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Abstract

Cranial vault remodeling, a form of skull surgery is currently performed according to intuition developed

over years of experience. The problem of how to best perform this surgery has not yet thoroughly been

studied by computer scientists.

In this thesis we provide a mathematical formulation of a simplified version of cranial vault remodeling

surgery, and prove NP-hardness for our formulation. We then provide several heuristics and test their

performance in an experimental study.
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Chapter 1

Introduction

The motivation behind the work contained in this thesis is to develop algorithmic surgical solutions for

children born with a condition called craniosynostosis. Normally, when a child is born, their skull’s bones

have not yet been fused. During normal development, the cranial bones will fuse between 12 and 18 months

[4]. This delay allows the infant’s brain to grow rapidly during the first few months of the infant’s life.

An individual with craniosynostosis has one or more of these sutures fuse prematurely. If left untreated,

as an affected infant’s brain develops, their skull will become deformed because the closed sutures restrict

growth. Also, there could be increased pressure on the brain leading to other complications, including mental

development [5]. See Figure 1.1 for images of affected individuals. This condition affects approximately 1 in

every 2000 infants [6], and most cases require surgical intervention to treat.

There are different types of surgeries that a craniosynostosis patient may undergo. The decision of which

procedure(s) to perform will depend on several factors. These include the age of the patient, the severity

of the case, and which sutures have fused [7]. In any such procedure, the general approach is to break or

Figure 1.1: Infants affected by craniosynostosis [1].
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Figure 1.2: (i) Location of the bandeau, (ii) Template of proper bandeau shape, (iii) Patient bandeau
attached to template [2].

weaken the bones and remodel them. It is informative to discuss different types of performed surgeries. One

such procedure is the remodeling of the front-orbital bandeau, a segment of bone running horizontally across

the forehead just above the eyes (see Figure 1.2 (i)). The authors of [2] have developed normative bandeau

shapes as in Figure 1.2 (ii), that they use as templates while performing surgery. They remove the bandeau

during the procedure, after which incisions are made vertically along the bandeau’s length. The skull can

then be bent and reshaped into a form as close to that of the template as possible (see Figure 1.2 (iii)). We

will call each region of the bandeau between two incision points or between one end of the bandeau and one

incision point a bandeau / bone segment or bandeau / bone piece. Following reshaping, the surgeon places

the reshaped bandeau into the infant’s skull in the same location from which it was removed. This procedure

is often called fronto-orbital advancement or reshaping and can be performed alone or as part of a larger

remodeling operation. Note here that surgeons do not break the bandeau into separate pieces at the incision

points. The incisions made to the skull make it more malleable, allowing it to be bent into the desired form.

We are also interested in the more general cranial vault remodeling surgery. The cranial vault is the area

formed by the skull, containing the brain. This procedure involves making incisions over a larger area of the

skull, after which bone pieces are created by separating the skull into pieces along the incisions. The surgeon

then places a subset of these pieces back into the infant’s head in a pattern that attempts to emulate how

the baby’s skull should look at the current stage of their development [8]. We discuss the required properties

of this pattern in the following paragraph. See Figure 1.3 for a visualization of the procedure.

When performing either remodeling procedure, the surgeon will have two objectives: First, limit the

time required to complete the surgeries. This objective is necessary because we would like to minimize the

duration of the infant’s anesthetization period, leading to reduced risks for the baby and financial costs.

This restriction is captured by cutting and replacing only a small number of bone segments into the head.
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Figure 1.3: Before and after sketches of the cranial vault remodelling surgery. [3]. The dotted lines in the
before image display incisions.

It should be noted that some pieces will take slightly longer than others to cut so that our model will not

capture our objective precisely. However, in practice, this is a good enough approximation because most

cuts the surgeons make will be straight. The second objective is to replace bone segments onto the infant’s

skull in a pattern that best models a normal skull’s shape. The authors in [2] have also created a library of

normative skull shapes for different age categories. How well a pattern of replaced bone segments matches

a normative shape is judged along several criteria. Each placed skull piece should closely match the form of

a normal infant’s skull over the entire location of the brain that it covers. Also, we want to place the pieces

in such a fashion that, together, they cover enough of the brain to fuse later, forming a complete skull. In

practice, any areas of the vault left exposed should be small so that the pieces can grow later, covering these

gaps. We will refer to these two criteria as fit and coverage.

The authors in [9] provide a dynamic programming approach for surgeons performing a fronto-orbital

advancement procedure. As noted above, surgeons do not separate the bone segments during this procedure.

As a result, they do not reorder segments along the length of the bandeau. However, the surgeons may

alter the created bone segments’ order during the cranial vault remodeling procedure. This change does

not allow us to extend the dynamic programming approach given in [9] for the cranial vault remodeling

procedure. In this thesis, we study a hybrid of the two surgeries of interest to understand the cranial vault

remodeling problem, namely fronto-orbital advancement with rearrangement. This procedure is the same

as the fronto-orbital advancement procedure, except that the surgeon may separate the bone segments and

rearrange their order along the bandeau’s length.
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1.1 Thesis Outline

In chapter 2 we give a mathematical formulation which we call (CRPR) for the fronto-orbital advancement

with rearrangement procedure. We also formalize a related problem which we call (CRPRPS), where the

skull pieces have already been cut, and the surgeon need only place them. Our formulation is a minimization

problem, penalizing a lack of fit between pieces of the deformed bandeau and the segment of the template

they cover and penalizing leaving areas of the template uncovered or covered multiple times by bone. We

then review fundamental concepts from complexity theory and combinatorial optimization such as greedy

algorithms, local search algorithms, and primal-dual algorithms.

In chapter 3, using a pseudo-polynomial reduction from 3-Partition, we prove that (CRPR) is strongly

NP-complete, meaning that we cannot likely find an efficient algorithm to solve it. By the same result, we

show (CRPRPS) is also strongly NP-complete. Without further simplification, a corollary gives us the result

that we cannot likely find an efficient algorithm with an efficiently computable approximation guarantee for

instances of (CRPR) or (CRPRPS).

To overcome our inapproximability results, in chapter 4 we propose a modification to our cost function,

for which only hardness is maintained. The modification leaves us with a maximization problem in which we

are rewarded for covering segments of the template, but again are penalized for a lack of fit between pieces

of the deformed bandeau and the segment of the template they cover and covering areas of the template

multiple times by bone. We formulate both (CRPR) and (CRPRPS) as an optimization problem over an

independence system with this modification. We then use the standard greedy approach and modify it to

improve performance when applied to instances of (CRPR). We also reduce (CRPRPS) to a resource allo-

cation problem, for which we can apply the tools developed by the authors in [10] to get a 1
2 -approximation.

We then offer a local search heuristic and try to improve it using primal-dual techniques.

Chapter 5 gives an experimental study which compares how our approaches perform on practical in-

stances. Our primal-dual techniques outperform the other heuristics outputting solutions that are within

10% of optimal most of the time. We did not observe an instance with a performance ratio below 50% of

optimal. Together our results suggest that our methods warrant further study.

Throughout, we highlight leads on future directions for research.
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Chapter 2

Preliminaries

In this chapter, we formulate how to best perform a fronto-orbital advancement with rearrangement proce-

dure as a mathematical problem. Also, we review the necessary concepts from optimization required for our

work.

We first define some of the basic notation we will use throughout this thesis. For a positive integer n,

we will use [n] to denote the set of integers from 1 to n. Also, for a set S and a positive integer n, where

|S| ≥ n, we will use the notation
(
S
n

)
to denote the set of all subsets of S of size n.

2.1 Basic Definitions

In section 2.2, we will use the terminology defined in this section to construct a formal mathematical model

for the fronto-orbital advancement with rearrangement procedure.

2.1.1 Curves

We will use a particular class of curves in our work, for which we provide the formal definitions here.

Definition 1 (Line Segment). A line segment is a set of points that can be expressed as a set L = {(x, y) :

x = λx′ + (1− λ)x′′, y = λy′ + (1− λ)y′′, λ ∈ [0, 1]} for some (x′, y′), (x′′, y′′) ∈ R2.

Definition 2 (Piecewise-Linear Curve). A piecewise-linear curve is a series of connected line segments

defined by a list of points H = [(x0, y0), . . . , (x|H|−1, y|H|−1)], where the line segments of h are those defined

by the endpoints (xi, yi) and (xi+1, yi+1) for i ∈ {0} ∪ [|H| − 2].

5



Definition 3 (Piecewise-Linear Function). A piecewise-linear function is a piecewise-linear curve that can

also be expressed as the set of points C, where C = {(x, y) : y = f(x), ` ≤ x ≤ r} for some `, r ∈ R where

f : R→ R is a function.

For a piecewise linear curve h defined by a H, we call H the discretization of h. The left endpoint of a

curve h is the first point in its discretization, denoted L(h). Similarly, the right endpoint of a curve h is the

last point in the discretization, denoted R(h). For any point (x, y) ∈ h we let x((x, y)) = x and y((x, y)) = y.

We say that a list of points are consecutive in H if they appear consecutively in H. We say that a list of

line segments L of h are consecutive if every pair of line segments appearing next to one another in L share

an endpoint.

Definition 4 (Simple Piecewise-Linear Curve). A piecewise-linear curve is simple if only consecutive line

segments intersect, and only at their endpoints.

We now define for any curve h, a natural ordering ≺h on the points of h. Since all elements of h lie on

some line segment between (xi, yi) and (xi+1, yi+1) for some i ∈ {0}∪ [|H|−2], we can express each (x, y) as

λ(xi, yi) + (1− λ)(xi+1, yi+1)

where λ ∈ [0, 1]. For (x, y), (x′, y′) ∈ h we say that (x, y) �h (x′, y′) in h if there exists i, i′ ∈ {0} ∪ [|H| − 1]

such that

(x, y) = λ(xi, yi) + (1− λ)(xi+1, yi+1)

and

(x′, y′) = λ′(xi′ , yi′) + (1− λ′)(xi′+1, yi′+1),

where i′ < i or where 0 ≤ λ ≤ λ′ ≤ 1 and i = i′. We denote this ordering by ≺h.

Note that a curve h is a subset of points in R2, and hence we can use standard subset notation writing

h1 ⊆ h2 if h1 contains only points that are also contained in h2.

Definition 5 (Curve Equality). We say that two curves h1, h2 are equal if h1 ⊆ h2 and h2 ⊆ h1. We denote

this h1 = h2.

Note that if h1 and h2 are two equal curves, they may still have different discretizations.

6



Figure 2.1: (i) Visualization of a curve, and (ii) a corresponding curve segment

2.1.2 Curve Segments

In this thesis, for a curve h we will often be interested in a subsets of h that take a particular form. We will

call a subset of a curve that takes our desired form a curve segment. Here we provide the formal definition

of curve segment and some related definitions and notation.

Definition 6 (Curve Segment). Given a curve h, with discretization H = [(x0, y0), . . . , (x|H|−1, y|H|−1)], a

curve segment h′ of h is any curve with discretization H ′ such that

H ′ = [(x, y), (xi, yi), . . . , (xi′ , yi′), (x
′, y′)],

where (x, y), (x′, y′) ∈ h , i, i′ ∈ [|H| − 2] satisfy

(x, y) ≺h (x′, y′),

(xi−1, yi−1) �h (x, y) ≺h (xi, yi)

and

(xi′ , xi′) ≺h (x′, y′) �h (xi+1, yi+1).

Please see Figure 2.1(i) for a visualization of a curve, and Figure 2.1(ii) for a visualization of a curve

segment.

Note that given h only two elements of h are necessary to fully define any curve segment h′, namely the

left and right endpoints of h′ respectively. If L(h′) = (x, y), R(h′) = (x′, y′) we call h′ the curve segment of

h restricted to (x, y) and (x′, y′), denoted h|(x,y),(x′,y′).

Definition 7 (Adjacent Curve Segments). Suppose h is a curve, and h′ and h′′ are curve segments of

7



h. We say that h′ and h′′ are adjacent in h if h′ = h|(x,y),(x′,y′) and h′′ = h|(x′,y′),(x′′,y′′) for some

(x, y), (x′, y′), (x′′, y′′) ∈ h such that (x, y) ≺h (x′, y′) ≺h (x′′, y′′).

In Figure 2.1(i), the curve segments h(x0,y0),(x1,y1) and h(x1,y1),(x4,y4) are adjacent curve segments, because

the right endpoint of h(x0,y0),(x1,y1) equals the left endpoint of h(x1,y1),(x4,y4).

We will next define an operation which takes a curve, and creates curve segments.

Definition 8. Let h be a curve and p1, . . . , pk ∈ h such that p1 ≺ · · · ≺ pk. If we separate h at p1 ≺ · · · ≺ pk

we create segments

hL(h),p1
, hp1,p2

, . . . , hpk,R(h).

In the case that p1 = L(h) we exclude hL(h),p1
, and in the case that pk = R(h) we exclude the element

hpk,R(h).

We say that curve segments ha,b, hc,d of h can be formed using the same separation operation if b �h c

or d �h a. In otherwords there is no curve segment of h contained in both ha,b and hc,d.

For a curve h and a list H̄ of points in h ordered with respect to ≺h, we let h/H̄ denote the curve segments

formed by separating h at H̄. We call the elements of h/H̄ unit segments or unit intervals of h with respect

to H̄.

For an example take h to be the curve in Figure 2.1(i). If we set H̄ = {(x0, y0), (x1, y1), (x4, y4)}, then

h/H̄ would contain the curves h(x0,y0),(x1,y1) and h(x1,y1),(x4,y4).

In future sections we will use i to denote the ith element of H̄ for i ∈ {0}∪ [|H̄|−1]. We will use x(i), y(i),

if we wish to discuss the specific x or y coordinates of point i. Using this notation we can use h|i,i+1 to

denote the curve segment in h/H̄ obtained by restricting h to points i and i+ 1 of H̄ for i ∈ {0} ∪ [|H̄| − 2].

To simplify our notation even further, we will also use the set {0} ∪ [|H̄| − 2] to refer to element h|i,i+1 of

h/H̄ . It will be clear from context if we using an index i to refer a point or to a unit segment.

In our above example we would then use the integers 0, 1 and 2, respectively, to refer to the elements

(x0, y0), (x1, y1), and (x4, y4) of H̄, and we would also use the integers 0 and 1, respectively, to refer to the

curve segments h(x0,y0),(x1,y1) and h(x1,y1),(x4,y4).

2.1.3 Moving Curves

In addition to separating curves we will be interested in operations that move curve segments in the plane.

In this section we give the formal definitions of these operations.

8



Figure 2.2: (i) Curves f and g, (ii) curves f ′ and g, (iii) curves fg and g

Definition 9 (Curve Translation). Given a curve h, with discretization H, the translation of h by (tx, ty) ∈

R2, is the curve h′ defined by discretization H ′ = [(x+ tx, y + ty) : (x, y) ∈ H].

If we translate h to a point (x, y), we mean the translation of h by (tx, ty), where (tx, ty) is chosen so

that the left endpoint of h′ is (x, y).

Definition 10 (Curve Rotation). Given a curve h, with discretization H, the rotation of h by θ ∈ [−π2 ,
π
2 ], is

the curve h′ defined by discretization H ′ = [r((x, y)) : (x, y) ∈ H], where r((x, y)) returns the point obtained

by rotating (x, y) by θ radians around L(h).

Definition 11 (Curve Matching). Suppose we are given one fixed curve g, and another curve f , with

discretizations G and F respectively. Matching f to g is the operation by which we obtain the curve fg through

the following sequence of operations. First translate f to L(g) to obtain f ′. From there let θ ∈ [−π2 ,
π
2 ] be the

angle obtained by rotating the vector R(f ′) − L(f ′) onto the vector R(g) − L(g). We obtain fg by rotating

f ′ by θ around L(f ′). See Figure 2.2 for a visualization. We may also say that f is placed over g.

2.2 Mathematical Formulation

We now provide a mathematical formulation with which we study the fronto-orbital advancement with

rearrangement procedure introduced in Section 1; we will refer to this framework as the Curve Reshaping

Problem with Rearrangement (CRPR).

As a thin segment of bone characterizes the bandeau, we can describe its shape by a curve. In an instance

of (CRPR), we are given as input an ideal curve g with discretization G and a subset Ḡ of G. The curve

g will play the role of the template used in the fronto-orbital advancement procedures. We are also given

a deformed curve f with discretization F and subset F̄ of F , which represents the shape of the affected

infant’s bandeau. We will model the notion of making incisions along the infant’s bandeau by separating the

curve f into segments. We will model the notion of placing the resulting pieces of bone along the template
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by matching a subset of the resulting segments of f to segments of g. We will be interested only in segments

of f that can be formed by separating f along a subset of points in F̄ and matching to segments of g that

can be formed by separating g at a subset of points in Ḡ.

As previously mentioned, it is desirable to limit the number of cuts we are permitted to make. Hence

we are given a parameter k ≥ 0, indicating that we will be allowed to match at most k segments of f to

g. Since at most 2k cuts are required to create any k feasible segments of the deformed bandeau, the two

decisions are correlated. Given a parameter k we will select a subset of points to separate f along forming

a set of curve segments from which we will select k′ pieces, for some k′ ≤ k and place a subset of these on

our ideal curve. As a result, our first decision is to select k′ pairs of points

{(a0, b0), . . . , (ak′−1, bk′−1)} ⊆
(
F̄

2

)
(2.1)

such that we can apply the same separation operation to obtain the pieces in equation (2.2).

{f |a0,b0 , f |a1,b1 . . . , f |ak′−1,bk′−1
} (2.2)

The curve segments in equation 2.2, will be indexed by the set {0} ∪ [k′ − 1], which we will refer to as J .

The choice of J is made so that we must not always list the elements in equation (2.1), when the decision of

where to cut is made. To complete the solution we must select J∗ ⊆ J and match each deformed segment

in J∗ to a segment of g. This corresponds to selecting pairs of elements of Ḡ as in equation (2.3).

(`j , rj) ∈
(
Ḡ

2

)
, for each j ∈ J∗. (2.3)

The elements in equations 2.1 and 2.3 are sufficient to describe a solution S to an instance of (CRPR).

In this thesis, we will also study the problem where the choice of where to separate f has already been

made. This problem will be called Curve Reshaping Problem with Rearrangement and Pre-cut Segments

(CRPRPS). A solution to (CRPRPS) requires only the elements in equation 2.3.

When discussing a solution S, and a piece j ∈ J the choice to place f |aj ,bj over g|`j ,rj can be described by

the tuple (j, `j , rj) or (aj , bj , `j , rj). We call such tuples placements, as they represent the choice of placing

f |aj ,bj over g|`j ,rj . If S includes the placement (j, `j , rj) we say Sj = (`j , rj), or equivalently (j, `j , rj) ∈ S.

If piece j is not included in S, we say Sj = ∅.

We introduced the notions of fit and coverage in section 1 when we discussed the desired qualities our

10



remodeled skull has. We will introduce the cost function c to evaluate fit and the cost function µ to evaluate

coverage.

The fit function c takes as input a curve segment of f and a curve segment of g and evaluates how well

they would fit together if they were matched. As previously mentioned, such a measure should take into

account the similarity of size and form of a pair of segments. Formally,

c :

(
F̄

2

)
×
(
Ḡ

2

)
→ R≥0 ∪ {∞},

where for (a, b) ∈
(
F̄
2

)
, (`, r) ∈

(
Ḡ
2

)
, c(a, b, `, r) = 0 would indicate a perfect fit of f |a,b to g|`,r, while

c(a, b, `, r) =∞ would indicate that f |a,b cannot be fit to g|`,r.

To formalize the definition of µ, we first introduce some terminology. For a piece j ∈ J and (`, r) ∈
(
Ḡ
2

)
we say that the placement (j, `, r) covers segments `, . . . , r − 1 of g/Ḡ. The coverage function will take the

form,

µ : g/Ḡ × Z≥0 → R≥0 ∪ {∞},

where µ(i, z) returns a quantity evaluating how undesirable it is to cover interval i ∈ g/Ḡ by z segments

of f . In particular µ should satisfy µ(i, 1) = 0 for all i ∈ g/Ḡ, so that it is not undesirable to cover an

interval one time. In addition, for z′ > z ≥ 1, we should have µ(i, z′) ≥ µ(i, z) as it is undesirable for our

application to cover an interval multiple times. Since µ(i, 0) ≥ µ(i, 1) for all i ∈ g/Ḡ we say that we collect

the reward µ(i, 0) for covering interval i. Note that µ does not capture the idea that the area of consecutive

unit segments left exposed should not be too large as mentioned. Instead µ only penalizes the total area left

exposed. We will see in chapter 3 that even with this simplifying assumption (CRPR) and (CRPRPS) are

hard.

For a solution S to (CRPR) or (CRPRPS) we let covS(i) be the number of pieces in J∗ that cover i ∈ g/Ḡ.

If two placements both cover some i ∈ g/Ḡ we say they overlap with one another. If we wish to be more

specific we may say they overlap at i. If two placements overlap with one another or are placements of the

same piece we say that they interfere with one another.

The cost of S is given in equation (2.4).
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Cmin =
∑
j∈J∗

c(aj , bj , `j , rj) +
∑
i∈g/Ḡ

µ(i, covS(i)). (2.4)

We may equivalently express the quantity c(aj , bj , `j , rj) as c(j, `j , rj).

Amongst all solutions S, we wish to pick one that minimizes the quantity in (2.4). See section 2.2.2 for

a description of the cost functions we use in practice. In the future for each piece j ∈ J we will let Pj be

the set of all placements that piece j can be fit to. Formally,

Pj = {(`, r) ∈
(
Ḡ

2

)
: c(j, `, r) <∞}.

