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Abstract

In this thesis, we study differential operators on manifolds with torsion-freeG2-structure.
In particular, we use an identification of the spinor bundle S of such a manifold M with
the bundle R⊕ T ∗M to reframe statements regarding the Dirac operator in terms of three
other first order differential operators: the divergence, the gradient, and the curl opera-
tors. We extend these three operators to act on tensors of one degree higher and study the
properties of the extended operators. We use the extended operators to describe a Dirac
bundle structure on the bundle T ∗M ⊕ (T ∗M ⊗ T ∗M) = T ∗M ⊗ (R ⊕ T ∗M) as well as
its Dirac operator. We show that this Dirac operator is equivalent to the twisted Dirac
operator DT defined using the original identification of S with R⊕ T ∗M .

As the two Dirac operators are equivalent, we use the T ∗M ⊕ (T ∗M ⊗T ∗M) = T ∗M ⊗
(R ⊕ T ∗M) description of the bundle of spinor-valued 1-forms to examine the properties
of the twisted Dirac operator DT . Using the extended divergence, gradient, and curl
operators, we study the kernel of the twisted Dirac operator when M is compact and
provide a proof that dim kerDT = b2 + b3.
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Chapter 1

Introduction

The aim of this thesis is to study and collect results regarding the Dirac and twisted Dirac
operators on manifolds with torsion-free G2-structure. In doing so, we will define and
come across other differential operators defined on such manifolds such as the divergence,
gradient, and curl operators.

The following two chapters consist of the preliminary material related to this thesis.
Chapter 2 is dedicated to material on spin geometry and Chapter 3 provides an introduction
to the G2-geometry that will be used throughout the rest of the thesis. Most of the
information from each of these chapters have been taken from their sources, with their
proofs slightly adapted in the attempt to improve readability and clarity.

Chapter 4 provides the groundwork and justification for identifying the spinor bundle
S with the bundle R ⊕ T ∗M . We define the first order operators div, grad, and curl here
and extend them to act on spinor-valued 1-forms. Moreover, we prove identities involving
these operators and the Dirac operators on their respective bundles when the underlying
G2-structure is torsion-free.

In Chapter 5, we take a deeper look at the twisted Dirac operator defined on the bundle
of spinor-valued 1-forms. In particular, we compute its kernel in the compact and torsion-
free case. Moreover, we note some characteristics of harmonic forms on manifolds with
torsion-free G2-structure.
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1.1 Notation and Conventions

When left unspecified, M will denote a smooth 7-dimensional manifold admitting a G2-
structure with metric g, associative 3-form ϕ, and coassociative 4-from ψ. (See Chapter 3
for an introduction to G2-structures.) All structures involved will be smooth unless stated
otherwise. Using the metric, we identify vector fields and 1-forms. Tensor calculations will
be done pointwise and tensors on M will be expressed with respect to a local orthonormal
frame {e1, . . . , en} with respect to the metric g such that ∇iej = 0 at the center. As such,
all indices will be subscripts. We employ the Einstein summation convention throughout,
so repeated indices will be summed over the values 1 to dimM . Additionally, at times
we will, through an abuse of notation, identify a global object with its local coordinate
representation.

The trivial rank 1 real bundle over a manifold M will be denoted by R. Given a vector
bundle E over M , we use Γ(E) to denote the space of smooth sections of E. In some cases,
we denote these spaces in different ways. For example:

• Ωk = Γ(Λk(T ∗M)) is the space of smooth k-forms on M ;

• X = Γ(TM) is the space of smooth vector fields on M ;

• T 2 = Γ(T ∗M ⊗ T ∗M) is the space of smooth 2-tensors on M ;

• S2 = Γ(S2(T ∗M)) is the subspace of T 2 of smooth symmetric 2-tensors on M .

With respect to the metric g on M , we let S2
0 denote the subspace of traceless symmetric

2-tensors. That is, S2
0 consists of symmetric 2-tensors h with trh = hii = 0. Using the

induced metric on T ∗M ⊗ T ∗M induced by g, we have T 2 = Ω2 ⊕ S2 where the splitting
is pointwise orthogonal.

The Levi-Civita connection induced by g will be denoted by ∇. We will encounter
several Laplacian operators throughout this thesis. The symbol ∆ will always denote the
rough Laplacian ∆ = −∇i∇i. The Hodge Laplacian on differential forms will be denoted
by ∆d = dd∗ + d∗d and the Lichnerowicz Laplacian (see Chapter 3 of [CK04]) will be
denoted by ∆L.

The labelling convention for the Riemann curvature tensor Rijkl used is such that the
Ricci tensor is Ricjk = Rijki.
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Chapter 2

Preliminaries on Spin Geometry

Much of the focus of this thesis is on differential operators on G2-manifolds such as Lapla-
cian and Dirac operators. Moreover we will utilize certain notions from spin geometry.
In order to describe these, we need to understand the underlying theory of Clifford al-
gebras. Since our applications concern real bundles, we will only consider the real cases
here. Further, we will focus on results pertaining to odd dimensional spaces, in particular
7-dimensional spaces, as we aim to import these results onto manifolds with G2-structure.
This chapter closely follows [LM89], though results not relevant to odd dimensions have
generally been omitted. Other sources for this section include [ABS64], [Har90], [HS19],
[Nic13], and [Roe98].

2.1 Clifford Algebras

Definition 2.1.1. Let V be a finite-dimensinal real inner product space with a positive-
definite inner product denoted by 〈·, ·〉. A Clifford algebra for V is a unital algebra A
with a map φ : V → A such that φ(v)2 = −〈v, v〉1 that satisfies the universal property.
In other words, if there were another unital algebra A′ and map φ′ : V → A′ satisfying
φ′(v)2 = −〈v, v〉1, then there is a unique algebra homomorphism f : A→ A′ such that the
diagram below commutes.

V A

A′

φ

φ′
f
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For (V, 〈·, ·〉), a Clifford algebra exists and is unique up to algebra isomorphism by
universality. As such, we may refer to the Clifford algebra of an inner product space. More
concretely, we can consider the Clifford algebra of (V, 〈·, ·〉) to be to quotient of the tensor
algebra ⊕k≥0V

⊗k by the ideal generated by all elements of the form

v ⊗ v + 〈v, v〉1.

The map φ in this case is given by the composition of the embedding V ↪→ ⊕k≥0V
⊗k with

the quotient map described above. We suppress the tensor notation here, as is usually
done, and represent it via concatenation. Additionally, by polarizing the defining identity
of the Clifford algebra, we get that

vw + wv = −2〈v, w〉1. (2.1)

We denote the Clifford algebra of V by Cl(V ) and note that if V has dimension n, then
Cl(V ) has dimension 2n. The map φ is injective (see [LM89]), and so we identify V with
its image in Cl(V ) and consider it as a subspace of Cl(V ).

The map
V → Cl(V ) : v 7→ −v

extends to an algebra automorphism α : Cl(V ) → Cl(V ) by the universal property. Since
negation on the vector space V is an involution, so is α. This gives a natural Z2-grading
of the Clifford algebra

Cl(V ) = Cl0(V )⊕ Cl1(V ) (2.2)

where Cl0(V ) = ker (α − 1) and Cl1(V ) = ker (α + 1). Indeed, since α is an algebra
homomorphism, we see that the relations

Cl0(V ) · Cl0(V ) ⊆ Cl0(V ), Cl1(V ) · Cl1(V ) ⊆ Cl0(V ),

Cl0(V ) · Cl1(V ) ⊆ Cl1(V ), Cl1(V ) · Cl0(V ) ⊆ Cl1(V ),

are satisfied. We call Cl0(V ) the even part of the Clifford algebra and Cl1(V ) the odd
part. We note that Cl0(V ) is a subalgebra of Cl(V ).

Using our concrete notion of the Clifford algebra as a quotient of the tensor algebra, we
have that Cl(V ) has a basis consisting of elements of the form v1v2 · · · vk where {v1, . . . , vn}
is a basis of V . We define a transposition operator on such elements by

(v1v2 · · · vk)t = vk · · · v2v1 (2.3)
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and extend it to all of Cl(V ) linearly. This map is well-defined on the Clifford algebra
since it preserves the ideal by which we quotient out. It is clear that transposition is an
involution on Cl(V ). We note that it is also an antiautomorphism, that is, (ab)t = btat.

Simple calculations allow us to compute the Clifford algebras of low dimensional inner
product spaces. The following table lists Cl(V ) up to isomorphism when V has dimension
between 1 and 8 where K(m) denotes the algebra of m × m matrices over a field K (or
skew-field in the case of the quaternions H).

dimV 1 2 3 4 5 6 7 8

Cl(V ) C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

Table 2.1: Clifford Algebras of Low Dimensional Spaces

2.2 Pin and Spin Groups

We now turn our attention to the multiplicative groups of units Cl×(V ) in the Clifford
algebra Cl(V ) which is the subset

Cl×(V ) = {x ∈ Cl(V ) | there exists x−1 ∈ Cl(V ) such that xx−1 = x−1x = 1}. (2.4)

Since Cl(V ) is subject to the relation

v2 = −2〈v, v〉1, v ∈ V

we see that Cl×(V ) contains all elements v ∈ V with 〈v, v〉 6= 0. This group acts on the
algebra Cl(V ) as automorphisms via the adjoint representation

Ad: Cl×(V )→ Aut(Cl(V ))

x 7→ Adx
(2.5)

where
Adx(y) = xyx−1. (2.6)

Additionally, Cl×(V ) can act on Cl(V ) via the twisted adjoint representation given
by

Ad: Cl×(V )→ Aut(Cl(V ))

x 7→ Ãdx
(2.7)
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where
Ãdx(y) = α(x)yx−1. (2.8)

The difference between the two representations is that for odd elements of Cl(V ), in partic-
ular for v ∈ V , the involution α acts as negation. Though the adjoint representation seems
more natural, we will focus largely on the twisted adjoint representation as the notation
and calculations end up being cleaner.

Using the twisted adjoint representation, we can define the Clifford group Γ(V ).

Definition 2.2.1. The Clifford group Γ(V ) is the subgroup of Cl×(V ) whose elements
leave V invariant under the twisted adjoint representation. In other words,

Γ(V ) = {u ∈ Cl×(V ) | Ãdu(v) = α(u)vu−1 ∈ V for all v ∈ V }. (2.9)

Proposition 2.2.2. Let 0 6= v ∈ V . Then Ãdv(V ) ⊆ V . In particular, we have for w ∈ V
that

Ãdv(w) = w − 2
〈v, w〉
‖v‖2

v. (2.10)

Proof. The Clifford identity v2 = −〈v, v〉 tells us that v−1 = − v
‖v‖2 . Direct computation

using (2.1) then yields

Ãdv(w) = −vwv−1 =
vwv

‖v‖2
= − v

2w

‖v‖2
− 2
〈v, w〉
‖v‖2

v = w − 2
〈v, w〉
‖v‖2

v.

Proposition 2.2.3. Let 0 6= v ∈ V . Then Ãdv preserves the bilinear form 〈·, ·〉.

Proof. Let x, y ∈ V . We compute using (2.10) that

〈Ãdv(x), Ãdv(y)〉 = 〈x− 2
〈v, x〉
‖v‖2

v, y − 2
〈v, y〉
‖v‖2

v〉

= 〈x, y〉 − 2
〈v, y〉
‖v‖2

〈v, x〉 − 2
〈v, x〉
‖v‖2

〈v, y〉+ 4
〈v, x〉〈v, y〉
‖v‖2‖v‖2

‖v‖2

= 〈x, y〉.

6



Geometrically, we can see that the right hand side of (2.10) is just the reflection of w
across the hyperplane perpendicular to v which matches up with the fact that the twisted
adjoint representation preserves the bilinear form. Since it is just a reflection, we also have
that for each non-zero vector v ∈ V that Ãdv(V ) = V . As a corollary, we observe that Ãd
is actually a map

Γ(V )→ O(V )

where O(V ) denotes the orthogonal group of V with respect to the bilinear form 〈·, ·〉. A

classical result of Cartan and Dieudonné (see [Har90]) tells us that the image of Ãd is the
entire orthogonal group.

Theorem 2.2.4 (Cartan–Dieudonné). Every element of O(V ) can be written as a compo-
sition of at most n reflections.

We now define the Pin and Spin groups.

Definition 2.2.5. The Pin group of V is the subgroup Pin(V ) of Γ(V ) generated by
the elements v ∈ V with 〈v, v〉 = 1. The Spin group of V is the subgroup Spin(V ) of
Pin(V ) containing only even elements of Cl(V ), that is Spin(V ) = Pin(V ) ∩ Cl0(V ). In
other words,

Pin(V ) = {v1 · · · vk ∈ Γ(V ) | 〈vi, vi〉 = 1 for each i} (2.11)

and
Spin(V ) = {v1 · · · v2k ∈ Γ(V ) | 〈vi, vi〉 = 1 for each i}. (2.12)

Because Ãdλv = Ãdv for any scalar λ, we still see that the image of Pin(V ) under the
twisted adjoint representation results in the entire orthogonal group O(V ). We work to
get a similar result for Spin(V ). Recall that the special orthogonal group SO(V ) is the
subgroup of O(V ) consisting of elements with unit determinant. Thus to show that we have
a similar relationship between the Spin group Spin(V ), the twisted adjoint representation

Ãd, and the special orthogonal group SO(V ), it suffices to show that det Ãdv = −1 for each
v ∈ V . To prove this, extend v to an orthogonal basis {v = v1, · · · , vn}. We compute that

Ãdv(v1) = −vv1v
−1 = −v1 and for each i > 1 we have Ãdv(vi) = −vviv−1 = vivv

−1 = vi.

It follows that det Ãdv = −1. Thus Ãd maps Spin(V ) onto SO(V ).

More can be said about the twisted adjoint representation Ãd. In order to discuss this,
we need some other results.

Proposition 2.2.6. The kernel of the twisted adjoint representation Ãd is the group R×
of non-zero multiples of the unit 1.

7



Proof. Let {v1, . . . , vn} be an orthogonal basis for V . Suppose that u ∈ Cl×(V ) is in the

kernel of Ãd. Then we have that α(u)vu−1 = Ãdu(v) = v for all v ∈ V , that is, α(u)v = vu
for all v ∈ V . We may write u = u0 + u1 where u0 is even and u1 is odd. By equating odd
and even parts, we see that

u0v = vu0

−u1v = vu1

for all v ∈ V . We can write u0 and u1 as polynomial expressions of the basis elements
v1, . . . , vn. By repeatedly using orthogonality of the basis and the identity vivj = −vjvi −
2〈vi, vj〉, we may assume that these polynomial expressions are of the form u0 = a0 + v1a1

and u1 = b1 +v1b0 where a0, a1, b0, and b1 are polynomial expressions of v2, . . . , vn. We also
see that a0 and b0 are even while a1 and b1 are odd.

If we let v = v1 in the relations above, we get

v1a0 + v2
1a1 = a0v1 + v1a1v1 = v1a0 − v2

1a1.

where the second equality follows from repeatedly using orthogonality of the basis and the
identity vivj = −vjvi − 2〈vi, vj〉. This shows that v2

1a1 = −〈v1, v1〉a1 = 0 and so a1 = 0.
This shows that u0 does not involve v1. Since we arbitrarily chose 1 as the index here, we
can repeat this argument for each index to show that u0 must be a scalar.

We apply a similar argument for u1 and get

v1b1 + v2
1b0 = −b1v1 − v1b0v1 = v1b1 − v2

1b0.

So v2
1b0 = 0 which implies that b0 = 0. Hence u1 does not involve v1. Repeating this for

each index shows that u1 must also be a scalar. Since u1 is odd, it follows that u1 = 0.

Putting the above together, we get that u = u0 + u1 = u0 is a scalar. Since by
assumption u is non-zero, the result follows.

Next, we introduce the norm map N on Cl(V ) by setting

N(u) = uα(ut). (2.13)

We note that in the case that v ∈ V , then vt = v and α(v) = −v so N(v) = −v2 = 〈v, v〉.

Though defined on all of the Clifford algebra, we are mostly interested to its restriction
to the Clifford group and its subgroups.
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Proposition 2.2.7. The restriction of the norm map N to the Clifford subgroup Γ(V ) is
a group homomorphism onto the group R× of non-zero multiples of the unit 1. Moreover
N(α(u)) = N(u).

Proof. First we show that N maps Γ(V ) to R×. If u ∈ Γ(V ), then for v ∈ V we have
α(u)vu−1 = v′ for some v′ ∈ V . We apply transposition to both sides of this equation,
taking note that transposition acts as the identity on V to get

α(u)vu−1 = (α(u)vu−1)t = (u−1)tvtα(u)t = (ut)−1vα(ut).

Since α is an involutive homomorphism, rearranging the above gives

α([α(ut)u])v = utα(u)v = vα(ut)u,

which implies that α(ut)u is in the kernel of the twisted adjoint representation. By
Proposition 2.2.6, α(ut)u is a non-zero scalar and so utα(u) is a non-zero scalar. Since
N(ut) = utα((ut)t) = utα(u) and Γ(V ) is closed under transposition, it follows that
N(Γ(V )) ⊆ R×.

To show that N is a homomorphism, let x, y, u ∈ Γ(V ). Then we have

N(xy) = xyα((xy)t) = xyα(ytxt) = xyα(yt)α(xt)

= xN(y)α(yt) = N(y)xα(xt) = N(x)N(y).

We also have

N(α(u)) = α(u)α(α(u)t) = α(u)ut = α([uα(ut)]) = α(N(u)) = N(u).

Putting some of the previous results together we get the following proposition.

Proposition 2.2.8. There exist short exact sequences

1 Z2 Pin(V ) O(V ) 1Ãd (2.14)

1 Z2 Spin(V ) SO(V ) 1.Ãd (2.15)

Additionally, depending on the dimension of the vector space V , we can say more about
the relationship between Spin(V ) and SO(V ). We state the following proposition without
proof (see [Nic13]).

Proposition 2.2.9. The twisted adjoint representation Ãd defines a covering map. Fur-
ther, Spin(V ) is connected if V has dimension at least 2 and it is simply connected if V
has dimension at least 3. In particular, if dimV ≥ 3, Spin(V ) is the universal cover of
SO(V ).

9



2.3 Spinor Representations and Spin Structures

In working towards defining the bundle of spinors on a manifold, we first need to consider
the representations of Clifford algebras.

