upgrading of low-resolution image.  It 

was found that that increasing the resolution of a coarse image leads to more accurate predictions by helping 

the watershed segmentation produce a more faithful pore network model. The developed algorithm is 
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implemented in Python and included in the open-source project PoreSpy.  It uses highly optimized and 

efficient modules such as Dask and Numba to obtain maximum performance. The domain decomposition 

approach used here will also lend itself well to processing on distributed memory clusters, enabling the 

processing of even larger porous domains.  

5.3. Introduction 

Image-based modelling of porous media to study transport and reaction processes has become a key 

tool thanks to a relentless increase in computational power [36,108–111]. This has been accompanied and 

spurred on by the advancement of 3D imaging techniques, such as X-ray micro- and nano-computed 

tomography (CT) and focused ion beam scanning electron microscopy (FIB-SEM), that have enabled the 

acquisition of massive domains at resolutions better than a fraction of micron. For instance, domains can 

be imaged with current CT techniques as large as 2000 voxels across and essentially unlimited in height 

since scans can be stitched together [112–114]. Modelling transport processes, especially complex ones 

involving reactions and multiple coupled physics, using numerical techniques known collectively as direct 

numerical simulation (DNS) on such large domains strain even the most advanced modern workstations, 

however. One common remedy is to use pore network modelling (PNM), which is the most efficient when 

compared to other pore-scale modelling approaches [115] and its importance has been well established in 

modelling transport processes of various types of porous media [86,116–118].  

The promise of using PNMs to efficiently model complex transport processes in large domains is 

currently limited by the network extraction step which can take hours or more. There are three main 

approaches to network extraction and they all depend on image analysis, which can be resource and 

computationally intensive. The approaches are (1) maximal ball [119,120] , (2) skeletonization or medial 

axis thinning [121,122], watershed segmentation [123] and 4) some hybrid techniques [124,125]. The 

present work focuses on the third approach, by adapting the SNOW algorithm developed by [97]. The main 

computational bottleneck of this algorithm is the watershed segmentation step which requires high 

computational memory (RAM) and a significant amount of CPU time as the size of the 3D image 
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approaches and exceeds 10003 voxels.  It should be stressed that the present work can be applied to any 

technique that uses a watershed segmentation since it is applied to the result of the watershed and is 

therefore agnostic to how the watershed was performed. 

There have been a few recent attempts to accelerate network extraction by employing parallelization. 

[126] approached the problem by dividing the image into several subdomains and performing watershed 

segmentation on each subdomain individually. A pore network was then extracted from each subdomain 

and these networks were subsequently stitched together to get one large network. The stitching was done 

by analyzing the interaction of the throats at the intersection of two neighbouring subdomains. Although 

their algorithm obtained an increase in computational efficiency, the accuracy was sacrificed since the pore 

connections and throat radius at the intersections of two domains are handled based on arbitrary stitching 

rules. The final pore network was found to differ noticeably from the network extracted from a single large 

domain, and moreover, the result depended significantly on the number and size of subdomains used. [127] 

developed a stitching method to join the two neighbouring subdomains statistically. Similar to the approach 

of [126], stitc in  networks “post-extraction” introd ces errors in t e predicted transport properties, and 

the relative error changes depending on the number of subdomains. 

 o remed  t e limitations of stitc in  networks ‘post-extraction’, t e present work foc sed on 

obtaining a watershed via parallelizing the watershed step, then performing network extraction on the entire 

image.  A key factor to note is that the number of segmented regions in a large image is far fewer than the 

number of voxels.  Therefore, if a segmented image can be obtained efficiently, the network extraction step 

can be applied to the segmentation without concern for efficiency. In general, there are two approaches to 

parallelizing the watershed: redefining the inner workings of the algorithm to work in truly parallel way, or 

dividing the image into chunks then applying an existing algorithm on each chunk individually 

[76,128,129]. 

The first approach is quite challenging because as pointed out in several reviews [130,131], the 

watershed is inherently iterative or sequential in nature requiring multiple passes over the image. Typical 
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performance gains for algorithms in this category are between 2-4x on 8 core machines [130,132–134].  

The best performance gain on more than 10003 voxels images were achieved by [133]who reported an 

average speed-up of 5x on a machine with 8 cores, but conceded that the accuracy of the segmentation may 

not be maintained. Their speed-up was also inflated since they parallelized the immersion algorithm of 

[135], which is faster than the marker-based segmentation of [136] and [137] as no preprocessing steps to 

define markers are required.  Attempts have also been made to develop parallelized algorithms for use on 

distributed-memory systems [128,129], but again the need to share information between nodes during the 

processing limits the performance gains. In general, intrinsically parallel algorithm only achieve moderate 

speed improvements, each implementation is specific to one type of watershed, and they involve 

sophisticated implementations that are not widely available for use by porous media researchers. 

The other approach to parallelization is referred to as divide-and-conquer or geometric domain 

decomposition, where the image is divided into chunks and each is processed separately, followed by a 

post-processing step to recombine each chunk back into a single domain. This approach offers several 

useful advantages as it can be run on distributed-memory systems as well as shared-memory machines with 

ease.  The former has the benefit that many nodes can be requisitioned and/or each node can have a large 

amount of RAM, for processing massive images.  Of course, this requires access to specialized 

computational resources. Because no information is exchanged between processes, domain decomposition 

schemes can optionally be run asynchronously, meaning that a single shared-memory machine can be used 

to analyze large images by processing each chunk in series.  This allows the use of normal desktop or even 

laptop computers on images that would otherwise be infeasibly large. Domain decomposition schemes can 

also be run in parallel on shared-memory high-performance workstations, allowing a high degree of 

flexibility in how they are run.  Another advantage is that the user is free to choose which watershed 

algorithm is applied to each domain. For instance, it has been shown that a marker-based watershed with 

carefully selected markers is necessary to obtain a valid network from porous media images [97], so the 

ability to choose the algorithm and its settings is critical. As another scenario, if one had access to a 
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distributed-memory system, each node could use an internally parallelized algorithm (of the type discussed 

above), and domain decomposition could be used to harness many nodes, significantly increasing the 

computational performance. The downside of the domain decomposition approach is that the accuracy of 

the segmentation is not assured, as it depends on the handling of interfaces between each subdomain, which 

is one of the major points addressed in this work.   

This work presents a pore network extraction workflow that is based on parallelized watershed 

segmentation using domain decomposition. The proposed algorithm is conceptually simple, requiring only 

that each subdomain overlaps its neighbour by a sufficient amount to prevent edge artefacts, and followed 

by relabeling of watershed basins by comparison of the overlapping regions.  All of this is done in the pre- 

and post-processing steps, so the actual watershed function is untouched. Crucially, the proposed approach 

can extract an identical network as that without domain decomposition, and the result is independent of the 

n mber of s bdomains.   e developed al orit m’s comp tational performance was tested on a variet  of 

large images and shown to be many times faster than the currently available approaches based on existing 

single-core implementations. The presented algorithm, by working on each subsection of the image 

separately, can also be applied in serial processing mode for cases where RAM is limited, and the 

effectiveness of this scheme was also explored. The proposed domain decomposition algorithm, therefore, 

offers the option of fast parallelized processing on high-performance workstations with many cores and 

ample RAM, or slower serial processing on lesser machines with limited cores and RAM. The possibility 

also exists for the present algorithm to be deployed on distributed-memory systems, though this aspect was 

not explored in the present work. An additional benefit of the present approach is that any watershed 

algorithm can be applied, allowing users to customize the scheme for their own workflow.  Lastly, and most 

practically, this present algorithm is implemented using widely accessible open-source python tools such 

as the Scipy stack [138], Dask [139] and Numba [140]. The algorithm is included in the in open source 

project PoreSpy [95], and the output of code is also well aligned with open source pore networking 

modelling project OpenPNM [32].  



95 

 

Table 5.1 Image Sample used in the present study 

Type of Study Name of Sample 
Sample 

ID 

Dimensions 

[x, y, z] 

Resolution 

µm 

Porosity 

% 

Algorithm 

Validation 

Berea 1 1024, 1024, 1024 2.7745 20.25 

Bentheimer 2 1000, 1000, 1000 3.0035 21.67 

Doddington 3 1000, 1000, 1000 2.6929 19.58 

Ketton 4 1000, 1000, 1000 3.00006 13.30 

Random Sphere Packing 5 520, 520, 520 1 30.01 

Computational 

Performance 

Bentheimer 6 500, 500, 7040 6 23.9 

Fontainebleau 7 500, 500, 4096 3.662 13.73 

Analysis of 

Large Size 

Tomograms 

Berea 1 1024, 1024, 1024 2.7745 20.25 

Bentheimer 2 1000, 1000, 1000 3.0035 21.67 

Doddington 3 1000, 1000, 1000 2.6929 19.58 

Fontainebleau 8 2048, 2048, 2048 7.324 14.23 

Effect of 

Resolution 

Berea1 9a 512, 512, 512 5.549 20.254 

Berea2_zoomed 9b 1024, 1024, 1024 2.7745 20.254 

Berea 1 1024, 1024, 1024 2.7745 20.251 

Bentheimer1 10a 500, 500, 500 6.007 21.03 

Bentheimer2_zoomed 10b 1000, 1000, 1000 3.0035 21.03 

Bentheimer 2 1000, 1000, 1000 3.0035 21.67 

Doddington1 11a 500, 500, 500 5.3858 21.74 

Doddington2_zoomed 11b 1000, 1000, 1000 2.6929 20.00 

Doddington 3 1000, 1000, 1000 2.6929 19.58 

Ketton1 12a 500, 500, 500 6.00012 12.41 

Ketton2_zoomed 12b 1000, 1000, 1000 3.00006 12.41 

Ketton 4 1000, 1000, 1000 3.00006 13.30 

Random Sphere Packing1 13a 250, 250, 250 2 34.51 

Random Sphere 

Packing2_zoomed 

13b 
500, 500, 500 1 34.51 

Random Sphere Packing3 14 500, 500, 500 1 33.57 
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5.4. Methodology 

5.4.1. X-ray micro-computed tomography Image Samples 

To investigate the computational performance and geometric domain decomposition artefacts if 

any, 13 different types of 3D datasets were used.  These included the X-ray μC  ima es of different t pes 

of rocks provided by Imperial College London [141,142], random sphere packings were generated using 

PoreSpy [95], and massive size images of the Fontainebleau Sandstone samples were constructed by 

Institute for Computational Physics at the University of Stuttgart [143]. A large size Bentheimer sandstone 

image obtained by [112] was downloaded from the DigitalRockPortal [144]. The sizes, resolutions, and 

porosities of images used in different studies are shown in Table 5.1. Equal size subdomains were created 

from the original images during the domain decomposition process, so some images were cropped by a few 

voxels to make it evenly divisible by the decomposition ratio and their final cropped size are mentioned in 

the respective study.  