2.2.1 Representing Inputs and Problem Size

We will assume that the values for c or µ for a given instance will be rationals. The functions c and µ are

presented as arrays. It is clear that the input size of an instance of (CRPR) or (CRPRPR) is O(b(|G|2|F |2)),

where b is the largest bit size of any element of in G,F or the outputs of c and µ. We may assume that

k ≤ |F̄ | − 1, because we cannot cut more than |F̄ | − 1 pieces from f . As a result, the quantity O(b(|F |))

bounds the encoding size of any solution S. With the assumption that k ≤ |F̄ | − 1, any algorithm that

allows us to find the optimal solution for matching exactly k segments of f to g will result in an algorithm

for matching at most k segments of f to g with the same run-time aside from a factor of |F |. Thus when

suitable, we may choose to assume that the number of pieces cut by a solution, k′ equals k.

2.2.2 Proposed Cost Functions

In this section we will discuss different cost and fit functions used throughout this thesis.

Cost Functions for Experimental Study

We will use the cost functions c, µ given in this section for our experimental studies.

For (a, b) ∈
(
F̄
2

)
, (`, r) ∈

(
Ḡ
2

)
, we want c(a, b, `, r) to give us a measure of how well the section of the

deformed skull corresponding to f |a,b models the section of the template corresponding to g|`,r. If f |a,b and

g|`,r are not similar in size, then the two segments are clearly not a good match. To model this we define

the quantity m(a, b, `, r) as follows. Let E2(x, y) denote the standard Euclidean distance between x and

y. We will call the Euclidean distance of a curve the Euclidean distance between its endpoints. We define
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Figure 2.3: Taking f = f |a,b and g = g|`,r, (i) Curves f and g, (ii) curves fh and gh, with the green shaded
area being c(a, b, `, r)

m(a, b, `, r) in equation (2.5).

m(a, b, `, r) =
E2(a, b)

E2(`, r)
. (2.5)

If m(a, b, `, r) > 1 + δ or m(a, b, `, r) < 1− δ, for some fixed δ ≥ 0 we say f |a,b cannot be fit to g|`,r and we

set c(a, b, `, r) =∞. The motivation for this choice of m is that we wish only to cover areas of the template

with segments of the deformed bandeau that are similar in size.

Otherwise 1 − δ ≤ m(a, b, `, r) ≤ 1 + δ, and we are satisfied that f |a,b and g|`,r are sufficiently similar

in size. In order to measure of how well the section of the deformed skull corresponding to f |a,b models the

section of the template corresponding to g|`,r, we must look at how similar the curves f |a,b and g|`,r are over

their length. We propose to approximate the volume difference that would arise between the curve f |g|`,ra,b

obtained by matching f |a,b to g|`,r. Recall that we use fg to denote the curve obtained by matching f to g.

To approximate this quantity we do the following. Let h be the curve with discretizationH = [(0, 0), (M, 0)]

for some M > 0. Then we match f |a,b and g|`,r to h to get f |ha,b and g|h`,r. We will only allow instances of

input curves f and g, such that for any curve segments f ′ and g′ of f and g, if we match f ′ and g′ to h, to

obtain f ′h and g′h, that f ′h and g′h are piecewise-linear functions.

Let t be the smallest x coordinate among R(f |ha,b) and R(g|h`,r). Since f |ha,b and g|h`,r are functions the

value c(a, b, `, r) in equation (2.6) is well defined

c(a, b, `, r) =

∫
0,t

abs(f |ha,b(x)− g|h`,r(x))dx, (2.6)

where abs(·) = | · |. Please see Figure 2.3 for an illustration of c(a, b, `, r).

We now construct our choice of function µ. We will do this in such a way as to penalize solutions
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proportional to the size of the total area they leave exposed. Formally, let (xi, yi) and (xi′ , yi′) be two

consecutive elements of Ḡ, where the indices i, i′ are chosen with respect to the index of the points in G. We

take µ as defined by equation (2.7). This function gives a measure of the distance traveled if one traverses g

from (xi, yi) to (xi′ , yi′), which is reasonable for our application as we wish to cover as much area as possible.

µ(i, z) =


α ·
∑i′−i−1
p=0 E2((xi+p, yi+p), (xi+p+1, yi+p+1)), if z = 0

0, otherwise.

(2.7)

Cost Functions for Algorithms and Heuristics

The algorithms and heuristics we provide do not require the specific properties of cost functions given in

section 2.2.2. It would be interesting in future research to determine if any properties of the cost functions

given in section 2.2.2 could be exploited in some way to prove or improve guarantees or to modify our

approaches. In general our approached will assume that the cost and fit functions follow the structure given

in section 2.2, with the added restriction that for any interval i ∈ g/Ḡ µ(i, 0) takes on any non-negative

real value. This corresponds to rewarding coverage without insisting that the interval i be covered. When

discussing algorithms and heuristics, we will restrict our discussion to situations in which µ(i, z) = 0 for all

z ≥ 1. In this case, µ only differentiates between a solution that covers an interval and one that does not.

We feel this choice of µ is most relevant for our application because once the surgeon has placed the bone

segments, they may trim overlapping pieces with little additional time requirement. It should be noted that

in some of the algorithms and heuristics given in chapter 4, one could modify this assumption to allow for

other variations.

2.2.3 Summary of Notation

In this section we provide a summary of the notation we use to describe solutions of an instance I of (CRPR)

or (CRPRPS).

Table 2.1: Relevant Notation

Symbol Definition

J The set of segments of the deformed curve cut by a solution S to (CRPR) or (CRPRPS).
J∗ The subset of segments of the deformed curve placed by a solution S to (CRPR) or (CRPRPS).
Pj The set of placements of a piece j ∈ J that have finite cost.
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2.3 Review

In this section, we review the necessary but widely known background knowledge.

2.3.1 Complexity

We will use this section to provide the necessary background material to show that we likely cannot find an

efficient algorithm to solve instances of (CRPR) or (CRPSPS). We will provide an informal overview of the

required definitions and theorems from complexity theory.

It will be important for us to describe a class of problems called number problems. We will illustrate this

concept through examples. The definitions will be taken from [11]. First we consider the Hamilton Cycle

Problem. In an instance of Hamiltonian cycle we are given a graph G = (V,E), we ask whether or not there

is an ordering v1, . . . , vn of V , the vertices of G, where n = |V | such that vnv1 ∈ E and vivi+1 ∈ E for each

i ∈ [n − 1]. The second problem we consider is Partition. In an instance of Partition, we are given a finite

set A and function s : A→ Z≥0, and ask whether there is some A′ ⊆ A such that

∑
a∈A′

s(a) =
∑

a∈A\A′
s(a).

The following is taken from [12]. Given an instance of a problem we will be interested in describing or

encoding it using bits, which computers operate on. Bits take on values 0 and 1 and any number of N can

be encoded in binary using a sequence of log(N) bits. If a number N is encoded in unary it can be encoded

in N bits. For a number N , we will use poly(N) to mean some polynomial in N .

We return to our discussion of problems. In order to encode an instance I of Hamiltonian cycle we need

only describe the set of vertices using the integers from 1 to n, where n = |V |, and since there are at most(
n
2

)
edges in E we require at most O(n2) numbers to encode I, where each number is also bounded by n. On

the other hand for an instance I ′ of Partition, we can encode A using n′ numbers, where n′ = |A|. However,

s(a) need not be bounded by O(poly(n′)).

Definition 12 (Number Problem). A problem is called a number problem if the numbers used to describe

a generic instance can be arbitrarily large compared to the number of bits required to encode the instance in

binary.

Given a problem Π, we refer to the input-size of an instance I of Π as the number of bits n required

to encode I in binary. We will also refer to the numeric-size of an instance I of Π as the number of bits

15



N required to encode I in unary. An algorithm taking an instance I of Π as input can be completed in

polynomial-time if the number of steps required to complete the algorithm is O(poly(n)). An algorithm

taking an instance I of Π as input can be completed in pseudo-polynomial-time if the number of steps

required to complete the algorithm is O(poly(N)).

We now introduce the class of problems NP.

Definition 13 (Decision Problem). A problem Π is a decision problem if for any instance I of Π, solving

I can be posed as asking whether or not I is a yes or no instance of Π.

Definition 14 (Efficient Certifier). A decision problem Π, with input-size n has an efficient certifier B, if

B satisfies the following two conditions. First, B is algorithm takes as input an instance I of Π and a proof

p and runs in O(poly(n)) number of steps. Second, I is a yes-instance of Π if and only if there exists a proof

p, that is O(poly(n)), for which B(I, p) returns yes.

The problems belonging to the class NP, are precisely those decision problems with an efficient certifier.

Next, we wish to classify the problems, which are NP-complete.

Definition 15 (Polynomial-Time Reduction). A polynomial-time reduction from decision problem Π to a

decision problem Π′, is an algorithm that can solve instances I of Π with input-size n in O(poly(n)) steps,

plus O(poly(n)) calls of a black-box algorithm, that solves any instance I ′ of Π′ of input-size n′ in O(poly(n′))

steps.

For such Π and Π′, we say that Π is polynomial-time reducible to Π′. The class of NP-complete

problems are those problems Π′ that are members of NP, and for all problems Π ∈ NP, Π is polynomial-

time reducible to Π′. It is widely accepted that there do not exist polynomial-time algorithms to solve

NP-complete problems.

The following is taken from [11]. A problem is said to be strongly NP-complete if it remains NP-

complete, for instances I, with numeric size N , that is bounded by some polynomial of its input size n. In

other words, strongly NP-complete problems remain NP-complete even when they are encoded in unary.

One strongly NP-complete problem is 3-Partition defined next.

Definition 16 (3-Partition). In an instance of 3-Partition the input is a set A of 3m elements for a positive

integer m. We will also be presented with a weight function s : A → Z≥0 such that B
4 < s(a) < B

2 for all

a ∈ A, such that
∑
a∈A s(a) = mB where B is a positive integer. We wish to determine if there exists a

partition of A into m sets A1, . . . , Am such that for each i ∈ {1, . . . ,m} we have that
∑
a∈Ai s(a) = B. Note
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that the restriction B
4 < s(a) < B

2 for all a ∈ A implies that |Ai| = 3 for all i ∈ [m]. If such a partition

exists, we say the instance is a yes-instance of 3-Partition, and a no-instance otherwise.

Theorem 1. 3-Partition is strongly NP-complete.

To apply Theorem 1, we require the notion of a pseudo-polynomial reduction, which is formally defined

in Definition 17.

Definition 17 (Pseudo-Polynomial-Time Reduction). A pseudo-polynomial-time reduction from decision

problem Π to a decision problem Π′, is an algorithm that can solve instances I of Π with numeric-size N

in O(poly(N)) steps, plus O(poly(N)) calls of a black-box algorithm, that solves any instance I ′ of Π′ of

input-size n′ in O(poly(n′)) steps.

Lemma 1. If Π is strongly NP-complete, and Π′ ∈ NP, and there exists a pseudo-polynomial transforma-

tion from Π to Π′, then Π′ is strongly NP-complete.

Taking Π to be 3-Partition, we may then apply Lemma 1 to show that another problem Π′ is strongly

NP-complete. We now provide an intuitive explanation. Note that one can scale the input and numeric

sizes of instances by constants without affecting the above definitions. We see that a suitable quantity for

the input-size n of an instance of 3-Partition is mlog(B), while a suitable quantity for the numeric size N of

an instance of 3-Partition is mB. Since 3-Partition, restricted to instances where mB = O(poly(mlog(B))

remains NP-complete, to prove that a problem Π′ is strongly NP-complete it suffices to give a reduction

from 3-Partition to Π′ that is polynomial in quantity mB. In chapter 3 we will use these results to show

that (CRPR) and (CRPRPS) are strongly NP-complete.

2.3.2 Greedy Algorithms and Independence Systems

Definition 18 (Independence System). An independence system is a system (E, I) where E is a set of

elements referred to as the ground set, and I ⊆ 2E satisfying the properties, ∅ ∈ I, and if I ∈ I and I ′ ⊆ I,

then I ′ ∈ I. The elements of I are referred to as independent sets.

An element I ∈ I is called maximal if there is no element e ∈ E \ I such that I ∪ e ∈ I.

Definition 19 (Basis). For E′ ⊂ E, a basis of E′ is a maximal independent set contained in E′.

Definition 20 (Rank). For E′ ⊂ E, the rank of E′ is size of the largest basis of E′, denoted r(E′).
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For E′ ⊂ E, we let the quantity ρ(E′) denote the size of the smallest basis of E′

In this thesis we will reference the standard maximization problem on independence systems. In such a

setting we are given an independence system (E, I) and a weight function

w : E → R,

and we wish to find an independent set I ∈ I that maximizes the quantity

w(I) =
∑
e∈I

w(e).

Definition 21 (Rank Quotient). An independence system (E, I) is said to have rank quotient

k = min
E′⊂E,r(E′) 6=0

ρ(E′)

r(E′)
.

The standard greedy algorithm, referred to as the Best-In-Greedy Algorithm in [13] is given in Algorithm

1.

Algorithm 1 Best− In−Greedy((E, I), w)

1: Let E = {e1, . . . , en}, where w(e1) ≥ · · · ≥ w(ek)
2: I ← ∅
3: for i ∈ [n] do
4: if I ∪ ei ∈ I then
5: I ← I ∪ ei

return I

Theorem 2. For an independence system (E, I) with rank quotient k, Algorithm 1 returns a solution I such

that

w(I)

w(O)
≥ k,

where O is the optimal solution [14, 15]. Clearly such an algorithm can be implemented in polynomial-time,

assuming that independence can be checked in polynomial time.

Note that in the case that an independence system has rank-quotient 1, Algorithm 1 will return an

optimal solution. Such independence systems are called Matroids.
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2.3.3 Local Search and Primal-Dual Algorithms

Local search and primal-dual algorithms are standard optimization techniques. In each iteration, local search

algorithms explore a subset of a problem instance’s solution space by moving from one solution to another

that is ”close.” Defining solutions that are close to one another requires the concept of a neighbourhood. The

neighbourhood of a solution S denoted N(S) is usually defined by all the feasible solutions obtained from S

by making some small changes. One way to ensure a local search algorithm terminates in polynomial time,

is to require that each feasible solution must have a neighbourhood with polynomial size. One begins such

an algorithm with a feasible solution S and checks if there is some S′ ∈ N(S), that has a better objective

value. Once there is no local update to be made that can improve S, the algorithm terminates [12]. It is

often necessary to ensure that the objective function’s improvement is substantial after each update step

[16]. If no such requirement is made, we may be faced with a situation where the number of iterations of

local search is not bounded by any polynomial function in the problem’s input-size.

Primal-dual algorithms are based on the fundamental concept of complementary slackness. For general

instances of an NP-complete problem, and any known practical integer programming formulation of it, one

cannot obtain a solution to such an integer programming formulation that satisfies complementary slackness

with a solution to the dual of its linear relaxation. When designing primal-dual algorithms, the general

approach is to instead construct an integer feasible solution and a dual solution which satisfy a relaxed form

of complementary slackness. One choice of relaxation is for the solutions to satisfy primal complementary

slackness, where each non-zero primal variable has its corresponding dual constraint satisfied at equality [17].

Although local search algorithms are generally easy to design, as one only needs to define a neighbourhood,

it is often difficult to prove any performance guarantees. In these situations, one cannot say anything about

the quality of the local optimum that is attained. In section 4.3, we propose a local search heuristic, and

in section 4.4 we offer an additional primal-dual heuristic aimed at reducing the likelihood that we reach a

poor local optimum.
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Chapter 3

Complexity

This section aims to prove that for a general instance of (CRPR), deciding whether of not there is a solution

of cost M for any M ≥ 0 is a strongly NP-complete problem. We will call this the decision version of

(CRPR). We define the decision version of (CRPRPS) analogously. This result will also show that this

problem is difficult to approximate. As a corollary, we will show that the same results apply to (CRPRPS).

We will give a pseudo-polynomial reduction from 3-Partition to (CRPR). For ease of understanding, we

first offer an outline of the proof. Suppose we are given an instance I of 3-Partition with input parameters

A, s,m,B, as in definition 16. We construct an instance I ′ of (CRPR) as follows. The deformed curve f

will be created by translating and connecting curve segments at their endpoints with the following structure.

For each element z ∈ A, we will include in f a curve segment that is a straight line of length s(z). We will

also include in f some additional segments that are not straight lines. The ideal curve g is constructed in a

similar but modified fashion. It will include m copies of a straight line of length B. The additional segments

used to construct g will be translations of the same set of additional segments used to construct f . The

way we arrange our curve segments in each of f and g and assign the number of pieces we may select, k,

will give us the property that any 0 cost solution for the instance I ′ will map directly to a 3-Partition of I.

Conversely, we will be able to map any 3-Partition of I to a 0 cost solution for I ′.

We now proceed with a formal description of the instance I ′. Fix an arbitrary ordering on A the elements

of the 3-Partition instance. For p ∈ [3m], let zp be the pth element of A. For simplicity add an additional

element z0 to A such that s(z0) = 0. Select suitable rationals ε1, ε2 such that

1 < E2((0, 0), (1, ε1)) < E2((0, 0), (1, ε2)) < 2.
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Throughout this construction the reader will find Figure 3.1 helpful.

We create a function ηf defined over {0}∪ [m(B+ 8)] that we will use to define our discretization f . For

a visualization of ηf , see the points in Figure 3.1 (i). Essentially, we assign each element of {0}∪ [m(B+ 8)]

in order a value by doing the following. We iterate through our set A, and when considering an element

z ∈ A we define ηf for the next s(z) + 2 integers as follows. The first s(z) + 1 integers will have value 0,

and the final one will have value ε1. Once we have finished iterating through A we continue to define ηf ,

alternating between setting ηf (d) to ε2 and setting ηf (d) to 0 for the remaining 2m integers d over which ηf

is defined.

Formally, let ηf : {0} ∪ [m(B + 8)]→ {0, ε1, ε2} be defined in equation (3.1).

ηf (d) =


ε1, if d =

∑p
p′=0 s(zp′) + 2p− 1 for some p ∈ [3m]

ε2, if d = m(B + 6) + 2q − 1 for some q ∈ [m]

0, otherwise

(3.1)

Take f to be the curve defined by the discretization

F = [(d, ηf (d)) : d ∈ {0} ∪ [m(B + 8)]. (3.2)

See Figure 3.1 (i) for a visualization of the resulting deformed curve f , defined by F . Note that ηf (d) is

uniquely defined for each d ∈ {0} ∪ [m(B + 8)].

We create a function ηg defined over {0} ∪ [m(B+ 8)] that we will use to define our discretization g. For

a visualization of ηg, see the points in Figure 3.1 (ii). We assign each element of {0} ∪ [m(B + 8)] in order

a value by doing the following. First we complete the following process m times. We assign the next B + 1

integers the value 0 after which the next integer receives the value ε2. After this we continue to define ηg,

alternating between setting ηg(i) to ε2 and setting ηg(i) to 0 for the remaining 6m integers i over which ηg

is defined. Formally, let ηg : {0} ∪ [m(B + 8)]→ {0, ε1, ε2} be defined in equation (3.3).

ηg(i) =


ε2, if i = qB + 2q − 1 for some q ∈ [m]

ε1, if i = m(B + 2) + 2p− 1 for some p ∈ [3m]

0, otherwise.

(3.3)
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Figure 3.1: For an instance of 3-Partition with m = 2, B = 7 and a set A containing four elements of size 2
and two elements of size 3. (i) f , (ii) g

Take g to be the curve defined by the discretization

G = [(i, ηg(i)) : i ∈ {0} ∪ [m(B + 8)]]. (3.4)

See 3.1 (ii) for a visualization of the resulting deformed curve g, defined by G. Finally, take our sets Ḡ

and F̄ that we use to define our unit segments to be F̄ = F, Ḡ = G. We take k = 7m to be the number of

segments we may cut from the deformed curve. We take the fit and coverage functions described in Section

2.2.2, choosing parameter δ = 0 for c, and some α > 0, where α = O(mB) for µ. In particular when

matching a curve segment f ′ of f to a curve segment g′ of g, we take as our fit function c a volume difference

estimation of the area between the curve obtained by matching f ′ to g′ and g′ itself. Also our coverage

function µ will only penalize for unit segments i ∈ g/Ḡ left uncovered by a solution, and it does so by scaling

the Euclidean distance of the line segments left uncovered by α.

Following our notation from Section 2.1, we call the sets of curve segments f/F̄ and g/Ḡ the unit segments

of the deformed curve and the unit segments of the ideal curve, respectively. Recall that we have chosen to

rename the elements of f/F̄ and g/Ḡ, by their indices. As a result we will we will select integers

d ∈ {0} ∪ [m(B + 8)− 1]

to denote the dth curve segment of f/F̄ . Similarly, we will select integers

i ∈ {0} ∪ [m(B + 8)− 1]

to denote the ith curve segment of g/Ḡ.

