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Abstract

In the modelling of multivariate extreme risks, the tail dependence and the heavy

tailedness are the two key factors. Heavy tailedness are usually defined through the reg-

ular variation. Tail dependence can be modelled by copulas with the so-called tail order

property. In this thesis, we first investigate important characteristics of the copulas with

tail order property. Then, as an alternative of quantifying extreme risks, we propose a new

risk measure called the Joint Expected Shortfall (JES). The JES, which can be viewed as

a consolidation of both Expected Shortfall (ES) and Marginal Expected Shortfall (MES)

risk measures, has the desirable property of measuring risk by jointly capturing both tail

dependence and heavy tailedness. The asymptotic analysis of JES is conducted to pro-

vide a simple and transparent way of studying the interplay between tail dependence and

heavy tailedness. Various examples are presented to illuminate our results. In particular,

risk measures such as ES and MES that ignore the joint effect of dependence and heavy

tailedness may severely underestimate the underlying risk.

iii



Acknowledgements

First, I express my deepest gratitudes to my research supervisors, Professor Kenseng

Tan and Professor Fan Yang, for providing invaluable guidance throughout my graduate

study.

Professor Tan’s ingenuousness and huge passion to his career set an example for me,

and it always inspires me. Without his phenomenal supports, I would not be able to finish

the thesis. Professor Yang introduced me the interesting research topic and always gave

me sincerest suggestions when challenge occurred. She provided me tremendous help both

academically and emotionally.

I would like to express my thankfulness to all the faculty members of the Department of

Statistics and Actuarial Science. I would like to thank Professors who taught and guided

me during my graduate study: Dr. Adam Kolkiewicz, David Landriault, Dr. Christiane

Lemieux, Dr. David Saunders, Dr. Alexander Schied, Dr. Ruodu Wang, Dr. Chengguo

Weng, Dr Tony Wirjanto, Dr. Changbao Wu and Dr. Fan Yang. I also want to thank Ms.

Mary Lou Dufton and Ms. Lisa Baxter for their kind and generous help.

Finally, I am extremely grateful to my parents for their endless supports, and I am

greatly indebted to my friends for their companionship and encouragement.

iv



Dedication

In memory of my beloved grandma.

v



Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6

2.1 MDAs of EVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Regular variation and extended regular variation . . . . . . . . . . . 6

2.1.2 Max-domain of Attraction (MDA) . . . . . . . . . . . . . . . . . . . 8

2.2 Basics of Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Tail Dependence 14

3.1 Tail Order Property of Survival Copulas . . . . . . . . . . . . . . . . . . . 14

3.2 Uniform Convergence of Survival Copulas . . . . . . . . . . . . . . . . . . 16

vi



4 Joint Expected Shortfall (JES) 19

4.1 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 A Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Interplay of Dependence and Heavy Tailedness 30

5.1 A Numerical Example of Gumbel Survival Copula . . . . . . . . . . . . . . 30

5.2 A Numerical Example of Clayton Survival Copula . . . . . . . . . . . . . . 31

6 Conclusion 37

References 38

APPENDICES 42

A Asymptotic Expansions of ES 43

B Numerical Example of Clayton Copula 45

B.1 Figure related calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.2 Table related calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



List of Figures

5.1 From q = 0.95 to q = 0.999, the log of JES is plotted. X and Y are coupled

by a Gumbel survival copula with κ = 1.5 and 2. X is Pareto distributed with

γ = 0.1, 0.5 and 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 From q = 0.985 to q = 0.999, E[X|X > ζF←(q), Y > G←(q)] is plotted with

ζ = 0.3, 0.7, and 1. Both MES and ES are plotted for comparison. X and Y

follow a Pareto distribution with γ = 0.6 and are coupled by the Clayton survival

copula with α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



List of Tables

5.1 The ratio of JES and ES. X and Y follow a Gumbel survival copula. X is Pareto

distributed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 The ratio of JES and ES. X and Y follow a Clayton survival copula. X is Pareto

distributed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 The ratio of JES and MES. X and Y follow a Clayton survival copula. X and Y

are Pareto distributed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



Chapter 1

Introduction

Much of empirical work has shown that asset returns, exchange rates, operational risks,

large insurance claims exhibit heavy tailedness; see e.g. Guillaume et al. (1997), Gabaix

et al. (2006), Nešlehová et al. (2006), and Gabaix (2009). Dependence also widely exists

among these risks; see Embrechts et al. (2002) for an overview of different dependence

measures in risk management. An example of the impact of dependence in finance is the

systemic risk observed in the 2008 financial crisis, that is the extreme risks are contagious;

see e.g. Acharya et al. (2017). In this thesis, we study the tail dependence through copulas

with tail order property and then aim to investigate the effects of heavy tailedness and

tail dependence for the extreme risks through a so-called Joint Expected Shortfall risk

measure.

1.1 Copula

We first study the properties of tail dependence by copulas. Assume that U and V are

two uniform random variables with their dependence captured by a copula function C, i.e.

(U, V ) ∼ C; see the monograph of copula in Nelsen (2006).

Since in this thesis we are interested in the tail dependence, the survival copula Ĉ is

the focus of the study. In Hua and Joe (2011), the tail order of a copula was showed to
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capture the degree of dependence. That is for u, v > 0, there exist a tail order 1 ≤ κ ≤ 2

and a function τ(u, v) ≥ 0 such that

lim
t→0

Ĉ(ut, vt)

tκ`(t)
= τ(u, v),

where ` is a slowly varying function. If κ = 1, then U and V are tail dependent; if

1 < κ ≤ 2, then they are tail independent. When the survival copula function has the tail

order property, it is a (multivariate) regularly varying function. In this thesis, we show

that if the survival copula Ĉ is a regularly varying function (or has the tail order property),

the random vector (V1, V2) ∼ Ĉ is multivariate regular variation (MRV) at 0. For more

details of MRV, see e.g. Resnick (2007). This characterization links the tail order property

of survival copula with the MRV property so that many well-known results can be applied

to copulas, for example, the decomposition of limit measure τ .

Further, we show that the survival copula has a very useful property of uniform con-

vergence, which is parallel to that in the univariate regularly varying functions.

1.2 Risk Measures

To study the role of tail dependence in extreme risks, we need to carefully choose the risk

measure. The well-known Expected Shortfall (ES) at level q ∈ (0, 1) is defined for a loss

random variable X with distribution function F as,

ESq(X) = E[X|X > VaRq(X)],

where VaRq(X) = inf{x : F (x) ≥ q} is the Value-at-Risk of X. More strictly, in some

literature, ES takes the above form only when the random variable is continuous. In this

thesis, we ignore this technical difference and let it be defined for any random variable

with finite mean. ES measures the expected loss given that extreme loss of X happens

(X exceeds its VaR limit). ES has many desirable properties, including the coherence;

see Artzner et al. (1999). Thus, it has wide applications in finance and insurance, and is
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adopted by the regulators to determine the capital reserve; see McNeil et al. (2015). When

it comes to consider a single loss variable X in practice, ES has the disadvantage that it

fails to take the dependence into consideration. In the context of systemic risk, Acharya

et al. (2017) proposed the following Marginal Expected Shortfall (MES):

MES = E[X|Y > VaRq(Y )].

That is, it exploits the information of extremes in Y , instead on the extremes in X. MES

improves ES by incorporating the information from Y so that the dependence between

X and Y is taken into account. In fact, a few variations of MES, by generalizing Y as

a function of X, have been studied in the literature. Some examples are Y as being a

sum of random variables including X, or Y being the maximum (minimum) of n random

variables including X; see e.g. Landsman and Valdez (2003), Cai and Li (2005), Vernic

(2006), and Bargès et al. (2009). Besides the explicit calculations of MES under some

specific distribution assumptions, the extreme value related studies were all carried out

under the tail dependent case, that is κ = 1; see Asimit et al. (2011), Hua and Joe (2014),

and Cai et al. (2015). As pointed out in Hua and Joe (2014), the study of MES for the

tail independent case 1 < κ ≤ 2 is technically much more involved. This can be intuitively

explained when the dependence between X and Y becomes weaker but not as weak as the

independent case, the information provided by Y does not fully reflect the behaviour of X.