Definition 2.3.1. A (real) representation of the Clifford algebra Cl(V ) is an algebra
homomorphism

ρ : Cl(V )→ Hom(W,W )

into the algebra of linear transformations of a finite dimensional real vector space W . We
call W a (real) left Cl(V )-module . We often suppress the map ρ by writing

ρ(u)(w) = u · w

for u ∈ Cl(V ) and w ∈ W . The product above is called Clifford multiplication .

The representation (ρ,W ) is said to be reducible if there exists a proper invariant
subspace, that is, there exists a subspace {0} ( Z ( W such that ρ(u)(Z) ⊆ Z for
each u ∈ Cl(V ). If no such invariant subspace exists, we say that the representation is
irreducible .

Lastly, two representations ρ1 : Cl(V )→ Hom(W1,W1) and ρ2 : Cl(V )→ Hom(W2,W2)
are considered equivalent if there exists a linear isomorphism L : W1 → W2 such that
L ◦ ρ1(u) ◦ L−1 = ρ2(u) for each u ∈ Cl(V ).

We note that the Clifford algebra Cl(V ) is almost the group algebra of a finite group.
Consider the elements e1, · · · , en and −1 where the ei form an orthonormal basis of V . We
can form a group of these elements by declaring a presentation given by these elements
subject to the relations

(−1)2 = 1, (ei)
2 = −1, eiej = (−1)ejei for i 6= j, (2.16)

as well as stipulating that −1 be central. By taking the group algebra of this group and
quotienting out by the subspace spanned by 1 + (−1), we get the Clifford algebra Cl(V ).
Using this, we can apply some of the representation theory of finite groups. In particular,
we can decompose a representation of a Clifford algebra into a direct sum of irreducible
ones.

Proposition 2.3.2. Every representation ρ of a Clifford algebra Cl(V ) can be decomposed
into a direct sum ρ = ρ1 ⊕ · · · ⊕ ρk of irreducible representations.

10



From Table 2.1, we notice that the Clifford algebras Cl(V ) are all of the form K(m)
or K(m) ⊕ K(m) for some field or skew-field K. Arguments in [LM89] show that Clifford
algebras generally have this form and can be computed from the entries in Table 2.1
using “periodicity” isomorphisms with period 8. The following theorem shows us that the
representations of these algebras are quite simple. A proof of this result can be found in
[Lan02].

Theorem 2.3.3. Let K = R,C, or H and consider the R-algebras K(m) and K(m)⊕K(m).
The natural representation ρ of K(m) on the vector space Km is, up to equivalence, the
only irreducible representation of K(m). The algebra K(m) ⊕ K(m) has two equivalence
classes of irreducible representations given by

ρ1(u1, u2) = ρ(u1) and ρ2(u1, u2) = ρ(u2)

acting on Km.

To further this discussion on spin representations, we need to consider an important
element of the Clifford algebra Cl(V ) called the volume element . To define the volume
element, choose an orientation for the vector space V and let e1, . . . , en be an oriented
orthonormal basis for V . The volume element is defined to be

ω = e1 · · · en. (2.17)

We check that this definition is independent of the basis chosen. If e′1, . . . , e
′
n is another

oriented orthonormal basis, then we can transform one basis into the other via a linear
transformation L. In particular, since it preserves orientation and orthonormality of the
basis, it follows that L ∈ SO(V ). Writing this out, we have e′i =

∑
j Lijej. Using the

identities eiej + ejei = −2δij, we can compute that

e′1 · · · e′n = (detL)e1 · · · en = e1 · · · en.

An important property of the volume element is that it squares to ±1 and either
commutes or anticommutes with vectors based on the dimension of V . This can be seen
by repeated use of the identities eiej + ejei = −2δij.

Proposition 2.3.4. The volume element ω satisfies the following properties:

ω2 = (−1)
n(n+1)

2 (2.18)

vω = (−1)n−1ωv. (2.19)

11



We see that if n ≡ 3, 4 (mod 4) then ω2 = 1 and if n ≡ 1, 2, (mod 4) then ω2 = −1.
In the former case, we can define a pair of idempotent elements which will allow us to
decompose Cl(V ) in another way.

Lemma 2.3.5. Suppose the volume element ω satisfies ω2 = 1. Set

π+ =
1

2
(1 + ω), π− =

1

2
(1− ω). (2.20)

Then π+ and π− satisfy
π+ + π− = 1, (2.21)

(π+)2 = π+, (π−)2 = π−, (2.22)

π+π− = π−π+ = 0. (2.23)

Using these two elements π+ and π− we get the following decomposition

Proposition 2.3.6. Suppose the volume element ω satisfies ω2 = 1 and that n is odd.
Then Cl(V ) can be decomposed as a direct sum

Cl(V ) = Cl+(V )⊕ Cl−(V ) (2.24)

of isomorphic subalgebras, where Cl±(V ) = π± ·Cl(V ) = Cl(V ) · π±. Further α(Cl±(V )) =
Cl∓(V ).

Proof. From Proposition 2.3.4, ω is central, so π+ and π− are central. The decomposition
follows from the properties of π+ and π− seen in (2.21), (2.22), and (2.23). Since n is
odd, ω is an odd element so α(ω) = −ω. This gives us that α(π±) = π∓ and hence
α(Cl±(V )) = Cl∓(V ). The fact that Cl+(V ) and Cl−(V ) are isomorphic comes from α
being an automorphism.

Using the above, we get a result on irreducible representations of the Clifford algebra
when n ≡ 3 (mod 4).

Proposition 2.3.7. Let ρ : Cl(V ) → Hom(W,W ) be an irreducible representation where
dimV ≡ 3 (mod 4). Then either ρ(ω) = 1 or ρ(ω) = −1. Both possibilities can occur and
they result in inequivalent representations.

12



Proof. Since dimV ≡ 3 (mod 4), ω2 = 1, so we get ρ(ω)2 = ρ(ω2) = 1. We can then
decompose W into W = W+ ⊕W− where W+ and W− are the +1- and −1-eigenspaces
for ρ(ω) respectively. On W±, the map ρ(ω) acts as ±1 so for u ∈ Cl(V ) and w± ∈ W±

we get
ρ(u)(w±) = ρ(u)((±1)2w±) = ρ(u)ρ(ω)(±w±) = ±ρ(ω)ρ(u)(w±).

where we used the fact that ω is central. This shows that both W+ and W− are invariant.
Since we assumed that ρ was irreducible, we must either have W = W+ or W = W−.

To show that these representations are inequivalent, we note that if ρ+ and ρ− are
representations with ρ±(ω) = ±1, then given any linear isomorphism L between the spaces,
we get L ◦ ρ+(ω) ◦ L−1 = 1 6= −1 = ρ−(ω).

To see that both possibilities exist, we can precompose a representation ρ with the
automorphism α as α(ω) = −ω.

In the n ≡ 3 (mod 4) case, it turns out that these are the only two inequivalent irre-
ducible representations of Cl(V ) (see Theorem 2.3.3). We recall the following containment
Spin(V ) ⊆ Cl0(V ) ⊆ Cl(V ).

Definition 2.3.8. The spinor representation of Spin(V ) is the homomorphism

∆V : Spin(V )→ GL(W ) (2.25)

given by restricting an irreducible representation Cl(V ) → Hom(W,W ) to Spin(V ) ⊆
Cl0(V ) ⊆ Cl(V ).

Previous arguments have shown that when n ≡ 3 (mod 4) we have two different ir-
reducible representations of Cl(V ). The next proposition shows that it does not matter
which one we start with as they result in the same spinor representation.

Proposition 2.3.9. When n ≡ 3 (mod 4) the definition of ∆V is independent of the irre-
ducible Clifford representation used.

Proof. From Proposition 2.3.6, we have that the involution α interchanges Cl+(V ) and
Cl−(V ). Since α acts as the identity on Cl0(V ), it follows that Cl0(V ) is diagonal in the
decomposition Cl(V ) = Cl+(V )⊕ Cl−(V ), that is

Cl0(V ) = {(u, α(u)) : u ∈ Cl+(V )}. (2.26)

The irreducible representations of Cl(V ) differ by α so they match when each is restricted
to Cl0(V ). Since Spin(V ) ⊆ Cl0(V ), the result holds.

13



An important property of Clifford representations is that we are able to endow it with
an inner product that makes Clifford multiplication skew-adjoint.

Proposition 2.3.10. Let Cl(V )→ Hom(W,W ) be a representation of Cl(V ). Then there
exists an inner product 〈·, ·〉 on W such that Clifford multiplication by unit vectors is
orthogonal. Additionally, with respect to this inner product, Clifford multiplication by any
vector v ∈ V is skew-adjoint.

Proof. Choose an orthonormal basis e1, . . . , en of V and recall that we can define a group
with these elements and −1 via the presentation in (2.16). Call this finite group G. Choose
an inner product 〈〈·, ·〉〉 on W and average it over this finite group. This results in another
inner product on W . That is, we can define a new inner product 〈·, ·〉 by

〈w,w′〉 =
1

|G|
∑
g∈G

〈〈g · w, g · w′〉〉

for w,w′ ∈ W .

We note that the new inner product has a couple of important properties. First, we
have

〈ei · w, ei · w′〉 =
1

|G|
∑
g∈G

〈〈gei · w, gei · w′〉〉

=
1

|G|
∑
g∈G

〈〈(ge−1
i )ei · w, (ge−1

i )ei · w′〉〉

=
1

|G|
∑
g∈G

〈〈g · w, g · w′〉〉

= 〈w,w′〉.

Secondly, we also have

〈ei · w,w′〉 =
1

|G|
∑
g∈G

〈〈gei · w, g · w′〉〉

=
1

|G|
∑
g∈G

〈〈(gei)ei · w, gei · w′〉〉

= − 1

|G|
∑
g∈G

〈〈g · w, gei · w′〉〉

= −〈w, ei · w′〉.
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To check that Clifford multiplication by unit vectors is orthogonal with respect to this
inner product, write a unit vector e as e =

∑
i aiei with

∑
i a

2
i = 1. For w ∈ W , we

compute

〈e ·w, e ·w〉 =
∑
i

a2
i 〈ei ·w, ei ·w〉+

∑
i 6=j

aiaj〈ei ·w, ej ·w〉 =
∑
i

a2
i 〈w,w〉 = 〈w,w〉 (2.27)

where terms in the second summation vanish as 〈ei·w, ej ·w〉 = −〈ejei·w,w〉 = 〈eiej ·w,w〉 =
−〈ej · w, ei · w〉.

To show the skew-adjointness of Clifford multiplication, let 0 6= v ∈ V and w,w′ ∈ W .
Using the above we can check that

〈v · w,w′〉 = 〈 v
‖v‖

v · w, v

‖v‖
· w′〉 =

1

‖v‖2
〈v2 · w, v · w′〉 = −〈w, v · w′〉. (2.28)

Since the spin group Spin(V ) is generated by unit vectors it follows from the previous
proposition that the spinor representation ∆V is orthogonal.

Remark 2.3.11. By choosing an appropriate basis for the inner product space V ∼= Rn

we may assume that the inner product space is just Rn equipped with the standard inner
product. It is conventional to suppress the notation by specifying the dimension of the
space V instead of the space V itself. We write

Cl(n) ≡ Cl(V ), O(n) ≡ O(V ), SO(n) ≡ SO(V ),

Pin(n) ≡ Pin(V ), Spin(n) ≡ Spin(V ), ∆n ≡ ∆V .
(2.29)

We recall that Proposition 2.2.9 tells us that when the dimension of an inner product
space is at least 3 then its spin group Spin(V ) is the universal cover of its special orthogonal
group SO(V ). Let M be an oriented Riemannian manifold of dimension n ≥ 3. We
can consider the principal SO(n)-bundle PSO(M) of oriented orthonormal frames of its
tangent bundle. We define a spin structure on M by extending the universal covering map
ξ0 : Spin(n)→ SO(n) to a manifold setting.

Definition 2.3.12. A spin structure on an oriented Riemannian manifold M of dimen-
sion n is a principal Spin(n)-bundle PSpin(M) with a 2-sheeted covering

ξ : PSpin(M)→ PSO(M)

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(M) and g ∈ Spin(n).

If such a structure exists on a manifold M , we say that M is spinnable . A spinnable
manifold with a choice of spin structure is called a spin manifold .
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An important result regarding spinnable manifolds is the following theorem. We state
it below though the result is not of particular importance in this thesis.

Theorem 2.3.13. Let M be an oriented Riemannian manifold of dimension n. Then M
is spinnable if and only if its second Stiefel–Whitney class w2(M) vanishes.

Using the spinor representations discussed above, we can define the spinor bundle of a
spin manifold.

Definition 2.3.14. Let M be a spin manifold of dimension n. The spinor bundle
S(M) of M is the vector bundle associated to the principal Spin(n)-bundle via the spinor
representation ∆n. That is

S(M) = PSpin(M)×∆n W. (2.30)

A spinor field is a section of the spinor bundle.

In the sequel, we omit the M in notation for the spinor bundle when it is clear which
manifold it lies over. We also omit the word field and refer to sections of the spinor bundle
simply as spinors.

From Table 2.1, we have that the Clifford algebras Cl(n) are of the form K(m) or
K(m) ⊕ K(m). Using Theorem 2.3.3 and the fact that there is a linear isomorphism
between the fibre of an associated bundle and its representation, we can compute the rank
of the spinor bundle S. We list these in the table below.

n 1 2 3 4 5 6 7 8

Cl(n) C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

rankS 2 4 4 8 8 8 8 16

Table 2.2: Rank of the Spinor Bundle for Low Dimensional Manifolds

We recall that a connection on a Riemannian manifold M induces a unique Ehresmann
connection on the principal SO(n)-bundle PSO(M) of oriented orthonormal frames of TM .
If M is also spin, we can use the map ξ to lift this Ehresmann connection onto one on
PSpin(M). This procedure allows us to define the spin connection on PSpin(M) and on the
spinor bundle.

Definition 2.3.15. Let M be a spin manifold of dimension n ≥ 3. The spin connection
ωS on PSpin(M) is the Ehresmann connection obtained by lifting the Ehresmann connection
on PSO(M) induced by the Levi-Civita connection via the map ξ. The spin connection
∇S on the spinor bundle S is the connection associated to the spin connection on PSpin(M).
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We list two important properties of the spin connection in the following proposition
(proofs of these results can be found in Chapter 2 of [LM89]).

Proposition 2.3.16. The spin connection ∇S on the spinor bundle S is compatible with the
metric on S induced by the spin representation as well as with the Levi-Civita connection
on M , that is,

∇X〈s, s′〉 = 〈∇S
Xs, s

′〉+ 〈s,∇S
Xs
′〉 (2.31)

and
∇S
X(Y · s) = (∇XY ) · s+ Y · (∇S

Xs) (2.32)

for vector fields X, Y ∈ X and spinors s, s′ ∈ Γ(S).

2.4 Dirac Bundles and Dirac Operators

We can transport the algebraic structures considered above onto Riemannian manifolds.
Since the fibres of the tangent bundle TM of a Riemannian manifold M are inner product
spaces, it makes sense to construct the bundle of Clifford algebras Cl(TM) whose
fibre over a point x ∈ M is the Clifford algebra Cl(TxM) associated to its tangent space
TxM . Additionally we can consider bundles of Clifford modules where the fibre over a
point x ∈ M is a left Cl(TxM)-module. We would like to differentiate sections of these
bundles, as such we require a connection on such a bundle. We choose a connection which
satisfies certain compatibility requirements.

Definition 2.4.1. A Dirac bundle S over a Riemannian manifold M is a bundle of
left modules over Cl(TM) equipped with a Riemannian metric and metric compatible
connection satisfying the following conditions:

• The Clifford multiplication of a vector v ∈ TxM on Sx is skew-adjoint, that is

〈v · s, s′〉 = −〈s, v · s′〉; (2.33)

• The connection on S is compatible with the Levi-Civita connection on M , that is

∇X(Y · s) = (∇XY ) · s+ Y · (∇Xs) (2.34)

for vector fields X, Y and sections s ∈ Γ(S).

Example 2.4.2. By Proposition 2.3.16, the spinor bundle S of a spin manifold M equipped
with the spin connection ∇S defined in the previous section is a Dirac bundle.

17



When M is compact, the inner product on each fibre of a Dirac bundle induces an inner
product on Γ(S) by integrating over the manifold M given by

(s, s′) =

∫
M

〈s, s′〉. (2.35)

Definition 2.4.3. The Dirac operator D of a Dirac bundle S is the first order differential
operator on Γ(S) defined by the composition

Γ(S) Γ(T ∗M ⊗ S) Γ(TM ⊗ S) Γ(S) (2.36)

where the first arrow is given by the connection, the second arrow is given by using the
metric to identify T ∗M and TM and the last arrow is given by Clifford multiplication.

With respect to a local orthonormal frame e1, . . . , en for the tangent bundle, we can
write the Dirac operator as

Ds =
∑
i

ei · ∇is. (2.37)

We have several important properties of the Dirac operator which we summarize in the
following results and definitions.

First, we recall the definition of the principal symbol of a differential operator and the
definition of an elliptic operator.

Definition 2.4.4. Let E and F be vector bundles over M . The principal symbol of
a differential operator L : Γ(E) → Γ(F ) associates each point x ∈ M and each cotangent
vector ξ ∈ T ∗xM to a linear map σξ(L) : Sx → Sx defined as follows. If L is of order m, we
may write in local coordinates

L =
∑
α

Aα(x)∂|α|, ξ = ξidxi

where α is taken over all k-tuples of indices with k ≤ m. The principal symbol is defined
to be

σξ(L) =
∑
|α|=m

Aα(x)ξα. (2.38)

Though the principal symbol is defined locally, it is well-defined independent of the choice
of coordinate chart.

The operator L is said to be elliptic if σξ(L) is an isomorphism for each ξ 6= 0.
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The principal symbol satisfies the following identity under compositions of differential
operators (see [Nic13]). If E,E ′, and E ′′ are vector bundles over M and L1 : Γ(E)→ Γ(E ′),
L2 : Γ(E ′)→ Γ(E ′′) are differential operators, then for any cotangent vector ξ ∈ T ∗xM , we
have

σξ(L2L1) = σξ(L2)σξ(L1). (2.39)

We use this identity in the proof of the following lemma.

Lemma 2.4.5. The Dirac operator D of a Dirac bundle S is elliptic, as is its square D2.
More specifically, for any ξ ∈ T ∗xM , we have

σξ(D) = ξ· (2.40)

σξ(D
2) = −‖ξ‖2 (2.41)

Proof. Pick local coordinates centered at x. For any local trivialization of S with these
coordinates, we have ∇i = ∂i + zeroth order terms. Then using the local description of D
given by (2.37), we get that at x we have

D =
∑
i

ei · ∂i.