We now partition f/F̄ and g/Ḡ according to their length. The reader will find Figure 3.2 helpful through-

out. For an element d ∈ f/F̄ we place d into one of fP , fE1 and fE2 as follows. If the endpoints d, d+ 1 ∈ F̄
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Figure 3.2: (i) fP in black, fE1 in blue, fE2 in red, (ii) gP in black, gE1 in blue, gE2 in red

of the curve segment d ∈ f/F̄ are such that ηf (d) = ηf (d + 1) = 0 we put curve segment d into fP . If the

endpoints d, d + 1 ∈ F̄ of the curve segment d ∈ f/F̄ are such that either ηf (d) = ε1 or ηf (d + 1) = ε1 we

put d into fE1 . Otherwise either ηf (d) = ε2 or ηf (d+ 1) = ε2 and we put d into fE2 . The analogous choices

are made for gE1 , gE2 , gP . The formal equations are given in (3.5).

fP = {d ∈ f/F̄ : ηf (d) = ηf (d+ 1) = 0}

fE1 = {d ∈ f/F̄ : ηf (d) = ε1 or ηf (d+ 1) = ε1}

fE2 =
{
d ∈ f/F̄ : ηf (d) = ε2 or ηf (d+ 1) = ε2

}
gP =

{
i ∈ g/Ḡ : ηg(i) = ηg(i+ 1) = 0

}
gE1 =

{
i ∈ g/Ḡ : ηg(i) = ε1 or ηg(i+ 1) = ε1

}
gE2 =

{
i ∈ g/Ḡ : ηg(i) = ε2 or ηg(i+ 1) = ε2

}

(3.5)

At this point it may be helpful to the reader that in section 2.1.1 we defined for each curve h an ordering

≺h on the points in h. Since f and g are functions, for h ∈ {f, g} we will have (x, y) ≺h (x′, y′) whenever

x < x′.

For this proof, we say that a solution S to I ′ maps the curve segment f ′′ to the curve segment h if

there is some curve segment f ′ that S matches to some curve segment g′ of g that satisfies the following

two properties. The first property is that there exists (u, v), (u′, v′) ∈ f ′ such that (u, v) ≺f (u′, v′) and

f ′′ = f ′|(u,v),(u′,v′). To describe the second property we first need some notation. For any point (u, v) ∈ f ′,

we let T ((u, v)) be the point (u, v) is transformed to after matching f ′ to g′. Using this notation, our final

property states that f ′g
′ |T ((u,v)),T ((u′,v′)) = h. To summarize, the curve segment f ′′ was transformed by S

so that it aligns perfectly with h.

We first prove Lemma 2, which follows by our choice of δ and simple calculus. It argues that a 0-cost

solution S will always map curve segments of f to curve segments of g.

Lemma 2. Suppose that S is a 0-cost solution to I ′. Suppose that S matches a curve segment f ′ of f to a
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curve segment g′ of g. Then we have that f ′g
′

equals g′. In particular for any curve segment of g′ there is a

curve segment of f ′ that is mapped exactly to g′.

Proof. Suppose that f ′ = f |a,b and g′ = g|`,r for some (a, b) ∈
(
F̄
2

)
, (`, r) ∈

(
Ḡ
2

)
. Let h be the curve segment

with discretization [(0, 0), (M, 0)] for some M > 0. Since δ = 0, we know that E2(a, b) = E2(`, r) and thus

when we match f ′ to h to get f ′h and g′ to h to get g′h we get that the left endpoints of f ′h and g′h are

equal. The same holds of the right endpoints of f ′h and g′h. Our choice of cost function will in this case

dictate that c(a, b, `, r) is precisely the area between f ′h and g′h. Since S is a 0-cost solution of I, we know

that (c, b, `, r) = 0 and hence f ′h = g′h. Since E2(a, b) = E2(`, r), the same transformation can be applied

to f ′g
′

and to g′ to match them to h. The resulting curves are indeed f ′h and g′h. As a result f ′g
′

= g′, and

for any curve segment of g′ there is a curve segment of f ′ that is mapped exactly to g′.

It will be helpful for the reader to recall that in addition to using i to denote segment i of the deformed

curve, we will also use i to denote point i in Ḡ. It will be clear from the context which one we are using.

When we wish to get the x and y-coordinates of point i we will call x(i) and y(i) respectively.

We now prove Lemma 3, which argues that any 0-cost solution will cover each element i ∈ gE1 , by

mapping an element in fE1 to i.

Lemma 3. Suppose S is a 0-cost solution to I ′ and i ∈ gE1 . Then there exists some interval d ∈ fE1 , such

that S maps interval d to interval i.

Proof. Since S is a 0 cost solution to I ′, there is no contribution from the term

∑
i∈g/Ḡ

µ(i, covS′(i)).

Since α > 0, we conclude that covS(i) ≥ 1 for all i ∈ g/Ḡ. Thus there exist some (a, b) ∈ F̄ , (`, r) ∈ Ḡ, such

that S matches f ′ = f |a,b to g′ = g|`,r, where ` �g i ≺g i + 1 ≺g r. By Lemma 2 we conclude that there

exist (u, v), (u′, v′) ∈ f ′ such that f ′|(u,v),(u′,v′) maps to interval i.

Suppose that the lemma does not hold. Then f ′|(u,v),(u′,v′) contains a curve segment of some d′ ∈ fP∪fE2 .

First suppose that f ′|(u,v),(u′,v′) contains a curve segment of some d′ ∈ fE2 . Since a, b ∈ F̄ we know that

a �f d′ ≺f d′ + 1 �f b.

Note that the Euclidean distance between the endpoints of interval i is E2((0, 0), (1, ε1)), but the Euclidean
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distance between the endpoints of interval d′ is E2((0, 0), (1, ε2)). Since

E2((0, 0), (1, ε2)) > E2((0, 0), (1, ε1))

and the segments of g adjacent to i do not lie on the same line as i, it must be the case that either f ′|d′,(u,v)

maps to a curve segment that is not a curve segment of g or f ′|(u′,v′),d′+1 maps to a curve segment that is

not a curve segment of g. In either case by Lemma 2 we conclude that no such d′ can exist.

Now suppose that f ′|(u,v),(u′,v′) contains a curve segment of some d′ ∈ fP . If a = d′ and b = d′ + 1,

then since the Euclidean distance between the endpoints of f ′|(u,v),(u′,v′) is at most the Euclidean distance

between the endpoints of curve segment d′, which is 1, we conclude that f ′|(u,v),(u′,v′) cannot map to the

interval i. As a result either a �f d′−1 and f ′|(u,v),(u′,v′) also contains a curve segment of d′−1 or d′+2 �f b

and f ′|(u,v),(u′,v′) also contains a curve segment of d′ + 1.

In the first case, by construction of f we know that d′ − 1 ∈ fP ∪ fE1 . If d′ − 1 ∈ fP we observe that

the Euclidean distance between the endpoints of interval i is E2((0, 0), (1, ε1)), but the Euclidean distance

between the endpoints of f ′|d′−1,d′+1 is 2. Since

E2((0, 0), (1, ε1)) < 2

and the segments of g adjacent to i do not lie on the same line as i, it must be the case that either f ′|d′−1,(u,v)

maps to a curve that is not a curve segment of g or f ′|(u′,v′),d′+1 maps to a curve that is not a curve segment

of g. By Lemma 2 we conclude that d′ − 1 ∈ fE1 . Note that segment i is a straight line, and f ′|(u,v),(u′,v′) is

not because f ′|d′−1,d′+1 is not a straight line. Thus a = d′ and d′+ 2 �f b, where f ′|(u,v),(u′,v′) also contains

a curve segment of d′+ 1. A similar analysis shows that this also cannot be the case. Thus no such d′ exists.

We conclude that f ′|(u,v),(u′,v′) contains only curve segments which are elements of fE1 . If f ′|(u,v),(u′,v′)

contains curve segments of consecutive elements d, d+ 1 in fE1 , then f ′|(u,v),(u′,v′) cannot be a straight line,

again contradicting Lemma 2. We conclude that f ′|(u,v),(u′,v′) only contains a curve segment of one interval

d ∈ fE1 . Note that since f ′|(u,v),(u′,v′) maps to i the endpoints of f ′|(u,v),(u′,v′) are separated by a Euclidean

distance of 1, which is also true of the endpoints of interval d. Thus f ′|(u,v),(u′,v′) is equal to the curve

segment d, as required.

A similar argument to that in the proof of Lemma 3 can be used to to prove Lemma 4.

Lemma 4. Suppose S is a 0-cost solution to I ′ and i ∈ gE2 . Then there exists some interval d ∈ fE2 , such
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that S maps interval d to interval i.

As a result of Lemma 3 and Lemma 4, we get Corollary 1.

Corollary 1. Suppose S is a 0-cost solution to I ′ and i ∈ gP . Then there exists some interval d ∈ fP , such

that S maps interval d to interval i.

Proof. By Lemma 3 each element of gE1 has at least one segment of fE1 mapped to it by S. Then since

|fE1 | = |gE1 |, S cannot map any curve segment of some segment d ∈ fE1 to a curve h that is not a segment

of some element i′ ∈ gE1 . An analogous statement can be made about the elements of gE2 and fE2 . Since

S is a 0-cost solution and α > 0, there is some segment f ′′ of f which maps to segment i of gP . We know

by our previous remarks that f ′′ contains exclusively elements of fP . Measuring Euclidean distances we see

that S must map one segment from fP to each segment of gP , as required.

We now define some families of curve segments of f and g. A curve is an ε1-triangle if it is a translation

of a curve with discretization [(0, 0), (1, ε1), (2, 0)]. A curve is the left half of a ε1-triangle if it is a translation

of a curve with discretization [(0, 0), (1, ε1)]. Similarly, a curve is the right half of a ε1-triangle if it is a

translation of a curve with discretization [(0, ε1), (1, 0)]. We give the analogous definitions for ε2-triangles.

We our now ready to prove the main result of this section, Theorem 3.

Theorem 3. The decision version (CRPR) is strongly NP-complete.

Proof. Note first that for an instance (CRPR), feasibility of any solution can be verified in polynomial time

because one must simply check that each pair of deformed curve segments given by the solution can be

obtained using the same separation operation. Thus the decision version of (CRPR) is in NP as one must

provide a solution with the claimed cost bound. The transformation from I to I ′ is computed in time

O(mB). As a result of our discussion in section 2.3.1, to show that (CRPR) is strongly NP-complete it

remains to show that I is a yes instance of 3-Partition if and only if I ′ has a zero-cost solution.

First suppose that I is a yes instance of 3-Partition. We create a solution S to I ′ of 0 cost. First,

Let (A1, . . . , Am) be a 3-Partition of A. Then
∑
z∈Aq s(z) = B for all q ∈ [m]. Now, for q ∈ [m] let

Ai = {zq1 , z
q
2 , z

q
3}. For simplicity let s(zq0) = 0 for q ∈ [m]. Assume that the ordering of A we fixed when we

created I ′ was such that zp equals zqt , where p = 3(q − 1) + t for t ∈ [3]. In other words we ordered A by

first listing the elements of A1, then the elements of A2, and so on.

We will use 3m pieces from our budget to cut all possible ε1-triangles from f , m pieces from our budget

to cut all possible ε2-triangles from f , and 3m pieces from our budget to cut segments that are lines of length
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z for each z ∈ A. Formally, for j ∈ {0} ∪ [k − 1] construct S by cutting f according to equations (3.6) and

(3.7), and placing the separated pieces according to equations (3.8) and (3.9). The reader may again wish

to consult Figure 3.2 for a visualization of how a, b, ` and r are selected. The pieces we cut are those that

have the maximal with respect to the property of containing consecutive segments of the same colour. Our

choice of ` and r is made so that our deformed pieces are mapped to ideal segments of the same colour.

aj =


(
∑ j

2

p′=0 s(zp′) + j, 0) j even , 0 ≤ j ≤ 6m− 1

(
∑ j+1

2

p′=0 s(zp′) + j − 1, 0) j odd , 0 ≤ j ≤ 6m− 1

(m(B + 6) + 2(j − 6m), 0) 6m ≤ j ≤ 7m− 1

(3.6)

bj =


(
∑ j+2

2

p′=0 s(zp′) + j, 0) j even , 0 ≤ j ≤ 6m− 1

(
∑ j+1

2

p′=0 s(zp′) + j + 1, 0) j odd , 0 ≤ j ≤ 6m− 1

(m(B + 6) + 2(j − 6m+ 1), 0) 6m ≤ j ≤ 7m− 1

(3.7)

`j =


((B + 2)(q − 1) +

∑t−1
t′=0 s(z

q
t′), 0) j even , 0 ≤ j ≤ 6m− 1, z j

2
= zqt

(m(B + 2) + j − 1, 0) j odd , 0 ≤ j ≤ 6m− 1

(B(j − 6m+ 1) + 2(j − 6m), 0) 6m ≤ j ≤ 7m− 1

(3.8)

rj =


((B + 2)(q − 1) +

∑t
t′=0 s(z

q
t′), 0) j even , 0 ≤ j ≤ 6m− 1, z j

2
= zqt

(m(B + 2) + j + 1, 0) j odd , 0 ≤ j ≤ 6m− 1

(B + 2)(j − 6m+ 1), 0) 6m ≤ j ≤ 7m− 1

(3.9)

To argue that c(aj , bj , `j , rj) = 0 for all j ∈ {0} ∪ [7m− 1], we partition the pieces in j ∈ {0} ∪ [7m− 1]

into three groups in equation (3.10).

P = {f |aj ,bj : j even , 0 ≤ j ≤ 6m− 1}

E1 = {f |aj ,bj : j odd , 0 ≤ j ≤ 6m− 1}

E2 = {f |aj ,bj : 6m ≤ j ≤ 7m− 1}

(3.10)

If j ∈ P then by construction of f , f |aj ,bj is a translation of the curve segment h with discretization

[(d, 0) : d ∈ {0} ∪ [s(z)]] for some z ∈ A. By construction of g, g|`j ,rj , is also a translation of h. Hence

c(aj , bj , `j , rj) = 0. Now if j ∈ E1, it follows that segment j is an ε1-triangle. By construction of g, the same
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is true of g|`j ,rj , hence c(aj , bj , `j , rj) = 0. An analogous argument is made for j ∈ E2.

By our choice of S it follows that covS(i) = 1 for all i ∈ g/Ḡ. Hence there is no contribution from the

term ∑
i∈g/Ḡ

µ(i, covS(i))

to the objective function. We have constructed a 0 cost solution to I ′ as required. With respect to Figure

3.2 again, S′ must have selected the pieces that are maximal with respect to the property of containing

consecutive segments of the same colour, and subsequently mapped them to segments of the same colour in

the ideal curve.

Now suppose S′ is a 0 cost solution to I ′, which places k′ ≤ k pieces. Let E ′1 be the set of curve segments

of f placed by S′ that contain an element of fE1 as a curve segment. Similarly we take E ′2 to be the set of

curve segments of f placed by S′ that contain an element of fE2 as a curve segment. Finally we take P ′ be

the set of curve segments of f placed by S′ that contain an element of fP as a curve segment. By Lemma

3, Lemma 4 and Corollary 1 we know that S′ maps elements of fE1 to elements of gE1 , maps elements of fE2

to elements of gE2 and maps elements of fP to elements of gP . By the way we ordered the curve segments

differently in f than in g it follows that E ′1, E ′2 and P ′ must be disjoint. This means that any given curve

segment cut by S contains curve segments from only one class.

Since E ′1 is disjoint from both E ′2 and P ′ and each segment of fE1 is contained in precisely one piece of E ′1

by our ordering of the unit segments in f we require at least 3m pieces in our budget to create the pieces in

E ′1. Similarly, since E ′2 is disjoint from both E ′1 and P ′ and each segment of fE2 is contained in precisely one

piece of E ′2 by construction of f we require at least m pieces in our budget to create the pieces in E ′2. Since

k′ = |P ′|+ |E ′1|+ |E ′1|,

and k′ ≤ k, |E ′1| ≥ 3m, |E ′2| ≥ m, we conclude that |P ′| ≤ 3m. By Corollary, 1 each segment of fP is

contained in precisely one piece of P, and no other curve segments. By construction of f and the fact that

|P ′| ≤ 3m, the only way this can hold is if

P = {fa,b : a =

p−1∑
p′=0

s(zp) + 2(p− 1), b =

p∑
p′=0

s(zp) + 2(p− 1), p ∈ [3m]}.

Denote the pth curve segment in P by fp. We now consider for q ∈ [m] how S′ covers the curve segment g`,r
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where

` = (q − 1)(B + 2), r = q(B + 2)− 2.

We note that ` is the left endpoint of g or segment `−1 is the right half of an ε2-triangle. Similarly, segment

r is the left half of an ε2-triangle. As a result of our previous conclusion that S′ can only map elements of

fP to elements of fP , we conclide any piece which covers elements a given element `, . . . , r − 1, must cover

exclusively elements in {`, . . . , r − 1}. Since covS(i) = 1 for each i ∈ {`, . . . , r − 1}, and for each element

z ∈ A, B
4 < s(z) < B

2 there must exist some distinct p, p′, p′′ ∈ [3m] such that S′ matches fp, fp′ and fp′′ to

g`p,rp , g`p′ ,rp′ and g`p′′ ,r′p′ respectively, where

` = `p ≺g rp = `p′ ≺g rp′ = `p′′ ≺g rp′′ = r.

By the way we constructed I ′, if Aq = {zp, zp′ , zp′′} then
∑
z∈Aq s(z) = x(r) − x(`) = B. Hence

(A1, . . . , Am) is a 3-Partition, and so I is a yes instance as required.

The proof of Theorem 3 implies that (CRPRPS) is also strongly NP-hard, as even if we were presented

with the pieces in P ∪ E1 ∪ E2 we could show that there exists a 0 cost solution to the specified instance of

(CRPRPS) if and only if I is a yes instance of 3-Partition. As a result we obtain Corollary 2.

Corollary 2. The decision version of (CRPRPS) problem is strongly NP-hard.

In Theorem 3, we proved that I ′ has a 0-cost solution if and only if I was a yes instance of 3-Partition.

From this, we conclude that if we could obtain any polynomially-computable approximation factor, for either

(CRPR) or (CRPRPS), we could distinguish between yes and no instances of 3-Partition. Hence we also

obtain Corollary 3.

Corollary 3. There is no ν(|G|, |F |)-approximation algorithm for the (CRPR) or (CRPRPS) problem unless

P = NP, where ν is any function of |G|, |F | that is computable in polynomial time.

Note that when examining our proof of Theorem 3 the reader should notice the following. For choice

of ε1, ε2 sufficiently small we constructed our deformed curve f in such a way that for any unit segments

d, d′ ∈ f/F̄ we have that E2(d, d + 1) is approximately E2(d′, d′ + 1). This is desirable as the surgeon can

select any location along the bandeau to make incisions. To model this property, we want to select a set F̄ so

that the unit segments of the deformed curve are of approximately equal length and shape. The analogous
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property holds for our choice of g. This is also desirable because the surgeon may select any location on

the template to place the pieces they have cut. We also selected F̄ = F and Ḡ = G which again models

the property that they surgeon may cut anywhere along the deformed curve, and place anywhere along

the template. Another desirable property we will enforce in our instance of (CRPR) is that the Euclidean

distance between the endpoints of f and the endpoints of g is the same. In practice, the normative skull

shapes will be similar in size to the infant’s deformed skull, and we wanted our reduction to model this. If

we did not wish to capture these structures in our proof it could be simplified.

3.1 Conclusions from Hardness Results

Note that in our proof of Theorem 3, we used a specific cost function we find reasonable for our application.

The same result also implies hardness for (CRPR) and (CRPRPS) with more general cost and fit functions.

The specific properties required for our proof were that we set µ(i, 0) > 0 for all i ∈ g/Ḡ, and that our choice

of cost function gave us the property that whenever I was a yes instance of 3-Partition we were able to bound

the value of the optimal solution to I from above by η, and whenever I was a no instance of 3-Partition

we were able to bound the value of the optimal solution to I from below by η′. The inapproximability in

Corollary 3 followed because the ratio between η′ and η was unbounded.

It should be noted that in many instances that interest us, there are no curve segments of f that will

fit perfectly to a curve segment of g. These (CRPR) instances emit a tighter lower bound than 0 for Cmin.

We could modify our instance I ′ used in the reduction differently. Restricted to this class of instances, the

inapproximability result would depend on the value of η′

η . It would be of interest to further characterize the

class of instances of (CRPR) and (CRPSPS) that are of interest for our application, to see if we can weaken

the inapproximabilty result for this class. Another approach would be to assume certain properties of our

ideal curve prohibiting our proof of Theorem 3 altogether. Such an example would be to assume our ideal

curve is convex.

As mentioned in section 1, we are studying (CRPR) to gain an understanding of the cranial vault remod-

eling procedure. Given a similar modeling framework to that of (CRPR) for the cranial vault remodeling

procedure, it is clear that this problem would be at least as hard. The goal of our research is to find an

algorithm that performs well and runs in polynomial-time with respect to input size. In light of the in-

approximability result, we decide to alter our objective function and leave a study of restricted classes of

(CRPR) and (CRPSPS) to future research. In section 4 we take an affine transformation of our current
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objective function. In this setting, our inapproximability results do not hold, although NP-hardness does.

We will study algorithms and heuristics for (CRPR) and or (CRPRPS), concluding with an experimental

study to see how these techniques perform on instances of interest.
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Chapter 4

Maximization Objective

Note that we wish to design an objective function that balances our goal of covering as much area of the

template, with our goal to place pieces that fit to the template as best as possible. For a solution S to an

instance I of (CRPR) or (CRPRPS) we can view the problem of optimizing the fit and coverage of a solution

as a maximization problem as follows. Recall that our coverage function µ takes as input a unit interval i

of the ideal curve, and a non-negative integer z, and returns the penalty associated with covering interval i

z times. Thus µ(i, 0) is a measure of how undesirable it is to leave interval i exposed. When we cover an

interval i, we can view the situation as collecting the reward µ(i, 0). If S covers interval i multiple times,

we can view the situation as collecting the reward µ(i, 0), but paying a penalty µ(i, covS(i)) for covering i

too many times. Since µ(i, 1) = 0 for all unit intervals i in g/Ḡ, we can view S as collecting the reward

µ(i, 0)−µ(i, covS(i)) for each interval i ∈ g/Ḡ. We are also interested in the fit of our placements as dictated

by c. For each curve segment f |a,b of f that S chooses to match to a curve segment g|`,r of g, we pay a

penalty c(a, b, `, r) for lack of fit. This gives us the objective function in (4.1), where the second inequality

in (4.1) follows by our definition of Cmin in equation (2.4).