5.4.2. Network Extraction Algorithm 

The SNOW algorithm as elaborated in [97] was used to perform a marker-based watershed 

segmentation and network extraction for all steps in this study. The algorithm uses a Gaussian blur and two 

custom filters to remove spurious peaks from the distance transform before performing marker-based 

watershed segmentation on 3D Image. A detailed comparison with commonly used extraction algorithms 

and modelling approaches are provided in [97,145]. The segmented regions obtained using SNOW 

algorithm are then used to extract geometrical and structural information of the network. The workflow for 

the SNOW pore network extraction methodology is shown in Figure 5.1a. 
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Figure 5.1 a) Basic steps of SNOW algorithm, b) Basic workflow of the domain decomposition algorithm 
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Figure 5.2 a) Binary Image decomposed into four subdomains where each subdomain has some overlapping part of 

neighbouring subdomains. The overlapping thickness part is shown as a golden colour band, b) Watershed segmentation 

of each subdomain after applying SNOW algorithm, c) Extra slice are trimmed after extracting labelling information 

from twin slices, d) Final Watershed segmentation after the stitching process 
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5.4.3. Domain Decomposition Algorithm 

The main computational bottleneck of the SNOW network extraction algorithm Figure 5.1a. As the 

size of the image increases, overall memory and CPU time increases significantly, to the point that it 

becomes impractical to extract a network on a common laptop or desktop computer which has on average 

16 to 24 GB RAM. The high computational cost of this step can be avoided if the image is divided into 

smaller, manageable sub-domains and watershed segmentation is performed on each individually. These 

sub-domains can then later be stitched together before the network extraction step.  If this stitching is done 

carefully, it is possible to get an identical pore network to that which would be obtained from applying the 

watershed on the single large domain. The overall process for domain decomposition developed in this 

study is shown in Figure 5.1b. The algorithm is implemented in Python using highly optimized and efficient 

python packages that can handle large size image data sets such as Dask [139] and Numba [140]. The source 

code is incl ded in t e  ore p  “networks” mod le as snow_partitionin _parallel. Figure 5.2a to d shows 

essential steps of algorithm implementation on a 2D slice of a 3D porous material dataset. The step by step 

description of the workflow shown in Figure 5.1 and Figure 5.2 is as follows: 

5.4.3.1. Overlapping Thickness 

The image is first divided into smaller sub-domains, such that each sub-domain has some overlapping parts 

in neighbouring sub-domains.  Overlapping is essential to avoid edge artefacts when stitching the result 

back together but determining the amount of overlap is challenging. The calculation criteria for estimating 

the overlapping thickness is based on the fact that it should be equal to (or slightly greater than) the size of 

the largest region in the image, or more precisely the largest region touching subdomain boundary. 

However, regions are not available for inspection until after the segmentation, so a proxy metric must be 

used, such as the largest pore as well be described below. Figure 5.3a shows a 2D slice of random sphere 

packing image which is divided into two sub-domains. To get the correct watershed segmentation of each 

sub-domain, the boundary of each must be extended into the neighbouring sub-domains such that it contains 

the maximum diameter sphere or at least centre marker of the sphere as shown in Figure 5.3b. This thickness 
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can be determined in one of two ways.  The simplest is finding the maximum value in the distance 

transform1 of the binary image Figure 5.3c since the distance transform must be calculated anyway as input 

to the watershed segmentation.  The overlap should then be 2x higher than this value to ensure that the if 

the largest pores happen to lie on a divisional boundary it will be completely encapsulated in both chunks 

and its watershed basin will be present in both subdomains.  This approach may fail if the pore regions are 

elongated since the distance transform gives only the shortest dimension of a pore region.  Alternatively, 

the overlap size can be approximated by scaling down the image size by a factor of 2 or more, then 

performing a watershed on the coarsened image.  Although this loss of resolution degrades the watershed, 

the point is to find the largest region which will be the least impacted.  The amount of overlap can then be 

found as the largest dimension of a bounding box around the largest region, as shown in Figure 5.3d. If the 

material is anisotropic the second approach is recommended despite being more complicated, but in this 

work, the first approach is used throughout. Naturally increasing the size of the overlap also increases the 

computational costs since the overlapped regions are effectively processed because since they appear in 

both subdomains. Strategies for reducing the overlap are discussed and compared later. 

 

 

1 Note that the distance transform step can also be somewhat time consuming, but a recently released python 

implementation of [193,194] has drastically improved both the time and the RAM required compard to the 

native Scipy implementation [138]. 
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Figure 5.3 a) 2D slice of polydisperse sphere packing having four different diameter beads. The red dotted line indicates 

division slice, b) The two subdomains obtained after division with overlapping part of neighbouring subdomain having a 

thickness of slightly greater than d1, c) Euclidean distance transform of the 2D slice of sphere packing where dt indicates 

the value of maximum distance transform that is used to find overlapping thickness using first approach, d) The SNOW 

algorithm is applied on the scaled-down image of sphere packing to get the size of the maximum dimension of the 

bounding box of the largest segmented region 
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5.4.3.2. Number of Divisions 

               This number of subdomains created from the binary image can be adjusted depending on the 

computational resources available, either to utilize all the cores available or to minimize the amount of 

RAM consumed.  If the image size in any axis is not evenly divisible by the desired number of division 

then the image must be cropped accordingly or else the algorithm can give erroneous results in current form 

of implementation. This limitation is due to the difficulty in getting the access of extra slices of subdomains 

during stitching process as explained in section 5.4.3.5 but was deemed acceptable given that at most 9 

voxels would be sacrificed and the images are implicitly very large image. Future enhancement in the 

algorithm will address this more precisely. The size of subdomains at this step does not include the 

overlapping thickness, which is added after the numbers of divisions are specified. Also, it should be noted 

if the size of the overlap should not exceed the size of the subdomains, so there is an upper limit to how 

finely the domain can be decomposed. This essentially defines the upper limit of subdivision and caution 

the user not to provide very large numbers of division. 

5.4.3.3. Modes of Operation 

Once the extended subdomains are created the algorithm can be run in either parallel or serial mode. 

In the parallel mode of operation, each subdomain is processed in one core of the CPU. The serial mode of 

operation processes subdomains one by one and utilizes only one core of CPU. This reduces the RAM 

usage to a great extent but computational time increases compared to the standard watershed on the entire 

image. Overall computational performance graphs are discussed in detail in the Results and Discussion 

section 5.5.2.  

5.4.3.4. SNOW Algorithm on Subdomains 

After selecting the mode of operation, the SNOW algorithm is applied to each extended subdomain. 

This step is performed in a for-loop until all subdomains are processed. The output is a list of watershed 

segmentation of each extended subdomain Figure 5.2b. At this point, the overlapping thickness of each 
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subdomain is trimmed such that only a 1-voxel thick slice of neighbouring subdomains is kept Figure 5.2c. 

This extra slice is essential for the stitching operation as detailed in section 5.4.3.5. Furthermore, the 

watershed basins in the subdomains are relabeled by sequentially finding the maximum label in the first 

subdomain in the list and adding that number to the labels of the next, and so on.  This step ensures that 

there will be no duplicate labels in the final recomposed image.    

5.4.3.5. Subdomains Stitching 

After the relabeling process, subdomains are stitched with neighbouring subdomains using the 

information embedded in the extra slice associated with each neighbouring subdomain Figure 5.2d. Since 

the last slice of each subdomain and the first slice in the neighbouring subdomain are twins, they should 

have the same number of regions or in other words, the regions should coincide with each other. Also, the 

two slices will have an equal number of voxels in all twin regions if the overlapped thickness was sufficient. 

Once these conditions are met the region labels of the extra slice are used to replace the twin region labels 

in the neighbouring subdomains. The stitching process is performed along one axis at a time to avoid 

incorrect relabeling of regions in the corners and edges of the subdomains because these regions can have 

some part in more than two neighbouring subdomains.   

5.4.3.6. Trim Extra Slices  

Once the relabeling process is completed for all the subdivisions, the extra slices in each subdomain 

are deleted and the subdomains are recomposed into a single large image. The output of this step is a 

segmented image that has the same shape as the original input binary image. The segmented image labels 

are then sequenced to ensure they are contiguous since some labels are missing after the relabeling step. 

Also, region labels are spatially randomized such that neighbouring regions have significantly different 

values which aid visualization of the porous domain. 
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5.4.3.7. Pore Network Extraction 

The segmented image is used to extract a pore network using PoreSpy built-in 

“re ions_to_network” f nction w ic  scans t ro    all re ions in t e se mented ima e and extracts 

geometrical and structural features of pores and throats. The extraction process and definition of 

geometrical features are thoroughly explained in [97]. In addition to extracting the pore network, the 

algorithm can create boundary pores to define boundary conditions during the simulation process. The detail 

of creating boundary pores is discussed by [145]. 

5.4.4. Random Walker Simulation 

All of the rock images investigated here have reported values for the permeability coefficient which 

can be compared to value predicted the extracted network.  It was also desired to compare tortuosity or 

formation factors values, which are not as readily available.  To remedy this the effective diffusivity of the 

images was estimated by discrete random walker simulation. This approach is far less computationally 

expensive than DNS simulations (e.g. such as the commonly used Lattice Boltzmann method [146,147]. 

While dealing with large size image datasets DNS require the use of a supercomputer which is contrary to 

the aims of the present study. 

An open-source Python package PyTrax [148] was used to perform random walker simulation. A 

comparison of the computational efficiency of the algorithm with LBM was given by [145]. The random 

walker algorithm finds the pore phase tortuosity of the binary porous domain using mean square 

displacement (MSD) (105 random walkers were used). Equation 5.1 was used to find MSD, where 𝑝(𝑥, 𝑡) 

represents the probability density function of a walker at location x and time t [149] and can be described 

by equation 5.2. 

 

𝑀𝑆𝐷 =  ∫ 𝑥2𝑝(𝑥, 𝑡)𝑑𝑥

∞

−∞

 5.1 
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𝑝(𝑥, 𝑡) =  

1

4𝜋𝐷𝑡
exp(

−𝑥2

√4𝐷𝑡
) 5.2 

The mean square displacement (MSD) of a walker that is subjected to follow an unbiased 

movement traces a Gaussian Distribution.  The touristy factor 𝜏−1 can be found by plotting gradient of 

MSD over time 𝑡. The tortuosity 𝜏 calculated can be used to find the formation factor of the porous domain 

of porosity 𝜀 according to [150]. The formation factor in defined as the ratio of effective diffusivity to bulk 

diffusivity of nitrogen gas in air (2.03x10-5 m2/s [151]) and calculated according to equation 5.3 as follows.  

 𝐷𝑒𝑓𝑓

𝐷𝑏𝑢𝑙𝑘
=

𝜀

𝜏
 5.3 

5.5.  Results and Discussion 

5.5.1. Algorithm Validation 

The validation of the domain decomposition algorithm was performed on five different types of 3D 

images (ID: 1-5) mentioned in Table 5.1. The number of segmented regions with and without domain 

decomposition was counted to ensure no regions were created or lost at the intersection of subdomains. The 

decomposition ratio, defined as the ratio of the shape of the original image to the shape of the subdomain, 

was varied from 2 to 4 to ensure algorithm robustness. At decomposition ratio 3 it was necessary to crop 

the image slightly to perfectly divide it into equal size subdomains. The results are summarized in Table 

5.2 and show that the domain decomposition algorithm returns an identical number of segmented regions 

as compared to the segmentation without domain decomposition. The small differences in a few cases 

(never more than 2 regions) are due to the size of the structuring element in the peak trimming method of 

SNOW algorithm and not associated with domain decomposition algorithm. Further improvements of the 

peak detection method can remove this difference but overall, it represents a very small error considering 

the number of regions in the images. These results also indicate robustness for different materials, indicating 

that it can be used on other different types of porous domains such as metallic foams [152], membranes 

[153], and battery electrodes [116]. 
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Table 5.2 Algorithm Validation 

Name of Sample Dimensions 

[x, y, z] 

Number of Segmented Regions 

Without Domain 

Decomposition 

With Domain 

Decomposition 

*dr = 1 dr = 2 dr = 3 dr = 4 

Berea 1024, 1024, 1024 33041 33042 - 33045 

Berea 1023, 1023, 1023 32942 - 32943 - 

Bentheimer 1000, 1000, 1000 20779 20779 - 20780 

Bentheimer 999, 999, 999 20723 - 20723 - 

Doddington 1000, 1000, 1000 10172 10172 - 10174 

Doddington 999, 999, 999 10144 - 10145 - 

Ketton 1000, 1000, 1000 6976 6976 - 6977 

Ketton 999, 999, 999 6948 - 6948 - 

Random Sphere Packing 520, 520, 520 3399 3400 - 3402 

Random Sphere Packing 519, 519, 519 3402 - 3404 - 

 

5.5.2. Quantification of Computational Performance 

To analyze CPU time and memory usage of the domain decomposition algorithm, two different large size 

3D images samples of sandstones were used in the study. The specifications of the images (ID: 6,7) are 

shown in Table 5.1. The CPU time was defined as time required to execute all code including preprocessing 

and postprocessing steps such as calculating overlap thickness, relabeling and stitching etc. To measure 

computational performance with increasing numbers of voxels, the images were divided into 16 different 

size samples such that each sample size was obtained by dividing the z-axis of the original image with an 

integer 𝑛 between 1 to 16. The algorithm was tested on Lenovo ThinkStation P500 WorkStation, having 

E5-1650 V3.3 CPU, 16 cores and 256 GB RAM. During parallel and series computation the input samples 
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were subdivided only along the z-axis and no subdivision was performed in y and z-axis so that the number 

of overlapping voxels scaled proportionally to the number of divisions. For serial operation, each 

subdomain was processed in a single-core one by one while in parallel operation all subdomains were 

simultaneously processed in the separate cores. The computational results were also compared with the 

legacy SNOW algorithm that uses SciPy [138] implementation of watershed segmentation. The CPU time 

and memory usage are plotted against the number of voxels and results are shown in Figure 5.4a and b 

respectively. From Figure 5.4a It can be seen that SNOW parallel is significantly faster than SNOW legacy 

and as the number of voxels increases the computational efficiency increases many folds. In the case when 

the actual images of Bentheimer sandstone are subdivided into 16 domains, SNOW parallel is 7 times faster 

than SNOW legacy. This shows an appreciable increase in computational performance. 

