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Abstract

Big data applications put significant latency and throughput demands on distributed
storage systems. Meeting these demands requires storage systems to use a significant
amount of infrastructure resources, such as network capacity and storage devices. Resource
demands largely depend on the workloads and can vary significantly over time. Moreover,
demand hotspots can move rapidly between different infrastructure locations.

Existing storage systems are largely infrastructure-oblivious as they are designed to
support a broad range of hardware and deployment scenarios. Most only use basic con-
figuration information about the infrastructure to make important placement and rout-
ing decisions. In the case of cloud-based storage systems, cloud services have their own
infrastructure-specific limitations, such as minimum request sizes and maximum number of
concurrent requests. By ignoring infrastructure-specific details, these storage systems are
unable to react to resource demand changes and may have additional inefficiencies from
performing redundant network operations. As a result, provisioning enough resources for
these systems to address all possible workloads and scenarios would be cost prohibitive.

This thesis studies the performance problems in commonly used distributed storage
systems and introduces novel infrastructure-aware design methods to improve their per-
formance. First, it addresses the problem of slow reads due to network congestion that
is induced by disjoint replica and path selection. Selecting a read replica separately from
the network path can perform poorly if all paths to the pre-selected endpoints are con-
gested. Second, this thesis looks at scalability limitations of consensus protocols that are
commonly used in geo-distributed key value stores and distributed ledgers. Due to their
network-oblivious designs, existing protocols redundantly communicate over highly over-
subscribed WAN links, which poorly utilize network resources and limits consistent repli-
cation at large scale. Finally, this thesis addresses the need for a cloud-specific realtime
storage system for capital market use cases. Public cloud infrastructures provide feature-
rich and cost-effective storage services. However, existing realtime timeseries databases are
not built to take advantage of cloud storage services. Therefore, they do not effectively
utilize cloud services to provide high performance while minimizing deployment cost.

This thesis presents three systems that address these problems by using infrastructure-
aware design methods. Our performance evaluation of these systems shows that infrastructure-
aware design is highly effective in improving the performance of large scale distributed
storage systems.
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Chapter 1

Introduction

Big data analytics is pervasive in the modern world where nearly all tools and technologies
collectively produce large volumes of data. Organizations use big data applications to
collect and analyze data, which reveals insights that are critical for business development
and innovation. Processing large volumes of data introduces many challenges such as
efficiently storing and managing data across many machines. Big data applications offload
data storage and management to scalable distributed storage systems, which address the
problems of storing and managing large volumes of data.

A distributed storage system typically consists of a cluster of networked machines that
work together to provide a unified storage space to applications. Spreading data across
machines introduces many challenges such as efficiently utilizing storage capacity, main-
taining data consistency and durability despite failures, and providing high scalability. A
distributed storage system masks all these challenges from applications, which simplifies
applications’ design and enable them to evolve without handling storage related problems.
Thus, distributed storage systems go hand-in-hand with data processing applications and
are a fundamental part of the big data eco-system.

Large scale storage and processing requires provisioning a large infrastructure of servers,
storage devices, and a high-speed network. For efficient provisioning and management
of a vast infrastructure, big data applications and storage systems are deployed in large
datacenters. A typical deployment consists of a mix of storage systems and data processing
applications. Multiple storage systems are employed to store different types of data. For
example, the data warehousing and analytics infrastructure at Facebook uses a message
brokering system for log data, an SQL database for advertisement details, and a distributed
filesystem for aggregated data [58]. Similarly, a stream processing pipeline may use a
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combination of a message queue, a SQL database, and a distributed filesystem to manage
historical data. In addition to storage systems, a diverse set of applications are deployed
in datacenters that use the storage systems. For instance, batch processing is performed
through Hadoop MapReduce, Hive is used for SQL queries, and Spark streaming can be
used to process streaming data.

Different applications and storage systems in a datacenter strive to achieve different
performance goals while sharing infrastructure resources. Moreover, they have different
workload characteristics and demand different resources from the infrastructure. Some
workloads are data intensive and demand high network bandwidth whereas others are
latency sensitive and demand high compute resources. Due to sharing infrastructure re-
sources, often applications and storage systems compete for shared resources and stress
parts of the infrastructure, which results in resource limitations and lower performance of
storage systems. For example, competing for limited network bandwidth can result in con-
gestion in parts of the network, resulting in lower performance of read/write jobs [272, 59].
Therefore, performance of storage systems highly depend on the availability of infrastruc-
ture resources and utilizing the available resources effectively.

One way to avoid low performance of storage systems due to resource limitations is
to provision enough resources that address the requirements of all applications and stor-
age systems. However, workload characteristics shift over time and demand hotspots keep
changing their location within the infrastructure. For example, a storage system for an e-
commerce application may have high resource demands only during shopping seasons, or a
data item may become popular that shift the location of resource demands within the infras-
tructure. Addressing resource requirements of all applications and workloads would require
significantly over-provisioning resources and maintaining them, which is cost-prohibitive.
On the contrary, many infrastructure components, such as the network [92, 29, 108], are
commonly oversubscribed to remain cost-effective and increase resource utilization. There-
fore, efficiently utilizing available resources is significantly important to achieve high per-
formance in distributed storage systems.

1.1 Designing Infrastructure-Aware Storage Systems

An alternative approach to address competing resource demands is to efficiently utilize
available resources. Most storage systems do not use infrastructure resources efficiently
as they are designed oblivious to the infrastructure. Without using rich information from
infrastructure, a storage system may introduce inefficiencies such as utilizing excessive
network bandwidth due to redundant communication over same links. Moreover, an
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infrastructure-oblivious system cannot recognize the availability of alternative resources
and make use of them, e.g., not taking advantage of multiple network paths between
endpoints. In the case of cloud-based storage systems, cloud services have their own
infrastructure-specific limitations such as requests throttling and sizes limitations. There-
fore, an infrastructure-oblivious storage system would inadequately uses cloud infrastruc-
ture when deployed in a cloud.

On the contrary, an infrastructure-aware storage system can use rich information from
the infrastructure to make decisions that efficiently use available resources. Infrastructure-
awareness can manifest in many different ways such as designing around the underlying
network topology, utilizing current network state information, and exploiting the redun-
dancy in the network. In the case of cloud based deployments, applications can take
advantage of specific properties of cloud services, e.g., their scalability and fault tolerance,
to optimize the storage systems that leverage cloud services for durable storage. Therefore,
introducing infrastructure-awareness in storage systems can be instrumental in efficiently
utilizing available resources, resulting in higher performance of the storage systems.

As network is often the performance bottleneck for distributed storage systems, many
storage systems are designed to be network-aware. Such systems include several distributed
filesystems, e.g., GFS and HDFS, and specialized hardware based key-value stores, such
as Nessie [49], FaRM [86], and HERD [139]. Network-aware storage systems mostly utilize
the locality information of storage nodes in racks, estimate network bandwidth assuming
hierarchical topology, and exploit high-speed network interconnect. However, we argue
that these are only a few obvious methods of infrastructure-awareness, which are prevalent
in existing systems. Other aspects of the infrastructure are commonly neglected in the
design of storage systems. Availability of high-bandwidth network within racks, network
topology (flat, star, hierarchical, or random), LAN or WAN based deployment, and the
knowledge of competing workloads are a few examples of design aspects that the storage
systems can use for performance improvements. For cloud infrastructure, storage systems
can benefit from the knowledge of the design, features, and limitations of cloud services to
improve their performance. In this thesis, we identify three areas where performance can
be improved, and we use richer infrastructure-aware methods to improve the performance.
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1.2 Challenges in Designing Infrastructure-Aware Sys-

tems

An infrastructure-aware system can take advantage of system performance optimizations
that are not possible without using specific information from the infrastructure. However,
designing infrastructure-aware systems is challenging and may limit a system in several
other aspects, some of which are as follows.

Higher complexity: Infrastructure-awareness increases complexity of the system. In-
creased complexity can be at different levels such as obtaining information from the infras-
tructure, handling inaccuracies in the information, failure handling, and software design
and its maintenance. Existing storage systems tradeoff performance to achieve simpler de-
sign and use the underlying infrastructure as a black-box. For example, ensuring specific
network path assignments through an SDN controller increases complexity in the system
due to additional components and dependencies in the system.

Reduced Accessibility: An infrastructure-aware design requires rich information from
the infrastructure, which is not always available. For example, network topology infor-
mation is not visible to public cloud tenants. Similarly, infrastructure-aware systems may
require a significant degree of control over the infrastructure, which may not be available
in specific deployment scenarios. For instance, network control plane is not accessible in
shared network facilities such as shared compute clusters and public clouds. Therefore,
an infrastructure-aware storage system is limited to only the deployments where required
information and control are accessible.

Less generality: An infrastructure-aware system is specific and tailored to their target
environment. Therefore, infrastructure-aware systems are limited to only specific deploy-
ment scenarios as compared to more general systems. Using them in different environment
may require re-engineering the system. For example, rack-aware writes in HDFS, which
place two replicas in the same rack [117], cannot be used when HDFS is deployed in vir-
tual machines in a public cloud. Two HDFS nodes may be located on the same physical
machine, invalidating their fault-domain assumptions, or may not be in the same rack.
Therefore, HDFS is best used when deployed in a native environment instead of a cloud
environment.
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1.3 Contributions

This thesis aims to improve the performance of large-scale distributed storage systems and
highlights the significance of using infrastructure-aware design methods in improving their
performance. To that end, we develop three systems that used infrastructure-aware design
to achieve high performance. We introduce these systems below.

1.3.1 Reads in Storage Systems for Batch Processing

Many data intensive applications use distributed filesystems, such as GFS [105], HDFS [253],
and Ceph [287], to exchange data and share state. Therefore, distributed filesystems con-
tribute heavily to the total network traffic in datacenters. For example, some studies show
that file reads from distributed filesystems contribute 14% to 31% of overall cross-rack traf-
fic in some datacenters [60]. Due to a large network footprint, reading files over the network
becomes highly susceptible to network congestion, resulting in slow read operations.

To avoid network congestion, distributed filesystems employ several techniques such as
minimizing remote reads by selecting nearest replica [253]. However, they do not effectively
utilize available resources to avoid network congestion as they select replicas using only
static network topology information [105, 253, 96]. Network-aware filesystems, such as
Sinbad [60] and OctopusFS [138], estimate network bandwidth and select replicas that are
accessible through higher bandwidth. However, these systems select only replica locations
and leave path assignments for read/write jobs to independent flow schedulers, such as
Hedera [10]. An independent flow scheduler can be ineffective if all paths to the pre-
selected endpoints are congested. This problem can be avoided by jointly selecting replica
and network path through close collaboration between filesystems and the network.

This thesis presents the Mayflower [235] filesystem, which jointly selects read replica
and network path to minimize read completion times. Mayflower achieves this through a
network/filesystem co-design approach in which both the filesystem and the network share
information with each other to achieve their respective performance goals. Mayflower em-
ploys a Flowserver that runs a heuristic to select the best replica-path combination based
on the collected information from the network and the filesystem clients. Flowserver, run-
ning as an SDN controller application, monitors the bandwidth utilization at the network
edge and models the path bandwidth of the elephant flows in the network. It uses the
network model to select the best replica and network path selection for filesystem read
requests.
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The main advantage of using an SDN/filesystem co-design approach is that it enables
the filesystem and the network to take actions collaboratively to mutually improve their
performance. For example, when performing a read operation, instead of first selecting
a replica based on network information and then choosing a network path connecting
the reader and the replica host, Mayflower can simultaneously evaluate all possible paths
between the reader and all replicas to select the replica/path combination that minimizes
average request completion time.

We present the details of Mayflower in Chapter 3. We make the following contributions
in this work:

• We present the design of Mayflower filesystem, which is co-designed with SDN control
plane. We present design choices and solve various challenges in co-designing a
filesystem with the network. We discover in this research that accounting for the
impact of the new read job on the performance of existing in-flight jobs is significant.
In Mayflower, we develop a method to estimate the completion time of a new job and
its impact on the completion time of the existing jobs. This is non-trivial because
it requires combining the information of flows’ paths, their remaining sizes, and the
link utilization along the flows’ paths.

• We show in this research that opportunistically reading from multiple replicas in-
stead of a single replica can accelerate the read jobs significantly. Reading from
multiple replicas in parallel can negatively impact the performance of a filesystem
and the network if not done carefully. This is because reading from multiple replicas
may traverse the same network paths that can reduce the overall available network
bandwidth. Moreover, multiple parallel and dependent jobs increases the chances of
longer completion times due to stragglers. We present in this work a method that
can be used to select the replicas, their network paths, and the size of data that
should be read from each replica to minimize the completion time of the file read
operations.

• Finally, we implement Mayflower and evaluate its performance over an emulated
datacenter network. We compare Mayflower with HDFS and several combinations of
static and dynamic replica and network path selection methods. Our experimental
results show that Mayflower’s network/filesystem co-design approach effectively re-
duces the read completion times as compared to independently optimizing filesystem
and network operations. Compared to Mayflower, existing systems require 1.3x the
completion time for file reads using common datacenter workloads.
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1.3.2 Consistent Data Replication at Wide Area

Storage systems, such as Spanner [71], BigTable [56], and Etcd [89], replicate data across
tens of geo-distributed nodes for high performance and fault-tolerance. Such systems often
use consensus protocols, such as Paxos [160, 161] and Raft [210], for data replication with
strong consistency. However, leader-based consensus protocols do not scale to a large
number of nodes. The leader becomes the bottleneck due to load concentration on the
leader as compared to other nodes. Moreover, leaderless protocols, such as EPaxos [195]
and Mencius [184], do not use available resources efficiently as they are designed to be
oblivious to the underlying infrastructure. They send redundant messages over bandwidth
constraint WAN links, which waste CPU and bandwidth resources, limiting them from
scaling to a large number of geo-distributed nodes.

This thesis introduces Canopus, an infrastructure-aware and scalable consensus protocol
for state machine replication in geo-distributed key-value stores. Canopus is built from the
ground-up by following the design of modern datacenters and the networking infrastructure.
Canopus takes into account three aspects of modern datacenters that enable it to scale to
a large number of nodes.

First, Canopus recognizes that machines in datacenters are placed in racks, with each
rack hosting tens of machines that are connected through redundant top-of-rack (ToR)
switches. The ToR switches provide high bandwidth, low latency, and fault-tolerant con-
nectivity to the nodes within the same rack. Canopus exploits the availability of high
performance network within racks to perform heavy communication within racks to reduce
communication across racks.

Second, Canopus takes into account the hierarchical design of datacenter networks
where bandwidth decreases and latency increases with distance between nodes. Therefore,
inter-datacenter communication have high cost as compared to intra-datacenter communi-
cation. Therefore, Canopus aligns its communication pattern with the network hierarchy
by using an overlay that minimizes communication across datacenters at the expense of
more communication within racks.

Finally, we observe that modern datacenters have built in high redundancy of power
and networking infrastructure to tolerate power and network hardware failures without
service disruptions. Racks are connected through redundant switches and are backed by
multiple power sources to eliminate single point of failures. As a result, full-rack failures
and network partitions are rare [179, 180, 254, 100]. Leveraging the robustness of power
and networking infrastructure in datacenters, Canopus simplifies its design by assuming
that complete rack failures and network partitions do not happen. Particularly, a simple
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majority of nodes within a rack always stay alive. In the case of catastrophic failures that
result in a rack failure or a network partition, the protocol does not compromise safety and
halts its execution until the fault is recovered. Thus, Canopus trades-off high availability
to achieve high scalability.

Canopus significantly simplifies its design based on the above mentioned information
and assumptions about the infrastructure, which makes Canopus easier to implement and
reason about. All the nodes in Canopus serve client requests, which distribute the load
across the nodes. Canopus organizes the same-rack nodes in a group, and it achieves
consensus in multiple rounds. In the first round, the nodes concurrently achieve consensus
within groups. In the subsequent rounds, the nodes achieve consensus across groups.

We give the detailed design and evaluation of Canopus in Chapter 4. We make the
following contributions in this work:

• We present Canopus, a scalable consensus protocol for consistent data replication in
geo-distributed deployments. Canopus simplifies its design by making assumptions
and using information specific to the design of modern datacenters and network
infrastructure. Through Canopus, we demonstrate the effectiveness of infrastructure-
aware design approach to improve the performance of large-scale consensus protocols.

• We observe that batching and pipelining like a TCP protocol are necessary to over-
come the WAN latencies and support higher throughput. To achieve high through-
put in geo-distributed deployments, we introduce batching and pipelining in Canopus
while maintaining the safety of the protocol.

• We corroborate the effectiveness of our approach through a prototype implementa-
tion of Canopus and compare its performance against EPaxos and ZooKeeper. We
evaluate the systems in two deployment models: a local deployment within a dat-
acenter and a geo-distributed cluster across up to seven regions. Our experimental
results show that Canopus can achieve more than 4 million requests with 21 geo-
distributed nodes, which is more than 8x higher throughput than that of EPaxos
in the same settings. Design of Canopus and its high performance show that the
consensus protocols, and consequently the storage systems using them, can benefit
from following the infrastructure-aware design approach.

1.3.3 Financial Data Streams Storage in a Public Cloud

In the end, we use infrastructure-aware design to improve the performance of streaming
data storage systems. We focus on capital market use cases where financial applications
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perform streaming data analysis in a public cloud deployment.

Capital markets produce large volumes of data at a high pace, which is distributed
to companies in the form of realtime financial data streams. However, high volume and
velocity of market data put significant performance demands on their target storage and
processing applications. Collective data rates in market data streams from a few data
sources, such as stock exchanges, can exceed tens of millions of messages per second [87,
79]. As a result, storage systems for financial data streams are required to support high
data ingestion rates and high scalability. Moreover, financial applications, such as live
dashboards and trades monitoring [221], require realtime access to data with low latency,
which is typically less than 20 milliseconds [68]. Making it further challenging, applications
also perform historical data queries [273, 259, 101] in parallel to realtime queries, which
compete with realtime data ingestion and queries for infrastructure resources.

Existing storage systems commonly use Lambda [190] and Kappa [149] stream pro-
cessing architectures, which use message queues, such as Apache Kafka [20] and Amazon
Kinesis [15], to ingest data. However, data ingestion and retrieval through message queues
add a significant delay, tens to hundreds of milliseconds [132, 232], which is highly un-
desirable in many financial market use cases [273]. In addition, historical data queries
are supported through separate systems, which increases system complexity and system
management overheads [149]. Furthermore, alternative solutions [133, 25] for timeseries
data, such as Druid [290], BTrDB [18], and OpenTSDB [213], do not take advantage of
the infrastructure specific to financial data streams. As a result, these systems are overly
complex and consume more cloud resources than needed.

To address the storage needs of streaming data in capital market uses cases, we build
Kawkab filesystem, which is purpose-built around cloud infrastructure and financial data
streams. Kawkab uses a combination of worker nodes, running on virtual machines in a
public cloud, and a cloud storage service to provide a high performance and cost-effective
storage system. Worker nodes, consisting of a buffer-cache and locally attached storage,
serve as the front-end of the system that perform all filesystem operations, which include
data ingestion, indexing, serving realtime and historical data queries, and using cloud
storage services for data persistence.

Kawkab achieves high performance by exploiting unique characteristics of financial data
streams and cloud infrastructure. In contrast with existing systems, Kawkab eliminates
replicating data for fault-tolerance during data ingestion for high performance. Instead,
Kawkab leverages the fault-tolerance guarantees provided by market data providers and
cloud storage services to avoid losing data during data ingestion. Data providers, such
as OPRA [214] distribution network, publish data using redundant streams for high fault-
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tolerance, and they retain data at the source for a limited duration, e.g., a trading day [215],
which can be accessed through offline channels at additional costs [216, 72]. Based on such
fault-tolerance measures taken by financial data providers, Kawkab simply ingests data
redundantly from replicated streams, and in the case of data loss during ingestion, it
retrieves lost data from the upstream providers. As a result, Kawkab significantly reduces
overheads of data replication in the fast path, which results in higher ingestion rates and low
data staleness. In addition, it makes Kawkab highly scalable due to cutting dependencies
and interactions across Kawkab nodes.

In addition to supporting high ingestion rates and scalability, Kawkab provides low
latency reads and historical queries in the same system. Historical queries, which access
large amounts of data, interferes with data ingestion and realtime queries if they all are
performed on the same node. Kawkab leverages the scalability of cloud storage services to
reduce such impact. Applications perform historical queries on separate nodes that are not
loaded with performance-critical tasks such as data ingestion and serving realtime queries.
If the nodes do not have required data to perform historical queries, they load data from
the cloud storage instead of other Kawkab nodes. As a result, burden of historical queries
is offloaded to cloud storage and historical queries have least impact on data ingestion and
realtime queries.

Finally, to support range queries based on specified time, Kawkab introduces a novel
timeseries index. The index is optimized to perform faster search within recently ingested
data as our target applications mostly access recent data in small time windows. Moreover,
the index is designed to have no impact on data ingestion performance. Furthermore, the
index is not required to be fully loaded in memory for updates or search, which enables
Kawkab to to support very large files and indexes.

We make the following contributions through this work:

• We present Kawkab storage system to address storage requirements of stream pro-
cessing applications in capital market use cases. Following the infrastructure-aware
design approach, Kawkab eliminates data replication in the fast path to gain high
ingestion rates and scalability by exploiting fault-tolerance characteristics of finan-
cial data streams. Moreover, Kawkab enables applications to read both realtime
and historical data using the same system by leveraging scalability of clouds storage
services.

• We develop a novel indexing scheme in Kawkab to support range queries over time-
series data. Indexing in Kawkab is tailored to enable search withing recent data with
low latency at the expense of higher latency to read historical data.
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• We develop a prototype of Kawkab and evaluate its data ingestion throughput against
BTrDB, which is a high performance streaming data storage system. Our evaluation
using micro-benchmarks show that Kawkab can ingest 16-byte messages with 1.4x
to 5x higher throughput than BTrDB in similar settings. Moreover, applications
can read recent data from a Kawkab worker node with minimal request processing
overhead. Furthermore, historical queries do not impact the performance of data
ingestion and realtime queries when historical queries are performed on a separate
node.

1.4 Thesis Organization

The rest of this thesis document is organized as follows. We present background and the
related studies to our research in the next chapter (§2). After that, the following three
chapters present the details of Mayflower (§3), Canopus (§4), and Kawkab (§5), storage
systems. Finally, Chapter 6 presents the conclusion of this research.
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Chapter 2

Background and Related Work

Big data applications, such as Hadoop framework and Spark, leverage distributed storage
systems to retrieve input data, share data among nodes between different stages of jobs,
and store the output data. A distributed storage system provides an abstraction that hides
the underlying complexities involved in the storage of large volumes of data across many
nodes. Moreover, a distributed storage system involves complex distributed functionality
and properties such as data replication, fault-tolerance and recovery, and storage and
retrieval of data from remote nodes.

Distributed storage systems fall into many categories, such as block-based stores, ob-
ject stores, and key-value stores. We focus on the storage systems that are infrastructure-
aware, and we divide our discussion into three sections. First, we present the work related
to network-aware distributed filesystems that have been developed for batch processing
applications (§ 2.1). As we target the filesystems that are deployed within a single dat-
acenter, we do not address geo-distributed filesystems. Next, we discuss network-aware
consensus protocols for consistent data replication in geo-distributed deployments (§ 2.2).
Later, we discuss the storage systems for streaming data (§ 2.3), focusing on the systems
that use a cloud-based storage service for data persistence.

2.1 Network-aware Distributed Filesystems for Batch

Processing

Distributed filesystems, such as GFS [105], HDFS [253], and Ceph [287], are widely used
to provide storage for batch processing applications. Applications exchange large volumes
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Network-Aware Reads and Writes

Only reads Only writes
Both reads

and writes

Static Dynamic Static Dynamic Static Dynamic

TidyFS None None Sinbad GFS, HDFS OctopusFS

Table 2.1: Taxonomy of network-aware distributed filesystems for batch processing within
a single datacenter.

of data with filesystems during various stages of data analytics jobs such as map and
reduce phases. To provide fault-tolerance, distributed filesystems create several replicas
of data and spread them across different parts of the underlying infrastructure that have
non-correlated failures, such as multiple racks in a datacenter and/or across datacenters.
Replication policies vary with the infrastructure and application requirements. For exam-
ple, by default, HDFS creates three replicas, one of which it places in the same rack as the
data writer. It places the other two replicas on two nodes in a different rack that does not
have correlated network and power failures with the first rack [117].

Depending on the location of replicas, there can be multiple redundant paths between
the reader and data source. Consequently, there can be several replica and path com-
binations that can be used for reading data from a remote node. When a file reader is
not co-located with data, the reader may access data from a remote replica that requires
traversing oversubscribed network paths, resulting in slow read performance.

To avoid network congestion and minimize loading data over the network, job schedulers
usually schedule jobs on the machines that already have the required data or that are close
to the data. However, co-locating jobs with data is not always possible due to various
constraints such as resource limitations and avoiding load imbalance. Some studies show
that nearly 15% to 30% of overall cross-rack traffic is due to file read operations from
distributed filesystems [60]. Consequently, replica selection is a significant decision that is
closely tied to network path selection and creates a dependency between filesystems and the
network for high performance. Selecting an overloaded replica or a replica that is reachable
only through congested network paths can significantly downgrade reads’ performance.

