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Summary

A mixture model is described, which accommodates different Markov processes governing dis-
ease progression in a finite set of latent classes. We give special attention to the setting in which
individuals are examined intermittently and transition times are consequently interval censored. A
score test is developed to identify genetic markers associated with class membership. Simulation
studies are conducted to validate the algorithm, assess the finite sample properties of the estima-
tors, and assess the frequency properties of the score tests. A permutation test is recommended
for settings when there is concern that the asymptotic approximation to the score test is poor. An
application involving progression in joint damage in psoriatic arthritis (PsA) provides illustration
and identifies human leukocyte antigen markers associated with unilateral and bilateral sacroiliac
damage in individuals with PsA.
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1 INTRODUCTION

1.1 LITERATURE REVIEW

Understanding the determinants of disease progression in chronic conditions is key to advancing
scientific understanding, for making prognoses, and in health policy decision making. Multistate
models offer an appealing and powerful framework for modeling disease processes in settings where
the degree of damage can be meaningfully characterized into a finite number of disjoint states. Among
individuals with hepatitis C infection, for example, the extent of liver damage is quantified using a
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five-point scale with state 1 representing no fibrosis, states 2 to 4 representing increasing degrees of
fibrosis and state 5 representing cirrhosis (Sweeting et al., 2006). In diabetic retinopathy, the extent
of damage is measured on an 11-point scale with state 1 representing no damage and state 11 severe
damage; The Early Treatment Diabetic Retinopathy Study Research Group (Sweeting et al., 2006)
reported on a clinical trial evaluating the effect of aggressive control of blood sugar on the rate of
progression through states based on this. Multistate models have also proven useful in characterizing
decline in cognitive function in dementia (Tyas et al., 2007), loss of functional ability in arthritic
conditions (Husted et al., 2007), and progression of immunological disease (Gentleman et al., 1994),
and the development of asymptotic vertebral fractures in patients with osteoporosis (Riggs et al.,
1981) .

Despite careful modeling of available information on such processes, considerable unexplained
variation in disease progression is often evident between individuals. While Markov models provide
a natural and convenient starting point for modeling such processes, generalizations are warranted in
such settings (Aalen, 1987). Satten (1999) considered a conditionally Markov model for a progressive
multistate process where a single non-negative random effect was specified to act multiplicatively
on each transition intensity to account for between-subject heterogeneity; extensions for clustered
progressive processes with correlated random effects unique to each possible transition have also
been developed (Sutradhar and Cook, 2008). Discrete random effect models are also useful with
binary random effect models being among the most common. These accommodate zero inflation
in the context of generalized linear models, with zero-inflated Poisson (Van den Broek, 1995) and
zero-inflated negative binomial models (Yau et al., 2003) receiving the most attention. In the failure
time setting, mixture models have been used to explain the presence of long-term survivors (Farewell,
1982) where interest may lie primarily in identifying covariates associated with membership in the
sub-population of long-term survivors (Farewell, 1977; Kuk and Chen, 1992); while much of this
work has been carried out to deal with right censoring (Sy and Taylor, 2000), more extreme forms of
censoring have also been considered (Lam and Xue, 2005; Cook et al., 2008). Mixture models can
be challenging to fit, so score tests have been developed to assess the need for them in the context of
generalized linear models (Van den Broek, 1995; Deng and Paul, 2000) and failure time settings with
right-censoring (Peng et al., 2001) or current status observation schemes (Jonas et al., 2017).

In the multistate setting, these are often called mover-stayer models in which a sub-population
not at risk for disease progression are considered “stayers” while those who are at risk of progres-
sion are called “movers”. Frydman (1984) developed maximum likelihood methods for this setting
and Fuchs and Greenhouse (1988) outlined an expectation-maximization (EM) algorithm (Demp-
ster et al., 1977) which accommodates censoring. A generalization of the mover-stayer formulation
has also been developed which accommodates intermittent observation schemes (Cook et al., 2002).
Cook et al. (2004) consider multivariate random effects that accommodate a point mass at zero and
a continuous random effect for susceptible individuals. O’Keeffe et al. (2013) explore the use of
random effect models with a mover-stayer inverse Gaussian and a compound Poisson distribution.
Finite mixture models offer a useful generalization of the basic mover-stayer model but less has been
developed in this setting. Here, the target population is envisioned as comprised of several distinct
sub-populations, or classes, and the disease processes are allowed to differ in some ways between
these classes. In general, it will not be known to which class an individual belongs, and so class mem-
bership is represented by a latent variable; in this case, the mixing distribution and the parameters
governing the process dynamics in each class are estimated. The EM algorithm can again be useful
in this setting (Dempster et al., 1977).

In many instances, it is not apparent when a disease process has progressed and so the precise
times of transitions between states are not available. This will be the case in most of the examples
given in the opening paragraph. When the precise state of a multistate process is only available at
periodic assessment times, the number and times of transitions are unknown and resulting data are
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referred to as panel data (Kalbfleisch and Lawless, 1985). Kalbfleisch and Lawless (1985) developed
an efficient algorithm for maximum likelihood estimation under a Markov assumption that is imple-
mented in the msm package by Jackson (2011). Grüger et al. (1991) described the conditions that
need to be satisfied for the observation process to be ignorable and such analyses valid, which are in
effect the sequentially missing at random assumption given by Hogan et al. (2004); see also Cook and
Lawless (2014).

