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Summary

Cox regression models are routinely fitted to examine the association between time-dependent
markers and a failure time when analyzing data from clinical registries. Typically, the marker
values are measured periodically at clinic visits with the recorded value carried forward until the
next assessment. We examine the asymptotic behavior of estimators from Cox regression models
under this observation and data handling scheme when the true relationship is based on a Cox
model using the current value of the marker. Specifically, we explore the impact of the marker
process dynamics, the clinic visit intensity, and the marginal failure rate on the limiting value of
the estimator of the marker effect from the Cox model. We also illustrate how a joint multistate
model that accommodates intermittent observation of the time-varyingmarker can be formulated.
Simulation studies demonstrate that the finite sample performance of the naive estimator aligns
with the asymptotic results and shows good performance of the estimators from the joint model.
We apply both methods to data from a study of bone markers and their effect on the development
of skeletal complications in metastatic cancer.
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1 INTRODUCTION

Interest often lies in examining the relationship between a time-varying biomarker and the occurrence
of a clinically important event to enhance scientific understanding about a disease process. The Cox
regression model (Cox, 1972) is well-suited to address this and is routinely used, but like other re-
gression methods accommodating time-varying covariates, it requires marker values to be known at
times other than when they were measured; for the Cox model, we need the values at each of the
failure times. While markers change value in continuous time, they are only measured intermittently
at, say clinic visits, times that blood or urine samples are drawn or through other encounters in the
health care system. As a result, the “current” values are typically unknown and an ad hoc approach is
to carry forward the most recently recorded value.

There is a large literature on methods for dealing with covariate measurement error in cross-
sectional, longitudinal, and life history settings (Carroll et al., 2006; Fuller, 2009; Buonaccorsi, 2010;
Yi, 2016). Many of these methods require either a validation substudy or a replication study to acquire
auxiliary information on the measurement error process.

In this failure time setting with intermittent observation of marker processes, the deviation be-
tween the true effect and the estimand arising from a naive analysis using the carry-forward approach
is driven by the joint marker, failure and censoring processes, rather than an external measurement
process. Specific governing factors include the temporal variation (i.e. volatility) of the marker pro-
cess, the intensity of the visit process, the nature and strength of the association between the marker
and failure processes, and the failure and censoring processes. To address this Bruijne et al. (2001)
proposed a weighted analysis in which time-varying weights were defined as a function of time since
the most recent clinic visit, say, at which time the marker was measured; this is implemented in such
a way that more out-of-date marker values have less impact in the estimating equations than recent
marker values obtained from more recent assessments. Smoothing the observed covariate values to
impute the missing current marker values has also been explored in several articles (Raboud et al.,
1993; Tsiatis et al., 1995; Andersen and Liestol, 2003). Joint modeling is another approach where it
involves modeling the covariate process, but is usually accompanied by a stronger assumption about
the distribution of the covariate process (Degruttola and Tu, 1994; Xu and Zeger, 2001).

In this article, we focus on a discrete biomarker process and we shall discuss both the asymptotic
bias by using the carried-forward marker value and a joint model that accommodates the unobserved
up-to-date marker value. We assume a two-state alternating process for the marker and adopt a semi-
parametric Cox model for the failure time analysis. The visit process is assumed to be completely
independent of the marker-failure time process. We use this structure to provide a detailed large sam-
ple and empirical study of the limiting value of the estimator from a Cox model using the standard
approach of carrying-forward the most recently recorded marker. A joint analysis is then proposed,
and the finite sample behaviour of the corresponding estimator is also examined.

The remainder of this article is organized as follows. In Section 2, we define notation and formu-
late a joint model for the marker and failure time process based on a three-state process. We define
the Cox model and review the large sample theory associated with misspecified Cox regression mod-
els. In Section 3, we give a detailed exploration of the factors that influence the asymptotic bias of
estimators from misspecified Cox models when the most recently measured marker value is carried
forward. In Section 4, we give the likelihood for fitting a joint model for marker and failure process
and examine the performance of the misspecified Cox model and the proposed model in simulation
studies. An application involving data from a study of the relationship between bone markers and
the occurrence of skeletal complications in metastatic cancer is given in Section 5 and concluding
remarks are provided in Section 6.
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2 NOTATION AND LIKELIHOOD