Existing storage systems use network-aware read and write operations to avoid in-
network congestion. They use static network information, such as network-topology in-
formation, or dynamic information from the network to optimize file operations, such as
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current network state information. Below we provide an overview of network-aware dis-
tributed filesystems and discuss the limitations of their replica placement and selection
methods. Table 2.1 shows a taxonomy of network-aware distributed filesystems based on
their static or dynamic network-awareness methods. We focus on only those filesystems
that are designed for a single datacenter deployment.

2.1.1 Filesystems with network-aware reads and writes

GFS, HDFS, and OctopusFS use network-aware methods for both read and write oper-
ations. However, OctopusFS uses dynamic methods where as GFS and HDFS use static
methods for network-awareness. We discuss these systems below.

Google File System: The Google File System (GFS) [105] is a pioneering filesystem
for large scale data analytics using Google MapReduce framework. GFS targets for high
availability, reliability, and scalability to store large amounts of data.

Many existing filesystems follow the same architecture as GFS. GFS consists of a single
Master (metadata node), a client library, and many chunkservers (data nodes). The master
persistently stores the namespace, keeps track of block locations, and resolves conflicts if
there is any divergence in replicas due to failures during concurrent write operations.
Chunkservers store the data blocks as individual files in their underlying Linux system.

GFS utilizes static network-topology information in its read and write operations. For
replica placement, the GFS master selects the locations of each block that balances disk
space utilization and maximizes the network bandwidth. For file read operations, each
client reads from the closest replica. However, as we show in our Mayflower filesystem
(§3.4), closest replica selection is not always the best choice. Always selecting the closest
replica makes the system susceptible to network hotspots and congestion.

Hadoop Distributed File System (HDFS): HDFS [253] is a widely used distributed
filesystem for big data applications. HDFS provides storage services for many applications
in the Apache eco-system. For example, Spark [293], Flink [19], and Hadoop MapRe-
duce [112] use HDFS for data storage.

HDFS follows the same architecture as GFS. Reads and writes in HDFS use static net-
work topology information for replica selection and placement. Although HDFS supports
pluggable replica placement policies, its default policy follows the rack-aware approach in
which first replica is placed on the same node as the data writer, and the second and third
replicas are placed on different nodes in the same remote rack. For file reads, the clients
select the nearest replica, breaking ties randomly.
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OctopusFS: OctopusFS [138] leverages heterogeneous storage devices and services in the
deployment to provide high performance storage service for big data applications. Octo-
pusFS places replicas based on the estimated current network state and I/O load informa-
tion collected from the data nodes. Its metadata node periodically gathers node statistics
from data nodes to build its current view of the system state. The metadata node then
uses the dynamic view of the system to select replica-locations that balance disk I/O and
network load across the nodes.

For file read operations, OctopusFS selects the replica that results in the highest read
throughput, which it estimates by evaluating the throughput bottleneck of all the replicas.
To evaluate the read throughput of a node, OctopusFS monitors the replicas’ network and
IO statistics. However, replica selection based statistics collected from only the endpoints
can be ineffective if internal paths of the network are congested. Replica selection in
OctopusFS can select the least loaded replica that is only accessible through the congested
network paths.

2.1.2 Filesystems with only network-aware writes

Sinbad: GFS and HDFS select nodes for replica placement based on static information
from the network (network-topology and placement in racks), which can create load im-
balance in the network and face network congestion. Sinbad [60] addresses this problem
and provides a mechanism to dynamically select the nodes for replica placement based on
the estimated current network state.

Sinbad estimates the current network state based on the edge links utilization informa-
tion, which its centralized master periodically collects from the data nodes. It combines
the edge-links’ utilization information in the form of a tree, moving from hosts towards the
core layer, to estimate the in-network links’ utilization. Based on the estimates, Sinbad
greedily selects the nodes that are reachable from the data source with the least network
load.

Although Sinbad’s replica placement is a significant improvement over other replica
placement strategies, its replica placement is sub-optimal due to working independently
from the network. In particular, Sinbad does not account for multiple flows in each link
and their individual network utilization. Consequently, network estimations in Sinbad can
be inaccurate, which can lead to placing replicas in the nodes which are reachable only
through congested network paths.
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2.1.3 Filesystems with only network-aware reads

TidyFS: TidyFS [96] provides storage for data analytics applications that produce data in
stages and can reproduce the data between different stages of a data analysis job. TidyFS
follows the same architecture as HDFS but drops various features for simplicity and to
achieve high performance. Similar to GFS and HDFS, TidyFS follows the nearest replica
selection approach for file read operations. For file writes, TidyFS does not optimize for
network bandwidth. Instead, a client writes the first copy of data locally. The system
then selects the subsequent replica locations randomly. However, it gives preference to the
nodes with most available disk space to balance space across the nodes.

2.1.4 Discussion

Network-aware writes: OctopusFS and Sinbad select replica locations based on dynamic
network state estimations, which balance network load and avoid network congestion. How-
ever, their network state estimations are based on the information that is collected only
from the endpoints. Therefore, their estimates are accurate only when the endpoints are
the bottleneck and the network is congestion free. As a result, replica selection in these
systems can be sub-optimal when the network is the performance bottleneck rather than
the endpoints.

Network-aware reads: GFS, HDFS, and TidyFS follow the topology-aware approach
in which the clients select the nearest replica based on network distance. However, if
filesystem clients always read files from their closest replicas, large number of concurrent
reads from the clients can create network and I/O hotspots, which can result in slow read
performance.

Systems that estimate network load based on only endpoint measurements, e.g., Octo-
pusFS, are unable to effectively avoid in-network congestion. These systems select the read
replica and offload the network load balancing to traffic engineering approaches such as
ECMP, MicroTE [31], and Hedera [10]. However, scheduling flows between the pre-selected
replicas reduces the optimization space for the flow schedulers. Moreover, an independent
flow scheduler can be ineffective if all paths to the pre-selected endpoints are congested.
Therefore, close collaboration between the filesystem and the network control-plane is re-
quired to leverage the availability of multiple replica and network path choices.

We address this problem in our Mayflower filesystem [235]. In Mayflower, we jointly
select file replica and network path through close coordination between the filesystem and
the network control plane. Joint replica and path selection fully exploits the availability
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Network-aware consensus protocols

Single DC Multi-DC

Giraffe,

Hierarchical quorum consensus,

AllConcur

Delegator Paxos,

WanKeeper,

WAN Paxos

Table 2.2: Taxonomy of network-aware consensus protocols.

of multiple replicas and network paths to avoid network congestion and improve file read
performance. We present the detailed design and evaluation of Mayflower in Chapter 3.

2.2 Network-Aware Consensus Protocols

In this section, we review scalable consensus and atomic broadcast protocols that can be
used in storage systems for consistent data replication and to solve distributed problems
such as leader election. Many storage systems use consensus protocols for consistent data
replication, e.g., Spanner [71] uses Paxos [160, 161], and Etcd [89] and CockroachDB [66]
use Raft [210]. As the underlying consensus protocols can become the performance bottle-
neck for the storage systems, we follow infrastructure-aware design approach to improve
the performance of geo-distributed consensus protocols, which directly improves the per-
formance of the storage systems using them.

We categorize network-aware consensus protocols in two classes based on their ability
to scale in geo-distributed deployment, shown in Table 2.2. We first give an overview of the
distributed consensus problem. The overview follows the review of WAN-scale network-
aware protocols (§ 2.2.2).

2.2.1 Distributed Consensus Problem

Distributed consensus achieves mutual agreement between distributed nodes in the pres-
ence of node and communication failures. Distributed consensus is a key building block in
distributed systems to develop reliable systems and solve complex problems such as leader
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election and membership management. A distributed consensus protocol must satisfy the
following safety and liveness properties [223, 150]:

• Validity: If all the correct nodes propose the same value v, the correct nodes decide
the value v.

• Agreement: All the correct nodes must agree on the same value.

• Termination: All the correct nodes must eventually decide some value.

A faulty node can have different types of failures [82] such as crash-stop, omission, timing,
and Byzantine. Existing protocols mainly assume crash-stop or Byzantine failures. A
crashed node ceases to function in any way. A Byzantine node can act arbitrarily and
maliciously.

FLP impossibility result: The FLP impossibility result [99] shows that consensus and
atomic broadcast are not deterministically solvable in an asynchronous system where even
a single node can fail by crashing. There is always a possibility that the protocol will not
terminate, which dissatisfies the termination condition. The FLP result is based on the fact
that node failures cannot be detected reliably in an asynchronous system. This is because
a lost message cannot be distinguished from a slow message and a crashed node cannot
be distinguished from a slow node. In practice, consensus protocols use randomness to
circumvent FLP result and eventually meet the termination condition. Moreover, consensus
protocols use unreliable failure detectors [55] to achieve safety despite failures.

Failure detectors: Several types of failure detectors can be used depending on synchrony
assumptions of communication, which can be synchronous, partially synchronous, or asyn-
chronous. In an asynchronous system, an eventually weak failure detector (�W ) is the
weakest failure detector that can be used to solve distributed consensus [54, 55]. An even-
tually weak failure detector satisfies the weak completeness and eventually weak accuracy
properties. Together these properties enable using failure detectors for development and
practical use of consensus protocols in an asynchronous environment despite failures.

Atomic broadcast Properties: Consensus and atomic broadcast are equivalent prob-
lems [85, 55]. An atomic broadcast protocol ensures that all correct nodes agree on the
delivery of the same messages in the same order. An atomic broadcast protocol must
satisfy the following properties [113]:

• Validity: If a correct node broadcasts a message m, then it eventually delivers m.
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• Agreement: If a correct node delivers a message m, then all correct nodes eventually
deliver m.

• Integrity: For any message m, every correct node eventually delivers m (a) at most
once, and (b) only if m was previously broadcast by its sender.

• Total Order: If correct nodes p and q both deliver messages m1 and m2, then p
delivers m1 before m2 if and only if q delivers m1 before m2.

Consensus Protocols

Many consensus protocols have been developed to solve the distributed consensus prob-
lem. Paxos [160, 161] is the seminal protocol that has inspired the development of many
other consensus protocols. Consensus protocols can be categorized in leader-based or
leaderless/multi-leader protocols.

Leader-based consensus protocols: Leader-based consensus protocols elect a central-
ized leader that lead protocol execution and serve client requests. Raft [210], ZAB [135],
and Multi-Paxos [53] are widely used leader-based protocols. However, these protocols are
mostly deployed using only a few nodes because of their scalability limitations. Leader-
based protocols do not scale to a large number of nodes because the centralized leader
performs considerably more work as compared to other nodes in the consensus ensemble.
As a result, load concentrates on the leader when the number of nodes increases in the
system, which makes the leader the performance bottleneck.

Multi-leader consensus protocols: Leaderless or multi-leader consensus protocols, e.g.,
Mencius [184], EPaxos [195], and S-Paxos [34], distribute the load across all the nodes in
the cluster, which makes them more scalable. However, these protocols do not utilize
their resources efficiently as they are designed to be oblivious to the underlying datacenter
infrastructure. In a geo-distributed deployment, WAN links that connect datacenters are
highly oversubscribed as compared to LAN links within a datacenter. Therefore, cost of
sending messages over WAN links across datacenters is much higher, have higher bandwidth
limitations and incur higher latency, as compared to sending messages within the same
datacenter. However, communications across nodes during protocol execution in existing
protocols do not consider the proximity of nodes within and across datacenters. Some
of the protocols send equal number of messages to all the nodes in the cluster regardless
of their location. As a result, these protocols do not efficiently utilize the network and
computational resources, which hinders their ability to scale to a large number of geo-
distributed nodes.
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In contrast to network-oblivious protocols, network-aware consensus protocols utilize
information from the network to achieve higher performance. In this thesis, we focus on
the scalability of network-aware consensus protocols that are designed for deployments at
global scale. In the following section, we discuss network-aware consensus protocols that
are targeted for geo-distributed deployments.

2.2.2 WAN-scale network-aware consensus protocols

In this section, we review network-aware consensus protocols that are designed for geo-
distributed deployments.

Delegator Paxos: Delegator Paxos (D-Paxos) [178] targets a geo-distributed model in
which each datacenter consists of several nodes. It organizes nodes in the same datacenter
as a single logical group, where each group has an elected leader that handles client requests
and communicates with other groups. The groups concurrently execute different steps of
the protocol in a pipelined fashion, making D-Paxos highly concurrent and achieve high
throughput. However, D-Paxos does not fully distribute load across all nodes because the
group leaders perform significantly more work as compared to the replicas in their groups.
As a result, D-Paxos’ throughput can be improved by distributing load across all nodes in
the cluster.

WanKeeper: WanKeeper [5] is a distributed coordination service that extends ZooKeeper
for larger deployments. The main motivation behind building WanKeeper is to provide
a geo-distributed coordination service with high throughput and low latency of client re-
quests. To achieve this goal, WanKeeper logically organizes nodes in a two level hierarchy,
which is similar to Delegator Paxos [178]. At the bottom level, it groups the nodes based
on regions and partitions the object space across groups. Each region runs ZooKeeper
Atomic Broadcast (ZAB) protocol [135] to commit requests. The leaders of the regions
make another group of ZAB, forming the top level in the hierarchy. The top-level leader
coordinates transactions that are across regions.

Although WanKeeper improves the performance and scalability of ZooKeeper, it has
two limitations which limit its scope and scalability. First, it provides causal consistency for
writes across regions to achieve node-local reads. This can be a problem for applications
that require strong consistency guarantees across regions, e.g., Spanner and Megastore.
Second, WanKeeper concentrates more load on the brokers, that limit the number of nodes
within a region. In comparison, Canopus provides strong consistency across regions and
distributes load across all nodes in the consensus cluster.
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WAN Paxos: WAN Paxos (WPaxos) [4] borrows the idea of flexible quorums from Flexi-
ble Paxos [121]. It forms the quorums such that the common-case messages are exchanged
only between nearby nodes. Like WANKeeper, WPaxos organizes nodes in groups based
on their geographical location. It forms quorums across groups such that the fast path
of the protocol only touches two groups. The groups can be in the same or in different
datacenters. Unlike WANKeeper, each node in WPaxos serves as a leader for a subset of
objects. A node becomes the leader for an object by executing the phase-1 protocol of
Paxos. After that, the leader only executes phase-2 of Paxos to achieve consensus for that
object.

WPaxos works best when there is access locality of objects such that the object space
can be partitioned across many groups. In the scenarios where the same object is frequently
accessed from different geographical locations, either WPaxos has to frequently elect leaders
for each region, resulting in high latency for most of the operations, or it provides low
latency for only those requests that originate from the leader’s region.

2.2.3 Discussion

Existing geo-distributed network-aware consensus protocols target to achieve high scala-
bility by forming multiple consensus groups and by distributing load across the groups.
However, each group has a leader that performs more work as compared to other nodes in
the group. As a result, scalability of the consensus protocol is limited by the capabilities
of only a few nodes in the cluster. Consequently, the protocols do not effectively utilize all
available resources and under-perform than their potential.

To that end, we developed Canopus consensus protocol in this thesis, which addresses
the problem of scaling consensus to a large number of geo-distributed nodes. In comparison
with existing protocols, Canopus fully distributes load across all nodes in the consensus
ensemble. Moreover, Canopus exploits the hierarchical and resilient design of modern
datacenters and the underlying network to simplify its design. We further provide the
design and evaluation of Canopus in Chapter 4.

2.3 Cloud-based Storage Systems for Financial Data

Streams

In this section, we discuss the storage systems designed for realtime data analytics in a
public cloud deployment. Realtime data analytics are becoming increasing popular as they
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provide time-critical insights extracted from recently generated data. Stream processing
applications, such as Spark streaming [22] and Flink [19], process continuously arriving
data and generate actionable results that are valid only for a short time window, from
milliseconds to a few seconds. As the value of data diminishes over time, realtime analytics
demand high performance for all stages in the stream processing pipeline, which include
data transformation, storage, processing, and presentation of the analysis results.

A broad range of applications and use cases have been developed based on timeseries
data. This thesis focuses on capital market use cases where data originates from market
data providers, such as stock exchanges and market data vendors, in response to financial
activities such as buying and selling of stocks. Market data providers publish continuous
streams of messages that is ingested to storage system for realtime and historical data
analysis.

Other than performance requirements, managing operational costs is another challenge
in capital market use cases. Storing large volumes of data forever incurs high operational
costs over the period of time. Several public cloud providers offer scalable and fault-tolerant
storage services at low price, e.g., Amazon S3. Therefore, existing cloud storage services
can be used for cost-effective storage of large volumes of data. However, cloud storage
services are not feasible to ingest data directly from stream sources as data access latency
from the cloud services can be very high, which makes them not feasible for realtime data
access. Moreover, they do not provide data indexing, which is needed to support time-
based fast range queries. Consequently, an intermediate storage system is required that
ingest data from data streams, index data for reads and serve reads with low latency, while
continuously persisting data using a cloud storage service.

Stream processing architectures: Existing systems commonly use Lambda [190] and
Kappa [149] architectures for stream processing. These architectures use message queues,
such as Apache Kafka [20] and Amazon Kinesis [15], to ingest data from data sources.
Applications fetch data from the message queues for realtime data analytics. Moreover,
in Lambda architecture, separate storage systems fetch data from the message queues for
persistence and historical data analysis.

Although message-queue systems are highly scalable and fault tolerant, pulling data
from these systems for processing incurs high latencies, tens to hundreds of millisec-
onds [132], which are highly undesirable in capital market uses cases [232, 273]. Moreover,
separate systems are required for data indexing and to support parallel access to realtime
and historical data. Use of additional systems for storage increase system complexity and
maintenance overheads. Therefore, a unified storage system is required that ingest data at
high rates and provide realtime and historical data access in the same system.
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Below we discuss storage systems for streaming data in the context of capital market
use cases and financial data streams. First we give an overview of financial data streams,
which follows an overview of cloud infrastructure. We then discuss the storage systems for
streaming data that support data persistence using a public cloud service. As we target
the system to be deployed in a public cloud, we discuss only those systems that support a
public cloud storage service for data persistence.

2.3.1 Financial Data Streams

Capital markets, such as stock exchanges and financial institutions, produce large vol-
umes of messages at a high pace in response to financial transactions such as trading of
stocks. Messages representing financial transactions are commonly termed as market data.
A message, also called a tick, contains relevant information about trade of a financial in-
strument. Stocks, funds, and currencies are a few examples of financial instruments. Most
common information about a trade includes the id of traded financial instrument (sym-
bol), ask/bid prices and quantities, and a timestamp indicating the time when when the
financial instrument was traded.

Market data from its originating sources is distributed in the form of market data feeds,
where a feed is a continuous stream of messages from a particular source such as a stock
exchange. Messages in feeds are time ordered and contain sequence numbers, which can
be used for message ordering and to detect lost messages. Market data vendors, such as
Operations Price Reporting Authority (OPRA) [214] and Vereinigte Wirtschaftsdienste
GmbH (vwd) [283], collect data feeds from multiple sources and redistribute the feeds to
their subscribers. The feeds are usually published through a dedicated network using IP
multicast [216, 101]. Eventually, data feeds are used in various applications that make
use of both realtime and historical data, e.g., competitive pricing analysis, market data
terminals [101]. We target to build a storage system that collects market data from market
data vendors, being deployed in a public cloud. Applications access market data from the
storage system for both realtime and historical data analysis.

Reliability of financial data streams: Market data providers often ensure fault-tolerance
at data source layer using two methods. First, data providers publish replicated data
streams for high fault-tolerance [216, 262]. Data in both streams are published indepen-
dently, i.e., failure of one stream does not impact the other stream. Data receivers can
receive data from both streams separately for high fault-tolerance. Second, data sources
retain recent data for some time, e.g., for a day, and provide separate channels to receivers
to playback the streams offline at additional costs [215]. If data is lost during data ingestion
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at the receiver end, the receivers can recover lost messages from data providers.

Nonetheless, many financial applications prefer low latency and data staleness over
high fault-tolerance [101]. For example, terminals displaying latest stock prices prefer to
drop messages rather than displaying staled values. In addition, some companies, such
as Smash.BI Inc. [256], target to achieve low latency instead of high fault-tolerance by
eliminating data replication during data storage. Instead, they prefer to achieve fault-
tolerance by ingesting data from replicated streams and use them as independent streams.

2.3.2 Cloud Storage Services

Cloud providers offer many cost-effective storage services that can be used for persistent
data storage. For instance, Amazon offers DynamoDB key-value store, S3 object store,
NFSv4-based Elastic File System (EFS), and Elastic Block Store (EBS). Target use cases
and storage properties vary with these services, e.g., the cost model, performance, avail-
ability guarantees, consistency, and usage limitations are different for EBS, EFS, and S3.

We use Amazon S3 as the persistent storage in our Kawkab storage system because of its
high scalability, fault-tolerance, and low cost of storage. Moreover, S3 is globally accessible
from all nodes in different regions. Although EBS and EFS offer higher performance, they
are not suitable to store financial data streams. EBS volumes cannot be shared among
nodes, which either prevents reading same data from different nodes or require provisioning
additional EBS volumes to replicate data and make it available to each node. In contrast,
each object in Amazon S3 is simultaneously accessible to all nodes in all regions. EFS is
best used for large data analytics workloads that require concurrent access of same data
among a large number of machines. However, we target applications that mostly perform
realtime streaming data analytics instead of frequent batched data analysis at large scale.

2.3.3 Amazon Simple Storage Service (S3)

Amazon Simple Storage Service (S3) is an object store provided in the Amazon cloud
infrastructure. S3 is highly scalable (storing trillions of objects), fault-tolerant, and cost
effective, which makes it an effective long term solution for persistent storage of streaming
data. For high fault-tolerance, S3 replicates data to at least three availability zones, which
do not have correlated failures. Moreover, data stored in S3 is accessible simultaneously
from multiple regions in a scalable way.

Storage classes in S3: S3 provides several classes of storage that have different price,
performance, and fault-tolerance characteristics. S3 standard class is designed to store
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frequently accessed data with high throughput and low latency. Although S3 Infrequent-
Access (IA) class has a lower cost than the standard class, it restricts that the data has to
be stored for at least a month. The glacier class costs least at the expense of high latency
of data access. S3 provides a mechanism to automatically move data between these classes
based on the access frequency and data age. As online data analytics mostly access recently
arrived data, the frequency of accessing particular data decreases with time. Therefore, S3
storage classes provide a low cost storage for historical data that is not accessed for a long
period.

Limitations of S3: Storing streaming data in S3 with high performance can be challeng-
ing. Financial data streams consist of small messages, ranging from tens to a few hundreds
of bytes. However, the pricing model and performance of S3 is optimized for storing large
objects. Frequently performing small write operations not only results in low throughput,
but also incurs high cost due to the operations-based pricing policy of S3 [136]. Kadekodi
et al., [136] have shown that the throughput of writes increases with data size, ranging
up to 300x throughput improvement for large objects as compared to small objects. They
report that the throughput of uploading 4MB objects is 1000x times faster than uploading
1KB objects for the same data sizes. Moreover, S3 throttles request rates based on keys,
limiting the rate of concurrent reads and writes to each key. Therefore, directly storing
data streams in S3 is not feasible.

Alternative cloud providers: Microsoft Azure blob store, Google cloud storage, and
Rackspace Swift provide solutions similar to S3 with competitive pricing and features.
Therefore, the storage solutions that work with S3 can also be tailored to work with the
aforementioned object stores.

2.3.4 Cloud-based Storage Systems for Streaming Data

Most storage systems for streaming data take advantage of the time-based ordering of
data to optimize storage and access. These systems are also known as timeseries data
management systems (TDMS). Jensen et al., [133] and Bader et al., [25] have thoroughly
surveyed existing storage systems for streaming data. Existing systems either provide a
sophisticated database targeted towards timeseries data or only the storage system with
a limited support for data summarizing queries. Our focus is to develop only the storage
system that can be used by applications for stream data analysis originating from financial
markets.

Most TDMSes use either a custom-built storage system or a distributed filesystems
for data persistence. Among these systems, Bolt [111], ReSpawn [42], and Storacle [51]
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provide a hybrid-cloud storage solution for IoT applications. Therefore, these systems
cannot be used for our target applications. Druid [290], BTrDB [18], and Alluxio [172]
are more suitable for cloud deployments as they support cloud-based persistent storage.
However, these systems are not tailored for financial market applications. As a result,
these systems cannot take advantage of unique characteristics of financial data streams
such as fault-tolerance at the data source. In our Kawkab storage system, we exploit fault-
tolerance characteristics of financial data streams to eliminate data replication during data
ingestion. In result, Kawkab supports higher data ingestion rates as the data ingestion
overhead is low.

Distributed Filesystems in the Cloud

An alternative approach is to store streaming data using existing distributed filesystems
such as HDFS. For example, OpenTSDB [213] uses HBase for data storage, and In-
fluxDB [126] uses a custom built filesystem for data persistence. As others have pointed
out [224, 18], HBase incurs high data query latency. Therefore, querying data through
HBase is not feasible. Gorilla [224] and BTrDB [18] are high performance storage systems
for streaming data. However, Gorilla uses GlusterFS and BTrDB uses Ceph [287] filesys-
tem for data persistence. These systems can be deployed in the cloud using EC2 machines
that have several storage devices.

