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Summary

Marginal rate-based analyses are widely used for the analysis of recurrent events in clinical tri-
als. In many areas of application, the events are not instantaneous but rather signal the onset
of a symptomatic episode representing a recurrent infection, respiratory exacerbation, or bout of
acute depression. In rate-based analyses, it is unclear how to best handle the time during which
individuals are experiencing symptoms and hence are not at risk. We derive the limiting value of
theNelson-Aalen estimator and estimators of the regression coefficients under a semiparametric
rate-based model in terms of an underlying two-state process. We investigate the impact of the
distribution of the episode durations, heterogeneity, and dependence on the asymptotic and finite
sample properties of standard estimators. We also consider the impact of these features on power
in trials designed to test intervention effects on rate functions. An application to a trial of individ-
uals with herpes simplex virus is given for illustration.
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1 INTRODUCTION

Many chronic diseases involve the recurrent onset and resolution of episodes during which individuals
are in an adverse health state. Examples include recurrent exacerbations in chronic bronchitis (Gross-
man et al., 1998), recurrent bouts of acute depression in affective disorder (Kessing et al., 1999),
and recurrent outbreaks of symptoms among individuals with herpes simplex virus infection (Ro-
manowski et al., 2003). Common statistical methods for recurrent event analysis are geared toward
the analysis of instantaneous events and include methods based on the semiparametric Andersen-Gill
model (Andersen et al., 1993), multiplicative models involving rate or mean functions (Lawless and
Nadeau, 1995; Lin et al., 2000), and frailty models (Lawless, 1987; Klein, 1992; Wienke, 2010).
Such methods have seen widespread application in clinical trials involving recurrent episodic con-
ditions where the “events” are taken to be the onset of the symptomatic periods (Hu et al., 2011).
During the symptomatic periods, however, individuals are not truly at risk of the “event” since they
are already symptomatic. It is unclear how to handle the risk-free periods in the recurrent event anal-
yses. It is also unclear what impact any decision might have on inferences that follow. Options for
handling these symptomatic episodes include (i) retaining individuals in the risk set during episodes,
(ii) removing individuals from the risk set while they are experiencing an episode, or (iii) modeling
the onset and duration times based on an alternating two-state model. Alternating renewal processes
(Cox, 1967) are useful when the two types of sojourn times (waiting times between episodes and
episode durations) can be assumed statistically independent. Several random effect (frailty) models
have been developed to relax these independence conditions (Xue and Brookmeyer, 1996; Ng and
Cook, 1997; Lee and Cook, 2018). Intensity-based two-state models offer another powerful approach
for studying process dynamics, but they require conditioning on the process history and robust in-
ference is not possible in this framework. Moreover, intensity-based analyses do not lead naturally
to estimates of average causal treatment effects (Hernán and Robins, 2016), which are typically of
interest in clinical trials.

Marginal methods based on partially conditional rate functions are increasingly used for the anal-
ysis of recurrent outcomes in recent years. Although such methods can be robust to misspecification
of the variance function or dependence structure for point processes, they do not protect against mis-
specification of the risk set. The objective of this article is to study the asymptotic and finite sample
properties of estimators from marginal rate-based recurrent event analyses (Lin et al., 2000) for two
of the common approaches taken for handling the risk-free period. Upon specifying a quite general
alternating two-state model for the onset and resolution of episodes, we study the limiting behavior
of estimators from semiparametric rate-based analyses of the onset times of symptomatic periods.

The remainder of this paper is organized as follows. In Section 2, we define notation and intensity
functions for an alternating two-state process that we use in our investigation of the consequences of
risk-set misspecification. In Section 3, we review the formulation, estimating equations, and large
sample results for estimators from a semiparametric multiplicative rate-based analysis. The effect of
model misspecification on the limiting behavior of estimators is investigated in Section 4 for both the
one-sample problem and the regression setting. Section 4.1 considers the setting where the data are
generated according to a two-state process without any between-individual heterogeneity in the pro-
cess intensities, whereas Section 4.2 considers a more general data generating process incorporating
heterogeneity in risk for the onset and duration of exacerbations; a dependence between associated
random effects is also accommodated. We study the implications of model misspecification due to
failure to account for episode duration on study power for clinical trials in Section 5. An application
to a randomized trial of individuals with herpes simplex virus infection is given in Section 6 and
concluding remarks are made in Section 7.
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2 AN ALTERNATING TWO-STATE PROCESS

In this section, we introduce a two-state data generating process which we use to study the limiting
behavior of estimators from semiparametric rate-based analyses when they are applied to recurrent
episodic conditions.

Figure 1: A two-state diagram for a chronic disease featuring recurrent symptomatic episodes

Suppose an individual with a chronic disease experiences recurrent symptomatic episodes arising
according to a two-state model depicted in Figure 1. Let Zi(s) = 1 if individual i is symptom-free and
Zi(s) = 2 if they are symptomatic at s > 0, and suppose all individuals start in state 1 at time t = 0.
We let Sik and Tik denote the start (onset) and termination (resolution) time of the kth episode for
individual i which is of duration Wik = Tik − Sik, k = 1, . . .. A schematic of a hypothetical sample
path is given in Figure 2. Let Ni1(t) =

∑∞
k=1 I(Sik ≤ t) and let Ni2(t) =

∑∞
k=1 I(Tik ≤ t) record

the cumulative number of onset and resolution times over (0, t], respectively, and {Ni(s), 0 < s} be
a bivariate counting process with Ni(s) = (Ni1(s), Ni2(s))′. If Xi is a set of fixed covariates, the
history of the process is denoted by Hi(t) = {Ni(s), 0 < s < t,Xi}.

Consider a trial with the goal of observing individuals over a fixed period (0, A] where A is a
common administrative censoring time. A random drop-out time Di for individual i is assumed to
be independent of the event process {Ni(s), 0 < s} given covariates Xi, and Ci = min(A,Di) is the
right censoring time. We let Yi(s) = I(s ≤ Ci) and Ȳij(s) = Yi(s)Yij(s) where Yij(s) = I(Zi(s

−) =

j), j = 1, 2. Then letting N̄ij(t) =
∫ t

0
Ȳij(s)dNij(s), the observed bivariate counting process is

{N̄i(s), 0 < s} where N̄i(t) = (N̄i1(t), N̄i2(t))′. The complete history of the observation and event
processes is then denoted by H̄i(t) = {N̄i(s), Yi(s), 0 < s < t,Xi} and the complete intensity for
j → 3− j transitions is

lim
∆t↓0

P (∆N̄ij(t) = 1|H̄i(t))

∆t
= Ȳij(t)λij(t|Hi(t)), j = 1, 2, (1)

under independent censoring (Cook and Lawless, 2018).
The probability of a particular sample path (Cook and Lawless, 2007) for individual i is

Ni1(Ci)∏
k=1

λi1(sik|Hi(sik)) exp

(
−
∫ Ci

0

Ȳi1(u)λi1(u|Hi(u))du

)

×
Ni2(Ci)∏
l=1

λi2(til|Hi(til)) exp

(
−
∫ Ci

0

Ȳi2(u)λi2(u|Hi(u))du

)
conditional on the censoring time. While likelihoods can be constructed based on such expressions
our interest lies in robust assessment of treatment effects in clinical trials with the goal of preventing
the onset of episodic symptomatic periods; in such settings, the aim is to reduce the occurrence of
1 → 2 transitions in Figure 1 rather than model the full process. We also note that intensity-based
methods are less amenable to the assessment of randomized interventions in clinical trials since they
involve conditioning on internal features of life history processes (Kalbfleisch and Prentice, 2011).
We emphasize therefore that the two-state model is described here in order to provide a basis for
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Figure 2: A schematic of a hypothetical timeline diagram with risk set definition (RSD) A and B

studying the limiting behaviour of estimators from semiparametric rate-based analyses commonly
used in clinical trials.