2.1 NOTATION FOR THE MARKER, FAILURE TIME AND VISIT PROCESSES

Let 7} denote a time to failure for an event of interest and V;(s) = I(7; < s) indicate that failure
has occurred by time s for individual 7 in a sample of m independent individuals 7 = 1,...,m. We
let AN;(t) = N;(t + At~) — N;(t7) so that dN,(t) = iitrﬁ) AN;(t) = 1 if failure occurs at time s for

individual 7 and is zero otherwise. We let C#! represent an administrative censoring time and C a
random censoring time so that individual i is observed over (0, C;] where C; = min(C#, CF); we let
Vi = min(T;, C;) and 6; = I(V; = T;). The function Y;(s) = I(s < C;) indicates that individual 7 is
uncensored at time s, 7 = 1,...,m. If Y,'(s) = I(s < T}) indicates that individual 7 has not failed
prior to time s, then Y;(s) = Y;(s)Y; (s) indicates that the individual is at risk and under observation
at time s and we let dN;(s) = Yi(s)dN;(s).

Let {X;(s),0 < s} denote a marker process for individual 7 with history denoted by X;(t) =
{Xi(s),0 < s < t}. Note that while the marker values change in continuous time, the marker process
is typically under intermittent observation because it is only measured upon visits to a clinic at random
times. We suppose that there is a baseline measurement of the marker at s = 0 corresponding to
clinic entry, say, and let {A;(s),0 < s} denote the counting process for follow-up clinic visits. We
let dA;(s) = Yi(s)dA;(s) indicate that a visit has been made at time s and A;(t) = [} dA;(s) denote
the cumulative number of visits over (0, ¢]; the associated process is denoted by {A4;(s),0 < s}. At
any time ¢, the cumulative number of follow-up visits to have taken place for individual 7 is denoted
by A;(t~) and the realized times of these visits are denoted by a;,, 7 = 1,..., A;(t7).

Conventionally, researchers will use the most recently recorded value of the marker in failure
time analyses and we denote this value at time ¢t as X7 (t) = X;(a;), where r = A;(t7), t > 0;
the difference X7 (¢) — X, (¢) represents the error in the covariate value arising from the intermittent
measurement process and the carry-forward approach to deal with the incomplete information. We
let X2 (t) = {(ay, X7 (ai)),r = 0,..., A;(t")} denote the history of the observed marker measure-
ments and write the resulting observed data for individual ¢ as D; = {(V;,4;), X2(V;)}. In many
applications, X;(t) is a discrete marker which indicates the level of a continuous marker, the severity
of a symptom, or the stage of a disease process. Binary markers are particularly common, which may
indicate the presence of an acute condition such as the elevation of inflammatory markers in autoim-
mune diseases (Pearle et al., 2007), elevated HbA 1c¢ in diabetics indicating poor blood glucose control
(Tarim et al., 1999), or elevated counts of circulating tumour cells in cancer (Tibbe et al., 2007).

LOW MARKER HIGH MARKER
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Figure 1: A three-state model for joint consideration of marker process and death

Since this is a common setting with a relatively simple structure we focus on it in order to gain in-
sight into the consequence of using the observed value in analyses and to discuss a modeling approach
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to mitigate the biases that arise from naive analyses. We therefore consider the multistate process in
Figure 1 and let Z;(s) represent the state occupied at time s for individual ¢ in this modeling frame-
work where we consider both the marker process and failure process together. In this framework, we
may define transition intensities

P2+ AE) = L] Z(E) = k1)

At10 At = Aalt | H(t)) (1)

where H(t) = {Z(s),0 < s < t} is the history (Cook and Lawless, 2018) and k,! € {0,1,2}. For
Markov models, we note Ay (t|H(t)) = Ai(t) and for time-homogeneous Markov models A, (t) =
)\kl~

2.2 KEY ESTIMATING FUNCTION THEORY FOR COX REGRESSION

We consider a simple Cox regression model for modeling the effect of the time-dependent binary
marker X (¢) on the intensity for death which has the form

dA(t|X(t)) = dAo(t) exp(Xi(1) ) , 2

where dAo(t)/dt = Ao2(t) is the baseline (0 — 2) intensity for death at time ¢ and A\j2(t)/Ao2(t) =
exp( ) reflects the multiplicative effect of an elevated marker on the instantaneous risk of death. The
Cox partial likelihood score equations for 5 and dAy(s) are

U, - Z / ) {ANL(s) — Yi(s)dA(s|Xi(5))} X (s) (3a)
ZY {dNi(s) — dA(s|Xi(s))}, 0<s, (3b)

respectively (Kalbfleisch and Prentice, 2011). Setting Us(s) = 0 and solving for dAy(s) gives the
Breslow “profile” estimate