The primary reason for avoiding DFSes in that these systems can incur several times
higher cost as compared to Amazon S3 [243]. Running a complete distributed filesystem
requires provisioning several virtual machines for a long time, which incurs continuous
operational cost. Second, DFSes do not provide any guarantees of data access latency.
These systems are optimized for high scalability and fault-tolerance for batch processing,
which do not impose strict latency requirements.

2.3.5 Discussion

Existing streaming data systems are not purpose-built for capital market use cases and
to store data using a cloud-storage service. Therefore, theses systems are less efficient to
store financial data streams. Following the infrastructure-aware design approach, we build
Kawkab, a streaming data storage system that is purpose-built around financial market
data streams and cloud storage services. Kawkab leverages fault-tolerance guarantees
provided by financial data providers to optimize data ingestion. Moreover, it leverages
the scalability of cloud storage services such as Amazon S3 to support both realtime and
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historical data queries in the same system without compromising the latency and staleness
of recent data. Chapter 5 presents the design and evaluation of Kawkab.

2.4 Summary

Our review of existing network-aware storage systems for datacenters reveal that either
they use only static network information, or they do not combine replica selection or
node placement with network path selection, which can result in sub-optimal performance.
Therefore, we follow a network/filesystem co-design approach in Mayflower, discussed in
the next Chapter, that mutually selects the read replica and the network path to improve
their performance.

We found a similar architectural gap in the network-aware consensus protocols, which
are commonly used in geo-distributed storage systems. Existing network-aware consensus
protocols do not consider exploiting nodes deployment in racks and the presence of a
hierarchy of latencies in datacenters. Moreover, they concentrate load on a few nodes and
do not efficiently utilize available resources. Our Canopus protocol fills this gap, being
designed according to the infrastructure and deployment model in datacenters. We discuss
Canopus in Chapter 4.

Finally, the review of storage systems for fast data in a cloud deployment show that
existing systems do not provide an adequate solution that is optimized for string finan-
cial data streams in a public cloud. We present Kawkab filesystem in Chapter 5, which
addresses storage requirements of streaming data storage in capital market use cases.
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Chapter 3

Mayflower Distributed Filesystem

In this chapter, we present our Mayflower [235] distributed filesystem that follows the
infrastructure-aware design approach for performance optimizations. As we have reviewed
in the previous chapters, distributed filesystems such as GFS, HDFS, Ceph, and MapR
are commonly used in datacenters to store big data. Such filesystems extensively utilize
network resources [60], as a result of the filesystems build a strong and reciprocal relation-
ship with the underlying network. However, most of the existing filesystems either use the
network as a black box or do not use dynamic network state information to select the best
replica for file read operations. As a result, the file reads are susceptible to in-network
congestion. The more advanced filesystems [60, 138] consider the current in-network state
for reads and writes to avoid the network bottlenecks. However, such systems do not
co-ordinate with the network control plane, which independently schedule the flows with-
out reconciling the flow scheduling decisions with the filesystems. As a result, the file
operations can perform poorly when all the paths between the pre-selected endpoints are
congested.

We develop Mayflower to fill this performance gap by co-designing it with the network
control plane. Instead of first selecting the replica and then the network path, Mayflower
jointly selects the best replica and path combination mutually with the SDN controller. In
the following sections, we describe the design of Mayflower’s replica-path selection method-
ology and present its performance evaluation.
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3.1 Design Overview

In this section, we first describe our assumptions regarding the typical usage model for
Mayflower and detail the properties of Mayflower’s target workload. We then provide the
details of its system architecture.

3.1.1 Assumptions

Our design assumptions are heavily influenced by the reported usage models of Google
filesystem (GFS) and HDFS. Mayflower assumes the following workload properties:

• Size and volume of the files: The system only stores a modest number of files (on
the order of tens of millions). File sizes typically range from hundreds of megabytes
to terabytes. The metadata for the entire filesystem can be stored in memory on a
single high-end server.

• Large sequential reads: Most reads are large and sequential, and clients often
fetch entire files. This is representative of the applications that partition work at the
file granularity. In these applications, clients fetch and process files one at a time,
and the file access pattern is often determined by the file contents.

• Append-only writes: File writes are primarily large sequential appends to files;
random writes are very rare. Applications mutate data by either extending it through
appends, or by creating new versions of it in the application layer and then overwriting
the old version using a move operation.

• Read-heavy workload: The workloads are heavily read-dominant. Read requests
come from both local and remote clients.

• Network as the bottleneck: The network is the bottleneck resource due to a com-
bination of high performance SSDs, efficient in-memory caching, and oversubscription
in datacenter networks.
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Figure 3.1: Mayflower system components and their interaction in a file-read operation.

3.1.2 Architecture

Mayflower’s basic system architecture consists of three main components: Dataserver,
Nameserver, and Flowserver. The design principles of Dataserver and Nameserver are the
same as their counterparts in GFS and HDFS. Therefore, we leave out their details and
only discuss them briefly in this section.

Dataserver: The Dataserver stores actual file data. Each file is partitioned into chunks of
configurable size. Similar to HDFS [116], the chunk size is a system-wide parameter that
is typically equal to or larger than 128 MB. Each file is represented as a directory in the
Dataserver’s local filesystem. The file-chunks are stored as individual files along with other
metadata information in the file’s directory. Each file has a primary Dataserver, which is
responsible for ordering all of the append requests for the file. The primary Dataserver
relays append requests to the other replica hosts while servicing the request locally. In
order to support atomic append requests, the Dataserver only services one append request
at a time for each file.

Nameserver: Nameserver stores the metadata of the filesystem, including the file-to-
chunks and file-to-Dataservers mappings. Clients contact the Nameserver when they
need to create or delete a file, or lookup the size of a file, and cache the results for
a Nameserver-specified amount of time to reduce lookup traffic. The mappings in the
Nameserver are stored in a persistent database to speed up Nameserver restarts after a
graceful shutdown. After an unexpected restart, instead of reading from the possibly
stale database, the Nameserver rebuilds the mappings by scanning the files stored at the
Dataservers.
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For replica placement decisions, Nameserver takes into account system-wide fault-
tolerance constraints, such as the replication factor and the number of fault domains.
Currently, the Nameserver makes replica placement decisions using only static network
topology information. This is because the focus of this work is on improving read perfor-
mance for read-dominant workloads.

Nameserver is designed as a logically centralized service. We can improve its fault-
tolerance by replicating its state across multiple nodes using a state machine replication
system such as Paxos [160].

Flowserver: The Flowserver’s primary task is to select both the replica and the network
path for the Mayflower read operations. The Flowserver models the whole network and
makes its selections based on the estimated current network state. It builds its network
model by tracking the network paths assigned to the read and write requests, and estimat-
ing the network utilization of each flow. The Flowserver can work together with existing
network managers, such as DIFANE [291] and DevoFlow [73], to identify non-Mayflower-
related elephant flows and estimate their bandwidth utilization. Using this model, the
Flowserver can select a replica and path combination that minimizes the average comple-
tion time of all non-mice flows in the network, including existing network flows.

As the Flowserver does not explicitly control the bandwidth usage of each flow through
bandwidth reservations, the network utilization estimates are often inaccurate. To avoid
error propagation and reduce the effect of inaccuracy, the Flowserver periodically fetches
the flow-stats from the edge switches. The flow-stats give the recent bytes-count for the
flows. As the flow-stats are not collected very frequently, these byte-counts translate to the
approximate bandwidth usage of the flows and their remaining size. These approximations
reduces the inaccuracy in our estimations during replica and path selection.

In between measurements, the Flowserver tracks flow add and drop requests for the
read jobs, and recomputes an estimate of the path bandwidth of each affected flow after
each request. This ensures that completion time estimates are accurate, and also reduces
the need to poll the switches at short intervals. The polling interval defaults to one second
in our implementation.

File read operation: Figure 3.1 illustrates Mayflower components and their interac-
tions with a client in a file-read operation. In this example, the file reader contacts the
Nameserver to determine the replica locations of its requested file and then contacts the
Flowserver to determine which replicas to read from. The Flowserver executes its replica-
path selection algorithm (§ 3.2.2) for replica and path selection. In addition to selecting
replicas, the Flowserver also installs the flow path for the request in the OpenFlow switches.
Finally, the client contacts the Dataservers to retrieve the file.
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Append-only semantics: Mayflower provides file-specific tunable consistency to its
clients. In order to reduce reader/writer contention and consistency-related overhead,
Mayflower does not support random writes. Instead, files can only be modified using
atomic append operations. Random writes can be emulated in the application layer by
creating and modifying a new copy of the file and using a move operation to overwrite the
original file.

3.1.3 Consistency

By default, Mayflower provides sequential consistency for each file where clients see the
same interleaving of operations. This requires that all append requests are sent and ordered
by a file’s primary replica host. Upon receiving an append request, the primary replica
host relays the request to the other replica hosts while performing the append locally,
and the append completes once the primary receives an acknowledgement from all of the
replica hosts. Clients can however send read requests to any replica host and coordination
between hosts is not required to service the read request.

Alternatively, Mayflower can be configured to provide linearizability with respect to
read and append requests. The traditional approach to ensure strong consistency is to
order all requests by the file’s primary replica. However, Mayflower leverages its append-
only semantics to only require sending the last chunk’s read requests to the primary replica
host. All other chunk requests can be sent to any of the replica hosts since every chunk
except the last one are essentially immutable. Therefore, for large multi-gigabyte files,
the vast majority of chunks can be serviced by any replica host while still maintaining
strong consistency. The only limitation to this approach is that it cannot provide strong
consistency when read and append requests are interleaved with delete requests. Files
that are deleted can temporarily appear readable due to client-side caching of the file-to-
Dataserver mapping. However, we believe that this is a reasonable tradeoff for improving
read performance given that delete requests are relatively rare.

Providing linearizability with interleaving delete requests can be achieved in the follow-
ing way: When the Nameserver receives a delete request, it marks the file for deletion, but
delays the delete for T time, where T is the maximum expiration period for the client-side
file-to-Dataserver cache. During the delay period, if a client contacts the Nameserver for
the file-to-Dataserver mapping, the Nameserver returns the result with a cache timeout
equal to the remaining delay period. After T time, the Nameserver performs the delete
operation. In this way, all the clients see the same interleaving of delete requests and
cannot read the file from any replica after deletion. The performance impact is small for
workloads where delete requests are rare.
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3.2 Replica and Path Selection

When a Flowserver receives a replica selection request from a client, it executes our replica-
path selection algorithm (§ 3.2.2) to select a replica host and the network path for the
request. The replica-path selection process is based on estimated network state that is
built using bandwidth estimations and remaining flow size approximations.

Target performance metrics: Our target performance metric is the average job com-
pletion times. If we assume that the network is the bottleneck for a read operation, the
job completion time for a read request can be minimized by maximizing the max-min
bandwidth share of the read job’s flows. Unlike other flow scheduling systems [10, 60]
that are based on link utilization measurements, Mayflower maximizes the max-min band-
width share because, in addition to link capacity, the max-min calculations also capture
the number of existing flows and their bandwidth share in each link. In contrast, absolute
link utilization only provides information on available link capacity.

Even though the path with the most bandwidth share is a good choice, it is not always
the best choice in highly dynamic settings. This is because new flows affect the path
selection for already scheduled flows. We must therefore account for the effect on existing
flows when selecting the replica and the network path for a new request.

3.2.1 Problem Statement

Informally, our optimization goal is to select the replica and network path combination
among the paths from all replicas to the client, that minimizes the average completion
time of Mayflower read jobs. In other words, our goal is to select the network path that
minimizes the completion time of both the new flow as well as existing flows, including
the previously existing elephant flows belonging to other applications. Our replica and
path selection algorithm considers the following criteria: The paths of existing flows, the
capacity of each link, the data size of each request, the estimated bandwidth shares of
existing flows, and the remaining untransferred data size of existing flows.

A formal description of our problem, which resembles a minimum-cost flow problem, is
as follows: Let G be the graph representing the paths from source to destination. Let bi,j
be the bottleneck bandwidth on path from node i to node j. Let ci,j be the cost of impact
on existing flows on link (i, j) . Let di,j be the data flowing on link (i, j). Let Ii,j be a
binary indicator that a flow is assigned to link (i, j). Let s be the supersource, connected
to all replicas with 0-cost paths. Let t be a sink node. Let x be the data size. Given G, as
well as ci,j and bi,j ∀ (i, j) ∈ G, we have:

33



min
di,j ,Ii,j

∑
(i,j)∈G

di,j
bi,j

+ Ii,jci,j

subject to:∑
j:(i,j)∈G

di,j =
∑

j:(j,i)∈G

dj,i,∀i 6= s, t, i ∈ G

∑
i:(s,i)∈G

ds,i =
∑

i:(i,t)∈G

di,t = x

0 ≤ di,j ≤ xIi,j

The objective function is formulated such that, in the optimal solution, the cost will
be minimized if the binary variable Ii,j = 1, i.e., if and only if the link (i, j) is on the path
used by the flow.

A path consists of several links that may have different bandwidth utilizations. This
formulation assumes that the bandwidth of flows along each link in a path is equal to the
bottleneck bandwidth in that path. However, a link can be part of multiple paths, and
the bandwidth of that link can depend on other paths and flows. To accommodate this,
we construct a graph G′ to be a tree with the sink node (client) as the root, and all the
possible paths to a replica encoded as source nodes, i.e., one link per path to a replica. The
cost of using each link in G′ is the aggregate cost of using all the links on the corresponding
path in G, with the bandwidth set to the bottleneck bandwidth of that path. If paths and
costs are precomputed, we can find the least-cost path for the flow by calculating the cost
of the links and choosing the link in G′, i.e., path in G, with lowest cost. This serves as
the basis of our algorithm.

3.2.2 Replica-Path Selection Process

Mayflower’s replica-path selection algorithm evaluates all the paths from each replica to
the client and selects the path that has the minimum cost

Pathmin(P ) = argmin
∀p∈P

Cost(p) (3.1)

where P is the set of all distinct paths between the data reader and the replica sources.
We restrict to selecting from only the shortest paths between two endpoints.
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The cost of each path p ∈ P is the completion time of the new read job j, and the
increase in completion time of the existing jobs in each link along that path

Cost(p) =
dj
bj

+
∑
∀f∈Fp

[
rf
b′f
− rf
bf

]
(3.2)

where dj is the requested data size and bj is the estimated bandwidth share of a new flow
on path p. The first portion of Equation 3.2 estimates the cost of the new flow, while the
second portion estimates the impact of the flow on existing flows Fp in path p. The cost
of an existing flow f ∈ Fp is the estimated increase in completion time to download its
remaining data rf when the current bandwidth bf is decreased to b′f due to the addition
of the new flow in the path. The current bandwidth share and the remaining sizes of the
existing flows are measured through flow-stats that are collected from edge switches in the
network.

The bandwidth share of the new flow and the change in bandwidth share of the existing
flows are estimated through max-min fair share calculations. For each link, given a set of
flows that use the link and their bandwidth demands, we equally divide the bandwidth
across each flow up to the flow’s demand while remaining within the link’s capacity. The
demand for the existing flows is set to their current bandwidth share whereas the demand
of the new flow is set to the link’s capacity. The estimated bandwidth bj of the new flow
is its bandwidth in the bottleneck link in the path. The new bandwidth estimate of the
existing flows is their bandwidth share when a new flow with bandwidth demand bj is
added to the links in the path.

Background traffic: Mayflower can include information about elephant flows generated
by other applications, which we refer to as background flows, to improve the accuracy of
its bandwidth utilization estimates. Several existing systems have been proposed to detect
elephant flows [10, 291, 73]. We assume that an existing system performs elephant flow
detection and informs the path taken by these flows to the Flowserver. The Flowserver adds
these flows in its network view which allows correct bandwidth estimates for replica-path
selection.

Unknown flow size: Occasionally, the size of a flow is not known (as is the case with
background flows), or the provided information is inaccurate. Flow size information is not
critical when estimating the cost of a new flow because, as shown in Equation 3.2, the
variation in the cost of a new flow derives from its estimated bandwidth. The flow size
is used in the estimation of completion time increase for existing flows. If the flow size
information is unknown during replica-path selection, then the average elephant flow size
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is used as an estimate.

Slack in updating bandwidth utilization: When a path is selected by the Flowserver
using the replica-path selection algorithm, the bandwidth utilization for the new flow is
set to its estimated bandwidth share. The bandwidth share of the existing flows in the
selected path are updated with their new estimated values. To avoid a herd effect, each
newly scheduled flow is placed in an update-freeze state for a second, which essentially
ignores the flow’s first bandwidth update. Flows take some time to converge, and because
their stats are collected periodically, the first update can coincide with a flow’s unstable
starting time. This incorrect bandwidth usage information can cause a large number of
flows to be assigned to the same path, congesting the network. Therefore, the bandwidth
usage of the flows in the update-freeze state is not updated. However, the remaining flow
size information is allowed to be updated. Moreover, the replica-path assignments are not
blocked during the update-freeze state of flows.

Simplifying bandwidth estimations: The reduction in bandwidth share of flows in a
path may result in increase in bandwidth share of flows in other paths. This can indirectly
affect nearly all flows in the system. To accurately measure the impact of adding a new
flow on a path, we need to not only update the state of the flows on the selected path
but also identify and update changes in the bandwidth utilization of flows on other paths.
This greatly increases the cost of bandwidth estimation.

For simplicity, we ignore the secondary effects of changes in bandwidth, and estimate
and update the bandwidth share of flows in only the paths between replicas and the
client. Estimation errors do not accumulate because we periodically update our bandwidth
estimates from the edge switches’ flow-stats. We also use the flow stat information to
update the bandwidth utilization of the remaining flows in the network. This significantly
reduces the complexity of the problem while still providing good bandwidth utilization
approximations.

Mayflower reduces the overhead of network stats collection by polling only the edge
switches. Stats collection for non-edge switches is unnecessary because their link utiliza-
tions can be inferred by combining flow path information with flow stats from the edge
switches. Moreover, the stats collection period can be relatively large without affecting
Mayflower’s performance. This is because flow stats are primarily used to reduce small
approximation errors in our network model. Mayflower uses a one second stats collection
interval by default, which is based on the update interval of a flow’s byte-counter in Open-
Flow switches [212]. Our experimental results are unaffected when we increase the interval
period from one to five seconds. Finally, polling across edge switches is staggered to further
reduce the impact of stats collection on the network.
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Figure 3.2: An example of cost calculation for replica-path selection: (a) Existing flows’
bandwidth share along two paths (10Mbps links). (b) Bandwidth share of the flows if a
new flow is added on the first path where C1 is the cost of adding the new flow on the
path. New flow’s size is 9Mb whereas the remaining size of the existing flows is 6Mb.
(c) Bandwidth share of the flows if the new flow is added on the second path and its
corresponding cost is C2.

An illustrative example: Consider an example where a client reads 9Mb data from a
replica source, illustrated in Figure 3.2. The figure shows two edge switches connected to
two aggregate switches through 10Mbps links. There are two equal length paths between
the reader and the data source. Both paths have three flows on the second link, which
connects the edge switch to the aggregate switch, and one flow on the third link, which
connects the aggregate switch to the edge switch.

We first evaluate the first path, shown in Figure 3.2b. The second link is the bottleneck
link for a new flow because it gives a 3Mbps share to the new flow, compared to a 5Mbps
share on the third link. Therefore, the new flow will have a 3Mbps share on the first
path and the read job will take 9 / 3 = 3 seconds to complete. According to the max-
min fair share calculations, the existing flow with 6Mbps share in the second link will be
reduced to 3Mbps, and the 10Mbps-flow on the third link will be reduced to 7Mbps. As
a result, the completion time of the flows will be increased by [(6 / 3) − (6 / 6)] = 1 and
[(6 / 7) − (6 / 10)] = 0.25 seconds respectively, assuming the flows’ remaining sizes to be
6Mb. Therefore, the estimated cost of the first path, which is a measure of the increase in
total completion time, is 3 + 1 + 0.25 = 4.25. Similarly, the cost of the second path would
be 3.6, and therefore the second path will be selected for the read operation.

In this example, the bandwidth share of the new flow is the same for both paths. The
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difference in cost is due to the increase in completion time of the existing flows. The second
path has an increase of 0.6 seconds in the completion time of the existing flows, compared
to 1.4 seconds for the first path.

3.2.3 Reading from Multiple Replicas

Mayflower reads from multiple replicas in parallel if doing so results in a reduction of
the completion time. A read job is split into two subflows if the combined cost of the
two subflows is smaller than the cost of reading from only one replica. The cost function
remains the same as in Equation 3.2. The bandwidth estimate for the two subflows is
adjusted as if two new flows are being added in the system.

After selecting the network paths for the subflows and estimating their bandwidth
shares, the data read size for each subflow is divided such that the subflows finish at the
same time. The subflows are assigned different replicas to avoid encountering the same
network bottlenecks.

Multiple replicas selection process: First, a replica-path p1 is selected for the first
subflow f1 using the replica-path selection algorithm (§ 3.2.2). Assume that the estimated
bandwidth share of f1 is b1 and its cost is c1. A temporary flow is then added in the selected
path to update the bandwidth estimates of the existing flows in that path. Then another
replica-path p2 is selected for the second subflow f2, which has estimated bandwidth share
b2 and cost c2. As p1 and p2 may have common links in their paths, f2 may reduce the
bandwidth share of f1. Therefore, the bandwidth share and cost of f1 are adjusted to b′1
and c′1 according to the reduction in b1. If the combined cost, ct = c′1 + c2, of the two
subflows is smaller than c1, which is the cost of using only one flow for the read job, the
replica-paths p1 and p2 are selected for the subflows. Otherwise, the temporary changes
done by adding a temporary flow in p1 are rolled back, and only p1 is selected by the
Flowserver. If two subflows are selected, the flow size Si for each subflow is adjusted
proportionally to its estimated bandwidth share: Si = d ∗ bi/b, where d is the requested
data size and b = b′1 + b2.

The Flowserver returns the replica-paths and the associated data sizes to the client.
The client concurrently downloads from the given replicas in chunks of K MB, where K is
a tunable parameter that we set to be 32 MB for 128 MB block sizes. If one of the flows
finish earlier, it starts downloading the remaining chunks of the other flow, including the
last chunk.

Our results show that reading from multiple replicas further reduces the completion
time of read jobs by 10% on average. Moreover, the average difference in completion times
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between the two subflows of a read job is less than one second when reading a 128 MB
block.

3.3 Implementation

We implemented Mayflower in C++, with the exception of the Flowserver which runs as
an application in the Java-based Floodlight controller. Our prototype consists of 7,500
lines of C++ code and 3,700 lines of Java code. The replica-path selection function in the
Flowserver is exposed as an RPC service. The Flowserver is implemented as a stand alone
service and can be integrated with any distributed application through its RPC framework.

The Nameserver stores the filesystem information in a LevelDB [171] key-value store.
Files are divided in 128 MB chunks and replicated on three servers. Our choice of block
sizes are based on HDFS’s default block size [116]. The default replica placement strategy
follows an HDFS’s placement approach: Two replicas are placed in the same rack as the
client, and the third replica is placed in another randomly selected rack.

3.4 Evaluation

We evaluate the effectiveness of Mayflower’s replica-path selection using micro-benchmarks
that compare it with several other replica-path selection schemes. We also compare the
performance of our prototype with HDFS.

3.4.1 Experimental Setup

We conducted our experiments by emulating a 3-tier datacenter network topology using
Mininet [170]. As emulating a complete datacenter network in a single machine imposes
network size and bandwidth limitations, we partitioned our virtual network into several
slices, and distributed these slices across a cluster of 13 machines. This allowed us to
emulate a network with 1 Gbps edge links. Each machine in our cluster consists of a 64
GB RAM, a 200 GB Intel S3700 SSD, and two Intel Xeon E5-2620 processors having a
total of 12 cores running at 2.1 GHz. The machines are connected through a Mellanox
SX6012 switch via 10 Gbps links.

Our testbed consists of 64 virtual hosts distributed across four pods. In our topology,
a pod consists of four racks connected to two common aggregation switches. Each pod is
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emulated using three physical machines. Two machines emulate the hosts and the top-of-
rack switches while the third machine emulates the aggregation switches belonging to that
pod. The pods are connected through two core switches that are emulated in a separate
dedicated machine. We stitched these network slices together through IP and MAC address
translation. Our emulated network has 1 Gbps edge links, and oversubscription is achieved
by varying the capacity of higher tier links.

Traffic Matrix: We evaluate Mayflower’s performance using several synthetic workloads.
Our workloads have the following properties: (1) job arrival follows the Poisson distribu-
tion, (2) file read popularity follows the Zipf distribution [17] with the skewness parameter
ρ = 1.1, and (3) the clients are placed on virtual hosts based on the staggered probability
described by Hedera [10]; a client is placed in the same rack as the primary replica with
probability R, in another rack but in the same pod with probability P , and in a different
pod with probability O = 1 − R − P . The replica placement follows conventional con-
straints of fault tolerance domains. The primary replica is placed in a randomly selected
server, the second replica is placed in the same pod as the primary, and the third replica
is placed in a different pod.