In what follows, we consider two risk-set definitions depicted in Figure 2. In risk set definition A
(RSD-A), individuals are included in the risk set for transitions from state 1 to state 2 during symp-
tomatic periods (i.e. we set the at risk indicator to Ȳ A

i (t) = Yi(t)); this represents a misspecification
since individuals in the midst of an episode are not at risk for the onset of an episode. In risk set
definition B (RSD-B), individuals are not considered at risk during symptomatic periods (i.e. we set
Ȳ B
i (t) = Ȳi1(t) = Yi(t)Yi1(t)). In many ways, RSD-B seems sensible since it is aligned with how

these periods are treated in the intensity-based analysis described earlier. Rate-based analyses in ran-
domized clinical trials, however, are best directed at estimation of marginal features, and exclusion
of individuals from the risk set based on their status after randomization (which itself is potentially
influenced by the treatment received) induces confounding (Cook and Lawless, 2018). In causal in-
ference terminology, the state of being “at risk for the onset of a new episode” is a collider (i.e. in the
causal path) for the effect of treatment on the occurrence of exacerbations (Cole et al., 2009; Hernán
and Robins, 2016). Thus, while excluding individuals from the risk set during episodes has intuitive
appeal, it precludes the ability to make direct causal statements about intervention effects on marginal
features. Retaining individuals in the risk set during episodes is unnatural since they are not really
at risk, but this enables one to make causal inferences. These points motivate us to explore the lim-
iting behaviour of estimators obtained from the two approaches for defining the risk sets in marginal
rate-based analyses to gain insight into the determinants of the resulting estimands. We carry out this
investigation in the context of the underlying two-state process of this section and a generalization of
it we give in Section 4.2.

3 STANDARD RECURRENT EVENT ANALYSES

3.1 A SEMIPARAMETRIC MULTIPLICATIVE RATE FUNCTION MODEL

The semiparametric marginal rate-based model (Andersen and Gill, 1982) involves the assumption
that covariates act multiplicatively a baseline rate function. Here, we temporarily consider a setting
where λi2(t|Hi(t)) → ∞ so the resulting data can be viewed as arising from a point process. We
write the multiplicative model assumption as

E(dNi1(t)|Xi = xi) = dRi1(t) = dR01(t) exp(x′iγ1) , (2)

where the baseline rate function dR01(t) has no specific parametric form. With data {Yi(s), dN̄i1(s), 0 <
s;Xi, i = 1, . . . ,m} from a sample of m independent individuals, the estimating functions are

m∑
i=1

Yi(t){dNi1(t)− dRi1(t)} = 0 , t > 0 , (3)
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for the baseline rate function and
m∑
i=1

∫ ∞
0

Yi(t){dNi1(t)− dRi1(t)}xi = 0 , (4)

for the regression coefficients. Solving (3) with fixed γ1 gives the profile “Breslow” estimate

dR̃01(t; γ1) =

∑m
i=1 Yi(t)dNi1(t)∑m

i=1 Yi(t) exp(x′iγ1)
, (5)

and substituting (5) into (4) gives an estimating function for γ1 as

U(γ1) =
m∑
i=1

∫ ∞
0

Yi(s)

{
xi −

∑m
i=1 Yi(t) exp(x′iγ1)xi∑m
i=1 Yi(t) exp(x′iγ1)

}
dNi1(t) . (6)

We obtain γ̂1 by solving U(γ1) = 0. The baseline mean function is given byR01(t) =
∫ t

0
dR01(s)ds =

E{Ni1(t)|xi = 0} and estimated by substituting γ̂1 into (5) to compute

R̂01(t) =

∫ t

0

∑m
i=1 Yi(u)dNi1(u)∑m
i=1 Yi(u) exp(x′iγ̂1)

.

These results correspond to the setting for which rate-based methods are intended, where the events
are instantaneous and so have no duration associated with them. Under the assumption of multiplica-
tive covariate effects on a baseline rate when events are instantaneous, robust inferences are possible
if “sandwich” variance estimates are used (Lawless and Nadeau, 1995; Lin et al., 2000); see Section
3.2 .

To distinguish between the estimating equations based on the different risk set definitions, we can
replace Yi(t) with Ȳ A

i (t) in this derivation and denote the resulting estimates as γ̂A1 and R̂A
01(t). Under

the alternative risk set definition (RSD-B), we proceed in the same fashion by replacing Yi(t) with
Ȳ B
i (t) in (3) and (4) and labelling the corresponding estimators γ̂B1 and R̂B

01(t). In what follows, we
consider the interpretation of these limiting values (estimands) in a variety of settings.

3.2 LARGE SAMPLE BEHAVIOUR UNDER MODEL MISSPECIFICATION

The estimating equations under (3) and (4) are justified based on the assumption that the events
arise from a Poisson process but the resulting estimator is consistent for γ1 more generally if the
proportional rate function assumption is satisfied. This will not typically be the case when the events
are onset times of episodes in a two-state process; we explore the large sample behaviour of the
estimators in this setting here.

To unify the treatment of the different risk set definitions, we rewrite (6) with the risk set indicator
denoted by Ȳ h

i (t) to obtain

Uh(γ1) =
m∑
i=1

∫ ∞
0

Ȳ h
i (t)

{
xi −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dNi1(t) , (7)

with S(k,h)(γ1, t) =
∑m

i=1 Ȳ
h
i (t) exp(x′iγ1)x⊗ki for k = 0, 1, 2, h = A,B, where a⊗2 means aa′,

a⊗1 = a, and a⊗0 represents a scalar 1. We let γ̂h1 be the solution to Uh(γ1) = 0 and γh1 its limiting
value, which is the solution to∫ ∞

0

{
s(1,h)(u)− s(1,h)(γ1, u)

s(0,h)(γ1, u)
s(0,h)(u)

}
= 0 (8)
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where s(k,h)(γ1, u) = E{S(k,h)(γ1, u)} and s(k,h)(u) = E{Ȳi(u)X⊗ki dNi1(u)}, k = 0, 1, h = A,B,
and all expectations are taken with respect to the underlying true model. We let

Rh
01(t) =

∫ t

0

E{Ȳ h
i (u)dNi1(u)}
S(0,h)(γh1 , u)

(9)

be the limiting value of the corresponding baseline mean function estimate (Boher and Cook, 2006).
Note that if E{dNi1(t)|xi, Ȳ h

i (t) = 1} = dRh
01(t) exp(x′iγ

h
1 ), then the estimating function in (7)

can be written (Lin et al., 2000) as

Uh(γ1) =
m∑
i=1

∫ ∞
0

{
xi −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dMh

i1(t)

where dMh
i1(t) = Ȳ h

i (t){dNi1(t)− dRh
01(t) exp(x′iγ

h
1 )}. Since Ȳ h

i (t) is a predictable process (Ander-
sen et al., 1993), m−1/2Uh(γ1) is asymptotically N(0,B(γ1)) in distribution where

B(γ1) = E

[(∫ ∞
0

{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}
dMh

i1(s)

)(∫ ∞
0

{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}′
dMh

i1(t)

)]
.

By Taylor series expansion, m1/2(γ̂h1 − γh1 ) ' A−1(γh1 )m−1/2 U(γh1 ) so m1/2 (γ̂h1 − γh1 ) converges to
MVN(0,A−1(γh1 )B(γh1 )A−1(γh1 )) in distribution where

A(γ1) = E

[∫ ∞
0

Ȳ h
i (t)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗2

s(0,h)(γ1, t)2

}
dNi1(t)

]
.