 

Figure 5.4 a) CPU time comparison of the algorithm with varying voxel numbers, b) RAM usage comparison of the 

algorithm with increasing domain size, c) Computation time with increasing number of cores for two different rock 

samples d) Speedup gained due to parallelization against number of cores 
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Figure 5.4c and d shows CPU time performance and speed up gains against number of cores without 

changing number of voxels in samples. The speedup in the simulation was defined as the ratio of CPU time 

without domain decomposition to the CPU time required by N cores with domain decomposition. From 

Figure 5.4c and d it can be seen that total computational time decreased to approximately 7 times as 

compared to single-core simulation. In principle dividing the image into 16 subdomains with no overlap 

should give 16x speedup, neglecting the time of any preprocessing and postprocessing steps such as overlap 

calculation, relabeling and stitching. In practice, this was found to only result in a 10x speed-up, presumably 

due to overhead of the parallelization and data i/o between the CPUs and RAM.  However, some overlap 

is necessary for the algorithm to stitch the subdomains together, and this overlap is responsible for reducing 

the speed-up from 10x to 7x. Section 5.5.4 investigates the impact of the overlap size on speed and memory 

usages, as well as segmentation accuracy. 

Figure 5.4also shows that SNOW serial is relatively slower than SNOW legacy. From Figure 5.4a 

it appears that SNOW serial implementation is approximately 1.5% and 30% slower than SNOW legacy in 

Bentheimer and Fontainebleau sample respectively but the major advantage of this mode of operation is 

significant reduction in RAM usage as shown in Figure 5.4b. SNOW serial uses 2x less RAM than SNOW 

legacy for equivalent size domains in both samples. This allows a user with average computational 

resources to extract relatively bigger porous domains which were not possible with SNOW legacy. Also, it 

should be noted that SNOW parallel consumes more RAM than the legacy SNOW algorithm. This is 

because during the domain decomposition process SNOW algorithm is applied on all the subdomains 

simultaneously, adding up RAM usage of all subdomains together. This limits the choice of the user to 

perform SNOW parallel on a workstation having low computational memory resources.   

5.5.3. Pore Network Extraction of Large Size Tomograms 

The domain decomposition algorithm was applied to four large size tomograms of porous rocks 

(ID: 1,2,3,7). The sizes of these tomograms are given in Table 5.1. The decomposition ratio of 4 was used 
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to extract the pore network from Berea, Bentheimer, and Doddington sandstone while the domain 

decomposition ratio was set to 6 for Fontainebleau image of size 20483 voxel. The extracted pore networks 

were used to simulate directional effective permeabilities for single-phase flow using steady-state Stokes 

flow. The pore network model conduit was assumed to consists of two half pores (i and j)  and their 

interconnecting throat, k. To find sizes of each half pore and interconnecting throat, spherical and 

cylindrical geometries were used respectively.  The overall conductance of conduit was calculated using 

series resistor model: 

 1

𝑔𝑖𝑗
=

1

𝑔𝑖𝑘
+

1

𝑔𝑘
+

1

𝑔𝑗𝑘
 5.4 

where conductance in each half pore and interconnecting throat is calculated using Hagen Poiseuille 

equation as: 

 
𝑔𝑁 =

𝐴𝑁
2

8𝜋𝜇𝐿
        𝑁 → 𝑖, 𝑗, 𝑘  5.5 

 Figure 5.5 to Figure 5.7 shows overplayed pore network of the porous domain, pore size colour 

map and z-axis pressure field in the extracted pore network for Berea, Bentheimer and Doddington 

sandstone. The large size Fontainebleau overlaid pore network, pore sizes and pressure field are shown in 

Figure 5.8. The results of effective permeabilities for single-phase flow in each direction are shown in Table 

5.3. The average values of permeabilities were compared with previously reported results in [141,154–156]. 

It can be seen that the results estimated by the presented algorithm match well with other efforts but with 

far less computational cost than the previously adopted computational approaches.    
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Figure 5.5a) Berea Sandstone with pore network overlayed on pores of voxel image, b) Extracted pore network using 

domain decomposition ratio to 4. The network shows pore size distribution in porous rock, c) Single phase flow simulated 

in the z-axis direction 

 

Figure 5.6 a) Bentheimer Sandstone with pore network overlayed on pores of voxel image, b) Extracted pore network 

using domain decomposition ratio to 4. The network shows pore size distribution in porous rock, c) Single phase flow 

simulated in the z-axis direction 

 

Figure 5.7a) Doddington rock with pore network overlayed on pores of voxel image, b) Extracted pore network using 

domain decomposition ratio to 4. The network shows pore size distribution in porous rock, c) Single phase flow simulated 

in the z-axis direction 
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Figure 5.8 a) FontaineBleau rock with pore network overlayed on pores of voxel image, b) Extracted pore network using 

domain decomposition ratio to 4. The network shows pore size distribution in porous rock, c) Single phase flow simulated 

in the z-axis direction 
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5.5.4. Impact of Overlap Thickness on Speed and Accuracy 

The overlapping of the subdomains represents a computational inefficiency since these voxels are 

processed multiple times. In all of the results shown elsewhere in this work, the amount of overlap was 

conservatively estimated by finding the global maximum of the distance transform. A study was performed 

to determine the impact that reducing or increasing this overlap could have on computational time, RAM 

usage and accuracy.  A 10243 image of Berea sandstone (ID: 1) was used and divided into 8 cubic 

subdomains. The standard overlap thickness calculated using distance transform approach was 58 voxels 

and represented as dashed vertical line in Figure 5.11.  Figure 5.11(b) shows that a 20% reduction in 

computational time and RAM usage can be obtained by reducing the overlap from 58 to 20. Intriguingly, 

Figure 5.11(a) shows that the number of regions obtained by the watershed is nearly stable above 20 voxels 

of overlap.  Similarly, Figure 5.11(c) shows that the permeability and tortuosity of the extracted networks 

are unaffected by the reduced overlap size above 20 voxels.  Unfortunately, there is a sudden and drastic 

reduction in the accuracy of the results below 20 voxels, creating a precarious situation.  The value of 20 

voxels presumably depends on the sample morphology and pore size, and image resolution.  Further 

investigation of this lower limit should be considered in future work.  The substantial gains in performance 

do suggest that a safe but less conservative estimate of overlap should be found. One possibility is to 

calculate the local thickness of a down sampled image, then the values only along the subdomain boundaries 

could be scanned for a local maximum.  This would in all probability provide a smaller value for the overlap 

that would still be sufficient.  The present implementation only allows for a single value of overlap thickness 

for all subdomains, but this local approach would provide estimates for each pair of neighbouring domains, 

in principle allowing the smallest possible subdomains to be analyzed. Such optimizations are left for future 

studies. 

5.5.5. Pore Network Extraction of Scaled Up Images 

Since domain decomposition saves the computational cost of network extraction, it can be used to 

perform a pore network extraction on a scaled-up image with almost the same amount of computational 
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power that would have been consumed on a relatively small size domain using SNOW legacy. The 

importance of image resolution enhancement has been discussed in [157,158].To illustrate this advantage, 

the effective diffusivity results of three different samples of the same porous domain were analyzed at a 

different level of image resolution. Firstly, a large high-resolution image was used, next the high-resolution 

image was scaled down by a factor of 2 (by binning the image) to artificially reduce its resolution, and lastly 

the artificially reduced image scaled-up the size of the actual original high-resolution binary image using a 

nearest-neighbour interpolation (note that higher-order interpolations may provide even better results, but 

this detail was left for future work). Pore network extraction on all three images was performed using the 

presented domain decomposition algorithm. This process was applied to five different types of porous 

image (ID: 1, 2, 3, 4 and 14) and the results of extracted pores number and effective diffusivities formation 

factor for all samples are shown in Figure 5.9 and Figure 5.10 respectively. The formation factors were 

calculated for each high-resolution image in all three directions using random walks and an average value 

is reported in Figure 5.10. From the results in Figure 5.9, it can be seen that like other extraction algorithms 

when the resolution is reduced, the number of regions found by the watershed is impacted (almost always 

reduced), which indicates that the watershed segmentation is indeed resolution-dependent.  The reason low-

resolution sample has fewer regions is that the fewer markers are found at low-resolution and hence marker-

based watershed segmentation merges two or more regions into one. When low-resolution images are 

rescaled back up to the original size, the number of regions approaches very nearly back to the value found 

on the original high-resolution images.  This is a very promising result since it suggests that natively low-

resolution images can be artificially scaled-up to improve the accuracy of the segmentation and extraction.  

The trends seen for the number of regions are also echoed in the formation factor values predicted by the 

extracted networks, as can be seen in Figure 5.10(a-c) which reports the network formation factor for all 

samples at all resolutions, along with the results of the random walker simulation on the high-resolution 

image as a reference (indicated by the line). This indicates that increasing the resolution of a natively low-

resolution image not only improves the watershed segmentation but simultaneously improves the accuracy 

of the extracted network. The impact of resolution on watershed segmentation and the accuracy of the 
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subsequently extracted networks is worth deeper study. For instance, the resolution effect was almost absent 

from the sphere pack shown in Figure 5.10 d and e. This effect is probably due to the fact that sphere packs 

have a narrow pore size distribution, whereas the natural material has a wider distribution and the smaller 

pore are probably not well segmented.  In any case, the outcome of this sub-study is that instead of reducing 

an image to a manageable size before network extraction, it is now possible (and recommended) to enlarge 

the image before extraction. 

 

Figure 5.9 Number of segmented regions obtained from three samples of different resolution. The blue bar represents the 

number of regions in a low-resolution image of the dataset, the brown bar represents the number of regions of scaled-up 

dataset and green bar represent no of regions in the original dataset 

 

Figure 5.10 Comparison of the formation factor values of three sample with the random walker simulation result 
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Figure 5.11 Effect of overlapping thickness on pore network extraction a) Number of segmented regions obtained after 

watershed segmentation b) CPU time and RAM usage at different overlapping thickness c) Effective permeability and 

tortuosity variation at different overlapping thickness 
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Table 5.3 Effective Permeability in different large size datasets of digital rocks 

Sample Voxels Porosity 

Network Permeability 

 (mD) 

Image Permeability 

(mD) 

x-axis y-axis z-axis Average 

Berea 10243 20.25 1177 1410 1304 1297 [942-1286] [141] 

Bentheimer 10003 21.67 2723 3351 3202 3092 [2800-3547] [155,159] 

Doddington 10003 19.58 2795 3382 3383 3187 [1900-3500] [154,159] 

Fontainebleau 20483 14.23 782 793 791 789 628-942 [156] 

 

5.6. Conclusions and Future Work 

An efficient geometric domain decomposition algorithm was developed to extract pore network from 

massive size images of porous domains. The algorithm subdivides the image into small subdomains with 

sufficient overlap, and these are further processed to get watershed segmentation using the SNOW 

algorithm. Validation of the algorithm was performed on various different types of porous materials and 

found to give identical results, in terms of number of watershed basins found, to that obtained without 

performing domain decomposition. One key feature of the proposed decomposition approach is that it can 

be applied to all subdomains in parallel for enhanced speed, or each one in serial for reduced RAM usage.  