The purpose of this paper is to develop a model and algorithm for fitting a finite mixture of Markov
processes under intermittent observation. To permit the use of this model as a basis for screening a
large number of genetic markers, we develop score tests for marker effects on class membership. The
remainder of this paper is organized as follows. In the next subsection, we introduce the University
of Toronto Psoriatic Arthritis Registry and describe the data that motivates this work. In Section
2, we define notation and describe a model for a finite mixture of Markov processes. Specifically,
we construct the likelihood for the setting where individuals are under intermittent observation and
describe how to estimate the asymptotic covariance matrix for the estimates. Score tests are developed
in Section 3 where their finite sample properties are studied by simulation. An application involving
joint damage in patients with psoriatic arthritis is given in Section 4 and concluding remarks and
topics for further research are given in Section 5.

1.2 MOTIVATING STUDY: SACROILIAC JOINT INVOLVEMENT IN PSORIATIC ARTHRITIS

The University of Toronto Psoriatic Arthritis Clinic is a tertiary referral center for individuals with
PsA, an immunological condition that features both skin and joint involvement. Areas of skin af-
fected have a characteristic red colour with silvery white plaques (Moll and Wright, 1973). Affected
joints may exhibit pain, swelling and stiffness that can ultimately lead to joint damage and reduced
functional ability (Gladman et al., 2005). A registry of patients was created in 1976 to study the dis-
ease course and it has been recruiting and following patients continuously since its inception. Upon
entry to the clinic, patients provide serum samples for genetic testing and undergo a detailed clinical
and radiological examination (Gladman and Chandran, 2010). Follow-up clinical and radiological
assessments are scheduled annually and every 2 years, respectively, in order to track changes in joint
damage (Rahman et al., 1998).

Spondylitis, one of the musculoskeletal manifestations of PsA, is characterized by inflammation
of the sacroiliac (SI) joints, the spine and neck, and reduced lateral range of motion of the back. In
an early study of spondylitis, Hanly et al. (1988) identified 52 of 220 (23.6%) patients with PsA as
having this disease. Scientists are particularly interested in the involvement of SI joints in PsA since
damaged of these joints can have a severe detrimental effect on functional ability and quality of life.
A recent study by Harron et al. (2016) investigated the association between human leukocyte antigen
(HLA) B and C loci and SI joint involvement in a cohort of patients with PsA. These authors used
radiographic evidence of SI involvement to define axial disease defined as the presence of at least
grade 2 radiographic damage (unilateral or bilateral) on a five-point grading scheme (Geijer et al.,
2009). The cross-sectional analysis of Harron et al. (2016), however, did not account for the variable
times patients with PsA may have been at risk for developing damage in the SI joints. The proposed
analysis based on a finite mixture of multistate Markov processes is designed to address this limitation
and thereby provide a valid basis for inferences regarding the effects of HLA markers on risk of SI
joint involvement.

The particular formulation of our model is motivated by the possible sub-types of patients with SI
joint involvement. We aim to identify factors associated with unilateral sacroilitis (i.e. only the left or
right SI joint is involved) and bilateral sacroilitis (i.e. both the left and right SI joint are involved). The
motivation comes from the fact that unilateral sacroilitis is considered to represent a distinct pheno-
type called psoriatic spondylitis whereas bilateral involvement is more likely representing ankylosing
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spondylitis, an arthritic condition primarily affecting the spine. Individuals with ankylosing spondyli-
tis will take time to develop evidence of bilateral involvement, and if a cross-sectional analysis is
carried out based on a sample of individuals with a short disease duration, individuals may be classi-
fied as having unilateral involvement even though they have ankylosing spondylitis. We adopt a finite
mixture model that accommodates a different course (unilateral or bilateral) of the disease in PsA
with the aim of detecting HLA alleles associated with these different courses. We give the details of
the model in the next section.

Figure 1: Plot of assessment times (hatch marks) and the type of joints damage (four types of line seg-
ments) between assessments from onset of PsA for a selected sample of patients from the University
of Toronto Psoriatic Arthritis Clinic.

Figure 1 shows the time course of SI joint damage for a sample of six individuals in the available
dataset. For each individual, the duration of follow-up since disease onset is represented by the length
of the horizontal line and the vertical hatch marks denote the times joints are assessed at clinic visits.
Four different types of line segments are used to convey the damage status of each individual at a
given time with a solid line representing no SI joint involvement, a dashed line representing left side
involvement, a dotted line representing right side involvement, and a dashed-dotted line representing
bilateral involvement. The periods of time where no line segment is drawn are intervals in which
the status is unknown because there was a different damage status for the visit at the left endpoint
than at the right endpoint; since damage is assessed radiologically, the exact times at which damage
occurs is unknown so the transition times are interval censored. We note from Figure 1 that some
individuals develop SI damage shortly after diagnosis with PsA (e.g. individual 1) and some were not
observed to develop damage despite long follow-up (e.g. individual 4). Moreover, some individuals
that develop unilateral SI involvement progress quickly to the bilateral stage (see individuals 3 and
6), while some remain with unilateral involvement until the end of follow-up. The heterogeneity in
the disease course motivates the formulation of a model that accommodates a class with no damage,
two class with persistent unilateral (left or right) damage in alignment with the condition of psoriatic
spondylitis, and a bilateral class corresponding to the condition of ankylosis spondylitis. Figure 2
displays the four multistate processes corresponding to the four latent classes; the definition of the
states with a given number is the same in the four classes. State 0 represents no SI joint damage,
state 1 corresponds to unilateral damage on the left side, state 2 corresponds to unilateral damage on
the right side, and state 3 corresponds to bilateral damage. In class 0, individuals remain free of SI
joint damage, in classes 1 and 2, they will ultimately experience unilateral SI joint damage consistent
with the condition of psoriatic spondylitis, and in class 3, they will experience bilateral involvement
consistent with ankylosing spondylitis. We denote λk` as the intensity for transitions from state k to
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state l that are denoted by λkl for (k, l) ∈ {(0, 1), (0, 2), (1, 3), (2, 3)}. We constrain λ01 to be the
same for class 1 and 3 since, in both classes, it is the intensity for the onset of first damage in the left
SI joint, and we likewise constrain λ02 to be the same in classes 2 and 3.
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Figure 2: Multistate diagram for the processes of the four classes in the finite mixture model.