The robust variance A−1(γh1 )B(γh1 )A−1(γh1 ) is empirically estimated by Â−1(γ̂h1 )B̂(γ̂h1 )Â−1(γ̂h1 ) in
finite samples where

Â(γ̂h1 ) =
1

m

m∑
i=1

(∫ ∞
0

Ȳ h
i (t)

{
S(2,h)(γ1, t)

S(0,h)(γ1, t)
− S(1,h)(γ1, t)

⊗2

S(0,h)(γ1, t)2

}
dNi1(t)

)∣∣∣∣
γ1=γ̂h1

,

B̂(γ̂h1 ) =
1

m

m∑
i=1

(∫ ∞
0

{
xi −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}
dM̂h

i1(t)

)(∫ ∞
0

{
xi −

S(1,h)(γ1, t)

S(0,h)(γ1, t)

}′
dM̂h

i1(t)

)∣∣∣∣
γ1=γ̂h1

,

and dM̂h
i1(t) = Ȳ h

i (t){dNi1(t) − dR̂h
01(t) exp(x′iγ̂

h
1 )} for h = A,B. In the analysis of sample data,

the estimate
âsvar(

√
m(γ̂h1 − γh1 )) = Â−1(γ̂h1 ) B̂(γ̂h1 ) Â−1(γ̂h1 )

is used as a basis for inference.

4 MEAN FUNCTION AND REGRESSION COEFFICIENT ESTIMANDS

Here, we investigate the limiting properties of estimators under independent censoring when analy-
sis is based on a marginal rate-based model. We consider settings involving a Markov/semi-Markov
model for the onset and duration of recurrent episodes (Section 4.1) and a mixed model with de-
pendent bivariate random effects modulating the baseline transition intensities (Section 4.2). Under
each scenario, we obtain the asymptotic bias of the estimated mean function in a one-sample setting
and then the regression coefficient of a treatment indicator under the model assuming multiplicative
covariate effects.
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4.1 MISSPECIFICATION UNDER A MARKOV/SEMI-MARKOV DATA GENERATING PROCESS

When the onset of exacerbations is governed by a Markov model, intensity (1) reduces to

lim
∆t↓0

P (∆N̄i1(t) = 1|H̄i(t))

∆t
= Ȳi1(t)λi1(t) , (10)

where λi1(t) depends only on xi and the time t since the origin of the process. If the resolution of an
episode is governed by a semi-Markov intensity, then

lim
∆t↓0

P (∆N̄i2(t) = 1|H̄i(t))

∆t
= Ȳi2(t)λi2(Bi(t)) , (11)

which, besides Ȳi2(t), λi2(t) depends only on xi and the time Bi(t) = t − SNi1(t−) since the onset of
the episode. Hu et al. (2011) examined the asymptotic properties and proved consistency of estimators
from analyses using RSD-B in this setting, so we focus here on RSD-A.

4.1.1 MARGINAL RATE AND MEAN FUNCTION ESTIMATION

We consider the setting with no covariates first in which case we let λi1(t) = λ1(t) in (10) and
λi2(t) = λ2(Bi(t)) in (11). We consider the rate function E{dNi1(t)} = dR1(t) and a simplified
(Cook and Lawless, 2007) version of (3) with at risk indicator Ȳ A

i (t):

m∑
i=1

Ȳ A
i (t){dNi1(t)− dR1(t)} .

Taking the expectation of the contribution from individual i under completely independent censoring,
we obtain

E[Ȳ A
i (t){dNi1(t)− dR1(t)}] = E[Ȳ A

i (t){P (Yi1(t) = 1)λ1(t) dt− dR1(t)}] = 0 (12)

where the expectations and probabilities are computed based on the full model given in Section 2
under the assumptions in (10) and (11). Equation (12) has solution

dRA
1 (t) = P (Yi1(t) = 1)λ1(t) dt (13)

and we note that the estimand RA
1 (t) =

∫ t
0
dRA

1 (s) is the true mean function for the counting process
{Ni1(u), 0 < u}. Hence, the standard Nelson-Aalen estimator with RSD-A is consistent for the
cumulative mean function under independent right censoring (Lawless and Nadeau, 1995; Nelson,
1995). We note however that the estimator R̂A

1 (t) will be asymptotically biased (conservatively) for
the cumulative intensity (rate) function Λ1(t) =

∫ t
0
λ1(s)ds and if P (Yi1(t) = 1) is small (i.e. if there

is a high probability of being in the exacerbation state), the bias may be appreciable.
For illustration, we consider a particular parametric setting with λ1(t) = 2 and independently and

identically distributed gap timesWik ∼ Gamma(2, λ2) withE(Wik) = 2/λ2. We derive an expression
of P (Yi1(t) = 1) in Appendix A, where we show that as t ↑ ∞, the probability P (Yi1(t) = 1)
converges to λ2/(2λ1 + λ2). Figure 3 displays the cumulative intensity Λ1(t) = 2t and the limiting
value of the Nelson-Aalen estimator RA

1 (t) and illustrates that the asymptotic bias becomes larger
(more negative) with increasing t (left panel) and as the mean sojourn time in the exacerbation state
increases (right panel).



On estimands arising from misspecified semiparametric rate-based analysis of recurrent episodic conditions 8

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
RSD-A

C
U

M
U

L
A

T
IV

E
 F

U
N

C
T

IO
N

TIME, t

LIMITING VALUE OF NA ESTIMATOR

TRUE CUMULATIVE RATE FUNCTION

0.0 0.5 1.0 1.5 2.0

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

RSD-A

A
S

Y
M

P
T

O
T

IC
 B

IA
S

, 
R

1A
(2

)−
Λ

1
(2

)

MEAN EPISODE DURATION, E(Wik)

Figure 3: The limiting values and the asymptotic bias of Nelson-Aalen estimator under the RSD-A
setting as a function of t with E(Wik) = 0.25 (left panel) and as a function of E(Wik) at t=2 (right
panel) at fixed values of λ01 = 2, C=2, and 20% random censoring

4.1.2 ESTIMATION IN THE REGRESSION SETTING

Here, we consider an underlying model given by (10) and (11) with λi1(t) = λ01(t) exp(xiβ1). Note
that we use β1 to represent the coefficient in the two-state model to distinguish it from the parameter
γ1 in the working rate-based model. Since the proportional rate model with RSD-A does not account
for the duration of the exacerbation episodes, the limiting value of γA1 will in general differ from β1

and we explore this here.
We consider the setting of a randomized clinical trial where Xi is a Bernoulli treatment indi-

cator with P (Xi = 1) = 0.5. To compute the limiting value γA1 based on (8), we need to eval-
uate the associated functions. Based on this formulation, s(k,A)(u) = E{Ȳ A

i (u)Xk
i dNi1(u)} and

s(k,A)(γ1, u) = E{Ȳ A
i (u)Xk

i exp(Xiγ1)} for k = 0, 1. The explicit forms are

s(0,A)(u) =
1∑

x=0

P (Ȳi1(u) = 1|Xi = x)P (Xi = x)λ01(u) du exp(xβ1) (14)

and
s(1,h)(u) = P (Ȳi1(u) = 1|Xi = 1)P (Xi = 1)λ01(u) du exp(β1) (15)

as well as

s
(0,A)
1 (γ1, u) =

1∑
x=0

P (Yi(u) = 1)P (Xi = x) exp(xγ1)

and
s

(1,A)
1 (γ1, u) = P (Xi = 1)P (Yi(u) = 1) exp(γ1) .