Cmax =
∑
i∈I

µ(i, 0)− Cmin =
∑

i:covS(i)≥1

(µ(i, 0)− µ(i, covS(i)))−
∑
j∈J

c(aj , bj , `j , rj). (4.1)

Note that this transformation preserves optimality. This objective function can be interpreted as obtain-

ing a reward for covering intervals, and paying penalties for over-covering and lack of fit. In the remaining

sections we will assume we are optimizing over equation 4.1. We will assume our instances have cost functions

fitting the description in section 2.2.2, namely that c is non-negative, for any i ∈ g/Ḡ, µ(i, 0) and µ(i, z) = 0
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for all z ≥ 2. For the remainder of this section, unless otherwise specified assume we are working only with

instances satisfying these properties.

We summarize the example presented in [18] as a motivation for studying an affine transformations of

our objective function where a strong inapproximability result may hold. Consider the Minimum Vertex

Cover problem and Maximum Independent Set problem. In the Minimum Vertex Cover problem we are

given a graph G = (V,E) and we wish to find a subset of vertices V ′ of smallest cardinality such that for

each edge uv ∈ E at least one of u or v is contained in V ′. In the Maximum Independent Set problem we

are given a graph G = (V,E) and we wish to find a subset of vertices V ′ of largest cardinality such that for

each edge uv ∈ E at most one of u or v is contained in V ′. Both problems are NP-complete [11]. We see

from our problem definitions that if V ′ is a minimum vertex cover, then V \ V ′ is a maximum independent

set and vice versa. Despite this equivalence the approximability results for each vary, with Minimum Vertex

Cover admitting constanct factor approximation ratios, while Maximum Independent Set is inapproximable

for any ratio Ω(n1−ε) for any ε > 0, where n = |V | [19].

4.1 Greedy

Recall from Section 2.3.2 that an independence system consists of a ground set E and a list of subsets I

of E called independent sets. In this section, we will show that (CRPR) and (CRPRPS) can be reduced to

an independence system with rank quotient 1
k . Using the standard Best In Greedy algorithm discussed in

section 2.3.2 we can get a k-approximation for both problems. We then modify this algorithm, providing a

heuristic to get better performance for (CRPR) instances at the expense of run-time.

In this and the following section, we will find Lemma 5 useful.

Lemma 5. Let S be a solution to an instance I of (CRPRPS). If S is optimal, then for any piece j ∈ J

used by S, we may assume there is some interval i ∈ g/Ḡ that only piece j covers. Also, we may assume that

there exist at most two pieces j′, j′′ used by S that interfere with the placement of j. Furthermore, pieces j′

and j′′ do not interfere with each other.

Proof. Let J ′ be the set of pieces placed by S. Suppose that there is a piece j that does not uniquely cover
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any intervals i ∈ g/Ḡ. Then

Cmax(S) =
∑

i:covS(i)≥1

(µ(i, 0)− µ(i, covS(i)))−
∑
j′∈J′

c(j, `j′ , rj′) (4.2a)

≤
∑

i:covS(i)≥1

µ(i, 0)−
∑
j′∈J′

c(j, `j′ , rj′) (4.2b)

≤
∑

i:covS(i)≥1

µ(i, 0)−
∑

j′∈J′\{j}

c(j, `j′ , rj′), (4.2c)

where (4.2a) follows by definition, (4.2b) follows because µ is non-negative, and (4.2c) because c is non-

negative, and piece j does not uniquely cover any intervals. Thus we can remove piece j from S to get a

solution at least as good.

To prove the remaining part of the lemma, suppose that there is a piece j that interferes with three pieces

j′, j′′ and j′′′. Let (`, r), (`′, r′), (`′′, r′′) and (`′′′, r′′′), respectively, be the locations at which S places pieces

j, j′, j′′ and j′′′ along g. We may assume that each of j, j′, j′′, j′′′ uniquely covers at least one interval.

Let j0 be a piece in {j, j′, j′′, j′′′} whose placement on g has the smallest left endpoint with respect to the

ordering ≺g. Similarly let j3 be a piece in {j, j′, j′′, j′′′} whose placement in S has the largest right end point

with respect to the ordering ≺g. If j0 and j3 are not distinct, then the other three elements of {j, j′, j′′, j′′′}

do not uniquely cover any ideal intervals, and we may delete them from S to obtain a solution that is at

least as good. As a result, we assume that j0 and j3 are distinct. If j0 and j3 interfere with one another, we

may delete the other two placements in {j, j′, j′′, j′′′} as they do not uniquely cover any unit ideal intervals.

We conclude that j0 and j3 do not interfere with one another. Thus j /∈ {j0, j3}. Since j interferes with

j0 and j3, by choice of j0 and j3, it must be the case that the remaining piece does not uniquely cover any

intervals, and so we can delete it to obtain a solution that is at least as good.

As a corollary to Lemma 5, we obtain the same result for any instance of (CRPR) because once we have

decided which pieces to cut, we are left with an instance of (CRPRPS).

Corollary 4. Let S be a solution to an instance I of (CRPR). If S is optimal, then for any piece j ∈ J

used by S, we may assume there is some interval i ∈ g/Ḡ that only piece j covers. Also, we may assume that

there exist at most two pieces j′, j′′ used by S that interfere with piece j. Furthermore, pieces j′ and j′′ do

not interfere with each other.

Using these results, we will reduce both (CRPR) and (CRPRPS) as maximization problems over an

independence system.
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First let I be any instance of (CRPR) such that for any i ∈ g/Ḡ, µ(i, 0) and µ(i, z) = 0 for all z ≥ 2.

Suppose that p1 = (a1, b1, `1, r1) and p2 = (a2, b2, `2, r2) are two placements. If f |a1,b1 and f |a2,b2 contain

some common portion of the deformed curve, then they cannot be formed by the same separation operation

and any solution containing both p1 and p2 is infeasible.

Note that if a solution S covers some interval i ∈ g/Ḡ, multiple times then since S can only collect the

reward µ(i, 0) once we can view the situation as having a single piece take credit for covering i, when the

rest do not. Now, as a result of Corollary 4, there must exist an optimal solution S to I, such that for

each piece j that S places the following holds. Suppose that S places j over curve segment g|`,r for some

(`, r) ∈ Pj . There must exist some (¯̀, r̄) ∈
(
Ḡ
2

)
such that ` �g ¯̀≺g r̄ �g r, where piece j uniquely covers

all of ¯̀, . . . , r̄ − 1. Furthermore, if ` ≺g ¯̀, then there is one piece j′ that also covers all of `, . . . ¯̀− 1, and

no other piece covers any intervals in {`, . . . ¯̀− 1}. Similarly, if r̄ ≺g r, then there is one piece j′′ that also

covers all of r̄, . . . r−1, and no other piece covers any intervals in {r, . . . r̄−1}. As a result we may pick some

point `′ such that ` �g `′ �g ¯̀ such that piece j′ receives credit for covering all the intervals in `, . . . , `′ − 1

and piece j receives credit for covering all the intervals in `′, . . . , ¯̀. Similarly, we may pick some point r′

such that r̄ �g r′ �g r such that j′′ receives credit for covering all the intervals in r′, . . . , r − 1 and piece j

receives credit for covering all the intervals in r̄, . . . , r′−1. In addition piece j will receive credit for covering

all intervals it uniquely covers.

Motivated by these observations we create our ground set E in equation (4.3), where element (a, b, `, r, `′, r′)

has weight

w((a, b, `, r, `′, r′)) =
∑

i:`′�gi≺gr′−1

µ(i, 0)− c(a, b, `, r).

The element (a, , b, `, r, `′, r′) corresponds to the decision of matching f |a,b to g|`,r but only receiving credit

for covering the intervals `′, . . . , r′ − 1. Let

E = {(a, b, `, r, `′, r′) : (a, b) ∈
(
F̄

2

)
, (`, r) ∈

(
Ḡ

2

)
, ` �g `′ ≺g r′ �g r}. (4.3)

We say that two elements (a1, b1, `1, r1, `
′
1, r
′
1), (a2, b2, `2, r2, `

′
2, r
′
2) ∈ E are compatible if f |a1,b1 and f |a2,b2

can both be formed by the same separation operation on f , and if g|`′1,r′1 and g|`′2,r′2 can both be formed by

the same separation operation on g. Then we take,

J = {S ⊆ 2E : |S| ≤ k, and for e1, e2 ∈ S, e1, e2 compatible}.
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As is standard, we let the weight of any independent set I ∈ J , w(I), be the sum of the weights of all

elements in I.

We tie our reduction together with Claim 1. This claim is sufficient to prove our reduction from (CRPR)

to Maximum Weight Independent Set because the highest weight independent set is mapped to a solution

S of (CRPR), which must also be optimal.

Claim 1. We can partition the independent sets in J into classes CS for each S ∈ S that satisfy the

following. Each independent set I ∈ CS has weight w(I) at most Cmax(S). Also for each S ∈ S, there is

some independent set I∗S ∈ CS with weight w(I∗S) equal to Cmax(S).

Proof. Let I ∈ J . Then I = {(a0, b0, `0, r0, `
′
0, r
′
0), . . . , (ak′−1, bk′−1, `k′−1, rk′−1, `

′
k′−1, r

′
k′−1)}, for some

k′ ≤ k. Since I is independent we know that we can use the same separation operation to form all of the pieces

f |a0,b0 , . . . , f |ak′−1,bk′−1
of the deformed curve and the unit intervals `′0, . . . , r

′
0−1, . . . , `′k′−1, . . . , r

′
k′−1−1 are

distinct. Consider the solution S which contains the placements (a0, b0, `0, r0), . . . , (ak′−1, bk′−1, `
′
k′−1, r

′
k′−1).

Since

`j �g `′j ≺g r′j �g rj

for all j ∈ {0} ∪ [k′ − 1] we know that S covers all intervals `′0, . . . , r
′
0 − 1, . . . , `′k′−1, . . . , r

′
k′−1 − 1. Thus

Cmax(S) ≥
∑

j∈{0}∪[k′−1]

 ∑
i:`′j�gi≺gr′j−1

µ(i, 0)− c(aj , bj , `j , rj)

 = w(I).

Now, let S ∈ S. Suppose S uses the placements (a0, b0, `0, r0), . . . , (ak′−1, bk′−1, `
′
k′−1, r

′
k′−1) for some

k′ ≤ k. Assume that indices chosen for the k′ pieces are non-decreasing with respect to their left placement

point on the ideal curve in S. In other words, `0 �g · · · �g `k′−1. Then for j ∈ {0} ∪ [k′ − 1] take

`′j = `j

and

r′j =


min(rj , `j+1) j ∈ {0} ∪ [k′ − 2]

rj j = k − 1

.

Note that `′0 ≺g r′0 �g `′1 · · · �g `′k′−1 ≺g rk′−1, by our choice of reindexing, and the fact that each piece

uniquely covers at least one interval.
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We can take I∗S to be set

{(a0, b0, `0, r0, `
′
0, r
′
0), . . . , (ak′−1, bk′−1, `k′−1, rk′−1, `

′
k′−1, r

′
k′−1)}.

Since S is feasible the curve segments f |a0,b0 , . . . , f |ak′−1,bk′−1
can be formed by the same separation opera-

tion. Thus each pair of elements in I∗S is compatible by our choice of `′0, r
′
0, `
′
1 . . . , `

′
k′−1, rk′−1.

If we wish to model an instance of (CRPRPS) using an independence system, we instead take,

E = {(a, b, `, r, `′, r′) : a = aj , b = bj for j ∈ J, (a, b) ∈
(
F̄

2

)
, (`, r) ∈

(
Ḡ

2

)
, ` �g `′ ≺g r′ �g r},

and offer the analogous proofs.

The system (E,J ) is an independence system because ∅ ∈ I and if any subset I of the ground set is such

that each pair of elements is pairwise compatible, then any subset of I will also have the same property. Note

J may contain independent sets of cardinality 1. For example, the set {(L(f), R(f), L(g), R(g), L(g), R(g))}

is maximal, as there are no other pieces that can be formed by the same separation operation as f |L(f),R(f).

In general, one may be able to give a slightly better bound on ρ(E′) for some E′ ⊆ E, by eliminating certain

placements that clearly cannot be in an optimal solution. We do not assume this here. Also, in general, the

rank of our independence system will be k as there will be many feasible solutions S placing k pieces. Thus

for both problems, we conclude that (E,J ) is an independence system with rank quotient 1
k . The above

transformation is done in time O(|F̄ |2||Ḡ|4).

By theorem 2, Algorithm 1 gives a k−approximation for both (CRPR) and (CRPRPS). However, suppose

we have two instances of (CRPR) with identical input except the choice of k1 and k2, where k1 < k2. Then

after k1 rounds of Algorithm 1 for either choice of k, we will have the same solution. This is because the

ground set E we construct will be identical with identical weights for each instance. We note that if we

are running algorithm 1 and we match f |a,b to g|`,r where r − ` is particularly large we will get a large

contribution from the term
∑
i:`≤i≤r−1 µ(i, 0). Although if k is large this greedy move may not produce a

good solution. To see this we illustrate with an example. Suppose we are given an instance of (CRPR) with

the curves in Figure 4.1, where k = 2, F̄ = {0, 1, 2}, and Ḡ = {0, 1, 2}. Suppose δ is large enough so that
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Figure 4.1: Illustration of an Instance where standard greedy algorithm performs poorly

c(0, 1, 0, 1) = c(1, 2, 1, 2) = 0 and 0 < c(0, 2, 0, 2) <∞, and that µ(0, 0), µ(1, 0) are chosen so that

µ(0, 0) + µ(1, 0)− c(0, 2, 0, 2)

is greater than both µ(0, 0)− c(0, 1, 0, 1) and µ(1, 0)− c(1, 2, 1, 2). The standard greedy approach would pick

the solution containing the placement (0, 2, 0, 2), even though we would suspect with the option to pick k

pieces we may want to choose the solution with placements (0, 1, 0, 1) and (1, 2, 1, 2), which is indeed optimal.

We offer the heuristic in 2 to overcome this. In addition to the input parameters associated with an

instance I of (CRPR), the algorithm will take as input a parameter 1 ≤ m ≤ k. Our heuristic will run

a modified greedy algorithm for each element (q1, q2, . . . , qm) ∈
(

[|G|−1]
m

)
. Suppose we are constructing our

solution, and it contains m′− 1 elements for m′ ∈ [m]. When selecting a possible m′th element, we limit our

choice to elements in our ground set corresponding to placements covering at most qm′ intervals of the ideal

curve. For m′ > m, we will limit choice to elements in our ground set corresponding to placements covering

at most qm intervals of the ideal curve. We then check all solutions produced and select the best one. As

m increases, we reduce the likelihood of selecting a piece that covers a large area but fits relatively poorly.

The run-time of this algorithm is O(|F̄ 2||Ḡ|m+4).

4.2 Resource Allocation Problem

In [10], the authors introduce a general model for Resource Allocation problems, which we will formally define

and review. We will see how we can reduce an instance of (CRPRPS) to a resource allocation problem, and

then apply an algorithm in [10] to obtain a 1
2 -approximation for (CRPRPS). We will follow up with some

suggestions for future research.
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Algorithm 2 SizeLimitingGreedy(I,m)

Input: An instance I of (CRPR) and in integer m ≤ k.
Output: A solution S to (CRPR).

1: Initialize E = {e1, . . . , en} as in equation 4.3, where w(e1) ≥ . . . w(en).
2: S ← ∅
3: Q← {(q1, q2, . . . , qm) ∈

(
[|G|−1]
m

)
}

4: for (q1, q2, . . . , qm) ∈ Q do
5: I ← ∅
6: for i ∈ [n] do
7: (a, b, `, r, `′, r′)← ei
8: if |I| = k′ − 1 < m then
9: if r − ` ≤ qk′ then

10: if I ∪ ei ∈ I then
11: I ← I ∪ ei
12: else if r − ` ≤ qm then
13: if I ∪ ei ∈ I then
14: I ← I ∪ ei
15: if w(I) ≥ w(S) then
16: S ← I

return S

4.2.1 Review of Resource Allocation Problem

A Resource Allocation problem takes as input a set of n activities. Each activity j ∈ [n] is associated with

a set of time intervals Aj , over which it can potentially be scheduled. We call each such time interval an

instance of activity j. Specifically, each instance I ∈ Aj occurs over an interval of time [s(I), e(I)], such that

0 ≤ s(I) < e(I) ≤ T . In addition we are presented with profit and weight functions

p(I) :

n⋃
j=1

Aj → R

and

w(I) :

n⋃
j=1

Aj → [0, 1],

respectively. We say that an instance I of activity j occurs over a time interval [t1, t2] ⊆ [0, T ], if s(I) ≤ t1 <

t2 ≤ e(I). We wish to schedule a subset of activity instances, such that at most one instance is chosen from

each activity, and for any given time interval t = [t1, t2] ⊆ [0, T ] of positive length, the combined weight of

all scheduled instances occurring over t is at most 1. Amongst all such feasible schedules S we wish to select

one that maximizes

p(S) :=
∑
I∈S

p(I).
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We present the primal-dual framework discussed in [10]. Let T be the set of time intervals contained in

[0, T ] that are maximal with respect to the property of not having any activity instance start or end during

the middle of the time interval. More formally,

T = {[t1, t2] ⊆ [0, T ] :6 ∃I ∈
n⋃
j=1

Aj , t1 < s(I) < t2 or t1 < e(I) < t2,

∃I ′, I ′′ ∈
n⋃
j=1

Aj such that t1 ∈ {s(I ′), e(I ′)}, t2 ∈ {s(I ′′), e(I ′′)}}
(4.4)

Using this definition of T we can write down the integer programming formulation in (4.5) for an instance

of a Resource Allocation problem.

For each instance I of an activity we create a variable xI such that xI is 1 if I is chosen for our schedule,

and xI is 0 otherwise. The dual of the linear programming relaxation to (4.5) is given in (4.6). We provide

an interpretation of the dual variables. Each instance I ∈
⋃
j∈[n]

⋃
I∈Aj , is associated with a profit p(I).

We wish to assign cost shares yj and zt, respectively, to each activity j ∈ [n] and interval t ∈ T with the

following property. If I is an instance of activity j, with weight w(I), then the cost share yj plus the sum of

the cost shares zt for intervals over which I occurs weighted by w(I) is enough to pay the cost p(I).

max
∑
j∈[n]

∑
I∈Aj

p(I)xI (4.5a)

s.t.
∑

I:s(I)≤t1<t2≤e(I)

w(I) · xI ≤ 1 ∀t = [t1, t2] ∈ T (4.5b)

∑
I∈Aj

xI ≤ 1 ∀j ∈ [n] (4.5c)

xI ∈ {0, 1} ∀I ∈ Aj ∀j ∈ [n] (4.5d)

min
∑
j∈[n]

yj +
∑
t∈T

zt (4.6a)

s.t. yj +
∑

t=[t1,t2]∈T :s(I)≤t1<t2≤e(I)

w(I) · zt ≥ p(I) ∀I ∈ Aj ∀j ∈ [n] (4.6b)

y, z ≥ 0 (4.6c)
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Definition 22 (Interferes). We say that instance I interferes with instance I ′ if [s(I), e(I)]∩[s(I ′), e(I ′)] 6= ∅.

The reader should note how the definition of interference is analogous to the notion of interference of

placements in a solution to (CRPR) or (CRPRPS) given in Section 2.2.

Define wmin, wmax to be the smallest and largest weight of any instance of any activity in
⋃
j∈[n]Aj .

Take

r =
min(1, αmax(wmin, 1− wmax))

1 + α

for α > 0. The parameter α is preselected to maximize the quantity r. We then provide α as an input to

Algorithm 3. The algorithm from [10] that we will present gives an r-approximation for a given instance of

the resource allocation problem.

In addition for an instance I ∈
⋃
j∈[n]Aj , let A(I) be the activity to which I belongs, and let I(I) be

the set of instances not belonging to A(I), but interfering with I.

The authors provide Algorithm 3, which proceeds in two phases. In the first phase a stack L is created,

which stores a subset of instances that we may include in our final schedule S. At initialization we begin

with the infeasible dual solution y = 0, z = 0 and an empty stack. At each iteration we examine an instance

I ∈
⋃
j∈[n]Aj with smallest end-time e(I), among all instances in

⋃
j∈[n]Aj violating constraint (4.6b). Let

δ be the quantity by which (4.6b) is violated for the selected instance I. We update our dual variables by

adding δ to yj and α ·δ to zt, where j is the activity A(I) and t is the time interval in T ending at e(I). Note

that by our construction of T , t exists. Also, we note that constraint (4.6b) is no longer violated. At the end

of the iteration, we add I to the top of our stack L. Once (y, z) is feasible, we proceed to the algorithm’s

second phase. Here we construct a schedule S by removing elements from the top of L and adding them

to S if feasibility is maintained and discarding them otherwise. Recall that at each iteration in the first

phase of the algorithm we chose to examine an instance I ∈
⋃
j∈[n]Aj with smallest end-time e(I), among

all instances in
⋃
j∈[n]Aj violating constraint (4.6b). We will see that this choice allows us to conclude the

primal objective of the solution S that we constructed is at least a proportion r of the objective value of our

dual solution (y, z), giving us the r approximation we alluded to earlier.

Theorem 4. Algorithm 3 is an r-approximation algorithm to the resource allocation problem.