The serial mode of operation reduces RAM usage to 50 percent compared to the legacy approach, This 

allows a user to process large porous domains on a computer with average computational capacity. On the 

other hand, the parallel mode of operation decreases CPU time by 7 times in the tested image, enabling the 

processing of larger domains much faster than the legacy method.  

Typically images are often scaled-down to more manageable sizes before processing.  Due to the 

improved performance of the proposed algorithm, it becomes feasible to process larger images.  A study 
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was performed to see if artificially increasing the size of a low-resolution image resulted in improved 

outcomes.  The pore network extracted from a scaled-up domain was found to give more accurate results 

than those obtained from a low-resolution image, and the results approached those of the original high-

resolution image.    

The developed algorithm is implemented in the open-source Python package PoreSpy using highly 

optimized and efficient python packages such as Dask and Numba. There are improvements that could be 

made to the proposed algorithm.  For instance, the Dask library is able to parallelize across distributed 

nodes as well as the shared-memory approach used here, which could enable the segmentation of even 

larger images.  
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Chapter 6 Multiphysics Pore Network Modelling of Lithium-Ion 

Battery Cathodes  

6.1. Preface 

In this manuscript, a pore network modelling framework was developed to relate structural 

heterogeneities of porous cathodes with half cell performance of lithium-ion battery. The model was 

validated with experimental data by simulating discharge curves at different C-rates. The framework was 

used to perform various structural analysis on two different three phase cathodes. The results revealed 

important insights to understand structural – performance relationship inside porous cathodes and opened 

up a new avenue to study and optimize battery electrodes microstructure without performing expensive and 

time-consuming experiments and simulations in the lab. 

6.2. Overview 

The performance of lithium-Ion batteries (LIB’s) stron l  depends on 3  microstr ct re and 

substantial research is needed for the development and optimization of electrode design that can operate 

under wide range of operating conditions. In this work, a novel pore network modelling approach is used 

to  nderstand str ct ral performance relations ip of poro s cat odes of LIB’s. It was demonstrated t at 

PNMs can efficiently predict the rate-dependent capacity of an electrode using only a 3-phase tomogram 

as input. The developed modelling framework was used to perform structural analysis on two 

𝐿𝑖(𝑁𝑖0.5𝑀𝑛0.3𝐶𝑜0.2)𝑂2  (NMC532) cathodes of different thickness and calendaring pressure and revealed 

important insights of microstructural heterogeneities inside porous structures. Three-phase networks were 

extracted from X-ray tomography images and pore network modelling approach was used to simulate 

galvanostatic discharge behaviour of LIB half cell at different C rates. The developed model was used to 

analyze spatial distribution of concentration, potential and state of lithiation in electrolyte, active material 

and carbon binder domain and unveiled the dependence of LIB performance on microstructural 
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heterogeneities especially at high C-rate. Lastly, the computational performance of pore network model 

was analyzed at different C-rates for both electrodes. The results revealed decent improvement in 

computational performance without compromising on the size of domain. The novel modelling framework 

reported in this study has enabled user to study local heterogeneities in other types of cathode material to 

propose next-generation electrode design. Also, in-silico structures that vary arbitrary properties of the 

electrode, could be produced and screened for performance using PNMs, avoiding the need to perform 

expensive and time-consuming cell fabrication and testing in the lab. 

6.3. Introduction 

Lithium-Ion Batteries (LIB) are currently the best available power source for consumer electronics 

and electric vehicles manufacturing industry due to their high energy and power density as compared to 

other energy storage devices [160]. However, increasing energy density, lowering cost, and extending life 

remains essential for broader adoption, especially in transportation. Many options for cathode materials are 

available, but lithium iron phosphate (LFP) and lithium manganese nickel cobalt oxide (NMC) are the most 

widely used commercially because of their relative high capacity and reduced price [161–163]. Beside 

material selection, optimization of electrode microstructure can greatly enhance the transport and reaction 

processes and t  s improve t e overall performance of LIB’s. For t is p rpose mat ematical modellin  can 

play a vital role to understand the structural – performance relationship of porous electrodes[105,164,165].  

A multitude of mat ematical model investi atin  p  sical and electroc emical processes of LIB’s 

have been developed in the past [166–169], however, most of them either considered porous electrodes as 

homogenous structures (volume averaged) or incorporated structural heterogeneities using empirical 

relationships. The most famous pseudo two dimensional (P2D) model based on porous electrode and 

concentrated solution theory was developed by Newman and co-workers [167,170]. Their model simulates 

the intercalation/deintercalation process by assuming active material as equal size, isotropic spherical 

particles and estimates the effective transport properties using Bruggeman expression whose accuracy for 

non-spherical geometries is still controversial [22]. Although the simplifications of P2D model do not 
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capture the real microstructure, it is still the standard modeling approach in the battery research due to ease 

of usage. On the other hand, some attempts have been made to extend the capabilities of P2D model by 

incorporating microstructural effects but due to additional complexity the computational cost increased 

many fold, becoming infeasible to model large domains with normal computational resources [104,171]. 

Therefore, to properly understand the impact of microstructure in LIB models, it is necessary to develop a 

computationally efficient framework, yet captures the structural heterogeneities of porous components of 

LIB cell.  

Pore network modelling (PNM) is a computationally efficient technique that is used to simulate 

transport at the pore-scale, preserving structural heterogeneities of porous material [172,173], at low 

computational cost. The technique uses a simplified geometric representation of real porous structures by 

treating the pore space as a network, where cavities or pores are the nodes and they are interconnected by 

constrictions or throats. Each pore is considered as a well-mixed body that exchanges species with its 

neighbouring pore bodies via the network connections. These networks are extracted from X-ray 

tomography (XCT) images of real porous materials via different types of network extraction algorithms 

[28,174,175].  Recently, PNM models have shown their utility to simulate electrochemical devices like fuel 

cells [175] and redox flow batteries [175] but to the best of our knowledge, they have not been applied to 

the active materials of lithium-ion battery during charging and/or discharging. PNMs are ideally suited for 

such microstructural modelling since the computational efficiency compensates for the high demands of 

transient multiphysics modelling.  Their lack of adoption is likely due to the lack of an existing PNM code 

base capable of handling the various complexities of the problem, including the intercalation reaction, 

migration effects, and three intermixed phases (void, active material and carbon binder) that all must be 

captured.   

Torayev et al. [91] developed a pore network model of super P carbon electrode of lithium-oxygen 

battery. The 3D network of pore phase was extracted to find the discharge behaviour of four different zones 

of same electrode tomography image. The results showed deviations of model results with experimental 
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data due to the variation of pore interconnectivity in different zones. The model, however, does not 

incorporate the solid phase strucutural-performance relationship. Lagadec et al [176] highlighted the 

importance of pore interconnectivity in lithium-ion battery separator by comparing two different separators 

of same porosity and tortuosity but different pore interconnectivity. The results showed that concentration 

gradient due to diffusion for both separators varies although porosity and tortuosity correction of both 

structures were same. Khan et al. [116] developed a 3D pore network model of lithium-ion battery cathode 

from a full resolved XCT image of 𝐿𝑖(𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1)𝑂2 (NMC811). The model highlighted the impact 

of treating carbon binder as separate phase. The PNM model was developed to simulate simple steady-state 

diffusion-reaction and diffusion conduction process in electrolyte and solid-phase respectively but did not 

analyze transient intercalation/ deintercalation process.  

Several recent publications attempt to model the impact of microstructure using direct numerical 

simulation, despite the computational challenges. Chouchane et al. [177] simulated a 4D electrochemical 

model of LIB cathode using direct numerical simulation to investigate the spatial location of carbon binder 

domain on overall electrochemical performance of the battery. All three-phases of cathode were meshed as 

separate phases and pore size distribution were calculated using extracted pore network. The results showed 

changed in overall cell performance due to spatial variation in carbon binder domain (CBD). It was found 

that CBD without nanopores can lead to decrease in current density by increasing the tortuosity of pores. 

Due to DNS approach, the computational cost of the model was high. Lu et al. [2] recently, developed a 

fully resolved 3D microstructure model of NMC cathodes using XCT images and confirmed that LIB 

performance is indeed dependent on structural heterogeneities. They altered the particle size distribution to 

predict next-generation electrodes architecture. The model used DNS approach and did not include pore to 

pore analysis of concentration and potential distribution and used relatively small size domain for 

simulation. Therefore, due to this structural- performance dependence of porous cathode there is a need to 

develop a modelling framework that can simulate big porous domains without using too much 

computational resources.    
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In the present work, an existing pore network modelling framework (OpenPNM) was extended to 

study the galvanostatic discharge behaviour of lithium-ion battery half-cell. The model incorporated the 

three-phase network of 𝐿𝑖(𝑁𝑖0.5𝑀𝑛0.3𝐶𝑜0.2)𝑂2  (NMC532) cathode material extracted from X-ray 

tomography images, using a multiphase network extraction technique recently developed [95,116,178]. The 

galvanostatic discharge behaviour of the two cathodes was then compared with experimental data and found 

to be in excellent agreement. Impressively, the PNM was able to predict capacity of both electrodes at 

various C-rates (between 0.2 and 3), using only imaging data to generate the model.  Moreover, the 

relatively low computational time allowed modeling of relatively large domains, spanning the full thickness 

of a normal electrode, to capture the effect of structural heterogeneities in material. To the best of our 

knowledge, this is first transient pore network model of lithium-ion battery discharge and opens up a new 

avenue to study and optimize next-generation battery electrodes microstructures.  

6.4. Modelling Approach 

6.4.1. Cathode Samples 

X-ray tomography images of two porous cathodes were obtained from open-source electrodes library of 

National Renewable Energy Laboratory (NREL)[10]. Both cathodes consist of 𝐿𝑖(𝑁𝑖0.5𝑀𝑛0.3𝐶𝑜0.2)𝑂2  

(NMC532, TODA America Inc.) as active material, C45 carbon (Timcal), polyvinylidene fluoride (PVDF) 

(Solvay, Solef 5130) as carbon and binder domain and 1.2 MLiPF6 in ethyl carbonate/ethyl methyl 

carbonate (EC:EMC, 3:7 w/w, Tomiyama, Japan) as electrolyte. The thickness of both electrodes was 

achieved by a multi-pass calendaring process with a constant but untracked applied force. The specifications 

of the two electrodes are listed in Table 6.1. Cathodes image segmentation containing two labels (0 and 1) 

were taken for analysis. Label 0 correspond to electrolyte and carbon binder domain (CBD) while label 1 

corresponds to NMC532 active material particles. The CBD phase was added using morphological image 

closing transform to the image [179]. This technique was recently shown to be more suitable than other 

physics-based carbon binder models [180–182] as it only binds the contact points between active material 

particles. A detailed comparison can be seen in Hein at al [183]. The cathode domain sizes used in this 
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study are larger than the representative element volume (REV) that was estimated to be 50 x 50 x 50 µm3 

[184]. The renderings of both cathodes after addition of CBD phase can be seen in Figure 6.1(a, i).   

 

Figure 6.1(a, i) Three-phase rendering of 1CAL and 3CAL cathodes with golden, silver and black colour representing 

electrolyte, active material and CBD phase respectively, (b, j) Extracted networks of 1CAL and 3CAL respectively, (c, k) 

throat interconnection between two phases, green, yellow and red colour show interconnections between electrolyte-

NMC532, electrolyte-CBD, NMC532-CBD respectively, (d, l) Size distribution of electrolyte and NMC532 phase. The 

sizes are classified into three categories. Yellow, pink and red colour represent electrolyte phase size distribution while 

cyan, green and copper represent particle size distribution in NMC532 phase, (e, m) Pore size distribution in the 

electrolyte phase of 1CAL and 3CAL with respect to distance from the separator, (f, n) Particle size distribution in 

NMC532 phase for 1CAL and 3CAL with respect to distance from the separator, (g, o) Sphericity vs Volume of pores 

particles in electrolyte and NMC532 phase, (h, g) Size Distribution comparison of all three phases in 1CAL and 3CAL. 
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6.4.2. Pore Network Extraction 

The key to the following pore network modelling simulations presented herein was the extraction 

of three-phase networks from the tomograms. A watershed-based network extraction tool reported 

previously [28] was adapted to work on multiphase images [178], and it was confirmed that such networks 

could predict the effective transport properties in both the solid and void phase of NMC microstructures by 

comparing with direct numerical simulations [116]. Crucially, the extracted network contains 

interconnections between each pair of phases, which is necessary to simulate interphase mass transport and 

Li-ion intercalation between the electrolyte and NMC nodes. The extracted networks for both cathodes 

samples can be seen in Figure 6.1(b, j) where nodes on each network are shown as spherical balls while 

throats are shown as cylindrical sticks. The interconnections between phases are shown in Figure 6.1 (c, k).  