If we solve (8) based on this specification, we obtain

γA1 = β1 + log

(∫∞
0
P (Ȳi1(u) = 1|Xi = 1) du∫∞

0
P (Ȳi1(u) = 1|Xi = 0) du

)
, (16)

where the particular result will depend on further details of the model specification.
Again, we consider a particular parametric setting in more detail for illustration. We assume a time

homogeneous a multiplicative intensity-based regression model with λi1(t|xi) = λ01 exp(xiβ1) for
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the onset of episodes, and thatWik|xi ∼ Gamma(2, λ02 exp(xiβ2)) whereE(Wik|xi) = 2/(λ02 exp(xiβ2))
is the mean episode duration. In addition to the baseline functions, the magnitude of β1 and β2 will
determine γA1 and the robust covariance matrix A−1(γA1 )B(γA1 )A−1(γA1 ); see Appendix B. Here, we
set λ01 = 2, β1 = log(0.75) and β2 = log(1.25). We set A = 2 and take Di to be exponentially
distributed to give 20% random censoring. Figure 4(a) shows that the asymptotic bias γA1 − β1 in-
creases as the mean duration of the exacerbation episodes increases. The decreasing and negligible
asymptotic bias associated with shorter mean durations of episodes arises since this approaches the
setting in which the events are instantaneous and the estimating functions are valid. The limiting bias
is plotted as a function of β2−β1 in Figure 4(b) in the setting whereE(Wik|Xi = 0) = 0.25, λ02 = 20
and β1 = log(0.75). It is apparent that the sign of bias for the coefficients depends on the difference
between β1 and β2. If treatment reduces the risk of an episode and shortens the duration of symptoms,
the misspecification of the risk set will lead to an underestimation of the treatment effect on the true
risk of symptomatic episodes.
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Figure 4: The asymptotic bias of a coefficient under the AG model with RSD-A as a function of
E(Wik|Xi = 0) (panel a), and β2 − β1 (panel b) at fixed values of λ01 = 2, and β1 = log(0.75) with
administrative censoring time A = 2 and 20% random censoring

4.1.3 SIMULATION STUDIES

Simulation studies were conducted to examine the empirical bias and the performance of the ro-
bust variance estimator for rate-based analyses under misspecification of the risk set. The data are
generated according to the two-state model of Section 2. We are primarily interested in the perfor-
mance of the estimators from a marginal rate-based model with the original formulation (see Section
3.1) using RSD-A and RSD-B to correspond to the common ad hoc approach for dealing with the
duration of the episodes. We let Xi represent a treatment indicator which is Bernoulli distributed
with P (Xi = 1) = 0.5. We set λ01 = 2 and β1 = log(0.75), where λi1(t) = λ01 exp(xiβ1),
E{Wik|Xi = 0} = 0.1, 0.25, or 0.5 where Wik|xi ∼ Gamma(2, λ02 exp(xiβ2)). We set the admin-
istrative censoring time to A = 2 and generate an exponentially distributed drop-out time Di such
that P (Di < A) = 0.20; the net censoring time is Ci = min(A,Di). We generate Si1|xi as exponen-
tial with hazard λ01 exp(xiβ1)). If Si1 > Ci, then this individual completed their follow-up without
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experiencing any exacerbation episodes; otherwise, we generate Wi1|xi ∼ Gamma(2, λ02 exp(xiβ2))
and compute Ti1 = Si1 + Wi1 as the termination time of the first episode. If Ti1 > Ci, then the
process is terminated and the resolution time of the first episode for this subject is censored at Ci and
otherwise we take Ti1 = Si1 + Wi1. For each k > 1 with Ti,k−1 < Ci, we generate the start time for
the kth episode as Sik|xi, Sik > Ti,k−1 as exponential with rate λ01 exp(xiβ1) and left-truncation time
Ti,k−1. If Sik > Ci, we censor the onset time of the kth episode at Ci but if Sik < Ci, we simulate
the duration of the kth episode as Wik|xi ∼ Gamma(2, λ02 exp(xiβ2)) so that the termination time of
this episode is Tik = Sik + Wik. If Tik < Ci, then the simulation process continues for subsequent
episodes, but otherwise the process terminates and the resolution time of the kth episode is censored
at Ci. We generate nsim = 1000 samples of size m = 1000 each and report the results in Table 1 for
analyses under both RSD-A and RSD-B.

The results show very good agreement between the asymptotic and empirical biases in all settings.
Estimators based on RSD-B perform uniformly well in terms of bias and empirical coverage. Note
that this model is compatible with the working Markov assumption and so the robust variance is not
required; the naive and robust standard errors agree very well with the empirical standard error. As
expected from the asymptotic calculations, the empirical bias of the estimated regression coefficients
under RSD-A is positive when β1 < β2. The average treatment effect under RSD-A is attenuated by
the positive treatment effect for the resolution of episodes, and when β1 = β2, the empirical bias is
low. Interestingly, the use of a robust standard error can induce lower empirical coverage probabilities
than a naive standard errors that are used since, here, robust standard errors may be smaller than the
naive standard error; see Appendix C for an explanation.

4.2 MISSPECIFICATION OF THE RISK SET UNDER HETEROGENEITY AND DEPENDENCE

Here, we generalize the underlying two-state process to accommodate unexplained between-individual
variation in the risk of symptomatic episodes and their duration through the introduction of random
effects. Suppose Ui = (Ui1, Ui2)′ is a bivariate random effect for an alternating process so that under
the assumption of independent censoring, the conditional intensity functions (1) take the form

lim
∆t↓0

P (∆N̄i1(t) = 1|H̄i(t), Ui = ui)

∆t
= ui1Ȳi1(t)λi1(t) ,

and

lim
∆t↓0

P (∆N̄i2(t) = 1|H̄i(t), Ui = ui)

∆t
= ui2Ȳi2(t)λi2(Bi(t)) ,

where Uij is gamma distributed with E(Uij) = 1 and Var(Uij) = φj, for j = 1, 2, and a bivariate
density function g(Ui) is obtained through a copula model (Joe, 1997).

4.2.1 MARGINAL RATE AND MEAN FUNCTION ESTIMATION

In the absence of covariates, we assume λi1(t|Hi(t), Ui = ui) = ui1λ1(t) and retain the semi-Markov
form of the 2 → 1 intensity given Ui = ui, with Wik|ui2 ∼ Gamma(2, ui2λ2). Considering the
contribution from a single individual to the estimating equation

m∑
i=1

Ȳ h
i (t){dNi1(t)− dR1(t)} = 0 ,

we write
E[Ȳ h

i (t)E{dNi1(t)− dR1(t)|Ȳ h
i (t) = 1}] = 0 .
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If h = A, then Ȳ A
i (t) = Yi(t) and since censoring is conditionally independent of the event process,

dRA
1 (t) solves

E[Yi(t){E(Ui1|Yi1(t) = 1)P (Yi1(t) = 1)λ1(t)dt− dR1(t)}] = 0

to give dRA
1 (t) = E(Ui1|Yi1 = 1)P (Yi1(t) = 1)λ1(t)dt. If h = B, on the other hand, since Ȳ B

i (t) =
Yi(t)Yi1(t), we write

E[Yi(t){E(Ui1|Yi1(t) = 1)P (Yi1(t) = 1)λ1(t) dt− P (Yi1 = 1)dR1(t)}] = 0

with solution dRB
1 (t) = E(Ui1|Yi1(t) = 1)λ1(t)dt. Note that

P (Yi1(t) = 1) =

∫ ∞
0

∫ ∞
0

P (Yi1(t) = 1|ui) dG(ui)

with dG(ui) = g(ui)dui1dui2, where we obtain P (Yi1(t) = 1|ui) from (A.2) or (A.3) in Appendix
A by replacing λ01 and λ02 with ui1λ1 and ui2λ2, respectively, and considering only the case with
Xi = 0. We then compute E(Ui1|Yi1(t) = 1) as∫ ∞

0

∫ ∞
0

ui1g(ui|Ȳi1(t) = 1)dui1dui2 =

∫ ∞
0

∫ ∞
0

ui1
P (Yi1(t) = 1|ui)
P (Yi1(t) = 1)

dG(ui) .