Proof. Suppose that I1, . . . , Iq are the instances from
⋃
j∈[n]Aj that our stack L is composed of at the end

of the first phase of our algorithm, presented in the order we added them to L. For q′ ∈ [q] and j ∈ [n], let

yq
′

j be the amount by which we increased variable yj during iteration q′ of the first phase of our algorithm.

Note that yq
′

j > 0 if and only if j is the activity A(Iq′). Also for t = [t1, t2] ∈ T , let zq
′

t , be the amount by
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Algorithm 3 Resource-Allocation-Primal-Dual({A1, . . . ,An}, p, w)

Input: Set of activity instances Aj , for each activity j ∈ [n]. Profit and weight functions p and w,
respectively.
Output: A schedule S.

Phase 1: Creating the Stack
1: L← ∅
2: while y, z is infeasible do
3: Let I be an instance with smallest end-time e(I), among all instances in

⋃
j∈[n]Aj violating constraint

(4.6b).
4: δ ← p(I)− yj − w(I)

∑
t=[t1,t2]∈T :s(I)≤i<i′≤e(I) zt

5: yj ← yj + δ, zt ← zt + αδ, where t is the last time interval during which I occurs.
6: Append I to L

Phase 2: Constructing the Solution
7: S ← ∅
8: while L 6= ∅ do
9: Take the instance I off the top of L

10: if S ∪ I is feasible then
11: S ← S ∪ I

return S

which we increased variable zt during iteration q′ of the first phase of our algorithm. Note that zq
′

t > 0 if

and only if e(Iq′) = t2. Suppose we can express the primal objective of our solution S as the quantity

∑
q′∈[q]

∑
j∈[n]

βq
′

j y
q′

j +
∑
t∈T

ηq
′

j z
q′

t


for β, η ≥ 0, where the following holds. For each q′ ∈ [q], if j is the activity A(Iq′), and t = [t1, t2] is the

interval in T such that e(Iq′) = t2, then either βq
′

j ≥ 1 or ηq
′

t ≥ max(wmin, 1 − wmax), then we will have

shown that Algorithm 3 is indeed an r-approximation algorithm to the resource allocation problem. To see

this note that increase of the dual objective in iteration q′ is yq
′

j + zq
′

t , where yq
′

j = δ and zq
′

t = αδ for some

δ > 0. If βq
′

j ≥ 1, then the term

βq
′

j y
q′

j + ηq
′

j z
q′

t

yq
′

j + zq
′

t

≥ δ

δ + αδ
=

1

1 + α
.

If ηq
′

t ≥ (wmin, 1− wmax), then the term

βq
′

j y
q′

j + ηq
′

j z
q′

t

yq
′

j + zq
′

t

≥ max(wmin, 1− wmax)αδ

δ + αδ
=

(wmin, 1− wmax)α

1 + α
.

Since we began with initial dual solution y = 0, z = 0, recalling that r = min(1,αmax(wmin,1−wmax))
1+α , and

summing over all q′ we would get that the profit of our schedule S is at least r times that of the objective
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function value of our dual.

Now we proceed by giving such β, η. For each q∗ ∈ [q], we know that

p(Iq∗) = yq
∗

j +

q∗−1∑
q′′=1

yq′′j + w(I)
∑

t=[t1,t2]∈T :s(I)≤t1<t2≤e(I)

zq
′′

t

 (4.7)

because at the time we considered Iq∗ in the first phase of our algorithm we had that

yj =

q∗−1∑
q′′=1

yq
′′

j

and

zt =

q∗−1∑
q′′=1

zq
′′

t

for t = [t1, t2] ∈ T : s(I) ≤ t1 < t2 ≤ e(I), and that constraint (4.6b) for instance Iq∗ was violated by δ,

which is equal to our increase in yj from this iteration, namely yq
∗

j .

Then the primal objective value of our schedule S is the quantity.

∑
q∗∈[q]:Iq∗∈S

p(Iq∗) =
∑

q∗∈[q]:Iq∗∈S

yq∗j +

q∗−1∑
q′′=1

yq′′j + w(I)
∑

t=[t1,t2]∈T :s(I)≤t1<t2≤e(I)

zq
′′

t

 . (4.8)

For each q∗ ∈ [q] and activity j ∈ [n], let βq
∗

j be the coefficient of yq
∗

j in equation (4.8). Similarly, for any

q∗ ∈ [q] and time interval t ∈ T , let ηq
∗

t be the coefficient of zq
∗

t in equation (4.8). Clearly, β ≥ 0, η ≥ 0

because the equation only includes terms with non-negative contributions from each variable of interest.

To prove that for each q′ ∈ [q], if j is the activity A(Iq′), and t = [t1, t2] is the interval in T such that

e(Iq′) = t2, then either βq
′

j ≥ 1 or ηq
′

t ≥ max(wmin, 1− wmax), there are three cases to consider.

In the first case, we included Iq′ in S during the second phase of our algorithm. Then we see that terms

from equation (4.7) for p(Iq′) are included in our expression from (4.8) of our primal objective. Since yq
′

j

has a coefficient of 1 in equation (4.7) for p(Iq′), we conclude that βq
′

j ≥ 1 as required.

In the second case, we do not include Iq′ in S because at the time when we took Iq′ off of our stack L,

there was q̄ ∈ [q] such that element Iq̄ ∈ S and Iq̄ ∈ Aj . Since we constructed S by greedily taking elements

off the top of our stack L we know that q̄ > q′. Thus yq
′

j has a coefficient of 1 in equation (4.7), and we

conclude that βq
′

j ≥ 1 as required.

Finally, suppose that none of the first two cases hold. Note that we do not include Iq′ in S, but there

43



is no instance of activity j in S at the point in the second phase when we considered Iq′ . As a result, it

must be that there exists some X ⊆ S of instances all interfering with Iq′ during some t ∈ T , such that

w(X ) + w(I) > 1. Again since we constructed S by greedily taking elements off the top of our stack L

we know that if Iq̄ ∈ X then q̄ > q′. Take such an element Iq̄ ∈ X . Recall that t̄ = [t1, t2] is the unique

interval in T such that e(Iq′) = t2. Since we considered Iq̄ after Iq′ in the first phase of the algorithm we

know that e(Iq′) ≤ e(Iq̄). Thus Iq′ and Iq̄ interfere with one another during t. Hence for all q̄ ∈ [q] such

that Iq̄ ∈ X since q̄ ≥ q′ and we have a coefficient of w(Iq′) in front of zq
′

t in (4.7) for p(Iq̄). Since for each

such q̄ the terms from (4.7) for p(Iq̄) appear in the expression (4.8) we conclude that the coefficient ηq
′

t is

at least w(X ). Note that X is non-empty for otherwise w(X ) + w(Iq′) = w(Iq′) ≤ 1 a contradiction. Thus

w(X ) is at least wmin, the smallest weight of any instance in
⋃
j∈[n]Aj . If w(X ) ≤ 1 − wmax, then clearly

w(X ) + w(Iq′) ≤ 1 − wmax + wmax = 1 a contradiction as wmax, is the largest weight of any instance in⋃
j∈[n]Aj . We conclude that

ηq
′

t ≥ max(wmin, 1− wmax)

concluding our proof.

4.2.2 Reduction from (CRPRPS) to Resource Allocation Problem

Suppose we are given such an instance I of (CRPRPS) fitting the description in section 2.2.2. Our reduction

will be very similar to that in Section 4.1 and the proofs of correctness are very similar. As a result, we

provide only the reduction itself.

For each segment j ∈ J and pair of endpoints on the ideal curve, (`, r) ∈ Pj we create a set of instances

Aj,`,r to be added to Aj . The instances in Aj,`,r are as follows.

Let the units of time T in equation 4.4 be the elements of g/Ḡ, ordered increasingly with respect to their

placement along the interval [0, T ]. Since each pair of time intervals in T are non-intersecting except possibly

at an endpoint, this ordering is non-ambiguous. For each `′, r′ ∈
(
Ḡ
2

)
such that ` �g `′ ≺g r′ �g r add the

instance I = (j, `, r, `′, r′) to Aj , with

s(I) = `′, e(I) = r′, p(I) =
∑

i:`′≤i≤r′−1

µ(i, 0)− c(j, `, r), w(I) = 1.

Instance I will correspond to placing j over (`, r) and taking credit only for the intervals in {`′, . . . , r′−1}.

Note that since all intervals I ∈
⋃
j∈[n] have the property that w(I) = 1 our approximation guarantee r
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for Algorithm 3 is min(1,α)
1+α for our choice of α > 0. Since this quantity is maximized for α = 1, Algorithm 3

gives us a 1
2 -approximation.

4.2.3 Unanswered Questions

The approach in this section does not provide us any intuition about how to form the pieces of the deformed

bandeau. A similar reduction from (CRPR) to the resource allocation problem does not apply because it is

not clear how to construct the activities. It would be of interest to see if the techniques can be modified or

built upon to choose good pieces.

We mentioned in chapter 1 that we are studying the fronto-orbital advancement with rearrangement

procedure to gain an intuition for how to perform cranial vault remodeling procedures best. We now discuss

problems in applying a similar method to an analogous mathematical model for the cranial vault remodeling

procedure. Our models (CRPR) and (CRPRPS) used curves to represent our bandeau and its template.

If two placements (j, `j , rj) ∈ Pj , (j′, `j′ , rj′) ∈ Pj′ interfere with one another it is clear that the two

placements interfere with one another at rj − 1 assuming that `j ≺g `j′ . Similarly in the corresponding

resource allocation instance if we have interfering instances ej = (j, `j , rj , `
′
j , r
′
j), ej′ = (j, `j , rj , `

′
j , r
′
j) where

`j �g `′j is is clear that ej and ej′ interfere with one another at the time interval corresponding to interval

`′j ∈ g/Ḡ. This observation allows the authors in [10] to capture at least half of the objective function value of

the constructed feasible dual solution. It is not clear whether or not there is a suitable modification that will

give us an algorithm for use in deciding where to place pieces during a cranial vault remodeling procedure.

4.3 Local Search

In this section, we propose a local search heuristic for any instance of (CRPRPS). Let I be an instance of

(CRPRPS).

For two solutions S and S′ of I, we say that S′ changes the placement of a piece j from that of S if one

of the following hold. Only one of S and S′ places piece j, or S assigns piece j to cover a different curve

segment of g than S′.

We first recall some notation from section 2.2. If a solution S places piece j over curve segment g`j ,rj for

some j ∈ J and (`j , rj) ∈
(
Ḡ
2

)
we say Sj = (`j , rj), and (j, `, r) ∈ S. Also, for each j ∈ J , we let Pj be the

set of all placements of j of finite cost.

As mentioned in section 2.3.3, to give a local search heuristic, it is sufficient to specify the local search
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neighbourhood, N(S) for any solution S. We will specify our local search neighbourhood by limiting the

number and types of changes that may be made to a solution S. In section 4.4 we will find it useful to

restrict our neighbourhood so that we only change the locations of pieces in some set Jc ⊆ J . In addition

we will also find it useful to restrict our search so that we do not consider all placements in Pj for all j ∈ J ,

but rather placements in Tj for some Tj ⊆ Pj . With this in mind, we define a family of neighbourhoods.

For each fixed k′ ≤ k, each choice of

(T1, . . . , Tk) ⊆ P1 × · · · × Pk,

each set of indices Jc ⊆ J and feasible solution S, define Nk′(S, J
c, {Tj : j ∈ Jc}) to be the set containing

all solutions S′ that can be obtained from S by changing the placement of at most k′ pieces in Jc, so that

for piece j ∈ J , we have Sj ∈ {∅} ∪ Tj . Formally S′ ∈ Nk′(S, T1, . . . , Tk), if

|{j ∈ J : S′j 6= Sj}| ≤ k′

and Sj ∈ {∅} ∪ Tj for all pieces j ∈ J , with the added condition that Sj = S′j for all j /∈ Jc.

As mentioned in section 2.3.3, it is often difficult to prove good performance guarantees for local search

algorithms. Suppose we have a solution S, that uses placements (j1, `1, r1), . . . , (jt, `t, rt), all of which

interfere with some placement (j, `, r) /∈ S. Suppose that the solution S′ obtained from S by removing all

placements (j1, `1, r1), . . . , (jt, `t, rt), and adding (j, `, r), has a higher objective value. If the set {j, j1, . . . , jt}

has cardinality greater than k′, then S′ /∈ Nk′(S), as we can only obtain S′ from S by changing the location

of more than k′ pieces. We can easily construct instances where the difference between the objective values of

such a pair S and S′ is large. To avoid this we may construct a neighbourhood N ′(S, Jc, {Tj : j ∈ Jc}), which

for a solution S contains all solutions S′ obtained by fixing the placements of some piece j at some (`, r) ∈ Tj

and deleting all placements of pieces in Jc, that interfere with (j, `, r). Note that |N ′(S)| = O(k|G|2), and

|Nk′(S)| = O(
(
k
k′

)
|G|2k′). As a result, for any choice of k′, checking N ′(S) for local moves will be dominated

by checking Nk′(S) for local moves.

In practice to obtain a polynomial algorithm, we will fix a constant choice of k′ and take

N(S, Jc, {Tj : j ∈ Jc}) = Nk′(S, J
c, {Tj : j ∈ Jc}) ∪N ′(S, Jc, {Tj : j ∈ Jc})

for each feasible solution S. This alone may not be sufficient to guarantee polynomial runtime, as our
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improvement in the objective function may be too small. A possible strategy for avoiding this is to require

that for some appropriate choice of ε > 0 we make the local move from S to S′ ∈ N(S) only if

Cmax(S′) ≥ Cmax(S) + ε.

For example if we take

ε = O

(∑
i∈g/Ḡ µ(i, 0)

poly(|G|)

)
,

then as ∑
i∈g/Ḡ

µ(i, 0)

is an upper bound on the value of any feasible solution we can have at most O(poly(|G|)) rounds of local

search. Without any intuition on how we can filter each set Pj to obtain a suitable choice of Tj it will be

practical for us to implement a version of the proposed local search heuristic for k′ = 1.

Algorithm 4 LocalSearch(I, S, Jc, {Tj : j ∈ Jc})
Input: An instance I, a feasible solution S of I, a subset Jc of pieces indices, and a subset Tj of Pj for all
j ∈ Jc Output: A solution S∗.

1: S∗ ← S
2: while Cmax(S′) ≥ Cmax(S∗) + ε for some S′ ∈ N(S, Jc, {Tj : j ∈ Jc}) do
3: S∗ ← S′

return S∗

4.4 Alternative Primal-Dual Approaches

In this section we offer a pair of heuristics to (CRPRPS) that call local search heuristic 4 as a subroutine,

for a fixed choice of neighbourhood size k′. Let I be an instance of (CRPRPS).

4.4.1 Motivation

Our heuristics are motivated by two similar observations, for which the following definitions will be helpful.

Definition 23 (Individual Profit). For a piece j ∈ J and a placement (`, r) ∈ Pj the individual profit of

(j, `, r) is the quantity

p(j, `, r) =
∑

i:`�gi≺gr

µ(i, 0)− c(j, `, r).
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Definition 24 (Average Cost). For a piece j ∈ J and a placement (`, r) ∈ Pj the average cost of (j, `, r) is

the quantity

c(j, `, r)

|{`, . . . , r − 1}|
.

For each interval i ∈ g/Ḡ let cmin(i) be the lowest average cost of any placement covering interval i. We

observe that if a solution S of I satisfies the following two conditions, we may conclude that it is indeed

relatively close to optimal. The first is that S leaves little of the possible coverage reward unclaimed. The

second is that the sum of the costs of all of the used placements is close to
∑
i:covS(i)≥1 cmin(i). Since

∑
i:covS(i)≥1

(µ(i, 0)− cmin(i))

is the largest objective possible for any solution covering at least the intervals that S covers, our claim

follows. Note that, in general, the optimal solution may not even satisfy this property. Our observation is

only made to motivate our algorithm.

We recall from Section 2.3.3 that one can attempt to improve the outcome of a local search heuristic

by running it multiple times with different initial solutions. Our first approach uses this and the above

observation by at first calling heuristic 4 with neighbourhoods containing only placements of low average

cost. The approach then slowly relaxes our threshold allowing placements of higher average cost for intervals

not currently covered by our solution into the search neighbourhoods, for later calls of heuristic 4.

Now we make a similar observation, which will motivate an alternative approach. For a piece j ∈ J let

pmax(j) be the cost of a placement in Pj , that maximizes individual profit. If a solution S has an objective

value close to ∑
j∈J

pmax(j),

then we may conclude that S is close to optimal as this gives an upper bound on our objective value.

This observation motivates our second approach, where we will again call heuristic 4 with multiple starting

solutions. This time, however, we will begin the algorithm by restricting our search neighbourhood to

placements of high profit. We then slowly relax our search neighbourhoods to include placements of lower

profit to encourage more coverage in our solution. We note that in general, the optimal value of may be

much smaller than ∑
j∈J

pmax(j),
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and so we again only use our observation as a guide.

In our approaches, we will use primal-dual techniques to motivate how we relax the restrictions on our

neighbourhoods. To this end, in section 4.4.2 we introduce an integer programming formulation for the

restricted class of instances of (CRPRPS) we study in this chapter.

It should be noted that we do not claim that our heuristics accomplish the goal of balancing coverage

and fit in the best way possible. The discussion above is simply a guide for what we are trying to accomplish

in this section. Whether we can improve upon this approach is a topic for further study.

4.4.2 Integer Programming Formulation

We first write the integer program in (4.9) that models our restricted class of (CRPRPS) instances. For

j ∈ J and (`, r) ∈ Pj we have a decision variable xj,`,r which takes on the value 1 if we place piece j over

g|`,r and 0 otherwise. For interval i ∈ g/Ḡ we have a decision variable yi which equals 1 if we have covered

interval i and 0 otherwise. Since we have µ(i, z) = 0 for all z ≥ 2, we are only concerned with whether or

not a solution S has covS(i) ≥ 1, and so (4.9a) is indeed the correct objective function. Since we can only

collect a reward for covering interval i ∈ g/Ḡ, for a solution S if covS(i) ≥ 1 we impose (4.9b). In addition

each reward can be collected at most once, so we impose (4.9d). Lastly, as each deformed piece can be used

at most once, we require (4.9c). The dual of the linear programming relaxation of (4.9) is given in (4.10).

Note that in our integer program we label the primal constraints with their corresponding dual variables.

max
∑
i∈g/Ḡ

µ(i, 0)yi −
∑

j∈J,(`,r)∈Pj

c(j, `, r)xj,`,r (4.9a)

s.t. yi ≤
∑

j∈J,(`,r)∈Pj :`�gi≺gr

xj,`,r ∀i ∈ g/Ḡ [πi] (4.9b)

∑
(`,r)∈Pj

xj,`,r ≤ 1 ∀j ∈ J [γj ] (4.9c)

yi ≤ 1 ∀i ∈ g/Ḡ [βi] (4.9d)

0 ≤ yi ≤ 1, integer ∀i ∈ g/Ḡ (4.9e)

xj,`,r ∈ {0, 1} ∀j ∈ J, (`, r) ∈ Pj . (4.9f)
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min
∑
j∈J

γj +
∑
i∈g/Ḡ

βi (4.10a)

s.t. πi + βi ≥ µ(i, 0) ∀i ∈ g/Ḡ (4.10b)∑
i:`≤i≤r−1

πi − γj ≤ c(j, `, r) ∀j ∈ J, (`, r) ∈ Pj (4.10c)

π, γ, β ≥ 0. (4.10d)

When running our heuristics we will maintain an integral primal solution S and a feasible dual solution

π, β, γ in our algorithms, such that whenever (j, `, r) ∈ S for some j ∈ J, (`, r) ∈ Pj , we have that

∑
i:`�gi≺gr

πi − γj = c(j, `, r).

In other words, constraint (4.10c) for placement (j, `, r) is tight.

We observe that if we have a dual solution π, β, γ where for some interval i ∈ g/Ḡ constraint (4.10b) is not

tight we can improve our dual solution by setting βi = µ(i, 0)− πi. As a result we will only construct dual

solutions for which constraint (4.10b) is always tight for each i ∈ g/Ḡ. Under this restriction the condition

∑
i:`�gi≺gr

πi − γj = c(j, `, r)

is equivalent to ∑
i:`�gi≺gr

βi + γj = p(j, `, r).

This can be seen by subtracting both sides of the first equation from

∑
i:`�gi≺gr

µ(i, 0)

and simplifying.

If S and π, β, γ are a primal-dual pair satisfying the above conditions, the difference between the primal

objective of S and the objective of the dual solution can be computed by equation (4.11). To see this, first

let J ′ be the set of pieces placed by S, and for each j ∈ J ′, let Sj = (`j , rj). Then since µ(i, z) = 0 for all
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z ≥ 1 it must hold that

Cmax(S) =
∑
j∈J′

p(j, `j , rj)−
∑

i∈g/Ḡ:covS(i)>1

(covS(i)− 1)µ(i, 0),

as we can only collect the coverage reward µ(i, 0) one time per interval i.

By our previous remarks, we conclude that

Cmax(S) =
∑
j∈J′

(γj +
∑

i:`�gi≺gr

βi)
∑

i:covS(i)>1

(covS(i)− 1)µ(i, 0).

Since βi = µ(i, 0)− πi, for all i ∈ g/Ḡ, we can simplify to get

Cmax(S) =
∑
j∈J′

γj +
∑

i:covS(i)≥1

βi −
∑

i covS(i)>1

(covS(i)− 1)πi.

Since the dual objective is ∑
j∈J

γj +
∑
i∈g/Ḡ

βi,

we can conclude that the difference between the primal objective of S and the objective of our dual solution

is indeed given in (4.11).

