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ABSTRACT 
 

Glutamine synthetase (GS) is an essential enzyme required for the conversion of 

ammonium (NH4+) into glutamine. It is commonly classified into GSI, GSII, and GSIII based 

on molecular size, number of subunits, underlying regulation and enzyme structure. GSI is 

further subdivided into GSI-α and GSI-β. The latter form contains a conserved motif 

(NLYDLP) for the adenylation of a tyrosine residue near the active site and insertion of a 

specific 25-amino acid residue domain. Five ORFs were described to have GS activity in the 

genome of Ochrobactrum anthropi ATCC 49188. However, there are no studies regarding 

their functional significance and bioinformatic analysis. Therefore, with thorough 

bioinformatic analysis, I identified and classified these five putative distantly related GSs. 

Moreover, I modified the previously reported conserved motif (NLYDLP) for adenylation of 

tyrosine at the N-terminus of GSI-β to N/D-LYDLP. Using this modified motif as criterion 

as well as insertion of specific 25 amino acids, I identified the chromosome I GS (Oant_2087) 

of O. anthropi as GSI-β. Since those features were absent in the GS from 

pONAT01(Oant_4491) and the two GS of chromosome II (Oant_3936 and Oant_3881), they 

were identified as GSI-α. Chromosome II GS (Oant_4157) is GSII type. Further, my results 

from the bioinformatic analysis strongly indicate that GS on pONAT01 was acquired through 

horizontal gene transfer from either Ensifer adhaerens plasmid or Ensifer adhaerens 

chromosome 1. Interestingly, this transferred enzyme was found to be functional in O. 

anthropi as knocking it out from pONAT01 of O. anthropi resulted in 50% reduction in 

enzyme activity. All these findings will provide an insight the underlying mechanism of 

regulation for the five GSs present in O. anthropi and could serve as the basis for further 

investigation into the molecular functions of these five GSs, and the plasmid based one in 

particular. 
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1. INTRODUCTION 

Nitrogen is an essential element required for biosynthesis of nucleic acids, amino-

sugars and proteins (Reitzer, 1987) and many bacteria meet their nitrogen need though 

assimilation of the preferred nitrogen source, ammonium (NH+4), into organic compounds 

using an enzyme called glutamine synthetase (GS) (Pesole, Gissi, Lanave, & Saccone, 1995). 

Because of its vital role, this enzyme is ubiquitous and well conserved from unicellular 

organisms to mammals (Pesole et al., 1995) and the overall chemical reaction this enzyme 

catalyze is:  

                       Glutamate + NH3 + ATP              Glutamine + ADP + Pi 

 

GS is commonly classified into GSI, GSII, and GSIII based on molecular size, 

number of subunits, underlying regulation and enzyme structure (Brown, Masuchi, Robb, & 

Doolittlel, 1994; Liu et al., 2018). GSI and GSIII typically exist in bacteria and archaea in a 

dodecamer form, consisting of two back-to-back hexameric rings,  while GSII predominantly 

present in eukaryotes with decamer form, which is comprised of two back-to-back 

pentameric rings (Patel, 2015). In terms of size, GSIII is the largest of all followed by GSII 

(Brown, Masuchi, Robb, & Doolittlel, 1994; Liu et al., 2018).   

 GSI-α is mainly found in Gram-positive bacteria and thermophilic bacteria whereas 

GSI-β are found in other bacteria species (Fisher, 1999; Shapiro, Kingdon, & Stadtman, 

1967).  In addition, a conserved motif (NLYDLP) for the adenylation of a tyrosine residue 

near the active site and insertion of a specific 25-amino acid residues motif (residues 146–

170 AA in  E. coli) distinguishes GSI-β from GSI-α form (Brown et al., 1994; Joo et al., 

2018). As a result, they have different regulatory mechanisms to modulate their activity 
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through posttranslational adenylation and feedback inhibition by nitrogenous compounds 

(Goss, Perez-Matos, & Bender, 2001).   

Although GS is one of the most extensively studied enzymes and many have been 

characterized to date (Chen & Silflow, 1996; Deuel, Ginsburg, Yeh, Shelton, & Stadtman, 

1970; Joo et al., 2018; Liu et al., 2018; Lu et al., 2019; Reinecke, Zarka, Leu, & Boussiba, 

2016), it is still of paramount importance to identify more efficient ones. Given that most 

characterized GSs are usually not free for commercial use (Abad, Coffin, & Goldman, 2015), 

finding alternatives which have higher enzyme activities and minimum regulation could be 

useful for synthetic biology applications.     

There are five putative GSs present in the genome of O. anthropi ATCC 49188. 

However, functional properties of these GSs have not been studied. In depth bioinformatic 

analysis for these enzymes is also lacking. Therefore, this thesis project first focused on 

functionally characterizing the GS present on pOANT01 via gene manipulation, growth 

assay and enzyme activity study, followed by a through bioinformatic analysis that enabled 

to identify these potential GSs into their respective forms, evolutionary relationships of these 

GSs and the possible origin of the GS contained in plasmid on pOANT01.  

To date, the putative GSs of O. anthropi have not been identified into GSI-α and GSI-

β. In this study, using predicted 3D structures, biochemical analysis, amino acids alignments 

and conserved motif analysis (i. e N/D-LYDLP), chromosome I GS (Oant_2087) was 

classified as GSI-β whereas the GS from pONAT01(Oant_4491) and the two GS of 

chromosome II (Oant_3936 and Oant_3881) were classified as GSI-α.  Moreover, using 

multiple genome alignment tools and analysis of a 10-kb conserved sequences (containing 

GS plus 8 other flanking genes), Ensifer adhaerens strain Casida A plasmid pCasidaAB was 

found to have common origin for the GS on pOANT01. My bioinformatics analysis strongly 
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suggests that the GS on pOANT01 was acquired by neither gene duplication from its own 

chromosomal GS nor vertical gene transfer but rather by horizontal gene transfer from a 

plasmid. These results will be discussed in detail in this thesis work and, in general, the 

findings from this work will certainly provide an insight for underlying mechanism of 

regulation for the five GSs present in O. anthropi and could serve as the basis for the further 

investigation into the molecular functions of these five GSs, particularly for the plasmid 

based one. 

 

2. LITERATURE REVIEW 

2.1 Bacterial plasmids  
 

Bacterial plasmids can be defined as a class of circular extrachromosomal DNA that exist 

and replicate independently from the chromosomal DNA. They have the ability to be 

transferred between different hosts and mostly contain non-essential genes (Skippington & 

Ragan, 2011). They vary in length from a few to several hundred kilobase pairs and encode 

genes that confer accessory functions such as antibiotic resistance, heavy metal resistance 

and utilization of toxic compounds (Allen et al., 2010; Bruins, Kapil, & Oehme, 2000). These 

features enable bacteria to adapt and survive in various environmental niches (Gyles & 

Boerlin, 2014). Their classification is challenging due to very diverse characteristics. Some 

plasmids are circular in configuration, while others are linear, their copy number varies from 

one to several hundred per cell, and various methods of replication have been identified. 

Understanding their strategies for replication, which affect their copy number, host-range and 

dependence, and response to environmental conditions (Bengtsson-Palme, Kristiansson, & 

Larsson, 2017) could provide insight into the role of plasmids.  
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Bacterial plasmids have modular structures, making it possible to group them into several 

functional genetic modules (Fig. 1). Plasmid replication and its control are usually located in 

a region called the basic replicon. The genes encoding Rep proteins are required for 

replication, and often participate in its control. The plasmid backbone is composed of a set 

of conserved modules, coding for replication, stability and conjugal transfer functions, which 

are crucial for plasmid maintenance and spread (Dziewit et al., 2015). This genetic 

information is not important to determine the host viability, but it plays a crucial role in the 

adaptability of bacteria to diverse environments (Heuer & Smalla, 2012). Studies have 

proven that the most common phenotypic modules present in bacterial plasmids are heavy 

metal resistance genes. Furthermore, metal resistance genes are sometime contained together 

with antibiotic resistance genes on the plasmids, and they are frequently present within 

transposable and integrative mobile elements (Fang et al., 2016). They contain genes that are 

essential for their maintenance and functions, for example the initiation and control of 

replication. Some contain genes that control traits ensuring stable inheritance, such as 

equipartitioning during cell division or conjugal transfer (Carattoli, 2003). Many plasmids 

contain genes that are useful not only to themselves, but also to their host, examples of such 

are genes controlling drug resistance, degradation of organic compounds, and virulence 

factors, including the production of toxins (Couturier, Bex, Bergquist, & Maas, 1988). These 

kinds of genes are often found within transposons, and this has led to a great deal of variation 

and flexibility in the composition of plasmids (Heuer & Smalla, 2012). 

Plasmids containing heavy metal resistance systems are typically related to 

chromosomal-encoded determinants found in other bacteria, this demonstrates the natural 

flow of genes among bacteria (Dziewit et al., 2015). Horizontal gene transfer among bacteria 

promote diversity and adaptability in the host cell, plasmids contribute significantly to this 
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process. Many plasmids are self-transferable replicons, that can be transmitted from one host 

to another, together with other genes embedded within their transposons, that are of great 

importance during selection process. This process is highly valuable to bacteria and, help 

advancing the process of evolution (Aminov, 2011). 

 

Fig 1. Modular genetic organization of two plasmids. The genes are represented in different 
colors according to their functional module. Adapted from Garcillán-Barcia, Alvarado, and 
de la Cruz (2011). 
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2.2 RepABC plasmid family 
 
 

Members of the repABC plasmid family have several properties in common. One of 

the noticeable features is that all elements essential for plasmid partitioning and replication, 

with those responsible for incompatibility, are located in the same operon (Żebracki, Koper, 

Marczak, Skorupska, & Mazur, 2015). The repABC operons sequenced to date share some 

general characteristics. All of them contain at least three protein-encoding genes: repA, repB 

and repC. The first two genes encode proteins involved in plasmid segregation while repC 

encodes protein crucial for replication (Cevallos, Cervantes-Rivera, & Gutiérrez-Ríos, 2008; 

Pinto, Pappas, & Winans, 2012). The genetic organization of the repABC cassette is well 

conserved: repA is upstream of repB, and both precede repC (Fig. 2). The origin of 

replication maps within the repC gene. Despite their apparent structural homogeneity, 

repABC operons have diverse DNA sequences (MacLellan, Zaheer, Sartor, MacLean, & 

Finan, 2006; Żebracki et al., 2015). There are variations based on the presence of peptide-

encoding minigenes, the numbers and class of the regulatory elements involved in operon 

transcription, and the numbers and positions of centromeric parS sequences (Cevallos et al., 

2008). The structural diversity of repABC operons resulting from their complex and 

independent evolution tend to affect the regulation and function of certain replication 

elements.  

The repABC replicons are found in large plasmids of low copy number and 

chromosomes (Cervantes-Rivera, Pedraza-López, Pérez-Segura, & Cevallos, 2011; Ramírez-

Romero et al., 2000). They have been identified in some α‐proteobacteria such as Rhizobium, 

Mesorhizobium, Sinorhizobium, Agrobacterium, Rhodobacter, Ruegeria, Paracoccus, 
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Agrobacterium, Ochrobactrum and Brucella. Some strains of these bacterial genera contain 

multiple repABC replicons indicating that this plasmid family includes several 

incompatibility groups. Native plasmids could be suitable candidates for the construction of 

vectors for genetic manipulations of biotechnologically important bacteria. However, this 

requires insight into the biology and function of plasmids of interest. 

 

 

Fig 2. The diversity of the genetic organization of repABC replicons in different plasmids. 
Adapted from Cevallos et al. (2008). 

 

The replication, partitioning and stable maintenance of these replicons depend on the 

presence of a repABC operon. The repABC replicons contain an operon encoding the initiator 

protein (RepC) and partitioning proteins (RepA and RepB). RepA and RepB encoding genes 

belong to the families of ParA and ParB which are partitioning proteins respectively. RepA 

and RepB play dual roles in plasmid maintenance. In conjunction with parS centromere-like 

sites, they participate in partitioning and in the negative transcriptional regulation of their 



 
 

8 
 

own operons (Pinto et al., 2012; Soberón, Venkova-Canova, Ramı́rez-Romero, Téllez-Sosa, 

& Cevallos, 2004). This is required for efficient maintenance of the low copy DNA replicons 

in a dividing population of cells (Mazur & Koper, 2012). The third protein-encoding gene of 

the operon, repC, is essential for plasmid replication. RepC is an initiator protein, function 

by binding to the origin of replication oriV located within its own coding sequence, close to 

or inside of a large A+T region. The repC gene is the minimal region sufficient for replication 

when inserted into a non-replicating vector (Mazur & Koper, 2012). Mazur, Majewska, 

Stasiak, Wielbo, and Skorupska (2011) reported that the genome of Rhizobium 

leguminosarum bv. Trifolii TA1 (RtTA1) consists of five replicons and that all these RtTA1 

plasmids are equipped with functional repABC genes. 

2.3 Ochrobactrum anthropi  
 

Ochrobactrum spp. belongs to the Brucellaceae and is known to be isolated from 

Leguminosae nodules. Its name is derived from the Greek ochros, meaning pale yellow; this 

is the characteristic color of Ochrobactrum colonies on plates (Cevallos et al., 2008). This 

genus was first described by Holmes in 1988 and 19 species have been identified to date, 

which include O. anthropi, O. intermedium and O. pseudintermedium that have been reported 

in clinical samples (Hagiya, Ohnishi, Maki, Watanabe, & Murase, 2013; Teyssier et al., 

2007). Ochrobactrum anthropi is a non-fastidious, strictly aerobic, motile (with peritrichous 

flagella), oxidase-positive, non-fermenting, gram-negative bacillus with strong urease 

activity. It is a soil bacterium that colonizes a wide variety of habitats and is being 

increasingly recognized as an opportunistic human pathogen (Chain et al., 2011). Potentially 

life-threatening infections, such as endocarditis, are included in the list of reported infections 

caused by O. anthropi (Thoma et al., 2009). This opportunistic pathogen has exhibited 
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resistance to β-lactam antibiotics. In addition, the O. anthropi genome contains four plasmids 

pOAN01, pOAN02, pOAN03 and pOAN04 which are found to be linked to antibiotic 

resistance exhibited by this pathogen (Chain et al., 2011). 

 

2.4 Molecular content of O. anthropi  
 

A classical genome content consists of one or more central chromosome(s) made up 

of housekeeping genes for fundamental metabolic function and plasmid(s) coding for 

secondary features. The primary chromosome possesses dnaA-based replication system and 

controls crucial genes involved in cellular processing such as transcription, translation, DNA 

replication, and energy metabolism (Landeta et al., 2011), whereas the secondary 

chromosomes contain certain vital genes that are absent in the primary chromosome. Most 

of these secondary chromosomes possess duplicates of these genes which contribute towards 

cell survival (Harrison, Lower, Kim, & Young, 2010). The whole genome of O. anthropi has 

been sequenced and deposited in public databases. Chain et al. (2011) reported the draft 

sequenced of O. anthropi ATCC 49188T. The whole genome consists of 4.8 Mb of circular 

chromosomes with repABC origin. The molecular composition is made up of 56% GC 

content, 4,424 protein-coding genes (87% coding), along with 31 pseudogenes and 73 

structural RNAs (rRNA, tRNA, and small RNA) (Chain et al., 2011).  