Figure 5(a) shows the limiting value of cumulative rate function estimate under RSD-A (left panel)
and RSD-B (right panel) over (0, 2] with 20% random censoring, λ1(t) = λ1 = 2 andE(Wik) = 0.25;
the cumulative baseline rate is Λ1(t) = λ1t. Figure 5(b) shows the asymptotic bias of the cumulative
rate function estimates at t = 2 as a function of the mean sojourn time in the exacerbation state. In
both settings, we assume that Uij is gamma distributed with mean 1 and variance φj = 0.4 for j = 1, 2
and we link Ui1 and Ui2 with the Gaussian copula (Nelsen, 2006) having Kendall’s τ = −0.25, 0,
and 0.25. Here, the cumulative mean function is not equal to the cumulative intensity function due
to symptom duration. We note that RA

1 (2) and RB
1 (2) are both smaller than the true value of the

cumulative rate function Λ1(2) and the bias decreases as Kendall’s τ increases; a strong positive
association between Ui1 and Ui2 implies that the duration of exacerbations tends to decrease as the risk
of exacerbations increases. As the mean sojourn time for exacerbations increases, the bias increases
in both RSD-A and RSD-B, and RSD-B yields estimators with smaller bias than RSD-A. The Nelson-
Aalen estimate with RSD-B shows a little departure from the true cumulative baseline rate where the
bias arises because of the heterogeneity and dependence between random effects for the alternating
two-state process.

4.2.2 ESTIMATION IN THE REGRESSION SETTING

Here, we consider the regression setting when the underlying two-state model features heterogene-
ity and process dependence through a copula. We assume λi1(t|ui1, xi) = ui1λ01 exp(xiβ1) and
Wik|ui2, xi ∼ Gamma(2, ui2λ02 exp(xiβ2)). We again consider a randomized clinical trial where Xi

is Bernoulli with P (Xi = 1) = 0.5. Then, under a working model dRi1(t) = dR01(t) exp(xiγ1),
the limiting values of the regression coefficient estimators are again obtained by solving (8). The
calculations required are analogous to those of Section 4.1.2 and 4.2.1 and are omitted here. We note,
however, that we can simplify γA1 here as

γA1 = β1 + log

(∫∞
0
P (Ȳi1(u) = 1|Xi = 1)E(Ui1|Yi1(u) = 1, Xi = 1)du∫∞

0
P (Ȳi1(u) = 1|Xi = 0)E(Ui1|Yi1(u) = 1, Xi = 0)du

)
.
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(a) Setting: λ01 = 2, E[Wik] = 0.25, φ1 = φ2 = 0.4 with the Gaussian copula and C = 2, and 20%
random censoring.
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(b) Setting: λ01 = 2, φ1 = φ2 = 0.4 with the Gaussian copula andC = 2, and 20% random censoring.

Figure 5: The limiting value of the Nelson-Aalen estimate and the true cumulative baseline hazard
under dependence models arising from correlated random effects.

The limiting value asvar(
√
m(γ̂h1 − β1)) = A−1(γh1 )B(γh1 )A−1(γh1 ) which is estimated by

Â−1(γ̂h1 ) B̂(γ̂h1 ) Â−1(γ̂h1 ) as in Section 3.2. Figure 6 displays the asymptotic bias of regression coef-
ficient γA and γB when the marginal rate-based model is fitted. We set λ01 = 2, β1 = log(0.75),
consider φ1 = φ2 = 0.4, and let A = 2 denote an administrative censoring time with an exponential
random censoring time giving 20% early loss to follow up. In Figure 6(a), we see that the larger
the mean sojourn time in the exacerbation state, the larger the resulting bias with the estimator from
RSD-A incurring the larger bias. In Figure 6(b), the asymptotic bias is expressed as a function of
β2 − β1, the difference of the treatment effects of the conditional transition intensities for the case
where E(Wik|Xi = 0) = 0.25. Here, we see that the resulting bias can be positive or negative de-
pending on the magnitude of β2−β1; again, RSD-A yields a estimator which is more sensitive to this
type of misspecification. In Figure 6(c), where E(Wik|Xi = 0) = 0.25 and β2 = log 1.25, we see
that in the setting considered there is a modest impact of the association between the random effects
(as reflected by Kendall’s τ ) on the asymptotic bias; the use of RSD-A again yields the more sensitive
estimator.
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(a) Asymptotic bias as a function of mean (control) episode durationE(Wik|Xi = 0); β2 = log(1.25).
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(b) Asymptotic bias as a function of difference β2 − β1; E(Wik|Xi = 0) = 0.25 and τ = 0.25.
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(c) Asymptotic bias as a function of Kendall’s τ ; E(Wik|Xi = 0) = 0.25 and β2 = log(1.25).

Figure 6: Plots of the asymptotic biases γA1 −β1 (left panels) and γB1 −β1 (right panels) under marginal
rate-based analyses; we set λ01 = 2, β1 = log(0.75), φ1 = φ2 = 0.4 and consider administrative
censoring at A = 2 with 20% random censoring due to early withdrawal.
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Here, we describe further simulation studies based on the model incorporating correlated ran-
dom effects and we investigate finite sample properties of estimators based on the different risk set
definitions, extent of the heterogeneity and the dependence between the alternating processes. The
data are generated as in Section 4.1.3 but when generating Xi, we also generate Ui = (Ui1, Ui2)′

using a copula with marginal gamma distributions with E(Uij) = 1 and VAR(Uij) = φj = 0.40,
j = 1, 2. We use the Gaussian copula (Nelsen, 2006) to model the dependence between the ran-
dom effects, and set Kendall’s τ=-0.25, 0.00, and 0.25. We set λ01 = 2 and β1 = log(0.75), where
λi1(t|Hi(t), ui) = ui1λ01 exp(xiβ1), and E(Wik|Xi = 0) = 0.1, 0.25, and 0.5, where Wik|ui2, xi ∼
Gamma(2, ui2λ02 exp(xiβ2)). For the kth episode, we generate the onset time as Sik|ui1, xi, Sik >
Ti,k−1 which was taken to be a truncated exponential random variable with rate ui1λ01 exp(xiβ1),
and the duration is generated as Wik|ui2, xi ∼ Gamma(2, ui2λ02 exp(xiβ2)) resulting in potential
resolution time Tik = Sik + Wik. The administrative censoring time was set at A = 2 and as in
Section 4.1.3 an exponential drop-out time Di was generated to give 20% random censoring; again,
Ci = min(A,Di) was the right censoring time. We set m = 1000 and generated a total of 1000
samples. The results are reported in Table 2 under the RSD-A and RSD-B setting.

Table 2 shows that the means of estimated coefficients are almost equal to their limiting values.
In this setting, the impact of using an incorrect definition of the risk set can be appreciable, consistent
with the result in Table 1, but there is little effect of a dependence between the random effects under
RSD-B. As we observed in Figure 6, the bias decreases as Kendall’s τ increases, and the longer the
mean sojourn time and the farther β2 is from β1, the bigger the bias. There are differences between the
naive standard errors and robust standard errors due to the model misspecification, but there is good
agreement between the empirical standard error and the average robust standard error compared to the
agreement between the average naive standard error and the empirical standard error. Under RSD-B,
the robust variance estimates performed fairly well compared to the naive variance estimates although
the empirical coverage probabilities are not acceptable when E(Wik|Xi = 0) is appreciable. Under
RSD-A, serious bias and low coverage probabilities are obtained. As a result, we conclude that, in
regression settings, it is important to take into account the duration of symptoms when specifying the
risk set.

