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Abstract

In this thesis, we study differential operators on manifolds with torsion-free G-structure.
In particular, we use an identification of the spinor bundle S of such a manifold M with
the bundle R & T* M to reframe statements regarding the Dirac operator in terms of three
other first order differential operators: the divergence, the gradient, and the curl opera-
tors. We extend these three operators to act on tensors of one degree higher and study the
properties of the extended operators. We use the extended operators to describe a Dirac
bundle structure on the bundle 7*M & (T*M @ T*M) = T*M ® (R & T*M) as well as
its Dirac operator. We show that this Dirac operator is equivalent to the twisted Dirac
operator Dp defined using the original identification of S with R & T M.

As the two Dirac operators are equivalent, we use the T*"M & (T"M @ T*M) = T*M ®
(R @ T*M) description of the bundle of spinor-valued 1-forms to examine the properties
of the twisted Dirac operator Dr. Using the extended divergence, gradient, and curl
operators, we study the kernel of the twisted Dirac operator when M is compact and
provide a proof that dimker Dy = b + b3.
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Chapter 1

Introduction

The aim of this thesis is to study and collect results regarding the Dirac and twisted Dirac
operators on manifolds with torsion-free Gs-structure. In doing so, we will define and
come across other differential operators defined on such manifolds such as the divergence,
gradient, and curl operators.

The following two chapters consist of the preliminary material related to this thesis.
Chapter 2 is dedicated to material on spin geometry and Chapter 3 provides an introduction
to the Gy-geometry that will be used throughout the rest of the thesis. Most of the
information from each of these chapters have been taken from their sources, with their
proofs slightly adapted in the attempt to improve readability and clarity.

Chapter 4 provides the groundwork and justification for identifying the spinor bundle
S with the bundle R & T*M. We define the first order operators div, grad, and curl here
and extend them to act on spinor-valued 1-forms. Moreover, we prove identities involving
these operators and the Dirac operators on their respective bundles when the underlying
Gs-structure is torsion-free.

In Chapter 5, we take a deeper look at the twisted Dirac operator defined on the bundle
of spinor-valued 1-forms. In particular, we compute its kernel in the compact and torsion-
free case. Moreover, we note some characteristics of harmonic forms on manifolds with
torsion-free Gy-structure.



1.1 Notation and Conventions

When left unspecified, M will denote a smooth 7-dimensional manifold admitting a Gs-
structure with metric g, associative 3-form ¢, and coassociative 4-from 1. (See Chapter 3
for an introduction to Gy-structures.) All structures involved will be smooth unless stated
otherwise. Using the metric, we identify vector fields and 1-forms. Tensor calculations will
be done pointwise and tensors on M will be expressed with respect to a local orthonormal
frame {eq,...,e,} with respect to the metric g such that V,e; = 0 at the center. As such,
all indices will be subscripts. We employ the Einstein summation convention throughout,
so repeated indices will be summed over the values 1 to dim M. Additionally, at times
we will, through an abuse of notation, identify a global object with its local coordinate
representation.

The trivial rank 1 real bundle over a manifold M will be denoted by R. Given a vector
bundle E over M, we use I'(F) to denote the space of smooth sections of E. In some cases,
we denote these spaces in different ways. For example:

o OF = T'(A*(T*M)) is the space of smooth k-forms on M;
e X =T(TM) is the space of smooth vector fields on M;
o T2=T(T"M ® T*M) is the space of smooth 2-tensors on M;

e §? =T(S*(T*M)) is the subspace of T2 of smooth symmetric 2-tensors on M.

With respect to the metric g on M, we let S denote the subspace of traceless symmetric
2-tensors. That is, S? consists of symmetric 2-tensors h with trh = h; = 0. Using the
induced metric on T*M ® T*M induced by g, we have T2 = Q? ® 82 where the splitting
is pointwise orthogonal.

The Levi-Civita connection induced by g will be denoted by V. We will encounter
several Laplacian operators throughout this thesis. The symbol A will always denote the
rough Laplacian A = —V,;V,;. The Hodge Laplacian on differential forms will be denoted
by Aq = dd* + d*d and the Lichnerowicz Laplacian (see Chapter 3 of [CK04]) will be
denoted by Ap.

The labelling convention for the Riemann curvature tensor 2;;,; used is such that the
Ricci tensor is Ricjy = Rjjki-



Chapter 2

Preliminaries on Spin Geometry

Much of the focus of this thesis is on differential operators on Go-manifolds such as Lapla-
cian and Dirac operators. Moreover we will utilize certain notions from spin geometry.
In order to describe these, we need to understand the underlying theory of Clifford al-
gebras. Since our applications concern real bundles, we will only consider the real cases
here. Further, we will focus on results pertaining to odd dimensional spaces, in particular
7-dimensional spaces, as we aim to import these results onto manifolds with Ga-structure.
This chapter closely follows [LM89], though results not relevant to odd dimensions have
generally been omitted. Other sources for this section include [ABS64], [Har90], [HS19],
[Nic13], and [Roe98].

2.1 Clifford Algebras

Definition 2.1.1. Let V' be a finite-dimensinal real inner product space with a positive-
definite inner product denoted by (-,-). A Clifford algebra for V is a unital algebra A
with a map ¢: V — A such that ¢(v)? = —(v,v)1 that satisfies the universal property.
In other words, if there were another unital algebra A’ and map ¢': V — A’ satisfying
@' (v)? = —(v,v)1, then there is a unique algebra homomorphism f: A — A’ such that the
diagram below commutes.

vV —% A
¢’ P
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For (V,(-,-)), a Clifford algebra exists and is unique up to algebra isomorphism by
universality. As such, we may refer to the Clifford algebra of an inner product space. More
concretely, we can consider the Clifford algebra of (V (-,-)) to be to quotient of the tensor
algebra @g>0V®* by the ideal generated by all elements of the form

vV~ (v, V).

The map ¢ in this case is given by the composition of the embedding V — @5V ®* with
the quotient map described above. We suppress the tensor notation here, as is usually
done, and represent it via concatenation. Additionally, by polarizing the defining identity
of the Clifford algebra, we get that

vw + wv = —2(v, w)1. (2.1)

We denote the Clifford algebra of V' by Cl(V') and note that if V' has dimension n, then
Cl(V) has dimension 2". The map ¢ is injective (see [LM89]), and so we identify V' with
its image in C1(V') and consider it as a subspace of C1(V').

The map
V—=Cl(V): v~ —v

extends to an algebra automorphism «: C1(V) — CI(V') by the universal property. Since
negation on the vector space V' is an involution, so is a. This gives a natural Zs-grading
of the Clifford algebra

ClV) = C1°%(V) @ CI'(V) (2.2)

where CI°(V) = ker (o — 1) and CI'(V) = ker (a + 1). Indeed, since a is an algebra
homomorphism, we see that the relations

Cl°(V)-C1%(V) c CI’(V), C1Y(V)-C1Y(V) C Cl%(V),

Cl’(v)-Cc1y(V) c CIY(V), CINV)-C1%(V) C ClY(V),
are satisfied. We call C1°(V) the even part of the Clifford algebra and CI'(V) the odd
part. We note that C1°(V) is a subalgebra of C1(V').

Using our concrete notion of the Clifford algebra as a quotient of the tensor algebra, we
have that C1(V') has a basis consisting of elements of the form vyvy - - - v, where {vy, ..., v,}
is a basis of V. We define a transposition operator on such elements by

(V109 - vR)t = Vg - Vo (2.3)



and extend it to all of C1(V) linearly. This map is well-defined on the Clifford algebra
since it preserves the ideal by which we quotient out. It is clear that transposition is an
involution on Cl(V'). We note that it is also an antiautomorphism, that is, (ab)" = b'a’.

Simple calculations allow us to compute the Clifford algebras of low dimensional inner
product spaces. The following table lists C1(V') up to isomorphism when V' has dimension
between 1 and 8 where K(m) denotes the algebra of m x m matrices over a field K (or
skew-field in the case of the quaternions H).

dmV [1]2] 3 4 | 5 | 6 7 8
awv)[clu|mer |HE) | ca) | RE) | REG) o RE) | R(16)

Table 2.1: Clifford Algebras of Low Dimensional Spaces

2.2 Pin and Spin Groups

We now turn our attention to the multiplicative groups of units C1*(V) in the Clifford
algebra Cl(V') which is the subset

CI*(V) = {z € CI(V) | there exists 27! € CI(V) such that za™' =z 'z =1}.  (2.4)
Since Cl(V) is subject to the relation
v? = —2(v,v)1, veV

we see that C1*(V) contains all elements v € V with (v,v) # 0. This group acts on the
algebra Cl(V') as automorphisms via the adjoint representation

Ad: CI* (V) = Aut(CL(V))

2.5
r — Ad, (2:5)

where

Ad,(y) = zyx . (2.6)

Additionally, C1* (V') can act on CI(V) via the twisted adjoint representation given
by

Ad: CIX(V) = Aut(CL(V))

— 2.7
r — Ad, (2.7)
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where

Ady(y) = afz)yz ", (2.8)

The difference between the two representations is that for odd elements of C1(V), in partic-
ular for v € V, the involution « acts as negation. Though the adjoint representation seems
more natural, we will focus largely on the twisted adjoint representation as the notation
and calculations end up being cleaner.

Using the twisted adjoint representation, we can define the Clifford group I'(V).

Definition 2.2.1. The Clifford group T'(V) is the subgroup of C1* (V') whose elements
leave V' invariant under the twisted adjoint representation. In other words,

T(V) ={ue C*(V) | Ady(v) = a(uw)out € V for all v € V}. (2.9)

Proposition 2.2.2. Let 0 £ v € V. Then AHJU(V) C V. In particular, we have for w € V
that

Ad, (w) = w — 2<|T’—ﬁu2>v. (2.10)
v
Proof. The Clifford identity v? = —(v,v) tells us that v~ = —”:”2. Direct computation
using (2.1) then yields
VWY viw (v, w) (v, w)
Ad,(w) = —vwv ! = = — — 2y =w — 2"
[l ol ol [[o]?
[

Proposition 2.2.3. Let 0 £v € V. Then A\d/y preserves the bilinear form (-, -).

Proof. Let x,y € V. We compute using (2.10) that

(R o), AL () = o = 21l ony = 24700)
— (o~ 21 0,0) = 2 o) + 4l o

= (z,y).



Geometrically, we can see that the right hand side of (2.10) is just the reflection of w
across the hyperplane perpendicular to v which matches up with the fact that the twisted
adjoint representation preserves the bilinear form. Since it is just a reflection, we also have
that for each non-zero vector v € V that Ad,(V) = V. As a corollary, we observe that Ad
is actually a map

(V) — o)

where O(V') denotes the orthogonal group of V' with respect to the bilinear form (-,-). A

classical result of Cartan and Dieudonné (see [Har90]) tells us that the image of Ad is the
entire orthogonal group.

Theorem 2.2.4 (Cartan-Dieudonné). Every element of O(V') can be written as a compo-
sition of at most n reflections.

We now define the Pin and Spin groups.

Definition 2.2.5. The Pin group of V is the subgroup Pin(V) of I'(V') generated by
the elements v € V with (v,v) = 1. The Spin group of V is the subgroup Spin(V') of
Pin(V) containing only even elements of C1(V), that is Spin(V) = Pin(V) N CI°(V). In
other words,

Pin(V) ={vy---vy € (V) | (vs,v;) = 1 for each i} (2.11)

and
Spin(V) = {vy - - ve, € T(V) | vy, v;) = 1 for each i}. (2.12)

Because X&M = Avdv for any scalar A, we still see that the image of Pin(V') under the
twisted adjoint representation results in the entire orthogonal group O(V). We work to
get a similar result for Spin(V'). Recall that the special orthogonal group SO(V) is the
subgroup of O(V') consisting of elements with unit determinant. Thus to show that we have
a similar relationship between the Spin group Spin(V'), the twisted adjoint representation
A\a, and the special orthogonal group SO(V'), it suffices to show that det ;A\d/v = —1 for each
v € V. To prove this, extend v to an orthogonal basis {v = vy, - ,v,}. We compute that

L= pov™! =0,

A?d/v(vl) = —vvw~ ! = —v; and for each ¢ > 1 we have Ad,(v;) = —vvv™
It follows that det Ad, = —1. Thus Ad maps Spin(V') onto SO(V).

More can be said about the twisted adjoint representation Ad. In order to discuss this,
we need some other results.

Proposition 2.2.6. The kernel of the twisted adjoint representation Ad is the group R*
of non-zero multiples of the unit 1.



Proof. Let {vy,...,v,} be an orthogonal basis for V. Suppose that u € CI*(V) is in the
kernel of Ad. Then we have that a(u)vu™' = Ad,(v) = v for allv € V, that is, a(u)v = vu
for all v € V. We may write u = ug + u; where uq is even and v, is odd. By equating odd
and even parts, we see that
UV = VU
—UuU1v = vUy
for all v € V. We can write uy and u; as polynomial expressions of the basis elements
v1,...,0U,. By repeatedly using orthogonality of the basis and the identity v,v; = —v;v; —
2(v;, v;), we may assume that these polynomial expressions are of the form ug = ag + v1aq

and u; = by +v1by where ag, aq, by, and b; are polynomial expressions of vs, ..., v,. We also
see that ag and by are even while a; and b; are odd.

If we let v = vy in the relations above, we get
2 _ 2
v1ap + via; = qoU1 + v1a1v1 = V1G9 — V]A1.

where the second equality follows from repeatedly using orthogonality of the basis and the
identity v;v; = —vju; — 2(v;,v;). This shows that via; = —(v1,v1)a; = 0 and so a; = 0.
This shows that uy does not involve v;. Since we arbitrarily chose 1 as the index here, we
can repeat this argument for each index to show that u, must be a scalar.

We apply a similar argument for u; and get
'U1b1 + U%bo = _blvl - Ulbo’l)l = 'U1b1 — U%bo.

So v%bo = 0 which implies that by = 0. Hence u; does not involve v;. Repeating this for
each index shows that u; must also be a scalar. Since wu; is odd, it follows that u; = 0.

Putting the above together, we get that u = wy + u; = wup is a scalar. Since by
assumption u is non-zero, the result follows. O

Next, we introduce the norm map N on Cl(V') by setting
N(u) = ua(u'). (2.13)

We note that in the case that v € V, then v* = v and a(v) = —v so N(v) = —v? = (v, v).

Though defined on all of the Clifford algebra, we are mostly interested to its restriction
to the Clifford group and its subgroups.



Proposition 2.2.7. The restriction of the norm map N to the Clifford subgroup I'(V') is

a group homomorphism onto the group R* of non-zero multiples of the unit 1. Moreover
N(a(u)) = N(u).

Proof. First we show that N maps I'(V) to R*. If u € I'(V), then for v € V we have
a(u)vu™ = o' for some v € V. We apply transposition to both sides of this equation,
taking note that transposition acts as the identity on V to get

a(w)vu™ = (a(u)vu ™) = (uHla(u) = (u') Toa(uh).
Since « is an involutive homomorphism, rearranging the above gives
a(fa(u')u))v = v'a(u)v = va(u)u,

which implies that «(u')u is in the kernel of the twisted adjoint representation. By
Proposition 2.2.6, a(u')u is a non-zero scalar and so u‘a(u) is a non-zero scalar. Since
N@u') = vla((u")') = v'a(u) and T'(V) is closed under transposition, it follows that
N(T(V)) CR*.

To show that N is a homomorphism, let z,y,u € I'(V). Then we have

N(zy) = xya((zy)') = zya(y's") = zya(y’)o(z')
— aN(yaly') = N(y)za(z') = N@)N(y).

We also have

O
Putting some of the previous results together we get the following proposition.
Proposition 2.2.8. There exist short exact sequences
1 s Zs s Pin(V) 24 O(V) —— 1 (2.14)
1 s Ly > Spin(V) —245 SO(V) —— 1. (2.15)

Additionally, depending on the dimension of the vector space V', we can say more about
the relationship between Spin(V') and SO(V). We state the following proposition without
proof (see [Nic13]).