> ey Yi(s)dNi(s)
>y Yi(s) exp(Xi(s)B)

which upon substitution into (3a) gives the partial score function for J as
RO 0)) 5
Z/ {60 - oy | 4500 @

with R®(s; 8) = 27 Vi(s) X (s) exp(X; (s)B) where a® = 1for k = 0 and a for k =

respectively. Under a correctly spemﬁed model 5 the maximum partial likelihood estimator of B
defined as the solution to U(3) = 0, has the property that /m (B B) ~ N(0,I71(B)) where

RO(s:8) _ R(s;8) [RV(s:8)]'| <
Z/ {Rw )~ RO(si9) [R(O)(s;ﬁ)}}d]vi(S)'

More generally, Andersen and Gill (1982) show that the solution to the partial score function (4)
is consistent for the solution to

[ - oo a=o s

d/~\0(3§5)
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where
r®(s; 8) = B{RM(s; 8)} = mE{Yi(s) X" (s) exp(X;(s)5)} 6)

and
r®(s) = E{Y;(s) X" (s)dNi(s)} ™

for £ = 0,1 (see also Struthers and Kalbfleisch (1986) and Lin and Wei (1989)). In the next sec-
tion, we consider the calculation of these terms to explore the impact on the asymptotic bias of
the regression coefficient estimator from different marker measurement schemes under the carry-

forward approach. We assume the initial state occupied is 0 or 1 with equal probability so take
P(Z;(0) =0) = P(Z;(0) =1) =0.5.

3  ASYMPTOTIC BIAS FROM CARRYING FORWARD MARKER MEASUREMENTS

3.1 DERIVATIONS OF FUNCTIONS FOR EXPECTATIONS

We write the adopted Cox model using the marker value carried forward from the last assessment as
dH (s|X7(s)) = dHo(s) exp(X](s)7) , )

where we use dH,(s) and +y to indicate the parameters of the working model. To evaluate the limiting
value of the estimator 7 and investigate the asymptotic bias resulting from using the carried-forward
marker value, we require (6) and (7) for £ = 0,1 with the expectations taken with respect to the
underlying process depicted in Figure 1, which we take under the constraint (2). Here, we consider a
marker process with Markov transition intensities whereby A (t|H(t)) = Awi(t); to further simplify
the calculations we make these time-homogeneous, but the following can be easily carried out for the
time nonhomogeneous case. We also consider the setting where the visits arise according to a Poisson
process with intensity p(t) = p; calculations under a time-nonhomogeneous Vvisit process are possible
in principle using product integration to derive or compute the transition probability matrix for the
calculations that follow but we do not explore this here.
For r(s; 8) note that

E{Yi(s)X; (s) exp(X; (5)B)} = exp(B) P(Yi(s) X7 (s) = 1), ®)

=P(C;=5)> [/Osp(zi(s-) < 2|Zi(ay) = 1, a4, Ai(s) =)

x P(Zi(ay) = agy, Ai(s) =) f(ai|Ai(s) = r)day | P(Ai(s) =71).

The density f(a;.|A;(s) = r) is that of the maximum order statistic for a set of A;(s) = r
independent uniform random variables over (0, s| since we consider the case where A;(s) is a Pois-
son random variable; this has the form f(a;|A;(s) = r) = ral.*/s". For r(s; 3), we require
r©(s; 8) = m - E{Yi(s) exp(X?(s)5)}. Note that

B{Yi(s) exp(X7 (s)8)} = [’ P(¥i(s) = 1, X7 (s) = 1) + P(Yi(s) = L, X7(s) = 0)] .
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and
PUT(5) = 1.X7(9) =0) = 3 [ PT9) = 1,X7(5) = 0, A4s) = 00 ),
= P(C; > s) Z [/08 P(Zi(s7) < 2|Zi(aiy) =0, a4, Ai(s) = 1)

X P(Z;(a;) = Olai,, Ai(s) = r) f(a,|Ai(s) = r)da;; | P(Ai(s) =71) .