It then follows that σξ(D) =
∑

i ξiei· = ξ·. By direct calculation, we also see that

σξ(D
2) = σξ(D)σξ(D) = ξ · ξ· = −||ξ||2.

Proposition 2.4.6. The Dirac operator D of a Dirac bundle S is formally self-adjoint.
That is, for compactly supported sections s, s′ ∈ Γ(S),

(Ds, s′) = (s,Ds′). (2.42)

Proof. We use a local orthonormal frame {e1, . . . , en} such that ∇iej = 0 at the point p to
compute that, at the point p, we have

〈Ds, s′〉 − 〈s,Ds′〉 =
∑
i

〈ei · ∇is, s
′〉 − 〈s, ei · ∇is

′〉

=
∑
i

〈∇i(ei · s), s′〉 − 〈(∇iei) · s, s′〉+ 〈ei · s,∇is
′〉

=
∑
i

〈∇i(ei · s), s′〉+ 〈ei · s,∇is
′〉

=
∑
i

∇i〈ei · s, s′〉

= d∗ω
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where ω is the 1-form given by ω(X) = −(X ·s, s′). By the divergence theorem, the integral
over all of M will vanish, proving the result.

2.5 The Twisted Dirac Operator

As noted in Example 2.4.2 of the previous section, the spinor bundle S of an n-dimensional
spin manifold M is a Dirac bundle. We may embed S into the bundle T ∗M ⊗ S of spinor-
valued 1-forms via the map ι : S→ T ∗M ⊗ S defined by

ι(s) = − 1

n

∑
i

ei ⊗ [ei · s] (2.43)

for a spinor s where the ei form a local orthonormal frame. The factor of 1
n

is chosen such
that the map µ given by Clifford multiplication defines a left inverse for ι. That is, for a
vector field X and a spinor s,

µ(X ⊗ s) = X · s, (2.44)

so, we have that

µ ◦ ι(s) = µ(−
∑
i

1

n
ei ⊗ [ei · s]) = − 1

n

∑
i

ei · (ei · s) = − 1

n
(−ns) = s.

We get a decomposition
T ∗M ⊗ S = S 1

2
⊕ S 3

2
(2.45)

of this bundle where we identify S 1
2

= S with its image under ι and set S 3
2

= kerµ. We call

these spaces S 1
2

and S 3
2

the spaces of 1
2
-spinors and 3

2
-spinors and denote the projections

onto them by pr 1
2

and pr 3
2

respectively. One can see that pr 1
2

= ι ◦ µ and pr 3
2

= id − ι ◦ µ.

We can use the Dirac operator D on Γ(S 1
2
) to define the twisted Dirac operator

DT : T ∗M ⊗ S→ T ∗M ⊗ S which is given by DT = (id⊗ µ) ◦∇. Locally on decomposable
elements, we have

DT (X ⊗ s) = X ⊗Ds+
∑
i

∇iX ⊗ [ei · s]. (2.46)

The twisted Dirac operator can be split up with respect to the decomposition T ∗M ⊗ S =
S 1

2
⊕ S 3

2
(see [HS19] and [Wan91]). Doing so results in the block matrix form

DT =

2−n
n
ι ◦D ◦ µ 2ι ◦ P ∗

2
n
P ◦ µ Q

 , (2.47)
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where P : Γ(S 1
2
) → Γ(S 3

2
) is a first order differential operator called the Penrose or

twistor operator defined by P = pr 3
2
◦∇. Its adjoint P ∗ : Γ(S 3

2
)→ Γ(S 1

2
) can be written

as
P ∗(s̃) = −

∑
i

(∇is̃)(ei).

The operator Q : Γ(S 3
2
) → Γ(S 3

2
) is called the Rarita–Schwinger operator and has

importance in physics (see [AGW84] and [Wit85] for example). In addition to D being
self-adjoint, the operators DT and Q are also self-adjoint.
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Chapter 3

Preliminaries on G2-Structures

In this chapter, we introduce the group G2 by first considering algebraic structures on
the imaginary octonions. We then generalize these notions to the tangent space of 7-
dimensional Riemannian manifolds to form G2-structures. Our conventions in this section
are consistent with that of [Kar09], [Kar20], and [KLL], which were the main sources for
this chapter. Other sources for G2-geometry include [Bry87],[Bry06], and [Joy00], although
their sign conventions run opposite to the ones used here.

3.1 Structures from the Octonions

Let O denote the normed division algebra of the octonions. As a vector space, we may
identify O with R8. We recall that the real octonions ReO are the real span of the multi-
plicative identity 1 and that the imaginary octonions ImO are the orthogonal complement
of ReO with respect to the inner product 〈·, ·〉. This gives us the orthogonal splitting

O = ReO⊕ ImO

and we have the conjugation operator on O defined by

a = Re a− Im a (3.1)

where Re and Im denote the orthogonal projections onto ReO and ImO respectively.
We define two other operators, the commutator [·, ·] : O × O → O and associator
[·, ·, ·] : O×O×O→ O, by

[a, b] = ab− ba, a, b ∈ O, (3.2)
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[a, b, c] = (ab)c− a(bc), a, b, c ∈ O. (3.3)

Since the octonions are neither commutative nor associative, these operators are non-zero.

In order to define the cross-product and the associative and coassociative forms, we
require several identities and lemmas and state them without proof. (For the proofs of
these results see Section 3 of [Kar20].) The following results hold more generally for
normed division algebras, however, since we are particularly interested in the group G2 we
will continue to use notation specific to the octonions O.

Lemma 3.1.1. Let a, b, c ∈ O. Then the following identities hold

〈ac, bc〉 = 〈ca, cb〉 = ‖c‖2 〈a, b〉, (3.4)

〈a, bc〉 = 〈ac, b〉,
〈a, cb〉 = 〈ca, b〉,

(3.5)

ab = ba. (3.6)

Lemma 3.1.2. Let a, b ∈ O. Then we have

〈a, b〉 = Re (ab) = Re (ba) = Re (ba) = Re (ab) (3.7)

and
‖a‖2 = aa = aa. (3.8)

Further a2 = aa is real if and only if a is either real or imaginary.

Lemma 3.1.3. Let a, b ∈ O. Then we have

(ab)b = a(bb) = ‖b‖2 a = a(bb) = (ab)b

a(ab) = (aa)b = ‖a‖2 b = (aa)b = a(ab).
(3.9)

Using these identities, we are able to prove certain important properties involving the
commutator and associator and their restrictions to the imaginary octonions.

Proposition 3.1.4. The commutator and associator are both alternating.

Proof. It is clear from the definition of the commutator that it is alternating. Since O
is an algebra over R, one can see that the associator will vanish if one of the arguments
is completely real. Hence we only need to consider the case where all its arguments are
imaginary.
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Let a, b ∈ ImO. Then we have a = −a and b = −b. Using (3.9), we see

−[a, a, b] = [a, a, b] = (aa)b− a(ab) = 0.

Similarly, we have
−[a, b, b] = [a, b, b] = (ab)b− a(bb) = 0.

This shows that the associator is alternating in its first two and last two arguments. To
check the first and third arguments, we see [a, b, a] = −[a, a, b] = 0, so the associator is
alternating.

Lemma 3.1.5. If a, b, c ∈ ImO, then [a, b] ∈ ImO and [a, b, c] ∈ ImO.

Proof. Using (3.5), we can compute that

〈[a, b], 1〉 = 〈ab− ba, 1〉 = 〈b, a〉 − 〈b, a〉 = 0.

This shows that [a, b] ∈ ImO. Similarly, since b, c are imaginary, we have b = −b and
c = −c so (3.6) tells us that bc = cb = (−c)(−b) = cb. Hence we see that

〈[a, b, c], 1〉 = 〈(ab)c− a(bc), 1〉 = 〈ab, c〉 − 〈bc, a〉
= −〈ab, c〉+ 〈bc, a〉 = −〈a, cb〉+ 〈a, bc〉 = 〈a, cb〉+ 〈a, bc〉
= 〈a, cb+ bc〉 = 〈a, bc+ bc〉 = 2〈a,Re (bc)〉 = 0.

This finishes the proof.

The next proposition shows that we can use the commutator and associator in conjunc-
tion with the inner product to define multilinear forms on the space of octonions.

Proposition 3.1.6. Let a, b, c, d ∈ O. The expressions 〈a, [b, c]〉 and 〈a, [b, c, d]〉 are alter-
nating.

Proof. Proposition 3.1.4 tells us that the commutator and associator are alternating so it
suffices to show that 〈a, [a, b]〉 = 〈a, [a, b, c]〉 = 0. The identities in Lemma 3.1.1 give us
that

〈a, [a, b]〉 = 〈a, ab− ba〉 = ‖a‖2 〈1, b〉 − ‖a‖2 〈1, b〉 = 0

and that

〈a, [a, b, c]〉 = 〈a, (ab)c− a(bc)〉 = 〈ac, ab〉 − ‖a‖2 〈1, bc〉
= ‖a‖2 〈c, b〉 − ‖a‖2 〈c, b〉 = 0

as desired.
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The above allows us to define the associative 3-form and coassociative 4-form on the
imaginary octonions.

Definition 3.1.7. Define a 3-form ϕ and a 4-form ψ on ImO by

ϕ(a, b, c) =
1

2
〈a, [b, c]〉 =

1

2
〈[a, b], c〉, a, b, c ∈ ImO (3.10)

ψ(a, b, c, d) =
1

2
〈a, [b, c, d]〉 = −1

2
〈[a, b, c], d〉, a, b, c, d ∈ ImO. (3.11)

The form ϕ is called the associative 3-form and the form ψ is called the coassociative
4-form .

Identifying O with R8 and ImO with R7, we are able to define a cross-product akin to
the one on R3.

Definition 3.1.8. We define the octonionic cross-product × : ImO × ImO → ImO
to be the bilinear map given by

a× b = Im (ab). (3.12)

This cross-product shares several properties with the familiar cross-product in 3 dimen-
sions.

Lemma 3.1.9. Let a, b ∈ ImO. Then we have

a× b = −b× a, (3.13)

〈a× b, a〉 = 0, (3.14)

Re (ab) = −〈a, b〉1. (3.15)

Lastly, we have a couple of nice relations between ϕ, ψ, and × (see [Kar20] for more
details.)

Proposition 3.1.10. Let a, b, c ∈ ImO. Then

ϕ(a, b, c) = 〈a× b, c〉 = 〈ab, c〉, (3.16)

a× (b× c) = −〈a, b〉c+ 〈a, c〉b− 1

2
[a, b, c] = −〈a, b〉c+ 〈a, c〉b+ (ψ(a, b, c, ·))] (3.17)

where α] denotes the vector dual to α with respect to the inner product.
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3.2 The Group G2

The previous subsection defined several structures on the imaginary octonions ImO. By
making the identification ImO ∼= R7, we can describe the standard G2-structure on R7.
The ingredients needed to do so are:

• the standard Euclidean metric g0,

• the standard volume form µ0 = e1 ∧ · · · ∧ e7 associated to g0 and the standard
orientation, where e1, · · · , e7 is the standard orthonormal basis,

• the associative 3-form ϕ0,

• the coassociative 4-form ψ0,

• the octonionic cross-product ×0.

By using the standard dual basis on (R7)∗ and the octonionic multiplication table we
can write ϕ0 and ψ0 as the sum of decomposable forms. In particular, we get

ϕ0 = e123 − e167 − e527 − e563 − e415 − e426 − e437, (3.18)

ψ0 = e4567 − e4523 − e4163 − e4127 − e2637 − e1537 − e1526, (3.19)

where we have written eijk = ei ∧ ej ∧ ek and eijkl = ei ∧ ej ∧ ek ∧ el. From the above
equations, we see that ψ0 = ?0ϕ0 where ?0 denotes the Hodge star operator induced from
the metric g0 and the volume form µ0.

We use this standard structure on R7 to define the group G2.

Definition 3.2.1. The group G2 is the subgroup of GL(7,R) that preserves the standard
G2-structure on R7. Symbolically, we have

G2 = {A ∈ GL(7,R) | A∗g0 = g0, A
∗µ0 = µ0, A

∗ϕ0 = ϕ0, A
∗ψ0 = ψ0, A

∗×0 = ×0}.
(3.20)

Firstly, we note that we can simplify the above definition since certain components
of the standard G2-structure are defined in terms of others. In particular, the metric g0

and the volume form µ0 determine the Hodge star operator ?0 which then, along with the
associated ϕ0 determines the 4-form ψ0 from the relation ψ0 = ?0ϕ0. Additionally, (3.16)
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shows that the cross-product ×0 is also determined from the metric g0 and the 3-form ϕ0.
Hence we can write

G2 = {A ∈ GL(7,R) | A∗g0 = g0, A
∗µ0 = µ0, A

∗ϕ0 = ϕ0}. (3.21)

We also note that since G2 preserves both the metric and orientation, it is a subgroup
of SO(7,R). A theorem found in [Bry87] tells us that we can simplify this definition even
further.

Theorem 3.2.2. Let A ∈ GL(7,R). If A preserves ϕ0, then A also preserves g0 and µ0.
In particular, G2 = {A ∈ GL(7,R) | A∗ϕ0 = ϕ0}.

Proof. Using the expression for ϕ0 given by (3.18), direct computation shows that for
a, b ∈ R7

(a ⌟ ϕ0) ∧ (b ⌟ ϕ0) ∧ ϕ0 = −6g0(a, b)µ0. (3.22)

If A preserves ϕ0, then by applying A∗ to both sides of the above equation and scaling we
see that

g0(a, b)(detA)µ0 = g0(a, b)A∗µ0

= −1

6
A∗(a ⌟ ϕ0) ∧ A∗(b ⌟ ϕ0) ∧ A∗ϕ0

= −1

6
(A−1a ⌟ A∗ϕ0) ∧ (A−1b ⌟ A∗ϕ0) ∧ A∗ϕ0

= −1

6
(A−1a ⌟ ϕ0) ∧ (A−1b ⌟ ϕ0) ∧ ϕ0

= g0(A−1a,A−1b)µ0

= (A−1)∗g(a, b)µ0.

(3.23)

Hence (detA)g0(Aa,Ab) = g0(a, b). Looking at the matrices associated with these oper-
ations we have g0 = (detA)ATg0A. We take the determinants of both sides to get that
det g0 = (detA)9 det g0. It follows that detA = 1 and so A∗g0 = g0. Equation (3.23) then
says that A∗µ0 = µ0.

3.3 G2-Structures on Manifolds

In this section, we move the G2-structure defined above on R7 onto a smooth 7-dimensional
manifold.
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Definition 3.3.1. A G2-structure on a smooth 7-dimensional manifold M is a smooth
3-form ϕ on M such that at every x ∈ M , there exists a linear isomorphism TxM ∼= R7

with respect to which ϕx ∈ Λ3(T ∗xM) corresponds to the associative 3-form ϕ0 ∈ Λ3((R7)∗).

Since ϕ0 induces both g0 and µ0, the 3-form ϕ on M induces a Riemannian metric gϕ
and a Riemannian volume form µϕ on M . In turn, these determine a Hodge star ?ϕ and
the coassociative 4-form ψϕ = ?ϕϕ. We often omit the ϕ-subscript when discussing ϕ and
its associated structures.

As such, if ϕ is aG2-structure then at every point x ∈M , there exists a basis {e1, . . . , e7}
of TxM with respect to which ϕx = ϕ0. In general, this can only be done at a single point.
We cannot choose a local frame on an open set with this property.

Not every smooth 7-dimensional manifold admits a G2-structure. A G2-structure is
equivalent to a reduction of the structure group of the frame bundle of M from GL(7,R)
to G2. This means that the existence of a G2-structure is dependent on the topology of
the manifold. The following result characterizes which manifolds admit such a structure
(see [LM89]).

Proposition 3.3.2. A smooth 7-dimensional manifold M admits a G2-structure if and
only if M is orientable and spinnable or equivalently if its first two Stiefel–Whitney classes
w1(M) and w2(M) vanish.

There are several important identities which will be used heavily throughout this thesis
involving contractions of the tensors ϕ and ψ with each other. We list them below without
proof. Details discussing their derivations can be found in [Kar09].

Theorem 3.3.3. In local coordinates on M , the tensors g, ϕ, and ψ sastisfy the following
relations:

Contractions of ϕ with ϕ:

ϕijkϕabk = giagjb − gibgja − ψijab, (3.24)

ϕijkϕajk = 6gia, (3.25)

ϕijkϕijk = 42. (3.26)

Contractions of ϕ with ψ:

ϕijkψabck = giaϕjbc + gibϕajc + gicϕabj − gajϕibc − gbjϕaic − gcjϕabi, (3.27)
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ϕijkψabjk = −4ϕiab, (3.28)

ϕijkψaijk = 0. (3.29)

Contractions of ψ with ψ:

ψijklψabkl = 4giagjb − 4gibgja − 2ψijab, (3.30)

ψijklψajkl = 24gia, (3.31)

ψijklψijkl = 168. (3.32)

3.4 Decomposition of Forms on Manifolds with G2-

Structure

On a manifold M with G2-structure ϕ, the bundle Λ·(T ∗M) = ⊕7
k=1Λk(T ∗M) decomposes

fibrewise into irreducible representations of the group G2. This gives a decomposition of
the space Ωk of smooth k-forms on M . These decompositions of the spaces of 2, 3, and
4-forms on a manifold M with G2-structure will be important as they are closely related
to the space of 2-tensors on M . The identities proven in this section will be especially
useful when we study the bundle of spinor-valued 1-forms on M due to the identification
T ∗M ⊗ S ∼= T ∗M ⊕ (T ∗M ⊗ T ∗M).

Theorem 3.2.2 has shown that each tensor that can be determined by the 3-form ϕ will
be invariant under the group G2. As such, any subspaces of Ωk defined using ϕ and its
associated structures will be G2 representations. In particular, the space Ωk decompose
non-trivially into G2 subrepresentations as follows:

Ω2 = Ω2
7 ⊕ Ω2

14, Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

Ω4 = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27, Ω5 = Ω5

7 ⊕ Ω5
14.

(3.33)

The spaces Ωk
l of k-l-forms have pointwise dimension l and the decomposition is orthogonal

with respect to the metric g. Further, the decompositions of Ω4 and Ω5 are obtained by
taking the Hodge star of those of Ω3 and Ω2 respectively.