Proposition 2.2.9. The twisted adjoint representation Ad defines a covering map. Fur-
ther, Spin(V') is connected if V' has dimension at least 2 and it is simply connected if V
has dimension at least 3. In particular, if dim'V > 3, Spin(V') is the universal cover of
SO(V).



2.3 Spinor Representations and Spin Structures

In working towards defining the bundle of spinors on a manifold, we first need to consider
the representations of Clifford algebras.

Definition 2.3.1. A (real) representation of the Clifford algebra CI(V') is an algebra
homomorphism

p: Cl(V) — Hom(W, W)

into the algebra of linear transformations of a finite dimensional real vector space W. We
call W a (real) left C1(V')-module. We often suppress the map p by writing

pu)(w) = u-w
for uw € CI(V) and w € W. The product above is called Clifford multiplication.

The representation (p, W) is said to be reducible if there exists a proper invariant
subspace, that is, there exists a subspace {0} € Z C W such that p(u)(Z) C Z for
each u € CI(V). If no such invariant subspace exists, we say that the representation is
irreducible.

Lastly, two representations p;: CI(V) — Hom(Wy, W7) and po: CI(V') — Hom (W5, Ws)
are considered equivalent if there exists a linear isomorphism L: W; — W5 such that
Lo pi(u)o L™ = py(u) for each u € CI(V).

We note that the Clifford algebra Cl(V') is almost the group algebra of a finite group.
Consider the elements ey, - - - , e, and —1 where the e; form an orthonormal basis of V. We
can form a group of these elements by declaring a presentation given by these elements
subject to the relations

(=1)? =1,(e:)* = =1, e5e; = (=1)eje; for i # g, (2.16)

as well as stipulating that —1 be central. By taking the group algebra of this group and
quotienting out by the subspace spanned by 1 + (—1), we get the Clifford algebra CI(V).
Using this, we can apply some of the representation theory of finite groups. In particular,
we can decompose a representation of a Clifford algebra into a direct sum of irreducible
ones.

Proposition 2.3.2. Every representation p of a Clifford algebra CL(V') can be decomposed
into a direct sum p = p1 @ -+ @ p of irreducible representations.

10



From Table 2.1, we notice that the Clifford algebras Cl(V') are all of the form K(m)
or K(m) @ K(m) for some field or skew-field K. Arguments in [LM89] show that Clifford
algebras generally have this form and can be computed from the entries in Table 2.1
using “periodicity” isomorphisms with period 8. The following theorem shows us that the

representations of these algebras are quite simple. A proof of this result can be found in
[Lan02].

Theorem 2.3.3. Let K = R, C, or H and consider the R-algebras K(m) and K(m)®K(m).
The natural representation p of K(m) on the vector space K™ is, up to equivalence, the
only irreducible representation of K(m). The algebra K(m) @ K(m) has two equivalence
classes of irreducible representations given by

p1(ur,uz) = p(ur) and pa(ur, uz) = p(uz)

acting on K™.

To further this discussion on spin representations, we need to consider an important
element of the Clifford algebra C1(V') called the volume element. To define the volume
element, choose an orientation for the vector space V and let eq,...,e, be an oriented
orthonormal basis for V. The volume element is defined to be

w=er e, (2.17)

We check that this definition is independent of the basis chosen. If €], ..., e}, is another
oriented orthonormal basis, then we can transform one basis into the other via a linear
transformation L. In particular, since it preserves orientation and orthonormality of the
basis, it follows that L € SO(V). Writing this out, we have e = > Ljje;. Using the
identities e;e; + eje; = —20;5, we can compute that

/ /
ep---e, = (detL)ey e, =e1-- e,

An important property of the volume element is that it squares to £1 and either
commutes or anticommutes with vectors based on the dimension of V. This can be seen
by repeated use of the identities e;e; 4 eje; = —20;;.

Proposition 2.3.4. The volume element w satisfies the following properties:

W= (—1)"E (2.18)
vw = (—=1)""wo. (2.19)



We see that if n = 3,4 (mod4) then w? = 1 and if n = 1,2, (mod 4) then w? = —1.
In the former case, we can define a pair of idempotent elements which will allow us to
decompose Cl(V') in another way.

Lemma 2.3.5. Suppose the volume element w satisfies w?> = 1. Set

1 1
mt=-(1+w), 7 ==(1-w). (2.20)
2 2
Then ©F and 7™~ satisfy
T+ =1, (2.21)
(™2 =7t (m7)=7m", (2.22)
T =71t =0. (2.23)

Using these two elements 7+ and 7~ we get the following decomposition

Proposition 2.3.6. Suppose the volume element w satisfies w?> = 1 and that n is odd.
Then CI(V') can be decomposed as a direct sum

CL(V) = CI*(V) @ CI-(V) (2.24)

of isomorphic subalgebras, where C1¥(V) = 7. CL(V) = CU(V) - n*. Further a(CIF(V)) =
CIT (V).

Proof. From Proposition 2.3.4, w is central, so 71 and 7~ are central. The decomposition
follows from the properties of 7% and 7~ seen in (2.21), (2.22), and (2.23). Since n is

odd, w is an odd element so a(w) = —w. This gives us that a(r*) = 77 and hence
a(CIE(V)) = CIF(V). The fact that C17(V) and Cl™(V) are isomorphic comes from
being an automorphism. O

Using the above, we get a result on irreducible representations of the Clifford algebra
when n = 3 (mod 4).

Proposition 2.3.7. Let p: CI(V) — Hom(W, W) be an irreducible representation where
dimV = 3 (mod4). Then either p(w) =1 or p(w) = —1. Both possibilities can occur and
they result in inequivalent representations.

12



Proof. Since dimV = 3 (mod4), w? = 1, so we get p(w)? = p(w?) = 1. We can then
decompose W into W = W+ & W~ where W and W~ are the +1- and —1-eigenspaces
for p(w) respectively. On W*, the map p(w) acts as 1 so for u € CI(V) and w* € W=
we get

p(u)(w®) = p(u)((F1)*w™) = p(u)p(w)(Fw™) = £p(w)p(u)(w™).
where we used the fact that w is central. This shows that both W' and W~ are invariant.
Since we assumed that p was irreducible, we must either have W =W or W = W~

To show that these representations are inequivalent, we note that if p, and p_ are
representations with pi(w) = £1, then given any linear isomorphism L between the spaces,
we get Lopy(w)oL™'=1#—-1=p_(w).

To see that both possibilities exist, we can precompose a representation p with the

automorphism « as a(w) = —w. O

In the n = 3 (mod4) case, it turns out that these are the only two inequivalent irre-
ducible representations of C1(V') (see Theorem 2.3.3). We recall the following containment
Spin(V) C CI°(V) C CI(V).

Definition 2.3.8. The spinor representation of Spin(V') is the homomorphism

Ay : Spin(V) — GL(W) (2.25)
given by restricting an irreducible representation Cl(V) — Hom(W, W) to Spin(V) C
CI°(v) C CI(V).

Previous arguments have shown that when n = 3 (mod4) we have two different ir-
reducible representations of C1(V'). The next proposition shows that it does not matter
which one we start with as they result in the same spinor representation.

Proposition 2.3.9. When n = 3 (mod4) the definition of Ay is independent of the irre-
ducible Clifford representation used.

Proof. From Proposition 2.3.6, we have that the involution « interchanges C17(V) and
Cl™ (V). Since « acts as the identity on C1°(V), it follows that C1°(V) is diagonal in the
decomposition C1(V) = C1"(V) @ C17(V), that is

ClI°(V) = {(u, au)): u € CIT(V)}. (2.26)

The irreducible representations of Cl(V') differ by « so they match when each is restricted
to C1°(V). Since Spin(V) C C1°(V), the result holds. O
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An important property of Clifford representations is that we are able to endow it with
an inner product that makes Clifford multiplication skew-adjoint.

Proposition 2.3.10. Let CI(V) — Hom(W, W) be a representation of CI(V'). Then there
exists an inner product (-,-) on W such that Clifford multiplication by unit vectors is
orthogonal. Additionally, with respect to this inner product, Clifford multiplication by any
vector v € V' is skew-adjoint.

Proof. Choose an orthonormal basis ey, ..., e, of V and recall that we can define a group
with these elements and —1 via the presentation in (2.16). Call this finite group G. Choose
an inner product ((-,-)) on W and average it over this finite group. This results in another
inner product on W. That is, we can define a new inner product (-,-) by

(w, w') = @ {{(g-w,g-w')

for w,w’ € W.

We note that the new inner product has a couple of important properties. First, we
have

(€ w, e - w Z gei - w, ge; - w'))

gEG

Z cw, (ge; e w'))

geG
|G|Z g-w,g-w))

geG

= (w,w').

Secondly, we also have

{e; - w,w") \G\Z gei-w,g-w')

geG

Z (gei)ei - w, ge; - w'))

gGG

= |G|Z g-w,ge; - w'))

geG
= —(w,e; - w').
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To check that Clifford multiplication by unit vectors is orthogonal with respect to this
inner product, write a unit vector e as e = > a;e; with >,a7 = 1. For w € W, we
compute

(e -w,e-w) = Zaf(ei cw,e; - w) + Z%%(ei Cw, e w) = Za?(w,w) = (w,w) (2.27)
i ij i
where terms in the second summation vanish as (e;-w, e;-w) = —(eje;-w, w) = (e;ej-w,w) =
—(ej - w, e - w).

To show the skew-adjointness of Clifford multiplication, let 0 #v € V and w,w’ € W.
Using the above we can check that

v v 1

(v-w,w') = <mv - w, Tl w') = W(v cw,v-w') = —(w,v-w'). (2.28)

]

Since the spin group Spin(V') is generated by unit vectors it follows from the previous
proposition that the spinor representation Ay is orthogonal.

Remark 2.3.11. By choosing an appropriate basis for the inner product space V' = R”
we may assume that the inner product space is just R"” equipped with the standard inner
product. It is conventional to suppress the notation by specifying the dimension of the
space V instead of the space V itself. We write

Cl(n) =CL(V), O(n)=0(V), SO(n)=S0(V),

Pin(n) = Pin(V), Spin(n) = Spin(V), A, = Ay. (2.29)

We recall that Proposition 2.2.9 tells us that when the dimension of an inner product
space is at least 3 then its spin group Spin(V/) is the universal cover of its special orthogonal
group SO(V). Let M be an oriented Riemannian manifold of dimension n > 3. We
can consider the principal SO(n)-bundle Pso(M) of oriented orthonormal frames of its
tangent bundle. We define a spin structure on M by extending the universal covering map
& Spin(n) — SO(n) to a manifold setting.

Definition 2.3.12. A spin structure on an oriented Riemannian manifold M of dimen-
sion n is a principal Spin(n)-bundle Pgyi, (M) with a 2-sheeted covering

fi ngin(M) — Pgo(M)
such that £(pg) = £(p)&o(g) for all p € Pspin(M) and g € Spin(n).

If such a structure exists on a manifold M, we say that M is spinnable. A spinnable
manifold with a choice of spin structure is called a spin manifold.

15



An important result regarding spinnable manifolds is the following theorem. We state
it below though the result is not of particular importance in this thesis.

Theorem 2.3.13. Let M be an oriented Riemannian manifold of dimension n. Then M
is spinnable if and only if its second Stiefel-Whitney class wo(M ) vanishes.

Using the spinor representations discussed above, we can define the spinor bundle of a
spin manifold.

Definition 2.3.14. Let M be a spin manifold of dimension n. The spinor bundle
S(M) of M is the vector bundle associated to the principal Spin(n)-bundle via the spinor
representation A,,. That is

S(M) = Pspin(M) xa, W. (2.30)
A spinor field is a section of the spinor bundle.

In the sequel, we omit the M in notation for the spinor bundle when it is clear which
manifold it lies over. We also omit the word field and refer to sections of the spinor bundle
simply as spinors.

From Table 2.1, we have that the Clifford algebras Cl(n) are of the form K(m) or
K(m) @ K(m). Using Theorem 2.3.3 and the fact that there is a linear isomorphism
between the fibre of an associated bundle and its representation, we can compute the rank
of the spinor bundle S. We list these in the table below.

n 1] 2 3 4 5} 6 7 8
Clin) [clu|Hom | HE) | C@) | RES) [ RES) 2 RES) | R(16)
rankS || 2 | 4| 4 s | s | 8 8 16

Table 2.2: Rank of the Spinor Bundle for Low Dimensional Manifolds

We recall that a connection on a Riemannian manifold M induces a unique Ehresmann
connection on the principal SO(n)-bundle Pso(M) of oriented orthonormal frames of T'M.
If M is also spin, we can use the map £ to lift this Ehresmann connection onto one on
Pspin(M). This procedure allows us to define the spin connection on Pspin (M) and on the
spinor bundle.

Definition 2.3.15. Let M be a spin manifold of dimension n > 3. The spin connection
w? on Pepin(M) is the Ehresmann connection obtained by lifting the Ehresmann connection
on Pso(M) induced by the Levi-Civita connection via the map . The spin connection
V*? on the spinor bundle S is the connection associated to the spin connection on Pspin(M).
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We list two important properties of the spin connection in the following proposition
(proofs of these results can be found in Chapter 2 of [LM&89)]).

Proposition 2.3.16. The spin connection V° on the spinor bundle S is compatible with the
metric on S induced by the spin representation as well as with the Levi-Civita connection
on M, that is,
Vx(s,s') = (V5s,s') + (s, Vs') (2.31)
and
V(Y -5) = (VxY) - s+Y - (Vys) (2.32)

for vector fields X, Y € X and spinors s,s" € T'(S).

2.4 Dirac Bundles and Dirac Operators

We can transport the algebraic structures considered above onto Riemannian manifolds.
Since the fibres of the tangent bundle T'M of a Riemannian manifold M are inner product
spaces, it makes sense to construct the bundle of Clifford algebras CI(T M) whose
fibre over a point x € M is the Clifford algebra CI(T,M) associated to its tangent space
T,.M. Additionally we can consider bundles of Clifford modules where the fibre over a
point x € M is a left CI(T,M)-module. We would like to differentiate sections of these
bundles, as such we require a connection on such a bundle. We choose a connection which
satisfies certain compatibility requirements.

Definition 2.4.1. A Dirac bundle S over a Riemannian manifold M is a bundle of
left modules over CI(T'M) equipped with a Riemannian metric and metric compatible
connection satisfying the following conditions:

e The Clifford multiplication of a vector v € T, M on S, is skew-adjoint, that is
(v-s,8") = —(s,v-5); (2.33)

e The connection on S is compatible with the Levi-Civita connection on M, that is
for vector fields X, Y and sections s € T'(.59).

Example 2.4.2. By Proposition 2.3.16, the spinor bundle S of a spin manifold M equipped
with the spin connection V* defined in the previous section is a Dirac bundle.
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When M is compact, the inner product on each fibre of a Dirac bundle induces an inner
product on I'(S) by integrating over the manifold M given by

(s,s/):/M<s,s/>. (2.35)

Definition 2.4.3. The Dirac operator D of a Dirac bundle S is the first order differential
operator on I'(S) defined by the composition

0(S) —— N(T*M®S) —— I(TM ® S) —— T(S) (2.36)

where the first arrow is given by the connection, the second arrow is given by using the
metric to identify 7*M and T'M and the last arrow is given by Clifford multiplication.

With respect to a local orthonormal frame eq,...,e, for the tangent bundle, we can
write the Dirac operator as

Ds=") e;-V;s. (2.37)

7

We have several important properties of the Dirac operator which we summarize in the
following results and definitions.

First, we recall the definition of the principal symbol of a differential operator and the
definition of an elliptic operator.

Definition 2.4.4. Let E and F be vector bundles over M. The principal symbol of
a differential operator L: I'(E) — I'(F') associates each point z € M and each cotangent
vector £ € T M to a linear map o¢(L): S, — S, defined as follows. If L is of order m, we
may write in local coordinates

L=> Au(2)da, &= &du;
where « is taken over all k-tuples of indices with k& < m. The principal symbol is defined

to be
oe(L) = Y Aal(x)é (2.38)

|al=m

Though the principal symbol is defined locally, it is well-defined independent of the choice
of coordinate chart.