3.4.2 Selection Schemes

We compared Mayflower’s replica-path selection with four other schemes that are a combi-
nation of static and dynamic replica selection with various network load balancing methods:

Nearest with ECMP: In this scheme, the closest replica to the client is selected, and the
flows are spread across redundant links using ECMP. This represents the schemes where
only static information is used for both replica selection and network load balancing.

Sinbad-R with ECMP: In this scheme, a replica is selected based on the current network
state by using our read-variant implementation of Sinbad [60], which we call Sinbad-R.
Sinbad was originally designed for dynamic replica selection for file write operations. It
collects end-hosts’ network load information to estimate the network utilization for higher
tier links.

In order to support file-read operations, Sinbad-R estimates the link utilization for the
traffic travelling up the network hierarchy (i.e., from edge to core) instead of down the
hierarchy, which is the case for the original Sinbad scheme. This modification is necessary
because file-reads and file-writes have opposing data-flow directions.

Dynamic path selection: To evaluate the effectiveness of Nearest and Sinbad-R replica
selection combined with dynamic network load balancing, we coupled them with Mayflower’s
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network flow scheduler. However, unlike Mayflower’s combined replica and path selection,
the optimization space is limited to the pre-selected replica source for these schemes. We
refer to these methods as Nearest-MF and Sinbad-R-MF in our results.

Mayflower replica-path selection: Mayflower has two replica selection methods: Mayflower-
B and Mayflower-P. In Mayflower-B, the Flowserver selects one replica, where as in Mayflower-
P, it selects up to two replicas for each requests. The client downloads data from the selected
replicas concurrently.

3.4.3 Replica-Path Selection Performance

We first evaluate the performance of Mayflower’s replica-path selection using micro-benchmarks.
In these experiments, we run a simple client/server application to emulate read jobs. For
each read job, a client contacts the Flowserver for replica selection and path setup. The
client then downloads 128 MB from the server selected by the Flowserver. Following the
design described in Section 3.2.3, the client further breaks down the 128 MB block into
32 MB chunks, and downloads chunks from the selected replicas concurrently. When it
finishes downloading a chunk from a replica, it will issue a request for the next chunk from
the same replica until all four chunks have been downloaded. To avoid disk bottlenecks in
these experiments, the data is stored in memory.

Figure 3.3 shows the performance of Mayflower’s replica-path selection in comparison
with the other methods (§ 3.4.2). The bars show the average completion time of the read
requests and the error bars represent 95% confidence intervals. Mayflower’s completion
time also includes the query latency to the Flowserver for replica-path selection, which is
approximately 4 ms1 in our experiments. The parameters for this experimental workload
iconsists of λ = 0.1, ρ = 1.1, and a client locality distribution of (R = 0.5, P = 0.3,
O = 0.2). The results show that Nearest-ECMP, which is commonly used in current
deployments, has more than 2.3x the average completion time compared to Mayflower-P.
It also shows that replacing ECMP with a dynamic path selection scheme (Nearest-M)
only provides marginal improvements over ECMP.

The Nearest replica selection-based approaches perform poorly because the replica se-
lection is static and oblivious to the network state. As half of the clients are in the same
rack as the primary replica, the clients have only one replica and path option. Therefore,

1Most of the replica-path selection latency is due to installing rules in switches to setup the network
path. However, typical file read operations take much longer than replica-path selection latency because
block sizes are large, typically between 64 MB and 1 GB, and they take several seconds to read [60].
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Figure 3.3: Average job completion times of different replica and path selection methods.

the edge link of the primary replica can become congested, resulting in higher completion
time.

Sinbad-R-M and Sinbad-R ECMP illustrate that dynamic replica selection can reduce
average completion time compared to static replica selection. However, because they se-
lect the replicas and paths independently, the Sinbad-based schemes still have an average
completion time of more than 1.3x of Mayflower-P. Finally, by intelligently downloading
from up to two replicas in parallel, Mayflower-P has 14% lower average completion time
than Mayflower-B.

Figure 3.3(b) shows the CDF of job completion time for the same experiment. It
illustrates that Mayflower-P has a significantly shorter tail completion time than the other
schemes. Its 95th percentile job completion time is 2.81 seconds compared to 3.21 seconds
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Figure 3.4: Average job completion times with different client locality distributions.

for Mayflower-B and 3.82 seconds for Sinbad-R-M. These results suggest that, in the case
where the paths to all replicas are partially congested, Mayflower-P can still achieve a low
job completion time by reading from two replicas over two paths with different bottleneck
links.

3.4.4 Impact of Client Locality

Figure 3.4 shows the effectiveness of Mayflower’s replica-path selection with different client
locality distributions. The bars are grouped according to the probability distributions (R,
P , O) of the clients being in the same rack R, in the same pod P and in another pod
O relative to the location of the primary replica. The bar groups in the Figure have the
probability distributions (0.5, 0.3, 0.2), (0.3, 0.5, 0.2), (0.2, 0.3, 0.5) and (0.33, 0.33, 0.33)
from left to right. As Mayflower-P consistently performs between 10 to 15% better than
Mayflower-B, we omit the results of Mayflower-B from the remaining graphs in this section
to improve their readability.

The results show that as we reduce client locality from (0.5, 0.3, 0.2) to (0.3, 0.5, 0.2)
causing a larger portion of the traffic to leave the rack, the nearest replica selection schemes
surprisingly show a reduction in their average completion time. This is due to a greater
dispersion of traffic between replicas, because a client is equally distant from its two closest
replicas for a larger percentage of its requests. For the other schemes, this reduction in
client locality causes a small increase in average completion time, with the Sinbad and

43



0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Job arrival rate λ (per server)

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 c

o
m

p
le

ti
o
n

ti
m

e
 (

se
c)

Mayflower-P Sinbad-R-M
Sinbad-R
ECMP Nearest-M

Nearest
ECMP

Figure 3.5: Increase in average completion times due to higher job rate.

Nearest-based schemes having an average completion time of more than 1.36x compared
to Mayflower-P.

Further reducing the client locality to (0.2, 0.3, 0.5) results in significant increase in
average completion time for both Sinbad and Nearest-based approaches. Moreover, the
average completion time of ECMP-based approaches increases by nearly 2.27x with this
reduction in locality. This is because, with poor client locality, a larger fraction of the
requests must traverse the heavily utilized core links. Therefore, efficient load balancing
of the core links through dynamic path selection becomes far more important. Finally, the
last bar group shows that, in the case where a client distribution is (0.33, 0.33, 0.33), the
result is in between the results from (0.3, 0.5, 0.2) and (0.2, 0.3, 0.5).

3.4.5 Impact of Job Rate

In this experiment, we vary the job rate to determine the impact of system load on the
completion time of the different replica and path selection methods. Job arrival is modelled
as a Poisson process and the job arrival rate (λ) specifies the rate for each server. Thus
the job arrival rate of 0.08 means that on average 6 new read jobs are started every second
in a 64 node system.

Figure 3.5 shows the results for the common scenario in which a majority of the clients
are situated in the same rack as the primary replica of the requested file. We find that,
all the methods perform equally well at lower job rate because of the light burden on the
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system. At higher job rates, links become congested and the performance degrades quickly
for all the methods, however, Mayflower has a slower growth in the completion time. The
relatively small increase in completion time of Mayflower at higher job rates suggests that
Mayflower is more effective at avoiding congestion points in the network than the other
methods.

3.4.6 Impact of Oversubscription

The experiments from the previous sections were conducted with an 8:1 oversubscription
ratio. Figure 3.6 shows the performance of Mayflower with other network oversubscription
ratios. There is no oversubscription within a rack in all of our tested configurations.
Due to limitations in our test infrastructure, we are unable to experiment with lower
oversubscription while maintaining a 1 Gbps edge link capacity. In this and subsequent
Figures, we only show the results for Mayflower and Sinbad-R-M as those are the best
among all the different methods.

Higher oversubscription increases the chances for network congestion. Both Mayflower
and Sinbad-R-M have a higher average completion time in more oversubscribed networks.
However, Mayflower performs better under higher oversubscription than Sinbad-R-M, dif-
ference of 2.4x, as it has more replica and path options.
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Figure 3.7: The performance of both Mayflower requests and background traffic.

3.4.7 Effect on Background Traffic

In this experiment, we evaluate the performance of Mayflower-B and Mayflower-P in the
presence of other flows in the network. We also evaluate the effect of Mayflower flows
on background flows. To generate the background traffic, we run another client/server
application in which the clients download data from a server selected randomly using the
locality distribution of (0.2, 0.3, 0.5). The size of the background flows are based on a
truncated normal distribution with the parameters N(96, 64) and with a lower and upper
limit of [32, 256]. We use the job arrival rate λ = 0.08 for the background flows and
vary the arrival rate of Mayflower file read requests, shown by the different bar groups in
Figure 3.7.
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Figure 3.7(a) shows the completion time of Mayflower read requests. The first bar, back-
ground unaware (BG-unaware) Mayflower-B, shows the completion time when Mayflower-B
runs while being oblivious to the background flows. The second bar, background aware
(BG-aware) Mayflower-B, shows the completion time when Mayflower-B is aware of the
background flows. Without background flow awareness, Mayflower-B’s bandwidth esti-
mates are inaccurate, which can result in selecting paths that are congested with back-
ground flows. When Mayflower-B is aware of the background flows, it can accurately model
the utilization of each link, which allows it to avoid congested links and reduce average
read completion time compared to BG-unaware Mayflower-B. Compared to Mayflower-B,
Mayflower-P is more effective at avoiding congested links by dispersing the load across two
partially congested paths with different bottleneck links.

Figure 3.7(b) shows the completion time of the background flows. The Figure high-
lights the importance of better replica and path selection as it affects the performance of
both the background flows and the file read operations. Poor path selection hurts all the
elephant flows in the network. This is due to the interdependence between the network
and the applications, suggesting the need for increased coordination between the endpoint
applications and the network control plane. By making Mayflower aware of the background
flows, our results show that we can reduce the completion of both Mayflower request and
background flows compared to using background-unaware Mayflower.

3.4.8 Effect of Data Size

Figure 3.8 shows the performance of Mayflower-P with different block size and data rate
combinations. Mayflower-P performs consistently better for both small and large block
sizes. For smaller block sizes, the average completion time is shorter than the stats collec-
tion intervals. Therefore, Mayflower relies primarily on bandwidth utilization estimates to
determine flow durations, which is in turn used to determine which replica-path it selects.
As a result, for smaller block sizes, there is a smaller performance gap between Mayflower-P
and the other methods because of its higher reliance on bandwidth estimates.

3.4.9 Comparison With HDFS

Figure 3.9 shows the performance of our Mayflower prototype compared with HDFS. We
used the same network setup and traffic matrix that were used for our replica-path selection
evaluation. In this experiment, we use a block size of 256 MB, a client locality distribution
of (0.5, 0.3, 0.2) and job arrival rates from λ = 0.06 to λ = 0.08. Instead of running

47



32 - 0.24 64 - 0.18 128 - 0.12 256 - 0.08

Block size (MB) - Job rate (λ)

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 c

o
m

p
le

ti
o
n

ti
m

e
 (

se
c)

1
.0

x

1
.0

x 1
.0

x

1
.0

x

1
.3

x

1
.4

x 1
.4

x

1
.5

x

1
.5

x 1
.6

x

1
.7

x

1
.7

x

Mayflower-P Sinbad-R-M
Sinbad-R
ECMP

Figure 3.8: Performance impact of the block size.

a client/server application that only simulates file reads and writes, this experiment uses
our Mayflower prototype implementation. We configured HDFS to use rack awareness for
replica selection – HDFS selects the replica in the same rack where the client is located,
if any such replica exists. For network flow scheduling, we performed HDFS experiments
with both ECMP and Mayflower flow scheduling. For file placement, we use the same
primary replica location for both Mayflower and HDFS.

Mayflower’s experimental results are consistent with our simulation results. Mayflower
shows a small increase in the completion time as the job arrival rate increases. In contrast,
the completion times for HDFS grow rapidly with an increase in the job rate.

3.5 Discussion

Mayflower enables efficient utilization of available replicas and network paths, which re-
duces in-network congestion and increases bandwidth for file read operations. Its joint
replica-path selection approach can be used to improve the performance of read operations
in the cases where multiple replicas and network paths are available and a replica is read
over the network. Nonetheless, the current design of Mayflower limits its use to a narrow
set of deployment scenarios. Below we discuss some of the applications that can benefit
from using Mayflower. Moreover, we discuss the limitations of Mayflower’s current design
and some of the ways to improve the design.
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Figure 3.9: Mayflower prototype versus HDFS.

3.5.1 Append-only Semantics and Target Applications

Following the model of HDFS, Mayflower supports file modification only through append
operations. As HDFS is a widely used filesystem, Mayflower can be used for many appli-
cations despite restricting writes to only file appends. On-demand videos, media encoding,
copying virtual machine images in a cloud environment, distributed joins, ad-hoc queries in
decisions support systems, and matrix operations are a few examples that require reading
data over the network and can benefit from using Mayflower as the underlying filesystem.

3.5.2 Alternative Approach for Network Modeling and Control

Although Mayflower demonstrates high efficacy in reducing latency from network conges-
tion, its use in practice depends on access to the network control plane. A network’s control
plane is not always accessible to developers and applications. Even if it is accessible, fre-
quently updating rules in switches and periodically fetching stats from the edge switches
add strain in switches and increase network overhead in large deployments. In retrospect,
it might be better in some deployment scenarios to use an alternative approach where the
network is monitored from endpoints. The Flowserver can employ a monitoring service at
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endpoints that periodically send stats observed at the endpoints to the Flowserver. The
Flowserver can combine the received stats information with its network path information
for read jobs and background flows to accurately develop its network model.

In addition to providing network stats, the endpoints can provide remaining flow-size
information to the Flowserver. The Flowserver receives expected read size from clients
at the beginning of their read operations, and monitors the remaining size of the flows
by collecting flow stats from edge switches. It uses the remaining flow size information
to calculate replica-path costs for new read jobs. Instead of collecting flow stats from
edge switches, the Flowserver can gather transferred bytes between endpoints from its
monitoring services at the endpoints. Like CODA [294], a daemon can run on each endpoint
that monitors the flows entering or leaving the endpoint and periodically send the flow stats
to the Flowserver. The Flowserver can use this information to create a network model
based on the information collected from endpoints, and synthesize that network model
with network path information for replica-path selection.

Currently the Flowserver controls network paths for read jobs by installing new rules
in switches along the paths for each read job. In large deployments where the number of
read jobs is high, the path setup can have significant overhead and load on switches. An
alternative approach for large and highly dynamic deployments can be to pre-setup net-
work paths and assign the paths to reads jobs through Mayflower’s replica-path selection.
Network paths can be setup and assigned using five-tuple parameters and network address
translations along the paths, or using tunneling protocols. Setting up paths beforehand
significantly reduces the overhead of installing and updating rules in switches.

3.5.3 Macro Benchmarks

A workload has several parameters that impact the system performance differently, e.g.,
popularity of files and variation in the size of reads. Our evaluation of Mayflower using
micro-benchmarks show the behavior of the system with various workload parameters.
However, our tests do not evaluate the performance with the workloads that are specific
to an applications such as data analytics using Hadoop and Spark. Macro-benchmarks
provide additional performance analysis and reveal patterns and workloads that are not
accurately modeled through synthetic workloads, such as frequency of deletes and their
interleaving with reads/writes. For future work, we would like to perform end-to-end
performance analysis of Mayflower’s replica-path selection by integrating it with HDFS’s
read operations. Widely used TPC-H, TPC-DS [275, 227] and SPC-2 [258] benchmarks
can be used to evaluate our approach with more practical workloads.
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3.5.4 Primary Replica Failures

This thesis focuses on optimizing read operations in distributed filesystems using the net-
work/filesystem co-design approach. Therefore, we have not fully implemented the failure
handling of the primary replica host. However, we believe that the design and performance
of replica-path selection and read operations are not affected when failure handling of the
primary host is implemented. One approach is to use an external fault-tolerant configu-
ration service, such as ZooKeeper, to detect the failure of a primary node and decide its
replacement among the backup nodes. The clients have to retry their requests that fail
due to the primary node’s failure.

3.6 Summary

In this chapter, we presented the design and evaluation of Mayflower filesystem. Follow-
ing the infrastructure-aware design approach, Mayflower is co-designed with SDN control
plane to optimize file read operations. Mayflower uses a novel replica and network path
selection algorithm that synthesizes information collected from the network and filesystem
clients for replica-path selection. Our evaluation of Mayflower using simulations and a
deployment on an emulated network showed that existing systems require 1.3x the com-
pletion time compared to Mayflower using common datacenter workloads. Higher perfor-
mance of Mayflower as compared to other approaches highlights the effectiveness of using
infrastructure-awareness in improving the performance of distributed storage systems.

51



Chapter 4

Canopus Consensus Protocol

In this chapter, we describe our contribution to improve the performance of distributed
consensus protocols using a network-aware approach. Many distributed storage systems
use consensus protocols to replicate data with strong consistency in a geo-distributed de-
ployment. Moreover, big data applications heavily use coordination systems (e.g., Chubby
and ZooKeeper) to simplify classic distributed problems such as leader election and con-
figuration management.

Demands for strongly consistent storage systems are increasing as they simplify appli-
cation development and reasoning for correctness during failures [7]. Strong consistency in
geo-distributed storage systems is usually ensured by building a replicated state machine
through distributed consensus protocols. However, commonly used distributed consensus
protocols, such as Paxos [160, 161] and Raft [210], do not scale to a large number of nodes
with high throughput. Consensus across many geo-distributed nodes is needed for planet-
scale distributed storage systems and emerging applications such as distributed ledgers.
For instance, storing highly popular objects with strong consistency across geo-distributed
sites is reported to be an open challenge at Facebook [7]. Popular objects are accessed with
high frequency and they demand high throughput per object or shard. Replicating data
across tens of datacenters with multiple copies in each datacenter for high performance
place significant scalability and high throughput demands.

Despite several efforts to optimize the performance of consensus protocols through
multi-leader and leaderless approaches [184, 196, 35, 24, 204, 295, 43], existing consen-
sus protocols do not yield the throughput of millions of operations per second at WAN
scale. A fundamental challenge to achieve consensus at large scale with high throughput
is to distributed load across all nodes and efficiently utilize all available resources. How-
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ever, existing goe-distributed consensus systems, e.g., EPaxos, Mencius, and S-Paxos, are
not designed around the underlying cloud infrastructure. Therefore, these systems do not
efficiently utilize the network and other infrastructure resources. They send redundant mes-
sages over higher oversubscribed links that waste CPU and network resources. Moreover,
existing geo-distributed consensus systems, such as D-Paxos, WPaxos, and WanKeeper
concentrate load to a few nodes in the consensus cluster. As a result, they under-utilize
the available resources. We address these problems in our Canopus [237] protocol. Canopus
scales consensus to a large group of geo-distributed nodes by following the infrastructure-
aware design approach. Our objective of building Canopus is to scale consensus to tens to
hundreds of geo-distributed nodes. A scalable consensus protocol has applications in scal-
able storage systems that provide strong consistency and distributed ledgers that achieve
end-to-end security through hardware assisted trusted computing environments [67]. This
chapter present the detailed design and evaluation of Canopus.

4.1 System Assumptions

Canopus is designed based on the following assumptions:

Network topology: Canopus makes only two minor assumptions about the nature of its
data center network. These are likely to hold for the vast majority of modern data center
networks:

1. All machines running Canopus in the same datacenter are hosted in the
same rack, and are dual-connected to Top-of-Rack (ToR) switches that
provide low-latency connectivity to all the machines in its rack. If the number of
Canopus nodes in a datacenter exceeds what can be hosted in a single rack, we
assume that we have control over the physical location of the Canopus’ nodes within
a datacenter, including the location in the racks or whether Canopus runs in a VM
or a physical machine.

2. ToR switches are connected to each other through a hierarchical network
fabric. In general, we expect latency to increase and bandwidth to decrease as hop
count between the pair of communicating nodes increases.

Although Canopus will perform correctly (i.e., either achieve consensus or stall) without
the next two assumptions, for acceptable performance, we also assume that:

53



3. Full rack failures are rare. More precisely, we assume that although individ-
ual machines, ToR switches, and/or links may fail, it is rarely the case that all
machines in a rack are simultaneously unreachable from off-rack machines. Single-
failure fault tolerance is easily achieved by using dual-NIC machines connected to
two ToR switches on each rack. In the rare cases of rack failures, Canopus halts
until the racks have recovered. Moreover, rack failures do not cause the system to
enter into an unrecoverable state. This is because the nodes persistently store their
protocol state, and our system can resume when enough nodes in the failed racks
recover.

4. Network partitions are rare. A network partition within a rack requires both ToR
switches to simultaneously fail, which we assume is rare. Similarly, we assume that
the network provides multiple disjoint paths between ToR switches, so that the ToR
switches are mutually reachable despite a link or switch failure. Finally, we assume
that there are multiple redundant links between data centers, so that a wide-area
link failure does not cause the network to partition.

Many modern datacenters use network topologies that meet these two assumptions [254,
92], including Clos-like topologies such as fat-tree [9], VL2 [108], and leaf/spine networks.
These failure assumptions simplify the design of Canopus and allow us to optimize Canopus
for the common case.

In the unlikely event of a network partition, we believe it is reasonable for a consensus
protocol to stall while waiting for the network to recover, resuming seamlessly once the
network recovers. Indeed, this is the only reasonable response to a network partition where
a majority of consensus participants do not reside in any single partition. We believe that,
given both the rarity of network partitions and the severity in which they affect applications
and services, it is not worthwhile for a consensus protocol to provide limited availability at
the expense of a significant increase in protocol complexity. Planned shutdown of a rack
is possible and does not result in any loss in availability.

5. Client-coordinator communication: In Canopus, as in many other consensus sys-
tems, clients send key-value read and write requests to a Canopus node. We assume that
a client that has a pending request with a particular node does not send a request to any
other node. This is to allow serialization of client requests at each node. If a client were
to concurrently send a write and a read request to two different nodes, the read request
could return before the write request even if the read was sent after the write, which would
violate program order.
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6. Crash-stop failures: We assume that nodes fail by crashing and require a failed node
to rejoin the system using a join protocol. The Canopus join protocol closely resembles the
join protocol for other consensus systems [211]. Canopus detects node failures by using a
method similar to the heartbeat mechanism in Raft.

4.2 Canopus

Canopus is a scalable distributed consensus protocol that ensures live nodes in a Canopus
group agree on the same ordered sequence of operations. Unlike most previous consen-
sus protocols, Canopus does not have a single leader and uses a virtual tree overlay for
message dissemination to limit network traffic across oversubscribed links. It leverages
hardware redundancies, both within a rack and inside the network fabric, to reduce both
protocol complexity and communication overhead. These design decisions enable Canopus
to support large deployments without significant performance penalties.

The Canopus protocol divides execution into a sequence of consensus cycles. Each cycle
is labelled with a monotonically increasing cycle ID. During a consensus cycle, the protocol
determines the order of pending write requests received by nodes from clients before the
start of the cycle and performs the write requests in the same order at every node in the
group. Read requests are responded to by the node receiving it. Section 4.3 will describe
how Canopus provides linearizable consistency while allowing any node to service read
requests and without needing to disseminate read requests.

Canopus determines the ordering of the write requests by having each node, for each
cycle, independently choose a large random number, then ordering write requests based on
the random numbers. Ties are expected to be rare and are broken deterministically using
the unique IDs of the nodes. Requests received by the same node are ordered by their
order of arrival, which maintains request order for a client that sends multiple outstanding
requests during the same consensus cycle.

4.2.1 Leaf-Only Trees

During each consensus cycle, each Canopus node disseminates the write requests it receives
during the previous cycle to every other node in a series of rounds. For now, we will assume
that all nodes start the same cycle in parallel at approximately the same time. We relax
this assumption in Section 4.2.4, where we discuss how Canopus nodes self-synchronize.
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Figure 4.1: An example of a leaf-only tree (LOT). Only the leaf nodes exist physically
and the internal nodes are virtual. A leaf node emulates all of its ancestor virtual nodes.

Instead of directly broadcasting requests to every node in the group, which can create
significant strain on oversubscribed links in a datacenter network or wide-area links in
a multi-datacenter deployment, message dissemination follows paths on a topology-aware
virtual tree overlay.

Specifically, Canopus uses a Leaf-Only Tree overlay [13], that allows nodes arranged in
a logical tree to compute an arbitrary global aggregation function. We adapt LOT for use
in a consensus protocol; from this point on, we will always be referring to our modified
version of LOT.