2 MODEL FORMULATION AND INFERENCE

2.1 NOTATION

We consider a K + 1-state process with states labelled k = 0, 1, . . . , K, with state 0 representing a
healthy state and states 1, . . . , K corresponding to varying degrees of damage. We let Z(t) represent
the state occupied at time t since disease onset, and {Z(s), 0 < s} denote the associated stochastic
process. Here, we develop the model and algorithm in a slightly more general context than the previ-
ous section by considering progressive processes in which transitions directly from k to l are possible
for any l > k, k = 0, 1, . . . , K−1. To accommodate heterogeneity in the disease course, we consider
the setting where the population is comprised of J + 1 distinct classes of individuals in which the
processes for individuals in the same class are governed by a common transition probability matrix;
the states with the same label in different classes are assumed to represent the same condition and
so have the same interpretation. Let C be a discrete latent random variable representing the class
label for an individual, C = 0, 1, . . . , J , and let X = (1, X1, . . . , Xp−1)

′ be a p × 1 covariate vector.
We let P (C = j|X; β) = πj(X; β) denote the probability of belonging to class j given X , where∑J

j=0 πj(X; β) = 1. We formulate a multinomial logistic regression model (McCullagh and Nelder,
1989) using class C = 0 as the reference class so

P (C = j|X; β) =
exp(X ′βj)

1 +
∑J

j=1 exp(X
′βj)

, j = 1, . . . , J , (1)

where β = (β1, . . . , βJ)
′ is a p0 × 1 parameter vector with p0 = p× J .

IfH(t) = {Z(s), 0 < s < t;X} denotes the history at time t, the transition intensities are

lim
4t↓0

P (Z(t+4t−) = l|Z(t−) = k,H(t), C = j)

4t
= λkl(t|H(t), C = j;αj) = λjkl(t|H(t);αj) , l > k ,

where αj is the vector of parameters governing the transition intensities in class j, j = 0, 1, . . . , J ,
and α = (α′0, α

′
1, . . . , α

′
J)
′ is a q×1 vector. We restrict attention to conditionally Markov processes for

which λjkl(t|H(t);αj) = λjkl(t;αj). We do not model covariate effects on the transition intensities
as the primary goal is model the latent class process. Moreover, the multistate models that define the
classes are specified to account for the variable duration of follow-up and the fact that, for example,
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individuals with only unilateral SI joint damage at one point in time may ultimately develop bilateral
involvement. Moreover, estimability issues can arise when covariate effects are modeled in more
than one part of a mixture model; this is particularly true when only panel data are available on the
multistate processes. We let λjkl = λkl for ∀k 6= l so that the transition intensities between the same
states in different classes are the same. Finally, we let θ = (α′, β′)′ denote the full (q + p0) × 1
parameter vector.

We now consider a sample of m independent individuals labeled i = 1, . . . ,m and introduce a
subscript i to write {Zi(s), 0 < s}, Ci and Xi, i = 1, . . . ,m. We consider the panel data setting with
inspection times for individual i that are denoted by air, r = 0, . . . , Ri where we assume ai0 = 0
and Zi(0) = 1 with probability 1. With a fixed covariate Xi, the observed data for individual i are
denoted by Di = {(Zi(air), air), r = 0, 1, . . . , Ri;Xi}. We define the likelihood contribution from a
particular individual i for a finite mixture of Markov processes under panel observation as

Li(θ) =
J∑
j=0

{
Ri∏
r=1

P (Zi(ar)|Zi(ar−1), Ci = j,Xi;α)

}
P (Ci = j|Xi; β) . (2)

While in the application, we assume {Zi(s), 0 < s} ⊥ Xi|Ci, in what follows, we retain the process
dependence on Xi given Ci for generality. To simplify the notation, we let

Lij(α) =

Ri∏
r=1

P (Zi(ar)|Z(ar−1), Ci = j,Xi;α) , (3)

and we write the observed likelihood for individual i as

Li(θ) =
J∑
j=0

Lij(α)πj(Xi; β) . (4)

The model defined in (2) is based on the assumption that the latent classes are mutual exclusive and
exhaustive; that is, each individual is a member of one and only one of the latent classes.

The maximum likelihood estimate (MLE) of θ is obtained by maximizing L(θ) =
∏m

i=1 Li(θ),
or equivalently solving the (q + p0) × 1 observed data score equation U(θ) = 0 where U(θ) =
(U ′1(θ), U

′
2(θ))

′ =
∑m

i=1 Ui(θ) withU1(θ) =
∑m

i=1 Ui1(θ) a q×1 vector whereUi1(θ) = ∂ logLi(θ)/∂α
and U2(θ) =

∑m
i=1 Ui2(θ)) a p0 × 1 vector where Ui2(θ) = ∂ logLi(θ)/∂β. Also note that

Ui1(θ) = EC{Si1(Zi|C,Xi;α)|Di} =
J∑
j=0

Si1(Zi|Ci = j,Xi;α)P (Ci = j|Di; θ) ,

Ui2(θ) = EC{Si2(C|Xi; β)|Di} =
J∑
j=0

Si2(j|Xi; β)P (Ci = j|Di; θ) ,

(5)

where Si1(Zi|Ci = j,Xi;α) = ∂ logLij(α)/∂α and, Si2(Ci|Xi; β) = ∂ logP (Ci|Xi; β)/∂β. When
we wish to write this more compactly, we let Si(θ) = (S ′i1(α), S

′
i2(β))

′ denote the complete data score
contributions from individual i, i = 1, . . . ,m.