The operator L is said to be elliptic if o¢(L) is an isomorphism for each & # 0.
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The principal symbol satisfies the following identity under compositions of differential
operators (see [Nicl13]). If £, E’, and E" are vector bundles over M and L,: I'(E) — T'(E'),
Ly: T'(E") — T'(E") are differential operators, then for any cotangent vector £ € T M, we

have
O‘g(LQLl) = Og(LQ)O'&(Ll). (239)

We use this identity in the proof of the following lemma.

Lemma 2.4.5. The Dirac operator D of a Dirac bundle S is elliptic, as is its square D?.
More specifically, for any & € Ty M, we have

oe(D) = & (2.40)
o¢(D?) = —|1€|I* (2.41)
Proof. Pick local coordinates centered at x. For any local trivialization of S with these

coordinates, we have V; = 0; + zeroth order terms. Then using the local description of D
given by (2.37), we get that at = we have

It then follows that o¢(D) = ), &e;- = &-. By direct calculation, we also see that

0¢(D?) = 0¢(D)oe(D) = & - & = —[I¢]I*.
O

Proposition 2.4.6. The Dirac operator D of a Dirac bundle S is formally self-adjoint.
That is, for compactly supported sections s,s" € T'(S),

(Ds,s') = (s, Ds"). (2.42)

Proof. We use a local orthonormal frame {es,...,e,} such that V,e; = 0 at the point p to
compute that, at the point p, we have

(Ds, sy — (s,Ds') = Z(ei Vs, — (s,e;- V;s')
= Z i(ei-5),8) —((Vie)) - 5,8) + (e; -5, V;5)
= Z (e s) + (e; - 5, V;s')
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where w is the 1-form given by w(X) = —(X s, s’). By the divergence theorem, the integral
over all of M will vanish, proving the result. O]

2.5 The Twisted Dirac Operator

As noted in Example 2.4.2 of the previous section, the spinor bundle S of an n-dimensional
spin manifold M is a Dirac bundle. We may embed S into the bundle T*M ® S of spinor-
valued 1-forms via the map ¢t: S — T*M ® S defined by

t(s) = —% Z e; ® le; - s] (2.43)

%

for a spinor s where the e; form a local orthonormal frame. The factor of % is chosen such
that the map p given by Clifford multiplication defines a left inverse for . That is, for a
vector field X and a spinor s,

w(X ®s)=X-s, (2.44)
so, we have that
1 1 1
pou(s)=pu(— Z —6;®[e-s])=—— Z e (e;-s) =——(—ns) =s.
—n n < n
We get a decomposition
T*M®S:S% @S% (2.45)

of this bundle where we identify S1 = S with its image under ¢ and set Ss = ker . We call

these spaces Sl and Ss the spaces of 5-spinors and §-spznors and denote the projections
onto them by pr1 and prs respectively. One can see that pri=cop and prs = id —cop.

We can use the Dirac operator D on F(S% ) to define the twisted Dirac operator
Dr:T*M ®S — T*M ® S which is given by Dy = (id ® p) o V. Locally on decomposable
elements, we have

Dr(X®s)=X®Ds+ Y ViX®][e;s]. (2.46)

The twisted Dirac operator can be split up with respect to the decomposition 7"M ® S =
S1 ®Ss (see [HS19] and [Wan91]). Doing so results in the block matrix form

Zn,0Dop 20 P*
Dr=1]" , (2.47)

“Pop Q
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where P: F(S%) — T (S%) is a first order differential operator called the Penrose or

twistor operator defined by P = prs oV. Its adjoint P*: F(S%) — F(S%) can be written
as

P'(3) = ~ Y (Vid)(en).
The operator Q: F(S% ) — F(S% ) is called the Rarita—Schwinger operator and has

importance in physics (see [AGW84] and [Wit85] for example). In addition to D being
self-adjoint, the operators Dy and () are also self-adjoint.
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Chapter 3

Preliminaries on Go-Structures

In this chapter, we introduce the group G5 by first considering algebraic structures on
the imaginary octonions. We then generalize these notions to the tangent space of 7-
dimensional Riemannian manifolds to form Ga-structures. Our conventions in this section
are consistent with that of [Kar09], [Kar20], and [KKLL], which were the main sources for
this chapter. Other sources for Go-geometry include [Bry87],[Bry06], and [Joy00], although
their sign conventions run opposite to the ones used here.

3.1 Structures from the Octonions

Let O denote the normed division algebra of the octonions. As a vector space, we may
identify O with R3. We recall that the real octonions Re @ are the real span of the multi-
plicative identity 1 and that the imaginary octonions Im O are the orthogonal complement
of Re O with respect to the inner product (-,-). This gives us the orthogonal splitting

0O=ReO0O®ImO
and we have the congugation operator on O defined by
a=Rea—1Ima (3.1)

where Re and Im denote the orthogonal projections onto Re@ and Im O respectively.
We define two other operators, the commutator [-,-]: O x O — O and associator
[,]: OxO0Ox0— 0, by

la,b] = ab — ba, a,be O, (3.2)
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[a,b,c] = (ab)c — a(be), a,b,c e Q. (3.3)
Since the octonions are neither commutative nor associative, these operators are non-zero.

In order to define the cross-product and the associative and coassociative forms, we
require several identities and lemmas and state them without proof. (For the proofs of
these results see Section 3 of [Kar20].) The following results hold more generally for
normed division algebras, however, since we are particularly interested in the group G5 we
will continue to use notation specific to the octonions Q.

Lemma 3.1.1. Let a,b,c € Q. Then the following identities hold

(ac, be) = (ca, cb) = ||¢|* (a,b), (3.4)
(a.be) = (az. 1), .
(a,cb) = (ca,b),
ab = ba. (3.6)
Lemma 3.1.2. Let a,b € Q. Then we have
{a,b) = Re (ab) = Re (ba) = Re (ba) = Re (ab) (3.7)
and
la||* = aa = aa. (3.8)
Further a® = aa 1is real if and only if a is either real or imaginary.
Lemma 3.1.3. Let a,b € Q. Then we have
(ab)b = a(bb) = ||b||* a = a(bb) = (ab)b (3.9)
a(@b) = (aa)b = ||al|*b = (aa)b = a(ab). '

Using these identities, we are able to prove certain important properties involving the
commutator and associator and their restrictions to the imaginary octonions.

Proposition 3.1.4. The commutator and associator are both alternating.

Proof. 1t is clear from the definition of the commutator that it is alternating. Since O
is an algebra over R, one can see that the associator will vanish if one of the arguments
is completely real. Hence we only need to consider the case where all its arguments are
imaginary.
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Let a,b € ImQ. Then we have @ = —a and b = —b. Using (3.9), we see
—la,a,b] = la,a,b] = (aa)b — a(ab) = 0.
Similarly, we have ~ ~ ~
—la,b,b] = [a,b,b] = (ab)b — a(bb) = 0.

This shows that the associator is alternating in its first two and last two arguments. To
check the first and third arguments, we see [a,b,a] = —[a,a,b] = 0, so the associator is
alternating. O

Lemma 3.1.5. Ifa,b,c € ImQ, then [a,b] € ImQ and [a,b,c] € ImO.

Proof. Using (3.5), we can compute that
([a,b],1) = (ab — ba, 1) = (b,a) — (b,a) = 0.

This shows that [a,b] € Im Q. Similarly, since b, c are imaginary, we have b= —b and
€= —c 50 (3.6) tells us that bc = ¢b = (—c)(—b) = cb. Hence we see that

([a,b,c],1) = ((ab)c — a(bc), 1) = (ab, ) — (bc, @)
= —{ab, c) + (bc,a) = —(a,cb) + (a,bc) = {(a, cb) + {a, bc)
= {a,cb+ be) = (a, be + be) = 2(a, Re (be)) = 0.
This finishes the proof. O

The next proposition shows that we can use the commutator and associator in conjunc-
tion with the inner product to define multilinear forms on the space of octonions.

Proposition 3.1.6. Let a,b,c,d € Q. The expressions {(a, [b,c|) and {(a,[b,c,d]) are alter-
nating.

Proof. Proposition 3.1.4 tells us that the commutator and associator are alternating so it
suffices to show that (a,[a,b]) = (a,[a,b,c]) = 0. The identities in Lemma 3.1.1 give us
that
2 2
(a,[a,b]) = (a,ab—ba) = [la]" (1,b) — [[a[|" (1,b) =0

and that
(a,[a,b,c]) = (a, (ab)c — a(be)) = (aE,ab) — ||a||® (1, be)
= [lall” (¢,0) — llall* (¢,0) = 0
as desired. ]
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The above allows us to define the associative 3-form and coassociative 4-form on the
imaginary octonions.

Definition 3.1.7. Define a 3-form ¢ and a 4-form ¢ on Im O by

o(a,b,c) = %(a, b, c]) = %([a,b],c}, a,b,c € ImO (3.10)

1 1
P(a,b,c,d) = §<a, [b,c,d]) = —§<[a,b, c, d), a,b,c,d € ImQ. (3.11)
The form ¢ is called the associative 3-form and the form v is called the coassociative

4-form.

Identifying O with R® and Im @ with R7, we are able to define a cross-product akin to
the one on R3.

Definition 3.1.8. We define the octonionic cross-product x: ImQ x ImQ — ImQO

to be the bilinear map given by
a x b= 1Im (ab). (3.12)

This cross-product shares several properties with the familiar cross-product in 3 dimen-
sions.

Lemma 3.1.9. Let a,b € ImQ. Then we have

axb=-bxa, (3.13)
(a x b,a)y =0, (3.14)
Re (ab) = —(a,b)1. (3.15)

Lastly, we have a couple of nice relations between ¢, ¥, and x (see [Kar20] for more
details.)

Proposition 3.1.10. Let a,b,c € ImQ. Then

o(a,b,c) = {(a x b,c) = (ab,c), (3.16)

0 x (bx¢) = —{a,b)c + {a, )b — %[a, b = —(a,b)e+ (@, b+ (b(a,be, ) (3.17)

where of denotes the vector dual to o with respect to the inner product.
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3.2 The Group G,

The previous subsection defined several structures on the imaginary octonions Im @. By
making the identification ImQ = R”, we can describe the standard Gy-structure on R7.
The ingredients needed to do so are:

e the standard Euclidean metric gy,

e the standard volume form py = e! A --- A €7 associated to gy and the standard
orientation, where e',--- ,e” is the standard orthonormal basis,

e the associative 3-form g,
e the coassociative 4-form ),

e the octonionic cross-product xg.

By using the standard dual basis on (R7)* and the octonionic multiplication table we
can write ¢y and ¢y as the sum of decomposable forms. In particular, we get

123 167 527 563 415 426 437 (3 18)

__ 4567 4523 4163 4127 2637
tho = 19T — (19 A0S _ (13T _ 2007 _

61537 o 61526, (319)

where we have written €% = ' A el A e* and e = e’ A el A eF A el. From the above
equations, we see that 1y = %gpo where xo denotes the Hodge star operator induced from
the metric go and the volume form .

€ € €

We use this standard structure on R7 to define the group Gs.

Definition 3.2.1. The group G is the subgroup of GL(7,R) that preserves the standard
G-structure on R”. Symbolically, we have

Gy ={A € GL(T,R) | A*go = go, Ao = pto, A*po = o, A™bg = by, A" X = Xo}.
(3.20)

Firstly, we note that we can simplify the above definition since certain components
of the standard Gs-structure are defined in terms of others. In particular, the metric g
and the volume form gy determine the Hodge star operator xo which then, along with the
associated ¢ determines the 4-form 1y from the relation 1y = *opo. Additionally, (3.16)
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shows that the cross-product X is also determined from the metric gy and the 3-form .
Hence we can write

G2 = {A € GL(?, R) ’ A*go = Qo, A*/LQ = Mo, A*(,OO = 300} (321)

We also note that since GGy preserves both the metric and orientation, it is a subgroup
of SO(7,R). A theorem found in [Bry87] tells us that we can simplify this definition even
further.

Theorem 3.2.2. Let A € GL(7,R). If A preserves g, then A also preserves gy and pig.
In particular, Gy = {A € GL(7,R) | A*py = ¢o}.

Proof. Using the expression for ¢q given by (3.18), direct computation shows that for
a,b e R7
(a 3¢o) A (b wo) Ao = —6go(a,b)uo. (3.22)

If A preserves g, then by applying A* to both sides of the above equation and scaling we
see that

go(a, b)(det A)po = gola, b) A* g

= —%A*(a Jg) N A*(b o) N A
= —%(A_la 3 A% o) A (A7 0 A*pg) A A% (3.23)
= —%(Ala J) A (AT 1) A o
= go(A " a, A7'b) g
= (A_l)*g(aab)lio-
Hence (det A)go(Aa, Ab) = go(a,b). Looking at the matrices associated with these oper-
ations we have gy = (det A)ATgyA. We take the determinants of both sides to get that

det g = (det A)? det go. It follows that det A = 1 and so A*gy = go. Equation (3.23) then
says that A*ug = po. m

3.3 (G9-Structures on Manifolds

In this section, we move the Go-structure defined above on R” onto a smooth 7-dimensional
manifold.

27



Definition 3.3.1. A G,-structure on a smooth 7-dimensional manifold M is a smooth
3-form ¢ on M such that at every x € M, there exists a linear isomorphism T, M = R”
with respect to which o, € A3(T M) corresponds to the associative 3-form oy € A3((R7)*).

Since ¢y induces both go and pg, the 3-form ¢ on M induces a Riemannian metric g,
and a Riemannian volume form p, on M. In turn, these determine a Hodge star %, and
the coassociative 4-form 1, = x,p. We often omit the ¢-subscript when discussing ¢ and
its associated structures.

As such, if ¢ is a Go-structure then at every point x € M, there exists a basis {eq, ..., er}
of T, M with respect to which ¢, = ¢¢. In general, this can only be done at a single point.
We cannot choose a local frame on an open set with this property.

Not every smooth 7-dimensional manifold admits a Ga-structure. A G-structure is
equivalent to a reduction of the structure group of the frame bundle of M from GL(7,R)
to G5. This means that the existence of a Go-structure is dependent on the topology of
the manifold. The following result characterizes which manifolds admit such a structure

(see [LM89]).

Proposition 3.3.2. A smooth T-dimensional manifold M admits a Gy-structure if and
only if M s orientable and spinnable or equivalently if its first two Stiefel-Whitney classes
wy (M) and wy (M) vanish.

There are several important identities which will be used heavily throughout this thesis
involving contractions of the tensors ¢ and ¥ with each other. We list them below without
proof. Details discussing their derivations can be found in [Kar(09].

Theorem 3.3.3. In local coordinates on M, the tensors g, @, and i) sastisfy the following
relations:

Contractions of @ with p:

PijkPabk = Giagjb — GibGja — %’jab, (3-24)
YijkPajk = 6ia, (3-25)
Pijkpijr = 42. (3-26)

Contractions of ¢ with :

(pijkwabck = GiaPjbe + GivPaje + GicPabj — GajPibe — 9bjPaic — YejPabis (327>
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%’jkwabjk = —4Qiqp, (3-28)

Qpijkwaijk =0. (329)
Contractions of 1 with 1:
¢ijkl¢abkl = 4giagjb - 4gibgja - 2¢z’jab, (3-30)
Vijkiajrt = 24Gia, (3.31)
Vijrijr = 168. (3.32)

3.4 Decomposition of Forms on Manifolds with G-
Structure

On a manifold M with Go-structure o, the bundle A (T*M) = &7 _, A*(T*M) decomposes
fibrewise into irreducible representations of the group Gs. This gives a decomposition of
the space Q% of smooth k-forms on M. These decompositions of the spaces of 2, 3, and
4-forms on a manifold M with Gs-structure will be important as they are closely related
to the space of 2-tensors on M. The identities proven in this section will be especially

useful when we study the bundle of spinor-valued 1-forms on M due to the identification
T"M@S=T*Me& (T*"M @ T*M).

Theorem 3.2.2 has shown that each tensor that can be determined by the 3-form ¢ will
be invariant under the group Gs. As such, any subspaces of QF defined using ¢ and its
associated structures will be G5 representations. In particular, the space ¥ decompose
non-trivially into (G5 subrepresentations as follows:

P=Fe0, P=0een;,

(3.33)
V=QoRo, =000,

The spaces 2 of k-I-forms have pointwise dimension / and the decomposition is orthogonal
with respect to the metric g. Further, the decompositions of Q* and ° are obtained by
taking the Hodge star of those of Q23 and Q2 respectively.