5 IMPACT OF THE EPISODE DURATION DISTRIBUTION ON POWER

Here, we explore the impact of misspecification of the risk set on study power. We consider the
design of a randomized trial with recurrent events where at the design stage we assume the events are
generated by a mixed Poisson process and that the sample size is computed based on the specification
λi1(t|Hi(t), ui1) = ui1λ01 exp(xiβ1) with Ui1 gamma distributed with mean 1 and variance φ1 (Cook
and Lawless, 2007). If we wish to test if an intervention has an effect on event occurrence, we
typically test H0: β1 = β10 = 0 vs. HA: β1 6= β10 = β1A with β1A the effect of interest. Here,
we study the impact on power of the duration of exacerbation episodes as well as the association
between the onset of exacerbation episodes and their duration. As previous sections, we consider a
semiparametric rate-based model with a robust standard error under RSD-A and RSD-B with analysis
here based on a two-sided Wald test.

We set λ01 = 2, φ1 = 0.4, β10 = 0 and β1A = log 0.75 and consider a two-sided test with
size 5% and planned a study with 80% power to pick up the effect of interest; these specifications
correspond to type I and II error rates denoted by α1 = 0.05 and α2 = 0.20, respectively. With
balanced randomization, we have P (Xi = 1) = P (Xi = 0) = 0.5. The sample size is computed
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under the assumption of a mixed Poisson model and so we have

m ≥

zα1/2

√
asvar0(

√
m(β̂1 − β10)) + zα2

√
asvarA(

√
m(β̂1 − β1A)

β1A


2

, (17)

where zp is the upper pth percentile of the standard normal distribution and asvar0(·) and asvarA(·)
denote the asymptotic variance under the null and alternative hypotheses respectively with

asvar(
√
m(β̂1 − β1)) =

1∑
x=0

{
P (Xi = x)E

[
λ01 exp(xβ1)Ci

1 + φ1λ01 exp(xβ1)Ci

]}−1

.

We next conduct simulation studies to investigate the impact of risk set misspecification and het-
erogeneity on power when the sample size is calculated based on a mixed Poisson model (17) with
E{N̄i1(2)} = 4, φ1 = 0.4 and there is 20% random censoring. We simulate data sets of the corre-
sponding sample size with each individuals data arising from a conditionally Markov/semi-Markov
model with correlated random effects arising from the earlier copula model. We set the parameters
of this model to ensure E{N̄i1(2)} = 4 and φ1 = φ2 = 0.4 to be roughly compatible with the design
assumptions made under the mixed Poisson formulation. We consider different mean sojourn times
for exacerbation episodes in the control arm with E(Wik|Xi = 0) = 0.1, 0.25, or 0.5 and Kendall’s
τ = −0.25, 0, or 0.25. For each data set, we fit the AG model with RSD-A and RSD-B and tested
the null hypothesis of no treatment effect via a two-sided Wald test with robust standard errors. A
total number of 2000 samples were generated according to the required sample size and the empir-
ical rejection rates (REJ%), defined as the percentage of replicates leading to rejection of the null
hypothesis, were computed and summarized in Table 3.

Table 3: Empirical rejection rates for rate-based tests of treatment effects on the onset of exac-
erbations where the sample size was calculated based on the mixed Poisson model with A = 2
and 20% random censoring, E{N̄i1(2)|xi = 0} = 4, φ1 = 0.4, β10 = 0, and β1A = log(0.75);
in the two-state data generating model, we consider E(Wik|Xi = 0) = 0.10, 0.25, and 0.50,
φ2 = 0.4 and Kendall’s τ = −0.25, 0, or 0.25; nsim = 2000

τ=-0.25 τ = 0 τ = 0.25

β2 E(Wik|Xi = 0) RSD-A RSD-B RSD-A RSD-B RSD-A RSD-B

log(0.75) 0.10 92.1 81.5 88.2 79.4 85.8 79.1
0.25 96.8 80.3 93.1 79.0 90.5 78.0
0.50 97.2 72.4 95.4 72.3 92.3 73.2

0 0.10 77.4 77.8 73.5 77.1 72.6 77.0
0.25 66.5 73.5 60.7 74.1 59.5 75.5
0.50 34.5 64.4 34.2 67.7 30.9 67.8

log(1.25) 0.10 60.0 72.8 61.2 75.0 61.3 76.6
0.25 28.3 68.7 29.7 69.5 30.6 73.1
0.50 5.9 58.6 5.1 61.2 5.3 62.9
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When β2 = 0, it can be seen that the empirical power is lower than the nominal level when the
mean duration of the episodes is low but it becomes appreciable as the mean durations increase. The
effect of the intervention on the duration of the episodes is apparent in the rate-based analysis of
the onset times where higher power is realized when β2 < 0 and a further reduction is seen when
β2 > 0. These two effects are far greater under RSD-A than they are under RSD-B. There is a
modest sensitivity of power to the value of Kendall’s τ and again this appears to be greater for RSD-
A compared to RSD-B. Figure 7 shows power curves with the same setting as the empirical study.
The effect of Kendall’s τ on power relies on the mean sojourn time in the exacerbation-free state
and the value of β2. When β1 6= β2, the increase in the mean sojourn time in the exacerbation-state
reduces power, however, when β1 = β2, power is greater than 80% with RSD-A. The loss in power
with RSD-B is smaller than the one with RSD-A when β1 6= β2.

6 APPLICATION TO A HERPES SIMPLEX TRIAL

Herpes simplex infection leads to recurrent symptomatic episodes which typically last two to four
weeks in duration. A multicenter open-label randomized two-period crossover trial was conducted to
compare the efficacy of the use of valacyclovir defined as suppressive therapy versus episodic therapy
(Romanowski et al., 2003). Suppressive therapy was valacyclovir at a dosage of 500 mg once daily
and episodic therapy was valacyclovir at a dosage of 500 mg twice daily for 5 days commencing upon
the outbreaks of symptoms. If herpes outbreaks occurred in the suppressive arm, patients received
episodic therapy (the 500 mg twice daily) for 5 days and returned to suppressive therapy after 5
days. Out of the total of 225 patients enrolled, 202 completed the two 24-week periods of the study.
After the first period of the study, patients switched another therapy so that each patient received both
treatments for the 48-week study period. The mean of the total number of outbreaks for the first period
is 4.02 with the standard error of 3.90. The mean symptom duration was 24.1 days with a minimum
of 1 day and a maximum of 175 days. In this paper, we only consider the first 24-week study period
and so each patient yielded data on either suppressive or episodic therapy. We also include gender
(female vs male) and virus type (HSV1 or HSV2) as covariates in addition to treatment (episodic
therapy vs suppressive therapy). In Table 4, we report on analyses of herpes simplex study using the
semiparametric rate-based analysis with RSD-A and RSD-B, respectively.