 

2.5 Functions of plasmids in O. anthropi  
 

RepABC plasmids are commonly found in alpha-proteobacteria species and 

particularly among the order Rhizobiales. In some species the repABC plasmids constitute 

about 35% of the genomic content, containing several incompatibility groups i.e. more than 
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one type of repABC plasmid can be found in the same bacterial species (Castillo-Ramírez, 

Vázquez-Castellanos, González, & Cevallos, 2009). The substantial amounts of plasmids that 

make up the genome of the organism, the conjugative ability of these plasmids, and 

multiplicity of the plasmids serve as a platform for researchers to have an insight into the 

structure and functions of plasmids?. The plasmids are composed of replicons with various 

sizes and diversity in their conjugative systems (Cevallos et al., 2002). The phenotypes of 

the plasmids are wide-ranging and vary from replicon to replicon, and from species to 

species. 

These replicons are defined by the presence of a repABC operon, whereas the replicon 

itself is a large plasmid (ranging in size from roughly 50 kb to 1.35 Mb) (Cevallos et al., 

2008). The repABC operon is highly unusual in that it arranges the replication and 

partitioning functions under the control of a single promoter. RepA and RepB form a 

partitioning cassette with ATPase domain that provides the energy needed for the partitioning 

machinery (Pinto et al., 2012). It has been investigated that RepB is responsible for 

recognition and binding to the centromere-like site on the replicon as well as binding RepA, 

and also acting as an adaptor between the replicon and the partition motor (Yip, Ding, & 

Hynes, 2015). Studies suggested that RepB binds only with low affinity to the centromere-

like site, meanwhile the binding of RepA greatly increases the affinity for this interaction 

(Pappas & Winans, 2003). Research has shown that RepC is the limiting factor in replication 

and it has been found to be the initiator protein (Cervantes-Rivera et al., 2011; Lilly & Camps, 

2015). 

          Chain et al. (2011) reported that the genome of O. anthropi contains four plasmids 

(pOAN01, pOAN02, pOAN03 and pOAN04) and three of these plasmids contain one or 
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more RepABC or replication-partition systems (Chain et al., 2011). They are also found to 

contain genes responsible for stabilization (Pinto et al., 2012). The first three plasmids have 

RepABC and/or RepC including a large number of genes encoding transposases and 

integrases from different families, whereas pOAN04 was found to lack such genes.There is 

a set of complete type IV secretion system that indicates it is self-transmissible, and pOAN02 

is predicted to be mobilizable (coding for antirestriction and mobilization proteins). These 

four plasmids are predicted to contribute to the stability of the organism, as they contain 

several transporters, although metabolic genes are found only in pOAN01, pOAN03, and 

pOAN04 (Chain et al., 2011).  

2.6 Host range of plasmid RepABC 
 

The transfer of plasmids between bacteria confers pathogenically and 

environmentally relevant features that promotes evolution and adaptation essential for their 

survival. Plasmids are usually transmitted by conjugation; this is one of the most effective 

machineries to distribute genetic materials among bacteria. It is important to understand the 

relationship between plasmid traits and host taxonomy in order to comprehend the 

proliferation of plasmids among microbes. Information about the host range of these 

plasmids is critical to effectively use them as genetic tools for microbial engineering 

(Shintani, Sanchez, & Kimbara, 2015). Several plasmids in Alphaproteobacteria carry genes 

encoding RepABC proteins (Cevallos et al., 2008).  

 Bartosik, Baj, and Wlodarczyk (1998) reported the molecular and functional analysis 

of pTAV320, a repABC-type replicon in Paracoccus versutus, previously Thiobacillus 

versutus, which a Gram-negative, facultatively chemolithoautotrophic soil bacterium 
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belonging to the Proteobacteria subclass. P. versutus UW1 harbours a large (107 kb), low-

copy-number, cryptic plasmid, pTAVl (Bednarska et al., 1983), which is stably maintained 

in its bacterial host. The replication system appears to be related to several plasmids 

commonly found in Gram- negative soil bacteria. It was discovered that the putative 

translation products of pTAV320 show a significant and very similar level of homology to 

previously reported RepA, RepB and RepC proteins (Ramirez-Romero et al., 1997; Sarah L. 

Turner & Young, 1995). 

2.7 Incompatibility of RepABC plasmid 
 
 Ramírez-Romero et al. (2000) defined plasmid incompatibility as the inability of two 

different plasmids to reside in the same host cell as independent replicons in the absence of 

selective pressure because of sharing similar replication and/or partition systems. A DNA 

fragment was considered to exhibit incompatibility if its introduction into host cell (i) caused 

the displacement of the symbiotic plasmid or (ii) induced the cointegration of the symbiotic 

plasmid with another cognate plasmid (Ramírez-Romero et al., 2000). Plasmid 

incompatibility is a limiting factor in the acquisition of new plasmids and plays a crucial role 

in modeling bacterial evolution. Perez-Oseguera & Cevallos (2013) indicated that plasmid 

incompatibility is as a result of functional interference between the replication systems and/or 

partitioning mechanism of the plasmids involved. In all repABC loci that have been 

characterized, an apparently untranslated intergenic region between the repB and repC genes 

encodes a strong incompatibility determinant (referred to as inca). Yip et al. (2015) reported 

that repABC operons of the three largest plasmids of VF39SM were found to have strong 

incompatibility determinants in the non-protein coding regions. It was discovered that in the 

repABC operons, the intergenic region between repB and repC was the strongest 
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incompatibility factor. This region for many repABC plasmids encoded a counter-transcribed 

RNA (ctRNA) which regulates RepC abundance, making it to also control the rate of 

initiation of replication. They were able to establish that ctRNA controls replication and 

incompatibility. 

2.8 Toxin-antitoxin of RepABC 

A majority of bacteria contain toxin coding genes which could inhibit cell growth by 

targeting a central molecule in a crucial cellular process such as DNA replication, mRNA 

stability, protein synthesis and several other significant biosynthesis (Yamaguchi, Park, & 

Inouye, 2011). These toxins are co-transcribed and co-translated with their cognate antitoxins 

from an operon called a toxin-antitoxin (TA) operon. 

2.9 Glutamine synthetase (GS)  

Glutamine synthetase (GS) is a ubiquitous enzyme present in all organisms and 

commonly classified into GSI, GSII, and GSIII based on molecular size, number of subunits, 

underlying regulation and enzyme structure (Brown et al., 1994; Liu et al., 2018; Shatters, 

Liu, & Kahn, 1993; Somerville, Shatters, & Kahn, 1989). GSI and GSIII typically exist in 

bacteria and archaea in a dodecamer form (consisting of two back-to-back hexameric rings) 

whereas GSII predominantly present in eukaryotes with decamer form, comprised of two 

back-to-back pentameric rings (Patel, 2015).  

GSI is encoded by the glnA gene and the best characterized among all glutamine 

synthetases (Gill, Pfluegl, & Eisenberg, 2002). Most enteric bacteria including E. coli contain 

one glnA gene and mutants deficient in this gene are glutamine auxotrophs (L J Reitzer et al., 

1987; Wei & Kustu, 1981). GSII is encoded by glnII gene whose protein is smaller than GSI 

(~370 residues average length) and has been less studied than its prokaryotic counterpart, 
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both in functional and structural terms (Gill et al., 2002). Most bacteria in the Rhizobiales 

order possess both GSI and GSII (R L Fuchs & D L Keister, 1980; R. L. Fuchs & D. L. 

Keister, 1980) and a single enzyme encoded by one of these genes was reported to be 

sufficient for glutamine prototrophy in Rhizobium meliloti (Somerville et al., 1989). In 

addition, an R. meliloti double mutant was found to be not a strict glutamine auxotroph as it 

could grow on media supplemented with glutamate and ammonia (Somerville et al., 1989). 

This observation later led to the discovery of GSIII in this bacterium (Shatters et al., 1993).  

GSI is further subdivided into GSI-α and GSI-β (Brown et al., 1994; Joo et al., 2018).  

GSI-α is mainly found in gram-positive bacteria and thermophilic bacteria whereas GSI-β 

are found in other bacteria species (Fisher, 1999; Shapiro et al., 1967). In addition, a 

conserved motif (NLYDLP) for the adenylation of a tyrosine residue near the active site and 

insertion of a specific 25-amino acid residues (i.e. residues 146–170 AA in E. coli) 

distinguishes GSI-β from GSI-α form (Brown et al., 1994; Joo et al., 2018). As a result, they 

have different regulatory mechanisms to modulate their activity through posttranslational 

adenylation and feedback inhibition by nitrogenous compounds (Goss et al., 2001).  

2.10 GS enzymatic assays  
 

GS enzymatic activity has mainly been quantified using either biosynthetic assay or 

transferase assay (Bressler & Ahmed, 1984; Dharmawardene, Haystead, & Stewart, 1973; 

Gawronski & Benson, 2004). In the biosynthetic assay, GS activity is measured 

spectrophotometrically by determining the amount of inorganic phosphate released from its 

physiological substrates. To set up this assay reactions, 1.0 M Imidazole-HC1 buffer (pH 

7.0), 10.0 mM NH4Cl, 60.0 mM ATP (pH 7.0), 1.67 M MgC12. 6H20, 1.0 M Na-glutamate 
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(pH 7.0) and cell-free extract are mixed. The reactions are then initiated by incubating for 30 

min at 25oC and stopped by addition of FeSO4.7H20 solution (0.8 % w/v in 0.015N H2S04). 

Color develops when ammonium molybdate (6.6 % w/v in 7.5 N H2S04) is added and the 

amount of liberated inorganic phosphate is measured by spectrophotometer at 850 nm 

(Bressler & Ahmed, 1984; Dharmawardene et al., 1973; Gawronski & Benson, 2004). To set 

up reactions for transferase assay, 1M Imidazole-HC1 buffer (pH 7.3), 0.1M glutamine, 

0.01M MnCl2, 0.01M ADP (pH 7.3), 1M K-arsenate, 2M Hydroxylamine and cell-free 

extract are added. The reaction is then stopped after 30 min by the addition a mixture of 10 

% FeCl3, 24 % trichloroacetic acid, 6N HCl and 6.5 m1 double-distilled water. Reading for 

this assay is done by measuring absorbance at 540 nm using spectrophotometer(Bressler & 

Ahmed, 1984; Dharmawardene et al., 1973; Gawronski & Benson, 2004). 

2.11 Glutamine synthetases (GSs) in O. anthropi  

 Five GS open reading frames are present in O. anthropi. The ORFs encoding 

enzymes have not been well characterized and identified, particularly the one from the 

plasmid pOANT01. Therefore, in depth functional and bioinformatic study could broaden 

our current understanding of these GSs functions and regulations.  
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3. HYPOTHESES AND OBJECTIVES  

 

3.1 Hypotheses 
 

§ GS present in pOANT01 plays a role in nitrogen assimilation in O. anthropi 

§ The chromosomal GSs and the GS present on plasmid pOANT01 of O. anthropi are 

different in terms of evolution and they are distantly related 

§ The five ORFs predicted to have GS activity in the genome of O. anthropi are classified 

into different GS forms 

 

3.2 Objectives  
 

§ To investigate the function/phenotype of glutamine synthetase, which is present in 

pOANT01.  

§ To identify and classify the five putative GSs present in O. anthropi  

§ To study the evolution of the five putative GSs present in O. anthropi 

§ Identify the possible origin of the GS from plasmid pOANT01 of O. anthropi   
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4. MATERIALS AND METHODS 

4.1 Total DNA extraction 
 

For extraction of total DNA, pellets were harvested in 2 ml tubes from 3 ml overnight 

cultures and resuspended in 200 μl of 0.2 M NaCl. Into these solutions, 20 μl of 0.2M EDTA, 

10 μl of 10% SDS, and 5 μl of 10 mg/ml pronase were added sequentially and the contents 

were then heated up to 70oC for 1 h. After cooling down the solutions briefly, 300 μl of 

chloroform was added into the tubes, vortexed and centrifuged at maximum speed for 10 min 

for phase separation. The aqueous layers were then removed and dispensed into new tubes. 

To precipitate DNA, 450 μl of ice cold 95% ethanol was added, tubes were vortexed and 

centrifuged at maximum speed for 15 min followed by removal of the supernatant. Further 

washing of DNA pellets were done with 1 ml of 70% ethanol. Eventually, after drying the 

DNA pellets for about 10-20 minutes, 50 μl of 2 mM Tris were added to dissolve the pellets.   

4.2 PCR amplification 
 

Standard PCR was performed under the following conditions: 98°C for 10 s, 53°C for 30 

s, and 68°C for 1 min and 35 cycles using Taq DNA polymerase for the amplification of 343 

bp of GS from pONAT01 plasmid. 2 μL genomic DNA was used as the template for PCR 

amplification. 1 μl of GS-FOR and GS-REV primers (10 μM) plus 25 μL of 2X Taq master 

mix from Thermo Scientific/Fisher were added to the template. Then, mixing the PCR 

reaction was done by flicking the tube and spin down the liquid from the sides of the tube 

before running it in a thermocycler machine. 

 

4.3 Agarose gel electrophoresis  
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Agarose gel electrophoresis was used to analyze the size and condition of DNA fragments 

from a variety of processes. Routine agarose gel electrophoresis was carried out using a 0.8-

1% agarose gel in 1X Tris-Acetate-EDTA (TAE) buffer. The running buffer was also 1X 

TAE. The protocol was adapted from Sambrook and Russell (2001).  

4.4 Gel extraction 
 

The desired fragment was cut and placed in an Eppendorf tube containing 4 volumes of 

Binding Buffer II (BBII). The content was incubated at 65ºC for 5 min to melt the gel. After 

mixing the solution by inverting the tube few times, the solution was then loaded on a spin 

column and eluted by centrifuging at 10,000 rpm for 1 min. The flow through was discarded. 

The column was washed twice with 500 μl of Wash Buffer and centrifuge for 1 min at 10,000 

rpm. Finally, the DNA was eluted into a new microcentrifuge tube with 50 μL of Elution 

Buffer and quantified using Nanodrop. 