Table 6.1 Properties of XCT images of NMC532 Cathodes 

Property Units NMC532 (1CAL) NMC532 (3CAL) 

Coating Thickness 𝜇𝑚 129 88 

Volume Fraction % - - 

   Electrolyte phase - 36.8 36.6 

   Active Material (NMC532) - 49.28 49.74 

   Carbon and Binder Domain (CBD) - 13.92 13.66 

Density 𝑚𝑔/𝑐𝑚−2 29.78 20.40 

Experimental C-rate 𝑚𝐴ℎ/𝑔𝑁𝑀𝐶 178 182 

Image size  𝑣𝑜𝑥𝑒𝑙𝑠 320 x 250 x 250 221 x 250 x 250 

Voxel Size 𝑛𝑚 398 398 

Extracted Network (Nodes, Bonds) 4637, 31427 3510 , 23126 

   Electrolyte phase - 1238, 1943 982, 1459 

   Active Material (NMC532) - 1722, 3736 1295, 2760 

   Carbon and Binder Domain (CBD) - 1680, 3375 1233, 2310 

Interconnections Bonds 22373 16597 

   NMC532-CBD - 7620 5355 

   Electrolyte-CBD - 6602 4979 

   Electrolyte-NMC532 - 8151 6263 
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6.4.3. Governing Equations 

The developed mathematical model simulates galvanostatic discharge behaviour of 𝐿𝑖/

𝐿𝑖(𝑁𝑖0.5𝑀𝑛0.3𝐶𝑜0.2)𝑂2 half-cell sandwich as shown in Figure 6.2. The cell contains three regions: namely 

lithium foil as anode, porous separator filled with electrolyte and porous cathode containing electrolyte, 

active material (NMC532) and carbon binder domain (CBD). During discharge process, lithium-ions are 

liberated from lithium foil anode, pass through the separator, and then into the cathode via the electrolyte-

filled void; while electrons travel from the Li-foil anode to cathode current collector via external circuit. 

No expansion of active material upon insertion of lithium metal is considered to avoid model complexity.  

The electrochemical reaction at the electrolyte/active material surface of cathode during galvanostatic 

discharge is: 

 𝐿𝑖+ + 𝑒− ⇌    𝐿𝑖(𝑠) 6.1 

The concentration (𝑐) of the electrolyte in the cathode region can be estimated using the Nernst-Plank 

equation. The equation is written in discrete form for every 𝑖𝑡ℎ pore in electrolyte phase of pore network 

as:  

 

𝑣𝑖 (
𝑐𝑖

𝑡+∆𝑡 − 𝑐𝑖
𝑡

∆𝑡
) = ∑ [𝐺𝑖𝑗

𝑑 + 𝑚𝑎𝑥(−𝐺𝑖𝑗
𝑚(𝜑𝑖

𝑡 − 𝜑𝑗
𝑡), 0)]𝑐𝑖

𝑡

𝑁𝑘𝑒𝑙𝑒𝑐

𝑗=1

− ∑ [𝐺𝑖𝑗
𝑑 + 𝑚𝑎𝑥(𝐺𝑖𝑗

𝑚(𝜑𝑖
𝑡 − 𝜑𝑗

𝑡), 0)]𝑐𝑗
𝑡

𝑁𝑘𝑒𝑙𝑒𝑐

𝑗=1

+ 𝑎𝑖𝑗𝑗𝑛,𝑟𝑝
𝑡  

𝑘𝑒𝑙𝑒𝑐 = 1, 2,… , 𝑁𝑝
𝑒𝑙𝑒𝑐 

6.2 

where 𝑣𝑖 is volume of pores, 𝜑 is electrolyte potential, 𝑎𝑖𝑗 is the interfacial area between active material 

particle 𝑖 and electrolyte pore 𝑗 and 𝑗𝑛,𝑟𝑝 is the pore wall flux of lithium ion across the interface between 

active material particle 𝑖 and electrolyte pore 𝑗. This term is only applicable for reaction pores (𝑟𝑝) and is 
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considered zero for pores that are not at the interface of electrolyte/active material particle. Lastly, 𝐺𝑖𝑗
𝑑  and 

𝐺𝑖𝑗
𝑚 are the diffusive and migrative conductance between pore 𝑖 and 𝑗 that are calculated using linear resistor 

theory for resistors according to equation 6.3 and 6.4 respectively. 

 
𝐺𝑖𝑗

𝑑 = (
1

𝑔𝑖
𝑑 +

1

𝑔𝑖𝑗
𝑑 +

1

𝑔𝑗
𝑑)

−1

 6.3 

 
𝐺𝑖𝑗

𝑚 = (
1

𝑔𝑖
𝑚 +

1

𝑔𝑖𝑗
𝑚 +

1

𝑔𝑗
𝑚)

−1

 6.4 

where 

 
𝑔𝑖

𝑑 =
𝐴𝑖𝐷𝐿𝑖+

𝑙𝑖
 6.5 

 
𝑔𝑖

𝑚 =
𝑧𝐹

𝑅𝑇
𝑔𝑖

𝑑 6.6 

The potential distribution in the electrolyte phase is calculated with respect to lithium reference electrode, 

which leads to the following potential equation written in terms of current density in the cathode region for 

every 𝑖𝑡ℎ pore as:  

 

𝑖𝑖,𝑒𝑙𝑒𝑐 = −𝑧𝐹 ( ∑ 𝐺𝑖𝑗
𝑑(𝑐𝑖

𝑡 − 𝑐𝑗
𝑡)

𝑁𝑘𝑒𝑙𝑒𝑐

𝑗=1

) − ∑ 𝐾𝑖𝑗
𝑒𝑙𝑒𝑐(𝜑𝑖

𝑡 −

𝑁𝑘𝑒𝑙𝑒𝑐

𝑗=1

𝜑𝑗
𝑡) 

𝑘𝑒𝑙𝑒𝑐 = 1, 2,… , 𝑁𝑝
𝑒𝑙𝑒𝑐    

6.7 

where 𝑖𝑖,𝑒𝑙𝑒𝑐 is the current density of 𝑖𝑡ℎ pore in the electrolyte phase of cathode region and 𝐾𝑖𝑗
𝑒𝑙𝑒𝑐 is the 

ionic conductance of the electrolyte solution between pore 𝑖 and pore 𝑗 as follows: 
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𝐾𝑖𝑗

𝑒𝑙𝑒𝑐 = (
1

𝑘𝑖
𝑒𝑙𝑒𝑐 +

1

𝑘𝑖𝑗
𝑒𝑙𝑒𝑐 +

1

𝑘𝑗
𝑒𝑙𝑒𝑐)

−1

 6.8 

where 

 𝑘𝑖
𝑒𝑙𝑒𝑐 = 𝑧𝐹𝑔𝑖

𝑚𝑐𝑖
𝑡 6.9 

The diffusivity and conductivity of 𝐿𝑖+𝑖𝑜𝑛 in the separator and cathode region is assumed to be dependent 

on electrolyte phase concentration. Also, lithium diffusivity in active material is assumed to be dependent 

on state of charge. The relationship to estimate diffusivity and conductivity is defined in Table 6.2. The 

diff sion of lit i m inside active material obe s Fick’s law and expressed for active material particle 𝑖 for 

time step ∆𝑡 as equation 6.10. Where 𝐺𝑖𝑗
𝑠𝑑 is the diffusive conductance of lithium in the active material 

phase defined by equation 6.11. 

 

𝑣𝑖 (
𝑐𝑖

𝑡+∆𝑡 − 𝑐𝑖
𝑡

∆𝑡
) =  ∑ 𝐺𝑖,𝑗

𝑠𝑑

𝑁𝑘𝐴𝑀

𝑗=1

(𝑐𝑖
𝑡 − 𝑐𝑗

𝑡)         𝑘𝐴𝑀 = 1, 2,… , 𝑁𝑠
𝐴𝑀 6.10 

 
𝐺𝑖𝑗

𝑠𝑑 = (
1

𝑔𝑖
𝑠𝑑 +

1

𝑔𝑖𝑗
𝑠𝑑 +

1

𝑔𝑗
𝑠𝑑)

−1

 6.11 

where 

 
𝑔𝑖𝑗

𝑠𝑑 =
𝐴𝑖𝐷𝐿𝑖

𝑙𝑖
 6.12 

The distribution of potential of an arbitrary particle 𝑖 in the active material and carbon binder phase of 

cathode region was calc lated  sin  O m’s law by equation 6.13 and equation 6.14 respectively. It was 

assumed that no reaction takes place in carbon binder phase so current in carbon binder phase is same as 

current in active material phase. 
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𝑖𝑖,𝐴𝑀 = − ∑ 𝐺𝑖𝑗
𝐴𝑀 (𝜑𝑡

𝑖𝐴𝑀
− 𝜑𝑗𝐴𝑀

𝑡 )

𝑁𝑘𝐴𝑀

𝑗=1

     𝑘𝐴𝑀 = 1, 2,… , 𝑁𝑠
𝐴𝑀 6.13 

 

𝑖𝑖,𝐶𝐵𝐷 = − ∑ 𝐺𝑖𝑗
𝐶𝐵𝐷 (𝜑𝑡

𝑖𝐶𝐵𝐷
− 𝜑𝑗𝐶𝐵𝐷

𝑡 )

𝑁𝑘𝐶𝐵𝐷

𝑗=1

     𝑘𝐶𝐵𝐷  = 1, 2, … , 𝑁𝑠
𝐶𝐵𝐷 6.14 

where 𝐺𝑖𝑗
𝐴𝑀 and 𝐺𝑖𝑗

𝐶𝐵𝐷are electrical conductance in active material and carbon binder domain respectively. 

The values are estimated using similar expression of linear resistor theory as previously defined in equation 

6.8. The value of conductance in arbitrary active material or carbon binder particle 𝑖 is defined as  

 
𝑔𝑖𝑗

𝑒 =
𝐴𝑖𝜎𝐴𝑀/𝐶𝐵𝐷

𝑙𝑖
 6.15 

The Butler-Volmer expression was used to relate phase potentials to reaction kinetics of the intercalation 

process [167] of an arbitrary pore 𝑖 as shown by equation 6.16 below.  The exchange current density, 

overpotential and equilibrium potential polynomial fit [185] were defined according to equations 6.17, 6.18, 

and 6.19 respectively. 