Invariantly, we can describe the decompositions of Ω2 and Ω3 by

Ω2
7 = {X ⌟ ϕ | X ∈ X}, (3.34)

Ω2
14 = {β ∈ Ω2 | β ∧ ψ = 0}, (3.35)
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Ω3
1 = {fϕ | f ∈ C∞(M)}, (3.36)

Ω3
7 = {X ⌟ ψ | X ∈ X}, (3.37)

Ω3
27 = {γ ∈ Ω3 | γ ∧ ϕ = γ ∧ ψ = 0}. (3.38)

3.4.1 Decomposition of 2-Forms

There exist alternate characterizations of the subspaces shown above. We begin with the
subspaces of Ω2. Consider the map P : Ω2 → Ω2 given by Pβ = 2 ? (ϕ ∧ β). Write β in
local coordinates as β = 1

2
βijdx

i ∧ dxj. Then we have

Pβ = βij ? (dxi ∧ dxj ∧ ϕ) = βij∂i ⌟ ?(dx
j ∧ ϕ)

= −βij∂i ⌟ ∂j ⌟ ?ϕ = −βij
(

1

2
ψjikldx

k ∧ dxl
)

=
1

2
βijψijkldx

k ∧ dxl.

So if Pβ = 1
2
(Pβ)ijdx

i ∧ dxj, we have

(Pβ)kl = βijψijkl. (3.39)

Using the inner product on 2-forms induced by g, we see that

〈Pβ, β̃〉 =
1

2
βijψijklβ̃kl = 〈β,Pβ̃〉. (3.40)

Hence P is self-adjoint and thus orthogonally diagonalizable with real eigenvalues. Com-
puting P2 in coordinates gives

(P2β)ab = (Pβ)klψklab = βijψijklψklab

= βij(4giagjb − 4gibgja − 2ψijab) = 4βab − 4βba − 2βijψijab

= 8βab − 2(Pβ)ab.

We see that the operator P satisfies P2 = 8I−2P . Factoring this gives (P+4I)(P−2I) = 0
so P has two eigenvalues, −4 and +2. We now verify that these eigenspaces correspond to
the spaces Ω2

7 and Ω2
14 defined earlier.

Proposition 3.4.1. The following descriptions of Ω2
7 and Ω2

14 hold:

Ω2
7 = {β ∈ Ω2 | Pβ = −4β}, (3.41)

Ω2
14 = {β ∈ Ω2 | Pβ = 2β}. (3.42)
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Proof. Let X ∈ X and consider the 2-form β = X ⌟ ϕ. Direct computation using (3.28)
yields

(Pβ)kl = βijψijkl = Xmϕmijψijkl = −4Xmϕmkl = −4βkl.

Conversely, suppose β satisfies βijψijkl = −4βkl. Define a vector field X by Xm = 1
6
βklϕmkl.

We compute using (3.24) that

(X ⌟ ϕ)ij = Xmϕmij =
1

6
βklϕmklϕmij =

1

6
βkl(gikgjl − gilgjk − ψijkl)

=
1

6
βij −

1

6
βji −

1

6
βklψklij =

1

6
βij +

1

6
βij +

4

6
βij = βij.

This proves the first relation.

For the second relation, suppose that β ∧ ψ = 0. In local coordinates, this becomes

0 = β ∧ ψ =
1

2
βijdx

i ∧ dxj ∧ ψ = −1

2
βij ? (∂i ⌟ ?(dx

j ∧ ψ))

= −1

2
βij ? (∂i ⌟ ∂j ⌟ ?ψ) = −1

2
? (βij∂i ⌟ ∂j ⌟ ϕ).

Since the Hodge star is an isomorphism, it follows that this is equivalent to βijϕijm =
0. Next, since the eigenspace decomposition is orthogonal, it follows that if Pβ = 2β,
then βijXmϕmij = 0 for each vector field X. Hence βijϕijm = 0, giving one side of the
equivalence. Conversely if βijϕijm = 0, (3.24) gives that

βijψijab = βij(giagjb − gibgja − ϕijkϕabk) = βab − βba = 2βab

as desired.

As corollaries of the above, we have the following equivalences in local coordinates,
as well as expressions for the projection operators pr7 and pr14 from Ω2 onto Ω2

7 and Ω2
14

respectively. We write β7 = pr7β and β14 = pr14β for β ∈ Ω2.

Corollary 3.4.2. Let β = 1
2
βijdx

i ∧ dxj ∈ Ω2. The following equivalences hold:

β ∈ Ω2
7 ⇐⇒ βijψijkl = −4βkl ⇐⇒ βij = Xkϕijk, (3.43)

β ∈ Ω2
14 ⇐⇒ βijψijkl = 2βkl ⇐⇒ βijϕijm = 0. (3.44)

Furthermore, we have that

β = X ⌟ ϕ ⇐⇒ Xk =
1

6
βijϕijk. (3.45)
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Corollary 3.4.3. Let β = 1
2
βijdx

i ∧ dxj ∈ Ω2. Then

β7 =
1

3
β − 1

6
Pβ =

1

2

(
1

3
βkl −

1

6
βijψijkl

)
dxk ∧ dxl, (3.46)

β14 =
2

3
β +

1

6
Pβ =

1

2

(
2

3
βkl +

1

6
βijψijkl

)
dxk ∧ dxl. (3.47)

We have one other important relation pertaining to 2-14-forms.

Lemma 3.4.4. Let β = 1
2
βijdx

i ∧ dxj ∈ Ω2
14. Then

βamϕmij = βimϕmaj − βjmϕmai. (3.48)

Proof. Since β ∈ Ω2
14, we have that βam = 1

2
βklψklam. Using Equations (3.27) and (3.44),

we compute that

βamϕmij =
1

2
βklψklamϕmij

=
1

2
βkl(gikϕjla + gilϕkja + giaϕklj − gkjϕila − gljϕkia − gajϕkli)

=
1

2
βilϕjla +

1

2
βkiϕkja −

1

2
βjlϕila −

1

2
βkjϕkia

= βimϕmaj − βjmϕmai.

3.4.2 Decomposition of 3- and 4-Forms

We now turn our attention to the decomposition of the spaces of 3- and 4-forms on man-
ifolds with G2-structures which we analyze using maps from the space of 2-tensors to the
spaces of 3- and 4-forms. The methods and notations presented here are largely taken from
[KLL].

Using the orthogonal decomposition of Ω2 from the previous section, we can decompose
the space T 2 of 2-tensors further as

T 2 = Ω0 ⊕ S2
0 ⊕ Ω2

7 ⊕ Ω2
14. (3.49)
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With respect to this splitting, we can write a 2-tensor A as

A = A1 + A27 + A7 + A14 =
1

7
(trA)g + A27 + A7 + A14. (3.50)

By using the coordinate expression of the operator P in (3.39), we can extend it to all of
T 2 by setting

(PA)kl = Aijψijkl. (3.51)

We can see that kerP = S2 and from the discussion above, we get

P
(

1

7
(trA)g + A27 + A7 + A14

)
= −4A7 + 2A14. (3.52)

We look at ways to obtain 3- and 4-forms from a 2-tensor. Given a 3-form γ ∈ Ω3, a
4-form η ∈ Ω4 and 2-tensor A ∈ T 2, we define a new 3- and 4-tensor by

(A � γ)ijk = Aimγmjk + Ajmγimk + Akmγijm. (3.53)

and
(A � η)ijkl = Aimηmjkl + Ajmηimkl + Akmηijml + Almηijkm. (3.54)

Routine calculations show that A � γ and A � η are skew in each of their indices. Using the
3-form ϕ and the 4-form ψ, this gives us linear maps T 2 → Ω3 given by A 7→ A � ϕ and
T 2 → Ω4 given by A 7→ A � ψ. We also note that the definitions above are such that

A � γ = Aijdx
i ∧ (∂j ⌟ γ) (3.55)

and
A � η = Aijdx

i ∧ (∂j ⌟ η). (3.56)

Proposition 3.4.5. Let A,B ∈ T 2. Then we have

〈A � ϕ,B � ϕ〉 =
9

7
(trA)(trB) + 2〈A27, B27〉+ 6〈A7, B7〉 (3.57)

and

〈A � ψ,B � ψ〉 =
16

7
(trA)(trB) + 2〈A27, B27〉+ 6〈A7, B7〉 (3.58)
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Proof. We note that each of ϕ,A�ϕ, and B �ϕ are skew-symmetric in their indices. Using
this, (3.24) and (3.25), we compute that

〈A � ϕ,B � ϕ〉 =
1

6
(A � ϕ)ijk(B � ϕ)ijk

=
1

6
(Aimϕmjk + Ajmϕimk + Akmϕijm)(B � ϕ)ijk

=
3

6
Aimϕmjk(B � ϕ)ijk

=
1

2
Aimϕmjk(Bilϕljk +Bjlϕilk +Bklϕijl)

=
1

2
AimBilϕmjkϕljk +

2

2
AimBjlϕmjkϕilk

=
1

2
AimBil(6gml) + AimBjl(gmigjl − gmlgji − ψmjil)

= 3〈A,B〉+ (trA)(trB)− 〈A,B〉 − 〈PA,B〉
= 2〈A,B〉+ (trA)(trB) + 4〈A7, B〉 − 2〈A14, B〉.

Using the orthogonality of the decomposition (3.49), we can expand the above to get

〈A � ϕ,B � ϕ〉 =
2

49
(trA)(trB)〈g, g〉+ 2〈A27, B27〉+ 2〈A7, B7〉+ 2〈A14, B14〉

+ (trA)(trB) + 4〈A7, B7〉 − 2〈A14, B14〉

=
9

7
(trA)(trB) + 2〈A27, B27〉+ 6〈A7, B7〉.

as desired. The second identity (3.58) is proved in a similar manner.

We get the following as a corollary to the above proposition.

Corollary 3.4.6. A 2-tensor A is in Ω2
14 if and only if A �ϕ = 0 if and only if A �ψ = 0.

Furthermore, when restricted to the orthogonal complement of Ω2
14, the map A 7→ A � ϕ

defines a linear isomorphism onto Ω3 and the map A 7→ A�ψ defines a linear isomorphism
onto Ω4.

Proof. If A ∈ Ω2
14, then A = A14 and so Proposition 3.4.5 tells us that |A � ϕ|2 = 0.

Conversely, if A � ϕ = 0, then |A � ϕ|2 = 9
7
(trA)2 + 2|A27|2 + 6|A7|2 = 0. It follows that

A ∈ Ω2
14. From this, we see that the map A 7→ A �ϕ is injective on S2⊕Ω2

7. Similarly, the
map A 7→ A � ψ is injective. By counting dimensions, we see that each of these spaces are
(pointwise) 35-dimensional, hence the maps are isomorphisms.
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The above results establish orthogonal decompositions of the spaces Ω3 and Ω4. We
verify that this decomposition matches that of the one given in (3.36), (3.37), and (3.38).

Proposition 3.4.7. The following descriptions of Ω3
1, Ω3

7 and Ω3
27 hold:

Ω3
1 = {A � ϕ | A ∈ Ω0}, (3.59)

Ω3
7 = {A � ϕ | A ∈ Ω2

7}, (3.60)

Ω3
27 = {A � ϕ | A ∈ S2

0}. (3.61)

Proof. The first equivalence holds since if A ∈ Ω0, then A = fg for some f ∈ C∞(M),
and so A � ϕ = f(g � ϕ) = 3fϕ. To see the second equivalence, suppose A ∈ Ω2

7, so
Aij = Xmϕmij for some vector field X. Using (3.24) we can compute that

(A � ϕ)ijk = Aimϕmjk + Ajmϕimk + Akmϕijm

= Xlϕlimϕmjk +Xlϕljmϕimk +Xlϕlkmϕijm

= Xl(gljgik − glkgij − ψlijk) +Xl(glkgji − gligjk − ψljki)
+Xl(gligkj − gljgki − ψlkij)

= Xjgik −Xkgij −Xlψlijk +Xkgij −Xigjk −Xlψlijk +Xigjk −Xjgik −Xlψlijk

= −3Xlψlijk = −3(X ⌟ ψ)ijk

The calculations above also show that if γ = X ⌟ ψ for some vector field X, then γ =
−1

3
(X ⌟ ϕ) � ϕ. This gives the second equivalence.

Next, let A ∈ S2 ⊕ Ω2
7 be a 2-tensor. We can calculate that

?[(A � ϕ) ∧ ϕ] = (A � ϕ)ijk ? (dxi ∧ dxj ∧ dxk ∧ ϕ)

= −(A � ϕ)ijk∂i ⌟ ?(dx
j ∧ dxk ∧ ϕ)

= −(A � ϕ)ijk∂i ⌟ ∂j ⌟ ?(dx
k ∧ ϕ)

= (A � ϕ)ijk∂i ⌟ ∂j ⌟ ∂k ⌟ ψ

= (A � ϕ)ijkψkjildx
l

= −(A � ϕ)ijkψijkldx
l.

Plugging in our expression for (A � ϕ)ijk we get

−(A � ϕ)ijkψijkl = −Aimϕmjkψijkl − Ajmϕimkψijkl − Akmϕijmψijkl
= 4Aimϕmil + 4Ajmϕmjl + 4Akmϕmkl

= −12Aijϕijl,
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and so (A � ϕ) ∧ ϕ = 0 if and only if A is symmetric.

Similarly, we compute that

?[(A � ϕ) ∧ ψ] = (A � ϕ)ijk ? (dxi ∧ dxj ∧ dxk ∧ ψ)

= (A � ϕ)ijk∂i ⌟ ?(dx
j ∧ dxk ∧ ψ)

= −(A � ϕ)ijk∂i ⌟ ∂j ⌟ ?(dx
k ∧ ψ)

= −(A � ϕ)ijk∂i ⌟ ∂j ⌟ ∂k ⌟ ϕ

= −(A � ϕ)ijkϕkji

= (A � ϕ)ijkϕijk.

Substituting in our expression for (A � ϕ)ijk again, we get

(A � ϕ)ijkϕijk = Aimϕmjkϕijk + Ajmϕimkϕijk + Akmϕijmϕijk

= 6Aii + 6Ajj + 6Akk

= 18trA,

hence (A � ϕ) ∧ ψ = 0 if and only if A is traceless.

Since we can obtain a decomposition of Ω4 from that of the one on Ω3 via the Hodge
star, we have the following as well:

Corollary 3.4.8. We have an orthogonal decomposition of Ω4 = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27 where

Ω4
1 = ?Ω3

1 = {fψ | f ∈ C∞(M)} = {A � ψ | A ∈ Ω0}, (3.62)

Ω4
7 = ?Ω3

7 = {X ∧ ϕ | X ∈ X} = {A � ψ | A ∈ Ω2
7}, (3.63)

Ω4
27 = ?Ω4

27 = {η ∈ Ω4 | ?η ∧ ϕ = ?η ∧ ψ = 0}. (3.64)

Proof. As in the proof of Proposition 3.4.7, we notice that if A = fg, then A � ψ = 4fψ
and that if A = X ⌟ ϕ then

(A � ψ)ijkl = Ainψnjkl + Ajnψinkl + Aknψijnl + Alnψijkn

= Xmϕminψnjkl +Xmϕmjnψinkl +Xmϕmknψijnl +Xmϕmlnϕijkn

= −Xm(gmjϕikl + gmkϕjil + gmlϕjki − gijϕmkl − gikϕjml − gilϕjkm)

+Xm(gmiϕjkl + gmkϕijl + gmlϕikj − gjiϕmkl − gjkϕiml − gjlϕikm)

−Xm(gmiϕkjl + gmjϕikl + gmlϕijk − gkiϕmjl − gkjϕiml − gklϕijm)

+Xm(gmiϕljk + gmjϕilk + gmkϕijl − gliϕmjk − gljϕimk − glkϕijm)

= 3(Xiϕjkl −Xjϕikl +Xkϕijl −Xlϕijk)
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and so A � ψ is some non-zero scalar multiple of X ∧ ϕ.

Now, let η ∈ Ω4. We have that η = A � ψ for some 2-tensor A ∈ S2 ⊕Ω2
7. We compute

that

?(?η ∧ ψ) = 〈η, ψ〉

=
1

24
ηijklψijkl

=
1

24
(Aimψmjklψijkl + Ajmψimklψijkl + Akmψijmlψijkl + Almψijkmψijkl)

=
1

24
(24Aimgmi + 24Ajmgmj + 24Akmgmk + 24Almgml)

= 4trA.

Using (3.55) and (3.56), we have

?(A � ψ) = ?(Aijdx
i ∧ (∂j ⌟ ψ))

= −Aij∂i ⌟ ?(∂j ⌟ ψ)

= Aij∂i ⌟ (dxj ∧ ϕ)

= Aij(∂i ⌟ dx
j) ∧ ϕ− Aijdxj ∧ (∂i ⌟ ϕ)

= (trA)ϕ− AT � ϕ,

where ATij = Aji. Taking the wedge product with ϕ then gives

?(A � ψ) ∧ ϕ = (trA)ϕ ∧ ϕ− (AT � ϕ) ∧ ϕ = −(AT � ϕ) ∧ ϕ.

From the above and by the proof of Proposition 3.4.7, we see that ?η ∧ ψ = 0 if and
only if A is traceless and that ?η ∧ ϕ = 0 if and only if A is symmetric.

We end this section with explicit descriptions of the inverses of the maps A 7→ A � ϕ
and A 7→ A � ψ.

Lemma 3.4.9. Let A ∈ S2 ⊕ Ω2
7 and write A = 1

7
(trA)g + A27 + A7. Then

(A � ϕ)ijkϕajk =
18

7
(trA)gia + 4(A27)ia + 12(A7)ia (3.65)

and

(A � ψ)ijklψajkl =
96

7
(trA)gia + 12(A27)ia + 36(A7)ia. (3.66)
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Proof. Direct computation using the contraction identities (3.24) and (3.25) and the ex-
pression (3.52) for the operator P yields

(A � ϕ)ijkϕajk = (Aimϕmjk + Ajmϕimk + Akmϕijm)ϕajk

= Aimϕmjkϕajk + 2Ajmϕimkϕajk

= Aim(6gma) + 2Ajm(giagmj − gijgma − ψimaj)
= 6Aia + 2(trA)gia − 2Aia − 2Ajmψjmia

= 4Aia + 2(trA)gia − 2(PA)ia

= 4(
1

7
(trA)gia + (A27)ia + (A7)ia) + 2(trA)gia − 2(−4(A7)ia)

=
18

7
(trA)gia + 4(A27)ia + 12(A7)ia.