4.5 Plasmid construction  
 

To construct pK19mobsacB-GS-343 plasmid for disrupting GS by single crossover and 

remove pONAT01, 343 bp GS fragment was amplified using primers (GS-FOR and GS-

REV, Table 1) and digested with HindIII and PstI. The vector, pK19mobsacB, was also 

digested with the same enzymes. Then, the purified insert and vector were placed in a tube 

in 3:1 molar ratio along with 10x ligase buffer, 0.5 μl of T4 DNA ligase, and ddH20. The 

content was flicked to mix, quickly centrifuged to collect the liquid at the bottom of the tube 

and incubated at room temperature for 30 min to allow ligation to occur. 
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   Table 1. Bacterial strains, plasmids, and primers used in this study 

Strain, plasmid, 
or primer 

Relevant characteristic(s) or sequence 

Ochrobacterum 
strain Oa49188   
 
Plasmids 
pK19mobsacB   
pRK600        
 
E. coli 
DH5a       
 
 
Primers: 
GS-SC-FOR-   
GS-SC-REV-                            
KanR_F1 
KanR_R1:                               
pK19mobsacB.FOR   
p15A-888.FOR  
     
888-p15A.REV   
982-p15A.FOR    
982-GmR.REV       
SucB-GmR.FOR                  
GmR-SucB.REV                  
888-SucB.FOR      
SucB-888.REV                    
               
 

WT isolate 
 
 
 
Suicide vector, sacB, mobRK2, oriR6K, Nm-Km   
Mobilizer plasmid for conjugal transfer, Cm Nm-Km 
 
 
F– φ80lacZΔM15 Δ(lacZYA-
argF)U169 recA1 endA1 hsdR17(rK–, mK+) phoA supE44 
λ– thi-1 gyrA96 relA1 
 
CGCGAAGCTTTCCGGCCTGACGGAACTTGCGAC  
CGGCCTGCAGCGAACTGGGAGAGCGTCGCCTTCAG  
ATGATTGAACAAGATGGATTGCACG                          
TCAGAAGAACTCGTCAAGAAGGC                            
GTCTCGATATGAATTACGCCAAGCTTGCATGC          
GTTCTTTCCGCTCCAAGCACTAGTAACAACTTATAT
CG. 
TACTAGTGCTTGGAGCGGAAAGAACCGCAGC 
CCTAGGTATAAAATCGTGCTCTTCACCGAC 
CATGGAGATAAGCGCTGTTCCCCTTTGAAGCGAT 
AGCGTCAGACCCCGGGACTCTGGGGTTCG 
CCCCAGAGTCCCGGGGTCTGACGCTCAGTGGA 
GTTAACAAATAATGACCTCGACCAAGACCA 
TTGGTCGAGGTCATTATTTGTTAACTGTTAATTGTC
CTTGTTC         
 
 

 

4.6 Transformation of bacteria  
 

E. coli (DH5α) cells were made chemically competent and transformation of these cells 

was performed with the ligation reaction mix mentioned in section 4.5 via heat shock method 

following the protocol established by (Sambrook & Russell, 2001). Positive DH5α colonies 

were screened with LB plates containing X-Gal and kanamycin. Afterwards, the plasmid 

(pK19mobsacB-GS-343) was isolated from a positive colony and transformation of this 
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plasmid to O. anthropi was done by electroporation after confirmation with restriction 

enzyme.   

4.7 Growth assay 
 

For the growth assay, wild type and mutant O. anthropi were cultured overnight in LB 

media with selection. The next day, cells were diluted to 0.1OD600 in defined media 

containing the following nitrogen sources: no nitrogen, 1mM glutamate, 1mM glutamine, 

1g/L NH4Cl, and 1g/L NH4Cl plus 1mM glutamate. The defined media was composed of M9 

salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4 and 5 g/L NaCl in the absence of NH4Cl), trace 

elements (2.86 g/L H3Bo3, 1.81 g/L MnCl2.4H2O, 0.222 g/L ZnSo4.7H2O, 0.39 g/L 

Na2MoO4.2H2O, 79 µg/L CuCl2.2H2O and 49.4 µg/L CoSo4.7H2O) and 20 g/L glucose as a 

carbon source. OD600 (cell density) was measured using spectrophotometer up to 48 hours.  

 

4.8 GS biosynthetic enzyme assay  
 

To measure GS activity via biosynthetic method, wild type and mutant cells were 

grown overnight in LB media with selection. In the following day, cultures were diluted to 

0.1 OD600 and further grown in super broth with selection. Cell were then harvested at 0.8 

OD600 by centrifuging at 8000 rpm for 5 min. Before cell lysates preparation, cells were 

washed 3 times with the widely used S30 buffer (10 mM Tris-acetate buffer (pH 8.2), 14 mM 

Magnesium acetate, 60 mM potassium acetate, and 1 mM DTT) following previously 

established protocol (Adachi et al., 2019). Cells were resuspended in S30 having HaltTM 

protease inhibitor cocktail, sonicated, and lysates obtained by centrifuging at 25,000 g for 30 

min at 4oC.  
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GS biosynthetic enzyme reaction was set up as described in (Bressler & Ahmed, 1984), 

which contained the following:  

200 µL Imidazole-HC1 buffer 1.0 M, pH 7.0  

10 µL NH4Cl 10.0 mM  

50 µL ATP 60.0 mM, pH 7.0  

50 µL MgC12. 6H20 1.67 M  

50 µL Na-glutamate 1.0 M, pH 7.0  

100 µL cell-free extract    

460 µL total volume of reaction mixture 

The reactions were allowed to take place by incubating for 30 min at 25oC and stopped 

by addition of 1.8 mL of FeSO4.7H20 solution (0.8 % w/v in 0.015N H2S04). Thereafter, 

samples were vortexed and placed on ice followed by addition of 0.15 mL of the color-

forming reagent ammonium molybdate (6.6 % w/v in 7.5 N H2S04). The samples were 

vortexed vigorously again and placed on ice immediately. Reading then was carried out using 

spectrophotometer at 850 nm. An internal control, which is minus substrates, was included 

in the experiment and values were deducted to obtain the actual activity of GS. This 

enzymatic assay was done in duplicates.  
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4.9 Bioinformatics analysis  
 

To identify the five putative GSs from the genome of Ochrobactrum anthropi ATCC 

49188, I used phmmer (https://www.ebi.ac.uk/Tools/hmmer/search/phmmer). To do so, I 

used the amino acids sequences of the catalytic domain of chromosome I GS (Appendix I). 

Two approaches where utilized to generate the 3D structures of the GSs: 1) built using 

SWISS-MODEL (https://swissmodel.expasy.org/) by using the amino acid sequences of the 

putative GSs and 2) acquired from PDB website after obtaining the PDB identifier number 

for the top hit of the PDB search in NCBI for each putative GS. Then, the result of these two 

methods were compared side by side for visualization. Amino acids alignments of GS were 

performed using seaview (http://pbil.univ-lyon1.fr/software/seaview3 ) (Muscle algorithm) 

and MEGA10 software. Sequence logo for the amino acid alignments were made using 

WebLogo 3(https://weblogo.berkeley.edu/logo.cgi ). NCBI blastn and blastp were utilized to 

analyze nucleotide and amino acids, respectively, and gene tree was constructed with 

Geneious Prime. Criteria for species selection to build the phylogenetic tree were reference 

sequences, top 5 hits from sequence search result and plus additional sequences to increase 

species diversification. Multiple genome alignments were carried out using Mauve platform 

and YASS genomic similarity search tool. 
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5. RESULTS 

5.1 Disruption of glutamine synthetase by single crossover 
 

To disrupt the glutamine synthetase from pONAT01 plasmid of O. anthropi by single 

crossover, I generated the pK19mobsacB-GS-343 plasmid shown in Fig 3A. Transforming 

this plasmid to O. anthropi by electroporation, positive colonies were initially screened on 

LB plates with 100 µg/ml of G418. The success of single crossover in these colonies is then 

further investigated by PCR using different sets of primers as shown in Fig 3A. Using set of 

primers (GS-SC-FOR and GS-SC-REV) outside of recombination site (Fig 3A), genomic 

DNA of wild type and G418 positive strains (mutants) and Phusion polymerase, the 

integration of the whole pK19mobsacB-GS-343 into the targeted recombination site was 

checked via PCR. However, I did not observe the expected 7000 bp band in the mutants (Fig. 

3B). Although Phusion polymerase can amplify up to 20 kb, I thought amplifying a shorter 

fragment using forward primer from the vector (pK19_FOR) and a reverse primer (GS-SC-

REV) from pONAT01 could be a better strategy to confirm the success of the single 

crossover. With this set of primers, a 1000 bp band was expected. As shown in Fig 3C, a 

band of this size was detected in both wild type and mutants. The presence of this band in 

the wild type was confusing. Because I thought this could happen from unspecific binding of 

the primers to other sites, I blasted the primer sequences in O. anthropi genome. The blast 

result showed there are high similar sequences for both primers in plasmid pONAT02 and 

chromosome I and that could be the reason why the same size band was observed in all 

samples.  

An alternative strategy to verify the integration of the pK19mobsacB-GS-343 into 

pONAT01 is to amplify the gene coding kanamycin resistance by PCR. For this purpose, I 



 
 

24 
 

performed PCR with forward primer (KanR_For) and reverse primer (KanR_Rev), which are 

highlighted in green boxes in Fig 3A. Unfortunately, KanR gene was detected in both wild 

type and mutants (Fig 3C). This observation made my effort to confirm the incorporation of 

pK19mobsacB-GS-343 into pONAT01 by single crossover more complicated.  

In general, my attempt to confirm the success of single crossover by PCR was not 

conclusive for the reasons discussed above. Given that wild type and mutants displayed 

different band patterns (Fig 3B and C) and only the mutants were resistant to 100 µg/ml of 

G418, the result somehow indicate that the single crossover could occur in the mutants. To 

gain more insight regarding the success of the single crossover as well as studying the effect 

of the disruption on GS function, I performed growth assay under limited nitrogen condition.  

 

5.2 Functional analysis of the loss of glutamine synthetase  

5.2.1 Growth assay  

Glutamine synthetase is important for the synthesis of glutamine and assimilation of 

nitrogen and disruption of the gene encoding this enzyme from pONAT01 of O. anthropi 

may cause dependence on exogenous supply of nitrogen. If the gene is disrupted, then the 

mutant could display a difference in phenotype. However, conformation for disruption of GS 

by PCR was not convincing enough as discussed in the previous section and I thought 

functional assay such as growth assay under limited nitrogen condition could shed insight on 

the difference between wild type and G418 resistant mutant. Therefore, I performed growth 

assay using minimum media under five conditions (i.e. no nitrogen, glutamate, glutamine, 

NH4CL and NH4CL plus glutamate).  
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Fig 3. Disruption of glutamine synthetase (GS) by single crossover. A) Map of the plasmid 
used to disrupt GS and confirmation strategies for single crossover success. Primers 
highlighted in red boxes were used to validate the integration of pK19mobsacB into 
pONAT01. Primers highlighted in green boxes used to check the presence of kanamycin 
cassette. B) Confirmation of single crossover by PCR. C) Confirmation of single crossover 
and kanamycin by PCR. MU is mutant developed while WT represents wild type strain. 

 

As expected, the lowest growth for both wild type and mutant was under no nitrogen 

sources in 48 hours of cultivation (Fig 4). Supplementation of NH4Cl plus glutamate resulted 

in the highest growth regardless of the strain type followed by NH4Cl. Under these two 

conditions (NH4Cl and NH4Cl plus glutamate), the mutant grew at much higher rate 

compared to the wild type. This observation contradicts with my hypothesis. I expected that 

the disruption of the GS from pONAT01could result in the reduction of growth rate. The 
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possible explanation for this unexpected growth rate of the mutant on all nitrogen sources 

tested could be the activation of the other glutamine synthetase present in the chromosome I.  

All in all, the result from the growth assay suggested that the single crossover could 

occur as the wild type and mutant growth rates were highly variable and a biosynthetic 

enzyme assay was done to further obtain supporting data on functional differences between 

the wild type and G418 resistant mutant.   

 

 

Fig 4. The effect of GS loss on the growth of O. anthropi under limited nitrogen sources. 
Cultures were diluted to 0.1OD600 from overnight cultures grown on LB plus selection and 
further cultivated in minimum media having the indicated nitrogen sources. The experiment 
was done in duplicates and error bars represent standard deviation.  
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5.2.2 GS biosynthetic enzyme assay  

Using cell lysate from mutants generated by single crossover, I conducted an 

enzymatic assay for GS via biosynthetic method as described in (Bressler & Ahmed, 1984). 

Lysates from both wild type and mutant were prepared with the commonly used S30 buffer. 

This assay enables to determine the activity of GS indirectly based on the released phosphate 

from the reaction. If the GS in pONAT01 is knocked out, then lower activity of GS is 

expected.  Fig 5 shows that 50% reduction in GS activity in the mutant occurred compared 

to the activity of the wild type.  

 

Fig 5. GS biosynthetic enzyme assay. Normalized OD850 of mutant (MU) and wild type (WT) 
compared in this assay in duplicates. Error bars indicate standard deviations. To normalize 
the data, the formula: X normalized = (X-X min) / (X max-X min) was used. After normalization of 
the data, the corresponding internal controls were subtracted.  
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5.3 Bioinformatic analysis of glutamine synthetases of O. anthropi  
 

5.3.1 Identification and characterization of glutamine synthetases of O. anthropi 

There are five ORFs described in the reference sequence of Ochrobactrum anthropi 

ATCC 49188 that are predicted to have GS activity. Thus, to identify them and undertake 

comprehensive bioinformatic analysis of GSs present in this strain, I performed a search via 

phmmer using the amino acid sequence of the catalytic domain (Gln_synth_cat_dom) of the 

GS present in chromosome I (Appendix I).  As shown in Table 2, the search resulted in 5 

potential GSs having similar catalytic domains as the chromosome I GS catalytic domain. To 

further validate if the 5 putative enzymes are actually GS, I performed in-depth assessment 

on them in terms of GS signature domains, which were acquired from InterPro. As presented 

in Table 3, all of them contains the catalytic domain (Gln_synth_cat_dom), the N-terminal 

domain (Gln_synt_b-grasp), and Gln_synth_gly_rich_site domain, which are a characteristic 

features of  GS.  

Moreover, I utilized criteria such as predicted structures (structure and number of 

subunits), number of amino acid residues, insertion of 25 amino acids (in case of GSI-β) and 

the presence of adenylation site to identify and classify these potential GSs.  

Structurally, GS exist in either a dodecamer or decamer forms where  GSI and GSIII 

typically exist in bacteria and archaea in a dodecamer form (Patel, 2015). Therefore, I opted 

to build the structures of these putative GS presented in Table 2 using SWISS-MODEL 

(https://swissmodel.expasy.org/) to determine if they possess such structures (Fig 6). I also 

compared the structures build by SWISS-MODEL to the top structures obtained from PDB 

search to see if the two methods match (Fig 6). Based on these structural analyses, all the 
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putative GS except GS (Oant_4157) appeared to be type GSI or GSIII as they retained 

dodecamer structures as shown in Fig 6.  GS (Oant_4157) possesses a predicted decamer 

structure (Fig 6), which is a common feature of GSII that is found mostly in eukaryotes (Patel, 

2015). Taking number of amino acids into account, I classified all the GS except GS 

(Oant_4157) as GSI (Table 3). GSIII is larger in size and contains over 700 amino acid 

residues as a result they cannot be classified to GSIII. GS (Oant_4157) possesses 352 amino 

acids and was classified as GSII (Fig 6).  