2.2 ESTIMATION AND INFERENCE VIA THE EM ALGORITHM

Suppressing the subscript i and considering the contribution from a generic individual, the complete
data likelihood is

L(θ) ∝
J∏
j=0

{Lj(α)πj(X; β)}I(C=j) . (6)
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At the rth iteration of the EM algorithm, the E-step involves taking the conditional expectation of the
log of (6) to obtain Q(θ; θr) = E{log L(θ) | D; θr} where θr is the estimate of θ at the rth iteration
with elements αr and βr, and D is the observed data. If we let

wrj = P (C = j|D; θr) = Lj(α
r)πj(X; βr)∑J

j=0 Lj(α
r)πj(X; βr)

, (7)

we can write Q(θ; θr) = Q1(α; θ
r) +Q2(β; θ

r) w,here

Q1(α; θ
r) =

J∑
j=0

wrj logLj(α) ,

Q2(β; θ
r) =

J∑
j=0

wrj log πj(X; β) .

(8)

The M-step involves maximizing Q(θ; θr) with respect to θ to obtain an updated estimate θr+1.
Note that, if the αj are functionally independent (i.e. there are no shared parameters among the
Markov models for the different classes), then Q1(α; θ

r) can be maximized class by class by adapting
the Fisher-scoring algorithm of Kalbfleisch and Lawless (1985) through the incorporation of weights.
When different classes share transition intensities (e.g. as mentioned in Section 2.1 for common pairs
of states in different classes), a slightly more involved adaptation can be used or one can simply use an
all-purpose optimization function such as nlm or optim in R. The function Q2(β; θ

r) has a similar
form to the log-likelihood encountered in multinomial regression. We iterate between the E-step and
M-step until the convergence criterion max |θr+1−θr| < ε is satisfied, where ε is a specified tolerance.

To avoid computating the Hessian of the observed log-likelihood, we compute the observed infor-
mation matrix I(θ) = −∂U(θ)/∂θ′ based on the work of Louis (1982) who showed that

I(θ) = E{J (θ)|D} − E{S(θ)S ′(θ)|D}+ U(θ)U ′(θ) , (9)

where J (θ) = −∂S(θ)/∂θ′ is the complete data information matrix. To compute E{S(θ)S ′(θ)|D}
note that it can be written as

E{S(θ)S ′(θ)|D} = var{S(θ)|D}+ E{S(θ)|D)E(S ′(θ)|D} = var{S(θ)|D}+ U(θ)U ′(θ) , (10)

since U(θ) = E{S(θ)|D}. Substituting (10) into (9) gives I(θ) = E{J (θ)|D} − var{S(θ)|D}.
The term J (θ) can be computed using the weights in (7) to take the expectation of the complete
data observed information. To compute var{S(θ)|D}, we express it as follows. First, we let In
matrix notation we let Y = (Y0, Y1, ..., YJ)

′ where Yj = I(C = j), j = 0, 1, . . . , J . Second,
we note that, if A = (∂ logL0(α)/∂α, . . . , ∂ logLJ(α)/∂α) is a q × (J + 1) matrix and B =
(∂ log π0(β)/∂β, . . . , ∂ log πJ(β)/∂β) is a p0 × (J + 1) matrix, we can write

S(θ) = H ′Y , (11)

where H = (A′, B′) is a (J + 1) × (q + p0) matrix. Then, var{S(θ)|D} = H ′cov(Y |D)H . Since
C represents the class membership, cov(Y |D) is multinomial but with a conditional probability (7)
giving var(Yj|D) = wj(θ)(1 − wj(θ)) for j = 0, . . . , J and cov(Yj1 , Yj2 |D) = −wj1(θ)wj2(θ) for
j1 6= j2,j1,j2 = 0, . . . , J . An estimate of var{S(θ)|D} can be obtained by inserting MLEs in place
of the parameters. Summing contributions over all individuals for each term I(θ) and calculating the
inverse of the observed information matrix yields standard errors.
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3 SCORE TESTS FOR GENETIC EFFECTS

3.1 CONSTRUCTION OF THE TEST STATISTIC

Interest lies in the effect of genetic markers on class membership, so we extend the covariate vector
in the class model; we let G denote a p1 × 1 genetic marker and set W = (X ′, G′)′. The multinomial
logistic regression model is then

P (C = j|W ; η) =
exp(X ′βj +G′γj)

1 +
∑J

j=1 exp(X
′βj +G′γj)

=
exp(W ′ηj)

1 +
∑J

j=1 exp(W
′ηj)

, (12)

where βj = (βj0, βj1, . . . , βj,p−1)
′ is the vector of coefficients of X in class j, γj = (γj1, . . . , γjp1)

′

are the coefficients of G, and ηj = (β′j, γ
′
j)
′.