Similar computations yield the second identity.

Corollary 3.4.10. Let γ ∈ Ω3 and η ∈ Ω4. Then γ = A � ϕ and η = B � ψ for some
unique A = 1

7
(trA)g + A27 + A7 and B = 1

7
(trB)g + B27 + B7. Define the 2-tensors γ · ϕ

and η · ψ by
(γ · ϕ)ia = γijkϕajk

and
(η · ψ)ia = ηijklψajkl

then

trA =
1

18
tr (γ · ϕ),

(A27)ia =
1

8
((γ · ϕ)ia + (γ · ϕ)ai)−

1

28
tr (γ · ϕ)gia,

(A7)ia =
1

24
((γ · ϕ)ia − (γ · ϕ)ai).

and

trB =
1

96
tr (η · ψ),

(B27)ia =
1

24
((η · ψ)ia + (η · ψ)ai)−

1

84
tr (η · ψ)gia,

(B7)ia =
1

72
((η · ψ)ia − (η · ψ)ai).
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Proof. We compute using the expression in (3.65)

1

18
tr (γ · ϕ) =

1

18
(
18

7
(trA)7) = trA

to show the first equality. Using the symmetry of g and A27 and the skew-symmetry of A7

we get

1

8
((γ · ϕ)ia + (γ · ϕ)ai)−

1

28
tr (γ · ϕ)gia =

1

8
(
36

7
(trA)gia + 8(A27)ia)−

1

28
(18(trA)gia)

=
9

14
(trA)gia + (A27)ia −

9

14
(trA)gia = (A27)ia,

as well as
1

24
((γ · ϕ)ia − (γ · ϕ)ai) =

1

24
(24(A7)ia) = (A7)ia.

Similar computations yield the analogous results involving B.

3.5 Torsion of a G2-structure

We recall that a G2-structure on a 7-dimensional smooth manifold is a 3-form ϕ which
determines a Riemannian metric g. Using the metric, we can look at its Levi-Civita
covariant derivative ∇. In particular, the tensor ∇ϕ ∈ Γ(T ∗M ⊗ Λ3T ∗M) is of heavy
importance in G2-geometry.

Definition 3.5.1. A G2-structure is said to be torsion-free if ∇ϕ = 0. We note that
the equation ∇ϕ = 0 is a fully non-linear first order partial differential equation since the
metric g depends non-linearly on the 3-form ϕ.

We have the following important observation about the Levi-Civita covariant derivative
of a G2-structure.

Theorem 3.5.2. Let X ∈ X be a vector field on M . Then the 3-form ∇Xϕ lies in Ω3
7.

Proof. Let A = 1
7
(trA)g +A0 +A7 be a 2-tensor on M . We compute the inner product of

A � ϕ and ∇Xϕ.

〈A � ϕ,∇Xϕ〉 =
1

6
(A � ϕ)ijk(∇Xϕ)ijk

=
1

6
(Aimϕmjk + Ajmϕimk + Akmϕijm)Xl(∇lϕijk)

=
1

2
AimϕmjkXl(∇lϕijk).
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Since g is parallel with respect to ∇, taking the covariant derivative of (3.25) gives that

(∇lϕijk)ϕmjk = −ϕijk(∇lϕmjk)

and so the expression (∇lϕijk)ϕmjk is skew in m and i. It follows that the symmetric part
of A does not contribute to the inner product and so ∇Xϕ is orthogonal to each element
of Ω3

1 ⊕ Ω3
27.

From (3.37), we have that each Ω3
7-form is of the form X ⌟ ψ for some vector field X.

This allows us to define the torsion tensor.

Definition 3.5.3. Let X be a vector field on M . We can write

∇Xϕ = T (X) ⌟ ψ

for some vector field T (X) on M . Hence there exists a 2-tensor T such that

∇lϕijk = Tlmψmijk. (3.67)

The tensor T is called the full torsion tensor of ϕ.

Contracting (3.67) with ψ on three indices allows us to obtain an expression for T .

Tlm =
1

24
(∇lϕijk)ψmijk. (3.68)

Equations (3.67) and (3.68) show that ∇ϕ = 0 if and only if T = 0. Hence ϕ is torsion-free
if and only if T = 0. Since T is a 2-tensor, we can decompose it using (3.50) as

T =
1

7
(trT )g + T0 + T7 + T14. (3.69)

We have the following theorem of Fernández and Gray [FG82] which gives another
characterization of torsion-free G2-structures.

Corollary 3.5.4. A G2-structure ϕ on M is torsion-free if and only if ϕ is closed and
co-closed or equivalently, both ϕ and ψ are closed.

Proof. We first recall that dψ = d ? ϕ = − ? d∗ϕ. Since the Hodge star is an isomorphism,
we get that dψ = 0 if and only if d∗ϕ = 0. Additionally, we note that every parallel
form is both closed and co-closed, so it only remains to prove the converse. Since dϕ and
d∗ϕ are both linear in ∇ϕ, both are linear in T as well. We can decompose the spaces
Ω4 = Ω4

1 ⊕ Ω4
7 ⊕ Ω4

27 of 4-forms and Ω2 = Ω2
7 ⊕ Ω2

14 of 2-forms and so it follows that the
independent components of dϕ and d∗ϕ correspond to the components of T up to scaling.
Hence if ϕ is both closed and co-closed, we must have T = 0.
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Remark 3.5.5. Though it will not come into play in this thesis as we will largely be
considering the torsion-free case, we note that the decomposition (3.69) gives rise to 16
classes of G2-structures, determined by whether each component of T is either zero or
non-zero.

We would like to determine the relation between the torsion tensor T and the Rieman-
nian curvature tensor R of a G2-manifold. As such, we collect several identities involving
both for later use. We start with the “G2 Bianchi identity” from [Kar09].

Theorem 3.5.6. The following identity holds:

∇iTjk −∇jTik = TiaTjbϕabk +
1

2
Rijabϕabk. (3.70)

Proof. We take the covariant derivative of the identity (3.24) and use (3.67) and (3.27) to
get that

∇mψijab = −∇m(ϕijkϕabk)

= −(∇mϕijk)ϕabk − ϕijk(∇mϕabk)

= −Tmpψpijkϕabk − Tmpψpabkϕijk
= −Tmp(gapϕbij + gaiϕpbj + gajϕpib − gpbϕaij − gibϕpaj − gjbϕpia)
− Tmp(gipϕjab + giaϕpjb + gibϕpaj − gpjϕiab − gajϕpib − gbjϕpai)

= −Tmaϕijb + Tmbϕija − Tmiϕabj + Tmjϕabi.

(3.71)

Next, we take the covariant derivative of (3.67) and substitute in the above to get

∇l∇mϕijk = ∇l(Tmpψpijk)

= (∇lTmp)ψpijk + Tmp(∇lψpijk)

= (∇lTmp)ψpijk + Tmp(−Tlpϕijk + Tliϕpjk − Tljϕpik + Tlkϕpij).

We can then apply the Ricci identity to (∇l∇m −∇m∇l)ϕijk to get

−Rlmiaϕajk −Rlmjaϕiak −Rlmkaϕija

= (∇lTmp −∇mTlp)ψpijk + (TmpTli − TlpTmi)ϕpjk
(TlpTmj − TmpTlj)ϕpik + (TmpTlk − TlpTmk)ϕpij.

(3.72)

By contracting both sides with ψ on the indices i, j, and k, we get

−Rlmiaϕajkψqijk −Rlmjaϕiakψqijk −Rlmjaϕijaψqijk

= −Rlmia(−4ϕaqi)−Rlmja(−4ϕaqj)−Rlmka(−4ϕaqk)

= 12Rlmiaϕqia
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and

(∇lTmp −∇mTlp)ψpijkψqijk + (TmpTli − TlpTmi)ϕpjkψqijk
+ (TlpTmj − TmpTlj)ϕpikψqijk + (TmpTlk − TlpTmk)ϕpijψqijk

= (∇lTmp −∇mTlp)(24gpq) + (TmpTli − TlpTmi)(−4ϕpqi)

+ (TlpTmj − TmpTlj)(4ϕpqj) + (TmpTlk − TlpTmk)(−4ϕpqk)

= 24(∇lTmq −∇mTlq)− 12TmpTliϕipq + 12TlpTmiϕipq

= 24(∇lTmq −∇mTlq)− 24TmpTliϕipq.

Reindexing and rearranging gives the desired identity.

More generally, we can use the G2 Bianchi identity to relate the Ricci tensor Ric and
the full torsion tensor T . We first prove a lemma involving a contraction of the Riemann
tensor and ψ.

Lemma 3.5.7. The following identity holds:

Rijklψajkl = 0. (3.73)

Proof. By the first Bianchi identity, we compute that

Rijklψajkl = −Rjkilψajkl −Rkijlψajkl

= −Rilkjψalkj −Rikjlψakjl

= −Rijklψajkl −Rijklψajkl

= −2Rijklψajkl

So 3Rijklψajkl = 0.

Corollary 3.5.8. The Ricci tensor of a manifold with G2-structure is given by

Ricjm = (∇iTjk −∇jTik)ϕikm − TjiTim + (trT )Tjm + TiaTjbψmiab. (3.74)

In particular, if the G2-structure on M is torsion-free, then M is Ricci-flat.

Proof. We rearrange and contract (3.70) with ϕ on the indices i and k to get

(∇iTjk −∇jTik)ϕmik = TiaTjbϕabkϕmik +
1

2
Rijabϕabkϕmik

= TiaTjb(gamgbi − gaigbm − ψabmi) +
1

2
Rijab(gamgbi − gaigbm − ψabmi)

= TimTji − (trT )Tjm − TiaTjbψmiab +
1

2
Rijmi −

1

2
Rijim −

1

2
Rijabψabmi

= TimTji − (trT )Tjm − TiaTjbψmiab + Ricjm,

where the final term vanishes by the previous lemma.
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Chapter 4

Differential Operators on Manifolds
with Torsion-Free G2-Structure

In this chapter, we discuss several differential operators which can be defined on certain
vector bundles over a manifold M with torsion-free G2-structure. In particular, we look
at analogues of the divergence, gradient, and curl operators on the spinor bundle of M as
well as the Dirac operator of this bundle. We then extend these operators and ideas onto
the bundle of spinor-valued 1-forms.

4.1 Differential Operators on the Spinor Bundle

We follow the discussion of the Dirac operator on the spinor bundle of a manifold with
torsion-free G2-structure in [Kar10] and use this as the basis to extend some definitions
onto the bundle of spinor-valued 1-forms.

4.1.1 The Divergence, Gradient, and Curl Operators

On any Riemannian manifold, we are able to define the divergence of a vector field and
the gradient of a function. In particular, let M be a manifold with G2-structure. The
divergence of a vector field X is the function given by

divX = ∇iXi. (4.1)
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Invariantly, we have the formula

divX = −d∗X[ = ?d ? X[. (4.2)

The gradient of a function f is the vector field given in local coordinates by

(grad f)a = ∇af. (4.3)

Invariantly, we have
grad f = (df)]. (4.4)

There is a cross-product × on vector fields of M given by the analogue of (3.16) in the
manifold setting, that is, for vector fields X and Y , we have a cross-product defined by

(X × Y )a = XiYjϕija. (4.5)

Invariantly, this is given by
(X × Y )[ = Y ⌟X ⌟ ϕ. (4.6)

Using this cross-product, analogues of (3.16) and (3.17) hold and so for another vector
field Z, we have

〈X × Y, Z〉 = ϕ(X, Y, Z) (4.7)

and
X × (Y × Z) = −〈X, Y 〉Z + 〈X,Z〉Y − (X ⌟ Y ⌟ Z ⌟ ψ)]. (4.8)

We can use the cross-product to define the curl operator, which is another first order
differential operator acting on vector fields.

Definition 4.1.1. The curl of a vector field X is the vector field curlX given by

(curlX)a = (∇iXj)ϕija, (4.9)

or invariantly by
curlX = [?(dX[ ∧ ψ)]]. (4.10)

Remark 4.1.2. We note that in dimension 3 that the curl of a vector field X can be
defined by

curlX = (?dX[)].
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In dimension 7, the analagous expression ?dX[ results in a 5-form. Since we have isomor-
phisms Ω5 = Ω5

7 ⊕ Ω5
14
∼= Ω2

7 ⊕ Ω2
14
∼= X ⊕ Ω2

14, one could consider the projection of ?dX[

onto its X-component. Using Corollary 3.4.2, we compute in local coordinates that

1

6
(? ? dX[)ijϕijk =

1

6
(dX[)ijϕijk

=
1

6
(∇iXj −∇jXi)ϕijk

=
1

3
(∇iXj)ϕijk.

Hence these two expressions for the curl of a vector field on a manifold with G2-structure
are equivalent up to a scalar multiple.

If we further assume that the G2-structure on M is torsion-free, we get several relations
between the operators div , grad , and curl (see Section 4 of [Kar10]). We recall that in the
torsion-free case, both ϕ and ψ are parallel and that M is Ricci-flat.

Proposition 4.1.3. Let f ∈ Ω0 be a function and X ∈ X be a vector field on a manifold
with torsion-free G2-structure. The following relations hold:

curl grad f = 0, (4.11)

div curlX = 0, (4.12)

curl curlX = grad divX + ∆X. (4.13)

Proof. We can use the invariant definitions of div, grad, and curl to establish the first two
equations. We notice that

curl grad f = [?(d(grad f)[ ∧ ψ)]] = [?(d2f ∧ ψ)]] = 0

since d2 = 0 and

div curlX = ?d ? (curlX)[ = ?d ? [?(dXb ∧ ψ)] = ?(d2X[ ∧ ψ)− ?(dX[ ∧ dψ) = 0

since by torsion-freeness and Corollary 3.5.4 we have that ψ is closed (or that ϕ is co-
closed).
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To show the last of the identities, we compute in local coordinates that

(curl curlX)a = (∇i(curlX)j)ϕija

= (∇i[(∇kXl)ϕklj])ϕija

= ∇i∇kXl(gkagli − glagki − ψklai)
= ∇i∇aXi −∇i∇iXa +∇i∇kXlψikla

= ∇i∇aXi + (∆X)a +∇i∇kXlψikla

Since ψ is skew in all of its indices, we may rewrite the last term and use the Ricci identity
and Lemma 3.5.7 to compute

∇i∇kXlψikla =
1

2
(∇i∇k −∇k∇i)Xlψikla

= −1

2
RiklmXmψikla = 0.

Finally, we note that (grad divX)a = ∇a∇iXi and the Ricci identity gives that

∇i∇aXi −∇a∇iXi = −RiaimXm = RicamXm = 0

by Ricci-flatness so ∇i∇aXi = (grad divX)a. Putting everything together gives the result.

Remark 4.1.4. As in [Kar10], we note that (4.13) required the full torsion-freeness con-
dition, (4.12) only required that ϕ be co-closed, and (4.11) did not require any of the
torsion-freeness condition. Further, these identites mirror those of vector calculus.

4.1.2 The Dirac Bundle Structure and Dirac Operator on Spinors

From Proposition 3.3.2, we have that any manifoldM admitting aG2-structure is spinnable.
Additionally, the spinor bundle S of a 7-dimensional manifold is a rank 8 real vector bundle.
When M is a G2-manifold, using a unit norm spinor we have an identification of S with
the bundle R⊕TM whose sections consist of a function and a vector field. This is done in
[Kar10] and [Gri17] by identifying S with the octonions O, as such we get a Dirac bundle
structure on the bundle R ⊕ TM . A concrete description of the bundle isomorphism is
given in Section 8 of [Gri17]. We review this structure below. As an abuse of notation, we
use 〈·, ·〉 to represent all inner products, the arguments will determine whether the inner
product is acting on global sections of a bundle or on a fibre over a point.
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Let Y be a vector field on M and let (f, Z) be a spinor. We define the Clifford product
on this bundle using octonion multiplication, that is,

Y · (f, Z) = (−〈Y, Z〉, fY + Y × Z) (4.14)

in coordinates, we have

Y · (f, Z) = (−YiZi, fYa + YiZjϕija). (4.15)

Additionally, if X is another vector field on M , we can compute that

X · (Y · (f, Z)) + Y · (X · (f, Z))

= X · (−〈Y, Z〉, fY + Y × Z) + Y · (−〈X,Z〉, fX +X × Z)

= (−〈X, fY 〉 − 〈X, Y × Z〉,−〈Y, Z〉X +X × fY +X × (Y × Z))

+ (−〈Y, fX〉 − 〈Y,X × Z〉,−〈X,Z〉Y + Y × fX + Y × (X × Z))

= (−2f〈X, Y 〉 − ϕ(X, Y, Z)− ϕ(Y,X,Z),

− 〈Y, Z〉X − 〈X,Z〉Y + fX × Y + fY ×X
− 〈X, Y 〉Z + 〈X,Z〉Y − (X ⌟ Y ⌟ Z ⌟ ψ)]

− 〈Y,X〉Z + 〈Y, Z〉X − (Y ⌟X ⌟ Z ⌟ ψ)])

= −2〈X, Y 〉(f, Z)

and so the Clifford identity holds.

Next, we check that Clifford multiplication is skew-adjoint. Let v ∈ TxM be a vector
and let (a1, z1), (a2, z2) ∈ R⊕ TxM . We check

〈v · (a1, z1), (a2, z2)〉+ 〈(a1, z1), v · (a2, z2)〉
= 〈(−〈v, z1〉, a1v + v × z1), (a2, z2)〉+ 〈(a1, z1), (−〈v, z2〉, a2v + v × z2)〉
= −a2〈v, z1〉+ a1〈v, z2〉+ 〈v × z1, z2〉 − a1〈v, z2〉+ a2〈v, z1〉+ 〈v × z2, z1〉 = 0.

Finally, we check compatibility with the Levi-Civita connection. Let X and Y be vector
fields and let (f, Z) be a spinor. An argument in Section 8 of [Gri17] shows that the spin
connection ∇S under the bundle isomorphism S ∼= R⊕TM is just given by the Levi-Civita
connection on each component when the G2-structure is torsion-free. That is, for a spinor
(f, Z) we have

∇S(f, Z) = ∇(f, Z) = (∇f,∇Z). (4.16)
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Using local coordinates, we compute that

∇S
X [Y · (f, Z)] = ∇X(−〈Y, Z〉, fY + Y × Z)

= (−Xk∇k(YiZi), Xk∇k(fYa) +Xk∇k(YiZj)ϕija)

= (−Xk(∇kYi)Zi, Xkf(∇kYa) +Xk(∇kYi)Zjϕija)

+ (−XkYi(∇kZi), Xk(∇kf)Ya +XkYi(∇kZj)ϕija)

= (∇XY ) · (f, Z) + Y · [∇S
X(f, Z)].