Invariantly, we can describe the decompositions of Q2 and Q3 by
P ={X_Jp|XeXx} (3.34)
Ol ={BeQ®|BAY=0}, (3.35)
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Of ={fe| feC*(M)}, (3.36)
Q= {X v | X ex), (3.37)
BGr={re@yAp=9Ay=0}. (3-38)

3.4.1 Decomposition of 2-Forms

There exist alternate characterizations of the subspaces shown above. We begin with the
subspaces of Q2. Consider the map P: Q2 — Q2 given by PS3 = 2* (¢ A 3). Write 3 in
local coordinates as 3 = %/Bijdxi A dx?. Then we have

Pﬁ = 6@‘ * (d.l’Z N dx’ A QO) = 6@]81 ] *(dl’j A 90)
1
- _61'3‘81' _| 8j d*p = _51'3' (§¢jzkldl‘k VAN dl’l)
1
= §ﬁijwijkldl'k A drt.
So if PB = 1(Pp);jda’ A da?, we have

(PR = Bijtijm- (3.39)

Using the inner product on 2-forms induced by g, we see that

(PB,B) = %5ij¢ijkl§kl = (8, Pp). (3.40)

Hence P is self-adjoint and thus orthogonally diagonalizable with real eigenvalues. Com-
puting P? in coordinates gives
(P?B)ar = (PB)utriab = Bijijrtbriay
= Bij(49ia9ip — 49950 — 2Vijab) = 4Bab — 4Bpa — 2BijVijab
= 8ﬁab - Q(Pﬁ)ab-

We see that the operator P satisfies P? = 8] —2P. Factoring this gives (P+41)(P—2I) =0
so P has two eigenvalues, —4 and +2. We now verify that these eigenspaces correspond to
the spaces Q% and Q3, defined earlier.

Proposition 3.4.1. The following descriptions of Q2 and Q3, hold:
0 = {8 € Q| PB=—4p}, (3.41)
02, = {ge Q| PB=28). (3.42)
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Proof. Let X € X and consider the 2-form = X 1 ¢. Direct computation using (3.28)
yields
(Pﬁ)kz = ﬁijwijkl = Xm@mijwijkl = —4X0mu = —4Bu.

Conversely, suppose 3 satisfies ;1 = —48k. Define a vector field X by X,,, = %ﬂklgomkl.
We compute using (3.24) that

1 1
(X 29)ij = Xonpmij = éﬂkmmkzwmm = Eﬁkz(gikgﬂ — GGk — Vijkl)
1 1 1 1 1 4
= gﬁz‘j - éﬁji - éﬁkﬂ/}klij = éﬁz‘j + éﬁij + éﬁzj = Bij-

This proves the first relation.

For the second relation, suppose that 8 A ¢ = 0. In local coordinates, this becomes
1 , , 1 ‘
0=0BAY = §Bijdxl Adz? N = —5@3- * (0 A x(da? N )
1 1
= —551] * ((")Z _ 3j _ *w) = —5 * (6”81 _ 6j J (,0)

Since the Hodge star is an isomorphism, it follows that this is equivalent to [5;;®;jm =
0. Next, since the eigenspace decomposition is orthogonal, it follows that if PS = 20,
then 3;;X,,mi;j = 0 for each vector field X. Hence B;;pijm = 0, giving one side of the
equivalence. Conversely if 5;;pim = 0, (3.24) gives that

BijVijab = Bij(GiaGjp — GibGja — LijkPabk) = Bab — Boa = 28ab
as desired. ]

As corollaries of the above, we have the following equivalences in local coordinates,
as well as expressions for the projection operators pr; and pry, from Q? onto Q2 and Q?,
respectively. We write 8; = pr,3 and f14 = pry,3 for 8 € Q%

Corollary 3.4.2. Let § = %b’ijdxi Ndxz? € Q2. The following equivalences hold:
BeEW <= Bijliu = —40u = Bij = Xrpijk, (3.43)
B e <= Bijtiu=20u <> Bijpijm = 0. (3.44)
Furthermore, we have that

1
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Corollary 3.4.3. Let 3 = 13;;dx’ Ada? € Q*. Then
1 1 1/1 1
Br = 55 — 67)/3) =5 <§ﬁkl - gﬁijlbijkl)dﬂik A dat, (3.46)

2 1 1/2 1
Pra = gﬂ + 6735 =3 (gﬁkl + gﬁiﬂbz’jkl) da® A da. (3.47)

We have one other important relation pertaining to 2-14-forms.

Lemma 3.4.4. Let f = $f;;dz’ Nda? € Q3. Then
ﬂamgpmij = ﬁim@omaj - Bjmgpmai' (348)

Proof. Since 8 € O3, we have that S = 3BuUkiam- Using Equations (3.27) and (3.44),
we compute that

1

BamPmij = §5k11/1k1am90mij

1
= Q@kz(gm@jla + GitPrja + GiaPrl; — GkjPila — 91 Phia — Gaj Phii)
B 1
2

= ﬁim(pmaj - ﬁjm(;pmm*

1 1 1
Bitpjla + 551%'901@ - éﬁjz%z@ - §5kj90km

3.4.2 Decomposition of 3- and 4-Forms

We now turn our attention to the decomposition of the spaces of 3- and 4-forms on man-
ifolds with Gs-structures which we analyze using maps from the space of 2-tensors to the

spaces of 3- and 4-forms. The methods and notations presented here are largely taken from
[KLL].

Using the orthogonal decomposition of 22 from the previous section, we can decompose
the space T2 of 2-tensors further as

T =00 82020, (3.49)
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With respect to this splitting, we can write a 2-tensor A as
1
A:A1+A27+A7+A14 = ?(trA)g+A27+A7+A14. (350)

By using the coordinate expression of the operator P in (3.39), we can extend it to all of
T2 by setting

We can see that ker P = 8% and from the discussion above, we get

1
P <?(tr A)g+ Aor + A7 + AM) = —4A; +2A,. (3.52)

We look at ways to obtain 3- and 4-forms from a 2-tensor. Given a 3-form v € Q3, a
4-form n € Q* and 2-tensor A € T2, we define a new 3- and 4-tensor by

(Ao Y)ije = AimYmjk + AjmVimk + AkmVijm- (3.53)

and
(Aon)ijrt = Aimmjrt + AjmMimit + AemDigmi + AimDijm- (3.54)

Routine calculations show that A<~ and A<on are skew in each of their indices. Using the
3-form ¢ and the 4-form 1, this gives us linear maps 72 — Q2 given by A — A ¢ ¢ and
T2 — Q* given by A — A o). We also note that the definitions above are such that

Aoy = Aydx' A (0; 1) (3.55)

and '
Ao n= Aijdl'l AN (8] J ?7) (356)

Proposition 3.4.5. Let A, B € T2. Then we have
9
(Ao, Bog) = ?(tr A)(tr B) 4+ 2(Ag7, Bay) + 6(A7, By) (3.57)

and
(Ao, Bo) — 1—76(tr A)(tr B) + 2(Asg, Bas) + 6(Aq, Br) (3.58)
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Proof. We note that each of p, Aoy, and B¢ @ are skew-symmetric in their indices. Using
this, (3.24) and (3.25), we compute that

1
(Aop,Boy) = 6(14 ©©)ijk(B © ©)ijn

1
= E(Aimgpmjk + AjmPimk + AemPijm) (B © ©)ijk

3
= gAimSOmjk(B O ©)ijk

1
= §Aimsﬁmjk(3il@ljk + Bjipik + Bripiji)

1

2
= §AimB¢190mjk<Pljk + §Az‘mle90mjk90ilk

1
= §AimBil(69ml> + Aim Bji(Gmigit — 9migji — Umjit)

= 3(A,B) + (tr A)(tr B) — (A, B) — (PA, B)
= 2(A, B) + (tr A)(tr B) + 4(A7, B) — 2(Aw4, B).

Using the orthogonality of the decomposition (3.49), we can expand the above to get

2
(Aop,Boyp) = E(tr A)(tr B)(g, g) + 2(Aar, Bor) + 2(Az7, Br) + 2(A14, Bia)

+ (tr A)(tr B) + 4(A7, Br) — 2(Au, Buy)
= g(tl‘ A)(tr B) + 2<A27, B27> + 6<A7, B7>

as desired. The second identity (3.58) is proved in a similar manner. O

We get the following as a corollary to the above proposition.

Corollary 3.4.6. A 2-tensor A is in Q2, if and only if Aop =0 if and only if Ao = 0.
Furthermore, when restricted to the orthogonal complement of Q2,, the map A — Ao
defines a linear isomorphism onto 2 and the map A — Aot defines a linear isomorphism
onto Q.

Proof. If A € Q32,, then A = Ay, and so Proposition 3.4.5 tells us that |A o > = 0.
Conversely, if Ao =0, then |A o ¢|? = 2(tr A)* 4 2| Ayr|* + 6]A7]* = 0. It follows that
A € 03,. From this, we see that the map A — A ¢ is injective on 8% @ Q2. Similarly, the
map A — Ao is injective. By counting dimensions, we see that each of these spaces are
(pointwise) 35-dimensional, hence the maps are isomorphisms. O]
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The above results establish orthogonal decompositions of the spaces 23 and Q*. We
verify that this decomposition matches that of the one given in (3.36), (3.37), and (3.38).

Proposition 3.4.7. The following descriptions of Q3, Q3 and Q3. hold:

QB ={Aop| AcQ, (3.59)
QB ={Aop| Ac i}, (3.60)
Q. ={Aop| Ac S} (3.61)

Proof. The first equivalence holds since if A € Q° then A = fg for some f € C*(M),
and so Ao p = f(go¢) = 3fp. To see the second equivalence, suppose A € Q% so
A;j = Xnpmi; for some vector field X. Using (3.24) we can compute that

(Ao ©)ijk = AimPmjk + AjmPimk + AkmPijm
= Xi10timPmjrx + Xi0rjmPimk + X1QtkmPijm
= Xl(gljgz’k — GikGij — wlz’jk) + Xl(glkgji — 91igjk — ¢1jki)
+ Xi(91i9x; — 919k — Vikiz)
= X9k — Xigij — Xivuje + Xigij — Xigin — Xiuge + Xigin — X596 — Xiujk
= =3Xiije = —3(X 29))iji
The calculations above also show that if v = X 4 for some vector field X, then v =

—%(X 4 @) o p. This gives the second equivalence.

Next, let A € S @ Q2 be a 2-tensor. We can calculate that
7

*[(Ao ) A gl = (Ao ), (de’ Adx? Ada® A )
= — (Ao Q)i 2 *(dx? A da* A )
= — (Ao Q)0 1 0; 1x(dx™ A @)
= (Ao )ijr0; 10; 10, 19
= (Ao @)ijrthpadr’
=—(Ao @)ijkwijkldﬂﬂl-

Plugging in our expression for (A ¢ ¢);;, we get

— (A0 Q)ijklijki = —AimPmjrVijkt — AimPimkVijkt — Akm@ijmVijki
= 4Azm§0m1l + 4Ajm90mjl + 4Akm90mkl
= —12A;5045,
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and so (Ao @) A p =0 if and only if A is symmetric.
Similarly, we compute that
*[(Ao @) ANY] = (Ao @)y * (dz' Ada? A da® A )
= (Ao )i 3 x(dx? A da® A )
= — (Ao p)x0; 1 0; J*(dz® A1)
=—(A0v)ijx0i 10; 10, J
= — (A Q)ijrPrji
= (A ©9)ijrpijh-
Substituting in our expression for (A ¢ ), again, we get
(A0 @)ijrpijh = AimPmikPijk + AjmPimkPijk + AkmPijm Pijh
= 6A;; +6A,; + 6A
= 18tr A,

hence (A< ) Ay =0 if and only if A is traceless.

]

Since we can obtain a decomposition of Q* from that of the one on Q3 via the Hodge

star, we have the following as well:

Corollary 3.4.8. We have an orthogonal decomposition of Q* = Qf ® Q1 & Q3 where

M =0 ={fo|feC®(M)}={Aoy|AcQ’}, (3.62)
QG =xB={XNp|XeX}={Aoy | Ac O3}, (3.63)
Qe =0, = {n € Q* | xn A =*n Atp =0} (3.64)

Proof. As in the proof of Proposition 3.4.7, we notice that if A = fg, then Aoy = 4fy

and that if A = X 1 then

(Ao V)i = AimUnjir + AjnVinkl + ArnWijni + Aimijin
= Xon@minUnjki + Xon@mjnVinki + X @minWijnt + Xon@minPijkn
= = Xon(GmjPikt + GmkPjit + GmiPiki — 9ijPmkt — JikPimi — GilPjkm)
+ X (Gmi@jrt + GmkPijt + GmiPik; — 9jiPmkt — GikPLimi — Gj1Pikm)
— Xon(gmiPrji + Gmi ikt + GmiPijk — GkiPmjt — GkjPiml — JeiPijm)
+ X (Gmi0iik + GmjPitk + ImkPiji — GiPmik — 91 Pimk — JikPijm.)
= 3(Xiojr — Xjoim + Xipiji — Xiijk)
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and so A ¢ is some non-zero scalar multiple of X A .

Now, let n € 2. We have that n = A1) for some 2-tensor A € 8 @ Q2. We compute
that

*(kn AY) = (n, )
B 1
24
B 1
24
1
= 4tr A.

NijkiVijkl

(AimWVmjriVijk + AjmVimaVijk + AkmWijmiiji + AimVijemWijr)

Using (3.55) and (3.56), we have

*x(Aow) = *(Aijdﬂ A (05 21))
= —AU@ _ *(8j | 1/})
= AU& | (dl“] VAN (,0)
= A;;(0; 2da?) A — Agida? A (0; 1)
= (trd)p — AT o o,

where Ag; = Aj;. Taking the wedge product with ¢ then gives
K(Aop) Np=(trA)p A — (AT op) Np=—(ATop) A

From the above and by the proof of Proposition 3.4.7, we see that xn A ¢ = 0 if and
only if A is traceless and that xn A ¢ = 0 if and only if A is symmetric. m

We end this section with explicit descriptions of the inverses of the maps A — Ao ¢
and A — Ao

Lemma 3.4.9. Let A € 8 ® QF and write A = L(tr A)g + Asr + A7, Then

18
(A ©©)ijkPajr = 7(“ A)gia + 4(As7)ia +12( A7)k (3.65)

and
96
(Ao vV)ijmbajm = 7(’“ A)gia + 12(Ao7)ia + 36(A7)iq- (3.66)
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Proof. Direct computation using the contraction identities (3.24) and (3.25) and the ex-
pression (3.52) for the operator P yields

(Ao Sﬁ)ijk%g‘k = (Aim@mjk + AjmPime + Akm%‘jm)%jk
= AimPmikPajk + 2AimPimkPajk
= Ain(69ma) + 2450 (GiaGmj — 9ij9ma — Vimaj)
= 6Aiq + 2(tr A)gia — 2450 — 24 Vimia
=4A;, +2(tr A)gis — 2(PA)i,

= 4(%(11 A)gm + (A27)ia + (A7>ia) + Q(tl" A)gm — 2(_4(A7)ia)

18
= 7(tr A)gia + 4(A27)ia + 12(A7)ia-

Similar computations yield the second identity. O

Corollary 3.4.10. Let v € Q* andn € Q. Then v = Ao and n = B o) for some
unique A = 1(tr A)g + Asr + A7 and B = %(tr B)g + Bar + B;. Define the 2-tensors - ¢
and n -y by

(V- ¢)ia = YijkPajk

and
(77 : w)z‘a = ﬁijkl@/)ajkz
then
tr A = 1 tr ( )
r - 18 r ’y 90 )
1 1
(A27)ia = 5((7 - @)ia + (V- P)ai) — 55t (7 ©)Gias
8 28
1
(A7)ia = ﬂ((ﬁ “©P)ia = (V" P)ai)-
and

1
tr B = —tr (1 -
r 96r(n V),

(Bada = 57(00 D)o+ 01 0)ad) = 53t (0 V)i
(B7>ia - %((7] : l/f)m - (77 : Q/J)zzi)‘
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Proof. We compute using the expression in (3.65)

1 1 18
Etr (v-p) = 1—8(7(tr14)7) =trA

to show the first equality. Using the symmetry of g and As; and the skew-symmetry of A
we get

1 1 6 1
o : ia ' ai__t : ia:__tAia 8(A ia——lStAia
(7 @ia + (v 9)ai) = 55t (v 9)gia = S (= (tr A)gia + 8(Azr)ia) — 52 (18(tr A)gia)
9 9
= ﬁ(tr A)Gia + (A27)ia — ﬁ(tr A)gia = (A27)ia,
as well as ) .
527 ®)ia = (v 9)ai) = 5 (24(Ar)ia) = (Ar)ia-
Similar computations yield the analogous results involving B. O]

3.5 Torsion of a Gy-structure

We recall that a Ga-structure on a 7-dimensional smooth manifold is a 3-form ¢ which
determines a Riemannian metric g. Using the metric, we can look at its Levi-Civita
covariant derivative V. In particular, the tensor Vi € T'(T*M @ A3T*M) is of heavy
importance in Gy-geometry.