For the remaining functions 7(*)(s) and r!)(s) note that
B{Y;(s)dN;(s)} = P(C; > 5) [Moa(t) P(Zi(s™) = 0) + Aa(t) P(Zi(s™) = 1)] ,  (10)
and
E{Y;(s)dN;(s)X7(s)} = P(C; > s)P(dNi(s) = 1|Y](s) = 1, X7 (s) = 1)P(Y} (s) = 1, X (s) = 1)
P(Ci 2 s Zlgp s) = 1|Zi(s) = x, X7 (s) = )P(Zi(s) = 2, X/ (s) = 1)

P(Ci = 8) ) Aaa(s)P(Zils) = 2, Xi(s) = 1)

=0

respectively, where
P(Zi(s) = 2, X2(s) = 1) = Z/ P(Zi(s) = 2| X2(5) = 1, agn, Au(s) = )P(X2(5) = 1, asm, As(s) = r)da
0

_ Z/OS P(Zi(s) = 2| Zi(air) = 1, air, Ai(3))P(Zi(air) = 1|air, Ai(s) = 1)
X flair|Ai(s) = r)day, P(Ai(s) = 1) .

Note that P(Z;(a;,) = 1|ay, Ai(s) = r) = S P(Zi(ai) = 1|Z:(0) = 1) P(Z(0) = 1) since the
visit process is independent of the multistate process.

DEAD LOW MARKER HIGH MARKER DEAD
r=1 2 A — 0 P — 1 E— 2
r=2 2 A — 0  —— 1 —_— 2
r=R; 2 |«<—| 0 |=/7— 1 —| 2

Figure 2: A joint model for a three-state reversible illness-death process and visit process

Figure 2 represents a more general joint model which incorporates the recurrent visit process and
we use this in the calculations that follow. Each row represents the three-state process with transitions
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between states governed by the process in Figure 1. Transitions from row r to row r + 1 arise when a
visit is made, as in Cook and Lawless (2019). We let

L PAAW) = 1] HH()

lim A = p(t[H" (1)) (1n

where in general with H*(t) = {Y(s),dN(s), X(s),dA(s);0 < s < t} is the history of the
censoring, joint multistate and visit processes (see Cook and Lawless (2018) for remarks on such
joint processes). For a conditionally independent visit process, p(t|H'(t)) = p(t|H°(t)), where
Ho(t) = {Y(s),dN(s),X°(s),dA(s),0 < s < t} is the history of the observed process (Cook
and Lawless, 2018). Here, however, we assume a completely independent visit process in which
p(t/H*(t)) = p(t) is a Poisson rate function.

We now have the functions for evaluation of (5), which we can then solve to assess the asymptotic
bias in the regression coefficient that results from carrying forward the most recently recorded marker
value.

3.2 ILLUSTRATIVE CALCULATIONS OF THE ASYMPTOTIC BIAS IN THE REGRESSION COEFFI-
CIENT ESTIMATOR

We consider the case in which the intention is to observe an individual over an interval (0, C] where,
without loss of generality, we set C* = 1 as the administrative censoring time. Time-homogenous
intensities are adopted with \g; the intensity for a transition from state k to [; the 3 X 3 transition
probability matrix P(s,t) with (k, ) entry py(s,t) = P(Z;(t) = l|Z;(s) = k) is then easily computed
using a matrix exponential of the intensity matrix. We consider the probability of failure by C4 as
P(Z,(C*) = 2|Z;(0) = 0) = 7 and set it equal to 0.40 and 0.80. We set A\12/\g2 = exp(/3). The
mean sojourn time in state 0 is denoted by o = (o1 + Ag2) "' and we let mo; = Ao1/(Ao1 + Ao2)
be the probability of a 0 — 1 transition being realized whenever state 0 is occupied; we assume
P(Z;(0) = 0) = 1. We adopt a Poisson process for the visits with rate p = 4 and 8.

Figure 3 displays the asymptotic percent relative bias of the regression coefficient given by 100(~*—
)/, when the true value is determined so that exp(8) = 1.25. In Figure 3 (a), we consider the
setting with failure probability 7 = 0.4 and visit intensity p = 4 giving an average of four post-
baseline visits per individual. The horizontal axis is 7y; and different lines are plotted corresponding
to R = A\ig/Ao1 = 4 and 8 to illustrate how the bias depends on these two features within the given
setting. Note that the bias increases as the probability of a 0 — 1 transition increases and is higher
when the time spent in state 1 is lower (i.e. with higher values of R). Figure 3 (b) corresponds to
the setting with 7 = 0.4 and p = 8, where it can be seen, as expected, that the asymptotic bias
is lower with more frequent assessments. Figure 3 (c) and (d) show similar patterns for the settings
with an 80% failure rate by the administrative censoring time (i.e. 7z = 0.8) with p = 4 and p = 8§,
respectively. Similar patterns in the asymptotic bias are seen for the regression coefficient at different
values of 3 with the biases tending to be larger with values of (3 farther from zero.