Since we have established that this bundle has a Dirac bundle structure, we can apply
results from Section 2.4. In particular, we can define its Dirac operator D0 and compute
its action on a spinor (f, Z). In local coordinates, we have

D0(f, Z) =
∑
i

ei · ∇S
i (f, Z)

=
∑
i

ei · (∇if,∇iZa)

= (−∇iZi,∇ifδia + δik∇iZlϕkla)

= (−∇iZi,∇af +∇kZlϕkla)

= (−divZ, grad f + curlZ),

(4.17)

which allows us to express D0 in terms of the operators div, grad, and curl.

We have that D0 is a self-adjoint operator from Proposition 2.4.6. Further, we have a
result regarding the Dirac Laplacian D2

0.

Proposition 4.1.5. On a manifold with torsion-free G2-structure, we have that

D2
0(f, Z) = ∆(f, Z) = (∆f,∆Z). (4.18)

Proof. We can use the identities (4.11), (4.12), and (4.13) and Equation (4.17) to compute
directly that

D2
0(f, Z) = D0(−divZ, grad f + curlZ)

= (−div grad f − div curlZ,−grad divZ + curl grad f + curl curlZ)

= (−div grad f,∆Z).

Since −div grad f = −∇i(grad f)i = −∇i∇if = ∆f , the result follows.
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Since M is Ricci-flat, we have that ∆ = ∆d when acting on 1-forms. Indeed, if Z is a
1-form, we calculate using coordinate representations of d and d∗ that

(∆dZ)a = (dd∗Z)a + (d∗dZ)a

= ∇a(d
∗Z)−∇i(dZ)ia

= ∇a(−∇iZi)−∇i(∇iZa −∇aZi)

= −∇i∇iZa + (∇i∇a −∇a∇i)Zi

= (∆Z)a −RiailZl

= (∆Z)a.

Hence ∆Z = 0 if and only if Z is harmonic. Similarly, ∆f = 0 if and only if f is harmonic.

Self-adjointness of the Dirac operator D0 tells us that D0 and D2
0 = ∆ have the same

kernel. As such, using the above, we can see that kerD0 has dimension b0 + b1.

4.2 Extensions to Spinor-Valued 1-Forms

The previous section introduced the operators div, grad, and curl which act on smooth
functions and vector fields. Using these operators, and identifying the spinor bundle with
R ⊕ TM , we were able to describe its Dirac operator D0. In this section, we extend the
operators div, grad, and curl by one degree, so they act on 1-forms and 2-tensors and use
these to define a Dirac bundle structure on the space of spinor-valued 1-forms.

4.2.1 The Extended Divergence, Gradient, and Curl Operators

Here, we define new first order operators which are analogues of the div, grad, and curl
operators from Section 4.1.1. Let Y be a 1-form and C be a 2-tensor on a manifold M
with torsion-free G2-structure. We define the operators as follows:

(divC)a = ∇iCai, (4.19)

(gradY )ab = ∇bYa, (4.20)

(curlC)ab = (∇iCaj)ϕijb. (4.21)

The definitions above are the transposes of what one might guess these operators to be,
however, we define the div, grad, and curl operators in this manner so that the identities
that follow are cleaner and mirror those of the previous section.
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Remark 4.2.1. We note that similar extensions of the divergence and curl operators can
be found in the literature, for example in [Gri13] and [Gri20].

These new versions of div, grad, and curl satisfy similar identities to those in Proposition
4.1.3. Before stating and proving these identities, we first recall that the torsion-free
condition ensures that M is Ricci-flat, and so the Lichnerowicz Laplacian ∆L acting on
symmetric 2-tensors (see Chapter 3 of [CK04]) can be simplified. Let C+ be a symmetric
2-tensor, then we have

(∆LC+)ab = (∆C+)ab + Ricai(C+)ib + Ricbi(C+)ai − 2Riabj(C+)ij

= (∆C+)ab − 2Riabj(C+)ij.
(4.22)

Moreover, if C− is a 2-form on M , then the Hodge Laplacian ∆d acts on C− in a similar
manner (see [Pet16]) as

(∆dC−)ab = (∆C−)ab + Ricai(C−)ib + Ricbi(C−)ai − 2Riabj(C−)ij

= (∆C−)ab − 2Riabj(C−)ij.
(4.23)

The torsion-free condition also simplifies other identities from Section 3.5. We note that
the G2 Bianchi identity (3.70) becomes

Rijabϕabk = 0. (4.24)

We can use the above and the first Bianchi identity to show that the contraction of the
Riemann tensor and ϕ on any two indices vanishes:

Riabjϕabk = −Rabijϕabk −Rbiajϕabk

= −Rbiajϕabk

= −Ribajϕbak

= −Riabjϕabk,

and so
Riabjϕabk = 0. (4.25)

We also get the following lemma

Lemma 4.2.2. On a manifold with torsion-free G2-structure, we have

Rijabψabkl = 2Rijkl. (4.26)
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Proof. In the torsion-free case, the G2 Bianchi identity (3.70) becomes

Rijabϕabk = 0.

Contracting both sides with ϕ on the index k gives

0 = Rijabϕabcϕklc

= Rijab(gakgbl − galgbk − ψabkl)
= Rijkl −Rijlk −Rijabψabkl

= 2Rijkl −Rijabψabkl.

Using the above and first Bianchi identity again, we can compute the contraction of
the Riemann tensor and ψ on the middle two indices. We compute

Riabjψabkl = −Rabijψabkl −Rbiajψabkl

= −2Rijkl −Ribajψbakl

= −2Rijkl −Riabjψabkl.

Rearranging gives
Riabjψabkl = −Rijkl. (4.27)

We now state the identities between the extended operators div, grad, and curl.

Proposition 4.2.3. Let Y ∈ Ω1 be a 1-form and C = C+ + C− ∈ T 2 be a 2-tensor
with symmetric part C+ ∈ S2 and skew part C− ∈ Ω2 on a manifold with torsion-free
G2-structure. The following relations hold:

curl gradY = 0, (4.28)

div curlC = 0, (4.29)

curl curlC = grad divC + ∆LC+ + ∆dC−. (4.30)

Proof. We compute each of these in local coordinates. First, we get

(curl gradY )ab = [∇i(gradY )aj]ϕijb

= ∇i∇jYaϕijb

=
1

2
(∇i∇j −∇j∇i)Yaϕijb

= −1

2
RijamYmϕijb = 0,
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where we have used the fact that ϕ is skew in all of its indices and (4.24). Using the same
method, we have

(div curlC)a = ∇i(curlC)ai

= ∇i∇kCalϕkli

=
1

2
(∇i∇k −∇k∇i)Calϕkli

= −1

2
(RikamCmlϕkli +RiklmCamϕkli) = 0.

Lastly, we check that

(curl curlC)ab = [∇i(curlC)aj]ϕijb

= ∇i∇kCalϕkljϕijb

= ∇i∇kCal(gkbgli − gkiglb − ψklbi)
= ∇i∇bCai −∇i∇iCab −∇i∇kCalψklbi

= ∇i∇bCai + (∆C)ab −
1

2
(∇i∇k −∇k∇i)Calψklbi

= ∇i∇bCai + (∆C)ab +
1

2
(RikamCmlψklbi +RiklmCalψklbi)

= ∇i∇bCai + (∆C)ab +RamblCml

= ∇i∇bCai + (∆C)ab −RiabjCij.

We note that (grad divC)ab = ∇b∇iCai and the Ricci identity gives that

∇i∇bCai −∇b∇iCai = −RibamCmi −RibimCam

= −RmabiCmi + RicbmCam

= −RiabjCij.

Rearranging and using (4.22) and (4.23) yields the result.

4.2.2 The Dirac Bundle Structure and Dirac Operator on Spinor-
Valued 1-Forms

As on the spinor bundle, there exists a Dirac bundle structure on the bundle T ∗M⊕(T ∗M⊗
T ∗M) = T ∗M ⊗ (R⊕T ∗M). The Clifford multiplication on this bundle is induced by that
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on the bundle R ⊕ TM . Let W and X be 1-forms and (f, Z) be a spinor. The induced
Clifford multiplication is given by

W · [X ⊗ (f, Z)] = X ⊗ (W · (f, Z)) (4.31)

and extending linearly. This is indeed a Clifford product since if W1 and W2 are 1-forms,
then

W1 · (W2 · [X ⊗ (f, Z)]) +W2 · (W1 · [X ⊗ (f, Z)])

= W1 · (X ⊗ [W2 · (f, Z)]) +W2 · (X ⊗ [W1 · (f, Z)])

= [X ⊗ (W1 · (W2 · (f, Z)))] + [X ⊗ (W2 · (W1 · (f, Z)))]

= X ⊗ [(W1 · (W2 · (f, Z))) + (W2 · (W1 · (f, Z)))]

= X ⊗ (−〈W1,W2〉(f, Z))

= −〈W1,W2〉[X ⊗ (f, Z)].

In local coordinates, the Clifford product is given by

W · [X ⊗ (f, Z)] = (−WiXaZi, fXaWb +WiXaZjϕija).

By linearity, we can write this in terms of 1-forms and 2-tensors. Let X and Y be 1-forms
and C be a 2-tensor, then in local coordinates,

X · (Y,C) = (−XiCai, XbYa +XiCajϕijb). (4.32)

We now check skew-adjointness of Clifford multiplication. Let v be a cotangent vector
and let (w1, A1), (w2, A2) ∈ T ∗xM ⊕ (T ∗xM ⊗ T ∗xM). We check that

〈v · (w1, A1), (w2, A2)〉+ 〈(w1, A1), v · (w2, A2)〉
= −vi(A1)ai(w2)a + vb(w1)a(A2)ab + vi(A1)ajϕijb(A2)ab

− vi(A2)ai(w1)a + vb(w2)a(A1)ab + vi(A2)ajϕijb(A1)ab

= vi[(A1)aj(A2)ab + (A1)ab(A2)aj]ϕijb = 0.

Lastly, for compatibility with the Levi-Civita connection we let W,X, and Y be 1-forms
and C be a 2-tensor. Simple computations in the torsion-free case show that the induced
connection on the tensor product T ∗M ⊕ (T ∗M ⊗ T ∗M) = T ∗M ⊗ (R ⊕ T ∗M) using the
spin connection from (4.16) is again just the Levi-Civita connection on each component.
Indeed, if we denote the induced connection on this bundle by ∇S we see that

∇S(X ⊗ (f, Z)) = ∇X ⊗ (f, Z) +X ⊗∇S(f, Z)

= (∇X ⊗ f, (∇X)⊗ Z) +X ⊗ (∇f,∇Z)

= ((∇f)X + f(∇X), (∇X)⊗ Z +X ⊗ (∇Z))

= (∇(fX),∇(X ⊗ Z)).
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By linearity of connections and since X ⊗ (f, Z) = (fX,X ⊗ Z), we have

∇S(Y,C) = ∇(Y,C) = (∇Y,∇C). (4.33)

Using local coordinates, we compute that

∇S
W [X · (Y,C)]

= ∇S
W (−XiCai, XbYa +XiCajϕijb)

= (−Wk∇k(XiCai),Wk∇k(XbYa) +Wk∇k(XiCaj)ϕijb)

= (−Wk(∇kXi)Cai,Wk(∇kXb)Ya +Wk(∇kXi)Cajϕijb)

+ (−WkXi(∇kCai),WkXb(∇kYa) +WkXi(∇kCaj)ϕijb)

= (∇WX) · (Y,C) +X · [∇S
W (Y,C)].

Thus T ∗M ⊕ (T ∗M ⊗ T ∗M) is a Dirac bundle.

As before, we can define the Dirac operator D1 for this Dirac bundle and determine
how it acts on (Y,C). In local coordinates, we get

D1(Y,C) =
∑
i

ei · ∇S
i (Y,C)

=
∑
i

ei · (∇iYa,∇iCab)

= (−∇iCai,∇iYaδib + δik∇iCalϕklb)

= (−∇iCai,∇bYa +∇kCalϕklb)

= (−divC, gradY + curlC).

(4.34)

The extended definitions of div, grad, and curl show that the Dirac operator D1 acts in
a similar manner as to the Dirac operator D0 on spinors. Using these definitions, we also
get a similar relation to Proposition 4.1.5.

Proposition 4.2.4. On a manifold with torsion-free G2-structure, we have

D2
1(Y,C) = (∆Y,∆LC+ + ∆dC−). (4.35)

Proof. This follows from the identities (4.28), (4.29), and (4.30) in a similar manner to the
proof of Proposition 4.1.5. We compute directly that

D2
1(Y,C) = D1(−divC, gradY + curlC)

= (−div gradY − div curlC,−grad divC + curl gradY + curl curlC)

= (−div gradY,∆LC+ + ∆dC−).

Since −(div gradY )a = −∇i(gradY )ai = −∇i∇iYa = (∆Y )a, we get −div gradY = ∆Y .
The result follows.
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Chapter 5

The Kernel of the Twisted Dirac
Operator on Manifolds with
Torsion-Free G2-Structures

In this chapter, we look at the curl operator more closely and decompose it with respect to
the decomposition (3.49) of 2-tensors as well as gather several equivalences showing when
each component vanishes. The results using the identification T ∗M ⊗S ∼= T ∗M ⊕ (T ∗M ⊗
T ∗M) from Section 5.2 to Section 5.4 are, to the author’s knowledge, original.

In addition, we use the structures defined in Chapter 4 to analyze the twisted Dirac
operator on spinor-valued 1-forms as defined in Section 2.5 when M is a manifold with
torsion-free G2-structure. In particular, we compute the kernel of the twisted Dirac opera-
tor and its dimension, a result of Theorem 3.7 of [Wan91]. The computations in Section 5.6
are similar to those found in Section 3 of [Wan91], however we focus more on the structure
of the � operator from Section 3.4.2 and write them in the notation of this thesis.

5.1 The Twisted Dirac Operator on Spinor-Valued 1-

Forms

Since the spinor bundle S of a G2-manifold M can be identified with the bundle R⊕ TM ,
we are also able to identify the bundle T ∗M ⊗ S of spinor-valued 1-forms with the bundle
T ∗M ⊕ (T ∗M ⊗ T ∗M). As such, we can compute the action of DT and compare it to that
of the operator D1 above due to the identifications of these bundles.
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Let X be a 1-form and let (f, Z) be a spinor. Using the local description of DT in
(2.46), we see that

DT (X ⊗ (f, Z)) = X ⊗D0(f, Z) +
∑
i

∇iX ⊗ [ei · (f, Z)]

= X ⊗ (−divZ, grad f + curlZ) +
∑
i

∇iX ⊗ (−Zi, fei + ei × Z)

= (−Xa(∇kZk), Xa(∇bf) +Xa(∇kZl)ϕklb)

+
∑
i

∇iX ⊗ (−Zi, fδib + δikZlϕklb)

= (−Xa(∇kZk), Xa(∇bf) +Xa(∇kZl)ϕklb)

+ (−(∇iXa)Zi, (∇iXa)fδib + (∇iXa)δikZlϕklb)

= (−Xa(∇kZk), Xa(∇bf) +Xa(∇kZl)ϕklb)

+ (−(∇kXa)Zk, (∇bXa)f + (∇kXa)Zlϕklb)

= (−∇k(XaZk),∇b(fXa) +∇k(XaZl)ϕklb)

= (−div (X ⊗ Z), grad (fX) + curl (X ⊗ Z))

= D1(fX,X ⊗ Z).

Since X⊗(f, Z) = (fX,X⊗Z) and the operators DT and D1 are linear in their arguments,
it follows that DT = D1. We get another block matrix form of the twisted Dirac operator,
but this time with respect to the decomposition T ∗M ⊗ S = T ∗M ⊕ (T ∗M ⊗ T ∗M) as
follows:

DT =

 0 −div

grad curl

 . (5.1)

Since DT = D1, we can use Proposition 4.2.4 to describe the action of D2
T . It follows that

if Y is a 1-form and C is a 2-tensor with symmetric part C+ and skew part C− then

D2
T (Y,C) = (∆Y,∆LC+ + ∆dC−). (5.2)

5.2 The Spaces of 1
2- and 3

2-Spinors

The decompositions T 2 = Ω0 ⊕ S2
0 ⊕ Ω2

7 ⊕ Ω2
14 and T ∗M ⊗ S = S 1

2
⊕ S 3

2
from (3.49) and

(2.45) give rise to two different decompositions of spinor-valued 1-forms. That is, we have

Γ(T ∗M ⊗ S) = Γ(S 1
2
)⊕ Γ(S 3

2
) = Ω1 ⊕ Ω0 ⊕ S2

0 ⊕ Ω2
7 ⊕ Ω2

14. (5.3)
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We see how these decompositions relate to each other.

Let Y be a 1-form and C be a 2-tensor. We compute pr 1
2
(Y,C).

pr 1
2
(Y,C) = ι ◦ µ(Y,C)

= ι

[∑
i

ei · (Yi, Cib)
]

= ι(−Cii, Yiδib + δikCilϕklb)

= ι(−Cii, Yb + Cklϕklb)

= −1

7

∑
j

ej ⊗ [ej · (−Cii, Yb + Cklϕklb)]

= −1

7

∑
j

ej ⊗ (−Yj − Cklϕklj,−Ciiδjb + δjkYlϕklb + δjpCklϕklqϕpqb)

= −1

7

∑
j

ej ⊗ (−Yj − Cklϕklj,−Ciiδjb + δjkYlϕklb + δjpCkl(gkbglp − gkpglb − ψklbp))

= −1

7

∑
j

ej ⊗ (−Yj − Cklϕklj,−Ciiδjb + Ylϕjlb + Cbj − Cjb − Cklψklbj)

= −1

7
(−Ya − Cklϕkla,−Ckkgab − Ylϕlab + Cba − Cab + Cklψklab).

Replacing C with fg ∈ Ω0, C27 ∈ S2
0 , Z⌟ϕ ∈ Ω2

7, and C14 ∈ Ω2
14 and using their properties,

we get that

pr 1
2
(Y, 0) =

(
1

7
Y,

1

7
Y ⌟ ϕ

)
,

pr 1
2
(0, fg) = (0, fg),

pr 1
2
(0, C27) = (0, 0),

pr 1
2
(0, Z ⌟ ϕ) =

(
6

7
Z,

6

7
Z ⌟ ϕ

)
,

pr 1
2
(0, C14) = (0, 0).