Definition 3.5.1. A Gs-structure is said to be torsion-free if Vo = 0. We note that
the equation V¢ = 0 is a fully non-linear first order partial differential equation since the
metric g depends non-linearly on the 3-form .

We have the following important observation about the Levi-Civita covariant derivative
of a Gs-structure.

Theorem 3.5.2. Let X € X be a vector field on M. Then the 3-form Vxp lies in 23.

Proof. Let A = %(tr A)g + Ao+ A7 be a 2-tensor on M. We compute the inner product of
Aoy and Vxo.

1
(Ao, Vxp) = 6(14 ©©)ijik(Vxo)ijn

1
= E(Aim(pmjk + Ajm@imk + Aem@iim) Xi(Viiji)

1
= EAimSOmijl(Vl%jk)-
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Since ¢ is parallel with respect to V, taking the covariant derivative of (3.25) gives that

(Vl@ijk)@pmjk = —SOijk(VlSOmjk)

and so the expression (V;@;k)@mjr is skew in m and i. It follows that the symmetric part
of A does not contribute to the inner product and so Vx¢ is orthogonal to each element
of O} @ Q3. O

From (3.37), we have that each Q3-form is of the form X 1 for some vector field X.
This allows us to define the torsion tensor.
Definition 3.5.3. Let X be a vector field on M. We can write
Vxp=T(X) 19
for some vector field T'(X) on M. Hence there exists a 2-tensor 7" such that
Vivijk = TimUmijk- (3.67)

The tensor T is called the full torsion tensor of .

Contracting (3.67) with ¢ on three indices allows us to obtain an expression for 7'

1
Ty = ﬁ(vl@ijk)wmi]’h (3.68)

Equations (3.67) and (3.68) show that Vi = 0 if and only if 7' = 0. Hence ¢ is torsion-free
if and only if 7= 0. Since T is a 2-tensor, we can decompose it using (3.50) as

1

We have the following theorem of Ferndndez and Gray [FG82] which gives another
characterization of torsion-free Go-structures.

Corollary 3.5.4. A Gs-structure @ on M is torsion-free if and only if ¢ is closed and
co-closed or equivalently, both ¢ and v are closed.

Proof. We first recall that dy = dx o = — xd*p. Since the Hodge star is an isomorphism,
we get that dip = 0 if and only if d*¢ = 0. Additionally, we note that every parallel
form is both closed and co-closed, so it only remains to prove the converse. Since dy and
d*p are both linear in Vi, both are linear in 7" as well. We can decompose the spaces
O =0l ® Qo QL. of 4-forms and Q2 = Q2 @ O3, of 2-forms and so it follows that the
independent components of dy and d*¢ correspond to the components of T" up to scaling.
Hence if ¢ is both closed and co-closed, we must have T = 0. O
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Remark 3.5.5. Though it will not come into play in this thesis as we will largely be
considering the torsion-free case, we note that the decomposition (3.69) gives rise to 16
classes of Gg-structures, determined by whether each component of T' is either zero or
non-zero.

We would like to determine the relation between the torsion tensor 7" and the Rieman-
nian curvature tensor R of a Gy-manifold. As such, we collect several identities involving
both for later use. We start with the “Gy Bianchi identity” from [Kar09].

Theorem 3.5.6. The following identity holds:
1
ViTlsy — VT, = Ti TjpPark + §Rz‘jab%bk- (3.70)

Proof. We take the covariant derivative of the identity (3.24) and use (3.67) and (3.27) to
get that

Viijab = — Vi (QijkPabk)
= —(Vm%jk)s%bk - SOijk(VmSOabk)
= _Tmpwpijk(pabk - Tmp%abk(ﬁijk
= ~Top(JapPrij + JaiPpbj + JajPpib — JpbPaij — JibPpaj — GjbPpia)
— Top(GipPiab + GiaPpjo + GibPpaj — IpjPiab — JajPpib — GbjPpai)
= —Tna®ijp + TvPija — TmiPabj + LmjPabi-

(3.71)

Next, we take the covariant derivative of (3.67) and substitute in the above to get

ViVipije = Vi(Tonptpijr)

= (vlep)wpijk + Tmp(vlwpijk)

= (ViTnp)pi + Top(=Tippisn + Tiisppin — Tijopin + Tinppis )-
We can then apply the Ricci identity to (V,V,, — V., V)i to get

— RimiaPajk — RimjaPiak — RimkaPija
= (vlep - valp)wm’jk + (TmpTli - Tlmei)Sppjk (3.72)
(TipTing — TinpTis) opie + (LinpTik — TipTonk ) Ppis-
By contracting both sides with v on the indices i, j, and k, we get
— RimiaPajkVqijk — RimjaPiakVeijk — RimjaPijaqijh
= _leia(_490aqi) - leja(_490aqj) - leka(_4§0aqk)
= 12 RimiaPqia
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and
(ViTop — Vi Lip) UpijeVaijie + (LopLii — TipToni) PpikPaije
+ (T T — TrnpTiy) pintaije + (LrnpTie — Tip Tk ) Ppijaisi
= (ViTop — Vi Tip) (249pq) + (TnpTii — TipToni) (—40pgi)
+ (T Tonj — TonpTi) (4ppgs) + (LonpTie — TipTink) (—4Ppar)
= 24(ViTing — VinTig) — 1210, Thipipg + 1270 Tinitping
= 24(V Ty — ViiLiy) — 24T, 115 0ipg-
Reindexing and rearranging gives the desired identity. O
More generally, we can use the G Bianchi identity to relate the Ricci tensor Ric and

the full torsion tensor 7. We first prove a lemma involving a contraction of the Riemann
tensor and .

Lemma 3.5.7. The following identity holds:
Rijkl¢ajkl - 0 (373)

Proof. By the first Bianchi identity, we compute that
Rijtbajme = —RjkiaVajnt — RrijitVajrl
= —RirjVarj — Rirjitbakji
= —Rijui¥ajit — Rijritajr

= —2Rjjriajki
S0 3R;jkiYajm = 0. O
Corollary 3.5.8. The Ricci tensor of a manifold with Gs-structure is given by
Ricjm, = (Viljx — VT )ikm — LjiTim + (v T) T + TiaTipWmiab- (3.74)

In particular, if the Go-structure on M is torsion-free, then M is Ricci-flat.
Proof. We rearrange and contract (3.70) with ¢ on the indices ¢ and k to get
1
(ViTie — Vi) omir = TiaTipPabkPmik + §Rijab90abk90mz'k
1
ERijab(gamgbi — GaiGbm — wabmi)
1 1 1
=T Tji — (tr T) L, — TiaTjpYmian + §Rijmz‘ - §Rijim — §Rijab¢abmi
= ,I’zmT}z - (tI‘ T>T‘]m - Tlia,-rjbwmiab + Riij,

where the final term vanishes by the previous lemma. O]

= 7“%ajjjb<gobmgbi — GaiGbm — wabmi) +

42



Chapter 4

Differential Operators on Manifolds
with Torsion-Free Go-Structure

In this chapter, we discuss several differential operators which can be defined on certain
vector bundles over a manifold M with torsion-free Gy-structure. In particular, we look
at analogues of the divergence, gradient, and curl operators on the spinor bundle of M as
well as the Dirac operator of this bundle. We then extend these operators and ideas onto
the bundle of spinor-valued 1-forms.

4.1 Differential Operators on the Spinor Bundle

We follow the discussion of the Dirac operator on the spinor bundle of a manifold with
torsion-free Go-structure in [Karl0] and use this as the basis to extend some definitions
onto the bundle of spinor-valued 1-forms.

4.1.1 The Divergence, Gradient, and Curl Operators

On any Riemannian manifold, we are able to define the divergence of a vector field and
the gradient of a function. In particular, let M be a manifold with Ga-structure. The
divergence of a vector field X is the function given by

div X = V, X, (4.1)
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Invariantly, we have the formula
divX = —d*X’ = xd x X, (4.2)
The gradient of a function f is the vector field given in local coordinates by

(grad f)a = Vaf- (43)

Invariantly, we have

grad f = (df)*. (4.4)

There is a cross-product x on vector fields of M given by the analogue of (3.16) in the
manifold setting, that is, for vector fields X and Y, we have a cross-product defined by

(X X Y)a = Xi}/jcpija- (45)

Invariantly, this is given by
(XXxY) =Y 1X Jp. (4.6)

Using this cross-product, analogues of (3.16) and (3.17) hold and so for another vector
field Z, we have
(X XV, 7) = (X, Y, 2) (@7)

and
Xx(Yx2Z)=—(XYVNZ+(X,2)Y — (X 1Y 27 39)*. (4.8)

We can use the cross-product to define the curl operator, which is another first order
differential operator acting on vector fields.

Definition 4.1.1. The curl of a vector field X is the vector field curl X given by
(CU_I'I X)a = (Vin)goija, (49)

or invariantly by
curl X = [x(dX’ A )] (4.10)

Remark 4.1.2. We note that in dimension 3 that the curl of a vector field X can be
defined by
curl X = (xdX")*.
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In dimension 7, the analagous expression xdX” results in a 5-form. Since we have isomor-
phisms Q° = Q2 @ O}, = 02 @ O2, = X @ Q2,, one could consider the projection of xdX"
onto its X-component. Using Corollary 3.4.2, we compute in local coordinates that
1 b 1 b
6 x dX0)igpign = G (dX7)ij i
1
= (ViXy = ViXi)gi
1
= 3 (ViXj)ije.

Hence these two expressions for the curl of a vector field on a manifold with Gy-structure
are equivalent up to a scalar multiple.

If we further assume that the Go-structure on M is torsion-free, we get several relations
between the operators div, grad, and curl (see Section 4 of [Kar10]). We recall that in the
torsion-free case, both ¢ and ¢ are parallel and that M is Ricci-flat.

Proposition 4.1.3. Let f € Q° be a function and X € X be a vector field on a manifold
with torsion-free Go-structure. The following relations hold:

curlgrad f =0, (4.11)
diveurl X =0, (4.12)
curlcurl X = graddiv X + AX. (4.13)

Proof. We can use the invariant definitions of div, grad, and curl to establish the first two
equations. We notice that

curlgrad f = [x(d(grad f)" A9)JF = [x(d*f A)]F =0
since d?> = 0 and
diveurl X = d * (curl X)? = «d % [x(dX® A p)] = *(d>X° A1p) — #(dX° A dip) =0

since by torsion-freeness and Corollary 3.5.4 we have that v is closed (or that ¢ is co-
closed).
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To show the last of the identities, we compute in local coordinates that

(curlcurl X), = (V;(curl X);)@ija
= (Vil(ViXi)ow;])eija
= ViV Xi(9raGti — G1a9ri — Viiai)
= ViV Xi — ViViX, + ViV Xi¥ipa
= ViVoXi 4+ (AX)a + ViV Xi¥ikia

Since 1) is skew in all of its indices, we may rewrite the last term and use the Ricci identity
and Lemma 3.5.7 to compute

1
ViViXiiki, = §(Vzvk — ViVi) Xiikia

1
= _iRiklmewikla =0.

Finally, we note that (grad div X), = V,V,;X; and the Ricci identity gives that
VivaXi - vaviXi = _Riaime = Ricame =0

by Ricci-flatness so V,;V,X; = (grad div X),. Putting everything together gives the result.
O

Remark 4.1.4. As in [Karl0], we note that (4.13) required the full torsion-freeness con-
dition, (4.12) only required that ¢ be co-closed, and (4.11) did not require any of the
torsion-freeness condition. Further, these identites mirror those of vector calculus.

4.1.2 The Dirac Bundle Structure and Dirac Operator on Spinors

From Proposition 3.3.2, we have that any manifold M admitting a GGo-structure is spinnable.
Additionally, the spinor bundle S of a 7-dimensional manifold is a rank 8 real vector bundle.
When M is a Go-manifold, using a unit norm spinor we have an identification of S with
the bundle R & T'M whose sections consist of a function and a vector field. This is done in
[Kar10] and [Gril7] by identifying S with the octonions O, as such we get a Dirac bundle
structure on the bundle R & T'M. A concrete description of the bundle isomorphism is
given in Section 8 of [Gril7]. We review this structure below. As an abuse of notation, we
use (-, ) to represent all inner products, the arguments will determine whether the inner
product is acting on global sections of a bundle or on a fibre over a point.
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Let Y be a vector field on M and let (f, Z) be a spinor. We define the Clifford product
on this bundle using octonion multiplication, that is,

Y- (f,2)=(=Y,2),fY+Y x Z) (4.14)
in coordinates, we have

Y (f, 2) = (=YiZi, [Ya + YiZ;0ija)- (4.15)
Additionally, if X is another vector field on M, we can compute that

X (Y- (£,2)+Y (X (f2))
X (=Y, Z2),fY +Y X 2)+Y - (—(X,Z), fX + X x Z)
(X, fY) = (X, Y x Z2), (Y, )X + X x fY + X x (Y x Z))
+ (= fX) = (Y, X xZ), (X, 2)Y + Y x fX +Y x (X x 2Z))

= (—2/(X.)Y) — (XY, Z) — (Y, X, Z),

— (Y, 2)X — (X, Z)Y + fX xY + fY x X

— (X, V)Z+(X,2)Y — (X 3Y 3 Z J39)*

(Y, X)Z+ (Y, Z2)X = (Y 35X 3 Z 2p)})

= —2(X,Y)(f,2)

and so the Clifford identity holds.

Next, we check that Clifford multiplication is skew-adjoint. Let v € T, M be a vector
and let (a1, 21), (az,29) € R® T, M. We check

<U . (alv Zl)’ (aQ’ 22)> + <(CL1,Z1),'U : (aQ’ 22)>
= ((—(v, 21), 010 + v X z1), (az, 22)) + (a1, z1), (—(v, 22), a2V + v X 23))
= —az(v, 21) + a1 (v, 22) + (v X 21, 29) — a1 (v, 29) + az(v, 21) + (v X 29, 21) = 0.

Finally, we check compatibility with the Levi-Civita connection. Let X and Y be vector
fields and let (f, Z) be a spinor. An argument in Section 8 of [Gril7] shows that the spin
connection V* under the bundle isomorphism S = R®T M is just given by the Levi-Civita
connection on each component when the Ga-structure is torsion-free. That is, for a spinor
(f,Z) we have

VI(f,2)=VI(f,2) = (Vf, V). (4.16)
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Using local coordinates, we compute that

VY - (£, 2)] = Vx (=Y, Z), fY +Y x Z)
= (= XiVi(YiZi), XeVi(fYa) + XiVi(YiZ))pija)
= (= Xn(ViY) Zi, X f(VYa) + Xi(Vi YD) Zipiza)
+ (= X0Yi(ViZi), Xo(Vif)Ya + X0 Yi(ViZ;) i)
= (VxY)-(f,2)+Y - [VX(f, 2)].