In other words, when Y is in its tail, X is not necessarily in its tail. Thus, when X and Y

are tail independent, MES does not necessarily measure the extreme risk of X.

To better incorporate the tail independent case in the study of extreme risks, we argue

in this thesis that the following newly proposed risk measure can be a better measure of

tail risk:

JES = E[X|X > VaRq(X), Y > VaRq(Y )],

where the joint probability distribution of (X, Y ) is a measure on R2. We denote the above

risk measure as the Joint Expected Shortfall (JES). Note that JES combines both ES and

MES in the sense that the expected loss of X is calculated given the joint information of

both X and Y exceeding their corresponding VaR limits. JES can be explained as the
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capital reserve of X when observing both extremes of X and Y occur. In the context of

life insurance, JES can be interpreted as when both members in the group survive, what

the life expectancy of X is, where X can be modelled with the MDA of Weibull. Also,

in the context of property and casualty insurance, JES can be interpreted as when both

earthquake and flood (catastrophic events) happen, what is the expected loss caused by

one of the catastrophic event. Note that JES can also be written as E[X|min (X, Y ) >

VaRq(X)], which makes it a special case of MES. The extra information of X makes JES

focus on the extreme risk of X, which improves MES in the tail independent case. In this

thesis, we explore the asymptotic properties of JES when X is from a very general family

of distributions, characterized by the max-domains of attraction (MDA). More details of

MDA is given in Chapter 2.1.2. One class of distributions in MDA is the regularly varying

distributions, which is used to define the heavy tailedness in this thesis. We show that when

X belongs to a MDA and X and Y are coupled with a copula with tail order property,

as q close to 1 meaning both X and Y are well in their far tails, the JES has a linear

relation with VaRq(X). The linear coefficient is given explicitly and is determined by the

dependence and heavy tailedness.

The asymptotic analysis of JES provides an easy and a reliable way to explore the

interplay of tail dependence and the heavy tailedness for the extreme risks. While we can

always rely on numerical procedures such as the Monte Carlo methods to address these

issues, the crude Monte Carlo, however, is notoriously inefficient for rare-event applications,

especially for multidimensional case. Through the asymptotic expansions of JES, ES and

MES, we find that dependence plays an important role in the measure of extreme risks.

In the tail dependent case, the heavy tailedness is a much stronger driving factor than the

dependence. By ignoring or solely relying on the dependence structure, measures such as

ES and MES may severely underestimate the underlying risk. By jointly conditioning on

both X and Y , our proposed JES is found to be a more appropriate measure of (extreme)

risk. Numerical examples to be presented in subsequent chapter highlight these issues.
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1.3 Outline of the Thesis

The rest of thesis is organized as the following. We review the basic theories of EVT and

copula in Chapter 2. In Chapter 3, we study the tail dependence through survival copu-

las. Then, in Chapter 4, we analyze the asymptotic expansions of the proposed JES. The

interplay of the dependence and heavy tailedness for the extreme risks is investigated in

Chapter 5 through two numerical examples, including the cases of Gumbel and Clayton

survival copulas. Chapter 6 concludes the thesis. The asymptotic analysis of ES is pre-

sented in Appendix A for completeness, and computations involved in numerical examples

are attached in Appendix B.
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Chapter 2

Preliminaries

2.1 MDAs of EVT

For today’s risk management, heavy tailed distributions with negative indexed regularly

varying survival function are applied to various models. Due to some mathematical con-

venience, we focus our analysis on margins belonging to the MDAs. In this chapter, we

introduce the basic theory of EVT, and its central idea of MDAs.

First, we introduce the basic concept of regularly varying (RV) functions for EVT.

RV is a key concept in EVT, which plays an important methodological role in modelling

tremendous losses for banks and large claims for insurance industry; see Appendix B.1 of

de Haan and Ferreira (2006) for more detailed examples of RV functions.

2.1.1 Regular variation and extended regular variation

Definition 2.1.1 (RV function) (a) A positive measurable function l(·) is said to be slowly

varying at x0 = +0 or +∞, denoted by l(·) ∈ RV0(x0), if

lim
x→x0

l(xt)

l(x)
= 1, t > 0.
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(b) A positive measurable function f(·) is said to be regularly varying at x0 = +0 or +∞
with index α ∈ R, denoted by f(·) ∈ RVα(x0), if

lim
x→x0

f(xt)

f(x)
= tα, t > 0.

Next, we present a very useful inequality for RV functions; refer to Proposition B.1.9

of de Haan and Ferreira (2006).

Lemma 2.1.1 (Potter’s bound) Let f(·) ∈ RVα(x0) with x0 = +0 or +∞ and α ∈ R. It

holds for arbitrary 0 < ε < 1 and all x, y sufficiently close to x0 that

(1− ε)
((y

x

)α+ε

∧
(y
x

)α−ε)
≤ f(y)

f(x)
≤ (1 + ε)

((y
x

)α+ε

∨
(y
x

)α−ε)
,

where ∧ is the minimum operator, and ∨ is the maximum operator. Before describing

MDA, it is useful to first introduce the concept of extended regular variation (ERV). It

serves an important role in the characterization of MDAs.

Definition 2.1.2 (ERV function) A positive measurable function f(·) is said to be ex-

tended regularly varying at ∞ with index γ ∈ R, denoted by f(·) ∈ ERVγ, if there is an

auxiliary function a(·) > 0 such that, for all s > 0,

lim
t→∞

f(st)− f(t)

a(t)
=
sγ − 1

γ
,

where the right-hand-side is interpreted as log s when γ = 0. The auxiliary function a(·) is

often chosen to be

a(t) =


γf(t), γ > 0,

f(t)− t−1
∫ t

0
f(u)du, γ = 0,

−γ(f(∞)− f(t)), γ < 0.

(2.1.1)

Note that, for γ = 0, as t → ∞, we have a(t) = o(f(t)) provided f(∞) = ∞ while

a(t) = o(f(∞)− f(t)) provided f(∞) <∞.
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In particular, if γ > 0, ERV is the well known regular variation (RV). That is, f(·) is

regularly varying at t0 =∞ or 0+, denoted by f(·) ∈ RVγ(t0), if

lim
t→t0

f(st)

f(t)
= sγ, s > 0.

The class RV0(t0) consists of functions slowly varying at t0.

The following theorem specifies the upper and lower bounds for ERV functions, which

is similar to the Potter’s bound for RV functions.

Theorem 2.1.1 If f(·) ∈ ERVγ, then for any ε,δ > 0, there exists some x0 = x0(ε, δ)

such that for all x, xy > x0,∣∣∣∣f(xy)− f(x)

a0(x)
− yγ − 1

γ

∣∣∣∣ ≤ εyγmax{yδ, y−δ},

The interested readers may refer to Appendix B of de Haan and Ferreira (2006) for

more discussions on ERV.

2.1.2 Max-domain of Attraction (MDA)

Now we are ready to introduce the MDAs of EVT.

Definition 2.1.3 (MDA) Let X1, X2, ...Xn be a sequence of i.i.d random variables with

common distribution function F . Then the block maxima is defined as Mn = max{X1, ..., Xn}.
Suppose there exists normalizing sequences of real numbers (cn) > 0 and (dn) ∈ R such

that (Mn − dn)/cn converges in distribution, i.e.

Pr((Mn − dn)/cn < x) → H(x), n→∞

for some non-degenerate df H (not a unit jump). Then F is said to belong to the maximum

domain of attraction of H, and it is denoted by F ∈MDA(H).
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With a focus on the limiting behaviour of the centred and normalized sample maxima,

the Fisher-Tippett theorem of EVT is analogous to the central limit theorem.

Theorem 2.1.2 (Fisher-Tippett theorem) Let X1, X2, ...Xn be a sequence of i.i.d random

variables with common distribution function F . If there exists normalizing constants (cn) >

0 and (dn) such that (Mn − dn)/cn converges in distribution, i.e.