𝑎𝑗𝑛,𝑖
𝑡 =

∇𝑖𝑒𝑙𝑒𝑐

𝑧𝐹
= 𝑖𝑖

0,𝑡 (𝑒𝑥𝑝 (
(1 − 𝛼𝑐)𝐹

𝑅𝑇
𝜂𝑖,𝑐

𝑡 ) − 𝑒𝑥𝑝 (
−𝛼𝑐𝐹

𝑅𝑇
𝜂𝑖,𝑐

𝑡 )) 6.16 

𝑖𝑖
0 = ∑ (𝑎𝑖𝑗𝐹𝑘 (𝑐𝑗,𝑒𝑙𝑒𝑐

1−𝛼𝑐)
𝑡
(𝑐𝑖,𝑚𝑎𝑥

𝑡 − 𝑐𝑖,𝐴𝑀
𝑡 )

1−𝛼𝑐
(𝑐𝑖,𝐴𝑀

𝛼𝑐 )
𝑡
)

𝑁𝑖𝑒𝑙𝑒𝑐

𝑗=1

 

6.17 

𝜂𝑖,𝑐
𝑡 = ∑ (𝜑𝑖,𝐴𝑀

𝑡 − 𝜑𝑗,𝑒𝑙𝑒𝑐
𝑡 − 𝑈𝑖,𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑡 )

𝑁𝑖𝑒𝑙𝑒𝑐

𝑗=1

 

6.18 
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𝑈𝑖,𝑐𝑎𝑡ℎ𝑜𝑑𝑒  =  5744.862289 𝑠𝑜𝑐𝑖
9 −  35520.41099 𝑠𝑜𝑐𝑖

8  +  95714.29862 𝑠𝑜𝑐𝑖
7

− 147364.5514 𝑠𝑜𝑐𝑖
6 + 142718.3782 𝑠𝑜𝑐𝑖

5  −  90095.81521 𝑠𝑜𝑐𝑖
4  

+  37061.41195 𝑠𝑜𝑐𝑖
3 − 9578.599274 𝑠𝑜𝑐𝑖

2  +  1409.309503 𝑠𝑜𝑐𝑖

−  85.31153081 −  0.0003 𝑒𝑥𝑝(7.657 (𝑠𝑜𝑐𝑖
115) 

6.19 

The current in solid and electrolyte phase is conserved according to equation 6.20 

∇𝑖𝑒𝑙𝑒𝑐 + ∇𝑖𝐴𝑀 = 0 6.20 

The concentration and potential gradient in the separator region of electrolyte phase were determined using 

equation 6.21, 6.22 with boundary condition for lithium ion dissociation at anode/separator interface 

represented by equation 6.23, respectively. 

𝜕𝑐2,𝑠

𝜕𝑡
= −𝐷𝐿𝑖,𝑠

𝑒𝑓𝑓
∇2𝑐2,𝑠 6.21 

𝜕𝜑2,𝑠

𝜕𝑥
= −

𝑖2

𝜅𝑠
𝑒𝑓𝑓

+
𝑅𝑇

𝐹
(1 − 𝑡+)

𝜕𝑙𝑛𝑐2,𝑠

𝜕𝑥
 6.22 

𝜕𝑐2,𝑠

𝜕𝑥
=

𝐼(1 − 𝑡+)

𝐹𝐷𝐿𝑖,𝑠
 6.23 

The electrolyte phase potential drop at the interface of anode/separator was determined using Butler Volmer 

expression at 𝐿𝑖 foil anode region using equation 6.24. 

∇𝑖𝑒𝑙𝑒𝑐 = 𝑖𝑓𝑜𝑖𝑙
0 (𝑒𝑥𝑝(

(1 − 𝛼𝑎)𝐹

𝑅𝑇
(𝜑𝐿𝑖

− 𝜑2,𝑠)) − 𝑒𝑥𝑝 (
−𝛼𝑎𝐹

𝑅𝑇
(𝜑𝐿𝑖

− 𝜑2,𝑠))) 6.24 

The overall cell potential was defined as the difference of potential at anode and cathode current 

collector. This study only focuses on three-phase pore network model of cathode region in half cell 

sandwich. Therefore, separator and lithium foil regions are solved using 1D modelling equations to simulate 
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boundary conditions at separator/cathode boundary region and ultimately estimate cell potential during the 

galvanostatic discharge process. The solution workflow is described in section 6.4.4. 

6.4.3.1. Boundary Conditions 

The boundary conditions implemented in electrolyte, active material and carbon binder phase in half cell 

are as follows: 

1. In cathode region, no flux boundary conditions for current and lithium ion transport were set in 

electrolyte phase at 𝑥 = 𝐿𝑠 + 𝐿𝑐. Similarly, no flux boundary conditions of lithium in active 

material phase were set at active material/separator interface and active material/ cathode current 

collector interface. For electronic flux in solid phase a no flux boundary was set at the interface of 

separator/solid phase (CBD + AM) at 𝑥 = 𝐿𝑠. Lastly, continuity of mass, mass flux, charge and 

charge flux were enforced at separator/electrolyte phase interface at 𝑥 = 𝐿𝑠. 

2. In separator region, a no flux current boundary condition was set at anode/separator interface at 

𝑥 = 0. Also, the potential of lithium solid phase (𝜑𝐿𝑖) was arbitrarily set to zero at this interface. 

Lastly, the flux of lithium ions was calculated by specifying the boundary condition using equation 

6.23. 
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Figure 6.2 a) Lithium Ion battery Half cell pore network modelling schematic, b) Overlayed extracted network from XCT 

image of cathode, c) Unit cell showing different phases connection with each other. Golden, silver and black colour 

represent electrolyte, NMC532 and carbon black nodes and single-phase interconnection while the red, green and cyan 

colour represents interconnection between two different phases. 

 

6.4.4. Workflow and Validation 

The pore network modelling workflow is shown in Figure 6.3. To simulate the half-cell all the 

parameters, material transport properties, boundary and initial values were specified in the first step. The 

values of all parameters are reported in Table 6.2.  
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Table 6.2 Lithium-Ion battery half cell PNM model parameters 

Parameter Symbol Units Value 

Separator Thickness 𝐿𝑠 µ𝑚 25 

Separator Porosity  εsep % 39 

Electronic conductivity of 

NMC532[177] 
𝜎𝐴𝑀 𝑆/𝑚 0.01 

Electronic conductivity of CBD[186] 𝜎𝐶𝐵𝐷 𝑆/𝑚 760 

Ionic conductivity of the electrolyte in 

the separator[187] 
𝐾𝑠 𝑆/𝑚 (1) 

Initial Li+ concentration in the 

electrolyte[10] 
𝑐2,0 𝑚𝑜𝑙/𝑚3 1200 

Maximal Li concentration in 

NMC532[10] 
𝑐1,𝑚𝑎𝑥 𝑚𝑜𝑙/𝑚3 48900 

Diffusion coefficient of Li+ in the 

electrolyte[187] 
𝐷𝐿𝑖+ 𝑚2/𝑠 10

−4.43−
54.0

𝑇−229−5𝑐2
−0.22𝑐2

 

Li diffusion coefficient in AM[10] 𝐷𝐿𝑖 𝑚2/𝑠 (2) 

Faraday constant F 𝐶/𝑚𝑜𝑙 96485 

Cathode rate constant k 𝑚𝑜𝑙/𝑚2. 𝑠 1e-10 

Bruggeman exponent coefficient for the 

separator 
𝑝𝑠𝑒𝑝 - 1.5 

Ideal gas constant R 𝐽/𝑚𝑜𝑙. 𝐾 8.314 

Reference temperature T K 303 

Li transference number in separator 𝑡+  0.363 

Cut off Voltage V volts 3.0 

Charge transfer coefficient of NMC  𝛼𝑐  0.5 

Charge transfer coefficient of Li foil  𝛼𝑎  0.5 

Exchange current density of Li foil [10] 𝑖𝑓𝑜𝑖𝑙
0  𝐴/𝑚2 19 

(1) 10−2319𝑠𝑜𝑐10 + 6642𝑠𝑜𝑐9 − 5269𝑠𝑜𝑐8 − 3319𝑠𝑜𝑐7 + 10038𝑠𝑜𝑐6 − 9806𝑠𝑜𝑐5 + 5817𝑠𝑜𝑐4 − 2286𝑠𝑜𝑐3 + 575.3𝑠𝑜𝑐2 − 83.16𝑠𝑜𝑐 − 9.292 

(2) 𝑐2(−10.5 +  0.0740𝑇 −  6.96𝑒−5𝑇2  +  0.668𝑐2  −  0.0178𝑐2𝑇 +  2.80𝑒−5𝑐2𝑇
2 + 0.494𝑐2

2

−  8.86𝑒−4𝑐2
2 𝑇)2 

 

Based on the initial and boundary conditions at specific current density, the concentration profile 

in electrolyte phase of separator and cathode region is simulated. For this purpose, 1D model of diffusion 

equation in separator is coupled with pore network model of the porous cathode at separator/cathode 
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interface by applying continuity and constant flux boundary conditions of mass and charge transfer 

respectively. The 1D model in the separator region is necessary as concentration of 𝐿𝑖+𝑖𝑜𝑛 changes at 

separator/cathode interface, therefore, a fixed concentration boundary condition at this interface is not 

possible for transient simulations as it will change concentration distribution in cathode region [188,189]. 

Following this approach 1D model of potential distribution was solved in separator to calculate boundary 

value of potential at separator/cathode interface after calculating concentration distribution. This allowed 

estimating potential distribution in the electrolyte phase of cathode regions. This was achieved by applying 

equation 6.22 and equation 6.7 in the separator and cathode respectively with boundary conditions defined 

in section 6.4.3.1.  The distribution of concentration and potential in electrolyte phase pores allowed 

simulating Li-Ion insertion reaction at electrolyte/active material interface according to Butler Volmer 

expression defined in equation 6.16, 6.17, 6.18. The net rate of insertion of 𝐿𝑖+ was set equal to net rate of 

formation of Lithium inside active material phase. Also, the solution of Butler Volmer expression requires 

active material (NMC532) concentration of lithium and potential distribution in the solid phase of the 

cathode region. The concentration and potential distribution in solid-phase are also affected by carbon and 

binder domain that is spatially distributed to enhance electronic conductivity of cathode material. Therefore, 

to achieve the desired current density at cathode current collector, an iterative process is adopted. For this 

purpose, potential at cathode current collector is guessed and potential distribution in NMC532 and carbon 

binder phase is calculated using equation 6.13 and 6.14  respectively. If the calculated current and cell 

applied current density is less than specified tolerance of 1𝑒−3 than solution is assumed converged 

otherwise a new value of potential is guessed at cathode current collector to meet convergence criteria. 

Once the solution is converged the simulation was run for the next time step after updating all field 

variables, until the cell voltage was greater than cut off voltage of 3 volts.  

The pore network model was validated against experimental data for 1CAL and 3CAL electrodes 

reported in [10]. The cell potential vs capacity curves for 0.2, 0.5 and 1C rates of pore network model was 

compared with experimentally generated curves and found to agree well as shown in Figure 6.4. Based on 
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good data fit of pore network model the cell potential for 3C was also plotted for both calendared electrodes. 

Also, the comparison between two electrodes cell potential is shown in Figure 6.4c. It can be seen that 

3CAL electrode effective capacity fades lesser than 1CAL electrode, especially at higher discharge rates. 

This could be due to smaller cathode thickness and pore sizes in electrolyte phase and is discussed in detail 

in section 6.5.2. 

 

Figure 6.3 Pore network modelling workflow for galvanostatic discharge 
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6.5. Results and Discussions 

6.5.1. Structural Analysis of Cathodes 

One of the advantages of pore network modelling is that it can be used effectively to analyze the 

conditions in each individual solid particle and electrolyte-filled pores. Figure 6.1(e, m) shows pore size 

distribution as a function of distance from the separator of 1CAL and 3CAL cathodes, respectively. The 

size of pores is indicated by its marker size and colour. Due to the additional calendaring applied to 3CAL 

electrodes, the overall size of the pores is smaller than 1CAL cathode. The relatively small size can be 

attributed to the impaction of some solid particle into the void space, decreasing the diameter of affected 

pores. The bigger pores have the advantage to store more 𝐿𝑖+𝑖𝑜𝑛 for reaction inside elecotrolyte phase. 