Since we have established that this bundle has a Dirac bundle structure, we can apply
results from Section 2.4. In particular, we can define its Dirac operator Dy and compute
its action on a spinor (f, Z). In local coordinates, we have

= Zei ) (Vif> ViZa)

(=ViZi,Vifbia + 0iViZ1Pkia)
(_VZZH vaf + kalQOkla)
(—div Z, grad f + curl Z),

(4.17)

which allows us to express Dy in terms of the operators div, grad, and curl.

We have that Dy is a self-adjoint operator from Proposition 2.4.6. Further, we have a
result regarding the Dirac Laplacian D2.

Proposition 4.1.5. On a manifold with torsion-free Gy-structure, we have that
Dy(f. Z2) = A(f, Z) = (Af,AZ). (4.18)

Proof. We can use the identities (4.11), (4.12), and (4.13) and Equation (4.17) to compute
directly that

Di(f,Z) = Do(—div Z, grad f + curl Z)
= (—divgrad f — divcurl Z, —grad div Z + curl grad f + curl curl Z)
= (—divgrad f,AZ).

Since —divgrad f = —V,(grad f); = —V,;V.f = Af, the result follows. m
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Since M is Ricci-flat, we have that A = A, when acting on 1-forms. Indeed, if 7 is a
1-form, we calculate using coordinate representations of d and d* that

(AgZ)0 = (dd* Z)a + (d°dZ),
= Vo (d"Z) — Vi(dZ)4
= Vo~V Z)) = Vi(ViZa — VuZi)
= ViViZe+ (ViVa — VY7,
= (AZ)q — RicaZi
— (A7),

Hence AZ = 0 if and only if Z is harmonic. Similarly, Af = 0 if and only if f is harmonic.

Self-adjointness of the Dirac operator Dy tells us that Dy and D3 = A have the same
kernel. As such, using the above, we can see that ker Dy has dimension ° 4 b!.

4.2 Extensions to Spinor-Valued 1-Forms

The previous section introduced the operators div, grad, and curl which act on smooth
functions and vector fields. Using these operators, and identifying the spinor bundle with
R & TM, we were able to describe its Dirac operator Dy. In this section, we extend the
operators div, grad, and curl by one degree, so they act on 1-forms and 2-tensors and use
these to define a Dirac bundle structure on the space of spinor-valued 1-forms.

4.2.1 The Extended Divergence, Gradient, and Curl Operators

Here, we define new first order operators which are analogues of the div, grad, and curl
operators from Section 4.1.1. Let Y be a 1-form and C be a 2-tensor on a manifold M
with torsion-free Go-structure. We define the operators as follows:

(le C)a = VZ‘CM', (419)
(grad Y)ab = VbYa, (420)
(Curl O)ab = (ViCaj)goijb. (421)

The definitions above are the transposes of what one might guess these operators to be,
however, we define the div, grad, and curl operators in this manner so that the identities
that follow are cleaner and mirror those of the previous section.
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Remark 4.2.1. We note that similar extensions of the divergence and curl operators can
be found in the literature, for example in [Gril3] and [Gri20].

These new versions of div, grad, and curl satisfy similar identities to those in Proposition
4.1.3. Before stating and proving these identities, we first recall that the torsion-free
condition ensures that M is Ricci-flat, and so the Lichnerowicz Laplacian A acting on
symmetric 2-tensors (see Chapter 3 of [CK04]) can be simplified. Let C'y be a symmetric
2-tensor, then we have

(ALCY)ap = (ACY )ap + Ricai(C )i + Ricyi(Cy)ai — 2Riabi (Cy )i

(4.22
= (ACY)ap — 2Riani (C4 )5 )

Moreover, if C_ is a 2-form on M, then the Hodge Laplacian A, acts on C_ in a similar
manner (see [Pet16]) as

(AgC)ap = (AC)ap + Rice; (C-)ip + Ricyi (C-)ai — 2Riani (C-)i;

= (AC-)ap — 2Riap; (C-)ij- (4.23)

The torsion-free condition also simplifies other identities from Section 3.5. We note that
the G5 Bianchi identity (3.70) becomes

Rz‘jabwabk = 0. (424)

We can use the above and the first Bianchi identity to show that the contraction of the
Riemann tensor and ¢ on any two indices vanishes:

RiavjPark = — RabijPavk — RbiajLabi
= —Rbmj@abk
= —RipajPrak
= —Riapj Pabk;

and so
Riabjpank = 0. (4.25)

We also get the following lemma

Lemma 4.2.2. On a manifold with torsion-free Gs-structure, we have

Rijababkt = 2Rk (4.26)
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Proof. In the torsion-free case, the G5 Bianchi identity (3.70) becomes
RijabPapk = 0.
Contracting both sides with ¢ on the index k gives

0 = RijapPabePric
= Rijab(Jak 9ot — GarGok — Vavkl)
= Riju — Rijir — RijapWVabi
= 2R — RijapVabii-
]

Using the above and first Bianchi identity again, we can compute the contraction of
the Riemann tensor and v on the middle two indices. We compute

RiapjVavki = —RavijVabkt — RbiajVabki
= —2Riiki — RivajVbaki
= —2Riju — RiapjVabii-

Rearranging gives
RiapjVapis = —Rijpi- (4.27)

We now state the identities between the extended operators div, grad, and curl.

Proposition 4.2.3. Let Y € Q! be a 1-form and C = C_ + C_ € T? be a 2-tensor
with symmetric part C, € S8* and skew part C_ € Q% on a manifold with torsion-free
Gy-structure. The following relations hold:

curlgradY = 0, (4.28)
diveurlC' =0, (4.29)
curl curl C' = grad divC + A . C, + AyC_. (4.30)

Proof. We compute each of these in local coordinates. First, we get

(curlgrad Y) e, = [Vi(grad Y)a;]eisn
= ViV;Yapijp

1
= §(Vivj — V;Vi)Yapis

1
= —§RijamYm90ijb =0,
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where we have used the fact that ¢ is skew in all of its indices and (4.24). Using the same
method, we have
(diveurlC), = V;(curl C);
= ViViCuprii
1
— §(vivk — ViVi)Caprii

1

- _§(Rz'kam0ml¢kzz‘ + RikimCamprii) = 0.

Lastly, we check that
(curlcurl C)gp, = [Vi(curl C) g )wijn
= ViViCaPrijPijb

= ViViCu(grogii — grigiv — Vrivi)
=V,VCoi — ViV,Cop — ViViCorrn

1
=V, ViCoi + (AC) s — é(vz’vk — ViV Catbrwi

1
= ViVCoi + (AC) w + E(Rikamcmlwmbi + RikimCartVrvi)

= ViVme’ + (Ac)ab + Ramblle
= V:V,Coi + (AC) ap — RiapjCij.

We note that (graddivC)y, = V,V;Cy; and the Ricci identity gives that

vivbcai - vbvicai = _Ribamomi - Ribimcam
= _Rmabicmi + Ricbmcam
= —Riu,; Cij.

Rearranging and using (4.22) and (4.23) yields the result. ]
4.2.2 The Dirac Bundle Structure and Dirac Operator on Spinor-
Valued 1-Forms

As on the spinor bundle, there exists a Dirac bundle structure on the bundle T*M & (T* M ®
T*M)=T*M® (R&T*M). The Clifford multiplication on this bundle is induced by that
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on the bundle R & TM. Let W and X be 1-forms and (f, Z) be a spinor. The induced
Clifford multiplication is given by

W-X((f,2)=Xe(W-(f,2)) (4.31)
and extending linearly. This is indeed a Clifford product since if W; and W, are 1-forms,
then

Wi-(We- [X @ (f,2)]) + Wa- (W1 - [X ®(f,2Z)])
=W (X @ Wy (f, 2)]) + W2 - (X & [Wr - (f, 2)])

=X oW Wy (f,2))] + X ©(Wy- (W - (f,2)))]
=X@[Wr-Wa-(f,2)) + (Wa- (W1 - (f,2)))]
=X® (- <W1,W2>(f, )

— (Wi, Wo)[X @ (f, Z2)).

In local coordinates, the Clifford product is given by

WX ®(f,2)] = (—WiXoZi, fXWy + WiXoZ;0ija)-

"‘\—/\_/\_/

By linearity, we can write this in terms of 1-forms and 2-tensors. Let X and Y be 1-forms
and C' be a 2-tensor, then in local coordinates,

X - (Y, C) = (—XZ'CM', XbYa —+ XiC’ajgoijb). (432)

We now check skew-adjointness of Clifford multiplication. Let v be a cotangent vector
and let (wy, Ay), (wa, As) € TiM & (Ti M @ T M). We check that
(v (wi, A1), (w2, A2)) + (w1, A1), v - (w2, Az))
= —0;(A1)ai(w2)a + Vo(w1)a(A2)ab + Vi(A1)ajPije(A2)ab
— i(A2)ai(w1)a + vo(W2)a(A1)ab + vi(A2) a0 (A1) ab
= i[(A1)aj(A2)ap + (A1) ab(A2)ajlpijp = 0.

Lastly, for compatibility with the Levi-Civita connection we let W, X, and Y be 1-forms
and C' be a 2-tensor. Simple computations in the torsion-free case show that the induced
connection on the tensor product T*M & (T*M @ T*M) = T*M ® (R & T*M) using the
spin connection from (4.16) is again just the Levi-Civita connection on each component.
Indeed, if we denote the induced connection on this bundle by V* we see that

VIX®(f,2)=VX®(f,2)+X V[ 2)
=(VXf(VX)2)+ X (Vf,VZ)
=(VHX+ f(VX),(VX)® Z+ X ® (VZ))
= (V(fX), V(X ® Z)).
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By linearity of connections and since X ® (f,7) = (fX, X ® Z), we have

Vi(Y,C) =V(Y,C) = (VY,VO). (4.33)
Using local coordinates, we compute that
Viv[X - (Y. 0)]

= Vi (= XiCui, X Yo + XiCojijn)
= (=W Vi(XiCui), Wi Vi (X3Ys) + Wi Vi (XiCoj)wijp)
= (—Wi(ViX;)Coi, Wi (Ve Xp) Yo + Wi (Vi Xi)Cojpisn)
+ (Wi Xi(ViCoi), Wi Xp(ViYa) + Wi Xi(ViCoj)@isn)
= (VwX) - (Y,0)+ X - [V, (Y, 0)].
Thus T*M @ (T*M ® T*M) is a Dirac bundle.
As before, we can define the Dirac operator D; for this Dirac bundle and determine

how it acts on (Y, C). In local coordinates, we get

Dy\(Y,C) = Zei VY, 0)

= Z €; - (viYm viCab)
i (4.34)
= (=ViCai, Vi¥a0i + 0. ViCarorn)
= (=ViCai, ViYa + ViCaroran)
= (—divC, gradY + curl C).
The extended definitions of div, grad, and curl show that the Dirac operator D; acts in

a similar manner as to the Dirac operator Dy on spinors. Using these definitions, we also
get a similar relation to Proposition 4.1.5.

Proposition 4.2.4. On a manifold with torsion-free Go-structure, we have
D3(Y,C) = (AY,ALC, + AyC-). (4.35)
Proof. This follows from the identities (4.28), (4.29), and (4.30) in a similar manner to the
proof of Proposition 4.1.5. We compute directly that
D3(Y,C) = Dy(—divC,grad Y + curl O)
= (—divgrad Y — divcurl C, —grad div C' + curl grad Y + curl curl C')
= (—divgrad Y, A C + A,C-).

Since —(divgradY), = —V;(gradY),; = —V,;V,;Y, = (AY),, we get —divgradY = AY.
The result follows. [
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Chapter 5

The Kernel of the Twisted Dirac
Operator on Manifolds with
Torsion-Free Go-Structures

In this chapter, we look at the curl operator more closely and decompose it with respect to
the decomposition (3.49) of 2-tensors as well as gather several equivalences showing when
each component vanishes. The results using the identification 7"M @ S = T*M & (T*M ®
T*M) from Section 5.2 to Section 5.4 are, to the author’s knowledge, original.

In addition, we use the structures defined in Chapter 4 to analyze the twisted Dirac
operator on spinor-valued 1-forms as defined in Section 2.5 when M is a manifold with
torsion-free GGo-structure. In particular, we compute the kernel of the twisted Dirac opera-
tor and its dimension, a result of Theorem 3.7 of [Wan91]. The computations in Section 5.6
are similar to those found in Section 3 of [Wan91], however we focus more on the structure
of the ¢ operator from Section 3.4.2 and write them in the notation of this thesis.

5.1 The Twisted Dirac Operator on Spinor-Valued 1-
Forms

Since the spinor bundle S of a Gs-manifold M can be identified with the bundle R & T'M,
we are also able to identify the bundle T*M ® S of spinor-valued 1-forms with the bundle
T*M & (T*M @ T*M). As such, we can compute the action of Dy and compare it to that
of the operator D, above due to the identifications of these bundles.
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Let X be a 1-form and let (f,Z) be a spinor. Using the local description of Dr in
(2.46), we see that

=X ® (—divZ,grad f + curl Z) —|—ZVZ»X® (—Zi, fe;+e; x Z)

= (—=Xo(ViZy), Xo (Vi f) + Xo(ViZ)) o)
+ Z Vi X ® (—=Z;, foin + i Zior)

= (= Xo(ViZi), Xo (Vo f) + Xo(ViZi) orn)

+ (—=(ViXa) Zi, (ViXa) foir + (ViXa) 0k Ziorn)
(=Xa(ViZi), Xa(Vif) + Xo(ViZi)pr)

+ (=(ViXa) Zr, (Ve Xa) f + (ViXa) Ziorn)
(=Vi(XaZi), Vo(fXa) + Vi(XaZi)prw)
(—div (X ® Z), grad (fX) + curl (X ® Z))
Di(fX, X 7).

Since X ®(f, Z) = (fX, X®Z) and the operators Dy and D; are linear in their arguments,
it follows that Dy = D;. We get another block matrix form of the twisted Dirac operator,
but this time with respect to the decomposition T"M ® S = T*M @& (T*M ® T*M) as
follows:

0 —div
Dy = . (5.1)
grad curl

Since Dy = Dy, we can use Proposition 4.2.4 to describe the action of D2. It follows that
if Y is a 1-form and C is a 2-tensor with symmetric part C'; and skew part C_ then

Da.(Y,C) = (AY, ALCy + AyC). (5.2)

5.2 The Spaces of %— and %—Spinors

The decompositions 72 = Q° & S§ & Q7 & O, and T*M @ S = S1 & S; from (3.49) and
(2.45) give rise to two different decompositions of spinor-valued 1-forms. That is, we have

NT*M®S)=T(S1)®I(S:) = o0 S22 02, (5.3)

1 3
2 2
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We see how these decompositions relate to each other.

Let Y be a 1-form and C be a 2-tensor. We compute pr%(Y, ).
pry (¥, C) = 1o (Y, C)

= L{Z@ : (Y%»Cib)}

= 1(=Cy, Yi0i + 0s.Cupran)
= 1(=Cii, Yo + Criorn)

1
=— Z e; ® e; - (—=Ci, Yy + Criorn)]
J
1
== Z ej ® (=Y — Crprij, —Ciidjp + 051 Yiorin + 0jpCriPriqPpe)
J
1
T > e ® (=Y; = Curi, —Cid + 56 Yiomn + 55pCri(Grvdip — Gepdio — Viinp))
J

1
= Z ej @ (=Y = Crpri, —Ciidjp + Yipjn + Crj — Cjp — Cratbiany)
J

1

= _?(_Ya — Curia, —Crirgab — Yi¢01ab + Cra — Cap + Crutlrian).-

Replacing C with fg € Q°, Cy; € 83, Z 1 € Q% and C14 € 2, and using their properties,
we get that

1.1
p,0) = (Fr3v ),

77
b1, (0, f9) = (0, fg),
pr%(ov 027) - (07 0)7 (54)
6_ 6
pr%(ov Z (10> - (?Za ?Z - 90)7

pr1 (0, Cia) = (0,0).