Pr((Mn − dn)/cn < x) → H(x), n→∞

for some non-degenerate df H (not a unit jump), then H is of the type of one of the

following three extreme value distributions:

(a) Fréchet (γ > 0):

Φγ(x) =

{
0, x ≤ 0,

exp {−x−γ} , x > 0;

(b) Gumbel (γ = 0):

Λγ(x) = exp
{
−x−γ

}
, x ∈ R;

(c) Weibull (γ > 0):

Ψγ(x) =

{
exp {−|x|γ} , x ≤ 0,

1, x > 0.

Note that theorem is critical for us to classify heavy-tailed distributions into one of the

three categories.

In the Fréchet class, the distributions are heavy tailed, more specifically, they have reg-

ularly varying tails. Typical examples include Pareto, student- t, and Cauchy distributions.

Thus, distributions in this category are usually common models for large fluctuations of

prices and large losses in finance and insurance. The Gumbel class covers a wide range of
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distributions, including exponential, Gamma, Normal, and Lognormal distributions. Dis-

tributions in the Weibull class are bounded and are regularly varying at the upper end

point, which includes Beta and Uniform distributions.

The MDA of generalized extreme value distribution is related to ERV through the tail

quantile function

U(t) =

(
1

F

)←
(t) = F←

(
1− 1

t

)
, t > 1.

We have F ∈ MDA(Gγ) if and only if U(·) ∈ ERVγ with the auxiliary function a(·) given

in (2.1.1) in terms of U(·), where

Gγ =


Φ 1
γ
, γ > 0,

Ψ− 1
γ
, γ < 0,

Λ, γ = 0,

see Theorem 1.1.6 of de Haan and Ferreira (2006) for details.

2.2 Basics of Copula

In this section, we make a brief review on basic theory on copulas.; for a complete overview

see Nelsen (2006).

We introduce the theory of bivariate copulas, while it can be naturally extended to

multivariate case.

Definition 2.2.1 (Copula) A two-dimensional copula is a function C : [0, 1]2 → [0, 1]

satisfying the following properties:

(a) Boundary conditions: C(0, u) = C(u, 0) = 0, and C(1, u) = C(u, 1) = u for all u ∈
[0, 1].
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(b) 2-increasingness: For every 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0. (2.2.1)

A d-dimensional copula for d ≥ 3 can be defined in a similar way; see Nelsen (2006) in

details.

By Definition 2.2.1, one can see that copula is a 2-dimensional cumulative distribution

function whose marginal distributions are uniform on [0, 1].

Since our analysis is focused on the tail risks, the idea of survival copula will bring

us more convenience for the asymptotic analysis. Here, the fundamental idea of survival

copula and its relation with copula are reviewed.

Definition 2.2.2 (Survival copula) The survival copula associated with C(u, v) is defined

as

Ĉ(u, v) = Pr(1− U ≤ u, 1− V ≤ v)

and

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

Note that Ĉ(F̄ (x), Ḡ(y)) = Pr(X > x, Y > y), where F̄ is the survival function of X,

and Ḡ is the survival function of Y. Ĉ is also a copula function.

Any copula is bounded from above and below by the following functions with respect

to the concordance order.; see Theorem 2.2.3 of Nelsen (2006) for detailed reference.

Theorem 2.2.1 (Fréchet-Höffding bounds) Let W (u) = max

{
d∑
j=1

uj − d+ 1, 0

}
and M(u) =

min1≤j≤d{uj}.

(a) For any d-dimensional copula C,

W (u) ≤ C(u) ≤M(u),u ∈ [0, 1]d.
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(b) W is a copula if and only if d = 2.

(c) M is a copula for all d ≥ 2.

W and M are regarded as the widest bounds of copulas. W is the countermonoticity

copula, and M is the comonotonicity copula. They are the fundamental copulas.

Another important fundamental copula is the independent copula. The independence

copula is defined as: Π(u) =
d∏
j=1

uj, u ∈ [0, 1]d.

The following theorem is a building block of the copula theory. It illustrates how the

joint distribution can be represented by copula and marginal distributions, and how the

copula can be defined by the joint distribution and marginal distributions; see Theorem

2.3.3 of Nelsen (2006) for more details.

Theorem 2.2.2 (Sklar’s Theorem) (a) For any distribution function F with margins

F1, ..., Fd, there exists a copula C such that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), x ∈ Rd (2.2.2)

where C is uniquely defined on
d∏
j=1

ran Fj and given by

C(u1, ..., ud) = F (F←1 (u1), ..., F←d (ud)), u ∈
d∏
j=1

ran Fj

where ran Fj = {Fj(x) : x ∈ R} denotes the range of Fj.

(b) Conversely, given any copula C and univariate distribution functions, F defined by

(2.2.2) is a distribution function with margins F1, ..., Fd.

Last but not least, we introduce the structure of an extensively studied family of

Archimedean copulas, which are helpful for modelling portfolio credit risks. We will include
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numerical examples of Archimedean copulas in chapter 4, including Clayton and Gumbel

copulas.

Definition 2.2.3 (Archimedean copula) Archimedean copulas are copulas of the form C(u) =

ψ (ψ−1(u1) + ...+ ψ−1(ud)), where ψ is the Archimedean generator such that:

(a) ψ : [0,∞)→ [0, 1]

(b) ψ is decreasing on [0, inf{t : ψ(t) = 0}]

(c) ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0

For instance, the generator of Clayton copula is ψ(t) = (1+ t)−
1
θ , t ∈ [0,∞), θ ∈ (0,∞).

As θ ↓ 0, C → Π, and for θ ↑ ∞, C → M . On the other hand, the generator function

of Gumbel copula is ψ(t) = exp(−t1/θ), t ∈ [0,∞), θ ∈ [1,∞). For θ = 1, C = Π, and as

θ ↑ ∞, C →M .
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Chapter 3

Tail Dependence

The focus of this chapter is to study the tail properties of survival copulas. We first define

the survival copulas with tail order property through regular variation. Starting from this

definition, the random vector (V1, V2) ∼ Ĉ is showed to be multivariate regular variation

(MRV) at 0. A uniform convergence property is investigated for these copulas, which is

useful in our subsequent studies of extreme risks.

3.1 Tail Order Property of Survival Copulas

We first present the regular variation version of the tail order property for survival copulas.

Assumption 3.1.1 There exists a non-degenerate and continuous tail function τ(v1, v2) 6≡
0 such that for any v1, v2 ≥ 0,

lim
t↓0

Ĉ(v1t, v2t)

Ĉ(t, t)
= τ(v1, v2). (3.1.1)

Note that, since Ĉ(0, v2) = Ĉ(v1, 0) = Ĉ(0, 0) = 0, it is naturally to have τ(0, v2) =

τ(v1, 0) = τ(0, 0) = 0. Thus, (3.1.1) is well defined for any v1, v2 ≥ 0. Many widely
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used copulas, including the extreme value survival copulas and Archimedean survival cop-

ulas with regularly varying generator, satisfy Assumption 3.1.1; more details are given in

Chapter 4.2.

Assumption 3.1.1 indeed assumes that Ĉ(·, ·) is multivariate regularly varying (MRV)

on [0,∞)2. Then there is some κ such that

τ(v1t, v2t) = tκτ(v1, v2).

Here κ is the so-called tail order and takes values in [1, 2]; see e.g. Hua and Joe (2011).

In fact, (3.1.1) can be formulated using the tail order as the follows: there exists a slowly

varying function `(t) (the definition of slowly varying can be found in Section 2.1.2), and

a non-degenerate tail function b(v1, v2) 6≡ 0 such that, for any v1, v2 ≥ 0,

lim
t↓0

Ĉ(v1t, v2t)

tκ`(t)
= b(v1, v2). (3.1.2)

It is obvious that τ(v1, v2) = b(v1, v2)/b(1, 1).

The MRV of Ĉ(·, ·) (i.e. Assumption 3.1.1) should not be confused with the usual

one that is assumed for random variables with regularly varying tails at infinity. Here,

Ĉ(·, ·) has marginals of uniform distributions, which are regularly varying at 0. Thus, it is

important to note that the MRV property for Ĉ(·, ·) is defined on [0,∞)2. The infinity is

excluded due to that the tail events in the study of Ĉ(·, ·) are around (0, 0).