Table 4: Analysis of occurrence of herpes simplex using RSD-A and RSD-B based on
the Andersen-Gill model

RSD-A (Ȳ A
i (t) = Yi(t)) RSD-B (Ȳ B

i (t) = Yi(t)Yi1(t))

Covariate EST SEa SEb pc EST SEa SEb pc

Treatment -1.875 0.200 0.240 < 0.001 -1.871 0.145 0.186 < 0.001
Sex -0.189 0.135 0.173 0.276 -0.303 0.115 0.166 0.067
Virus Type 0.159 0.121 0.146 0.277 0.071 0.107 0.148 0.632

a Naive standard error
b Robust standard error
c p-values based on robust standard error

Treatment was found to have a significant effect on the occurrence of exacerbations under both
RSD-A (RR = 0.15; 95% CI: 0.09, 0.25; p < 0.001) and RSD-B (RR = 0.15; 95% CI: 0.11, 0.22;
p < 0.001) with the two estimates in very close agreement. The estimate of the effect of gender
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Figure 7: Power curves based on RSD-A (left panel) and RSD-B (right panel) with Kendall’s τ -0.25,
0, and 0.25 where the sample size is calculated based on the mixed Poisson model with E{N̄i1(2)} =
4, β10 = 0, β1A = log(0.75), φ1 = 0.4, φ2 = 0.4.
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with RSD-A (RR = 0.83; 95% CI: 0.57, 1.19; p = 0.276) differed from the one with RSD-B (RR
= 0.74; 95% CI: 0.53, 1.02; p = 0.067). In addition, there are differences in the estimates of the
effect of virus type between RSD-A (RR = 1.17; 95% CI: 0.84, 1.65; p = 0.277) and RSD-B
(RR = 1.07; 95% CI: 0.80, 1.43; p = 0.632). We also note that the naive standard errors and
robust standard errors are not identical. Figure 8 contains a plot of the estimated cumulative baseline
rate function from the regression model based on RSD-A and RSD-B. The slope of the cumulative
baseline rate function with RSD-B is greater than the one with RSD-A, suggestive of a higher rate
for the occurrence of outbreaks with RSD-B than RSD-A (Cook and Lawless, 2007). Note that,
with RSD-A, the cumulative baseline rate function can be naively interpreted as an estimate of the
cumulative baseline mean function.
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Figure 8: Cumulative baseline rate function with RSD-A (Inclusion) and RSD-B (Exclusion)

7 DISCUSSION

In this paper, we have pointed out that estimators of mean function and covariate effects from the naive
use of rate-based models (Andersen et al., 1993) are sensitive to the handling of risk-free periods as
well as strength of the association between the onset and duration of episodic events. Misspecification
of at risk indicators can lead to inconsistent estimators of regression coefficients and the use of ro-
bust standard errors does not guarantee protection against misspecification of the duration dependent
processes. The biases we refer to for the mean function are specified in relation to the cumulative in-
tensity for the onset of episodes, or the actual mean function reflected the expected number of events
over time. In the regression setting, we refer to the bias of estimators of the regression coefficient for
the transition intensity for the onset of episodes.

Full specification of the intensities for an alternating two-state process is challenging in practice
and it is impossible to achieve robustness in this framework since correct model specification is re-
quired to ensure that the partial likelihood estimating equations are unbiased. Causal inference can
be based on the expected number of events at a landmark time or based on proportional rate function
models but there is a tension between the need for full specification of models to advance scientific
understanding and the need for simple models supporting causal conclusions. Lee and Cook (2018)
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develop a model for a mixed two-state process for characterizing recurrent episodic conditions which
features a Markov time-scale for the onset of exacerbations and a semi-Markov time scale for the du-
ration of the exacerbations. Correlated random effects enable one to assess the need to accommodate
heterogeneity and allow for a dependence between the sojourn times in the exacerbation state and the
risk for the onset of events.

When mortality rates are appreciable, as is the case among individuals with advanced chronic
obstructive pulmonary disease, it is considerably more challenging to model the onset and duration of
exacerbations and summarize the effects of interventions. In the multistate framework, an absorbing
state representing death can be added, and random effects can be considered in the intensities for
death. However, expressing treatment effects robustly on the onset of exacerbations is very challeng-
ing. Much work has been carried out in this area for recurrent transient events (Cook and Lawless,
1997; Ghosh and Lin, 2000, 2002) but utility-based analyses may be preferable when events have a
duration associated with them (Cook et al., 2003).

An alternative approach in these more complex settings is to focus on estimation of state occu-
pancy probabilities using nonparametric methods. Cook and Lawless (2018) discuss this for one-
sample problems and consider marginal regression models for state occupancy probabilities based on
direct binomial regression (Scheike et al., 2008). Utility-based analyses are also of possible value
(Cook et al., 2003; Cook and Lawless, 2018). These and other marginal quantities, such as features of
state entry time or sojourn time distributions, may offer a more convenient basis for causal inference
since they are not defined inherently in terms of conditional probabilities. As always, the choice of the
estimand must be made based on interpretation and it must be meaningful for the problem at hand. In-
verse probability weighting can often be useful to correct for some selection biases and confounding,
but in complex settings even use of such methods can be challenging.
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APPENDIX A: COMPUTATION OF STATE OCCUPANCY PROBABILITIES

P (Yi1(t) = 1|xi) is difficult to calculate under the assumption of semi-Markov model, especially
when the distribution of the duration of exacerbations is not exponential. Here, we decompose state
2 into two states to exploit the property of Gamma distribution which can be expressed as a sum of
exponential distribution. We define a new state process {Z̄(t), 0 < t} on the extended state space
{1, 2A, 2B} (Cook et al., 2009) and let Z(t) = 1 if Z̄(t) = 1 and Z(t) = 2 if Z̄(t) = 2A or
Z̄(t) = 2B, as shown in Figure A.1 . Then, P (Yi1(t) = 1|xi) can be expressed as

P (Z(t) = 1|Z(0) = 1, xi) = 1−
∑

r=2A,2B

P (Z̄(t) = r|Z̄(0) = 1, xi) = P (Z̄(t) = 1|Z̄(0) = 1, xi).

Figure A.1 : State diagram for recurrent exacerbations with extended Markov models

The term P (Z̄(t) = 1|Z̄(0) = 1, xi) is calculated by the transition probability matrix P(0, t|xi) =
P(t|xi) = [pij(t|xi)], for i, j = 1, 2A, 2B. Here, we consider the time-homogeneous case. We assume
that the duration of the kth exacerbation is Wik = Wik2A + Wik2B where Wikl ∼ Exponential(λi2)
for l = 2A, 2B and Wik2A ⊥ Wik2B, so Wik ∼ Gamma(2, λi2). Under the multiplicative model, we
let λi1 = λ01 exp(xiβ1) and λi2 = λ02 exp(xiβ2). It is noted that there is a common covariate for the
development and resolution of exacerbations. The time-homogeneous transition intensity matrix of
{Z̄(t), 0 < t} on state space {1, 2A, 2B} is

Q =

−λi1 λi1 0
0 −λi2 λi2
λi2 0 −λi2

 .
We let P12A(t) = P (Z̄(t) = 2A|Z̄(0) = 1, xi), P12B(t) = P (Z̄(t) = 2B|Z̄(0) = 1, xi), and
P11(t) = P (Z̄(t) = 1|Z̄(0) = 1, xi). Using the Kolmogorov forward equations (Cox and Miller,
1965), we note

P ′12A(t) = −λi2P12A(t) + λi1P11(t)

P ′12B(t) = λi2P12A(t)− λi2P12B(t)

P ′11(t) = λi2P12B(t)− λi1P11(t)

P12A(t) + P12B(t) + P11(t) = 1, P11(0) = 1 (A.1)

By solving the systems of equation of (A.1), we obtain P11(t) if the term λi1 − λi2/4 < 0 as

P11(t) =
(λi2)2

a2 + b2
+ exp(−at) cos(bt)

(
2λi1λi2
a2 + b2

)
+ exp(−at) sin(bt)

(
2λi1λi2(λi2 − λi1)

(a2 + b2)2b

)
, (A.2)

where a = λi1/2 + λi2 and b =
√
λi1λi2 − (λi1)2/4. If λi1 − λi2/4 > 0 it can be written as follows

using Euler’s formula,

P11(t) =
(λi2)2

a2 − (b′)2
+ exp(−at) cosh(b′t)

(
2λi1λi2
a2 − (b′)2

)
(A.3)

+ exp(−at) sinh(b′t)