∑
i∈g/Ḡ:covS(i)=0

βi +
∑

i∈g/Ḡ:covS(i)>1

(covS(i)− 1)πi +
∑

j∈J,Sj=∅

γj (4.11)

Both of our algorithms will start with and maintain an integral primal solution S and a dual solution

π, β, γ, at each stage modifying the solutions in such a way as to close the gap in equation (4.11).

At any given point in the following discussion, for a piece j ∈ J we will take Tj to be the set of placements

of piece j for which constraint (4.10c) is tight. Thus, in this section, when calling the local search heuristic

4, once we specify a set Jc of piece indices whose placements we can change, we will take our set of possible

new locations for each piece j ∈ Jc to be the set of tight constraints Tj . In our discussion we will only specify

the initial solution S and set of piece indices Jc, whenever we call heuristic 4.
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4.4.3 Decreasing Primal-Dual Approach

We provide a brief outline of how our algorithm will proceed. We will initialize by taking βi = µ(i, 0) for

each i ∈ g/Ḡ, and γ = 0. Note that the only placements in Tj for some j will be those with perfect fit at

initialization, or in other words, placements of average cost 0. We then take our primal solution S to be the

solution outputted by running heuristic 4 with Jc = J and the empty solution as input.

At any given iteration, we will use linear programming to determine a system of rates ∆γ ,∆β which we

will use to update our dual variables. We have previously noted that we will always assume βi = µ(i, 0)−πi,

for all i ∈ g/Ḡ. For this reason, we have only specified a rate for how ∆β is changing.

We will determine the rates by solving a sequence of linear programs, which aim to update our dual

solution in such a way as to decrease the quantity in equation (4.11) as much as possible with respect to our

current solution S. When ∆γ = 0,∆β = 0 is an optimal solution to our first system of linear equations, the

algorithm does not expect to further decrease the gap between the primal objective of S and the objective of

our dual solution, so we will terminate. Otherwise, at each iteration, there will exist some positive quantity

v > 0 such that we can update our dual variables according to equation (4.12). If in this process there is

a non-empty set of placements whose dual constraint (4.10c) becomes tight, we will consider updating our

solution S to include them. Next, we provide the specific choices we have made for how each of these steps

are completed.

β ← β −∆β · v, γ ← γ + ∆γ · v (4.12)

Since we wish to decrease the quantity computed in equation (4.11), we choose to optimize the objective

function (4.13a). Since S is the best solution we have found thus far, we currently have no incentive to move

away from S, and so we ensure all placements in S remain tight (4.13b). We also wish to maintain dual

feasibility for some positive change in the dual variables ((4.13c)). Putting this together and normalizing
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∆β we solve for an optimal solution of system 4.13.

max
∑
i∈g/Ḡ

(1− covS(i))∆β −
∑

j∈J,Sj=∅

∆γ
j (4.13a)

s.t. ∆γ
j =

∑
i:`≤i≤r

∆β
i ∀j ∈ J, if (`, r) ∈ Sj (4.13b)

∆γ
j ≥

∑
i:`′≤i≤r′

∆β
i for (`,′ r′) ∈ Tj \ Sj (4.13c)

∆β
i = 0 ∀i s.t. πi = µi (4.13d)

0 ≤ ∆β ≤ 1 (4.13e)

∆γ ≥ 0 (4.13f)

Even though our choice of rates objective (4.13a) was motivated by equation (4.11), we offer an intuitive

explanation of this choice. At each iteration, we aim to increase the quality of our solution S. Recall this

is dictated by the fit and coverage functions c and µ. We begin with a search neighbourhood containing

only 0-cost placements. While we suspect our search neighbourhood does not contain a set of placements

that optimizes the tradeoff between c and µ, we would like to consider including placements of increasing

cost to our neighbourhood in the hopes that these placements will allow us to cover a broader range on unit

intervals in g/Ḡ. Since we only consider placements whose dual constraints are tight with respect to (4.10c),

it is advantageous for us to increase πi for intervals not covered by S at as fast a rate as possible so that

more placements covering these intervals become tight. On the other hand, if a piece j ∈ J is not used by S,

we would want more options for this piece, and by the same reasoning, we would wish to keep γj constant. If

an interval i ∈ g/Ḡ is covered multiple times by S, it does not need any more options, so we wish to keep πi

constant. If the optimal solution to system (4.13) has objective value 0, we terminate our algorithm. Since

our objective function was selected to decrease the gap between our primal and dual solution, this condition

means that our algorithm does not expect to be able to decrease this gap further.

It should be noted that there may be many optimal solutions to system (4.13). We will provide a heuristic

for selecting a particular optimal solution to system (4.13) by solving two additional linear programs. To do

this, we make some observations about system (4.13). Suppose that S is a local optimum for heuristic (4)

at the end of the last iteration.
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Suppose that a piece (j, `, r) is not included in our set of tight constraints. If covS(i) ≥ 1 for all

i ∈ {`, . . . , r − 1}, then under the assumption that piece (j, `, r) has higher average cost than the tight

placements already placed by S, we have no motivation to include it in our solution. If we pick an optimal

solution to (4.13) with a small value for the quantity

∑
i:`�gi≺gr−1

∆β
i ,

we will not be encouraging such placements (j, `, r) to become tight. To capture this we chose to pick an

optimal solution that minimizes the quantity

∑
i∈g/Ḡ

∆β
i ,

so that whenever possible we are encouraged to set ∆β
i = 0 for all i such that covS(i) = 0.

By constraint (4.13b) and the fact that any optimal solution to (4.13) will prefer to increase the rates of

intervals i with covS(i) = 1 over intervals with covS(i) > 1, we choose to model this by instead picking a

solution that minimizes the quantity ∑
j∈J:Sj 6=∅

∆γ
j .

Using linear programming to solve for these properties, we chose an optimal solution to system (4.14),

where P is the feasible region to system (4.13) and OPT1 is the optimal objective value of system (4.13).

Note that for simplicity we have chosen to minimize

∑
j∈J

∆γ
j

rather than ∑
j∈J:Sj 6=∅

∆γ
j .

Let OPT2 be the optimal objective value of system (4.14). In addition we choose to solve a third linear

program (4.15), which amongst all optimal solutions to (4.14) minimizes the total slack created in the tight

constraints. For many instances that we are interested in, this approach experimentally appears to reduce

the number of iterations until termination. Whether or not we have bad the best choices it a topic for future

investigation.
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min
∑
j∈J

∆γ
j (4.14a)

s.t.
∑
i∈g/Ḡ

(1− covS(i))∆β −
∑

j∈J, unused

∆γ
j = OBJ1 (4.14b)

(∆β ,∆γ) ∈ P (4.14c)

min
∑
j∈J

∑
(`,r)∈Tj

zj,`,r (4.15a)

s.t.
∑
i∈g/Ḡ

(1− covS(i))∆β −
∑

j∈J, unused

∆γ
j = OBJ1 (4.15b)

∑
j∈J

∆γ
j = OBJ2 (4.15c)

zj,`,r = ∆γ
j −

∑
i:`≤i≤r

∆β
i ∀j ∈ J, (`, r) ∈ Pj (4.15d)

(∆β ,∆γ) ∈ P (4.15e)

Once we have selected our rates ∆γ ,∆β , we will compute v in equation (4.12) as follows. Since system

4.13 does not consider placements whose dual constraint 4.10c is not tight, for each such placement (j, `, r)

there is some vγj,`,r ∈ R ∪ {∞} such that

vγj,`,r =
c(j, `, r) + γj −

∑
i:`≤i≤r−1 πi∑

i:`≤i≤r−1 ∆β
i −∆γ

j

.

Note that only placements for which vγj,`,r ∈ R>0 can become tight if we change our dual solution at rates

∆γ ,∆β . Hence we take

vγ = min
(`,r)∈(Ḡ2),vj,`,r>0

vj,`,r.

We are also limited by the fact that β ≥ 0 and so we take

vβ = min
i∈g/Ḡ

βi

∆β
i

.

Then v is given in equation (4.16).
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v = min(vγ , vβ). (4.16)

After selecting rates ∆γ ,∆β , computing our increase limit v and updating our dual variable accordingly,

we will be in at least one of the following situations. The first situation is that there is some set of I ⊆ g/Ḡ of

intervals such that for i ∈ I βi > 0 before the current iteration, but currently βi = 0. The second situation

is that there is some set of placements N that were not tight in the previous round but are currently tight.

In the latter case, for each placement (j, `, r) ∈ N we compute the solution S′ taken by fixing the placement

of piece j to be (`, r) and applying the local search algorithm in 4.3, with Jc = J \ {j}. If all such S′ satisfy

Cmax(S′) ≤ Cmax(S) + ε we do not update S, otherwise we take S to be best new solution computed. The

choice of how to use algorithm in 4 as a subroutine is motivated by the following two observations. First,

if we choose to update our solution S in a given iteration, we will only do so if we include at least one

placement from N because otherwise, we would have done so in a previous iteration. Thus if |N | is small,

it makes sense to run the local search algorithm |N | times where each time we fix one element of N to be

in our solution. When testing this algorithm, we have found that |N | is usually small in our instances of

interest, including one or two placements. Whether or not this is the best choice is a topic to be explored in

future research.

The complete algorithm is given in Algorithm 5.

We make a final note that connects us back to our motivation for studying this approach given at the

beginning of section 4.4.1. When we select our rates ∆γ ,∆β , we are only motivated to assign positive values

to these rates if doing so allows us to change βi for some i, where i is uncovered by S. For each piece j, we

are encouraging placements of higher average cost that cover area of the ideal curve not currently covered

by S.

4.4.4 Increasing Primal-Dual Approach

This approach will be similar to that of Section 4.4.3, so we will be more brief.

In this approach we will initialize the algorithm by taking βi = 0 for each i ∈ g/Ḡ, and γj = pmax(j).

Note that at initialization, the only constraints in Tj for some j will be those that maximize individual profit.

We then take our primal solution S to be the solution outputted by running the local search algorithm in

section 4.3 with Jc = J and the empty solution as input. After initialization, the quality of S will depend

on how much overlap is present. If there is lots of overlap, we wish to relax the placements allowed in Tj for
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Algorithm 5 Primal-Dual Decrease (I)

Input: An instance I of (CRPRPS)
Output: A solution S to I.

1: S ← ∅
2: βi = µ(i, 0), πi = 0 for all i ∈ g/Ḡ, γ = 0, Tj ← {(`, r) ∈ Pj : c(j, `, r) = 0} for j ∈ J
3: S ← LocalSearch(I, ∅, J, {Tj : j ∈ J})
4: Solve (4.15) to get ∆γ ,∆β

5: while Equation (4.13a) is positive do
6: vγ = min

(`,r)∈(Ḡ2),vj,`,r>0
vj,`,r

7: vβ = mini∈g/Ḡ
βi
∆β
i

8: v = min(vγ , vβ)
9: T ′j ← {(`, r) ∈ Pj :

∑
i:`≤i≤r−1 πi − γj = c(j, `, r)} for each j ∈ J

10: β ← β − v ·∆β , π ← π + v ·∆β , γ ← γ + v ·∆γ

11: Tj ← {(`, r) ∈ Pj :
∑
i:`≤i≤r−1 πi − γj = c(j, `, r)} for each j ∈ J

12: Nj ← Tj \ T ′j for each j ∈ J
13: S∗ ← S
14: for j ∈ J do
15: for (`, r) ∈ Nj \ Tj do
16: S′ ← S
17: S′j ← (`, r)
18: S′ ← LocalSearch(I, S′, J \ {j}, {Tj : j ∈ J \ {j}})
19: if Cmax(S′) ≥ Cmax(S∗) + ε then
20: S∗ ← S′

21: if Cmax(S∗) ≥ Cmax(S) + ε then
22: S ← S∗

23: Solve (4.15) to get ∆γ ,∆β

return S
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each j ∈ J to include options of lower individual profit but cover areas not currently covered by S.

We will again update our dual solution by decreasing the difference between the current dual objective

and the primal value of S. This equation is again given by equation (4.11). In some sense, we have chosen

the opposite choice of initialization conditions to that in the decreasing approach from Section 4.4.3. If we

wish to minimize the gap between primal and dual objective, we should increase βi for intervals i that are

covered multiple times. Intuitively we cannot collect a reward µ(i, 0) more than once, and increasing βi

symbolizes this. To see this, if we maintain feasibility as we alter β, we must simultaneously decrease γj

for each piece j covering interval i in S. This process will encourage new placements of each such piece j

to become tight covering intervals not currently covered by S. Using this logic we formulate system (4.18),

and subsequently we solve system (4.19) and (4.20), where P is the feasible region to system 4.18 and OPT1

is the optimal objective value of system 4.18 and OPT2 is the optimal objective value of system 4.19. The

logic behind our choices of (4.19) and (4.20) is similar to that of (4.14) and (4.15) in Section 4.4.3.

Again we can only change our dual variables at the rates ∆γ and ∆β for some v > 0 while maintaining a

feasible dual solution. The formula for v is the same as in the other approach and is given in equation (4.16)

in Section 4.4.3 for the other approach. The equation for the dual variables at the end of a given iteration is

given by (4.17). We note that the dual-variables that were increasing in our other approach are decreasing

in this approach, and the dual-variables that were decreasing in our other approach are increasing in this

approach.

β ← β + ∆β · v, π ← π −∆β · v, γ ← γ −∆γ · v (4.17)

max
∑
i∈g/Ḡ

(covS(i)− 1)∆β +
∑

j∈J,Sj=∅

∆γ
j (4.18a)

s.t. ∆γ
j =

∑
i:`≤i≤r

∆β
i ∀j ∈ J, if (`, r) ∈ Sj (4.18b)

∆γ
j ≤

∑
i:`′≤i≤r′

∆β
i for (`,′ r′) ∈ Tj \ Sj (4.18c)

∆β
i = 0 ∀i s.t. βi = µi (4.18d)

0 ≤ ∆β ≤ 1 (4.18e)

∆γ ≥ 0 (4.18f)
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min
∑
j∈J

∆γ
j (4.19a)

s.t.
∑
i∈g/Ḡ

(covS(i)− 1)∆β +
∑

j∈J, unused

∆γ
j = OBJ1 (4.19b)

(∆β ,∆γ) ∈ P (4.19c)

min
∑
j∈J

∑
(`,r)∈Tj

zj,`,r (4.20a)

s.t.
∑
i∈g/Ḡ

(covS(i)− 1)∆β +
∑

j∈J, unused

∆γ
j = OBJ1 (4.20b)

∑
j∈J

∆γ
j = OBJ2 (4.20c)

zj,`,r = ∆γ
j −

∑
i:`≤i≤r

∆β
i ∀j ∈ J, (`, r) ∈ Pj (4.20d)

(∆β ,∆γ) ∈ P (4.20e)

After selecting rates ∆γ ,∆β , computing our increase limit v and updating our dual variable accordingly,

we will be in at least one of the following situations. The first situation is that there is some set of I ⊆ g/Ḡ

of intervals such that for i ∈ I βi < µ(i, 0) before the current iteration, but currently βi = µ(i, 0). The

second situation is that there is some set of placements P that were not tight in the previous round but are

currently tight. In the latter case, we check if we can improve our solution S as in the first approach.

The complete algorithm is given in Algorithm 6.

We make a final note that connects us back to our motivation for studying this approach given at the

beginning of section 4.4.1. When we select our rates ∆γ ,∆β , we are only motivated to assign positive values

to these rates if doing so allows us to change βi for some i, where i is covered multiple times by S. For

each piece j, we are encouraging placements of lower individual profit that cover area of the ideal curve not

currently covered by S.
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Algorithm 6 Primal-Dual Increase (I)

Input: An instance I of (CRPRPS)
Output: A solution S to I.

1: S ← ∅
2: βi = 0, πi = µ(i, 0) for all i ∈ g/Ḡ, γj = pmax(j) for all j ∈ J , Tj ← {(`, r) ∈ Pj : p(j, `, r) = pmax(j)}

for j ∈ J
3: S ← LocalSearch(I, ∅, J, {Tj : j ∈ J})
4: Solve (4.20) to get ∆γ ,∆β

5: while Equation (4.18a) is positive do
6: vγ = min

(`,r)∈(Ḡ2),vj,`,r>0
vj,`,r

7: vβ = mini∈g/Ḡ
βi
∆β
i

8: v = min(vγ , vβ)
9: T ′j ← {(`, r) ∈ Pj :

∑
i:`≤i≤r−1 πi − γj = c(j, `, r)} for each j ∈ J

10: β ← β − v ·∆β , π ← π + v ·∆β , γ ← γ + v ·∆γ

11: Tj ← {(`, r) ∈ Pj :
∑
i:`≤i≤r−1 πi − γj = c(j, `, r)} for each j ∈ J

12: Nj ← Tj \ T ′j for each j ∈ J
13: S∗ ← S
14: for j ∈ J do
15: for (`, r) ∈ Nj \ Tj do
16: S′ ← S
17: S′j ← (`, r)
18: S′ ← LocalSearch(I, S′, J \ {j}, {Tj : j ∈ J})
19: if Cmax(S′) ≥ Cmax(S∗) + ε then
20: S∗ ← S′

21: if Cmax(S∗) ≥ Cmax(S) + ε then
22: S ← S∗

23: Solve (4.20) to get ∆γ ,∆β

return S
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4.4.5 Notes on primal-dual Approaches

In practice, after termination of our primal-dual algorithm, one could run the local search algorithm with

the initial solution outputted by the primal-dual approach and expanding Tj to include even the placements

are not tight with respect to 4.10c. At this point, we hypothesize that, on average, the local optimum

we terminate with would be better than if we ran local search without the primal-dual techniques. Our

hypothesis is made because of our approach of considering only placements low average cost or high profit

in our search neighbourhood, then slowly relaxing this. This is because of the notes made in our motivation

for studying these primal-dual techniques. This hypothesis is explored in an experimental study in chapter

5.

4.4.6 Unanswered Questions

As previously noted, our main goal in this chapter is to provide an algorithm that performs well and in

polynomial time. We note that we can construct (CRPRPS) instances such that both of our primal-dual

approaches give a solution with an asymptotic value of half of the optimal value. It would be interesting for

future research to see if one can prove any approximation guarantees for these heuristics. It is also unclear

if we can provide a worst-case run-time bound for these heuristics. If not, we would also be curious to see if

appropriate modifications can be made to the algorithms to improve run-time or performance.

For the sake of future research and our experimental study, we define a measure associated with run-time.

When we run our primal-dual approaches, for a given iteration, we say that combinatorial progress was made

if either the objective function increased by some ε sufficiently large, or if the size of the set U which we will

define for each approach separately decreases. For the decreasing primal-dual approach from section 4.4.3,

the set U is given by

{i ∈ g/Ḡ : covS(i) = 0, βi > 0}.

The intuition behind this choice is that in the decreasing approach, there is effectively no incentive to cover

intervals i with βi = 0. To see this, we recall that we are limited to placements (j, `, r) tight with respect to

constraint (4.10c). This means that the individual profit of a tight placement (j, `, r) is γj +
∑
i:`�gi≺gr βi.

We could only increase our profit by using placement (j, `, r) if some subset of the relevant dual variables

has a positive value. Thus, if βi = 0, there is no incentive to cover interval i.
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For the increasing primal-dual approach from section 4.4.4, the set U is define as

{i ∈ g/Ḡ : covS(i) > 1, βi < πi}.

The intuition behind this choice is that in the increasing approach when we increase βi for some i ∈ g/Ḡ, we

do so when we have several options with which to cover interval i, and want to encourage the pieces which

correspond to these options to explore other placements. This in effect disincentivizes covering interval i.

When β = πi we can no longer disincentivize pieces to cover interval i.

For either approach, when |U | decreases, either we have obtained more coverage, obtained less overlap, or

the dimension of our rates system has decreased, making this a suitable quantity to track. For an appropriate

choice of ε, we can bound the number of iterations in which combinatorial progress is made by a polynomial

function in |Ḡ|. As a result, one method to bound the run-time of either approach is to bound the number

of consecutive iterations in which no combinatorial progress is made. In our experimental study in chapter

5, we measure this quantity to provide an intuition of whether or not studying these algorithms further is a

good direction for the future of this project.
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Chapter 5

Experimental Results

In this chapter, we conduct an experimental study to test the algorithms and heuristics given in Chapter 4.

Recall that our heuristics from Chapter 4 optimize over equation (4.1). Thus in this section we will continue

to frame (CRPR) and (CRPRPS) as maximization problems. First, we will examine the approaches targeted

toward instances of (CRPRPS) in 5.1, and finally in Section 5.2, we examine our modified greedy approach

for instances of (CRPR). In this experimental study, we used curves created to match the shape of a patient’s

preoperative bandeau, as well as the template the surgeon would have used. This is done by taking a CT

scan of a patient’s head and extracting data about the outer layer of bone. To create the deformed curve

we place points along the bandeau, rotating them to a 2-dimensional plane and using them to define our

curve. We have a library of ideal curves developed by the authors in [2], from which we took the ideal curve

we used for this study. In practice the surgeons choose a template that can be placed onto the infant’s

head touching or almost touching the head at the midpoint and endpoints of the template. Analogously,

our ideal curve is selected so that the deformed curve meets or is close to the ideal curve at the endpoints

and midpoint. Taking discretizations with about 200 points captures enough detail to model the patient

bandeaus effectively. Thus our curves f and g have the property that

|F | = |G| = 201.