Parallel to the discussion of MRV in Chapter 6 of Resnick (2007), we construct a similar

vague convergence for Ĉ(·, ·) in Proposition 3.1.1. One may refer Resnick (2007) for the

technical terms such as vague convergence and Radon measure. Both Propositions 3.1.1

and 3.2.1 are important properties of copulas satisfying Assumption 3.1.1 and help us to

better understand them.

Proposition 3.1.1 Let V = (V1, V2) be a random vector of uniform distributions. Suppose

V follows the copula Ĉ(·, ·) which satisfies Assumption 3.1.1. Then there exist a function
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b(t)→ 0 and a Radon measure τ on [0,∞)2, such that in B([0,∞)2),

1

t
Pr

(
V

b(t)
∈ ·
)

v→ τ, t→ 0,

where
v→ denotes the vague convergence.

Proof. From Assumption 3.1.1, Ĉ(·, ·) is a multivariate regularly varying function on

[0,∞)2. It implies that Ĉ(t, t) is a regularly varying function of t: there exists some κ > 0

and a slowly varying function `(t) such that when t is close to 0

Ĉ(t, t) = tκ`(t).

Define b(t) such that

lim
t→0

Ĉ(b(t), b(t))

t
= 1.

Thus b(t) ∈ RV1/κ(0). Then replacing t by b(t) in (3.1.1) yields the weak convergence for

v = (v1, v2)T ∈ [0,∞)2

lim
t↓0

1

t
Ĉ(ub(t), vb(t)) = lim

t↓0

1

t
Pr

(
V

b(t)
∈ [0,v]

)
= τ(v1, v2).

Denote the measure 1
n

Pr
(

V
b(n)
∈ ·
)

by τn. Then the above weak convergence is indeed

τn ([0,v])→ τ ([0,v]) , as n→∞.

Similar to the proof of Lemma 6.1 in Resnick (2007), we can show that τn
v→ τ .

3.2 Uniform Convergence of Survival Copulas

Another property for Ĉ(·, ·) is the uniform convergence on a compact set. This has been

shown under the special case that κ = 1 in Schmidt and Stadtmüller (2006). Here we
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extend it to the most general form for all dependence with 1 ≤ κ ≤ 2. This result is useful

for the proofs in Chapter 4.

Proposition 3.2.1 Under Assumption 3.1.1, we have that for any compact set B ∈
[0,∞)2

lim
t↓0

sup
u,v∈B

∣∣∣∣∣Ĉ(ut, vt)

Ĉ(t, t)
− τ(u, v)

∣∣∣∣∣ = 0.

Proof. Fix a compact set B. We prove the proposition by contradiction. Suppose the

assertion in the proposition does not hold. Without loss of generality, there exist some

ε0 > 0 and sequences {tn}, {un} and {vn} such that

Ĉ (untn, vntn)

Ĉ(tn, tn)
− τ(un, vn) > ε0, (3.2.1)

where tn converges to 0 as n→∞. Since the sequences {un} and {vn} are bounded, by the

Bolzano–Weierstrass Theorem there exist convergent subsequences {unk} and {vnk} with

unk → u0, vnk → v0 as nk →∞. We choose 0 < ε < ε0/2 and δ > 0 such that when nk is

large u0− δ < unk < u0 + δ, v0− δ < vnk < v0 + δ (if u0 = 0 or v0 = 0, then we replace the

previous inequality by 0 < unk < δ or 0 < vnk < δ), and

τ(u0 + δ, v0 + δ)− τ(u0 − δ, v0 − δ) < ε.

Note that Ĉ(u, v) and τ(u, v) are both non-decreasing in u and v. By using (3.2.1) together

with the monotonicity of Ĉ and b, we have

ε0 <
Ĉ (unktnk , vnktnk)

Ĉ(tnk , tnk)
− τ(unk , vnk)

≤ Ĉ ((u0 + δ) tnk , (v0 + δ)tnk)

Ĉ(tnk , tnk)
− τ(u0 − δ, v0 − δ)

≤ Ĉ ((u0 + δ) tnk , (v0 + δ)tnk)

Ĉ(tnk , tnk)
− τ(u0 + δ, v0 + δ) + ε.
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Thus,

lim
nk→∞

(
Ĉ ((u0 + δ) tnk , (v0 + δ)tnk)

Ĉ(tnk , tnk)
− τ(u0 + δ, v0 + δ)

)
>
ε0

2
,

which contradicts to Assumption 3.1.1.
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Chapter 4

Joint Expected Shortfall (JES)

In this chapter, the asymptotic expansions for JES are derived by applying MDAs to model

margins. Some examples are presented to illustrate our results. Finally, a generalization

of JES is introduced.

For two positive functions f(·) and g(·), we write f(·) ∼ g(·) if the ratio of left-hand

side (LHS) and right-hand side (RHS) converges to 1; that is, lim f(·)/g(·) = 1.

4.1 Asymptotic Analysis

In this section we focus on the asymptotic analysis of the JES. Besides Assumption 3.1.1

proposed in Chapter 3, we further need to impose some regularity to the limit function

τ(·, ·).

Assumption 4.1.1 Assume there exists β > 0, ξ > 0 and a positive bounded function

h ∈ RV0(0+) such that τ(x, 1) = xβh(x) for 0 ≤ x ≤ ξ.

Assumption 4.1.1 assumes that τ(·, 1) is regularly varying at 0 with index β. Commonly

used copulas satisfy this assumption; details are given in Chapter 4.2. With the bounded
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function h, τ(x, 1) is then bounded by a power function. In the next lemma we show that

the index β helps to construct a uniform bound on the survival copula Ĉ, which parallels

to the Potter’s bound in the univariate case. This plays a key role in the convergence of Ĉ

as can be seen in Lemma 4.1.2.

Lemma 4.1.1 Assume that Ĉ is a survival copula satisfying Assumptions 3.1.1 and 4.1.1.

Then there exist c > 0 and t0 > 0 such that for all t > t0 and x ∈ [0, ξ],

Ĉ (x/t, 1/t)

Ĉ (1/t, 1/t)
≤ cxβ.

Proof. Let

fn(x) =
Ĉ
(
x
n
, 1
n

)
Ĉ
(

1
n
, 1
n

) .
Since fn(0) = 0, it suffices to show that: there exists N > 0 and c > 0 such that for n > N

and all x ∈ (0, ξ], fn(x) ≤ cxβ. Suppose not, then for each c > 0 and every N , there exist

n > N and y > 0 such that fn(y) > cyβ. On the other hand, by Proposition 3.2.1, for any

ε > 0, there is M > 0 such that for n > M and x ∈ [0, ξ], fn(x) ≤ τ(x, 1) + ε. Further

by Assumption 4.1.1 there is c0 > 0 such that fn(x) ≤ c0x
β + ε. Then for each ck > c0,

k = 1, 2, 3, ..., there exist nk > M and yk > 0 such that

cky
β
k < fnk(yk) < c0y

β
k + ε. (4.1.1)

If yk ≥
(

ε
ck−c0

)1/β

, or equivalently, cky
β
k ≥ c0y

β
k + ε, then it contradicts to (4.1.1). If

yk <
(

ε
ck−c0

)1/β

, then as ck increasing, yk converges to 0. That is, for any ε, the only

possible value of y for (4.1.1) to hold for all ck > 0 is 0. This contradicts to that (4.1.1)

holds for some y > 0.

Next we show a key lemma in the proof of the main result. It is constructed for all

three MDAs in a unified way.
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Lemma 4.1.2 Assume that Ĉ is a survival copula satisfying Assumptions 3.1.1 and 4.1.1.

Suppose that a tail quantile function U ∈ ERVγ with γ < 1∧β and auxiliary function a(·).

Then we have as q ↑ 1

lim
t→∞

1

Ĉ (1/t, 1/t)

∫ 1

0

U (t/x)− U(t)

a(t)
dĈ

(
x

t
,
1

t

)
=

∫ 1

0

x−γ − 1

γ
dτ(x, 1).