A LOT has three distinguishing properties:

i. Physical and virtual nodes: In LOT, only the leaf-nodes exist physically (in the
form of a dedicated process running in a physical machine). Internal nodes are virtual and
do not exist as a dedicated process. Instead, each leaf node emulates all of its ancestor
nodes. For clarity, we denote a leaf node as a pnode and an internal node as a vnode.

ii. Node emulation: Each pnode emulates all of its ancestor vnodes. i.e., each pnode
is aware of and maintains the state corresponding to all of its ancestor vnodes. Thus, the
current state of a vnode can be obtained by querying any one of its descendants, making
vnodes fault tolerant, and making vnode state access parallelizable.

iii. Super-leaves: All the pnodes located within the same rack are grouped into a single
super-leaf for two reasons. First, this reduces the number of messages exchanged between
any two super-leaves; instead of all-to-all communication between all the pnodes in the
respective super-leaves, only a subset of the super-leaf nodes, called its representatives,
communicate with another super-leaf on behalf of their peers. Second, because all the
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pnodes in a super-leaf replicate their common parents’ state, a majority of the super-leaf
members need to simultaneously fail to cause the super-leaf to fail.

Figure 4.1 shows an example of a leaf-only tree consisting of 27 pnodes. There are three
pnodes per super-leaf. The pnode N emulates all of its ancestor vnodes 1.1.1, 1.1, and
1. The root node 1 is emulated by all of the pnodes in the tree.

We assume that during Canopus initialization, each node is provided with the identities
and IP addresses of the peers in its own super-leaf.

4.2.2 Consensus Cycle

Each consensus cycle consists of h rounds where h is the height of the LOT. Each consensus
cycle is labelled by a monotone non-decreasing cycle ID. Canopus ensures that nodes
concurrently execute the same consensus cycle, which we further explain in Section 4.2.4.
In the following sections, we describe the details of the messages exchanged in each round
of a consensus cycle.

First round in a consensus cycle: In the first round of a consensus cycle, each pnode
prepares a proposal message and broadcasts the message to the peers in its super-leaf using
a reliable broadcast protocol, which we describe in detail in Section 4.2.3. A proposal
message contains the set of pending client requests, group membership updates, and a
large random number generated by each node at the start of the consensus cycle. This
random number, called the proposal number, is used to order the proposals across the nodes
in each round in the consensus cycle. A proposal message is also tagged with the cycle
ID, the round number, and the vnode ID whose state is being represented by the proposal
message. The group membership updates include the membership changes that happened
before starting the current consensus cycle. Note that proposal messages sent in the first
round are used to inform the receivers about the start of the next consensus cycle.

After receiving the round-1 proposal messages from all the peers in its super-leaf, each
pnode independently orders the proposals according to their (random) proposal numbers.
The sorted list of proposals represents the partial order of the requests in the current
round and constitutes the state of the parent vnode of the super-leaf. A node finishes its
first round after it has obtained proposal messages from all its super-leaf peers, and then
immediately starts the next round in the consensus cycle.

Round-i in a consensus cycle: In each subsequent round, each node independently
prepares a new proposal message, which is used to share the computed state from the
previous round with other super-leaves. The list of requests in the proposal message is
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simply the sorted list of requests obtained in the previous round. Similarly, the proposal
number in the new message is the largest proposal number from the previous round. Thus,
a proposal message for round i can be defined as Mi = {R′i−1, N ′i−1, F ′i−1, C, i, v}, where R′

is the sorted list of proposals from the previous round, N ′i−1 is the largest proposal number
in the previous round, F ′i−1 is the set of membership updates received in the proposals
from the previous round, C is the cycle ID, i is the round number, and v is the vnode ID,
or the pnode ID in the case of the first round.

In round i, the pnodes compute, in parallel, the state of their height-i ancestor vnode.
For example, the root vnode in Figure 4.1 has a height of 3, and therefore, its state is
computed in the third round. As the current state of a vnode is just the merged and sorted
list of proposals belonging to its child pnodes or vnodes, each super-leaf independently
gathers the proposals of that vnode’s children from their emulators, where a vnode’s
emulator is a pnode that is known to have the vnode’s state; see § 4.2.6 for details.

To obtain the proposal belonging to a vnode, representatives from each super-leaf se-
lect one of that vnode’s emulators and sends a proposal-request message to the selected
emulator. For instance, to compute the state of the node 1.1, representative node N in
Figure 1 sends a proposal-request to emulators of the vnodes 1.1.2 and 1.1.3 – it already
knows the state of the vnode 1.1.1, which was computed in the previous round.

The proposal-request message contains the cycle ID, round number, and the vnode ID
for which the state is required. In response to receiving a proposal-request message, the
receiver pnode replies with the proposal message belonging to the required vnode. If the
receiver pnode has not yet computed the state of the vnode, it buffers the request message
and replies with the proposal message only after computing the state of the vnode. When
the super-leaf representative receives the proposal message, it broadcasts the proposal to
its super-leaf peers using reliable broadcast. These peers then independently sort the
proposals, resulting in each node computing the state of their height-i ancestor. Note that
representatives from all super-leaves issue proposal-requests in parallel, and all nodes in
all super-leaves independently and in parallel compute the state of their height-i ancestor.

Completing a consensus cycle: The consensus protocol finishes after all nodes have
computed the state of the root node, which takes time proportional to the logarithm of
the number of Canopus pnodes. At this point, every node has a total order of requests
received by all the nodes. The nodes log the requests in their request logs for execution.
Each node then initiates the next consensus cycle with its super-leaf peers if they have
received one or more client requests during the prior consensus cycle.
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4.2.3 Reliable-Broadcast in a Super-Leaf

The nodes in a super-leaf use reliable broadcast to exchange proposal messages with each
other. For ToR switches that support hardware-assisted atomic broadcast, nodes in a
super-leaf can use this functionality to efficiently and safely distribute proposal messages
within the super-leaf.

If hardware support is not available, we use a variant of Raft [211] to perform reliable
broadcast. Each node in a super-leaf creates its own dedicated Raft group and becomes
the initial leader of the group. All other nodes in the super-leaf participate as followers in
the group. Each node broadcasts its proposal messages to the other nodes in its super-leaf
using the Raft log replication protocol in its own Raft group. If a node fails, the other
nodes detect that the leader of the group has failed, and elect a new leader for the group
using the Raft election protocol. The new leader completes any incomplete log replication,
after which all the nodes leave that group to eliminate the group from the super-leaf.

Reliable broadcast requires 2F +1 replicas to support F failures. If more than F nodes
fail in the same super-leaf, the entire super-leaf fails and the consensus process halts.

4.2.4 Self-Synchronization

So far we have assumed that all of the nodes start at the same consensus cycle in parallel.
Here, we describe how the nodes are self-synchronized to concurrently execute the same
consensus cycle.

Before starting a consensus cycle, a node remains in an idle state. In this state, its
network traffic is limited to periodic heartbeat messages to maintain its liveness. A new
consensus cycle only starts when the node receives outside prompting. The simplest version
of this prompting is when the node receives a client request for consensus. A client request
triggers the node to start a new consensus cycle and broadcast a proposal message to other
peers in its super-leaf. The proposal message informs the peers that it is time to start
the next consensus cycle, if it is not already under way. The representatives, in effect,
send proposal-request messages to other super-leaves that trigger them to start the next
consensus cycle, if they have not started yet.

Alternatively, a node, while in the idle state, may receive either a proposal message
from its peers in its super-leaf, or a proposal-request message from another super-leaf.
This indicates that a new cycle has started, and therefore, this node begins the next
consensus cycle. In this scenario, the node’s proposal message contains an empty list of
client requests. As a result, the nodes are self-clocked to execute the same consensus cycle.
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4.2.5 Super-Leaf Representatives

A super-leaf representative fetches the state of a required vnode on behalf of its super-leaf
peers and broadcasts the fetched state to the peers using reliable broadcast (§ 4.2.3). We
use a variant of Raft’s leader election and heartbeat protocols [211] to allow nodes in a
super-leaf to select one or more super-leaf representatives and detect representative failures.
A representative failure triggers a new election to select a replacement representative.

The representatives of a super-leaf are each individually responsible for fetching the
states of the tree’s vnodes. A representative can fetch the states of more than one vnode.
However, to improve load balancing, we recommend that different representatives fetch
the states of different vnodes. The vnode to representative assignment can be performed
deterministically by taking the modulo of each vnode ID by the number of representa-
tives in a super-leaf. Because representatives of a super-leaf are numbered and ordered
(e.g., representative-0, representative-1, etc.), the result of the modulo operation can be
used to determine which representative is assigned to a vnode without the need for any
communication or consensus.

4.2.6 Emulation Table

Thus far, we have not discussed how Canopus nodes actually communicate with other
nodes. To initiate communication with an emulator of a vnode (a pnode in the sub-tree
of the vnode) with a given ID, LOT maintains an emulation table that maps each vnode
to a set of IP addresses of the pnodes that emulate that vnode. For example, for the LOT
given in Figure 4.1, the table would map vnode 1.1 to the set of IP addresses of the nine
pnodes that emulate this vnode.

We assume that at system initialization time, the emulation table is complete, correct,
and made available to all pnodes. Subsequently, failed pnodes must be removed from
the emulation tables maintained by all non-failed pnodes. Note that this itself requires
consensus. Hence we maintain emulation tables in parallel with the consensus process, by
piggybacking changes in the emulation table on proposal messages.

Specifically, in the first round of a consensus cycle, pnodes list membership changes
(determined based on an within-super-leaf failure-detector protocol, such as through Raft
heartbeats) in their proposal messages. Membership changes for a pnode include the list of
pnodes that joined or left its super-leaf before the pnode started its current consensus cycle.
At the end of the consensus cycle, all the pnodes have the same set of proposal messages,
and thus the same set of membership changes are delivered to each pnode. Therefore,
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Figure 4.2: Illustration of a consensus cycle in Canopus.

each pnode applies the same membership updates to the emulation table at the end of
each consensus cycle. As a result, each pnode has the same emulation table and same
membership view of LOT in each consensus cycle.

4.2.7 An Illustrative Example

We illustrate Canopus using an example in which six nodes are arranged in two super-
leaves in a LOT of height 2 as shown in Figure 4.2(a). Nodes A, B, and C comprise
super-leaf Sx, and the nodes D, E, and F comprise the super-leaf Sy. The nodes in Sx
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and Sy are connected with the common vnodes x and y respectively. The vnodes x and y
are connected with the root vnode z. In the first round, the states of vnodes x and y are
computed, which establishes consensus within the super-leaves. In the second round, the
state of the root vnode z is computed, which establishes consensus between super-leaves.
Figure 4.2(b) shows the events occurring in the super-leaf Sx during the consensus cycle.
The events are labelled in circles and explained as follows:

1. The consensus cycle starts: Nodes A and B start the first round of the consensus
cycle. At the start of the cycle, nodes A and B have the pending requests RA and RB.
The nodes prepare proposal-messages and broadcast them to their peers in the super-leaf.

Assume that the proposals of nodes A, B, and C are PA = {RA | NA | 1}, PB = {RB |
NB | 1}, and PC = {φ | NC | 1}, where Ri is the ordered set of pending requests on node
i, Ni is the proposal number, and 1 is the round number. We omit the other information
from the proposals for simplicity.

2. A proposal-request message is sent: Node C receives the proposal message from
node A and starts its consensus cycle. Assuming that nodes A and C are the representatives
for super-leaf Sx, these nodes send proposal-request messages Qy to D and E respectively
to redundantly fetch the state of vnode y. The nodes in Sx require the state of y to compute
the state of the ancestor vnode z in the next round.

3. A proposal-request is received for an unfinished round: Node A receives a
proposal-request message from F , which belongs to the next round of the current consensus
cycle, asking for the proposal Px. As node A has not yet finished its first round that results
in Px, it buffers the request and does not send any reply until it finishes its first round.

4. The first round is completed: Node C receives the proposal message PB from B.
As node C has received the proposals from all the peers in its super-leaf, it finishes its first
round. Node C sorts the requests in the received proposals and its own proposal according
the proposal numbers. The sorted list of requests is the consensus result from the first
round, and comprises the current state of the vnode x. When nodes A and B finish their
first round, they also have the same sorted list of requests.

To continue with the next round, the nodes prepare the proposal-messages that contain
the sorted list of requests and the largest proposal number from the last round. In this
example, the three nodes prepare the round-2 proposal Px = {PA, PC , PB | NB | 2},
assuming NA < NC < NB.

5. A proposal-request is served: Node A continues in the next round after finishing
the first round and prepares the proposal Px. It replies to the pending proposal-request
Qx, which it received from node F .
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6. Coordinating the proposals: Node C receives the reply of its request Qy for the
round-2 proposal Py, and reliably broadcasts Py to other peers in its super-leaf. Assume
that Py = {PD, PE, PF | NF | 2}.

7. The consensus cycle is completed: After receiving all the required round-2 pro-
posals, node C finishes the second round of the consensus cycle. At the end of the round,
node C has the proposal Pz = {Py, Px | NB | 3}, assuming NF < NB. As node C has now
finished calculating the state of the root node, it finishes the consensus cycle. At the end of
the cycle, node C has the consensus on the requests, which is {RD, RE, RF , RA, RC , RB}.
Other nodes will have the same ordering of the requests when their second round is finished.
Node C applies the requests in its copy of the commit log. Note that all node eventually
agree on identical copies of this log.

4.3 Linearizability

Canopus provides linearizability by totally ordering both read and update requests. In-
terestingly, Canopus enforces global total order without disseminating read requests to
participating nodes, significantly reducing network utilization for read-heavy workloads.
Instead, Canopus nodes delay read requests until all concurrently-received update requests
are ordered through the consensus process. Once the update request ordering is known,
each Canopus node locally orders its pending read requests with respect to its own update
requests such that the request orders of its clients are not violated. This trades off read
latency for network bandwidth.

During consensus cycle Ci, the nodes buffer the requests received from the clients. The
requests accumulated on a node Ni during cycle Cj form a request set Sj

i . In Canopus,
the requests within a request set are sequential and follow the receive order. In contrast,
the request sets across the nodes in cycle Cj, which we denote as Sj

∗, are concurrent. To
order the concurrent sets in Sj

∗, Canopus executes the next instance Cj+1 of the consensus
protocol. The consensus process gives a total order of the concurrent sets in Sj

∗. The
total order of the concurrent sets translates to the linearized order of the requests received
during the cycle Cj. Note that the requests in a request set are never separated. We are
instead ordering the request sets to determine a total order of requests. At the end of the
consensus process, each node has the same total order of write requests, and inserts its
read requests in the appropriate positions to preserve its own request set order.

In this approach, each node delays its read requests for either one or two consensus cy-
cles to provide linearizability. If a request is received immediately after starting a consensus
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cycle Cj, the read request is delayed for two consensus cycles: The currently executing cy-
cle Cj, and the next cycle Cj+1 in which the request sets Sj

i are ordered and executed. If
the request is received just before completing the currently executing cycle Cj, the read is
delayed for only one consensus cycle Cj+1.

In a hypothetical situation where a client sends two requests to two different super-leafs,
Si and Sj, without waiting to receive the reply of the first request, the system does not
ensure any ordering of the requests because the requests can be concurrent and ordered
contrary to the expected ordering by the client. Moreover, in another situation, it may
happen that the request to Si succeeds while a simultaneous request to Sj stalls due to a
particular timing of failures. For example, this can happen if the network is partitioned
such that Si receives all the required state to complete the ongoing consensus cycle whereas
Sj does not receive the required state. We show in Canopus’ correctness proof [236] that
eventually all nodes stall during rack failures and network partitions until the fault is
recovered. While the consensus process is stalled, new client requests are also stalled as all
the requests need to be linearized through the consensus process. Thus, in all cases, the
clients do not observe incorrect results.

4.4 Correctness Properties

Similar to Paxos and EPaxos, Canopus provides the properties of nontriviality, agreement,
FIFO order of client requests, linearizability, and liveness1. Nontriviality and FIFO or-
dering are met by design. The following theorem ensures agreement, linearizability, and
liveness:

Theorem 1: For a height-h LOT consisting of n super-leaves, all the live descendant-
nodes Êr

w of the root-vnode w that eventually complete the last round r = h have the
same ordered-set of messages.

∀
i,j∈Êr

w

M r
i = M r

j (4.1)

where M r
i is the set of messages that a live node i has after completing the round r of the

current consensus cycle.

We provide a proof sketch for the special case of the first consensus cycle for height-2
tree with n super-leaves. The complete proof [238] involves induction first on the number

1Please refer to Reference [196] for definitions.
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Figure 4.3: A LOT of height 2 with n super-leaves.

of cycles and then on the tree height. The complete proof is available in our extended
technical report [236].

The proof assumes that:

A1 All nodes are initialized with the same emulation table and membership view.

A2 The network cannot be partitioned, messages are not corrupted, messages are even-
tually delivered to a live receiver, and that nodes fail by crashing. Node failures
within a super-leaf are detected by using heartbeats and timeouts similar to Raft.

A3 The super-leaf-level structure of LOT does not change: Nodes may leave or join
super-leaves, however, super-leaves are not added or removed.

A4 Reliable broadcast functionality is available within a super-leaf, which ensures that
all the live nodes in a super-leaf receive the same set of messages.

Proof Sketch: Consider a height-2 LOT consisting of n super-leaves, as shown in Fig-
ure 4.3. Each super-leaf Si has a height-1 parent vnode ui. The height-1 vnodes are
connected with the common root vnode w. A consensus cycle consists of two rounds for a
LOT of height 2. In the first round, the nodes share the pending batch of update-requests
within their super-leaf using the reliable broadcast functionality (assumption A4). The
nodes sort the messages according to the proposal numbers received in the messages. At
the end of the first round, each node f i

Sj
in a super-leaf Sj has the same ordered-set of

messages M1
j , which represents the state of the height-1 ancestor uj of the nodes in Sj. To

order the messages in the next round, the largest proposal number received in the current
round is selected.
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In the second round each node f i
Sj

calculates the state of its height-2 ancestor w.

Therefore, the set of messages that f i
Sj

requires to complete the second round is M2
j =

∀u∈C2
j
∪M1

u , where C2
j is the set of children of the height-2 ancestor of any node in the

super-leaf Sj.

By Canopus’ design, a set of representatives of Sj fetch the missing state M1
u of each

vnode u ∈ C2
j from the live descendants of u. By assumption A1 and A2, the representatives

will eventually succeed in fetching the state of u if there is at least one live super-leaf
descending from u. If the representatives of Sj eventually succeed in fetching the states of
all the vnodes u ∈ C2

j , then by reliable broadcast within the super-leaf (assumption A4),

all the nodes in the Sj have the same set of messages M2
j that are required to complete

the second round.

By assumptions A1 and A3, all the nodes have the same view of LOT in the first
consensus cycle. Therefore, the representatives of each super-leaf fetch the same state of
a common vnode u from any of the descendants of u. This implies that, for all the super-
leaves for which the representatives have succeeded in fetching all the required states of
height-1 vnodes, the nodes in the super-leaves have same set of messages, which allows the
nodes to complete the second round. Thus,

∀
i,j∈Ê2

w

M2
i = M2

j (4.2)

the nodes sort the messages according the proposal numbers received with the vnode-states.
As the consensus cycle consists of two rounds for a LOT of height 2, equation 4.2 implies
that all of the descendants of the height-2 root vnode that complete the first consensus cycle
have the same ordered-set of messages. This shows that the live nodes reach agreement
and eventually complete the consensus cycle, if a super-leaf does not fail.

If the representatives of a super-leaf Sj fail in fetching the state of at least one vnode
u ∈ C2

j in the second round, then either (a) all the descendants of u have crashed or
they do not have the state of u due to not completing the previous round, or (b) all the
representatives of Sj have crashed, which implies that the super-leaf Sj has failed due to
insufficient number of live nodes to elect a new representative. In either case, the nodes in
Sj cannot complete the second round due to missing a required state, and the consensus
process stalls for the nodes in Sj in the second round of the current consensus cycle.

Alternatively, if the nodes in another super-leaf Sk succeed in fetching all the required
states, then the consensus process stalls for the nodes in Sk in the next cycle c+ 1 because
the live nodes in Sj are stalled in the last cycle c. This shows that the consensus process
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stalls for the live nodes due to a super-leaf failure and the nodes do not return a wrong
result.

In the subsequent consensus cycles, the assumption A1 does not hold because the
membership of LOT changes if a node fails or a new node joins a super-leaf. However, the
detailed proof [238] using induction shows that the emulation tables are maintained and
all the live nodes that eventually complete a cycle c have the same emulation table in cycle
c+1. Therefore, Canopus satisfies agreement and liveness properties in any consensus cycle
for height-2 LOT. We prove these properties for a LOT of any height-h using induction,
for which the height-2 LOT serves as the base case.

4.5 Optimizations

In this section, we discuss two optimizations that enable Canopus to achieve high through-
put and low read latency in wide-area deployments.

4.5.1 Pipelining

The completion time of a consensus cycle depends on the latency between the most widely-
separated super-leaves. If only one cycle executes at a time, then high latency would
reduce throughput as the nodes are mostly idle and are waiting for distant messages to
arrive. Therefore, we use pipelining in Canopus to increase the throughput of the system.
Specifically, instead of executing only one consensus cycle at a time, a node is permitted
to participate in the next consensus cycle if any of the following events occur:

• The node receives a message belonging to the consensus cycle that is higher than its
most recently started consensus cycle.

• A periodical timer expires, which serves as an upper bound for the offset between
the start of two consensus cycles.

• The number of outstanding client requests exceeds the maximum batch size of re-
quests.

With this change, a node can start exchanging messages with its peers that belong to the
next consensus cycle even before the end of the prior cycle. In effect, this allows Canopus to
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maintain multiple in-progress consensus cycles. However, log commits only happen when a
particular consensus cycle is complete, and always in strict order of consensus cycles. This
is no different than a transport layer maintaining a window of transmitted-but-unacked
packets.

Two cases need to be addressed to maintain the total order of the requests. First,
nodes must always start consensus cycles in sequence (i.e., they cannot skip a cycle). It
may happen that a node receives a message belonging to cycle Cj≥i+2 where Ci is the most
recently started consensus cycle at the node. In that case, the node still starts the next
cycle Ci+1 instead of starting the cycle Cj. Second, nodes always commit the requests from
consensus cycles in sequence. Due to parallelism and fetching proposals from different nodes
in each cycle, it may happen that a node receives all the required messages to complete a
cycle Cj≥i+1 before it has completed the cycle Ci. However, to maintain the total order,
nodes do not commit the requests from Cj until the requests from all the cycles before Cj

have been committed.

4.5.2 Optimizing Read Operations

Canopus delays read operations to linearize them relative to the write requests across all
the nodes in the system. Therefore, the read operations must be deferred to the end of
the next consensus cycle, which is bounded by the round-trip latency between the farthest
super-leaves. However, for read-heavy workload, it is desirable that the read operations
are performed with minimal latency. Canopus can optionally support write-leases for a
particular key during a consensus cycle to reduce the latency of read operations while
preserving linearizability.

For any key, during any consensus cycle either a write lease is inactive, so that no writes
are permitted to that key, and all nodes can read this key with no loss of consistency or all
nodes have permission to write to this key (with a write order that is decided at the end
of the consensus cycle) and no reads are permitted to this key. Any read requests made to
a key during a consensus cycle i such that there is a write lease for the key is deferred to
the end of the (i+ 1)th consensus cycle, to ensure linearizability.

Write leases require the following three modifications to Canopus:

1. Blocking client requests: Following the model in Paxos Quorum Leases [199],
our read optimization restricts the clients to sending only one request at any one time.
This is different than our earlier model, where the clients are permitted many outstanding
requests at a time.
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2. Write leases: Write requests are committed after acquiring the write-lease for the
keys in the requests. Nodes piggyback lease requests with the proposal messages in the
next consensus cycle Ci+1. At the end of the consensus cycle Ci+1, all the correct nodes
that complete the cycle have the same set of lease requests. Therefore, all the correct nodes
in the system can apply the lease in the same consensus cycle Ci+p+1.

3. Reads without delay: A node N performs a read operation for a key y imme-
diately (reading results from committed consensus cycles) if the write-lease for y is not
active in any of the currently ongoing consensus cycles. If a node receives a read request
for y while the write-lease for y is currently active, the node delays the read request until
the end of the next consensus cycle.

4.6 Evaluation

The focus of our evaluation is to compare the throughput and latency of Canopus with
other competing systems at different deployment sizes. Our experiments are based on
our prototype implementation of Canopus, which consists of approximately 2000 lines of
Java code. We select EPaxos as a representative for state-of-the-art decentralized consen-
sus approaches as EPaxos has been reported [196] to perform equal or better than other
decentralized consensus protocols. We use the publicly available implementation [197] of
EPaxos from the paper’s authors for the evaluation. We also compare against ZooKeeper,
a widely used coordination service that uses Zab, a centralized atomic broadcast protocol,
to provide agreement. In order to provide a fair comparison with ZooKeeper, which in-
cludes additional abstractions that may introduce extra overhead, we created ZKCanopus,
a modified version of ZooKeeper that replaces Zab with Canopus and performed all of our
comparisons to ZooKeeper using ZKCanopus.

4.6.1 Single Datacenter Deployment

In this section, we evaluate the performance of Canopus and EPaxos when all the nodes
are located in the same datacenter.

Experimental setup: We conducted our experiments on a three rack cluster where
each rack consists of 13 machines. Each machine contains 32GB of memory, a 200GB
Intel S3700 SSD, and two Intel Xeon E5-2620 processors. The machines in each rack are
connected through a Mellanox SX1012 top-of-rack switch via 10Gbps links. Rack switches
are connected through 2x10Gbps links to a common Mellanox SX1012 aggregation switch.
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Thus, the network oversubscription is 1.5, 2.5, 3.5, and 4.5 for experiments with 9, 15, 21,
and 27 nodes respectively.