Table 2. Putative glutamine synthetases in Ochrobactrum anthropi ATCC 49188 as 
identified using phmmer. 
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Fig 6. Structures of putative glutamine synthetases of Ochrobactrum anthropi ATCC 49188. 
The structures in the upper panel were built using SWISS-MODEL and structures in the 
lower panel were obtained from PDB website. The PDB identifiers in the lower panel indicate 
the top hits in the PDB search for the corresponding putative GSs in the upper panel.    

 

Table 3. Analyses and identification of the putative GS types present in Ochrobactrum 
anthropi ATCC 49188. 
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With the paraments described above, I could classify ORF Oant_2087, Oant_4491, 

Oant_3936 and Oant_3881 were classified as GSI. GSI is further subdivided into GSI-α and 

GSI-β (Brown et al., 1994; Joo et al., 2018). This division is based on a conserved motif 

(NLYDLP) for the adenylation of a tyrosine residue near the active site and insertion of a 

specific 25-amino acid residues (i.e.  residues 146–170 AA in E. coli) (Brown et al., 1994; 

Joo et al., 2018). GSI-β have these distinguishing futures while GSI-α lacks them.  However, 

such classification for the GSs of O. anthropi is lacking.  

Before classifying the four putative GSs as GSI-α and GSI-β forms, first, I chose to 

implement such criteria to study chromosome I GS. To do so, I did an amino acids alignment 

for the top 20 hits (Appendix 2) from blastp search using the amino acid sequences of 

chromosome I GS (Oant_2087). Using this alignment, I generated amino acid sequence logo 

(Fig 7). This logo indeed indicated the insertion of a specific 25-amino acid residues in the 

chromosome I GS amino acids (Fig 7A). However, half of the GSs used in the alignment 

contained the conserved motif (NLYDLP) for the adenylation of a tyrosine residue near the 

active site (Fig 7B). The rest half contained DLYDLP motif (Fig 7B), suggesting that the 

motif for adenylation of tyrosine could be modified to D/NLYDLP.   

The conserved motif analyses I performed using InterPro indicate that only 

chromosome I GS (Oant_2087) contain the motif for tyrosine adenylation 

(Gln_synth_I_adenylation_site).  I further confirmed this by looking into the alignment of 

amino acids sequences of the four putative GSI (Appendix 3). The insertion of the specific 

25-amino acid residues occurred only in the chromosome I GS. Therefore, based on these 

observations, I classified the GSs with locus number Oant_4491, Oant_3936 and Oant_3881 

as GSI-α while Oant_2087 as GSI-β (Table 3).  
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Fig 7. Motif logo. Logo of the amino acid sequences alignment for the top 20 hits obtained 
from blastp search using chromosome I GS. Regions containing the 25 AA insertion and the 
Adenylation motif are shown. 

 

5.3.2 Evolution of glutamine synthetases of O. anthropi 

To investigate the evolutionary relationship of the five putative GSs of O. anthropi 

ATCC 49188, I constructed a gene tree using Geneious Prime. Top five hits with > 70% GS 

amino acid identity were included from blastp search results for each putative GS. As shown 

in the gene tree (Fig 8), each putative GS were found in a separate clade. Chromosomal GS 

of Ensifer adhaerens OV14 and the GS from O. anthropi ATCC 49188 plasmid 1 

(Oant_4491) appeared in the same clade in the gene tree. The tree also indicated that the GSII 

present in chromosome II (Oant_4157) and the GS from plasmid 1 (Oant_4491) diverged 

from recent common ancestor, which was supported by high boot strap value (Fig 8).  

Chromosome II GS (Oant_3936) was found to be the least evolved compared to the other 

four GSs.  
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Fig 8. Evolutionary relationship of five putative GSs of O. anthropi ATCC 49188. For 
selecting sequences to build this tree, top protein identity of the species and diversity were 
considered. The complete amino acid sequences of all the 30 GSs are presented in Appendix 
3.   
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5.3.3 Origin of the glutamine synthetase present in plasmid (pOANT01) of O. 

anthropi 

The chromosomal GS of O. anthropi is the one which has been evolved with the strain 

and vertically inherited whereas the one in plasmid pOANT01 could be acquired via 

horizontal gene transfer at some point. To address this question, I blasted the amino acid 

sequence of the GS from pOANT01 across the genus Ochrobactrum. As shown in Table 4, 

the majority of the bacteria in this genus have distantly related GS with protein identity <55% 

except the GS from O. rhizosphaerae, O. haematopilum. O. sp P6B-III and O. lupini where 

the protein identities were 89.62%, 79.37%, 78.92% and 79.37%, respectively.  
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Table 4. Protein identity of GS from O. anthropi plasmid pOANT01 to the GSs across the 
genus Ochrobactrum. 

 

In addition, the phylogenetic tree in Fig 8 elucidated that the GS from plasmid 

pOANT01 has more resemblance to GSs outside of the Ochrobactrum genus. This result 

somehow indicated that the GS on pOANT01 could be acquired through horizontal gene 

transfer. To further validate this observation and identify where it was transferred from, I 

performed nucleotide alignments of the whole plasmid pOANT01 with whole genome of the 

species ( mainly in Rhizobiales order) that were shown to have high GS homology (>80% 

protein identity). The species tested for this purpose includes: Rhizobium freirei, Shinella 

zoogloeoides, Ensifer adhaerens strain Casida A, Ensifer adhaerens strain OV14, 

Sinorhizobium saheli and Ensifer alkalisoli. The alignments were performed using both 

Mauve multiple genome alignment software and YASS a web-based genomic similarity 

search tool. From all genome alignments I carried out, only O. anthropi plasmid pOANT01, 
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Ensifer adhaerens strain Casida A plasmid pCasidaAB and Ensifer adhaerens strain OV14 

chromosome I possess a unique 10-Kb fragment (the green boxes) as shown in Fig 9.  

 

 

Fig 9. Multiple sequence alignment. Nucleotides alignment of pOANTO1 of O. anthropi 
with pCasidaAB of E. adhaerens strain Casida A and chromosome 1 of E. adhaerens OV14 
was performed with Mauve multiple genome alignment tool. The green boxes are sequences 
shared among the GS sources. 
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Table 5. Comparison of pOANT01 and potential GS sources 

 

To confirm if GS open reading frame (ORF) is contained in the 10-kb fragment from 

O. anthropi plasmid pOANT01, Ensifer adhaerens strain Casida A plasmid pCasidaAB and 

Ensifer adhaerens strain OV14 chromosome 1, I blasted the nucleotides of each fragments. 

Interestingly, all these fragments have the GS ORF (Fig 10). Locus tags: Oant_4491, 

FA04_30675 and OV14_0164, highlighted with red boxes in Fig 10, are for GS from O. 

anthropi plasmid pOANT01, Ensifer adhaerens strain Casida A plasmid pCasidaAB and 

Ensifer adhaerens strain OV14 chromosome 1, respectively. Also, as presented in Table 5, 

the GS from pOANT01 shares 86.91% (99% query coverage) and 87.57% (99% query 

coverage) homology with the GS from pCasidaAB and Ensifer adhaerens strain OV14 

chromosome 1, respectively. Both pOANT01 (170,351 bp) and pCasidaAB (1,459,374 bp) 

contain RepC replication origins while this origin is absent in Ensifer adhaerens strain OV14 

chromosome 1, which is of 3,956,045 bp in size (Table 5).  
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Fig 10. GS and genes flanking GS in the identified 10kb DNA fragments from O. anthropi 
plasmid pOANT01, Ensifer adhaerens strain Casida A plasmid pCasidaAB and Ensifer 
adhaerens strain OV14 chromosome 1. 
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 The previous bioinformatic analysis indicated that the GSs in O. anthropi are 

distantly related (Fig 8) and the GS from O. anthropi plasmid pOANT01 has not been 

vertically inherited across Ochrobactrum (Table 4). The GS in the 10-kb conserved 

fragments from O. anthropi plasmid pOANT01, Ensifer adhaerens strain Casida A plasmid 

pCasidaAB and Ensifer adhaerens strain OV14 chromosome I share high protein identity 

(>87%) (Table 4). All these observations led me to do more in-depth study on the content of 

the 10-kb conserved fragments to gain insight regarding the possible origin of the GS on O. 

anthropi plasmid pOANT01. As summarized in Table 5, the conserved 10-kb fragment from 

O. anthropi plasmid pOANT01 contains the following 9 genes in order: inner-membrane 

translocator (Oant_4485, 295 AA), ABC transporter (Oant_4486, 260 AA), extracellular 

ligand-binding receptor (Oant_4487, 384 AA), ABC transporter (Oant_4488, 624 AA), RpIR 

family transcriptional regulator (Oant_4489, 293 AA), isocorismataase (Oant_4490, 220 

AA), glutamine synthetase (Oant_4491, 444 AA), N-formylglutamate amidohydrolase 

(Oant_4492, 272 AA) and aminotransferase (Oant_4493, 436 AA). These 9 genes are 

conserved in the same order in the 10-kb fragments from Ensifer adhaerens strain Casida A 

plasmid pCasidaAB and Ensifer adhaerens strain OV14 chromosome 1 (Table 5). Although 

there is a GS in chromosome 1 of each of strain considered in the analysis, this 10-kb 

fragment with the 9 genes is only found in O. anthropi plasmid pOANT01, Ensifer adhaerens 

strain Casida A plasmid pCasidaAB and Ensifer adhaerens strain OV14 chromosome I. The 

fragment was also not observed in all bacteria from Rhizobiales order that have GS with high 

protein identity to the GS on pOANT01 (Fig 8).  
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Table 6. Summary of proteins flanking GS in the identified 10kb DNA fragments from O. 
anthropi plasmid pOANT01, Ensifer adhaerens strain Casida A plasmid pCasidaAB and 
Ensifer adhaerens strain OV14 chromosome I. 
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6. DISCUSSION 

Well conserved from unicellular organisms to mammals, GS is an enzyme involved 

in condensation of glutamate and ammonia to produce the essential amino acid, glutamine 

(Pesole et al., 1995). This ubiquitous enzyme is commonly classified into GSI, GSII, and 

GSIII based on molecular size, number of subunits, underlying regulation and enzyme 

structure (Brown et al., 1994; Liu et al., 2018). Although there are five ORFs described to 

have possible GS activity in O. anthropi ATCC 49188 genome, functional characterization 

and bioinformatic analysis have been lacking for all them. Therefore, here in this section, I 

discuss my bioinformatics analysis and experimental results.   

Based on structures built using SWISS-MODEL and from predicted structures of top 

PDB hits for each putative GSs, all the putative GS except GS (Oant_4157) displayed 

dodecamer structures and can be categorised as type GSI or GSIII (Fig 6). Exceptionally, 

both methods generated a GS with hexamer structure for the plasmid 1 GS (Oant_4491), 

missing the other biological hexamer to give it the complete dodecamer form. GS 

(Oant_4157) possesses a decamer structure (Fig 6), which is a common feature of GSII that 

is found mostly in eukaryotes (Patel, 2015). As a result, I classified it as GSII. Taking number 

of amino acids into account, I classified all the GS except GS (Oant_4157) as GSI (Table 3). 

Because GSIII is larger in size and contains over 700 amino acid residues, all the putative 

GSs cannot fall into this type.   

GSI is further subdivided into GSI-α and GSI-β (Brown et al., 1994; Joo et al., 2018).  

GSI-α is mainly found in gram-positive bacteria and thermophilic bacteria whereas GSI-β is 

found in other bacteria species (Fisher, 1999; Shapiro et al., 1967). One of the main 

biochemical features that distinguish these two forms is the presence of a conserved motif 
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(NLYDLP) for the adenylation of a tyrosine residue near the active site GS (Brown et al., 

1994; Joo et al., 2018). This motif exhibited only by GSI-β form. Given that the amino acids 

aspartate (D) and asparagine (N) have similar structures, the DLYDLP motif could 

alternatively serve as a site for adenylation of a tyrosine residue near the active site of GSI 

depending on the species. I further verified this observation through in-depth amino acid 

sequences analysis presented with sequence logo (Fig 7) developed using 20 GS top hit 

sequences for chromosome I GS (Appendix 2). According to the sequence log (Fig 7), 50% 

of the GSs had NLYDLP motif while the rest had DLYDLP motif, indicating that species 

can use these motifs for adenylation of tyrosine alternatively. Therefore, although it is 

required to validate this finding experimentally, the motif can be expanded to accommodate 

both aspartate (D) and asparagine (N) alternatively and modified as N/D-LYDLP. Based on 

this modified motif, the chromosome I GS (Oant_2087) of O. anthropi can be classified as 

GSI-β whereas the GS from pOANT01 (Oant_4491) and the other GSI from chromosome II 

(Oant_3936 and Oant_3881) as GSI-α because this motif is missing from them (Appendix 

3). The insertion of the specific 25-amino acid residues was observed only in chromosome I 

GS (Fig 7A and appendix 3). This further confirm that only chromosome I GS is GSI-β. In 

general, my bioinformatic analysis highly suggest that only the chromosome I GS 

(Oant_2087) can be regulated though adenylation of a tyrosine residue.  

As an essential enzyme, the chromosomal GSs could provide an essential function to 

O. anthropi.  Most likely, they have evolved with the strain and vertically inherited. Despite 

this, the origin of the GS in plasmid pOANT0 (Oant_4491) has not been known. Possibly, it 

could be a result of gene duplication or was acquired via horizontal gene transfer from other 

species at some point. If this GS were encoded by duplicate genes, it would share high protein 
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identify with one of the putative GSs of O. anthropi unless they diverged independently to 

their current form through evolution. As a result, it should fall in the same clade with one of 

the putative GSs in the gene tree (Fig 8). Rather, this GS has high protein similarity with the 

GS of Rhizobium freirei, Shinella zoogloeoides, Ensifer adhaerens OV14 and Sinorhizobium 

Saheli (Fig 8). This result affirmed that the GS in plasmid pOANT0 (Oant_4491) was not a 

result of gene duplication. Moreover, majority of the bacteria in Ochrobactrum genus have 

distantly related GS compared to the GS in pOANT01 of O. anthropi (Table 4). The highest 

matching GS are from O. rhizosphaerae, O. haematopilum. O. sp P6B-III and O. lupini where 

the resemblance accounted 89.62%, 79.37%, 78.92% and 79.37%, respectively. The rest of 

the species have GSs with protein identity <55% GS (Table 4), implying that the GS on 

pOANT01 could be acquired through horizontal gene transfer from outside Ochrobactrum 

genus. 