Proof. By Theorem B.2.18 of de Haan and Ferreira (2006), for ε, δ > 0 there exists t1 > 0

such that for any t > t1 and 0 < x ≤ 1∣∣∣∣U (t/x)− U(t)

a(t)
− x−γ − 1

γ

∣∣∣∣ ≤ εx−γ−δ. (4.1.2)

Then

1

Ĉ (1/t, 1/t)

∫ 1

0

U (t/x)− U(t)

a(t)
dĈ

(
x

t
,
1

t

)
≤
∫ 1

0

(
x−γ − 1

γ
+ εx−γ−δ

)
dĈ (x/t, 1/t)

Ĉ (1/t, 1/t)
.

Note that by Assumption 3.1.1, for any x ≥ 0,

lim
t→∞

Ĉ (x/t, 1/t)

Ĉ (1/t, 1/t)
= τ(x, 1). (4.1.3)

It suffices to analyse if the following holds:

lim
t→∞

∫ 1

0

x−γ−δ
dĈ (x/t, 1/t)

Ĉ (1/t, 1/t)
= 1− lim

t→∞

∫ 1

0

Ĉ (x/t, 1/t)

Ĉ (1/t, 1/t)
dx−γ−δ = 1−

∫ 1

0

τ(x, 1)dx−γ−δ;

that is, the limit and the integral are interchangeable in the second step above.

First note that by Proposition 3.2.1 the convergence in (4.1.3) is uniform for x in any

compact set. Then for any 0 < ξ < 1,

lim
t→∞

∫ 1

ξ

Ĉ (x/t, 1/t)

Ĉ (1/t, 1/t)
dx−γ−δ = lim

t→∞

∫ 1

ξ

τ(x, 1)dx−γ−δ.
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Now for x ∈ [0, ξ], since γ < 1 ∧ β and δ can be chosen so that γ + δ < 1 ∧ β, by Lemma

4.1.1 there exists c > 0 such that∫ ξ

0

Ĉ (x/t, 1/t)

Ĉ (1/t, 1/t)
dx−γ−δ ≤ c

∫ ξ

0

xβdx−γ−δ ≤ c

β − γ − δ
<∞.

Thus, by the dominated convergence theorem,

lim
t→∞

1

Ĉ (1/t, 1/t)

∫ 1

0

x−γ−δdĈ

(
x

t
,
1

t

)
=

∫ 1

0

x−γ−δdτ(x, 1).

Further we have

lim
t→∞

1

Ĉ (1/t, 1/t)

∫ 1

0

U (t/x)− U(t)

a(t)
dĈ

(
x

t
,
1

t

)
≤
∫ 1

0

(
x−γ − 1

γ
+ εx−γ−δ

)
dτ(x, 1).

The other side of the inequality can be constructed similarly. By the arbitrariness of ε and

δ, the desired result follows.

We now present the asymptotic expansions for the JES.

Theorem 4.1.1 Suppose that X follows a distribution function F with a tail quantile

function U ∈ ERVγ with γ < 1∧β and auxiliary function a(·), and Y follows a distribution

function G. Let Ĉ be the survival copula of (X, Y ) satisfying Assumptions 3.1.1 and 4.1.1.

Then we have as q ↑ 1,

(i) Fréchet case (γ > 0):

E[X|X > F←(q), Y > G←(q)] ∼ F←(q)

(
1 +

∫ ∞
1

τ
(
x−1/γ, 1

)
dx

)
;

(ii) Gumbel case (γ = 0): if x̂ =∞, then

E[X|X > F←(q), Y > G←(q)] ∼ F←(q),
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if x̂ <∞, then

x̂− E[X|X > F←(q), Y > G←(q)] ∼ x̂− F←(q);

(iii) Weibull case (γ < 0):

x̂− E[X|X > F←(q), Y > G←(q)] ∼ (x̂− F←(q))

(
1−

∫ 1

0

τ
(
x−1/γ, 1

)
dx

)
.

Proof. Let V and W be two uniformly distributed random variables on [0, 1]. Then,

X
d
= F←(1− V ) = U

(
1
V

)
, and Y

d
= G←(1−W ). By letting t = 1/ (1− q), we have

E[X|X > F←(q), Y > G←(q)] = E
[
U

(
1

V

) ∣∣∣∣V <
1

t
,W <

1

t

]
=

1

Ĉ (1/t, 1/t)

∫ 1/t

0

U

(
1

v

)
dĈ(v, 1/t)

=
1

Ĉ (1/t, 1/t)

∫ 1

0

U

(
t

x

)
dĈ

(
x

t
,
1

t

)
=

a(t)

Ĉ (1/t, 1/t)

∫ 1

0

U (t/x)− U(t)

a(t)
dĈ

(
x

t
,
1

t

)
+ U(t).

(4.1.4)

Next, we consider the three classes separately.

(i) For γ > 0, x̂ = ∞, and the auxiliary function a(t) = γU(t). Note that τ(0, 1) = 0

and U(t) = F←(q). Since x̂ =∞, by Lemma 4.1.2 we have

lim
q→1

E[X|X > F←(q), Y > G←(q)]

F←(q)
= γ

∫ 1

0

x−γ − 1

γ
dτ (x, 1) + 1 = 1+

∫ ∞
1

τ
(
x−1/γ, 1

)
dx.

(ii) For γ = 0, two cases arise. If x̂ < ∞, then a(t) = o(x̂ − U(t)), and E[X|X >

F←(q), Y > F←(q)] and F←(q) converge to x̂. It follows from (4.1.4) and Lemma 4.1.2

that
x̂− E[X|X > F←(q), Y > F←(q)]

x̂− U(t)
= 1− o(x̂− U(t)).
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If x̂ =∞, then a(t) = o(U(t)). From (4.1.4) and Lemma 4.1.2, we obtain

E[X|X > F←(q), Y > F←(q)]

U(t)
= 1 + o(U (t)).

In both cases, the desired results follow.

(iii) For γ < 0, x̂ < ∞ and a(1/(1 − q)) = −γ(x̂ − F←(q)). From (4.1.4) and Lemma

4.1.2, we obtain as t→∞,

lim
q→1

x̂− E[X|X > F←(q), Y > F←(q)]

x̂− F←(q)
= 1+γ

∫ 1

0

x−γ − 1

γ
dτ(x, 1) = 1−

∫ 1

0

τ
(
x−1/γ, 1

)
dx.

4.2 Examples

In this section, we first show that many commonly used copulas do satisfy Assumptions

3.1.1 and 4.1.1. Then with the MDA modelling for the marginal risks, we present the

asymptotic expansions of the JES for these copulas.

Independence survival copula

The independence survival copula is Ĉ(u, v) = uv. Straightforwardly we have

Ĉ(ut, vt)

Ĉ(t, t)
=
utvt

t2
= uv := τ(u, v).

so that Assumption 3.1.1 is satisfied. Also by the definition (3.1.2), the tail order κ is 2,

and `(t) = 1. Next we verify Assumption 4.1.1. Obviously, τ(x, 1) = x for all 0 ≤ x ≤ 1,

which implies β = 1 and h(x) = 1.

By Theorem 4.1.1, for X with a distribution function F and a tail quantile function

U ∈ ERVγ with γ < 1, since the asymptotic expansions of the JES for the Gumbel case

are not as informative as the other two cases, we only show the expansions for the Fréchet

and Weibull cases:
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• Fréchet case (γ > 0):

E[X|X > F←(q), Y > G←(q)] ∼ 1

1− γ
F←(q);

• Weibull case (γ < 0):

x̂− E[X|X > F←(q), Y > G←(q)] ∼ 1

1− γ
(x̂− F←(q)) .

Extreme value survival copula

The extreme value survival copula is given by

Ĉ(u, v) = exp {−A (− log u,− log v)} ,

where A : [0,∞)2 → [0,∞) is convex homogeneous of order 1 and satisfies max {x, y} ≤
A (x, y) ≤ x+ y. Note that for u, v ≥ 0, as t ↓ 0, we have

Ĉ(ut, vt)

Ĉ(t, t)
=

exp (−A (− log ut,− log vt))

exp (A (1, 1) log t)

= exp

(
log t

(
A

(
log u

log t
+ 1,

log v

log t
+ 1

)
− A(1, 1)

))
→ uA1(1,1)vA2(1,1) := τ(u, v).