For our ZooKeeper and ZKCanopus experiments, both systems were configured to
write logs and snapshots of the current system state asynchronously to the filesystem. We
use an in-memory filesystem to simplify our experimental setup. To ensure that using
an in-memory filesystem does not appreciably affect our results, we perform additional
experiments in which logs are stored to an SSD. The results show that, for both ZooKeeper
and ZKCanopus, throughput is not affected and median completion time increases by less
than 0.5 ms.

Each experiment runs for 50 seconds and is repeated five times. We discard the first
and last 5 seconds to capture the steady state performance. The error bars in the graphs
show 95% confidence intervals.

Workload: Linearized read/write requests of key-value pairs can model workloads for
various applications such as strongly consistent key-value stores, distributed ledgers, and
replicated state machines. Therefore, workloads in our experiments consist of a mix of
read and write requests to key-value pairs. We vary the ratio of reads and writes in the
workloads to get a general trend of system performance when an application uses Canopus
as an external consensus service. Our experiments show performance without the overhead
of the application that uses Canopus. However, evaluation using a complete application
built on top of consensus would reveal end-to-end system performance that is closer to a
real-world deployment. We leave the end-to-end performance analysis of Canopus using a
complete application as future work.

Our experimental workloads are driven by 180 clients, which are uniformly distributed
across 15 dedicated machines with 5 machines per rack. Each client connects to a uniformly-
selected node in the same rack. The clients send requests to nodes according to a Poisson
process at a given inter-arrival rate. Each request consists of a 16-byte key-value pair where
the key is randomly selected from 1 million keys.

LOT configuration in Canopus: Canopus nodes are organized into three super-leaves
in a LOT of height 2. To vary the group size, we change the super-leaf size to 3, 5, 7, and
9 nodes. Due to the size of our cluster, we did not run experiments with taller trees. In
our current implementation, nodes reliably broadcast messages within a super-leaf without
hardware assistance. Instead, they use the Raft-based reliable broadcast protocol described
in Section 4.2.3 in which nodes communicate using unicast messages.

Performance metrics: The two key performance metrics we measure in our experiments
are throughput and request completion time. We determine the throughput of a system
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Figure 4.4: Throughput and median request completion times of Canopus and EPaxos
while scaling the number of nodes in the system.

by increasing the request inter-arrival rate until the throughput reaches a plateau. Our
empirical results show that, for all of the tested systems and configurations, the plateau is
reached before the median request completion time reaches 10 ms. To simplify our testing
procedure, our experiments run until the request completion time is above 10 ms and we
use the last data point as the throughput result for that run. For each run, we manually
verify that we have reached the system’s maximum throughput.

As it is difficult to determine the exact inter-arrival rate at which maximum through-
put has been reached, together with the common operating practice of running critical
systems below their maximum load, we report the median request completion time of the
tested systems when they are operating at 70% of their maximum throughput. We believe
this is more representative of the completion times that applications will experience when
interacting with these systems compared to the median completion time at 100% load.

Comparison with EPaxos

In this experiment, we compare the performance of Canopus with EPaxos at different
system sizes. Figure 4.4(a) shows the maximum throughput of the two systems. The
first three bars in each group show the Canopus’ throughput at 20%, 50%, and 100% write
requests, and the last two bars show the throughput of EPaxos at its default batch duration
of 5 ms, in which requests are delayed for up to 5 ms in order to collect a larger batch
of requests, and a reduced batch duration of 2 ms. For EPaxos, we ensure there is 0%
command interference to evaluate its performance under the best possible condition. As
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EPaxos sends reads over the network to other nodes, its performance is largely independent
of the write percentage; we show its results using the 20% write request workload.

The performance results show that with 20% and 50% write requests, Canopus provides
significantly higher throughput than EPaxos with the performance gap increasing with
larger system sizes. With 27 nodes and 20% write requests, Canopus provides more than
3 times the throughput of EPaxos with 5 ms batching. This is because Canopus can serve
read requests locally without disseminating the request to the rest of the nodes in the
group while still providing linearizable consistency. For the 100% write request workload,
Canopus provides similar throughput to EPaxos with a 5 ms batching duration. This
is in part due to network bandwidth being relatively abundant in a single datacenter
deployment.

EPaxos with a 2 ms batching duration shows a significant drop in throughput as we
increase the number of nodes in the system. This illustrates that EPaxos has scalability
limitations when configured with smaller batch sizes.

Figure 4.4(b) shows the median request completion times of the two systems. From
9 to 27 nodes, Canopus’ request completion time is mostly independent of write request
percentage, and is significantly shorter than EPaxos.

EPaxos’ high request completion time is primarily due to its batching duration. By
reducing its batching duration to 2 ms, EPaxos’ median request completion time reduces
by more than half and is within 1 ms of Canopus’ request completion time. However, as
we saw previously, EPaxos relies on large batch sizes to scale. Therefore, our results show
that EPaxos must tradeoff request completion time for scalability, whereas Canopus’ read
throughput increases with more nodes, its write throughput remains largely constant up to
at least 27 nodes, and its median request completion time only marginally increases going
from 9 to 27 nodes.

Comparison with ZooKeeper

In this experiment, we compare the performance of ZooKeeper with ZKCanopus, our
Canopus-integrated version of ZooKeeper. This comparison serves three purposes. First,
it compares the performance of Canopus with that of a centralized coordinator-based con-
sensus protocol. Second, it shows the effectiveness of Canopus in scaling an existing system
by eliminating the centralized coordinator bottleneck. Finally, these experiments evaluate
the end-to-end performance of complete coordination services, instead of evaluating just
the performance of the consensus protocols.
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Figure 4.5: Throughput and median request completion times of ZKCanopus and
ZooKeeper when the system consists of 9 nodes (left) and 27 nodes (right). Note that
the x-axis is in log scale.

We configure ZooKeeper to have only five followers with the rest of the nodes set as
observers that do not participate in the Zab atomic broadcast protocol but asynchronously
receive update requests. This choice is mainly to reduce the load on the centralized leader
node. Although observers do not provide additional fault tolerance, they can improve
read request performance by servicing read requests. In the case of ZKCanopus, every
node participates fully in the Canopus consensus protocol. We use one znode in these
experiments and the clients read from and write to the same znode.

Figure 4.5 shows the throughput to median request completion time results for ZKCano-
pus and ZooKeeper with 9 and 27 nodes. For ZKCanopus, we do not show the request
completion time at low throughputs in order to improve the readability of the graphs.
The results show that, when the system is not loaded, ZKCanopus has a median request
completion time that is between 0.2 ms to 0.5 ms higher than ZooKeeper. This is in part
due to the additional network round trips required to disseminate write requests using a
tree overlay instead of through direct broadcast. However, we believe the small increase in
request completion time is acceptable given the significant improvement in scalability and
throughput that ZKCanopus provides over ZooKeeper.

4.6.2 Multi-Datacenter Deployment

In this section, we evaluate the performance of Canopus in a wide area deployment. We
run the experiments on Amazon EC2 cloud using three, five, and seven datacenters. Each
datacenter consists of three nodes located in the same site. Each node runs on an EC2
c3.4xlarge instance, which consists of 30GB memory and Intel Xeon E5-2680 processor.

73



Table 4.1: Latencies (ms) between the datacenters used in the experiments. The data-
centers are located in Ireland (IR), California (CA), Virginia (VA), Tokyo (TK), Oregon
(OR), Sydney (SY) and Frankfurt (FF).

IR CA VA TK OR SY FF

IR 0.2

CA 133 0.2

VA 66 60 0.25

TK 243 113 145 0.13

OR 154 20 80 100 0.26

SY 295 168 226 103 161 0.2

FF 22 145 89 226 156 322 0.23

Each datacenter has 100 clients that connect to a uniform-randomly selected node in the
same datacenter and concurrently perform read and write operations at a given rate. The
workload consists of 20% write requests, unless otherwise mentioned. The messages consists
of 16-byte key-value pairs. The inter-datacenter latencies are given in the Table 4.1.

For Canopus, each datacenter contains a super-leaf, although the nodes might not
be located in the same rack. We enable pipelining to overcome the long delays across
datacenters. Each node starts a new consensus cycle every 5ms or after 1000 requests
have accumulated, whichever happens earlier. For EPaxos, we used the same batch size
as Canopus, and the workload consists of zero command interference. We enable latency-
probing in EPaxos to dynamically select the nodes in the quorum. We disable thrifty
optimization in EPaxos because our experiments show lower throughput with the thrifty
optimization turned on.

Figure 4.6 shows the throughput and median request completion times of Canopus and
EPaxos when deployed in three, five, and seven datacenters. Each datacenter consists of
three nodes. The vertical lines in the graph show the throughput when the latency touches
1.5 times the base latency.

Scaling across the datacenters, Canopus is able to achieve about 2.6, 3.8, and 4.7
millions requests per second, which is nearly 4x to 13.6x higher throughput than EPaxos.
Canopus is able to achieve high throughput because of its more efficient utilization of CPU
and network resources. Unlike EPaxos, Canopus does not disseminate read requests across
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the multi-datacenter experiment with 20% writes workload.
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Figure 4.7: Performance of Canopus and EPaxos with different ratios of writes in the
workload.

the nodes, not even the read keys, which reduces the number and size of messages exchanged
between the nodes. For ready-heavy workloads, this significantly impacts the utilization
of CPU and network resources. Furthermore, due to the hierarchical and network-aware
design of Canopus, a proposal message is exchanged between each pair of super-leaves
only once. This approach places a lower load on wide-area network links compared to the
broadcast-based approach used in EPaxos.

Writes to Reads Ratio in the Workload

In this section, we evaluate the performance of Canopus and EPaxos with different ratios
of writes in the workload. We run these experiments with nine nodes deployed in three
datacenters. Figure 4.7 shows the results when the workload consists of 1%, 20%, and 50%
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write requests. For EPaxos, our results show the same results with different write-ratios
in the workloads. Therefore, we only show the results for 20% writes workload.

As expected, Canopus has higher throughput for more read-heavy workloads, reaching
up to 3.6 million requests per second with 1% writes workload, as compared to the 2.65
millions requests per second with 20% writes workload. However, even with a write in-
tensive workload consisting of 50% writes, Canopus achieves 2.5x higher throughput than
EPaxos.

4.7 Discussion

Canopus is a simple and easily understandable consensus protocol that scales to tens of
nodes with a high throughput of requests. Canopus achieves these properties at the expense
of availability during catastrophic failures that cause a super-leaf to fail. Below we discuss
a way that Canopus can be extended to tolerate super-leaf failures.

4.7.1 Tolerating Super-leaf Failures

Canopus achieves these properties at the expense of high availability. Failure of a majority
of nodes within a super-leaf can cause a super-leaf to fail and stall the consensus service.
Canopus trades-off high availability based on the assumption that complete rack failures
are rare due to fault-tolerant design of modern datacenters [179, 180, 254, 247]. In the case
of a rack failure or a network partitions, consensus process in Canopus is stalled until the
fault is recovered. Thus, crashing of only a few nodes in a super-leaf can prevent all of the
nodes from progressing. A simple work around could be to spread the nodes of a super-leaf
across multiple racks such that the majority of racks belonging to the same super-leaf do
not fail. In a cloud based deployment, a super-leaf can be spread across multiple zones
in the same datacenter, where the zones are connected through dedicated high bandwidth
network. However, these approaches risk network partitions within super-leafs and do
not tolerate disconnection from a complete data center, which can result in stalling the
consensus service.

Another way to tolerate super-leaf failures is to use a decentralized consensus protocol,
such as Mencius, in the second round of each consensus cycle in Canopus. Super-leafs
can elect representatives that can make a separate consensus group across all super-leafs.
In the first round, nodes achieve consensus within super-leafs, resulting in the batches of
requests to be committed in the ongoing consensus cycle. In the second round, super-leaf
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representatives propose the first-round batches through consensus. If a super-leaf fails,
consensus in the second round can bypass the failed super-leaf or commit no-ops on its
behalf. A failed representative can be replaced with another node in the super-leaf. In this
way, Canopus can tolerate failures of less than half of the super-leafs. However, we expect
the performance to drop significantly because of additional communication overheads and
network round trips due to using a consensus protocol in the second round.

Finally, following the same approach as RCanopus [143], an external membership service
can be used to detect super-leaf failures instead of a consensus protocol in the second and
subsequent rounds. During network partitions and super-leaf failures, the nodes contact
the external membership service to detect super-leaf failures and resolve conflicts. The
membership service achieves membership agreement between live nodes through consensus
and decides to exclude the state of unresponsive super-leafs from the on-going consensus
cycle. As a result, the consensus service is not stalled during super-leaf failures and network
partitions. However, this design requires additional round-trip latency in the common case
to ensure safety during failures in an asynchronous environment. The nodes must commit
the current consensus cycle only after completing the next consensus cycle to detect super-
leaf disconnections and use the external membership service to resolve any membership
disagreements.

4.8 Summary

In this chapter, we have presented Canopus, a highly parallel, scalable, and network-
aware consensus protocol. Canopus scales by leveraging the placement of machines in
racks and the hierarchical design of datacenter networks. Canopus virtually group the
nodes in the same rack and employs distinguished nodes in the group to fetch the remote
state and disseminate within the group. The communication within the groups follow
the hierarchical pattern of the network based on a leaf-only tree (LOT) overlay. Our
evaluation results show that Canopus can perform millions of requests per second with
27 nodes in a single datacenter deployment. Furthermore, our Canopus-integrated version
of ZooKeeper increases the throughput of ZooKeeper by more than 16x for read-heavy
workloads. The high performance of Canopus shows the effectiveness of infrastructure-
aware design approach in improving the performance of large scale distributed applications.
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Chapter 5

Kawkab Distributed Filesystem

In this chapter, we present Kawkab, a storage system that we built from the ground-up to
address data storage requirements in capital market use-cases. Many financial applications
are built on top of financial data generated from capital markets, e.g., competitive pricing
analysis, market data terminals [101], best execution regulatory reports, market-making
pricing deviation monitoring, and liquidity provider pricing monitoring [256]. Capital
markets generate large volumes of data at a high pace in the form of realtime data streams.
Message-bursts in the streams can exceed millions of messages per second [79] due to the
high frequency of financial events such as trading of stocks. The large volume and pace
of streaming data demand high performance at all stages of realtime stream processing,
including data storage. Storage systems are required to support peak ingestion rates of
millions of messages per second [79] and latency bound of 20ms for recent data [101].

Public cloud infrastructures provide cost-effective storage services that are highly scal-
able and fault-tolerant. However, ingesting data directly to a cloud storage is not feasible
because such cloud storage services can be slow, error prone, and do not support data
indexing, which is needed to support fast range queries. Thus, an intermediate storage
system is required between stream sources and the cloud storage service for data staging,
indexing, and serving realtime and historical data queries. We build Kawkab to serve this
purpose while designing it according to cloud and financial markets infrastructure.

High-rate data ingestion: Existing systems commonly follow Lambda [190] and Kappa [149]
architectures in which data from streams is initially ingested in a message queue system,
such as Amazon Kinesis [15] and Apache Kafka [20]. Applications and storage systems
receive data from the messages queues. Data staging using message queues increases data
staleness and latency from tens to hundreds of milliseconds [232, 225, 132], which is highly
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undesirable in capital market use cases [273, 259]. However, financial data streams often
have different fault-tolerance characteristics that can be leveraged to eliminate data repli-
cation from the critical path. Financial stream providers publish redundant data streams
for fault-tolerance [216, 262] and retain published data for some time for offline access at
additional cost [215]. Data receivers can subscribe to ingest data redundantly and may per-
form data deduplicate during or after data persistence [201]. Moreover, data receivers can
recover lost data during ingestion from data providers. We leverage these fault-tolerance
properties of financial data streams to eliminate data replication from the critical path dur-
ing data ingestion, which reduces data ingestion overheads and results in higher scalability
and data ingestion rates.

Parallel realtime and historical data queries: Many financial applications access
both realtime and historical data in parallel [273, 259]. Realtime and historical queries
are typically provided using two separate systems for the two types of queries, such as
in the Lambda architecture [190]. Using separate systems results in inefficiencies such
as maintaining multiple systems and codebases, and merging results from two different
layers [149]. Kawkab separates the two components and leverages the scalability of cloud
storage services to support historical data queries without impacting data ingestion and
recent data queries. Kawkab uses separate nodes to serve historical data, which fetch data
from cloud storage instead of from the nodes that initially ingest the required data. As a
result, historical queries do not interfere with realtime queries.

Low-latency realtime queries: Another challenge is to support time-based range queries
with low latency for recent data. Applications mostly access recent data within a time
window, for which a timeseries index can be built during data ingestion to minimize data
search with target timestamps. However, updating the index in the fast path of data
ingestion can increase request processing overheads, resulting in lower ingestion rates.
Therefore, to support high data ingestion rates and low latency range queries in parallel,
building and maintaining the index should incur minimal processing overhead. To achieve
this goal, Kawkab introduces a novel timeseries index that is optimized for high rate data
ingestion while serving recent data reads with low latency.

This chapter presents the design of Kawkab, and the challenges involved in achieving
its performance goals. Moreover, a performance evaluation of Kawkab highlights the effec-
tiveness of designing a system based on the target infrastructure. In the next section we
describe the system model and assumptions that we used to design Kawkab.
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5.1 Assumptions

Kawkab makes the following assumptions to simplify its design and tailor it to store finan-
cial data streams in a public cloud.

Write workload: We assume that the write workload consists of a large number of data
streams, which represent financial instruments in capital markets such as stocks. Data
streams are bursty, and their collective data rates from multiple streams can peak at
tens of million messages per second, though per-stream data rates can be low [79, 262].
Furthermore, the individual message sizes are usually small, ranging from tens of bytes to
several hundreds of bytes [217, 262, 101, 256].

Read workload: The read workload comes from applications that perform two types of
queries in parallel, realtime data queries and historical data queries [273, 259]. Applications
mostly perform realtime queries that access recently ingested data in small time windows.
For example, applications may periodically fetch data that is ingested in the last five
seconds relative to the current time. Realtime queries have low latency requirements, less
than 20 milliseconds [101], because the value of data diminishes over time.

Applications perform historical queries to find trends in data over an extended period
of time. A historical data query spans a large time window, such as a few months, which
accesses several million messages in a single query [256].

Applications access complete messages that are received from data streams instead of
accessing specific fields in the messages. Furthermore, each query accesses only a single
data stream. Applications handle multi-stream queries through cross-stream joins.

Fault tolerance: A common approach to provide fault-tolerance during data ingestion
is to replicate data on multiple nodes that do not have dependent failures. However,
data replication increases the network and storage overheads, which reduce data ingestion
rates. Data replication for fault-tolerance is necessary in many cases because data lost
during ingestion cannot be recovered from its originating sources. However, as mentioned
earlier, financial data providers publish redundant data streams for reliability. Moreover,
they retain published data for some duration, e.g., for a trading day [215], and provide
additional means to fetch recent data at additional costs. We assume that data stream
publishers generate replicated streams and retain published data for offline access for a few
hours. Kawkab exploits the unique fault-tolerance characteristic of financial data streams
to eliminate data replication on the critical path during ingestion.
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5.2 File Abstraction and Data Model

Kawkab uses a file abstraction for a data stream. Each file in Kawkab corresponds to a data
stream. We define a stream as a continuous sequence of messages belonging to the same
financial instrument. For example, messages representing trades of the IBM stock consti-
tute a stream, and File-IBM corresponds to the IBM stock stream. Furthermore, Kawkab
stores redundant streams in separate files, e.g., File-IBM-A and File-IBM-B correspond to
Stream-IBM-A and Stream-IBM-B in Kawkab. Files in Kawkab are append-only as data
streams always move forward with monotonic increasing timestamps.

A file consists of fixed-length data records, where a record is a structure that corresponds
to a financial event message received from a data stream. Each record has a timestamp
field that Kawkab uses for indexing and searching the records based on timestamps. Fur-
thermore, the first 8 bytes of a record are required to be the record’s timestamp. This
requirement enables Kawkab to perform fast binary search within records without parsing
complete messages in range queries.

As applications read complete records based on a time range, Kawkab internally stores
records in a row format, i.e., it stores the attributes of a record together instead of storing
them separately in different tables. Storing records in row format optimizes I/O for large
sequential reads when multiple records are read together based on a time range. However,
row format makes range queries more difficult because of requiring full-record reads during
search. To support fast range queries, each file in Kawkab has a dedicated timeseries index.
The index enables searching of records within given time bounds without fully scanning
records in a file.

5.2.1 File Operations

Kawkab supports common file operations: open, close, read, append, file size, and record
size. Table 5.2.1 lists the append and read API of Kawkab. The append API supports
appending files in batches of records. The read API supports reading individual records
as well as a range of records between a start and end timestamp. Individual record access
is faster because it doesn’t require search in file index.
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API Function Description

Append (String filename, Record[ ] records) Appends a batch of records to a file

RecordNum (String filename, long record-
Num, boolean fromPrimary)

Returns the record at specified record position
in the file. If fromPrimary is true, the record
is fetched from the primary node of the file,
which is the distinguished file writer.

RecordAt (String filename, long timestamp,
boolean fromPrimary)

Returns the latest record whose timestamp
matches with the given timestamp

ReadRecords (String filename, long minTime,
long maxTime, boolean fromPrimary)

Returns all the records between time bounds
minTime and maxTime inclusively

Table 5.1: Append and read API in Kawkab

5.3 Architecture

Kawkab consists of three main components: stream handlers, worker nodes, and a dis-
tributed namespace. Stream handlers act as a bridge between stream sources and Kawkab
worker nodes. They receive messages from data streams and push them to worker nodes
for data staging. Worker nodes ingest data from stream handlers and serve read queries.
Moreover, they upload ingested data to cloud storage for persistence. The namespace is
a distributed file directory that keeps track of the files present in the system. Below we
provide further details of these components.

5.3.1 Stream handlers

Financial data providers, such as Options Price Reporting Authority (OPRA) [214] and
Vereinigte Wirtschaftsdienste GmbH (vwd) [283], use custom protocols and interfaces to
disseminate data through data streams. Receiving data from the streams requires the im-
plementation of provider-specific stream handlers that use data providers’ APIs to interact
with their systems. For example, OPRA requires data recipients to follow its protocol
specifications and network connectivity guidelines [217, 216] to receive data. Messages in
data streams have provider-specific formats, which usually differ from the target storage
system’s data model. Therefore, the messages need to be transformed according to the
target storage system’s data model.

Kawkab uses a set of stream handlers that serve as a bridge between data sources and
worker nodes. A stream handler receives messages from a data stream, transforms them
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Figure 5.1: Architecture of Kawkab storage system.

into their respective destination record formats, and forwards them to worker nodes to
append to their respective files. To append records, stream handlers open stream-specific
files and send append requests to the worker nodes. The worker nodes ingest records and
eventually persist them in a cloud storage backend.

Handling unordered messages: Data providers often use IP multicast network to pub-
lish data streams [216, 101]. Messages can be lost or be received out of order by stream
handlers if data providers use UDP-based protocols to publish data streams. Unordered
messages can be handled in several ways. Kawkab uses a simple approach where stream
handlers buffer incoming messages for ordering and wait for a fixed duration to receive out-
of-sequence messages. If a message has not arrived after the fixed duration, the message
is ignored. Depending on the application, dropped messages can lead to undesired results.
For such applications, stream handlers can be modified to actively fetch the dropped mes-
sages from the stream sources to reconstruct the sequence. In our design, we assume that
stream handlers always append records in sequence. Kawkab exploits the restriction of
time-ordered appends to build a timeseries index that is optimized for searching recent
data within a time range.

Eliminating Data Replication: As mentioned earlier, financial data stream providers
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often publish streams redundantly and retain the published data for a limited duration,
e.g., for a trading day [215]. Instead of replicating received messages from data streams,
separate stream handlers in Kawkab receive messages from redundant streams and append
them to their respective files. For example, two stream handlers receive Stream-IBM-A
and Stream-IBM-B on two separate virtual machines and append them to files File-IBM-A
and File-IBM-B. Applications can read data from either stream. Consequently, stream
handlers or the worker nodes do not need to actively replicate data to multiple machines
during data ingestion.

Failure Handling: In this design, simultaneous failures of stream handlers or both worker
nodes that ingest stream replicas can result in losing ingested data. A worker node may
take several seconds or minutes to upload ingested data to the cloud storage backend.
Ingested data can be lost in rare cases if both worker nodes, handling replicated streams,
fail simultaneously before uploading ingested data to the cloud storage. In such cases,
Kawkab can recover data through the offline channels provided by the stream providers.

The stream handler whose upload connection to the failed worker node is lost can
retrieve the last record from the cloud storage to find out the number of lost records.
The lost records can then be retrieved from the stream providers that retain published
data for a short duration. However, the throughput of offline channels can be lower than
realtime streams, which can result in higher recovery time and unavailability of data to
applications until data is recovered. Although this design can result in unavailability of
some data during simultaneous failures of nodes that ingest replicated streams, it simplifies
the system design and eliminates overheads of replication on the critical path, which results
in higher scalability and data ingestion performance.