To elucidate if the GS in pOANT01 of O. anthropi was acquired via horizontal gene 

transfer and identify its potential origin, I performed multiple genome alignments and 

sequence analyses.  According to the result from the phylogeny analysis in Fig 8, the top 

matches to the GS in pOANT01 of O. anthropi are from Rhizobiales order. With >80% 

protein identity, the species considered for the genome alignments includes:Rhizobium 

freirei, Shinella zoogloeoides, Ensifer adhaerens strain Casida A, Ensifer adhaerens strain 

OV14, Sinorhizobium saheli and Ensifer alkalisoli. Surprisingly, from all genome alignments 

I carried out, only O. anthropi plasmid pOANT01, Ensifer adhaerens strain Casida A 

plasmid pCasidaAB and Ensifer adhaerens strain OV14 chromosome 1 possess a unique 10-

kb fragment (the green boxes) as shown in Fig 9. This fragment contained GS open reading 

frame (ORF) with locus tags: Oant_4491(O. anthropi plasmid pOANT01), FA04_30675 
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(Ensifer adhaerens strain Casida A plasmid pCasidaAB) and OV14_0164 (Ensifer adhaerens 

strain OV14 chromosome 1) (Fig 9). In addition, as presented in Table 5, the GS from 

pOANT01 shares 86.91% (99% query coverage) and 87.57% (99% query coverage) 

homology with the GS from pCasidaAB and Ensifer adhaerens strain OV14 chromosome 1, 

respectively. These observations strongly suggest the GS on pOANT01 of O. anthropi could 

be acquired by horizontal gene transfer from either Ensifer adhaerens strain Casida A 

plasmid pCasidaAB or Ensifer adhaerens strain OV14 chromosome 1. With further sequence 

analysis, the10-kb fragment was found to contain 9 genes, which are conserved in the same 

order in Ensifer adhaerens strain Casida A plasmid pCasidaAB and Ensifer adhaerens strain 

OV14 chromosome 1 (Table 6). Three of these genes which are in proximity: glutamine 

synthetase (Oant_4491, 444 AA), N-formylglutamate amidohydrolase (Oant_4492, 272 AA) 

and aminotransferase (Oant_4493, 436 AA) are involved in ammonium assimilation 

pathway. The fact that this fragment with its unique gene content did not exist in the other 

bacteria from Rhizobiales order except on Ensifer adhaerens strain Casida A plasmid 

pCasidaAB and Ensifer adhaerens strain OV14 chromosome 1 further strengthen the concept 

that the GS on pOANT01 of O. anthropi could be acquired from those sources through 

horizontal gene transfer. With this fragment transfer, O. anthropi might have gained added 

capabilities in terms of nitrogen assimilation as the transferred GS could have different 

regulation and activity level.  

Horizontal gene transfer can cause abrupt alterations in the structure and organization 

of genomes of bacteria to generate variants of bacterial strains with new capabilities (Dutta 

& Pan, 2002). However, in some cases, the transferred gene can be non-functional in the 

recipient bacteria (Dutta & Pan, 2002). Therefore, it is important to know if the GS on 
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pOANT01 is functional in O. anthropi. As shown in Fig 5, knocking out the GS from 

pONAT01 resulted in 50% reduction in GS activity compared to the activity of the wild type, 

indicating that the transferred GS is functional in O. anthropi. The mutant contained the GS 

encoded from the chromosome 1 and the activity of the two GSs were not assessed separately. 

As their activities can vary, I recommend further investigation to figure out the contribution 

of each of the GS toward nitrogen assimilation in O. anthropi. The nature of their underlying 

mechanism of regulation can have a role towards their activity. The chromosomal GS is GSI-

β type as it contains the motif (DLYDLP) for adenylation of tyrosine. The function of this 

type of GS is modulated through posttranslational adenylation of tyrosine present in this 

motif by the adenylyltransferase enzyme (is to transfer adenyly group to tyrosine to 

deactivate GS when there is too much Glutamine in the cell). (ATase), which is encoded by 

glnE from the same operon (Schulz, Collett, & Reid, 2001). The GS on pONAT01 of O. 

anthropi is GSI-α type and does not have the motif, as a result, GlnE does not regulate it 

(Garner, Fulkerson, & Mobley, 1998). This difference in regulation can cause variation 

between the five putative GSs of O. anthropi.  
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7. CONCLUSION 

With thorough bioinformatic analysis, I identified and classified five putative GSs from 

the genome of O. anthropi, which were found to be distantly related. Also, I modified the 

previously reported conserved motif (NLYDLP) for adenylation of tyrosine at the N-terminal 

of GSI-β to N/D-LYDLP. Using this modified criteria and insertion of specific 25 amino 

acids, I identified the chromosomal GS of O. anthropi as GSI-β. Since those features were 

not present in the GS from pONAT01 and the other GS from chromosome II of O. anthropi, 

I identified them as GSI-α. O. anthropi also contains GSII in chromosome II. This 

classification would provide insight towards the underlying mechanism of regulations of 

these GSs in O. anthropi. My analysis also led to the conclusion that the GS on the pONAT01 

of O. anthropi was acquired through horizontal gene transfer from either Ensifer adhaerens 

strain Casida A plasmid pCasidaAB or Ensifer adhaerens strain OV14 chromosome 1. 

Knocking out this transferred GS from pONAT01 of O. anthropi resulted in 50% reduction 

in enzyme activity. Thus, the enzyme is functional in O. anthropi. 
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APPENDICES 
 

Appendix 1. Catalytic domain of chromosome I GS (Oant_2087) 

GRDPRTTAKKAEAYMKSLGIGDTVYVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTEYET
GNLGHRPRVKGGYFPVPPIDSAQDMRSEMLTVLTEMGVTVEKHHHEVASAQHELGVKFDTLVRNA
DKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVHFSIWKEGKPTFAGNEYAGLSENCLYFI
GGVIKHAKAVNAFTNPSTNSYKRLVPGYEAPVLLAYSARNRSASCRIPFGNSPKSKRLEVRFPDPAA
NPYLCFAALLMAGLDGIKNKIHPGQAMDKDLYDLPAKELKKIPTVCGSLREALQSLDKDREFLKAG
GVFDDDQIDSFIELKMAEVMRYETTPHPVEYDMY 

  



 
 

57 
 

Appendix 2. Amino acid sequences of 20 GSI used to generate Logo in Fig 7.   

Ochrobactrum_anthropi (Oant_2087) 

MTTANDILKQIKDNDIKFVDLRFTDPKGKLQHVTMDIGLVDEEMFVDGVMFDGSS
IAGWKAINESDMVLMPDPTTAHIDPFFAQSTLVILCDILDPISGEAYGRDPRTTAKK
AEAYMKSLGIGDTVYVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTEYE
TGNLGHRPRVKGGYFPVPPIDSAQDMRSEMLTVLTEMGVTVEKHHHEVASAQHE
LGVKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVHFSI
WKEGRPTFAGNEYAGLSENCLYFIGGVIKHAKAVNAFTNPSTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGNSPKSKRLEVRFPDPAANPYLCFAALLMAGLDGIKNKI
HPGQAMDKDLYDLPAKELKKIPTVCGSLREALQSLDKDREFLKAGGVFDDDQIDS
FIELKMAEVMRYETTPHPVEYDMYYSV 

Brucella_ovis 

MTTANDILKQIKDNDVKFVDLRFTDPKGKLHHVTMDVGLVDEDMFIDGVMFDGS
SIAGWKAINESDMVLMPDPETAHIDPFFAQSTLVILCDILEPLSGESYSRDPRTTAKK
AEAYLKSLGIGDTVYVGPEAEFFVFDDVKFKADPFNTGFKLDSAELPSNDDTDYET
GNLGHRPRVKGGYFPVPPIDSLQDMRSEMLTVLSEMGVTVEKHHHEVASAQHEL
GTKFDTLVRNADKMQIQKYVVHQVANAYGKTATFMPKPVFGDNGSGMHVHFSI
WKDGKPTFAGNEYAGLSENCLYFIGGVIKHAKAVNAFTNPSTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGSSPKSKRLEVRFPDPSANPYLCFSALLMAGLDGIKNKI
HPGQAMDKDLYDLPPKELKQIPTVCGSLREALQSLDKDREFLKAGGVFSDDQIDSF
IELKMAEVMRFEMTPHPVEFDMYYSV 

Sinorhizobium_meliloti 

MTTANEVLKQIKENDVKFVDLRFTDPKGKLQHVTMDVVCVDEDMFADGVMFDG
SSIGGWKAINESDMVLMPDPETAHMDPFFAQSTMVIFCDILDPVSGEAYNRDPRGT
AKKAEAYLKASGIGDTVFVGPEAEFFVFDDVKYKADPYNTGFKLDSSELPSNDDT
DYETGNLGHRPRVKGGYFPVPPVDSSQDMRSEMLTVLSEMGVTVEKHHHEVAAA
QHELGVKFDALVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHV
HLSIWKDGKPTFAGDEYAGLSESCLYFIGGIIKHAKALNAFTNPSTNSYKRLVPGYE
APVLLAYSARNRSASCRIPFGTNPKAKRVEVRFPDPTANPYLAFAAMLMAGLDGIK
NKLHPGKAMDKDLYDLPPKELKKIPTVCGSLREALESLDKDRKFLTAGGVFDDDQ
IDSFIELKMQEVMRFEMTPHPVEYDMYYSV 
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Agrobacterium_tumefaciens 

MTTANDILKQIKDNDIKFVDLRFTDPKGKLQHVTMDVVCVDEDMFADGVMFDGS
SIAGWKAINESDMVLMPDPATAHIDPFFAQSTLVVLCDILDPVSGEAYNRDPRGTA
KKAEAYLKASGIGDTVFVGPEPEFFVFDDVKYKADPYNTGFKLDSSELPSNDDTDY
ETGNLGHRPRVKGGYFPVPPIDSLQDMRSEMLTVLAEMGVVVEKHHHEVAAAQH
ELGVKFDTLVSSADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVHQS
IWKGGKPTFAGDEYAGLSENCLYYIGGIIKHAKAINAFTNPTTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGSNPKAKRVEVRFPDPTQNPYLGFAAMLMAGLDGIKN
KIHPGKPMDKDLYDLPAKELKKIPTVCGSLREALESLDKDRKFLTTGGVFDDDQID
SFIELKMQEVMRFEMTPHPVEFDMYYSA 

Rhizobium_leguminosarum 

MATASEILKQIQENDVKFVDLRFTDPKGKLQHVTMDVACVDEDMFADGVMFDGS
SIGGWKAINESDMVLMPDTETVHMDPFFAQSTMVIVCDILDPVSGEAYNRDPRGT
AKKAEAYLKASGIGDTIFVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTD
YETGNLGHRPRVKGGYFPVPPVDSAQDMRSEMLTVLSEMGVVVEKHHHEVAAA
QHELGIKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVH
QSIWKGGKPTFAGDEYAGLSETCLYYIGGIIKHAKAINAFTNPSTNSYKRLVPGYEA
PVLLAYSARNRSASCRIPFGSNPKAKRVEVRFPDPTANPYLAFAAMLMAGLDGIKN
KIHPGKAMDKDLYDLPPKELKKIPTVCGSLREALESLDKDRKFLTAGGVFDDDQID
AFIELKMAEVMRFEMTPHPVEYDMYYSA 

Hoeflea_olei 

MTTATEILKQIKDNDVKFVDLRFTDPKGKLQHVTMDVSAVDEDLFADGVMFDGS
SIGGWKAINESDMVLMPDTATAHMDPFFAQSTMVLICDILDPITGEAYNRDPRTTA
KKAEAYLQASGLGDTVYIGPEPEFFIFDDVKYKADPYNTGFKLDSSELPSNDDTDY
ETGNMGHRPRVKGGYFPVPPVDSCQDMRSEMLTVLAEMGLTVEKHHHEVASAQ
HELCMVFDTLTRQADKTQIYKYGVHQVANAYGKTATFMPKPVFGDNGSGMHVH
QSIWKGGKPTFAGDEYAGLSETCLFYIGGIIKHAKAINAFTNPSTNSYKRLVPGYEA
PVLLAYSARNRSASCRIPFGSSPKAKRVEVRFPDPTANPYLAFAAMLMAGIDGIKN
KIHPGKAMDKDLYDLPPKELKKIPTVSGSLREALENLDKDRKFLTAGGVFDDDQID
AFIELKMVEVMRYEMTPHPVEFDMYYSA 
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Bartonella_vinsonii 

MTTASDIIKQIADNEIRFVDLRFTDPRGKLHHVTMDIAEISEDTFSDGVMFDGSSISG
WKTINESDMVLMPDPETAHIDPFFAQSTLVIFCDVLDPVSGEFYRRDPRSIAKRAEV
YMKSLGIGDTINVGPEAEFFIFDDVRYKTDPYNTGFKLDSSELPSNDDTEYEVGNL
GHRPRMKGGYLPVPPIDSCQDMRSEMLTALKDMGVRVEKHHHEVAAGQHELGIR
FDTLVREADKMQIFKYVVHQIANSYGKTATFMPKPVFGDNGSGMHVHISIWKDGK
PIFAGNEYAGLSETCLFFIGGVIKHAKALNAFTNPSTNSYKRLVPGYEAPVLLAYSA
RNRSASCRIPMSSSPNSKRVEVRFPDPTANPYLAFAALLMAGLDGIKNKIHPGHAM
DKDLYDLPLKERKEIPTVSGSLREALEALDKDRSFLKAGDVFDDDQINSFIQVKMQ
EVLCYETTPHPVEFDMYYSV 

Labrenzia_marina 

MTTAAEVLKEIQEKDVKFVDLRFTDPRGKMQHVTMDVALVDEDMFAEGVAFDG
SSIAGWKAINESDMMLILDPESAHIDPFFAQSTLAIFCDIVDPITGEGYNRDPRMTAK
KAEAYVKSGGFGDTIYIGPEAEFFMFDDVRFTADPYNTGFILDGDELPSNMGSEYE
TGNLGHRPRTKGGYFPVPPIDSAQDIRSEMLSVMGEMGVPTEKHHHEVAAAQHEL
GMKFDHLTRCADNMQVYKYVVHQVAHAYGKTATFMPKPVFGDNGTGMHCHLSI
WNKGEPVFAGNQYADLSETCLYFIGGILKHAKALNAFTNPSTNSYKRLVPGYEAP
VLLAYSSRNRSASCRIPFTASPKSKRVEVRFPDPTANPYLCFSALLMAGLDGIKNKL
HPGDAMDKNLYDLPPEELSEIPTVCGSLREALEAVDEDREFLKAGGVFDDDQIDAY
IELKMEEVERYEMTPHPVEFDMYYSV 