We took Ḡ = G and F̄ to contain every eighth point in F , beginning with the first point and including the

last. This choice was made for the following two reasons. When testing our heuristics for (CRPRPS), if we

took F̄ = F for most choices of piece limit k we would be left with too many possible cut patterns to test in
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our time frame. In this case we would anyway select a subset of the possible cut patterns to test. The second

reason is that when testing our modified greedy heuristics for (CRPR) we wanted to test instances which we

could solve optimally to observe how our heuristics perform in practice. With our computing power we were

unable to solve instances of (CRPR) using F̄ = F, Ḡ = G for any k. However, taking F̄ to be one eighth the

size of F , we can quickly solve instances of (CRPR) using our computing power.

We mentioned that the surgeons would like to limit the number of cuts made to the deformed skull in

order to limit the length of the procedure. In practice, the surgeons typically make up to 7 cuts, resulting

in up to 8 bandeau pieces. Two cuts will typically be too few. As a result, we elected to test values of k,

ranging from 3 to 8. We used the choice of c and µ defined in Section 2.2.2, with parameters α = 1 and

δ = 0.005.

For the following tests we have implemented our heuristics using Python.

5.1 Experiments for Instances of CRPRPS

We will first explain how our study of (CRPRPS) will proceed. To motivate our choice of dataset we consider

the following quantity. For a given set of pieces J , and for each piece j ∈ J , we let mj be the maximum

number of intervals covered by any placement of piece j with a non-infinite cost. The formal equation for mj

is given in (5.1), where we recall that Pj is the set of placements of piece j with a non-infinite cost. We call

the quantity
∑
j∈J mj , the maximum possible coverage for piece set J because it provides an upper bound

on the number of intervals any solution to (CRPRPS) specified by J covers.

mj = max
(`,r)∈Pj

|{`, . . . , r − 1}| (5.1)

We create our data set based on the following intuition. For our application, we are interested in covering

most of the unit intervals of the ideal curve. We note that if the maximum possible coverage of a set of

pieces is too low, it cannot lead to a suitable solution. Since our heuristics for (CRPRPS) do not provide

intuition on generating cut patterns best, we will be interested in how our algorithms perform on cut patterns

that have been preselected to be suitable. For this reason, we have chosen to favour testing on instances

of (CRPRPS) with high values of maximum possible coverage. The data set is meant to filter further by

selecting (CRPRPS) instances whose optimal solution uses all inputted pieces. We experiment on the this

dataset to see how our algorithms perform on instances with optimal solutions that cover almost the entire

ideal curve.
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We next describe how the data set is created. For a given k, we made test instances using the following

procedure. We first enumerated all sets of k pieces that can be obtained using the same separation operation.

We iterate through our list, and for each piece set J , we compute the optimal solution using an integer

programming formulation for (CRPRPS) implemented using Gurobi’s Python interface. If the optimal

solution places all pieces in J , we place it into the dataset. We limit each data set to 25000 examples.

We will use tables to present our results. For each heuristic, we will compute the ratio between the

objective value of the solution produced by the heuristic and the optimal objective value, which we will call

the primal performance ratio. Some of our approaches use primal-dual techniques. In addition to testing the

primal performance ratio, for such approaches, we will be interested in the ratio between the value of the

solution produced by the heuristic and the objective value of the dual solution produced by the heuristic,

which we will call the dual performance ratio. Specifically these approaches are the resource allocation

approach in Section 4.2, and the primal-dual local search approaches from Section 4.4.

For each choice of k, we will provide two tables, one measuring the primal performance ratios for our

data set and one measuring the dual performance ratios for our data set whenever relevant. In each table’s

caption, we will specify the value k, the size of our data set, and which ratio we are testing. The rows of

the table will correspond to the heuristic or algorithm we are testing. We will use the titles Greedy, LS,

RA, PD DEC, PD DEC LS, PD INC, and PD INC LS respectively to present our results for the standard

greedy approach in section 4.1, the local search approach in section 4.3, the resource allocation approach

in section 4.2, the decreasing primal-dual approach in section 4.4.3, the decreasing primal-dual approach in

section 4.4.3 with an additional round of local search at the end where we expand Tj to Pj for each piece

j ∈ J , the increasing primal-dual approach in section 4.4.4, and the increasing primal-dual approach in

section 4.4.4 with an additional round of local search at the end where we expand Tj to Pj for each piece

j ∈ J , respectively. Ranges will label the columns of our charts. The entry for a particular column will be

the percentage of the test data whose performance ratio was in the specified range for the specified heuristic

or algorithm. In essence, our charts are meant as appropriate substitutes for histograms. Note that the

entries of our tables were rounded to two, sometimes three decimal places, allowing for some error.

We first summarize our data by describing how each heuristic performed for each choice of k as well as

over all. The reader should refer to Tables 5.1 and 5.2 for performance statistics on our heuristics for k = 3,

Tables 5.3 and 5.4 for performance statistics on our heuristics for k = 4, Tables 5.5 and 5.6 for performance

statistics on our heuristics for k = 5, Tables 5.7 and 5.8 for performance statistics on our heuristics for

k = 6, Tables 5.9 and 5.10 for performance statistics on our heuristics for k = 7, and Tables 5.11 and 5.12
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for performance statistics on our heuristics for k = 8. For the reader’s convenience we provide a full analysis

as well as a summary of it afterward.

5.1.1 Full Analysis of Performance

We examine each heuristic one by one.

Primal Performance Ratios Greedy Heuristic We first examine the performance of the greedy heuris-

tic. For k = 3, the heuristic gave an optimal solution on 28.78% of the instances, 65.84% of the cases had a

primal performance ratio of at least 0.9 and 85.92% of the cases had a primal performance ratio of at least

0.8. For k = 4, the heuristic gave an optimal solution on 15.93% of the instances, 71.02% of the instances

had a primal performance ratio of at least 0.9 and 94.55% of the instances had a primal performance ratio

of at least 0.8. For k = 5, the heuristic gave an optimal solution on 5.53% of the instances, 70.77% of the in-

stances had a primal performance ratio of at least 0.9 and 97.67% of the instances had a primal performance

ratio of at least 0.8. For k = 6, the heuristic gave an optimal solution on 1.52% of the instances, 73.62%

of the instances had a primal performance ratio of at least 0.9 and 98.78% of the instances had a primal

performance ratio of at least 0.8. For k = 7, the heuristic gave an optimal solution on 1.28% of the instances,

84.92% of the instances had a primal performance ratio of at least 0.9 and 99.84% of the instances had a

primal performance ratio of at least 0.8. For k = 8, the heuristic gave an optimal solution on 0.21% of the

instances, 93.53% of the instances had a primal performance ratio of at least 0.9 and 99.96% of the instances

had a primal performance ratio of at least 0.8. For our test data, the likelihood that the algorithm gives

the optimal solution appears to decrease as k increases. Over our entire data set, approximately 78.96%

of the instances had a primal performance ratio of at least 0.9, and 98.17% of the instances had a primal

performance ratio of at least 0.8, suggesting a strong over all performance.

Primal Performance Ratios Local Search Heuristic Next, we examine the performance of the local

search heuristic. For k = 3, the heuristic gave an optimal solution on 44.93% of the instances, 68.33% of the

instances had a primal performance ratio of at least 0.9 and 86.34% of the instances had a primal performance

ratio of at least 0.8. For k = 4, the heuristic gave an optimal solution on 26.46% of the instances, 74.34%

of the instances had a primal performance ratio of at least 0.9 and 95.57% of the instances had a primal

performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal solution on 9.68% of the instances,

74.28% of the instances had a primal performance ratio of at least 0.9 and 98.1% of the instances had a

primal performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal solution on 3.32% of the

66



instances, 76.42% of the instances had a primal performance ratio of at least 0.9 and 98.97% of the instances

had a primal performance ratio of at least 0.8. For k = 7, the heuristic gave an optimal solution on 2.6%

of the instances, 88.25% of the instances had a primal performance ratio of at least 0.9 and 99.92% of the

instances had a primal performance ratio of at least 0.8. For k = 8, the heuristic gave an optimal solution on

1.1% of the instances, 97.06% of the instances had a primal performance ratio of at least 0.9, and almost all

of the instances had a primal performance ratio of at least 0.8. Again, for our test data, the likelihood that

the local search heuristic gives the optimal solution appears to decrease as k increases. Again the over all

performance remained strong as k increased since about 82.26% of the instances had a primal performance

ratio of at least 0.9 and 97.89% of the instances had a primal performance ratio of at least 0.8.

Primal Performance Ratios Resource Allocation Algorithm Next, we examine the performance

of the resource allocation algorithm. For k = 3, the heuristic gave an optimal solution on 12.22% of the

instances, 70.4% of the instances had a primal performance ratio of at least 0.9 and 80.13% of the instances

had a primal performance ratio of at least 0.8. For k = 4, the heuristic gave an optimal solution on 2.67%

of the instances, 57.61% of the instances had a primal performance ratio of at least 0.9 and 80.81% of the

instances had a primal performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal solution

on 0.44% of the instances, 47.78% of the instances had a primal performance ratio of at least 0.9 and 81.72%

of the instances had a primal performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal

solution on 0.06% of the instances, 42.02% of the instances had a primal performance ratio of at least 0.9

and 85.91% of the instances had a primal performance ratio of at least 0.8. For k = 7, the heuristic gave an

optimal solution on 0.01% of the instances, 64% of the instances had a primal performance ratio of at least

0.9 and 96.19% of the instances had a primal performance ratio of at least 0.8. For k = 8, the heuristic gave

an optimal solution on 0.01% of the instances, 59.51% of the instances had a primal performance ratio of

at least 0.9 and 97.83% of the instances had a primal performance ratio of at least 0.8. Again, for our test

data, the likelihood that the resource allocation algorithm gives the optimal solution appears to decrease as

k increases. Although in general not as strong at the greedy and local search ratios, over all performance

was strong and consistent, since about 54.06% of the instances had a primal performance ratio of at least

0.9 and 88.69% of the instances had a primal performance ratio of at least 0.8

Primal Performance Decreasing Primal-Dual Heuristic Next, we examine the performance of the

decreasing primal-dual heuristic. For k = 3, the heuristic gave an optimal solution on 44.93% of the instances,

96.28% of the instances had a primal performance ratio of at least 0.9 and all of the instances had a primal
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performance ratio of at least 0.8. For k = 4, the heuristic gave an optimal solution on 34.69% of the instances,

97.46% of the instances had a primal performance ratio of at least 0.9, and almost all of the instances had

a primal performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal solution on 34.47% of

the instances, 97.97% of the instances had a primal performance ratio of at least 0.9, and almost all of the

instances had a primal performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal solution on

34.55% of the instances, 97.76% of the instances had a primal performance ratio of at least 0.9, and almost

all of the instances had a primal performance ratio of at least 0.8. For k = 7, the heuristic gave an optimal

solution on 47.26% of the instances, 99.76% of the instances had a primal performance ratio of at least 0.9

and all of the instances had a primal performance ratio of at least 0.8. For k = 8, the heuristic gave an

optimal solution on 43.06% of the instances, 99.94% of the instances had a primal performance ratio of at

least 0.9 and all of the instances had a primal performance ratio of at least 0.8. This heuristic performed

well and consistently, giving an optimal solution on 38.99% of the instances, 98.53% of the instances had a

primal performance ratio of at least 0.9, and almost all of the instances had a primal performance ratio of at

least 0.8. We note that this heuristic performed better than the previously mentioned heuristics, increasing

the percentage of instances falling into each of the three classes, namely those giving a primal performance

ratio of 1, 0.9, and of 0.8.

Now we discuss the performance of the decreasing primal-dual heuristic with the additional round of local

search with an expanded neighbourhood and compare it to that of the the standard local search heuristic.

For k = 3, the class of instances for which we were able to obtain the optimal solution included an additional

36.85% of the total instances, the class of instances for which we were able to obtain a performance ratio of

at least 0.9 included an additional 30.43% of the instances, and the class of instances for which we were able

to obtain a performance ratio of at least 0.8 included and additional 13.67% of the instances. For k = 4,

the class of instances for which we were able to obtain the optimal solution included an additional 39.15%

of the total instances, the class of instances for which we were able to obtain a performance ratio of at least

0.9 included an additional 23.74% of the instances, and the class of instances for which we were able to

obtain a performance ratio of at least 0.8 included and additional 4.38% of the instances. For k = 5, the

class of instances for which we were able to obtain the optimal solution included an additional 43.81% of

the total instances, the class of instances for which we were able to obtain a performance ratio of at least

0.9 included an additional 23.84% of the instances, and the class of instances for which we were able to

obtain a performance ratio of at least 0.8 included and additional 1.85% of the instances. For k = 6, the

class of instances for which we were able to obtain the optimal solution included an additional 43.28% of
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the total instances, the class of instances for which we were able to obtain a performance ratio of at least

0.9 included an additional 21.44% of the instances, and the class of instances for which we were able to

obtain a performance ratio of at least 0.8 included and additional 1.03% of the instances. For k = 7, the

class of instances for which we were able to obtain the optimal solution included an additional 53.44% of

the total instances, the class of instances for which we were able to obtain a performance ratio of at least

0.9 included an additional 11.57% of the instances, and the class of instances for which we were able to

obtain a performance ratio of at least 0.8 included and additional 0.08% of the instances. For k = 8, the

class of instances for which we were able to obtain the optimal solution included an additional 48.11% of the

total instances, the class of instances for which we were able to obtain a performance ratio of at least 0.9

included an additional 2.89% of the instances, and the class of instances for which we were able to obtain

a performance ratio of at least 0.8 was not changed as all instance for both heuristics achieved this value.

In summary, over all tested instances the addition of the primal-dual steps allowed us to increase the class

of instances for which we were able to obtain the optimal solution to include an additional 45.78% of the

total instances. We were able to obtain a performance ratio of at least 0.9 on an additional 16.45% of the

instances, with little change in the class of instances for which we were able to obtain a performance ratio

of at least 0.8 as both heuristics gave performance ratios of at least 0.8 on most instances.

Next we discuss the performance of the decreasing primal-dual heuristic with the additional round of

local search and compare it to that of the the standard decreasing primal-dual heuristic. For k = 3, the

class of instances for which we were able to obtain the optimal solution included an additional 36.85% of the

total instances, the class of instances for which we were able to obtain a performance ratio of at least 0.9

included an additional 2.46% of the instances, and both heuristics obtained a performance ratio of at least

0.8 for all instances. For k = 4, the class of instances for which we were able to obtain the optimal solution

included an additional 30.92% of the total instances, the class of instances for which we were able to obtain a

performance ratio of at least 0.9 included an additional 0.62% of the instances, and both heuristics obtained

a performance ratio of at least 0.8 for almost all instances. For k = 5, the class of instances for which we

were able to obtain the optimal solution included an additional 19.02% of the total instances, the class of

instances for which we were able to obtain a performance ratio of at least 0.9 included an additional 0.15%

of the instances, and both heuristics obtained a performance ratio of at least 0.8 for almost all instances. For

k = 6, the class of instances for which we were able to obtain the optimal solution included an additional

12.05% of the total instances, the class of instances for which we were able to obtain a performance ratio of

at least 0.9 included an additional 0.1% of the instances,, and both heuristics obtained a performance ratio
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of at least 0.8 for almost all instances. For k = 7, the class of instances for which we were able to obtain

the optimal solution included an additional 8.78% of the total instances, the class of instances for which

we were able to obtain a performance ratio of at least 0.9 included an additional 0.03% of the instances,

and both heuristics obtained a performance ratio of at least 0.8 for almost all instances. For k = 8, the

class of instances for which we were able to obtain the optimal solution included an additional 6.15% of the

total instances, the class of instances for which we were able to obtain a performance ratio of at least 0.9

included an additional 0.01% of the instances, and the class of instances for which we were able to obtain a

performance ratio of at least 0.8 was not changed as all instance for both heuristics achieved this value. In

summary, the addition of extra round of local search allowed us to increase the class of instances for which

we were able to obtain the optimal solution to include an additional 14.83% of the total instances. There

was little change in the classes of instances for which we were able to obtain a performance ratio of at least

0.9 and 0.8, respectively as both heuristics gave similar performance in these categories with each heuristic

admitting a ratio of at least 0.8 in most instances.

Primal Performance Increasing Primal-Dual Heuristic Lastly, we examine the performance of the

increasing primal-dual heuristic. For k = 3, the heuristic gave an optimal solution on 85.3% of the instances,

98.96% of the instances had a primal performance ratio of at least 0.9 and almost all of the instances had

a primal performance ratio of at least 0.8. For k = 4, the heuristic gave an optimal solution on 73.22% of

the instances, 97.57% of the instances had a primal performance ratio of at least 0.9, and almost all of the

instances had a primal performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal solution on

58.97% of the instances, 96.67% of the instances had a primal performance ratio of at least 0.9, and almost

all of the instances had a primal performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal

solution on 46.39% of the instances, 95.72% of the instances had a primal performance ratio of at least 0.9,

and almost all of the instances had a primal performance ratio of at least 0.8. For k = 7, the heuristic gave

an optimal solution on 45.14% of the instances, 98.81% of the instances had a primal performance ratio of at

least 0.9 and all of the instances had a primal performance ratio of at least 0.8. For k = 8, the heuristic gave

an optimal solution on 35.96% of the instances, 99.53% of the instances had a primal performance ratio of

at least 0.9 and all of the instances had a primal performance ratio of at least 0.8. This heuristic performed

well and consistently, giving an optimal solution on 51.16% of the instances, 97.58% of the instances had a

primal performance ratio of at least 0.9, and almost all of the instances had a primal performance ratio of

at least 0.8.
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Now we discuss the performance of the increasing primal-dual heuristic with the additional round of local

search and compare it to that of the the standard local search heuristic. For k = 3, the class of instances for

which we were able to obtain the optimal solution included an additional 45.34% of the total instances, the

class of instances for which we were able to obtain a performance ratio of at least 0.9 included an additional

30.64% of the instances, and the class of instances for which we were able to obtain a performance ratio of

at least 0.8 included and additional 13.67% of the instances. For k = 4, the class of instances for which we

were able to obtain the optimal solution included an additional 54.11% of the total instances, the class of

instances for which we were able to obtain a performance ratio of at least 0.9 included an additional 30.58%

of the instances, and the class of instances for which we were able to obtain a performance ratio of at least

0.8 included and additional 4.21% of the instances. For k = 5, the class of instances for which we were able

to obtain the optimal solution included an additional 56.22% of the total instances, the class of instances

for which we were able to obtain a performance ratio of at least 0.9 included an additional 22.74% of the

instances, and the class of instances for which we were able to obtain a performance ratio of at least 0.8

included and additional 1.72% of the instances. For k = 6, the class of instances for which we were able

to obtain the optimal solution included an additional 48.16% of the total instances, the class of instances

for which we were able to obtain a performance ratio of at least 0.9 included an additional 19.86% of the

instances, and the class of instances for which we were able to obtain a performance ratio of at least 0.8

included and additional 1.01% of the instances. For k = 7, the class of instances for which we were able

to obtain the optimal solution included an additional 50.53% of the total instances, the class of instances

for which we were able to obtain a performance ratio of at least 0.9 included an additional 10.93% of the

instances, and the class of instances for which we were able to obtain a performance ratio of at least 0.8

included and additional 0.08% of the instances. For k = 8, the class of instances for which we were able

to obtain the optimal solution included an additional 43.14% of the total instances, the class of instances

for which we were able to obtain a performance ratio of at least 0.9 to include an additional 2.74% of the

instances, The class of instances for which we were able to obtain a performance ratio of at least 0.8 was

not changed as all instance for both heuristics achieved this value. In summary, over all tested instances

the addition of the primal-dual steps allowed us to increase the class of instances for which we were able

to obtain the optimal solution to include an additional 50.22% of the total instances, the class of instances

for which we were able to obtain a performance ratio of at least 0.9 included an additional 16.87% of the

instances, with little change in the class of instances for which we were able to obtain a performance ratio

of at least 0.8 as both heuristics gave performance ratios of 0.8 on most instances. Next we discuss the
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performance of the increasing primal-dual heuristic with the additional round of local search and compare

it to that of the the standard increasing primal-dual heuristic. For k = 3, the class of instances for which

we were able to obtain the optimal solution included an additional 4.97% of the total instances, the class of

instances for which we were able to obtain a performance ratio of at least 0.9 included an additional 0.01%

of the instances, and both heuristics obtained a performance ratio of at least 0.8 for all instances. For k = 4,

the class of instances for which we were able to obtain the optimal solution included an additional 7.35% of

the total instances, the class of instances for which we were able to obtain a performance ratio of at least

0.9 included an additional 0.26% of the instances, and both heuristics obtained a performance ratio of at

least 0.8 for all instances. For k = 5, the class of instances for which we were able to obtain the optimal

solution included an additional 6.93% of the total instances, the class of instances for which we were able to

obtain a performance ratio of at least 0.9 included an additional 0.35% of the instances, and both heuristics

obtained a performance ratio of at least 0.8 for all instances. For k = 6, the class of instances for which

we were able to obtain the optimal solution included an additional 5.09% of the total instances, the class of

instances for which we were able to obtain a performance ratio of at least 0.9 included an additional 4.62%

of the instances, and both heuristics obtained a performance ratio of at least 0.8 for all instances. For k = 7,

the class of instances for which we were able to obtain the optimal solution included an additional 7.99% of

the total instances, the class of instances for which we were able to obtain a performance ratio of at least 0.9

included an additional 0.37% of the instances, and both heuristics obtained a performance ratio of at least

0.8 for all instances. For k = 8, the class of instances for which we were able to obtain the optimal solution

included an additional 8.28% of the total instances, the class of instances for which we were able to obtain

a performance ratio of at least 0.9 included an additional 0.27% of the instances, and the class of instances

for which we were able to obtain a performance ratio of at least 0.8 was not changed as all instance for both

heuristics achieved this value. In summary, over all tested instances the additional of round of local search

allowed us to increase the class of instances for which we were able to obtain the optimal solution to include

7.1% more of the total instances, with little change in the classes of instances for which we were able to

obtain a performance ratio of at least 0.9 and 0.8, respectively as both heuristics gave similar performance

in these categories with each heuristic admitting a ratio of at least 0.8 on most instances.