(5.4)

That is, we have that

pr 1
2
(Y, fg + C27 + Z ⌟ ϕ+ C14) =

(
1

7
Y +

6

7
Z, fg +

(
1

7
Y +

6

7
Z

)
⌟ ϕ

)
(5.5)
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and

pr 3
2
(Y, fg + C27 + Z ⌟ ϕ+ C14) =

(
6

7
Y − 6

7
Z,C27 −

(
1

7
Y − 1

7
Z

)
⌟ ϕ+ C14

)
. (5.6)

It follows that Γ(S 1
2
) consists of elements of the form (Y, fg+Y ⌟ϕ) and and Γ(S 3

2
) consists

of elements of the form (Y,C27 − 1
6
Y ⌟ ϕ + C14). We see that this is consistent with the

pointwise dimensions of these spaces and that S = S 1
2

is a rank 8 real vector bundle over
M .

5.3 Decomposition of the Curl Operator

Since the curl operator maps 2-tensors to 2-tensors, we can use the decomposition (3.49)
to write curl in a block matrix form. Further, since DT can be written in terms of the
operators div, grad, and curl, understanding this block matrix form will give further insight
into the properties of kerDT .

We begin by computing how curl acts on the multiples of the metric g. If f is a function,
we can see that

(curl (fg))ab = (∇i(fg)aj)ϕijb

= ∇ifgajϕijb

= (grad f)iϕiab.

That is,
curl (fg) = (grad f) ⌟ ϕ, (5.7)

and so curl maps Ω0 to Ω2
7.

Next, we look at the action of curl on Ω2
7. Let Z be a 1-form. Computing in local

coordinates yields

(curl (Z ⌟ ϕ))ab = (∇i(Z ⌟ ϕ)aj)ϕijb

= ∇iZmϕmajϕijb

= ∇iZm(gmbgai − gmigab − ψmabi)
= ∇aZb −∇iZigab +∇iZjψijab.

(5.8)

To decompose curl (Z ⌟ϕ) further, we take the trace of the above expression to find its
Ω0-component and we contract it with ϕ on two indices to find its Ω2

7-component. Taking
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the trace gives

tr (curl (Z ⌟ ϕ)) = (curl (Z ⌟ ϕ))aa

= ∇aZa −∇iZigaa +∇iZjψijaa

= −6∇iZi

= −6divZ,

so

[curl (Z ⌟ ϕ)]1 = −6

7
(divZ)g. (5.9)

Contracting with ϕ gives

(curl (Z ⌟ ϕ))abϕabk = ∇aZbϕabk −∇iZigabϕabk +∇iZjψijabϕabk

= ∇aZbϕabk − 4∇iZjϕijk

= −3∇aZbϕabk

= −3(curlZ)k.

By (3.45), we then see that

[curl (Z ⌟ ϕ)]7 = −1

2
(curlZ) ⌟ ϕ (5.10)

We can compute the S0- and Ω2
14-components of curl (Z ⌟ ϕ) by subtracting the above

expressions from the symmetric and skew parts of curl (Z ⌟ ϕ) respectively. Since g is
symmetric and ψ is skew, this gives

([curl (Z ⌟ ϕ)]27)ab =
1

2
(∇aZb +∇bZa)−

1

7
(divZ)gab (5.11)

and

([curl (Z ⌟ ϕ)]14)ab =
1

2
(∇aZb −∇bZa) +∇iZjψijab +

1

2
(curlZ)iϕiab

=
1

2
(∇aZb −∇bZa) +∇iZjψijab +

1

2
(∇kZl)ϕkliϕiab

=
1

2
(∇aZb −∇bZa) +∇iZjψijab +

1

2
∇kZl(gkaglb − gkbgla − ψklab)

= ∇aZb −∇bZa +
1

2
∇iZjψijab.

(5.12)
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We can get other expressions for [curl (Z⌟ϕ)]7 and [curl (Z⌟ϕ)]14 by using the expression
(dZ)ab = ∇aZb −∇bZa and (3.52). Indeed, we notice that

∇iZjψijab =
1

2
(∇iZj −∇jZi)ψijab

=
1

2
(dZ)ijψijab

= −2[(dZ)7]ab + [(dZ)14]ab.

Using (5.8) and (5.12), this gives that

[curl (Z ⌟ ϕ)]7 = −3

2
(dZ)7 (5.13)

and

[curl (Z ⌟ ϕ)]14 =
3

2
(dZ)14. (5.14)

We now look at how curl acts on Ω2
14. Let C14 ∈ Ω2

14. Using (3.48), we can write

(curlC14)ab = (∇i(C14)aj)ϕijb

= ∇i[(C14)ajϕijb]

= ∇i[(C14)bjϕjai − (C14)ijϕjab]

= (∇i(C14)bj)ϕija + (∇i(C14)ji)ϕjab

= (curlC14)ba + ((divC14) ⌟ ϕ)ab.

Hence the skew part of curlC14 is given by

1

2
[(curlC14)ab − (curlC14)ba] =

1

2
((divC14) ⌟ ϕ)ab.

It then follows that

[curlC14]7 =
1

2
(divC14) ⌟ ϕ (5.15)

and that curlC14 has no Ω2
14-component. Computing the trace of curlC14 gives

tr (curlC14) = (curlC14)aa

= (∇i(C14)aj)ϕija

= ∇i[(C14)ajϕija]

= 0.
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Since this expression is traceless, the S2
0 -part is just the symmetric part of the expression.

Hence

([curlC14]27)ab =
1

2
[(∇i(C14)aj)ϕijb + (∇i(C14)bj)ϕija]. (5.16)

Lastly, we look at the action of curl on S2
0 . Let C27 ∈ S0. We compute

tr (curlC27) = (curlC27)aa

= (∇i(C27)aj)ϕija

= ∇i[(C27)ajϕija]

= 0.

Thus curlC27 also has no Ω0-component and we get a similar expression to the Ω2
14-case

([curlC27]27)ab =
1

2
[(∇i(C27)aj)ϕijb + (∇i(C27)bj)ϕija]. (5.17)

To find the Ω2
7-component, we contract curlC27 with ϕ on two indices.

(curlC27)abϕabk = (∇i(C27)aj)ϕijbϕabk

= (∇i(C27)aj)(gikgja − giagjk − ψijka)
= ∇k(C27)aa −∇i(C27)ik −∇i[(C27)ajψijka]

= −∇i(C27)ki

= −(divC27)k.

Equation (3.45) gives

[curlC27]7 = −1

6
(divC27) ⌟ ϕ. (5.18)

Subtracting the above from the skew part of curlC27 gives the Ω2
14-component,

([curlC27]14)ab =
1

2
[(∇i(C27)aj)ϕijb − (∇i(C27)bj)ϕija] +

1

6
(∇i(C27)ji)ϕjab. (5.19)

We summarize the findings of this section in Table 5.1 below.

5.4 Some Equivalences

Since the twisted Dirac operator DT is defined in terms of the operators div, grad, and curl,
it is natural to consider when these operators vanish. We look at their restrictions to the
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various components of a 2-tensor with respect to our decomposition (3.49). Starting with
the divergence operator, we compute its kernel when restricted to the space of traceless
symmetric 2-tensors.

Proposition 5.4.1. Let M be a manifold with torsion-free G2-structure. If C = C27 ∈ S2
0

is a traceless symmetric 2-tensor on M with associated 3-form γ = C � ϕ ∈ Ω3
27, then

divC = 0 ⇐⇒ (dγ)7 = 0 ⇐⇒ (d∗γ)7 = 0. (5.20)

Proof. Since (dγ)ijkl = ∇iγjkl −∇jγikl +∇kγijl −∇lγijk, using (3.53) we can compute

[(dγ) · ψ]ia = (dγ)ijklψajkl

= (∇iγjkl)ψajkl − 3(∇jγikl)ψajkl

= [∇i(Cjpϕpkl)]ψajkl + [∇i(Ckpϕjpl)]ψajkl + [∇i(Clpϕjkp)]ψajkl

− 3[∇j(Cipϕpkl)]ψajkl − 3[∇j(Ckpϕipl)]ψajkl − 3[∇j(Clpϕikp)]ψajkl.

Using the contractions (3.27) and (3.28), the fact that both ϕ and ψ are parallel with
respect to ∇, and the identities Cijϕija = 0 and trC = Caa = 0 we get

[(dγ) · ψ]ia = ∇iCjp(−4ϕpaj) +∇iCkp(−4ϕpak) +∇iClp(−4ϕpal)

− 3∇jCip(−4ϕpaj)

− 3∇jCkp(giaϕpjk + gijϕapk + gikϕajp − gapϕijk − gjpϕaik − gkpϕaji)
− 3∇jClp(giaϕpjl + gijϕapl + gilϕajp − gapϕijl − gjpϕail − glpϕaji)

= 12∇jCipϕjpa

− 3∇jCipϕjpa + 3∇jCakϕjki − 3∇jCkjϕkia

− 3∇jCipϕjpa + 3∇jCalϕjli − 3∇jCljϕlia

= 6∇jCikϕjka + 6∇jCakϕjki − 6∇jCkjϕkia.

Suppose that divC = 0. Then in coordinates, ∇iCai = 0. By our hypothesis, the final
term in [(dγ) · ψ]ia vanishes which leaves us with

[(dγ) · ψ]ia = 6∇jCikϕjka + 6∇jCakϕjki,

which is symmetric in i and a. Using the inverse of � in Corollary 3.4.10, we see that
(dγ)7 = 0. Conversely, suppose (dγ)7 = 0. It follows that (dγ) · ψ is a symmetric 2-
tensor. Our earlier calculation shows that ((divC) ⌟ϕ)ia = ∇jCkjϕkia = 0. Since the map
X 7→ X ⌟ϕ defines an isomorphism between X and Ω2

7, we must have that divC = 0. This
proves the first equivalence.
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We have (d∗γ)jk = −∇iγijk. We can again use (3.53) to compute the contraction of
d∗γ with ϕ on two indices.

(d∗γ)jkϕjka

= −(∇iγijk)ϕjka

= −[∇i(Cipϕpjk)−∇i(Cjpϕipk)−∇i(Ckpϕijp)]ϕjka

= −[∇i(Cipϕpjk)]ϕjka − 2[∇i(Cjpϕipk)]ϕjka

= −∇iCip(6gpa)− 2∇iCjp(giagpj − gijgpa − ψipaj)
= −6∇iCai + 2∇iCai

= −4∇iCai.

If divC = 0, we see that the above expression vanishes, so (d∗γ) ∈ Ω2
14. Conversely,

if (d∗γ)7 = 0, then (d∗γ) ∈ Ω2
14, so its contraction with ϕ on two indices vanishes. Hence

∇iCai = (divC)a = 0, and so divC = 0. This proves the second equivalence.

Using a similar approach, we can also characterize when the various components of
curlC vanish for a traceless symmetric 2-tensor.

Proposition 5.4.2. Let M be a manifold with torsion-free G2-structure. If C = C27 ∈ S2
0

is a traceless symmetric 2-tensor on M with associated 3-form γ = C � ϕ ∈ Ω3
27, then the

following equivalences hold:

divC = 0 ⇐⇒ [curlC]7 = 0 ⇐⇒ (dγ)7 = 0 ⇐⇒ (d∗γ)7 = 0; (5.21)

[curlC]14 = 0 ⇐⇒ (d∗γ)14 = 0; (5.22)

[curlC]27 = 0 ⇐⇒ (dγ)27 = 0. (5.23)

Proof. The equivalences (5.21) follow from (5.18) and the fact that X 7→ X ⌟ϕ defines an
isomorphism between X and Ω2

7.

We have that

(d∗γ)jk = −∇iγijk = −∇iCipϕpjk −∇iCjpϕipk −∇iCkpϕijp.

From the proof of the previous proposition, we also have that

[(d∗γ)7]jk = −2

3
∇iCaiϕajk.
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Taking the difference of the above two expressions, we get

[(d∗γ)14]jk = −∇iCjpϕipk +∇iCkpϕipj −
1

3
∇iCaiϕajk

which by comparing with (5.19) is −2([curlC]14)jk. Hence (d∗γ)14 vanishes if and only if
[curlC]14 vanishes.

Again, from the proof of the previous proposition, we have

[(dγ) · ψ]ia = 6∇jCikϕjka + 6∇jCakϕjki − 6∇jCkjϕkia.

We then see that the 2-tensor (dγ)·ψ is traceless. Using the inverse of � in Corollary 3.4.10,
it follows that the Ω4

27 component of dγ corresponds to the traceless symmetric 2-tensor

Bia =
1

24
([dγ) · ψ]ia + [(dγ) · ψ]ai)

=
1

24
(6∇jCikϕjka + 6∇jCakϕjki − 6∇jCkjϕkia

+ 6∇jCakϕjki + 6∇jCikϕjka − 6∇jCkjϕkai)

=
1

2
(∇jCikϕjka +∇jCakϕjki),

which by comparing with (5.17) is ([curlC]27)ia. Thus (dγ)27 vanishes if and only if
[curlC]27 vanishes.

The previous proposition allows us to fully characterize which traceless symmetric 2-
tensors are in the kernel of curl.

Corollary 5.4.3. Let M be a compact manifold with torsion-free G2-structure. If C =
C27 ∈ S2

0 is a traceless symmetric 2-tensor on M with associated 3-form γ = C � ϕ ∈ Ω3
27,

then
curlC = 0 ⇐⇒ dγ = d∗γ = 0 ⇐⇒ ∆dγ = 0. (5.24)

Proof. The second equivalence follows from results from Hodge theory and so we only need
to prove the first equivalence.

If dγ = d∗γ = 0, then each of their components with respect to the decompositions
Ω2 = Ω2

7 ⊕ Ω2
14 and Ω4 = Ω4

1 ⊕ Ω4
7 ⊕ Ω4

27 are also all 0. From Table 5.1, curlC has no
Ω0-part, and so we get that curlC = 0 from Proposition 5.4.2.

To show the other direction of the first equivalence, it suffices to show that dγ has
no Ω4

1-part. We show this by taking the inner product of dγ and ψ. We notice that
〈dγ, ψ〉 = 1

24
(dγ)ijklψijkl = 1

24
tr ((dγ) · ψ). The 2-tensor (dγ) · ψ was shown to be traceless

in the proof of Proposition 5.4.2 and so the result follows.
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Similar results about the kernel of div and curl restricted to Ω2
14 can be shown.

Proposition 5.4.4. Let M be a manifold with torsion-free G2-structure. If C = C14 ∈ Ω2
14

is a 2-14-form on M , then

divC = 0 ⇐⇒ (dC)7 = 0 ⇐⇒ (d∗C) = 0. (5.25)

Proof. We have the formula (dC)ijk = ∇iCjk − ∇jCik + ∇kCij. We use the inverse of �
from Corollary 3.4.10 to find the Ω2

7-form associated with dC. Contracting dC with ϕ on
two indices yields

[(dC) · ϕ]ia = (dC)ijkϕajk

= [(∇iCjk)− (∇jCik) + (∇kCij)]ϕajk

= ∇iCjkϕjka − 2∇jCikϕjka

= −2∇jCikϕjka.

Using (3.48), we then see that dC corresponds to the Ω2
7-form A given by

Aia =
1

24
([(dC) · ϕ]ia − [(dC) · ϕ]ai)

=
1

24
(−2∇jCikϕjka + 2∇jCakϕjki)

= − 1

12
(∇jCikϕjka −∇jCakϕkij)

= − 1

12
(∇jCikϕjka − (∇jCikϕkaj −∇jCjkϕkai))

= − 1

12
∇jCkjϕkia

= − 1

12
((divC) ⌟ ϕ)ia.

This shows that (dC)7 = 0 if and only if divC = 0.

To prove the other equivalence, we notice that

(divC)a = ∇iCai = −∇iCia = (d∗C)a.

So divC = d∗C, and the result follows.

Proposition 5.4.5. Let M be a manifold with torsion-free G2-structure. If C = C14 ∈ Ω2
14

is a 2-14-form on M , then the following equivalences hold:

divC = 0 ⇐⇒ [curlC]7 = 0 ⇐⇒ (dC)7 = 0 ⇐⇒ d∗C = 0; (5.26)

[curlC]27 = 0 ⇐⇒ (dC)27 = 0. (5.27)
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Proof. The equivalences (5.26) follow from (5.15) and the fact that X 7→ X ⌟ϕ defines an
isomorphism between X and Ω2

7.

As computed in the proof of the previous proposition, we have

[(dC) · ϕ]ia = −2∇jCikϕjka.

Since C ∈ Ω2
14, (dC) ·ϕ is traceless. It follows by Corollary 3.4.10 that (dC)27 corresponds

via � to the 2-tensor A ∈ S0 given by

Aia =
1

8
([(dC) · ϕ]ia + [(dC) · ϕ]ai)

=
1

8
(−2∇jCikϕjka − 2∇jCakϕjki)

= −1

4
(∇jCikϕjka +∇jCakϕjki).

Comparing this with (5.16), we see that A is a non-zero scalar multiple of [curlC]27. The
result follows.

We can, in a similar fashion to Corollary 5.4.3, describe exactly which Ω2
14-forms are in

the kernel of curl.

Corollary 5.4.6. Let M be a compact manifold with torsion-free G2-structure. If C =
C14 ∈ Ω2

14 is a 2-14-form on M , then

curlC = 0 ⇐⇒ dC = d∗C = 0 ⇐⇒ ∆dC = 0. (5.28)

Proof. The second equivalence follows from results from Hodge theory, so we prove the
first equivalence.

If dC = d∗C = 0, then each of (dC)1, (dC)7, and (dC)27 are 0. Since curlC has no Ω0-
or Ω2

14-part (see Table 5.1), it follows from Proposition 5.4.5 that curlC = 0.

In order to show the other direction, we see that it suffices to show that (dC)1 = 0. We
take the inner product of dC and ϕ. Notice that 〈dC, ϕ〉 = 1

6
(dC)ijkϕijk = 1

6
tr ((dC)·ϕ) = 0,

hence (dC)1 = 0 as required.

5.5 Splitting of Laplacians

In Sections 4.2 and 5.1, we showed (see (5.2)) that the square of the twisted Dirac operator
D2
T acts as the Lichnerowicz Laplacian ∆L on symmetric 2-tensors and as the Hodge
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Laplacian ∆d on 2-forms. Moreover, in the previous section, we noted that the kernels of
the divergence and curl operators are closely tied with harmonic 2- and 3-forms. In this,
we shall show that when the G2-structure ϕ is torsion-free, the Lichnerowicz and Hodge
Laplacians commute with the projections onto the spaces Ω0,S2

0 ,Ω
2
7, and Ω2

14 as well as
analogous results for our decomposition of 3-forms.