The null hypothesis of no genetic effects is H0:γ = 0 where γ = (γ′1, . . . , γ
′
J)
′ and the alternative

hypothesis is H1:γ 6= 0. We could fit the model under H1, but with a large number of candidate
genetic markers, this can be computationally demanding with an EM algorithm required for each
marker. We therefore opt to use score tests.

We let φ = (θ′, γ′)′ and let the complete data score vector be given by

Ui1(φ) = EC{Si1(Zi|C,Wi;α)|Di}
Ui2(φ) = EC{Si2(C|Wi; η)|Di}
Ui3(φ) = EC{Si3(C|Wi; η)|Di} ,

where Si1(Zi|Ci = j,Wi;α) = ∂ logLij(α)/∂α with Lij(α) given by (3) with Xi replaced by Wi =
(X ′i, G

′
i)
′, Si2(Ci|Wi; η) = ∂ logP (Ci|Wi; η)/∂β and Si3(Ci|Wi; η) = ∂ logP (Ci|Wi; η)/∂γ.

The score test statistic (Boos, 1992) for testing H0: γ = 0 is

T = U ′3(φ̂0)I
γγ(φ̂0)U3(φ̂0), (13)

where φ0 = (α′, β′, 0′)′ and φ̂0 = (α̂′, β̂′, 0′)′ where θ̂ = (α̂′, β̂′)′ is the MLE under the null, U3(·) is
a p1 × 1 score function for γ, and Iγγ(·) is a lower diagonal p1 × p1 submatrix of I−1(φ̂0). Under the
null hypothesis, the score statistic (13) follows a χ2

p1
distribution and a p-value for testing H0:γ = 0

is obtained by computing P (χ2
p1
> Tobs) where Tobs is a realized value of (13).

3.2 SIMULATION STUDIES

The purpose of the simulation studies are to demonstrate the performance of a proposed finite mixture
model and assess the empirical rejection rate of the score test. We consider 4 classes (j = 0, 1, 2, 3)
and constrain α as in Figure 2. To model class membership for individual i, we first generate a
Bernoulli covariate Xi1 with P (Xi1 = 1) = 0.5. Let Xi = (1, Xi1)

′, generate Gi as Bernoulli with
probability of success 0.05 or 0.10 to explore performance in the setting of a relatively rare marker,
and let Wi = (X ′i, Gi)

′, i = 1, . . . ,m. We set the coefficients of Xi in the multinomial regression
model to β11 = β21 = log 1.1 and β31 = log 1.2. For generating the data under the null hypothesis,
the coefficients for the genetic variable were set to γ1 = γ2 = γ3 = 0. We then determined the
intercepts β10, β20 and β30 so that the marginal probabilities for the four classes are P (C = 0) = 0.30,
P (C = 1) = 0.25, P (C = 2) = 0.25, and P (C = 3) = 0.20.

We consider the setting where interest lies in the disease course over the interval (0, E] where 0
is the onset of the disease process and E is the end of the period. The transition intensities in the
multistate framework are set so that P (Z(E) = 1|C = 1) = 0.80, P (Z(E) = 2|C = 2) = 0.80, and
P (Z(E) = 3|C = 3) = 0.70, so that 80% of individuals with unilateral disease (classes 1 and 2) will
experience damage by the end of the observation interval, and 70% of those with bilateral disease will
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experience damage in both sides by this time. Let Ai(t) count the cumulative number of assessments
over (0, t], dA(t) = 1 if an assessment occurs at time t and be zero otherwise, and let {Ai(s), s > 0}
denote the counting process which is taken to be a time homogeneous Poisson process. We set E = 1
without loss of generality and specify the rate ρ such that E{Ai(1)} = µ = 15 or 30.

To assess the performance of estimators, we first fit the correct model under the constraint γ = 0
and examine the empirical performance of the estimators. We display these in a table reporting the
empirical bias (EBIAS), the empirical standard error (ESE), and the empirical coverage probability
(ECP) where the sample standard deviation is computed based on Louis’ method as described in
Section 2.2. To assess the empirical rejection rates, we simulate data under the null hypothesis, obtain
the estimates under the null as described above, and compute the score statistic of the null hypothesis
H0: γ = 0. The empirical rejection rate is computed as the proportion of simulated samples for which
the sample p-value is less than 0.05. We evaluate the empirical type I error rate when γ = 0 and the
empirical power when γ 6= 0. For the latter, we consider several different values γ1 and γ3 including
log 1 = 0, log 1.25, log 1.5 and log 2; for each combination of values, we set the intercepts of the
multinomial models to give the same marginal probabilities of class membership as above.

Table 1: Empirical performance of estimators for β and α under the null model with m = 2000
individuals per simulation and and nsim = 1000 simulations; EBIAS is the empirical bias, ESE is
the empirical standard error, ASE is the average model-based standard error, and ECP% is the percent
empirical coverage probability.