Thus, Assumption 3.1.1 is satisfied. From (3.1.2), the tail order is κ = A(1, 1) ∈ [1, 2] and

`(t) = 1. Now we check Assumption 4.1.1: for 0 ≤ x ≤ 1, τ(x, 1) = xA1(1,1), which implies

β = A1(1, 1) and h(x) = 1.

By Theorem 4.1.1, for X with a distribution function F and a tail quantile function

U ∈ ERVγ with γ < A1(1, 1) ∧ 1, we have

• Fréchet case (γ > 0):

E[X|X > F←(q), Y > G←(q)] ∼ A1(1, 1)

A1(1, 1)− γ
F←(q);
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• Weibull case (γ < 0):

x̂− E[X|X > F←(q), Y > G←(q)] ∼ A1(1, 1)

A1(1, 1)− γ
(x̂− F←(q)).

IfA is symmetric, then by Euler’s theorem, for homogenous functionA(1, 1) = A1(1, 1)+

A2(1, 1). It implies that A1(1, 1) = A(1, 1)/2. Thus, β = κ/2. In this case, the stronger

dependence (smaller κ) will result in increase of JES.

Archimedean survival copula

Archimedean survival copula is given by

Ĉ(u, v) = ψ
(
ψ−1 (u) + ψ−1 (v)

)
,

where ψ (∞) = 0, ψ (0) = 1, and ψ is 2-times monotone (non-increasing and convex).

Assume that ψ ∈ RV−α, with α > 0. By Proposition B.1.9 of Bingham et al. (1989),

ψ−1 ∈ RV−1/α, we have

Ĉ(ut, vt)

Ĉ(t, t)
=
ψ (ψ−1 (ut) + ψ−1 (vt))

ψ (2ψ−1 (t))
→ 2α

(
u−

1
α + v−

1
α

)−α
:= τ(u, v).

Hence, Assumption 3.1.1 is satisfied. From (3.1.2), note that t = ψ (ψ−1 (t)), we have the

tail order is κ = 1 and `(t) = 1. Now we check Assumption 4.1.1. First note that as x→ 0,

τ(xy, 1)

τ(x, 1)
=

2α
(

(xy)−
1
α + 1

)−α
2α
(
x−

1
α + 1

)−α =

(
(xy)−

1
α + 1

x−
1
α + 1

)−α
→ y.

Thus, τ(·, 1) ∈ RV1(0+), which means β = 1. The slowly varying function for τ(x, 1) is

h(x) =
τ(x, 1)

x
= 2α

(
1 + x

1
α

)−α
≤ 2α

for 0 ≤ x ≤ 1. Thus, τ(x, 1) ≤ 2αx for 0 ≤ x ≤ 1, and Assumption 4.1.1 is satisfied.
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By Theorem 4.1.1, for X with a distribution function F and a tail quantile function

U ∈ ERVγ with γ < 1, we have

• Fréchet case (γ > 0):

E[X|X > F←(q), Y > G←(q)] ∼ F←(q)

(
1 + 2α

∫ ∞
1

(
x

1
αγ + 1

)−α
dx

)
;

• Weibull case (γ < 0):

x̂− E[X|X > F←(q), Y > G←(q)] ∼ (x̂− F←(q))

(
1− 2α

∫ 1

0

(
x

1
αγ + 1

)−α
dx

)
.

4.3 A Generalization

We conclude this chapter by considering a further generalization of JES, i.e.

E[X|X > ζF←(q), Y > G←(q)] (4.3.1)

where ζ is a constant between 0 and 1. This measure provides an additional flexibility that

the given information of X and Y are large but not at the same scale. When ζ approaches

1, then (4.3.1) recovers the original definition of JES. When ζ is close to 0, then it behaves

more like MES. For this reason, we refer (4.3.1) as the general JES.

For simplicity and illustration purpose, we only show the asymptotic expansion of the

general JES for the Fréchet case (γ > 0) in the next theorem.

Theorem 4.3.1 Suppose that X follows a distribution function F with a tail quantile

function U ∈ ERVγ with 0 < γ < 1 ∧ β and auxiliary function a(·), and Y follows a

distribution function G. Let Ĉ be the survival copula of (X, Y ) satisfying Assumptions

3.1.1 and 4.1.1. Then we have for 0 < ζ ≤ 1, as q ↑ 1

E[X|X > ζF←(q), Y > G←(q)] ∼ F←(q)

(
ζ +

1

τ (ζ−1/γ, 1)

∫ ∞
ζ

τ
(
x−1/γ, 1

)
dx

)
. (4.3.2)
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Proof. Follow the same setup as in the proof of Theorem 4.1.1. That is, let V and W be

two uniformly distributed random variables on (0, 1). Then, X
d
= F←(1 − V ) = U

(
1
V

)
,

and Y
d
= G←(1−W ). Letting t = 1

1−q results in

E[X|X > ζF←(q), Y > G←(q)] = E
[
U

(
1

V

)
|V < F̄ (ζF←(1− 1/t)),W <

1

t

]
=

1

Ĉ
(
F̄ (ζF←(1− 1/t)), 1/t

) ∫ F̄ (ζF←(1−1/t))

0

U

(
1

v

)
dĈ(v, 1/t)

=
Ĉ (1/t, 1/t)

Ĉ
(
F̄ (ζF←(1− 1/t)), 1/t

) U(t)

Ĉ (1/t, 1/t)

∫ M

0

U
(
t
x

)
U(t)

1{x≤F̄ (ζF←(1−1/t))t}dĈ

(
x

t
,
1

t

)
≤ Ĉ (1/t, 1/t)

Ĉ
(
F̄ (ζF←(1− 1/t)), 1/t

) U(t)

Ĉ (1/t, 1/t)

∫ M

0

U
(
t
x

)
U(t)

dĈ

(
x

t
,
1

t

)
, (4.3.3)

where the third step is due to that given ζ, there exists M > 0 such that when t is large

enough, F̄ (ζF←(1 − 1/t))t < M . In fact, due to that F̄ ∈ RV−1/γ and F← ∈ RV−γ(1−),

we have for any ε > 0,

F̄ (F←(1− 1/t)(1 + ε)) ≤ 1

t
≤ F̄ (F←(1− 1/t)(1− ε)).

Thus,

lim
t→∞

F̄ (F←(1− 1/t))t = 1,

and

lim
t→∞

F̄ (ζF←(1− 1/t))t = lim
t→∞

F̄ (ζF←(1− 1/t))

F̄ (F←(1− 1/t))
= ζ−1/γ.

Further, by Potter’s bound, for 0 < ζ < 1, there exists M > 0 such that

F̄ (ζF←(1− 1/t))t ≤M.

Also note that

lim
t→∞

Ĉ (1/t, 1/t)

Ĉ
(
F̄ (ζF←(1− 1/t)), 1/t

) =
1

τ(ζ−1/γ, 1)
.
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Using similar arguments as in the proof of Lemma 4.1.2, we know that 1

Ĉ(1/t,1/t)

∫M
0

U( tx)
U(t)

dĈ
(
x
t
, 1
t

)
in (4.3.3) is integrable. Then by the dominated convergence theorem the desired result fol-

lows.
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Chapter 5

Interplay of Dependence and Heavy

Tailedness

It is known that the crude Monte Carlo simulation is very inefficient for the study of rare

events, especially when it comes to the multidimensional case. The asymptotic analysis

in Chapter 4 provides a way to investigate the extreme risks in the 2-dimensional case so

that the effects of dependence and heavy tailedness can be easily explored. In this chapter,

through concrete examples, we discuss how the dependence and heavy tailedness affect the

measure of extreme risks. All the calculations of ES, MES and JES are based on their

asymptotic expansions.

5.1 A Numerical Example of Gumbel Survival Copula

First, we focus on the asymptotic independence structure, that is when 1 < κ ≤ 2. Assume

that X and Y follow a Gumbel survival copula; i.e.

Ĉ(u, v) = exp

{
−
(

(− log u)θ + (− log v)θ
)1/θ

}
,
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where θ ≥ 1. Gumbel copula belongs to the extreme value copula class with a homogeneous

function A(u, v) = (uθ + vθ)
1
θ . One can easily check that the Gumbel survival copula

satisfies Assumption 3.1.1 with τ(u, v) = (uv)21/θ−1
and the tail order κ = 2

1
θ . Moreover,

from Assumption 4.1.1, β = 2
1
θ
−1. Suppose X follows a Pareto distribution for some γ > 0

F (x) = 1−
(

1

x+ 1

)1/γ

, x > 0.