Nitrobacter_hamburgensis 

MKTASDVLKSIKDNDVKYVDLRFTDPRGKWQHVTFDVSMIDEDIFTEGTMFDGSS
IAGWKAINESDMMLMLDPATAAIDPFFAETTMVITCDIMEPSTGEPYNRDPRGIAK
KAEAMVKSMGIGDTVYIGPEAEFFVFDDVRFSADPYNTGFKLDSSELPTNSATEYE
GGNLGHRIRTKGGYFPVPPQDSVQDMRSEMLGAMAKMGVKVEKHHHEVASAQH
ELGMKFDTLTYMADQMQVYKYCIHQVAHIYGKTATFMPKPIFGDNGSGMHVHQS
IWKDGKPTFAGNKYADLSETCLHYIGGIIKHAKAINAFTNPSTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPYTTSPKAKRVEVRFPDPMANPYLAFAAMLMAGLDGIKN
KIDPGPAMDKDLYDLPKEELKQIPTVCGSLREALESLDKDRAFLKNGGVFDDDFIN
AYIELKMTEVERFDMTPHPVEFDMYYSY 
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Bradyrhizobium_japonicum 

MKTAKDVLKSIKDNDVKYVDLRFTDPRGKWQHVTFDISMIDEDIFAEGTMFDGSSI
AGWKAINESDMCLMPDPVTATIDPFFAETTMVITCDVLEPTTGEPYNRDPRGIAKK
AEAMVKSMGVGDTVFVGPEAEFFVFDDVRFSANPYSTGFRLDSSELPTNSDTEYE
GGNLGHRVRTKGGYFPVPPQDSVQDMRSEMLGAMAKMGVKVEKHHHEVASAQ
HELGMKFDTLTLMADHMQIYKYCIHQVAHIYGKTATFMPKPVYGDNGSGMHVH
QSIWKDGKPVFAGNKYADLSETCLHYIGGIIKHAKAINAFTNPSTNSYKRLVPGYE
APVLLAYSARNRSASCRIPYTASPKAKRVEVRFPDPLANPYLGFAAMLMAGLDGIK
NKIDPGPAMDKDLYDLPKEELKQIPTVCGSLREALENLDKDRGFLKNGGVFDDDFI
DSYIELKMTEVERFEMTPHPVEFDMYYSG 

Erythrobacter_luteus 

MSKASDIIKRIKDEEIEWVDLRFTDPKGKWQHLSMVASALDEDQLEEGLMFDGSSI
AGWKAINESDMILKPDLEEVWMDPFSATPMMIVNCDIVEPSTGEGYGRDPRTTAK
RAEAYLKSTGIGDTVYVGPEAEFFMFDDVRFEDGYAGSGFQIDDVELPTNTGTDY
DSGNMAHRPRVKGGYFPVAPIDSAVDIRGEMVSTMLEMGLPCDKHHHEVAAAQH
ELGLTFGTLVQTADRMQIYKYVVHQVAHAYGKTATFMPKPIKDDNGSGMHTHMS
IWDGGKPTFAGNGYAGLSDNCLYYIGGVIKHAKALNAFTNPTTNSYKRLVPGFEA
PVLLAYSARNRSASCRIPYGSGEKAKRVEFRFPDAMANPYLAYAALLMAGLDGIQ
NKIHPGEAMDKNLYDLPPEELKEVPTVCGSLREALTELEKDHEFLLAGDVFTKDQI
DAYIELKWEEVMRVETTPSAVEFDLYYSM 

Nisaea_denitrificans 

MSDVNAVLSMIKEHDCKFVDLRFTDPRGKMQHVTQAIETIDAESLVEGFMFDGSSI
AGWKAINESDMSLKLDLSTARVDPFFAQPTLMILCDVVDPITGQPYERDPRSTAKA
ALNHLNSLGIGDTAFFGPEAEFFVFEDVKIKTGSNIGYYEVDHPEGPYNSARSYEEG
NMGHRPGVKGGYFPVPPVDSEQDLRSEMLAVMGEMGVDIEKHHHEVAPAQHEL
GMKFGTLIETADALQMYKYVVHNVAHAYGKTATFMPKPIAEDNGSGMHVHQSI
WKDGKPLFAGNGYADLSEMCLYYIGGIIKHAKALNAFTNPTTNSYKRLVPGFEAP
VLLAYSARNRSASCRIPFVNSPKGKRVEVRFPDPAGNPYLAFSAMLMAGLDGIQN
KIHPGDPMDKDLYDLPPEELADIPTVAGSLREALESLDADRSFLTQGDVFTNDQID
AYIELKMDEVIRFEQTPHPVEFEMYYSV 
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Escherichia_coli 

MSAEHVLTMLNEHEVKFVDLRFTDTKGKEQHVTIPAHQVNAEFFEEGKMFDGSSI
GGWKGINESDMVLMPDASTAVIDPFFADSTLIIRCDILEPGTLQGYDRDPRSIAKRA
EDYLRSTGIADTVLFGPEPEFFLFDDIRFGSSISGSHVAIDDIEGAWNSSTQYEGGNK
GHRPAVKGGYFPVPPVDSAQDIRSEMCLVMEQMGLVVEAHHHEVATAGQNEVAT
RFNTMTKKADEIQIYKYVVHNVAHRFGKTATFMPKPMFGDNGSGMHCHMSLSKN
GVNLFAGDKYAGLSEQALYYIGGIIKHAKAINALANPTTNSYKRLVPGYEAPVML
AYSARNRSASIRIPVVSSPKARRIEVRFPDPAANPYLCFAALLMAGLDGIKNKIHPG
EAMDKNLYDLPPEEAKEIPQVAGSLEEALNELDLDREFLKAGGVFTDEAIDAYIAL
RREEDDRVRMTPHPVEFELYYSV 

Shigella_dysenteriae 

MSAEHVLTMLNEHEVKFVDLRFTDTKGKEQHVTIPAHQVNAEFFEEGKMFDGSSI
GGWKGINESDMVLMPDASTAVIDPFFADSTLIIRCDILEPGTLQGYDRDPRSIAKRA
EDYLRSTGIADTVLFGPEPEFFLFDDIRFGSSISGSHVAIDDIEGAWNSSTQYEGGNK
GHRPAVKGGYFPVPPVDSAQDIRSEMCLVMEQMGLVVEAHHHEVATAGQNEVAT
RFNTMTKKADEIQIYKYVVHNVAHRFGKTATFMPKPMFGDNGSGMHCHMSLSKN
GVNLFAGDKYAGLSEQALYYIGGVIKHAKAINALANPTTNSYKRLVPGYEAPVML
AYSARNRSASIRIPVVSSPKARRIEVRFPDPAANPYLCFAALLMAGLDGIKNKIHPG
EAMDKNLYDLPPEEAKELPQVAGSLEEALNELDLDREFLKAGGVFTDEAIDAYIAL
RREEDDRVRMTPHPVEFELYYSV 

Salmonella_enterica 

MSSEHVLTMLNEHEVKFVDLRFTDTKGKEQHVTIPAHQVNAEFFEEGKMFDGSSI
GGWKGINESDMVLMPDASTAVIDPFFADSTLIIRCDILEPGTLQGYDRDPRSIAKRA
EDYLRATGIADTVLFGPEPEFFLFDDIRFGASISGSHVAIDDIEGAWNSSTKYEGGN
KGHRPGVKGGYFPVPPVDSAQDIRSEMCLVMEQMGLVVEAHHHEVATAGQNEV
ATRFNTMTKKADEIQIYKYVVHNVAHRFGKTATFMPKPMFGDNGSGMHCHMSLA
KNGTNLFSGDKYAGLSEQALYYIGGVIKHAKAINALANPTTNSYKRLVPGYEAPV
MLAYSARNRSASIRIPVVASPKARRIEVRFPDPAANPYLCFAALLMAGLDGIKNKIH
PGEAMDKNLYDLPPEEAKEIPQVAGSLEEALNALDLDREFLKAGGVFTDEAIDAYI
ALRREEDDRVRMTPHPVEFELYYSV 
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Vibrio_cholerae 

MSVENVLSLIQENEVKFVDLRFTDTKGKEQHISIPAHQIDADFFEDGKMFDGSSVA
GWKGINESDMVMMPDPSSAVLDPFTEDATLNIRCDILEPATMQGYDRDPRSIAKR
AEEYMRSTGIADTVLVGPEPEFFLFDDVKFATNMSGSFFKIDDVEAAWNTGTEYED
GNKGHRPGVKGGYFPVAPVDSSQDIRSAMCLIMEEMGLVVEAHHHEVATAGQNE
IATRFNTLTTKADEIQIYKYVVHNVAHAFGKTATFMPKPLVGDNGSGMHVHQSLA
KDGVNLFAGDKYGGLSEMALYYIGGVIKHARALNAITNPSTNSYKRLVPHYEAPV
MLAYSARNRSSSIRIPVVPSPKARRIEVRFPDPAANPYLAFAALLMAGLDGIKNKIH
PGEAMDKDLYDLPAEEAAEIPKVAESLQQALQYLDADREFLTAGGVFSDDFIDSYI
ELKTKDVERVNVAVHPLEFELYYSV 

 

Klebsiella_variicola 

MSAEHVLTMLNEHEVKFVDLRFTDTKGKEQHVTIPSHQVNAEFFEEGKMFDGSSI
GGWKGINESDMVLMPDASTAVIDPFYEEPTLIIRCDILEPGTLQGYDRDPRSIAKRA
EEYLRATGIADTVLFGPEPEFFLFDDIRFGASISGSHVAIDDIEGAWNSSTKYEGGNK
GHRPGVKGGYFPVPPVDSSQDIRSTMCMIMEEMGLVVEAHHHEVATAGQNEVAT
RFNTMTKKADEIQIYKYVVHNVAHRFGKTATFMPKPMFGDNGSGMHCHMSLAK
NGTNLFSGDKYAGLSEQALFYIGGVIKHAKAINALANPTTNSYKRLVPGYEAPVM
LAYSARNRSASIRIPVVTSPKARRIEVRFPDPAANPYLCFAALLMAGLDGIKNKIHP
GEAMDKNLYDLPPEEAKEIPQVAGSLEEALLALDADREFLTAGGVFTNDAIDAYIA
LRLEENDRVRMTPHPVEFELYYSV 

 

Pseudomonas_aeruginosa 

MSYKSHQLIKDHDVKWVDLRFTDTKGKQQHVTMPARDALDDEFFEAGKMFDGS
SIAGWKGIEASDMILMPDDSTAVLDPFTEEPTLILVCDIIEPSTMQGYERDPRNIAKR
AEEYLKSTGIGDTVFVGPEPEFFIFDEVKFKSDISGSMFKIFSEQASWNTDADIESGN
KGHRPGVKGGYFPVPPVDHDHEIRTAMCNALEEMGLVVEVHHHEVATAGQNEIG
VKFNTLVAKADEVQTLKYCVHNVADAYGKTATFMPKPLYGDNGSGMHVHMSIS
KDGKNTFAGEGYAGLSETALYFIGGIIKHGKALNGFTNPSTNSYKRLVPGFEAPVM
LAYSARNRSASIRIPYVSSPKARRIEARFPDPAANPYLAFAALLMAGLDGIQNKIHP
GDAADKNLYDLPPEEAKEIPQVCGSLKEALEELDKGRAFLTKGGVFTDEFIDAYIE
LKSEEEIKVRTFVHPLEYDLYYSV 
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Xanthomonas_campestris 

MSVENVEKLIKDNKVEFVDLRFVDMRGVQQHVTFPANIIEPALFEEGKMFDGSSIA
GWKGINESDMVLLPDAGTAYLDPFFADPTVVLTCDILDPATMQSYARDPRGIAKR
AEAYLKSSGIADQAFFGPEPEFFIFDSVRFANDMGHTFFQVGSEEAAWNTGAKYDG
GNSGYRPGVKGGYFPVPPTDTLHDLRAEMIKTLEQVGIETEVHHHEVATAGQCEIG
TKFSSLVQKADELLTMKYIIKNVAYRNGKTATFMPKPIVGDNGSGMHVHQSLAKG
GANLFSGDGYGGLSQLALWYIGGIFKHARAINAFANSGTNSYKRLVPGFEAPVML
AYSARNRSASCRIPWVSNPKARRIEMRFPDPLQSGYLTFTALMMAGLDGIKNQIDP
GAPSDKDLYDLPPEEEKLIPQVCSSLDQALEALDKDREFLKAGGVMSDDFIDGYIA
LKMQEVTKFRAATHPLEYQLYYGN 

 

Neisseria_meningitidis 

MSIKNAVKLIEESEARFVDLRFTDTKGKQHHFTVPVRIVLEDPEEWFENGQAFDGS
SIGGWKGIQASDMQLRPDASTAFVDPFYDDVTVVITCDVIDPADGQGYDRDPRSIA
RRAEAYLKSSGIGDTAYFGPEPEFFVFDGVEFETDMHKTRYEITSESGAWSSGLHL
DGQNTGHRPTVKGGYAPVAPIDCGQDLRSAMVNILEELGIKVEVHHSEVGTGSQM
EIGTRFATLVKRADQTQDMKYVIQNVAHNFGKTATFMPKPIMGDNGSGMHVHQSI
WKDGQNLFAGDGYAGLSDTALYYIGGIIKHAKALNAITNPSTNSYKRLVPHFEAPT
KLAYSAKNRSASIRIPSVNSSKARRIEARFPDPTANPYLAFAALLMAGLDGIQNKIH
PGDPADKNLYDLPPEEDALVPTVCASLEEALAALKADHEFLLRGGVFSKDWIDSYI
AFKEEDVRRIRMAPHPLEFEMYYSL 
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Appendix 3. Amino acid sequences of 30 GSs used to build the gene tree in Fig 8. 