4 IMPLEMENTATION OF A JOINT MODEL FOR THE MARKER AND FAILURE
TIME

4.1 LIKELIHOOD CONSTRUCTION

The bias mentioned in the previous section can be mitigated if a joint model is formed based on
the three-state process of Figure 1. This approach requires modeling the covariate process and we
do so here in the parametric setting of the simulation studies. Under the assumption that we have a
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conditionally independent visit process, then the partial likelihood (Cook and Lawless, 2019) becomes

H{ﬁ Pl (0s,-1) {Z PAZAV7) = HZi{as ) MaVIIZ(V) :@}&[

k=0
(12)
For many processes, the probabilities above may be difficult to express in terms of the intensity
functions used to specify the models. Researchers often model such data using Markov assump-
tions (Cook and Lawless, 2014) for which the transition intensities are of the form A\ (¢t|H(t)) =
Mu(t|Z(t7) = k), that is, the instantaneous risk of the event, given the entire history, is governed by
simply the current marker state. The R msm library by Jackson (2011) contains functions that facili-
tate the sort of multistate analyses we employ here by dealing with intermittent observation regarding
the occupancy of some states and right-censored state entry times for others as above.

4.2 SIMULATION STUDIES OF FINITE SAMPLE PROPERTIES

Here, we report on simulation studies designed to examine the empirical bias of naive analyses based
on the Cox model in which the values of the time-dependent marker are carried forward until their
values are measured again. The goal is to assess whether the empirical bias tracks the asymptotic re-
sults and also to examine the performance of the estimators under the joint model using the likelihood
in (12).

Individuals are first assigned an initial marker state with equal probability (i.e. P(Z;(0) = 0)
and P(Z;(0) = 1) with probability 0.5). We consider a common administrative censoring time of
C# = C4 = 1 with no random censoring. The data on the transition times of the three-state process
of Figure 1 are generated using the msm function with intensities given by the same parameter settings
as in Section 3. Specifically, we consider the case with failure rates of 0.40 and 0.80 over (0, 1],
Ao/Mo1 = R = 4 and 8 and we consider my; = 0.25,0.50 and 0.75. The visit times are generated
according to a Poisson process with visit intensities leading to an average of 4 or 8 visits over (0, 1].
For each simulated dataset, a Cox regression model is fitted by carrying forward the marker value at
the most recent assessment; a joint three-state model is also fitted based on the likelihood in Section
4.1. Two thousand datasets of n = 200 or n = 2000 individuals each were simulated with the
results displayed in Tables 1 and 2, respectively. We report the empirical bias (EBIAS) along with
the asymptotic bias (ABIAS) calculated based on Section 3.2, the empirical standard error (ESE), the
average robust standard error (ASE), and the empirical coverage probability percentage (ECP%) of
nominally 95% confidence intervals (CIs).

For the misspecified Cox model, we find good agreement between the asymptotic and empirical
bias. The empirical coverage based on the Cox model is reasonable in some settings when the failure
rate is low, but as the failure rate increases the impact of model misspecification increases as the biases
become larger and the empirical coverage probabilities become poor (too low). For the analysis based
on the correct likelihood, the empirical biases are negligible as anticipated, as the maximum likelihood
estimators are consistent, and the empirical coverage probabilities are generally compatible with the
nominal 95% level. We note that when the sample size is n = 200 and visits are infrequent (p = 4),
there are some settings where the empirical coverage probability is slightly above the nominal level,
but we attribute this to the finite sample performance of maximum likelihood estimators; the liberal
nature of the confidence intervals in modest samples can be kept in mind when interpreting the results
of the analyses that follow.



Mitigating bias from intermittent measurement of time-dependent covariates in failure time analysis

10

Table 1: Empirical performance of estimators based on 2000 simulations with n = 200 individuals