They also offer less electrolyte concentration gradient than small size pores. Bigger size pore near 

sperator/cathode interface can increase the mass transport of 𝐿𝑖+𝑖𝑜𝑛 in the cathode region which could 

ultimately increase the discharge capacity as reported in other studies [2,190]  and hence increased 

intercalation/deintercalation of lithium-ion from electrolyte to active material phase.  
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Figure 6.4 a, b) PNM and experimental voltage vs capacity curve for 1CAL and 3CAL respectively, c) Comparison of 

voltage vs capacity curves at different rates for 1CAL and 3CAL 
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Figure 6.5 a) Coordination number of pores with neighbouring pores, active material and CBD, b) Coordination number 

of particles from neighbouring active material particles, pores and CBD, c) Slice by slice variation of volume fraction of 

electrolyte and active material phase in different axis. The flow direction is along x-axis, d, e) shows interfacial area of 

active material accessible to each pore for 1CAL and 3CAL cathodes. This area is used to in electrochemical reaction, f) 

Local tortuosity of each pore, particle or CBD region, connected with every other possible pore, particle or CBD region 

respectively for both 1CAL and 3CAL cathode 

 

Figure 6.1(f, n) shows distribution of particle sizes in the active material phase of 1CAL and 3CAL 

cathode respectively. The sizes of active material particles are similar for both electrodes with only some 

differences in the spatial distribution of bigger particles as a function of separator distance. This is expected, 

given that calendaring is not expected to crack particles unless a large force is applied Figure 6.1(g, h)  

shows the sphericity of pores and particles in both electrodes. Sphericity is defined as the ratio of surface 

area of a sphere having the same volume as the object to the actual surface area of the object [191]. It can 

be seen that the sphericity of moderate to large sized particles is scattered in a narrow range as compared 

to the pores which are defined by the walls of the particles, so are concave and bound to be less spherical. 

This trend is same for both cathodes and is aligned with the structure of NMC532 in which particles are 

generally spherical. Figure 6.1(h, p) shows size distribution histogram of all three phases in 1CAL and 
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3CAL cathodes. It can be seen that CBD region sizes are smaller than the average pore and particle size. 

Also, the size of pores in 3CAL is smaller than 1CAL, which is also observed in Figure 6.1(e, m).  

Besides size and shape distribution of cathodes, additional structural information can be obtained 

from the pore network extraction that is relevant to the transport processes. Figure 6.5a shows coordination 

number of each pore with neighbouring pores, active material particles and CBD regions in both cathodes 

samples. Higher connectivity generally means more transport paths, and therefore shorter transport lengths 

between points.  It is thus desirable to maximize connectivity of the pore phase to improve 𝐿𝑖+ diffusion 

and migration in the electrolyte. Also, higher interconnectivity of pores-to-CBD can assist lithium-ion 

transport in CBD nanopores to reach the surface of active material particle. On the other hand, Figure 6.5b 

shows coordination number of active material particles with neighbouring particles, pores and CBD regions. 

The overall interconnectivity of active material particles is approximately the same in all phases indicating 

active material particles could structurally support both transport and reaction during 

intercalation/deintercalation process. Figure 6.5c shows slice by slice volume fraction of different phases 

in tomography image of cathode. It can be seen that volume fraction in each case is subject to variation 

which is due to the discrete nature of particles and pores. Figure 6.5d,e shows surface area of active material 

available to each pore in the electrolyte phase for 1CAL and 3CAL cathode samples respectively. The 

surface area of most of the particles is under 200 𝜇𝑚2 while a few pores with a relatively large size have 

more interfacial area available for reaction. Lastly, Figure 6.5f shows the network tortuosity, which was 

calculated by finding the shorted path between each node in a given phase to every other node in the same 

phase (found using the Dijkstra algorithm weighted by node-to-node distance), divided by the total 

Euclidean distance between them. This network tortuosity was measured for all three phases and gives 

insights of interconnectivity of structure in each phase. Higher values mean the path between nodes is 

tortuous and it will offer high resistance to transport. The properties graph mentioned in Figure 6.5 give 

important information regarding microstructural heterogeneities inside porous cathode and they should be 

considered to optimize electrode design during the manufacturing process or battery modelling.  
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6.5.2. Performance Analysis of Cathodes 

One of the benefits of pore-scale modeling is the ability to inspect the conditions in each pore and 

particle. Figure 6.6 shows discharge fields of 1CAL cathode at 1C and 3C-rate at 75% state of lithiation 

(SoL), highlighting the spatial heterogeneities of four transport variables in different phases of cathode. To 

observe the effect of different variables like electrolyte and active material concentration and potential 

distribution during galvanostatic discharge, the diameter of pores and particles have been classified into 

three size zones.  

 

Figure 6.6 a, e) Li+ concentration profile in electrolyte phase for 1C and 3C-rate for 1CAL cathode, b, f) Potential 

distribution in electrolyte phase for 1C and 3C rate, c, g) State of lithiation (SoL) spatial distribution in active material 

phase for 1C and 3C rate respectively, d, h) Local variation of potential drop in NMC + CBD phase for 1C and 3C rate. 
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Figure 6.7 a, e) Li+ concentration profile as a function of separator distance for three different size zones in 1C and 3C-

rate of 1CAL cathode, b, f) Spatial distribution of potential drop in electrolyte phase as a function of separator distance 

for 1C and 3C rate, c, g) State of lithiation (SoL) for three different particle size zones in active material phase for 1C and 

3C rate respectively, d, h) Potential drop in NMC + CBD particles as a function of separator distance. 

 

In Figure 6.1(d, l) the distribution of these zones in electrolyte and active material can be seen for 

both electrodes. The diameter range of each zone is assigned with a unique colour and will be used to study 

the effect of local heterogeneities on the discharge behaviour. Figure 6.7(a, e) shows profiles of each 

variable for three different particle size ranges mentioned in Figure 6.1d. The concentration decreases away 

from the separator as expected due to consumption of Li ions in the cathode.  This behavior can of course 

be predicted by normal P2D models, but the distribution of concentrations at a given position can only be 

obtained with a pore-scale approach. It can be seen that spatial distribution of concentration till 80 𝜇𝑚 

distance from separator is almost 75 𝑚𝑜𝑙/𝑚3 for 1C-rate while variation in concentration for 3C rate has 

almost doubled to 150 𝑚𝑜𝑙/𝑚3. This local distribution is highlighted at 20𝜇𝑚 from separator by bracketing 

the thickness of concentration profile for both C rates. This overall variation is due to local size distribution 

of pores as well as their interconnectivity or accessibility. Beyond 80 𝜇𝑚 the overall concentration is more 

consistent for both C-rates. This could be due to smaller concentration gradients leading to . Also, as seen 
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in Figure 6.5c the high porosity of electrode in this zone could result in relatively bigger size pores hand 

hence dampening any abrupt spatial variation in concentration.  

Figure 6.6 (b, f) and Figure 6.7 (b, f) shows electrolyte phase potential distribution of the 1CAL 

cathode for 1C and 3C discharge rates. The potential drop in electrolyte phase for 3C rate is much higher 

than 1C rate, as expected due to higher current and concentration gradient during discharge at 3C rate. Also, 

similar to concentration profile, the spatial variation in potential distribution for 1C rate is low 

(approximately 1 𝑚𝑉), while on the other hand at 3C the potential has a broad distribution (approximately 

200 𝑚𝑉 at the current collector). This effect can be attributed to very low concentration of Li Ions near 

current collector as seen in Figure 6.6e. Due to fast electrochemical reaction, most of the Li Ions are 

consumed before reaching the current collector leading to deficiency of positive ions and hence increasing 

potential drop. Also, it can be seen that small pores respond to Li-Ion deficiency faster than big pores 

because of relatively small ability to accumulate Li-ion inside as compared to bigger pores. So, in order to 

achieve more SoL and to avoid exhaustion of Li Ions, bigger pores near current collector are recommended. 

It is worth noting that this spread of potential is only possible, because pore network modelling is capturing 

potential distribution locally in each pore unlike continuum model which simulates only average potential.  

Figure 6.6(c, g) and Figure 6.7(c, g) shows the state of lithiation (SoL) of lithium in NMC active 

material phase. For 1C rate the spatial distribution of SoL varies widely at a particular distance from the 

separator but on an average SoL remains at same level throughout the length of the cathode. Moreover, it 

can be observed that SoL in smaller size NMC particles are at higher values of SoL compared to large 

particles. On the other hand, at higher C-rate the lithiation distribution varies widely both spatially and 

thorough out length of the cathode. As seen in Figure 6.6g the lithiation is almost completed near 

separator/cathode interface while it gradually decreases as we move away from the separator. The low value 

of SoL can be attributed to less availability of Li-Ion near current collector in the electrolyte phase. Also, 

similar to 1C rate, smaller NMC particle show higher SoL as compared to bigger size particles indicating 
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t e importance of small size active material for fast c ar in  of LIB’s beca se of availability of more 

interfacial area as compared to bigger size particles to carry out intercalation reaction. 

Figure 6.6(d, h) and Figure 6.7(d, h) shows potential distribution in NMC active material and CBD 

phase for 1C and 3C rates. For low discharge rate active material particles are slightly at higher potential 

than CBD phase. This is due to higher conductivity of electrons in CBD phase than NMC particles. Besides 

some local variation of potential in NMC particles, the potential drop is more prominent near 

separator/cathode interface. This could be due to long tortuous path electrons need to travel from current 

collector towards separator/cathode interface. Contrary to NMC particles, CBD phase shows narrow 

distribution of potential with only a few local deviations of particles. One the other hand, at 3C rate a 

potential drop of approximately 1 mV is observed from separator/cathode interface to current collector in 

both NMC and CBD phase. This drop can be explained by the fast reaction near separator causing 

deficiency of electrons in this region. Moreover, the spatial distribution of potential is for NMC and CBD 

phase is narrow near current collector as compared to separator interface. This effect could be due to the 

low concentration of Li-Ion in electrolyte phase making reaction kinetics slower in this region. 
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Figure 6.8 a, e) Li+ concentration profile in electrolyte phase for 1C and 3C-rate for 3CAL cathode, b, f) Potential 

distribution in electrolyte phase for 1C and 3C rate, c, g) State of lithiation (SoL) spatial distribution in active material 

phase for 1C and 3C rate respectively, d, h) Local variation of potential drop in NMC + CBD phase for 1C and 3C rate 

 

Figure 6.9 a, e) Li+ concentration profile as a function of separator distance for three different size zones in 1C and 3C-

rate of 3CAL cathode, b, f) Spatial distribution of potential drop in electrolyte phase as a function of separator distance 

for 1C and 3C rate, c, g) State of lithiation (SoL) for three different particle size zones in active material phase for 1C and 

3C rate respectively, d, h) Potential drop in NMC + CBD particles as a function of separator distance. 
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Like 1CAL cathode the variable distribution fields and profiles were also developed for 3CAL 

cathode by carrying out simulations of NMC half cell and replacing 1CAL with 3CAL under same 

conditions. The results are shown in Figure 6.8 and Figure 6.9. The concentration and potential in electrolyte 

phase were observed to drop less as compared to 1CAL electrode due to the small thickness of 3CAL 

cathode. Similarly, SoL and solid-phase potential distribution were observed to less very spatially than 

1CAL. The overall SoL trend due to particle size distribution is same as 1CAL cathode indicating the 

importance of particles sizes for performance optimization of LIB’s.   e pore-to-pore and particle-to-

particle analysis described above using pore network modelling approach can be used as a modelling 

framework to study structural performance relationship of other electrode microstructures as well. The 

developed PNM approach can be used to predict structure for next-generation battery electrodes which is 

beyond the scope of this work and is left for future work.  

6.5.3. Computational Performance   

Pore network modelling has the key advantage of performing simulation at vastly lower 

computational cost than the normal DNS approach. A steady-state performance comparison between the 

two approaches can be seen in our previous work [116]. For the simulation of galvanostatic discharge at 

different C-rate mentioned above two iterations we performed for each time step. The inner iteration to 

solve Nernst Plank equation in electrolyte phase took about 1.25 seconds for 1C rate of 1CAL cathode 

consisting of 4637 Nodes and 24799 bonds. While the outer iteration to converge applied current density 

with calculated current density took 11.62 seconds for 1 time step.  The tolerance values for inner and outer 

iteration were 1e-8 and 1e-3 respectively. For all simulations, a fixed time step of 2 seconds was used. 

Implementation of an adaptive time step scheme would offer addition performance improvements, but this 

is left of a future study. The solution was carried using Lenovo ThinkStation P720 workstation having 8-

core Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and 256 GB RAM. For simulation 4 cores were used 

to get solution of inner iteration. 
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Figure 6.10 Simulation time of pore network model of LIB half cell at different C-rate 

 

The overall computational performance time is shown in Figure 6.10 for 1CAL and 3CAL electrodes. 