>Ochrobactrum_anthropi_Oant_2087  
 
MTTANDILKQIKDNDIKFVDLRFTDPKGKLQHVTMDIGLVDEEMFVDGVMFDGSS
IAGWKAINESDMVLMPDPTTAHIDPFFAQSTLVILCDILDPISGEAYGRDPRTTAKK
AEAYMKSLGIGDTVYVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTEYE
TGNLGHRPRVKGGYFPVPPIDSAQDMRSEMLTVLTEMGVTVEKHHHEVASAQHE
LGVKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVHFSI
WKEGKPTFAGNEYAGLSENCLYFIGGVIKHAKAVNAFTNPSTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGNSPKSKRLEVRFPDPAANPYLCFAALLMAGLDGIKNKI
HPGQAMDKDLYDLPAKELKKIPTVCGSLREALQSLDKDREFLKAGGVFDDDQIDS
FIELKMAEVMRYETTPHPVEYDMYYSV 
 
>Ochrobactrum_anthropi_Oant_3936 
 
MSADTTEKKVTRAPRRRTPAYVKSLRGVKNWKQATEWLAWRDIEDIECITPDQA
GVARGKMMPSKKFTSNTSLALPSAVFMTTISGDYPEDGYGFHYPEDDGDLKLVPD
LSTLSAVPWESDPTAQVICDLVYQDGRGVEFTPRNVLRNVVAAYSKRGLKPVVAP
EIEFYLVRKNPDPDYPLTPPVGRSGRAIGGGQGYSIAGVNEFDELIDDIYHFSEGQG
LEIDTLIHEEGAGQLEINLRHGDPVELADQVFMFKRTIREAALKHDMYATFMAKPI
QGQPGSAMHIHQSIVDKKTGRNIFTNEDGSESEAFRHFIGGMQRHVPNALVMFAPY
VNSYRRLTPDASAPVNVKWGYDNRTTAFRVPRSDPNGRRVENRIPSSDANPYLAL
AASLACGLIGLVNKIEAEQPATTSVNTKEIELPRGLIDAVELFEEDTELRNLFGSSFV
TTYAAIKRAEFETFMEVISPWEREFLLLNV 
>Ochrobactrum_anthropi_Oant_3881 
 
MAGQLTFDALKKAVANDEIDTVLACFVDMQGRLIGKRFYGQFFVESGYDETHGC
NYLLADDIDMEPVPGYEAAGWDKGYGDFVIKPDLSTLRVATWLEKTAIVLCDVLD
HHDHQDLAHSPRAILKKQLARLHERGYRAYFASELEFYLFDETYKTARAKHWQD
METASPYVQDYVIHLTTKEEPVLRAMRNQLAAAGIPVENSKGEWGPGQEELNVRY
AEALEMADRHVIMKNAMKEIAEAHGKCITFMAKYDYGKAGSSSHVHNSIWSADG
KEPLFFDPKAPYTMTPLMRSWVAGQLKYATDYTYFLAPYINSYKRFQAGTFAPTKI
MWSQDNRTAGFRLCGEGTKGIRIECRIGGADLNPYLAFAALIASGLQGIDEQLELD
EPFVGDAYSAVKLKEIPYTLREAAQALKNSSFLKEAFGDAVVNHYVHTAHWEQIE
YDRRVTDWELHRGFERY 
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>Ochrobactrum_anthropi_Oant_4491 
 
MNDKTLSGLTELATFVTTDIAGITRGRSFAASEIEDYLRKGVGWVPANLALTPFDLI
ADPNPWGSAGDLRLMADPASKARVTCLPDETPLHFYHSDITDLKGEPWDCCVRSF
LKATLSQFEKEAGLKVVSAVEQEFQVLGADWPAAPAFGLRAQRRAEPFGCLLMT
ALKEAGAEPEMFLPEYGKDQFEVTCRPAPALVAADRGATIRAVTREVAALFGWH
ASFAPKTDPNGVGNGVHLHVSFTDLDGNPVTFDAARPGRLSRVAGAFAAGVIKHL
PALVAFTAPSVLSYMRLVPHHWSAAYTCLGEKNREATLRICPTLDLPGSNPAKQFN
MEYRAADACASPHLSLAVLLRAGLEGIRAGLEQPPLINSDPSAFSSEEQVRLGIRRL
PSSLAEALDTLAADEVVTGWFPKDFLDCYFAMKRKEIEIVEGLSPEALCARYAAVY 
 
>Ochrobactrum_anthropi_Oant_4157 
 
MTERLAMTKYKLEYIWLDGCTPAAGLRGKTQIKEFDAFPTLEQLPLWGFDGSSTM
QAEGRSSDCVLKPVAIYPDPARKNGVLVMCEVMMPDGITPHPSNSRATVLEDDDA
WFGFEQEYFFYKDGRPLGFPEQGFPAPQGPYYTGVGYKNVGSIARKIVEEHLDLCL
DAGINHEGINAEVAKGQWEFQIFGKGSKNAADQIWMARYLLLRLCEQYEIDIEFHC
KPLGDTDWNGSGMHCNFSTKYMREVGGKDYFEALMAQFDKNLQDHIDVYGPDN
HMRLTGKHETAPWNKFSYGVADRGASIRVPHAFVRDGYRGYLEDRRPNSQGCPY
QIASQVLKTISEVPTSEDEALAA 
 
>Ochrobactrum_rhizosphaerae 

MTTANDKKDNDKVDRTDKGKHVTMDGVDMVDGVMDGSSAGWKANSDMVMD
DTAHDASTVCDDSGAYGRDRTTAKKAAYMKSGGDTVYVGAVDDVKYKVDNTG
KDSTSNDDTDYTGNGHRRVKGGYVDSADMRSMTVTMGVTVKHHHVASAHGVK
DTVRNADKMYKYVVHVANAYGKTATMKVGDNGSGMHVHSWKGKTAGNYAGS
NCGGVKHAKAVNATNSTNSYKRVGYAVAYSARNRSASCRGSSKSKRVRDAANY
CAAMAGDGKNKHGAMDKDYDAKKKTVCGSRASDKDRKAGGVDDDSKMAVMR
YTTHVDMYYSV 

>Falsochrobactrum_ovis 

MTTAADILKQIKDLDIKFVDLRFTDPKGKLQHVTMDIGLVDEDMFIDGVMFDGSSI
GGWKAINESDMVLMPDPETAHIDPFFAQSTLVILCDILDPVSGEAYSRDPRTTAKK
AEAYMRSLGIGDTVFVGPEAEFFVFDDVKYKVDPFNTGFKLDSTELPSNDDTDYET
GNLGHRPRMKGGYFPVPPIDSAQDMRSEMLTVLTEMGVTVEKHHHEVASAQHEL
GVKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPVFGDNGSGMHVHFSI
WKDGKPTFAGNEYAGLSETCLYFIGGVIKHAKAVNAFTNPTTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGSSPKSKRLEVRFPDPSANPYLCFAALLMAGLDGIKNKI
HPGQAMDKDLYDLPAKELKEIPTVCGSLREALQALDKDREFLKVGGVFEDDQIDS
FIELKMAEVMRYETTPHPIEFDMYYSV 
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>Phyllobacterium_leguminum 

MTTANDILKQIKDNDVKFVDLRFTDPKGKLQHVTMDVGMVDEEMFTDGVMFDG
SSIAGWKAINESDMVLMPDVETAHIDPFFAQSTMVVICDILDPVSGEAYNRDPRTT
AKKAEAYLKSLGIGDTIFVGPEAEFFVFDDVKYKVDPYNTGFKLDSTELPSNDDTD
YETGNLGHRPRVKGGYFPVPPVDSAQDMRSEMLTVLTEMGVTVEKHHHEVAAA
QHELGLKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHV
HMSIWKDGKPTFAGNEYAGLSENCLFFIGGVIKHAKAINAFTNPSTNSYKRLVPGY
EAPVLLAYSARNRSASCRIPFGSSPKSKRVEVRFPDPAANPYLGFAALLMAGLDGI
KNKIHPGQPMDKDLYDLPAKELKKIPTVCGSLREALQSLDKDRGFLKAGGVFDDD
QIDAFIELKMAETMRYETTPHPVEYDMYYSV 

>Paramesorhizobium_deserti 

MTTANDILKQIKDNDVKFVDLRFTDPKGKLQHVTMDVGVVDEDMFADGVMFDG
SSIAGWKAINESDMVLMPDVETAHIDPFFAQSTMVVMCDILDPISGEAYNRDPRGT
AKKAEAYLKSLGIGDTIFVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTD
YETGNLGHRPRIKGGYFPVPPVDSAQDMRSEMLTVLTEMGVTVEKHHHEVAAAQ
HELGLKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPVFGDNGSGMHVH
MSIWKDGKPTFAGNEYAGLSEACLFFIGGIIKHAKAINAFTNPSTNAYKRLVPGYE
APVLLAYSARNRSASCRIPFGTSPKSKRVEIRFPDPSANPYLGFAALLMAGLDGIKN
KIHPGQAMDKDLYDLPAKELKKIPTVCGSLREALQSLDKDRGFLKAGGVFDDDQI
DAFIELKMAETLRYETTPHPVEYDMYYSV 

>Agrobacterium_albertimagni 

MTTANDILKQIKDNDIKFVDLRFTDPKGKLQHVTMDIACVDEDMFADGVMFDGSS
IAGWKAINESDMVLMPDPATVHMDPFFAQSTMVILCDILDPVSGEAYNRDPRGTA
KKAEAYLKASGIGDTVFVGPEAEFFVFDDVKYKADPYNTGFKLDSTELPSNDDTE
YETGNLGHRPRVKGGYFPVPPIDSLQDMRSEMLTVLGEMGVVVEKHHHEVAAAQ
HELGIKFDTLVRNADKMQIYKYVVHQVANAYGKTATFMPKPIFGDNGSGMHVHQ
SIWKDGKPTFAGDEYAGLSESCLYYIGGIIKHAKALNAFTNPSTNSYKRLVPGYEAP
VLLAYSARNRSASCRIPFGTNPKAKRVEVRFPDPMANPYLAFAAMLMAGLDGIKN
KIHPGKAMDKDLYDLPPKELKKIPTVCASLREALESLDKDRKFLTAGGVFDDDQID
SFIELKMQEVMRFEMTPHPVEYDMYYSA 
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>Brucella_inopinata 

MSADTTEKKATRTPRRRTPAYVKSLRGVKNWKQATEWLAWRDIEDIECITPDQAG
VARGKMMPSKKFTSNTSLALPSAVFMTTISGAYPEDGYGFHYPEDDGDLKLLPDL
TTLSAVPWETDSTAQVICDLVYQDGRAVEFTPRNVLRNVIAAYSKRGLKPVVAPEI
EFYLVRKNPDPDYPLTPPVGRSGRAIGGGQGYSIAGVNEFDELIDDIYHFSEGQGLE
IDTLIHEEGAGQLEINLRHGDPVELADQVFMFKRTIREAALKHDMYATFMAKPIQG
QPGSAMHIHQSIVDKKTGRNIFTNEDGSESQAFHHFLGGMQRHVPNALVMFAPYV
NSYRRLTPDASAPVNVKWGYDNRTTAFRVPRSDPSARRVENRIPSSDTNPYLALAA
SLACGLIGLVNKIEPEQPATTSVNTKEVELPRGLIDAVELFEEDAELRNLFGSSFMTT
YAAIKRAEFETFMEVISPWEREFLLLNV 

>Pseudochrobactrum_asaccharolyticum 

MPVTPTEKKKPRKAVRRGTPAYVKSLRGVKNWKEASEWLAWRDIEDIECITPDQA
GVARGKMMPSKKFISNSTLALPSAVFMVTISGDYPDDGHGFVYPEDDGDLRLVAD
LSTLTVVPWESDPTAQVLCDLVYQDGRVAEFTPRNVLKRVVDEYAKLGLKPVVA
PEIEFYLVRKNPDPDYPLTPPVGRSGRAIGGGQGYSIAGVNEFDELIDDIYHFSEAQG
LEIDTLIHEEGAGQLEINLRHGDPIELADQAFMFKRTIREAALKHDMYATFMAKPIQ
GQPGSAMHIHQSIIDKKTGHNIFSNEDGTESEAFYHFIGGMQRHIPNALVMFAPYVN
SYRRLTPDASAPVNVKWGYDNRTTALRVPRSDPQARRVENRIPSSDANPYLALAA
SLACGLIGLKNKIMPDAPVATSVNRNEVELPRGLIEAVSLFEQDSELKALLGESFAT
TFAAIKRAEFETFMEVISPWEREYLLLNV 

>Zhengella_mangrovi 

MASEKRDVRNTSAQRARVPKFVKNLRGVKNWKEVNAWLDWRGIEDIECITPDQA
GVARGKMMPSKKFTSNTSLALPSAIFMTTISGDYPEESETFQYPEDDGDLKLMPDL
STLAVVPWESDPTAQVICDMVHQDGREVEFTPRNVLKRVIRAYDKLGLKPVVAPE
IEFYLVSKNTDPDYPLVPPLGRSGRPIGGGQGYSIAGINEFDELIDDIYHFSEGQGLEI
DTLIHEEGAGQLEINLRHGDPVELADQVFMFKRTIREAALKHDMYATFMAKPIQG
QPGSAMHIHQSIIDKKTGRNIFTSDDGSESEAFFHFIGGMQKHVPNALVMFAPYVNS
YRRLTKAVTAPVNVEWGYDNRTTAFRIPRSDPAARRVENRIPSSDANPYLALAASL
ACGLIGMKQKIKPKEPAGHTANEADIELPRGLIEATSLFEADNDLIDMLGAGFVGT
YAAIKRGEFETFMQVISPWEREFLLLNV 
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>Mesorhizobium_ephedrae 

MPPAKKEARPTGRAGRVRVPAYVKNLRGVTAWKQVSEWLEWRSIEDIECITPDQA
GVARGKMMPSKKFTSNTSLALPSAPFMMTISGDYPEDGNGFSYPEDDGDLKLVPD
LSTLSVVPWEEDPTAQVICDLVHQDGRNVEFTPRNVLKRVVAAYGKRGLRPVVAP
EIEFYLVRKNPDPDYPLVPPVGRSGRPIGGGAGYSIAGVNEFDELIDDIYHFSESQGL
EIDTLIHEEGAGQLEINLRHGDPVELADQVFMFKRTIREAALKHDTYATFMAKPIQ
GQPGSAMHIHQSIVDKKTGRNVFTDETGKETEAFRHFIGGMQKHVPNALVMFAPY
VNSYRRLTQAASAPVNTKWGYDNRTTAFRVPRSDPAARRVENRIPSSDANPYLAL
AASLACGLIGMTKNIEPDAPVGTTVNEDEIDLPRGLLEAVDLFENDEDLRDMLGSS
FASTYAAIKRAEFETFMEVISPWEREFLLLNV 

>Aquamicrobium_aerolatum 

MSAQKKEARSTGRGARVRTPAFLQSLRGVSDLKQATAWLESRGIEDIECITPDQAG
VARGKMMPSKKFTSNTSLALPSAVFMATISGGYPEDGHGFVYPEDDGDLKLVPDL
STLSIVPWESDPTAQVICDLVHQDGRSIEFTPRNVLRRILAAYAEHGLRPVVAPEIEF
YLVRKNPDPDYPLEPPVGRSGRAIGGGQGYSIAGVNEFDELIDDIYHFSEAQGLEID
TLIHEEGAGQLEINLRHGDPIELADQVFMFKRTIREAAFKHDTYATFMAKPIQGQPG
SAMHIHQSIVDLKTGNNVFTAIDGTETEAFRHFIGGMQRHVPSALVMFAPYVNSYR
RLTQSASAPVNTKWGYDNRTTAFRVPRSDPAGRRVENRIPSSDANPYLAIAASLAC
GLIGMLNKEHCDAPVGTSANEDEIDLPRGLLEAVELFEGDDALRDLLGSDFVTTYA
AIKKAEFETFMEVISPWEREYLLLNV 