Dual Performance Ratios We examine the dual performance ratios given in our various primal-dual

approaches.
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Dual Performance Resource Allocation Algorithm First, we examine the performance of the resource

allocation algorithm. For k = 3, the heuristic never gave an optimal pair of solutions, 30.85% of the instances

had a dual performance ratio of at least 0.9 and 60.04% of the instances had a dual performance ratio of at

least 0.8. For k = 4, the heuristic never gave an optimal pair of solutions, 12.94% of the instances had a dual

performance ratio of at least 0.9 and 43% of the instances had a dual performance ratio of at least 0.8. For

k = 5, the heuristic never gave an optimal pair of solutions, 2.84% of the instances had a dual performance

ratio of at least 0.9 and 25.56% of the instances had a dual performance ratio of at least 0.8. For k = 6, the

heuristic never gave an optimal pair of solutions, 0.03% of the instances had a dual performance ratio of at

least 0.9 and 10.2% of the instances had a dual performance ratio of at least 0.8. For k = 7, the heuristic

never gave an optimal pair of solutions, 0.02% of the instances had a dual performance ratio of at least 0.9

and 15.64% of the instances had a dual performance ratio of at least 0.8. For k = 8, the heuristic never

gave an optimal pair of solutions, 0.01% of the instances had a dual performance ratio of at least 0.9 and

10.65% of the instances had a dual performance ratio of at least 0.8. Comparing these results with the primal

performance ratios of this algorithm we see that solutions are typically much better than the dual bound

offered. We also observe that on our test set the dual performance ratio appears to drop as k increase.

Dual Performance Decreasing Primal-Dual Heuristic First, we examine the performance of the

decreasing primal-dual heuristic. For k = 3, the heuristic gave an optimal pair of solutions 39.13% of the

time, 79.71% of the instances had a dual performance ratio of at least 0.9 and 98.34% of the instances had a

dual performance ratio of at least 0.8. For k = 4, the heuristic gave an optimal pair of solutions 24.6% of the

time, 89.13% of the instances had a dual performance ratio of at least 0.9 and 99.78% of the instances had

a dual performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal pair of solutions 26.78% of

the time, 95.68% of the instances had a dual performance ratio of at least 0.9 and 99.93% of the instances

had a dual performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal pair of solutions 31% of

the time, 96.68% of the instances had a dual performance ratio of at least 0.9 and 100% of the instances had

a dual performance ratio of at least 0.8. For k = 7, the heuristic gave an optimal pair of solutions 42.46% of

the time, 99.76% of the instances had a dual performance ratio of at least 0.9 and 100% of the instances had

a dual performance ratio of at least 0.8. For k = 8, the heuristic gave an optimal pair of solutions 38.9% of

the time, 99.93% of the instances had a dual performance ratio of at least 0.9 and 100% of the instances had

a dual performance ratio of at least 0.8. Recalling our observations from examining our primal performance

ratios, we obtain the following. Over all cases, the heuristic gave an optimal pair of solutions 33.07% of the
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time while giving the optimal primal solution 38.96% of the time. The heuristic gave a dual performance

ratio of at least 0.9 96.37% of the time and a primal performance ratio of at least 0.9 98.53% of the time.

The heuristic gave a dual and primal performance ratios of at least 0.8 on almost all instances. We conclude

that on our test set the decreasing primal-dual heuristic produces very good quality dual solutions.

Dual Performance Increasing Primal-Dual Heuristic First, we examine the performance of the

decreasing primal-dual heuristic. For k = 3, the heuristic gave an optimal pair of solutions 57.35% of the

time, 97.93% of the instances had a dual performance ratio of at least 0.9 and 99.79% of the instances had

a dual performance ratio of at least 0.8. For k = 4, the heuristic gave an optimal pair of solutions 32.45% of

the time, 95.99% of the instances had a dual performance ratio of at least 0.9 and 99.78% of the instances

had a dual performance ratio of at least 0.8. For k = 5, the heuristic gave an optimal pair of solutions 28.62%

of the time, 96.08% of the instances had a dual performance ratio of at least 0.9 and 99.8% of the instances

had a dual performance ratio of at least 0.8. For k = 6, the heuristic gave an optimal pair of solutions

29.44% of the time, 95.38% of the instances had a dual performance ratio of at least 0.9 and 99.95% of

the instances had a dual performance ratio of at least 0.8. For k = 7, the heuristic gave an optimal pair

of solutions 19.73% of the time, 98.71% of the instances had a dual performance ratio of at least 0.9 and

99.99% of the instances had a dual performance ratio of at least 0.8. For k = 8, the heuristic gave an optimal

pair of solutions 15.73% of the time, 99.5% of the instances had a dual performance ratio of at least 0.9 and

100% of the instances had a dual performance ratio of at least 0.8. Looking at the data, as k increases there

appears to be a drop in the percentage of instances for which the heuristic produces a primal dual pair.

Again, recalling our observations from examining our primal performance ratios, we obtain the following.

Over all cases, the heuristic gave an optimal pair of solutions 25.01% of the time while giving the optimal

primal solution 51.16% of the time. The heuristic gave a dual performance ratio of at least 0.9 97.1% of the

time and a primal performance ratio of at least 0.9 97.58% of the time. The heuristic gave a dual and primal

performance ratios of at least 0.8 on almost all instances. We conclude that on our test set the decreasing

primal-dual heuristic produces very good quality dual solutions.

This heuristic performed well and consistently, giving an optimal solution on 51.16% of the instances,

97.58% of the instances had a primal performance ratio of at least 0.9, and almost all of the instances had

a primal performance ratio of at least 0.8. We note that this heuristic performed similarly to the decreasing

primal-dual heuristic, giving the optimal solution over 10% more often.
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5.1.2 Summary of Performance Analysis

For our test data, the likelihood that the greedy algorithm gives the optimal solution appears to decrease as k

increases. For k = 3, 4 we achieved an optimal solution for 28.78% and 15.93% of the instances, respectively,

whereas for k = 7, 8 we achieved an optimal solution for 1.28% and 0.21% of the instances respectively.

Over our entire data set, approximately 78.96% of the instances had a primal performance ratio of at least

0.9, and 98.17% of the instances had a primal performance ratio of at least 0.8, suggesting that the greedy

algorithm performed well.

For our test data, the likelihood that the local search heuristic gives the optimal solution also appears to

decrease as k increases. For k = 3, 4 we achieved an optimal solution for 44.93% and 26.46% of the instances

respectively, whereas for k = 7, 8 we achieved an optimal solution for 2.6% and 1.1% of the instances

respectively. Over our entire data set, approximately 82.26% of the instances had a primal performance

ratio of at least 0.9, and 97.89% of the instances had a primal performance ratio of at least 0.8. This

suggests that overall the local search heuristic performed well.

For our test data, the likelihood that the resource allocation algorithm gives the optimal solution also

appears to decrease as k increases. For k = 3, 4 we achieved an optimal solution for 12.22% and 2.67% of

the instances respectively, whereas for k = 7, 8 we achieved an optimal solution for 0.01% of the instances

for both k. Over our entire data set, approximately 54.06% of the instances had a primal performance ratio

of at least 0.9, and 88.69% of the instances had a primal performance ratio of at least 0.8. The observed

performance is not as strong as the previous two approaches.

For our test data, the likelihood that the decreasing primal-dual approach gives the optimal solution

appears to remain more consistent than the previous approaches. For k = 3, 4 we achieved an optimal

solution for 44.93% and 34.69% of the instances, respectively, whereas for k = 7, 8 we achieved an optimal

solution for 47.26% and 43.06% of the instances respectively. Over our entire data set, the approach gave

an optimal solution on 38.99% of the instances. Whereas 98.53% of the instances had a primal performance

ratio of at least 0.9, and almost all of the instances had a primal performance ratio of at least 0.8. Overall

this approach performed stronger than the above three, increasing the number of instances in which we

obtained an optimal or close to optimal solution. We also tested how this heuristic fared with an additional

round of local search at the end, where we expanded our neighbourhood to include all possible placements for

each piece. Comparing the solutions we obtained from doing only the standard local search, we obtained the

following results. The decreasing primal-dual approach with the extra round of local search gave the optimal

solution for an additional 45.78% of the total instances. The class of instances for which we were able to
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obtain a performance ratio of at least 0.9 included an additional 16.45% of the instances, with little change

in the class of instances for which we were able to obtain a performance ratio of at least 0.8 as both heuristics

gave performance ratios of at least 0.8 on most instances. Also, we compared how the additional round of

local search at the end improved upon the decreasing primal-dual approach. Over all tested instances, the

addition of an extra round of local search allowed us to increase the class of instances for which we were

able to obtain the optimal solution to include an additional 14.83% of the total instances. There was little

change in the classes of instances for which we were able to obtain a performance ratio of at least 0.9 and 0.8,

respectively as both heuristics gave a similar performance in these categories with each heuristic admitting

a ratio of at least 0.8 on most instances.

The increasing primal-dual approach also performed well, giving an optimal solution in 51.16% of the

instances, 97.58% of the instances had a primal performance ratio of at least 0.9, and almost all of the

instances had a primal performance ratio of at least 0.8. Comparing the solutions we obtained from doing

only the standard local search, we obtained the optimal solution included an additional 50.22% of the total

instances. The class of instances for which we were able to obtain a performance ratio of at least 0.9 included

an additional 16.87% of the instances, with little change in the class of instances for which we were able to

obtain a performance ratio of at least 0.8 as both heuristics gave performance ratios of 0.8 on most instances.

Comparing how the additional round of local search at the end improved upon the decreasing primal-dual

approach, we were able to obtain the optimal solution in 7.1% more of the total instances. There was little

change in the classes of instances for which we were able to obtain a performance ratio of at least 0.9 and 0.8,

respectively as both heuristics gave a similar performance in these categories with each heuristic admitting

a ratio of at least 0.8 on most instances.

We also analyzed the dual performance ratios. We found that the resource allocation algorithm typically

provides a much better primal solution than dual solution. In contrast, in most cases for our primal-dual

local search heuristics, the dual and primal performance ratios were much similar. In particular, over all

cases, the decreasing heuristic gave an optimal pair of solutions 33.07% of the time while giving the optimal

primal solution 38.96% of the time. The decreasing heuristic gave a dual performance ratio of at least 0.9

96.37% of the time and a primal performance ratio of at least 0.9 98.53% of the time. The decreasing heuristic

gave dual and primal performance ratios of at least 0.8 on almost all instances. Similarly, over all cases, the

increasing heuristic gave an optimal pair of solutions 33.07% of the time while giving the optimal primal

solution 38.96% of the time. The increasing heuristic gave a dual performance ratio of at least 0.9 96.37%

of the time and a primal performance ratio of at least 0.9 98.53% of the time. The increasing heuristic gave
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dual and primal performance ratios of at least 0.8 on almost all instances.

We did not find an example where any of our heuristics returned a solution worth less than half the

optimum, with most of our examples concentrated at at least 80% of the optimum. On our dataset, the

strongest performing heuristics were the primal-dual local search approaches.

5.1.3 Worst-Case Run-Time Analysis

Since it is still unclear what the worst-case run-time is for our primal-dual approaches, we also took note

of the maximum observed number of consecutive iterations without combinatorial progress, as defined in

section 4.4.6 when we ran these heuristics. Over all choices of k, the worst observed value for this quantity

in the decreasing primal-dual approach from section 4.4.3 was 75, while the increasing primal-dual approach

from section 4.4.4 had a worst observed value for this quantity of 27975. We conclude that for out test data

the decreasing primal-dual approach takes less iterations to make combinatorial progress than the increasing

approach. For more complete statistics, please see Table 5.13, where for each k and each primal-dual method,

we record the maximum observed value and the average over all test cases. It appears from this table that

as k increases, the number of iterations also increases and that for our test set, the increasing algorithm

requires significants more iterations on average. We also computed the CPU seconds required to run each

instance in our test set, and in Table 5.14 recorded the average value for each k. It appears from this table

that as k increases, that the number of CPU required to run either primal-dual local search heuristic also

increases. Although we concluded that the increasing approach required more iterations, it appears that, on

average, the number of CPU seconds required to run an instance of the increasing approach is less than that

of the decreasing approach.

Table 5.1: k=3, 483 instances, Primal Rerformance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy - 1.66 12.42 20.08 37.06 28.78
LS - 1.66 12.01 18.01 23.4 44.93
RA 0.21 4.76 14.91 9.73 58.18 12.22

PD DEC - - - 3.73 51.35 44.93
PD DEC LS - - - 1.24 16.98 81.78

PD INC - - 0.21 0.83 13.66 85.3
PD INC LS - - - 1.04 8.7 90.27
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Table 5.2: k=3, 483 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 4.14 17.39 18.42 29.19 30.85 -
PD DEC - - 1.66 18.63 40.58 39.13
PD INC - - 0.21 6.21 36.23 57.35

Table 5.3: k=4, 20107 instances, Primal Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy 0.02 0.21 5.22 23.53 55.09 15.93
LS 0.02 0.14 4.27 21.23 47.88 26.46
RA 0.1 4.77 14.32 23.2 54.94 2.67

PD DEC - - 0.04 2.49 62.77 34.69
PD DEC LS - - 0.04 1.87 32.47 65.61

PD INC - 0.005 0.21 2.21 24.35 73.22
PD INC LS - 0.005 0.18 1.98 17.26 80.57

Table 5.4: k=4, 20107 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 7.03 23.38 26.6 30.06 12.94 -
PD DEC - - 0.21 10.65 64.53 24.6
PD INC - 0.005 0.22 3.79 63.54 32.45

Table 5.5: k=5, 25000 instances, Primal Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy - 0.12 2.23 26.9 65.24 5.53
LS - 0.1 1.8 23.82 64.6 9.68
RA 0.01 2.23 16.04 33.94 47.34 0.44

PD DEC - - 0.05 1.97 63.5 34.47
PD DEC LS - - 0.05 1.83 44.63 53.49

PD INC - 0.02 0.18 3.14 37.7 58.97
PD INC LS - 0.012 0.17 2.8 31.12 65.896

Table 5.6: k=5, 25000 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 8.36 33.12 32.96 22.72 2.84 -
PD DEC - - 0.07 4.25 68.9 26.78
PD INC - 0.02 0.18 3.72 67.46 28.62
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Table 5.7: k=6, 25000 instances, Primal Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy - 0.01 1.21 25.16 72.1 1.52
LS - 0.01 1.02 22.55 73.1 3.32
RA - 0.79 13.3 43.89 41.96 0.06

PD DEC - - 0.004 2.23 63.21 34.55
PD DEC LS - - 0.004 2.14 51.26 46.6

PD INC - - 0.05 4.22 49.33 46.39
PD INC LS - - 0.02 3.696 44.8 51.48

Table 5.8: k=6, 25000 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 5.9 44.77 39.13 10.17 0.03 -
PD DEC - - 0.04 3.32 65.68 31.0
PD INC - - 0.06 4.57 65.94 29.44

Table 5.9: k=7, 25000 instances, Primal Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy - - 0.164 14.92 83.64 1.28
LS - - 0.09 11.67 85.65 2.6
RA - 0.04 3.77 32.19 63.99 0.01

PD DEC - - - 0.21 52.53 47.26
PD DEC LS - - - 0.18 43.78 56.04

PD INC - - 0.004 1.19 53.67 45.14
PD INC LS - - - 0.82 46.05 53.13

Table 5.10: k=7, 25000 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 0.3 18.2 65.86 15.62 0.02 -
PD DEC - - - 0.24 57.3 42.46
PD INC - - 0.004 1.28 78.98 19.73

Table 5.11: k=8, 25000 instances, Primal Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

Greedy - - 0.04 6.46 93.32 0.21
LS - - 0.004 3.21 95.96 1.1
RA - 0.01 2.18 38.32 59.5 0.01

PD DEC - - - 0.06 56.88 43.06
PD DEC LS - - - 0.04 50.74 49.21

PD INC - - - 0.47 63.57 35.96
PD INC LS - - - 0.2 55.56 44.24
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Table 5.12: k=8, 25000 instances, Dual Performance Ratios

[0.5- 0.6) [0.6- 0.7) [0.7- 0.8) [0.8- 0.9) [0.9- 1) 1

RA 0.08 19.14 70.13 10.64 0.01 -
PD DEC - - - 0.06 61.03 38.9
PD INC - - - 0.5 83.77 15.73

Table 5.13: Maximum Number of Consecutive Iterations Without Combinatorial Progress

k Maximum DEC Average DEC Maximum INC Average INC

3 21 20.19 42 28.33
4 36 35.33 8677 7876.50
5 50 47.97 12050 10899.58
6 62 61.01 29975 14337.07
7 75 73.55 9220 6115.34
8 83 81.24 4933 3850.77

Table 5.14: Average CPU Seconds to Run Primal-Dual Local Search Heuristics

k Average DEC Average INC

3 1.34 0.61
4 3.02 2.92
5 5.55 4.52
6 8.37 6.31
7 15.06 7.63
8 18.94 10.91
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5.2 Experiments for Instances of CRPR

In this section we provide the results when we run the modified greedy algorithm from Section 4.1 in Table

5.15. We will focus our attention on choices of m ≤ 2, as we want to study our performance for a small

constant m. The standard greedy algorithm performed well with m = 0, but as we expected, the performance

ratio drops as k increases. We recall that for the same instance of (CRPR), aside from piece limits k1 and

k2 for k1 < k2, the first k1 pieces picked by our algorithm in either instance will be the same. For m = 0,

and k = 3, 4, we were able to obtain performance ratios above 0.9. For m = 0 and k = 5, 6, 7 we were able

to obtain performance ratios above 0.8. For m = 0 and k = 8, we were able to obtain a performance ratio

of 0.7. For m = 1 and k = 5 we had a performance ratio of 0.895. For all other k, we achieved a ratio of at

least 0.9. For m = 2, for all choices of k, we had a performance ration of at least 0.9.

We note that even for very small values of m, the greedy solution performs very well, and should likely

be tested for future use in algorithms for the complete cranial vault remodeling procedure.

Table 5.15: Modified Greedy

k
m

0 1 2 3 4 5 6 7 8

3 0.991 0.991 1.0 1.0 - - - - -
4 0.973 0.973 0.997 1.0 1.0 - - - -
5 0.895 0.895 0.91 0.948 0.987 0.987 - - -
6 0.853 0.927 0.945 0.95 0.966 0.967 0.967 - -
7 0.814 0.917 0.939 0.954 0.956 0.956 0.964 0.964 -
8 0.775 0.904 0.936 0.946 0.935 0.951 0.954 0.956 0.956

5.3 Unanswered Questions

We see that on our observed test data, none of our heuristics gave a solution that was worse than half the

optimum. Whether or not our primal-dual heuristics from section 4.4 can be proven to have an approximation

guarantee of 1
2 was a question we posed in section 4.4.6. This question still stands after our study. In the

same section, we left as an open question the worst-case run-time of our approaches. Given our results,

one may hypothesize that the increasing primal-dual approach from section 4.4.4 does not have polynomial

run-time, because we had instances taking almost 30000 iterations, while our input size was O(poly(200)).

Although we should note that we cannot conclude anything concrete without further investigation, especially

considering our statistics on CPU run-time. It is also not clear whether or not the increasing primal-dual

81



approach from section 4.4.3 runs in polynomial time. It would be interesting to understand what causes the

differences in behaviour. We ask if any alterations can be made to the increasing approach to improve its

performance. In particular we ask if we can make an early stopping condition that does not affect observed

performance drastically.

For those methods from section 4 that can be used as heuristics for the entire cranial vault remodeling

procedure, it would be an exciting avenue of study to implement and test them experimentally.
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Chapter 6

Conclusions and Future Research

This chapter summarizes our results and some possible future directions for research that we mentioned

throughout the thesis.

In this thesis, we studied a simplification of the cranial vault remodeling procedure called fronto-orbital

advancement with rearrangement. First, we modeled the decisions involved in such a procedure as a combi-

natorial optimization problem called the Curve Reshaping Problem with Rearrangement (CRPR). Also, we

offered an additional problem Curve Reshaping Problem with Rearrangement and Pre-cut Segments (CR-

PRPS) where the decision of how to separate the infant’s bandeau into segments has already been made.

We then proved that these problems are strongly NP-hard, and with no additional restrictions, they are

also not approximable by any polynomial function with respect to input-size. We then posed the question

of whether or not our choice of cost functions µ and c could be improved, or we could restrict our class of

instances to weaken our inapproximability result. To work toward algorithms that run in polynomial time

and perform well on instances of (CRPR) and (CRPRPS) we took an affine transformation of our original

objective function, converting our minimization problem to a maximization problem. We then gave multiple

approaches to tackle instances of (CRPRPS) and one approach to tackle instances of (CRPR). When we

tested our techniques on a data set of interest, it performed well, with the possibility of poor run-time for

one of our unproven approaches. We noted that our heuristics do not observe any unique characteristics

of the specific choice of cost and fit functions c and µ given in section 2.2.2 applied to instances of inter-

est for our application. We wonder if these properties can explain our heuristics’ performance or guide us

to discover more specially designed algorithms. Other interesting questions include testing extensions of

these approaches to a formulation for the entire cranial vault remodeling procedure and further exploring
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performance and run-time of the primal-dual strategies from section 4.4.
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