E{Ai(1)} = 15 E{Ai(1)} = 30

EBIAS ESE ASE ECP% EBIAS ESE ASE ECP%

CLASS MODEL

β10 <0.001 0.147 0.149 96.3 0.008 0.140 0.141 95.7
β11 -0.001 0.152 0.153 96.0 0.003 0.145 0.147 96.0
β20 -0.029 0.148 0.149 95.1 0.007 0.141 0.141 95.9
β30 0.001 0.157 0.159 96.1 0.022 0.150 0.153 96.3
β31 <0.001 0.156 0.159 95.7 0.004 0.151 0.153 95.1

MULTISTATE MODEL

α01 -0.005 0.091 0.090 95.0 -0.012 0.088 0.086 95.3
α02 -0.009 0.092 0.091 94.5 0.007 0.086 0.085 95.3
α13 -0.027 0.214 0.216 94.4 -0.012 0.196 0.195 94.3
α23 -0.017 0.214 0.215 94.0 -0.012 0.195 0.195 94.5

Table 1 reports on the finite sample properties of estimators of α and β for the setting when
γ = 0 where there are m = 2000 individuals per sample and nsim = 1000 simulations carried out.
Thee empirical biases are generally small, there is good agreement between the empirical standard
error and the average model-based standard error from Louis’ formula, and the empirical coverage
probability of the 95% confidence intervals is compatible with the nominal level. Table 2 reports
on the empirical rejection rates of the proposed score test under the null and alternative settings; we
carry out nsim = 1000 simulations under the null (see the top row) and nsim = 500 simulations
under the alternative when γ 6= 0. The type I error of the score test is compatible with the nominal
level for both cases with E{Ai(1)} = 30 and for the case when P (G = 1) = 0.10 (and with higher
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probabilities for the marker – results not shown) when E{Ai(1)} = 15, but it is slightly elevated
when the marker is less common with P (G = 1) = 0.05 and E{Ai(1)} = 15. Figure 3 displays Q-Q
plots of the empirical distribution of the score statistic against a χ2

2 distribution under the null settings.
Three of the Q-Q plots show good agreement between the sample quantiles and the quantiles of the
χ2
2 distribution. There are outliers evident when E{Ai(1)} = 15 with P (G = 1) = 0.05 suggesting

the empirical distribution has a bigger right tail area; this is the setting where the empirical rejection
rate is 6.8% in Table 2. To address this, we implement a permutation test in the application of the
next section. In terms of power, there is generally an increase in the empirical power with increasing
effect size under H1; further remarks on power considerations are provided in Section 5.

Table 2: Empirical rejection rates based on χ2
2 approximation; m = 2000 individuals per sample with

nsim = 1000 simulations when (γ1, γ3) = (0, 0) and nsim = 500 for other settings.

E{Ai(1)} = 15 E{Ai(1)} = 30

γ1 γ2 P (G = 1) = 0.05 P (G = 1) = 0.10 P (G = 1) = 0.05 P (G = 1) = 0.10

0 0 6.8 6.0 6.2 5.3
0 log 1.25 12.4 13.0 12.4 15.5
0 log 1.5 23.6 35.9 26.0 42.4
0 log 2.0 58.5 75.9 58.3 85.5
log 1.25 log 1.25 8.7 13.1 9.5 13.1
log 1.25 log 1.5 17.1 26.8 21.6 30.4
log 1.25 log 2.0 46.4 66.5 46.6 71.0
log 1.5 log 1.5 17.1 33.3 18.6 35.1
log 1.5 log 2.0 38.1 59.8 41.3 66.3
log 2.0 log 2.0 39.5 68.4 36.5 69.4

4 APPLICATION TO SACROILIAC DAMAGE IN PSORIATIC ARTHRITIS

The methods developed in the previous sections were applied to data on joint damage in patients with
PsA from the University of Toronto Psoriatic Arthritis Clinic. Here, interest lies in examining the
effects of binary HLA markers on the nature of any back involvement in these patients. We examine
the effects of HLA markers individually on SI joint damage while controlling for gender (X1 = 1
for female, 0 for male) and early age of onset (X2 = 1 for ≤ 40 old, 0 for > 40 years old). In the
null model, we let βj = (βj0, βj1, βj2)

′ denote the parameters for class j membership, j = 1, 2, 3.
Table 3 includes estimates, standard errors, and 95% confidence intervals for all parameters under
the null model. From this fitted model, we conclude that the odds of females experiencing bilateral
involvement (compared to no SI joint involvement) are lower than that of males (OR = 0.42, 95%
CI: 0.29, 0.59, p < 0.001). There is no evidence of an effect of gender on unilateral involvement nor
an effect of early onset on the nature of SI involvement.

Under the alternative model, we again constrain γ1 = γ2 when deriving the test statistic since
these may be interpreted as the effect of the HLA marker on unilateral SI joint damage. The null
hypothesis of no genetic effect is given by H0: γ = 0 where γ = (γ1, γ1, γ3) with γ1 reflecting the
effect of the marker on unilateral SI joint involvement compared to no involvement, and γ3 reflecting
the effect of the marker on bilateral SI joint involvement. The results of applying the score tests of
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(a) E{Ai(1)} = 15 and P (G = 1) = 0.05 (b) E{Ai(1)} = 15 and P (G = 1) = 0.10

(c) E{Ai(1)} = 30 and P (G = 1) = 0.05 (d) E{Ai(1)} = 30 and P (G = 1) = 0.10

Figure 3: Q-Q plots for assessing the empirical distribution of the score statistic in relation to the two-
degree-of-freedom (2 d.f.) chi-square distribution for different intensities for the visit process and
different frequencies of the marker; two points are outside of the range for panel (a) with co-ordinates
(14.2, 40.1) and (19.8, 40.2).
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Table 3: Results of fitting the finite mixture model under the null hypothesis (omitting human leuko-
cyte antigen markers) for the occurrence of sacroiliac joint damage.