That is, we have that

1 6 1 6
pra(Y,fg+Cor+Z 19+ Cha) = (;Y +2Z, fg+ (;Y + ;Z) - so) (5.5)

57



and

6 6 1 1
prg(Ya fog+Cu+Z 19+ Cu) = (;Y - §Z7 Cor — (?Y - §Z) Jp+ Cl4>- (5.6)

It follows that I' (S%) consists of elements of the form (Y, fg+Y _¢) and and I'(S s ) consists
of elements of the form (Y, Cyr — %Y J @+ Chy). We see that this is consistent with the

pointwise dimensions of these spaces and that S =S 1 is a rank 8 real vector bundle over
M.

5.3 Decomposition of the Curl Operator

Since the curl operator maps 2-tensors to 2-tensors, we can use the decomposition (3.49)
to write curl in a block matrix form. Further, since Dy can be written in terms of the
operators div, grad, and curl, understanding this block matrix form will give further insight
into the properties of ker Dr.

We begin by computing how curl acts on the multiples of the metric g. If f is a function,
we can see that

(curl (fg))ab = (Vi(fg)as)pijv
= V.if9ajPij
= (grad f)iQiab-
That is,
curl (fg) = (grad f) 4 ¢, (5.7)

and so curl maps Q° to Q2.

Next, we look at the action of curl on Q2. Let Z be a 1-form. Computing in local
coordinates yields

(curl (Z 39))ab = (Vi(Z 3¢)aj)pisp
= ViZmPmajPijb
= ViZn(9mbGai — Gmidab — Pmavi)
=VuZy — ViZiga + ViZitijap.

(5.8)

To decompose curl (Z 1) further, we take the trace of the above expression to find its
Q°%-component and we contract it with ¢ on two indices to find its Q2-component. Taking
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the trace gives

tr (curl (Z 2 ¢)) = (curl (Z 2 ¢))aa
=ViZy — ViZiaa + ViZjVijaa
= —6V,Z;
= —6div Z,

lcurl (Z a3 )1 = —g(div Z)g. (5.9)

Contracting with ¢ gives

(curl (Z 2¢))apavk = VaZyPabk — ViZiGapPabk + ViZjijabPabk
= VaZppark — AViZ;jpijk
= —3VaZpPari
= —3(curl Z).

By (3.45), we then see that

el (Z 1 )]s = —%(curlZ) e (5.10)

We can compute the Sy- and 22,-components of curl (Z 1 ¢) by subtracting the above
expressions from the symmetric and skew parts of curl (Z 1 ¢) respectively. Since g is
symmetric and 1) is skew, this gives

1 1 ..
([curl (Z 2 ¢)]27)ap = E(VGZIJ +ViZ,) — ?(dlv Z)Gab (5.11)
and
1 1
([curl (Z 2 0)]14)ar = §(VaZb — Vv Za) + ViZithijap + i(curlz)i@mb
1 1
= §(VaZb — VvZa) + ViZjthijap + §(kal>90klz‘S0iab
1 1
= i(vazb — V4 Z,) + ViZiijan + §VkZl(gkaglb — 9ibYia — Vkiad)
1
=V, — VpZ, + §Viijijab-
(5.12)
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We can get other expressions for [curl (Z1p)]; and [curl (Z1¢)]14 by using the expression
(dZ)ap = VuZy — VpZ, and (3.52). Indeed, we notice that

1
ViZj¢ijab = §(viZj - VjZi)wijab
1
= §(dZ)ij"¢fijab
= —2[(dZ)7]ap + [(dZ)14]ap-

Using (5.8) and (5.12), this gives that

feurl (Z 1 )]s = —g(dZ)7 (5.13)

and
[curl (Z 2 ¢)|14 = ;(dZ)M. (5.14)

We now look at how curl acts on Q3,. Let Cy4 € Q2,. Using (3.48), we can write

(curl Cra)ap = (Vi(Cia)aj)@iso

[(C14)ajpijo]

[(C14)bPjai — (C14)ijPjab)

= (Vi(Cra)vj)@ija + (Vi(Cha) i) Piab
= (curl C14)pa + ((div Cis) 1 @) ap-

=V
v

7
7

Hence the skew part of curl C'y4 is given by

1 1, .
5[(0111"1 Cia)ap — (curl Chy)pa] = 5((d1v Cls) 2 ©)ab-

It then follows that .
[Cuﬂ 014]7 = §(d1V 014) d@ (515)

and that curl C'4 has no Qﬂ—componen’c. Computing the trace of curl C4 gives

tr (curl C14) = (curl Cy)aq
= (Vi(C14)aj) Pija
= Vi[(cm)aj%ja]
=0.
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Since this expression is traceless, the S3-part is just the symmetric part of the expression.
Hence

([eurl Cralar)ar = %[(Vi(CM)aj)@ijb + (Vi(C1a)b;) @il - (5.16)

Lastly, we look at the action of curl on S2. Let Cy; € Sp. We compute

tr (curl Cy7) = (curl Coz)aq
= (Vi(Ca7)aj) Pija
= Vi[(Ca1)ajPijal
=0.

Thus curl Cy; also has no Q2%-component and we get a similar expression to the Q3,-case

(lcurl Corlr)an = 5(T4(Carg)ipin + (Vi iy (5.17)

To find the Q2-component, we contract curl Co; with ¢ on two indices.

(curl Co7)appark = (Vi(Ca7)aj) PijpPabk
= (Vi(C21)aj)(GirGja — GiaGjk — Vijka)
= Vi(Co7)aa — Vi(Cor)ir — Vil(Cor) ajVijkal
= _VZ(CQ'?)’%
= —(div Cy7)y.

Equation (3.45) gives
1
[curl Cy7]7 = —a(div Cor) J . (5.18)
Subtracting the above from the skew part of curl Cy; gives the 2%,-component,

1

([eurl Corlia)ap = S[(Vi(Car)ag)ijp — (Vi(Cor)vs)ijal +

2 l(vi(cﬂ)ji)@pjab- (5.19)

6

We summarize the findings of this section in Table 5.1 below.

5.4 Some Equivalences

Since the twisted Dirac operator Dy is defined in terms of the operators div, grad, and curl,
it is natural to consider when these operators vanish. We look at their restrictions to the
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various components of a 2-tensor with respect to our decomposition (3.49). Starting with
the divergence operator, we compute its kernel when restricted to the space of traceless
symmetric 2-tensors.

Proposition 5.4.1. Let M be a manifold with torsion-free Gy-structure. If C = Coy; € 82
is a traceless symmetric 2-tensor on M with associated 3-form v = C o € Q3. then

divC =0 <= (dv); =0 < (d*v); =0. (5.20)

Proof. Since (dv)iju = Vivir — ViYie + Vievig — Vivise, using (3.53) we can compute

[(dv) - Y]ia = (dV)z‘jkl%jkz
= (Vivie)Vajrr — 3(VjVikt) Vajiki
= [Vi(Cipepit)|Vajir + [Vi(Crp@ip)|Vajki + [Vi(Cip@ip) | Vajii
=3[V (Copppr)[Wajir = 3[Vi(Crppipt)|ajut =3[V (CrpPikp)|Vajna-

Using the contractions (3.27) and (3.28), the fact that both ¢ and ¢ are parallel with
respect to V, and the identities Cj;p;j, = 0 and trC' = C,, = 0 we get

[(dY) - ¥]ia = ViClp(—4pas) + ViClp(—4opar) + ViCip(—4ppar)

- ijcip(_490paj)
— 3V ;Chp(GiaPpjk + GijPapk + GikPajp — JapPijk — JipPaik — JkpPaji)
— 3V,Cip(GiaPpit + GijPapt + GitPajp — JapPijt — GipPail — GipPaji)

= 12V;Cippjpa
—3V,iCippjpa + 3V ;jCarjki — 3V ;iCljPkia
—3V,;Cipipa + 3V jCupjii — 3V;Cliuia

= 6V,;Cit@jka + 6V ,;Carpiri — 6V ,;Ck;Pria-

Suppose that divC' = 0. Then in coordinates, V,;C,; = 0. By our hypothesis, the final
term in [(d7) - ¥]; vanishes which leaves us with

[(dv) - V]ia = 6V,;Cik@jka + 6V, Car0iki,

which is symmetric in ¢ and a. Using the inverse of ¢ in Corollary 3.4.10, we see that
(dv); = 0. Conversely, suppose (dy); = 0. It follows that (dv) - ¢ is a symmetric 2-
tensor. Our earlier calculation shows that ((divC) 4¢);, = V;Ck;@kia = 0. Since the map
X + X 1 defines an isomorphism between X and %, we must have that div C' = 0. This
proves the first equivalence.
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We have (d*v);x = —V,vijx. We can again use (3.53) to compute the contraction of
d*~y with ¢ on two indices.

(d*7) jkPjka

= —(ViYijk) @jka

= —[Vi(Cipppir) = Vi(Cippipk) = Vi(CrpPijp)Pjka
= —[Vi(Cippj) ke — 2[Vi(CipPipk)]jka

= —VCip(69pa) — 2ViCjp(GiaGpi — GijIpa — Yipaj)
= 6ViCli + 2ViC

- V.G

If divC = 0, we see that the above expression vanishes, so (d*y) € Q3,. Conversely,
if (d*y)7 = 0, then (d*y) € Q3,, so its contraction with ¢ on two indices vanishes. Hence
ViCu = (divC), = 0, and so divC = 0. This proves the second equivalence. O

Using a similar approach, we can also characterize when the various components of
curl C' vanish for a traceless symmetric 2-tensor.

Proposition 5.4.2. Let M be a manifold with torsion-free Gy-structure. If C' = Cy7 € S?
is a traceless symmetric 2-tensor on M with associated 3-form v = C o o € Q3. then the
following equivalences hold:

divC =0 < [curlC]; =0 < (dy); =0 <= (d*y); = 0; (5.21)
[curl 0]14 =0 <— (d*’7)14 = O, (522)
[curl 0]27 =0 << (d’7)27 =0. (523)

Proof. The equivalences (5.21) follow from (5.18) and the fact that X +— X ¢ defines an
isomorphism between X and Q2.

We have that
(d* )ik = =Vivije = —ViCippjr — ViCipipk — ViCrpPijp-

From the proof of the previous proposition, we also have that
y 2
(d*Y)7)k = —gvicai%jk-
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Taking the difference of the above two expressions, we get

" 1
(d*V)a)jx = =ViCipipk + ViCrpip; — gvicai%jk

which by comparing with (5.19) is —2([curl C]14) 5. Hence (d*)14 vanishes if and only if
[curl Cly4 vanishes.

Again, from the proof of the previous proposition, we have
[(dY) - V]ia = 6V;Cikjka + 6V ;Car@jri — 6V;CrjQria-

We then see that the 2-tensor (dv)-1 is traceless. Using the inverse of ¢ in Corollary 3.4.10,
it follows that the 3. component of dvy corresponds to the traceless symmetric 2-tensor

1

Bi, = ﬁ([dv) “Plia + [(dy) - Y]ai)

1
= ﬂ(GVjCikgojka + 6V,;Cak@jri — 6V ;CrjPria
+6V,;Car@jri + 6V,;Cit@jra — 6V;CriPrai)
1
= §(VjCikcpjka + Vjcak(ﬁjki)a

which by comparing with (5.17) is ([curl Cla7)ie. Thus (d7v)or vanishes if and only if
[curl Cla7 vanishes. O

The previous proposition allows us to fully characterize which traceless symmetric 2-
tensors are in the kernel of curl.

Corollary 5.4.3. Let M be a compact manifold with torsion-free Go-structure. If C' =
Cor € 8¢ is a traceless symmetric 2-tensor on M with associated 3-form v = C o ¢ € Q3.
then

curlC =0 <= dy=d"vy=0 <= Ayy=0. (5.24)

Proof. The second equivalence follows from results from Hodge theory and so we only need
to prove the first equivalence.

If dy = d*y = 0, then each of their components with respect to the decompositions
0?2 =029 Q% and Q' = O ® O & Q3. are also all 0. From Table 5.1, curl C' has no
Q% part, and so we get that curl C' = 0 from Proposition 5.4.2.

To show the other direction of the first equivalence, it suffices to show that dvy has
no Qi-part. We show this by taking the inner product of dy and ¢. We notice that
(dv,v) = 5 (dV)ijmtijin = 55t ((dy) - ¥). The 2-tensor (dv) - 1 was shown to be traceless
in the proof of Proposition 5.4.2 and so the result follows. O]
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Similar results about the kernel of div and curl restricted to 2%, can be shown.

Proposition 5.4.4. Let M be a manifold with torsion-free Gy-structure. If C' = Cyy € 23,
is a 2-14-form on M, then

divC =0 <= (dC); =0 < (d*C)=0. (5.25)

Proof. We have the formula (dC);;, = V,Cjp — V;Ci + V.C;j. We use the inverse of o
from Corollary 3.4.10 to find the Q2-form associated with dC. Contracting dC' with ¢ on
two indices yields
[(dC) - ¢lia = (dC)ijrpas

= [(ViCir) = (V;Cit) + (ViCij)|Pajn

= ViCirpjra — 2V;Cir0jka

= —2V,;Cir¥jka-
Using (3.48), we then see that dC corresponds to the Q22-form A given by

1

A = 2 (((dC) - gl — [(dC) - pl)
1
= ﬁ<_2vjcik90jka +2V,;Corpjki)

1
= —E(Vjoik()@jka - Vjoak‘gpkij)
1
= —E(Vjcikwjka - (VjCikgokaj B VjCjkgpk‘“;))

1
= —Evjckjs%ia
1

= —E((div C) J¥)ia-

This shows that (dC); = 0 if and only if divC' = 0.

To prove the other equivalence, we notice that
(le C)a == VZCM- == —VZ'CZ'G = (d*C)a
So div(C' = d*C, and the result follows. n

Proposition 5.4.5. Let M be a manifold with torsion-free Gy-structure. If C' = Cyy € 3,
is a 2-14-form on M, then the following equivalences hold:

divC =0 < [curlC]; =0 <= (dC); =0 <= d*C =0; (5.26)
[curl Clor = 0 <= (dC)97 = 0. (5.27)
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Proof. The equivalences (5.26) follow from (5.15) and the fact that X +— X ¢ defines an
isomorphism between X and Q2.

As computed in the proof of the previous proposition, we have
[(dC) - ¢lia = =2V ;CitPjha-

Since C' € Q3,, (dC) - ¢ is traceless. It follows by Corollary 3.4.10 that (dC')g; corresponds
via ¢ to the 2-tensor A € Sy given by

1
A = g([(dc) *@lia + [(dC) - plai)
1
= g(_ijCik‘;Djka — 2V,;Corpiki)

1
= —Z(Vjcik(pjka + V;Car@ini).

Comparing this with (5.16), we see that A is a non-zero scalar multiple of [curl Cs7. The
result follows. O

We can, in a similar fashion to Corollary 5.4.3, describe exactly which Q2,-forms are in
the kernel of curl.

Corollary 5.4.6. Let M be a compact manifold with torsion-free Go-structure. If C' =
Cis € Q32, is a 2-14-form on M, then

curlC =0 <= dC=d'C =0 < A;,C =0. (5.28)

Proof. The second equivalence follows from results from Hodge theory, so we prove the
first equivalence.

If dC = d*C = 0, then each of (dC)1, (dC)7, and (dC)7 are 0. Since curl C' has no 2°-
or 2,-part (see Table 5.1), it follows from Proposition 5.4.5 that curl C' = 0.

In order to show the other direction, we see that it suffices to show that (dC); = 0. We
take the inner product of dC' and ¢. Notice that (dC, ) = §(dC)inpiji = gtr ((dC)-¢) =0,
hence (dC'); = 0 as required. O

5.5 Splitting of Laplacians

In Sections 4.2 and 5.1, we showed (see (5.2)) that the square of the twisted Dirac operator
D2 acts as the Lichnerowicz Laplacian A7 on symmetric 2-tensors and as the Hodge
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Laplacian A4 on 2-forms. Moreover, in the previous section, we noted that the kernels of
the divergence and curl operators are closely tied with harmonic 2- and 3-forms. In this,
we shall show that when the Ga-structure ¢ is torsion-free, the Lichnerowicz and Hodge
Laplacians commute with the projections onto the spaces Q° 82,02, and Q32, as well as
analogous results for our decomposition of 3-forms.