5.3.2 Worker Nodes

A worker node is a core component of Kawkab that performs all read, write, and indexing
operations. Worker nodes mainly serve three purposes. First, worker nodes ingest data
from stream handlers at high rates, temporarily store and batch ingested data in locally
attached storage, and gradually upload data to the cloud storage backend for persistence.
A temporary buffer or staging area is required because data arrival is bursty and message
arrival rates can be much higher than the ingestion speeds supported by cloud storage
services [79].

The second purpose of worker nodes is to cache ingested data and immediately make
it available to applications for realtime data processing. Applications connect to worker
nodes and perform realtime and historical data queries. An alternative solution where data
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is directly stored and read from cloud storage increases data staleness and latency, which
is highly undesirable for realtime data analytics.

Finally, the worker nodes create a timeseries index of received data for each file, which
is needed for fast range queries. Cloud services such as Amazon S3 do not support custom
indexing methods that can be leveraged to search data based on timestamps. Kawkab
creates a timeseries index for each file, which it uses to quickly search recently ingested
records based on given time ranges.

Worker Node Architecture

Worker nodes run on virtual machines (VMs) in a public cloud, e.g., using Amazon EC2
machines. Each worker node has a large amount of memory and a number of locally
attached storage such as SSDs or Amazon EBS. Figure 5.2 shows the architecture of a
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Kawkab worker node. A worker node consists of a set of query handlers, a memory manager,
a local store service, and a cloud storage management services called global store service.

Query handlers perform the file operations that they receive from stream handlers and
applications. Kawkab manages its memory by itself through a buffer-cache, called memory
manager. Query handlers allocate buffers through the memory manager and perform all
file read and write operations using the cached buffers. The local store service manages
the local store of the node, which comprises the locally attached storage of the node. The
local store provides a temporary location to spill ingested data from memory and to batch
data for later upload to the cloud storage backend. The global store service manages the
reads and writes to the cloud storage backend.

Primary nodes: Initially the node that creates a file or open in append mode becomes
the sole writer of the file and is termed as the file’s primary node. A file’s data is ingested
only on its primary node. However, the file can be read from any node. This approach
eliminates the need for a centralized coordinator or explicit coordination between the nodes
during the read and write operations. This approach is similar to primary-backup approach
in which the readers and writers are allowed to read and write to a file only through the
primary replica. The primary node can become the performance bottleneck due to higher
load on the primary as compared to the other nodes. To avoid overwhelming the primary
nodes, Kawkab allows reading files from any node in the cluster. Reading from non-
primary nodes does not create data consistency problems because a file can be modified
only through append requests. If a non-primary node does not have required data, the
node fetches required data from the primary node or the cloud storage backend and caches
fetched data to serve subsequent requests to the same data. In this way, reads to highly
popular data can be scaled to a larger number of nodes without overwhelming the primary
node.

Data caching on the non-primary nodes can be ineffective in reducing load on the
primary if a large number of non-primary nodes are used for the same file. Therefore,
reads to the same file through non-primary nodes should be limited to specific and small
number of nodes. This can be easily achieved by adding a mapping of file-IDs to designated
non-primary nodes in the namespace.

Memory Manager

Each Kawkab node manages its own memory through its centralized memory manager.
Memory needs to be managed carefully because memory is a limited resource, and all
read/write operations are performed in-memory for high performance. In-memory oper-
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ations serve two purposes. First, as incoming data rates can be significantly higher than
upload bandwidth to the cloud storage service, in-memory data ingestion enables absorb-
ing high data bursts. Second, reading data from the cloud storage can incur high read
latency, which is undesirable in our target use cases. Caching ingested data in memory
enables serving reads with low latency for data processing.

The memory manager organizes the memory as an LRU-based buffer cache that is
backed by a pool of fixed-length buffers. The buffer pool keeps available a portion of
memory for fast data ingestion. Reusing buffers reduces the overhead of allocating memory
in the fast path, which results in lower request processing times. Kawkab uses a reference
counting cache to allow concurrent readers and the writer of a file to use the same memory
buffers.

Memory manager optimizations: As all read and write operations are performed using
buffers that are obtained from the memory manager, the memory manager can become
a performance bottleneck. This is because the cache in the memory manager is accessed
two times per request, both of which require locks for synchronization. The first time it
is accessed to obtain a buffer from the cache, and the second time it is accessed to release
the buffer back to the memory manager for reference counting and maintaining the buffer
pool.

Taking a simple approach, we shard the cache to reduce the contention across the
cache. However, sharding alone is not sufficient to support high data ingestion rates. The
number of streams is large and data arrival rates per stream can be low. Thus, an append
request may consists of only a few records when financial events are spread across data
streams. As a result, appends to the same buffer may happen in multiple append requests.
Consequently, peak ingestion loads consisting of a large number of small append requests
increase contention across each partition.

To address this problem, we reduce the access frequency to the memory manager by
not releasing buffers to the memory manager immediately after their use. Instead, a query
handler takes the ownership of the buffer it obtains from the cache and releases the buffer
after a pre-defined timeout. If an append request to the same file arrives before the timeout,
data can be appended to the same buffer without accessing the cache. To achieve this goal,
we use a set of non-blocking 1 concurrent queues that delay releasing buffers back to the
memory manager for a fixed duration.

Concurrent reads can access the same buffers through the cache, which minimizes data

1A non-blocking shared data structure guarantees that one of many active processes trying to perform
an operation completes the operation in a finite number of steps, regardless of the execution speed of other
concurrent processes [118, 191].
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staleness. However, the reads are restricted to only successfully appended data to avoid
any inconsistent results.

Local Store Service

Each worker node has a local store service that serves two purposes. First, it provides a
temporary storage space to spill in-memory ingested data that has yet to be uploaded to
the global store. As mentioned earlier, uploads to the cloud storage backend can be slower
than incoming data during high data bursts. If data bursts remain for enough duration, the
system can eventually run short of free buffers in memory for ingestion if data is uploaded
to the global store directly from memory. Therefore, data from memory needs to be stored
temporarily in the local store to keep a pool of buffers free in memory for data ingestion.

The second purpose of the local store is to optimize data transfer to the global store by
batching data into larger chunks. Cloud storage services like Amazon S3 are optimized for
larger blobs, e.g., larger than 4MB, instead of tiny objects [136]. However, buffer sizes in
memory should be small, e.g., between 4KB and 256KB, to avoid internal fragmentation.
Without storing data in the local store, hundreds of gigabytes of memory would be required
to concurrently ingest data for tens of thousands of files, which puts significant memory
demand. Kawkab avoids such problems by continuously copying the buffers that have
ingested data to larger chunks in the local store. The completely copied buffers can be
evicted from the cache and returned to the buffer pool when needed. Moreover, the chunks
that become full are transferred to the global store through the global store service. The
transferred chunks are deleted from the local store based on LRU policy.

Local store service design: The local store service consists of a set of workers, store
queues, and a persistent key-value store, called chunk map. The memory manager puts
buffers with appended data in the store queues, which the local store workers take for
copying them to their respective chunks in the local storage. The chunk map keeps track
of the files that are created in the underlying filesystem. Moreover, it keeps track of the
files that are already copied to the global store and can be garbage collected.

Global Store Service

The global store service of a node manages reads and writes to a cloud storage system, called
global store, such as Amazon S3. The global store provides a scalable and fault-tolerant
storage of large volumes of data at low cost. Moreover, it minimize the interference between
data ingestion and data reads for historical data, which we further explain below.
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Leveraging cloud storage for high performance reads: Kawkab differentiates be-
tween reads for recent data and historical data. Recent reads involve data that has been
ingested in the recent past. Such reads fetch a small number of recently ingested records
for realtime analysis. Historical reads fetch larger volumes of data for historical analysis,
spanning a large time window.

As it takes time to upload data from the local store to the global store, recently ingested
data is more likely be only available on the primary node, i.e., the node that has data
ingested from stream handlers. If both realtime and historical data queries are served from
the primary node of a file, the load on the primary node increases significantly. As a result,
the reads with low performance requirements interfere with data ingestion and realtime
queries, which have high performance requirements.

To minimize the impact of historical queries on data ingestion and realtime queries,
historical queries are performed on a non-primary node. If the node does not have the
required data in memory, it pulls data from the global store instead of the primary node,
which significantly reduces the load from the primary node. However, reading data from
the global store may incur higher latency, which is acceptable for historical data queries.
If a query accesses recent data from a non-primary node, which may not be in the global
store, the non-primary node fetches recent data from the primary node and caches the
fetched data for subsequent reads to the same data.

5.3.3 Distributed Namespace

Many storage systems keep namespace and file metadata in a centralized metadata node,
e.g., NameNode in HDFS. A centralized metadata node can become a performance bottle-
neck, a single point of failure, and can limit scalability. Kawkab uses separate mechanisms
to store namespace and file metadata to avoid such problems. It stores the namespace
in ZooKeeper whereas it stores metadata in the cloud storage backend. Namespace in
ZooKeeper stores the filename to file ID and primary-node ID mappings.

Metadata storage follows similar storage mechanism as file data storage. Kawkab uses
fixed size blocks for metadata and data storage that are persistently stored in the cloud
storage backend, which simplifies the system design and leverages the scalability of cloud
services for scalable metadata access. Metadata and data storage is further discussed in
the next section.
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5.4 File Organization and Structures

A file in Kawkab consists of three types of fixed-length structures: a metadata node, data
blocks, and index blocks. Figure 5.3 shows the layout of a file consisting of these blocks,
and Figure 5.4 shows the relationship between the blocks. All blocks are initially copied
to the local store for batching purposes. The blocks are persistently stored in the global
store. We further describe these structures below.
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5.4.1 Data Blocks

Kawkab stores file data in memory in fixed-length blocks, called data blocks, which is
similar to HDFS and other distributed filesystems. Data blocks are append-only and are
immutable once they are completely filled with data and sealed. Data blocks are small in
size to reduce internal memory fragmentation. However, for efficiently uploading them to
the cloud storage backend, multiple data blocks are batched in larger chunks in the local
store. We use 16KB blocks and 4MB chunks in our implementation. Each chunk is itself
an append-only file in the underlying filesystem of a node. Chunks that become full are
moved to the global store for persistent storage.

Block naming: Unlike other systems, Kawkab does not need to explicitly store file-ID
to location mappings, which reduces metadata management overheads. Kawkab builds on
existing storage systems, which keep track of the location of their stored files, i.e., the
underlying filesystem of a Kawkab node and the cloud storage backend. However, a block
need to be addressed uniquely for storage and access from them. Kawkab uses a naming
scheme based on file IDs and block numbers to uniquely address blocks.

Each blocks is uniquely named as the combination of prefix-fileID-chunk#-block#.
A file-ID is a 64-bit number that is globally unique in the system. Chunk and block
numbers are 32-bit numbers, which are unique per file. This combination creates a unique
name for each block in the system, which is used to create files in the underlying filesystem
and to address objects in the cloud storage backend. For instance, block D-1-2-3 indicates
data block 3 in data chunk 2 of file 1. As block and record sizes are fixed, a block number
can be easily calculated from file length or a record number without explicit lookup from
a database, which makes block access simpler and faster.

5.4.2 Index Blocks

Kawkab builds a timeseries index for each file that enables applications to query data using
time ranges. Similar to file data, Kawkab stores the index in fixed-size index blocks. Each
index block consists of a sequence of index entries. Each index entry corresponds to a data
block and consists of the minimum and the maximum timestamps of the records in the
data block. The internal structure of an index block is explained in Section 5.5.

Index blocks are stored and managed the same way as data blocks. Index blocks are
append-only and are immutable once they are full with index entries. Moreover, they are
batched in the local store in larger chunks. When a chunk becomes full with index blocks,
it is moved to the cloud storage backend. Furthermore, Kawkab does not store explicit
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addresses of index blocks. Instead, their block numbers are calculated from file length or
their position in the index.

Note that an index block does not store any metadata of a file. It only indexes times-
tamps of records in data blocks. Metadata is stored in a separate data structure, which is
described next.

5.4.3 Metadata nodes and metadata blocks

A metadata node of a file is a fixed-length structure that stores the metadata and mutable
state of the file, such as file length, record size, different timestamps, and file security
parameters2. Each metadata node has an associated file-ID, which is used to uniquely
identify the metadata node and the file.

Kawkab groups multiple metadata nodes in fixed size blocks called metadata blocks,
which is similar to a Unix-based filesystem. As individual metadata nodes are small,
grouping them in larger blocks optimizes I/O for storing and retrieving metadata nodes
from the local and global stores. Moreover, it provides a mechanism to share metadata
blocks between the files that have temporal locality, which results in lower I/O overheads
due to less reads from the local and global stores.

Metadata blocks are uniquely identified by block numbers, which are assigned in se-
quential order. For example, if each node can use k blocks, the node i uses block numbers
from ik to ik + k.

Ibmaps: A metadata block may not have all of its metadata nodes assigned to files.
Therefore, each Kawkab node needs to keep track of the free and already assigned metadata
nodes in the blocks. Like a Unix-based filesystem, Kawkab uses bitmaps, called ibmaps, to
keep track of the metadata nodes that have been assigned to files. An ibmap is a fixed-size
block in which each bit maps to a file-ID, which in turn maps to metadata node numbers.
Similar to metadata blocks, ibmaps are uniquely identified by ibmap numbers that are
assigned sequentially.

Storage of ibmaps and metadata blocks: Ibmaps and metadata blocks are stored
differently based on their update frequency and fault-tolerance requirements. Ibmaps are
stored in ZooKeeper whereas metadata blocks are stored in the cloud storage backend
similar to other blocks in Kawkab.

2In our implementation, we store only file size and record size in a metadata node.
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Ibmaps are updated only during file creation and deletion operations, which are not
frequent in our target workloads. Moreover, they are required to be consistent with the
namespace stored in ZooKeeper. Therefore, ibmaps are stored in ZooKeeper.

Metadata blocks are updated very frequently as they group metadata nodes of many
files. A metadata block is updated if any file that has its metadata node in the block is
appended. Therefore, metadata blocks are not suitable for storage in ZooKeeper. Instead,
metadata blocks are stored in the cloud storage backend. As the blocks are updated rather
than being appended, the cloud storage backend is required to support either overwriting
objects or multi-version objects so that metadata blocks can be periodically copied to the
cloud storage backend.

Non-primary nodes can read metadata blocks from either the cloud storage backend
or the primary nodes of files. Reading metadata blocks from the cloud storage backend
reduces load on the primary nodes at the expense of reading staled blocks. As historical
data queries do not access recent data, reading staled blocks is acceptable. Nevertheless, to
enable reading recent data from non-primary nodes, Kawkab’s read API supports enforcing
to read up-to-date metadata blocks from files’ primary nodes.

5.5 Indexing

Our target applications mostly access data that has been received within the last small time
window. The latency to read recently ingested data is required to be small, less than 20
ms [101], to retain the time-critical value of data. To address these requirements, Kawkab
creates a timeseries index that it uses for time-based record search within a single file.
Moreover, the index is optimized to have least impact on data ingestion and to perform
faster search for recently ingested data as compared to historical data. Below we describe
the index design in detail.

5.5.1 Index structure

Kawkab uses a k-ary post-order heap [114] as the main data structure for an index. A
post-order heap creates a fully-balanced tree in which nodes are created and inserted in
post-order tree traversal ordering. Figure 5.5 shows an example of a post-order heap. Each
internal node has k children. The children of a node are created before their parent, from
left to right in sequential order. Moreover, the tree grows from bottom to top instead of
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Figure 5.5: A binary post-order heap consisting of 27 nodes in five sub-trees. The nodes
are numbered and created in the post-order; first the children are created from left to right,
and then the parent node is created.

growing from top to bottom, which is common in B-tree based index structures. Kawkab
exploits these properties of post-order heaps in three ways.

First, bottom-up growth in a post-order heap does not require any modifications in the
existing nodes when a new node is created. Kawkab uses this bottom-up growth of the
index to make the index append-only. As we assume that records in a file are appended
in time-order, index entries are also inserted in time order and are always appended to
the last node in the index. Consequently, updating the index in the fast path during
writes have a negligible impact on data ingestion performance. Moreover, index storage
and maintenance is simplified.

Second, we begin index search from the last node in the index, i.e., backwards from
the end of the file. As Kawkab caches recently accessed index and data blocks, they are
likely be in the cache when recent-data queries are performed. As a result, latency of range
queries to access recent data reduces significantly.

Finally, index updates and search do not require full index to be loaded in memory,
enabling the index to grow arbitrarily large. Kawkab divides the index into fixed-length
blocks that it handles in a similar way as data blocks. Nodes in a post-order heap index
correspond to index blocks of a file and are numbered sequentially based on their position
in the index. Thus, blocks are accessed based on their numbers or their position in the
index. Therefore, index nodes or blocks are not required to explicitly store addresses or
names of other index blocks. As a result, index space is maximized to store index entries.

Tree structure: Figure 5.6 summarizes the structure of an index node. Each node in
the index tree has k children. Moreover, each index node consists of a header and a body
portion. The header of a node consists of k entries corresponding to the k children of the
node. The ith header entry consists of the minimum and maximum timestamps in the
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Figure 5.6: Structure of a node in the post-order heap index in Kawkab

sub-tree rooted at ith child of the node, 1 ≤ i ≤ k. The body of a node consists of n index
entries. An index entry eij, which is the ith index entry in the jth index block, maps to data

block number i × j in its corresponding file. The index entry eij consists of the minimum
and maximum timestamps of the records in the corresponding data block.

5.5.2 Building the Index

The index is built by following the logical structure of the k-ary post-order heap structure.
Each node in the tree maps to an index block. Initially the index consists of a single
block. Each time a new data block is created, the timestamp of the first record in the
block is added in the index, which partially fills the last index entry. When the data block
becomes full, its last record’s timestamp is added in the index, which completes the last
index entry. A new index block is created when the last block is completely filled with
index entries. If the index block represents an internal node, the block’s header is first filled
with the minimum and maximum timestamps of the children sub-trees, i.e., the header of
the internal node contains the minimum and maximum timestamps of the sub-trees rooted
at the node’s children.

5.5.3 Index Search

A search query specifies the lower and higher timestamps, tl and th, to search within the
index. In the best case, which is searching for recently ingested records, the search accesses
only the last index node. In the worst case, the search accesses O(k) + O(logkn) index
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traversed in the descending order to search a target timestamp.

blocks, where k is the branching factor of the index tree and n is the total number of nodes
in the index tree.

Figure 5.7 illustrates searching a timestamp in a sample binary post-order heap index.
The index in the example in Figure 5.7 consists of 12 nodes organized in four sub-trees, T1
to T4. Index search begins from the last node in the index, which is node N12 in Figure 5.7,
and traverses root nodes of sub-trees in descending order. If the target timestamp is not
located in the sub-tree rooted at the current node, the search continues to the root node
of the next sub-tree. If a root node indicates the presence of the target timestamp in its
sub-tree, the search traverses down the sub-tree until it reaches the node that contains the
target timestamp. If the search reaches the root node of the left-most sub-tree T1 and the
root node does not indicate the presence of the target timestamp, the target timestamp
does not exist in the index. Assuming that the target timestamp is located in node N4 in
the example in Figure 5.7, the search traverses nodes N12, N11, N10, N7, N6, and N4.

5.6 Implementation

We built a prototype of Kawkab in Java. Our implementation consists of nearly 18k lines
of code, which includes the code for server and client library. The system initializes with
several configurable parameters such as block and cache sizes, number of local storage
devices, number of workers for uploading data to the global store. These parameters can
be tuned based on the target deployment scenarios and workloads.

We have benefited from several existing libraries in our implementation. After per-
formance evaluation of gRPC [109], Finagle [97], and Thrift [270] RPC libraries, we used
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Thrift RPC for communication over the network. Our local store implementation uses
Chronicle Maps [65] library as a persistent key-value store, which keeps track of chunks
that are created as files in the underlying filesystem. Chronicle Maps library targets ultra-
low latency applications in financial industry and provides high throughput operations. In
addition to these libraries, we used Amazon S3 API for cloud storage backend. As a re-
placement of Amazon S3, we used MinIO [193] for testing in our locally available compute
cluster. MinIO is a fast object store that provides an Amazon S3 compatible interface for
object storage.

Code Optimizations: A high performance system for realtime data ingestion and queries
requires highly optimized append and query execution path [259, 41]. However, optimizing
code has been challenging as financial data streams consist of a large number of small
messages, which increases request processing overhead and leaves a narrow time window to
complete each request. For example, supporting a 500 MB/s burst of 50-byte records leaves
only a microsecond to process each request if the load is evenly distributed across 10 cores.
A stream is not easily parallelizable either as each stream has only a single writer and can
only be handled through a single execution thread. As a result, small request-processing
overhead is the key enabler to achieve high performance. In turn, our implementation
focused on minimizing code execution path and non-blocking code execution to achieve
high ingestion rates.

Our initial prototype consisted of a simple hashmap along with a linked-list as a cache.
However, we found synchronization around the cache to be the performance bottleneck as
the request handlers accessed the cache twice, for block allocation and deallocation, for
each append request. We sharded the cache as a simple optimization, yet we found it to
be insufficient to prevent lock contention. To further reduce the contention across a shard,
we significantly reduced cache access in the append code path by only allocating blocks
from the cache and deferring deallocating the blocks only after a timeout. To achieve
this goal, we developed a specialized non-blocking concurrent queue, timer queue, which
enabled non-blocking execution of most of append requests.

As appends to the same block can be spread across many individual requests, our timer
queue data structure supports idempotent enqueue operations, which enables repeated in-
sertions of the same block to the queue without additional overhead. Idempotent and
non-blocking enqueue operations proved to be instrumental in several modules in our im-
plementation where two operations are repeatedly performed in a pair. For example, we
used timer queues to minimize open/close operations of files in the underlying filesystem,
and to handover dirty blocks to the local store for copying locally.

Limitations: Our current implementation uses a large heap size due to the large cache,
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which increase garbage collection times. Although we have used reusable buffers and min-
imized object creation in our implementation, we observed large garbage collection cycles
during our tests. We also observed that increased frequency of garbage collection cycles
with higher memory pressure. Therefore, our implementation and system performance can
benefit from garbage collection optimizations and using off-heap memory.

5.7 Evaluation

We evaluate our prototype implementation of Kawkab through micro-benchmarks. Our
target evaluation metrics are data ingestion rates, request completion times of reading
recent records, scalability with respect to the number of nodes, and impact of historical
queries on realtime queries and data ingestion. We compare the performance of Kawkab
with BTrDB for data ingestion. BTrDB reports higher data ingestion throughput and
lower read latency than other timeseries databases [18].

We focus on the evaluation of worker nodes that perform the core functions of storage,
indexing, and serving data to applications. To simplify the analysis and test setup, we use
a set of clients that emulate stream handlers and applications. The clients act as a separate
module that stream handlers and applications can use to interact with Kawkab. We record
the throughput and completion times of requests on the client side, which measure the
performance of a worker node without any additional overheads of data handling by stream
handlers and applications. As a result, the measurements are more insightful and accurate.
However, we use synthetic workloads due to lack of access to real data traces. An end-to-end
performance measurement using data traces from financial data streams and applications
would measure the performance in more realistic settings. In future, we plan to capture
data traces from financial data streams and build an application for overall performance
analysis of Kawkab.

Experimental setup: Our testbed consists of a cluster of 15 machines that are equipped
with a 12-core Intel Xeon E5-2620 CPU, 60GB RAM, and a 200GB Intel S3700 SSD.
The machines are connected through 10Gbps links. We configure Kawkab nodes with
16GB cache divided in eight shards. We use 16KB block size and 4MB chunk size. The
local store in each Kawkab node consists an SSD. To avoid the expense of Amazon S3 in
our tests, we used three dedicated nodes of MinIO [193] storage system to emulate cloud
storage backend. MinIO exposes an interface that is compatible with Amazon S3 client
library. Accordingly, we use Amazon S3 client library in our implementation to interact
with MinIO, which exposes overhead of using Amazon S3 in our tests. Our evaluation is
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Figure 5.8: Data ingestion throughput and the status of different modules in the system
during a stable ingestion workload.

based on reads and writes to Kawkab nodes. Therefore, we expect that low latency and
high bandwidth to MinIO does not impact the results.

5.7.1 Handling Data Bursts

We first analyze the ability of Kawkab to ingest high data bursts and show the working of
different modules in the system. We use a single Kawkab node in this test. We reduce the
local store capacity to 25GB and global store space to 60GB in these tests to reduce test
time. We generate data traffic using a set of 800 clients that emulate stream handlers. The
clients append 64-byte records at a steady rate of 2 million records per second (mps). In
addition, they generate bursts of nearly 4.5mps with 20% probability to emulate an effect
of bursty traffic. Figure 5.8 shows the ingestion throughput of the system (top figure)
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along with the status of the cache, the local store, and the upload queue of the global store
service (bottom figure) during the test.

Figure 5.8(a) shows data-ingestion spikes that correspond to incoming data bursts. We
observe that the system is able to handle bursts of 4.5mps in addition to steadily ingesting
records at 2mps. The system continues to process the requests until the node’s local store
runs out of space, which itself happens due to the global store being full.