per sample.
Average of 4 Visits (p = 4) Average of 8 Visits (p = 8)
mr R w1 Method EBIAS ABIAS ESE ASE ECP% EBIAS ABIAS ESE ASE ECP%
04 4 025 Cox -0.032 -0.031 0.604 0.609 956  -0.038 -0.024 0.549 0.568 96.5
Joint -0.045 0.710 0.703 959  -0.040 0.585 0.595 96.0
0.50 Cox -0.074 -0.064 0.447 0428 953  -0.050 -0.044 0.383 0.381 96.2
Joint  -0.069 0.586 0.595 95.8  -0.058 0.490 0.472  95.7
0.75 Cox -0.127 -0.134 0.389 0.362 948 -0.129 -0.094 0.228 0.328  95.0
Joint -0.090 0.708 0.702 95.0 -0.086 0.604 0.598 957
8 0.25 Cox -0.023 -0.044 0.606 0.648 95.8 -0.007 -0.025 0.576 0.583  95.5
Joint -0.031 0.691 0.704 96.3  -0.030 0.669 0.701 957
0.50 Cox -0.127 -0.094 0.536 0.511 969 -0.106 -0.064 0.528 0.519 96.5
Joint -0.064 0.727 0.780  96.1 -0.060 0.654 0.690 957
0.75 Cox -0.175 -0.154 0497 0461 97.0 -0.135 -0.124 0.423 0410 97.1
Joint -0.039 0.851 0.890 953  -0.053 0.751 0.780  95.3
0.8 4 0.25 Cox -0.061 -0.064 0.333 0.334 96.5 -0.044 -0.044 0.292 0.294 95.8
Joint -0.035 0457 0446 956  -0.022 0.362 0.348 958
0.50 Cox -0.131 -0.124 0.279 0.274 938  -0.095 -0.094 0.252 0.245 933
Joint  -0.055 0.534 0520 956  -0.037 0.379 0375 947
0.75 Cox -0.193 -0.174 0.258 0.255 91.1  -0.148 -0.154 0.230 0.229 91.1
Joint -0.043 0.810 0.844 969  -0.081 0.587 0.568  96.2
8 0.25 Cox -0.090 -0.094 0.397 0.393 97.0 -0.065 -0.066 0.364 0.342 95.2
Joint -0.065 0.640 0.671 953  -0.061 0.510 0.499 958
0.50 Cox -0.156 -0.151 0.357 0.342 94.1 -0.135 -0.124 0.313 0304 948
Joint -0.022 0.837 0.868 95.6  -0.072 0.620 0.642  96.0
0.75 Cox -0.218 -0.194 0.339 0.328 936 -0.218 -0.174 0.300 0.294 923
Joint -0.045 0.810 0.823 955  -0.027 0.787 0.789 952

Abbreviations: ABIAS, asymptotic bias; ASE, average robust standard error; EBIAS, empirical bias; ECP, empir-

ical coverage probability; ESE, empirical standard error.
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Table 2: Empirical performance of estimators based on 2000 simulations with n = 2000 individuals
per sample.

Average of 4 Visits (p = 4) Average of 8 Visits (p = 8)

mr R w1 Method EBIAS ABIAS ESE ASE ECP%  EBIAS ABIAS ESE ASE ECP%

04 4 025 Cox -0.033 -0.031 0.181 0.177  95.5 -0.025 -0.024 0.160 0.158 949
Joint -0.008 0.194 0.192 954 -0.007 0.170 0.167 94.8

0.50 Cox -0.064 -0.064 0.127 0.128  93.7 -0.047 -0.044 0.117 0.116 942
Joint -0.009 0.164 0.163 955 <0.001 0.134 0.136 955

0.75 Cox -0.125 -0.134 0.110 0.110 825 -0.094 -0.094 0.099 0.100 84.2
Joint -0.009 0.186 0.191  95.8 -0.001 0.149 0.150  96.0

8 0.25 Cox -0.043 -0.044 0.195 0.193 948 -0.031 -0.025 0.168 0.171 953
Joint -0.019 0.227 0226  96.0 -0.005 0.185 0.189  95.1

0.50 Cox -0.095 -0.094 0.151 0.149 922 -0.064 -0.064 0.137 0.135 934
Joint -0.014 0.223 0223 955 -0.009 0.174 0.178 959

0.75 Cox -0.162 -0.154 0.137 0.136  80.7 -0.129  -0.124 0.123 0.124 845
Joint -0.020 0.313 0.308 95.6 -0.013 0.224 0227 954

0.8 4 0.25 Cox -0.062 -0.064 0.103 0.102 91.6 -0.042  -0.044 0.093 0.091 923
Joint -0.004 0.123 0.126  96.0 <0.001 0.105 0.105 949

0.50 Cox -0.123 -0.124 0.086 0.085 713 -0.095 -0.094 0.077 0.076  77.7
Joint -0.003 0.139 0.142 956 -0.004 0.112 0.112  94.8

0.75 Cox -0.175 -0.174 0.079 0.079 404 -0.154 -0.154 0.071 0.071 427
Joint -0.008 0.209 0.207  96.0 -0.006 0.157 0.155 946