The total number of nodes and bonds in 3CAL electrode were 3510 and 23126 respectively. It can be seen 

that 3CAL electrode takes less time than 1CAL because of its smaller domain size and few nodes. The 

overall time increases as the C rate decreases because the total time steps are higher. It should be noted that 

computational time reported for various DNS simulation is on the order of 1 month; Hutzenlaub et al [80] 

reported requiring 27 days to perform a simulation on the cluster using four nodes, where each node 

contained two Intel Xeon E5-2680 CPUs and 32 GB RAM. Similarly, Rucci et al [192] also reported 

simulation time up to 3 days depending on mesh size on a relatively small domain. Not only is this 

significantly more computing power than used in the present work, but the domain size used here is also 

1.51 times bigger in terms of voxels. This computational performance gain of approximately 115x  

highlights the importance of pore network modelling approach to simulate complex multiphysics processes.  

6.6. Conclusions 

In this study, a pore network modelling framework has been developed to analyze structure-

performance relationship of two Li(Ni0.5Mn0.3Co0.2)O2 cathodes of different thickness achieved by differing 

calendaring pressure. A three-phase network was extracted from X-ray tomography images consisting of 
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active material, carbon and binder domain and electrolyte phase along with interconnections of these phases 

with each other. The pore network modelling approach was used to obtain structural information about 

these two electrodes. It was found that due to more calendaring the size of pores in 3CAL electrode were 

relatively smaller than 1CAL electrode. Also, sphericity data revealed that active material particles for both 

electrodes are similarly spherical, indicating that calendaring did not damage the particles, and that the 

particles were more spherical than electrolyte phase pores. Moreover, structural properties like coordination 

number, porosity, interfacial area and tortuosity of extracted network revealed important information to 

analyze local heterogeneities in porous electrodes. 

The networks were used to perform galvanostatic discharge of lithium-ion battery half-cell to analyze 

the effect of local structural heterogeneities on four different transport variables in the cathode region. The 

pore network model was validated against experimental voltage-capacity curve data and found to agree 

well at different C-rates. Also, pore-to-pore and particle-to-particle analysis in the electrolyte and solid-

p ase revealed important insi  ts of str ct ral performance relations ip of LIB’s. Ultimatel , it was 

demonstrated that PNMs can efficiently predict the rate-dependent capacity of an electrode using only a 3-

phase tomogram as input, which is a highly promising result.  This suggests that in-silico structures that 

vary arbitrary properties of the electrode, could be produced and screened for performance using PNMs, 

avoiding the need to perform expensive and time-consuming cell fabrication and testing in the lab.  Of 

course, this screening could also be performed using DNS, but the massively improved computational 

performance of pore network modelling approach, at least 115x faster compared to direct numerical 

simulation, is essential.  The developed pore numerical modelling framework provides a great platform to 

optimize structural features of cathodes and hence can predict next-generation electrode material to allow 

fast c ar in  of LIB’s. 
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Chapter 7 Conclusions and Future Work 

7.1. Summary 

This thesis aimed to relate structural heterogeneities of porous electrodes with cell performance of 

lithium-ion batteries. For this purpose, an image-based pore network modelling framework was developed 

to understand the structural performance relationship of porous electrodes at various sets of conditions. The 

following efforts were made to achieve these objectives: 

In Chapter 3 a dual network extraction algorithm was developed to simultaneously extract void and 

solid networks from tomographic images of porous domains using simple image processing techniques. 

The algorithm extracted structural features of void and solid phases such as connectivity and geometrical 

properties, along with interconnection between void-solid phases. The validation of the dual network was 

performed on simple cubic and random sphere packings from low to high porosities. Pore network 

modelling simulations were performed to estimate effective diffusivity and thermal conductivity in void 

and solid-phase respectively and found to agree well with experimental and direct numerical simulation 

data. The study also incorporated a novel technique to estimate the interfacial area at void-solid phase 

interface which is crucial for interphase transport and reaction process. The solid phase network and its 

interaction with the void phase were addressed for the first time in pore network modelling, opening up a 

new avenue to study multiphase mass transport processes.  

In Chapter 4, dual network algorithm extraction capabilities were extended to an arbitrary number of 

phases. This enabled the extraction of electrolyte, active material and carbon binder domain from lithium-

ion porous cathode images. The algorithm was tested on a tomography image of NMC811 cathode to extract 

all three phases along with interconnections between any two phases. The novel three-phase pore network 

model was used to simulate steady-state reaction-diffusion and reaction-conduction process in the 

electrolyte and active material phase respectively. The results were compared with direct numerical 

simulation and found to agree well at various set of conditions but at a significantly less computational cost. 
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The developed model was used to analyze the impact of carbon binder domain on current density. It was 

found that current density decreases by 24.4 % when carbon binder was not assumed lumped with active 

material phase. The effect of nano porosity in carbon and binder domain revealed 16.8% increase in reaction 

rate as compared to solid binder without any porosity.  

Although pore network modelling is a computationally efficient approach, extracting a network a 

tomography image is a computationally expensive process requiring large amount of computational 

resources. The solution for this bottleneck was addressed in Chapter 5, where an efficient network 

extraction algorithm was developed that divides massive tomograms into small subdomains using 

geometric domain decomposition. The algorithm was used to extract pore networks from various types of 

digital rock images. The developed algorithm saved up to 7 times computational time and 50 % RAM 

usage. Finally taking advantage of computational efficiency, the algorithm was used to perform a resolution 

study of tomography image that could lead to incorrect results of transport properties simulation. 

Lastly, in Chapter 6, a pore network modelling framework to study the galvanostatic discharge 

behaviour of lithium-ion battery cathode was developed. The voltage vs capacity data for three-phase 

networks of NMC 532 cathodes was simulated and compared with experimental data at different C rate. 

The results were found to agree well with experimental data. The model was then used to compare structural 

properties of two cathodes having different thickness due to varying calendaring pressure. The connectivity 

and size distribution in the electrolyte and solid phase gave important insights about the structure of cathode. 

The structural-performance relationship of four different transport variables was analyzed. The spatial 

distribution of concentration and potential in pores of electrolyte phase revealed the effect of local 

heterogeneities of pores on these transport variables. Similarly, local variations of lithium and potential 

distribution in active material and carbon binder phase gave important insights about structural-

performance relationship of porous cathodes. Lastly, computational performance of the pore network model 

was analyzed at four different C -rates. The results revealed massive improvement in computational time 
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than previously reported work using DNS. This computational performance gain highlights the importance 

of pore network modelling approach to simulate complex multiphysics processes. 

7.2. Future Work 

7.2.1. Multiphase network extraction algorithm 

In Chapter 3 dual-phase network extraction algorithm was developed, which was extended to any 

number of phases in Chapter 4 to simulate multiphase transport in electrolyte, active material and carbon 

binder domain of lithium-Ion battery cathode. These extraction algorithm needs further refinement to 

capture multi-scale effects from tomography images. For examples, carbon binder domain in lithium-ion 

battery has macro and nano-size pores which effects overall 𝐿𝑖+ion transport in electrolyte phase and hence 

overall cell performance of battery. So, a two-stage extraction algorithm is needed which extracts nanopore 

network in the first stage and then stitch it with macro phase network. This will greatly improve the accuracy 

of transport processes in porous material that are sensitive to multiscale effects. Of course, this requires a 

sufficiently resolved image, which introduces problems with limited field of view.   

So far pore network extraction algorithm developed in the literature deals with fixed size of pores 

and throats in the network. Some porous material especially in lithium-ion battery is subject to deformation 

or swelling during charge and discharge cycle of operation. This change in shape of material results in 

degradation and hence breakdown of battery. A novel network model is required that can dynamically 

change the size of pores and throats as a function of its swelling or deformation rate. This will greatly help 

to perform a stress analysis on lithium-ion battery porous electrode materials. 
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7.2.2.  Efficient Extraction of Massive Size Pore Networks  

One of the main challenges in dealing with the tomographic image is that resolution can strong 

effect the accuracy of results obtained from extracted pore networks. This is because structural properties 

extracted from a low-resolution image become invisible to watershed segmentation algorithm. In Chapter 

5, the developed domain decomposition algorithm has the potential to address this issue by performing 

network extraction after increasing the resolution of the image, but a more comprehensive criterion is 

required that can determine a suitable resolution before network extraction. One approach could be to 

identify the smallest pore size in the porous domain and scale up the image based on this information so 

that watershed segmentation can partition smallest pore size region in the image without any over-

segmentation.  

7.2.3. Multiphysics Pore Network Modelling of Lithium-Ion Battery Cathodes 

In Chapter 6 the pore network modelling framework for three-phase lithium-ion battery cathodes were 

developed to study galvanostatic discharge behaviour of half-cell. The model gave important insights into 

the microstructural effects in different phases of porous cathode. However, the developed pore network 

model can be extended to simulate to full cell including anode pore network of lithium-ion battery. Also, 

this framework can be extended to study the thermal effects in the active material particles that decreases 

the cell energy capacity. Finally, the transient algorithms should implement adaptive time stepping which 

will significantly improve the computational performance.  The comparisons to DNS simulations show 

PNMs reduced time by 100x or more, but this could be even better if larger time steps were taken when 

possible.  
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Appendix A: Supplementary Information for Chapter 4 

The following Table S4- 1 provides a list information on the material properties as quoted by the supplier. 

 

Table S4- 1 Supplier’s information on the printed and calendared  MC811 electrode on a sheet of 

aluminum. 

Material Property Supplier Information 

Al foil thickness 20 µm 

Al foil loading  5.36 mg cm-2 

Total electrode thickness 52 µm 

Coating thickens 32 µm 

Porosity  36.3% 

Coating loading  8.34 mg cm-2  

Coating Density 2.61 g cm-3 

 

Figure S4- 1 displays a single tomogram ortho slice that was extracted in the x-z plane whereby, z 

and x are the vertical and in-beam planes, respectively. Also noted on the image are the three components 

of the sample preparation: the steel dowel, fast-set epoxy and the NMC811 sample, the region of air above 

the sample is also noted for reference.  

 

Figure S4- 1 Reconstructed tomogram slice taken from the x - z (in-beam - vertical) orientation. This image is presented 

before any image processing was conducted i.e. without post-reconstruction filtering or segmentation. 



176 

 

The following Figure S4- 2 displays the cross-section of the data before and after a non-locals 

means filter was applied.  Two regions are outlined: one large area of the full field of view (FOV) and a 

magnified region for closer inspection. Throughout, imaged contoured by orange are filtered, and imaged 

that have not been filtered are contoured by green. The orange region in the large image also outlines the 

cropped region that was used for the segmentation and subsequent pore-network modeling.  

 

Figure S4- 2 Reconstructed tomogram slice before and after a non-local mean filter was applied to the raw, reconstructed 

data. Two regions are outlined: one large area of the full field of view (FOV) and a magnified region for closer inspection. 

Throughout, imaged contoured by orange are filtered, and imaged that have not been filtered are contoured by green. 

Also outlined is the cropped region for data analysis. 
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The following Figure S4- 3 displays a filtered region of the electrode for segmentation analysis. 

Accompanying the 2D greyscale images is the greyscale histogram with the greyscale values that 

correspond to each of the constituent phases outlined for clarity.  

 

 

Figure S4- 3 Segmentation quality outlined through the indication of each constituent phase: NMC, binder, pore, visualized 

using 2D greyscale (filtered) ortho slices and the accompanying greyscale histogram. 
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The Table S4- 2 below lists the compositional values for the three segmented phases: NMC, binder 

and pore. The data was calculated from the segmented 3D dataset using the sum of all values corresponding 

to a particular phase within the volume, divided by the total volume and presented as a percentage; i.e. the 

composition was calculated from cubic voxels without accounting for surface smoothness.  

 

Table S4- 2 Compositional data obtained from the 3D X-ray CT tomogram of the printed and 

calendared NMC811 electrode on a sheet of aluminum. 

Phase Calculated Composition / Vol. % 

Pore 38.6% 

CBD 21.9% 

NMC 39.6% 
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