We begin with the Lichnerowicz Laplacian. Let f be a function. Direct computations
using (4.22) yields

(∆L(fg))ab = (∆(fg))ab − 2Riabj(fg)ij = (∆f)gab, (5.29)

where the second term vanishes by Ricci-flatness. We see that ∆L maps Ω0 to Ω0. Next,
let C27 ∈ S0. We can check that

(∆LC27)ab = (∆C27)ab − 2RiabjCij

= (∆C27)ba − 2RjabiCji

= (∆LC27)ba,

and

tr (∆C27) = (∆LC27)aa

= (∆C27)aa − 2RiaajCij

= 0

by Ricci-flatness. Hence ∆LC27 is traceless and symmetric. This shows that ∆L splits with
respect to the decomposition S2 = Ω0 ⊕ S2

0 .

Remark 5.5.1. This splitting of the Lichnerowicz Laplacian still holds without the torsion-
free assumption. Indeed, using the more general form of (4.22), we see that if f is a function
then

(∆L(fg))ab = (∆(fg))ab + Ricai(fg)ib + Ricbi(fg)ai − 2Riabj(fg)ij

= (∆f)gab + fRicab + fRicba − 2fRicab

= (∆f)gab.

Additionally, if C27 ∈ S2
0 , we get

tr (∆LC27) = (∆LC27)aa

= (∆C27)aa + Ricai(C27)ia + Ricai(C27)ai − 2Riaaj(C27)ij

= 2Ricai(C27)ai − 2Ricij(C27)ij

= 0,
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so ∆L is again traceless. Symmetry follows from an argument similar to the torsion-free
case where we also use the symmetry of the Ricci tensor and of C27.

Next, we check that the Hodge Laplacian splits with respect to our decompositions of
k-forms. This allows us to consider harmonic k-l-forms and refined Betti numbers bkl . A
more general proof of this fact in the torsion-free case can be found in Chapter 3 of [Joy00].
We provide a direct proof using local coordinates here for the cases k = 2 and k = 3.

We start with the k = 2 case. Let X be a vector field. Using (4.23) and (4.24), we can
see that

(∆d(X ⌟ ϕ))ab = (∆(X ⌟ ϕ))ab − 2Riabj(X ⌟ ϕ)ij

= −∇i∇i(Xlϕlab)− 2RiabjXlϕlab

= −(∇i∇iXl)ϕlab

= ((∆X) ⌟ ϕ)ab,

(5.30)

so ∆d maps Ω2
7 to Ω2

7. Lastly, if we let C14 ∈ Ω2
14, then

(∆dC14)abϕabk = (∆C14)abϕabk − 2Riabj(C14)ijϕabk

= −(∇i∇i(C14)ab)ϕabk

= −∇i∇i[(C14)abϕabk]

= 0.

Hence the Hodge Laplacian splits with respect to the decomposition Ω2 = Ω2
7 ⊕ Ω2

14.

Now we consider the k = 3 case. We recall (see [Pet16]) that for a 3-form η that the
Hodge Laplacian ∆d acts by

(∆dη)abc = −∇i∇iηabc + Ricaiηibc + Ricbiηaic + Ricciηabi

− 2Riabjηijc − 2Ribcjηija − 2Ricajηijb.

By Ricci-flatness, the above reduces to

(∆dη)abc = −∇i∇iηabc − 2Riabjηijc − 2Ribcjηija − 2Ricajηijb. (5.31)

Since contractions of the Riemann tensor and ϕ on two indices vanish, we see that if f is
a function then

(∆d(fϕ))abc = −∇i∇i(fϕ)abc − 2Riabj(fϕ)ijc − 2Ribcj(fϕ)ija − 2Ricaj(fϕ)ijb

= −(∇i∇if)ϕabc = (∆f)ϕabc.
(5.32)
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Hence ∆d maps Ω3
1 to Ω3

1.

Now, if X is a vector field, we can compute using (4.27) and the first Bianchi identity
that

(∆d(X ⌟ ψ))abc = −∇i∇i(X ⌟ ψ)abc − 2Riabj(X ⌟ ψ)ijc − 2Ribcj(X ⌟ ψ)ija

− 2Ricaj(X ⌟ ψ)ijb

= −∇i∇i(Xlψlabc)− 2Riabj(Xlψlijc)− 2Ribcj(Xlψlija)− 2Ricaj(Xlψlijb)

= −(∇i∇iXl)ψlabc + 2XlRablc + 2XlRbcla + 2XlRcalb

= (∆X)lψlabc + 2XlRlabc + 2XlRlbca + 2XlRlcab

= ((∆X) ⌟ ψ)abc.

(5.33)

It follows that ∆d also maps Ω3
7 to Ω3

7.

Lastly, if C = C27 ∈ S2
0 is a traceless symmetric 2-tensor, then

[(∆d(C � ϕ)) · ϕ]ia

= (∆d(C � ϕ))ijkϕajk

= −∇p∇p(C � ϕ)ijkϕajk − 2Rpijq(C � ϕ)pqkϕajk − 2Rpjkq(C � ϕ)pqiϕajk

− 2Rpkiq(C � ϕ)pqjϕajk

= −∇p∇pCimϕmjkϕajk −∇p∇pCjmϕimkϕajk −∇p∇pCkmϕijmϕajk

− 2RpijqCpmϕmqkϕajk − 2RpijqCqmϕpmkϕajk − 2RpijqCkmϕpqmϕajk

− 2RpjkqCpmϕmqiϕajk − 2RpjkqCqmϕpmiϕajk − 2RpjkqCimϕpqmϕajk

− 2RpkiqCpmϕmqjϕajk − 2RpkiqCqmϕpmjϕajk − 2RpkiqCjmϕpqmϕajk

= −∇p∇pCim(6gma)

−∇p∇pCjm(giagmj − gijgma − ψimaj)−∇p∇pCkm(gmkgia − gmagik − ψmika)
− 2RpijqCpm(gmagqj − gmjgqa − ψmqaj)− 2RpijqCqm(gpagmj − gpjgma − ψpmaj)
− 2RpkiqCpm(gmkgqa − gmagqk − ψmqka)− 2RpkiqCqm(gpkgma − gpagmk − ψpmka)

= −6∇p∇pCia +∇p∇pCia +∇p∇pCia

+ 2RpimaCpm − 4RpiamCpm − 2RaimqCqm + 2RiqmaCqm

− 2RpmiaCpm − 2RpimaCpm + 2RamiqCqm + 4RiqamCqm

= −4∇p∇pCia − 8RpiamCpm.

The tracelessness of C and Ricci-flatness show that this expression is traceless. The sym-
metry of C along with the symmetries of the Riemann tensor together show that this
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expression is also symmetric. Using the identities from Corollary 3.4.10 we see that
∆d(C � ϕ) ∈ Ω3

27. This proves that the Hodge Laplacian splits with respect to the de-
composition Ω3 = Ω3

1 ⊕ Ω3
7 ⊕ Ω3

27.

5.6 The Kernel and its Dimension

In order to compute the kernel of the twisted Dirac operator DT on a compact manifold
M with torsion-free G2-structure, we make use of the fact that it is self-adjoint which we
showed in Section 4.2.2. Indeed if (Y,C) ∈ kerD2

T , then we have

0 = 〈D2
T (Y,C), (Y,C)〉

= 〈DT (Y,C), D∗T (Y,C)〉
= 〈DT (Y,C), DT (Y,C)〉
= ‖DT (Y,C)‖2

Hence DT (Y,C) = 0 and kerD2
T ⊆ kerDT . The reverse containment is evident as DT is a

linear operator thus kerDT = kerD2
T .

Equation (5.2) provides us with a nice form of D2
T to work with due to the Lichnerowicz

and Hodge Laplacians splitting with respect to the decompositions S2 = Ω0 ⊕ S2
0 and

Ω2 = Ω2
7 ⊕ Ω2

14 respectively (see Section 5.5). In particular, we see that

DT (Y,C) = 0 ⇐⇒ D2
T (Y,C) = 0 ⇐⇒ ∆Y = 0,∆LC1 = ∆LC27 = 0,∆dC7 = ∆dC14 = 0.

Using the equations on the right side of the above, we would like to characterize when
(Y,C) is in the kernel of DT .

We recall that since M is Ricci-flat, ∆ and ∆d agree on 1-forms. This shows that
∆Y = 0 if and only if Y is harmonic. Since (5.30) tells us that ∆d(X ⌟ ϕ) = (∆X) ⌟ ϕ, it
also follows that ∆d(X ⌟ϕ) = 0 if and only if ∆X = 0 if and only if X is harmonic. Next,
using (5.29), we can see that if C1 = fg for some function f , then ∆L(fg) = 0 if and only
if f is harmonic as well.

To compute the dimension of kerDT , we need to be able to characterize when the
Lichnerowicz Laplacian of a symmetric 2-tensor vanishes. The next proposition provides
such a characterization.

Proposition 5.6.1. Let C = C27 ∈ S0 be a traceless symmetric 2-tensor and let γ =
C � ϕ ∈ Ω3

27 be its associated 3-form. If M is a manifold with torsion-free G2-structure,
the following equivalence holds:

∆LC = 0 ⇐⇒ ∆dγ = 0. (5.34)
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Proof. We show the forward direction first. Computing ∆dγ = dd∗γ+d∗dγ in coordinates,
we have that the first term is

(dd∗γ)abc = ∇a(d
∗γ)bc −∇b(d

∗γ)ac +∇c(d
∗γ)ab

= ∇a(−∇iγibc)−∇b(−∇iγiac) +∇c(−∇iγiab)

= −∇a∇i(Cijϕjbc + Cbjϕijc + Ccjϕibj)

+∇b∇i(Cijϕjac + Cajϕijc + Ccjϕiaj)

−∇c∇i(Cijϕjab + Cajϕijb + Cbjϕiaj).

The second term gives

(d∗dγ)abc = −∇i(dγ)iabc

= −∇i(∇iγabc −∇aγibc +∇bγiac −∇cγiab)

= −∇i∇i(Cajϕjbc + Cbjϕajc + Ccjϕabj)

+∇i∇a(Cijϕjbc + Cbjϕijc + Ccjϕibj)

−∇i∇b(Cijϕjac + Cajϕijc + Ccjϕiaj)

+∇i∇c(Cijϕjab + Cajϕijb + Cbjϕiaj).

By combining the above, we get

(∆dγ)abc = −∇i∇iCajϕjbc −∇i∇iCbjϕajc −∇i∇iCcjϕabj

+ (∇i∇a −∇a∇i)[Cijϕjbc + Cbjϕijc + Ccjϕibj]

− (∇i∇b −∇b∇i)[Cijϕjac + Cajϕijc + Ccjϕiaj]

+ (∇i∇c −∇c∇i)[Cijϕjab + Cajϕijb + Cbjϕiaj]

= −∇i∇iCajϕjbc −∇i∇iCbjϕajc −∇i∇iCcjϕabj

− (RiaikCkj +RiajkCik)ϕjbc − (RiabkCkj +RiajkCbk)ϕijc

− (RiackCkj +RiajkCck)ϕibj

+ (RibikCkj +RibjkCik)ϕjac + (RibakCkj +RibjkCak)ϕijc

+ (RibckCkj +RibjkCck)ϕiaj

− (RicikCkj +RicjkCik)ϕjab − (RicakCkj +RicjkCak)ϕijb

− (RicbkCkj +RicjkCbk)ϕiaj

We recall that contractions of the Riemann curvature tensor and ϕ on any two indices
vanish. Additionally, Equation (3.72) in the torsion-free setting gives us the following
Bianchi-type identity:

Rabilϕljk +Rabjlϕlki +Rabklϕlij = 0. (5.35)
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Using the above identity and Ricci-flatness, we can simplify our expression for (∆dγ)abc.
We have

(∆dγ)abc = −∇i∇iCajϕjbc −∇i∇iCbjϕjca −∇i∇iCcjϕjab

−RiajkCikϕjbc −RibjkCikϕjca −RicjkCikϕjab

+ (−Riabkϕijc −Ricbkϕiaj)Ckj + (Ribckϕiaj −Riackϕibj)Ckj

+ (−Ricakϕijb +Ribakϕijc)Ckj

= −∇i∇iCajϕjbc −∇i∇iCbjϕjca −∇i∇iCcjϕjab

−RiajkCikϕjbc −RibjkCikϕjca −RicjkCikϕjab

+ (−Rkbaiϕijc −Rkbciϕiaj)Ckj + (−Rkcbiϕija −Rkcaiϕibj)Ckj

+ (−Rkaciϕijb −Rkabiϕicj)Ckj

= −∇i∇iCajϕjbc −∇i∇iCbjϕjca −∇i∇iCcjϕjab

−RiajkCikϕjbc −RibjkCikϕjca −RicjkCikϕjab

+RkbjiCkjϕica +RkcjiCkjϕiab +RkajiCkjϕibc

= −∇i∇iCajϕjbc −∇i∇iCbjϕjca −∇i∇iCcjϕjab

− 2RiajkCikϕjbc − 2RibjkCikϕjca − 2RicjkCikϕjab

= (−∇i∇iCaj − 2RiajkCik)ϕjbc + (−∇i∇iCbj − 2RibjkCik)ϕjca

+ (−∇i∇iCcj − 2RicjkCik)ϕjab.

Since ∆LC = 0, it follows that −∇i∇iCab−2RiabjCij = 0. Substituting this into the above
tells us that (∆dγ)abc = 0, and so ∆dγ = 0.

To show the other direction, suppose that ∆dγ = 0. Using the computation from above,
we have

(∆dγ)ijkϕajk

= (−∇p∇pCiq − 2RpiqrCpr)ϕqjkϕajk + (−∇p∇pCjq − 2RijqrCpr)ϕqkiϕajk

+ (−∇p∇pCkq − 2RpkqrCpr)ϕqijϕajk

= (−∇p∇pCiq − 2RpiqrCpr)(6gqa)

+ (−∇p∇pCjq − 2RpjqrCpr)(giagqj − gijgqa − ψiqaj)
+ (−∇p∇pCkq − 2RpkqrCpr)(gqkgia − gqagik − ψqika).

We can use (4.27), the symmetry of C and the anti-symmetry of the Riemann tensor in
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its first two indices to simplify this and so

(∆dγ)ijkϕajk

= (−6∇p∇pCia − 12RpiarCpr)

+ (∇p∇pCia + 2RpiarCpr + 2RpjqrψjqiaCpr)

+ (∇p∇pCia + 2RpiarCpr + 2RpkqrψkqiaCpr)

= −4∇p∇pCia − 8RpiarCpr − 4RpriaCpr

= 4(−∇p∇pCia − 2RpiarCpr).

Since ∆dγ = 0, it follows that (∆LC)ia = −∇p∇pCia−2RpiarCpr = 0. Hence ∆LC = 0.

The result of this proposition in addition to the the other results of this section allow us
to compute the kernel of the twisted Dirac operator. Our earlier computations shows that
if DT (Y,C) = 0 on a compact manifold with torsion-free G2-structure, then by writing
C = C1 + C27 + C7 + C14 = fg + C27 + X ⌟ ϕ + C14, we must have that f is a harmonic
function, X and Y are harmonic 1-forms, C14 is a harmonic Ω2

14-form, and C27 corresponds
to a harmonic Ω3

27-form. We have proven the following:

Theorem 5.6.2. Let M be a compact manifold with torsion-free G2-structure, then

dim kerDT = b0 + b1 + b1 + b2
14 + b3

27 = b2 + b3. (5.36)

Remark 5.6.3. The above provides an alternate proof for Theorem 3.7 of [Wan91]. Indeed,
if M is connected, we have b0 = 1. Furthermore, we have from Proposition 10.1.3 of [Joy00]
that when M is a compact manifold with torsion-free G2-structure with Hol(M) = G2,
then b1 = 0. We also have from Section 5.2 that S 3

2
is consists of elements of the form

(Y,C) = (Y,C27− 1
6
Y ⌟ϕ+C14). Our previous analysis tells us that if DT (Y,C) = 0, then

Y is a harmonic 1-form, C14 is a harmonic Ω2
14-form, and C27 corresponds to a harmonic

Ω3
27-form, hence dim kerDT |S 3

2

= b2
14 + b3

27 = b2 + b3 − 1.

Remark 5.6.4. The quantity b2 + b3 is of importance in G2 mirror symmetry. As seen
in [BDZ18], if M and M ′ are G2-mirror manifolds then they satisfy the Shatashvili–Vafa
relation:

b2(M) + b3(M) = b2(M ′) + b3(M ′). (5.37)

Remark 5.6.5. The arguments presented in this section provide alternate proofs of Corol-
laries 5.4.3 and 5.4.6 from Section 5.4. In particular, if C27 ∈ S2

0 with γ = C27 � ϕ, then
we have

curlC27 = 0 =⇒ divC27 = curlC27 = 0 =⇒ DT (0, C27) = 0

=⇒ D2
T (0, C27) = 0 =⇒ ∆LC27 = 0 =⇒ ∆dγ = 0.
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Conversely

∆dγ = 0 =⇒ ∆LC27 = 0 =⇒ D2
T (0, C27) = 0

=⇒ DT (0, C27) = 0 =⇒ curlC27 = 0.

A similar chain of implications shows the result for C14 ∈ Ω2
14.

5.7 Possible Applications and Extensions

We have shown that identifying the spinor bundle of a manifold with G2-structure with
the bundle R ⊕ T ∗M is a useful framework for studying spin-theoretic objects. Since
the analysis done in this thesis assumed torsion-freeness of the G2-structure, a natural
extension would be to explore analogous results in the general torsion case or in any of
the 15 other torsion cases described in Remark 3.5.5. Further, since the Dirac and twisted
Dirac operators are purely spin-theoretic and require no underlying G2-structure, one could
potentially use the dimension of the kernel of the Dirac and twisted Dirac operators as an
obstruction to the existence of certain types of compatible G2-structure on 7-dimensional
spin manifolds.

As the twisted Dirac operator and the connection induced from the spin connection are
first order differential operators on the bundle of spinor-valued 1-forms, it may be fruitful
to study their respective Laplacians and Weitzenböck formulae. By comparing them, one
could possibly obtain further results in G2-geometry.

Finally, one could explore if analogous results could be obtained on manifolds with
different holonomy groups such as Spin(7).
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