8 0.25 Cox -0.093 -0.094 0.122 0.118  88.5 -0.068 -0.066 0.104 0.104 91.2
Joint -0.007 0.170 0.171 955 -0.003 0.137 0.135 948

0.50 Cox -0.152 -0.151 0.106 0.104  68.2 -0.128 -0.124 0.092 0.093 734
Joint  -0.009 0.225 0.223  95.1 -0.007 0.168 0.167 952

0.75 Cox -0.193 -0.194 0.102 0.100 49.0 -0.177  -0.174 0.089 0.090  50.1
Joint -0.025 0.362 0.356  95.5 -0.013 0.257 0.255 954

Abbreviations: ABIAS, asymptotic bias; ASE, average robust standard error; EBIAS, empirical bias; ECP, empir-
ical coverage probability; ESE, empirical standard error.
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5 MARKERS AND SKELETAL COMPLICATIONS IN METASTATIC BREAST CAN-
CER

Individuals with cancer metastatic to bone are at risk of skeletal complications such as bone pain,
hypercalcemia and need for surgery, all of which impact quality of life and disability. We consider
the relationship between levels of the marker bone alkaline phosphatase (BALP), a marker of bone
formation, and the risk of the composite event of skeletal complication or death in prostate cancer
patients receiving standard therapy from the trial reported in Saad et al. (2004). Levels of BALP
change continuously over time, but they are only measured when blood samples are taken at the
periodic follow-up assessments. We carry out a standard Cox regression analysis using the most
recently recorded value of the bone marker, as well as an analysis based on jointly modeling the
marker state and the composite endpoint in a five-state model; R code for the joint analysis is available
on request. Figure 4 contains a multistate diagram with marker states defined based on quartiles of
BALP at the time of recruitment where 1 to 4 corresponding to ranges 0 < BALP < 150.25, 150.25 <
BALP < 267.50, 267.50 < BALP < 529.75, 529.75 < BALP, and state 5 representing the clinical
event of interest (skeletal event or death). We let Z(t) represent the state occupied at time ¢ so that
Z(t) = k if an individual is in state k at time ¢, for example, Z(¢) = 3 if at time ¢ an individual is
alive and has a BALP value in the interval [267.50, 529.75). The transitions between states are again
governed by intensity functions, which in this context reflect the instantaneous risk of movement from
one state to another given the history of the process. We adopt functionally independent piecewise
constant transition intensities for all transitions between the marker states with two cut points at 90
days and 180 days giving three pieces. For the transitions into the absorbing state defined by the
clinical event of interest, we set

ks (EH()) = Mis(tH(2)) exp(I(Z(t7) = 2)Ba + 1(Z(t7) = 3)B3 + [(Z(t7) = 4)Ba)

so that the regression coefficients characterize the ratio of the instantaneous risk of the event across
the different marker states.

0-150.25 150.25 - 267.50 267.50 - 529.75 >529.75
_— _
1 2 3 4
5

SKELETAL EVENT/
DEATH

Figure 4: A five-state model for bone alkaline phosphatase and the composite event of skeletal com-
plication and death

In the first set of columns of Table 3, we report the hazard ratio estimates from fitting a Cox regres-
sion model using the customary strategy of carrying forward the most recently recorded marker value;
the covariate levels are defined as they are in Figure 4. In addition we report the relative risks (RRs)
for transitions into the absorbing state based on the fit of the multistate model with the higher marker
states compared to the reference marker state of 0 < BALP < 150.25. When comparing the estimates
from the Cox regression to the estimates from the multistate analysis, it is apparent that the point
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Table 3: Estimates of relative risk obtained from fitting a Cox regression model and a joint model
with piecewise-constant intensities to the skeletal event-free survival in N = 202 placebo patients
from Saad et al. (2004)

Cox Regression Model Joint Model
BALP
Level (IU//) Estt. SE. RR 95% CI p—value Estt. SE. RR 95% CI p—value
0 —150.25 - - - -

150.25 — 267.50 0.418 0.331 1.518 (0.793,2.907) 0.2077 0.585 0.483 1.794 (0.696, 4.628) 0.2264
267.50 — 529.75 1.007 0.305 2.738 (1.505,4.981) 0.0001 1.053 0.431 2.867 (1.232,6.675) 0.0145
> 529.75 1.356 0.282 3.880 (2.233,6.743) < 0.0001 1.580 0.356 4.855 (2.417,9.751) < 0.0001