Parameter Estimates Exponential Values

MODEL EST. S.E. 95% CI EXP 95% CI p-value

CLASS

1 β10 -1.488 0.296 (-2.067, -0.908) 0.226 (0.127, 0.403)
β11 -0.686 0.398 (-1.466, 0.095) 0.504 (0.231, 1.100) 0.085
β12 -0.139 0.414 (-0.951, 0.673) 0.870 (0.386, 1.960) 0.737

2 β20 -2.268 0.638 (-3.520, -1.017) 0.104 (0.030, 0.362)
β21 0.872 0.659 (-0.420, 2.164) 2.392 (0.657, 8.706) 0.186
β22 0.285 0.477 (-0.651, 1.220) 1.330 (0.522, 3.387) 0.550

3 β30 0.914 0.150 (0.620, 1.209) 2.494 (1.859, 3.350)
β31 -0.876 0.181 (-1.230, -0.521) 0.416 (0.292, 0.594) <0.001
β32 -0.168 0.190 (-0.541, 0.205) 0.845 (0.582, 1.228) 0.377

MULTISTATE

α01 -2.267 0.105 (-2.473, -2.060) 0.104 (0.084, 0.127)
α02 -2.703 0.133 (-2.964, -2.442) 0.067 (0.052, 0.087)
α13 0.281 0.162 (-0.037, 0.599) 1.324 (0.964, 1.820)
α23 -1.762 0.190 (-2.135, -1.389) 0.172 (0.118, 0.249)

Section 3.1 are given in Table 4 for a total of 96 HLA markers including HLA-A, HLA-B, HLA-C,
HLA-DR, and HLA-DQB markers.

To address possible concerns about the adequacy of the χ2
2 approximation for the score statistics

in this setting, we computed p-values based on the permutation distribution of the score test statistic.
Specifically, we consider B = 10, 000 permutations of the genetic marker within the four strata
defined by the binary gender and age of onset covariates. Permutation p-values are computed as the
empirical probability of a score test being realized that is larger than the one observed for the given
dataset. So, if Tobs is the observed test statistics given by (13) and T (b), b = 1, . . . , B denote the score
statistics for the B = 10, 000 permutation samples, then the permutation p-value is

p‡ =
B∑
b=1

I(T (b) ≥ Tobs)/B (14)

Note the p−value based on the χ2
2 approximation are labeled p† in Table 4.

Based on the χ2
2 approximation, we find 11 markers are statistically significant at the 5% level.

When controlling the false discovery rate using the Benjamini-Hochberg procedure (Benjamini and
Y, 1995); however, only three of these are selected corresponding to HLA-B41, HLA-B47, and HLA-
C17 all of which have frequencies between 0.5% and 1%. When computing the p−values based on
the permutation distribution, we find an additional marker HLA-A26 is significantly associated with
SI involvement having p‡ = 0.049. Interestingly, when controlling for the false discovery rate based
on the permutation p−values, no markers are selected.

For completeness, we estimate the effects of the identified HLA markers HLA-B41, HLA-B47 and
HLA-C17 by fitting the three respective finite mixture models under the alternative. The contrasts that
are parameterized naturally by the multinomial model are for unilateral versus no SI involvement and
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Table 4: Results of applying the score test for each of the HLA-A, HLA-B, HLA-C, HLA-DR and
HLA-DQB markers to the University of Toronto Psoriatic Arthritis Cohort; Tobs is the observed score
statistics, p† denotes p-value based on the χ2

2 approximation, whereas p‡ denotes p-value based on the
permutation distribution.

Tobs p† p‡ Tobs p† p‡ Tobs p† p‡

HLA-A

A1 1.762 0.414 0.371 A2 3.482 0.175 0.148 A3 7.152 0.028 0.033
A11 1.603 0.449 0.407 A24 0.823 0.663 0.626 A25 1.973 0.373 0.331
A26 5.881 0.053 0.049 A29 11.99 0.003 0.014 A30 1.784 0.410 0.367
A31 0.839 0.657 0.619 A32 3.199 0.202 0.170 A33 1.621 0.445 0.402
A68 1.278 0.528 0.482 A23 2.870 0.238 0.205 A28* 0.848 0.654 0.617
A34 0.550 0.760 0.728 A66 2.810 0.245 0.211 A69* 0.368 0.832 0.806

HLA-B
B7 0.523 0.770 0.738 B8 1.015 0.602 0.556 B13 3.494 0.174 0.148

B14 3.182 0.204 0.171 B15 2.886 0.236 0.203 B62 1.916 0.384 0.343
B18 0.481 0.786 0.756 B27 8.086 0.018 0.026 B35 10.01 0.007 0.017
B37 0.801 0.670 0.634 B38 2.936 0.230 0.199 B39 3.314 0.191 0.161
B40 0.007 0.997 0.991 B44 0.669 0.716 0.682 B50 0.987 0.610 0.566
B51 0.221 0.895 0.878 B52 0.345 0.841 0.817 B55 0.668 0.716 0.683
B57 0.466 0.792 0.765 B58 0.291 0.865 0.843 B60 0.774 0.679 0.643
B61 0.319 0.853 0.829 B70 2.935 0.231 0.199 B41 23.53 <0.001 0.004
B45 2.741 0.254 0.219 B46 4.585 0.101 0.090 B47 22.53 <0.001 0.004

B48* 2.328 0.312 0.273 B49 3.893 0.143 0.124 B53 0.048 0.976 0.971
B56 1.768 0.413 0.370 B63 1.092 0.579 0.533 B67* 0.442 0.802 0.776

HLA-C

C1 1.189 0.552 0.506 C2 9.095 0.011 0.021 C3 0.656 0.720 0.686
C4 7.316 0.026 0.031 C5 0.428 0.807 0.782 C6 2.562 0.278 0.243
C7 1.792 0.408 0.366 C8 1.754 0.416 0.373 C12 6.572 0.037 0.040