It can be showed that the tail quantile function of X is ERV with index of γ > 0.

In Figure 5.1 we plot the JES of X and Y using the result from Theorem 4.1.1 (i).

When κ = 2, γ is taken to be 0.1, 0.5 and 0.9. When κ = 1.5, due to the constraint

that γ < 1 ∧ β, we choose γ = 0.1 and 0.5. Because the range of values for JES is too

large, we plot the log of JES in Figure 5.1. As expected, under the same dependence

or heavy tailedness, the heavier tailed marginal (bigger γ) or stronger dependence (lower

κ) yields a higher risk. An interesting observation is that the heavy tailedness of X is a

more significant driver of the risk than the dependence. This shows that when an extreme

event is observed in Y , the dependence between X and Y indeed increases the risk of X

to have potentially bigger loss though the level of riskiness is still determined by the heavy

tailedness of X.

5.2 A Numerical Example of Clayton Survival Copula

We next consider the effect of the asymptotic dependence structure on quantifying ex-

treme risks. The Clayton survival copula is a special case of Archimedean copula with the

following generator function

ψ(t) = (1 + t)−α.

In our example we take α = 1. We similarly assume that both X and Y follow a Pareto

distribution with γ = 0.6. In this case, we calculate JES with ζ = 0.3, 0.7 and 1 using

(4.3.2) in Theorem 4.3.1. The results are plotted in Figure 5.2 against the values of q over
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Figure 5.1: From q = 0.95 to q = 0.999, the log of JES is plotted. X and Y are coupled by a

Gumbel survival copula with κ = 1.5 and 2. X is Pareto distributed with γ = 0.1, 0.5 and 0.9.

the range (0.985, 0.999). Recall that for the special case ζ = 0, the general JES reduces

to MES and we similarly plot its values based on the asymptotic expansion obtained from

Proposition 10 of Hua and Joe (2014). To provide more insights for the comparisons, we

also plot ES using the asymptotic expansions derived in Appendix A. Note that for a given

value of q, the general JES is bounded from above when ζ = 1 (i.e. JES) and from below

when ζ = 0 (i.e. MES). Hence as ζ decreases, so is the general JES. This should not

be surprising as one observes that X is not in its far tail as Y , the risk of X should be

smaller. The value of ES lies between MES and JES. MES only uses the information of Y ,

which means it exploits the dependence between X and Y . This further implies that Y is

not able to fully capture the information whether X is in its extreme, unless X and Y are

comonotonic. ES uses the information of X solely; i.e. without considering the dependence.

The fact that ES is larger than MES provides an indication that heavy tailedness plays a
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more dominant role than dependence. Finally, the measure of JES takes a step further by

exploiting the extremes of both X and Y . By doing so JES is larger than ES, highlighting

dependence also contributes to risk. Hence it is of paramount importance to take into

consideration both heavy tailedness and dependence jointly. Overlooking either of these

attributes is undesirable and understates the underlying risk, as in both ES and MES.

Figure 5.2: From q = 0.985 to q = 0.999, E[X|X > ζF←(q), Y > G←(q)] is plotted with ζ = 0.3,

0.7, and 1. Both MES and ES are plotted for comparison. X and Y follow a Pareto distribution

with γ = 0.6 and are coupled by the Clayton survival copula with α = 1.

As noted above, measures such as ES and MES that ignore the joint effect of dependence

and heavy tailedness may underestimate the underlying risk. We explore this issue further.

First we consider the case with asymptotic independence structure. Again we assume X

and Y follow a Gumbel survival copula and X is Pareto distributed. Table 5.1 displays

the ratio of JES and ES for different level of dependence and heavy tailedness. Due to the

restriction of γ < 1 ∧ β, the lower triangle of the table is blank. From the reported ratios,
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we draw the following key observations. First of all, when κ = 2, which is the independence

structure, JES and ES are the same as expected. As long as X is less heavy tail (such as

γ = 0.2), both JES and ES are close to each other, irrespective of the dependence. However,

as the dependence becomes stronger and the tail is heavier, the combined effect has a

greater effect on JES than on ES, as exemplified by the much larger value of JES relative

to ES. More specifically, when there is a much stronger dependence, JES can be more than

5 times larger than the corresponding ES. These observations signify that the joint effect

of dependence and heavy tailedness has a more profound effect on risk. This, in turn, also

unequivocally points out the limitation of ES. By overlooking dependence, especially when

there is systemic risk in the market, the use of ES can dramatically underestimate the

underlying risk.

Tail order κ
Tail index γ

0.9 0.8 0.7 0.6 0.5 0.4 0.2
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.9 1.900 1.267 1.140 1.086 1.056 1.036 1.013
1.8 1.800 1.350 1.200 1.125 1.080 1.029
1.7 3.400 1.700 1.360 1.214 1.133 1.046
1.6 2.400 1.600 1.333 1.200 1.067
1.5 4.500 2.000 1.500 1.286 1.091
1.4 2.800 1.750 1.400 1.120
1.3 5.200 2.167 1.560 1.156
1.2 3.000 1.800 1.200
1.1 5.500 2.200 1.257

Table 5.1: The ratio of JES and ES. X and Y follow a Gumbel survival copula. X is Pareto

distributed.

Next we consider the asymptotic dependence structure by letting X and Y follow a

Clayton survival copula, while still letting X be Pareto distributed. Because the Clayton

survival copula has κ = 1, we apply the tail dependence coefficient λ to further classify the

asymptotic dependence case. That is,

λ = lim
q→1

Pr (X > F→(q)|Y > G←(q)) ;
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see for example McNeil et al. (2015). It is easy to verify that λ = 2−α for the Clayton

survival copula. Table 5.2 provides similar comparison as in Table 5.1 except the depen-

dence of X and Y is measured by the tail dependence coefficient. First note that in one

extreme, when X and Y are highly dependent (such as λ = 0.9), both JES and ES are

found to be close to each other, regardless of the tail heaviness. This is to be expected

since the information provided by the extremes of X and Y overlaps significantly. Second,

in another extreme when X is lighter tailed (such as γ = 0.1), both JES and ES are close

to each other, irrespective of dependence. Third and most importantly, as dependence gets

weaker (but still asymptotically dependent), the heavy tailedness becomes more prominent

in the sense that JES is progressively (much) larger than the corresponding ES with in-

creasing heavy tailedness of X. This phenomenon again signifies the importance of taking

into consideration both heavy tailedness and dependence. ES that only reflects the tail

heaviness of X can severely understate the underlying risk. In our example, the severity

of the understatement relative to JES can be as high as almost 6 times. Finally, recall

that the ratios in Table 5.1 refer to cases with asymptotic independence structure while

the ratios in Table 5.2 are for cases with asymptotic dependence structure. For a given

level of dependence, the ratio of JES to ES in both cases increases with heavy tailedness.

If the heavy tailedness of X is held constant, the dependence has an opposite effect on the

underlying risk. In particular, as dependence gets stronger, the ratio in the former case

(with asymptotic independence structure) increases while the ratio in the latter case (with

asymptotic dependence structure) decreases.

Continue with the same example as Table 5.2, Table 5.3 provides a similar compari-

son except it tabulates the ratio of JES to MES. The observations we made in Table 5.2

similarly apply to Table 5.3 but for MES. For example, MES severely understates the un-

derlying risk under the joint conditions that X is heavy tailedness and weaker dependence

(but still asymptotically dependent) between X and Y . In some cases, the degree of the

understatement is almost 10 times as large. Note also that the ratios in Table 5.3 are

larger than the corresponding ratios in Table 5.2. This is consistent with our observation

in Figure 5.2 that ES lies between MES and JES. By comparing Table 5.2 to Table 5.3,

it leads to the conclusion that between dependence and heavy tailedness, it is relatively
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Tail dependence coefficient λ
Tail index γ

0.9 0.8 0.6 0.4 0.2 0.1
0.1 5.726 3.758 2.111 1.477 1.171 1.074
0.2 3.543 2.695 1.808 1.381 1.145 1.064
0.3 2.641 2.179 1.623 1.314 1.125 1.056
0.4 2.127 1.853 1.486 1.258 1.106 1.049
0.5 1.789 1.621 1.377 1.209 1.089 1.041
0.6 1.546 1.444 1.284 1.164 1.072 1.034
0.7 1.362 1.302 1.202 1.121 1.055 1.026
0.8 1.216 1.185 1.129 1.080 1.038 1.018
0.9 1.098 1.086 1.062 1.040 1.019 1.010

Table 5.2: The ratio of JES and ES. X and Y follow a Clayton survival copula. X is Pareto

distributed.

more important to capture the heavy tailedness. Ideally, one should adopt a risk measure

that takes into consideration both of these effects jointly, as in JES.