Figure 5.8(b) shows the occupancy of the cache and the local store, fraction of the
chunks in the local store that can be deleted, and the length of global store queue during
the test. The cache occupancy keeps growing until it becomes 90% occupied, which happens
close to 120 seconds in the test. In our implementation, the cache evicts at a low rate until
it reaches to the pre-defined 90% occupancy level. At 90%, the cache maintains its buffers
aggressively, where it evicts an existing block whenever it adds a new block in the cache.
The system is able to maintain the level of the cache because the cached buffers are copied
to the local store faster than the average data ingestion rate, keeping enough buffers cleaned
for cache eviction.

The local store occupancy line in Figure 5.8(b), which is the second line from the top,
shows local store utilization of the node. At the beginning of the test, 16% of the local store
is occupied due to metadata, data, and index chunks of 200 files. The local store consists
of an SSD that is configured to store 6, 400 chunks (25GB) in this test. As the existing
chunks become full, they are added in the global store service queue to be uploaded to the
global store. Until the local store reaches half of its capacity, no chunks are deleted from
the local store. We observe this effect in the first 50 seconds in the test. Similar to the
cache, the local store keeps filling until 50% occupancy, which happens at 50 seconds in
the test. During this time, the chunks from the local store are continuously uploaded to
the global store, which can be observed from the bottom two lines. The third and fourth
lines from the top show the fraction of the local store that can be evicted and the fraction
of the local store that is enqueued to be uploaded to the global store.

At 532 seconds, the global store runs out of space. Therefore, after 532 seconds, we
observe that the global store queue starts filling while the fraction of evictable chunks
from the local store starts decreasing. At 577 seconds in the test, the local store runs out
of chunks that can be deleted. Therefore, the local store’s occupancy starts increasing,
until it reaches 100% of its capacity at 657 seconds in the test. At this point, the system
starts declining the append requests that require creating new chunks. The clients backoff
exponentially and keep retrying for a fixed number of retries. Eventually they drop the
requests. We do not expect this situation to happen in a cloud deployment because cloud
storage space is unlikely to become full.
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Figure 5.9: Throughput and status of different modules in the system when the ingestion
rate is higher than the upload rate to the global store.

Extended high bursts: The memory unit and the local store eventually run out of
space when the upload rate to the global store is lower than the average ingestion rate. In
another experiment, we limit the upload rate to the global store by reducing the number of
global store worker threads, which upload chunks to the global store. Figure 5.9 shows the
behavior of the system when the local store becomes full due to lower bandwidth to the
global store. We observe that the global store queue is emptied slower and the queue keeps
building, until all of the chunks in the local store are either partially filled or enqueued to be
uploaded to the global store. Close to 50 seconds in the test, the local store runs out of the
chunks that can be evicted. Therefore, the local store occupancy starts increasing. Close
to 270 seconds, the local store becomes full and the system starts dropping the append
requests that require creating new chunks in the local store.
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5.7.2 Data Ingestion Performance

In this section, we evaluate the data ingestion throughput of a single Kawkab node in com-
parison with BTrDB using different batch sizes in the workloads. Message sizes in financial
data feeds are mostly small, ranging from tens to a few hundreds of bytes. Therefore, batch-
ing is essential to overcome the network and request processing overheads. During peak
loads, records accumulate quickly, leading to low staleness and high data ingestion rates.
However, during low traffic, waiting to complete a batch can increase data staleness if the
wait time is large. As a result, batching requires a tradeoff between data staleness and
data ingestion throughput.

BTrDB configuration: BTrDB uses Ceph [287] object storage system (OSD) as the
persistent storage backend. Moreover, it uses Etcd [89] to store cluster configuration.
Our testbed for BTrDB’s evaluation consists of three Etcd nodes and 11 Ceph OSDs on
11 machines. Ceph OSDs use 60GB loop devices on SSDs for data persistence. A loop
device maps its data blocks to another file in the filesystem instead of mapping to a
physical disk. We used loop devices because our cluster is shared among many users and
creating dedicated partitions for Ceph required creating new disk partitions, which can
result in losing existing data. To maximize bandwidth to the Ceph cluster, we disable data
replication in Ceph and co-locate BTrDB nodes with Ceph nodes. Ceph benchmarks show
1.13 GB/s average pool bandwidth and 55ms average latency of writing 4MB blocks.

Workload: The workload in this test consists of append requests generated through 800
clients for Kawkab and 200 clients for BTrDB, which are spread across eight machines.
Each client connects to a single Kawkab or BTrDB node and appends 16-byte records to
a dedicated file. The request arrival follows Poisson distribution at a given arrival rate,
which we vary to control traffic generation.

Figure 5.10(a) shows data ingestion throughput of Kawkab and BTrDB. The bars in
the figure show the ingestion throughput with batch sizes ranging from 100 to 30,000.
The results show that a Kawkab node is able to ingest nearly 6mps (96 MB/s) when
data is ingested in batches of 100 records, which is 5.3x higher throughput than BTrDB
in similar settings. Both systems’ throughputs increase with larger batch sizes. How-
ever, Kawkab’s throughput does not increase with batch sizes larger than 10,000, whereas
BTrDB’s throughput peaks in the 20,000 batch-size workload. With the batch sizes of
1000, Kawkab’s ingestion throughput is nearly 11.5mps (184 MB/s), which is 2.2x higher
than BTrDB’s throughput.

BTrDB’s ingestion throughput increases significantly with larger batch sizes. However,
a large batch size can add a significant delay to accumulate and ingest, which results
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Figure 5.10: Average throughput and median request completion times of append requests
with various batch sizes.

in higher data staleness. Figure 5.10(b) shows the median request completion times of
write requests when the request rate is 70% of the peak throughput. Kawkab’s median
request completion times range from 220µs to a millisecond for batch sizes between 100
and 1000. With a larger batch size, request completion times grow faster, ranging from
7ms to 22ms for batch sizes between 10,000 and 30,000. However, BTrDB takes 1.7x (batch
size 10,000) to 8x (batch size 100) the median request completion time of Kawkab for the
same workloads.

High throughput and short request completion times in Kawkab highlight the impor-
tance of reducing request processing overhead in the fast path during data ingestion. One
of the ways to reduce request processing overhead is to eliminate data replication in the fast
path when possible. Being an infrastructure-aware storage system, Kawkab takes advan-
tage of fault-tolerance guarantees provided by data sources to eliminate data replication in
the fast path. Eliminating data replication simplifies the system design and significantly
reduce request processing overheads, which results in higher throughput and lower latency
for data ingestion. The tradeoff is longer time to recover from failures when lost data
cannot be recovered from the local store and the cloud storage backend.

5.7.3 Recent Data Queries Performance

In this section, we evaluate the performance of realtime data queries when they are per-
formed on the same node where data is ingested. The workloads in these tests consist of
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Figure 5.11: Throughput and request completion times of a single Kawkab node with
varying ratio of writes in the workloads.

a mix of writes and recent-data range queries. We use 800 clients in these tests, which
send requests at a pre-defined request rate and a pre-defined ratio of writes to reads. Each
write request consists of a batch of 1000 16-byte records. Moreover, a read request fetches
1000 records from the last 50,000 records in a stream. We control the batch size of reads
by using timestamps that are aligned with record numbers. For example, a record search
for a time window of 0 to 1000 fetches the first 1000 records in the stream.

Figure 5.11(a) shows the average throughput and request completion times of requests
with increasing request load in the system. The lines show request completion times for
workloads consisting of 100%, 80%, 50%, and 20% writes. The error bars show 95%
confidence interval across five runs. In 80% writes workload, Kawkab is able to process
nearly 14mps with average request completion time of 1.1ms. The throughput increases
and average request completion time decreases with the ratio of reads in the workload. In
20% writes workload, Kawkab is able to process 34mps (544 MB/s) with average request
completion time of 625µs.

Figure 5.11(b) shows cumulative distribution of request completion times when the
request load is 7mps. We observe that median request completion times are less than
0.9ms in all workloads. Moreover, 99th percentile latency is between 0.95ms (20% writes)
and 1.4ms (100% writes).

A 16KB index block in our configuration indexes 680 data blocks, which covers 696,320
records of 16 bytes (1024 records per data block). Therefore, an index lookup in a read
request mostly accesses only the last index block in these tests. Our instrumentation
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Figure 5.12: Impact of historical queries on data ingestion and realtime queries. Historical
queries are performed on a separate node, and they fetch data from the cloud storage
backend.

during tests show that average index search time is less than 1% of the total read request
time. Thus, most of the read request time is spent in data copy, serialization, and network
overhead.

5.7.4 Impact of Historical Data Queries

In this section, we evaluate the ability of Kawkab to serve historical data queries without
impacting data ingestion and realtime read queries. We use two Kawkab nodes in this
test, a primary node and a non-primary node. The clients ingest data and read recently
ingested data from the primary node. They send requests at the rate of 10 mps. We use
batch size of 1000 for both reads and writes on the primary node.

We run the test for 900 seconds. We do not perform any historical queries in the first
550 seconds to let some files to be uploaded to the global store. After 550 seconds, 10
clients on the non-primary node read historical data in an on/off pattern. The clients
request a range of one million records from a random section of lower half of a file. To
ensure that the queries are not served from the cache on the non-primary node, we reduce
the cache size on the non-primary node to 1GB.

Figure 5.12(a) shows the timeline of throughput in the test. The bottom two lines in
the figure show the throughput of reads and writes performed on the primary node. As
expected, we do not observe any impact of historical data queries on the throughput of
reads and writes performed on the primary node.
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Figure 5.13: Scalability of ingestion throughput of Kawkab with number of nodes.

Figure 5.12(b) shows the CDF of request completion times of the requests performed
on both Kawkab nodes. The results show that historical queries on a non-primary node
do not interfere with data ingestion and realtime queries on the primary node. At 99th

percentile, the reads and writes on the primary node are completed in less than 2ms, which
is the same as when the requests are performed without historical data queries. This is
because historical data is loaded from the backend nodes instead of the primary node,
which is one of the design goals of Kawkab.

5.7.5 Scaling with the number of Kawkab Nodes

In this section we evaluate Kawkab’s ability to scale with the number of nodes in the
system. In this test, we run multiple Kawkab nodes. The workload consists of 200 clients
per node, which append 16-byte records in batches of 1000 records.We use three MinIO
nodes as the cloud storage backend, which are connected through a 10Gig network.

Figure 5.13 shows the peak data ingestion throughput with up to four nodes. The results
show that ingestion throughput of Kawkab scales linearly. We observe linear scalability
because the nodes ingest data in parallel without any interaction with each other. The
scalability of nodes depend on the scalability of the backend storage system. In our test
setup, the aggregate upload rate of four Kawkab nodes is less than the ingestion throughput
of three MinIO nodes. Our benchmarks show that a single MinIO node can receive 4MB
objects with the rate of 990 MB/s in our cluster. Thus, we do not observe throughput
saturation with four Kawkab nodes. When the storage backend is the bottleneck, the nodes
eventually run out of their local store capacity, which in turn results in unavailability of
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Figure 5.14: Throughput and request completion times of a single Kawkab node with
varying ratio of writes in the workloads in a cloud deployment.

free buffers in their caches and failure of append requests. We observe a similar effect in
Figure 5.9.

5.7.6 Evaluation in a Cloud Deployment

We validate the results of our local cluster setup by running some experiments in the
Amazon cloud. Our cloud deployment consists of a single Kawkab node and four client
machines. The Kawkab node runs on c5d.4xlarge EC2 VM whereas the clients run on
c5.4xlarge VMs. The VMs consist of 16 vCPUs, 30GB RAM, and 10Gbps network. In
addition, the Kawkab node has a locally attached 400GB NVMe SSD. For data persistence,
we use Amazon S3 as the cloud storage backend. All chunks are stored in the same bucket
in Amazon S3.

We configure the Kawkab node with 8GB cache, 16KB blocks, and 4MB chunks. We
limit the local store capacity to 25GB to reduce experiment time by quickly running out
of the local store capacity if writes to the SSD become the bottleneck for data ingestion.
Similar to previous experiments, we use a set of clients that emulate stream handlers. The
clients batch records that arrive at a given Poisson rate and append batched records to
their respective files.
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Throughput and Latency of Requests

We first evaluate the throughput and latency of write requests and range queries to access
recently ingested data. In this test, 600 clients read and write 16-byte records in a batch
of 1000 records. Read queries access records from a random range of 1000 records from
the last 50000 records in a stream.

Throughput: Figure 5.14(a) shows the average throughput and completion time of re-
quests with the workloads consisting of 100%, 80%, and 50% write requests. The error
bars show 95% confidence intervals across five runs. The results show that a single Kawkab
node is able to ingest close to 14.5 million records per second when the workload consists
of only write requests. The request throughput increases with the ratio of reads in the
workload, increasing up to 25mps when half of the requests are writes in the workload.

Request completion times: Figure 5.14(b) shows the CDF of completion times of
requests when the load on the system is 14mps in the same experiment. The horizontal
dashed lines in the figure mark median, 95th, and 99th percentiles. The figure shows that
95% of the write requests complete in less than 2ms when the workload consists of only
write requests. At 99th percentile, the completion time of writes is nearly 10ms. The
completion time of requests reduces with the increase in the ratio of reads in the workload.
Tail latency at 99th percentile reduces to less than a millisecond when half of the requests
are reads in the workload.

The throughput and latency results of Kawkab in the cloud deployment are similar to
those of the experiments performed in our local cluster. The throughput in these tests is
14% higher in the cloud deployment, which is likely due to the faster CPUs in the VMs.
The latency results are the same in both deployments. However, when historical data is
accessed from the cloud storage backend, we expect lower read throughput and higher read
latency due to different performance properties of the cloud storage backend as compared
to our local cluster deployment. Our measurements show that it takes 100ms to more than
a second to read a 4MB block from Amazon S3, which results in lower read performance
for historical data.

Ingestion Throughput with Large Record Sizes

Previous tests show results with 16-byte records, which evaluate the system’s ability to
handle small records. In this experiment, we use larger record sizes that are more common
in financial data streams. Figure 5.15(a) shows the average write throughput with the
record sizes of 128, 512, and 700 bytes. As expected, the throughput drops with larger
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Figure 5.15: Throughput and request completion times of a single Kawkab node with
varying record sizes in a cloud deployment.

record sizes whereas the goodput remains the same. The request throughputs are 2mps,
0.5mps, and 0.3mps for 128-byte, 512-byte, and 700-byte records, respectively. However,
goodput of the requests is close to 250 MB/s in all of the three workloads, which is equal
to the write speed of the provisioned SSD for the local store. We provisioned a general
purpose SSD to save costs, which rate limits the write speed to 250 MB/s.

In our test setup, write bandwidth of the local store is lower than the upload bandwidth
to Amazon S3. Our measurements show 270 MB/s upload rate to Amazon S3 with eight
worker threads and 4 MB object sizes. As the upload rate to the cloud storage is higher
than the write speed to the local store, the local store has limited the sustained ingestion
throughput to 250 MB/s in our tests. The ingestion throughput can be increased by
provisioning more local store bandwidth.

Figure 5.15(b) shows the CDF of request completion times at the ingestion rates that
correspond to the throughputs given in Figure 5.15(a). We observe that the request com-
pletion times are less than a millisecond at 99th percentile for the three workloads. The
request completion times are significantly smaller in these tests as compared to the pre-
vious tests with 16-byte record sizes. The completion times are small mainly due to low
write latency to the cache and small queuing delays. Figure 5.15(b) shows the completion
times only when the input data rate is lower, but close to the write bandwidth of the local
store. If we increase the input load, the demand for clean buffers in the cache exceeds the
rate at which the buffers can be cleaned. As a result, the system runs out of the cache and
drops excessive write requests.
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5.8 Discussion

Kawkab achieves high data ingestion throughput by eliminating data replication during
data ingestion. To avoid data replication without losing data during node failures, Kawkab
relies on the fault-tolerance guarantees provided by financial data providers, which include
publishing data through redundant data streams and retaining published data for a short
duration such as a few minutes. However, not all upstream providers, such as banks,
offer such fault-tolerance guarantees. In such cases, an alternative approach to achieve
high fault-tolerance is to redundantly subscribe to the same data stream, which does not
require any modifications in Kawkab. Instead of receiving one data stream by only one
stream handler, two stream handlers can separately subscribe to the same data stream
and ingest data redundantly. The tradeoff would be the higher monetary costs due to
additional subscriptions to receive data.

In the cases where neither upstream providers guarantee fault-tolerance nor data streams
can be subscribed redundantly, Kawkab can be extended to add on-demand replication like
Alluxio [172] for high availability and data durability. Data can be ingested at different
storage tiers that have their own fault-tolerance properties and performance tradeoff. For
instance, data can be ingested only in memory, synchronously written to locally attached
storage that is backed by Amazon EBS, or replicated to the memories or local stores
of other Kawkab nodes. RAMCloud [1] and CRAQ [267] chain replication are practical
approaches for data replication on the fast path. The main tradeoffs are higher system
complexity and lower performance as compared to Kawkab’s current design in terms of in-
gestion rates, data staleness, and latency to access recent data. We plan to further explore
the design space in future to provide higher fault-tolerance guarantees while achieving the
same performance goals.

5.9 Summary

Realtime processing of fast streaming data from capital markets represents an important
class of applications. Existing timeseries databases and storage systems do not adequately
use the available resources and optimization opportunities as they are designed to be
infrastructure-oblivious. In this chapter, we have presented the design and evaluation of
Kawkab, a high performance streaming data storage systems, which is tailored for financial
streaming data storage in a public cloud deployment.

Kawkab supports high data ingestion rates and fast time-based range queries over recent
data. Our experimental results using end-to-end benchmarks and synthetic workloads show
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that a single Kawkab node can ingest 16-byte records with the throughput of 8 to 9 million
records per second. Moreover, Kawkab supports low data staleness and range queries for
recent data. Furthermore, Kawkab leverages the scalability of cloud storage services to
support historical data queries without impacting data ingestion rates and realtime data
queries.
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Chapter 6

Conclusion

Big data applications process large volumes of data to reveal trends and insights that
help businesses make critical decisions. However, data volumes can be very large, posing
challenges in efficiently utilizing available resources for data storage and management. Big
data applications thus employ large-scale distributed storage systems to handle the large
volume data storage and tackle related challenges. Applications use the storage systems to
retrieve and store data on the critical path. Therefore, poorly performing storage systems
can become a performance bottleneck for big data analysis.

Distributed storage systems use a large amount of infrastructure resources to meet
workload demands of big data applications. These resources include networks, compute
and storage devices, and public cloud services. However, most storage systems do not effec-
tively utilize available resources as they are designed to be oblivious to the infrastructure.
Although using infrastructure as a black-box simplifies system design, it introduces several
inefficiencies such as redundant communication over bandwidth-constraint links, unneces-
sarily replicating data, and making ineffective use of available replicas. Such problems can
be mitigated by making storage system infrastructure-aware. However, effectively using
the available information for performance improvements is challenging.

6.1 Contributions

This thesis has explored using infrastructure-aware design to improve the performance
of distributed storage systems and has addressed related challenges. In this work, we
have developed and evaluated three systems, Mayflower, Canopus, and Kawkab, which
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use infrastructure-aware design for performance optimizations. These systems target three
categories of storage systems and demonstrate the effectiveness of infrastructure-aware
design approach to improve their performance.

The Mayflower filesystem addressed performance problems in reading large files over
the network during batched data analysis. Being a network-aware filesystem, Mayflower
works closely with the SDN control plane to mutually select the best replica and network
path combination for file read operations. The novel file replica and network path selection
method of Mayflower minimize the completion time of a new read request with minimal
impact on the existing jobs in the system. Our evaluation of a prototype implementation
of Mayflower using common datacenter workloads shows that Mayflower is 70% faster
than reading files using commonly used replica and path selection approaches. Moreover,
compared to always reading data from the nearest replica, our evaluation results show that,
depending on network conditions, higher performance can be achieved by reading from a
farther replica and opportunistically reading from multiple replicas.

In addition to improving the performance of storage systems used for batch process-
ing, this thesis has addressed the problem of scaling consistent data replication in geo-
distributed key-value stores. Several key-value stores use consensus protocols for consistent
data replication across geo-distributed nodes. We designed Canopus consensus protocol
in this thesis, which exploits the resilient design of modern datacenter infrastructure to
achieve higher scalability. Assuming that the network is resilient, is hierarchical, and
that rack-failures do not occur, Canopus is optimized to handle high request rates in the
common case where a network does not partition and nodes within a rack do not fail si-
multaneously. Our evaluation of a Canopus prototype shows that it can handle more than
four million requests per second with 21 nodes in a geo-distributed deployment.

Our final research contribution targets streaming data storage systems in the capital
market industry. Financial data has an associated value that diminishes over time. There-
fore, realtime storage and processing of financial data with minimal response time is critical
for many applications, such as fraud detection in financial transactions. This thesis pre-
sented Kawkab, a streaming data storage system, which uses public cloud infrastructure
to provide cost-effective storage for capital market use cases. As an infrastructure-aware
storage system, Kawkab exploits the fault-tolerance of data at its sources to eliminate the
use of message queues and data replication during data ingestion. The outcomes are higher
scalability and data ingestion rates, and lower data staleness. In addition, Kawkab enables
applications to perform both realtime and historical data queries with high performance
using the same system, reducing system management overheads. Furthermore, leveraging
the scalability of cloud storage services, Kawkab shifts the load of historical data queries to
cloud storage, which eliminates the negative impact of historical query workloads on real-

113



time data ingestion and queries. Our evaluation of a prototype implementation of Kawkab
shows that Kawkab achieves 1.4x to 5x higher ingestion rates than BTrDB under similar
experimental settings. Moreover, applications can read recently ingested data with low
latency.

The evaluation results of our systems highlight the effectiveness of an infrastructure-
aware design in improving resource utilization as compared to an infrastructure-oblivious
design. Thus, distributed storage systems, which perform resource intensive operations,
can significantly benefit from infrastructure-aware design to improve their performance.

6.1.1 Future Work

In this section, we discuss some possible future directions for further research based on the
work presented in this thesis.

Byzantine Fault-tolerance in Canopus

Emerging technologies, such as permissioned blockchains, require agreement on the or-
dering of requests between a large number of participating nodes. Typically they use
Byzantine fault-tolerant (BFT) consensus protocols as the nodes can be malicious and
cannot be trusted. Although Canopus does not tolerate Byzantine faults, it can be used
in the situations where security and trust are ensured at the endpoints using hardware
assistance, such as Microsoft Coco framework. Nevertheless, Canopus is currently being
extended to tolerate Byzantine faults [143] in an on-going work.

Indexing Data Summaries in Kawkab

A class of applications use summarized data for analytics, e.g., rolling averages and min-
imum/maximum prices of financial instruments in fixed time windows are used for dash-
board applications. Although supporting summary statistics has not been the focus of
this work, such applications can benefit from Kawkab if it can be extended to store and
index summary statistics over data in different time ranges. The current design of Kawkab
requires fetching data on the application side to compute the summary statistics. How-
ever, downloading data only to calculate summary statistics can waste infrastructure re-
sources such as the available network bandwidth. A better approach is to summarize data
on Kawkab nodes and send only data summaries to applications, which can be achieved
through a few extensions in Kawkab.
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Kawkab can support multiple file indexes, which can target different summary statis-
tics and indexes on different record fields. Moreover, Kawkab’s indexing mechanism can
be extended to index data summaries with different time ranges. Furthermore, metadata
blocks can serve as a persistent buffer for partial statistic calculations. With these ex-
tensions, Kawkab can support fast summary statistic search for recent records without
wasting infrastructure resources.

6.1.2 Concluding Remarks

Data analysis is at the heart of many applications, which require data collection and
management at large scales using distributed storage systems. Storage requirements have
increased many folds in the recent years due to advancement in technologies that require
massive data collections and replication, such as blockchains and applications of machine
learning and artificial intelligence. We expect data sizes to further grow rapidly in the
coming years, which makes the efficient data storage and management a significant demand.
In this thesis, we have focused on improving the performance of distributed storage systems
using infrastructure-aware design methods. The evaluation of the systems presented in
this thesis show that their design and methods are effective in improving the performance
of storage systems, which are commonly used by large-scale distributed applications in
datacenters. We believe that the research contributions in this thesis will inspire the
adoption of infrastructure-aware design of storage systems for better resource management
and higher performance.
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Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: fault-tolerant stream processing at internet scale. Proceedings of the VLDB
Endowment, 6(11):1033–1044, 2013.

[9] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commod-
ity data center network architecture. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, SIGCOMM ’08, pages 63–74. ACM, 2008.

[10] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In
NSDI’10, volume 10, pages 19–19. USENIX, 2010.

[11] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-optimal datacenter
transport. In ACM SIGCOMM Computer Communication Review, volume 43, pages
435–446. ACM, 2013.

[12] Hilfi Alkaff, Indranil Gupta, and Luke M Leslie. Cross-layer scheduling in cloud
systems. In Cloud Engineering (IC2E), 2015 IEEE International Conference on,
pages 236–245. IEEE, 2015.
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