>Ochrobactrum_oryzae 

MAGQLTFDALKKAVAENEIDTILACFVDMQGRLIGKRFYGQFFVESGYDETHGCN
YLLADDIDMEPVPGYEAAGWDKGYGDFVIKPDLSTLRVATWLEKTAIVLCDVLDH
HDHQDLAHSPRAILKKQLARLHERGYRAYFASELEFYLFDETYKTARAKHWQDM
ETASPYVQDYVIHLTTKEEPVLRAMRNQLAAAGIPVENSKGEWGPGQEELNVRYA
EALEMADRHVIMKNAMKEIAEAHGKWITFMAKYDYSKAGSSSHVHNSIWSADGK
EPLFFDPKAPYTMTPLMRSWVAGQLKYATDYTYFLAPYINSYKRFQAGTFAPTKI
MWSQDNRTAGFRLCGEGTKSIRIECRIGGADLNPYLAFAALIASGLQGIDEQLELDE
PFVGDAYSAVKLKEIPYTLREAAQALKNSEFLKEALGEAVVNHYVHTAHWEQIEY
DRRVTDWELHRGFERY 
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>Mesorhizobium_metallidurans 

MAGNFSFDQLKKAVSNGEVDTVLACIVDMQGRLAGKRFLAQYFVDSAHGETHGC
NYLLAADIDMEPVPGYKAASWSKGYGDFVMKPDLSTLRRIPWLEKTALVICDVLD
HHDHEDLAHSPRAILKKQIKRLSDRGYIGYFASELEFYLFSETYNSARKKHWQGLD
TASPYIGDYQIGITTKEEGVMRRLRNEMEAAGIPIENSKGEWGPGQEEINVRYAEAL
DMADRHVILKNGAKEIAESEGKAISFMAKYNYALAGNSSHIHNSLWSADGKTPLF
YDKKANWTLSTLGQQWAAGQLKYAKEFTWFLAPYINSYKRFQAGTFAPTKIMWS
EDNRTAGFRLCGEGTKGIRMECRIGGADLNPYLAFAALIAAGLGGIDEKLELQKPF
VGDAYQASRLPEIPKTLRDATETLAKSRMLKQAFGEDVLEHYVHTARWEQFEYDR
RITDWELHRGFERY 

>Aminobacter_aminovorans 

MAGNLSFDQLKKAVAAGEIDTVLACAVDMQGRLVGKRFLAKYFVESAYDETHGC
NYLLANDIDMEPVPGYKAASWSKGYGDFVMKPDLNTIRNVPWLEKTALLLCDLK
DHHTHEDLAHSPRGILRKQVKRLQERGYLAYFASELEFYLFSETYDSARAKHWQN
LDTASPYIGDYLIGITTKEEGVMRRLRNEMEAAGIPIENSKGEWGPGQEEINVRYAE
VLEMADRHVILKNGAKEIAASEGKAISFMSKYNYGLAGNSSHIHNSLWSADGKTP
LFYDKGAEWTLSKLGQQWSAGQLKYAKEFTWFLAPYINSYKRFQSGTFAPTKIM
WSEDNRTAGFRLCGEGTKGIRMECRIGGADLNPYLAFAALIAAGLAGIDEKLELQK
PFVGDAYQAASLPEIPKTLRDATETLASSKMLREALGEEVVDHYVHTARWEQFEY
DRRITDWELHRGFERY 

>Ahniella_affigens 

MAAALSFEALKQAVAAGTIDTVLACMVDMQGRLVGKRFQAEYFVDSAYEETHCC
NYLLADDIDMEPVPGYQAASWSKGYGDFVLKPDLSTLRLTPWLEGTALVLCDVL
DHHTHADLPHSPRAMLKRQIARLTERGFLGMFASELEFYLFDESYESIREGHYANP
KTAGHYIEDYNILQTTREEGVMRAMRKGLQAAGIPVENSKGEWGPGQEEINIRYC
DALTMADRHAILKNACKEIAMLQGKAITFMAKWRYDLAGSSSHIHNSLWDLEGK
TSKFFDPNAPYGMSALMRSWVAGQIKYARDITWFLAPYINSYKRFQVGTFAPTRA
VWSRDNRTAGFRLCAEGSKGIRIECRIGGADLNPYLAYTGLIAAGLAGIDEQLELPA
PFEGDAYYGASLPEVPKTLRAAADALAGSSMLRQALGDEVVEHYHHTAEWEQFE
YDRRVTDWELKRGFERY 
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>Breoghania_corrubedonensis 

MSGNLSFDDLKRAVDAGEIDTVLVCFTDMQGRLIGKRFHARFFVDGGHEETHGCD
YLLANDIDMEPVPGYAATNWATGYGDFVMKPDMATLRRIPWLEGTALVLCDVLD
HHHHAPLPHSPRGILKSQIDRLEEKGFRAFFASELEFYLFDESYESARQKRYGDLDT
AGRYIEDYHIFQTSKEEGVMRAIRNGLQEAGIPVENSKGEWGPGQEEINVRYTDAL
EMADRHVVLKNGIKEIAHLAGKAVTFMAKWDYELAGNSAHVHASLWDKAGKTP
LFYDKNAEFGMSALMKSFMAGQLKYAADMTVFLAPYINSYKRFQSGTFAPTKLV
WSRDNRTAGFRLCGEGTKAIRTECRIGGADLNPYLAFAALIATGLAGIEEGLELGSP
HVGDAYVGEDLREIPKTLREATAALDGSALMRATFGDAMVDHYVHTAKWEQLE
YDRRVTDWELKRGFERY 

>Ensifer_adhaerens_OV14 

MTETNNGKAHSALTELATFVTTDIAGITRGRSFAAAQIDDYLRKGVGWVPANLAL
TPFDQIAENNPWGSAGDLRLMADPASKARVTCLPDVTPLHFYHSDITDLKGDPWE
CCVRSLLKRTLEEFEREAGLKVISAVEQEFQLLGVDWPDAPSFGLRAQRRAEPFGP
LLMTALQEAGAEPEMFLPEYGKDQFEITCRPADALTAADRGATIRAITKEVAALFG
WNASFAPKTSANGVGNGVHLHVSFTDLDGNPVTFDASRPGRLSKVAGSFAAGVIR
HLPALTAFTAPSVLSYMRLVPHHWSAAYTCLGEKNREATLRICPTLDLPGSNPAKQ
FNMEYRAADACASPHLSLAVLLKAGLEGIRAGLEQPPLINSDPSDFSDADQKKLGI
RRLPASLPEALETLAEDKVVTGWFAKDFLDCYVAMKRKEIEIVDGLSPDELCARY
AAVY 

>Rhizobium_freirei 

MNDSSNGKALSDLTELATFVTTDIAGITRGRSFAASYIEDYLRKGVGWVPANLALT
PFDLIADPNPWGSAGDLRLMADPASKARVTCLPDVTPLHFYHSDITDLKGEPWDC
CVRSFLKATLADFEKEAGLKVLSAVEQEFQVLGADWPAAPAFGLRAQRRAEPFGS
LLMTALKEAGAEPEMFLPEYGKDQFEVTCRPASALVAADRGATIRAVTREVAALL
GWNASFAPKTDPNGVGNGVHLHVSFTDLDGNPVTFDASRPGRLSKIAGSFAAGVI
KHLPALVAFTAPSVLSYMRLVPHHWSAAYTCLGEKNREATLRICPTLDLPGSNPAK
QFNMEYRAADACASPHLSLAVVLRAGLEGIRAGLEQPPLINSDPSEFSPEEQKKLGI
RRLPSSLAEALDTLAADEVVTGWFPKDFLDCYFAMKRKEIEIVDGLSPEDLCARYA
TVY 

 

 

 

 



 
 

71 
 

>Shinella_zoogloeoides 

MNDSSNGKALSDLTELATFVTTDIAGITRGRSFAATEIEDYLRKGVGWVPANLALT
PFDLIADPNPWGSAGDLRLMADPASKARVTCLPDETPLHFYHADITDLKGDPWEC
CVRGFLKKTLADFEKEAGLRVVSAVEQEFQIIGADWPAAPSFGLRAQRRAEPFGSL
LMTALKEAGAEPEMFLPEYGKDQFEVTCRPAPALVAADRGATIRAVTREVAALFG
WHASFAPKTEADGVGNGVHLHVSFTDLDGKPVTFDAARPGRLSKVAGSFAAGVI
KHLPALVAFTAPSVLSYMRLVPHHWSAAYTCLGEKNREATLRICPTLDLPGSNPAK
QFNMEYRAADACASPHLSLAVVLRAGLEGIRQGLEQPPLINSDPSDFPPEEQERLGI
RRLPSSLAEALDTLAADKVVTGWFPKDFLDCYFAMKRKEIEIVEGLSPEALCARYA
AVY 

>Sinorhizobium_saheli 

MTGTTKQRALSDLTELATFVTTDIAGITRGRSFAARHIDEYLRKGVGWVPANLALT
PFDAIAEANPWGSAGDLRLIADARSEARVTCLPDVTPLTFYHADITDLGGNPWECC
VRGFLKRTLDAFEREAGLKVVAAVEQEFQLIGVDWPEAPSFSLRAQRRADPFGPLL
MKALEEAGAEPEMFLPEYGRDQFEITCRATDALAAADRGATIRVVTKEVAALFGW
QASFAPKTSPDGVGNGVHLHVSFTDREGNPVTFDASRPGRLSEVAGAFAAGVIRHL
PALVAFTAPSVLSYLRLVPHHWSAAYTCLGEKNREATLRICPTLDLPGSNPARQFN
MEYRAADACASPHLALAVLLRAGLEGIKAGLEPPPLVNSDPSGLPAEEQERLGIRR
LPSSLGEALDTLAGDGVVTGWFARDFLDCYLAMKRKEIEIVAGLSPDELCARYAA
VYRGPVR 

>Ruegeria_intermedia 

MIKAEELVTFVTTDIAAITRGRSVAAANLPDALSKGVGWVPANLSLTPFDEIASPNP
FGSSGDLRLMPDPEAGVRIEGLGGRTPLHFYHSNITNLDGTPWEGCVRSMLKAAV
ADLEALGLRVVAAFEQEFQILGASWPLAPSFALSAQRRADPFGPMLMAALGAAGC
APECFLPEYGRDQFEIVCGPAGAVQAADRAVTIREVTRELAATMGWRASFCPKTD
PNGVGNGVHIHLSLTDLQGNPVTFDAARPGRLSAQAGAFAAGIVRHMAALTALAA
PSAVSYQRLKPHHWSASWNTLGEKDREATLRICPTSERPGHDPSRAFNMEFRAAD
ATASPHLALAMLIRAGIEGLKAGLSTPPIVKGDPEEMSADERARLGIRRLPTSLHEA
LAALEADTVVCGWMSPTFLDCWKGMRLKELEIVDGLDDAALCRRYAGVY 
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>Rhizobium_sullae 

MTKYKLEYIWLDGYTPTPNLRGKTQVKEFAEFPTLEQLPLWGFDGSSTMQAEGRS
SDCVLKPVALYPDPTRTNGVLVMCEVMMPDGVTPHPSNSRATILDDEDAWFGFEQ
EYFFYEDGRPLGFPEQGYPAPQGPYYTGVGYKNVGSVAREIVEEHLDLCLAAGINH
EGINAEVAKGQWEFQIFGKGSKRAADQIWMARYLLLRLCEKYGIDIEFHCKPLGDT
DWNGSGMHCNFSTKFMREVGGKAYFEALMAQFDKNLQDHIDVYGPDNHLRLTG
KHETAPWNKFSYGVADRGASIRVPHSFVKNDYKGYLEDRRPNSQGCPYQIASQVL
KTISEVSTSGFASAAA 

>Mangrovicella_endophytica 

MTKYKLEYIWLDGYTPVPNLRGKTQIKEFDSFPTLEQLPLWGFDGSSTMQAEGRSS
DCVLKPVAVYPDPARTNGALVMCEVMMPDGVTPHASNSRATILDDADAWFGFEQ
EYFFYENGRPLGFPETGYPAPQGPYYTGVGYKNVGEVARTIVEEHLDQCLAAGIN
HEGINAEVAKGQWEFQIFGKGSKTAADQVWMARYLLLRLTEKYGIDIEFHCKPLG
DTDWNGSGMHCNFSTKYMREVGGKEYFEALMAQFEKNLEDHISVYGPDNHMRL
TGKHETAPWNKFSYGVADRGASIRVPHSFVNNGYKGYLEDRRPNSQGDPYQIASQ
VLKTISEVPTSASVSAAA 

>Neorhizobium_alkalisoli 

MTKYKLEYIWLDGYTPTPNLRGKTQIKEFDSFPTLEQLPLWGFDGSSTMQAEGRSS
DCVLKPVAIYPDPARTNGVLVMCEVMMPDGVTPHPSNSRATILDDEDAWFGFEQE
YFFYENGRPLGFPEQGYPAPQGPYYTGVGYSNVGSIAREIVEEHLDLCLAAGINHE
GINAEVAKGQWEFQIFGKGSKKAADQIWMARYLLQRLTEKYGIDIEYHCKPLGDT
DWNGSGMHCNFSTKFMREVGGKAYFEALMAQFDKNLMDHINVYGPDNDKRLTG
KHETAPWNKFSYGVADRGASIRVPHSFVKNDYKGYLEDRRPNSQGDPYQIASQVL
KTISEVPTSGFASAAA 

>Ciceribacter_lividus 

MTKYKLEYIWLDGYKPVANLRGKTQVKEFDNFPTLEQLPLWGFDGSSTMQAEGH
SSDCVLKPVAVYPDPARTNGVLVMCEVMMPDGVTPHASNTRATILDDEDAWFGF
EQEYFFYENGRPLGFPEQGFPAPQGPYYTGVGYKNVGAIAREIVEEHLDLCLAAGI
NHEGINAEVAKGQWEFQVFGKGSKKAADQIWMARYLLLRLCEKYGIDVEFHCKP
LGDTDWNGSGMHCNFSTKYMREVGGKEYFEALMAAFAKNWKEHIDVYGPDNHL
RLTGKHETAPWNKFSYGVADRGASIRVPHSFVNNGYRGYLEDRRPNSQGDPYAIA
SQVLKTISEVPLAASAAA 
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>Methylobrevis_pamukkalensis 

MTKYKLEYIWLDGYKPVPNLRGKTQIKEFEAFPTLEQLPLWGFDGSSTMQAEGRS
SDCVLKPVALYPDPARTNGVLVMCEVMMPDGVTPHPTNARATILDDEGTWFGFE
QEYFFYKDGRPLGFPEHGYPAPQGPYYTGVGYSNVGDIAREIVEEHLDLCLEAGIN
HEGINAEVAKGQWEFQIFGKGSKKAADEIWMARYLLQRLTEKYGIDIEYHCKPLG
DTDWNGSGMHCNFSTKYMREVGGKEYFEALMAAFEKNLNEHIAVYGPDNHMRL
TGKHETAPWNKFSYGVADRGASIRVPHSFIKNDYKGYLEDRRPNSQGDPYQIASQ
VLKTVSEVPTGAEASAAA 