Abbreviations: BALP, bone alkaline phosphatase; CI, confidence interval; RR, relative risk.

estimates of the RRs from the Cox model are attenuated compared to those of the multistate model,
a relation in alignment with the simulation results. Generally, we see an increased risk with higher
values of BALP; for example the RR for the highest category compared to the reference category is
RR = 4.85(95% CI: 2.42, 9.75) from the joint model and RR = 3.88 (95% CI: 2.23, 6.74) from the
Cox model. Figure 5 contains plots of estimates of the cumulative probability of the composite event
based on a marginal Kaplan-Meier estimate and based on the five-state joint model of the BALP and
failure process; the latter is obtained by computing an estimate of the absorption probability in the
five-state model of Figure 4. Since the former is robust, the agreement between these two estimates
does not suggest evidence that the Markov assumptions of the five-state model are implausible.

1.0

— KAPLAN-MEIER
--- JOINT MODEL

0.9

0.8 4

0.7 4

0.6 4

P(T<t)
o
(&)
I

T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27
MONTHS SINCE RANDOMIZATION

Figure 5: The cumulative probability of the composite endpoint of skeletal complication or death
based on a marginal Kaplan-Meier estimate and the joint five-state model
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6 DISCUSSION

We consider the common setting in which markers that vary over time are measured at periodic as-
sessment times, which we refer to as clinic visits. It is well known that if the current covariate acts
multiplicatively on the hazard function for failure inconsistent estimates are obtained when the most
recently recorded value is used in the analysis (Bruijne et al., 2001; Andersen and Liestol, 2003),
though much of this work has been directed at the study of continuous markers. We have investigated
the asymptotic bias of estimators arising from model fitting with the common convention of carry-
ing forward the marker value that was most recently recorded. We found that there is generally an
attenuation of the estimated effect, with a greater attenuation arising when the visit intensity is lower
and assessments are less frequent. For a given visit intensity, the bias is greater with a more rapidly
changing marker value, as reflected here by the ratio Ao/ Ag;. Moreover, as noted for other settings
involving misspecified Cox regression models, the asymptotic bias is lower when the censoring rate
is higher since there is less information conveyed about the effect (Wu and Cook, 2012; Rufibach,
2019). Other failure time models could be considered of course, including additive models (Aalen,
1989), the Cox-Aalen model (Scheike and Zhang, 2002) and accelerated failure time models (Robins
and Tsiatis, 1992), but we anticipate the same general dependence on these factors would remain.

The approach to dealing with the intermittent observation of the marker process is the formation
of a joint model for the marker and failure times. There is a large literature on joint modeling of lon-
gitudinal marker data and failure times, but this too has primarily been directed at continuous markers
(Tsiatis and Davidian, 2004; Rizopoulos, 2012). Handling of discrete marker processes is naturally
done by casting the joint model into the multistate framework, an approach which is particularly
amenable under Markov assumptions. We considered parametric or weakly parametric joint multi-
state models and assumed that the censoring time and visit process were completely independent of
the marker process. Tests of the assumption that the visit process is independent of the joint process
are possible by conceptualizing a more general joint model of the failure, marker, and visit processes.
Cook and Lawless (2019) consider joint multistate-visit processes and discuss model fitting and iden-
tifiability issues. This expanded state space would require larger datasets if model fitting were desired
to provide protection against various types of dependent visit processes, but they could also be used
as a basis for score tests if simple diagnostic checks were desired.

Robustness of the model could be further improved by adopting a piecewise constant transition
intensities between the marker states. Random effects model could also be considered by adding in the
individual level variation accounting for more frequent or slower cycling through the states. Finally,
we note that the joint modeling approach can also be used when there is more than one clinical event of
interest; joint marker and illness-death models can be considered in the semi-competing risks setting.

The approach in this article could be extended to deal with higher dimensional marker processes
by expanding the state space to accommodate different combination of marker states; of course, larger
datasets and more frequent visit times would be desirable to ensure estimability challenges do not
create problems in model fitting. As an example, N-telopeptide of type I collagen is a marker of bone
resorption that has been found to be associated with the presence and volume of skeletal metastases
and it could be studied in the prostate cancer setting of the illustrative example in combination with
the bone alkaline phosphatase marker examined here. The more markers or other time-dependent
covariates considered, the more states are required in the state space of the joint model and so one
may need to be careful in selecting a modest number of states for each marker to avoid estimability
problems.
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