C14 0.235 0.889 0.871 C15 2.608 0.271 0.237 C16 0.822 0.663 0.627
C17 23.88 <0.001 0.004 C18* 1.609 0.558 0.404

HLA-DR

DR1 5.323 0.070 0.065 DR3 7.306 0.026 0.031 DR4 3.454 0.178 0.151
DR7 5.385 0.068 0.063 DR8 0.517 0.772 0.740 DR9 0.358 0.836 0.811

DR10 2.143 0.342 0.302 DR11 1.496 0.473 0.429 DR12 2.927 0.231 0.199
DR13 1.890 0.389 0.348 DR14 3.688 0.158 0.136 DR15 1.169 0.557 0.511
DR16 3.183 0.204 0.171

HLA-DQB

DQB201 5.665 0.059 0.055 DQB202 0.955 0.620 0.577 DQB301 5.252 0.072 0.067
DQB302 3.621 0.270 0.141 DQB303 1.828 0.410 0.359 DQB402 1.251 0.535 0.488
DQB501 4.099 0.129 0.112 DQB502 0.917 0.632 0.593 DQB503 1.438 0.487 0.442
DQB601 1.492 0.474 0.430 DQB602 0.543 0.762 0.731 DQB603 1.379 0.502 0.455
DQB604 2.448 0.294 0.259 DQB609 4.263 0.119 0.104 DQB299* 5.320 0.070 0.065
DQB305 1.028 0.598 0.552 DQB401 1.229 0.541 0.495 DQB605* 3.035 0.219 0.188

* markers of <0.5% in frequency
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bilateral versus no SI involvement. None of these effects are significant, however, as the standard
errors are larger for these comparisons. When assessing the effects on bilateral versus unilateral SI
involvement based on the contrast γ3−γ1, we find that, given some SI involvement, presence of HLA-
B41, HLA-B27, and HLA-C17 each reduce the odds of bilateral (versus unilateral) involvement with
OR=0.09 (95% CI: 0.02, 0.45; p=0.004), OR=0.09 (95% CI: 0.01, 1.00; p=0.050), and OR=0.09
(95% CI: 0.01, 1.00; p=0.050), respectively. These findings suggest these markers warrant further
study with the ultimate goal of developing predictive models for SI joint involvement in PsA and
particularly distinguishing between risk of psoriatic spondylitis and ankylosing spondylitis. Reliance
on the permutation tests will not suggest any markers warrant further study.

The code for the computation of the score statistics and permutation p-values in the analyses is
available from the first author upon request.

5 DISCUSSION

We have formulated a model for the finite mixture of Markov processes to accommodate latent classes
of individuals who may experience different disease courses. We construct the observed data likeli-
hood for the case when individuals are under intermittent observation and develop score tests for
assessing the effect of the markers. This approach is especially convenient when markers are large
in number since the model only needs to be fitted under the null hypothesis to assess the importance
of the markers. We study the empirical performances of the proposed algorithm for model fitting and
show that the coverage probabilities of confidence intervals are compatible with the nominal 95%
level. Then, we study the type I error rate of the score test and show that the type I error is within
the nominal 5% level for many settings. When the marker is rare and there may be concern about the
adequacy of the χ2 approximation, we describe how to conduct permutation tests of the marker effects
that do not rely on asymptotic approximations. We also consider a multiple comparison procedure in
the application to control the false discovery rate should that be of interest.

Harron et al. (2016) had a similar scientific objective to ours: to discover which HLA markers
are associated with different types of SI involvement. Given the central role that disease duration
plays in the development of joint damage, and under the assumption that HLA markers have a role
in determining the nature of the disease manifestation, we feel that the model we developed provides
a more natural basis for exploring these effects. Gaining insight into the power, or sample size re-
quirements to meet power objectives, is important both in analyses based on observed disease status
as in the work of Harron et al. (2016) and in the context of a finite mixture model that we develop. In
practise, analyses are simply based on all of the data that is available, but if interest lies in a power
or sample size calculation, the expected information matrix I(θ) = E{I(θ)} can be computed using
Monte Carlo methods based on the observed information matrix in (9). Of course, this would require
specification all parameters in the mixing distribution, the conditionally Markov intensities, the joint
distribution of the covariates and the marker of interest, and the assessment time process. Having a
sense of study power or sample size requirements to meet reasonable power objectives is important
and we are exploring this issue both from the perspective of a standard design and a two-phase design
(Lawless, 2018); the latter is appealing since the design could benefit from the available data in the
first phase of such a study. This work is, however, beyond the scope of the current paper.

We have restricted attention to the case in which the transitional intensities for the unilateral
classes (left or right) are the same as they are in the bilateral class. We also assume that the marker
effects are the same for two unilateral classes. It is reasonable to assume these constraints on scientific
grounds in this context, but in other settings, it may be desirable to relax these constraints to obtain
more flexible models and test the plausibility of these assumptions. This may be feasible with larger
datasets.

We have assumed that the assessment process satisfies a sequential missing at random assumption
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of Hogan et al. (2004) If this assumption does not hold, joint models can be considered, or one can
consider inverse intensity of visit weights (Lin et al., 2004) methods to correct for this since we are not
exploring the effect of any time-varying covariates. An alternative approach would be to predict back
involvement at a particular point in the disease process based on direct multinomial regression; in this
case, weights are required to adjust for the selection bias arising from the need to restrict attention
to individuals who can be definitively classified at the landmark time when assessing the predictive
accuracy; see the work of Wu and Cook (2018).
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