Tail dependence coefficient λ
Tail index γ

0.9 0.8 0.6 0.4 0.2 0.1
0.1 9.872 9.565 8.158 5.707 2.981 1.852
0.2 4.911 4.745 4.129 3.155 2.016 1.475
0.3 3.264 3.153 2.793 2.261 1.627 1.305
0.4 2.444 2.364 2.130 1.803 1.411 1.205
0.5 1.955 1.896 1.736 1.525 1.273 1.138
0.6 1.631 1.587 1.478 1.340 1.179 1.091
0.7 1.402 1.371 1.298 1.210 1.110 1.056
0.8 1.232 1.212 1.167 1.117 1.061 1.031
0.9 1.102 1.092 1.071 1.049 1.025 1.013

Table 5.3: The ratio of JES and MES. X and Y follow a Clayton survival copula. X and Y are

Pareto distributed.
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Chapter 6

Conclusion

We study the effects of tail dependence and heavy tailedness through quantifying extreme

risks. The tail dependence is investigated through regularly varying copulas, which is

known as the copulas having tail order property in the literature. Tail orders can better

capture tail independence structures, compared to the tail dependence coefficient. Cop-

ulas with tail order property are characterized through multivariate regular variation. A

uniform convergence property of these copulas are constructed in parallel to that of the

univariate regularly varying function. The JES is proposed to measure the multivariate

extreme risks. Asymptotic analysis of the JES is carried out to help the study of interplay

between tail dependence and heavy tailedness. We find that overall dependence plays an

important role in the measure of extreme risks. In the tail dependent case, the heavy tailed-

ness is a much stronger driving factor than the dependence. Comparing to ES, the JES

takes dependence into accounts to avoid the underestimation of risks. Comparing to MES,

the JES takes more of the heavy tailedness into consideration to avoid the underestimation

of risk, and it can easily evaluate risks under all dependence structures.
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Appendix A

Asymptotic Expansions of ES

Although the asymptotic expansion of ES when X is regularly varying is well known in

the literature, it is usually presented as a special case of some general risk measures. For

completeness, we drive the asymptotic expansions of ES when X belongs to a MDA.

Proposition A.0.1 Suppose that X follows a distribution function F with a tail quantile

function U ∈ ERVγ with γ < 1 and auxiliary function a(·). Then we have as q ↑ 1

(i) Fréchet case (γ > 0):

E[X|X > F←(q)] ∼ 1

1− γ
F←(q);

(ii) Gumbel case (γ = 0): if x̂ =∞, then

E[X|X > F←(q)] ∼ F←(q),

if x̂ <∞, then

x̂− E[X|X > F←(q)] ∼ x̂− F←(q);
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(iii) Weibull case (γ < 0):

x̂− E[X|X > F←(q)] ∼ 1

1− γ
(x̂− F←(q)).

Proof. Note the rewriting

E[X|X > F←(q)] = a(t)

∫ 1

0

U (t/x)− U(t)

a(t)
dx+ U(t).

In view of (4.1.2), since γ < 1, by the dominated convergence theorem, we have

lim
t→∞

∫ 1

0

U (t/x)− U(t)

a(t)
dx =

∫ 1

0

x−γ − 1

γ
dx.

The rest of the proof is similar to that of Theorem 4.1.1.
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Appendix B

Numerical Example of Clayton

Copula

For Clayton survival copula, the generator function is:

ψ(t) = (1 + t)−α ∈ RV −α, α > 0,

and its corresponding copula function is

Ĉ(u, v) = ψ(ψ−1(u) + ψ−1(v)) =
(
u−

1
α + v−

1
α − 1

)−α
.
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The tail function defined on 3.1.2 can be calculated as:

b(u, v) = lim
t↓0

Ĉ(ut, vt)

tl(t)
= lim

t↓0

(
(ut)−

1
α + (vt)−

1
α − 1

)−α
tl(t)

= lim
t↓0

(
(ut)−

1
α + (vt)−

1
α − 1

)−α
(
t−

1
α

)−α
= lim

t↓0

(
(ut)−

1
α + (vt)−

1
α − 1

t−
1
α

)−α
= lim

t↓0

(
(u)−

1
α + (v)−

1
α − t

1
α

)−α
=

(
(u)−

1
α + (v)−

1
α

)−α
.

The equivalent multivariate regular varying function stated on Assumption 3.1.1 is derived

as:

τ(u, v) = lim
t↓0

Ĉ(ut, vt)

Ĉ(t, t)
= lim

t↓0

(
(ut)−

1
α + (vt)−

1
α − 1

)−α
(

(t)−
1
α + (t)−

1
α − 1

)−α
= lim

t↓0

(
(ut)−

1
α + (vt)−

1
α − 1

2(t)−
1
α − 1

)−α

= lim
t↓0

(
(u)−

1
α + (v)−

1
α

2
− 1

2(t)−
1
α − 1

)−α
= 2α

(
(u)−

1
α + (v)−

1
α

)−α
.

B.1 Figure related calculations

Followings are calculations embedded with Figure 5.2.

• Recall the result obtained on 4.3.1. For Clayton survival copula with X in the MDA
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of Frechet, we have the asymptotic result of JES as following.

E[X|X > ζF←(q), Y > G←(q)] ∼ F←(q)

(
ζ +

1

τ (ζ−1/γ, 1)

∫ ∞
ζ

τ
(
x−1/γ, 1

)
dx

)
.

For α = 1, τ(u, v) = 2 ((u)−1 + (v)−1)
−1

, then τ
(
ζ−1/γ, 1

)
= 2

(
ζ1/γ + 1

)−1
, and

τ
(
x−1/γ, 1

)
= 2

(
x1/γ + 1

)−1
.

Hence, the asymptotic result of JES is

F←(q)

(
ζ +

1

2 (ζ1/γ + 1)
−1

∫ ∞
ζ

2
(
x1/γ + 1

)−1
dx

)

= F←(q)

(
ζ +

(
ζ1/γ + 1

) ∫ ∞
ζ

(
x1/γ + 1

)−1
dx

)
. (B.1.1)

• Refer to Proposition 10 of Hua and Joe (2014), we have the asymptotic result of

MES as below.

E[X|Y > F←(q)] ∼ F←(q)

∫ ∞
0

b
(
x−1/γ, 1

)
dx. (B.1.2)

For α = 1, b(u, v) = ((u)−1 + (v)−1)
−1

, then b
(
x−1/γ, 1

)
=
(
x1/γ + 1

)−1
.

Substituting the above terms into B.1.2, we have the asymptotic result of MES as

F←(q)

∫ ∞
0

(
x1/γ + 1

)−1
dx.

By changing q from 0.985 to 0.999 and specifying corresponding γ and ζ, Figure 5.2 is

generated.

B.2 Table related calculations

Followings are calculations related to Table 5.2 and 5.3.
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• The tail dependence coefficient λ of Clayton survival copula is:

λ = limt↓0
Ĉ(t,t)
t

= limt↓0

(
t−

1
α+t−

1
α−1

t−
1
α

)−α
= limt↓0

(
2− t 1

α

)−α
= 2−α.

• While ζ = 1, equation B.1.1 is,

F←(q)

(
1 + 2α

∫ ∞
1

(
x

1
αγ + 1

)−α
dx

)

These elements are sufficient for us to generate results on Table 5.2 and 5.3.
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