(
2λi1λi2(λi2 − λi1)

(a2 − (b′)2)2b′

)
,
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where b′ = bi. Likewise, if λi1 − λi2/4 < 0, P21(t) is given as

P21(t) =
λi2

2λi1 + λi2
− λi2

2λi1 + λi2
exp(−at) cos(bt)− 2λ2

i2 + λi1λi2
(2λi1 + λi2)2b

exp(−at) sin(bt)

else

P21(t) =
λi2

2λi1 + λi2
− λi2

2λi1 + λi2
exp(−at) cosh(b′t)− 2λ2

i2 + λi1λi2
(2λi1 + λi2)2b′

exp(−at) sinh(b′t)

APPENDIX B: CALCULATION OF THE ASYMPTOTIC BIAS OF γ̂A1

Here, we derive

γA1 = β1 + log

(∫∞
0
P (Ȳi1(u) = 1|Xi = 1)du∫∞

0
P (Ȳi1(u) = 1|Xi = 0)du

)
in (16). By plugging s(0,A)(u), s(1,A)(u), s(0,A)(γ1, u), and s(1,A)(γ1, u) into (8), we have∫ ∞

0

{
P (Ȳi1(u) = 1|Xi = 1)λ01 exp(β1)

− exp(γ1)

1 + exp(γ1)

(
P (Ȳi1(u) = 1|Xi = 1)λ01 exp(β1) + P (Ȳi1(u) = 1|Xi = 0)λ01

)}
du = 0.

Then,

exp(γ1)

1 + exp(γ1)
=

∫∞
0
P (Ȳi1(u) = 1|Xi = 1)λ01 exp(β1)du∫∞

0

(
P (Ȳi1(u) = 1|Xi = 1)λ01 exp(β1) + P (Ȳi1(u) = 1|Xi = 0)λ01

)
du
. (B.1)

We arrange (B.1) in terms of γ1 so that

exp(γ1) = exp(β1)

∫∞
0
P (Ȳi1(u) = 1|Xi = 1)du∫∞

0
P (Ȳi1(u) = 1|Xi = 0)du

,

which has the final form as (16) by taking log() for both sides.

APPENDIX C: DERIVATION OF THE ROBUST COVARIANCE MATRIX

Let dMh
i1(t) = Ȳ h

i (t){dNi1(t)− dR01(t) exp(xiγ1)dt}. Then

A(γ1) = E

[∫ ∞
0

Ȳ h
i (t)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗
2

s(0,h)(γ1, t)2

}
dNi1(t)

]
=
∑
xi

[∫ C

0

P (Xi = xi)P (Ȳ h
i (t) = 1|xi)

{
s(2,h)(γ1, t)

s(0,h)(γ1, t)
− s(1,h)(γ1, t)

⊗
2

s(0,h)(γ1, t)2

}
E(dNi1(t)|xi, Ȳ h

i (t) = 1)

]
,

B(γ1) = E

[(∫ ∞
0

{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}
dMh

i1(s)

)(∫ ∞
0

{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
dMh

i1(t)

)]
= E

[∫ ∞
0

∫ ∞
0

{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
dMh

i1(s)dMh
i1(t)

]
= Bh

1 +Bh
2 − 2Bh

3 +Bh
4 , (C.1)
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where

Bh
1 =

∑
xi

∫ C

0

P (Xi = xi)P (Ȳ h
i (t) = 1|xi)

{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}2

E(dN2
i1(t)|xi, Ȳ h

i (t) = 1),

Bh
2 =

∑
xi

∫ C

0

∫ C

0

P (Xi = xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1|xi)
{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
× E(dNi1(s)dNi1(t)|xi, Ȳ h

i (s) = 1, Ȳ h
i (t) = 1),

Bh
3 =

∑
xi

∫ C

0

∫ C

0

P (Xi = xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1|xi)
{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
× E(dNi1(s)|xi, Ȳ h

i (s) = 1, Ȳ h
i (t) = 1)dRh

01(t)exiγ1 ,

and

Bh
4 =

∑
xi

∫ C

0

∫ C

0

P (Xi = xi)P (Ȳ h
i (s) = 1, Ȳ h

i (t) = 1)

×
{
xi −

s(1,h)(γ1, s)

s(0,h)(γ1, s)

}{
xi −

s(1,h)(γ1, t)

s(0,h)(γ1, t)

}
e2xiγ1dR01(s)dR01(t) .

In Section 4.1 and under the assumption of time-homogeneous rate function for the two processes,

E(dN2
i1(t)|xi, Ȳ A

i (t) = 1) = E(dNi1(t)|xi, Ȳ A
i (t)) = P (Yi1(t) = 1|xi)λ01 exp(xiβ1),

and

E(dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1)

= P (Z̄i(s
−) = 1|Z̄i(0) = 1, xi)P (Z̄i(t

−) = 1|Z̄i(s) = 2, xi)λ
2
01 exp(2xiβ1)

for s < t, where P (Yi1(t) = 1|xi) = P (Z̄i(t
−) = 1|Z̄i(0) = 1, xi), and P (Z̄i(t

−) = 1|Z̄i(s) = 2, xi)
is given in Appendix A. In the setting of Section 4.2 with dependent random effects,

E(dN2
i1(t)|xi, Ȳ A

i (t) = 1) = E(dNi1(t)|xi, Ȳ A
i (t) = 1)

=

∫ ∞
0

∫ ∞
0

ui1P (Yi1(t) = 1|ui, xi)λ01(t) exp(xiβ1)dG(ui),

and E(dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1) is given by∫ ∞
0

∫ ∞
0

u2
i1P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 2, xi, ui)λ

2
01 exp(2xiβ1)dG(ui)

for s < t. Moreover

E(dN2
i1(t)|xi, Ȳ B

i (t) = 1) =
E(dN2

i1(t)|xi, Ȳ A
i (t) = 1)

P (Yi1(t) = 1|xi)
,

and

E(dNi1(s)dNi1(t)|xi, Ȳ B
i (s) = 1, Ȳ B

i (t) = 1) =
E(dNi1(s)dNi1(t)|xi, Ȳ A

i (s) = 1, Ȳ A
i (t) = 1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)

for s < t, where E(dNi1(s)|xi, Ȳ B
i (s) = 1, Ȳ B

i (t) = 1) is given by∫∞
0

∫∞
0
ui1g(ui)P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 2, xi, ui)dui1dui2λ01 exp(xiβ1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)
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for s < t or∫∞
0

∫∞
0
ui1g(ui)P (Z̄i(s

−) = 1|Z̄i(0) = 1, xi, ui)P (Z̄i(t
−) = 1|Z̄i(s) = 1, xi, ui)dui1dui2λ01 exp(xiβ1)

P (Yi1(s) = 1, Yi1(t) = 1|xi)

for t < s.
From the asymptotic variance formula under RSD-A, A(γA1 ) = BA

1 and BA
3 = BA

4 , which means
B(γB1 ) = A(γA1 ) +BA

2 −BA
4 . However with RSD-A BA

2 < BA
4 because the term

E{dNi1(s)dNi1(t)|xi, Ȳ A
i (s) = 1, Ȳ A

i (t) = 1}

in BA
2 is the joint conditional probability of a transition from state 1 to 2 at s and t given Xi and the

fact that they are in the exacerbation-free state at both s and t; as a result at least one transition is
required from state 2 to 1 over (s, t). In contrast, RA

01(s) and RA
01(t) in BA

4 only condition on being
in the exacerbation-free state at times s and t separately. So A(γA1 ) > B(γA1 ) and as a result, the
naive standard error is greater than the robust standard error. Thus, robust variance estimates ensure
protection against some forms of model misspecification but not under misspecification of the risk
sets.
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