We begin with the Lichnerowicz Laplacian. Let f be a function. Direct computations
using (4.22) yields

(AL(f9))ar = (A(f9))ab — 2Riabj(fg)ij = (Af)Gab, (5.29)

where the second term vanishes by Ricci-flatness. We see that Ay, maps Q° to Q°. Next,
let Cy7 € Sy. We can check that

(ALCo7)ab = (AC57)ab — 2Ria; Cij
= (AC27)ba - 2Rjabi0ji
= (ALC%7)bas

and

tr (ACy7) = (ALCo7)aq
(AC7)aa — 2Ri0aiCij
0

by Ricci-flatness. Hence A Coy; is traceless and symmetric. This shows that Ay, splits with
respect to the decomposition 8% = Q° & S2.

Remark 5.5.1. This splitting of the Lichnerowicz Laplacian still holds without the torsion-
free assumption. Indeed, using the more general form of (4.22), we see that if f is a function
then

(AL(fg))ab

(A(f9))ap + Ricai(fg)in + Ricsi(f9)ai — 2Riani (f9)ij
(Af)gap + fRica, + fRicy, — 2fRica
(Af)gab-

Additionally, if Cy; € 82, we get

tr (ALCQ’?) = (ALC27)aa
= (AC%7)aq + Ricai(Car)ia + Ricei(Cor)ai — 2Riaa; (Car)ij
= QRiCai(CQ7)ai - QRiCz‘j(CW)ij
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so Ay is again traceless. Symmetry follows from an argument similar to the torsion-free
case where we also use the symmetry of the Ricci tensor and of Coyy.

Next, we check that the Hodge Laplacian splits with respect to our decompositions of
k-forms. This allows us to consider harmonic k-I-forms and refined Betti numbers bf. A
more general proof of this fact in the torsion-free case can be found in Chapter 3 of [Joy00].
We provide a direct proof using local coordinates here for the cases k = 2 and k = 3.

We start with the k = 2 case. Let X be a vector field. Using (4.23) and (4.24), we can
see that

(Aa(X 29))ab = (AX 2 ¢))ab — 2Rian; (X 1 0)s5
= =V, Vi(Xi9iap) — 2Rianj X101
= —(ViViX))Qiap
= ((AX) 2¢)ab,

so Ay maps Q2 to Q2. Lastly, if we let C14 € Q2,, then

(5.30)

(AdCra)abpark = (AC14)abPabk — 2Riabj (C14)ijPabk
= —(Vivi(CM)ab)(Pabk
= —VZ-VZ‘KCM)abSOabk]
=0.

Hence the Hodge Laplacian splits with respect to the decomposition Q? = Q2 @ Q3.

Now we consider the k = 3 case. We recall (see [Pet16]) that for a 3-form 7 that the
Hodge Laplacian A, acts by

(Adn)abc - _Vivinabc + RiCainibc + RiCbinaic + RiCciT]abi
— 2RiapiNije — 2RiveiNija — 2RicajNijo-

By Ricci-flatness, the above reduces to
(Aan)abe = —ViVillabe = 2RiabiNije — 2RivejNija — 2RicajNijo- (5.31)

Since contractions of the Riemann tensor and ¢ on two indices vanish, we see that if f is
a function then

(Ad(fgo»abc = _vz’vi(f@)abc - 2Riabj(f90>ijc - 2Ribcj(f§0)ija - 2Rimj(f(p)ijb
= —(vl'Vif)Spabc = (Af)gpabc-
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Hence Ay maps Q3 to Q3.

Now, if X is a vector field, we can compute using (4.27) and the first Bianchi identity
that

(Aa(X 29))abe = =ViVi(X 3U)abe — 2Riar; (X 2 0)ije — 2Ripej (X 11)ija
— 2Rjcaj (X 1 w)ijb
= —V,;Vi(Xi¥iabe) — 2Rianj (Xitiije) — 2Rive; (XiWtija) — 2Rica; (Xi%uisn)
= —(ViViX)Wiabe + 2X i Rapic + 2X1 Rycia + 22X Reary
= (AX)1¥1abe + 2X1 Rigpe + 2X 1 Ripea + 2X1 Ricap

= ((AX) 29)abe-
(5.33)

It follows that A, also maps Q3 to Q3.

Lastly, if C' = Cy; € 82 is a traceless symmetric 2-tensor, then

[(Aa(C o)) - blia
= (Aa(C ©©))ijrPaji
= —VpVp(C 0 9)ijkpajk = 2Rypijq(C' 0 0)parpaji = 2Rpjig(C © ©)pgitPajn
— 2Rpiq(C © 9)pgjéPajk
= —VpVpCimPmjkPajt — VpVpCimPimkPajt — VpVpChmPijmPask
— 2RpijqComPmakPajk — 28pijqCamPpmkPajk — 28pijqChm Ppgm Pajk
— 2Ry kg ComPmaiPaje — 2RpikgCamPpmiPajk — 2RpikgCimPpgmPaj
— 2RpkiqComPmajPajk — 2RpriqCamPomiPajk — 2RpkigCimPpem Pajk
= —=V,VpCim(69ma)
— Vo ViCim(Giagmi — GijGma — Vimai) = VpVpChm(GmkGia — GmaGir — Yrmika)
— 2RyijqCom(9malej — 9mi9aa — Ymaaj) — 2RpijgCom(GpaGimj — Ipjgma — Ypmaj)
— 2R pkiqCom (Gmkga — Gma9ak — Umaka) — 2RpkiqCom(GpkIma — IpaGmk — Ypmka)
= —6V,V,Ci, + V,V,,Cis, + V,,V,,Ciy
+ 2R pimaCpm — 4R piamCpm — 2RaimgCqm + 2RigmaCom
— 2RpmiaCom — 2RpimaCpm + 2RamigCom + 4RigamCom
= —4V,V,,Cis — 8RpiamCpm.-
The tracelessness of C' and Ricci-flatness show that this expression is traceless. The sym-
metry of C along with the symmetries of the Riemann tensor together show that this
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expression is also symmetric. Using the identities from Corollary 3.4.10 we see that
Ay(C o ) € Q3.. This proves that the Hodge Laplacian splits with respect to the de-
composition 2 = Q3 & Q3 § Q3.

5.6 The Kernel and its Dimension

In order to compute the kernel of the twisted Dirac operator Dy on a compact manifold
M with torsion-free Go-structure, we make use of the fact that it is self-adjoint which we
showed in Section 4.2.2. Indeed if (Y, C) € ker D2, then we have

0 = (D7(Y, C), (Y, C))
= (Dr(Y, C), D7(Y, C))
= (DY, C), Dr(Y, C))
= ||Dr (Y, O)|I”
Hence D7(Y,C) = 0 and ker D2 C ker Dy. The reverse containment is evident as Dr is a
linear operator thus ker Dy = ker DZ.

Equation (5.2) provides us with a nice form of D% to work with due to the Lichnerowicz
and Hodge Laplacians splitting with respect to the decompositions §? = Q° & S§? and
0?2 = Q2 @ O, respectively (see Section 5.5). In particular, we see that

DT(}/, C) =0 < D%(Y, C) =0 «<— AY = 0, ACL = ACyr = 0, AN Cr = A;Cry = 0.

Using the equations on the right side of the above, we would like to characterize when
(Y, C) is in the kernel of Dr.

We recall that since M is Ricci-flat, A and Ay agree on 1-forms. This shows that
AY =0 if and only if Y is harmonic. Since (5.30) tells us that Ag(X 2 ¢) = (AX) 2, it
also follows that Ayz(X 1) = 0 if and only if AX = 0 if and only if X is harmonic. Next,
using (5.29), we can see that if C; = fg for some function f, then Ay (fg) = 0 if and only
if f is harmonic as well.

To compute the dimension of ker Dy, we need to be able to characterize when the
Lichnerowicz Laplacian of a symmetric 2-tensor vanishes. The next proposition provides
such a characterization.

Proposition 5.6.1. Let C' = Cy; € Sy be a traceless symmetric 2-tensor and let v =
C o p e Q3 be its associated 3-form. If M is a manifold with torsion-free Go-structure,
the following equivalence holds:
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Proof. We show the forward direction first. Computing A,y = dd*y+ d*d~ in coordinates,
we have that the first term is

(dd*Y) ape = Va(d* V)oe = Vo(d*Y)ae + Ve(d*Y)ap
= Va(=Viviee) = Vi(=ViViae) + Ve(=Viiap)
= —VaVi(Cij@joc + Crjije + Cejpini)
+ Vi Vi(Cij@jac + Cajpije + CejPiaj)
— VVi(Cij@jap + Cajpijy + Cojiag)-

The second term gives

(d*d¥)ape = —Vi(dY)iabe
= —Vi(ViYabe = VaYive + ViYiae = VYiab)
= —V,;Vi(Cojjbc + ChjPajc + CejPabs)
+ ViVa(Cijvive + Chjpije + Cejving)
— ViV (Cij@jac + Cajije + CejPiaj)
+ ViV (Cijpjap + Cajijp + Chi®iag)-

By combining the above, we get

(AgY)abe = —ViViCoj@jbe — ViViCpi@ajc — ViViCejQap,

+ (ViVa = VoV [Cispive + Cojtpije + Cejpins]

— (ViVy = Vi Vi) [Cij0jac + Cajije + CejPiaj]

+ (ViVe = V. V) [Cijjap + Cajpije + ChjPias)

= —V,iV,Cojive — ViViCpi@ajc — ViViCejPan;

— (RiaikCrj + RiajCir)@jbe — (RiavkCrj + RiajkCok)Pije
— (RiackClj + RiajiCek ) Piv;
+ (RavitCrj + RivjrCik)@jac + (RibakCrj + RinjiCak)Pije
+ (RibekCrj + RivjuCek)Piaj
— (RicitCrj + RiciCik)@jab — (RicakCrj + RicjkCak) i
— (RicbkCrj + RicjrCbk) Piaj

We recall that contractions of the Riemann curvature tensor and ¢ on any two indices
vanish. Additionally, Equation (3.72) in the torsion-free setting gives us the following
Bianchi-type identity:

Ravirpij + Ravjioiki + Rapripri; = 0. (5.35)
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Using the above identity and Ricci-flatness, we can simplify our expression for (Agy)ape-
We have

(Ad’Y)abc = _vivicaj(pjbc - Vivicbj(pjca - Viviccj%ab

— RiajiCit@jve — RivjrCirPjca — RicjkCinPjab
+ (= RiatkPije — RicokPiaj)Crj + (RivekPiaj — RiackPinj)Ckj
+ (= RicakPijb + RivakPije)Chj

= —V;ViCivjve — ViViCipiVica — ViViCej©jap
— RigjkCir0jve — RivjxCinjca — RicjktCirPjan
+ (—RipaiPije — RivciPiaj)Crj + (—RicbitPija — RicaitPivg)Crj
+ (= RraciPijp — Rraviics) Cr;

= —V;ViCoj@jre — ViViCypj0ica — ViViCej@jap
- Riajkciksf?jbc - Rz’bjkcik%ca - Ricjkcik%ab
+ RijiCrjPica + RiejiCrjPiab + RiajiCrjPive

= —Vivicaj%'bc - Vz'vz‘cbj%ca - VinchSOjab
— 2R;0jkCikPjve — 2RitjnCirPjca — 2RicikCinPjab

= (=ViViCyj — 2Ri0jxCi)@jbe + (—=ViViChj — 2RipikCik) Pjca
+ (_viviccj - 2Ricjkcik)§0jab~

Since A, C = 0, it follows that —V,;V;Cyu, —2R;4,;C;; = 0. Substituting this into the above
tells us that (Agy)ae = 0, and so Ayy = 0.

To show the other direction, suppose that A;y = 0. Using the computation from above,
we have

(Aa)ijrPajn

= (_vpvpciq - ZRpiqTCpr)<quk90ajk + (—vapch - 2RijqupT)90qki%0ajk
+ (=VpVpCrq = 2RpiiqrCpr ) Pgij Paji

= (=V,VpCig = 2RyiqrCpr) (69ga)
+ (—vapch = 2Ryj¢rCpr ) (Gia9qj — 9ij9qa — wl’tldj)
+ (=VpVpCry = 2RpkgrCpr ) (9akGia — Ggadir: — Vyina)-

We can use (4.27), the symmetry of C' and the anti-symmetry of the Riemann tensor in
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its first two indices to simplify this and so

(Ad’Y)iijOajk
= (=6V,V,Ciq — 12RpiarClr)
+ (VprCm + 2Rpiarcp?“ + 2Rqur¢jqiacpr)
+ (VpVpCia + 2Rpiar Cpr + 2RpkgrVigiaCpr)
= —4V,V,Cia — 8RpiarCyr — ARpriaCyr
— 4(=V,V,Cia — 2RpiarCor).

Since Agy = 0, it follows that (ALC)ie = —V,V,Cia —2R,i0,Cpr = 0. Hence AC'=0. O

The result of this proposition in addition to the the other results of this section allow us
to compute the kernel of the twisted Dirac operator. Our earlier computations shows that
if Dr(Y,C) = 0 on a compact manifold with torsion-free Go-structure, then by writing
C=C+0Cy +C74+Ciy = fg+ Cor + X 1+ (4, we must have that f is a harmonic
function, X and Y are harmonic 1-forms, Cy4 is a harmonic Q2,-form, and Cy; corresponds
to a harmonic 3.-form. We have proven the following:

Theorem 5.6.2. Let M be a compact manifold with torsion-free Gy-structure, then
dimker Dy = b° + b' + b' + b}, + by, = b* +b°. (5.36)

Remark 5.6.3. The above provides an alternate proof for Theorem 3.7 of [Wan91]. Indeed,
if M is connected, we have b° = 1. Furthermore, we have from Proposition 10.1.3 of [Joy00]
that when M is a compact manifold with torsion-free Go-structure with Hol(M) = G,
then ' = 0. We also have from Section 5.2 that S% is consists of elements of the form
(Y,C) = (Y,Cy — %Y J@+ C1y). Our previous analysis tells us that if Dy(Y,C') = 0, then
Y is a harmonic 1-form, C}4 is a harmonic 2,-form, and Cy; corresponds to a harmonic
Q3.-form, hence dim ker DT\S% =b, + b3 =0+ b3 — 1.

Remark 5.6.4. The quantity b® + b® is of importance in G mirror symmetry. As seen
in [BDZ18], if M and M’ are Gy-mirror manifolds then they satisfy the Shatashvili-Vafa
relation:

(M) + 63(M) = (M) + b (M"). (5.37)

Remark 5.6.5. The arguments presented in this section provide alternate proofs of Corol-
laries 5.4.3 and 5.4.6 from Section 5.4. In particular, if Cy; € S with v = Cy; ¢ ¢, then
we have

curl C27 =0 = div 027 = curl 027 =0 = DT(O, 027) =0
— D%(O, 027) =0 = ALCQ? =0 = Ad’y = 0.
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Conversely

Ad’)/ =0 —= ALCQ? =0 — D%(O,Cgﬂ =0
- DT(O, 027) =0 = curl 027 =0.

A similar chain of implications shows the result for Cy4 € Q3,.

5.7 Possible Applications and Extensions

We have shown that identifying the spinor bundle of a manifold with Ga-structure with
the bundle R @& T*M is a useful framework for studying spin-theoretic objects. Since
the analysis done in this thesis assumed torsion-freeness of the Gs-structure, a natural
extension would be to explore analogous results in the general torsion case or in any of
the 15 other torsion cases described in Remark 3.5.5. Further, since the Dirac and twisted
Dirac operators are purely spin-theoretic and require no underlying Gs-structure, one could
potentially use the dimension of the kernel of the Dirac and twisted Dirac operators as an
obstruction to the existence of certain types of compatible Ga-structure on 7-dimensional
spin manifolds.

As the twisted Dirac operator and the connection induced from the spin connection are
first order differential operators on the bundle of spinor-valued 1-forms, it may be fruitful
to study their respective Laplacians and Weitzenbock formulae. By comparing them, one
could possibly obtain further results in G5-geometry.

Finally, one could explore if analogous results could be obtained on manifolds with
different holonomy groups such as Spin(7).
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